1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SystemZ implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZInstrInfo.h"
14 #include "MCTargetDesc/SystemZMCTargetDesc.h"
15 #include "SystemZ.h"
16 #include "SystemZInstrBuilder.h"
17 #include "SystemZSubtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LiveInterval.h"
20 #include "llvm/CodeGen/LiveIntervals.h"
21 #include "llvm/CodeGen/LivePhysRegs.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/StackMaps.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/CodeGen/VirtRegMap.h"
35 #include "llvm/MC/MCInstrDesc.h"
36 #include "llvm/MC/MCRegisterInfo.h"
37 #include "llvm/Support/BranchProbability.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include <cassert>
42 #include <cstdint>
43 #include <iterator>
44 
45 using namespace llvm;
46 
47 #define GET_INSTRINFO_CTOR_DTOR
48 #define GET_INSTRMAP_INFO
49 #include "SystemZGenInstrInfo.inc"
50 
51 #define DEBUG_TYPE "systemz-II"
52 
53 // Return a mask with Count low bits set.
54 static uint64_t allOnes(unsigned int Count) {
55   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
56 }
57 
58 // Pin the vtable to this file.
59 void SystemZInstrInfo::anchor() {}
60 
61 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
62     : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
63       RI(sti.getSpecialRegisters()->getReturnFunctionAddressRegister()),
64       STI(sti) {}
65 
66 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
67 // each having the opcode given by NewOpcode.
68 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
69                                  unsigned NewOpcode) const {
70   MachineBasicBlock *MBB = MI->getParent();
71   MachineFunction &MF = *MBB->getParent();
72 
73   // Get two load or store instructions.  Use the original instruction for one
74   // of them (arbitrarily the second here) and create a clone for the other.
75   MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
76   MBB->insert(MI, EarlierMI);
77 
78   // Set up the two 64-bit registers and remember super reg and its flags.
79   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
80   MachineOperand &LowRegOp = MI->getOperand(0);
81   Register Reg128 = LowRegOp.getReg();
82   unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
83   unsigned Reg128Undef  = getUndefRegState(LowRegOp.isUndef());
84   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
85   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
86 
87   if (MI->mayStore()) {
88     // Add implicit uses of the super register in case one of the subregs is
89     // undefined. We could track liveness and skip storing an undefined
90     // subreg, but this is hopefully rare (discovered with llvm-stress).
91     // If Reg128 was killed, set kill flag on MI.
92     unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
93     MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
94     MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
95   }
96 
97   // The address in the first (high) instruction is already correct.
98   // Adjust the offset in the second (low) instruction.
99   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
100   MachineOperand &LowOffsetOp = MI->getOperand(2);
101   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
102 
103   // Clear the kill flags on the registers in the first instruction.
104   if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
105     EarlierMI->getOperand(0).setIsKill(false);
106   EarlierMI->getOperand(1).setIsKill(false);
107   EarlierMI->getOperand(3).setIsKill(false);
108 
109   // Set the opcodes.
110   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
111   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
112   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
113 
114   EarlierMI->setDesc(get(HighOpcode));
115   MI->setDesc(get(LowOpcode));
116 }
117 
118 // Split ADJDYNALLOC instruction MI.
119 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
120   MachineBasicBlock *MBB = MI->getParent();
121   MachineFunction &MF = *MBB->getParent();
122   MachineFrameInfo &MFFrame = MF.getFrameInfo();
123   MachineOperand &OffsetMO = MI->getOperand(2);
124   SystemZCallingConventionRegisters *Regs = STI.getSpecialRegisters();
125 
126   uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
127                      Regs->getCallFrameSize() +
128                      Regs->getStackPointerBias() +
129                      OffsetMO.getImm());
130   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
131   assert(NewOpcode && "No support for huge argument lists yet");
132   MI->setDesc(get(NewOpcode));
133   OffsetMO.setImm(Offset);
134 }
135 
136 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
137 // if the first operand is a low GR32 and HighOpcode if the first operand
138 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
139 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
140 // MI has the same kind of operand as LowOpcode, so needs to be converted
141 // if HighOpcode is used.
142 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
143                                       unsigned HighOpcode,
144                                       bool ConvertHigh) const {
145   Register Reg = MI.getOperand(0).getReg();
146   bool IsHigh = SystemZ::isHighReg(Reg);
147   MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
148   if (IsHigh && ConvertHigh)
149     MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
150 }
151 
152 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
153 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
154 // followed by HighOpcode or LowOpcode, depending on whether the target
155 // is a high or low GR32.
156 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
157                                        unsigned LowOpcodeK,
158                                        unsigned HighOpcode) const {
159   Register DestReg = MI.getOperand(0).getReg();
160   Register SrcReg = MI.getOperand(1).getReg();
161   bool DestIsHigh = SystemZ::isHighReg(DestReg);
162   bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
163   if (!DestIsHigh && !SrcIsHigh)
164     MI.setDesc(get(LowOpcodeK));
165   else {
166     if (DestReg != SrcReg) {
167       emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
168                     SystemZ::LR, 32, MI.getOperand(1).isKill(),
169                     MI.getOperand(1).isUndef());
170       MI.getOperand(1).setReg(DestReg);
171     }
172     MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
173     MI.tieOperands(0, 1);
174   }
175 }
176 
177 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
178 // if the first operand is a low GR32 and HighOpcode if the first operand
179 // is a high GR32.
180 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
181                                        unsigned HighOpcode) const {
182   Register Reg = MI.getOperand(0).getReg();
183   unsigned Opcode = getOpcodeForOffset(
184       SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode,
185       MI.getOperand(2).getImm());
186   MI.setDesc(get(Opcode));
187 }
188 
189 // MI is a load-on-condition pseudo instruction with a single register
190 // (source or destination) operand.  Replace it with LowOpcode if the
191 // register is a low GR32 and HighOpcode if the register is a high GR32.
192 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
193                                        unsigned HighOpcode) const {
194   Register Reg = MI.getOperand(0).getReg();
195   unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode;
196   MI.setDesc(get(Opcode));
197 }
198 
199 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
200 // of one GRX32 into another.  Replace it with LowOpcode if both operands
201 // are low registers, otherwise use RISB[LH]G.
202 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
203                                         unsigned Size) const {
204   MachineInstrBuilder MIB =
205     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
206                MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
207                Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
208 
209   // Keep the remaining operands as-is.
210   for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2))
211     MIB.add(MO);
212 
213   MI.eraseFromParent();
214 }
215 
216 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
217   MachineBasicBlock *MBB = MI->getParent();
218   MachineFunction &MF = *MBB->getParent();
219   const Register Reg64 = MI->getOperand(0).getReg();
220   const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
221 
222   // EAR can only load the low subregister so us a shift for %a0 to produce
223   // the GR containing %a0 and %a1.
224 
225   // ear <reg>, %a0
226   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
227     .addReg(SystemZ::A0)
228     .addReg(Reg64, RegState::ImplicitDefine);
229 
230   // sllg <reg>, <reg>, 32
231   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
232     .addReg(Reg64)
233     .addReg(0)
234     .addImm(32);
235 
236   // ear <reg>, %a1
237   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
238     .addReg(SystemZ::A1);
239 
240   // lg <reg>, 40(<reg>)
241   MI->setDesc(get(SystemZ::LG));
242   MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
243 }
244 
245 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
246 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
247 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
248 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
249 // KillSrc is true if this move is the last use of SrcReg.
250 MachineInstrBuilder
251 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
252                                 MachineBasicBlock::iterator MBBI,
253                                 const DebugLoc &DL, unsigned DestReg,
254                                 unsigned SrcReg, unsigned LowLowOpcode,
255                                 unsigned Size, bool KillSrc,
256                                 bool UndefSrc) const {
257   unsigned Opcode;
258   bool DestIsHigh = SystemZ::isHighReg(DestReg);
259   bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
260   if (DestIsHigh && SrcIsHigh)
261     Opcode = SystemZ::RISBHH;
262   else if (DestIsHigh && !SrcIsHigh)
263     Opcode = SystemZ::RISBHL;
264   else if (!DestIsHigh && SrcIsHigh)
265     Opcode = SystemZ::RISBLH;
266   else {
267     return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
268       .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
269   }
270   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
271   return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
272     .addReg(DestReg, RegState::Undef)
273     .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
274     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
275 }
276 
277 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
278                                                        bool NewMI,
279                                                        unsigned OpIdx1,
280                                                        unsigned OpIdx2) const {
281   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
282     if (NewMI)
283       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
284     return MI;
285   };
286 
287   switch (MI.getOpcode()) {
288   case SystemZ::SELRMux:
289   case SystemZ::SELFHR:
290   case SystemZ::SELR:
291   case SystemZ::SELGR:
292   case SystemZ::LOCRMux:
293   case SystemZ::LOCFHR:
294   case SystemZ::LOCR:
295   case SystemZ::LOCGR: {
296     auto &WorkingMI = cloneIfNew(MI);
297     // Invert condition.
298     unsigned CCValid = WorkingMI.getOperand(3).getImm();
299     unsigned CCMask = WorkingMI.getOperand(4).getImm();
300     WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
301     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
302                                                    OpIdx1, OpIdx2);
303   }
304   default:
305     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
306   }
307 }
308 
309 // If MI is a simple load or store for a frame object, return the register
310 // it loads or stores and set FrameIndex to the index of the frame object.
311 // Return 0 otherwise.
312 //
313 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
314 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
315                         unsigned Flag) {
316   const MCInstrDesc &MCID = MI.getDesc();
317   if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
318       MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
319     FrameIndex = MI.getOperand(1).getIndex();
320     return MI.getOperand(0).getReg();
321   }
322   return 0;
323 }
324 
325 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
326                                                int &FrameIndex) const {
327   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
328 }
329 
330 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
331                                               int &FrameIndex) const {
332   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
333 }
334 
335 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
336                                        int &DestFrameIndex,
337                                        int &SrcFrameIndex) const {
338   // Check for MVC 0(Length,FI1),0(FI2)
339   const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
340   if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
341       MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
342       MI.getOperand(4).getImm() != 0)
343     return false;
344 
345   // Check that Length covers the full slots.
346   int64_t Length = MI.getOperand(2).getImm();
347   unsigned FI1 = MI.getOperand(0).getIndex();
348   unsigned FI2 = MI.getOperand(3).getIndex();
349   if (MFI.getObjectSize(FI1) != Length ||
350       MFI.getObjectSize(FI2) != Length)
351     return false;
352 
353   DestFrameIndex = FI1;
354   SrcFrameIndex = FI2;
355   return true;
356 }
357 
358 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
359                                      MachineBasicBlock *&TBB,
360                                      MachineBasicBlock *&FBB,
361                                      SmallVectorImpl<MachineOperand> &Cond,
362                                      bool AllowModify) const {
363   // Most of the code and comments here are boilerplate.
364 
365   // Start from the bottom of the block and work up, examining the
366   // terminator instructions.
367   MachineBasicBlock::iterator I = MBB.end();
368   while (I != MBB.begin()) {
369     --I;
370     if (I->isDebugInstr())
371       continue;
372 
373     // Working from the bottom, when we see a non-terminator instruction, we're
374     // done.
375     if (!isUnpredicatedTerminator(*I))
376       break;
377 
378     // A terminator that isn't a branch can't easily be handled by this
379     // analysis.
380     if (!I->isBranch())
381       return true;
382 
383     // Can't handle indirect branches.
384     SystemZII::Branch Branch(getBranchInfo(*I));
385     if (!Branch.hasMBBTarget())
386       return true;
387 
388     // Punt on compound branches.
389     if (Branch.Type != SystemZII::BranchNormal)
390       return true;
391 
392     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
393       // Handle unconditional branches.
394       if (!AllowModify) {
395         TBB = Branch.getMBBTarget();
396         continue;
397       }
398 
399       // If the block has any instructions after a JMP, delete them.
400       while (std::next(I) != MBB.end())
401         std::next(I)->eraseFromParent();
402 
403       Cond.clear();
404       FBB = nullptr;
405 
406       // Delete the JMP if it's equivalent to a fall-through.
407       if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) {
408         TBB = nullptr;
409         I->eraseFromParent();
410         I = MBB.end();
411         continue;
412       }
413 
414       // TBB is used to indicate the unconditinal destination.
415       TBB = Branch.getMBBTarget();
416       continue;
417     }
418 
419     // Working from the bottom, handle the first conditional branch.
420     if (Cond.empty()) {
421       // FIXME: add X86-style branch swap
422       FBB = TBB;
423       TBB = Branch.getMBBTarget();
424       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
425       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
426       continue;
427     }
428 
429     // Handle subsequent conditional branches.
430     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
431 
432     // Only handle the case where all conditional branches branch to the same
433     // destination.
434     if (TBB != Branch.getMBBTarget())
435       return true;
436 
437     // If the conditions are the same, we can leave them alone.
438     unsigned OldCCValid = Cond[0].getImm();
439     unsigned OldCCMask = Cond[1].getImm();
440     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
441       continue;
442 
443     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
444     return false;
445   }
446 
447   return false;
448 }
449 
450 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
451                                         int *BytesRemoved) const {
452   assert(!BytesRemoved && "code size not handled");
453 
454   // Most of the code and comments here are boilerplate.
455   MachineBasicBlock::iterator I = MBB.end();
456   unsigned Count = 0;
457 
458   while (I != MBB.begin()) {
459     --I;
460     if (I->isDebugInstr())
461       continue;
462     if (!I->isBranch())
463       break;
464     if (!getBranchInfo(*I).hasMBBTarget())
465       break;
466     // Remove the branch.
467     I->eraseFromParent();
468     I = MBB.end();
469     ++Count;
470   }
471 
472   return Count;
473 }
474 
475 bool SystemZInstrInfo::
476 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
477   assert(Cond.size() == 2 && "Invalid condition");
478   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
479   return false;
480 }
481 
482 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
483                                         MachineBasicBlock *TBB,
484                                         MachineBasicBlock *FBB,
485                                         ArrayRef<MachineOperand> Cond,
486                                         const DebugLoc &DL,
487                                         int *BytesAdded) const {
488   // In this function we output 32-bit branches, which should always
489   // have enough range.  They can be shortened and relaxed by later code
490   // in the pipeline, if desired.
491 
492   // Shouldn't be a fall through.
493   assert(TBB && "insertBranch must not be told to insert a fallthrough");
494   assert((Cond.size() == 2 || Cond.size() == 0) &&
495          "SystemZ branch conditions have one component!");
496   assert(!BytesAdded && "code size not handled");
497 
498   if (Cond.empty()) {
499     // Unconditional branch?
500     assert(!FBB && "Unconditional branch with multiple successors!");
501     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
502     return 1;
503   }
504 
505   // Conditional branch.
506   unsigned Count = 0;
507   unsigned CCValid = Cond[0].getImm();
508   unsigned CCMask = Cond[1].getImm();
509   BuildMI(&MBB, DL, get(SystemZ::BRC))
510     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
511   ++Count;
512 
513   if (FBB) {
514     // Two-way Conditional branch. Insert the second branch.
515     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
516     ++Count;
517   }
518   return Count;
519 }
520 
521 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
522                                       Register &SrcReg2, int64_t &Mask,
523                                       int64_t &Value) const {
524   assert(MI.isCompare() && "Caller should have checked for a comparison");
525 
526   if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
527       MI.getOperand(1).isImm()) {
528     SrcReg = MI.getOperand(0).getReg();
529     SrcReg2 = 0;
530     Value = MI.getOperand(1).getImm();
531     Mask = ~0;
532     return true;
533   }
534 
535   return false;
536 }
537 
538 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
539                                        ArrayRef<MachineOperand> Pred,
540                                        Register DstReg, Register TrueReg,
541                                        Register FalseReg, int &CondCycles,
542                                        int &TrueCycles,
543                                        int &FalseCycles) const {
544   // Not all subtargets have LOCR instructions.
545   if (!STI.hasLoadStoreOnCond())
546     return false;
547   if (Pred.size() != 2)
548     return false;
549 
550   // Check register classes.
551   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
552   const TargetRegisterClass *RC =
553     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
554   if (!RC)
555     return false;
556 
557   // We have LOCR instructions for 32 and 64 bit general purpose registers.
558   if ((STI.hasLoadStoreOnCond2() &&
559        SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
560       SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
561       SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
562     CondCycles = 2;
563     TrueCycles = 2;
564     FalseCycles = 2;
565     return true;
566   }
567 
568   // Can't do anything else.
569   return false;
570 }
571 
572 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
573                                     MachineBasicBlock::iterator I,
574                                     const DebugLoc &DL, Register DstReg,
575                                     ArrayRef<MachineOperand> Pred,
576                                     Register TrueReg,
577                                     Register FalseReg) const {
578   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
579   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
580 
581   assert(Pred.size() == 2 && "Invalid condition");
582   unsigned CCValid = Pred[0].getImm();
583   unsigned CCMask = Pred[1].getImm();
584 
585   unsigned Opc;
586   if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
587     if (STI.hasMiscellaneousExtensions3())
588       Opc = SystemZ::SELRMux;
589     else if (STI.hasLoadStoreOnCond2())
590       Opc = SystemZ::LOCRMux;
591     else {
592       Opc = SystemZ::LOCR;
593       MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
594       Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
595       Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
596       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
597       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
598       TrueReg = TReg;
599       FalseReg = FReg;
600     }
601   } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
602     if (STI.hasMiscellaneousExtensions3())
603       Opc = SystemZ::SELGR;
604     else
605       Opc = SystemZ::LOCGR;
606   } else
607     llvm_unreachable("Invalid register class");
608 
609   BuildMI(MBB, I, DL, get(Opc), DstReg)
610     .addReg(FalseReg).addReg(TrueReg)
611     .addImm(CCValid).addImm(CCMask);
612 }
613 
614 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
615                                      Register Reg,
616                                      MachineRegisterInfo *MRI) const {
617   unsigned DefOpc = DefMI.getOpcode();
618   if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
619       DefOpc != SystemZ::LGHI)
620     return false;
621   if (DefMI.getOperand(0).getReg() != Reg)
622     return false;
623   int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
624 
625   unsigned UseOpc = UseMI.getOpcode();
626   unsigned NewUseOpc;
627   unsigned UseIdx;
628   int CommuteIdx = -1;
629   bool TieOps = false;
630   switch (UseOpc) {
631   case SystemZ::SELRMux:
632     TieOps = true;
633     LLVM_FALLTHROUGH;
634   case SystemZ::LOCRMux:
635     if (!STI.hasLoadStoreOnCond2())
636       return false;
637     NewUseOpc = SystemZ::LOCHIMux;
638     if (UseMI.getOperand(2).getReg() == Reg)
639       UseIdx = 2;
640     else if (UseMI.getOperand(1).getReg() == Reg)
641       UseIdx = 2, CommuteIdx = 1;
642     else
643       return false;
644     break;
645   case SystemZ::SELGR:
646     TieOps = true;
647     LLVM_FALLTHROUGH;
648   case SystemZ::LOCGR:
649     if (!STI.hasLoadStoreOnCond2())
650       return false;
651     NewUseOpc = SystemZ::LOCGHI;
652     if (UseMI.getOperand(2).getReg() == Reg)
653       UseIdx = 2;
654     else if (UseMI.getOperand(1).getReg() == Reg)
655       UseIdx = 2, CommuteIdx = 1;
656     else
657       return false;
658     break;
659   default:
660     return false;
661   }
662 
663   if (CommuteIdx != -1)
664     if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
665       return false;
666 
667   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
668   UseMI.setDesc(get(NewUseOpc));
669   if (TieOps)
670     UseMI.tieOperands(0, 1);
671   UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
672   if (DeleteDef)
673     DefMI.eraseFromParent();
674 
675   return true;
676 }
677 
678 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
679   unsigned Opcode = MI.getOpcode();
680   if (Opcode == SystemZ::Return ||
681       Opcode == SystemZ::Return_XPLINK ||
682       Opcode == SystemZ::Trap ||
683       Opcode == SystemZ::CallJG ||
684       Opcode == SystemZ::CallBR)
685     return true;
686   return false;
687 }
688 
689 bool SystemZInstrInfo::
690 isProfitableToIfCvt(MachineBasicBlock &MBB,
691                     unsigned NumCycles, unsigned ExtraPredCycles,
692                     BranchProbability Probability) const {
693   // Avoid using conditional returns at the end of a loop (since then
694   // we'd need to emit an unconditional branch to the beginning anyway,
695   // making the loop body longer).  This doesn't apply for low-probability
696   // loops (eg. compare-and-swap retry), so just decide based on branch
697   // probability instead of looping structure.
698   // However, since Compare and Trap instructions cost the same as a regular
699   // Compare instruction, we should allow the if conversion to convert this
700   // into a Conditional Compare regardless of the branch probability.
701   if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
702       MBB.succ_empty() && Probability < BranchProbability(1, 8))
703     return false;
704   // For now only convert single instructions.
705   return NumCycles == 1;
706 }
707 
708 bool SystemZInstrInfo::
709 isProfitableToIfCvt(MachineBasicBlock &TMBB,
710                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
711                     MachineBasicBlock &FMBB,
712                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
713                     BranchProbability Probability) const {
714   // For now avoid converting mutually-exclusive cases.
715   return false;
716 }
717 
718 bool SystemZInstrInfo::
719 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
720                           BranchProbability Probability) const {
721   // For now only duplicate single instructions.
722   return NumCycles == 1;
723 }
724 
725 bool SystemZInstrInfo::PredicateInstruction(
726     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
727   assert(Pred.size() == 2 && "Invalid condition");
728   unsigned CCValid = Pred[0].getImm();
729   unsigned CCMask = Pred[1].getImm();
730   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
731   unsigned Opcode = MI.getOpcode();
732   if (Opcode == SystemZ::Trap) {
733     MI.setDesc(get(SystemZ::CondTrap));
734     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
735       .addImm(CCValid).addImm(CCMask)
736       .addReg(SystemZ::CC, RegState::Implicit);
737     return true;
738   }
739   if (Opcode == SystemZ::Return || Opcode == SystemZ::Return_XPLINK) {
740     MI.setDesc(get(Opcode == SystemZ::Return ? SystemZ::CondReturn
741                                              : SystemZ::CondReturn_XPLINK));
742     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
743         .addImm(CCValid)
744         .addImm(CCMask)
745         .addReg(SystemZ::CC, RegState::Implicit);
746     return true;
747   }
748   if (Opcode == SystemZ::CallJG) {
749     MachineOperand FirstOp = MI.getOperand(0);
750     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
751     MI.removeOperand(1);
752     MI.removeOperand(0);
753     MI.setDesc(get(SystemZ::CallBRCL));
754     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
755         .addImm(CCValid)
756         .addImm(CCMask)
757         .add(FirstOp)
758         .addRegMask(RegMask)
759         .addReg(SystemZ::CC, RegState::Implicit);
760     return true;
761   }
762   if (Opcode == SystemZ::CallBR) {
763     MachineOperand Target = MI.getOperand(0);
764     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
765     MI.removeOperand(1);
766     MI.removeOperand(0);
767     MI.setDesc(get(SystemZ::CallBCR));
768     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
769       .addImm(CCValid).addImm(CCMask)
770       .add(Target)
771       .addRegMask(RegMask)
772       .addReg(SystemZ::CC, RegState::Implicit);
773     return true;
774   }
775   return false;
776 }
777 
778 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
779                                    MachineBasicBlock::iterator MBBI,
780                                    const DebugLoc &DL, MCRegister DestReg,
781                                    MCRegister SrcReg, bool KillSrc) const {
782   // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
783   // super register in case one of the subregs is undefined.
784   // This handles ADDR128 too.
785   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
786     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
787                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
788     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
789       .addReg(SrcReg, RegState::Implicit);
790     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
791                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
792     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
793       .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
794     return;
795   }
796 
797   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
798     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
799                   false);
800     return;
801   }
802 
803   // Move 128-bit floating-point values between VR128 and FP128.
804   if (SystemZ::VR128BitRegClass.contains(DestReg) &&
805       SystemZ::FP128BitRegClass.contains(SrcReg)) {
806     MCRegister SrcRegHi =
807         RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
808                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
809     MCRegister SrcRegLo =
810         RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
811                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
812 
813     BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
814       .addReg(SrcRegHi, getKillRegState(KillSrc))
815       .addReg(SrcRegLo, getKillRegState(KillSrc));
816     return;
817   }
818   if (SystemZ::FP128BitRegClass.contains(DestReg) &&
819       SystemZ::VR128BitRegClass.contains(SrcReg)) {
820     MCRegister DestRegHi =
821         RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
822                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
823     MCRegister DestRegLo =
824         RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
825                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
826 
827     if (DestRegHi != SrcReg)
828       copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
829     BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
830       .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
831     return;
832   }
833 
834   // Move CC value from a GR32.
835   if (DestReg == SystemZ::CC) {
836     unsigned Opcode =
837       SystemZ::GR32BitRegClass.contains(SrcReg) ? SystemZ::TMLH : SystemZ::TMHH;
838     BuildMI(MBB, MBBI, DL, get(Opcode))
839       .addReg(SrcReg, getKillRegState(KillSrc))
840       .addImm(3 << (SystemZ::IPM_CC - 16));
841     return;
842   }
843 
844   // Everything else needs only one instruction.
845   unsigned Opcode;
846   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
847     Opcode = SystemZ::LGR;
848   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
849     // For z13 we prefer LDR over LER to avoid partial register dependencies.
850     Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
851   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
852     Opcode = SystemZ::LDR;
853   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
854     Opcode = SystemZ::LXR;
855   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
856     Opcode = SystemZ::VLR32;
857   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
858     Opcode = SystemZ::VLR64;
859   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
860     Opcode = SystemZ::VLR;
861   else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
862     Opcode = SystemZ::CPYA;
863   else
864     llvm_unreachable("Impossible reg-to-reg copy");
865 
866   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
867     .addReg(SrcReg, getKillRegState(KillSrc));
868 }
869 
870 void SystemZInstrInfo::storeRegToStackSlot(
871     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg,
872     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
873     const TargetRegisterInfo *TRI) const {
874   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
875 
876   // Callers may expect a single instruction, so keep 128-bit moves
877   // together for now and lower them after register allocation.
878   unsigned LoadOpcode, StoreOpcode;
879   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
880   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
881                         .addReg(SrcReg, getKillRegState(isKill)),
882                     FrameIdx);
883 }
884 
885 void SystemZInstrInfo::loadRegFromStackSlot(
886     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg,
887     int FrameIdx, const TargetRegisterClass *RC,
888     const TargetRegisterInfo *TRI) const {
889   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
890 
891   // Callers may expect a single instruction, so keep 128-bit moves
892   // together for now and lower them after register allocation.
893   unsigned LoadOpcode, StoreOpcode;
894   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
895   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
896                     FrameIdx);
897 }
898 
899 // Return true if MI is a simple load or store with a 12-bit displacement
900 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
901 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
902   const MCInstrDesc &MCID = MI->getDesc();
903   return ((MCID.TSFlags & Flag) &&
904           isUInt<12>(MI->getOperand(2).getImm()) &&
905           MI->getOperand(3).getReg() == 0);
906 }
907 
908 namespace {
909 
910 struct LogicOp {
911   LogicOp() = default;
912   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
913     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
914 
915   explicit operator bool() const { return RegSize; }
916 
917   unsigned RegSize = 0;
918   unsigned ImmLSB = 0;
919   unsigned ImmSize = 0;
920 };
921 
922 } // end anonymous namespace
923 
924 static LogicOp interpretAndImmediate(unsigned Opcode) {
925   switch (Opcode) {
926   case SystemZ::NILMux: return LogicOp(32,  0, 16);
927   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
928   case SystemZ::NILL64: return LogicOp(64,  0, 16);
929   case SystemZ::NILH64: return LogicOp(64, 16, 16);
930   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
931   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
932   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
933   case SystemZ::NILF64: return LogicOp(64,  0, 32);
934   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
935   default:              return LogicOp();
936   }
937 }
938 
939 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
940   if (OldMI->registerDefIsDead(SystemZ::CC)) {
941     MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
942     if (CCDef != nullptr)
943       CCDef->setIsDead(true);
944   }
945 }
946 
947 static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI,
948                            MachineInstr::MIFlag Flag) {
949   if (OldMI->getFlag(Flag))
950     NewMI->setFlag(Flag);
951 }
952 
953 MachineInstr *
954 SystemZInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
955                                         LiveIntervals *LIS) const {
956   MachineBasicBlock *MBB = MI.getParent();
957 
958   // Try to convert an AND into an RISBG-type instruction.
959   // TODO: It might be beneficial to select RISBG and shorten to AND instead.
960   if (LogicOp And = interpretAndImmediate(MI.getOpcode())) {
961     uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
962     // AND IMMEDIATE leaves the other bits of the register unchanged.
963     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
964     unsigned Start, End;
965     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
966       unsigned NewOpcode;
967       if (And.RegSize == 64) {
968         NewOpcode = SystemZ::RISBG;
969         // Prefer RISBGN if available, since it does not clobber CC.
970         if (STI.hasMiscellaneousExtensions())
971           NewOpcode = SystemZ::RISBGN;
972       } else {
973         NewOpcode = SystemZ::RISBMux;
974         Start &= 31;
975         End &= 31;
976       }
977       MachineOperand &Dest = MI.getOperand(0);
978       MachineOperand &Src = MI.getOperand(1);
979       MachineInstrBuilder MIB =
980           BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
981               .add(Dest)
982               .addReg(0)
983               .addReg(Src.getReg(), getKillRegState(Src.isKill()),
984                       Src.getSubReg())
985               .addImm(Start)
986               .addImm(End + 128)
987               .addImm(0);
988       if (LV) {
989         unsigned NumOps = MI.getNumOperands();
990         for (unsigned I = 1; I < NumOps; ++I) {
991           MachineOperand &Op = MI.getOperand(I);
992           if (Op.isReg() && Op.isKill())
993             LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
994         }
995       }
996       if (LIS)
997         LIS->ReplaceMachineInstrInMaps(MI, *MIB);
998       transferDeadCC(&MI, MIB);
999       return MIB;
1000     }
1001   }
1002   return nullptr;
1003 }
1004 
1005 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1006     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1007     MachineBasicBlock::iterator InsertPt, int FrameIndex,
1008     LiveIntervals *LIS, VirtRegMap *VRM) const {
1009   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1010   MachineRegisterInfo &MRI = MF.getRegInfo();
1011   const MachineFrameInfo &MFI = MF.getFrameInfo();
1012   unsigned Size = MFI.getObjectSize(FrameIndex);
1013   unsigned Opcode = MI.getOpcode();
1014 
1015   // Check CC liveness if new instruction introduces a dead def of CC.
1016   MCRegUnitIterator CCUnit(MCRegister::from(SystemZ::CC), TRI);
1017   SlotIndex MISlot = SlotIndex();
1018   LiveRange *CCLiveRange = nullptr;
1019   bool CCLiveAtMI = true;
1020   if (LIS) {
1021     MISlot = LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1022     CCLiveRange = &LIS->getRegUnit(*CCUnit);
1023     CCLiveAtMI = CCLiveRange->liveAt(MISlot);
1024   }
1025   ++CCUnit;
1026   assert(!CCUnit.isValid() && "CC only has one reg unit.");
1027 
1028   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1029     if (!CCLiveAtMI && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1030         isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1031       // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1032       MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1033                                       MI.getDebugLoc(), get(SystemZ::AGSI))
1034         .addFrameIndex(FrameIndex)
1035         .addImm(0)
1036         .addImm(MI.getOperand(2).getImm());
1037       BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1038       CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1039       return BuiltMI;
1040     }
1041     return nullptr;
1042   }
1043 
1044   // All other cases require a single operand.
1045   if (Ops.size() != 1)
1046     return nullptr;
1047 
1048   unsigned OpNum = Ops[0];
1049   assert(Size * 8 ==
1050            TRI->getRegSizeInBits(*MF.getRegInfo()
1051                                .getRegClass(MI.getOperand(OpNum).getReg())) &&
1052          "Invalid size combination");
1053 
1054   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1055       isInt<8>(MI.getOperand(2).getImm())) {
1056     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1057     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1058     MachineInstr *BuiltMI =
1059         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1060             .addFrameIndex(FrameIndex)
1061             .addImm(0)
1062             .addImm(MI.getOperand(2).getImm());
1063     transferDeadCC(&MI, BuiltMI);
1064     transferMIFlag(&MI, BuiltMI, MachineInstr::NoSWrap);
1065     return BuiltMI;
1066   }
1067 
1068   if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1069        isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1070       (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1071        isInt<8>((int64_t)MI.getOperand(2).getImm()))) {
1072     // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1073     Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1074     MachineInstr *BuiltMI =
1075         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1076             .addFrameIndex(FrameIndex)
1077             .addImm(0)
1078             .addImm((int8_t)MI.getOperand(2).getImm());
1079     transferDeadCC(&MI, BuiltMI);
1080     return BuiltMI;
1081   }
1082 
1083   if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1084        isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1085       (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1086        isInt<8>((int64_t)-MI.getOperand(2).getImm()))) {
1087     // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1088     Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1089     MachineInstr *BuiltMI =
1090         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1091             .addFrameIndex(FrameIndex)
1092             .addImm(0)
1093             .addImm((int8_t)-MI.getOperand(2).getImm());
1094     transferDeadCC(&MI, BuiltMI);
1095     return BuiltMI;
1096   }
1097 
1098   unsigned MemImmOpc = 0;
1099   switch (Opcode) {
1100   case SystemZ::LHIMux:
1101   case SystemZ::LHI:    MemImmOpc = SystemZ::MVHI;  break;
1102   case SystemZ::LGHI:   MemImmOpc = SystemZ::MVGHI; break;
1103   case SystemZ::CHIMux:
1104   case SystemZ::CHI:    MemImmOpc = SystemZ::CHSI;  break;
1105   case SystemZ::CGHI:   MemImmOpc = SystemZ::CGHSI; break;
1106   case SystemZ::CLFIMux:
1107   case SystemZ::CLFI:
1108     if (isUInt<16>(MI.getOperand(1).getImm()))
1109       MemImmOpc = SystemZ::CLFHSI;
1110     break;
1111   case SystemZ::CLGFI:
1112     if (isUInt<16>(MI.getOperand(1).getImm()))
1113       MemImmOpc = SystemZ::CLGHSI;
1114     break;
1115   default: break;
1116   }
1117   if (MemImmOpc)
1118     return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1119                    get(MemImmOpc))
1120                .addFrameIndex(FrameIndex)
1121                .addImm(0)
1122                .addImm(MI.getOperand(1).getImm());
1123 
1124   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1125     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1126     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1127     // If we're spilling the destination of an LDGR or LGDR, store the
1128     // source register instead.
1129     if (OpNum == 0) {
1130       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1131       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1132                      get(StoreOpcode))
1133           .add(MI.getOperand(1))
1134           .addFrameIndex(FrameIndex)
1135           .addImm(0)
1136           .addReg(0);
1137     }
1138     // If we're spilling the source of an LDGR or LGDR, load the
1139     // destination register instead.
1140     if (OpNum == 1) {
1141       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1142       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1143                      get(LoadOpcode))
1144         .add(MI.getOperand(0))
1145         .addFrameIndex(FrameIndex)
1146         .addImm(0)
1147         .addReg(0);
1148     }
1149   }
1150 
1151   // Look for cases where the source of a simple store or the destination
1152   // of a simple load is being spilled.  Try to use MVC instead.
1153   //
1154   // Although MVC is in practice a fast choice in these cases, it is still
1155   // logically a bytewise copy.  This means that we cannot use it if the
1156   // load or store is volatile.  We also wouldn't be able to use MVC if
1157   // the two memories partially overlap, but that case cannot occur here,
1158   // because we know that one of the memories is a full frame index.
1159   //
1160   // For performance reasons, we also want to avoid using MVC if the addresses
1161   // might be equal.  We don't worry about that case here, because spill slot
1162   // coloring happens later, and because we have special code to remove
1163   // MVCs that turn out to be redundant.
1164   if (OpNum == 0 && MI.hasOneMemOperand()) {
1165     MachineMemOperand *MMO = *MI.memoperands_begin();
1166     if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) {
1167       // Handle conversion of loads.
1168       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1169         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1170                        get(SystemZ::MVC))
1171             .addFrameIndex(FrameIndex)
1172             .addImm(0)
1173             .addImm(Size)
1174             .add(MI.getOperand(1))
1175             .addImm(MI.getOperand(2).getImm())
1176             .addMemOperand(MMO);
1177       }
1178       // Handle conversion of stores.
1179       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1180         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1181                        get(SystemZ::MVC))
1182             .add(MI.getOperand(1))
1183             .addImm(MI.getOperand(2).getImm())
1184             .addImm(Size)
1185             .addFrameIndex(FrameIndex)
1186             .addImm(0)
1187             .addMemOperand(MMO);
1188       }
1189     }
1190   }
1191 
1192   // If the spilled operand is the final one or the instruction is
1193   // commutable, try to change <INSN>R into <INSN>.  Don't introduce a def of
1194   // CC if it is live and MI does not define it.
1195   unsigned NumOps = MI.getNumExplicitOperands();
1196   int MemOpcode = SystemZ::getMemOpcode(Opcode);
1197   if (MemOpcode == -1 ||
1198       (CCLiveAtMI && !MI.definesRegister(SystemZ::CC) &&
1199        get(MemOpcode).hasImplicitDefOfPhysReg(SystemZ::CC)))
1200     return nullptr;
1201 
1202   // Check if all other vregs have a usable allocation in the case of vector
1203   // to FP conversion.
1204   const MCInstrDesc &MCID = MI.getDesc();
1205   for (unsigned I = 0, E = MCID.getNumOperands(); I != E; ++I) {
1206     const MCOperandInfo &MCOI = MCID.OpInfo[I];
1207     if (MCOI.OperandType != MCOI::OPERAND_REGISTER || I == OpNum)
1208       continue;
1209     const TargetRegisterClass *RC = TRI->getRegClass(MCOI.RegClass);
1210     if (RC == &SystemZ::VR32BitRegClass || RC == &SystemZ::VR64BitRegClass) {
1211       Register Reg = MI.getOperand(I).getReg();
1212       Register PhysReg = Register::isVirtualRegister(Reg)
1213                              ? (VRM ? Register(VRM->getPhys(Reg)) : Register())
1214                              : Reg;
1215       if (!PhysReg ||
1216           !(SystemZ::FP32BitRegClass.contains(PhysReg) ||
1217             SystemZ::FP64BitRegClass.contains(PhysReg) ||
1218             SystemZ::VF128BitRegClass.contains(PhysReg)))
1219         return nullptr;
1220     }
1221   }
1222   // Fused multiply and add/sub need to have the same dst and accumulator reg.
1223   bool FusedFPOp = (Opcode == SystemZ::WFMADB || Opcode == SystemZ::WFMASB ||
1224                     Opcode == SystemZ::WFMSDB || Opcode == SystemZ::WFMSSB);
1225   if (FusedFPOp) {
1226     Register DstReg = VRM->getPhys(MI.getOperand(0).getReg());
1227     Register AccReg = VRM->getPhys(MI.getOperand(3).getReg());
1228     if (OpNum == 0 || OpNum == 3 || DstReg != AccReg)
1229       return nullptr;
1230   }
1231 
1232   // Try to swap compare operands if possible.
1233   bool NeedsCommute = false;
1234   if ((MI.getOpcode() == SystemZ::CR || MI.getOpcode() == SystemZ::CGR ||
1235        MI.getOpcode() == SystemZ::CLR || MI.getOpcode() == SystemZ::CLGR ||
1236        MI.getOpcode() == SystemZ::WFCDB || MI.getOpcode() == SystemZ::WFCSB ||
1237        MI.getOpcode() == SystemZ::WFKDB || MI.getOpcode() == SystemZ::WFKSB) &&
1238       OpNum == 0 && prepareCompareSwapOperands(MI))
1239     NeedsCommute = true;
1240 
1241   bool CCOperands = false;
1242   if (MI.getOpcode() == SystemZ::LOCRMux || MI.getOpcode() == SystemZ::LOCGR ||
1243       MI.getOpcode() == SystemZ::SELRMux || MI.getOpcode() == SystemZ::SELGR) {
1244     assert(MI.getNumOperands() == 6 && NumOps == 5 &&
1245            "LOCR/SELR instruction operands corrupt?");
1246     NumOps -= 2;
1247     CCOperands = true;
1248   }
1249 
1250   // See if this is a 3-address instruction that is convertible to 2-address
1251   // and suitable for folding below.  Only try this with virtual registers
1252   // and a provided VRM (during regalloc).
1253   if (NumOps == 3 && SystemZ::getTargetMemOpcode(MemOpcode) != -1) {
1254     if (VRM == nullptr)
1255       return nullptr;
1256     else {
1257       Register DstReg = MI.getOperand(0).getReg();
1258       Register DstPhys =
1259           (Register::isVirtualRegister(DstReg) ? Register(VRM->getPhys(DstReg))
1260                                                : DstReg);
1261       Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg()
1262                                     : ((OpNum == 1 && MI.isCommutable())
1263                                            ? MI.getOperand(2).getReg()
1264                                            : Register()));
1265       if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg &&
1266           Register::isVirtualRegister(SrcReg) &&
1267           DstPhys == VRM->getPhys(SrcReg))
1268         NeedsCommute = (OpNum == 1);
1269       else
1270         return nullptr;
1271     }
1272   }
1273 
1274   if ((OpNum == NumOps - 1) || NeedsCommute || FusedFPOp) {
1275     const MCInstrDesc &MemDesc = get(MemOpcode);
1276     uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1277     assert(AccessBytes != 0 && "Size of access should be known");
1278     assert(AccessBytes <= Size && "Access outside the frame index");
1279     uint64_t Offset = Size - AccessBytes;
1280     MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1281                                       MI.getDebugLoc(), get(MemOpcode));
1282     if (MI.isCompare()) {
1283       assert(NumOps == 2 && "Expected 2 register operands for a compare.");
1284       MIB.add(MI.getOperand(NeedsCommute ? 1 : 0));
1285     }
1286     else if (FusedFPOp) {
1287       MIB.add(MI.getOperand(0));
1288       MIB.add(MI.getOperand(3));
1289       MIB.add(MI.getOperand(OpNum == 1 ? 2 : 1));
1290     }
1291     else {
1292       MIB.add(MI.getOperand(0));
1293       if (NeedsCommute)
1294         MIB.add(MI.getOperand(2));
1295       else
1296         for (unsigned I = 1; I < OpNum; ++I)
1297           MIB.add(MI.getOperand(I));
1298     }
1299     MIB.addFrameIndex(FrameIndex).addImm(Offset);
1300     if (MemDesc.TSFlags & SystemZII::HasIndex)
1301       MIB.addReg(0);
1302     if (CCOperands) {
1303       unsigned CCValid = MI.getOperand(NumOps).getImm();
1304       unsigned CCMask = MI.getOperand(NumOps + 1).getImm();
1305       MIB.addImm(CCValid);
1306       MIB.addImm(NeedsCommute ? CCMask ^ CCValid : CCMask);
1307     }
1308     if (MIB->definesRegister(SystemZ::CC) &&
1309         (!MI.definesRegister(SystemZ::CC) ||
1310          MI.registerDefIsDead(SystemZ::CC))) {
1311       MIB->addRegisterDead(SystemZ::CC, TRI);
1312       if (CCLiveRange)
1313         CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1314     }
1315     // Constrain the register classes if converted from a vector opcode. The
1316     // allocated regs are in an FP reg-class per previous check above.
1317     for (const MachineOperand &MO : MIB->operands())
1318       if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
1319         Register Reg = MO.getReg();
1320         if (MRI.getRegClass(Reg) == &SystemZ::VR32BitRegClass)
1321           MRI.setRegClass(Reg, &SystemZ::FP32BitRegClass);
1322         else if (MRI.getRegClass(Reg) == &SystemZ::VR64BitRegClass)
1323           MRI.setRegClass(Reg, &SystemZ::FP64BitRegClass);
1324         else if (MRI.getRegClass(Reg) == &SystemZ::VR128BitRegClass)
1325           MRI.setRegClass(Reg, &SystemZ::VF128BitRegClass);
1326       }
1327 
1328     transferDeadCC(&MI, MIB);
1329     transferMIFlag(&MI, MIB, MachineInstr::NoSWrap);
1330     transferMIFlag(&MI, MIB, MachineInstr::NoFPExcept);
1331     return MIB;
1332   }
1333 
1334   return nullptr;
1335 }
1336 
1337 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1338     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1339     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1340     LiveIntervals *LIS) const {
1341   return nullptr;
1342 }
1343 
1344 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1345   switch (MI.getOpcode()) {
1346   case SystemZ::L128:
1347     splitMove(MI, SystemZ::LG);
1348     return true;
1349 
1350   case SystemZ::ST128:
1351     splitMove(MI, SystemZ::STG);
1352     return true;
1353 
1354   case SystemZ::LX:
1355     splitMove(MI, SystemZ::LD);
1356     return true;
1357 
1358   case SystemZ::STX:
1359     splitMove(MI, SystemZ::STD);
1360     return true;
1361 
1362   case SystemZ::LBMux:
1363     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1364     return true;
1365 
1366   case SystemZ::LHMux:
1367     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1368     return true;
1369 
1370   case SystemZ::LLCRMux:
1371     expandZExtPseudo(MI, SystemZ::LLCR, 8);
1372     return true;
1373 
1374   case SystemZ::LLHRMux:
1375     expandZExtPseudo(MI, SystemZ::LLHR, 16);
1376     return true;
1377 
1378   case SystemZ::LLCMux:
1379     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1380     return true;
1381 
1382   case SystemZ::LLHMux:
1383     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1384     return true;
1385 
1386   case SystemZ::LMux:
1387     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1388     return true;
1389 
1390   case SystemZ::LOCMux:
1391     expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1392     return true;
1393 
1394   case SystemZ::LOCHIMux:
1395     expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1396     return true;
1397 
1398   case SystemZ::STCMux:
1399     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1400     return true;
1401 
1402   case SystemZ::STHMux:
1403     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1404     return true;
1405 
1406   case SystemZ::STMux:
1407     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1408     return true;
1409 
1410   case SystemZ::STOCMux:
1411     expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1412     return true;
1413 
1414   case SystemZ::LHIMux:
1415     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1416     return true;
1417 
1418   case SystemZ::IIFMux:
1419     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1420     return true;
1421 
1422   case SystemZ::IILMux:
1423     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1424     return true;
1425 
1426   case SystemZ::IIHMux:
1427     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1428     return true;
1429 
1430   case SystemZ::NIFMux:
1431     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1432     return true;
1433 
1434   case SystemZ::NILMux:
1435     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1436     return true;
1437 
1438   case SystemZ::NIHMux:
1439     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1440     return true;
1441 
1442   case SystemZ::OIFMux:
1443     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1444     return true;
1445 
1446   case SystemZ::OILMux:
1447     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1448     return true;
1449 
1450   case SystemZ::OIHMux:
1451     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1452     return true;
1453 
1454   case SystemZ::XIFMux:
1455     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1456     return true;
1457 
1458   case SystemZ::TMLMux:
1459     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1460     return true;
1461 
1462   case SystemZ::TMHMux:
1463     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1464     return true;
1465 
1466   case SystemZ::AHIMux:
1467     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1468     return true;
1469 
1470   case SystemZ::AHIMuxK:
1471     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1472     return true;
1473 
1474   case SystemZ::AFIMux:
1475     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1476     return true;
1477 
1478   case SystemZ::CHIMux:
1479     expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1480     return true;
1481 
1482   case SystemZ::CFIMux:
1483     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1484     return true;
1485 
1486   case SystemZ::CLFIMux:
1487     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1488     return true;
1489 
1490   case SystemZ::CMux:
1491     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1492     return true;
1493 
1494   case SystemZ::CLMux:
1495     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1496     return true;
1497 
1498   case SystemZ::RISBMux: {
1499     bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg());
1500     bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg());
1501     if (SrcIsHigh == DestIsHigh)
1502       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1503     else {
1504       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1505       MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1506     }
1507     return true;
1508   }
1509 
1510   case SystemZ::ADJDYNALLOC:
1511     splitAdjDynAlloc(MI);
1512     return true;
1513 
1514   case TargetOpcode::LOAD_STACK_GUARD:
1515     expandLoadStackGuard(&MI);
1516     return true;
1517 
1518   default:
1519     return false;
1520   }
1521 }
1522 
1523 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1524   if (MI.isInlineAsm()) {
1525     const MachineFunction *MF = MI.getParent()->getParent();
1526     const char *AsmStr = MI.getOperand(0).getSymbolName();
1527     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1528   }
1529   else if (MI.getOpcode() == SystemZ::PATCHPOINT)
1530     return PatchPointOpers(&MI).getNumPatchBytes();
1531   else if (MI.getOpcode() == SystemZ::STACKMAP)
1532     return MI.getOperand(1).getImm();
1533   else if (MI.getOpcode() == SystemZ::FENTRY_CALL)
1534     return 6;
1535 
1536   return MI.getDesc().getSize();
1537 }
1538 
1539 SystemZII::Branch
1540 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1541   switch (MI.getOpcode()) {
1542   case SystemZ::BR:
1543   case SystemZ::BI:
1544   case SystemZ::J:
1545   case SystemZ::JG:
1546     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1547                              SystemZ::CCMASK_ANY, &MI.getOperand(0));
1548 
1549   case SystemZ::BRC:
1550   case SystemZ::BRCL:
1551     return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1552                              MI.getOperand(1).getImm(), &MI.getOperand(2));
1553 
1554   case SystemZ::BRCT:
1555   case SystemZ::BRCTH:
1556     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1557                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1558 
1559   case SystemZ::BRCTG:
1560     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1561                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1562 
1563   case SystemZ::CIJ:
1564   case SystemZ::CRJ:
1565     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1566                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1567 
1568   case SystemZ::CLIJ:
1569   case SystemZ::CLRJ:
1570     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1571                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1572 
1573   case SystemZ::CGIJ:
1574   case SystemZ::CGRJ:
1575     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1576                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1577 
1578   case SystemZ::CLGIJ:
1579   case SystemZ::CLGRJ:
1580     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1581                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1582 
1583   case SystemZ::INLINEASM_BR:
1584     // Don't try to analyze asm goto, so pass nullptr as branch target argument.
1585     return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr);
1586 
1587   default:
1588     llvm_unreachable("Unrecognized branch opcode");
1589   }
1590 }
1591 
1592 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1593                                            unsigned &LoadOpcode,
1594                                            unsigned &StoreOpcode) const {
1595   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1596     LoadOpcode = SystemZ::L;
1597     StoreOpcode = SystemZ::ST;
1598   } else if (RC == &SystemZ::GRH32BitRegClass) {
1599     LoadOpcode = SystemZ::LFH;
1600     StoreOpcode = SystemZ::STFH;
1601   } else if (RC == &SystemZ::GRX32BitRegClass) {
1602     LoadOpcode = SystemZ::LMux;
1603     StoreOpcode = SystemZ::STMux;
1604   } else if (RC == &SystemZ::GR64BitRegClass ||
1605              RC == &SystemZ::ADDR64BitRegClass) {
1606     LoadOpcode = SystemZ::LG;
1607     StoreOpcode = SystemZ::STG;
1608   } else if (RC == &SystemZ::GR128BitRegClass ||
1609              RC == &SystemZ::ADDR128BitRegClass) {
1610     LoadOpcode = SystemZ::L128;
1611     StoreOpcode = SystemZ::ST128;
1612   } else if (RC == &SystemZ::FP32BitRegClass) {
1613     LoadOpcode = SystemZ::LE;
1614     StoreOpcode = SystemZ::STE;
1615   } else if (RC == &SystemZ::FP64BitRegClass) {
1616     LoadOpcode = SystemZ::LD;
1617     StoreOpcode = SystemZ::STD;
1618   } else if (RC == &SystemZ::FP128BitRegClass) {
1619     LoadOpcode = SystemZ::LX;
1620     StoreOpcode = SystemZ::STX;
1621   } else if (RC == &SystemZ::VR32BitRegClass) {
1622     LoadOpcode = SystemZ::VL32;
1623     StoreOpcode = SystemZ::VST32;
1624   } else if (RC == &SystemZ::VR64BitRegClass) {
1625     LoadOpcode = SystemZ::VL64;
1626     StoreOpcode = SystemZ::VST64;
1627   } else if (RC == &SystemZ::VF128BitRegClass ||
1628              RC == &SystemZ::VR128BitRegClass) {
1629     LoadOpcode = SystemZ::VL;
1630     StoreOpcode = SystemZ::VST;
1631   } else
1632     llvm_unreachable("Unsupported regclass to load or store");
1633 }
1634 
1635 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1636                                               int64_t Offset) const {
1637   const MCInstrDesc &MCID = get(Opcode);
1638   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1639   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1640     // Get the instruction to use for unsigned 12-bit displacements.
1641     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1642     if (Disp12Opcode >= 0)
1643       return Disp12Opcode;
1644 
1645     // All address-related instructions can use unsigned 12-bit
1646     // displacements.
1647     return Opcode;
1648   }
1649   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1650     // Get the instruction to use for signed 20-bit displacements.
1651     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1652     if (Disp20Opcode >= 0)
1653       return Disp20Opcode;
1654 
1655     // Check whether Opcode allows signed 20-bit displacements.
1656     if (MCID.TSFlags & SystemZII::Has20BitOffset)
1657       return Opcode;
1658   }
1659   return 0;
1660 }
1661 
1662 bool SystemZInstrInfo::hasDisplacementPairInsn(unsigned Opcode) const {
1663   const MCInstrDesc &MCID = get(Opcode);
1664   if (MCID.TSFlags & SystemZII::Has20BitOffset)
1665     return SystemZ::getDisp12Opcode(Opcode) >= 0;
1666   return SystemZ::getDisp20Opcode(Opcode) >= 0;
1667 }
1668 
1669 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1670   switch (Opcode) {
1671   case SystemZ::L:      return SystemZ::LT;
1672   case SystemZ::LY:     return SystemZ::LT;
1673   case SystemZ::LG:     return SystemZ::LTG;
1674   case SystemZ::LGF:    return SystemZ::LTGF;
1675   case SystemZ::LR:     return SystemZ::LTR;
1676   case SystemZ::LGFR:   return SystemZ::LTGFR;
1677   case SystemZ::LGR:    return SystemZ::LTGR;
1678   case SystemZ::LER:    return SystemZ::LTEBR;
1679   case SystemZ::LDR:    return SystemZ::LTDBR;
1680   case SystemZ::LXR:    return SystemZ::LTXBR;
1681   case SystemZ::LCDFR:  return SystemZ::LCDBR;
1682   case SystemZ::LPDFR:  return SystemZ::LPDBR;
1683   case SystemZ::LNDFR:  return SystemZ::LNDBR;
1684   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1685   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1686   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1687   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1688   // actually use the condition code, we may turn it back into RISGB.
1689   // Note that RISBG is not really a "load-and-test" instruction,
1690   // but sets the same condition code values, so is OK to use here.
1691   case SystemZ::RISBGN: return SystemZ::RISBG;
1692   default:              return 0;
1693   }
1694 }
1695 
1696 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1697 // have already been filtered out.  Store the first set bit in LSB and
1698 // the number of set bits in Length if so.
1699 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1700   unsigned First = findFirstSet(Mask);
1701   uint64_t Top = (Mask >> First) + 1;
1702   if ((Top & -Top) == Top) {
1703     LSB = First;
1704     Length = findFirstSet(Top);
1705     return true;
1706   }
1707   return false;
1708 }
1709 
1710 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1711                                    unsigned &Start, unsigned &End) const {
1712   // Reject trivial all-zero masks.
1713   Mask &= allOnes(BitSize);
1714   if (Mask == 0)
1715     return false;
1716 
1717   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1718   // the msb and End specifies the index of the lsb.
1719   unsigned LSB, Length;
1720   if (isStringOfOnes(Mask, LSB, Length)) {
1721     Start = 63 - (LSB + Length - 1);
1722     End = 63 - LSB;
1723     return true;
1724   }
1725 
1726   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1727   // of the low 1s and End specifies the lsb of the high 1s.
1728   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1729     assert(LSB > 0 && "Bottom bit must be set");
1730     assert(LSB + Length < BitSize && "Top bit must be set");
1731     Start = 63 - (LSB - 1);
1732     End = 63 - (LSB + Length);
1733     return true;
1734   }
1735 
1736   return false;
1737 }
1738 
1739 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1740                                            SystemZII::FusedCompareType Type,
1741                                            const MachineInstr *MI) const {
1742   switch (Opcode) {
1743   case SystemZ::CHI:
1744   case SystemZ::CGHI:
1745     if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1746       return 0;
1747     break;
1748   case SystemZ::CLFI:
1749   case SystemZ::CLGFI:
1750     if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1751       return 0;
1752     break;
1753   case SystemZ::CL:
1754   case SystemZ::CLG:
1755     if (!STI.hasMiscellaneousExtensions())
1756       return 0;
1757     if (!(MI && MI->getOperand(3).getReg() == 0))
1758       return 0;
1759     break;
1760   }
1761   switch (Type) {
1762   case SystemZII::CompareAndBranch:
1763     switch (Opcode) {
1764     case SystemZ::CR:
1765       return SystemZ::CRJ;
1766     case SystemZ::CGR:
1767       return SystemZ::CGRJ;
1768     case SystemZ::CHI:
1769       return SystemZ::CIJ;
1770     case SystemZ::CGHI:
1771       return SystemZ::CGIJ;
1772     case SystemZ::CLR:
1773       return SystemZ::CLRJ;
1774     case SystemZ::CLGR:
1775       return SystemZ::CLGRJ;
1776     case SystemZ::CLFI:
1777       return SystemZ::CLIJ;
1778     case SystemZ::CLGFI:
1779       return SystemZ::CLGIJ;
1780     default:
1781       return 0;
1782     }
1783   case SystemZII::CompareAndReturn:
1784     switch (Opcode) {
1785     case SystemZ::CR:
1786       return SystemZ::CRBReturn;
1787     case SystemZ::CGR:
1788       return SystemZ::CGRBReturn;
1789     case SystemZ::CHI:
1790       return SystemZ::CIBReturn;
1791     case SystemZ::CGHI:
1792       return SystemZ::CGIBReturn;
1793     case SystemZ::CLR:
1794       return SystemZ::CLRBReturn;
1795     case SystemZ::CLGR:
1796       return SystemZ::CLGRBReturn;
1797     case SystemZ::CLFI:
1798       return SystemZ::CLIBReturn;
1799     case SystemZ::CLGFI:
1800       return SystemZ::CLGIBReturn;
1801     default:
1802       return 0;
1803     }
1804   case SystemZII::CompareAndSibcall:
1805     switch (Opcode) {
1806     case SystemZ::CR:
1807       return SystemZ::CRBCall;
1808     case SystemZ::CGR:
1809       return SystemZ::CGRBCall;
1810     case SystemZ::CHI:
1811       return SystemZ::CIBCall;
1812     case SystemZ::CGHI:
1813       return SystemZ::CGIBCall;
1814     case SystemZ::CLR:
1815       return SystemZ::CLRBCall;
1816     case SystemZ::CLGR:
1817       return SystemZ::CLGRBCall;
1818     case SystemZ::CLFI:
1819       return SystemZ::CLIBCall;
1820     case SystemZ::CLGFI:
1821       return SystemZ::CLGIBCall;
1822     default:
1823       return 0;
1824     }
1825   case SystemZII::CompareAndTrap:
1826     switch (Opcode) {
1827     case SystemZ::CR:
1828       return SystemZ::CRT;
1829     case SystemZ::CGR:
1830       return SystemZ::CGRT;
1831     case SystemZ::CHI:
1832       return SystemZ::CIT;
1833     case SystemZ::CGHI:
1834       return SystemZ::CGIT;
1835     case SystemZ::CLR:
1836       return SystemZ::CLRT;
1837     case SystemZ::CLGR:
1838       return SystemZ::CLGRT;
1839     case SystemZ::CLFI:
1840       return SystemZ::CLFIT;
1841     case SystemZ::CLGFI:
1842       return SystemZ::CLGIT;
1843     case SystemZ::CL:
1844       return SystemZ::CLT;
1845     case SystemZ::CLG:
1846       return SystemZ::CLGT;
1847     default:
1848       return 0;
1849     }
1850   }
1851   return 0;
1852 }
1853 
1854 bool SystemZInstrInfo::
1855 prepareCompareSwapOperands(MachineBasicBlock::iterator const MBBI) const {
1856   assert(MBBI->isCompare() && MBBI->getOperand(0).isReg() &&
1857          MBBI->getOperand(1).isReg() && !MBBI->mayLoad() &&
1858          "Not a compare reg/reg.");
1859 
1860   MachineBasicBlock *MBB = MBBI->getParent();
1861   bool CCLive = true;
1862   SmallVector<MachineInstr *, 4> CCUsers;
1863   for (MachineBasicBlock::iterator Itr = std::next(MBBI);
1864        Itr != MBB->end(); ++Itr) {
1865     if (Itr->readsRegister(SystemZ::CC)) {
1866       unsigned Flags = Itr->getDesc().TSFlags;
1867       if ((Flags & SystemZII::CCMaskFirst) || (Flags & SystemZII::CCMaskLast))
1868         CCUsers.push_back(&*Itr);
1869       else
1870         return false;
1871     }
1872     if (Itr->definesRegister(SystemZ::CC)) {
1873       CCLive = false;
1874       break;
1875     }
1876   }
1877   if (CCLive) {
1878     LivePhysRegs LiveRegs(*MBB->getParent()->getSubtarget().getRegisterInfo());
1879     LiveRegs.addLiveOuts(*MBB);
1880     if (LiveRegs.contains(SystemZ::CC))
1881       return false;
1882   }
1883 
1884   // Update all CC users.
1885   for (unsigned Idx = 0; Idx < CCUsers.size(); ++Idx) {
1886     unsigned Flags = CCUsers[Idx]->getDesc().TSFlags;
1887     unsigned FirstOpNum = ((Flags & SystemZII::CCMaskFirst) ?
1888                            0 : CCUsers[Idx]->getNumExplicitOperands() - 2);
1889     MachineOperand &CCMaskMO = CCUsers[Idx]->getOperand(FirstOpNum + 1);
1890     unsigned NewCCMask = SystemZ::reverseCCMask(CCMaskMO.getImm());
1891     CCMaskMO.setImm(NewCCMask);
1892   }
1893 
1894   return true;
1895 }
1896 
1897 unsigned SystemZ::reverseCCMask(unsigned CCMask) {
1898   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1899           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1900           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1901           (CCMask & SystemZ::CCMASK_CMP_UO));
1902 }
1903 
1904 MachineBasicBlock *SystemZ::emitBlockAfter(MachineBasicBlock *MBB) {
1905   MachineFunction &MF = *MBB->getParent();
1906   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
1907   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
1908   return NewMBB;
1909 }
1910 
1911 MachineBasicBlock *SystemZ::splitBlockAfter(MachineBasicBlock::iterator MI,
1912                                             MachineBasicBlock *MBB) {
1913   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1914   NewMBB->splice(NewMBB->begin(), MBB,
1915                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1916   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1917   return NewMBB;
1918 }
1919 
1920 MachineBasicBlock *SystemZ::splitBlockBefore(MachineBasicBlock::iterator MI,
1921                                              MachineBasicBlock *MBB) {
1922   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1923   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
1924   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1925   return NewMBB;
1926 }
1927 
1928 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1929   if (!STI.hasLoadAndTrap())
1930     return 0;
1931   switch (Opcode) {
1932   case SystemZ::L:
1933   case SystemZ::LY:
1934     return SystemZ::LAT;
1935   case SystemZ::LG:
1936     return SystemZ::LGAT;
1937   case SystemZ::LFH:
1938     return SystemZ::LFHAT;
1939   case SystemZ::LLGF:
1940     return SystemZ::LLGFAT;
1941   case SystemZ::LLGT:
1942     return SystemZ::LLGTAT;
1943   }
1944   return 0;
1945 }
1946 
1947 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1948                                      MachineBasicBlock::iterator MBBI,
1949                                      unsigned Reg, uint64_t Value) const {
1950   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1951   unsigned Opcode = 0;
1952   if (isInt<16>(Value))
1953     Opcode = SystemZ::LGHI;
1954   else if (SystemZ::isImmLL(Value))
1955     Opcode = SystemZ::LLILL;
1956   else if (SystemZ::isImmLH(Value)) {
1957     Opcode = SystemZ::LLILH;
1958     Value >>= 16;
1959   }
1960   else if (isInt<32>(Value))
1961     Opcode = SystemZ::LGFI;
1962   if (Opcode) {
1963     BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1964     return;
1965   }
1966 
1967   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1968   assert (MRI.isSSA() &&  "Huge values only handled before reg-alloc .");
1969   Register Reg0 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
1970   Register Reg1 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
1971   BuildMI(MBB, MBBI, DL, get(SystemZ::IMPLICIT_DEF), Reg0);
1972   BuildMI(MBB, MBBI, DL, get(SystemZ::IIHF64), Reg1)
1973     .addReg(Reg0).addImm(Value >> 32);
1974   BuildMI(MBB, MBBI, DL, get(SystemZ::IILF64), Reg)
1975     .addReg(Reg1).addImm(Value & ((uint64_t(1) << 32) - 1));
1976 }
1977 
1978 bool SystemZInstrInfo::verifyInstruction(const MachineInstr &MI,
1979                                          StringRef &ErrInfo) const {
1980   const MCInstrDesc &MCID = MI.getDesc();
1981   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1982     if (I >= MCID.getNumOperands())
1983       break;
1984     const MachineOperand &Op = MI.getOperand(I);
1985     const MCOperandInfo &MCOI = MCID.OpInfo[I];
1986     // Addressing modes have register and immediate operands. Op should be a
1987     // register (or frame index) operand if MCOI.RegClass contains a valid
1988     // register class, or an immediate otherwise.
1989     if (MCOI.OperandType == MCOI::OPERAND_MEMORY &&
1990         ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) ||
1991          (MCOI.RegClass == -1 && !Op.isImm()))) {
1992       ErrInfo = "Addressing mode operands corrupt!";
1993       return false;
1994     }
1995   }
1996 
1997   return true;
1998 }
1999 
2000 bool SystemZInstrInfo::
2001 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
2002                                 const MachineInstr &MIb) const {
2003 
2004   if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
2005     return false;
2006 
2007   // If mem-operands show that the same address Value is used by both
2008   // instructions, check for non-overlapping offsets and widths. Not
2009   // sure if a register based analysis would be an improvement...
2010 
2011   MachineMemOperand *MMOa = *MIa.memoperands_begin();
2012   MachineMemOperand *MMOb = *MIb.memoperands_begin();
2013   const Value *VALa = MMOa->getValue();
2014   const Value *VALb = MMOb->getValue();
2015   bool SameVal = (VALa && VALb && (VALa == VALb));
2016   if (!SameVal) {
2017     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
2018     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
2019     if (PSVa && PSVb && (PSVa == PSVb))
2020       SameVal = true;
2021   }
2022   if (SameVal) {
2023     int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
2024     int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
2025     int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
2026     int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
2027     int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
2028     if (LowOffset + LowWidth <= HighOffset)
2029       return true;
2030   }
2031 
2032   return false;
2033 }
2034