1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SystemZ implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZInstrInfo.h" 15 #include "SystemZInstrBuilder.h" 16 #include "SystemZTargetMachine.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 20 using namespace llvm; 21 22 #define GET_INSTRINFO_CTOR_DTOR 23 #define GET_INSTRMAP_INFO 24 #include "SystemZGenInstrInfo.inc" 25 26 // Return a mask with Count low bits set. 27 static uint64_t allOnes(unsigned int Count) { 28 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 29 } 30 31 // Reg should be a 32-bit GPR. Return true if it is a high register rather 32 // than a low register. 33 static bool isHighReg(unsigned int Reg) { 34 if (SystemZ::GRH32BitRegClass.contains(Reg)) 35 return true; 36 assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32"); 37 return false; 38 } 39 40 // Pin the vtable to this file. 41 void SystemZInstrInfo::anchor() {} 42 43 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti) 44 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 45 RI(), STI(sti) { 46 } 47 48 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 49 // each having the opcode given by NewOpcode. 50 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 51 unsigned NewOpcode) const { 52 MachineBasicBlock *MBB = MI->getParent(); 53 MachineFunction &MF = *MBB->getParent(); 54 55 // Get two load or store instructions. Use the original instruction for one 56 // of them (arbitrarily the second here) and create a clone for the other. 57 MachineInstr *EarlierMI = MF.CloneMachineInstr(MI); 58 MBB->insert(MI, EarlierMI); 59 60 // Set up the two 64-bit registers. 61 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 62 MachineOperand &LowRegOp = MI->getOperand(0); 63 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); 64 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); 65 66 // The address in the first (high) instruction is already correct. 67 // Adjust the offset in the second (low) instruction. 68 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 69 MachineOperand &LowOffsetOp = MI->getOperand(2); 70 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 71 72 // Clear the kill flags for the base and index registers in the first 73 // instruction. 74 EarlierMI->getOperand(1).setIsKill(false); 75 EarlierMI->getOperand(3).setIsKill(false); 76 77 // Set the opcodes. 78 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 79 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 80 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 81 82 EarlierMI->setDesc(get(HighOpcode)); 83 MI->setDesc(get(LowOpcode)); 84 } 85 86 // Split ADJDYNALLOC instruction MI. 87 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 88 MachineBasicBlock *MBB = MI->getParent(); 89 MachineFunction &MF = *MBB->getParent(); 90 MachineFrameInfo *MFFrame = MF.getFrameInfo(); 91 MachineOperand &OffsetMO = MI->getOperand(2); 92 93 uint64_t Offset = (MFFrame->getMaxCallFrameSize() + 94 SystemZMC::CallFrameSize + 95 OffsetMO.getImm()); 96 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 97 assert(NewOpcode && "No support for huge argument lists yet"); 98 MI->setDesc(get(NewOpcode)); 99 OffsetMO.setImm(Offset); 100 } 101 102 // MI is an RI-style pseudo instruction. Replace it with LowOpcode 103 // if the first operand is a low GR32 and HighOpcode if the first operand 104 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand 105 // and HighOpcode takes an unsigned 32-bit operand. In those cases, 106 // MI has the same kind of operand as LowOpcode, so needs to be converted 107 // if HighOpcode is used. 108 void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode, 109 unsigned HighOpcode, 110 bool ConvertHigh) const { 111 unsigned Reg = MI->getOperand(0).getReg(); 112 bool IsHigh = isHighReg(Reg); 113 MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode)); 114 if (IsHigh && ConvertHigh) 115 MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm())); 116 } 117 118 // MI is a three-operand RIE-style pseudo instruction. Replace it with 119 // LowOpcodeK if the registers are both low GR32s, otherwise use a move 120 // followed by HighOpcode or LowOpcode, depending on whether the target 121 // is a high or low GR32. 122 void SystemZInstrInfo::expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode, 123 unsigned LowOpcodeK, 124 unsigned HighOpcode) const { 125 unsigned DestReg = MI->getOperand(0).getReg(); 126 unsigned SrcReg = MI->getOperand(1).getReg(); 127 bool DestIsHigh = isHighReg(DestReg); 128 bool SrcIsHigh = isHighReg(SrcReg); 129 if (!DestIsHigh && !SrcIsHigh) 130 MI->setDesc(get(LowOpcodeK)); 131 else { 132 emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(), 133 DestReg, SrcReg, SystemZ::LR, 32, 134 MI->getOperand(1).isKill()); 135 MI->setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); 136 MI->getOperand(1).setReg(DestReg); 137 MI->tieOperands(0, 1); 138 } 139 } 140 141 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode 142 // if the first operand is a low GR32 and HighOpcode if the first operand 143 // is a high GR32. 144 void SystemZInstrInfo::expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode, 145 unsigned HighOpcode) const { 146 unsigned Reg = MI->getOperand(0).getReg(); 147 unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode, 148 MI->getOperand(2).getImm()); 149 MI->setDesc(get(Opcode)); 150 } 151 152 // MI is an RR-style pseudo instruction that zero-extends the low Size bits 153 // of one GRX32 into another. Replace it with LowOpcode if both operands 154 // are low registers, otherwise use RISB[LH]G. 155 void SystemZInstrInfo::expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode, 156 unsigned Size) const { 157 emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(), 158 MI->getOperand(0).getReg(), MI->getOperand(1).getReg(), 159 LowOpcode, Size, MI->getOperand(1).isKill()); 160 MI->eraseFromParent(); 161 } 162 163 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR 164 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg 165 // are low registers, otherwise use RISB[LH]G. Size is the number of bits 166 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). 167 // KillSrc is true if this move is the last use of SrcReg. 168 void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, 169 MachineBasicBlock::iterator MBBI, 170 DebugLoc DL, unsigned DestReg, 171 unsigned SrcReg, unsigned LowLowOpcode, 172 unsigned Size, bool KillSrc) const { 173 unsigned Opcode; 174 bool DestIsHigh = isHighReg(DestReg); 175 bool SrcIsHigh = isHighReg(SrcReg); 176 if (DestIsHigh && SrcIsHigh) 177 Opcode = SystemZ::RISBHH; 178 else if (DestIsHigh && !SrcIsHigh) 179 Opcode = SystemZ::RISBHL; 180 else if (!DestIsHigh && SrcIsHigh) 181 Opcode = SystemZ::RISBLH; 182 else { 183 BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) 184 .addReg(SrcReg, getKillRegState(KillSrc)); 185 return; 186 } 187 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); 188 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 189 .addReg(DestReg, RegState::Undef) 190 .addReg(SrcReg, getKillRegState(KillSrc)) 191 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); 192 } 193 194 // If MI is a simple load or store for a frame object, return the register 195 // it loads or stores and set FrameIndex to the index of the frame object. 196 // Return 0 otherwise. 197 // 198 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 199 static int isSimpleMove(const MachineInstr *MI, int &FrameIndex, 200 unsigned Flag) { 201 const MCInstrDesc &MCID = MI->getDesc(); 202 if ((MCID.TSFlags & Flag) && 203 MI->getOperand(1).isFI() && 204 MI->getOperand(2).getImm() == 0 && 205 MI->getOperand(3).getReg() == 0) { 206 FrameIndex = MI->getOperand(1).getIndex(); 207 return MI->getOperand(0).getReg(); 208 } 209 return 0; 210 } 211 212 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 213 int &FrameIndex) const { 214 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 215 } 216 217 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 218 int &FrameIndex) const { 219 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 220 } 221 222 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI, 223 int &DestFrameIndex, 224 int &SrcFrameIndex) const { 225 // Check for MVC 0(Length,FI1),0(FI2) 226 const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo(); 227 if (MI->getOpcode() != SystemZ::MVC || 228 !MI->getOperand(0).isFI() || 229 MI->getOperand(1).getImm() != 0 || 230 !MI->getOperand(3).isFI() || 231 MI->getOperand(4).getImm() != 0) 232 return false; 233 234 // Check that Length covers the full slots. 235 int64_t Length = MI->getOperand(2).getImm(); 236 unsigned FI1 = MI->getOperand(0).getIndex(); 237 unsigned FI2 = MI->getOperand(3).getIndex(); 238 if (MFI->getObjectSize(FI1) != Length || 239 MFI->getObjectSize(FI2) != Length) 240 return false; 241 242 DestFrameIndex = FI1; 243 SrcFrameIndex = FI2; 244 return true; 245 } 246 247 bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 248 MachineBasicBlock *&TBB, 249 MachineBasicBlock *&FBB, 250 SmallVectorImpl<MachineOperand> &Cond, 251 bool AllowModify) const { 252 // Most of the code and comments here are boilerplate. 253 254 // Start from the bottom of the block and work up, examining the 255 // terminator instructions. 256 MachineBasicBlock::iterator I = MBB.end(); 257 while (I != MBB.begin()) { 258 --I; 259 if (I->isDebugValue()) 260 continue; 261 262 // Working from the bottom, when we see a non-terminator instruction, we're 263 // done. 264 if (!isUnpredicatedTerminator(*I)) 265 break; 266 267 // A terminator that isn't a branch can't easily be handled by this 268 // analysis. 269 if (!I->isBranch()) 270 return true; 271 272 // Can't handle indirect branches. 273 SystemZII::Branch Branch(getBranchInfo(I)); 274 if (!Branch.Target->isMBB()) 275 return true; 276 277 // Punt on compound branches. 278 if (Branch.Type != SystemZII::BranchNormal) 279 return true; 280 281 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 282 // Handle unconditional branches. 283 if (!AllowModify) { 284 TBB = Branch.Target->getMBB(); 285 continue; 286 } 287 288 // If the block has any instructions after a JMP, delete them. 289 while (std::next(I) != MBB.end()) 290 std::next(I)->eraseFromParent(); 291 292 Cond.clear(); 293 FBB = nullptr; 294 295 // Delete the JMP if it's equivalent to a fall-through. 296 if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) { 297 TBB = nullptr; 298 I->eraseFromParent(); 299 I = MBB.end(); 300 continue; 301 } 302 303 // TBB is used to indicate the unconditinal destination. 304 TBB = Branch.Target->getMBB(); 305 continue; 306 } 307 308 // Working from the bottom, handle the first conditional branch. 309 if (Cond.empty()) { 310 // FIXME: add X86-style branch swap 311 FBB = TBB; 312 TBB = Branch.Target->getMBB(); 313 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 314 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 315 continue; 316 } 317 318 // Handle subsequent conditional branches. 319 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 320 321 // Only handle the case where all conditional branches branch to the same 322 // destination. 323 if (TBB != Branch.Target->getMBB()) 324 return true; 325 326 // If the conditions are the same, we can leave them alone. 327 unsigned OldCCValid = Cond[0].getImm(); 328 unsigned OldCCMask = Cond[1].getImm(); 329 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 330 continue; 331 332 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 333 return false; 334 } 335 336 return false; 337 } 338 339 unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 340 // Most of the code and comments here are boilerplate. 341 MachineBasicBlock::iterator I = MBB.end(); 342 unsigned Count = 0; 343 344 while (I != MBB.begin()) { 345 --I; 346 if (I->isDebugValue()) 347 continue; 348 if (!I->isBranch()) 349 break; 350 if (!getBranchInfo(I).Target->isMBB()) 351 break; 352 // Remove the branch. 353 I->eraseFromParent(); 354 I = MBB.end(); 355 ++Count; 356 } 357 358 return Count; 359 } 360 361 bool SystemZInstrInfo:: 362 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 363 assert(Cond.size() == 2 && "Invalid condition"); 364 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 365 return false; 366 } 367 368 unsigned 369 SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 370 MachineBasicBlock *FBB, 371 ArrayRef<MachineOperand> Cond, 372 DebugLoc DL) const { 373 // In this function we output 32-bit branches, which should always 374 // have enough range. They can be shortened and relaxed by later code 375 // in the pipeline, if desired. 376 377 // Shouldn't be a fall through. 378 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 379 assert((Cond.size() == 2 || Cond.size() == 0) && 380 "SystemZ branch conditions have one component!"); 381 382 if (Cond.empty()) { 383 // Unconditional branch? 384 assert(!FBB && "Unconditional branch with multiple successors!"); 385 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 386 return 1; 387 } 388 389 // Conditional branch. 390 unsigned Count = 0; 391 unsigned CCValid = Cond[0].getImm(); 392 unsigned CCMask = Cond[1].getImm(); 393 BuildMI(&MBB, DL, get(SystemZ::BRC)) 394 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 395 ++Count; 396 397 if (FBB) { 398 // Two-way Conditional branch. Insert the second branch. 399 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 400 ++Count; 401 } 402 return Count; 403 } 404 405 bool SystemZInstrInfo::analyzeCompare(const MachineInstr *MI, 406 unsigned &SrcReg, unsigned &SrcReg2, 407 int &Mask, int &Value) const { 408 assert(MI->isCompare() && "Caller should have checked for a comparison"); 409 410 if (MI->getNumExplicitOperands() == 2 && 411 MI->getOperand(0).isReg() && 412 MI->getOperand(1).isImm()) { 413 SrcReg = MI->getOperand(0).getReg(); 414 SrcReg2 = 0; 415 Value = MI->getOperand(1).getImm(); 416 Mask = ~0; 417 return true; 418 } 419 420 return false; 421 } 422 423 // If Reg is a virtual register, return its definition, otherwise return null. 424 static MachineInstr *getDef(unsigned Reg, 425 const MachineRegisterInfo *MRI) { 426 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 427 return nullptr; 428 return MRI->getUniqueVRegDef(Reg); 429 } 430 431 // Return true if MI is a shift of type Opcode by Imm bits. 432 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) { 433 return (MI->getOpcode() == Opcode && 434 !MI->getOperand(2).getReg() && 435 MI->getOperand(3).getImm() == Imm); 436 } 437 438 // If the destination of MI has no uses, delete it as dead. 439 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) { 440 if (MRI->use_nodbg_empty(MI->getOperand(0).getReg())) 441 MI->eraseFromParent(); 442 } 443 444 // Compare compares SrcReg against zero. Check whether SrcReg contains 445 // the result of an IPM sequence whose input CC survives until Compare, 446 // and whether Compare is therefore redundant. Delete it and return 447 // true if so. 448 static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg, 449 const MachineRegisterInfo *MRI, 450 const TargetRegisterInfo *TRI) { 451 MachineInstr *LGFR = nullptr; 452 MachineInstr *RLL = getDef(SrcReg, MRI); 453 if (RLL && RLL->getOpcode() == SystemZ::LGFR) { 454 LGFR = RLL; 455 RLL = getDef(LGFR->getOperand(1).getReg(), MRI); 456 } 457 if (!RLL || !isShift(RLL, SystemZ::RLL, 31)) 458 return false; 459 460 MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI); 461 if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC)) 462 return false; 463 464 MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI); 465 if (!IPM || IPM->getOpcode() != SystemZ::IPM) 466 return false; 467 468 // Check that there are no assignments to CC between the IPM and Compare, 469 if (IPM->getParent() != Compare->getParent()) 470 return false; 471 MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare; 472 for (++MBBI; MBBI != MBBE; ++MBBI) { 473 MachineInstr *MI = MBBI; 474 if (MI->modifiesRegister(SystemZ::CC, TRI)) 475 return false; 476 } 477 478 Compare->eraseFromParent(); 479 if (LGFR) 480 eraseIfDead(LGFR, MRI); 481 eraseIfDead(RLL, MRI); 482 eraseIfDead(SRL, MRI); 483 eraseIfDead(IPM, MRI); 484 485 return true; 486 } 487 488 bool 489 SystemZInstrInfo::optimizeCompareInstr(MachineInstr *Compare, 490 unsigned SrcReg, unsigned SrcReg2, 491 int Mask, int Value, 492 const MachineRegisterInfo *MRI) const { 493 assert(!SrcReg2 && "Only optimizing constant comparisons so far"); 494 bool IsLogical = (Compare->getDesc().TSFlags & SystemZII::IsLogical) != 0; 495 return Value == 0 && !IsLogical && 496 removeIPMBasedCompare(Compare, SrcReg, MRI, &RI); 497 } 498 499 // If Opcode is a move that has a conditional variant, return that variant, 500 // otherwise return 0. 501 static unsigned getConditionalMove(unsigned Opcode) { 502 switch (Opcode) { 503 case SystemZ::LR: return SystemZ::LOCR; 504 case SystemZ::LGR: return SystemZ::LOCGR; 505 default: return 0; 506 } 507 } 508 509 bool SystemZInstrInfo::isPredicable(MachineInstr &MI) const { 510 unsigned Opcode = MI.getOpcode(); 511 return STI.hasLoadStoreOnCond() && getConditionalMove(Opcode); 512 } 513 514 bool SystemZInstrInfo:: 515 isProfitableToIfCvt(MachineBasicBlock &MBB, 516 unsigned NumCycles, unsigned ExtraPredCycles, 517 BranchProbability Probability) const { 518 // For now only convert single instructions. 519 return NumCycles == 1; 520 } 521 522 bool SystemZInstrInfo:: 523 isProfitableToIfCvt(MachineBasicBlock &TMBB, 524 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 525 MachineBasicBlock &FMBB, 526 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 527 BranchProbability Probability) const { 528 // For now avoid converting mutually-exclusive cases. 529 return false; 530 } 531 532 bool SystemZInstrInfo::PredicateInstruction( 533 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 534 assert(Pred.size() == 2 && "Invalid condition"); 535 unsigned CCValid = Pred[0].getImm(); 536 unsigned CCMask = Pred[1].getImm(); 537 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 538 unsigned Opcode = MI.getOpcode(); 539 if (STI.hasLoadStoreOnCond()) { 540 if (unsigned CondOpcode = getConditionalMove(Opcode)) { 541 MI.setDesc(get(CondOpcode)); 542 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 543 .addImm(CCValid) 544 .addImm(CCMask) 545 .addReg(SystemZ::CC, RegState::Implicit); 546 return true; 547 } 548 } 549 return false; 550 } 551 552 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 553 MachineBasicBlock::iterator MBBI, 554 DebugLoc DL, unsigned DestReg, 555 unsigned SrcReg, bool KillSrc) const { 556 // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too. 557 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 558 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), 559 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); 560 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), 561 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); 562 return; 563 } 564 565 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { 566 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc); 567 return; 568 } 569 570 // Everything else needs only one instruction. 571 unsigned Opcode; 572 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 573 Opcode = SystemZ::LGR; 574 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 575 Opcode = SystemZ::LER; 576 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 577 Opcode = SystemZ::LDR; 578 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 579 Opcode = SystemZ::LXR; 580 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg)) 581 Opcode = SystemZ::VLR32; 582 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg)) 583 Opcode = SystemZ::VLR64; 584 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg)) 585 Opcode = SystemZ::VLR; 586 else 587 llvm_unreachable("Impossible reg-to-reg copy"); 588 589 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 590 .addReg(SrcReg, getKillRegState(KillSrc)); 591 } 592 593 void SystemZInstrInfo::storeRegToStackSlot( 594 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, 595 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 596 const TargetRegisterInfo *TRI) const { 597 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 598 599 // Callers may expect a single instruction, so keep 128-bit moves 600 // together for now and lower them after register allocation. 601 unsigned LoadOpcode, StoreOpcode; 602 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 603 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 604 .addReg(SrcReg, getKillRegState(isKill)), 605 FrameIdx); 606 } 607 608 void SystemZInstrInfo::loadRegFromStackSlot( 609 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, 610 int FrameIdx, const TargetRegisterClass *RC, 611 const TargetRegisterInfo *TRI) const { 612 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 613 614 // Callers may expect a single instruction, so keep 128-bit moves 615 // together for now and lower them after register allocation. 616 unsigned LoadOpcode, StoreOpcode; 617 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 618 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 619 FrameIdx); 620 } 621 622 // Return true if MI is a simple load or store with a 12-bit displacement 623 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 624 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 625 const MCInstrDesc &MCID = MI->getDesc(); 626 return ((MCID.TSFlags & Flag) && 627 isUInt<12>(MI->getOperand(2).getImm()) && 628 MI->getOperand(3).getReg() == 0); 629 } 630 631 namespace { 632 struct LogicOp { 633 LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {} 634 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 635 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 636 637 explicit operator bool() const { return RegSize; } 638 639 unsigned RegSize, ImmLSB, ImmSize; 640 }; 641 } // end anonymous namespace 642 643 static LogicOp interpretAndImmediate(unsigned Opcode) { 644 switch (Opcode) { 645 case SystemZ::NILMux: return LogicOp(32, 0, 16); 646 case SystemZ::NIHMux: return LogicOp(32, 16, 16); 647 case SystemZ::NILL64: return LogicOp(64, 0, 16); 648 case SystemZ::NILH64: return LogicOp(64, 16, 16); 649 case SystemZ::NIHL64: return LogicOp(64, 32, 16); 650 case SystemZ::NIHH64: return LogicOp(64, 48, 16); 651 case SystemZ::NIFMux: return LogicOp(32, 0, 32); 652 case SystemZ::NILF64: return LogicOp(64, 0, 32); 653 case SystemZ::NIHF64: return LogicOp(64, 32, 32); 654 default: return LogicOp(); 655 } 656 } 657 658 // Used to return from convertToThreeAddress after replacing two-address 659 // instruction OldMI with three-address instruction NewMI. 660 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI, 661 MachineInstr *NewMI, 662 LiveVariables *LV) { 663 if (LV) { 664 unsigned NumOps = OldMI->getNumOperands(); 665 for (unsigned I = 1; I < NumOps; ++I) { 666 MachineOperand &Op = OldMI->getOperand(I); 667 if (Op.isReg() && Op.isKill()) 668 LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI); 669 } 670 } 671 return NewMI; 672 } 673 674 MachineInstr * 675 SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 676 MachineBasicBlock::iterator &MBBI, 677 LiveVariables *LV) const { 678 MachineInstr *MI = MBBI; 679 MachineBasicBlock *MBB = MI->getParent(); 680 MachineFunction *MF = MBB->getParent(); 681 MachineRegisterInfo &MRI = MF->getRegInfo(); 682 683 unsigned Opcode = MI->getOpcode(); 684 unsigned NumOps = MI->getNumOperands(); 685 686 // Try to convert something like SLL into SLLK, if supported. 687 // We prefer to keep the two-operand form where possible both 688 // because it tends to be shorter and because some instructions 689 // have memory forms that can be used during spilling. 690 if (STI.hasDistinctOps()) { 691 MachineOperand &Dest = MI->getOperand(0); 692 MachineOperand &Src = MI->getOperand(1); 693 unsigned DestReg = Dest.getReg(); 694 unsigned SrcReg = Src.getReg(); 695 // AHIMux is only really a three-operand instruction when both operands 696 // are low registers. Try to constrain both operands to be low if 697 // possible. 698 if (Opcode == SystemZ::AHIMux && 699 TargetRegisterInfo::isVirtualRegister(DestReg) && 700 TargetRegisterInfo::isVirtualRegister(SrcReg) && 701 MRI.getRegClass(DestReg)->contains(SystemZ::R1L) && 702 MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) { 703 MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass); 704 MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass); 705 } 706 int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); 707 if (ThreeOperandOpcode >= 0) { 708 // Create three address instruction without adding the implicit 709 // operands. Those will instead be copied over from the original 710 // instruction by the loop below. 711 MachineInstrBuilder MIB(*MF, 712 MF->CreateMachineInstr(get(ThreeOperandOpcode), 713 MI->getDebugLoc(), /*NoImplicit=*/true)); 714 MIB.addOperand(Dest); 715 // Keep the kill state, but drop the tied flag. 716 MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()); 717 // Keep the remaining operands as-is. 718 for (unsigned I = 2; I < NumOps; ++I) 719 MIB.addOperand(MI->getOperand(I)); 720 MBB->insert(MI, MIB); 721 return finishConvertToThreeAddress(MI, MIB, LV); 722 } 723 } 724 725 // Try to convert an AND into an RISBG-type instruction. 726 if (LogicOp And = interpretAndImmediate(Opcode)) { 727 uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB; 728 // AND IMMEDIATE leaves the other bits of the register unchanged. 729 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 730 unsigned Start, End; 731 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 732 unsigned NewOpcode; 733 if (And.RegSize == 64) { 734 NewOpcode = SystemZ::RISBG; 735 // Prefer RISBGN if available, since it does not clobber CC. 736 if (STI.hasMiscellaneousExtensions()) 737 NewOpcode = SystemZ::RISBGN; 738 } else { 739 NewOpcode = SystemZ::RISBMux; 740 Start &= 31; 741 End &= 31; 742 } 743 MachineOperand &Dest = MI->getOperand(0); 744 MachineOperand &Src = MI->getOperand(1); 745 MachineInstrBuilder MIB = 746 BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode)) 747 .addOperand(Dest).addReg(0) 748 .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()) 749 .addImm(Start).addImm(End + 128).addImm(0); 750 return finishConvertToThreeAddress(MI, MIB, LV); 751 } 752 } 753 return nullptr; 754 } 755 756 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 757 MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops, 758 MachineBasicBlock::iterator InsertPt, int FrameIndex) const { 759 const MachineFrameInfo *MFI = MF.getFrameInfo(); 760 unsigned Size = MFI->getObjectSize(FrameIndex); 761 unsigned Opcode = MI->getOpcode(); 762 763 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 764 if ((Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && 765 isInt<8>(MI->getOperand(2).getImm()) && 766 !MI->getOperand(3).getReg()) { 767 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST 768 return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 769 get(SystemZ::AGSI)) 770 .addFrameIndex(FrameIndex) 771 .addImm(0) 772 .addImm(MI->getOperand(2).getImm()); 773 } 774 return nullptr; 775 } 776 777 // All other cases require a single operand. 778 if (Ops.size() != 1) 779 return nullptr; 780 781 unsigned OpNum = Ops[0]; 782 assert(Size == MF.getRegInfo() 783 .getRegClass(MI->getOperand(OpNum).getReg())->getSize() && 784 "Invalid size combination"); 785 786 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && 787 OpNum == 0 && 788 isInt<8>(MI->getOperand(2).getImm())) { 789 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST 790 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); 791 return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 792 get(Opcode)) 793 .addFrameIndex(FrameIndex) 794 .addImm(0) 795 .addImm(MI->getOperand(2).getImm()); 796 } 797 798 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 799 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 800 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 801 // If we're spilling the destination of an LDGR or LGDR, store the 802 // source register instead. 803 if (OpNum == 0) { 804 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 805 return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 806 get(StoreOpcode)) 807 .addOperand(MI->getOperand(1)) 808 .addFrameIndex(FrameIndex) 809 .addImm(0) 810 .addReg(0); 811 } 812 // If we're spilling the source of an LDGR or LGDR, load the 813 // destination register instead. 814 if (OpNum == 1) { 815 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 816 unsigned Dest = MI->getOperand(0).getReg(); 817 return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 818 get(LoadOpcode), Dest) 819 .addFrameIndex(FrameIndex) 820 .addImm(0) 821 .addReg(0); 822 } 823 } 824 825 // Look for cases where the source of a simple store or the destination 826 // of a simple load is being spilled. Try to use MVC instead. 827 // 828 // Although MVC is in practice a fast choice in these cases, it is still 829 // logically a bytewise copy. This means that we cannot use it if the 830 // load or store is volatile. We also wouldn't be able to use MVC if 831 // the two memories partially overlap, but that case cannot occur here, 832 // because we know that one of the memories is a full frame index. 833 // 834 // For performance reasons, we also want to avoid using MVC if the addresses 835 // might be equal. We don't worry about that case here, because spill slot 836 // coloring happens later, and because we have special code to remove 837 // MVCs that turn out to be redundant. 838 if (OpNum == 0 && MI->hasOneMemOperand()) { 839 MachineMemOperand *MMO = *MI->memoperands_begin(); 840 if (MMO->getSize() == Size && !MMO->isVolatile()) { 841 // Handle conversion of loads. 842 if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) { 843 return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 844 get(SystemZ::MVC)) 845 .addFrameIndex(FrameIndex) 846 .addImm(0) 847 .addImm(Size) 848 .addOperand(MI->getOperand(1)) 849 .addImm(MI->getOperand(2).getImm()) 850 .addMemOperand(MMO); 851 } 852 // Handle conversion of stores. 853 if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) { 854 return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 855 get(SystemZ::MVC)) 856 .addOperand(MI->getOperand(1)) 857 .addImm(MI->getOperand(2).getImm()) 858 .addImm(Size) 859 .addFrameIndex(FrameIndex) 860 .addImm(0) 861 .addMemOperand(MMO); 862 } 863 } 864 } 865 866 // If the spilled operand is the final one, try to change <INSN>R 867 // into <INSN>. 868 int MemOpcode = SystemZ::getMemOpcode(Opcode); 869 if (MemOpcode >= 0) { 870 unsigned NumOps = MI->getNumExplicitOperands(); 871 if (OpNum == NumOps - 1) { 872 const MCInstrDesc &MemDesc = get(MemOpcode); 873 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 874 assert(AccessBytes != 0 && "Size of access should be known"); 875 assert(AccessBytes <= Size && "Access outside the frame index"); 876 uint64_t Offset = Size - AccessBytes; 877 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 878 MI->getDebugLoc(), get(MemOpcode)); 879 for (unsigned I = 0; I < OpNum; ++I) 880 MIB.addOperand(MI->getOperand(I)); 881 MIB.addFrameIndex(FrameIndex).addImm(Offset); 882 if (MemDesc.TSFlags & SystemZII::HasIndex) 883 MIB.addReg(0); 884 return MIB; 885 } 886 } 887 888 return nullptr; 889 } 890 891 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 892 MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops, 893 MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const { 894 return nullptr; 895 } 896 897 bool 898 SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { 899 switch (MI->getOpcode()) { 900 case SystemZ::L128: 901 splitMove(MI, SystemZ::LG); 902 return true; 903 904 case SystemZ::ST128: 905 splitMove(MI, SystemZ::STG); 906 return true; 907 908 case SystemZ::LX: 909 splitMove(MI, SystemZ::LD); 910 return true; 911 912 case SystemZ::STX: 913 splitMove(MI, SystemZ::STD); 914 return true; 915 916 case SystemZ::LBMux: 917 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); 918 return true; 919 920 case SystemZ::LHMux: 921 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); 922 return true; 923 924 case SystemZ::LLCRMux: 925 expandZExtPseudo(MI, SystemZ::LLCR, 8); 926 return true; 927 928 case SystemZ::LLHRMux: 929 expandZExtPseudo(MI, SystemZ::LLHR, 16); 930 return true; 931 932 case SystemZ::LLCMux: 933 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); 934 return true; 935 936 case SystemZ::LLHMux: 937 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); 938 return true; 939 940 case SystemZ::LMux: 941 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); 942 return true; 943 944 case SystemZ::STCMux: 945 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); 946 return true; 947 948 case SystemZ::STHMux: 949 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); 950 return true; 951 952 case SystemZ::STMux: 953 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); 954 return true; 955 956 case SystemZ::LHIMux: 957 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); 958 return true; 959 960 case SystemZ::IIFMux: 961 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); 962 return true; 963 964 case SystemZ::IILMux: 965 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); 966 return true; 967 968 case SystemZ::IIHMux: 969 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); 970 return true; 971 972 case SystemZ::NIFMux: 973 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); 974 return true; 975 976 case SystemZ::NILMux: 977 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); 978 return true; 979 980 case SystemZ::NIHMux: 981 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); 982 return true; 983 984 case SystemZ::OIFMux: 985 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); 986 return true; 987 988 case SystemZ::OILMux: 989 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); 990 return true; 991 992 case SystemZ::OIHMux: 993 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); 994 return true; 995 996 case SystemZ::XIFMux: 997 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); 998 return true; 999 1000 case SystemZ::TMLMux: 1001 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); 1002 return true; 1003 1004 case SystemZ::TMHMux: 1005 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); 1006 return true; 1007 1008 case SystemZ::AHIMux: 1009 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); 1010 return true; 1011 1012 case SystemZ::AHIMuxK: 1013 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); 1014 return true; 1015 1016 case SystemZ::AFIMux: 1017 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); 1018 return true; 1019 1020 case SystemZ::CFIMux: 1021 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); 1022 return true; 1023 1024 case SystemZ::CLFIMux: 1025 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); 1026 return true; 1027 1028 case SystemZ::CMux: 1029 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); 1030 return true; 1031 1032 case SystemZ::CLMux: 1033 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); 1034 return true; 1035 1036 case SystemZ::RISBMux: { 1037 bool DestIsHigh = isHighReg(MI->getOperand(0).getReg()); 1038 bool SrcIsHigh = isHighReg(MI->getOperand(2).getReg()); 1039 if (SrcIsHigh == DestIsHigh) 1040 MI->setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); 1041 else { 1042 MI->setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); 1043 MI->getOperand(5).setImm(MI->getOperand(5).getImm() ^ 32); 1044 } 1045 return true; 1046 } 1047 1048 case SystemZ::ADJDYNALLOC: 1049 splitAdjDynAlloc(MI); 1050 return true; 1051 1052 default: 1053 return false; 1054 } 1055 } 1056 1057 uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const { 1058 if (MI->getOpcode() == TargetOpcode::INLINEASM) { 1059 const MachineFunction *MF = MI->getParent()->getParent(); 1060 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1061 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1062 } 1063 return MI->getDesc().getSize(); 1064 } 1065 1066 SystemZII::Branch 1067 SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const { 1068 switch (MI->getOpcode()) { 1069 case SystemZ::BR: 1070 case SystemZ::J: 1071 case SystemZ::JG: 1072 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 1073 SystemZ::CCMASK_ANY, &MI->getOperand(0)); 1074 1075 case SystemZ::BRC: 1076 case SystemZ::BRCL: 1077 return SystemZII::Branch(SystemZII::BranchNormal, 1078 MI->getOperand(0).getImm(), 1079 MI->getOperand(1).getImm(), &MI->getOperand(2)); 1080 1081 case SystemZ::BRCT: 1082 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 1083 SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); 1084 1085 case SystemZ::BRCTG: 1086 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 1087 SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); 1088 1089 case SystemZ::CIJ: 1090 case SystemZ::CRJ: 1091 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 1092 MI->getOperand(2).getImm(), &MI->getOperand(3)); 1093 1094 case SystemZ::CLIJ: 1095 case SystemZ::CLRJ: 1096 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, 1097 MI->getOperand(2).getImm(), &MI->getOperand(3)); 1098 1099 case SystemZ::CGIJ: 1100 case SystemZ::CGRJ: 1101 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 1102 MI->getOperand(2).getImm(), &MI->getOperand(3)); 1103 1104 case SystemZ::CLGIJ: 1105 case SystemZ::CLGRJ: 1106 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, 1107 MI->getOperand(2).getImm(), &MI->getOperand(3)); 1108 1109 default: 1110 llvm_unreachable("Unrecognized branch opcode"); 1111 } 1112 } 1113 1114 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 1115 unsigned &LoadOpcode, 1116 unsigned &StoreOpcode) const { 1117 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 1118 LoadOpcode = SystemZ::L; 1119 StoreOpcode = SystemZ::ST; 1120 } else if (RC == &SystemZ::GRH32BitRegClass) { 1121 LoadOpcode = SystemZ::LFH; 1122 StoreOpcode = SystemZ::STFH; 1123 } else if (RC == &SystemZ::GRX32BitRegClass) { 1124 LoadOpcode = SystemZ::LMux; 1125 StoreOpcode = SystemZ::STMux; 1126 } else if (RC == &SystemZ::GR64BitRegClass || 1127 RC == &SystemZ::ADDR64BitRegClass) { 1128 LoadOpcode = SystemZ::LG; 1129 StoreOpcode = SystemZ::STG; 1130 } else if (RC == &SystemZ::GR128BitRegClass || 1131 RC == &SystemZ::ADDR128BitRegClass) { 1132 LoadOpcode = SystemZ::L128; 1133 StoreOpcode = SystemZ::ST128; 1134 } else if (RC == &SystemZ::FP32BitRegClass) { 1135 LoadOpcode = SystemZ::LE; 1136 StoreOpcode = SystemZ::STE; 1137 } else if (RC == &SystemZ::FP64BitRegClass) { 1138 LoadOpcode = SystemZ::LD; 1139 StoreOpcode = SystemZ::STD; 1140 } else if (RC == &SystemZ::FP128BitRegClass) { 1141 LoadOpcode = SystemZ::LX; 1142 StoreOpcode = SystemZ::STX; 1143 } else if (RC == &SystemZ::VR32BitRegClass) { 1144 LoadOpcode = SystemZ::VL32; 1145 StoreOpcode = SystemZ::VST32; 1146 } else if (RC == &SystemZ::VR64BitRegClass) { 1147 LoadOpcode = SystemZ::VL64; 1148 StoreOpcode = SystemZ::VST64; 1149 } else if (RC == &SystemZ::VF128BitRegClass || 1150 RC == &SystemZ::VR128BitRegClass) { 1151 LoadOpcode = SystemZ::VL; 1152 StoreOpcode = SystemZ::VST; 1153 } else 1154 llvm_unreachable("Unsupported regclass to load or store"); 1155 } 1156 1157 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 1158 int64_t Offset) const { 1159 const MCInstrDesc &MCID = get(Opcode); 1160 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 1161 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 1162 // Get the instruction to use for unsigned 12-bit displacements. 1163 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 1164 if (Disp12Opcode >= 0) 1165 return Disp12Opcode; 1166 1167 // All address-related instructions can use unsigned 12-bit 1168 // displacements. 1169 return Opcode; 1170 } 1171 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 1172 // Get the instruction to use for signed 20-bit displacements. 1173 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 1174 if (Disp20Opcode >= 0) 1175 return Disp20Opcode; 1176 1177 // Check whether Opcode allows signed 20-bit displacements. 1178 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1179 return Opcode; 1180 } 1181 return 0; 1182 } 1183 1184 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 1185 switch (Opcode) { 1186 case SystemZ::L: return SystemZ::LT; 1187 case SystemZ::LY: return SystemZ::LT; 1188 case SystemZ::LG: return SystemZ::LTG; 1189 case SystemZ::LGF: return SystemZ::LTGF; 1190 case SystemZ::LR: return SystemZ::LTR; 1191 case SystemZ::LGFR: return SystemZ::LTGFR; 1192 case SystemZ::LGR: return SystemZ::LTGR; 1193 case SystemZ::LER: return SystemZ::LTEBR; 1194 case SystemZ::LDR: return SystemZ::LTDBR; 1195 case SystemZ::LXR: return SystemZ::LTXBR; 1196 case SystemZ::LCDFR: return SystemZ::LCDBR; 1197 case SystemZ::LPDFR: return SystemZ::LPDBR; 1198 case SystemZ::LNDFR: return SystemZ::LNDBR; 1199 case SystemZ::LCDFR_32: return SystemZ::LCEBR; 1200 case SystemZ::LPDFR_32: return SystemZ::LPEBR; 1201 case SystemZ::LNDFR_32: return SystemZ::LNEBR; 1202 // On zEC12 we prefer to use RISBGN. But if there is a chance to 1203 // actually use the condition code, we may turn it back into RISGB. 1204 // Note that RISBG is not really a "load-and-test" instruction, 1205 // but sets the same condition code values, so is OK to use here. 1206 case SystemZ::RISBGN: return SystemZ::RISBG; 1207 default: return 0; 1208 } 1209 } 1210 1211 // Return true if Mask matches the regexp 0*1+0*, given that zero masks 1212 // have already been filtered out. Store the first set bit in LSB and 1213 // the number of set bits in Length if so. 1214 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { 1215 unsigned First = findFirstSet(Mask); 1216 uint64_t Top = (Mask >> First) + 1; 1217 if ((Top & -Top) == Top) { 1218 LSB = First; 1219 Length = findFirstSet(Top); 1220 return true; 1221 } 1222 return false; 1223 } 1224 1225 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 1226 unsigned &Start, unsigned &End) const { 1227 // Reject trivial all-zero masks. 1228 Mask &= allOnes(BitSize); 1229 if (Mask == 0) 1230 return false; 1231 1232 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 1233 // the msb and End specifies the index of the lsb. 1234 unsigned LSB, Length; 1235 if (isStringOfOnes(Mask, LSB, Length)) { 1236 Start = 63 - (LSB + Length - 1); 1237 End = 63 - LSB; 1238 return true; 1239 } 1240 1241 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 1242 // of the low 1s and End specifies the lsb of the high 1s. 1243 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { 1244 assert(LSB > 0 && "Bottom bit must be set"); 1245 assert(LSB + Length < BitSize && "Top bit must be set"); 1246 Start = 63 - (LSB - 1); 1247 End = 63 - (LSB + Length); 1248 return true; 1249 } 1250 1251 return false; 1252 } 1253 1254 unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode, 1255 const MachineInstr *MI) const { 1256 switch (Opcode) { 1257 case SystemZ::CR: 1258 return SystemZ::CRJ; 1259 case SystemZ::CGR: 1260 return SystemZ::CGRJ; 1261 case SystemZ::CHI: 1262 return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0; 1263 case SystemZ::CGHI: 1264 return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0; 1265 case SystemZ::CLR: 1266 return SystemZ::CLRJ; 1267 case SystemZ::CLGR: 1268 return SystemZ::CLGRJ; 1269 case SystemZ::CLFI: 1270 return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLIJ : 0; 1271 case SystemZ::CLGFI: 1272 return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLGIJ : 0; 1273 default: 1274 return 0; 1275 } 1276 } 1277 1278 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 1279 MachineBasicBlock::iterator MBBI, 1280 unsigned Reg, uint64_t Value) const { 1281 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1282 unsigned Opcode; 1283 if (isInt<16>(Value)) 1284 Opcode = SystemZ::LGHI; 1285 else if (SystemZ::isImmLL(Value)) 1286 Opcode = SystemZ::LLILL; 1287 else if (SystemZ::isImmLH(Value)) { 1288 Opcode = SystemZ::LLILH; 1289 Value >>= 16; 1290 } else { 1291 assert(isInt<32>(Value) && "Huge values not handled yet"); 1292 Opcode = SystemZ::LGFI; 1293 } 1294 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 1295 } 1296