1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the SystemZ implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZInstrInfo.h" 14 #include "MCTargetDesc/SystemZMCTargetDesc.h" 15 #include "SystemZ.h" 16 #include "SystemZInstrBuilder.h" 17 #include "SystemZSubtarget.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/LiveInterval.h" 20 #include "llvm/CodeGen/LiveIntervals.h" 21 #include "llvm/CodeGen/LiveVariables.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/SlotIndexes.h" 30 #include "llvm/CodeGen/StackMaps.h" 31 #include "llvm/CodeGen/TargetInstrInfo.h" 32 #include "llvm/CodeGen/TargetSubtargetInfo.h" 33 #include "llvm/MC/MCInstrDesc.h" 34 #include "llvm/MC/MCRegisterInfo.h" 35 #include "llvm/Support/BranchProbability.h" 36 #include "llvm/Support/ErrorHandling.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Target/TargetMachine.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 43 using namespace llvm; 44 45 #define GET_INSTRINFO_CTOR_DTOR 46 #define GET_INSTRMAP_INFO 47 #include "SystemZGenInstrInfo.inc" 48 49 #define DEBUG_TYPE "systemz-II" 50 51 // Return a mask with Count low bits set. 52 static uint64_t allOnes(unsigned int Count) { 53 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 54 } 55 56 // Pin the vtable to this file. 57 void SystemZInstrInfo::anchor() {} 58 59 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti) 60 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 61 RI(sti.getSpecialRegisters()->getReturnFunctionAddressRegister()), 62 STI(sti) {} 63 64 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 65 // each having the opcode given by NewOpcode. 66 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 67 unsigned NewOpcode) const { 68 MachineBasicBlock *MBB = MI->getParent(); 69 MachineFunction &MF = *MBB->getParent(); 70 71 // Get two load or store instructions. Use the original instruction for one 72 // of them (arbitrarily the second here) and create a clone for the other. 73 MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI); 74 MBB->insert(MI, EarlierMI); 75 76 // Set up the two 64-bit registers and remember super reg and its flags. 77 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 78 MachineOperand &LowRegOp = MI->getOperand(0); 79 Register Reg128 = LowRegOp.getReg(); 80 unsigned Reg128Killed = getKillRegState(LowRegOp.isKill()); 81 unsigned Reg128Undef = getUndefRegState(LowRegOp.isUndef()); 82 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); 83 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); 84 85 if (MI->mayStore()) { 86 // Add implicit uses of the super register in case one of the subregs is 87 // undefined. We could track liveness and skip storing an undefined 88 // subreg, but this is hopefully rare (discovered with llvm-stress). 89 // If Reg128 was killed, set kill flag on MI. 90 unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit); 91 MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl); 92 MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed)); 93 } 94 95 // The address in the first (high) instruction is already correct. 96 // Adjust the offset in the second (low) instruction. 97 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 98 MachineOperand &LowOffsetOp = MI->getOperand(2); 99 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 100 101 // Clear the kill flags on the registers in the first instruction. 102 if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse()) 103 EarlierMI->getOperand(0).setIsKill(false); 104 EarlierMI->getOperand(1).setIsKill(false); 105 EarlierMI->getOperand(3).setIsKill(false); 106 107 // Set the opcodes. 108 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 109 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 110 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 111 112 EarlierMI->setDesc(get(HighOpcode)); 113 MI->setDesc(get(LowOpcode)); 114 } 115 116 // Split ADJDYNALLOC instruction MI. 117 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 118 MachineBasicBlock *MBB = MI->getParent(); 119 MachineFunction &MF = *MBB->getParent(); 120 MachineFrameInfo &MFFrame = MF.getFrameInfo(); 121 MachineOperand &OffsetMO = MI->getOperand(2); 122 SystemZCallingConventionRegisters *Regs = STI.getSpecialRegisters(); 123 124 uint64_t Offset = (MFFrame.getMaxCallFrameSize() + 125 Regs->getCallFrameSize() + 126 Regs->getStackPointerBias() + 127 OffsetMO.getImm()); 128 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 129 assert(NewOpcode && "No support for huge argument lists yet"); 130 MI->setDesc(get(NewOpcode)); 131 OffsetMO.setImm(Offset); 132 } 133 134 // MI is an RI-style pseudo instruction. Replace it with LowOpcode 135 // if the first operand is a low GR32 and HighOpcode if the first operand 136 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand 137 // and HighOpcode takes an unsigned 32-bit operand. In those cases, 138 // MI has the same kind of operand as LowOpcode, so needs to be converted 139 // if HighOpcode is used. 140 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode, 141 unsigned HighOpcode, 142 bool ConvertHigh) const { 143 Register Reg = MI.getOperand(0).getReg(); 144 bool IsHigh = SystemZ::isHighReg(Reg); 145 MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode)); 146 if (IsHigh && ConvertHigh) 147 MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm())); 148 } 149 150 // MI is a three-operand RIE-style pseudo instruction. Replace it with 151 // LowOpcodeK if the registers are both low GR32s, otherwise use a move 152 // followed by HighOpcode or LowOpcode, depending on whether the target 153 // is a high or low GR32. 154 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode, 155 unsigned LowOpcodeK, 156 unsigned HighOpcode) const { 157 Register DestReg = MI.getOperand(0).getReg(); 158 Register SrcReg = MI.getOperand(1).getReg(); 159 bool DestIsHigh = SystemZ::isHighReg(DestReg); 160 bool SrcIsHigh = SystemZ::isHighReg(SrcReg); 161 if (!DestIsHigh && !SrcIsHigh) 162 MI.setDesc(get(LowOpcodeK)); 163 else { 164 if (DestReg != SrcReg) { 165 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg, 166 SystemZ::LR, 32, MI.getOperand(1).isKill(), 167 MI.getOperand(1).isUndef()); 168 MI.getOperand(1).setReg(DestReg); 169 } 170 MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); 171 MI.tieOperands(0, 1); 172 } 173 } 174 175 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode 176 // if the first operand is a low GR32 and HighOpcode if the first operand 177 // is a high GR32. 178 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode, 179 unsigned HighOpcode) const { 180 Register Reg = MI.getOperand(0).getReg(); 181 unsigned Opcode = getOpcodeForOffset( 182 SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode, 183 MI.getOperand(2).getImm()); 184 MI.setDesc(get(Opcode)); 185 } 186 187 // MI is a load-on-condition pseudo instruction with a single register 188 // (source or destination) operand. Replace it with LowOpcode if the 189 // register is a low GR32 and HighOpcode if the register is a high GR32. 190 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode, 191 unsigned HighOpcode) const { 192 Register Reg = MI.getOperand(0).getReg(); 193 unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode; 194 MI.setDesc(get(Opcode)); 195 } 196 197 // MI is an RR-style pseudo instruction that zero-extends the low Size bits 198 // of one GRX32 into another. Replace it with LowOpcode if both operands 199 // are low registers, otherwise use RISB[LH]G. 200 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode, 201 unsigned Size) const { 202 MachineInstrBuilder MIB = 203 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), 204 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode, 205 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef()); 206 207 // Keep the remaining operands as-is. 208 for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2)) 209 MIB.add(MO); 210 211 MI.eraseFromParent(); 212 } 213 214 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const { 215 MachineBasicBlock *MBB = MI->getParent(); 216 MachineFunction &MF = *MBB->getParent(); 217 const Register Reg64 = MI->getOperand(0).getReg(); 218 const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32); 219 220 // EAR can only load the low subregister so us a shift for %a0 to produce 221 // the GR containing %a0 and %a1. 222 223 // ear <reg>, %a0 224 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32) 225 .addReg(SystemZ::A0) 226 .addReg(Reg64, RegState::ImplicitDefine); 227 228 // sllg <reg>, <reg>, 32 229 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64) 230 .addReg(Reg64) 231 .addReg(0) 232 .addImm(32); 233 234 // ear <reg>, %a1 235 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32) 236 .addReg(SystemZ::A1); 237 238 // lg <reg>, 40(<reg>) 239 MI->setDesc(get(SystemZ::LG)); 240 MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0); 241 } 242 243 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR 244 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg 245 // are low registers, otherwise use RISB[LH]G. Size is the number of bits 246 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). 247 // KillSrc is true if this move is the last use of SrcReg. 248 MachineInstrBuilder 249 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, 250 MachineBasicBlock::iterator MBBI, 251 const DebugLoc &DL, unsigned DestReg, 252 unsigned SrcReg, unsigned LowLowOpcode, 253 unsigned Size, bool KillSrc, 254 bool UndefSrc) const { 255 unsigned Opcode; 256 bool DestIsHigh = SystemZ::isHighReg(DestReg); 257 bool SrcIsHigh = SystemZ::isHighReg(SrcReg); 258 if (DestIsHigh && SrcIsHigh) 259 Opcode = SystemZ::RISBHH; 260 else if (DestIsHigh && !SrcIsHigh) 261 Opcode = SystemZ::RISBHL; 262 else if (!DestIsHigh && SrcIsHigh) 263 Opcode = SystemZ::RISBLH; 264 else { 265 return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) 266 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)); 267 } 268 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); 269 return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 270 .addReg(DestReg, RegState::Undef) 271 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)) 272 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); 273 } 274 275 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI, 276 bool NewMI, 277 unsigned OpIdx1, 278 unsigned OpIdx2) const { 279 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { 280 if (NewMI) 281 return *MI.getParent()->getParent()->CloneMachineInstr(&MI); 282 return MI; 283 }; 284 285 switch (MI.getOpcode()) { 286 case SystemZ::SELRMux: 287 case SystemZ::SELFHR: 288 case SystemZ::SELR: 289 case SystemZ::SELGR: 290 case SystemZ::LOCRMux: 291 case SystemZ::LOCFHR: 292 case SystemZ::LOCR: 293 case SystemZ::LOCGR: { 294 auto &WorkingMI = cloneIfNew(MI); 295 // Invert condition. 296 unsigned CCValid = WorkingMI.getOperand(3).getImm(); 297 unsigned CCMask = WorkingMI.getOperand(4).getImm(); 298 WorkingMI.getOperand(4).setImm(CCMask ^ CCValid); 299 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 300 OpIdx1, OpIdx2); 301 } 302 default: 303 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 304 } 305 } 306 307 // If MI is a simple load or store for a frame object, return the register 308 // it loads or stores and set FrameIndex to the index of the frame object. 309 // Return 0 otherwise. 310 // 311 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 312 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex, 313 unsigned Flag) { 314 const MCInstrDesc &MCID = MI.getDesc(); 315 if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() && 316 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) { 317 FrameIndex = MI.getOperand(1).getIndex(); 318 return MI.getOperand(0).getReg(); 319 } 320 return 0; 321 } 322 323 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 324 int &FrameIndex) const { 325 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 326 } 327 328 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 329 int &FrameIndex) const { 330 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 331 } 332 333 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI, 334 int &DestFrameIndex, 335 int &SrcFrameIndex) const { 336 // Check for MVC 0(Length,FI1),0(FI2) 337 const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo(); 338 if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() || 339 MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() || 340 MI.getOperand(4).getImm() != 0) 341 return false; 342 343 // Check that Length covers the full slots. 344 int64_t Length = MI.getOperand(2).getImm(); 345 unsigned FI1 = MI.getOperand(0).getIndex(); 346 unsigned FI2 = MI.getOperand(3).getIndex(); 347 if (MFI.getObjectSize(FI1) != Length || 348 MFI.getObjectSize(FI2) != Length) 349 return false; 350 351 DestFrameIndex = FI1; 352 SrcFrameIndex = FI2; 353 return true; 354 } 355 356 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 357 MachineBasicBlock *&TBB, 358 MachineBasicBlock *&FBB, 359 SmallVectorImpl<MachineOperand> &Cond, 360 bool AllowModify) const { 361 // Most of the code and comments here are boilerplate. 362 363 // Start from the bottom of the block and work up, examining the 364 // terminator instructions. 365 MachineBasicBlock::iterator I = MBB.end(); 366 while (I != MBB.begin()) { 367 --I; 368 if (I->isDebugInstr()) 369 continue; 370 371 // Working from the bottom, when we see a non-terminator instruction, we're 372 // done. 373 if (!isUnpredicatedTerminator(*I)) 374 break; 375 376 // A terminator that isn't a branch can't easily be handled by this 377 // analysis. 378 if (!I->isBranch()) 379 return true; 380 381 // Can't handle indirect branches. 382 SystemZII::Branch Branch(getBranchInfo(*I)); 383 if (!Branch.hasMBBTarget()) 384 return true; 385 386 // Punt on compound branches. 387 if (Branch.Type != SystemZII::BranchNormal) 388 return true; 389 390 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 391 // Handle unconditional branches. 392 if (!AllowModify) { 393 TBB = Branch.getMBBTarget(); 394 continue; 395 } 396 397 // If the block has any instructions after a JMP, delete them. 398 while (std::next(I) != MBB.end()) 399 std::next(I)->eraseFromParent(); 400 401 Cond.clear(); 402 FBB = nullptr; 403 404 // Delete the JMP if it's equivalent to a fall-through. 405 if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) { 406 TBB = nullptr; 407 I->eraseFromParent(); 408 I = MBB.end(); 409 continue; 410 } 411 412 // TBB is used to indicate the unconditinal destination. 413 TBB = Branch.getMBBTarget(); 414 continue; 415 } 416 417 // Working from the bottom, handle the first conditional branch. 418 if (Cond.empty()) { 419 // FIXME: add X86-style branch swap 420 FBB = TBB; 421 TBB = Branch.getMBBTarget(); 422 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 423 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 424 continue; 425 } 426 427 // Handle subsequent conditional branches. 428 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 429 430 // Only handle the case where all conditional branches branch to the same 431 // destination. 432 if (TBB != Branch.getMBBTarget()) 433 return true; 434 435 // If the conditions are the same, we can leave them alone. 436 unsigned OldCCValid = Cond[0].getImm(); 437 unsigned OldCCMask = Cond[1].getImm(); 438 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 439 continue; 440 441 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 442 return false; 443 } 444 445 return false; 446 } 447 448 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB, 449 int *BytesRemoved) const { 450 assert(!BytesRemoved && "code size not handled"); 451 452 // Most of the code and comments here are boilerplate. 453 MachineBasicBlock::iterator I = MBB.end(); 454 unsigned Count = 0; 455 456 while (I != MBB.begin()) { 457 --I; 458 if (I->isDebugInstr()) 459 continue; 460 if (!I->isBranch()) 461 break; 462 if (!getBranchInfo(*I).hasMBBTarget()) 463 break; 464 // Remove the branch. 465 I->eraseFromParent(); 466 I = MBB.end(); 467 ++Count; 468 } 469 470 return Count; 471 } 472 473 bool SystemZInstrInfo:: 474 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 475 assert(Cond.size() == 2 && "Invalid condition"); 476 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 477 return false; 478 } 479 480 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB, 481 MachineBasicBlock *TBB, 482 MachineBasicBlock *FBB, 483 ArrayRef<MachineOperand> Cond, 484 const DebugLoc &DL, 485 int *BytesAdded) const { 486 // In this function we output 32-bit branches, which should always 487 // have enough range. They can be shortened and relaxed by later code 488 // in the pipeline, if desired. 489 490 // Shouldn't be a fall through. 491 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 492 assert((Cond.size() == 2 || Cond.size() == 0) && 493 "SystemZ branch conditions have one component!"); 494 assert(!BytesAdded && "code size not handled"); 495 496 if (Cond.empty()) { 497 // Unconditional branch? 498 assert(!FBB && "Unconditional branch with multiple successors!"); 499 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 500 return 1; 501 } 502 503 // Conditional branch. 504 unsigned Count = 0; 505 unsigned CCValid = Cond[0].getImm(); 506 unsigned CCMask = Cond[1].getImm(); 507 BuildMI(&MBB, DL, get(SystemZ::BRC)) 508 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 509 ++Count; 510 511 if (FBB) { 512 // Two-way Conditional branch. Insert the second branch. 513 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 514 ++Count; 515 } 516 return Count; 517 } 518 519 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, 520 Register &SrcReg2, int64_t &Mask, 521 int64_t &Value) const { 522 assert(MI.isCompare() && "Caller should have checked for a comparison"); 523 524 if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() && 525 MI.getOperand(1).isImm()) { 526 SrcReg = MI.getOperand(0).getReg(); 527 SrcReg2 = 0; 528 Value = MI.getOperand(1).getImm(); 529 Mask = ~0; 530 return true; 531 } 532 533 return false; 534 } 535 536 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 537 ArrayRef<MachineOperand> Pred, 538 Register DstReg, Register TrueReg, 539 Register FalseReg, int &CondCycles, 540 int &TrueCycles, 541 int &FalseCycles) const { 542 // Not all subtargets have LOCR instructions. 543 if (!STI.hasLoadStoreOnCond()) 544 return false; 545 if (Pred.size() != 2) 546 return false; 547 548 // Check register classes. 549 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 550 const TargetRegisterClass *RC = 551 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 552 if (!RC) 553 return false; 554 555 // We have LOCR instructions for 32 and 64 bit general purpose registers. 556 if ((STI.hasLoadStoreOnCond2() && 557 SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) || 558 SystemZ::GR32BitRegClass.hasSubClassEq(RC) || 559 SystemZ::GR64BitRegClass.hasSubClassEq(RC)) { 560 CondCycles = 2; 561 TrueCycles = 2; 562 FalseCycles = 2; 563 return true; 564 } 565 566 // Can't do anything else. 567 return false; 568 } 569 570 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB, 571 MachineBasicBlock::iterator I, 572 const DebugLoc &DL, Register DstReg, 573 ArrayRef<MachineOperand> Pred, 574 Register TrueReg, 575 Register FalseReg) const { 576 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 577 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 578 579 assert(Pred.size() == 2 && "Invalid condition"); 580 unsigned CCValid = Pred[0].getImm(); 581 unsigned CCMask = Pred[1].getImm(); 582 583 unsigned Opc; 584 if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) { 585 if (STI.hasMiscellaneousExtensions3()) 586 Opc = SystemZ::SELRMux; 587 else if (STI.hasLoadStoreOnCond2()) 588 Opc = SystemZ::LOCRMux; 589 else { 590 Opc = SystemZ::LOCR; 591 MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass); 592 Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 593 Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 594 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg); 595 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg); 596 TrueReg = TReg; 597 FalseReg = FReg; 598 } 599 } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) { 600 if (STI.hasMiscellaneousExtensions3()) 601 Opc = SystemZ::SELGR; 602 else 603 Opc = SystemZ::LOCGR; 604 } else 605 llvm_unreachable("Invalid register class"); 606 607 BuildMI(MBB, I, DL, get(Opc), DstReg) 608 .addReg(FalseReg).addReg(TrueReg) 609 .addImm(CCValid).addImm(CCMask); 610 } 611 612 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 613 Register Reg, 614 MachineRegisterInfo *MRI) const { 615 unsigned DefOpc = DefMI.getOpcode(); 616 if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI && 617 DefOpc != SystemZ::LGHI) 618 return false; 619 if (DefMI.getOperand(0).getReg() != Reg) 620 return false; 621 int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm(); 622 623 unsigned UseOpc = UseMI.getOpcode(); 624 unsigned NewUseOpc; 625 unsigned UseIdx; 626 int CommuteIdx = -1; 627 bool TieOps = false; 628 switch (UseOpc) { 629 case SystemZ::SELRMux: 630 TieOps = true; 631 LLVM_FALLTHROUGH; 632 case SystemZ::LOCRMux: 633 if (!STI.hasLoadStoreOnCond2()) 634 return false; 635 NewUseOpc = SystemZ::LOCHIMux; 636 if (UseMI.getOperand(2).getReg() == Reg) 637 UseIdx = 2; 638 else if (UseMI.getOperand(1).getReg() == Reg) 639 UseIdx = 2, CommuteIdx = 1; 640 else 641 return false; 642 break; 643 case SystemZ::SELGR: 644 TieOps = true; 645 LLVM_FALLTHROUGH; 646 case SystemZ::LOCGR: 647 if (!STI.hasLoadStoreOnCond2()) 648 return false; 649 NewUseOpc = SystemZ::LOCGHI; 650 if (UseMI.getOperand(2).getReg() == Reg) 651 UseIdx = 2; 652 else if (UseMI.getOperand(1).getReg() == Reg) 653 UseIdx = 2, CommuteIdx = 1; 654 else 655 return false; 656 break; 657 default: 658 return false; 659 } 660 661 if (CommuteIdx != -1) 662 if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx)) 663 return false; 664 665 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 666 UseMI.setDesc(get(NewUseOpc)); 667 if (TieOps) 668 UseMI.tieOperands(0, 1); 669 UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal); 670 if (DeleteDef) 671 DefMI.eraseFromParent(); 672 673 return true; 674 } 675 676 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const { 677 unsigned Opcode = MI.getOpcode(); 678 if (Opcode == SystemZ::Return || 679 Opcode == SystemZ::Return_XPLINK || 680 Opcode == SystemZ::Trap || 681 Opcode == SystemZ::CallJG || 682 Opcode == SystemZ::CallBR) 683 return true; 684 return false; 685 } 686 687 bool SystemZInstrInfo:: 688 isProfitableToIfCvt(MachineBasicBlock &MBB, 689 unsigned NumCycles, unsigned ExtraPredCycles, 690 BranchProbability Probability) const { 691 // Avoid using conditional returns at the end of a loop (since then 692 // we'd need to emit an unconditional branch to the beginning anyway, 693 // making the loop body longer). This doesn't apply for low-probability 694 // loops (eg. compare-and-swap retry), so just decide based on branch 695 // probability instead of looping structure. 696 // However, since Compare and Trap instructions cost the same as a regular 697 // Compare instruction, we should allow the if conversion to convert this 698 // into a Conditional Compare regardless of the branch probability. 699 if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap && 700 MBB.succ_empty() && Probability < BranchProbability(1, 8)) 701 return false; 702 // For now only convert single instructions. 703 return NumCycles == 1; 704 } 705 706 bool SystemZInstrInfo:: 707 isProfitableToIfCvt(MachineBasicBlock &TMBB, 708 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 709 MachineBasicBlock &FMBB, 710 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 711 BranchProbability Probability) const { 712 // For now avoid converting mutually-exclusive cases. 713 return false; 714 } 715 716 bool SystemZInstrInfo:: 717 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 718 BranchProbability Probability) const { 719 // For now only duplicate single instructions. 720 return NumCycles == 1; 721 } 722 723 bool SystemZInstrInfo::PredicateInstruction( 724 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 725 assert(Pred.size() == 2 && "Invalid condition"); 726 unsigned CCValid = Pred[0].getImm(); 727 unsigned CCMask = Pred[1].getImm(); 728 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 729 unsigned Opcode = MI.getOpcode(); 730 if (Opcode == SystemZ::Trap) { 731 MI.setDesc(get(SystemZ::CondTrap)); 732 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 733 .addImm(CCValid).addImm(CCMask) 734 .addReg(SystemZ::CC, RegState::Implicit); 735 return true; 736 } 737 if (Opcode == SystemZ::Return || Opcode == SystemZ::Return_XPLINK) { 738 MI.setDesc(get(Opcode == SystemZ::Return ? SystemZ::CondReturn 739 : SystemZ::CondReturn_XPLINK)); 740 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 741 .addImm(CCValid) 742 .addImm(CCMask) 743 .addReg(SystemZ::CC, RegState::Implicit); 744 return true; 745 } 746 if (Opcode == SystemZ::CallJG) { 747 MachineOperand FirstOp = MI.getOperand(0); 748 const uint32_t *RegMask = MI.getOperand(1).getRegMask(); 749 MI.RemoveOperand(1); 750 MI.RemoveOperand(0); 751 MI.setDesc(get(SystemZ::CallBRCL)); 752 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 753 .addImm(CCValid) 754 .addImm(CCMask) 755 .add(FirstOp) 756 .addRegMask(RegMask) 757 .addReg(SystemZ::CC, RegState::Implicit); 758 return true; 759 } 760 if (Opcode == SystemZ::CallBR) { 761 MachineOperand Target = MI.getOperand(0); 762 const uint32_t *RegMask = MI.getOperand(1).getRegMask(); 763 MI.RemoveOperand(1); 764 MI.RemoveOperand(0); 765 MI.setDesc(get(SystemZ::CallBCR)); 766 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 767 .addImm(CCValid).addImm(CCMask) 768 .add(Target) 769 .addRegMask(RegMask) 770 .addReg(SystemZ::CC, RegState::Implicit); 771 return true; 772 } 773 return false; 774 } 775 776 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 777 MachineBasicBlock::iterator MBBI, 778 const DebugLoc &DL, MCRegister DestReg, 779 MCRegister SrcReg, bool KillSrc) const { 780 // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the 781 // super register in case one of the subregs is undefined. 782 // This handles ADDR128 too. 783 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 784 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), 785 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); 786 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI)) 787 .addReg(SrcReg, RegState::Implicit); 788 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), 789 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); 790 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI)) 791 .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit)); 792 return; 793 } 794 795 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { 796 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc, 797 false); 798 return; 799 } 800 801 // Move 128-bit floating-point values between VR128 and FP128. 802 if (SystemZ::VR128BitRegClass.contains(DestReg) && 803 SystemZ::FP128BitRegClass.contains(SrcReg)) { 804 MCRegister SrcRegHi = 805 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64), 806 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 807 MCRegister SrcRegLo = 808 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64), 809 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 810 811 BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg) 812 .addReg(SrcRegHi, getKillRegState(KillSrc)) 813 .addReg(SrcRegLo, getKillRegState(KillSrc)); 814 return; 815 } 816 if (SystemZ::FP128BitRegClass.contains(DestReg) && 817 SystemZ::VR128BitRegClass.contains(SrcReg)) { 818 MCRegister DestRegHi = 819 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64), 820 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 821 MCRegister DestRegLo = 822 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64), 823 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 824 825 if (DestRegHi != SrcReg) 826 copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false); 827 BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo) 828 .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1); 829 return; 830 } 831 832 // Move CC value from a GR32. 833 if (DestReg == SystemZ::CC) { 834 unsigned Opcode = 835 SystemZ::GR32BitRegClass.contains(SrcReg) ? SystemZ::TMLH : SystemZ::TMHH; 836 BuildMI(MBB, MBBI, DL, get(Opcode)) 837 .addReg(SrcReg, getKillRegState(KillSrc)) 838 .addImm(3 << (SystemZ::IPM_CC - 16)); 839 return; 840 } 841 842 // Everything else needs only one instruction. 843 unsigned Opcode; 844 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 845 Opcode = SystemZ::LGR; 846 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 847 // For z13 we prefer LDR over LER to avoid partial register dependencies. 848 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER; 849 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 850 Opcode = SystemZ::LDR; 851 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 852 Opcode = SystemZ::LXR; 853 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg)) 854 Opcode = SystemZ::VLR32; 855 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg)) 856 Opcode = SystemZ::VLR64; 857 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg)) 858 Opcode = SystemZ::VLR; 859 else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg)) 860 Opcode = SystemZ::CPYA; 861 else 862 llvm_unreachable("Impossible reg-to-reg copy"); 863 864 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 865 .addReg(SrcReg, getKillRegState(KillSrc)); 866 } 867 868 void SystemZInstrInfo::storeRegToStackSlot( 869 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg, 870 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 871 const TargetRegisterInfo *TRI) const { 872 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 873 874 // Callers may expect a single instruction, so keep 128-bit moves 875 // together for now and lower them after register allocation. 876 unsigned LoadOpcode, StoreOpcode; 877 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 878 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 879 .addReg(SrcReg, getKillRegState(isKill)), 880 FrameIdx); 881 } 882 883 void SystemZInstrInfo::loadRegFromStackSlot( 884 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg, 885 int FrameIdx, const TargetRegisterClass *RC, 886 const TargetRegisterInfo *TRI) const { 887 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 888 889 // Callers may expect a single instruction, so keep 128-bit moves 890 // together for now and lower them after register allocation. 891 unsigned LoadOpcode, StoreOpcode; 892 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 893 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 894 FrameIdx); 895 } 896 897 // Return true if MI is a simple load or store with a 12-bit displacement 898 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 899 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 900 const MCInstrDesc &MCID = MI->getDesc(); 901 return ((MCID.TSFlags & Flag) && 902 isUInt<12>(MI->getOperand(2).getImm()) && 903 MI->getOperand(3).getReg() == 0); 904 } 905 906 namespace { 907 908 struct LogicOp { 909 LogicOp() = default; 910 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 911 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 912 913 explicit operator bool() const { return RegSize; } 914 915 unsigned RegSize = 0; 916 unsigned ImmLSB = 0; 917 unsigned ImmSize = 0; 918 }; 919 920 } // end anonymous namespace 921 922 static LogicOp interpretAndImmediate(unsigned Opcode) { 923 switch (Opcode) { 924 case SystemZ::NILMux: return LogicOp(32, 0, 16); 925 case SystemZ::NIHMux: return LogicOp(32, 16, 16); 926 case SystemZ::NILL64: return LogicOp(64, 0, 16); 927 case SystemZ::NILH64: return LogicOp(64, 16, 16); 928 case SystemZ::NIHL64: return LogicOp(64, 32, 16); 929 case SystemZ::NIHH64: return LogicOp(64, 48, 16); 930 case SystemZ::NIFMux: return LogicOp(32, 0, 32); 931 case SystemZ::NILF64: return LogicOp(64, 0, 32); 932 case SystemZ::NIHF64: return LogicOp(64, 32, 32); 933 default: return LogicOp(); 934 } 935 } 936 937 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) { 938 if (OldMI->registerDefIsDead(SystemZ::CC)) { 939 MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC); 940 if (CCDef != nullptr) 941 CCDef->setIsDead(true); 942 } 943 } 944 945 static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI, 946 MachineInstr::MIFlag Flag) { 947 if (OldMI->getFlag(Flag)) 948 NewMI->setFlag(Flag); 949 } 950 951 MachineInstr * 952 SystemZInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, 953 LiveIntervals *LIS) const { 954 MachineBasicBlock *MBB = MI.getParent(); 955 956 // Try to convert an AND into an RISBG-type instruction. 957 // TODO: It might be beneficial to select RISBG and shorten to AND instead. 958 if (LogicOp And = interpretAndImmediate(MI.getOpcode())) { 959 uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB; 960 // AND IMMEDIATE leaves the other bits of the register unchanged. 961 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 962 unsigned Start, End; 963 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 964 unsigned NewOpcode; 965 if (And.RegSize == 64) { 966 NewOpcode = SystemZ::RISBG; 967 // Prefer RISBGN if available, since it does not clobber CC. 968 if (STI.hasMiscellaneousExtensions()) 969 NewOpcode = SystemZ::RISBGN; 970 } else { 971 NewOpcode = SystemZ::RISBMux; 972 Start &= 31; 973 End &= 31; 974 } 975 MachineOperand &Dest = MI.getOperand(0); 976 MachineOperand &Src = MI.getOperand(1); 977 MachineInstrBuilder MIB = 978 BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode)) 979 .add(Dest) 980 .addReg(0) 981 .addReg(Src.getReg(), getKillRegState(Src.isKill()), 982 Src.getSubReg()) 983 .addImm(Start) 984 .addImm(End + 128) 985 .addImm(0); 986 if (LV) { 987 unsigned NumOps = MI.getNumOperands(); 988 for (unsigned I = 1; I < NumOps; ++I) { 989 MachineOperand &Op = MI.getOperand(I); 990 if (Op.isReg() && Op.isKill()) 991 LV->replaceKillInstruction(Op.getReg(), MI, *MIB); 992 } 993 } 994 if (LIS) 995 LIS->ReplaceMachineInstrInMaps(MI, *MIB); 996 transferDeadCC(&MI, MIB); 997 return MIB; 998 } 999 } 1000 return nullptr; 1001 } 1002 1003 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1004 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1005 MachineBasicBlock::iterator InsertPt, int FrameIndex, 1006 LiveIntervals *LIS, VirtRegMap *VRM) const { 1007 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1008 MachineRegisterInfo &MRI = MF.getRegInfo(); 1009 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1010 unsigned Size = MFI.getObjectSize(FrameIndex); 1011 unsigned Opcode = MI.getOpcode(); 1012 1013 // Check CC liveness if new instruction introduces a dead def of CC. 1014 MCRegUnitIterator CCUnit(MCRegister::from(SystemZ::CC), TRI); 1015 SlotIndex MISlot = SlotIndex(); 1016 LiveRange *CCLiveRange = nullptr; 1017 bool CCLiveAtMI = true; 1018 if (LIS) { 1019 MISlot = LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot(); 1020 CCLiveRange = &LIS->getRegUnit(*CCUnit); 1021 CCLiveAtMI = CCLiveRange->liveAt(MISlot); 1022 } 1023 ++CCUnit; 1024 assert(!CCUnit.isValid() && "CC only has one reg unit."); 1025 1026 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 1027 if (!CCLiveAtMI && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && 1028 isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) { 1029 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST 1030 MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt, 1031 MI.getDebugLoc(), get(SystemZ::AGSI)) 1032 .addFrameIndex(FrameIndex) 1033 .addImm(0) 1034 .addImm(MI.getOperand(2).getImm()); 1035 BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true); 1036 CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator()); 1037 return BuiltMI; 1038 } 1039 return nullptr; 1040 } 1041 1042 // All other cases require a single operand. 1043 if (Ops.size() != 1) 1044 return nullptr; 1045 1046 unsigned OpNum = Ops[0]; 1047 assert(Size * 8 == 1048 TRI->getRegSizeInBits(*MF.getRegInfo() 1049 .getRegClass(MI.getOperand(OpNum).getReg())) && 1050 "Invalid size combination"); 1051 1052 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 && 1053 isInt<8>(MI.getOperand(2).getImm())) { 1054 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST 1055 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); 1056 MachineInstr *BuiltMI = 1057 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1058 .addFrameIndex(FrameIndex) 1059 .addImm(0) 1060 .addImm(MI.getOperand(2).getImm()); 1061 transferDeadCC(&MI, BuiltMI); 1062 transferMIFlag(&MI, BuiltMI, MachineInstr::NoSWrap); 1063 return BuiltMI; 1064 } 1065 1066 if ((Opcode == SystemZ::ALFI && OpNum == 0 && 1067 isInt<8>((int32_t)MI.getOperand(2).getImm())) || 1068 (Opcode == SystemZ::ALGFI && OpNum == 0 && 1069 isInt<8>((int64_t)MI.getOperand(2).getImm()))) { 1070 // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST 1071 Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI); 1072 MachineInstr *BuiltMI = 1073 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1074 .addFrameIndex(FrameIndex) 1075 .addImm(0) 1076 .addImm((int8_t)MI.getOperand(2).getImm()); 1077 transferDeadCC(&MI, BuiltMI); 1078 return BuiltMI; 1079 } 1080 1081 if ((Opcode == SystemZ::SLFI && OpNum == 0 && 1082 isInt<8>((int32_t)-MI.getOperand(2).getImm())) || 1083 (Opcode == SystemZ::SLGFI && OpNum == 0 && 1084 isInt<8>((int64_t)-MI.getOperand(2).getImm()))) { 1085 // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST 1086 Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI); 1087 MachineInstr *BuiltMI = 1088 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1089 .addFrameIndex(FrameIndex) 1090 .addImm(0) 1091 .addImm((int8_t)-MI.getOperand(2).getImm()); 1092 transferDeadCC(&MI, BuiltMI); 1093 return BuiltMI; 1094 } 1095 1096 unsigned MemImmOpc = 0; 1097 switch (Opcode) { 1098 case SystemZ::LHIMux: 1099 case SystemZ::LHI: MemImmOpc = SystemZ::MVHI; break; 1100 case SystemZ::LGHI: MemImmOpc = SystemZ::MVGHI; break; 1101 case SystemZ::CHIMux: 1102 case SystemZ::CHI: MemImmOpc = SystemZ::CHSI; break; 1103 case SystemZ::CGHI: MemImmOpc = SystemZ::CGHSI; break; 1104 case SystemZ::CLFIMux: 1105 case SystemZ::CLFI: 1106 if (isUInt<16>(MI.getOperand(1).getImm())) 1107 MemImmOpc = SystemZ::CLFHSI; 1108 break; 1109 case SystemZ::CLGFI: 1110 if (isUInt<16>(MI.getOperand(1).getImm())) 1111 MemImmOpc = SystemZ::CLGHSI; 1112 break; 1113 default: break; 1114 } 1115 if (MemImmOpc) 1116 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1117 get(MemImmOpc)) 1118 .addFrameIndex(FrameIndex) 1119 .addImm(0) 1120 .addImm(MI.getOperand(1).getImm()); 1121 1122 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 1123 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 1124 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 1125 // If we're spilling the destination of an LDGR or LGDR, store the 1126 // source register instead. 1127 if (OpNum == 0) { 1128 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 1129 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1130 get(StoreOpcode)) 1131 .add(MI.getOperand(1)) 1132 .addFrameIndex(FrameIndex) 1133 .addImm(0) 1134 .addReg(0); 1135 } 1136 // If we're spilling the source of an LDGR or LGDR, load the 1137 // destination register instead. 1138 if (OpNum == 1) { 1139 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 1140 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1141 get(LoadOpcode)) 1142 .add(MI.getOperand(0)) 1143 .addFrameIndex(FrameIndex) 1144 .addImm(0) 1145 .addReg(0); 1146 } 1147 } 1148 1149 // Look for cases where the source of a simple store or the destination 1150 // of a simple load is being spilled. Try to use MVC instead. 1151 // 1152 // Although MVC is in practice a fast choice in these cases, it is still 1153 // logically a bytewise copy. This means that we cannot use it if the 1154 // load or store is volatile. We also wouldn't be able to use MVC if 1155 // the two memories partially overlap, but that case cannot occur here, 1156 // because we know that one of the memories is a full frame index. 1157 // 1158 // For performance reasons, we also want to avoid using MVC if the addresses 1159 // might be equal. We don't worry about that case here, because spill slot 1160 // coloring happens later, and because we have special code to remove 1161 // MVCs that turn out to be redundant. 1162 if (OpNum == 0 && MI.hasOneMemOperand()) { 1163 MachineMemOperand *MMO = *MI.memoperands_begin(); 1164 if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) { 1165 // Handle conversion of loads. 1166 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) { 1167 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1168 get(SystemZ::MVC)) 1169 .addFrameIndex(FrameIndex) 1170 .addImm(0) 1171 .addImm(Size) 1172 .add(MI.getOperand(1)) 1173 .addImm(MI.getOperand(2).getImm()) 1174 .addMemOperand(MMO); 1175 } 1176 // Handle conversion of stores. 1177 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) { 1178 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1179 get(SystemZ::MVC)) 1180 .add(MI.getOperand(1)) 1181 .addImm(MI.getOperand(2).getImm()) 1182 .addImm(Size) 1183 .addFrameIndex(FrameIndex) 1184 .addImm(0) 1185 .addMemOperand(MMO); 1186 } 1187 } 1188 } 1189 1190 // If the spilled operand is the final one or the instruction is 1191 // commutable, try to change <INSN>R into <INSN>. Don't introduce a def of 1192 // CC if it is live and MI does not define it. 1193 unsigned NumOps = MI.getNumExplicitOperands(); 1194 int MemOpcode = SystemZ::getMemOpcode(Opcode); 1195 if (MemOpcode == -1 || 1196 (CCLiveAtMI && !MI.definesRegister(SystemZ::CC) && 1197 get(MemOpcode).hasImplicitDefOfPhysReg(SystemZ::CC))) 1198 return nullptr; 1199 1200 // Check if all other vregs have a usable allocation in the case of vector 1201 // to FP conversion. 1202 const MCInstrDesc &MCID = MI.getDesc(); 1203 for (unsigned I = 0, E = MCID.getNumOperands(); I != E; ++I) { 1204 const MCOperandInfo &MCOI = MCID.OpInfo[I]; 1205 if (MCOI.OperandType != MCOI::OPERAND_REGISTER || I == OpNum) 1206 continue; 1207 const TargetRegisterClass *RC = TRI->getRegClass(MCOI.RegClass); 1208 if (RC == &SystemZ::VR32BitRegClass || RC == &SystemZ::VR64BitRegClass) { 1209 Register Reg = MI.getOperand(I).getReg(); 1210 Register PhysReg = Register::isVirtualRegister(Reg) 1211 ? (VRM ? Register(VRM->getPhys(Reg)) : Register()) 1212 : Reg; 1213 if (!PhysReg || 1214 !(SystemZ::FP32BitRegClass.contains(PhysReg) || 1215 SystemZ::FP64BitRegClass.contains(PhysReg) || 1216 SystemZ::VF128BitRegClass.contains(PhysReg))) 1217 return nullptr; 1218 } 1219 } 1220 // Fused multiply and add/sub need to have the same dst and accumulator reg. 1221 bool FusedFPOp = (Opcode == SystemZ::WFMADB || Opcode == SystemZ::WFMASB || 1222 Opcode == SystemZ::WFMSDB || Opcode == SystemZ::WFMSSB); 1223 if (FusedFPOp) { 1224 Register DstReg = VRM->getPhys(MI.getOperand(0).getReg()); 1225 Register AccReg = VRM->getPhys(MI.getOperand(3).getReg()); 1226 if (OpNum == 0 || OpNum == 3 || DstReg != AccReg) 1227 return nullptr; 1228 } 1229 1230 // Try to swap compare operands if possible. 1231 bool NeedsCommute = false; 1232 if ((MI.getOpcode() == SystemZ::CR || MI.getOpcode() == SystemZ::CGR || 1233 MI.getOpcode() == SystemZ::CLR || MI.getOpcode() == SystemZ::CLGR || 1234 MI.getOpcode() == SystemZ::WFCDB || MI.getOpcode() == SystemZ::WFCSB || 1235 MI.getOpcode() == SystemZ::WFKDB || MI.getOpcode() == SystemZ::WFKSB) && 1236 OpNum == 0 && prepareCompareSwapOperands(MI)) 1237 NeedsCommute = true; 1238 1239 bool CCOperands = false; 1240 if (MI.getOpcode() == SystemZ::LOCRMux || MI.getOpcode() == SystemZ::LOCGR || 1241 MI.getOpcode() == SystemZ::SELRMux || MI.getOpcode() == SystemZ::SELGR) { 1242 assert(MI.getNumOperands() == 6 && NumOps == 5 && 1243 "LOCR/SELR instruction operands corrupt?"); 1244 NumOps -= 2; 1245 CCOperands = true; 1246 } 1247 1248 // See if this is a 3-address instruction that is convertible to 2-address 1249 // and suitable for folding below. Only try this with virtual registers 1250 // and a provided VRM (during regalloc). 1251 if (NumOps == 3 && SystemZ::getTargetMemOpcode(MemOpcode) != -1) { 1252 if (VRM == nullptr) 1253 return nullptr; 1254 else { 1255 Register DstReg = MI.getOperand(0).getReg(); 1256 Register DstPhys = 1257 (Register::isVirtualRegister(DstReg) ? Register(VRM->getPhys(DstReg)) 1258 : DstReg); 1259 Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg() 1260 : ((OpNum == 1 && MI.isCommutable()) 1261 ? MI.getOperand(2).getReg() 1262 : Register())); 1263 if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg && 1264 Register::isVirtualRegister(SrcReg) && 1265 DstPhys == VRM->getPhys(SrcReg)) 1266 NeedsCommute = (OpNum == 1); 1267 else 1268 return nullptr; 1269 } 1270 } 1271 1272 if ((OpNum == NumOps - 1) || NeedsCommute || FusedFPOp) { 1273 const MCInstrDesc &MemDesc = get(MemOpcode); 1274 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 1275 assert(AccessBytes != 0 && "Size of access should be known"); 1276 assert(AccessBytes <= Size && "Access outside the frame index"); 1277 uint64_t Offset = Size - AccessBytes; 1278 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 1279 MI.getDebugLoc(), get(MemOpcode)); 1280 if (MI.isCompare()) { 1281 assert(NumOps == 2 && "Expected 2 register operands for a compare."); 1282 MIB.add(MI.getOperand(NeedsCommute ? 1 : 0)); 1283 } 1284 else if (FusedFPOp) { 1285 MIB.add(MI.getOperand(0)); 1286 MIB.add(MI.getOperand(3)); 1287 MIB.add(MI.getOperand(OpNum == 1 ? 2 : 1)); 1288 } 1289 else { 1290 MIB.add(MI.getOperand(0)); 1291 if (NeedsCommute) 1292 MIB.add(MI.getOperand(2)); 1293 else 1294 for (unsigned I = 1; I < OpNum; ++I) 1295 MIB.add(MI.getOperand(I)); 1296 } 1297 MIB.addFrameIndex(FrameIndex).addImm(Offset); 1298 if (MemDesc.TSFlags & SystemZII::HasIndex) 1299 MIB.addReg(0); 1300 if (CCOperands) { 1301 unsigned CCValid = MI.getOperand(NumOps).getImm(); 1302 unsigned CCMask = MI.getOperand(NumOps + 1).getImm(); 1303 MIB.addImm(CCValid); 1304 MIB.addImm(NeedsCommute ? CCMask ^ CCValid : CCMask); 1305 } 1306 if (MIB->definesRegister(SystemZ::CC) && 1307 (!MI.definesRegister(SystemZ::CC) || 1308 MI.registerDefIsDead(SystemZ::CC))) { 1309 MIB->addRegisterDead(SystemZ::CC, TRI); 1310 if (CCLiveRange) 1311 CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator()); 1312 } 1313 // Constrain the register classes if converted from a vector opcode. The 1314 // allocated regs are in an FP reg-class per previous check above. 1315 for (const MachineOperand &MO : MIB->operands()) 1316 if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) { 1317 Register Reg = MO.getReg(); 1318 if (MRI.getRegClass(Reg) == &SystemZ::VR32BitRegClass) 1319 MRI.setRegClass(Reg, &SystemZ::FP32BitRegClass); 1320 else if (MRI.getRegClass(Reg) == &SystemZ::VR64BitRegClass) 1321 MRI.setRegClass(Reg, &SystemZ::FP64BitRegClass); 1322 else if (MRI.getRegClass(Reg) == &SystemZ::VR128BitRegClass) 1323 MRI.setRegClass(Reg, &SystemZ::VF128BitRegClass); 1324 } 1325 1326 transferDeadCC(&MI, MIB); 1327 transferMIFlag(&MI, MIB, MachineInstr::NoSWrap); 1328 transferMIFlag(&MI, MIB, MachineInstr::NoFPExcept); 1329 return MIB; 1330 } 1331 1332 return nullptr; 1333 } 1334 1335 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1336 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1337 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 1338 LiveIntervals *LIS) const { 1339 return nullptr; 1340 } 1341 1342 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1343 switch (MI.getOpcode()) { 1344 case SystemZ::L128: 1345 splitMove(MI, SystemZ::LG); 1346 return true; 1347 1348 case SystemZ::ST128: 1349 splitMove(MI, SystemZ::STG); 1350 return true; 1351 1352 case SystemZ::LX: 1353 splitMove(MI, SystemZ::LD); 1354 return true; 1355 1356 case SystemZ::STX: 1357 splitMove(MI, SystemZ::STD); 1358 return true; 1359 1360 case SystemZ::LBMux: 1361 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); 1362 return true; 1363 1364 case SystemZ::LHMux: 1365 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); 1366 return true; 1367 1368 case SystemZ::LLCRMux: 1369 expandZExtPseudo(MI, SystemZ::LLCR, 8); 1370 return true; 1371 1372 case SystemZ::LLHRMux: 1373 expandZExtPseudo(MI, SystemZ::LLHR, 16); 1374 return true; 1375 1376 case SystemZ::LLCMux: 1377 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); 1378 return true; 1379 1380 case SystemZ::LLHMux: 1381 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); 1382 return true; 1383 1384 case SystemZ::LMux: 1385 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); 1386 return true; 1387 1388 case SystemZ::LOCMux: 1389 expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH); 1390 return true; 1391 1392 case SystemZ::LOCHIMux: 1393 expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI); 1394 return true; 1395 1396 case SystemZ::STCMux: 1397 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); 1398 return true; 1399 1400 case SystemZ::STHMux: 1401 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); 1402 return true; 1403 1404 case SystemZ::STMux: 1405 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); 1406 return true; 1407 1408 case SystemZ::STOCMux: 1409 expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH); 1410 return true; 1411 1412 case SystemZ::LHIMux: 1413 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); 1414 return true; 1415 1416 case SystemZ::IIFMux: 1417 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); 1418 return true; 1419 1420 case SystemZ::IILMux: 1421 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); 1422 return true; 1423 1424 case SystemZ::IIHMux: 1425 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); 1426 return true; 1427 1428 case SystemZ::NIFMux: 1429 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); 1430 return true; 1431 1432 case SystemZ::NILMux: 1433 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); 1434 return true; 1435 1436 case SystemZ::NIHMux: 1437 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); 1438 return true; 1439 1440 case SystemZ::OIFMux: 1441 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); 1442 return true; 1443 1444 case SystemZ::OILMux: 1445 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); 1446 return true; 1447 1448 case SystemZ::OIHMux: 1449 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); 1450 return true; 1451 1452 case SystemZ::XIFMux: 1453 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); 1454 return true; 1455 1456 case SystemZ::TMLMux: 1457 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); 1458 return true; 1459 1460 case SystemZ::TMHMux: 1461 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); 1462 return true; 1463 1464 case SystemZ::AHIMux: 1465 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); 1466 return true; 1467 1468 case SystemZ::AHIMuxK: 1469 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); 1470 return true; 1471 1472 case SystemZ::AFIMux: 1473 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); 1474 return true; 1475 1476 case SystemZ::CHIMux: 1477 expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false); 1478 return true; 1479 1480 case SystemZ::CFIMux: 1481 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); 1482 return true; 1483 1484 case SystemZ::CLFIMux: 1485 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); 1486 return true; 1487 1488 case SystemZ::CMux: 1489 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); 1490 return true; 1491 1492 case SystemZ::CLMux: 1493 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); 1494 return true; 1495 1496 case SystemZ::RISBMux: { 1497 bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg()); 1498 bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg()); 1499 if (SrcIsHigh == DestIsHigh) 1500 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); 1501 else { 1502 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); 1503 MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32); 1504 } 1505 return true; 1506 } 1507 1508 case SystemZ::ADJDYNALLOC: 1509 splitAdjDynAlloc(MI); 1510 return true; 1511 1512 case TargetOpcode::LOAD_STACK_GUARD: 1513 expandLoadStackGuard(&MI); 1514 return true; 1515 1516 default: 1517 return false; 1518 } 1519 } 1520 1521 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1522 if (MI.isInlineAsm()) { 1523 const MachineFunction *MF = MI.getParent()->getParent(); 1524 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1525 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1526 } 1527 else if (MI.getOpcode() == SystemZ::PATCHPOINT) 1528 return PatchPointOpers(&MI).getNumPatchBytes(); 1529 else if (MI.getOpcode() == SystemZ::STACKMAP) 1530 return MI.getOperand(1).getImm(); 1531 else if (MI.getOpcode() == SystemZ::FENTRY_CALL) 1532 return 6; 1533 1534 return MI.getDesc().getSize(); 1535 } 1536 1537 SystemZII::Branch 1538 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const { 1539 switch (MI.getOpcode()) { 1540 case SystemZ::BR: 1541 case SystemZ::BI: 1542 case SystemZ::J: 1543 case SystemZ::JG: 1544 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 1545 SystemZ::CCMASK_ANY, &MI.getOperand(0)); 1546 1547 case SystemZ::BRC: 1548 case SystemZ::BRCL: 1549 return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(), 1550 MI.getOperand(1).getImm(), &MI.getOperand(2)); 1551 1552 case SystemZ::BRCT: 1553 case SystemZ::BRCTH: 1554 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 1555 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1556 1557 case SystemZ::BRCTG: 1558 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 1559 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1560 1561 case SystemZ::CIJ: 1562 case SystemZ::CRJ: 1563 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 1564 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1565 1566 case SystemZ::CLIJ: 1567 case SystemZ::CLRJ: 1568 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, 1569 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1570 1571 case SystemZ::CGIJ: 1572 case SystemZ::CGRJ: 1573 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 1574 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1575 1576 case SystemZ::CLGIJ: 1577 case SystemZ::CLGRJ: 1578 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, 1579 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1580 1581 case SystemZ::INLINEASM_BR: 1582 // Don't try to analyze asm goto, so pass nullptr as branch target argument. 1583 return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr); 1584 1585 default: 1586 llvm_unreachable("Unrecognized branch opcode"); 1587 } 1588 } 1589 1590 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 1591 unsigned &LoadOpcode, 1592 unsigned &StoreOpcode) const { 1593 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 1594 LoadOpcode = SystemZ::L; 1595 StoreOpcode = SystemZ::ST; 1596 } else if (RC == &SystemZ::GRH32BitRegClass) { 1597 LoadOpcode = SystemZ::LFH; 1598 StoreOpcode = SystemZ::STFH; 1599 } else if (RC == &SystemZ::GRX32BitRegClass) { 1600 LoadOpcode = SystemZ::LMux; 1601 StoreOpcode = SystemZ::STMux; 1602 } else if (RC == &SystemZ::GR64BitRegClass || 1603 RC == &SystemZ::ADDR64BitRegClass) { 1604 LoadOpcode = SystemZ::LG; 1605 StoreOpcode = SystemZ::STG; 1606 } else if (RC == &SystemZ::GR128BitRegClass || 1607 RC == &SystemZ::ADDR128BitRegClass) { 1608 LoadOpcode = SystemZ::L128; 1609 StoreOpcode = SystemZ::ST128; 1610 } else if (RC == &SystemZ::FP32BitRegClass) { 1611 LoadOpcode = SystemZ::LE; 1612 StoreOpcode = SystemZ::STE; 1613 } else if (RC == &SystemZ::FP64BitRegClass) { 1614 LoadOpcode = SystemZ::LD; 1615 StoreOpcode = SystemZ::STD; 1616 } else if (RC == &SystemZ::FP128BitRegClass) { 1617 LoadOpcode = SystemZ::LX; 1618 StoreOpcode = SystemZ::STX; 1619 } else if (RC == &SystemZ::VR32BitRegClass) { 1620 LoadOpcode = SystemZ::VL32; 1621 StoreOpcode = SystemZ::VST32; 1622 } else if (RC == &SystemZ::VR64BitRegClass) { 1623 LoadOpcode = SystemZ::VL64; 1624 StoreOpcode = SystemZ::VST64; 1625 } else if (RC == &SystemZ::VF128BitRegClass || 1626 RC == &SystemZ::VR128BitRegClass) { 1627 LoadOpcode = SystemZ::VL; 1628 StoreOpcode = SystemZ::VST; 1629 } else 1630 llvm_unreachable("Unsupported regclass to load or store"); 1631 } 1632 1633 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 1634 int64_t Offset) const { 1635 const MCInstrDesc &MCID = get(Opcode); 1636 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 1637 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 1638 // Get the instruction to use for unsigned 12-bit displacements. 1639 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 1640 if (Disp12Opcode >= 0) 1641 return Disp12Opcode; 1642 1643 // All address-related instructions can use unsigned 12-bit 1644 // displacements. 1645 return Opcode; 1646 } 1647 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 1648 // Get the instruction to use for signed 20-bit displacements. 1649 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 1650 if (Disp20Opcode >= 0) 1651 return Disp20Opcode; 1652 1653 // Check whether Opcode allows signed 20-bit displacements. 1654 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1655 return Opcode; 1656 } 1657 return 0; 1658 } 1659 1660 bool SystemZInstrInfo::hasDisplacementPairInsn(unsigned Opcode) const { 1661 const MCInstrDesc &MCID = get(Opcode); 1662 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1663 return SystemZ::getDisp12Opcode(Opcode) >= 0; 1664 return SystemZ::getDisp20Opcode(Opcode) >= 0; 1665 } 1666 1667 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 1668 switch (Opcode) { 1669 case SystemZ::L: return SystemZ::LT; 1670 case SystemZ::LY: return SystemZ::LT; 1671 case SystemZ::LG: return SystemZ::LTG; 1672 case SystemZ::LGF: return SystemZ::LTGF; 1673 case SystemZ::LR: return SystemZ::LTR; 1674 case SystemZ::LGFR: return SystemZ::LTGFR; 1675 case SystemZ::LGR: return SystemZ::LTGR; 1676 case SystemZ::LER: return SystemZ::LTEBR; 1677 case SystemZ::LDR: return SystemZ::LTDBR; 1678 case SystemZ::LXR: return SystemZ::LTXBR; 1679 case SystemZ::LCDFR: return SystemZ::LCDBR; 1680 case SystemZ::LPDFR: return SystemZ::LPDBR; 1681 case SystemZ::LNDFR: return SystemZ::LNDBR; 1682 case SystemZ::LCDFR_32: return SystemZ::LCEBR; 1683 case SystemZ::LPDFR_32: return SystemZ::LPEBR; 1684 case SystemZ::LNDFR_32: return SystemZ::LNEBR; 1685 // On zEC12 we prefer to use RISBGN. But if there is a chance to 1686 // actually use the condition code, we may turn it back into RISGB. 1687 // Note that RISBG is not really a "load-and-test" instruction, 1688 // but sets the same condition code values, so is OK to use here. 1689 case SystemZ::RISBGN: return SystemZ::RISBG; 1690 default: return 0; 1691 } 1692 } 1693 1694 // Return true if Mask matches the regexp 0*1+0*, given that zero masks 1695 // have already been filtered out. Store the first set bit in LSB and 1696 // the number of set bits in Length if so. 1697 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { 1698 unsigned First = findFirstSet(Mask); 1699 uint64_t Top = (Mask >> First) + 1; 1700 if ((Top & -Top) == Top) { 1701 LSB = First; 1702 Length = findFirstSet(Top); 1703 return true; 1704 } 1705 return false; 1706 } 1707 1708 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 1709 unsigned &Start, unsigned &End) const { 1710 // Reject trivial all-zero masks. 1711 Mask &= allOnes(BitSize); 1712 if (Mask == 0) 1713 return false; 1714 1715 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 1716 // the msb and End specifies the index of the lsb. 1717 unsigned LSB, Length; 1718 if (isStringOfOnes(Mask, LSB, Length)) { 1719 Start = 63 - (LSB + Length - 1); 1720 End = 63 - LSB; 1721 return true; 1722 } 1723 1724 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 1725 // of the low 1s and End specifies the lsb of the high 1s. 1726 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { 1727 assert(LSB > 0 && "Bottom bit must be set"); 1728 assert(LSB + Length < BitSize && "Top bit must be set"); 1729 Start = 63 - (LSB - 1); 1730 End = 63 - (LSB + Length); 1731 return true; 1732 } 1733 1734 return false; 1735 } 1736 1737 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode, 1738 SystemZII::FusedCompareType Type, 1739 const MachineInstr *MI) const { 1740 switch (Opcode) { 1741 case SystemZ::CHI: 1742 case SystemZ::CGHI: 1743 if (!(MI && isInt<8>(MI->getOperand(1).getImm()))) 1744 return 0; 1745 break; 1746 case SystemZ::CLFI: 1747 case SystemZ::CLGFI: 1748 if (!(MI && isUInt<8>(MI->getOperand(1).getImm()))) 1749 return 0; 1750 break; 1751 case SystemZ::CL: 1752 case SystemZ::CLG: 1753 if (!STI.hasMiscellaneousExtensions()) 1754 return 0; 1755 if (!(MI && MI->getOperand(3).getReg() == 0)) 1756 return 0; 1757 break; 1758 } 1759 switch (Type) { 1760 case SystemZII::CompareAndBranch: 1761 switch (Opcode) { 1762 case SystemZ::CR: 1763 return SystemZ::CRJ; 1764 case SystemZ::CGR: 1765 return SystemZ::CGRJ; 1766 case SystemZ::CHI: 1767 return SystemZ::CIJ; 1768 case SystemZ::CGHI: 1769 return SystemZ::CGIJ; 1770 case SystemZ::CLR: 1771 return SystemZ::CLRJ; 1772 case SystemZ::CLGR: 1773 return SystemZ::CLGRJ; 1774 case SystemZ::CLFI: 1775 return SystemZ::CLIJ; 1776 case SystemZ::CLGFI: 1777 return SystemZ::CLGIJ; 1778 default: 1779 return 0; 1780 } 1781 case SystemZII::CompareAndReturn: 1782 switch (Opcode) { 1783 case SystemZ::CR: 1784 return SystemZ::CRBReturn; 1785 case SystemZ::CGR: 1786 return SystemZ::CGRBReturn; 1787 case SystemZ::CHI: 1788 return SystemZ::CIBReturn; 1789 case SystemZ::CGHI: 1790 return SystemZ::CGIBReturn; 1791 case SystemZ::CLR: 1792 return SystemZ::CLRBReturn; 1793 case SystemZ::CLGR: 1794 return SystemZ::CLGRBReturn; 1795 case SystemZ::CLFI: 1796 return SystemZ::CLIBReturn; 1797 case SystemZ::CLGFI: 1798 return SystemZ::CLGIBReturn; 1799 default: 1800 return 0; 1801 } 1802 case SystemZII::CompareAndSibcall: 1803 switch (Opcode) { 1804 case SystemZ::CR: 1805 return SystemZ::CRBCall; 1806 case SystemZ::CGR: 1807 return SystemZ::CGRBCall; 1808 case SystemZ::CHI: 1809 return SystemZ::CIBCall; 1810 case SystemZ::CGHI: 1811 return SystemZ::CGIBCall; 1812 case SystemZ::CLR: 1813 return SystemZ::CLRBCall; 1814 case SystemZ::CLGR: 1815 return SystemZ::CLGRBCall; 1816 case SystemZ::CLFI: 1817 return SystemZ::CLIBCall; 1818 case SystemZ::CLGFI: 1819 return SystemZ::CLGIBCall; 1820 default: 1821 return 0; 1822 } 1823 case SystemZII::CompareAndTrap: 1824 switch (Opcode) { 1825 case SystemZ::CR: 1826 return SystemZ::CRT; 1827 case SystemZ::CGR: 1828 return SystemZ::CGRT; 1829 case SystemZ::CHI: 1830 return SystemZ::CIT; 1831 case SystemZ::CGHI: 1832 return SystemZ::CGIT; 1833 case SystemZ::CLR: 1834 return SystemZ::CLRT; 1835 case SystemZ::CLGR: 1836 return SystemZ::CLGRT; 1837 case SystemZ::CLFI: 1838 return SystemZ::CLFIT; 1839 case SystemZ::CLGFI: 1840 return SystemZ::CLGIT; 1841 case SystemZ::CL: 1842 return SystemZ::CLT; 1843 case SystemZ::CLG: 1844 return SystemZ::CLGT; 1845 default: 1846 return 0; 1847 } 1848 } 1849 return 0; 1850 } 1851 1852 bool SystemZInstrInfo:: 1853 prepareCompareSwapOperands(MachineBasicBlock::iterator const MBBI) const { 1854 assert(MBBI->isCompare() && MBBI->getOperand(0).isReg() && 1855 MBBI->getOperand(1).isReg() && !MBBI->mayLoad() && 1856 "Not a compare reg/reg."); 1857 1858 MachineBasicBlock *MBB = MBBI->getParent(); 1859 bool CCLive = true; 1860 SmallVector<MachineInstr *, 4> CCUsers; 1861 for (MachineBasicBlock::iterator Itr = std::next(MBBI); 1862 Itr != MBB->end(); ++Itr) { 1863 if (Itr->readsRegister(SystemZ::CC)) { 1864 unsigned Flags = Itr->getDesc().TSFlags; 1865 if ((Flags & SystemZII::CCMaskFirst) || (Flags & SystemZII::CCMaskLast)) 1866 CCUsers.push_back(&*Itr); 1867 else 1868 return false; 1869 } 1870 if (Itr->definesRegister(SystemZ::CC)) { 1871 CCLive = false; 1872 break; 1873 } 1874 } 1875 if (CCLive) { 1876 LivePhysRegs LiveRegs(*MBB->getParent()->getSubtarget().getRegisterInfo()); 1877 LiveRegs.addLiveOuts(*MBB); 1878 if (LiveRegs.contains(SystemZ::CC)) 1879 return false; 1880 } 1881 1882 // Update all CC users. 1883 for (unsigned Idx = 0; Idx < CCUsers.size(); ++Idx) { 1884 unsigned Flags = CCUsers[Idx]->getDesc().TSFlags; 1885 unsigned FirstOpNum = ((Flags & SystemZII::CCMaskFirst) ? 1886 0 : CCUsers[Idx]->getNumExplicitOperands() - 2); 1887 MachineOperand &CCMaskMO = CCUsers[Idx]->getOperand(FirstOpNum + 1); 1888 unsigned NewCCMask = SystemZ::reverseCCMask(CCMaskMO.getImm()); 1889 CCMaskMO.setImm(NewCCMask); 1890 } 1891 1892 return true; 1893 } 1894 1895 unsigned SystemZ::reverseCCMask(unsigned CCMask) { 1896 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1897 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1898 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1899 (CCMask & SystemZ::CCMASK_CMP_UO)); 1900 } 1901 1902 MachineBasicBlock *SystemZ::emitBlockAfter(MachineBasicBlock *MBB) { 1903 MachineFunction &MF = *MBB->getParent(); 1904 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 1905 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 1906 return NewMBB; 1907 } 1908 1909 MachineBasicBlock *SystemZ::splitBlockAfter(MachineBasicBlock::iterator MI, 1910 MachineBasicBlock *MBB) { 1911 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 1912 NewMBB->splice(NewMBB->begin(), MBB, 1913 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 1914 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 1915 return NewMBB; 1916 } 1917 1918 MachineBasicBlock *SystemZ::splitBlockBefore(MachineBasicBlock::iterator MI, 1919 MachineBasicBlock *MBB) { 1920 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 1921 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 1922 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 1923 return NewMBB; 1924 } 1925 1926 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const { 1927 if (!STI.hasLoadAndTrap()) 1928 return 0; 1929 switch (Opcode) { 1930 case SystemZ::L: 1931 case SystemZ::LY: 1932 return SystemZ::LAT; 1933 case SystemZ::LG: 1934 return SystemZ::LGAT; 1935 case SystemZ::LFH: 1936 return SystemZ::LFHAT; 1937 case SystemZ::LLGF: 1938 return SystemZ::LLGFAT; 1939 case SystemZ::LLGT: 1940 return SystemZ::LLGTAT; 1941 } 1942 return 0; 1943 } 1944 1945 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 1946 MachineBasicBlock::iterator MBBI, 1947 unsigned Reg, uint64_t Value) const { 1948 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1949 unsigned Opcode = 0; 1950 if (isInt<16>(Value)) 1951 Opcode = SystemZ::LGHI; 1952 else if (SystemZ::isImmLL(Value)) 1953 Opcode = SystemZ::LLILL; 1954 else if (SystemZ::isImmLH(Value)) { 1955 Opcode = SystemZ::LLILH; 1956 Value >>= 16; 1957 } 1958 else if (isInt<32>(Value)) 1959 Opcode = SystemZ::LGFI; 1960 if (Opcode) { 1961 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 1962 return; 1963 } 1964 1965 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 1966 assert (MRI.isSSA() && "Huge values only handled before reg-alloc ."); 1967 Register Reg0 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 1968 Register Reg1 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 1969 BuildMI(MBB, MBBI, DL, get(SystemZ::IMPLICIT_DEF), Reg0); 1970 BuildMI(MBB, MBBI, DL, get(SystemZ::IIHF64), Reg1) 1971 .addReg(Reg0).addImm(Value >> 32); 1972 BuildMI(MBB, MBBI, DL, get(SystemZ::IILF64), Reg) 1973 .addReg(Reg1).addImm(Value & ((uint64_t(1) << 32) - 1)); 1974 } 1975 1976 bool SystemZInstrInfo::verifyInstruction(const MachineInstr &MI, 1977 StringRef &ErrInfo) const { 1978 const MCInstrDesc &MCID = MI.getDesc(); 1979 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1980 if (I >= MCID.getNumOperands()) 1981 break; 1982 const MachineOperand &Op = MI.getOperand(I); 1983 const MCOperandInfo &MCOI = MCID.OpInfo[I]; 1984 // Addressing modes have register and immediate operands. Op should be a 1985 // register (or frame index) operand if MCOI.RegClass contains a valid 1986 // register class, or an immediate otherwise. 1987 if (MCOI.OperandType == MCOI::OPERAND_MEMORY && 1988 ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) || 1989 (MCOI.RegClass == -1 && !Op.isImm()))) { 1990 ErrInfo = "Addressing mode operands corrupt!"; 1991 return false; 1992 } 1993 } 1994 1995 return true; 1996 } 1997 1998 bool SystemZInstrInfo:: 1999 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, 2000 const MachineInstr &MIb) const { 2001 2002 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) 2003 return false; 2004 2005 // If mem-operands show that the same address Value is used by both 2006 // instructions, check for non-overlapping offsets and widths. Not 2007 // sure if a register based analysis would be an improvement... 2008 2009 MachineMemOperand *MMOa = *MIa.memoperands_begin(); 2010 MachineMemOperand *MMOb = *MIb.memoperands_begin(); 2011 const Value *VALa = MMOa->getValue(); 2012 const Value *VALb = MMOb->getValue(); 2013 bool SameVal = (VALa && VALb && (VALa == VALb)); 2014 if (!SameVal) { 2015 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 2016 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 2017 if (PSVa && PSVb && (PSVa == PSVb)) 2018 SameVal = true; 2019 } 2020 if (SameVal) { 2021 int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset(); 2022 int WidthA = MMOa->getSize(), WidthB = MMOb->getSize(); 2023 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 2024 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 2025 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 2026 if (LowOffset + LowWidth <= HighOffset) 2027 return true; 2028 } 2029 2030 return false; 2031 } 2032