1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SystemZ implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZInstrInfo.h"
14 #include "MCTargetDesc/SystemZMCTargetDesc.h"
15 #include "SystemZ.h"
16 #include "SystemZInstrBuilder.h"
17 #include "SystemZSubtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LiveInterval.h"
20 #include "llvm/CodeGen/LiveIntervals.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/SlotIndexes.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCRegisterInfo.h"
35 #include "llvm/Support/BranchProbability.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42 
43 using namespace llvm;
44 
45 #define GET_INSTRINFO_CTOR_DTOR
46 #define GET_INSTRMAP_INFO
47 #include "SystemZGenInstrInfo.inc"
48 
49 #define DEBUG_TYPE "systemz-II"
50 
51 // Return a mask with Count low bits set.
52 static uint64_t allOnes(unsigned int Count) {
53   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
54 }
55 
56 // Pin the vtable to this file.
57 void SystemZInstrInfo::anchor() {}
58 
59 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
60     : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
61       RI(sti.getSpecialRegisters()->getReturnFunctionAddressRegister()),
62       STI(sti) {}
63 
64 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
65 // each having the opcode given by NewOpcode.
66 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
67                                  unsigned NewOpcode) const {
68   MachineBasicBlock *MBB = MI->getParent();
69   MachineFunction &MF = *MBB->getParent();
70 
71   // Get two load or store instructions.  Use the original instruction for one
72   // of them (arbitrarily the second here) and create a clone for the other.
73   MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
74   MBB->insert(MI, EarlierMI);
75 
76   // Set up the two 64-bit registers and remember super reg and its flags.
77   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
78   MachineOperand &LowRegOp = MI->getOperand(0);
79   Register Reg128 = LowRegOp.getReg();
80   unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
81   unsigned Reg128Undef  = getUndefRegState(LowRegOp.isUndef());
82   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
83   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
84 
85   if (MI->mayStore()) {
86     // Add implicit uses of the super register in case one of the subregs is
87     // undefined. We could track liveness and skip storing an undefined
88     // subreg, but this is hopefully rare (discovered with llvm-stress).
89     // If Reg128 was killed, set kill flag on MI.
90     unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
91     MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
92     MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
93   }
94 
95   // The address in the first (high) instruction is already correct.
96   // Adjust the offset in the second (low) instruction.
97   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
98   MachineOperand &LowOffsetOp = MI->getOperand(2);
99   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
100 
101   // Clear the kill flags on the registers in the first instruction.
102   if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
103     EarlierMI->getOperand(0).setIsKill(false);
104   EarlierMI->getOperand(1).setIsKill(false);
105   EarlierMI->getOperand(3).setIsKill(false);
106 
107   // Set the opcodes.
108   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
109   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
110   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
111 
112   EarlierMI->setDesc(get(HighOpcode));
113   MI->setDesc(get(LowOpcode));
114 }
115 
116 // Split ADJDYNALLOC instruction MI.
117 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
118   MachineBasicBlock *MBB = MI->getParent();
119   MachineFunction &MF = *MBB->getParent();
120   MachineFrameInfo &MFFrame = MF.getFrameInfo();
121   MachineOperand &OffsetMO = MI->getOperand(2);
122 
123   uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
124                      SystemZMC::ELFCallFrameSize +
125                      OffsetMO.getImm());
126   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
127   assert(NewOpcode && "No support for huge argument lists yet");
128   MI->setDesc(get(NewOpcode));
129   OffsetMO.setImm(Offset);
130 }
131 
132 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
133 // if the first operand is a low GR32 and HighOpcode if the first operand
134 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
135 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
136 // MI has the same kind of operand as LowOpcode, so needs to be converted
137 // if HighOpcode is used.
138 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
139                                       unsigned HighOpcode,
140                                       bool ConvertHigh) const {
141   Register Reg = MI.getOperand(0).getReg();
142   bool IsHigh = SystemZ::isHighReg(Reg);
143   MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
144   if (IsHigh && ConvertHigh)
145     MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
146 }
147 
148 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
149 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
150 // followed by HighOpcode or LowOpcode, depending on whether the target
151 // is a high or low GR32.
152 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
153                                        unsigned LowOpcodeK,
154                                        unsigned HighOpcode) const {
155   Register DestReg = MI.getOperand(0).getReg();
156   Register SrcReg = MI.getOperand(1).getReg();
157   bool DestIsHigh = SystemZ::isHighReg(DestReg);
158   bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
159   if (!DestIsHigh && !SrcIsHigh)
160     MI.setDesc(get(LowOpcodeK));
161   else {
162     if (DestReg != SrcReg) {
163       emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
164                     SystemZ::LR, 32, MI.getOperand(1).isKill(),
165                     MI.getOperand(1).isUndef());
166       MI.getOperand(1).setReg(DestReg);
167     }
168     MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
169     MI.tieOperands(0, 1);
170   }
171 }
172 
173 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
174 // if the first operand is a low GR32 and HighOpcode if the first operand
175 // is a high GR32.
176 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
177                                        unsigned HighOpcode) const {
178   Register Reg = MI.getOperand(0).getReg();
179   unsigned Opcode = getOpcodeForOffset(
180       SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode,
181       MI.getOperand(2).getImm());
182   MI.setDesc(get(Opcode));
183 }
184 
185 // MI is a load-on-condition pseudo instruction with a single register
186 // (source or destination) operand.  Replace it with LowOpcode if the
187 // register is a low GR32 and HighOpcode if the register is a high GR32.
188 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
189                                        unsigned HighOpcode) const {
190   Register Reg = MI.getOperand(0).getReg();
191   unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode;
192   MI.setDesc(get(Opcode));
193 }
194 
195 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
196 // of one GRX32 into another.  Replace it with LowOpcode if both operands
197 // are low registers, otherwise use RISB[LH]G.
198 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
199                                         unsigned Size) const {
200   MachineInstrBuilder MIB =
201     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
202                MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
203                Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
204 
205   // Keep the remaining operands as-is.
206   for (unsigned I = 2; I < MI.getNumOperands(); ++I)
207     MIB.add(MI.getOperand(I));
208 
209   MI.eraseFromParent();
210 }
211 
212 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
213   MachineBasicBlock *MBB = MI->getParent();
214   MachineFunction &MF = *MBB->getParent();
215   const Register Reg64 = MI->getOperand(0).getReg();
216   const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
217 
218   // EAR can only load the low subregister so us a shift for %a0 to produce
219   // the GR containing %a0 and %a1.
220 
221   // ear <reg>, %a0
222   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
223     .addReg(SystemZ::A0)
224     .addReg(Reg64, RegState::ImplicitDefine);
225 
226   // sllg <reg>, <reg>, 32
227   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
228     .addReg(Reg64)
229     .addReg(0)
230     .addImm(32);
231 
232   // ear <reg>, %a1
233   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
234     .addReg(SystemZ::A1);
235 
236   // lg <reg>, 40(<reg>)
237   MI->setDesc(get(SystemZ::LG));
238   MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
239 }
240 
241 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
242 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
243 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
244 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
245 // KillSrc is true if this move is the last use of SrcReg.
246 MachineInstrBuilder
247 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
248                                 MachineBasicBlock::iterator MBBI,
249                                 const DebugLoc &DL, unsigned DestReg,
250                                 unsigned SrcReg, unsigned LowLowOpcode,
251                                 unsigned Size, bool KillSrc,
252                                 bool UndefSrc) const {
253   unsigned Opcode;
254   bool DestIsHigh = SystemZ::isHighReg(DestReg);
255   bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
256   if (DestIsHigh && SrcIsHigh)
257     Opcode = SystemZ::RISBHH;
258   else if (DestIsHigh && !SrcIsHigh)
259     Opcode = SystemZ::RISBHL;
260   else if (!DestIsHigh && SrcIsHigh)
261     Opcode = SystemZ::RISBLH;
262   else {
263     return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
264       .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
265   }
266   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
267   return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
268     .addReg(DestReg, RegState::Undef)
269     .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
270     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
271 }
272 
273 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
274                                                        bool NewMI,
275                                                        unsigned OpIdx1,
276                                                        unsigned OpIdx2) const {
277   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
278     if (NewMI)
279       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
280     return MI;
281   };
282 
283   switch (MI.getOpcode()) {
284   case SystemZ::SELRMux:
285   case SystemZ::SELFHR:
286   case SystemZ::SELR:
287   case SystemZ::SELGR:
288   case SystemZ::LOCRMux:
289   case SystemZ::LOCFHR:
290   case SystemZ::LOCR:
291   case SystemZ::LOCGR: {
292     auto &WorkingMI = cloneIfNew(MI);
293     // Invert condition.
294     unsigned CCValid = WorkingMI.getOperand(3).getImm();
295     unsigned CCMask = WorkingMI.getOperand(4).getImm();
296     WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
297     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
298                                                    OpIdx1, OpIdx2);
299   }
300   default:
301     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
302   }
303 }
304 
305 // If MI is a simple load or store for a frame object, return the register
306 // it loads or stores and set FrameIndex to the index of the frame object.
307 // Return 0 otherwise.
308 //
309 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
310 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
311                         unsigned Flag) {
312   const MCInstrDesc &MCID = MI.getDesc();
313   if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
314       MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
315     FrameIndex = MI.getOperand(1).getIndex();
316     return MI.getOperand(0).getReg();
317   }
318   return 0;
319 }
320 
321 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
322                                                int &FrameIndex) const {
323   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
324 }
325 
326 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
327                                               int &FrameIndex) const {
328   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
329 }
330 
331 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
332                                        int &DestFrameIndex,
333                                        int &SrcFrameIndex) const {
334   // Check for MVC 0(Length,FI1),0(FI2)
335   const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
336   if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
337       MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
338       MI.getOperand(4).getImm() != 0)
339     return false;
340 
341   // Check that Length covers the full slots.
342   int64_t Length = MI.getOperand(2).getImm();
343   unsigned FI1 = MI.getOperand(0).getIndex();
344   unsigned FI2 = MI.getOperand(3).getIndex();
345   if (MFI.getObjectSize(FI1) != Length ||
346       MFI.getObjectSize(FI2) != Length)
347     return false;
348 
349   DestFrameIndex = FI1;
350   SrcFrameIndex = FI2;
351   return true;
352 }
353 
354 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
355                                      MachineBasicBlock *&TBB,
356                                      MachineBasicBlock *&FBB,
357                                      SmallVectorImpl<MachineOperand> &Cond,
358                                      bool AllowModify) const {
359   // Most of the code and comments here are boilerplate.
360 
361   // Start from the bottom of the block and work up, examining the
362   // terminator instructions.
363   MachineBasicBlock::iterator I = MBB.end();
364   while (I != MBB.begin()) {
365     --I;
366     if (I->isDebugInstr())
367       continue;
368 
369     // Working from the bottom, when we see a non-terminator instruction, we're
370     // done.
371     if (!isUnpredicatedTerminator(*I))
372       break;
373 
374     // A terminator that isn't a branch can't easily be handled by this
375     // analysis.
376     if (!I->isBranch())
377       return true;
378 
379     // Can't handle indirect branches.
380     SystemZII::Branch Branch(getBranchInfo(*I));
381     if (!Branch.hasMBBTarget())
382       return true;
383 
384     // Punt on compound branches.
385     if (Branch.Type != SystemZII::BranchNormal)
386       return true;
387 
388     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
389       // Handle unconditional branches.
390       if (!AllowModify) {
391         TBB = Branch.getMBBTarget();
392         continue;
393       }
394 
395       // If the block has any instructions after a JMP, delete them.
396       while (std::next(I) != MBB.end())
397         std::next(I)->eraseFromParent();
398 
399       Cond.clear();
400       FBB = nullptr;
401 
402       // Delete the JMP if it's equivalent to a fall-through.
403       if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) {
404         TBB = nullptr;
405         I->eraseFromParent();
406         I = MBB.end();
407         continue;
408       }
409 
410       // TBB is used to indicate the unconditinal destination.
411       TBB = Branch.getMBBTarget();
412       continue;
413     }
414 
415     // Working from the bottom, handle the first conditional branch.
416     if (Cond.empty()) {
417       // FIXME: add X86-style branch swap
418       FBB = TBB;
419       TBB = Branch.getMBBTarget();
420       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
421       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
422       continue;
423     }
424 
425     // Handle subsequent conditional branches.
426     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
427 
428     // Only handle the case where all conditional branches branch to the same
429     // destination.
430     if (TBB != Branch.getMBBTarget())
431       return true;
432 
433     // If the conditions are the same, we can leave them alone.
434     unsigned OldCCValid = Cond[0].getImm();
435     unsigned OldCCMask = Cond[1].getImm();
436     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
437       continue;
438 
439     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
440     return false;
441   }
442 
443   return false;
444 }
445 
446 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
447                                         int *BytesRemoved) const {
448   assert(!BytesRemoved && "code size not handled");
449 
450   // Most of the code and comments here are boilerplate.
451   MachineBasicBlock::iterator I = MBB.end();
452   unsigned Count = 0;
453 
454   while (I != MBB.begin()) {
455     --I;
456     if (I->isDebugInstr())
457       continue;
458     if (!I->isBranch())
459       break;
460     if (!getBranchInfo(*I).hasMBBTarget())
461       break;
462     // Remove the branch.
463     I->eraseFromParent();
464     I = MBB.end();
465     ++Count;
466   }
467 
468   return Count;
469 }
470 
471 bool SystemZInstrInfo::
472 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
473   assert(Cond.size() == 2 && "Invalid condition");
474   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
475   return false;
476 }
477 
478 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
479                                         MachineBasicBlock *TBB,
480                                         MachineBasicBlock *FBB,
481                                         ArrayRef<MachineOperand> Cond,
482                                         const DebugLoc &DL,
483                                         int *BytesAdded) const {
484   // In this function we output 32-bit branches, which should always
485   // have enough range.  They can be shortened and relaxed by later code
486   // in the pipeline, if desired.
487 
488   // Shouldn't be a fall through.
489   assert(TBB && "insertBranch must not be told to insert a fallthrough");
490   assert((Cond.size() == 2 || Cond.size() == 0) &&
491          "SystemZ branch conditions have one component!");
492   assert(!BytesAdded && "code size not handled");
493 
494   if (Cond.empty()) {
495     // Unconditional branch?
496     assert(!FBB && "Unconditional branch with multiple successors!");
497     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
498     return 1;
499   }
500 
501   // Conditional branch.
502   unsigned Count = 0;
503   unsigned CCValid = Cond[0].getImm();
504   unsigned CCMask = Cond[1].getImm();
505   BuildMI(&MBB, DL, get(SystemZ::BRC))
506     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
507   ++Count;
508 
509   if (FBB) {
510     // Two-way Conditional branch. Insert the second branch.
511     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
512     ++Count;
513   }
514   return Count;
515 }
516 
517 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
518                                       Register &SrcReg2, int64_t &Mask,
519                                       int64_t &Value) const {
520   assert(MI.isCompare() && "Caller should have checked for a comparison");
521 
522   if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
523       MI.getOperand(1).isImm()) {
524     SrcReg = MI.getOperand(0).getReg();
525     SrcReg2 = 0;
526     Value = MI.getOperand(1).getImm();
527     Mask = ~0;
528     return true;
529   }
530 
531   return false;
532 }
533 
534 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
535                                        ArrayRef<MachineOperand> Pred,
536                                        Register DstReg, Register TrueReg,
537                                        Register FalseReg, int &CondCycles,
538                                        int &TrueCycles,
539                                        int &FalseCycles) const {
540   // Not all subtargets have LOCR instructions.
541   if (!STI.hasLoadStoreOnCond())
542     return false;
543   if (Pred.size() != 2)
544     return false;
545 
546   // Check register classes.
547   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
548   const TargetRegisterClass *RC =
549     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
550   if (!RC)
551     return false;
552 
553   // We have LOCR instructions for 32 and 64 bit general purpose registers.
554   if ((STI.hasLoadStoreOnCond2() &&
555        SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
556       SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
557       SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
558     CondCycles = 2;
559     TrueCycles = 2;
560     FalseCycles = 2;
561     return true;
562   }
563 
564   // Can't do anything else.
565   return false;
566 }
567 
568 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
569                                     MachineBasicBlock::iterator I,
570                                     const DebugLoc &DL, Register DstReg,
571                                     ArrayRef<MachineOperand> Pred,
572                                     Register TrueReg,
573                                     Register FalseReg) const {
574   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
575   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
576 
577   assert(Pred.size() == 2 && "Invalid condition");
578   unsigned CCValid = Pred[0].getImm();
579   unsigned CCMask = Pred[1].getImm();
580 
581   unsigned Opc;
582   if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
583     if (STI.hasMiscellaneousExtensions3())
584       Opc = SystemZ::SELRMux;
585     else if (STI.hasLoadStoreOnCond2())
586       Opc = SystemZ::LOCRMux;
587     else {
588       Opc = SystemZ::LOCR;
589       MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
590       Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
591       Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
592       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
593       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
594       TrueReg = TReg;
595       FalseReg = FReg;
596     }
597   } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
598     if (STI.hasMiscellaneousExtensions3())
599       Opc = SystemZ::SELGR;
600     else
601       Opc = SystemZ::LOCGR;
602   } else
603     llvm_unreachable("Invalid register class");
604 
605   BuildMI(MBB, I, DL, get(Opc), DstReg)
606     .addReg(FalseReg).addReg(TrueReg)
607     .addImm(CCValid).addImm(CCMask);
608 }
609 
610 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
611                                      Register Reg,
612                                      MachineRegisterInfo *MRI) const {
613   unsigned DefOpc = DefMI.getOpcode();
614   if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
615       DefOpc != SystemZ::LGHI)
616     return false;
617   if (DefMI.getOperand(0).getReg() != Reg)
618     return false;
619   int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
620 
621   unsigned UseOpc = UseMI.getOpcode();
622   unsigned NewUseOpc;
623   unsigned UseIdx;
624   int CommuteIdx = -1;
625   bool TieOps = false;
626   switch (UseOpc) {
627   case SystemZ::SELRMux:
628     TieOps = true;
629     LLVM_FALLTHROUGH;
630   case SystemZ::LOCRMux:
631     if (!STI.hasLoadStoreOnCond2())
632       return false;
633     NewUseOpc = SystemZ::LOCHIMux;
634     if (UseMI.getOperand(2).getReg() == Reg)
635       UseIdx = 2;
636     else if (UseMI.getOperand(1).getReg() == Reg)
637       UseIdx = 2, CommuteIdx = 1;
638     else
639       return false;
640     break;
641   case SystemZ::SELGR:
642     TieOps = true;
643     LLVM_FALLTHROUGH;
644   case SystemZ::LOCGR:
645     if (!STI.hasLoadStoreOnCond2())
646       return false;
647     NewUseOpc = SystemZ::LOCGHI;
648     if (UseMI.getOperand(2).getReg() == Reg)
649       UseIdx = 2;
650     else if (UseMI.getOperand(1).getReg() == Reg)
651       UseIdx = 2, CommuteIdx = 1;
652     else
653       return false;
654     break;
655   default:
656     return false;
657   }
658 
659   if (CommuteIdx != -1)
660     if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
661       return false;
662 
663   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
664   UseMI.setDesc(get(NewUseOpc));
665   if (TieOps)
666     UseMI.tieOperands(0, 1);
667   UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
668   if (DeleteDef)
669     DefMI.eraseFromParent();
670 
671   return true;
672 }
673 
674 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
675   unsigned Opcode = MI.getOpcode();
676   if (Opcode == SystemZ::Return ||
677       Opcode == SystemZ::Trap ||
678       Opcode == SystemZ::CallJG ||
679       Opcode == SystemZ::CallBR)
680     return true;
681   return false;
682 }
683 
684 bool SystemZInstrInfo::
685 isProfitableToIfCvt(MachineBasicBlock &MBB,
686                     unsigned NumCycles, unsigned ExtraPredCycles,
687                     BranchProbability Probability) const {
688   // Avoid using conditional returns at the end of a loop (since then
689   // we'd need to emit an unconditional branch to the beginning anyway,
690   // making the loop body longer).  This doesn't apply for low-probability
691   // loops (eg. compare-and-swap retry), so just decide based on branch
692   // probability instead of looping structure.
693   // However, since Compare and Trap instructions cost the same as a regular
694   // Compare instruction, we should allow the if conversion to convert this
695   // into a Conditional Compare regardless of the branch probability.
696   if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
697       MBB.succ_empty() && Probability < BranchProbability(1, 8))
698     return false;
699   // For now only convert single instructions.
700   return NumCycles == 1;
701 }
702 
703 bool SystemZInstrInfo::
704 isProfitableToIfCvt(MachineBasicBlock &TMBB,
705                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
706                     MachineBasicBlock &FMBB,
707                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
708                     BranchProbability Probability) const {
709   // For now avoid converting mutually-exclusive cases.
710   return false;
711 }
712 
713 bool SystemZInstrInfo::
714 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
715                           BranchProbability Probability) const {
716   // For now only duplicate single instructions.
717   return NumCycles == 1;
718 }
719 
720 bool SystemZInstrInfo::PredicateInstruction(
721     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
722   assert(Pred.size() == 2 && "Invalid condition");
723   unsigned CCValid = Pred[0].getImm();
724   unsigned CCMask = Pred[1].getImm();
725   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
726   unsigned Opcode = MI.getOpcode();
727   if (Opcode == SystemZ::Trap) {
728     MI.setDesc(get(SystemZ::CondTrap));
729     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
730       .addImm(CCValid).addImm(CCMask)
731       .addReg(SystemZ::CC, RegState::Implicit);
732     return true;
733   }
734   if (Opcode == SystemZ::Return) {
735     MI.setDesc(get(SystemZ::CondReturn));
736     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
737       .addImm(CCValid).addImm(CCMask)
738       .addReg(SystemZ::CC, RegState::Implicit);
739     return true;
740   }
741   if (Opcode == SystemZ::CallJG) {
742     MachineOperand FirstOp = MI.getOperand(0);
743     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
744     MI.RemoveOperand(1);
745     MI.RemoveOperand(0);
746     MI.setDesc(get(SystemZ::CallBRCL));
747     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
748         .addImm(CCValid)
749         .addImm(CCMask)
750         .add(FirstOp)
751         .addRegMask(RegMask)
752         .addReg(SystemZ::CC, RegState::Implicit);
753     return true;
754   }
755   if (Opcode == SystemZ::CallBR) {
756     MachineOperand Target = MI.getOperand(0);
757     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
758     MI.RemoveOperand(1);
759     MI.RemoveOperand(0);
760     MI.setDesc(get(SystemZ::CallBCR));
761     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
762       .addImm(CCValid).addImm(CCMask)
763       .add(Target)
764       .addRegMask(RegMask)
765       .addReg(SystemZ::CC, RegState::Implicit);
766     return true;
767   }
768   return false;
769 }
770 
771 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
772                                    MachineBasicBlock::iterator MBBI,
773                                    const DebugLoc &DL, MCRegister DestReg,
774                                    MCRegister SrcReg, bool KillSrc) const {
775   // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
776   // super register in case one of the subregs is undefined.
777   // This handles ADDR128 too.
778   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
779     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
780                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
781     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
782       .addReg(SrcReg, RegState::Implicit);
783     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
784                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
785     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
786       .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
787     return;
788   }
789 
790   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
791     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
792                   false);
793     return;
794   }
795 
796   // Move 128-bit floating-point values between VR128 and FP128.
797   if (SystemZ::VR128BitRegClass.contains(DestReg) &&
798       SystemZ::FP128BitRegClass.contains(SrcReg)) {
799     MCRegister SrcRegHi =
800         RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
801                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
802     MCRegister SrcRegLo =
803         RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
804                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
805 
806     BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
807       .addReg(SrcRegHi, getKillRegState(KillSrc))
808       .addReg(SrcRegLo, getKillRegState(KillSrc));
809     return;
810   }
811   if (SystemZ::FP128BitRegClass.contains(DestReg) &&
812       SystemZ::VR128BitRegClass.contains(SrcReg)) {
813     MCRegister DestRegHi =
814         RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
815                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
816     MCRegister DestRegLo =
817         RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
818                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
819 
820     if (DestRegHi != SrcReg)
821       copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
822     BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
823       .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
824     return;
825   }
826 
827   // Move CC value from a GR32.
828   if (DestReg == SystemZ::CC) {
829     unsigned Opcode =
830       SystemZ::GR32BitRegClass.contains(SrcReg) ? SystemZ::TMLH : SystemZ::TMHH;
831     BuildMI(MBB, MBBI, DL, get(Opcode))
832       .addReg(SrcReg, getKillRegState(KillSrc))
833       .addImm(3 << (SystemZ::IPM_CC - 16));
834     return;
835   }
836 
837   // Everything else needs only one instruction.
838   unsigned Opcode;
839   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
840     Opcode = SystemZ::LGR;
841   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
842     // For z13 we prefer LDR over LER to avoid partial register dependencies.
843     Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
844   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
845     Opcode = SystemZ::LDR;
846   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
847     Opcode = SystemZ::LXR;
848   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
849     Opcode = SystemZ::VLR32;
850   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
851     Opcode = SystemZ::VLR64;
852   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
853     Opcode = SystemZ::VLR;
854   else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
855     Opcode = SystemZ::CPYA;
856   else
857     llvm_unreachable("Impossible reg-to-reg copy");
858 
859   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
860     .addReg(SrcReg, getKillRegState(KillSrc));
861 }
862 
863 void SystemZInstrInfo::storeRegToStackSlot(
864     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg,
865     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
866     const TargetRegisterInfo *TRI) const {
867   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
868 
869   // Callers may expect a single instruction, so keep 128-bit moves
870   // together for now and lower them after register allocation.
871   unsigned LoadOpcode, StoreOpcode;
872   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
873   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
874                         .addReg(SrcReg, getKillRegState(isKill)),
875                     FrameIdx);
876 }
877 
878 void SystemZInstrInfo::loadRegFromStackSlot(
879     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg,
880     int FrameIdx, const TargetRegisterClass *RC,
881     const TargetRegisterInfo *TRI) const {
882   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
883 
884   // Callers may expect a single instruction, so keep 128-bit moves
885   // together for now and lower them after register allocation.
886   unsigned LoadOpcode, StoreOpcode;
887   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
888   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
889                     FrameIdx);
890 }
891 
892 // Return true if MI is a simple load or store with a 12-bit displacement
893 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
894 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
895   const MCInstrDesc &MCID = MI->getDesc();
896   return ((MCID.TSFlags & Flag) &&
897           isUInt<12>(MI->getOperand(2).getImm()) &&
898           MI->getOperand(3).getReg() == 0);
899 }
900 
901 namespace {
902 
903 struct LogicOp {
904   LogicOp() = default;
905   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
906     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
907 
908   explicit operator bool() const { return RegSize; }
909 
910   unsigned RegSize = 0;
911   unsigned ImmLSB = 0;
912   unsigned ImmSize = 0;
913 };
914 
915 } // end anonymous namespace
916 
917 static LogicOp interpretAndImmediate(unsigned Opcode) {
918   switch (Opcode) {
919   case SystemZ::NILMux: return LogicOp(32,  0, 16);
920   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
921   case SystemZ::NILL64: return LogicOp(64,  0, 16);
922   case SystemZ::NILH64: return LogicOp(64, 16, 16);
923   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
924   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
925   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
926   case SystemZ::NILF64: return LogicOp(64,  0, 32);
927   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
928   default:              return LogicOp();
929   }
930 }
931 
932 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
933   if (OldMI->registerDefIsDead(SystemZ::CC)) {
934     MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
935     if (CCDef != nullptr)
936       CCDef->setIsDead(true);
937   }
938 }
939 
940 static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI,
941                            MachineInstr::MIFlag Flag) {
942   if (OldMI->getFlag(Flag))
943     NewMI->setFlag(Flag);
944 }
945 
946 MachineInstr *SystemZInstrInfo::convertToThreeAddress(MachineInstr &MI,
947                                                       LiveVariables *LV) const {
948   MachineBasicBlock *MBB = MI.getParent();
949 
950   // Try to convert an AND into an RISBG-type instruction.
951   // TODO: It might be beneficial to select RISBG and shorten to AND instead.
952   if (LogicOp And = interpretAndImmediate(MI.getOpcode())) {
953     uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
954     // AND IMMEDIATE leaves the other bits of the register unchanged.
955     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
956     unsigned Start, End;
957     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
958       unsigned NewOpcode;
959       if (And.RegSize == 64) {
960         NewOpcode = SystemZ::RISBG;
961         // Prefer RISBGN if available, since it does not clobber CC.
962         if (STI.hasMiscellaneousExtensions())
963           NewOpcode = SystemZ::RISBGN;
964       } else {
965         NewOpcode = SystemZ::RISBMux;
966         Start &= 31;
967         End &= 31;
968       }
969       MachineOperand &Dest = MI.getOperand(0);
970       MachineOperand &Src = MI.getOperand(1);
971       MachineInstrBuilder MIB =
972           BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
973               .add(Dest)
974               .addReg(0)
975               .addReg(Src.getReg(), getKillRegState(Src.isKill()),
976                       Src.getSubReg())
977               .addImm(Start)
978               .addImm(End + 128)
979               .addImm(0);
980       if (LV) {
981         unsigned NumOps = MI.getNumOperands();
982         for (unsigned I = 1; I < NumOps; ++I) {
983           MachineOperand &Op = MI.getOperand(I);
984           if (Op.isReg() && Op.isKill())
985             LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
986         }
987       }
988       transferDeadCC(&MI, MIB);
989       return MIB;
990     }
991   }
992   return nullptr;
993 }
994 
995 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
996     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
997     MachineBasicBlock::iterator InsertPt, int FrameIndex,
998     LiveIntervals *LIS, VirtRegMap *VRM) const {
999   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1000   MachineRegisterInfo &MRI = MF.getRegInfo();
1001   const MachineFrameInfo &MFI = MF.getFrameInfo();
1002   unsigned Size = MFI.getObjectSize(FrameIndex);
1003   unsigned Opcode = MI.getOpcode();
1004 
1005   // Check CC liveness if new instruction introduces a dead def of CC.
1006   MCRegUnitIterator CCUnit(MCRegister::from(SystemZ::CC), TRI);
1007   SlotIndex MISlot = SlotIndex();
1008   LiveRange *CCLiveRange = nullptr;
1009   bool CCLiveAtMI = true;
1010   if (LIS) {
1011     MISlot = LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1012     CCLiveRange = &LIS->getRegUnit(*CCUnit);
1013     CCLiveAtMI = CCLiveRange->liveAt(MISlot);
1014   }
1015   ++CCUnit;
1016   assert(!CCUnit.isValid() && "CC only has one reg unit.");
1017 
1018   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1019     if (!CCLiveAtMI && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1020         isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1021       // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1022       MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1023                                       MI.getDebugLoc(), get(SystemZ::AGSI))
1024         .addFrameIndex(FrameIndex)
1025         .addImm(0)
1026         .addImm(MI.getOperand(2).getImm());
1027       BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1028       CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1029       return BuiltMI;
1030     }
1031     return nullptr;
1032   }
1033 
1034   // All other cases require a single operand.
1035   if (Ops.size() != 1)
1036     return nullptr;
1037 
1038   unsigned OpNum = Ops[0];
1039   assert(Size * 8 ==
1040            TRI->getRegSizeInBits(*MF.getRegInfo()
1041                                .getRegClass(MI.getOperand(OpNum).getReg())) &&
1042          "Invalid size combination");
1043 
1044   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1045       isInt<8>(MI.getOperand(2).getImm())) {
1046     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1047     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1048     MachineInstr *BuiltMI =
1049         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1050             .addFrameIndex(FrameIndex)
1051             .addImm(0)
1052             .addImm(MI.getOperand(2).getImm());
1053     transferDeadCC(&MI, BuiltMI);
1054     transferMIFlag(&MI, BuiltMI, MachineInstr::NoSWrap);
1055     return BuiltMI;
1056   }
1057 
1058   if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1059        isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1060       (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1061        isInt<8>((int64_t)MI.getOperand(2).getImm()))) {
1062     // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1063     Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1064     MachineInstr *BuiltMI =
1065         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1066             .addFrameIndex(FrameIndex)
1067             .addImm(0)
1068             .addImm((int8_t)MI.getOperand(2).getImm());
1069     transferDeadCC(&MI, BuiltMI);
1070     return BuiltMI;
1071   }
1072 
1073   if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1074        isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1075       (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1076        isInt<8>((int64_t)-MI.getOperand(2).getImm()))) {
1077     // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1078     Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1079     MachineInstr *BuiltMI =
1080         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1081             .addFrameIndex(FrameIndex)
1082             .addImm(0)
1083             .addImm((int8_t)-MI.getOperand(2).getImm());
1084     transferDeadCC(&MI, BuiltMI);
1085     return BuiltMI;
1086   }
1087 
1088   unsigned MemImmOpc = 0;
1089   switch (Opcode) {
1090   case SystemZ::LHIMux:
1091   case SystemZ::LHI:    MemImmOpc = SystemZ::MVHI;  break;
1092   case SystemZ::LGHI:   MemImmOpc = SystemZ::MVGHI; break;
1093   case SystemZ::CHIMux:
1094   case SystemZ::CHI:    MemImmOpc = SystemZ::CHSI;  break;
1095   case SystemZ::CGHI:   MemImmOpc = SystemZ::CGHSI; break;
1096   case SystemZ::CLFIMux:
1097   case SystemZ::CLFI:
1098     if (isUInt<16>(MI.getOperand(1).getImm()))
1099       MemImmOpc = SystemZ::CLFHSI;
1100     break;
1101   case SystemZ::CLGFI:
1102     if (isUInt<16>(MI.getOperand(1).getImm()))
1103       MemImmOpc = SystemZ::CLGHSI;
1104     break;
1105   default: break;
1106   }
1107   if (MemImmOpc)
1108     return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1109                    get(MemImmOpc))
1110                .addFrameIndex(FrameIndex)
1111                .addImm(0)
1112                .addImm(MI.getOperand(1).getImm());
1113 
1114   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1115     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1116     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1117     // If we're spilling the destination of an LDGR or LGDR, store the
1118     // source register instead.
1119     if (OpNum == 0) {
1120       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1121       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1122                      get(StoreOpcode))
1123           .add(MI.getOperand(1))
1124           .addFrameIndex(FrameIndex)
1125           .addImm(0)
1126           .addReg(0);
1127     }
1128     // If we're spilling the source of an LDGR or LGDR, load the
1129     // destination register instead.
1130     if (OpNum == 1) {
1131       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1132       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1133                      get(LoadOpcode))
1134         .add(MI.getOperand(0))
1135         .addFrameIndex(FrameIndex)
1136         .addImm(0)
1137         .addReg(0);
1138     }
1139   }
1140 
1141   // Look for cases where the source of a simple store or the destination
1142   // of a simple load is being spilled.  Try to use MVC instead.
1143   //
1144   // Although MVC is in practice a fast choice in these cases, it is still
1145   // logically a bytewise copy.  This means that we cannot use it if the
1146   // load or store is volatile.  We also wouldn't be able to use MVC if
1147   // the two memories partially overlap, but that case cannot occur here,
1148   // because we know that one of the memories is a full frame index.
1149   //
1150   // For performance reasons, we also want to avoid using MVC if the addresses
1151   // might be equal.  We don't worry about that case here, because spill slot
1152   // coloring happens later, and because we have special code to remove
1153   // MVCs that turn out to be redundant.
1154   if (OpNum == 0 && MI.hasOneMemOperand()) {
1155     MachineMemOperand *MMO = *MI.memoperands_begin();
1156     if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) {
1157       // Handle conversion of loads.
1158       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1159         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1160                        get(SystemZ::MVC))
1161             .addFrameIndex(FrameIndex)
1162             .addImm(0)
1163             .addImm(Size)
1164             .add(MI.getOperand(1))
1165             .addImm(MI.getOperand(2).getImm())
1166             .addMemOperand(MMO);
1167       }
1168       // Handle conversion of stores.
1169       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1170         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1171                        get(SystemZ::MVC))
1172             .add(MI.getOperand(1))
1173             .addImm(MI.getOperand(2).getImm())
1174             .addImm(Size)
1175             .addFrameIndex(FrameIndex)
1176             .addImm(0)
1177             .addMemOperand(MMO);
1178       }
1179     }
1180   }
1181 
1182   // If the spilled operand is the final one or the instruction is
1183   // commutable, try to change <INSN>R into <INSN>.  Don't introduce a def of
1184   // CC if it is live and MI does not define it.
1185   unsigned NumOps = MI.getNumExplicitOperands();
1186   int MemOpcode = SystemZ::getMemOpcode(Opcode);
1187   if (MemOpcode == -1 ||
1188       (CCLiveAtMI && !MI.definesRegister(SystemZ::CC) &&
1189        get(MemOpcode).hasImplicitDefOfPhysReg(SystemZ::CC)))
1190     return nullptr;
1191 
1192   // Check if all other vregs have a usable allocation in the case of vector
1193   // to FP conversion.
1194   const MCInstrDesc &MCID = MI.getDesc();
1195   for (unsigned I = 0, E = MCID.getNumOperands(); I != E; ++I) {
1196     const MCOperandInfo &MCOI = MCID.OpInfo[I];
1197     if (MCOI.OperandType != MCOI::OPERAND_REGISTER || I == OpNum)
1198       continue;
1199     const TargetRegisterClass *RC = TRI->getRegClass(MCOI.RegClass);
1200     if (RC == &SystemZ::VR32BitRegClass || RC == &SystemZ::VR64BitRegClass) {
1201       Register Reg = MI.getOperand(I).getReg();
1202       Register PhysReg = Register::isVirtualRegister(Reg)
1203                              ? (VRM ? Register(VRM->getPhys(Reg)) : Register())
1204                              : Reg;
1205       if (!PhysReg ||
1206           !(SystemZ::FP32BitRegClass.contains(PhysReg) ||
1207             SystemZ::FP64BitRegClass.contains(PhysReg) ||
1208             SystemZ::VF128BitRegClass.contains(PhysReg)))
1209         return nullptr;
1210     }
1211   }
1212   // Fused multiply and add/sub need to have the same dst and accumulator reg.
1213   bool FusedFPOp = (Opcode == SystemZ::WFMADB || Opcode == SystemZ::WFMASB ||
1214                     Opcode == SystemZ::WFMSDB || Opcode == SystemZ::WFMSSB);
1215   if (FusedFPOp) {
1216     Register DstReg = VRM->getPhys(MI.getOperand(0).getReg());
1217     Register AccReg = VRM->getPhys(MI.getOperand(3).getReg());
1218     if (OpNum == 0 || OpNum == 3 || DstReg != AccReg)
1219       return nullptr;
1220   }
1221 
1222   // Try to swap compare operands if possible.
1223   bool NeedsCommute = false;
1224   if ((MI.getOpcode() == SystemZ::CR || MI.getOpcode() == SystemZ::CGR ||
1225        MI.getOpcode() == SystemZ::CLR || MI.getOpcode() == SystemZ::CLGR ||
1226        MI.getOpcode() == SystemZ::WFCDB || MI.getOpcode() == SystemZ::WFCSB ||
1227        MI.getOpcode() == SystemZ::WFKDB || MI.getOpcode() == SystemZ::WFKSB) &&
1228       OpNum == 0 && prepareCompareSwapOperands(MI))
1229     NeedsCommute = true;
1230 
1231   bool CCOperands = false;
1232   if (MI.getOpcode() == SystemZ::LOCRMux || MI.getOpcode() == SystemZ::LOCGR ||
1233       MI.getOpcode() == SystemZ::SELRMux || MI.getOpcode() == SystemZ::SELGR) {
1234     assert(MI.getNumOperands() == 6 && NumOps == 5 &&
1235            "LOCR/SELR instruction operands corrupt?");
1236     NumOps -= 2;
1237     CCOperands = true;
1238   }
1239 
1240   // See if this is a 3-address instruction that is convertible to 2-address
1241   // and suitable for folding below.  Only try this with virtual registers
1242   // and a provided VRM (during regalloc).
1243   if (NumOps == 3 && SystemZ::getTargetMemOpcode(MemOpcode) != -1) {
1244     if (VRM == nullptr)
1245       return nullptr;
1246     else {
1247       Register DstReg = MI.getOperand(0).getReg();
1248       Register DstPhys =
1249           (Register::isVirtualRegister(DstReg) ? Register(VRM->getPhys(DstReg))
1250                                                : DstReg);
1251       Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg()
1252                                     : ((OpNum == 1 && MI.isCommutable())
1253                                            ? MI.getOperand(2).getReg()
1254                                            : Register()));
1255       if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg &&
1256           Register::isVirtualRegister(SrcReg) &&
1257           DstPhys == VRM->getPhys(SrcReg))
1258         NeedsCommute = (OpNum == 1);
1259       else
1260         return nullptr;
1261     }
1262   }
1263 
1264   if ((OpNum == NumOps - 1) || NeedsCommute || FusedFPOp) {
1265     const MCInstrDesc &MemDesc = get(MemOpcode);
1266     uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1267     assert(AccessBytes != 0 && "Size of access should be known");
1268     assert(AccessBytes <= Size && "Access outside the frame index");
1269     uint64_t Offset = Size - AccessBytes;
1270     MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1271                                       MI.getDebugLoc(), get(MemOpcode));
1272     if (MI.isCompare()) {
1273       assert(NumOps == 2 && "Expected 2 register operands for a compare.");
1274       MIB.add(MI.getOperand(NeedsCommute ? 1 : 0));
1275     }
1276     else if (FusedFPOp) {
1277       MIB.add(MI.getOperand(0));
1278       MIB.add(MI.getOperand(3));
1279       MIB.add(MI.getOperand(OpNum == 1 ? 2 : 1));
1280     }
1281     else {
1282       MIB.add(MI.getOperand(0));
1283       if (NeedsCommute)
1284         MIB.add(MI.getOperand(2));
1285       else
1286         for (unsigned I = 1; I < OpNum; ++I)
1287           MIB.add(MI.getOperand(I));
1288     }
1289     MIB.addFrameIndex(FrameIndex).addImm(Offset);
1290     if (MemDesc.TSFlags & SystemZII::HasIndex)
1291       MIB.addReg(0);
1292     if (CCOperands) {
1293       unsigned CCValid = MI.getOperand(NumOps).getImm();
1294       unsigned CCMask = MI.getOperand(NumOps + 1).getImm();
1295       MIB.addImm(CCValid);
1296       MIB.addImm(NeedsCommute ? CCMask ^ CCValid : CCMask);
1297     }
1298     if (MIB->definesRegister(SystemZ::CC) &&
1299         (!MI.definesRegister(SystemZ::CC) ||
1300          MI.registerDefIsDead(SystemZ::CC))) {
1301       MIB->addRegisterDead(SystemZ::CC, TRI);
1302       if (CCLiveRange)
1303         CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1304     }
1305     // Constrain the register classes if converted from a vector opcode. The
1306     // allocated regs are in an FP reg-class per previous check above.
1307     for (const MachineOperand &MO : MIB->operands())
1308       if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
1309         unsigned Reg = MO.getReg();
1310         if (MRI.getRegClass(Reg) == &SystemZ::VR32BitRegClass)
1311           MRI.setRegClass(Reg, &SystemZ::FP32BitRegClass);
1312         else if (MRI.getRegClass(Reg) == &SystemZ::VR64BitRegClass)
1313           MRI.setRegClass(Reg, &SystemZ::FP64BitRegClass);
1314         else if (MRI.getRegClass(Reg) == &SystemZ::VR128BitRegClass)
1315           MRI.setRegClass(Reg, &SystemZ::VF128BitRegClass);
1316       }
1317 
1318     transferDeadCC(&MI, MIB);
1319     transferMIFlag(&MI, MIB, MachineInstr::NoSWrap);
1320     transferMIFlag(&MI, MIB, MachineInstr::NoFPExcept);
1321     return MIB;
1322   }
1323 
1324   return nullptr;
1325 }
1326 
1327 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1328     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1329     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1330     LiveIntervals *LIS) const {
1331   return nullptr;
1332 }
1333 
1334 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1335   switch (MI.getOpcode()) {
1336   case SystemZ::L128:
1337     splitMove(MI, SystemZ::LG);
1338     return true;
1339 
1340   case SystemZ::ST128:
1341     splitMove(MI, SystemZ::STG);
1342     return true;
1343 
1344   case SystemZ::LX:
1345     splitMove(MI, SystemZ::LD);
1346     return true;
1347 
1348   case SystemZ::STX:
1349     splitMove(MI, SystemZ::STD);
1350     return true;
1351 
1352   case SystemZ::LBMux:
1353     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1354     return true;
1355 
1356   case SystemZ::LHMux:
1357     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1358     return true;
1359 
1360   case SystemZ::LLCRMux:
1361     expandZExtPseudo(MI, SystemZ::LLCR, 8);
1362     return true;
1363 
1364   case SystemZ::LLHRMux:
1365     expandZExtPseudo(MI, SystemZ::LLHR, 16);
1366     return true;
1367 
1368   case SystemZ::LLCMux:
1369     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1370     return true;
1371 
1372   case SystemZ::LLHMux:
1373     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1374     return true;
1375 
1376   case SystemZ::LMux:
1377     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1378     return true;
1379 
1380   case SystemZ::LOCMux:
1381     expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1382     return true;
1383 
1384   case SystemZ::LOCHIMux:
1385     expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1386     return true;
1387 
1388   case SystemZ::STCMux:
1389     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1390     return true;
1391 
1392   case SystemZ::STHMux:
1393     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1394     return true;
1395 
1396   case SystemZ::STMux:
1397     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1398     return true;
1399 
1400   case SystemZ::STOCMux:
1401     expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1402     return true;
1403 
1404   case SystemZ::LHIMux:
1405     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1406     return true;
1407 
1408   case SystemZ::IIFMux:
1409     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1410     return true;
1411 
1412   case SystemZ::IILMux:
1413     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1414     return true;
1415 
1416   case SystemZ::IIHMux:
1417     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1418     return true;
1419 
1420   case SystemZ::NIFMux:
1421     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1422     return true;
1423 
1424   case SystemZ::NILMux:
1425     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1426     return true;
1427 
1428   case SystemZ::NIHMux:
1429     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1430     return true;
1431 
1432   case SystemZ::OIFMux:
1433     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1434     return true;
1435 
1436   case SystemZ::OILMux:
1437     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1438     return true;
1439 
1440   case SystemZ::OIHMux:
1441     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1442     return true;
1443 
1444   case SystemZ::XIFMux:
1445     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1446     return true;
1447 
1448   case SystemZ::TMLMux:
1449     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1450     return true;
1451 
1452   case SystemZ::TMHMux:
1453     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1454     return true;
1455 
1456   case SystemZ::AHIMux:
1457     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1458     return true;
1459 
1460   case SystemZ::AHIMuxK:
1461     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1462     return true;
1463 
1464   case SystemZ::AFIMux:
1465     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1466     return true;
1467 
1468   case SystemZ::CHIMux:
1469     expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1470     return true;
1471 
1472   case SystemZ::CFIMux:
1473     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1474     return true;
1475 
1476   case SystemZ::CLFIMux:
1477     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1478     return true;
1479 
1480   case SystemZ::CMux:
1481     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1482     return true;
1483 
1484   case SystemZ::CLMux:
1485     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1486     return true;
1487 
1488   case SystemZ::RISBMux: {
1489     bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg());
1490     bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg());
1491     if (SrcIsHigh == DestIsHigh)
1492       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1493     else {
1494       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1495       MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1496     }
1497     return true;
1498   }
1499 
1500   case SystemZ::ADJDYNALLOC:
1501     splitAdjDynAlloc(MI);
1502     return true;
1503 
1504   case TargetOpcode::LOAD_STACK_GUARD:
1505     expandLoadStackGuard(&MI);
1506     return true;
1507 
1508   default:
1509     return false;
1510   }
1511 }
1512 
1513 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1514   if (MI.isInlineAsm()) {
1515     const MachineFunction *MF = MI.getParent()->getParent();
1516     const char *AsmStr = MI.getOperand(0).getSymbolName();
1517     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1518   }
1519   else if (MI.getOpcode() == SystemZ::PATCHPOINT)
1520     return PatchPointOpers(&MI).getNumPatchBytes();
1521   else if (MI.getOpcode() == SystemZ::STACKMAP)
1522     return MI.getOperand(1).getImm();
1523   else if (MI.getOpcode() == SystemZ::FENTRY_CALL)
1524     return 6;
1525 
1526   return MI.getDesc().getSize();
1527 }
1528 
1529 SystemZII::Branch
1530 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1531   switch (MI.getOpcode()) {
1532   case SystemZ::BR:
1533   case SystemZ::BI:
1534   case SystemZ::J:
1535   case SystemZ::JG:
1536     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1537                              SystemZ::CCMASK_ANY, &MI.getOperand(0));
1538 
1539   case SystemZ::BRC:
1540   case SystemZ::BRCL:
1541     return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1542                              MI.getOperand(1).getImm(), &MI.getOperand(2));
1543 
1544   case SystemZ::BRCT:
1545   case SystemZ::BRCTH:
1546     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1547                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1548 
1549   case SystemZ::BRCTG:
1550     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1551                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1552 
1553   case SystemZ::CIJ:
1554   case SystemZ::CRJ:
1555     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1556                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1557 
1558   case SystemZ::CLIJ:
1559   case SystemZ::CLRJ:
1560     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1561                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1562 
1563   case SystemZ::CGIJ:
1564   case SystemZ::CGRJ:
1565     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1566                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1567 
1568   case SystemZ::CLGIJ:
1569   case SystemZ::CLGRJ:
1570     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1571                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1572 
1573   case SystemZ::INLINEASM_BR:
1574     // Don't try to analyze asm goto, so pass nullptr as branch target argument.
1575     return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr);
1576 
1577   default:
1578     llvm_unreachable("Unrecognized branch opcode");
1579   }
1580 }
1581 
1582 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1583                                            unsigned &LoadOpcode,
1584                                            unsigned &StoreOpcode) const {
1585   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1586     LoadOpcode = SystemZ::L;
1587     StoreOpcode = SystemZ::ST;
1588   } else if (RC == &SystemZ::GRH32BitRegClass) {
1589     LoadOpcode = SystemZ::LFH;
1590     StoreOpcode = SystemZ::STFH;
1591   } else if (RC == &SystemZ::GRX32BitRegClass) {
1592     LoadOpcode = SystemZ::LMux;
1593     StoreOpcode = SystemZ::STMux;
1594   } else if (RC == &SystemZ::GR64BitRegClass ||
1595              RC == &SystemZ::ADDR64BitRegClass) {
1596     LoadOpcode = SystemZ::LG;
1597     StoreOpcode = SystemZ::STG;
1598   } else if (RC == &SystemZ::GR128BitRegClass ||
1599              RC == &SystemZ::ADDR128BitRegClass) {
1600     LoadOpcode = SystemZ::L128;
1601     StoreOpcode = SystemZ::ST128;
1602   } else if (RC == &SystemZ::FP32BitRegClass) {
1603     LoadOpcode = SystemZ::LE;
1604     StoreOpcode = SystemZ::STE;
1605   } else if (RC == &SystemZ::FP64BitRegClass) {
1606     LoadOpcode = SystemZ::LD;
1607     StoreOpcode = SystemZ::STD;
1608   } else if (RC == &SystemZ::FP128BitRegClass) {
1609     LoadOpcode = SystemZ::LX;
1610     StoreOpcode = SystemZ::STX;
1611   } else if (RC == &SystemZ::VR32BitRegClass) {
1612     LoadOpcode = SystemZ::VL32;
1613     StoreOpcode = SystemZ::VST32;
1614   } else if (RC == &SystemZ::VR64BitRegClass) {
1615     LoadOpcode = SystemZ::VL64;
1616     StoreOpcode = SystemZ::VST64;
1617   } else if (RC == &SystemZ::VF128BitRegClass ||
1618              RC == &SystemZ::VR128BitRegClass) {
1619     LoadOpcode = SystemZ::VL;
1620     StoreOpcode = SystemZ::VST;
1621   } else
1622     llvm_unreachable("Unsupported regclass to load or store");
1623 }
1624 
1625 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1626                                               int64_t Offset) const {
1627   const MCInstrDesc &MCID = get(Opcode);
1628   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1629   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1630     // Get the instruction to use for unsigned 12-bit displacements.
1631     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1632     if (Disp12Opcode >= 0)
1633       return Disp12Opcode;
1634 
1635     // All address-related instructions can use unsigned 12-bit
1636     // displacements.
1637     return Opcode;
1638   }
1639   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1640     // Get the instruction to use for signed 20-bit displacements.
1641     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1642     if (Disp20Opcode >= 0)
1643       return Disp20Opcode;
1644 
1645     // Check whether Opcode allows signed 20-bit displacements.
1646     if (MCID.TSFlags & SystemZII::Has20BitOffset)
1647       return Opcode;
1648   }
1649   return 0;
1650 }
1651 
1652 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1653   switch (Opcode) {
1654   case SystemZ::L:      return SystemZ::LT;
1655   case SystemZ::LY:     return SystemZ::LT;
1656   case SystemZ::LG:     return SystemZ::LTG;
1657   case SystemZ::LGF:    return SystemZ::LTGF;
1658   case SystemZ::LR:     return SystemZ::LTR;
1659   case SystemZ::LGFR:   return SystemZ::LTGFR;
1660   case SystemZ::LGR:    return SystemZ::LTGR;
1661   case SystemZ::LER:    return SystemZ::LTEBR;
1662   case SystemZ::LDR:    return SystemZ::LTDBR;
1663   case SystemZ::LXR:    return SystemZ::LTXBR;
1664   case SystemZ::LCDFR:  return SystemZ::LCDBR;
1665   case SystemZ::LPDFR:  return SystemZ::LPDBR;
1666   case SystemZ::LNDFR:  return SystemZ::LNDBR;
1667   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1668   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1669   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1670   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1671   // actually use the condition code, we may turn it back into RISGB.
1672   // Note that RISBG is not really a "load-and-test" instruction,
1673   // but sets the same condition code values, so is OK to use here.
1674   case SystemZ::RISBGN: return SystemZ::RISBG;
1675   default:              return 0;
1676   }
1677 }
1678 
1679 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1680 // have already been filtered out.  Store the first set bit in LSB and
1681 // the number of set bits in Length if so.
1682 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1683   unsigned First = findFirstSet(Mask);
1684   uint64_t Top = (Mask >> First) + 1;
1685   if ((Top & -Top) == Top) {
1686     LSB = First;
1687     Length = findFirstSet(Top);
1688     return true;
1689   }
1690   return false;
1691 }
1692 
1693 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1694                                    unsigned &Start, unsigned &End) const {
1695   // Reject trivial all-zero masks.
1696   Mask &= allOnes(BitSize);
1697   if (Mask == 0)
1698     return false;
1699 
1700   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1701   // the msb and End specifies the index of the lsb.
1702   unsigned LSB, Length;
1703   if (isStringOfOnes(Mask, LSB, Length)) {
1704     Start = 63 - (LSB + Length - 1);
1705     End = 63 - LSB;
1706     return true;
1707   }
1708 
1709   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1710   // of the low 1s and End specifies the lsb of the high 1s.
1711   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1712     assert(LSB > 0 && "Bottom bit must be set");
1713     assert(LSB + Length < BitSize && "Top bit must be set");
1714     Start = 63 - (LSB - 1);
1715     End = 63 - (LSB + Length);
1716     return true;
1717   }
1718 
1719   return false;
1720 }
1721 
1722 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1723                                            SystemZII::FusedCompareType Type,
1724                                            const MachineInstr *MI) const {
1725   switch (Opcode) {
1726   case SystemZ::CHI:
1727   case SystemZ::CGHI:
1728     if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1729       return 0;
1730     break;
1731   case SystemZ::CLFI:
1732   case SystemZ::CLGFI:
1733     if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1734       return 0;
1735     break;
1736   case SystemZ::CL:
1737   case SystemZ::CLG:
1738     if (!STI.hasMiscellaneousExtensions())
1739       return 0;
1740     if (!(MI && MI->getOperand(3).getReg() == 0))
1741       return 0;
1742     break;
1743   }
1744   switch (Type) {
1745   case SystemZII::CompareAndBranch:
1746     switch (Opcode) {
1747     case SystemZ::CR:
1748       return SystemZ::CRJ;
1749     case SystemZ::CGR:
1750       return SystemZ::CGRJ;
1751     case SystemZ::CHI:
1752       return SystemZ::CIJ;
1753     case SystemZ::CGHI:
1754       return SystemZ::CGIJ;
1755     case SystemZ::CLR:
1756       return SystemZ::CLRJ;
1757     case SystemZ::CLGR:
1758       return SystemZ::CLGRJ;
1759     case SystemZ::CLFI:
1760       return SystemZ::CLIJ;
1761     case SystemZ::CLGFI:
1762       return SystemZ::CLGIJ;
1763     default:
1764       return 0;
1765     }
1766   case SystemZII::CompareAndReturn:
1767     switch (Opcode) {
1768     case SystemZ::CR:
1769       return SystemZ::CRBReturn;
1770     case SystemZ::CGR:
1771       return SystemZ::CGRBReturn;
1772     case SystemZ::CHI:
1773       return SystemZ::CIBReturn;
1774     case SystemZ::CGHI:
1775       return SystemZ::CGIBReturn;
1776     case SystemZ::CLR:
1777       return SystemZ::CLRBReturn;
1778     case SystemZ::CLGR:
1779       return SystemZ::CLGRBReturn;
1780     case SystemZ::CLFI:
1781       return SystemZ::CLIBReturn;
1782     case SystemZ::CLGFI:
1783       return SystemZ::CLGIBReturn;
1784     default:
1785       return 0;
1786     }
1787   case SystemZII::CompareAndSibcall:
1788     switch (Opcode) {
1789     case SystemZ::CR:
1790       return SystemZ::CRBCall;
1791     case SystemZ::CGR:
1792       return SystemZ::CGRBCall;
1793     case SystemZ::CHI:
1794       return SystemZ::CIBCall;
1795     case SystemZ::CGHI:
1796       return SystemZ::CGIBCall;
1797     case SystemZ::CLR:
1798       return SystemZ::CLRBCall;
1799     case SystemZ::CLGR:
1800       return SystemZ::CLGRBCall;
1801     case SystemZ::CLFI:
1802       return SystemZ::CLIBCall;
1803     case SystemZ::CLGFI:
1804       return SystemZ::CLGIBCall;
1805     default:
1806       return 0;
1807     }
1808   case SystemZII::CompareAndTrap:
1809     switch (Opcode) {
1810     case SystemZ::CR:
1811       return SystemZ::CRT;
1812     case SystemZ::CGR:
1813       return SystemZ::CGRT;
1814     case SystemZ::CHI:
1815       return SystemZ::CIT;
1816     case SystemZ::CGHI:
1817       return SystemZ::CGIT;
1818     case SystemZ::CLR:
1819       return SystemZ::CLRT;
1820     case SystemZ::CLGR:
1821       return SystemZ::CLGRT;
1822     case SystemZ::CLFI:
1823       return SystemZ::CLFIT;
1824     case SystemZ::CLGFI:
1825       return SystemZ::CLGIT;
1826     case SystemZ::CL:
1827       return SystemZ::CLT;
1828     case SystemZ::CLG:
1829       return SystemZ::CLGT;
1830     default:
1831       return 0;
1832     }
1833   }
1834   return 0;
1835 }
1836 
1837 bool SystemZInstrInfo::
1838 prepareCompareSwapOperands(MachineBasicBlock::iterator const MBBI) const {
1839   assert(MBBI->isCompare() && MBBI->getOperand(0).isReg() &&
1840          MBBI->getOperand(1).isReg() && !MBBI->mayLoad() &&
1841          "Not a compare reg/reg.");
1842 
1843   MachineBasicBlock *MBB = MBBI->getParent();
1844   bool CCLive = true;
1845   SmallVector<MachineInstr *, 4> CCUsers;
1846   for (MachineBasicBlock::iterator Itr = std::next(MBBI);
1847        Itr != MBB->end(); ++Itr) {
1848     if (Itr->readsRegister(SystemZ::CC)) {
1849       unsigned Flags = Itr->getDesc().TSFlags;
1850       if ((Flags & SystemZII::CCMaskFirst) || (Flags & SystemZII::CCMaskLast))
1851         CCUsers.push_back(&*Itr);
1852       else
1853         return false;
1854     }
1855     if (Itr->definesRegister(SystemZ::CC)) {
1856       CCLive = false;
1857       break;
1858     }
1859   }
1860   if (CCLive) {
1861     LivePhysRegs LiveRegs(*MBB->getParent()->getSubtarget().getRegisterInfo());
1862     LiveRegs.addLiveOuts(*MBB);
1863     if (LiveRegs.contains(SystemZ::CC))
1864       return false;
1865   }
1866 
1867   // Update all CC users.
1868   for (unsigned Idx = 0; Idx < CCUsers.size(); ++Idx) {
1869     unsigned Flags = CCUsers[Idx]->getDesc().TSFlags;
1870     unsigned FirstOpNum = ((Flags & SystemZII::CCMaskFirst) ?
1871                            0 : CCUsers[Idx]->getNumExplicitOperands() - 2);
1872     MachineOperand &CCMaskMO = CCUsers[Idx]->getOperand(FirstOpNum + 1);
1873     unsigned NewCCMask = SystemZ::reverseCCMask(CCMaskMO.getImm());
1874     CCMaskMO.setImm(NewCCMask);
1875   }
1876 
1877   return true;
1878 }
1879 
1880 unsigned SystemZ::reverseCCMask(unsigned CCMask) {
1881   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1882           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1883           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1884           (CCMask & SystemZ::CCMASK_CMP_UO));
1885 }
1886 
1887 MachineBasicBlock *SystemZ::emitBlockAfter(MachineBasicBlock *MBB) {
1888   MachineFunction &MF = *MBB->getParent();
1889   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
1890   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
1891   return NewMBB;
1892 }
1893 
1894 MachineBasicBlock *SystemZ::splitBlockAfter(MachineBasicBlock::iterator MI,
1895                                             MachineBasicBlock *MBB) {
1896   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1897   NewMBB->splice(NewMBB->begin(), MBB,
1898                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1899   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1900   return NewMBB;
1901 }
1902 
1903 MachineBasicBlock *SystemZ::splitBlockBefore(MachineBasicBlock::iterator MI,
1904                                              MachineBasicBlock *MBB) {
1905   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1906   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
1907   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1908   return NewMBB;
1909 }
1910 
1911 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1912   if (!STI.hasLoadAndTrap())
1913     return 0;
1914   switch (Opcode) {
1915   case SystemZ::L:
1916   case SystemZ::LY:
1917     return SystemZ::LAT;
1918   case SystemZ::LG:
1919     return SystemZ::LGAT;
1920   case SystemZ::LFH:
1921     return SystemZ::LFHAT;
1922   case SystemZ::LLGF:
1923     return SystemZ::LLGFAT;
1924   case SystemZ::LLGT:
1925     return SystemZ::LLGTAT;
1926   }
1927   return 0;
1928 }
1929 
1930 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1931                                      MachineBasicBlock::iterator MBBI,
1932                                      unsigned Reg, uint64_t Value) const {
1933   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1934   unsigned Opcode = 0;
1935   if (isInt<16>(Value))
1936     Opcode = SystemZ::LGHI;
1937   else if (SystemZ::isImmLL(Value))
1938     Opcode = SystemZ::LLILL;
1939   else if (SystemZ::isImmLH(Value)) {
1940     Opcode = SystemZ::LLILH;
1941     Value >>= 16;
1942   }
1943   else if (isInt<32>(Value))
1944     Opcode = SystemZ::LGFI;
1945   if (Opcode) {
1946     BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1947     return;
1948   }
1949 
1950   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1951   assert (MRI.isSSA() &&  "Huge values only handled before reg-alloc .");
1952   Register Reg0 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
1953   Register Reg1 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
1954   BuildMI(MBB, MBBI, DL, get(SystemZ::IMPLICIT_DEF), Reg0);
1955   BuildMI(MBB, MBBI, DL, get(SystemZ::IIHF64), Reg1)
1956     .addReg(Reg0).addImm(Value >> 32);
1957   BuildMI(MBB, MBBI, DL, get(SystemZ::IILF64), Reg)
1958     .addReg(Reg1).addImm(Value & ((uint64_t(1) << 32) - 1));
1959 }
1960 
1961 bool SystemZInstrInfo::verifyInstruction(const MachineInstr &MI,
1962                                          StringRef &ErrInfo) const {
1963   const MCInstrDesc &MCID = MI.getDesc();
1964   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1965     if (I >= MCID.getNumOperands())
1966       break;
1967     const MachineOperand &Op = MI.getOperand(I);
1968     const MCOperandInfo &MCOI = MCID.OpInfo[I];
1969     // Addressing modes have register and immediate operands. Op should be a
1970     // register (or frame index) operand if MCOI.RegClass contains a valid
1971     // register class, or an immediate otherwise.
1972     if (MCOI.OperandType == MCOI::OPERAND_MEMORY &&
1973         ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) ||
1974          (MCOI.RegClass == -1 && !Op.isImm()))) {
1975       ErrInfo = "Addressing mode operands corrupt!";
1976       return false;
1977     }
1978   }
1979 
1980   return true;
1981 }
1982 
1983 bool SystemZInstrInfo::
1984 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1985                                 const MachineInstr &MIb) const {
1986 
1987   if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
1988     return false;
1989 
1990   // If mem-operands show that the same address Value is used by both
1991   // instructions, check for non-overlapping offsets and widths. Not
1992   // sure if a register based analysis would be an improvement...
1993 
1994   MachineMemOperand *MMOa = *MIa.memoperands_begin();
1995   MachineMemOperand *MMOb = *MIb.memoperands_begin();
1996   const Value *VALa = MMOa->getValue();
1997   const Value *VALb = MMOb->getValue();
1998   bool SameVal = (VALa && VALb && (VALa == VALb));
1999   if (!SameVal) {
2000     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
2001     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
2002     if (PSVa && PSVb && (PSVa == PSVb))
2003       SameVal = true;
2004   }
2005   if (SameVal) {
2006     int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
2007     int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
2008     int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
2009     int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
2010     int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
2011     if (LowOffset + LowWidth <= HighOffset)
2012       return true;
2013   }
2014 
2015   return false;
2016 }
2017