1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SystemZ implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZInstrInfo.h"
15 #include "SystemZInstrBuilder.h"
16 #include "SystemZTargetMachine.h"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 
20 using namespace llvm;
21 
22 #define GET_INSTRINFO_CTOR_DTOR
23 #define GET_INSTRMAP_INFO
24 #include "SystemZGenInstrInfo.inc"
25 
26 // Return a mask with Count low bits set.
27 static uint64_t allOnes(unsigned int Count) {
28   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
29 }
30 
31 // Reg should be a 32-bit GPR.  Return true if it is a high register rather
32 // than a low register.
33 static bool isHighReg(unsigned int Reg) {
34   if (SystemZ::GRH32BitRegClass.contains(Reg))
35     return true;
36   assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32");
37   return false;
38 }
39 
40 // Pin the vtable to this file.
41 void SystemZInstrInfo::anchor() {}
42 
43 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
44   : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
45     RI(), STI(sti) {
46 }
47 
48 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
49 // each having the opcode given by NewOpcode.
50 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
51                                  unsigned NewOpcode) const {
52   MachineBasicBlock *MBB = MI->getParent();
53   MachineFunction &MF = *MBB->getParent();
54 
55   // Get two load or store instructions.  Use the original instruction for one
56   // of them (arbitrarily the second here) and create a clone for the other.
57   MachineInstr *EarlierMI = MF.CloneMachineInstr(MI);
58   MBB->insert(MI, EarlierMI);
59 
60   // Set up the two 64-bit registers.
61   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
62   MachineOperand &LowRegOp = MI->getOperand(0);
63   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
64   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
65 
66   // The address in the first (high) instruction is already correct.
67   // Adjust the offset in the second (low) instruction.
68   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
69   MachineOperand &LowOffsetOp = MI->getOperand(2);
70   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
71 
72   // Clear the kill flags for the base and index registers in the first
73   // instruction.
74   EarlierMI->getOperand(1).setIsKill(false);
75   EarlierMI->getOperand(3).setIsKill(false);
76 
77   // Set the opcodes.
78   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
79   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
80   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
81 
82   EarlierMI->setDesc(get(HighOpcode));
83   MI->setDesc(get(LowOpcode));
84 }
85 
86 // Split ADJDYNALLOC instruction MI.
87 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
88   MachineBasicBlock *MBB = MI->getParent();
89   MachineFunction &MF = *MBB->getParent();
90   MachineFrameInfo *MFFrame = MF.getFrameInfo();
91   MachineOperand &OffsetMO = MI->getOperand(2);
92 
93   uint64_t Offset = (MFFrame->getMaxCallFrameSize() +
94                      SystemZMC::CallFrameSize +
95                      OffsetMO.getImm());
96   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
97   assert(NewOpcode && "No support for huge argument lists yet");
98   MI->setDesc(get(NewOpcode));
99   OffsetMO.setImm(Offset);
100 }
101 
102 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
103 // if the first operand is a low GR32 and HighOpcode if the first operand
104 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
105 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
106 // MI has the same kind of operand as LowOpcode, so needs to be converted
107 // if HighOpcode is used.
108 void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode,
109                                       unsigned HighOpcode,
110                                       bool ConvertHigh) const {
111   unsigned Reg = MI->getOperand(0).getReg();
112   bool IsHigh = isHighReg(Reg);
113   MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode));
114   if (IsHigh && ConvertHigh)
115     MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm()));
116 }
117 
118 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
119 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
120 // followed by HighOpcode or LowOpcode, depending on whether the target
121 // is a high or low GR32.
122 void SystemZInstrInfo::expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode,
123                                        unsigned LowOpcodeK,
124                                        unsigned HighOpcode) const {
125   unsigned DestReg = MI->getOperand(0).getReg();
126   unsigned SrcReg = MI->getOperand(1).getReg();
127   bool DestIsHigh = isHighReg(DestReg);
128   bool SrcIsHigh = isHighReg(SrcReg);
129   if (!DestIsHigh && !SrcIsHigh)
130     MI->setDesc(get(LowOpcodeK));
131   else {
132     emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
133                   DestReg, SrcReg, SystemZ::LR, 32,
134                   MI->getOperand(1).isKill());
135     MI->setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
136     MI->getOperand(1).setReg(DestReg);
137     MI->tieOperands(0, 1);
138   }
139 }
140 
141 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
142 // if the first operand is a low GR32 and HighOpcode if the first operand
143 // is a high GR32.
144 void SystemZInstrInfo::expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode,
145                                        unsigned HighOpcode) const {
146   unsigned Reg = MI->getOperand(0).getReg();
147   unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode,
148                                        MI->getOperand(2).getImm());
149   MI->setDesc(get(Opcode));
150 }
151 
152 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
153 // of one GRX32 into another.  Replace it with LowOpcode if both operands
154 // are low registers, otherwise use RISB[LH]G.
155 void SystemZInstrInfo::expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode,
156                                         unsigned Size) const {
157   emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
158                 MI->getOperand(0).getReg(), MI->getOperand(1).getReg(),
159                 LowOpcode, Size, MI->getOperand(1).isKill());
160   MI->eraseFromParent();
161 }
162 
163 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
164 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
165 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
166 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
167 // KillSrc is true if this move is the last use of SrcReg.
168 void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
169                                      MachineBasicBlock::iterator MBBI,
170                                      DebugLoc DL, unsigned DestReg,
171                                      unsigned SrcReg, unsigned LowLowOpcode,
172                                      unsigned Size, bool KillSrc) const {
173   unsigned Opcode;
174   bool DestIsHigh = isHighReg(DestReg);
175   bool SrcIsHigh = isHighReg(SrcReg);
176   if (DestIsHigh && SrcIsHigh)
177     Opcode = SystemZ::RISBHH;
178   else if (DestIsHigh && !SrcIsHigh)
179     Opcode = SystemZ::RISBHL;
180   else if (!DestIsHigh && SrcIsHigh)
181     Opcode = SystemZ::RISBLH;
182   else {
183     BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
184       .addReg(SrcReg, getKillRegState(KillSrc));
185     return;
186   }
187   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
188   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
189     .addReg(DestReg, RegState::Undef)
190     .addReg(SrcReg, getKillRegState(KillSrc))
191     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
192 }
193 
194 // If MI is a simple load or store for a frame object, return the register
195 // it loads or stores and set FrameIndex to the index of the frame object.
196 // Return 0 otherwise.
197 //
198 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
199 static int isSimpleMove(const MachineInstr *MI, int &FrameIndex,
200                         unsigned Flag) {
201   const MCInstrDesc &MCID = MI->getDesc();
202   if ((MCID.TSFlags & Flag) &&
203       MI->getOperand(1).isFI() &&
204       MI->getOperand(2).getImm() == 0 &&
205       MI->getOperand(3).getReg() == 0) {
206     FrameIndex = MI->getOperand(1).getIndex();
207     return MI->getOperand(0).getReg();
208   }
209   return 0;
210 }
211 
212 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
213                                                int &FrameIndex) const {
214   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
215 }
216 
217 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
218                                               int &FrameIndex) const {
219   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
220 }
221 
222 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI,
223                                        int &DestFrameIndex,
224                                        int &SrcFrameIndex) const {
225   // Check for MVC 0(Length,FI1),0(FI2)
226   const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo();
227   if (MI->getOpcode() != SystemZ::MVC ||
228       !MI->getOperand(0).isFI() ||
229       MI->getOperand(1).getImm() != 0 ||
230       !MI->getOperand(3).isFI() ||
231       MI->getOperand(4).getImm() != 0)
232     return false;
233 
234   // Check that Length covers the full slots.
235   int64_t Length = MI->getOperand(2).getImm();
236   unsigned FI1 = MI->getOperand(0).getIndex();
237   unsigned FI2 = MI->getOperand(3).getIndex();
238   if (MFI->getObjectSize(FI1) != Length ||
239       MFI->getObjectSize(FI2) != Length)
240     return false;
241 
242   DestFrameIndex = FI1;
243   SrcFrameIndex = FI2;
244   return true;
245 }
246 
247 bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
248                                      MachineBasicBlock *&TBB,
249                                      MachineBasicBlock *&FBB,
250                                      SmallVectorImpl<MachineOperand> &Cond,
251                                      bool AllowModify) const {
252   // Most of the code and comments here are boilerplate.
253 
254   // Start from the bottom of the block and work up, examining the
255   // terminator instructions.
256   MachineBasicBlock::iterator I = MBB.end();
257   while (I != MBB.begin()) {
258     --I;
259     if (I->isDebugValue())
260       continue;
261 
262     // Working from the bottom, when we see a non-terminator instruction, we're
263     // done.
264     if (!isUnpredicatedTerminator(*I))
265       break;
266 
267     // A terminator that isn't a branch can't easily be handled by this
268     // analysis.
269     if (!I->isBranch())
270       return true;
271 
272     // Can't handle indirect branches.
273     SystemZII::Branch Branch(getBranchInfo(I));
274     if (!Branch.Target->isMBB())
275       return true;
276 
277     // Punt on compound branches.
278     if (Branch.Type != SystemZII::BranchNormal)
279       return true;
280 
281     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
282       // Handle unconditional branches.
283       if (!AllowModify) {
284         TBB = Branch.Target->getMBB();
285         continue;
286       }
287 
288       // If the block has any instructions after a JMP, delete them.
289       while (std::next(I) != MBB.end())
290         std::next(I)->eraseFromParent();
291 
292       Cond.clear();
293       FBB = nullptr;
294 
295       // Delete the JMP if it's equivalent to a fall-through.
296       if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
297         TBB = nullptr;
298         I->eraseFromParent();
299         I = MBB.end();
300         continue;
301       }
302 
303       // TBB is used to indicate the unconditinal destination.
304       TBB = Branch.Target->getMBB();
305       continue;
306     }
307 
308     // Working from the bottom, handle the first conditional branch.
309     if (Cond.empty()) {
310       // FIXME: add X86-style branch swap
311       FBB = TBB;
312       TBB = Branch.Target->getMBB();
313       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
314       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
315       continue;
316     }
317 
318     // Handle subsequent conditional branches.
319     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
320 
321     // Only handle the case where all conditional branches branch to the same
322     // destination.
323     if (TBB != Branch.Target->getMBB())
324       return true;
325 
326     // If the conditions are the same, we can leave them alone.
327     unsigned OldCCValid = Cond[0].getImm();
328     unsigned OldCCMask = Cond[1].getImm();
329     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
330       continue;
331 
332     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
333     return false;
334   }
335 
336   return false;
337 }
338 
339 unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
340   // Most of the code and comments here are boilerplate.
341   MachineBasicBlock::iterator I = MBB.end();
342   unsigned Count = 0;
343 
344   while (I != MBB.begin()) {
345     --I;
346     if (I->isDebugValue())
347       continue;
348     if (!I->isBranch())
349       break;
350     if (!getBranchInfo(I).Target->isMBB())
351       break;
352     // Remove the branch.
353     I->eraseFromParent();
354     I = MBB.end();
355     ++Count;
356   }
357 
358   return Count;
359 }
360 
361 bool SystemZInstrInfo::
362 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
363   assert(Cond.size() == 2 && "Invalid condition");
364   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
365   return false;
366 }
367 
368 unsigned
369 SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
370                                MachineBasicBlock *FBB,
371                                ArrayRef<MachineOperand> Cond,
372                                DebugLoc DL) const {
373   // In this function we output 32-bit branches, which should always
374   // have enough range.  They can be shortened and relaxed by later code
375   // in the pipeline, if desired.
376 
377   // Shouldn't be a fall through.
378   assert(TBB && "InsertBranch must not be told to insert a fallthrough");
379   assert((Cond.size() == 2 || Cond.size() == 0) &&
380          "SystemZ branch conditions have one component!");
381 
382   if (Cond.empty()) {
383     // Unconditional branch?
384     assert(!FBB && "Unconditional branch with multiple successors!");
385     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
386     return 1;
387   }
388 
389   // Conditional branch.
390   unsigned Count = 0;
391   unsigned CCValid = Cond[0].getImm();
392   unsigned CCMask = Cond[1].getImm();
393   BuildMI(&MBB, DL, get(SystemZ::BRC))
394     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
395   ++Count;
396 
397   if (FBB) {
398     // Two-way Conditional branch. Insert the second branch.
399     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
400     ++Count;
401   }
402   return Count;
403 }
404 
405 bool SystemZInstrInfo::analyzeCompare(const MachineInstr *MI,
406                                       unsigned &SrcReg, unsigned &SrcReg2,
407                                       int &Mask, int &Value) const {
408   assert(MI->isCompare() && "Caller should have checked for a comparison");
409 
410   if (MI->getNumExplicitOperands() == 2 &&
411       MI->getOperand(0).isReg() &&
412       MI->getOperand(1).isImm()) {
413     SrcReg = MI->getOperand(0).getReg();
414     SrcReg2 = 0;
415     Value = MI->getOperand(1).getImm();
416     Mask = ~0;
417     return true;
418   }
419 
420   return false;
421 }
422 
423 // If Reg is a virtual register, return its definition, otherwise return null.
424 static MachineInstr *getDef(unsigned Reg,
425                             const MachineRegisterInfo *MRI) {
426   if (TargetRegisterInfo::isPhysicalRegister(Reg))
427     return nullptr;
428   return MRI->getUniqueVRegDef(Reg);
429 }
430 
431 // Return true if MI is a shift of type Opcode by Imm bits.
432 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) {
433   return (MI->getOpcode() == Opcode &&
434           !MI->getOperand(2).getReg() &&
435           MI->getOperand(3).getImm() == Imm);
436 }
437 
438 // If the destination of MI has no uses, delete it as dead.
439 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) {
440   if (MRI->use_nodbg_empty(MI->getOperand(0).getReg()))
441     MI->eraseFromParent();
442 }
443 
444 // Compare compares SrcReg against zero.  Check whether SrcReg contains
445 // the result of an IPM sequence whose input CC survives until Compare,
446 // and whether Compare is therefore redundant.  Delete it and return
447 // true if so.
448 static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg,
449                                   const MachineRegisterInfo *MRI,
450                                   const TargetRegisterInfo *TRI) {
451   MachineInstr *LGFR = nullptr;
452   MachineInstr *RLL = getDef(SrcReg, MRI);
453   if (RLL && RLL->getOpcode() == SystemZ::LGFR) {
454     LGFR = RLL;
455     RLL = getDef(LGFR->getOperand(1).getReg(), MRI);
456   }
457   if (!RLL || !isShift(RLL, SystemZ::RLL, 31))
458     return false;
459 
460   MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI);
461   if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC))
462     return false;
463 
464   MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI);
465   if (!IPM || IPM->getOpcode() != SystemZ::IPM)
466     return false;
467 
468   // Check that there are no assignments to CC between the IPM and Compare,
469   if (IPM->getParent() != Compare->getParent())
470     return false;
471   MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare;
472   for (++MBBI; MBBI != MBBE; ++MBBI) {
473     MachineInstr *MI = MBBI;
474     if (MI->modifiesRegister(SystemZ::CC, TRI))
475       return false;
476   }
477 
478   Compare->eraseFromParent();
479   if (LGFR)
480     eraseIfDead(LGFR, MRI);
481   eraseIfDead(RLL, MRI);
482   eraseIfDead(SRL, MRI);
483   eraseIfDead(IPM, MRI);
484 
485   return true;
486 }
487 
488 bool
489 SystemZInstrInfo::optimizeCompareInstr(MachineInstr *Compare,
490                                        unsigned SrcReg, unsigned SrcReg2,
491                                        int Mask, int Value,
492                                        const MachineRegisterInfo *MRI) const {
493   assert(!SrcReg2 && "Only optimizing constant comparisons so far");
494   bool IsLogical = (Compare->getDesc().TSFlags & SystemZII::IsLogical) != 0;
495   return Value == 0 && !IsLogical &&
496          removeIPMBasedCompare(Compare, SrcReg, MRI, &RI);
497 }
498 
499 // If Opcode is a move that has a conditional variant, return that variant,
500 // otherwise return 0.
501 static unsigned getConditionalMove(unsigned Opcode) {
502   switch (Opcode) {
503   case SystemZ::LR:  return SystemZ::LOCR;
504   case SystemZ::LGR: return SystemZ::LOCGR;
505   default:           return 0;
506   }
507 }
508 
509 bool SystemZInstrInfo::isPredicable(MachineInstr &MI) const {
510   unsigned Opcode = MI.getOpcode();
511   if (STI.hasLoadStoreOnCond() && getConditionalMove(Opcode))
512     return true;
513   if (Opcode == SystemZ::Return ||
514       Opcode == SystemZ::CallJG)
515     return true;
516   return false;
517 }
518 
519 bool SystemZInstrInfo::
520 isProfitableToIfCvt(MachineBasicBlock &MBB,
521                     unsigned NumCycles, unsigned ExtraPredCycles,
522                     BranchProbability Probability) const {
523   // Avoid using conditional returns at the end of a loop (since then
524   // we'd need to emit an unconditional branch to the beginning anyway,
525   // making the loop body longer).  This doesn't apply for low-probability
526   // loops (eg. compare-and-swap retry), so just decide based on branch
527   // probability instead of looping structure.
528   if (MBB.succ_empty() && Probability < BranchProbability(1, 8))
529     return false;
530   // For now only convert single instructions.
531   return NumCycles == 1;
532 }
533 
534 bool SystemZInstrInfo::
535 isProfitableToIfCvt(MachineBasicBlock &TMBB,
536                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
537                     MachineBasicBlock &FMBB,
538                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
539                     BranchProbability Probability) const {
540   // For now avoid converting mutually-exclusive cases.
541   return false;
542 }
543 
544 bool SystemZInstrInfo::
545 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
546                           BranchProbability Probability) const {
547   // For now only duplicate single instructions.
548   return NumCycles == 1;
549 }
550 
551 bool SystemZInstrInfo::PredicateInstruction(
552     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
553   assert(Pred.size() == 2 && "Invalid condition");
554   unsigned CCValid = Pred[0].getImm();
555   unsigned CCMask = Pred[1].getImm();
556   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
557   unsigned Opcode = MI.getOpcode();
558   if (STI.hasLoadStoreOnCond()) {
559     if (unsigned CondOpcode = getConditionalMove(Opcode)) {
560       MI.setDesc(get(CondOpcode));
561       MachineInstrBuilder(*MI.getParent()->getParent(), MI)
562           .addImm(CCValid)
563           .addImm(CCMask)
564           .addReg(SystemZ::CC, RegState::Implicit);
565       return true;
566     }
567   }
568   if (Opcode == SystemZ::Return) {
569     MI.setDesc(get(SystemZ::CondReturn));
570     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
571       .addImm(CCValid).addImm(CCMask)
572       .addReg(SystemZ::CC, RegState::Implicit);
573     return true;
574   }
575   if (Opcode == SystemZ::CallJG) {
576     const GlobalValue *Global = MI.getOperand(0).getGlobal();
577     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
578     MI.RemoveOperand(1);
579     MI.RemoveOperand(0);
580     MI.setDesc(get(SystemZ::CallBRCL));
581     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
582       .addImm(CCValid).addImm(CCMask)
583       .addGlobalAddress(Global)
584       .addRegMask(RegMask)
585       .addReg(SystemZ::CC, RegState::Implicit);
586     return true;
587   }
588   return false;
589 }
590 
591 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
592                                    MachineBasicBlock::iterator MBBI,
593                                    DebugLoc DL, unsigned DestReg,
594                                    unsigned SrcReg, bool KillSrc) const {
595   // Split 128-bit GPR moves into two 64-bit moves.  This handles ADDR128 too.
596   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
597     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
598                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
599     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
600                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
601     return;
602   }
603 
604   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
605     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc);
606     return;
607   }
608 
609   // Everything else needs only one instruction.
610   unsigned Opcode;
611   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
612     Opcode = SystemZ::LGR;
613   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
614     // For z13 we prefer LDR over LER to avoid partial register dependencies.
615     Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
616   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
617     Opcode = SystemZ::LDR;
618   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
619     Opcode = SystemZ::LXR;
620   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
621     Opcode = SystemZ::VLR32;
622   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
623     Opcode = SystemZ::VLR64;
624   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
625     Opcode = SystemZ::VLR;
626   else
627     llvm_unreachable("Impossible reg-to-reg copy");
628 
629   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
630     .addReg(SrcReg, getKillRegState(KillSrc));
631 }
632 
633 void SystemZInstrInfo::storeRegToStackSlot(
634     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
635     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
636     const TargetRegisterInfo *TRI) const {
637   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
638 
639   // Callers may expect a single instruction, so keep 128-bit moves
640   // together for now and lower them after register allocation.
641   unsigned LoadOpcode, StoreOpcode;
642   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
643   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
644                         .addReg(SrcReg, getKillRegState(isKill)),
645                     FrameIdx);
646 }
647 
648 void SystemZInstrInfo::loadRegFromStackSlot(
649     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
650     int FrameIdx, const TargetRegisterClass *RC,
651     const TargetRegisterInfo *TRI) const {
652   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
653 
654   // Callers may expect a single instruction, so keep 128-bit moves
655   // together for now and lower them after register allocation.
656   unsigned LoadOpcode, StoreOpcode;
657   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
658   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
659                     FrameIdx);
660 }
661 
662 // Return true if MI is a simple load or store with a 12-bit displacement
663 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
664 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
665   const MCInstrDesc &MCID = MI->getDesc();
666   return ((MCID.TSFlags & Flag) &&
667           isUInt<12>(MI->getOperand(2).getImm()) &&
668           MI->getOperand(3).getReg() == 0);
669 }
670 
671 namespace {
672 struct LogicOp {
673   LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {}
674   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
675     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
676 
677   explicit operator bool() const { return RegSize; }
678 
679   unsigned RegSize, ImmLSB, ImmSize;
680 };
681 } // end anonymous namespace
682 
683 static LogicOp interpretAndImmediate(unsigned Opcode) {
684   switch (Opcode) {
685   case SystemZ::NILMux: return LogicOp(32,  0, 16);
686   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
687   case SystemZ::NILL64: return LogicOp(64,  0, 16);
688   case SystemZ::NILH64: return LogicOp(64, 16, 16);
689   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
690   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
691   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
692   case SystemZ::NILF64: return LogicOp(64,  0, 32);
693   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
694   default:              return LogicOp();
695   }
696 }
697 
698 // Used to return from convertToThreeAddress after replacing two-address
699 // instruction OldMI with three-address instruction NewMI.
700 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
701                                                  MachineInstr *NewMI,
702                                                  LiveVariables *LV) {
703   if (LV) {
704     unsigned NumOps = OldMI->getNumOperands();
705     for (unsigned I = 1; I < NumOps; ++I) {
706       MachineOperand &Op = OldMI->getOperand(I);
707       if (Op.isReg() && Op.isKill())
708         LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI);
709     }
710   }
711   return NewMI;
712 }
713 
714 MachineInstr *
715 SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
716                                         MachineBasicBlock::iterator &MBBI,
717                                         LiveVariables *LV) const {
718   MachineInstr *MI = MBBI;
719   MachineBasicBlock *MBB = MI->getParent();
720   MachineFunction *MF = MBB->getParent();
721   MachineRegisterInfo &MRI = MF->getRegInfo();
722 
723   unsigned Opcode = MI->getOpcode();
724   unsigned NumOps = MI->getNumOperands();
725 
726   // Try to convert something like SLL into SLLK, if supported.
727   // We prefer to keep the two-operand form where possible both
728   // because it tends to be shorter and because some instructions
729   // have memory forms that can be used during spilling.
730   if (STI.hasDistinctOps()) {
731     MachineOperand &Dest = MI->getOperand(0);
732     MachineOperand &Src = MI->getOperand(1);
733     unsigned DestReg = Dest.getReg();
734     unsigned SrcReg = Src.getReg();
735     // AHIMux is only really a three-operand instruction when both operands
736     // are low registers.  Try to constrain both operands to be low if
737     // possible.
738     if (Opcode == SystemZ::AHIMux &&
739         TargetRegisterInfo::isVirtualRegister(DestReg) &&
740         TargetRegisterInfo::isVirtualRegister(SrcReg) &&
741         MRI.getRegClass(DestReg)->contains(SystemZ::R1L) &&
742         MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) {
743       MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass);
744       MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass);
745     }
746     int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
747     if (ThreeOperandOpcode >= 0) {
748       // Create three address instruction without adding the implicit
749       // operands. Those will instead be copied over from the original
750       // instruction by the loop below.
751       MachineInstrBuilder MIB(*MF,
752                               MF->CreateMachineInstr(get(ThreeOperandOpcode),
753                                     MI->getDebugLoc(), /*NoImplicit=*/true));
754       MIB.addOperand(Dest);
755       // Keep the kill state, but drop the tied flag.
756       MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
757       // Keep the remaining operands as-is.
758       for (unsigned I = 2; I < NumOps; ++I)
759         MIB.addOperand(MI->getOperand(I));
760       MBB->insert(MI, MIB);
761       return finishConvertToThreeAddress(MI, MIB, LV);
762     }
763   }
764 
765   // Try to convert an AND into an RISBG-type instruction.
766   if (LogicOp And = interpretAndImmediate(Opcode)) {
767     uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB;
768     // AND IMMEDIATE leaves the other bits of the register unchanged.
769     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
770     unsigned Start, End;
771     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
772       unsigned NewOpcode;
773       if (And.RegSize == 64) {
774         NewOpcode = SystemZ::RISBG;
775         // Prefer RISBGN if available, since it does not clobber CC.
776         if (STI.hasMiscellaneousExtensions())
777           NewOpcode = SystemZ::RISBGN;
778       } else {
779         NewOpcode = SystemZ::RISBMux;
780         Start &= 31;
781         End &= 31;
782       }
783       MachineOperand &Dest = MI->getOperand(0);
784       MachineOperand &Src = MI->getOperand(1);
785       MachineInstrBuilder MIB =
786         BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode))
787         .addOperand(Dest).addReg(0)
788         .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg())
789         .addImm(Start).addImm(End + 128).addImm(0);
790       return finishConvertToThreeAddress(MI, MIB, LV);
791     }
792   }
793   return nullptr;
794 }
795 
796 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
797     MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
798     MachineBasicBlock::iterator InsertPt, int FrameIndex) const {
799   const MachineFrameInfo *MFI = MF.getFrameInfo();
800   unsigned Size = MFI->getObjectSize(FrameIndex);
801   unsigned Opcode = MI->getOpcode();
802 
803   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
804     if ((Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
805         isInt<8>(MI->getOperand(2).getImm()) &&
806         !MI->getOperand(3).getReg()) {
807       // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
808       return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
809                      get(SystemZ::AGSI))
810           .addFrameIndex(FrameIndex)
811           .addImm(0)
812           .addImm(MI->getOperand(2).getImm());
813     }
814     return nullptr;
815   }
816 
817   // All other cases require a single operand.
818   if (Ops.size() != 1)
819     return nullptr;
820 
821   unsigned OpNum = Ops[0];
822   assert(Size == MF.getRegInfo()
823          .getRegClass(MI->getOperand(OpNum).getReg())->getSize() &&
824          "Invalid size combination");
825 
826   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) &&
827       OpNum == 0 &&
828       isInt<8>(MI->getOperand(2).getImm())) {
829     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
830     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
831     return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
832                    get(Opcode))
833         .addFrameIndex(FrameIndex)
834         .addImm(0)
835         .addImm(MI->getOperand(2).getImm());
836   }
837 
838   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
839     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
840     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
841     // If we're spilling the destination of an LDGR or LGDR, store the
842     // source register instead.
843     if (OpNum == 0) {
844       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
845       return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
846                      get(StoreOpcode))
847           .addOperand(MI->getOperand(1))
848           .addFrameIndex(FrameIndex)
849           .addImm(0)
850           .addReg(0);
851     }
852     // If we're spilling the source of an LDGR or LGDR, load the
853     // destination register instead.
854     if (OpNum == 1) {
855       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
856       unsigned Dest = MI->getOperand(0).getReg();
857       return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
858                      get(LoadOpcode), Dest)
859           .addFrameIndex(FrameIndex)
860           .addImm(0)
861           .addReg(0);
862     }
863   }
864 
865   // Look for cases where the source of a simple store or the destination
866   // of a simple load is being spilled.  Try to use MVC instead.
867   //
868   // Although MVC is in practice a fast choice in these cases, it is still
869   // logically a bytewise copy.  This means that we cannot use it if the
870   // load or store is volatile.  We also wouldn't be able to use MVC if
871   // the two memories partially overlap, but that case cannot occur here,
872   // because we know that one of the memories is a full frame index.
873   //
874   // For performance reasons, we also want to avoid using MVC if the addresses
875   // might be equal.  We don't worry about that case here, because spill slot
876   // coloring happens later, and because we have special code to remove
877   // MVCs that turn out to be redundant.
878   if (OpNum == 0 && MI->hasOneMemOperand()) {
879     MachineMemOperand *MMO = *MI->memoperands_begin();
880     if (MMO->getSize() == Size && !MMO->isVolatile()) {
881       // Handle conversion of loads.
882       if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) {
883         return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
884                        get(SystemZ::MVC))
885             .addFrameIndex(FrameIndex)
886             .addImm(0)
887             .addImm(Size)
888             .addOperand(MI->getOperand(1))
889             .addImm(MI->getOperand(2).getImm())
890             .addMemOperand(MMO);
891       }
892       // Handle conversion of stores.
893       if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) {
894         return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
895                        get(SystemZ::MVC))
896             .addOperand(MI->getOperand(1))
897             .addImm(MI->getOperand(2).getImm())
898             .addImm(Size)
899             .addFrameIndex(FrameIndex)
900             .addImm(0)
901             .addMemOperand(MMO);
902       }
903     }
904   }
905 
906   // If the spilled operand is the final one, try to change <INSN>R
907   // into <INSN>.
908   int MemOpcode = SystemZ::getMemOpcode(Opcode);
909   if (MemOpcode >= 0) {
910     unsigned NumOps = MI->getNumExplicitOperands();
911     if (OpNum == NumOps - 1) {
912       const MCInstrDesc &MemDesc = get(MemOpcode);
913       uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
914       assert(AccessBytes != 0 && "Size of access should be known");
915       assert(AccessBytes <= Size && "Access outside the frame index");
916       uint64_t Offset = Size - AccessBytes;
917       MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
918                                         MI->getDebugLoc(), get(MemOpcode));
919       for (unsigned I = 0; I < OpNum; ++I)
920         MIB.addOperand(MI->getOperand(I));
921       MIB.addFrameIndex(FrameIndex).addImm(Offset);
922       if (MemDesc.TSFlags & SystemZII::HasIndex)
923         MIB.addReg(0);
924       return MIB;
925     }
926   }
927 
928   return nullptr;
929 }
930 
931 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
932     MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
933     MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const {
934   return nullptr;
935 }
936 
937 bool
938 SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
939   switch (MI->getOpcode()) {
940   case SystemZ::L128:
941     splitMove(MI, SystemZ::LG);
942     return true;
943 
944   case SystemZ::ST128:
945     splitMove(MI, SystemZ::STG);
946     return true;
947 
948   case SystemZ::LX:
949     splitMove(MI, SystemZ::LD);
950     return true;
951 
952   case SystemZ::STX:
953     splitMove(MI, SystemZ::STD);
954     return true;
955 
956   case SystemZ::LBMux:
957     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
958     return true;
959 
960   case SystemZ::LHMux:
961     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
962     return true;
963 
964   case SystemZ::LLCRMux:
965     expandZExtPseudo(MI, SystemZ::LLCR, 8);
966     return true;
967 
968   case SystemZ::LLHRMux:
969     expandZExtPseudo(MI, SystemZ::LLHR, 16);
970     return true;
971 
972   case SystemZ::LLCMux:
973     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
974     return true;
975 
976   case SystemZ::LLHMux:
977     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
978     return true;
979 
980   case SystemZ::LMux:
981     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
982     return true;
983 
984   case SystemZ::STCMux:
985     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
986     return true;
987 
988   case SystemZ::STHMux:
989     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
990     return true;
991 
992   case SystemZ::STMux:
993     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
994     return true;
995 
996   case SystemZ::LHIMux:
997     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
998     return true;
999 
1000   case SystemZ::IIFMux:
1001     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1002     return true;
1003 
1004   case SystemZ::IILMux:
1005     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1006     return true;
1007 
1008   case SystemZ::IIHMux:
1009     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1010     return true;
1011 
1012   case SystemZ::NIFMux:
1013     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1014     return true;
1015 
1016   case SystemZ::NILMux:
1017     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1018     return true;
1019 
1020   case SystemZ::NIHMux:
1021     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1022     return true;
1023 
1024   case SystemZ::OIFMux:
1025     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1026     return true;
1027 
1028   case SystemZ::OILMux:
1029     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1030     return true;
1031 
1032   case SystemZ::OIHMux:
1033     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1034     return true;
1035 
1036   case SystemZ::XIFMux:
1037     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1038     return true;
1039 
1040   case SystemZ::TMLMux:
1041     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1042     return true;
1043 
1044   case SystemZ::TMHMux:
1045     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1046     return true;
1047 
1048   case SystemZ::AHIMux:
1049     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1050     return true;
1051 
1052   case SystemZ::AHIMuxK:
1053     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1054     return true;
1055 
1056   case SystemZ::AFIMux:
1057     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1058     return true;
1059 
1060   case SystemZ::CFIMux:
1061     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1062     return true;
1063 
1064   case SystemZ::CLFIMux:
1065     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1066     return true;
1067 
1068   case SystemZ::CMux:
1069     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1070     return true;
1071 
1072   case SystemZ::CLMux:
1073     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1074     return true;
1075 
1076   case SystemZ::RISBMux: {
1077     bool DestIsHigh = isHighReg(MI->getOperand(0).getReg());
1078     bool SrcIsHigh = isHighReg(MI->getOperand(2).getReg());
1079     if (SrcIsHigh == DestIsHigh)
1080       MI->setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1081     else {
1082       MI->setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1083       MI->getOperand(5).setImm(MI->getOperand(5).getImm() ^ 32);
1084     }
1085     return true;
1086   }
1087 
1088   case SystemZ::ADJDYNALLOC:
1089     splitAdjDynAlloc(MI);
1090     return true;
1091 
1092   default:
1093     return false;
1094   }
1095 }
1096 
1097 uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const {
1098   if (MI->getOpcode() == TargetOpcode::INLINEASM) {
1099     const MachineFunction *MF = MI->getParent()->getParent();
1100     const char *AsmStr = MI->getOperand(0).getSymbolName();
1101     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1102   }
1103   return MI->getDesc().getSize();
1104 }
1105 
1106 SystemZII::Branch
1107 SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const {
1108   switch (MI->getOpcode()) {
1109   case SystemZ::BR:
1110   case SystemZ::J:
1111   case SystemZ::JG:
1112     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1113                              SystemZ::CCMASK_ANY, &MI->getOperand(0));
1114 
1115   case SystemZ::BRC:
1116   case SystemZ::BRCL:
1117     return SystemZII::Branch(SystemZII::BranchNormal,
1118                              MI->getOperand(0).getImm(),
1119                              MI->getOperand(1).getImm(), &MI->getOperand(2));
1120 
1121   case SystemZ::BRCT:
1122     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1123                              SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
1124 
1125   case SystemZ::BRCTG:
1126     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1127                              SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
1128 
1129   case SystemZ::CIJ:
1130   case SystemZ::CRJ:
1131     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1132                              MI->getOperand(2).getImm(), &MI->getOperand(3));
1133 
1134   case SystemZ::CLIJ:
1135   case SystemZ::CLRJ:
1136     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1137                              MI->getOperand(2).getImm(), &MI->getOperand(3));
1138 
1139   case SystemZ::CGIJ:
1140   case SystemZ::CGRJ:
1141     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1142                              MI->getOperand(2).getImm(), &MI->getOperand(3));
1143 
1144   case SystemZ::CLGIJ:
1145   case SystemZ::CLGRJ:
1146     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1147                              MI->getOperand(2).getImm(), &MI->getOperand(3));
1148 
1149   default:
1150     llvm_unreachable("Unrecognized branch opcode");
1151   }
1152 }
1153 
1154 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1155                                            unsigned &LoadOpcode,
1156                                            unsigned &StoreOpcode) const {
1157   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1158     LoadOpcode = SystemZ::L;
1159     StoreOpcode = SystemZ::ST;
1160   } else if (RC == &SystemZ::GRH32BitRegClass) {
1161     LoadOpcode = SystemZ::LFH;
1162     StoreOpcode = SystemZ::STFH;
1163   } else if (RC == &SystemZ::GRX32BitRegClass) {
1164     LoadOpcode = SystemZ::LMux;
1165     StoreOpcode = SystemZ::STMux;
1166   } else if (RC == &SystemZ::GR64BitRegClass ||
1167              RC == &SystemZ::ADDR64BitRegClass) {
1168     LoadOpcode = SystemZ::LG;
1169     StoreOpcode = SystemZ::STG;
1170   } else if (RC == &SystemZ::GR128BitRegClass ||
1171              RC == &SystemZ::ADDR128BitRegClass) {
1172     LoadOpcode = SystemZ::L128;
1173     StoreOpcode = SystemZ::ST128;
1174   } else if (RC == &SystemZ::FP32BitRegClass) {
1175     LoadOpcode = SystemZ::LE;
1176     StoreOpcode = SystemZ::STE;
1177   } else if (RC == &SystemZ::FP64BitRegClass) {
1178     LoadOpcode = SystemZ::LD;
1179     StoreOpcode = SystemZ::STD;
1180   } else if (RC == &SystemZ::FP128BitRegClass) {
1181     LoadOpcode = SystemZ::LX;
1182     StoreOpcode = SystemZ::STX;
1183   } else if (RC == &SystemZ::VR32BitRegClass) {
1184     LoadOpcode = SystemZ::VL32;
1185     StoreOpcode = SystemZ::VST32;
1186   } else if (RC == &SystemZ::VR64BitRegClass) {
1187     LoadOpcode = SystemZ::VL64;
1188     StoreOpcode = SystemZ::VST64;
1189   } else if (RC == &SystemZ::VF128BitRegClass ||
1190              RC == &SystemZ::VR128BitRegClass) {
1191     LoadOpcode = SystemZ::VL;
1192     StoreOpcode = SystemZ::VST;
1193   } else
1194     llvm_unreachable("Unsupported regclass to load or store");
1195 }
1196 
1197 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1198                                               int64_t Offset) const {
1199   const MCInstrDesc &MCID = get(Opcode);
1200   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1201   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1202     // Get the instruction to use for unsigned 12-bit displacements.
1203     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1204     if (Disp12Opcode >= 0)
1205       return Disp12Opcode;
1206 
1207     // All address-related instructions can use unsigned 12-bit
1208     // displacements.
1209     return Opcode;
1210   }
1211   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1212     // Get the instruction to use for signed 20-bit displacements.
1213     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1214     if (Disp20Opcode >= 0)
1215       return Disp20Opcode;
1216 
1217     // Check whether Opcode allows signed 20-bit displacements.
1218     if (MCID.TSFlags & SystemZII::Has20BitOffset)
1219       return Opcode;
1220   }
1221   return 0;
1222 }
1223 
1224 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1225   switch (Opcode) {
1226   case SystemZ::L:      return SystemZ::LT;
1227   case SystemZ::LY:     return SystemZ::LT;
1228   case SystemZ::LG:     return SystemZ::LTG;
1229   case SystemZ::LGF:    return SystemZ::LTGF;
1230   case SystemZ::LR:     return SystemZ::LTR;
1231   case SystemZ::LGFR:   return SystemZ::LTGFR;
1232   case SystemZ::LGR:    return SystemZ::LTGR;
1233   case SystemZ::LER:    return SystemZ::LTEBR;
1234   case SystemZ::LDR:    return SystemZ::LTDBR;
1235   case SystemZ::LXR:    return SystemZ::LTXBR;
1236   case SystemZ::LCDFR:  return SystemZ::LCDBR;
1237   case SystemZ::LPDFR:  return SystemZ::LPDBR;
1238   case SystemZ::LNDFR:  return SystemZ::LNDBR;
1239   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1240   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1241   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1242   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1243   // actually use the condition code, we may turn it back into RISGB.
1244   // Note that RISBG is not really a "load-and-test" instruction,
1245   // but sets the same condition code values, so is OK to use here.
1246   case SystemZ::RISBGN: return SystemZ::RISBG;
1247   default:              return 0;
1248   }
1249 }
1250 
1251 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1252 // have already been filtered out.  Store the first set bit in LSB and
1253 // the number of set bits in Length if so.
1254 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1255   unsigned First = findFirstSet(Mask);
1256   uint64_t Top = (Mask >> First) + 1;
1257   if ((Top & -Top) == Top) {
1258     LSB = First;
1259     Length = findFirstSet(Top);
1260     return true;
1261   }
1262   return false;
1263 }
1264 
1265 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1266                                    unsigned &Start, unsigned &End) const {
1267   // Reject trivial all-zero masks.
1268   Mask &= allOnes(BitSize);
1269   if (Mask == 0)
1270     return false;
1271 
1272   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1273   // the msb and End specifies the index of the lsb.
1274   unsigned LSB, Length;
1275   if (isStringOfOnes(Mask, LSB, Length)) {
1276     Start = 63 - (LSB + Length - 1);
1277     End = 63 - LSB;
1278     return true;
1279   }
1280 
1281   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1282   // of the low 1s and End specifies the lsb of the high 1s.
1283   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1284     assert(LSB > 0 && "Bottom bit must be set");
1285     assert(LSB + Length < BitSize && "Top bit must be set");
1286     Start = 63 - (LSB - 1);
1287     End = 63 - (LSB + Length);
1288     return true;
1289   }
1290 
1291   return false;
1292 }
1293 
1294 unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode,
1295                                                SystemZII::CompareAndBranchType Type,
1296                                                const MachineInstr *MI) const {
1297   switch (Opcode) {
1298   case SystemZ::CHI:
1299   case SystemZ::CGHI:
1300     if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1301       return 0;
1302     break;
1303   case SystemZ::CLFI:
1304   case SystemZ::CLGFI:
1305     if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1306       return 0;
1307   }
1308   switch (Type) {
1309   case SystemZII::CompareAndBranch:
1310     switch (Opcode) {
1311     case SystemZ::CR:
1312       return SystemZ::CRJ;
1313     case SystemZ::CGR:
1314       return SystemZ::CGRJ;
1315     case SystemZ::CHI:
1316       return SystemZ::CIJ;
1317     case SystemZ::CGHI:
1318       return SystemZ::CGIJ;
1319     case SystemZ::CLR:
1320       return SystemZ::CLRJ;
1321     case SystemZ::CLGR:
1322       return SystemZ::CLGRJ;
1323     case SystemZ::CLFI:
1324       return SystemZ::CLIJ;
1325     case SystemZ::CLGFI:
1326       return SystemZ::CLGIJ;
1327     default:
1328       return 0;
1329     }
1330   case SystemZII::CompareAndReturn:
1331     switch (Opcode) {
1332     case SystemZ::CR:
1333       return SystemZ::CRBReturn;
1334     case SystemZ::CGR:
1335       return SystemZ::CGRBReturn;
1336     case SystemZ::CHI:
1337       return SystemZ::CIBReturn;
1338     case SystemZ::CGHI:
1339       return SystemZ::CGIBReturn;
1340     case SystemZ::CLR:
1341       return SystemZ::CLRBReturn;
1342     case SystemZ::CLGR:
1343       return SystemZ::CLGRBReturn;
1344     case SystemZ::CLFI:
1345       return SystemZ::CLIBReturn;
1346     case SystemZ::CLGFI:
1347       return SystemZ::CLGIBReturn;
1348     default:
1349       return 0;
1350     }
1351   }
1352   return 0;
1353 }
1354 
1355 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1356                                      MachineBasicBlock::iterator MBBI,
1357                                      unsigned Reg, uint64_t Value) const {
1358   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1359   unsigned Opcode;
1360   if (isInt<16>(Value))
1361     Opcode = SystemZ::LGHI;
1362   else if (SystemZ::isImmLL(Value))
1363     Opcode = SystemZ::LLILL;
1364   else if (SystemZ::isImmLH(Value)) {
1365     Opcode = SystemZ::LLILH;
1366     Value >>= 16;
1367   } else {
1368     assert(isInt<32>(Value) && "Huge values not handled yet");
1369     Opcode = SystemZ::LGFI;
1370   }
1371   BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1372 }
1373