1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SystemZ implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZInstrInfo.h"
15 #include "MCTargetDesc/SystemZMCTargetDesc.h"
16 #include "SystemZ.h"
17 #include "SystemZInstrBuilder.h"
18 #include "SystemZSubtarget.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCRegisterInfo.h"
35 #include "llvm/Support/BranchProbability.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42 
43 using namespace llvm;
44 
45 #define GET_INSTRINFO_CTOR_DTOR
46 #define GET_INSTRMAP_INFO
47 #include "SystemZGenInstrInfo.inc"
48 
49 #define DEBUG_TYPE "systemz-II"
50 STATISTIC(LOCRMuxJumps, "Number of LOCRMux jump-sequences (lower is better)");
51 
52 // Return a mask with Count low bits set.
53 static uint64_t allOnes(unsigned int Count) {
54   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
55 }
56 
57 // Reg should be a 32-bit GPR.  Return true if it is a high register rather
58 // than a low register.
59 static bool isHighReg(unsigned int Reg) {
60   if (SystemZ::GRH32BitRegClass.contains(Reg))
61     return true;
62   assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32");
63   return false;
64 }
65 
66 // Pin the vtable to this file.
67 void SystemZInstrInfo::anchor() {}
68 
69 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
70   : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
71     RI(), STI(sti) {
72 }
73 
74 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
75 // each having the opcode given by NewOpcode.
76 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
77                                  unsigned NewOpcode) const {
78   MachineBasicBlock *MBB = MI->getParent();
79   MachineFunction &MF = *MBB->getParent();
80 
81   // Get two load or store instructions.  Use the original instruction for one
82   // of them (arbitrarily the second here) and create a clone for the other.
83   MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
84   MBB->insert(MI, EarlierMI);
85 
86   // Set up the two 64-bit registers and remember super reg and its flags.
87   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
88   MachineOperand &LowRegOp = MI->getOperand(0);
89   unsigned Reg128 = LowRegOp.getReg();
90   unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
91   unsigned Reg128Undef  = getUndefRegState(LowRegOp.isUndef());
92   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
93   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
94 
95   if (MI->mayStore()) {
96     // Add implicit uses of the super register in case one of the subregs is
97     // undefined. We could track liveness and skip storing an undefined
98     // subreg, but this is hopefully rare (discovered with llvm-stress).
99     // If Reg128 was killed, set kill flag on MI.
100     unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
101     MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
102     MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
103   }
104 
105   // The address in the first (high) instruction is already correct.
106   // Adjust the offset in the second (low) instruction.
107   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
108   MachineOperand &LowOffsetOp = MI->getOperand(2);
109   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
110 
111   // Clear the kill flags on the registers in the first instruction.
112   if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
113     EarlierMI->getOperand(0).setIsKill(false);
114   EarlierMI->getOperand(1).setIsKill(false);
115   EarlierMI->getOperand(3).setIsKill(false);
116 
117   // Set the opcodes.
118   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
119   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
120   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
121 
122   EarlierMI->setDesc(get(HighOpcode));
123   MI->setDesc(get(LowOpcode));
124 }
125 
126 // Split ADJDYNALLOC instruction MI.
127 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
128   MachineBasicBlock *MBB = MI->getParent();
129   MachineFunction &MF = *MBB->getParent();
130   MachineFrameInfo &MFFrame = MF.getFrameInfo();
131   MachineOperand &OffsetMO = MI->getOperand(2);
132 
133   uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
134                      SystemZMC::CallFrameSize +
135                      OffsetMO.getImm());
136   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
137   assert(NewOpcode && "No support for huge argument lists yet");
138   MI->setDesc(get(NewOpcode));
139   OffsetMO.setImm(Offset);
140 }
141 
142 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
143 // if the first operand is a low GR32 and HighOpcode if the first operand
144 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
145 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
146 // MI has the same kind of operand as LowOpcode, so needs to be converted
147 // if HighOpcode is used.
148 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
149                                       unsigned HighOpcode,
150                                       bool ConvertHigh) const {
151   unsigned Reg = MI.getOperand(0).getReg();
152   bool IsHigh = isHighReg(Reg);
153   MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
154   if (IsHigh && ConvertHigh)
155     MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
156 }
157 
158 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
159 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
160 // followed by HighOpcode or LowOpcode, depending on whether the target
161 // is a high or low GR32.
162 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
163                                        unsigned LowOpcodeK,
164                                        unsigned HighOpcode) const {
165   unsigned DestReg = MI.getOperand(0).getReg();
166   unsigned SrcReg = MI.getOperand(1).getReg();
167   bool DestIsHigh = isHighReg(DestReg);
168   bool SrcIsHigh = isHighReg(SrcReg);
169   if (!DestIsHigh && !SrcIsHigh)
170     MI.setDesc(get(LowOpcodeK));
171   else {
172     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
173                   SystemZ::LR, 32, MI.getOperand(1).isKill(),
174                   MI.getOperand(1).isUndef());
175     MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
176     MI.getOperand(1).setReg(DestReg);
177     MI.tieOperands(0, 1);
178   }
179 }
180 
181 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
182 // if the first operand is a low GR32 and HighOpcode if the first operand
183 // is a high GR32.
184 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
185                                        unsigned HighOpcode) const {
186   unsigned Reg = MI.getOperand(0).getReg();
187   unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode,
188                                        MI.getOperand(2).getImm());
189   MI.setDesc(get(Opcode));
190 }
191 
192 // MI is a load-on-condition pseudo instruction with a single register
193 // (source or destination) operand.  Replace it with LowOpcode if the
194 // register is a low GR32 and HighOpcode if the register is a high GR32.
195 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
196                                        unsigned HighOpcode) const {
197   unsigned Reg = MI.getOperand(0).getReg();
198   unsigned Opcode = isHighReg(Reg) ? HighOpcode : LowOpcode;
199   MI.setDesc(get(Opcode));
200 }
201 
202 // MI is a load-register-on-condition pseudo instruction.  Replace it with
203 // LowOpcode if source and destination are both low GR32s and HighOpcode if
204 // source and destination are both high GR32s.
205 void SystemZInstrInfo::expandLOCRPseudo(MachineInstr &MI, unsigned LowOpcode,
206                                         unsigned HighOpcode) const {
207   unsigned DestReg = MI.getOperand(0).getReg();
208   unsigned SrcReg = MI.getOperand(2).getReg();
209   bool DestIsHigh = isHighReg(DestReg);
210   bool SrcIsHigh = isHighReg(SrcReg);
211 
212   if (!DestIsHigh && !SrcIsHigh)
213     MI.setDesc(get(LowOpcode));
214   else if (DestIsHigh && SrcIsHigh)
215     MI.setDesc(get(HighOpcode));
216   else
217     LOCRMuxJumps++;
218 
219   // If we were unable to implement the pseudo with a single instruction, we
220   // need to convert it back into a branch sequence.  This cannot be done here
221   // since the caller of expandPostRAPseudo does not handle changes to the CFG
222   // correctly.  This change is defered to the SystemZExpandPseudo pass.
223 }
224 
225 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
226 // of one GRX32 into another.  Replace it with LowOpcode if both operands
227 // are low registers, otherwise use RISB[LH]G.
228 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
229                                         unsigned Size) const {
230   MachineInstrBuilder MIB =
231     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
232                MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
233                Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
234 
235   // Keep the remaining operands as-is.
236   for (unsigned I = 2; I < MI.getNumOperands(); ++I)
237     MIB.add(MI.getOperand(I));
238 
239   MI.eraseFromParent();
240 }
241 
242 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
243   MachineBasicBlock *MBB = MI->getParent();
244   MachineFunction &MF = *MBB->getParent();
245   const unsigned Reg64 = MI->getOperand(0).getReg();
246   const unsigned Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
247 
248   // EAR can only load the low subregister so us a shift for %a0 to produce
249   // the GR containing %a0 and %a1.
250 
251   // ear <reg>, %a0
252   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
253     .addReg(SystemZ::A0)
254     .addReg(Reg64, RegState::ImplicitDefine);
255 
256   // sllg <reg>, <reg>, 32
257   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
258     .addReg(Reg64)
259     .addReg(0)
260     .addImm(32);
261 
262   // ear <reg>, %a1
263   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
264     .addReg(SystemZ::A1);
265 
266   // lg <reg>, 40(<reg>)
267   MI->setDesc(get(SystemZ::LG));
268   MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
269 }
270 
271 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
272 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
273 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
274 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
275 // KillSrc is true if this move is the last use of SrcReg.
276 MachineInstrBuilder
277 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
278                                 MachineBasicBlock::iterator MBBI,
279                                 const DebugLoc &DL, unsigned DestReg,
280                                 unsigned SrcReg, unsigned LowLowOpcode,
281                                 unsigned Size, bool KillSrc,
282                                 bool UndefSrc) const {
283   unsigned Opcode;
284   bool DestIsHigh = isHighReg(DestReg);
285   bool SrcIsHigh = isHighReg(SrcReg);
286   if (DestIsHigh && SrcIsHigh)
287     Opcode = SystemZ::RISBHH;
288   else if (DestIsHigh && !SrcIsHigh)
289     Opcode = SystemZ::RISBHL;
290   else if (!DestIsHigh && SrcIsHigh)
291     Opcode = SystemZ::RISBLH;
292   else {
293     return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
294       .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
295   }
296   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
297   return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
298     .addReg(DestReg, RegState::Undef)
299     .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
300     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
301 }
302 
303 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
304                                                        bool NewMI,
305                                                        unsigned OpIdx1,
306                                                        unsigned OpIdx2) const {
307   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
308     if (NewMI)
309       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
310     return MI;
311   };
312 
313   switch (MI.getOpcode()) {
314   case SystemZ::LOCRMux:
315   case SystemZ::LOCFHR:
316   case SystemZ::LOCR:
317   case SystemZ::LOCGR: {
318     auto &WorkingMI = cloneIfNew(MI);
319     // Invert condition.
320     unsigned CCValid = WorkingMI.getOperand(3).getImm();
321     unsigned CCMask = WorkingMI.getOperand(4).getImm();
322     WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
323     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
324                                                    OpIdx1, OpIdx2);
325   }
326   default:
327     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
328   }
329 }
330 
331 // If MI is a simple load or store for a frame object, return the register
332 // it loads or stores and set FrameIndex to the index of the frame object.
333 // Return 0 otherwise.
334 //
335 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
336 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
337                         unsigned Flag) {
338   const MCInstrDesc &MCID = MI.getDesc();
339   if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
340       MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
341     FrameIndex = MI.getOperand(1).getIndex();
342     return MI.getOperand(0).getReg();
343   }
344   return 0;
345 }
346 
347 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
348                                                int &FrameIndex) const {
349   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
350 }
351 
352 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
353                                               int &FrameIndex) const {
354   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
355 }
356 
357 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
358                                        int &DestFrameIndex,
359                                        int &SrcFrameIndex) const {
360   // Check for MVC 0(Length,FI1),0(FI2)
361   const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
362   if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
363       MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
364       MI.getOperand(4).getImm() != 0)
365     return false;
366 
367   // Check that Length covers the full slots.
368   int64_t Length = MI.getOperand(2).getImm();
369   unsigned FI1 = MI.getOperand(0).getIndex();
370   unsigned FI2 = MI.getOperand(3).getIndex();
371   if (MFI.getObjectSize(FI1) != Length ||
372       MFI.getObjectSize(FI2) != Length)
373     return false;
374 
375   DestFrameIndex = FI1;
376   SrcFrameIndex = FI2;
377   return true;
378 }
379 
380 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
381                                      MachineBasicBlock *&TBB,
382                                      MachineBasicBlock *&FBB,
383                                      SmallVectorImpl<MachineOperand> &Cond,
384                                      bool AllowModify) const {
385   // Most of the code and comments here are boilerplate.
386 
387   // Start from the bottom of the block and work up, examining the
388   // terminator instructions.
389   MachineBasicBlock::iterator I = MBB.end();
390   while (I != MBB.begin()) {
391     --I;
392     if (I->isDebugValue())
393       continue;
394 
395     // Working from the bottom, when we see a non-terminator instruction, we're
396     // done.
397     if (!isUnpredicatedTerminator(*I))
398       break;
399 
400     // A terminator that isn't a branch can't easily be handled by this
401     // analysis.
402     if (!I->isBranch())
403       return true;
404 
405     // Can't handle indirect branches.
406     SystemZII::Branch Branch(getBranchInfo(*I));
407     if (!Branch.Target->isMBB())
408       return true;
409 
410     // Punt on compound branches.
411     if (Branch.Type != SystemZII::BranchNormal)
412       return true;
413 
414     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
415       // Handle unconditional branches.
416       if (!AllowModify) {
417         TBB = Branch.Target->getMBB();
418         continue;
419       }
420 
421       // If the block has any instructions after a JMP, delete them.
422       while (std::next(I) != MBB.end())
423         std::next(I)->eraseFromParent();
424 
425       Cond.clear();
426       FBB = nullptr;
427 
428       // Delete the JMP if it's equivalent to a fall-through.
429       if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
430         TBB = nullptr;
431         I->eraseFromParent();
432         I = MBB.end();
433         continue;
434       }
435 
436       // TBB is used to indicate the unconditinal destination.
437       TBB = Branch.Target->getMBB();
438       continue;
439     }
440 
441     // Working from the bottom, handle the first conditional branch.
442     if (Cond.empty()) {
443       // FIXME: add X86-style branch swap
444       FBB = TBB;
445       TBB = Branch.Target->getMBB();
446       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
447       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
448       continue;
449     }
450 
451     // Handle subsequent conditional branches.
452     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
453 
454     // Only handle the case where all conditional branches branch to the same
455     // destination.
456     if (TBB != Branch.Target->getMBB())
457       return true;
458 
459     // If the conditions are the same, we can leave them alone.
460     unsigned OldCCValid = Cond[0].getImm();
461     unsigned OldCCMask = Cond[1].getImm();
462     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
463       continue;
464 
465     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
466     return false;
467   }
468 
469   return false;
470 }
471 
472 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
473                                         int *BytesRemoved) const {
474   assert(!BytesRemoved && "code size not handled");
475 
476   // Most of the code and comments here are boilerplate.
477   MachineBasicBlock::iterator I = MBB.end();
478   unsigned Count = 0;
479 
480   while (I != MBB.begin()) {
481     --I;
482     if (I->isDebugValue())
483       continue;
484     if (!I->isBranch())
485       break;
486     if (!getBranchInfo(*I).Target->isMBB())
487       break;
488     // Remove the branch.
489     I->eraseFromParent();
490     I = MBB.end();
491     ++Count;
492   }
493 
494   return Count;
495 }
496 
497 bool SystemZInstrInfo::
498 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
499   assert(Cond.size() == 2 && "Invalid condition");
500   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
501   return false;
502 }
503 
504 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
505                                         MachineBasicBlock *TBB,
506                                         MachineBasicBlock *FBB,
507                                         ArrayRef<MachineOperand> Cond,
508                                         const DebugLoc &DL,
509                                         int *BytesAdded) const {
510   // In this function we output 32-bit branches, which should always
511   // have enough range.  They can be shortened and relaxed by later code
512   // in the pipeline, if desired.
513 
514   // Shouldn't be a fall through.
515   assert(TBB && "insertBranch must not be told to insert a fallthrough");
516   assert((Cond.size() == 2 || Cond.size() == 0) &&
517          "SystemZ branch conditions have one component!");
518   assert(!BytesAdded && "code size not handled");
519 
520   if (Cond.empty()) {
521     // Unconditional branch?
522     assert(!FBB && "Unconditional branch with multiple successors!");
523     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
524     return 1;
525   }
526 
527   // Conditional branch.
528   unsigned Count = 0;
529   unsigned CCValid = Cond[0].getImm();
530   unsigned CCMask = Cond[1].getImm();
531   BuildMI(&MBB, DL, get(SystemZ::BRC))
532     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
533   ++Count;
534 
535   if (FBB) {
536     // Two-way Conditional branch. Insert the second branch.
537     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
538     ++Count;
539   }
540   return Count;
541 }
542 
543 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
544                                       unsigned &SrcReg2, int &Mask,
545                                       int &Value) const {
546   assert(MI.isCompare() && "Caller should have checked for a comparison");
547 
548   if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
549       MI.getOperand(1).isImm()) {
550     SrcReg = MI.getOperand(0).getReg();
551     SrcReg2 = 0;
552     Value = MI.getOperand(1).getImm();
553     Mask = ~0;
554     return true;
555   }
556 
557   return false;
558 }
559 
560 // If Reg is a virtual register, return its definition, otherwise return null.
561 static MachineInstr *getDef(unsigned Reg,
562                             const MachineRegisterInfo *MRI) {
563   if (TargetRegisterInfo::isPhysicalRegister(Reg))
564     return nullptr;
565   return MRI->getUniqueVRegDef(Reg);
566 }
567 
568 // Return true if MI is a shift of type Opcode by Imm bits.
569 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) {
570   return (MI->getOpcode() == Opcode &&
571           !MI->getOperand(2).getReg() &&
572           MI->getOperand(3).getImm() == Imm);
573 }
574 
575 // If the destination of MI has no uses, delete it as dead.
576 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) {
577   if (MRI->use_nodbg_empty(MI->getOperand(0).getReg()))
578     MI->eraseFromParent();
579 }
580 
581 // Compare compares SrcReg against zero.  Check whether SrcReg contains
582 // the result of an IPM sequence whose input CC survives until Compare,
583 // and whether Compare is therefore redundant.  Delete it and return
584 // true if so.
585 static bool removeIPMBasedCompare(MachineInstr &Compare, unsigned SrcReg,
586                                   const MachineRegisterInfo *MRI,
587                                   const TargetRegisterInfo *TRI) {
588   MachineInstr *LGFR = nullptr;
589   MachineInstr *RLL = getDef(SrcReg, MRI);
590   if (RLL && RLL->getOpcode() == SystemZ::LGFR) {
591     LGFR = RLL;
592     RLL = getDef(LGFR->getOperand(1).getReg(), MRI);
593   }
594   if (!RLL || !isShift(RLL, SystemZ::RLL, 31))
595     return false;
596 
597   MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI);
598   if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC))
599     return false;
600 
601   MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI);
602   if (!IPM || IPM->getOpcode() != SystemZ::IPM)
603     return false;
604 
605   // Check that there are no assignments to CC between the IPM and Compare,
606   if (IPM->getParent() != Compare.getParent())
607     return false;
608   MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare.getIterator();
609   for (++MBBI; MBBI != MBBE; ++MBBI) {
610     MachineInstr &MI = *MBBI;
611     if (MI.modifiesRegister(SystemZ::CC, TRI))
612       return false;
613   }
614 
615   Compare.eraseFromParent();
616   if (LGFR)
617     eraseIfDead(LGFR, MRI);
618   eraseIfDead(RLL, MRI);
619   eraseIfDead(SRL, MRI);
620   eraseIfDead(IPM, MRI);
621 
622   return true;
623 }
624 
625 bool SystemZInstrInfo::optimizeCompareInstr(
626     MachineInstr &Compare, unsigned SrcReg, unsigned SrcReg2, int Mask,
627     int Value, const MachineRegisterInfo *MRI) const {
628   assert(!SrcReg2 && "Only optimizing constant comparisons so far");
629   bool IsLogical = (Compare.getDesc().TSFlags & SystemZII::IsLogical) != 0;
630   return Value == 0 && !IsLogical &&
631          removeIPMBasedCompare(Compare, SrcReg, MRI, &RI);
632 }
633 
634 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
635                                        ArrayRef<MachineOperand> Pred,
636                                        unsigned TrueReg, unsigned FalseReg,
637                                        int &CondCycles, int &TrueCycles,
638                                        int &FalseCycles) const {
639   // Not all subtargets have LOCR instructions.
640   if (!STI.hasLoadStoreOnCond())
641     return false;
642   if (Pred.size() != 2)
643     return false;
644 
645   // Check register classes.
646   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
647   const TargetRegisterClass *RC =
648     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
649   if (!RC)
650     return false;
651 
652   // We have LOCR instructions for 32 and 64 bit general purpose registers.
653   if ((STI.hasLoadStoreOnCond2() &&
654        SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
655       SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
656       SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
657     CondCycles = 2;
658     TrueCycles = 2;
659     FalseCycles = 2;
660     return true;
661   }
662 
663   // Can't do anything else.
664   return false;
665 }
666 
667 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
668                                     MachineBasicBlock::iterator I,
669                                     const DebugLoc &DL, unsigned DstReg,
670                                     ArrayRef<MachineOperand> Pred,
671                                     unsigned TrueReg,
672                                     unsigned FalseReg) const {
673   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
674   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
675 
676   assert(Pred.size() == 2 && "Invalid condition");
677   unsigned CCValid = Pred[0].getImm();
678   unsigned CCMask = Pred[1].getImm();
679 
680   unsigned Opc;
681   if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
682     if (STI.hasLoadStoreOnCond2())
683       Opc = SystemZ::LOCRMux;
684     else {
685       Opc = SystemZ::LOCR;
686       MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
687       unsigned TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
688       unsigned FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
689       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
690       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
691       TrueReg = TReg;
692       FalseReg = FReg;
693     }
694   } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC))
695     Opc = SystemZ::LOCGR;
696   else
697     llvm_unreachable("Invalid register class");
698 
699   BuildMI(MBB, I, DL, get(Opc), DstReg)
700     .addReg(FalseReg).addReg(TrueReg)
701     .addImm(CCValid).addImm(CCMask);
702 }
703 
704 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
705                                      unsigned Reg,
706                                      MachineRegisterInfo *MRI) const {
707   unsigned DefOpc = DefMI.getOpcode();
708   if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
709       DefOpc != SystemZ::LGHI)
710     return false;
711   if (DefMI.getOperand(0).getReg() != Reg)
712     return false;
713   int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
714 
715   unsigned UseOpc = UseMI.getOpcode();
716   unsigned NewUseOpc;
717   unsigned UseIdx;
718   int CommuteIdx = -1;
719   switch (UseOpc) {
720   case SystemZ::LOCRMux:
721     if (!STI.hasLoadStoreOnCond2())
722       return false;
723     NewUseOpc = SystemZ::LOCHIMux;
724     if (UseMI.getOperand(2).getReg() == Reg)
725       UseIdx = 2;
726     else if (UseMI.getOperand(1).getReg() == Reg)
727       UseIdx = 2, CommuteIdx = 1;
728     else
729       return false;
730     break;
731   case SystemZ::LOCGR:
732     if (!STI.hasLoadStoreOnCond2())
733       return false;
734     NewUseOpc = SystemZ::LOCGHI;
735     if (UseMI.getOperand(2).getReg() == Reg)
736       UseIdx = 2;
737     else if (UseMI.getOperand(1).getReg() == Reg)
738       UseIdx = 2, CommuteIdx = 1;
739     else
740       return false;
741     break;
742   default:
743     return false;
744   }
745 
746   if (CommuteIdx != -1)
747     if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
748       return false;
749 
750   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
751   UseMI.setDesc(get(NewUseOpc));
752   UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
753   if (DeleteDef)
754     DefMI.eraseFromParent();
755 
756   return true;
757 }
758 
759 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
760   unsigned Opcode = MI.getOpcode();
761   if (Opcode == SystemZ::Return ||
762       Opcode == SystemZ::Trap ||
763       Opcode == SystemZ::CallJG ||
764       Opcode == SystemZ::CallBR)
765     return true;
766   return false;
767 }
768 
769 bool SystemZInstrInfo::
770 isProfitableToIfCvt(MachineBasicBlock &MBB,
771                     unsigned NumCycles, unsigned ExtraPredCycles,
772                     BranchProbability Probability) const {
773   // Avoid using conditional returns at the end of a loop (since then
774   // we'd need to emit an unconditional branch to the beginning anyway,
775   // making the loop body longer).  This doesn't apply for low-probability
776   // loops (eg. compare-and-swap retry), so just decide based on branch
777   // probability instead of looping structure.
778   // However, since Compare and Trap instructions cost the same as a regular
779   // Compare instruction, we should allow the if conversion to convert this
780   // into a Conditional Compare regardless of the branch probability.
781   if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
782       MBB.succ_empty() && Probability < BranchProbability(1, 8))
783     return false;
784   // For now only convert single instructions.
785   return NumCycles == 1;
786 }
787 
788 bool SystemZInstrInfo::
789 isProfitableToIfCvt(MachineBasicBlock &TMBB,
790                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
791                     MachineBasicBlock &FMBB,
792                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
793                     BranchProbability Probability) const {
794   // For now avoid converting mutually-exclusive cases.
795   return false;
796 }
797 
798 bool SystemZInstrInfo::
799 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
800                           BranchProbability Probability) const {
801   // For now only duplicate single instructions.
802   return NumCycles == 1;
803 }
804 
805 bool SystemZInstrInfo::PredicateInstruction(
806     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
807   assert(Pred.size() == 2 && "Invalid condition");
808   unsigned CCValid = Pred[0].getImm();
809   unsigned CCMask = Pred[1].getImm();
810   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
811   unsigned Opcode = MI.getOpcode();
812   if (Opcode == SystemZ::Trap) {
813     MI.setDesc(get(SystemZ::CondTrap));
814     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
815       .addImm(CCValid).addImm(CCMask)
816       .addReg(SystemZ::CC, RegState::Implicit);
817     return true;
818   }
819   if (Opcode == SystemZ::Return) {
820     MI.setDesc(get(SystemZ::CondReturn));
821     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
822       .addImm(CCValid).addImm(CCMask)
823       .addReg(SystemZ::CC, RegState::Implicit);
824     return true;
825   }
826   if (Opcode == SystemZ::CallJG) {
827     MachineOperand FirstOp = MI.getOperand(0);
828     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
829     MI.RemoveOperand(1);
830     MI.RemoveOperand(0);
831     MI.setDesc(get(SystemZ::CallBRCL));
832     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
833         .addImm(CCValid)
834         .addImm(CCMask)
835         .add(FirstOp)
836         .addRegMask(RegMask)
837         .addReg(SystemZ::CC, RegState::Implicit);
838     return true;
839   }
840   if (Opcode == SystemZ::CallBR) {
841     const uint32_t *RegMask = MI.getOperand(0).getRegMask();
842     MI.RemoveOperand(0);
843     MI.setDesc(get(SystemZ::CallBCR));
844     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
845       .addImm(CCValid).addImm(CCMask)
846       .addRegMask(RegMask)
847       .addReg(SystemZ::CC, RegState::Implicit);
848     return true;
849   }
850   return false;
851 }
852 
853 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
854                                    MachineBasicBlock::iterator MBBI,
855                                    const DebugLoc &DL, unsigned DestReg,
856                                    unsigned SrcReg, bool KillSrc) const {
857   // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
858   // super register in case one of the subregs is undefined.
859   // This handles ADDR128 too.
860   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
861     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
862                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
863     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
864       .addReg(SrcReg, RegState::Implicit);
865     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
866                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
867     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
868       .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
869     return;
870   }
871 
872   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
873     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
874                   false);
875     return;
876   }
877 
878   // Move 128-bit floating-point values between VR128 and FP128.
879   if (SystemZ::VR128BitRegClass.contains(DestReg) &&
880       SystemZ::FP128BitRegClass.contains(SrcReg)) {
881     unsigned SrcRegHi =
882       RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
883                              SystemZ::subreg_r64, &SystemZ::VR128BitRegClass);
884     unsigned SrcRegLo =
885       RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
886                              SystemZ::subreg_r64, &SystemZ::VR128BitRegClass);
887 
888     BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
889       .addReg(SrcRegHi, getKillRegState(KillSrc))
890       .addReg(SrcRegLo, getKillRegState(KillSrc));
891     return;
892   }
893   if (SystemZ::FP128BitRegClass.contains(DestReg) &&
894       SystemZ::VR128BitRegClass.contains(SrcReg)) {
895     unsigned DestRegHi =
896       RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
897                              SystemZ::subreg_r64, &SystemZ::VR128BitRegClass);
898     unsigned DestRegLo =
899       RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
900                              SystemZ::subreg_r64, &SystemZ::VR128BitRegClass);
901 
902     if (DestRegHi != SrcReg)
903       copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
904     BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
905       .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
906     return;
907   }
908 
909   // Everything else needs only one instruction.
910   unsigned Opcode;
911   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
912     Opcode = SystemZ::LGR;
913   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
914     // For z13 we prefer LDR over LER to avoid partial register dependencies.
915     Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
916   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
917     Opcode = SystemZ::LDR;
918   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
919     Opcode = SystemZ::LXR;
920   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
921     Opcode = SystemZ::VLR32;
922   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
923     Opcode = SystemZ::VLR64;
924   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
925     Opcode = SystemZ::VLR;
926   else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
927     Opcode = SystemZ::CPYA;
928   else if (SystemZ::AR32BitRegClass.contains(DestReg) &&
929            SystemZ::GR32BitRegClass.contains(SrcReg))
930     Opcode = SystemZ::SAR;
931   else if (SystemZ::GR32BitRegClass.contains(DestReg) &&
932            SystemZ::AR32BitRegClass.contains(SrcReg))
933     Opcode = SystemZ::EAR;
934   else
935     llvm_unreachable("Impossible reg-to-reg copy");
936 
937   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
938     .addReg(SrcReg, getKillRegState(KillSrc));
939 }
940 
941 void SystemZInstrInfo::storeRegToStackSlot(
942     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
943     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
944     const TargetRegisterInfo *TRI) const {
945   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
946 
947   // Callers may expect a single instruction, so keep 128-bit moves
948   // together for now and lower them after register allocation.
949   unsigned LoadOpcode, StoreOpcode;
950   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
951   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
952                         .addReg(SrcReg, getKillRegState(isKill)),
953                     FrameIdx);
954 }
955 
956 void SystemZInstrInfo::loadRegFromStackSlot(
957     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
958     int FrameIdx, const TargetRegisterClass *RC,
959     const TargetRegisterInfo *TRI) const {
960   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
961 
962   // Callers may expect a single instruction, so keep 128-bit moves
963   // together for now and lower them after register allocation.
964   unsigned LoadOpcode, StoreOpcode;
965   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
966   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
967                     FrameIdx);
968 }
969 
970 // Return true if MI is a simple load or store with a 12-bit displacement
971 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
972 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
973   const MCInstrDesc &MCID = MI->getDesc();
974   return ((MCID.TSFlags & Flag) &&
975           isUInt<12>(MI->getOperand(2).getImm()) &&
976           MI->getOperand(3).getReg() == 0);
977 }
978 
979 namespace {
980 
981 struct LogicOp {
982   LogicOp() = default;
983   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
984     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
985 
986   explicit operator bool() const { return RegSize; }
987 
988   unsigned RegSize = 0;
989   unsigned ImmLSB = 0;
990   unsigned ImmSize = 0;
991 };
992 
993 } // end anonymous namespace
994 
995 static LogicOp interpretAndImmediate(unsigned Opcode) {
996   switch (Opcode) {
997   case SystemZ::NILMux: return LogicOp(32,  0, 16);
998   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
999   case SystemZ::NILL64: return LogicOp(64,  0, 16);
1000   case SystemZ::NILH64: return LogicOp(64, 16, 16);
1001   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
1002   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
1003   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
1004   case SystemZ::NILF64: return LogicOp(64,  0, 32);
1005   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
1006   default:              return LogicOp();
1007   }
1008 }
1009 
1010 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
1011   if (OldMI->registerDefIsDead(SystemZ::CC)) {
1012     MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
1013     if (CCDef != nullptr)
1014       CCDef->setIsDead(true);
1015   }
1016 }
1017 
1018 // Used to return from convertToThreeAddress after replacing two-address
1019 // instruction OldMI with three-address instruction NewMI.
1020 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
1021                                                  MachineInstr *NewMI,
1022                                                  LiveVariables *LV) {
1023   if (LV) {
1024     unsigned NumOps = OldMI->getNumOperands();
1025     for (unsigned I = 1; I < NumOps; ++I) {
1026       MachineOperand &Op = OldMI->getOperand(I);
1027       if (Op.isReg() && Op.isKill())
1028         LV->replaceKillInstruction(Op.getReg(), *OldMI, *NewMI);
1029     }
1030   }
1031   transferDeadCC(OldMI, NewMI);
1032   return NewMI;
1033 }
1034 
1035 MachineInstr *SystemZInstrInfo::convertToThreeAddress(
1036     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
1037   MachineBasicBlock *MBB = MI.getParent();
1038   MachineFunction *MF = MBB->getParent();
1039   MachineRegisterInfo &MRI = MF->getRegInfo();
1040 
1041   unsigned Opcode = MI.getOpcode();
1042   unsigned NumOps = MI.getNumOperands();
1043 
1044   // Try to convert something like SLL into SLLK, if supported.
1045   // We prefer to keep the two-operand form where possible both
1046   // because it tends to be shorter and because some instructions
1047   // have memory forms that can be used during spilling.
1048   if (STI.hasDistinctOps()) {
1049     MachineOperand &Dest = MI.getOperand(0);
1050     MachineOperand &Src = MI.getOperand(1);
1051     unsigned DestReg = Dest.getReg();
1052     unsigned SrcReg = Src.getReg();
1053     // AHIMux is only really a three-operand instruction when both operands
1054     // are low registers.  Try to constrain both operands to be low if
1055     // possible.
1056     if (Opcode == SystemZ::AHIMux &&
1057         TargetRegisterInfo::isVirtualRegister(DestReg) &&
1058         TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1059         MRI.getRegClass(DestReg)->contains(SystemZ::R1L) &&
1060         MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) {
1061       MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass);
1062       MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass);
1063     }
1064     int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
1065     if (ThreeOperandOpcode >= 0) {
1066       // Create three address instruction without adding the implicit
1067       // operands. Those will instead be copied over from the original
1068       // instruction by the loop below.
1069       MachineInstrBuilder MIB(
1070           *MF, MF->CreateMachineInstr(get(ThreeOperandOpcode), MI.getDebugLoc(),
1071                                       /*NoImplicit=*/true));
1072       MIB.add(Dest);
1073       // Keep the kill state, but drop the tied flag.
1074       MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
1075       // Keep the remaining operands as-is.
1076       for (unsigned I = 2; I < NumOps; ++I)
1077         MIB.add(MI.getOperand(I));
1078       MBB->insert(MI, MIB);
1079       return finishConvertToThreeAddress(&MI, MIB, LV);
1080     }
1081   }
1082 
1083   // Try to convert an AND into an RISBG-type instruction.
1084   if (LogicOp And = interpretAndImmediate(Opcode)) {
1085     uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
1086     // AND IMMEDIATE leaves the other bits of the register unchanged.
1087     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
1088     unsigned Start, End;
1089     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
1090       unsigned NewOpcode;
1091       if (And.RegSize == 64) {
1092         NewOpcode = SystemZ::RISBG;
1093         // Prefer RISBGN if available, since it does not clobber CC.
1094         if (STI.hasMiscellaneousExtensions())
1095           NewOpcode = SystemZ::RISBGN;
1096       } else {
1097         NewOpcode = SystemZ::RISBMux;
1098         Start &= 31;
1099         End &= 31;
1100       }
1101       MachineOperand &Dest = MI.getOperand(0);
1102       MachineOperand &Src = MI.getOperand(1);
1103       MachineInstrBuilder MIB =
1104           BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
1105               .add(Dest)
1106               .addReg(0)
1107               .addReg(Src.getReg(), getKillRegState(Src.isKill()),
1108                       Src.getSubReg())
1109               .addImm(Start)
1110               .addImm(End + 128)
1111               .addImm(0);
1112       return finishConvertToThreeAddress(&MI, MIB, LV);
1113     }
1114   }
1115   return nullptr;
1116 }
1117 
1118 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1119     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1120     MachineBasicBlock::iterator InsertPt, int FrameIndex,
1121     LiveIntervals *LIS) const {
1122   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1123   const MachineFrameInfo &MFI = MF.getFrameInfo();
1124   unsigned Size = MFI.getObjectSize(FrameIndex);
1125   unsigned Opcode = MI.getOpcode();
1126 
1127   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1128     if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1129         isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1130 
1131       // Check CC liveness, since new instruction introduces a dead
1132       // def of CC.
1133       MCRegUnitIterator CCUnit(SystemZ::CC, TRI);
1134       LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit);
1135       ++CCUnit;
1136       assert(!CCUnit.isValid() && "CC only has one reg unit.");
1137       SlotIndex MISlot =
1138           LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1139       if (!CCLiveRange.liveAt(MISlot)) {
1140         // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1141         MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1142                                         MI.getDebugLoc(), get(SystemZ::AGSI))
1143                                     .addFrameIndex(FrameIndex)
1144                                     .addImm(0)
1145                                     .addImm(MI.getOperand(2).getImm());
1146         BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1147         CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator());
1148         return BuiltMI;
1149       }
1150     }
1151     return nullptr;
1152   }
1153 
1154   // All other cases require a single operand.
1155   if (Ops.size() != 1)
1156     return nullptr;
1157 
1158   unsigned OpNum = Ops[0];
1159   assert(Size * 8 ==
1160            TRI->getRegSizeInBits(*MF.getRegInfo()
1161                                .getRegClass(MI.getOperand(OpNum).getReg())) &&
1162          "Invalid size combination");
1163 
1164   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1165       isInt<8>(MI.getOperand(2).getImm())) {
1166     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1167     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1168     MachineInstr *BuiltMI =
1169         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1170             .addFrameIndex(FrameIndex)
1171             .addImm(0)
1172             .addImm(MI.getOperand(2).getImm());
1173     transferDeadCC(&MI, BuiltMI);
1174     return BuiltMI;
1175   }
1176 
1177   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1178     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1179     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1180     // If we're spilling the destination of an LDGR or LGDR, store the
1181     // source register instead.
1182     if (OpNum == 0) {
1183       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1184       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1185                      get(StoreOpcode))
1186           .add(MI.getOperand(1))
1187           .addFrameIndex(FrameIndex)
1188           .addImm(0)
1189           .addReg(0);
1190     }
1191     // If we're spilling the source of an LDGR or LGDR, load the
1192     // destination register instead.
1193     if (OpNum == 1) {
1194       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1195       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1196                      get(LoadOpcode))
1197         .add(MI.getOperand(0))
1198         .addFrameIndex(FrameIndex)
1199         .addImm(0)
1200         .addReg(0);
1201     }
1202   }
1203 
1204   // Look for cases where the source of a simple store or the destination
1205   // of a simple load is being spilled.  Try to use MVC instead.
1206   //
1207   // Although MVC is in practice a fast choice in these cases, it is still
1208   // logically a bytewise copy.  This means that we cannot use it if the
1209   // load or store is volatile.  We also wouldn't be able to use MVC if
1210   // the two memories partially overlap, but that case cannot occur here,
1211   // because we know that one of the memories is a full frame index.
1212   //
1213   // For performance reasons, we also want to avoid using MVC if the addresses
1214   // might be equal.  We don't worry about that case here, because spill slot
1215   // coloring happens later, and because we have special code to remove
1216   // MVCs that turn out to be redundant.
1217   if (OpNum == 0 && MI.hasOneMemOperand()) {
1218     MachineMemOperand *MMO = *MI.memoperands_begin();
1219     if (MMO->getSize() == Size && !MMO->isVolatile()) {
1220       // Handle conversion of loads.
1221       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1222         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1223                        get(SystemZ::MVC))
1224             .addFrameIndex(FrameIndex)
1225             .addImm(0)
1226             .addImm(Size)
1227             .add(MI.getOperand(1))
1228             .addImm(MI.getOperand(2).getImm())
1229             .addMemOperand(MMO);
1230       }
1231       // Handle conversion of stores.
1232       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1233         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1234                        get(SystemZ::MVC))
1235             .add(MI.getOperand(1))
1236             .addImm(MI.getOperand(2).getImm())
1237             .addImm(Size)
1238             .addFrameIndex(FrameIndex)
1239             .addImm(0)
1240             .addMemOperand(MMO);
1241       }
1242     }
1243   }
1244 
1245   // If the spilled operand is the final one, try to change <INSN>R
1246   // into <INSN>.
1247   int MemOpcode = SystemZ::getMemOpcode(Opcode);
1248   if (MemOpcode >= 0) {
1249     unsigned NumOps = MI.getNumExplicitOperands();
1250     if (OpNum == NumOps - 1) {
1251       const MCInstrDesc &MemDesc = get(MemOpcode);
1252       uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1253       assert(AccessBytes != 0 && "Size of access should be known");
1254       assert(AccessBytes <= Size && "Access outside the frame index");
1255       uint64_t Offset = Size - AccessBytes;
1256       MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1257                                         MI.getDebugLoc(), get(MemOpcode));
1258       for (unsigned I = 0; I < OpNum; ++I)
1259         MIB.add(MI.getOperand(I));
1260       MIB.addFrameIndex(FrameIndex).addImm(Offset);
1261       if (MemDesc.TSFlags & SystemZII::HasIndex)
1262         MIB.addReg(0);
1263       transferDeadCC(&MI, MIB);
1264       return MIB;
1265     }
1266   }
1267 
1268   return nullptr;
1269 }
1270 
1271 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1272     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1273     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1274     LiveIntervals *LIS) const {
1275   return nullptr;
1276 }
1277 
1278 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1279   switch (MI.getOpcode()) {
1280   case SystemZ::L128:
1281     splitMove(MI, SystemZ::LG);
1282     return true;
1283 
1284   case SystemZ::ST128:
1285     splitMove(MI, SystemZ::STG);
1286     return true;
1287 
1288   case SystemZ::LX:
1289     splitMove(MI, SystemZ::LD);
1290     return true;
1291 
1292   case SystemZ::STX:
1293     splitMove(MI, SystemZ::STD);
1294     return true;
1295 
1296   case SystemZ::LBMux:
1297     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1298     return true;
1299 
1300   case SystemZ::LHMux:
1301     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1302     return true;
1303 
1304   case SystemZ::LLCRMux:
1305     expandZExtPseudo(MI, SystemZ::LLCR, 8);
1306     return true;
1307 
1308   case SystemZ::LLHRMux:
1309     expandZExtPseudo(MI, SystemZ::LLHR, 16);
1310     return true;
1311 
1312   case SystemZ::LLCMux:
1313     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1314     return true;
1315 
1316   case SystemZ::LLHMux:
1317     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1318     return true;
1319 
1320   case SystemZ::LMux:
1321     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1322     return true;
1323 
1324   case SystemZ::LOCMux:
1325     expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1326     return true;
1327 
1328   case SystemZ::LOCHIMux:
1329     expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1330     return true;
1331 
1332   case SystemZ::LOCRMux:
1333     expandLOCRPseudo(MI, SystemZ::LOCR, SystemZ::LOCFHR);
1334     return true;
1335 
1336   case SystemZ::STCMux:
1337     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1338     return true;
1339 
1340   case SystemZ::STHMux:
1341     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1342     return true;
1343 
1344   case SystemZ::STMux:
1345     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1346     return true;
1347 
1348   case SystemZ::STOCMux:
1349     expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1350     return true;
1351 
1352   case SystemZ::LHIMux:
1353     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1354     return true;
1355 
1356   case SystemZ::IIFMux:
1357     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1358     return true;
1359 
1360   case SystemZ::IILMux:
1361     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1362     return true;
1363 
1364   case SystemZ::IIHMux:
1365     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1366     return true;
1367 
1368   case SystemZ::NIFMux:
1369     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1370     return true;
1371 
1372   case SystemZ::NILMux:
1373     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1374     return true;
1375 
1376   case SystemZ::NIHMux:
1377     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1378     return true;
1379 
1380   case SystemZ::OIFMux:
1381     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1382     return true;
1383 
1384   case SystemZ::OILMux:
1385     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1386     return true;
1387 
1388   case SystemZ::OIHMux:
1389     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1390     return true;
1391 
1392   case SystemZ::XIFMux:
1393     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1394     return true;
1395 
1396   case SystemZ::TMLMux:
1397     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1398     return true;
1399 
1400   case SystemZ::TMHMux:
1401     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1402     return true;
1403 
1404   case SystemZ::AHIMux:
1405     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1406     return true;
1407 
1408   case SystemZ::AHIMuxK:
1409     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1410     return true;
1411 
1412   case SystemZ::AFIMux:
1413     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1414     return true;
1415 
1416   case SystemZ::CHIMux:
1417     expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1418     return true;
1419 
1420   case SystemZ::CFIMux:
1421     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1422     return true;
1423 
1424   case SystemZ::CLFIMux:
1425     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1426     return true;
1427 
1428   case SystemZ::CMux:
1429     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1430     return true;
1431 
1432   case SystemZ::CLMux:
1433     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1434     return true;
1435 
1436   case SystemZ::RISBMux: {
1437     bool DestIsHigh = isHighReg(MI.getOperand(0).getReg());
1438     bool SrcIsHigh = isHighReg(MI.getOperand(2).getReg());
1439     if (SrcIsHigh == DestIsHigh)
1440       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1441     else {
1442       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1443       MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1444     }
1445     return true;
1446   }
1447 
1448   case SystemZ::ADJDYNALLOC:
1449     splitAdjDynAlloc(MI);
1450     return true;
1451 
1452   case TargetOpcode::LOAD_STACK_GUARD:
1453     expandLoadStackGuard(&MI);
1454     return true;
1455 
1456   default:
1457     return false;
1458   }
1459 }
1460 
1461 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1462   if (MI.getOpcode() == TargetOpcode::INLINEASM) {
1463     const MachineFunction *MF = MI.getParent()->getParent();
1464     const char *AsmStr = MI.getOperand(0).getSymbolName();
1465     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1466   }
1467   return MI.getDesc().getSize();
1468 }
1469 
1470 SystemZII::Branch
1471 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1472   switch (MI.getOpcode()) {
1473   case SystemZ::BR:
1474   case SystemZ::BI:
1475   case SystemZ::J:
1476   case SystemZ::JG:
1477     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1478                              SystemZ::CCMASK_ANY, &MI.getOperand(0));
1479 
1480   case SystemZ::BRC:
1481   case SystemZ::BRCL:
1482     return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1483                              MI.getOperand(1).getImm(), &MI.getOperand(2));
1484 
1485   case SystemZ::BRCT:
1486   case SystemZ::BRCTH:
1487     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1488                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1489 
1490   case SystemZ::BRCTG:
1491     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1492                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1493 
1494   case SystemZ::CIJ:
1495   case SystemZ::CRJ:
1496     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1497                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1498 
1499   case SystemZ::CLIJ:
1500   case SystemZ::CLRJ:
1501     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1502                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1503 
1504   case SystemZ::CGIJ:
1505   case SystemZ::CGRJ:
1506     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1507                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1508 
1509   case SystemZ::CLGIJ:
1510   case SystemZ::CLGRJ:
1511     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1512                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1513 
1514   default:
1515     llvm_unreachable("Unrecognized branch opcode");
1516   }
1517 }
1518 
1519 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1520                                            unsigned &LoadOpcode,
1521                                            unsigned &StoreOpcode) const {
1522   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1523     LoadOpcode = SystemZ::L;
1524     StoreOpcode = SystemZ::ST;
1525   } else if (RC == &SystemZ::GRH32BitRegClass) {
1526     LoadOpcode = SystemZ::LFH;
1527     StoreOpcode = SystemZ::STFH;
1528   } else if (RC == &SystemZ::GRX32BitRegClass) {
1529     LoadOpcode = SystemZ::LMux;
1530     StoreOpcode = SystemZ::STMux;
1531   } else if (RC == &SystemZ::GR64BitRegClass ||
1532              RC == &SystemZ::ADDR64BitRegClass) {
1533     LoadOpcode = SystemZ::LG;
1534     StoreOpcode = SystemZ::STG;
1535   } else if (RC == &SystemZ::GR128BitRegClass ||
1536              RC == &SystemZ::ADDR128BitRegClass) {
1537     LoadOpcode = SystemZ::L128;
1538     StoreOpcode = SystemZ::ST128;
1539   } else if (RC == &SystemZ::FP32BitRegClass) {
1540     LoadOpcode = SystemZ::LE;
1541     StoreOpcode = SystemZ::STE;
1542   } else if (RC == &SystemZ::FP64BitRegClass) {
1543     LoadOpcode = SystemZ::LD;
1544     StoreOpcode = SystemZ::STD;
1545   } else if (RC == &SystemZ::FP128BitRegClass) {
1546     LoadOpcode = SystemZ::LX;
1547     StoreOpcode = SystemZ::STX;
1548   } else if (RC == &SystemZ::VR32BitRegClass) {
1549     LoadOpcode = SystemZ::VL32;
1550     StoreOpcode = SystemZ::VST32;
1551   } else if (RC == &SystemZ::VR64BitRegClass) {
1552     LoadOpcode = SystemZ::VL64;
1553     StoreOpcode = SystemZ::VST64;
1554   } else if (RC == &SystemZ::VF128BitRegClass ||
1555              RC == &SystemZ::VR128BitRegClass) {
1556     LoadOpcode = SystemZ::VL;
1557     StoreOpcode = SystemZ::VST;
1558   } else
1559     llvm_unreachable("Unsupported regclass to load or store");
1560 }
1561 
1562 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1563                                               int64_t Offset) const {
1564   const MCInstrDesc &MCID = get(Opcode);
1565   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1566   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1567     // Get the instruction to use for unsigned 12-bit displacements.
1568     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1569     if (Disp12Opcode >= 0)
1570       return Disp12Opcode;
1571 
1572     // All address-related instructions can use unsigned 12-bit
1573     // displacements.
1574     return Opcode;
1575   }
1576   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1577     // Get the instruction to use for signed 20-bit displacements.
1578     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1579     if (Disp20Opcode >= 0)
1580       return Disp20Opcode;
1581 
1582     // Check whether Opcode allows signed 20-bit displacements.
1583     if (MCID.TSFlags & SystemZII::Has20BitOffset)
1584       return Opcode;
1585   }
1586   return 0;
1587 }
1588 
1589 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1590   switch (Opcode) {
1591   case SystemZ::L:      return SystemZ::LT;
1592   case SystemZ::LY:     return SystemZ::LT;
1593   case SystemZ::LG:     return SystemZ::LTG;
1594   case SystemZ::LGF:    return SystemZ::LTGF;
1595   case SystemZ::LR:     return SystemZ::LTR;
1596   case SystemZ::LGFR:   return SystemZ::LTGFR;
1597   case SystemZ::LGR:    return SystemZ::LTGR;
1598   case SystemZ::LER:    return SystemZ::LTEBR;
1599   case SystemZ::LDR:    return SystemZ::LTDBR;
1600   case SystemZ::LXR:    return SystemZ::LTXBR;
1601   case SystemZ::LCDFR:  return SystemZ::LCDBR;
1602   case SystemZ::LPDFR:  return SystemZ::LPDBR;
1603   case SystemZ::LNDFR:  return SystemZ::LNDBR;
1604   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1605   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1606   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1607   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1608   // actually use the condition code, we may turn it back into RISGB.
1609   // Note that RISBG is not really a "load-and-test" instruction,
1610   // but sets the same condition code values, so is OK to use here.
1611   case SystemZ::RISBGN: return SystemZ::RISBG;
1612   default:              return 0;
1613   }
1614 }
1615 
1616 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1617 // have already been filtered out.  Store the first set bit in LSB and
1618 // the number of set bits in Length if so.
1619 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1620   unsigned First = findFirstSet(Mask);
1621   uint64_t Top = (Mask >> First) + 1;
1622   if ((Top & -Top) == Top) {
1623     LSB = First;
1624     Length = findFirstSet(Top);
1625     return true;
1626   }
1627   return false;
1628 }
1629 
1630 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1631                                    unsigned &Start, unsigned &End) const {
1632   // Reject trivial all-zero masks.
1633   Mask &= allOnes(BitSize);
1634   if (Mask == 0)
1635     return false;
1636 
1637   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1638   // the msb and End specifies the index of the lsb.
1639   unsigned LSB, Length;
1640   if (isStringOfOnes(Mask, LSB, Length)) {
1641     Start = 63 - (LSB + Length - 1);
1642     End = 63 - LSB;
1643     return true;
1644   }
1645 
1646   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1647   // of the low 1s and End specifies the lsb of the high 1s.
1648   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1649     assert(LSB > 0 && "Bottom bit must be set");
1650     assert(LSB + Length < BitSize && "Top bit must be set");
1651     Start = 63 - (LSB - 1);
1652     End = 63 - (LSB + Length);
1653     return true;
1654   }
1655 
1656   return false;
1657 }
1658 
1659 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1660                                            SystemZII::FusedCompareType Type,
1661                                            const MachineInstr *MI) const {
1662   switch (Opcode) {
1663   case SystemZ::CHI:
1664   case SystemZ::CGHI:
1665     if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1666       return 0;
1667     break;
1668   case SystemZ::CLFI:
1669   case SystemZ::CLGFI:
1670     if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1671       return 0;
1672     break;
1673   case SystemZ::CL:
1674   case SystemZ::CLG:
1675     if (!STI.hasMiscellaneousExtensions())
1676       return 0;
1677     if (!(MI && MI->getOperand(3).getReg() == 0))
1678       return 0;
1679     break;
1680   }
1681   switch (Type) {
1682   case SystemZII::CompareAndBranch:
1683     switch (Opcode) {
1684     case SystemZ::CR:
1685       return SystemZ::CRJ;
1686     case SystemZ::CGR:
1687       return SystemZ::CGRJ;
1688     case SystemZ::CHI:
1689       return SystemZ::CIJ;
1690     case SystemZ::CGHI:
1691       return SystemZ::CGIJ;
1692     case SystemZ::CLR:
1693       return SystemZ::CLRJ;
1694     case SystemZ::CLGR:
1695       return SystemZ::CLGRJ;
1696     case SystemZ::CLFI:
1697       return SystemZ::CLIJ;
1698     case SystemZ::CLGFI:
1699       return SystemZ::CLGIJ;
1700     default:
1701       return 0;
1702     }
1703   case SystemZII::CompareAndReturn:
1704     switch (Opcode) {
1705     case SystemZ::CR:
1706       return SystemZ::CRBReturn;
1707     case SystemZ::CGR:
1708       return SystemZ::CGRBReturn;
1709     case SystemZ::CHI:
1710       return SystemZ::CIBReturn;
1711     case SystemZ::CGHI:
1712       return SystemZ::CGIBReturn;
1713     case SystemZ::CLR:
1714       return SystemZ::CLRBReturn;
1715     case SystemZ::CLGR:
1716       return SystemZ::CLGRBReturn;
1717     case SystemZ::CLFI:
1718       return SystemZ::CLIBReturn;
1719     case SystemZ::CLGFI:
1720       return SystemZ::CLGIBReturn;
1721     default:
1722       return 0;
1723     }
1724   case SystemZII::CompareAndSibcall:
1725     switch (Opcode) {
1726     case SystemZ::CR:
1727       return SystemZ::CRBCall;
1728     case SystemZ::CGR:
1729       return SystemZ::CGRBCall;
1730     case SystemZ::CHI:
1731       return SystemZ::CIBCall;
1732     case SystemZ::CGHI:
1733       return SystemZ::CGIBCall;
1734     case SystemZ::CLR:
1735       return SystemZ::CLRBCall;
1736     case SystemZ::CLGR:
1737       return SystemZ::CLGRBCall;
1738     case SystemZ::CLFI:
1739       return SystemZ::CLIBCall;
1740     case SystemZ::CLGFI:
1741       return SystemZ::CLGIBCall;
1742     default:
1743       return 0;
1744     }
1745   case SystemZII::CompareAndTrap:
1746     switch (Opcode) {
1747     case SystemZ::CR:
1748       return SystemZ::CRT;
1749     case SystemZ::CGR:
1750       return SystemZ::CGRT;
1751     case SystemZ::CHI:
1752       return SystemZ::CIT;
1753     case SystemZ::CGHI:
1754       return SystemZ::CGIT;
1755     case SystemZ::CLR:
1756       return SystemZ::CLRT;
1757     case SystemZ::CLGR:
1758       return SystemZ::CLGRT;
1759     case SystemZ::CLFI:
1760       return SystemZ::CLFIT;
1761     case SystemZ::CLGFI:
1762       return SystemZ::CLGIT;
1763     case SystemZ::CL:
1764       return SystemZ::CLT;
1765     case SystemZ::CLG:
1766       return SystemZ::CLGT;
1767     default:
1768       return 0;
1769     }
1770   }
1771   return 0;
1772 }
1773 
1774 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1775   if (!STI.hasLoadAndTrap())
1776     return 0;
1777   switch (Opcode) {
1778   case SystemZ::L:
1779   case SystemZ::LY:
1780     return SystemZ::LAT;
1781   case SystemZ::LG:
1782     return SystemZ::LGAT;
1783   case SystemZ::LFH:
1784     return SystemZ::LFHAT;
1785   case SystemZ::LLGF:
1786     return SystemZ::LLGFAT;
1787   case SystemZ::LLGT:
1788     return SystemZ::LLGTAT;
1789   }
1790   return 0;
1791 }
1792 
1793 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1794                                      MachineBasicBlock::iterator MBBI,
1795                                      unsigned Reg, uint64_t Value) const {
1796   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1797   unsigned Opcode;
1798   if (isInt<16>(Value))
1799     Opcode = SystemZ::LGHI;
1800   else if (SystemZ::isImmLL(Value))
1801     Opcode = SystemZ::LLILL;
1802   else if (SystemZ::isImmLH(Value)) {
1803     Opcode = SystemZ::LLILH;
1804     Value >>= 16;
1805   } else {
1806     assert(isInt<32>(Value) && "Huge values not handled yet");
1807     Opcode = SystemZ::LGFI;
1808   }
1809   BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1810 }
1811 
1812 bool SystemZInstrInfo::
1813 areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
1814                                 AliasAnalysis *AA) const {
1815 
1816   if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
1817     return false;
1818 
1819   // If mem-operands show that the same address Value is used by both
1820   // instructions, check for non-overlapping offsets and widths. Not
1821   // sure if a register based analysis would be an improvement...
1822 
1823   MachineMemOperand *MMOa = *MIa.memoperands_begin();
1824   MachineMemOperand *MMOb = *MIb.memoperands_begin();
1825   const Value *VALa = MMOa->getValue();
1826   const Value *VALb = MMOb->getValue();
1827   bool SameVal = (VALa && VALb && (VALa == VALb));
1828   if (!SameVal) {
1829     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1830     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1831     if (PSVa && PSVb && (PSVa == PSVb))
1832       SameVal = true;
1833   }
1834   if (SameVal) {
1835     int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
1836     int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
1837     int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1838     int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1839     int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1840     if (LowOffset + LowWidth <= HighOffset)
1841       return true;
1842   }
1843 
1844   return false;
1845 }
1846