1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SystemZ implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZInstrInfo.h" 15 #include "SystemZInstrBuilder.h" 16 #include "SystemZTargetMachine.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 21 using namespace llvm; 22 23 #define GET_INSTRINFO_CTOR_DTOR 24 #define GET_INSTRMAP_INFO 25 #include "SystemZGenInstrInfo.inc" 26 27 // Return a mask with Count low bits set. 28 static uint64_t allOnes(unsigned int Count) { 29 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 30 } 31 32 // Reg should be a 32-bit GPR. Return true if it is a high register rather 33 // than a low register. 34 static bool isHighReg(unsigned int Reg) { 35 if (SystemZ::GRH32BitRegClass.contains(Reg)) 36 return true; 37 assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32"); 38 return false; 39 } 40 41 // Pin the vtable to this file. 42 void SystemZInstrInfo::anchor() {} 43 44 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti) 45 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 46 RI(), STI(sti) { 47 } 48 49 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 50 // each having the opcode given by NewOpcode. 51 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 52 unsigned NewOpcode) const { 53 MachineBasicBlock *MBB = MI->getParent(); 54 MachineFunction &MF = *MBB->getParent(); 55 56 // Get two load or store instructions. Use the original instruction for one 57 // of them (arbitrarily the second here) and create a clone for the other. 58 MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI); 59 MBB->insert(MI, EarlierMI); 60 61 // Set up the two 64-bit registers. 62 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 63 MachineOperand &LowRegOp = MI->getOperand(0); 64 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); 65 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); 66 67 // The address in the first (high) instruction is already correct. 68 // Adjust the offset in the second (low) instruction. 69 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 70 MachineOperand &LowOffsetOp = MI->getOperand(2); 71 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 72 73 // Clear the kill flags for the base and index registers in the first 74 // instruction. 75 EarlierMI->getOperand(1).setIsKill(false); 76 EarlierMI->getOperand(3).setIsKill(false); 77 78 // Set the opcodes. 79 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 80 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 81 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 82 83 EarlierMI->setDesc(get(HighOpcode)); 84 MI->setDesc(get(LowOpcode)); 85 } 86 87 // Split ADJDYNALLOC instruction MI. 88 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 89 MachineBasicBlock *MBB = MI->getParent(); 90 MachineFunction &MF = *MBB->getParent(); 91 MachineFrameInfo &MFFrame = MF.getFrameInfo(); 92 MachineOperand &OffsetMO = MI->getOperand(2); 93 94 uint64_t Offset = (MFFrame.getMaxCallFrameSize() + 95 SystemZMC::CallFrameSize + 96 OffsetMO.getImm()); 97 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 98 assert(NewOpcode && "No support for huge argument lists yet"); 99 MI->setDesc(get(NewOpcode)); 100 OffsetMO.setImm(Offset); 101 } 102 103 // MI is an RI-style pseudo instruction. Replace it with LowOpcode 104 // if the first operand is a low GR32 and HighOpcode if the first operand 105 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand 106 // and HighOpcode takes an unsigned 32-bit operand. In those cases, 107 // MI has the same kind of operand as LowOpcode, so needs to be converted 108 // if HighOpcode is used. 109 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode, 110 unsigned HighOpcode, 111 bool ConvertHigh) const { 112 unsigned Reg = MI.getOperand(0).getReg(); 113 bool IsHigh = isHighReg(Reg); 114 MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode)); 115 if (IsHigh && ConvertHigh) 116 MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm())); 117 } 118 119 // MI is a three-operand RIE-style pseudo instruction. Replace it with 120 // LowOpcodeK if the registers are both low GR32s, otherwise use a move 121 // followed by HighOpcode or LowOpcode, depending on whether the target 122 // is a high or low GR32. 123 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode, 124 unsigned LowOpcodeK, 125 unsigned HighOpcode) const { 126 unsigned DestReg = MI.getOperand(0).getReg(); 127 unsigned SrcReg = MI.getOperand(1).getReg(); 128 bool DestIsHigh = isHighReg(DestReg); 129 bool SrcIsHigh = isHighReg(SrcReg); 130 if (!DestIsHigh && !SrcIsHigh) 131 MI.setDesc(get(LowOpcodeK)); 132 else { 133 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg, 134 SystemZ::LR, 32, MI.getOperand(1).isKill(), 135 MI.getOperand(1).isUndef()); 136 MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); 137 MI.getOperand(1).setReg(DestReg); 138 MI.tieOperands(0, 1); 139 } 140 } 141 142 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode 143 // if the first operand is a low GR32 and HighOpcode if the first operand 144 // is a high GR32. 145 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode, 146 unsigned HighOpcode) const { 147 unsigned Reg = MI.getOperand(0).getReg(); 148 unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode, 149 MI.getOperand(2).getImm()); 150 MI.setDesc(get(Opcode)); 151 } 152 153 // MI is a load-on-condition pseudo instruction with a single register 154 // (source or destination) operand. Replace it with LowOpcode if the 155 // register is a low GR32 and HighOpcode if the register is a high GR32. 156 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode, 157 unsigned HighOpcode) const { 158 unsigned Reg = MI.getOperand(0).getReg(); 159 unsigned Opcode = isHighReg(Reg) ? HighOpcode : LowOpcode; 160 MI.setDesc(get(Opcode)); 161 } 162 163 // MI is a load-register-on-condition pseudo instruction. Replace it with 164 // LowOpcode if source and destination are both low GR32s and HighOpcode if 165 // source and destination are both high GR32s. 166 void SystemZInstrInfo::expandLOCRPseudo(MachineInstr &MI, unsigned LowOpcode, 167 unsigned HighOpcode) const { 168 unsigned DestReg = MI.getOperand(0).getReg(); 169 unsigned SrcReg = MI.getOperand(2).getReg(); 170 bool DestIsHigh = isHighReg(DestReg); 171 bool SrcIsHigh = isHighReg(SrcReg); 172 173 if (!DestIsHigh && !SrcIsHigh) 174 MI.setDesc(get(LowOpcode)); 175 else if (DestIsHigh && SrcIsHigh) 176 MI.setDesc(get(HighOpcode)); 177 178 // If we were unable to implement the pseudo with a single instruction, we 179 // need to convert it back into a branch sequence. This cannot be done here 180 // since the caller of expandPostRAPseudo does not handle changes to the CFG 181 // correctly. This change is defered to the SystemZExpandPseudo pass. 182 } 183 184 // MI is an RR-style pseudo instruction that zero-extends the low Size bits 185 // of one GRX32 into another. Replace it with LowOpcode if both operands 186 // are low registers, otherwise use RISB[LH]G. 187 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode, 188 unsigned Size) const { 189 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), 190 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode, 191 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef()); 192 MI.eraseFromParent(); 193 } 194 195 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const { 196 MachineBasicBlock *MBB = MI->getParent(); 197 MachineFunction &MF = *MBB->getParent(); 198 const unsigned Reg = MI->getOperand(0).getReg(); 199 200 // Conveniently, all 4 instructions are cloned from LOAD_STACK_GUARD, 201 // so they already have operand 0 set to reg. 202 203 // ear <reg>, %a0 204 MachineInstr *Ear1MI = MF.CloneMachineInstr(MI); 205 MBB->insert(MI, Ear1MI); 206 Ear1MI->setDesc(get(SystemZ::EAR)); 207 MachineInstrBuilder(MF, Ear1MI).addReg(SystemZ::A0); 208 209 // sllg <reg>, <reg>, 32 210 MachineInstr *SllgMI = MF.CloneMachineInstr(MI); 211 MBB->insert(MI, SllgMI); 212 SllgMI->setDesc(get(SystemZ::SLLG)); 213 MachineInstrBuilder(MF, SllgMI).addReg(Reg).addReg(0).addImm(32); 214 215 // ear <reg>, %a1 216 MachineInstr *Ear2MI = MF.CloneMachineInstr(MI); 217 MBB->insert(MI, Ear2MI); 218 Ear2MI->setDesc(get(SystemZ::EAR)); 219 MachineInstrBuilder(MF, Ear2MI).addReg(SystemZ::A1); 220 221 // lg <reg>, 40(<reg>) 222 MI->setDesc(get(SystemZ::LG)); 223 MachineInstrBuilder(MF, MI).addReg(Reg).addImm(40).addReg(0); 224 } 225 226 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR 227 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg 228 // are low registers, otherwise use RISB[LH]G. Size is the number of bits 229 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). 230 // KillSrc is true if this move is the last use of SrcReg. 231 void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, 232 MachineBasicBlock::iterator MBBI, 233 const DebugLoc &DL, unsigned DestReg, 234 unsigned SrcReg, unsigned LowLowOpcode, 235 unsigned Size, bool KillSrc, 236 bool UndefSrc) const { 237 unsigned Opcode; 238 bool DestIsHigh = isHighReg(DestReg); 239 bool SrcIsHigh = isHighReg(SrcReg); 240 if (DestIsHigh && SrcIsHigh) 241 Opcode = SystemZ::RISBHH; 242 else if (DestIsHigh && !SrcIsHigh) 243 Opcode = SystemZ::RISBHL; 244 else if (!DestIsHigh && SrcIsHigh) 245 Opcode = SystemZ::RISBLH; 246 else { 247 BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) 248 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)); 249 return; 250 } 251 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); 252 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 253 .addReg(DestReg, RegState::Undef) 254 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)) 255 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); 256 } 257 258 259 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI, 260 bool NewMI, 261 unsigned OpIdx1, 262 unsigned OpIdx2) const { 263 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { 264 if (NewMI) 265 return *MI.getParent()->getParent()->CloneMachineInstr(&MI); 266 return MI; 267 }; 268 269 switch (MI.getOpcode()) { 270 case SystemZ::LOCRMux: 271 case SystemZ::LOCFHR: 272 case SystemZ::LOCR: 273 case SystemZ::LOCGR: { 274 auto &WorkingMI = cloneIfNew(MI); 275 // Invert condition. 276 unsigned CCValid = WorkingMI.getOperand(3).getImm(); 277 unsigned CCMask = WorkingMI.getOperand(4).getImm(); 278 WorkingMI.getOperand(4).setImm(CCMask ^ CCValid); 279 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 280 OpIdx1, OpIdx2); 281 } 282 default: 283 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 284 } 285 } 286 287 288 // If MI is a simple load or store for a frame object, return the register 289 // it loads or stores and set FrameIndex to the index of the frame object. 290 // Return 0 otherwise. 291 // 292 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 293 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex, 294 unsigned Flag) { 295 const MCInstrDesc &MCID = MI.getDesc(); 296 if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() && 297 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) { 298 FrameIndex = MI.getOperand(1).getIndex(); 299 return MI.getOperand(0).getReg(); 300 } 301 return 0; 302 } 303 304 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 305 int &FrameIndex) const { 306 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 307 } 308 309 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 310 int &FrameIndex) const { 311 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 312 } 313 314 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI, 315 int &DestFrameIndex, 316 int &SrcFrameIndex) const { 317 // Check for MVC 0(Length,FI1),0(FI2) 318 const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo(); 319 if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() || 320 MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() || 321 MI.getOperand(4).getImm() != 0) 322 return false; 323 324 // Check that Length covers the full slots. 325 int64_t Length = MI.getOperand(2).getImm(); 326 unsigned FI1 = MI.getOperand(0).getIndex(); 327 unsigned FI2 = MI.getOperand(3).getIndex(); 328 if (MFI.getObjectSize(FI1) != Length || 329 MFI.getObjectSize(FI2) != Length) 330 return false; 331 332 DestFrameIndex = FI1; 333 SrcFrameIndex = FI2; 334 return true; 335 } 336 337 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 338 MachineBasicBlock *&TBB, 339 MachineBasicBlock *&FBB, 340 SmallVectorImpl<MachineOperand> &Cond, 341 bool AllowModify) const { 342 // Most of the code and comments here are boilerplate. 343 344 // Start from the bottom of the block and work up, examining the 345 // terminator instructions. 346 MachineBasicBlock::iterator I = MBB.end(); 347 while (I != MBB.begin()) { 348 --I; 349 if (I->isDebugValue()) 350 continue; 351 352 // Working from the bottom, when we see a non-terminator instruction, we're 353 // done. 354 if (!isUnpredicatedTerminator(*I)) 355 break; 356 357 // A terminator that isn't a branch can't easily be handled by this 358 // analysis. 359 if (!I->isBranch()) 360 return true; 361 362 // Can't handle indirect branches. 363 SystemZII::Branch Branch(getBranchInfo(*I)); 364 if (!Branch.Target->isMBB()) 365 return true; 366 367 // Punt on compound branches. 368 if (Branch.Type != SystemZII::BranchNormal) 369 return true; 370 371 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 372 // Handle unconditional branches. 373 if (!AllowModify) { 374 TBB = Branch.Target->getMBB(); 375 continue; 376 } 377 378 // If the block has any instructions after a JMP, delete them. 379 while (std::next(I) != MBB.end()) 380 std::next(I)->eraseFromParent(); 381 382 Cond.clear(); 383 FBB = nullptr; 384 385 // Delete the JMP if it's equivalent to a fall-through. 386 if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) { 387 TBB = nullptr; 388 I->eraseFromParent(); 389 I = MBB.end(); 390 continue; 391 } 392 393 // TBB is used to indicate the unconditinal destination. 394 TBB = Branch.Target->getMBB(); 395 continue; 396 } 397 398 // Working from the bottom, handle the first conditional branch. 399 if (Cond.empty()) { 400 // FIXME: add X86-style branch swap 401 FBB = TBB; 402 TBB = Branch.Target->getMBB(); 403 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 404 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 405 continue; 406 } 407 408 // Handle subsequent conditional branches. 409 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 410 411 // Only handle the case where all conditional branches branch to the same 412 // destination. 413 if (TBB != Branch.Target->getMBB()) 414 return true; 415 416 // If the conditions are the same, we can leave them alone. 417 unsigned OldCCValid = Cond[0].getImm(); 418 unsigned OldCCMask = Cond[1].getImm(); 419 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 420 continue; 421 422 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 423 return false; 424 } 425 426 return false; 427 } 428 429 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB, 430 int *BytesRemoved) const { 431 assert(!BytesRemoved && "code size not handled"); 432 433 // Most of the code and comments here are boilerplate. 434 MachineBasicBlock::iterator I = MBB.end(); 435 unsigned Count = 0; 436 437 while (I != MBB.begin()) { 438 --I; 439 if (I->isDebugValue()) 440 continue; 441 if (!I->isBranch()) 442 break; 443 if (!getBranchInfo(*I).Target->isMBB()) 444 break; 445 // Remove the branch. 446 I->eraseFromParent(); 447 I = MBB.end(); 448 ++Count; 449 } 450 451 return Count; 452 } 453 454 bool SystemZInstrInfo:: 455 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 456 assert(Cond.size() == 2 && "Invalid condition"); 457 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 458 return false; 459 } 460 461 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB, 462 MachineBasicBlock *TBB, 463 MachineBasicBlock *FBB, 464 ArrayRef<MachineOperand> Cond, 465 const DebugLoc &DL, 466 int *BytesAdded) const { 467 // In this function we output 32-bit branches, which should always 468 // have enough range. They can be shortened and relaxed by later code 469 // in the pipeline, if desired. 470 471 // Shouldn't be a fall through. 472 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 473 assert((Cond.size() == 2 || Cond.size() == 0) && 474 "SystemZ branch conditions have one component!"); 475 assert(!BytesAdded && "code size not handled"); 476 477 if (Cond.empty()) { 478 // Unconditional branch? 479 assert(!FBB && "Unconditional branch with multiple successors!"); 480 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 481 return 1; 482 } 483 484 // Conditional branch. 485 unsigned Count = 0; 486 unsigned CCValid = Cond[0].getImm(); 487 unsigned CCMask = Cond[1].getImm(); 488 BuildMI(&MBB, DL, get(SystemZ::BRC)) 489 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 490 ++Count; 491 492 if (FBB) { 493 // Two-way Conditional branch. Insert the second branch. 494 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 495 ++Count; 496 } 497 return Count; 498 } 499 500 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 501 unsigned &SrcReg2, int &Mask, 502 int &Value) const { 503 assert(MI.isCompare() && "Caller should have checked for a comparison"); 504 505 if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() && 506 MI.getOperand(1).isImm()) { 507 SrcReg = MI.getOperand(0).getReg(); 508 SrcReg2 = 0; 509 Value = MI.getOperand(1).getImm(); 510 Mask = ~0; 511 return true; 512 } 513 514 return false; 515 } 516 517 // If Reg is a virtual register, return its definition, otherwise return null. 518 static MachineInstr *getDef(unsigned Reg, 519 const MachineRegisterInfo *MRI) { 520 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 521 return nullptr; 522 return MRI->getUniqueVRegDef(Reg); 523 } 524 525 // Return true if MI is a shift of type Opcode by Imm bits. 526 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) { 527 return (MI->getOpcode() == Opcode && 528 !MI->getOperand(2).getReg() && 529 MI->getOperand(3).getImm() == Imm); 530 } 531 532 // If the destination of MI has no uses, delete it as dead. 533 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) { 534 if (MRI->use_nodbg_empty(MI->getOperand(0).getReg())) 535 MI->eraseFromParent(); 536 } 537 538 // Compare compares SrcReg against zero. Check whether SrcReg contains 539 // the result of an IPM sequence whose input CC survives until Compare, 540 // and whether Compare is therefore redundant. Delete it and return 541 // true if so. 542 static bool removeIPMBasedCompare(MachineInstr &Compare, unsigned SrcReg, 543 const MachineRegisterInfo *MRI, 544 const TargetRegisterInfo *TRI) { 545 MachineInstr *LGFR = nullptr; 546 MachineInstr *RLL = getDef(SrcReg, MRI); 547 if (RLL && RLL->getOpcode() == SystemZ::LGFR) { 548 LGFR = RLL; 549 RLL = getDef(LGFR->getOperand(1).getReg(), MRI); 550 } 551 if (!RLL || !isShift(RLL, SystemZ::RLL, 31)) 552 return false; 553 554 MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI); 555 if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC)) 556 return false; 557 558 MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI); 559 if (!IPM || IPM->getOpcode() != SystemZ::IPM) 560 return false; 561 562 // Check that there are no assignments to CC between the IPM and Compare, 563 if (IPM->getParent() != Compare.getParent()) 564 return false; 565 MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare.getIterator(); 566 for (++MBBI; MBBI != MBBE; ++MBBI) { 567 MachineInstr &MI = *MBBI; 568 if (MI.modifiesRegister(SystemZ::CC, TRI)) 569 return false; 570 } 571 572 Compare.eraseFromParent(); 573 if (LGFR) 574 eraseIfDead(LGFR, MRI); 575 eraseIfDead(RLL, MRI); 576 eraseIfDead(SRL, MRI); 577 eraseIfDead(IPM, MRI); 578 579 return true; 580 } 581 582 bool SystemZInstrInfo::optimizeCompareInstr( 583 MachineInstr &Compare, unsigned SrcReg, unsigned SrcReg2, int Mask, 584 int Value, const MachineRegisterInfo *MRI) const { 585 assert(!SrcReg2 && "Only optimizing constant comparisons so far"); 586 bool IsLogical = (Compare.getDesc().TSFlags & SystemZII::IsLogical) != 0; 587 return Value == 0 && !IsLogical && 588 removeIPMBasedCompare(Compare, SrcReg, MRI, &RI); 589 } 590 591 592 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 593 ArrayRef<MachineOperand> Pred, 594 unsigned TrueReg, unsigned FalseReg, 595 int &CondCycles, int &TrueCycles, 596 int &FalseCycles) const { 597 // Not all subtargets have LOCR instructions. 598 if (!STI.hasLoadStoreOnCond()) 599 return false; 600 if (Pred.size() != 2) 601 return false; 602 603 // Check register classes. 604 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 605 const TargetRegisterClass *RC = 606 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 607 if (!RC) 608 return false; 609 610 // We have LOCR instructions for 32 and 64 bit general purpose registers. 611 if ((STI.hasLoadStoreOnCond2() && 612 SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) || 613 SystemZ::GR32BitRegClass.hasSubClassEq(RC) || 614 SystemZ::GR64BitRegClass.hasSubClassEq(RC)) { 615 CondCycles = 2; 616 TrueCycles = 2; 617 FalseCycles = 2; 618 return true; 619 } 620 621 // Can't do anything else. 622 return false; 623 } 624 625 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB, 626 MachineBasicBlock::iterator I, 627 const DebugLoc &DL, unsigned DstReg, 628 ArrayRef<MachineOperand> Pred, 629 unsigned TrueReg, 630 unsigned FalseReg) const { 631 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 632 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 633 634 assert(Pred.size() == 2 && "Invalid condition"); 635 unsigned CCValid = Pred[0].getImm(); 636 unsigned CCMask = Pred[1].getImm(); 637 638 unsigned Opc; 639 if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) { 640 if (STI.hasLoadStoreOnCond2()) 641 Opc = SystemZ::LOCRMux; 642 else { 643 Opc = SystemZ::LOCR; 644 MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass); 645 } 646 } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) 647 Opc = SystemZ::LOCGR; 648 else 649 llvm_unreachable("Invalid register class"); 650 651 BuildMI(MBB, I, DL, get(Opc), DstReg) 652 .addReg(FalseReg).addReg(TrueReg) 653 .addImm(CCValid).addImm(CCMask); 654 } 655 656 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 657 unsigned Reg, 658 MachineRegisterInfo *MRI) const { 659 unsigned DefOpc = DefMI.getOpcode(); 660 if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI && 661 DefOpc != SystemZ::LGHI) 662 return false; 663 if (DefMI.getOperand(0).getReg() != Reg) 664 return false; 665 int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm(); 666 667 unsigned UseOpc = UseMI.getOpcode(); 668 unsigned NewUseOpc; 669 unsigned UseIdx; 670 int CommuteIdx = -1; 671 switch (UseOpc) { 672 case SystemZ::LOCRMux: 673 if (!STI.hasLoadStoreOnCond2()) 674 return false; 675 NewUseOpc = SystemZ::LOCHIMux; 676 if (UseMI.getOperand(2).getReg() == Reg) 677 UseIdx = 2; 678 else if (UseMI.getOperand(1).getReg() == Reg) 679 UseIdx = 2, CommuteIdx = 1; 680 else 681 return false; 682 break; 683 case SystemZ::LOCGR: 684 if (!STI.hasLoadStoreOnCond2()) 685 return false; 686 NewUseOpc = SystemZ::LOCGHI; 687 if (UseMI.getOperand(2).getReg() == Reg) 688 UseIdx = 2; 689 else if (UseMI.getOperand(1).getReg() == Reg) 690 UseIdx = 2, CommuteIdx = 1; 691 else 692 return false; 693 break; 694 default: 695 return false; 696 } 697 698 if (CommuteIdx != -1) 699 if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx)) 700 return false; 701 702 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 703 UseMI.setDesc(get(NewUseOpc)); 704 UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal); 705 if (DeleteDef) 706 DefMI.eraseFromParent(); 707 708 return true; 709 } 710 711 bool SystemZInstrInfo::isPredicable(MachineInstr &MI) const { 712 unsigned Opcode = MI.getOpcode(); 713 if (Opcode == SystemZ::Return || 714 Opcode == SystemZ::Trap || 715 Opcode == SystemZ::CallJG || 716 Opcode == SystemZ::CallBR) 717 return true; 718 return false; 719 } 720 721 bool SystemZInstrInfo:: 722 isProfitableToIfCvt(MachineBasicBlock &MBB, 723 unsigned NumCycles, unsigned ExtraPredCycles, 724 BranchProbability Probability) const { 725 // Avoid using conditional returns at the end of a loop (since then 726 // we'd need to emit an unconditional branch to the beginning anyway, 727 // making the loop body longer). This doesn't apply for low-probability 728 // loops (eg. compare-and-swap retry), so just decide based on branch 729 // probability instead of looping structure. 730 // However, since Compare and Trap instructions cost the same as a regular 731 // Compare instruction, we should allow the if conversion to convert this 732 // into a Conditional Compare regardless of the branch probability. 733 if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap && 734 MBB.succ_empty() && Probability < BranchProbability(1, 8)) 735 return false; 736 // For now only convert single instructions. 737 return NumCycles == 1; 738 } 739 740 bool SystemZInstrInfo:: 741 isProfitableToIfCvt(MachineBasicBlock &TMBB, 742 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 743 MachineBasicBlock &FMBB, 744 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 745 BranchProbability Probability) const { 746 // For now avoid converting mutually-exclusive cases. 747 return false; 748 } 749 750 bool SystemZInstrInfo:: 751 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 752 BranchProbability Probability) const { 753 // For now only duplicate single instructions. 754 return NumCycles == 1; 755 } 756 757 bool SystemZInstrInfo::PredicateInstruction( 758 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 759 assert(Pred.size() == 2 && "Invalid condition"); 760 unsigned CCValid = Pred[0].getImm(); 761 unsigned CCMask = Pred[1].getImm(); 762 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 763 unsigned Opcode = MI.getOpcode(); 764 if (Opcode == SystemZ::Trap) { 765 MI.setDesc(get(SystemZ::CondTrap)); 766 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 767 .addImm(CCValid).addImm(CCMask) 768 .addReg(SystemZ::CC, RegState::Implicit); 769 return true; 770 } 771 if (Opcode == SystemZ::Return) { 772 MI.setDesc(get(SystemZ::CondReturn)); 773 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 774 .addImm(CCValid).addImm(CCMask) 775 .addReg(SystemZ::CC, RegState::Implicit); 776 return true; 777 } 778 if (Opcode == SystemZ::CallJG) { 779 MachineOperand FirstOp = MI.getOperand(0); 780 const uint32_t *RegMask = MI.getOperand(1).getRegMask(); 781 MI.RemoveOperand(1); 782 MI.RemoveOperand(0); 783 MI.setDesc(get(SystemZ::CallBRCL)); 784 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 785 .addImm(CCValid) 786 .addImm(CCMask) 787 .add(FirstOp) 788 .addRegMask(RegMask) 789 .addReg(SystemZ::CC, RegState::Implicit); 790 return true; 791 } 792 if (Opcode == SystemZ::CallBR) { 793 const uint32_t *RegMask = MI.getOperand(0).getRegMask(); 794 MI.RemoveOperand(0); 795 MI.setDesc(get(SystemZ::CallBCR)); 796 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 797 .addImm(CCValid).addImm(CCMask) 798 .addRegMask(RegMask) 799 .addReg(SystemZ::CC, RegState::Implicit); 800 return true; 801 } 802 return false; 803 } 804 805 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 806 MachineBasicBlock::iterator MBBI, 807 const DebugLoc &DL, unsigned DestReg, 808 unsigned SrcReg, bool KillSrc) const { 809 // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too. 810 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 811 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), 812 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); 813 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), 814 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); 815 return; 816 } 817 818 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { 819 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc, 820 false); 821 return; 822 } 823 824 // Everything else needs only one instruction. 825 unsigned Opcode; 826 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 827 Opcode = SystemZ::LGR; 828 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 829 // For z13 we prefer LDR over LER to avoid partial register dependencies. 830 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER; 831 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 832 Opcode = SystemZ::LDR; 833 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 834 Opcode = SystemZ::LXR; 835 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg)) 836 Opcode = SystemZ::VLR32; 837 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg)) 838 Opcode = SystemZ::VLR64; 839 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg)) 840 Opcode = SystemZ::VLR; 841 else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg)) 842 Opcode = SystemZ::CPYA; 843 else if (SystemZ::AR32BitRegClass.contains(DestReg) && 844 SystemZ::GR32BitRegClass.contains(SrcReg)) 845 Opcode = SystemZ::SAR; 846 else if (SystemZ::GR32BitRegClass.contains(DestReg) && 847 SystemZ::AR32BitRegClass.contains(SrcReg)) 848 Opcode = SystemZ::EAR; 849 else 850 llvm_unreachable("Impossible reg-to-reg copy"); 851 852 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 853 .addReg(SrcReg, getKillRegState(KillSrc)); 854 } 855 856 void SystemZInstrInfo::storeRegToStackSlot( 857 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, 858 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 859 const TargetRegisterInfo *TRI) const { 860 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 861 862 // Callers may expect a single instruction, so keep 128-bit moves 863 // together for now and lower them after register allocation. 864 unsigned LoadOpcode, StoreOpcode; 865 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 866 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 867 .addReg(SrcReg, getKillRegState(isKill)), 868 FrameIdx); 869 } 870 871 void SystemZInstrInfo::loadRegFromStackSlot( 872 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, 873 int FrameIdx, const TargetRegisterClass *RC, 874 const TargetRegisterInfo *TRI) const { 875 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 876 877 // Callers may expect a single instruction, so keep 128-bit moves 878 // together for now and lower them after register allocation. 879 unsigned LoadOpcode, StoreOpcode; 880 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 881 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 882 FrameIdx); 883 } 884 885 // Return true if MI is a simple load or store with a 12-bit displacement 886 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 887 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 888 const MCInstrDesc &MCID = MI->getDesc(); 889 return ((MCID.TSFlags & Flag) && 890 isUInt<12>(MI->getOperand(2).getImm()) && 891 MI->getOperand(3).getReg() == 0); 892 } 893 894 namespace { 895 struct LogicOp { 896 LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {} 897 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 898 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 899 900 explicit operator bool() const { return RegSize; } 901 902 unsigned RegSize, ImmLSB, ImmSize; 903 }; 904 } // end anonymous namespace 905 906 static LogicOp interpretAndImmediate(unsigned Opcode) { 907 switch (Opcode) { 908 case SystemZ::NILMux: return LogicOp(32, 0, 16); 909 case SystemZ::NIHMux: return LogicOp(32, 16, 16); 910 case SystemZ::NILL64: return LogicOp(64, 0, 16); 911 case SystemZ::NILH64: return LogicOp(64, 16, 16); 912 case SystemZ::NIHL64: return LogicOp(64, 32, 16); 913 case SystemZ::NIHH64: return LogicOp(64, 48, 16); 914 case SystemZ::NIFMux: return LogicOp(32, 0, 32); 915 case SystemZ::NILF64: return LogicOp(64, 0, 32); 916 case SystemZ::NIHF64: return LogicOp(64, 32, 32); 917 default: return LogicOp(); 918 } 919 } 920 921 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) { 922 if (OldMI->registerDefIsDead(SystemZ::CC)) { 923 MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC); 924 if (CCDef != nullptr) 925 CCDef->setIsDead(true); 926 } 927 } 928 929 // Used to return from convertToThreeAddress after replacing two-address 930 // instruction OldMI with three-address instruction NewMI. 931 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI, 932 MachineInstr *NewMI, 933 LiveVariables *LV) { 934 if (LV) { 935 unsigned NumOps = OldMI->getNumOperands(); 936 for (unsigned I = 1; I < NumOps; ++I) { 937 MachineOperand &Op = OldMI->getOperand(I); 938 if (Op.isReg() && Op.isKill()) 939 LV->replaceKillInstruction(Op.getReg(), *OldMI, *NewMI); 940 } 941 } 942 transferDeadCC(OldMI, NewMI); 943 return NewMI; 944 } 945 946 MachineInstr *SystemZInstrInfo::convertToThreeAddress( 947 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 948 MachineBasicBlock *MBB = MI.getParent(); 949 MachineFunction *MF = MBB->getParent(); 950 MachineRegisterInfo &MRI = MF->getRegInfo(); 951 952 unsigned Opcode = MI.getOpcode(); 953 unsigned NumOps = MI.getNumOperands(); 954 955 // Try to convert something like SLL into SLLK, if supported. 956 // We prefer to keep the two-operand form where possible both 957 // because it tends to be shorter and because some instructions 958 // have memory forms that can be used during spilling. 959 if (STI.hasDistinctOps()) { 960 MachineOperand &Dest = MI.getOperand(0); 961 MachineOperand &Src = MI.getOperand(1); 962 unsigned DestReg = Dest.getReg(); 963 unsigned SrcReg = Src.getReg(); 964 // AHIMux is only really a three-operand instruction when both operands 965 // are low registers. Try to constrain both operands to be low if 966 // possible. 967 if (Opcode == SystemZ::AHIMux && 968 TargetRegisterInfo::isVirtualRegister(DestReg) && 969 TargetRegisterInfo::isVirtualRegister(SrcReg) && 970 MRI.getRegClass(DestReg)->contains(SystemZ::R1L) && 971 MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) { 972 MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass); 973 MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass); 974 } 975 int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); 976 if (ThreeOperandOpcode >= 0) { 977 // Create three address instruction without adding the implicit 978 // operands. Those will instead be copied over from the original 979 // instruction by the loop below. 980 MachineInstrBuilder MIB( 981 *MF, MF->CreateMachineInstr(get(ThreeOperandOpcode), MI.getDebugLoc(), 982 /*NoImplicit=*/true)); 983 MIB.add(Dest); 984 // Keep the kill state, but drop the tied flag. 985 MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()); 986 // Keep the remaining operands as-is. 987 for (unsigned I = 2; I < NumOps; ++I) 988 MIB.add(MI.getOperand(I)); 989 MBB->insert(MI, MIB); 990 return finishConvertToThreeAddress(&MI, MIB, LV); 991 } 992 } 993 994 // Try to convert an AND into an RISBG-type instruction. 995 if (LogicOp And = interpretAndImmediate(Opcode)) { 996 uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB; 997 // AND IMMEDIATE leaves the other bits of the register unchanged. 998 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 999 unsigned Start, End; 1000 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 1001 unsigned NewOpcode; 1002 if (And.RegSize == 64) { 1003 NewOpcode = SystemZ::RISBG; 1004 // Prefer RISBGN if available, since it does not clobber CC. 1005 if (STI.hasMiscellaneousExtensions()) 1006 NewOpcode = SystemZ::RISBGN; 1007 } else { 1008 NewOpcode = SystemZ::RISBMux; 1009 Start &= 31; 1010 End &= 31; 1011 } 1012 MachineOperand &Dest = MI.getOperand(0); 1013 MachineOperand &Src = MI.getOperand(1); 1014 MachineInstrBuilder MIB = 1015 BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode)) 1016 .add(Dest) 1017 .addReg(0) 1018 .addReg(Src.getReg(), getKillRegState(Src.isKill()), 1019 Src.getSubReg()) 1020 .addImm(Start) 1021 .addImm(End + 128) 1022 .addImm(0); 1023 return finishConvertToThreeAddress(&MI, MIB, LV); 1024 } 1025 } 1026 return nullptr; 1027 } 1028 1029 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1030 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1031 MachineBasicBlock::iterator InsertPt, int FrameIndex, 1032 LiveIntervals *LIS) const { 1033 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1034 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1035 unsigned Size = MFI.getObjectSize(FrameIndex); 1036 unsigned Opcode = MI.getOpcode(); 1037 1038 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 1039 if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && 1040 isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) { 1041 1042 // Check CC liveness, since new instruction introduces a dead 1043 // def of CC. 1044 MCRegUnitIterator CCUnit(SystemZ::CC, TRI); 1045 LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit); 1046 ++CCUnit; 1047 assert (!CCUnit.isValid() && "CC only has one reg unit."); 1048 SlotIndex MISlot = 1049 LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot(); 1050 if (!CCLiveRange.liveAt(MISlot)) { 1051 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST 1052 MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt, 1053 MI.getDebugLoc(), get(SystemZ::AGSI)) 1054 .addFrameIndex(FrameIndex) 1055 .addImm(0) 1056 .addImm(MI.getOperand(2).getImm()); 1057 BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true); 1058 CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator()); 1059 return BuiltMI; 1060 } 1061 } 1062 return nullptr; 1063 } 1064 1065 // All other cases require a single operand. 1066 if (Ops.size() != 1) 1067 return nullptr; 1068 1069 unsigned OpNum = Ops[0]; 1070 assert(Size == 1071 MF.getRegInfo() 1072 .getRegClass(MI.getOperand(OpNum).getReg()) 1073 ->getSize() && 1074 "Invalid size combination"); 1075 1076 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 && 1077 isInt<8>(MI.getOperand(2).getImm())) { 1078 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST 1079 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); 1080 MachineInstr *BuiltMI = 1081 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1082 .addFrameIndex(FrameIndex) 1083 .addImm(0) 1084 .addImm(MI.getOperand(2).getImm()); 1085 transferDeadCC(&MI, BuiltMI); 1086 return BuiltMI; 1087 } 1088 1089 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 1090 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 1091 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 1092 // If we're spilling the destination of an LDGR or LGDR, store the 1093 // source register instead. 1094 if (OpNum == 0) { 1095 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 1096 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1097 get(StoreOpcode)) 1098 .add(MI.getOperand(1)) 1099 .addFrameIndex(FrameIndex) 1100 .addImm(0) 1101 .addReg(0); 1102 } 1103 // If we're spilling the source of an LDGR or LGDR, load the 1104 // destination register instead. 1105 if (OpNum == 1) { 1106 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 1107 unsigned Dest = MI.getOperand(0).getReg(); 1108 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1109 get(LoadOpcode), Dest) 1110 .addFrameIndex(FrameIndex) 1111 .addImm(0) 1112 .addReg(0); 1113 } 1114 } 1115 1116 // Look for cases where the source of a simple store or the destination 1117 // of a simple load is being spilled. Try to use MVC instead. 1118 // 1119 // Although MVC is in practice a fast choice in these cases, it is still 1120 // logically a bytewise copy. This means that we cannot use it if the 1121 // load or store is volatile. We also wouldn't be able to use MVC if 1122 // the two memories partially overlap, but that case cannot occur here, 1123 // because we know that one of the memories is a full frame index. 1124 // 1125 // For performance reasons, we also want to avoid using MVC if the addresses 1126 // might be equal. We don't worry about that case here, because spill slot 1127 // coloring happens later, and because we have special code to remove 1128 // MVCs that turn out to be redundant. 1129 if (OpNum == 0 && MI.hasOneMemOperand()) { 1130 MachineMemOperand *MMO = *MI.memoperands_begin(); 1131 if (MMO->getSize() == Size && !MMO->isVolatile()) { 1132 // Handle conversion of loads. 1133 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) { 1134 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1135 get(SystemZ::MVC)) 1136 .addFrameIndex(FrameIndex) 1137 .addImm(0) 1138 .addImm(Size) 1139 .add(MI.getOperand(1)) 1140 .addImm(MI.getOperand(2).getImm()) 1141 .addMemOperand(MMO); 1142 } 1143 // Handle conversion of stores. 1144 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) { 1145 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1146 get(SystemZ::MVC)) 1147 .add(MI.getOperand(1)) 1148 .addImm(MI.getOperand(2).getImm()) 1149 .addImm(Size) 1150 .addFrameIndex(FrameIndex) 1151 .addImm(0) 1152 .addMemOperand(MMO); 1153 } 1154 } 1155 } 1156 1157 // If the spilled operand is the final one, try to change <INSN>R 1158 // into <INSN>. 1159 int MemOpcode = SystemZ::getMemOpcode(Opcode); 1160 if (MemOpcode >= 0) { 1161 unsigned NumOps = MI.getNumExplicitOperands(); 1162 if (OpNum == NumOps - 1) { 1163 const MCInstrDesc &MemDesc = get(MemOpcode); 1164 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 1165 assert(AccessBytes != 0 && "Size of access should be known"); 1166 assert(AccessBytes <= Size && "Access outside the frame index"); 1167 uint64_t Offset = Size - AccessBytes; 1168 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 1169 MI.getDebugLoc(), get(MemOpcode)); 1170 for (unsigned I = 0; I < OpNum; ++I) 1171 MIB.add(MI.getOperand(I)); 1172 MIB.addFrameIndex(FrameIndex).addImm(Offset); 1173 if (MemDesc.TSFlags & SystemZII::HasIndex) 1174 MIB.addReg(0); 1175 transferDeadCC(&MI, MIB); 1176 return MIB; 1177 } 1178 } 1179 1180 return nullptr; 1181 } 1182 1183 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1184 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1185 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 1186 LiveIntervals *LIS) const { 1187 return nullptr; 1188 } 1189 1190 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1191 switch (MI.getOpcode()) { 1192 case SystemZ::L128: 1193 splitMove(MI, SystemZ::LG); 1194 return true; 1195 1196 case SystemZ::ST128: 1197 splitMove(MI, SystemZ::STG); 1198 return true; 1199 1200 case SystemZ::LX: 1201 splitMove(MI, SystemZ::LD); 1202 return true; 1203 1204 case SystemZ::STX: 1205 splitMove(MI, SystemZ::STD); 1206 return true; 1207 1208 case SystemZ::LBMux: 1209 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); 1210 return true; 1211 1212 case SystemZ::LHMux: 1213 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); 1214 return true; 1215 1216 case SystemZ::LLCRMux: 1217 expandZExtPseudo(MI, SystemZ::LLCR, 8); 1218 return true; 1219 1220 case SystemZ::LLHRMux: 1221 expandZExtPseudo(MI, SystemZ::LLHR, 16); 1222 return true; 1223 1224 case SystemZ::LLCMux: 1225 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); 1226 return true; 1227 1228 case SystemZ::LLHMux: 1229 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); 1230 return true; 1231 1232 case SystemZ::LMux: 1233 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); 1234 return true; 1235 1236 case SystemZ::LOCMux: 1237 expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH); 1238 return true; 1239 1240 case SystemZ::LOCHIMux: 1241 expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI); 1242 return true; 1243 1244 case SystemZ::LOCRMux: 1245 expandLOCRPseudo(MI, SystemZ::LOCR, SystemZ::LOCFHR); 1246 return true; 1247 1248 case SystemZ::STCMux: 1249 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); 1250 return true; 1251 1252 case SystemZ::STHMux: 1253 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); 1254 return true; 1255 1256 case SystemZ::STMux: 1257 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); 1258 return true; 1259 1260 case SystemZ::STOCMux: 1261 expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH); 1262 return true; 1263 1264 case SystemZ::LHIMux: 1265 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); 1266 return true; 1267 1268 case SystemZ::IIFMux: 1269 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); 1270 return true; 1271 1272 case SystemZ::IILMux: 1273 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); 1274 return true; 1275 1276 case SystemZ::IIHMux: 1277 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); 1278 return true; 1279 1280 case SystemZ::NIFMux: 1281 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); 1282 return true; 1283 1284 case SystemZ::NILMux: 1285 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); 1286 return true; 1287 1288 case SystemZ::NIHMux: 1289 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); 1290 return true; 1291 1292 case SystemZ::OIFMux: 1293 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); 1294 return true; 1295 1296 case SystemZ::OILMux: 1297 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); 1298 return true; 1299 1300 case SystemZ::OIHMux: 1301 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); 1302 return true; 1303 1304 case SystemZ::XIFMux: 1305 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); 1306 return true; 1307 1308 case SystemZ::TMLMux: 1309 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); 1310 return true; 1311 1312 case SystemZ::TMHMux: 1313 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); 1314 return true; 1315 1316 case SystemZ::AHIMux: 1317 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); 1318 return true; 1319 1320 case SystemZ::AHIMuxK: 1321 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); 1322 return true; 1323 1324 case SystemZ::AFIMux: 1325 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); 1326 return true; 1327 1328 case SystemZ::CHIMux: 1329 expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false); 1330 return true; 1331 1332 case SystemZ::CFIMux: 1333 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); 1334 return true; 1335 1336 case SystemZ::CLFIMux: 1337 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); 1338 return true; 1339 1340 case SystemZ::CMux: 1341 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); 1342 return true; 1343 1344 case SystemZ::CLMux: 1345 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); 1346 return true; 1347 1348 case SystemZ::RISBMux: { 1349 bool DestIsHigh = isHighReg(MI.getOperand(0).getReg()); 1350 bool SrcIsHigh = isHighReg(MI.getOperand(2).getReg()); 1351 if (SrcIsHigh == DestIsHigh) 1352 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); 1353 else { 1354 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); 1355 MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32); 1356 } 1357 return true; 1358 } 1359 1360 case SystemZ::ADJDYNALLOC: 1361 splitAdjDynAlloc(MI); 1362 return true; 1363 1364 case TargetOpcode::LOAD_STACK_GUARD: 1365 expandLoadStackGuard(&MI); 1366 return true; 1367 1368 default: 1369 return false; 1370 } 1371 } 1372 1373 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1374 if (MI.getOpcode() == TargetOpcode::INLINEASM) { 1375 const MachineFunction *MF = MI.getParent()->getParent(); 1376 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1377 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1378 } 1379 return MI.getDesc().getSize(); 1380 } 1381 1382 SystemZII::Branch 1383 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const { 1384 switch (MI.getOpcode()) { 1385 case SystemZ::BR: 1386 case SystemZ::J: 1387 case SystemZ::JG: 1388 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 1389 SystemZ::CCMASK_ANY, &MI.getOperand(0)); 1390 1391 case SystemZ::BRC: 1392 case SystemZ::BRCL: 1393 return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(), 1394 MI.getOperand(1).getImm(), &MI.getOperand(2)); 1395 1396 case SystemZ::BRCT: 1397 case SystemZ::BRCTH: 1398 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 1399 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1400 1401 case SystemZ::BRCTG: 1402 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 1403 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1404 1405 case SystemZ::CIJ: 1406 case SystemZ::CRJ: 1407 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 1408 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1409 1410 case SystemZ::CLIJ: 1411 case SystemZ::CLRJ: 1412 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, 1413 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1414 1415 case SystemZ::CGIJ: 1416 case SystemZ::CGRJ: 1417 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 1418 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1419 1420 case SystemZ::CLGIJ: 1421 case SystemZ::CLGRJ: 1422 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, 1423 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1424 1425 default: 1426 llvm_unreachable("Unrecognized branch opcode"); 1427 } 1428 } 1429 1430 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 1431 unsigned &LoadOpcode, 1432 unsigned &StoreOpcode) const { 1433 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 1434 LoadOpcode = SystemZ::L; 1435 StoreOpcode = SystemZ::ST; 1436 } else if (RC == &SystemZ::GRH32BitRegClass) { 1437 LoadOpcode = SystemZ::LFH; 1438 StoreOpcode = SystemZ::STFH; 1439 } else if (RC == &SystemZ::GRX32BitRegClass) { 1440 LoadOpcode = SystemZ::LMux; 1441 StoreOpcode = SystemZ::STMux; 1442 } else if (RC == &SystemZ::GR64BitRegClass || 1443 RC == &SystemZ::ADDR64BitRegClass) { 1444 LoadOpcode = SystemZ::LG; 1445 StoreOpcode = SystemZ::STG; 1446 } else if (RC == &SystemZ::GR128BitRegClass || 1447 RC == &SystemZ::ADDR128BitRegClass) { 1448 LoadOpcode = SystemZ::L128; 1449 StoreOpcode = SystemZ::ST128; 1450 } else if (RC == &SystemZ::FP32BitRegClass) { 1451 LoadOpcode = SystemZ::LE; 1452 StoreOpcode = SystemZ::STE; 1453 } else if (RC == &SystemZ::FP64BitRegClass) { 1454 LoadOpcode = SystemZ::LD; 1455 StoreOpcode = SystemZ::STD; 1456 } else if (RC == &SystemZ::FP128BitRegClass) { 1457 LoadOpcode = SystemZ::LX; 1458 StoreOpcode = SystemZ::STX; 1459 } else if (RC == &SystemZ::VR32BitRegClass) { 1460 LoadOpcode = SystemZ::VL32; 1461 StoreOpcode = SystemZ::VST32; 1462 } else if (RC == &SystemZ::VR64BitRegClass) { 1463 LoadOpcode = SystemZ::VL64; 1464 StoreOpcode = SystemZ::VST64; 1465 } else if (RC == &SystemZ::VF128BitRegClass || 1466 RC == &SystemZ::VR128BitRegClass) { 1467 LoadOpcode = SystemZ::VL; 1468 StoreOpcode = SystemZ::VST; 1469 } else 1470 llvm_unreachable("Unsupported regclass to load or store"); 1471 } 1472 1473 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 1474 int64_t Offset) const { 1475 const MCInstrDesc &MCID = get(Opcode); 1476 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 1477 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 1478 // Get the instruction to use for unsigned 12-bit displacements. 1479 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 1480 if (Disp12Opcode >= 0) 1481 return Disp12Opcode; 1482 1483 // All address-related instructions can use unsigned 12-bit 1484 // displacements. 1485 return Opcode; 1486 } 1487 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 1488 // Get the instruction to use for signed 20-bit displacements. 1489 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 1490 if (Disp20Opcode >= 0) 1491 return Disp20Opcode; 1492 1493 // Check whether Opcode allows signed 20-bit displacements. 1494 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1495 return Opcode; 1496 } 1497 return 0; 1498 } 1499 1500 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 1501 switch (Opcode) { 1502 case SystemZ::L: return SystemZ::LT; 1503 case SystemZ::LY: return SystemZ::LT; 1504 case SystemZ::LG: return SystemZ::LTG; 1505 case SystemZ::LGF: return SystemZ::LTGF; 1506 case SystemZ::LR: return SystemZ::LTR; 1507 case SystemZ::LGFR: return SystemZ::LTGFR; 1508 case SystemZ::LGR: return SystemZ::LTGR; 1509 case SystemZ::LER: return SystemZ::LTEBR; 1510 case SystemZ::LDR: return SystemZ::LTDBR; 1511 case SystemZ::LXR: return SystemZ::LTXBR; 1512 case SystemZ::LCDFR: return SystemZ::LCDBR; 1513 case SystemZ::LPDFR: return SystemZ::LPDBR; 1514 case SystemZ::LNDFR: return SystemZ::LNDBR; 1515 case SystemZ::LCDFR_32: return SystemZ::LCEBR; 1516 case SystemZ::LPDFR_32: return SystemZ::LPEBR; 1517 case SystemZ::LNDFR_32: return SystemZ::LNEBR; 1518 // On zEC12 we prefer to use RISBGN. But if there is a chance to 1519 // actually use the condition code, we may turn it back into RISGB. 1520 // Note that RISBG is not really a "load-and-test" instruction, 1521 // but sets the same condition code values, so is OK to use here. 1522 case SystemZ::RISBGN: return SystemZ::RISBG; 1523 default: return 0; 1524 } 1525 } 1526 1527 // Return true if Mask matches the regexp 0*1+0*, given that zero masks 1528 // have already been filtered out. Store the first set bit in LSB and 1529 // the number of set bits in Length if so. 1530 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { 1531 unsigned First = findFirstSet(Mask); 1532 uint64_t Top = (Mask >> First) + 1; 1533 if ((Top & -Top) == Top) { 1534 LSB = First; 1535 Length = findFirstSet(Top); 1536 return true; 1537 } 1538 return false; 1539 } 1540 1541 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 1542 unsigned &Start, unsigned &End) const { 1543 // Reject trivial all-zero masks. 1544 Mask &= allOnes(BitSize); 1545 if (Mask == 0) 1546 return false; 1547 1548 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 1549 // the msb and End specifies the index of the lsb. 1550 unsigned LSB, Length; 1551 if (isStringOfOnes(Mask, LSB, Length)) { 1552 Start = 63 - (LSB + Length - 1); 1553 End = 63 - LSB; 1554 return true; 1555 } 1556 1557 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 1558 // of the low 1s and End specifies the lsb of the high 1s. 1559 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { 1560 assert(LSB > 0 && "Bottom bit must be set"); 1561 assert(LSB + Length < BitSize && "Top bit must be set"); 1562 Start = 63 - (LSB - 1); 1563 End = 63 - (LSB + Length); 1564 return true; 1565 } 1566 1567 return false; 1568 } 1569 1570 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode, 1571 SystemZII::FusedCompareType Type, 1572 const MachineInstr *MI) const { 1573 switch (Opcode) { 1574 case SystemZ::CHI: 1575 case SystemZ::CGHI: 1576 if (!(MI && isInt<8>(MI->getOperand(1).getImm()))) 1577 return 0; 1578 break; 1579 case SystemZ::CLFI: 1580 case SystemZ::CLGFI: 1581 if (!(MI && isUInt<8>(MI->getOperand(1).getImm()))) 1582 return 0; 1583 break; 1584 case SystemZ::CL: 1585 case SystemZ::CLG: 1586 if (!STI.hasMiscellaneousExtensions()) 1587 return 0; 1588 if (!(MI && MI->getOperand(3).getReg() == 0)) 1589 return 0; 1590 break; 1591 } 1592 switch (Type) { 1593 case SystemZII::CompareAndBranch: 1594 switch (Opcode) { 1595 case SystemZ::CR: 1596 return SystemZ::CRJ; 1597 case SystemZ::CGR: 1598 return SystemZ::CGRJ; 1599 case SystemZ::CHI: 1600 return SystemZ::CIJ; 1601 case SystemZ::CGHI: 1602 return SystemZ::CGIJ; 1603 case SystemZ::CLR: 1604 return SystemZ::CLRJ; 1605 case SystemZ::CLGR: 1606 return SystemZ::CLGRJ; 1607 case SystemZ::CLFI: 1608 return SystemZ::CLIJ; 1609 case SystemZ::CLGFI: 1610 return SystemZ::CLGIJ; 1611 default: 1612 return 0; 1613 } 1614 case SystemZII::CompareAndReturn: 1615 switch (Opcode) { 1616 case SystemZ::CR: 1617 return SystemZ::CRBReturn; 1618 case SystemZ::CGR: 1619 return SystemZ::CGRBReturn; 1620 case SystemZ::CHI: 1621 return SystemZ::CIBReturn; 1622 case SystemZ::CGHI: 1623 return SystemZ::CGIBReturn; 1624 case SystemZ::CLR: 1625 return SystemZ::CLRBReturn; 1626 case SystemZ::CLGR: 1627 return SystemZ::CLGRBReturn; 1628 case SystemZ::CLFI: 1629 return SystemZ::CLIBReturn; 1630 case SystemZ::CLGFI: 1631 return SystemZ::CLGIBReturn; 1632 default: 1633 return 0; 1634 } 1635 case SystemZII::CompareAndSibcall: 1636 switch (Opcode) { 1637 case SystemZ::CR: 1638 return SystemZ::CRBCall; 1639 case SystemZ::CGR: 1640 return SystemZ::CGRBCall; 1641 case SystemZ::CHI: 1642 return SystemZ::CIBCall; 1643 case SystemZ::CGHI: 1644 return SystemZ::CGIBCall; 1645 case SystemZ::CLR: 1646 return SystemZ::CLRBCall; 1647 case SystemZ::CLGR: 1648 return SystemZ::CLGRBCall; 1649 case SystemZ::CLFI: 1650 return SystemZ::CLIBCall; 1651 case SystemZ::CLGFI: 1652 return SystemZ::CLGIBCall; 1653 default: 1654 return 0; 1655 } 1656 case SystemZII::CompareAndTrap: 1657 switch (Opcode) { 1658 case SystemZ::CR: 1659 return SystemZ::CRT; 1660 case SystemZ::CGR: 1661 return SystemZ::CGRT; 1662 case SystemZ::CHI: 1663 return SystemZ::CIT; 1664 case SystemZ::CGHI: 1665 return SystemZ::CGIT; 1666 case SystemZ::CLR: 1667 return SystemZ::CLRT; 1668 case SystemZ::CLGR: 1669 return SystemZ::CLGRT; 1670 case SystemZ::CLFI: 1671 return SystemZ::CLFIT; 1672 case SystemZ::CLGFI: 1673 return SystemZ::CLGIT; 1674 case SystemZ::CL: 1675 return SystemZ::CLT; 1676 case SystemZ::CLG: 1677 return SystemZ::CLGT; 1678 default: 1679 return 0; 1680 } 1681 } 1682 return 0; 1683 } 1684 1685 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const { 1686 if (!STI.hasLoadAndTrap()) 1687 return 0; 1688 switch (Opcode) { 1689 case SystemZ::L: 1690 case SystemZ::LY: 1691 return SystemZ::LAT; 1692 case SystemZ::LG: 1693 return SystemZ::LGAT; 1694 case SystemZ::LFH: 1695 return SystemZ::LFHAT; 1696 case SystemZ::LLGF: 1697 return SystemZ::LLGFAT; 1698 case SystemZ::LLGT: 1699 return SystemZ::LLGTAT; 1700 } 1701 return 0; 1702 } 1703 1704 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 1705 MachineBasicBlock::iterator MBBI, 1706 unsigned Reg, uint64_t Value) const { 1707 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1708 unsigned Opcode; 1709 if (isInt<16>(Value)) 1710 Opcode = SystemZ::LGHI; 1711 else if (SystemZ::isImmLL(Value)) 1712 Opcode = SystemZ::LLILL; 1713 else if (SystemZ::isImmLH(Value)) { 1714 Opcode = SystemZ::LLILH; 1715 Value >>= 16; 1716 } else { 1717 assert(isInt<32>(Value) && "Huge values not handled yet"); 1718 Opcode = SystemZ::LGFI; 1719 } 1720 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 1721 } 1722 1723 bool SystemZInstrInfo:: 1724 areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb, 1725 AliasAnalysis *AA) const { 1726 1727 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) 1728 return false; 1729 1730 // If mem-operands show that the same address Value is used by both 1731 // instructions, check for non-overlapping offsets and widths. Not 1732 // sure if a register based analysis would be an improvement... 1733 1734 MachineMemOperand *MMOa = *MIa.memoperands_begin(); 1735 MachineMemOperand *MMOb = *MIb.memoperands_begin(); 1736 const Value *VALa = MMOa->getValue(); 1737 const Value *VALb = MMOb->getValue(); 1738 bool SameVal = (VALa && VALb && (VALa == VALb)); 1739 if (!SameVal) { 1740 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1741 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1742 if (PSVa && PSVb && (PSVa == PSVb)) 1743 SameVal = true; 1744 } 1745 if (SameVal) { 1746 int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset(); 1747 int WidthA = MMOa->getSize(), WidthB = MMOb->getSize(); 1748 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 1749 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 1750 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 1751 if (LowOffset + LowWidth <= HighOffset) 1752 return true; 1753 } 1754 1755 return false; 1756 } 1757