1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SystemZ implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZInstrInfo.h"
14 #include "MCTargetDesc/SystemZMCTargetDesc.h"
15 #include "SystemZ.h"
16 #include "SystemZInstrBuilder.h"
17 #include "SystemZSubtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LiveInterval.h"
20 #include "llvm/CodeGen/LiveIntervals.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/SlotIndexes.h"
30 #include "llvm/CodeGen/StackMaps.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/CodeGen/TargetSubtargetInfo.h"
33 #include "llvm/MC/MCInstrDesc.h"
34 #include "llvm/MC/MCRegisterInfo.h"
35 #include "llvm/Support/BranchProbability.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42 
43 using namespace llvm;
44 
45 #define GET_INSTRINFO_CTOR_DTOR
46 #define GET_INSTRMAP_INFO
47 #include "SystemZGenInstrInfo.inc"
48 
49 #define DEBUG_TYPE "systemz-II"
50 
51 // Return a mask with Count low bits set.
52 static uint64_t allOnes(unsigned int Count) {
53   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
54 }
55 
56 // Pin the vtable to this file.
57 void SystemZInstrInfo::anchor() {}
58 
59 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
60     : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
61       RI(sti.getSpecialRegisters()->getReturnFunctionAddressRegister()),
62       STI(sti) {}
63 
64 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
65 // each having the opcode given by NewOpcode.
66 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
67                                  unsigned NewOpcode) const {
68   MachineBasicBlock *MBB = MI->getParent();
69   MachineFunction &MF = *MBB->getParent();
70 
71   // Get two load or store instructions.  Use the original instruction for one
72   // of them (arbitrarily the second here) and create a clone for the other.
73   MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
74   MBB->insert(MI, EarlierMI);
75 
76   // Set up the two 64-bit registers and remember super reg and its flags.
77   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
78   MachineOperand &LowRegOp = MI->getOperand(0);
79   Register Reg128 = LowRegOp.getReg();
80   unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
81   unsigned Reg128Undef  = getUndefRegState(LowRegOp.isUndef());
82   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
83   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
84 
85   if (MI->mayStore()) {
86     // Add implicit uses of the super register in case one of the subregs is
87     // undefined. We could track liveness and skip storing an undefined
88     // subreg, but this is hopefully rare (discovered with llvm-stress).
89     // If Reg128 was killed, set kill flag on MI.
90     unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
91     MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
92     MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
93   }
94 
95   // The address in the first (high) instruction is already correct.
96   // Adjust the offset in the second (low) instruction.
97   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
98   MachineOperand &LowOffsetOp = MI->getOperand(2);
99   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
100 
101   // Clear the kill flags on the registers in the first instruction.
102   if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
103     EarlierMI->getOperand(0).setIsKill(false);
104   EarlierMI->getOperand(1).setIsKill(false);
105   EarlierMI->getOperand(3).setIsKill(false);
106 
107   // Set the opcodes.
108   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
109   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
110   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
111 
112   EarlierMI->setDesc(get(HighOpcode));
113   MI->setDesc(get(LowOpcode));
114 }
115 
116 // Split ADJDYNALLOC instruction MI.
117 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
118   MachineBasicBlock *MBB = MI->getParent();
119   MachineFunction &MF = *MBB->getParent();
120   MachineFrameInfo &MFFrame = MF.getFrameInfo();
121   MachineOperand &OffsetMO = MI->getOperand(2);
122 
123   uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
124                      SystemZMC::ELFCallFrameSize +
125                      OffsetMO.getImm());
126   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
127   assert(NewOpcode && "No support for huge argument lists yet");
128   MI->setDesc(get(NewOpcode));
129   OffsetMO.setImm(Offset);
130 }
131 
132 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
133 // if the first operand is a low GR32 and HighOpcode if the first operand
134 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
135 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
136 // MI has the same kind of operand as LowOpcode, so needs to be converted
137 // if HighOpcode is used.
138 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
139                                       unsigned HighOpcode,
140                                       bool ConvertHigh) const {
141   Register Reg = MI.getOperand(0).getReg();
142   bool IsHigh = SystemZ::isHighReg(Reg);
143   MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
144   if (IsHigh && ConvertHigh)
145     MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
146 }
147 
148 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
149 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
150 // followed by HighOpcode or LowOpcode, depending on whether the target
151 // is a high or low GR32.
152 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
153                                        unsigned LowOpcodeK,
154                                        unsigned HighOpcode) const {
155   Register DestReg = MI.getOperand(0).getReg();
156   Register SrcReg = MI.getOperand(1).getReg();
157   bool DestIsHigh = SystemZ::isHighReg(DestReg);
158   bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
159   if (!DestIsHigh && !SrcIsHigh)
160     MI.setDesc(get(LowOpcodeK));
161   else {
162     if (DestReg != SrcReg) {
163       emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
164                     SystemZ::LR, 32, MI.getOperand(1).isKill(),
165                     MI.getOperand(1).isUndef());
166       MI.getOperand(1).setReg(DestReg);
167     }
168     MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
169     MI.tieOperands(0, 1);
170   }
171 }
172 
173 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
174 // if the first operand is a low GR32 and HighOpcode if the first operand
175 // is a high GR32.
176 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
177                                        unsigned HighOpcode) const {
178   Register Reg = MI.getOperand(0).getReg();
179   unsigned Opcode = getOpcodeForOffset(
180       SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode,
181       MI.getOperand(2).getImm());
182   MI.setDesc(get(Opcode));
183 }
184 
185 // MI is a load-on-condition pseudo instruction with a single register
186 // (source or destination) operand.  Replace it with LowOpcode if the
187 // register is a low GR32 and HighOpcode if the register is a high GR32.
188 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
189                                        unsigned HighOpcode) const {
190   Register Reg = MI.getOperand(0).getReg();
191   unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode;
192   MI.setDesc(get(Opcode));
193 }
194 
195 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
196 // of one GRX32 into another.  Replace it with LowOpcode if both operands
197 // are low registers, otherwise use RISB[LH]G.
198 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
199                                         unsigned Size) const {
200   MachineInstrBuilder MIB =
201     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
202                MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
203                Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
204 
205   // Keep the remaining operands as-is.
206   for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), 2))
207     MIB.add(MO);
208 
209   MI.eraseFromParent();
210 }
211 
212 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
213   MachineBasicBlock *MBB = MI->getParent();
214   MachineFunction &MF = *MBB->getParent();
215   const Register Reg64 = MI->getOperand(0).getReg();
216   const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
217 
218   // EAR can only load the low subregister so us a shift for %a0 to produce
219   // the GR containing %a0 and %a1.
220 
221   // ear <reg>, %a0
222   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
223     .addReg(SystemZ::A0)
224     .addReg(Reg64, RegState::ImplicitDefine);
225 
226   // sllg <reg>, <reg>, 32
227   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
228     .addReg(Reg64)
229     .addReg(0)
230     .addImm(32);
231 
232   // ear <reg>, %a1
233   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
234     .addReg(SystemZ::A1);
235 
236   // lg <reg>, 40(<reg>)
237   MI->setDesc(get(SystemZ::LG));
238   MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
239 }
240 
241 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
242 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
243 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
244 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
245 // KillSrc is true if this move is the last use of SrcReg.
246 MachineInstrBuilder
247 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
248                                 MachineBasicBlock::iterator MBBI,
249                                 const DebugLoc &DL, unsigned DestReg,
250                                 unsigned SrcReg, unsigned LowLowOpcode,
251                                 unsigned Size, bool KillSrc,
252                                 bool UndefSrc) const {
253   unsigned Opcode;
254   bool DestIsHigh = SystemZ::isHighReg(DestReg);
255   bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
256   if (DestIsHigh && SrcIsHigh)
257     Opcode = SystemZ::RISBHH;
258   else if (DestIsHigh && !SrcIsHigh)
259     Opcode = SystemZ::RISBHL;
260   else if (!DestIsHigh && SrcIsHigh)
261     Opcode = SystemZ::RISBLH;
262   else {
263     return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
264       .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
265   }
266   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
267   return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
268     .addReg(DestReg, RegState::Undef)
269     .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
270     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
271 }
272 
273 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
274                                                        bool NewMI,
275                                                        unsigned OpIdx1,
276                                                        unsigned OpIdx2) const {
277   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
278     if (NewMI)
279       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
280     return MI;
281   };
282 
283   switch (MI.getOpcode()) {
284   case SystemZ::SELRMux:
285   case SystemZ::SELFHR:
286   case SystemZ::SELR:
287   case SystemZ::SELGR:
288   case SystemZ::LOCRMux:
289   case SystemZ::LOCFHR:
290   case SystemZ::LOCR:
291   case SystemZ::LOCGR: {
292     auto &WorkingMI = cloneIfNew(MI);
293     // Invert condition.
294     unsigned CCValid = WorkingMI.getOperand(3).getImm();
295     unsigned CCMask = WorkingMI.getOperand(4).getImm();
296     WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
297     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
298                                                    OpIdx1, OpIdx2);
299   }
300   default:
301     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
302   }
303 }
304 
305 // If MI is a simple load or store for a frame object, return the register
306 // it loads or stores and set FrameIndex to the index of the frame object.
307 // Return 0 otherwise.
308 //
309 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
310 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
311                         unsigned Flag) {
312   const MCInstrDesc &MCID = MI.getDesc();
313   if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
314       MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
315     FrameIndex = MI.getOperand(1).getIndex();
316     return MI.getOperand(0).getReg();
317   }
318   return 0;
319 }
320 
321 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
322                                                int &FrameIndex) const {
323   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
324 }
325 
326 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
327                                               int &FrameIndex) const {
328   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
329 }
330 
331 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
332                                        int &DestFrameIndex,
333                                        int &SrcFrameIndex) const {
334   // Check for MVC 0(Length,FI1),0(FI2)
335   const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
336   if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
337       MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
338       MI.getOperand(4).getImm() != 0)
339     return false;
340 
341   // Check that Length covers the full slots.
342   int64_t Length = MI.getOperand(2).getImm();
343   unsigned FI1 = MI.getOperand(0).getIndex();
344   unsigned FI2 = MI.getOperand(3).getIndex();
345   if (MFI.getObjectSize(FI1) != Length ||
346       MFI.getObjectSize(FI2) != Length)
347     return false;
348 
349   DestFrameIndex = FI1;
350   SrcFrameIndex = FI2;
351   return true;
352 }
353 
354 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
355                                      MachineBasicBlock *&TBB,
356                                      MachineBasicBlock *&FBB,
357                                      SmallVectorImpl<MachineOperand> &Cond,
358                                      bool AllowModify) const {
359   // Most of the code and comments here are boilerplate.
360 
361   // Start from the bottom of the block and work up, examining the
362   // terminator instructions.
363   MachineBasicBlock::iterator I = MBB.end();
364   while (I != MBB.begin()) {
365     --I;
366     if (I->isDebugInstr())
367       continue;
368 
369     // Working from the bottom, when we see a non-terminator instruction, we're
370     // done.
371     if (!isUnpredicatedTerminator(*I))
372       break;
373 
374     // A terminator that isn't a branch can't easily be handled by this
375     // analysis.
376     if (!I->isBranch())
377       return true;
378 
379     // Can't handle indirect branches.
380     SystemZII::Branch Branch(getBranchInfo(*I));
381     if (!Branch.hasMBBTarget())
382       return true;
383 
384     // Punt on compound branches.
385     if (Branch.Type != SystemZII::BranchNormal)
386       return true;
387 
388     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
389       // Handle unconditional branches.
390       if (!AllowModify) {
391         TBB = Branch.getMBBTarget();
392         continue;
393       }
394 
395       // If the block has any instructions after a JMP, delete them.
396       while (std::next(I) != MBB.end())
397         std::next(I)->eraseFromParent();
398 
399       Cond.clear();
400       FBB = nullptr;
401 
402       // Delete the JMP if it's equivalent to a fall-through.
403       if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) {
404         TBB = nullptr;
405         I->eraseFromParent();
406         I = MBB.end();
407         continue;
408       }
409 
410       // TBB is used to indicate the unconditinal destination.
411       TBB = Branch.getMBBTarget();
412       continue;
413     }
414 
415     // Working from the bottom, handle the first conditional branch.
416     if (Cond.empty()) {
417       // FIXME: add X86-style branch swap
418       FBB = TBB;
419       TBB = Branch.getMBBTarget();
420       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
421       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
422       continue;
423     }
424 
425     // Handle subsequent conditional branches.
426     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
427 
428     // Only handle the case where all conditional branches branch to the same
429     // destination.
430     if (TBB != Branch.getMBBTarget())
431       return true;
432 
433     // If the conditions are the same, we can leave them alone.
434     unsigned OldCCValid = Cond[0].getImm();
435     unsigned OldCCMask = Cond[1].getImm();
436     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
437       continue;
438 
439     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
440     return false;
441   }
442 
443   return false;
444 }
445 
446 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
447                                         int *BytesRemoved) const {
448   assert(!BytesRemoved && "code size not handled");
449 
450   // Most of the code and comments here are boilerplate.
451   MachineBasicBlock::iterator I = MBB.end();
452   unsigned Count = 0;
453 
454   while (I != MBB.begin()) {
455     --I;
456     if (I->isDebugInstr())
457       continue;
458     if (!I->isBranch())
459       break;
460     if (!getBranchInfo(*I).hasMBBTarget())
461       break;
462     // Remove the branch.
463     I->eraseFromParent();
464     I = MBB.end();
465     ++Count;
466   }
467 
468   return Count;
469 }
470 
471 bool SystemZInstrInfo::
472 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
473   assert(Cond.size() == 2 && "Invalid condition");
474   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
475   return false;
476 }
477 
478 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
479                                         MachineBasicBlock *TBB,
480                                         MachineBasicBlock *FBB,
481                                         ArrayRef<MachineOperand> Cond,
482                                         const DebugLoc &DL,
483                                         int *BytesAdded) const {
484   // In this function we output 32-bit branches, which should always
485   // have enough range.  They can be shortened and relaxed by later code
486   // in the pipeline, if desired.
487 
488   // Shouldn't be a fall through.
489   assert(TBB && "insertBranch must not be told to insert a fallthrough");
490   assert((Cond.size() == 2 || Cond.size() == 0) &&
491          "SystemZ branch conditions have one component!");
492   assert(!BytesAdded && "code size not handled");
493 
494   if (Cond.empty()) {
495     // Unconditional branch?
496     assert(!FBB && "Unconditional branch with multiple successors!");
497     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
498     return 1;
499   }
500 
501   // Conditional branch.
502   unsigned Count = 0;
503   unsigned CCValid = Cond[0].getImm();
504   unsigned CCMask = Cond[1].getImm();
505   BuildMI(&MBB, DL, get(SystemZ::BRC))
506     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
507   ++Count;
508 
509   if (FBB) {
510     // Two-way Conditional branch. Insert the second branch.
511     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
512     ++Count;
513   }
514   return Count;
515 }
516 
517 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
518                                       Register &SrcReg2, int64_t &Mask,
519                                       int64_t &Value) const {
520   assert(MI.isCompare() && "Caller should have checked for a comparison");
521 
522   if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
523       MI.getOperand(1).isImm()) {
524     SrcReg = MI.getOperand(0).getReg();
525     SrcReg2 = 0;
526     Value = MI.getOperand(1).getImm();
527     Mask = ~0;
528     return true;
529   }
530 
531   return false;
532 }
533 
534 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
535                                        ArrayRef<MachineOperand> Pred,
536                                        Register DstReg, Register TrueReg,
537                                        Register FalseReg, int &CondCycles,
538                                        int &TrueCycles,
539                                        int &FalseCycles) const {
540   // Not all subtargets have LOCR instructions.
541   if (!STI.hasLoadStoreOnCond())
542     return false;
543   if (Pred.size() != 2)
544     return false;
545 
546   // Check register classes.
547   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
548   const TargetRegisterClass *RC =
549     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
550   if (!RC)
551     return false;
552 
553   // We have LOCR instructions for 32 and 64 bit general purpose registers.
554   if ((STI.hasLoadStoreOnCond2() &&
555        SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
556       SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
557       SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
558     CondCycles = 2;
559     TrueCycles = 2;
560     FalseCycles = 2;
561     return true;
562   }
563 
564   // Can't do anything else.
565   return false;
566 }
567 
568 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
569                                     MachineBasicBlock::iterator I,
570                                     const DebugLoc &DL, Register DstReg,
571                                     ArrayRef<MachineOperand> Pred,
572                                     Register TrueReg,
573                                     Register FalseReg) const {
574   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
575   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
576 
577   assert(Pred.size() == 2 && "Invalid condition");
578   unsigned CCValid = Pred[0].getImm();
579   unsigned CCMask = Pred[1].getImm();
580 
581   unsigned Opc;
582   if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
583     if (STI.hasMiscellaneousExtensions3())
584       Opc = SystemZ::SELRMux;
585     else if (STI.hasLoadStoreOnCond2())
586       Opc = SystemZ::LOCRMux;
587     else {
588       Opc = SystemZ::LOCR;
589       MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
590       Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
591       Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
592       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
593       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
594       TrueReg = TReg;
595       FalseReg = FReg;
596     }
597   } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
598     if (STI.hasMiscellaneousExtensions3())
599       Opc = SystemZ::SELGR;
600     else
601       Opc = SystemZ::LOCGR;
602   } else
603     llvm_unreachable("Invalid register class");
604 
605   BuildMI(MBB, I, DL, get(Opc), DstReg)
606     .addReg(FalseReg).addReg(TrueReg)
607     .addImm(CCValid).addImm(CCMask);
608 }
609 
610 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
611                                      Register Reg,
612                                      MachineRegisterInfo *MRI) const {
613   unsigned DefOpc = DefMI.getOpcode();
614   if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
615       DefOpc != SystemZ::LGHI)
616     return false;
617   if (DefMI.getOperand(0).getReg() != Reg)
618     return false;
619   int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
620 
621   unsigned UseOpc = UseMI.getOpcode();
622   unsigned NewUseOpc;
623   unsigned UseIdx;
624   int CommuteIdx = -1;
625   bool TieOps = false;
626   switch (UseOpc) {
627   case SystemZ::SELRMux:
628     TieOps = true;
629     LLVM_FALLTHROUGH;
630   case SystemZ::LOCRMux:
631     if (!STI.hasLoadStoreOnCond2())
632       return false;
633     NewUseOpc = SystemZ::LOCHIMux;
634     if (UseMI.getOperand(2).getReg() == Reg)
635       UseIdx = 2;
636     else if (UseMI.getOperand(1).getReg() == Reg)
637       UseIdx = 2, CommuteIdx = 1;
638     else
639       return false;
640     break;
641   case SystemZ::SELGR:
642     TieOps = true;
643     LLVM_FALLTHROUGH;
644   case SystemZ::LOCGR:
645     if (!STI.hasLoadStoreOnCond2())
646       return false;
647     NewUseOpc = SystemZ::LOCGHI;
648     if (UseMI.getOperand(2).getReg() == Reg)
649       UseIdx = 2;
650     else if (UseMI.getOperand(1).getReg() == Reg)
651       UseIdx = 2, CommuteIdx = 1;
652     else
653       return false;
654     break;
655   default:
656     return false;
657   }
658 
659   if (CommuteIdx != -1)
660     if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
661       return false;
662 
663   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
664   UseMI.setDesc(get(NewUseOpc));
665   if (TieOps)
666     UseMI.tieOperands(0, 1);
667   UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
668   if (DeleteDef)
669     DefMI.eraseFromParent();
670 
671   return true;
672 }
673 
674 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
675   unsigned Opcode = MI.getOpcode();
676   if (Opcode == SystemZ::Return ||
677       Opcode == SystemZ::Return_XPLINK ||
678       Opcode == SystemZ::Trap ||
679       Opcode == SystemZ::CallJG ||
680       Opcode == SystemZ::CallBR)
681     return true;
682   return false;
683 }
684 
685 bool SystemZInstrInfo::
686 isProfitableToIfCvt(MachineBasicBlock &MBB,
687                     unsigned NumCycles, unsigned ExtraPredCycles,
688                     BranchProbability Probability) const {
689   // Avoid using conditional returns at the end of a loop (since then
690   // we'd need to emit an unconditional branch to the beginning anyway,
691   // making the loop body longer).  This doesn't apply for low-probability
692   // loops (eg. compare-and-swap retry), so just decide based on branch
693   // probability instead of looping structure.
694   // However, since Compare and Trap instructions cost the same as a regular
695   // Compare instruction, we should allow the if conversion to convert this
696   // into a Conditional Compare regardless of the branch probability.
697   if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
698       MBB.succ_empty() && Probability < BranchProbability(1, 8))
699     return false;
700   // For now only convert single instructions.
701   return NumCycles == 1;
702 }
703 
704 bool SystemZInstrInfo::
705 isProfitableToIfCvt(MachineBasicBlock &TMBB,
706                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
707                     MachineBasicBlock &FMBB,
708                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
709                     BranchProbability Probability) const {
710   // For now avoid converting mutually-exclusive cases.
711   return false;
712 }
713 
714 bool SystemZInstrInfo::
715 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
716                           BranchProbability Probability) const {
717   // For now only duplicate single instructions.
718   return NumCycles == 1;
719 }
720 
721 bool SystemZInstrInfo::PredicateInstruction(
722     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
723   assert(Pred.size() == 2 && "Invalid condition");
724   unsigned CCValid = Pred[0].getImm();
725   unsigned CCMask = Pred[1].getImm();
726   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
727   unsigned Opcode = MI.getOpcode();
728   if (Opcode == SystemZ::Trap) {
729     MI.setDesc(get(SystemZ::CondTrap));
730     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
731       .addImm(CCValid).addImm(CCMask)
732       .addReg(SystemZ::CC, RegState::Implicit);
733     return true;
734   }
735   if (Opcode == SystemZ::Return || Opcode == SystemZ::Return_XPLINK) {
736     MI.setDesc(get(Opcode == SystemZ::Return ? SystemZ::CondReturn
737                                              : SystemZ::CondReturn_XPLINK));
738     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
739         .addImm(CCValid)
740         .addImm(CCMask)
741         .addReg(SystemZ::CC, RegState::Implicit);
742     return true;
743   }
744   if (Opcode == SystemZ::CallJG) {
745     MachineOperand FirstOp = MI.getOperand(0);
746     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
747     MI.RemoveOperand(1);
748     MI.RemoveOperand(0);
749     MI.setDesc(get(SystemZ::CallBRCL));
750     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
751         .addImm(CCValid)
752         .addImm(CCMask)
753         .add(FirstOp)
754         .addRegMask(RegMask)
755         .addReg(SystemZ::CC, RegState::Implicit);
756     return true;
757   }
758   if (Opcode == SystemZ::CallBR) {
759     MachineOperand Target = MI.getOperand(0);
760     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
761     MI.RemoveOperand(1);
762     MI.RemoveOperand(0);
763     MI.setDesc(get(SystemZ::CallBCR));
764     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
765       .addImm(CCValid).addImm(CCMask)
766       .add(Target)
767       .addRegMask(RegMask)
768       .addReg(SystemZ::CC, RegState::Implicit);
769     return true;
770   }
771   return false;
772 }
773 
774 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
775                                    MachineBasicBlock::iterator MBBI,
776                                    const DebugLoc &DL, MCRegister DestReg,
777                                    MCRegister SrcReg, bool KillSrc) const {
778   // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
779   // super register in case one of the subregs is undefined.
780   // This handles ADDR128 too.
781   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
782     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
783                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
784     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
785       .addReg(SrcReg, RegState::Implicit);
786     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
787                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
788     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
789       .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
790     return;
791   }
792 
793   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
794     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
795                   false);
796     return;
797   }
798 
799   // Move 128-bit floating-point values between VR128 and FP128.
800   if (SystemZ::VR128BitRegClass.contains(DestReg) &&
801       SystemZ::FP128BitRegClass.contains(SrcReg)) {
802     MCRegister SrcRegHi =
803         RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
804                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
805     MCRegister SrcRegLo =
806         RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
807                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
808 
809     BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
810       .addReg(SrcRegHi, getKillRegState(KillSrc))
811       .addReg(SrcRegLo, getKillRegState(KillSrc));
812     return;
813   }
814   if (SystemZ::FP128BitRegClass.contains(DestReg) &&
815       SystemZ::VR128BitRegClass.contains(SrcReg)) {
816     MCRegister DestRegHi =
817         RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
818                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
819     MCRegister DestRegLo =
820         RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
821                                SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
822 
823     if (DestRegHi != SrcReg)
824       copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
825     BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
826       .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
827     return;
828   }
829 
830   // Move CC value from a GR32.
831   if (DestReg == SystemZ::CC) {
832     unsigned Opcode =
833       SystemZ::GR32BitRegClass.contains(SrcReg) ? SystemZ::TMLH : SystemZ::TMHH;
834     BuildMI(MBB, MBBI, DL, get(Opcode))
835       .addReg(SrcReg, getKillRegState(KillSrc))
836       .addImm(3 << (SystemZ::IPM_CC - 16));
837     return;
838   }
839 
840   // Everything else needs only one instruction.
841   unsigned Opcode;
842   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
843     Opcode = SystemZ::LGR;
844   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
845     // For z13 we prefer LDR over LER to avoid partial register dependencies.
846     Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
847   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
848     Opcode = SystemZ::LDR;
849   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
850     Opcode = SystemZ::LXR;
851   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
852     Opcode = SystemZ::VLR32;
853   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
854     Opcode = SystemZ::VLR64;
855   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
856     Opcode = SystemZ::VLR;
857   else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
858     Opcode = SystemZ::CPYA;
859   else
860     llvm_unreachable("Impossible reg-to-reg copy");
861 
862   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
863     .addReg(SrcReg, getKillRegState(KillSrc));
864 }
865 
866 void SystemZInstrInfo::storeRegToStackSlot(
867     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg,
868     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
869     const TargetRegisterInfo *TRI) const {
870   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
871 
872   // Callers may expect a single instruction, so keep 128-bit moves
873   // together for now and lower them after register allocation.
874   unsigned LoadOpcode, StoreOpcode;
875   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
876   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
877                         .addReg(SrcReg, getKillRegState(isKill)),
878                     FrameIdx);
879 }
880 
881 void SystemZInstrInfo::loadRegFromStackSlot(
882     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg,
883     int FrameIdx, const TargetRegisterClass *RC,
884     const TargetRegisterInfo *TRI) const {
885   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
886 
887   // Callers may expect a single instruction, so keep 128-bit moves
888   // together for now and lower them after register allocation.
889   unsigned LoadOpcode, StoreOpcode;
890   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
891   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
892                     FrameIdx);
893 }
894 
895 // Return true if MI is a simple load or store with a 12-bit displacement
896 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
897 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
898   const MCInstrDesc &MCID = MI->getDesc();
899   return ((MCID.TSFlags & Flag) &&
900           isUInt<12>(MI->getOperand(2).getImm()) &&
901           MI->getOperand(3).getReg() == 0);
902 }
903 
904 namespace {
905 
906 struct LogicOp {
907   LogicOp() = default;
908   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
909     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
910 
911   explicit operator bool() const { return RegSize; }
912 
913   unsigned RegSize = 0;
914   unsigned ImmLSB = 0;
915   unsigned ImmSize = 0;
916 };
917 
918 } // end anonymous namespace
919 
920 static LogicOp interpretAndImmediate(unsigned Opcode) {
921   switch (Opcode) {
922   case SystemZ::NILMux: return LogicOp(32,  0, 16);
923   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
924   case SystemZ::NILL64: return LogicOp(64,  0, 16);
925   case SystemZ::NILH64: return LogicOp(64, 16, 16);
926   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
927   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
928   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
929   case SystemZ::NILF64: return LogicOp(64,  0, 32);
930   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
931   default:              return LogicOp();
932   }
933 }
934 
935 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
936   if (OldMI->registerDefIsDead(SystemZ::CC)) {
937     MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
938     if (CCDef != nullptr)
939       CCDef->setIsDead(true);
940   }
941 }
942 
943 static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI,
944                            MachineInstr::MIFlag Flag) {
945   if (OldMI->getFlag(Flag))
946     NewMI->setFlag(Flag);
947 }
948 
949 MachineInstr *
950 SystemZInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
951                                         LiveIntervals *LIS) const {
952   MachineBasicBlock *MBB = MI.getParent();
953 
954   // Try to convert an AND into an RISBG-type instruction.
955   // TODO: It might be beneficial to select RISBG and shorten to AND instead.
956   if (LogicOp And = interpretAndImmediate(MI.getOpcode())) {
957     uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
958     // AND IMMEDIATE leaves the other bits of the register unchanged.
959     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
960     unsigned Start, End;
961     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
962       unsigned NewOpcode;
963       if (And.RegSize == 64) {
964         NewOpcode = SystemZ::RISBG;
965         // Prefer RISBGN if available, since it does not clobber CC.
966         if (STI.hasMiscellaneousExtensions())
967           NewOpcode = SystemZ::RISBGN;
968       } else {
969         NewOpcode = SystemZ::RISBMux;
970         Start &= 31;
971         End &= 31;
972       }
973       MachineOperand &Dest = MI.getOperand(0);
974       MachineOperand &Src = MI.getOperand(1);
975       MachineInstrBuilder MIB =
976           BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
977               .add(Dest)
978               .addReg(0)
979               .addReg(Src.getReg(), getKillRegState(Src.isKill()),
980                       Src.getSubReg())
981               .addImm(Start)
982               .addImm(End + 128)
983               .addImm(0);
984       if (LV) {
985         unsigned NumOps = MI.getNumOperands();
986         for (unsigned I = 1; I < NumOps; ++I) {
987           MachineOperand &Op = MI.getOperand(I);
988           if (Op.isReg() && Op.isKill())
989             LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
990         }
991       }
992       if (LIS)
993         LIS->ReplaceMachineInstrInMaps(MI, *MIB);
994       transferDeadCC(&MI, MIB);
995       return MIB;
996     }
997   }
998   return nullptr;
999 }
1000 
1001 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1002     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1003     MachineBasicBlock::iterator InsertPt, int FrameIndex,
1004     LiveIntervals *LIS, VirtRegMap *VRM) const {
1005   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1006   MachineRegisterInfo &MRI = MF.getRegInfo();
1007   const MachineFrameInfo &MFI = MF.getFrameInfo();
1008   unsigned Size = MFI.getObjectSize(FrameIndex);
1009   unsigned Opcode = MI.getOpcode();
1010 
1011   // Check CC liveness if new instruction introduces a dead def of CC.
1012   MCRegUnitIterator CCUnit(MCRegister::from(SystemZ::CC), TRI);
1013   SlotIndex MISlot = SlotIndex();
1014   LiveRange *CCLiveRange = nullptr;
1015   bool CCLiveAtMI = true;
1016   if (LIS) {
1017     MISlot = LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1018     CCLiveRange = &LIS->getRegUnit(*CCUnit);
1019     CCLiveAtMI = CCLiveRange->liveAt(MISlot);
1020   }
1021   ++CCUnit;
1022   assert(!CCUnit.isValid() && "CC only has one reg unit.");
1023 
1024   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1025     if (!CCLiveAtMI && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1026         isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1027       // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1028       MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1029                                       MI.getDebugLoc(), get(SystemZ::AGSI))
1030         .addFrameIndex(FrameIndex)
1031         .addImm(0)
1032         .addImm(MI.getOperand(2).getImm());
1033       BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1034       CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1035       return BuiltMI;
1036     }
1037     return nullptr;
1038   }
1039 
1040   // All other cases require a single operand.
1041   if (Ops.size() != 1)
1042     return nullptr;
1043 
1044   unsigned OpNum = Ops[0];
1045   assert(Size * 8 ==
1046            TRI->getRegSizeInBits(*MF.getRegInfo()
1047                                .getRegClass(MI.getOperand(OpNum).getReg())) &&
1048          "Invalid size combination");
1049 
1050   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1051       isInt<8>(MI.getOperand(2).getImm())) {
1052     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1053     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1054     MachineInstr *BuiltMI =
1055         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1056             .addFrameIndex(FrameIndex)
1057             .addImm(0)
1058             .addImm(MI.getOperand(2).getImm());
1059     transferDeadCC(&MI, BuiltMI);
1060     transferMIFlag(&MI, BuiltMI, MachineInstr::NoSWrap);
1061     return BuiltMI;
1062   }
1063 
1064   if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1065        isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1066       (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1067        isInt<8>((int64_t)MI.getOperand(2).getImm()))) {
1068     // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1069     Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1070     MachineInstr *BuiltMI =
1071         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1072             .addFrameIndex(FrameIndex)
1073             .addImm(0)
1074             .addImm((int8_t)MI.getOperand(2).getImm());
1075     transferDeadCC(&MI, BuiltMI);
1076     return BuiltMI;
1077   }
1078 
1079   if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1080        isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1081       (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1082        isInt<8>((int64_t)-MI.getOperand(2).getImm()))) {
1083     // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1084     Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1085     MachineInstr *BuiltMI =
1086         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1087             .addFrameIndex(FrameIndex)
1088             .addImm(0)
1089             .addImm((int8_t)-MI.getOperand(2).getImm());
1090     transferDeadCC(&MI, BuiltMI);
1091     return BuiltMI;
1092   }
1093 
1094   unsigned MemImmOpc = 0;
1095   switch (Opcode) {
1096   case SystemZ::LHIMux:
1097   case SystemZ::LHI:    MemImmOpc = SystemZ::MVHI;  break;
1098   case SystemZ::LGHI:   MemImmOpc = SystemZ::MVGHI; break;
1099   case SystemZ::CHIMux:
1100   case SystemZ::CHI:    MemImmOpc = SystemZ::CHSI;  break;
1101   case SystemZ::CGHI:   MemImmOpc = SystemZ::CGHSI; break;
1102   case SystemZ::CLFIMux:
1103   case SystemZ::CLFI:
1104     if (isUInt<16>(MI.getOperand(1).getImm()))
1105       MemImmOpc = SystemZ::CLFHSI;
1106     break;
1107   case SystemZ::CLGFI:
1108     if (isUInt<16>(MI.getOperand(1).getImm()))
1109       MemImmOpc = SystemZ::CLGHSI;
1110     break;
1111   default: break;
1112   }
1113   if (MemImmOpc)
1114     return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1115                    get(MemImmOpc))
1116                .addFrameIndex(FrameIndex)
1117                .addImm(0)
1118                .addImm(MI.getOperand(1).getImm());
1119 
1120   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1121     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1122     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1123     // If we're spilling the destination of an LDGR or LGDR, store the
1124     // source register instead.
1125     if (OpNum == 0) {
1126       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1127       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1128                      get(StoreOpcode))
1129           .add(MI.getOperand(1))
1130           .addFrameIndex(FrameIndex)
1131           .addImm(0)
1132           .addReg(0);
1133     }
1134     // If we're spilling the source of an LDGR or LGDR, load the
1135     // destination register instead.
1136     if (OpNum == 1) {
1137       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1138       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1139                      get(LoadOpcode))
1140         .add(MI.getOperand(0))
1141         .addFrameIndex(FrameIndex)
1142         .addImm(0)
1143         .addReg(0);
1144     }
1145   }
1146 
1147   // Look for cases where the source of a simple store or the destination
1148   // of a simple load is being spilled.  Try to use MVC instead.
1149   //
1150   // Although MVC is in practice a fast choice in these cases, it is still
1151   // logically a bytewise copy.  This means that we cannot use it if the
1152   // load or store is volatile.  We also wouldn't be able to use MVC if
1153   // the two memories partially overlap, but that case cannot occur here,
1154   // because we know that one of the memories is a full frame index.
1155   //
1156   // For performance reasons, we also want to avoid using MVC if the addresses
1157   // might be equal.  We don't worry about that case here, because spill slot
1158   // coloring happens later, and because we have special code to remove
1159   // MVCs that turn out to be redundant.
1160   if (OpNum == 0 && MI.hasOneMemOperand()) {
1161     MachineMemOperand *MMO = *MI.memoperands_begin();
1162     if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) {
1163       // Handle conversion of loads.
1164       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1165         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1166                        get(SystemZ::MVC))
1167             .addFrameIndex(FrameIndex)
1168             .addImm(0)
1169             .addImm(Size)
1170             .add(MI.getOperand(1))
1171             .addImm(MI.getOperand(2).getImm())
1172             .addMemOperand(MMO);
1173       }
1174       // Handle conversion of stores.
1175       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1176         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1177                        get(SystemZ::MVC))
1178             .add(MI.getOperand(1))
1179             .addImm(MI.getOperand(2).getImm())
1180             .addImm(Size)
1181             .addFrameIndex(FrameIndex)
1182             .addImm(0)
1183             .addMemOperand(MMO);
1184       }
1185     }
1186   }
1187 
1188   // If the spilled operand is the final one or the instruction is
1189   // commutable, try to change <INSN>R into <INSN>.  Don't introduce a def of
1190   // CC if it is live and MI does not define it.
1191   unsigned NumOps = MI.getNumExplicitOperands();
1192   int MemOpcode = SystemZ::getMemOpcode(Opcode);
1193   if (MemOpcode == -1 ||
1194       (CCLiveAtMI && !MI.definesRegister(SystemZ::CC) &&
1195        get(MemOpcode).hasImplicitDefOfPhysReg(SystemZ::CC)))
1196     return nullptr;
1197 
1198   // Check if all other vregs have a usable allocation in the case of vector
1199   // to FP conversion.
1200   const MCInstrDesc &MCID = MI.getDesc();
1201   for (unsigned I = 0, E = MCID.getNumOperands(); I != E; ++I) {
1202     const MCOperandInfo &MCOI = MCID.OpInfo[I];
1203     if (MCOI.OperandType != MCOI::OPERAND_REGISTER || I == OpNum)
1204       continue;
1205     const TargetRegisterClass *RC = TRI->getRegClass(MCOI.RegClass);
1206     if (RC == &SystemZ::VR32BitRegClass || RC == &SystemZ::VR64BitRegClass) {
1207       Register Reg = MI.getOperand(I).getReg();
1208       Register PhysReg = Register::isVirtualRegister(Reg)
1209                              ? (VRM ? Register(VRM->getPhys(Reg)) : Register())
1210                              : Reg;
1211       if (!PhysReg ||
1212           !(SystemZ::FP32BitRegClass.contains(PhysReg) ||
1213             SystemZ::FP64BitRegClass.contains(PhysReg) ||
1214             SystemZ::VF128BitRegClass.contains(PhysReg)))
1215         return nullptr;
1216     }
1217   }
1218   // Fused multiply and add/sub need to have the same dst and accumulator reg.
1219   bool FusedFPOp = (Opcode == SystemZ::WFMADB || Opcode == SystemZ::WFMASB ||
1220                     Opcode == SystemZ::WFMSDB || Opcode == SystemZ::WFMSSB);
1221   if (FusedFPOp) {
1222     Register DstReg = VRM->getPhys(MI.getOperand(0).getReg());
1223     Register AccReg = VRM->getPhys(MI.getOperand(3).getReg());
1224     if (OpNum == 0 || OpNum == 3 || DstReg != AccReg)
1225       return nullptr;
1226   }
1227 
1228   // Try to swap compare operands if possible.
1229   bool NeedsCommute = false;
1230   if ((MI.getOpcode() == SystemZ::CR || MI.getOpcode() == SystemZ::CGR ||
1231        MI.getOpcode() == SystemZ::CLR || MI.getOpcode() == SystemZ::CLGR ||
1232        MI.getOpcode() == SystemZ::WFCDB || MI.getOpcode() == SystemZ::WFCSB ||
1233        MI.getOpcode() == SystemZ::WFKDB || MI.getOpcode() == SystemZ::WFKSB) &&
1234       OpNum == 0 && prepareCompareSwapOperands(MI))
1235     NeedsCommute = true;
1236 
1237   bool CCOperands = false;
1238   if (MI.getOpcode() == SystemZ::LOCRMux || MI.getOpcode() == SystemZ::LOCGR ||
1239       MI.getOpcode() == SystemZ::SELRMux || MI.getOpcode() == SystemZ::SELGR) {
1240     assert(MI.getNumOperands() == 6 && NumOps == 5 &&
1241            "LOCR/SELR instruction operands corrupt?");
1242     NumOps -= 2;
1243     CCOperands = true;
1244   }
1245 
1246   // See if this is a 3-address instruction that is convertible to 2-address
1247   // and suitable for folding below.  Only try this with virtual registers
1248   // and a provided VRM (during regalloc).
1249   if (NumOps == 3 && SystemZ::getTargetMemOpcode(MemOpcode) != -1) {
1250     if (VRM == nullptr)
1251       return nullptr;
1252     else {
1253       Register DstReg = MI.getOperand(0).getReg();
1254       Register DstPhys =
1255           (Register::isVirtualRegister(DstReg) ? Register(VRM->getPhys(DstReg))
1256                                                : DstReg);
1257       Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg()
1258                                     : ((OpNum == 1 && MI.isCommutable())
1259                                            ? MI.getOperand(2).getReg()
1260                                            : Register()));
1261       if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg &&
1262           Register::isVirtualRegister(SrcReg) &&
1263           DstPhys == VRM->getPhys(SrcReg))
1264         NeedsCommute = (OpNum == 1);
1265       else
1266         return nullptr;
1267     }
1268   }
1269 
1270   if ((OpNum == NumOps - 1) || NeedsCommute || FusedFPOp) {
1271     const MCInstrDesc &MemDesc = get(MemOpcode);
1272     uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1273     assert(AccessBytes != 0 && "Size of access should be known");
1274     assert(AccessBytes <= Size && "Access outside the frame index");
1275     uint64_t Offset = Size - AccessBytes;
1276     MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1277                                       MI.getDebugLoc(), get(MemOpcode));
1278     if (MI.isCompare()) {
1279       assert(NumOps == 2 && "Expected 2 register operands for a compare.");
1280       MIB.add(MI.getOperand(NeedsCommute ? 1 : 0));
1281     }
1282     else if (FusedFPOp) {
1283       MIB.add(MI.getOperand(0));
1284       MIB.add(MI.getOperand(3));
1285       MIB.add(MI.getOperand(OpNum == 1 ? 2 : 1));
1286     }
1287     else {
1288       MIB.add(MI.getOperand(0));
1289       if (NeedsCommute)
1290         MIB.add(MI.getOperand(2));
1291       else
1292         for (unsigned I = 1; I < OpNum; ++I)
1293           MIB.add(MI.getOperand(I));
1294     }
1295     MIB.addFrameIndex(FrameIndex).addImm(Offset);
1296     if (MemDesc.TSFlags & SystemZII::HasIndex)
1297       MIB.addReg(0);
1298     if (CCOperands) {
1299       unsigned CCValid = MI.getOperand(NumOps).getImm();
1300       unsigned CCMask = MI.getOperand(NumOps + 1).getImm();
1301       MIB.addImm(CCValid);
1302       MIB.addImm(NeedsCommute ? CCMask ^ CCValid : CCMask);
1303     }
1304     if (MIB->definesRegister(SystemZ::CC) &&
1305         (!MI.definesRegister(SystemZ::CC) ||
1306          MI.registerDefIsDead(SystemZ::CC))) {
1307       MIB->addRegisterDead(SystemZ::CC, TRI);
1308       if (CCLiveRange)
1309         CCLiveRange->createDeadDef(MISlot, LIS->getVNInfoAllocator());
1310     }
1311     // Constrain the register classes if converted from a vector opcode. The
1312     // allocated regs are in an FP reg-class per previous check above.
1313     for (const MachineOperand &MO : MIB->operands())
1314       if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
1315         Register Reg = MO.getReg();
1316         if (MRI.getRegClass(Reg) == &SystemZ::VR32BitRegClass)
1317           MRI.setRegClass(Reg, &SystemZ::FP32BitRegClass);
1318         else if (MRI.getRegClass(Reg) == &SystemZ::VR64BitRegClass)
1319           MRI.setRegClass(Reg, &SystemZ::FP64BitRegClass);
1320         else if (MRI.getRegClass(Reg) == &SystemZ::VR128BitRegClass)
1321           MRI.setRegClass(Reg, &SystemZ::VF128BitRegClass);
1322       }
1323 
1324     transferDeadCC(&MI, MIB);
1325     transferMIFlag(&MI, MIB, MachineInstr::NoSWrap);
1326     transferMIFlag(&MI, MIB, MachineInstr::NoFPExcept);
1327     return MIB;
1328   }
1329 
1330   return nullptr;
1331 }
1332 
1333 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1334     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1335     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1336     LiveIntervals *LIS) const {
1337   return nullptr;
1338 }
1339 
1340 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1341   switch (MI.getOpcode()) {
1342   case SystemZ::L128:
1343     splitMove(MI, SystemZ::LG);
1344     return true;
1345 
1346   case SystemZ::ST128:
1347     splitMove(MI, SystemZ::STG);
1348     return true;
1349 
1350   case SystemZ::LX:
1351     splitMove(MI, SystemZ::LD);
1352     return true;
1353 
1354   case SystemZ::STX:
1355     splitMove(MI, SystemZ::STD);
1356     return true;
1357 
1358   case SystemZ::LBMux:
1359     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1360     return true;
1361 
1362   case SystemZ::LHMux:
1363     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1364     return true;
1365 
1366   case SystemZ::LLCRMux:
1367     expandZExtPseudo(MI, SystemZ::LLCR, 8);
1368     return true;
1369 
1370   case SystemZ::LLHRMux:
1371     expandZExtPseudo(MI, SystemZ::LLHR, 16);
1372     return true;
1373 
1374   case SystemZ::LLCMux:
1375     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1376     return true;
1377 
1378   case SystemZ::LLHMux:
1379     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1380     return true;
1381 
1382   case SystemZ::LMux:
1383     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1384     return true;
1385 
1386   case SystemZ::LOCMux:
1387     expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1388     return true;
1389 
1390   case SystemZ::LOCHIMux:
1391     expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1392     return true;
1393 
1394   case SystemZ::STCMux:
1395     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1396     return true;
1397 
1398   case SystemZ::STHMux:
1399     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1400     return true;
1401 
1402   case SystemZ::STMux:
1403     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1404     return true;
1405 
1406   case SystemZ::STOCMux:
1407     expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1408     return true;
1409 
1410   case SystemZ::LHIMux:
1411     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1412     return true;
1413 
1414   case SystemZ::IIFMux:
1415     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1416     return true;
1417 
1418   case SystemZ::IILMux:
1419     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1420     return true;
1421 
1422   case SystemZ::IIHMux:
1423     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1424     return true;
1425 
1426   case SystemZ::NIFMux:
1427     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1428     return true;
1429 
1430   case SystemZ::NILMux:
1431     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1432     return true;
1433 
1434   case SystemZ::NIHMux:
1435     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1436     return true;
1437 
1438   case SystemZ::OIFMux:
1439     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1440     return true;
1441 
1442   case SystemZ::OILMux:
1443     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1444     return true;
1445 
1446   case SystemZ::OIHMux:
1447     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1448     return true;
1449 
1450   case SystemZ::XIFMux:
1451     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1452     return true;
1453 
1454   case SystemZ::TMLMux:
1455     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1456     return true;
1457 
1458   case SystemZ::TMHMux:
1459     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1460     return true;
1461 
1462   case SystemZ::AHIMux:
1463     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1464     return true;
1465 
1466   case SystemZ::AHIMuxK:
1467     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1468     return true;
1469 
1470   case SystemZ::AFIMux:
1471     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1472     return true;
1473 
1474   case SystemZ::CHIMux:
1475     expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1476     return true;
1477 
1478   case SystemZ::CFIMux:
1479     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1480     return true;
1481 
1482   case SystemZ::CLFIMux:
1483     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1484     return true;
1485 
1486   case SystemZ::CMux:
1487     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1488     return true;
1489 
1490   case SystemZ::CLMux:
1491     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1492     return true;
1493 
1494   case SystemZ::RISBMux: {
1495     bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg());
1496     bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg());
1497     if (SrcIsHigh == DestIsHigh)
1498       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1499     else {
1500       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1501       MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1502     }
1503     return true;
1504   }
1505 
1506   case SystemZ::ADJDYNALLOC:
1507     splitAdjDynAlloc(MI);
1508     return true;
1509 
1510   case TargetOpcode::LOAD_STACK_GUARD:
1511     expandLoadStackGuard(&MI);
1512     return true;
1513 
1514   default:
1515     return false;
1516   }
1517 }
1518 
1519 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1520   if (MI.isInlineAsm()) {
1521     const MachineFunction *MF = MI.getParent()->getParent();
1522     const char *AsmStr = MI.getOperand(0).getSymbolName();
1523     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1524   }
1525   else if (MI.getOpcode() == SystemZ::PATCHPOINT)
1526     return PatchPointOpers(&MI).getNumPatchBytes();
1527   else if (MI.getOpcode() == SystemZ::STACKMAP)
1528     return MI.getOperand(1).getImm();
1529   else if (MI.getOpcode() == SystemZ::FENTRY_CALL)
1530     return 6;
1531 
1532   return MI.getDesc().getSize();
1533 }
1534 
1535 SystemZII::Branch
1536 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1537   switch (MI.getOpcode()) {
1538   case SystemZ::BR:
1539   case SystemZ::BI:
1540   case SystemZ::J:
1541   case SystemZ::JG:
1542     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1543                              SystemZ::CCMASK_ANY, &MI.getOperand(0));
1544 
1545   case SystemZ::BRC:
1546   case SystemZ::BRCL:
1547     return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1548                              MI.getOperand(1).getImm(), &MI.getOperand(2));
1549 
1550   case SystemZ::BRCT:
1551   case SystemZ::BRCTH:
1552     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1553                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1554 
1555   case SystemZ::BRCTG:
1556     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1557                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1558 
1559   case SystemZ::CIJ:
1560   case SystemZ::CRJ:
1561     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1562                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1563 
1564   case SystemZ::CLIJ:
1565   case SystemZ::CLRJ:
1566     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1567                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1568 
1569   case SystemZ::CGIJ:
1570   case SystemZ::CGRJ:
1571     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1572                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1573 
1574   case SystemZ::CLGIJ:
1575   case SystemZ::CLGRJ:
1576     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1577                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1578 
1579   case SystemZ::INLINEASM_BR:
1580     // Don't try to analyze asm goto, so pass nullptr as branch target argument.
1581     return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr);
1582 
1583   default:
1584     llvm_unreachable("Unrecognized branch opcode");
1585   }
1586 }
1587 
1588 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1589                                            unsigned &LoadOpcode,
1590                                            unsigned &StoreOpcode) const {
1591   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1592     LoadOpcode = SystemZ::L;
1593     StoreOpcode = SystemZ::ST;
1594   } else if (RC == &SystemZ::GRH32BitRegClass) {
1595     LoadOpcode = SystemZ::LFH;
1596     StoreOpcode = SystemZ::STFH;
1597   } else if (RC == &SystemZ::GRX32BitRegClass) {
1598     LoadOpcode = SystemZ::LMux;
1599     StoreOpcode = SystemZ::STMux;
1600   } else if (RC == &SystemZ::GR64BitRegClass ||
1601              RC == &SystemZ::ADDR64BitRegClass) {
1602     LoadOpcode = SystemZ::LG;
1603     StoreOpcode = SystemZ::STG;
1604   } else if (RC == &SystemZ::GR128BitRegClass ||
1605              RC == &SystemZ::ADDR128BitRegClass) {
1606     LoadOpcode = SystemZ::L128;
1607     StoreOpcode = SystemZ::ST128;
1608   } else if (RC == &SystemZ::FP32BitRegClass) {
1609     LoadOpcode = SystemZ::LE;
1610     StoreOpcode = SystemZ::STE;
1611   } else if (RC == &SystemZ::FP64BitRegClass) {
1612     LoadOpcode = SystemZ::LD;
1613     StoreOpcode = SystemZ::STD;
1614   } else if (RC == &SystemZ::FP128BitRegClass) {
1615     LoadOpcode = SystemZ::LX;
1616     StoreOpcode = SystemZ::STX;
1617   } else if (RC == &SystemZ::VR32BitRegClass) {
1618     LoadOpcode = SystemZ::VL32;
1619     StoreOpcode = SystemZ::VST32;
1620   } else if (RC == &SystemZ::VR64BitRegClass) {
1621     LoadOpcode = SystemZ::VL64;
1622     StoreOpcode = SystemZ::VST64;
1623   } else if (RC == &SystemZ::VF128BitRegClass ||
1624              RC == &SystemZ::VR128BitRegClass) {
1625     LoadOpcode = SystemZ::VL;
1626     StoreOpcode = SystemZ::VST;
1627   } else
1628     llvm_unreachable("Unsupported regclass to load or store");
1629 }
1630 
1631 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1632                                               int64_t Offset) const {
1633   const MCInstrDesc &MCID = get(Opcode);
1634   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1635   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1636     // Get the instruction to use for unsigned 12-bit displacements.
1637     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1638     if (Disp12Opcode >= 0)
1639       return Disp12Opcode;
1640 
1641     // All address-related instructions can use unsigned 12-bit
1642     // displacements.
1643     return Opcode;
1644   }
1645   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1646     // Get the instruction to use for signed 20-bit displacements.
1647     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1648     if (Disp20Opcode >= 0)
1649       return Disp20Opcode;
1650 
1651     // Check whether Opcode allows signed 20-bit displacements.
1652     if (MCID.TSFlags & SystemZII::Has20BitOffset)
1653       return Opcode;
1654   }
1655   return 0;
1656 }
1657 
1658 bool SystemZInstrInfo::hasDisplacementPairInsn(unsigned Opcode) const {
1659   const MCInstrDesc &MCID = get(Opcode);
1660   if (MCID.TSFlags & SystemZII::Has20BitOffset)
1661     return SystemZ::getDisp12Opcode(Opcode) >= 0;
1662   return SystemZ::getDisp20Opcode(Opcode) >= 0;
1663 }
1664 
1665 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1666   switch (Opcode) {
1667   case SystemZ::L:      return SystemZ::LT;
1668   case SystemZ::LY:     return SystemZ::LT;
1669   case SystemZ::LG:     return SystemZ::LTG;
1670   case SystemZ::LGF:    return SystemZ::LTGF;
1671   case SystemZ::LR:     return SystemZ::LTR;
1672   case SystemZ::LGFR:   return SystemZ::LTGFR;
1673   case SystemZ::LGR:    return SystemZ::LTGR;
1674   case SystemZ::LER:    return SystemZ::LTEBR;
1675   case SystemZ::LDR:    return SystemZ::LTDBR;
1676   case SystemZ::LXR:    return SystemZ::LTXBR;
1677   case SystemZ::LCDFR:  return SystemZ::LCDBR;
1678   case SystemZ::LPDFR:  return SystemZ::LPDBR;
1679   case SystemZ::LNDFR:  return SystemZ::LNDBR;
1680   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1681   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1682   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1683   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1684   // actually use the condition code, we may turn it back into RISGB.
1685   // Note that RISBG is not really a "load-and-test" instruction,
1686   // but sets the same condition code values, so is OK to use here.
1687   case SystemZ::RISBGN: return SystemZ::RISBG;
1688   default:              return 0;
1689   }
1690 }
1691 
1692 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1693 // have already been filtered out.  Store the first set bit in LSB and
1694 // the number of set bits in Length if so.
1695 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1696   unsigned First = findFirstSet(Mask);
1697   uint64_t Top = (Mask >> First) + 1;
1698   if ((Top & -Top) == Top) {
1699     LSB = First;
1700     Length = findFirstSet(Top);
1701     return true;
1702   }
1703   return false;
1704 }
1705 
1706 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1707                                    unsigned &Start, unsigned &End) const {
1708   // Reject trivial all-zero masks.
1709   Mask &= allOnes(BitSize);
1710   if (Mask == 0)
1711     return false;
1712 
1713   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1714   // the msb and End specifies the index of the lsb.
1715   unsigned LSB, Length;
1716   if (isStringOfOnes(Mask, LSB, Length)) {
1717     Start = 63 - (LSB + Length - 1);
1718     End = 63 - LSB;
1719     return true;
1720   }
1721 
1722   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1723   // of the low 1s and End specifies the lsb of the high 1s.
1724   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1725     assert(LSB > 0 && "Bottom bit must be set");
1726     assert(LSB + Length < BitSize && "Top bit must be set");
1727     Start = 63 - (LSB - 1);
1728     End = 63 - (LSB + Length);
1729     return true;
1730   }
1731 
1732   return false;
1733 }
1734 
1735 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1736                                            SystemZII::FusedCompareType Type,
1737                                            const MachineInstr *MI) const {
1738   switch (Opcode) {
1739   case SystemZ::CHI:
1740   case SystemZ::CGHI:
1741     if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1742       return 0;
1743     break;
1744   case SystemZ::CLFI:
1745   case SystemZ::CLGFI:
1746     if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1747       return 0;
1748     break;
1749   case SystemZ::CL:
1750   case SystemZ::CLG:
1751     if (!STI.hasMiscellaneousExtensions())
1752       return 0;
1753     if (!(MI && MI->getOperand(3).getReg() == 0))
1754       return 0;
1755     break;
1756   }
1757   switch (Type) {
1758   case SystemZII::CompareAndBranch:
1759     switch (Opcode) {
1760     case SystemZ::CR:
1761       return SystemZ::CRJ;
1762     case SystemZ::CGR:
1763       return SystemZ::CGRJ;
1764     case SystemZ::CHI:
1765       return SystemZ::CIJ;
1766     case SystemZ::CGHI:
1767       return SystemZ::CGIJ;
1768     case SystemZ::CLR:
1769       return SystemZ::CLRJ;
1770     case SystemZ::CLGR:
1771       return SystemZ::CLGRJ;
1772     case SystemZ::CLFI:
1773       return SystemZ::CLIJ;
1774     case SystemZ::CLGFI:
1775       return SystemZ::CLGIJ;
1776     default:
1777       return 0;
1778     }
1779   case SystemZII::CompareAndReturn:
1780     switch (Opcode) {
1781     case SystemZ::CR:
1782       return SystemZ::CRBReturn;
1783     case SystemZ::CGR:
1784       return SystemZ::CGRBReturn;
1785     case SystemZ::CHI:
1786       return SystemZ::CIBReturn;
1787     case SystemZ::CGHI:
1788       return SystemZ::CGIBReturn;
1789     case SystemZ::CLR:
1790       return SystemZ::CLRBReturn;
1791     case SystemZ::CLGR:
1792       return SystemZ::CLGRBReturn;
1793     case SystemZ::CLFI:
1794       return SystemZ::CLIBReturn;
1795     case SystemZ::CLGFI:
1796       return SystemZ::CLGIBReturn;
1797     default:
1798       return 0;
1799     }
1800   case SystemZII::CompareAndSibcall:
1801     switch (Opcode) {
1802     case SystemZ::CR:
1803       return SystemZ::CRBCall;
1804     case SystemZ::CGR:
1805       return SystemZ::CGRBCall;
1806     case SystemZ::CHI:
1807       return SystemZ::CIBCall;
1808     case SystemZ::CGHI:
1809       return SystemZ::CGIBCall;
1810     case SystemZ::CLR:
1811       return SystemZ::CLRBCall;
1812     case SystemZ::CLGR:
1813       return SystemZ::CLGRBCall;
1814     case SystemZ::CLFI:
1815       return SystemZ::CLIBCall;
1816     case SystemZ::CLGFI:
1817       return SystemZ::CLGIBCall;
1818     default:
1819       return 0;
1820     }
1821   case SystemZII::CompareAndTrap:
1822     switch (Opcode) {
1823     case SystemZ::CR:
1824       return SystemZ::CRT;
1825     case SystemZ::CGR:
1826       return SystemZ::CGRT;
1827     case SystemZ::CHI:
1828       return SystemZ::CIT;
1829     case SystemZ::CGHI:
1830       return SystemZ::CGIT;
1831     case SystemZ::CLR:
1832       return SystemZ::CLRT;
1833     case SystemZ::CLGR:
1834       return SystemZ::CLGRT;
1835     case SystemZ::CLFI:
1836       return SystemZ::CLFIT;
1837     case SystemZ::CLGFI:
1838       return SystemZ::CLGIT;
1839     case SystemZ::CL:
1840       return SystemZ::CLT;
1841     case SystemZ::CLG:
1842       return SystemZ::CLGT;
1843     default:
1844       return 0;
1845     }
1846   }
1847   return 0;
1848 }
1849 
1850 bool SystemZInstrInfo::
1851 prepareCompareSwapOperands(MachineBasicBlock::iterator const MBBI) const {
1852   assert(MBBI->isCompare() && MBBI->getOperand(0).isReg() &&
1853          MBBI->getOperand(1).isReg() && !MBBI->mayLoad() &&
1854          "Not a compare reg/reg.");
1855 
1856   MachineBasicBlock *MBB = MBBI->getParent();
1857   bool CCLive = true;
1858   SmallVector<MachineInstr *, 4> CCUsers;
1859   for (MachineBasicBlock::iterator Itr = std::next(MBBI);
1860        Itr != MBB->end(); ++Itr) {
1861     if (Itr->readsRegister(SystemZ::CC)) {
1862       unsigned Flags = Itr->getDesc().TSFlags;
1863       if ((Flags & SystemZII::CCMaskFirst) || (Flags & SystemZII::CCMaskLast))
1864         CCUsers.push_back(&*Itr);
1865       else
1866         return false;
1867     }
1868     if (Itr->definesRegister(SystemZ::CC)) {
1869       CCLive = false;
1870       break;
1871     }
1872   }
1873   if (CCLive) {
1874     LivePhysRegs LiveRegs(*MBB->getParent()->getSubtarget().getRegisterInfo());
1875     LiveRegs.addLiveOuts(*MBB);
1876     if (LiveRegs.contains(SystemZ::CC))
1877       return false;
1878   }
1879 
1880   // Update all CC users.
1881   for (unsigned Idx = 0; Idx < CCUsers.size(); ++Idx) {
1882     unsigned Flags = CCUsers[Idx]->getDesc().TSFlags;
1883     unsigned FirstOpNum = ((Flags & SystemZII::CCMaskFirst) ?
1884                            0 : CCUsers[Idx]->getNumExplicitOperands() - 2);
1885     MachineOperand &CCMaskMO = CCUsers[Idx]->getOperand(FirstOpNum + 1);
1886     unsigned NewCCMask = SystemZ::reverseCCMask(CCMaskMO.getImm());
1887     CCMaskMO.setImm(NewCCMask);
1888   }
1889 
1890   return true;
1891 }
1892 
1893 unsigned SystemZ::reverseCCMask(unsigned CCMask) {
1894   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1895           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1896           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1897           (CCMask & SystemZ::CCMASK_CMP_UO));
1898 }
1899 
1900 MachineBasicBlock *SystemZ::emitBlockAfter(MachineBasicBlock *MBB) {
1901   MachineFunction &MF = *MBB->getParent();
1902   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
1903   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
1904   return NewMBB;
1905 }
1906 
1907 MachineBasicBlock *SystemZ::splitBlockAfter(MachineBasicBlock::iterator MI,
1908                                             MachineBasicBlock *MBB) {
1909   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1910   NewMBB->splice(NewMBB->begin(), MBB,
1911                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1912   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1913   return NewMBB;
1914 }
1915 
1916 MachineBasicBlock *SystemZ::splitBlockBefore(MachineBasicBlock::iterator MI,
1917                                              MachineBasicBlock *MBB) {
1918   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
1919   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
1920   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
1921   return NewMBB;
1922 }
1923 
1924 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1925   if (!STI.hasLoadAndTrap())
1926     return 0;
1927   switch (Opcode) {
1928   case SystemZ::L:
1929   case SystemZ::LY:
1930     return SystemZ::LAT;
1931   case SystemZ::LG:
1932     return SystemZ::LGAT;
1933   case SystemZ::LFH:
1934     return SystemZ::LFHAT;
1935   case SystemZ::LLGF:
1936     return SystemZ::LLGFAT;
1937   case SystemZ::LLGT:
1938     return SystemZ::LLGTAT;
1939   }
1940   return 0;
1941 }
1942 
1943 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1944                                      MachineBasicBlock::iterator MBBI,
1945                                      unsigned Reg, uint64_t Value) const {
1946   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1947   unsigned Opcode = 0;
1948   if (isInt<16>(Value))
1949     Opcode = SystemZ::LGHI;
1950   else if (SystemZ::isImmLL(Value))
1951     Opcode = SystemZ::LLILL;
1952   else if (SystemZ::isImmLH(Value)) {
1953     Opcode = SystemZ::LLILH;
1954     Value >>= 16;
1955   }
1956   else if (isInt<32>(Value))
1957     Opcode = SystemZ::LGFI;
1958   if (Opcode) {
1959     BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1960     return;
1961   }
1962 
1963   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1964   assert (MRI.isSSA() &&  "Huge values only handled before reg-alloc .");
1965   Register Reg0 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
1966   Register Reg1 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
1967   BuildMI(MBB, MBBI, DL, get(SystemZ::IMPLICIT_DEF), Reg0);
1968   BuildMI(MBB, MBBI, DL, get(SystemZ::IIHF64), Reg1)
1969     .addReg(Reg0).addImm(Value >> 32);
1970   BuildMI(MBB, MBBI, DL, get(SystemZ::IILF64), Reg)
1971     .addReg(Reg1).addImm(Value & ((uint64_t(1) << 32) - 1));
1972 }
1973 
1974 bool SystemZInstrInfo::verifyInstruction(const MachineInstr &MI,
1975                                          StringRef &ErrInfo) const {
1976   const MCInstrDesc &MCID = MI.getDesc();
1977   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1978     if (I >= MCID.getNumOperands())
1979       break;
1980     const MachineOperand &Op = MI.getOperand(I);
1981     const MCOperandInfo &MCOI = MCID.OpInfo[I];
1982     // Addressing modes have register and immediate operands. Op should be a
1983     // register (or frame index) operand if MCOI.RegClass contains a valid
1984     // register class, or an immediate otherwise.
1985     if (MCOI.OperandType == MCOI::OPERAND_MEMORY &&
1986         ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) ||
1987          (MCOI.RegClass == -1 && !Op.isImm()))) {
1988       ErrInfo = "Addressing mode operands corrupt!";
1989       return false;
1990     }
1991   }
1992 
1993   return true;
1994 }
1995 
1996 bool SystemZInstrInfo::
1997 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1998                                 const MachineInstr &MIb) const {
1999 
2000   if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
2001     return false;
2002 
2003   // If mem-operands show that the same address Value is used by both
2004   // instructions, check for non-overlapping offsets and widths. Not
2005   // sure if a register based analysis would be an improvement...
2006 
2007   MachineMemOperand *MMOa = *MIa.memoperands_begin();
2008   MachineMemOperand *MMOb = *MIb.memoperands_begin();
2009   const Value *VALa = MMOa->getValue();
2010   const Value *VALb = MMOb->getValue();
2011   bool SameVal = (VALa && VALb && (VALa == VALb));
2012   if (!SameVal) {
2013     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
2014     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
2015     if (PSVa && PSVb && (PSVa == PSVb))
2016       SameVal = true;
2017   }
2018   if (SameVal) {
2019     int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
2020     int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
2021     int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
2022     int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
2023     int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
2024     if (LowOffset + LowWidth <= HighOffset)
2025       return true;
2026   }
2027 
2028   return false;
2029 }
2030