1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SystemZ implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/SystemZMCTargetDesc.h" 15 #include "SystemZ.h" 16 #include "SystemZInstrBuilder.h" 17 #include "SystemZInstrInfo.h" 18 #include "SystemZSubtarget.h" 19 #include "llvm/CodeGen/LiveInterval.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/LiveVariables.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/SlotIndexes.h" 30 #include "llvm/MC/MCInstrDesc.h" 31 #include "llvm/MC/MCRegisterInfo.h" 32 #include "llvm/Support/BranchProbability.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Target/TargetInstrInfo.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetSubtargetInfo.h" 38 #include <cassert> 39 #include <cstdint> 40 #include <iterator> 41 42 using namespace llvm; 43 44 #define GET_INSTRINFO_CTOR_DTOR 45 #define GET_INSTRMAP_INFO 46 #include "SystemZGenInstrInfo.inc" 47 48 // Return a mask with Count low bits set. 49 static uint64_t allOnes(unsigned int Count) { 50 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 51 } 52 53 // Reg should be a 32-bit GPR. Return true if it is a high register rather 54 // than a low register. 55 static bool isHighReg(unsigned int Reg) { 56 if (SystemZ::GRH32BitRegClass.contains(Reg)) 57 return true; 58 assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32"); 59 return false; 60 } 61 62 // Pin the vtable to this file. 63 void SystemZInstrInfo::anchor() {} 64 65 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti) 66 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 67 RI(), STI(sti) { 68 } 69 70 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 71 // each having the opcode given by NewOpcode. 72 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 73 unsigned NewOpcode) const { 74 MachineBasicBlock *MBB = MI->getParent(); 75 MachineFunction &MF = *MBB->getParent(); 76 77 // Get two load or store instructions. Use the original instruction for one 78 // of them (arbitrarily the second here) and create a clone for the other. 79 MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI); 80 MBB->insert(MI, EarlierMI); 81 82 // Set up the two 64-bit registers and remember super reg and its flags. 83 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 84 MachineOperand &LowRegOp = MI->getOperand(0); 85 unsigned Reg128 = LowRegOp.getReg(); 86 unsigned Reg128Killed = getKillRegState(LowRegOp.isKill()); 87 unsigned Reg128Undef = getUndefRegState(LowRegOp.isUndef()); 88 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); 89 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); 90 91 if (MI->mayStore()) { 92 // Add implicit uses of the super register in case one of the subregs is 93 // undefined. We could track liveness and skip storing an undefined 94 // subreg, but this is hopefully rare (discovered with llvm-stress). 95 // If Reg128 was killed, set kill flag on MI. 96 unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit); 97 MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl); 98 MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed)); 99 } 100 101 // The address in the first (high) instruction is already correct. 102 // Adjust the offset in the second (low) instruction. 103 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 104 MachineOperand &LowOffsetOp = MI->getOperand(2); 105 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 106 107 // Clear the kill flags for the base and index registers in the first 108 // instruction. 109 EarlierMI->getOperand(1).setIsKill(false); 110 EarlierMI->getOperand(3).setIsKill(false); 111 112 // Set the opcodes. 113 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 114 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 115 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 116 117 EarlierMI->setDesc(get(HighOpcode)); 118 MI->setDesc(get(LowOpcode)); 119 } 120 121 // Split ADJDYNALLOC instruction MI. 122 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 123 MachineBasicBlock *MBB = MI->getParent(); 124 MachineFunction &MF = *MBB->getParent(); 125 MachineFrameInfo &MFFrame = MF.getFrameInfo(); 126 MachineOperand &OffsetMO = MI->getOperand(2); 127 128 uint64_t Offset = (MFFrame.getMaxCallFrameSize() + 129 SystemZMC::CallFrameSize + 130 OffsetMO.getImm()); 131 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 132 assert(NewOpcode && "No support for huge argument lists yet"); 133 MI->setDesc(get(NewOpcode)); 134 OffsetMO.setImm(Offset); 135 } 136 137 // MI is an RI-style pseudo instruction. Replace it with LowOpcode 138 // if the first operand is a low GR32 and HighOpcode if the first operand 139 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand 140 // and HighOpcode takes an unsigned 32-bit operand. In those cases, 141 // MI has the same kind of operand as LowOpcode, so needs to be converted 142 // if HighOpcode is used. 143 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode, 144 unsigned HighOpcode, 145 bool ConvertHigh) const { 146 unsigned Reg = MI.getOperand(0).getReg(); 147 bool IsHigh = isHighReg(Reg); 148 MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode)); 149 if (IsHigh && ConvertHigh) 150 MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm())); 151 } 152 153 // MI is a three-operand RIE-style pseudo instruction. Replace it with 154 // LowOpcodeK if the registers are both low GR32s, otherwise use a move 155 // followed by HighOpcode or LowOpcode, depending on whether the target 156 // is a high or low GR32. 157 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode, 158 unsigned LowOpcodeK, 159 unsigned HighOpcode) const { 160 unsigned DestReg = MI.getOperand(0).getReg(); 161 unsigned SrcReg = MI.getOperand(1).getReg(); 162 bool DestIsHigh = isHighReg(DestReg); 163 bool SrcIsHigh = isHighReg(SrcReg); 164 if (!DestIsHigh && !SrcIsHigh) 165 MI.setDesc(get(LowOpcodeK)); 166 else { 167 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg, 168 SystemZ::LR, 32, MI.getOperand(1).isKill(), 169 MI.getOperand(1).isUndef()); 170 MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); 171 MI.getOperand(1).setReg(DestReg); 172 MI.tieOperands(0, 1); 173 } 174 } 175 176 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode 177 // if the first operand is a low GR32 and HighOpcode if the first operand 178 // is a high GR32. 179 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode, 180 unsigned HighOpcode) const { 181 unsigned Reg = MI.getOperand(0).getReg(); 182 unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode, 183 MI.getOperand(2).getImm()); 184 MI.setDesc(get(Opcode)); 185 } 186 187 // MI is a load-on-condition pseudo instruction with a single register 188 // (source or destination) operand. Replace it with LowOpcode if the 189 // register is a low GR32 and HighOpcode if the register is a high GR32. 190 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode, 191 unsigned HighOpcode) const { 192 unsigned Reg = MI.getOperand(0).getReg(); 193 unsigned Opcode = isHighReg(Reg) ? HighOpcode : LowOpcode; 194 MI.setDesc(get(Opcode)); 195 } 196 197 // MI is a load-register-on-condition pseudo instruction. Replace it with 198 // LowOpcode if source and destination are both low GR32s and HighOpcode if 199 // source and destination are both high GR32s. 200 void SystemZInstrInfo::expandLOCRPseudo(MachineInstr &MI, unsigned LowOpcode, 201 unsigned HighOpcode) const { 202 unsigned DestReg = MI.getOperand(0).getReg(); 203 unsigned SrcReg = MI.getOperand(2).getReg(); 204 bool DestIsHigh = isHighReg(DestReg); 205 bool SrcIsHigh = isHighReg(SrcReg); 206 207 if (!DestIsHigh && !SrcIsHigh) 208 MI.setDesc(get(LowOpcode)); 209 else if (DestIsHigh && SrcIsHigh) 210 MI.setDesc(get(HighOpcode)); 211 212 // If we were unable to implement the pseudo with a single instruction, we 213 // need to convert it back into a branch sequence. This cannot be done here 214 // since the caller of expandPostRAPseudo does not handle changes to the CFG 215 // correctly. This change is defered to the SystemZExpandPseudo pass. 216 } 217 218 // MI is an RR-style pseudo instruction that zero-extends the low Size bits 219 // of one GRX32 into another. Replace it with LowOpcode if both operands 220 // are low registers, otherwise use RISB[LH]G. 221 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode, 222 unsigned Size) const { 223 MachineInstrBuilder MIB = 224 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), 225 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode, 226 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef()); 227 228 // Keep the remaining operands as-is. 229 for (unsigned I = 2; I < MI.getNumOperands(); ++I) 230 MIB.add(MI.getOperand(I)); 231 232 MI.eraseFromParent(); 233 } 234 235 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const { 236 MachineBasicBlock *MBB = MI->getParent(); 237 MachineFunction &MF = *MBB->getParent(); 238 const unsigned Reg = MI->getOperand(0).getReg(); 239 240 // Conveniently, all 4 instructions are cloned from LOAD_STACK_GUARD, 241 // so they already have operand 0 set to reg. 242 243 // ear <reg>, %a0 244 MachineInstr *Ear1MI = MF.CloneMachineInstr(MI); 245 MBB->insert(MI, Ear1MI); 246 Ear1MI->setDesc(get(SystemZ::EAR)); 247 MachineInstrBuilder(MF, Ear1MI).addReg(SystemZ::A0); 248 249 // sllg <reg>, <reg>, 32 250 MachineInstr *SllgMI = MF.CloneMachineInstr(MI); 251 MBB->insert(MI, SllgMI); 252 SllgMI->setDesc(get(SystemZ::SLLG)); 253 MachineInstrBuilder(MF, SllgMI).addReg(Reg).addReg(0).addImm(32); 254 255 // ear <reg>, %a1 256 MachineInstr *Ear2MI = MF.CloneMachineInstr(MI); 257 MBB->insert(MI, Ear2MI); 258 Ear2MI->setDesc(get(SystemZ::EAR)); 259 MachineInstrBuilder(MF, Ear2MI).addReg(SystemZ::A1); 260 261 // lg <reg>, 40(<reg>) 262 MI->setDesc(get(SystemZ::LG)); 263 MachineInstrBuilder(MF, MI).addReg(Reg).addImm(40).addReg(0); 264 } 265 266 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR 267 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg 268 // are low registers, otherwise use RISB[LH]G. Size is the number of bits 269 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). 270 // KillSrc is true if this move is the last use of SrcReg. 271 MachineInstrBuilder 272 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, 273 MachineBasicBlock::iterator MBBI, 274 const DebugLoc &DL, unsigned DestReg, 275 unsigned SrcReg, unsigned LowLowOpcode, 276 unsigned Size, bool KillSrc, 277 bool UndefSrc) const { 278 unsigned Opcode; 279 bool DestIsHigh = isHighReg(DestReg); 280 bool SrcIsHigh = isHighReg(SrcReg); 281 if (DestIsHigh && SrcIsHigh) 282 Opcode = SystemZ::RISBHH; 283 else if (DestIsHigh && !SrcIsHigh) 284 Opcode = SystemZ::RISBHL; 285 else if (!DestIsHigh && SrcIsHigh) 286 Opcode = SystemZ::RISBLH; 287 else { 288 return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) 289 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)); 290 } 291 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); 292 return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 293 .addReg(DestReg, RegState::Undef) 294 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)) 295 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); 296 } 297 298 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI, 299 bool NewMI, 300 unsigned OpIdx1, 301 unsigned OpIdx2) const { 302 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { 303 if (NewMI) 304 return *MI.getParent()->getParent()->CloneMachineInstr(&MI); 305 return MI; 306 }; 307 308 switch (MI.getOpcode()) { 309 case SystemZ::LOCRMux: 310 case SystemZ::LOCFHR: 311 case SystemZ::LOCR: 312 case SystemZ::LOCGR: { 313 auto &WorkingMI = cloneIfNew(MI); 314 // Invert condition. 315 unsigned CCValid = WorkingMI.getOperand(3).getImm(); 316 unsigned CCMask = WorkingMI.getOperand(4).getImm(); 317 WorkingMI.getOperand(4).setImm(CCMask ^ CCValid); 318 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 319 OpIdx1, OpIdx2); 320 } 321 default: 322 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 323 } 324 } 325 326 // If MI is a simple load or store for a frame object, return the register 327 // it loads or stores and set FrameIndex to the index of the frame object. 328 // Return 0 otherwise. 329 // 330 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 331 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex, 332 unsigned Flag) { 333 const MCInstrDesc &MCID = MI.getDesc(); 334 if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() && 335 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) { 336 FrameIndex = MI.getOperand(1).getIndex(); 337 return MI.getOperand(0).getReg(); 338 } 339 return 0; 340 } 341 342 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 343 int &FrameIndex) const { 344 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 345 } 346 347 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 348 int &FrameIndex) const { 349 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 350 } 351 352 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI, 353 int &DestFrameIndex, 354 int &SrcFrameIndex) const { 355 // Check for MVC 0(Length,FI1),0(FI2) 356 const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo(); 357 if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() || 358 MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() || 359 MI.getOperand(4).getImm() != 0) 360 return false; 361 362 // Check that Length covers the full slots. 363 int64_t Length = MI.getOperand(2).getImm(); 364 unsigned FI1 = MI.getOperand(0).getIndex(); 365 unsigned FI2 = MI.getOperand(3).getIndex(); 366 if (MFI.getObjectSize(FI1) != Length || 367 MFI.getObjectSize(FI2) != Length) 368 return false; 369 370 DestFrameIndex = FI1; 371 SrcFrameIndex = FI2; 372 return true; 373 } 374 375 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 376 MachineBasicBlock *&TBB, 377 MachineBasicBlock *&FBB, 378 SmallVectorImpl<MachineOperand> &Cond, 379 bool AllowModify) const { 380 // Most of the code and comments here are boilerplate. 381 382 // Start from the bottom of the block and work up, examining the 383 // terminator instructions. 384 MachineBasicBlock::iterator I = MBB.end(); 385 while (I != MBB.begin()) { 386 --I; 387 if (I->isDebugValue()) 388 continue; 389 390 // Working from the bottom, when we see a non-terminator instruction, we're 391 // done. 392 if (!isUnpredicatedTerminator(*I)) 393 break; 394 395 // A terminator that isn't a branch can't easily be handled by this 396 // analysis. 397 if (!I->isBranch()) 398 return true; 399 400 // Can't handle indirect branches. 401 SystemZII::Branch Branch(getBranchInfo(*I)); 402 if (!Branch.Target->isMBB()) 403 return true; 404 405 // Punt on compound branches. 406 if (Branch.Type != SystemZII::BranchNormal) 407 return true; 408 409 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 410 // Handle unconditional branches. 411 if (!AllowModify) { 412 TBB = Branch.Target->getMBB(); 413 continue; 414 } 415 416 // If the block has any instructions after a JMP, delete them. 417 while (std::next(I) != MBB.end()) 418 std::next(I)->eraseFromParent(); 419 420 Cond.clear(); 421 FBB = nullptr; 422 423 // Delete the JMP if it's equivalent to a fall-through. 424 if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) { 425 TBB = nullptr; 426 I->eraseFromParent(); 427 I = MBB.end(); 428 continue; 429 } 430 431 // TBB is used to indicate the unconditinal destination. 432 TBB = Branch.Target->getMBB(); 433 continue; 434 } 435 436 // Working from the bottom, handle the first conditional branch. 437 if (Cond.empty()) { 438 // FIXME: add X86-style branch swap 439 FBB = TBB; 440 TBB = Branch.Target->getMBB(); 441 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 442 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 443 continue; 444 } 445 446 // Handle subsequent conditional branches. 447 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 448 449 // Only handle the case where all conditional branches branch to the same 450 // destination. 451 if (TBB != Branch.Target->getMBB()) 452 return true; 453 454 // If the conditions are the same, we can leave them alone. 455 unsigned OldCCValid = Cond[0].getImm(); 456 unsigned OldCCMask = Cond[1].getImm(); 457 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 458 continue; 459 460 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 461 return false; 462 } 463 464 return false; 465 } 466 467 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB, 468 int *BytesRemoved) const { 469 assert(!BytesRemoved && "code size not handled"); 470 471 // Most of the code and comments here are boilerplate. 472 MachineBasicBlock::iterator I = MBB.end(); 473 unsigned Count = 0; 474 475 while (I != MBB.begin()) { 476 --I; 477 if (I->isDebugValue()) 478 continue; 479 if (!I->isBranch()) 480 break; 481 if (!getBranchInfo(*I).Target->isMBB()) 482 break; 483 // Remove the branch. 484 I->eraseFromParent(); 485 I = MBB.end(); 486 ++Count; 487 } 488 489 return Count; 490 } 491 492 bool SystemZInstrInfo:: 493 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 494 assert(Cond.size() == 2 && "Invalid condition"); 495 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 496 return false; 497 } 498 499 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB, 500 MachineBasicBlock *TBB, 501 MachineBasicBlock *FBB, 502 ArrayRef<MachineOperand> Cond, 503 const DebugLoc &DL, 504 int *BytesAdded) const { 505 // In this function we output 32-bit branches, which should always 506 // have enough range. They can be shortened and relaxed by later code 507 // in the pipeline, if desired. 508 509 // Shouldn't be a fall through. 510 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 511 assert((Cond.size() == 2 || Cond.size() == 0) && 512 "SystemZ branch conditions have one component!"); 513 assert(!BytesAdded && "code size not handled"); 514 515 if (Cond.empty()) { 516 // Unconditional branch? 517 assert(!FBB && "Unconditional branch with multiple successors!"); 518 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 519 return 1; 520 } 521 522 // Conditional branch. 523 unsigned Count = 0; 524 unsigned CCValid = Cond[0].getImm(); 525 unsigned CCMask = Cond[1].getImm(); 526 BuildMI(&MBB, DL, get(SystemZ::BRC)) 527 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 528 ++Count; 529 530 if (FBB) { 531 // Two-way Conditional branch. Insert the second branch. 532 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 533 ++Count; 534 } 535 return Count; 536 } 537 538 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 539 unsigned &SrcReg2, int &Mask, 540 int &Value) const { 541 assert(MI.isCompare() && "Caller should have checked for a comparison"); 542 543 if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() && 544 MI.getOperand(1).isImm()) { 545 SrcReg = MI.getOperand(0).getReg(); 546 SrcReg2 = 0; 547 Value = MI.getOperand(1).getImm(); 548 Mask = ~0; 549 return true; 550 } 551 552 return false; 553 } 554 555 // If Reg is a virtual register, return its definition, otherwise return null. 556 static MachineInstr *getDef(unsigned Reg, 557 const MachineRegisterInfo *MRI) { 558 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 559 return nullptr; 560 return MRI->getUniqueVRegDef(Reg); 561 } 562 563 // Return true if MI is a shift of type Opcode by Imm bits. 564 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) { 565 return (MI->getOpcode() == Opcode && 566 !MI->getOperand(2).getReg() && 567 MI->getOperand(3).getImm() == Imm); 568 } 569 570 // If the destination of MI has no uses, delete it as dead. 571 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) { 572 if (MRI->use_nodbg_empty(MI->getOperand(0).getReg())) 573 MI->eraseFromParent(); 574 } 575 576 // Compare compares SrcReg against zero. Check whether SrcReg contains 577 // the result of an IPM sequence whose input CC survives until Compare, 578 // and whether Compare is therefore redundant. Delete it and return 579 // true if so. 580 static bool removeIPMBasedCompare(MachineInstr &Compare, unsigned SrcReg, 581 const MachineRegisterInfo *MRI, 582 const TargetRegisterInfo *TRI) { 583 MachineInstr *LGFR = nullptr; 584 MachineInstr *RLL = getDef(SrcReg, MRI); 585 if (RLL && RLL->getOpcode() == SystemZ::LGFR) { 586 LGFR = RLL; 587 RLL = getDef(LGFR->getOperand(1).getReg(), MRI); 588 } 589 if (!RLL || !isShift(RLL, SystemZ::RLL, 31)) 590 return false; 591 592 MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI); 593 if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC)) 594 return false; 595 596 MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI); 597 if (!IPM || IPM->getOpcode() != SystemZ::IPM) 598 return false; 599 600 // Check that there are no assignments to CC between the IPM and Compare, 601 if (IPM->getParent() != Compare.getParent()) 602 return false; 603 MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare.getIterator(); 604 for (++MBBI; MBBI != MBBE; ++MBBI) { 605 MachineInstr &MI = *MBBI; 606 if (MI.modifiesRegister(SystemZ::CC, TRI)) 607 return false; 608 } 609 610 Compare.eraseFromParent(); 611 if (LGFR) 612 eraseIfDead(LGFR, MRI); 613 eraseIfDead(RLL, MRI); 614 eraseIfDead(SRL, MRI); 615 eraseIfDead(IPM, MRI); 616 617 return true; 618 } 619 620 bool SystemZInstrInfo::optimizeCompareInstr( 621 MachineInstr &Compare, unsigned SrcReg, unsigned SrcReg2, int Mask, 622 int Value, const MachineRegisterInfo *MRI) const { 623 assert(!SrcReg2 && "Only optimizing constant comparisons so far"); 624 bool IsLogical = (Compare.getDesc().TSFlags & SystemZII::IsLogical) != 0; 625 return Value == 0 && !IsLogical && 626 removeIPMBasedCompare(Compare, SrcReg, MRI, &RI); 627 } 628 629 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 630 ArrayRef<MachineOperand> Pred, 631 unsigned TrueReg, unsigned FalseReg, 632 int &CondCycles, int &TrueCycles, 633 int &FalseCycles) const { 634 // Not all subtargets have LOCR instructions. 635 if (!STI.hasLoadStoreOnCond()) 636 return false; 637 if (Pred.size() != 2) 638 return false; 639 640 // Check register classes. 641 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 642 const TargetRegisterClass *RC = 643 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 644 if (!RC) 645 return false; 646 647 // We have LOCR instructions for 32 and 64 bit general purpose registers. 648 if ((STI.hasLoadStoreOnCond2() && 649 SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) || 650 SystemZ::GR32BitRegClass.hasSubClassEq(RC) || 651 SystemZ::GR64BitRegClass.hasSubClassEq(RC)) { 652 CondCycles = 2; 653 TrueCycles = 2; 654 FalseCycles = 2; 655 return true; 656 } 657 658 // Can't do anything else. 659 return false; 660 } 661 662 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB, 663 MachineBasicBlock::iterator I, 664 const DebugLoc &DL, unsigned DstReg, 665 ArrayRef<MachineOperand> Pred, 666 unsigned TrueReg, 667 unsigned FalseReg) const { 668 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 669 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 670 671 assert(Pred.size() == 2 && "Invalid condition"); 672 unsigned CCValid = Pred[0].getImm(); 673 unsigned CCMask = Pred[1].getImm(); 674 675 unsigned Opc; 676 if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) { 677 if (STI.hasLoadStoreOnCond2()) 678 Opc = SystemZ::LOCRMux; 679 else { 680 Opc = SystemZ::LOCR; 681 MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass); 682 unsigned TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 683 unsigned FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 684 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg); 685 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg); 686 TrueReg = TReg; 687 FalseReg = FReg; 688 } 689 } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) 690 Opc = SystemZ::LOCGR; 691 else 692 llvm_unreachable("Invalid register class"); 693 694 BuildMI(MBB, I, DL, get(Opc), DstReg) 695 .addReg(FalseReg).addReg(TrueReg) 696 .addImm(CCValid).addImm(CCMask); 697 } 698 699 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 700 unsigned Reg, 701 MachineRegisterInfo *MRI) const { 702 unsigned DefOpc = DefMI.getOpcode(); 703 if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI && 704 DefOpc != SystemZ::LGHI) 705 return false; 706 if (DefMI.getOperand(0).getReg() != Reg) 707 return false; 708 int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm(); 709 710 unsigned UseOpc = UseMI.getOpcode(); 711 unsigned NewUseOpc; 712 unsigned UseIdx; 713 int CommuteIdx = -1; 714 switch (UseOpc) { 715 case SystemZ::LOCRMux: 716 if (!STI.hasLoadStoreOnCond2()) 717 return false; 718 NewUseOpc = SystemZ::LOCHIMux; 719 if (UseMI.getOperand(2).getReg() == Reg) 720 UseIdx = 2; 721 else if (UseMI.getOperand(1).getReg() == Reg) 722 UseIdx = 2, CommuteIdx = 1; 723 else 724 return false; 725 break; 726 case SystemZ::LOCGR: 727 if (!STI.hasLoadStoreOnCond2()) 728 return false; 729 NewUseOpc = SystemZ::LOCGHI; 730 if (UseMI.getOperand(2).getReg() == Reg) 731 UseIdx = 2; 732 else if (UseMI.getOperand(1).getReg() == Reg) 733 UseIdx = 2, CommuteIdx = 1; 734 else 735 return false; 736 break; 737 default: 738 return false; 739 } 740 741 if (CommuteIdx != -1) 742 if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx)) 743 return false; 744 745 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 746 UseMI.setDesc(get(NewUseOpc)); 747 UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal); 748 if (DeleteDef) 749 DefMI.eraseFromParent(); 750 751 return true; 752 } 753 754 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const { 755 unsigned Opcode = MI.getOpcode(); 756 if (Opcode == SystemZ::Return || 757 Opcode == SystemZ::Trap || 758 Opcode == SystemZ::CallJG || 759 Opcode == SystemZ::CallBR) 760 return true; 761 return false; 762 } 763 764 bool SystemZInstrInfo:: 765 isProfitableToIfCvt(MachineBasicBlock &MBB, 766 unsigned NumCycles, unsigned ExtraPredCycles, 767 BranchProbability Probability) const { 768 // Avoid using conditional returns at the end of a loop (since then 769 // we'd need to emit an unconditional branch to the beginning anyway, 770 // making the loop body longer). This doesn't apply for low-probability 771 // loops (eg. compare-and-swap retry), so just decide based on branch 772 // probability instead of looping structure. 773 // However, since Compare and Trap instructions cost the same as a regular 774 // Compare instruction, we should allow the if conversion to convert this 775 // into a Conditional Compare regardless of the branch probability. 776 if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap && 777 MBB.succ_empty() && Probability < BranchProbability(1, 8)) 778 return false; 779 // For now only convert single instructions. 780 return NumCycles == 1; 781 } 782 783 bool SystemZInstrInfo:: 784 isProfitableToIfCvt(MachineBasicBlock &TMBB, 785 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 786 MachineBasicBlock &FMBB, 787 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 788 BranchProbability Probability) const { 789 // For now avoid converting mutually-exclusive cases. 790 return false; 791 } 792 793 bool SystemZInstrInfo:: 794 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 795 BranchProbability Probability) const { 796 // For now only duplicate single instructions. 797 return NumCycles == 1; 798 } 799 800 bool SystemZInstrInfo::PredicateInstruction( 801 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 802 assert(Pred.size() == 2 && "Invalid condition"); 803 unsigned CCValid = Pred[0].getImm(); 804 unsigned CCMask = Pred[1].getImm(); 805 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 806 unsigned Opcode = MI.getOpcode(); 807 if (Opcode == SystemZ::Trap) { 808 MI.setDesc(get(SystemZ::CondTrap)); 809 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 810 .addImm(CCValid).addImm(CCMask) 811 .addReg(SystemZ::CC, RegState::Implicit); 812 return true; 813 } 814 if (Opcode == SystemZ::Return) { 815 MI.setDesc(get(SystemZ::CondReturn)); 816 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 817 .addImm(CCValid).addImm(CCMask) 818 .addReg(SystemZ::CC, RegState::Implicit); 819 return true; 820 } 821 if (Opcode == SystemZ::CallJG) { 822 MachineOperand FirstOp = MI.getOperand(0); 823 const uint32_t *RegMask = MI.getOperand(1).getRegMask(); 824 MI.RemoveOperand(1); 825 MI.RemoveOperand(0); 826 MI.setDesc(get(SystemZ::CallBRCL)); 827 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 828 .addImm(CCValid) 829 .addImm(CCMask) 830 .add(FirstOp) 831 .addRegMask(RegMask) 832 .addReg(SystemZ::CC, RegState::Implicit); 833 return true; 834 } 835 if (Opcode == SystemZ::CallBR) { 836 const uint32_t *RegMask = MI.getOperand(0).getRegMask(); 837 MI.RemoveOperand(0); 838 MI.setDesc(get(SystemZ::CallBCR)); 839 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 840 .addImm(CCValid).addImm(CCMask) 841 .addRegMask(RegMask) 842 .addReg(SystemZ::CC, RegState::Implicit); 843 return true; 844 } 845 return false; 846 } 847 848 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 849 MachineBasicBlock::iterator MBBI, 850 const DebugLoc &DL, unsigned DestReg, 851 unsigned SrcReg, bool KillSrc) const { 852 // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too. 853 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 854 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), 855 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); 856 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), 857 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); 858 return; 859 } 860 861 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { 862 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc, 863 false); 864 return; 865 } 866 867 // Everything else needs only one instruction. 868 unsigned Opcode; 869 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 870 Opcode = SystemZ::LGR; 871 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 872 // For z13 we prefer LDR over LER to avoid partial register dependencies. 873 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER; 874 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 875 Opcode = SystemZ::LDR; 876 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 877 Opcode = SystemZ::LXR; 878 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg)) 879 Opcode = SystemZ::VLR32; 880 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg)) 881 Opcode = SystemZ::VLR64; 882 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg)) 883 Opcode = SystemZ::VLR; 884 else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg)) 885 Opcode = SystemZ::CPYA; 886 else if (SystemZ::AR32BitRegClass.contains(DestReg) && 887 SystemZ::GR32BitRegClass.contains(SrcReg)) 888 Opcode = SystemZ::SAR; 889 else if (SystemZ::GR32BitRegClass.contains(DestReg) && 890 SystemZ::AR32BitRegClass.contains(SrcReg)) 891 Opcode = SystemZ::EAR; 892 else 893 llvm_unreachable("Impossible reg-to-reg copy"); 894 895 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 896 .addReg(SrcReg, getKillRegState(KillSrc)); 897 } 898 899 void SystemZInstrInfo::storeRegToStackSlot( 900 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, 901 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 902 const TargetRegisterInfo *TRI) const { 903 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 904 905 // Callers may expect a single instruction, so keep 128-bit moves 906 // together for now and lower them after register allocation. 907 unsigned LoadOpcode, StoreOpcode; 908 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 909 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 910 .addReg(SrcReg, getKillRegState(isKill)), 911 FrameIdx); 912 } 913 914 void SystemZInstrInfo::loadRegFromStackSlot( 915 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, 916 int FrameIdx, const TargetRegisterClass *RC, 917 const TargetRegisterInfo *TRI) const { 918 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 919 920 // Callers may expect a single instruction, so keep 128-bit moves 921 // together for now and lower them after register allocation. 922 unsigned LoadOpcode, StoreOpcode; 923 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 924 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 925 FrameIdx); 926 } 927 928 // Return true if MI is a simple load or store with a 12-bit displacement 929 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 930 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 931 const MCInstrDesc &MCID = MI->getDesc(); 932 return ((MCID.TSFlags & Flag) && 933 isUInt<12>(MI->getOperand(2).getImm()) && 934 MI->getOperand(3).getReg() == 0); 935 } 936 937 namespace { 938 939 struct LogicOp { 940 LogicOp() = default; 941 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 942 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 943 944 explicit operator bool() const { return RegSize; } 945 946 unsigned RegSize = 0; 947 unsigned ImmLSB = 0; 948 unsigned ImmSize = 0; 949 }; 950 951 } // end anonymous namespace 952 953 static LogicOp interpretAndImmediate(unsigned Opcode) { 954 switch (Opcode) { 955 case SystemZ::NILMux: return LogicOp(32, 0, 16); 956 case SystemZ::NIHMux: return LogicOp(32, 16, 16); 957 case SystemZ::NILL64: return LogicOp(64, 0, 16); 958 case SystemZ::NILH64: return LogicOp(64, 16, 16); 959 case SystemZ::NIHL64: return LogicOp(64, 32, 16); 960 case SystemZ::NIHH64: return LogicOp(64, 48, 16); 961 case SystemZ::NIFMux: return LogicOp(32, 0, 32); 962 case SystemZ::NILF64: return LogicOp(64, 0, 32); 963 case SystemZ::NIHF64: return LogicOp(64, 32, 32); 964 default: return LogicOp(); 965 } 966 } 967 968 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) { 969 if (OldMI->registerDefIsDead(SystemZ::CC)) { 970 MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC); 971 if (CCDef != nullptr) 972 CCDef->setIsDead(true); 973 } 974 } 975 976 // Used to return from convertToThreeAddress after replacing two-address 977 // instruction OldMI with three-address instruction NewMI. 978 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI, 979 MachineInstr *NewMI, 980 LiveVariables *LV) { 981 if (LV) { 982 unsigned NumOps = OldMI->getNumOperands(); 983 for (unsigned I = 1; I < NumOps; ++I) { 984 MachineOperand &Op = OldMI->getOperand(I); 985 if (Op.isReg() && Op.isKill()) 986 LV->replaceKillInstruction(Op.getReg(), *OldMI, *NewMI); 987 } 988 } 989 transferDeadCC(OldMI, NewMI); 990 return NewMI; 991 } 992 993 MachineInstr *SystemZInstrInfo::convertToThreeAddress( 994 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 995 MachineBasicBlock *MBB = MI.getParent(); 996 MachineFunction *MF = MBB->getParent(); 997 MachineRegisterInfo &MRI = MF->getRegInfo(); 998 999 unsigned Opcode = MI.getOpcode(); 1000 unsigned NumOps = MI.getNumOperands(); 1001 1002 // Try to convert something like SLL into SLLK, if supported. 1003 // We prefer to keep the two-operand form where possible both 1004 // because it tends to be shorter and because some instructions 1005 // have memory forms that can be used during spilling. 1006 if (STI.hasDistinctOps()) { 1007 MachineOperand &Dest = MI.getOperand(0); 1008 MachineOperand &Src = MI.getOperand(1); 1009 unsigned DestReg = Dest.getReg(); 1010 unsigned SrcReg = Src.getReg(); 1011 // AHIMux is only really a three-operand instruction when both operands 1012 // are low registers. Try to constrain both operands to be low if 1013 // possible. 1014 if (Opcode == SystemZ::AHIMux && 1015 TargetRegisterInfo::isVirtualRegister(DestReg) && 1016 TargetRegisterInfo::isVirtualRegister(SrcReg) && 1017 MRI.getRegClass(DestReg)->contains(SystemZ::R1L) && 1018 MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) { 1019 MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass); 1020 MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass); 1021 } 1022 int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); 1023 if (ThreeOperandOpcode >= 0) { 1024 // Create three address instruction without adding the implicit 1025 // operands. Those will instead be copied over from the original 1026 // instruction by the loop below. 1027 MachineInstrBuilder MIB( 1028 *MF, MF->CreateMachineInstr(get(ThreeOperandOpcode), MI.getDebugLoc(), 1029 /*NoImplicit=*/true)); 1030 MIB.add(Dest); 1031 // Keep the kill state, but drop the tied flag. 1032 MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()); 1033 // Keep the remaining operands as-is. 1034 for (unsigned I = 2; I < NumOps; ++I) 1035 MIB.add(MI.getOperand(I)); 1036 MBB->insert(MI, MIB); 1037 return finishConvertToThreeAddress(&MI, MIB, LV); 1038 } 1039 } 1040 1041 // Try to convert an AND into an RISBG-type instruction. 1042 if (LogicOp And = interpretAndImmediate(Opcode)) { 1043 uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB; 1044 // AND IMMEDIATE leaves the other bits of the register unchanged. 1045 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 1046 unsigned Start, End; 1047 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 1048 unsigned NewOpcode; 1049 if (And.RegSize == 64) { 1050 NewOpcode = SystemZ::RISBG; 1051 // Prefer RISBGN if available, since it does not clobber CC. 1052 if (STI.hasMiscellaneousExtensions()) 1053 NewOpcode = SystemZ::RISBGN; 1054 } else { 1055 NewOpcode = SystemZ::RISBMux; 1056 Start &= 31; 1057 End &= 31; 1058 } 1059 MachineOperand &Dest = MI.getOperand(0); 1060 MachineOperand &Src = MI.getOperand(1); 1061 MachineInstrBuilder MIB = 1062 BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode)) 1063 .add(Dest) 1064 .addReg(0) 1065 .addReg(Src.getReg(), getKillRegState(Src.isKill()), 1066 Src.getSubReg()) 1067 .addImm(Start) 1068 .addImm(End + 128) 1069 .addImm(0); 1070 return finishConvertToThreeAddress(&MI, MIB, LV); 1071 } 1072 } 1073 return nullptr; 1074 } 1075 1076 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1077 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1078 MachineBasicBlock::iterator InsertPt, int FrameIndex, 1079 LiveIntervals *LIS) const { 1080 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1081 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1082 unsigned Size = MFI.getObjectSize(FrameIndex); 1083 unsigned Opcode = MI.getOpcode(); 1084 1085 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 1086 if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && 1087 isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) { 1088 1089 // Check CC liveness, since new instruction introduces a dead 1090 // def of CC. 1091 MCRegUnitIterator CCUnit(SystemZ::CC, TRI); 1092 LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit); 1093 ++CCUnit; 1094 assert(!CCUnit.isValid() && "CC only has one reg unit."); 1095 SlotIndex MISlot = 1096 LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot(); 1097 if (!CCLiveRange.liveAt(MISlot)) { 1098 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST 1099 MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt, 1100 MI.getDebugLoc(), get(SystemZ::AGSI)) 1101 .addFrameIndex(FrameIndex) 1102 .addImm(0) 1103 .addImm(MI.getOperand(2).getImm()); 1104 BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true); 1105 CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator()); 1106 return BuiltMI; 1107 } 1108 } 1109 return nullptr; 1110 } 1111 1112 // All other cases require a single operand. 1113 if (Ops.size() != 1) 1114 return nullptr; 1115 1116 unsigned OpNum = Ops[0]; 1117 assert(Size == 1118 MF.getRegInfo() 1119 .getRegClass(MI.getOperand(OpNum).getReg()) 1120 ->getSize() && 1121 "Invalid size combination"); 1122 1123 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 && 1124 isInt<8>(MI.getOperand(2).getImm())) { 1125 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST 1126 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); 1127 MachineInstr *BuiltMI = 1128 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1129 .addFrameIndex(FrameIndex) 1130 .addImm(0) 1131 .addImm(MI.getOperand(2).getImm()); 1132 transferDeadCC(&MI, BuiltMI); 1133 return BuiltMI; 1134 } 1135 1136 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 1137 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 1138 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 1139 // If we're spilling the destination of an LDGR or LGDR, store the 1140 // source register instead. 1141 if (OpNum == 0) { 1142 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 1143 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1144 get(StoreOpcode)) 1145 .add(MI.getOperand(1)) 1146 .addFrameIndex(FrameIndex) 1147 .addImm(0) 1148 .addReg(0); 1149 } 1150 // If we're spilling the source of an LDGR or LGDR, load the 1151 // destination register instead. 1152 if (OpNum == 1) { 1153 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 1154 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1155 get(LoadOpcode)) 1156 .add(MI.getOperand(0)) 1157 .addFrameIndex(FrameIndex) 1158 .addImm(0) 1159 .addReg(0); 1160 } 1161 } 1162 1163 // Look for cases where the source of a simple store or the destination 1164 // of a simple load is being spilled. Try to use MVC instead. 1165 // 1166 // Although MVC is in practice a fast choice in these cases, it is still 1167 // logically a bytewise copy. This means that we cannot use it if the 1168 // load or store is volatile. We also wouldn't be able to use MVC if 1169 // the two memories partially overlap, but that case cannot occur here, 1170 // because we know that one of the memories is a full frame index. 1171 // 1172 // For performance reasons, we also want to avoid using MVC if the addresses 1173 // might be equal. We don't worry about that case here, because spill slot 1174 // coloring happens later, and because we have special code to remove 1175 // MVCs that turn out to be redundant. 1176 if (OpNum == 0 && MI.hasOneMemOperand()) { 1177 MachineMemOperand *MMO = *MI.memoperands_begin(); 1178 if (MMO->getSize() == Size && !MMO->isVolatile()) { 1179 // Handle conversion of loads. 1180 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) { 1181 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1182 get(SystemZ::MVC)) 1183 .addFrameIndex(FrameIndex) 1184 .addImm(0) 1185 .addImm(Size) 1186 .add(MI.getOperand(1)) 1187 .addImm(MI.getOperand(2).getImm()) 1188 .addMemOperand(MMO); 1189 } 1190 // Handle conversion of stores. 1191 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) { 1192 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1193 get(SystemZ::MVC)) 1194 .add(MI.getOperand(1)) 1195 .addImm(MI.getOperand(2).getImm()) 1196 .addImm(Size) 1197 .addFrameIndex(FrameIndex) 1198 .addImm(0) 1199 .addMemOperand(MMO); 1200 } 1201 } 1202 } 1203 1204 // If the spilled operand is the final one, try to change <INSN>R 1205 // into <INSN>. 1206 int MemOpcode = SystemZ::getMemOpcode(Opcode); 1207 if (MemOpcode >= 0) { 1208 unsigned NumOps = MI.getNumExplicitOperands(); 1209 if (OpNum == NumOps - 1) { 1210 const MCInstrDesc &MemDesc = get(MemOpcode); 1211 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 1212 assert(AccessBytes != 0 && "Size of access should be known"); 1213 assert(AccessBytes <= Size && "Access outside the frame index"); 1214 uint64_t Offset = Size - AccessBytes; 1215 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 1216 MI.getDebugLoc(), get(MemOpcode)); 1217 for (unsigned I = 0; I < OpNum; ++I) 1218 MIB.add(MI.getOperand(I)); 1219 MIB.addFrameIndex(FrameIndex).addImm(Offset); 1220 if (MemDesc.TSFlags & SystemZII::HasIndex) 1221 MIB.addReg(0); 1222 transferDeadCC(&MI, MIB); 1223 return MIB; 1224 } 1225 } 1226 1227 return nullptr; 1228 } 1229 1230 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1231 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1232 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 1233 LiveIntervals *LIS) const { 1234 return nullptr; 1235 } 1236 1237 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1238 switch (MI.getOpcode()) { 1239 case SystemZ::L128: 1240 splitMove(MI, SystemZ::LG); 1241 return true; 1242 1243 case SystemZ::ST128: 1244 splitMove(MI, SystemZ::STG); 1245 return true; 1246 1247 case SystemZ::LX: 1248 splitMove(MI, SystemZ::LD); 1249 return true; 1250 1251 case SystemZ::STX: 1252 splitMove(MI, SystemZ::STD); 1253 return true; 1254 1255 case SystemZ::LBMux: 1256 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); 1257 return true; 1258 1259 case SystemZ::LHMux: 1260 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); 1261 return true; 1262 1263 case SystemZ::LLCRMux: 1264 expandZExtPseudo(MI, SystemZ::LLCR, 8); 1265 return true; 1266 1267 case SystemZ::LLHRMux: 1268 expandZExtPseudo(MI, SystemZ::LLHR, 16); 1269 return true; 1270 1271 case SystemZ::LLCMux: 1272 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); 1273 return true; 1274 1275 case SystemZ::LLHMux: 1276 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); 1277 return true; 1278 1279 case SystemZ::LMux: 1280 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); 1281 return true; 1282 1283 case SystemZ::LOCMux: 1284 expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH); 1285 return true; 1286 1287 case SystemZ::LOCHIMux: 1288 expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI); 1289 return true; 1290 1291 case SystemZ::LOCRMux: 1292 expandLOCRPseudo(MI, SystemZ::LOCR, SystemZ::LOCFHR); 1293 return true; 1294 1295 case SystemZ::STCMux: 1296 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); 1297 return true; 1298 1299 case SystemZ::STHMux: 1300 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); 1301 return true; 1302 1303 case SystemZ::STMux: 1304 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); 1305 return true; 1306 1307 case SystemZ::STOCMux: 1308 expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH); 1309 return true; 1310 1311 case SystemZ::LHIMux: 1312 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); 1313 return true; 1314 1315 case SystemZ::IIFMux: 1316 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); 1317 return true; 1318 1319 case SystemZ::IILMux: 1320 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); 1321 return true; 1322 1323 case SystemZ::IIHMux: 1324 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); 1325 return true; 1326 1327 case SystemZ::NIFMux: 1328 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); 1329 return true; 1330 1331 case SystemZ::NILMux: 1332 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); 1333 return true; 1334 1335 case SystemZ::NIHMux: 1336 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); 1337 return true; 1338 1339 case SystemZ::OIFMux: 1340 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); 1341 return true; 1342 1343 case SystemZ::OILMux: 1344 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); 1345 return true; 1346 1347 case SystemZ::OIHMux: 1348 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); 1349 return true; 1350 1351 case SystemZ::XIFMux: 1352 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); 1353 return true; 1354 1355 case SystemZ::TMLMux: 1356 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); 1357 return true; 1358 1359 case SystemZ::TMHMux: 1360 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); 1361 return true; 1362 1363 case SystemZ::AHIMux: 1364 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); 1365 return true; 1366 1367 case SystemZ::AHIMuxK: 1368 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); 1369 return true; 1370 1371 case SystemZ::AFIMux: 1372 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); 1373 return true; 1374 1375 case SystemZ::CHIMux: 1376 expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false); 1377 return true; 1378 1379 case SystemZ::CFIMux: 1380 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); 1381 return true; 1382 1383 case SystemZ::CLFIMux: 1384 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); 1385 return true; 1386 1387 case SystemZ::CMux: 1388 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); 1389 return true; 1390 1391 case SystemZ::CLMux: 1392 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); 1393 return true; 1394 1395 case SystemZ::RISBMux: { 1396 bool DestIsHigh = isHighReg(MI.getOperand(0).getReg()); 1397 bool SrcIsHigh = isHighReg(MI.getOperand(2).getReg()); 1398 if (SrcIsHigh == DestIsHigh) 1399 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); 1400 else { 1401 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); 1402 MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32); 1403 } 1404 return true; 1405 } 1406 1407 case SystemZ::ADJDYNALLOC: 1408 splitAdjDynAlloc(MI); 1409 return true; 1410 1411 case TargetOpcode::LOAD_STACK_GUARD: 1412 expandLoadStackGuard(&MI); 1413 return true; 1414 1415 default: 1416 return false; 1417 } 1418 } 1419 1420 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1421 if (MI.getOpcode() == TargetOpcode::INLINEASM) { 1422 const MachineFunction *MF = MI.getParent()->getParent(); 1423 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1424 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1425 } 1426 return MI.getDesc().getSize(); 1427 } 1428 1429 SystemZII::Branch 1430 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const { 1431 switch (MI.getOpcode()) { 1432 case SystemZ::BR: 1433 case SystemZ::J: 1434 case SystemZ::JG: 1435 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 1436 SystemZ::CCMASK_ANY, &MI.getOperand(0)); 1437 1438 case SystemZ::BRC: 1439 case SystemZ::BRCL: 1440 return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(), 1441 MI.getOperand(1).getImm(), &MI.getOperand(2)); 1442 1443 case SystemZ::BRCT: 1444 case SystemZ::BRCTH: 1445 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 1446 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1447 1448 case SystemZ::BRCTG: 1449 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 1450 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1451 1452 case SystemZ::CIJ: 1453 case SystemZ::CRJ: 1454 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 1455 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1456 1457 case SystemZ::CLIJ: 1458 case SystemZ::CLRJ: 1459 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, 1460 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1461 1462 case SystemZ::CGIJ: 1463 case SystemZ::CGRJ: 1464 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 1465 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1466 1467 case SystemZ::CLGIJ: 1468 case SystemZ::CLGRJ: 1469 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, 1470 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1471 1472 default: 1473 llvm_unreachable("Unrecognized branch opcode"); 1474 } 1475 } 1476 1477 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 1478 unsigned &LoadOpcode, 1479 unsigned &StoreOpcode) const { 1480 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 1481 LoadOpcode = SystemZ::L; 1482 StoreOpcode = SystemZ::ST; 1483 } else if (RC == &SystemZ::GRH32BitRegClass) { 1484 LoadOpcode = SystemZ::LFH; 1485 StoreOpcode = SystemZ::STFH; 1486 } else if (RC == &SystemZ::GRX32BitRegClass) { 1487 LoadOpcode = SystemZ::LMux; 1488 StoreOpcode = SystemZ::STMux; 1489 } else if (RC == &SystemZ::GR64BitRegClass || 1490 RC == &SystemZ::ADDR64BitRegClass) { 1491 LoadOpcode = SystemZ::LG; 1492 StoreOpcode = SystemZ::STG; 1493 } else if (RC == &SystemZ::GR128BitRegClass || 1494 RC == &SystemZ::ADDR128BitRegClass) { 1495 LoadOpcode = SystemZ::L128; 1496 StoreOpcode = SystemZ::ST128; 1497 } else if (RC == &SystemZ::FP32BitRegClass) { 1498 LoadOpcode = SystemZ::LE; 1499 StoreOpcode = SystemZ::STE; 1500 } else if (RC == &SystemZ::FP64BitRegClass) { 1501 LoadOpcode = SystemZ::LD; 1502 StoreOpcode = SystemZ::STD; 1503 } else if (RC == &SystemZ::FP128BitRegClass) { 1504 LoadOpcode = SystemZ::LX; 1505 StoreOpcode = SystemZ::STX; 1506 } else if (RC == &SystemZ::VR32BitRegClass) { 1507 LoadOpcode = SystemZ::VL32; 1508 StoreOpcode = SystemZ::VST32; 1509 } else if (RC == &SystemZ::VR64BitRegClass) { 1510 LoadOpcode = SystemZ::VL64; 1511 StoreOpcode = SystemZ::VST64; 1512 } else if (RC == &SystemZ::VF128BitRegClass || 1513 RC == &SystemZ::VR128BitRegClass) { 1514 LoadOpcode = SystemZ::VL; 1515 StoreOpcode = SystemZ::VST; 1516 } else 1517 llvm_unreachable("Unsupported regclass to load or store"); 1518 } 1519 1520 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 1521 int64_t Offset) const { 1522 const MCInstrDesc &MCID = get(Opcode); 1523 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 1524 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 1525 // Get the instruction to use for unsigned 12-bit displacements. 1526 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 1527 if (Disp12Opcode >= 0) 1528 return Disp12Opcode; 1529 1530 // All address-related instructions can use unsigned 12-bit 1531 // displacements. 1532 return Opcode; 1533 } 1534 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 1535 // Get the instruction to use for signed 20-bit displacements. 1536 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 1537 if (Disp20Opcode >= 0) 1538 return Disp20Opcode; 1539 1540 // Check whether Opcode allows signed 20-bit displacements. 1541 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1542 return Opcode; 1543 } 1544 return 0; 1545 } 1546 1547 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 1548 switch (Opcode) { 1549 case SystemZ::L: return SystemZ::LT; 1550 case SystemZ::LY: return SystemZ::LT; 1551 case SystemZ::LG: return SystemZ::LTG; 1552 case SystemZ::LGF: return SystemZ::LTGF; 1553 case SystemZ::LR: return SystemZ::LTR; 1554 case SystemZ::LGFR: return SystemZ::LTGFR; 1555 case SystemZ::LGR: return SystemZ::LTGR; 1556 case SystemZ::LER: return SystemZ::LTEBR; 1557 case SystemZ::LDR: return SystemZ::LTDBR; 1558 case SystemZ::LXR: return SystemZ::LTXBR; 1559 case SystemZ::LCDFR: return SystemZ::LCDBR; 1560 case SystemZ::LPDFR: return SystemZ::LPDBR; 1561 case SystemZ::LNDFR: return SystemZ::LNDBR; 1562 case SystemZ::LCDFR_32: return SystemZ::LCEBR; 1563 case SystemZ::LPDFR_32: return SystemZ::LPEBR; 1564 case SystemZ::LNDFR_32: return SystemZ::LNEBR; 1565 // On zEC12 we prefer to use RISBGN. But if there is a chance to 1566 // actually use the condition code, we may turn it back into RISGB. 1567 // Note that RISBG is not really a "load-and-test" instruction, 1568 // but sets the same condition code values, so is OK to use here. 1569 case SystemZ::RISBGN: return SystemZ::RISBG; 1570 default: return 0; 1571 } 1572 } 1573 1574 // Return true if Mask matches the regexp 0*1+0*, given that zero masks 1575 // have already been filtered out. Store the first set bit in LSB and 1576 // the number of set bits in Length if so. 1577 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { 1578 unsigned First = findFirstSet(Mask); 1579 uint64_t Top = (Mask >> First) + 1; 1580 if ((Top & -Top) == Top) { 1581 LSB = First; 1582 Length = findFirstSet(Top); 1583 return true; 1584 } 1585 return false; 1586 } 1587 1588 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 1589 unsigned &Start, unsigned &End) const { 1590 // Reject trivial all-zero masks. 1591 Mask &= allOnes(BitSize); 1592 if (Mask == 0) 1593 return false; 1594 1595 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 1596 // the msb and End specifies the index of the lsb. 1597 unsigned LSB, Length; 1598 if (isStringOfOnes(Mask, LSB, Length)) { 1599 Start = 63 - (LSB + Length - 1); 1600 End = 63 - LSB; 1601 return true; 1602 } 1603 1604 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 1605 // of the low 1s and End specifies the lsb of the high 1s. 1606 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { 1607 assert(LSB > 0 && "Bottom bit must be set"); 1608 assert(LSB + Length < BitSize && "Top bit must be set"); 1609 Start = 63 - (LSB - 1); 1610 End = 63 - (LSB + Length); 1611 return true; 1612 } 1613 1614 return false; 1615 } 1616 1617 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode, 1618 SystemZII::FusedCompareType Type, 1619 const MachineInstr *MI) const { 1620 switch (Opcode) { 1621 case SystemZ::CHI: 1622 case SystemZ::CGHI: 1623 if (!(MI && isInt<8>(MI->getOperand(1).getImm()))) 1624 return 0; 1625 break; 1626 case SystemZ::CLFI: 1627 case SystemZ::CLGFI: 1628 if (!(MI && isUInt<8>(MI->getOperand(1).getImm()))) 1629 return 0; 1630 break; 1631 case SystemZ::CL: 1632 case SystemZ::CLG: 1633 if (!STI.hasMiscellaneousExtensions()) 1634 return 0; 1635 if (!(MI && MI->getOperand(3).getReg() == 0)) 1636 return 0; 1637 break; 1638 } 1639 switch (Type) { 1640 case SystemZII::CompareAndBranch: 1641 switch (Opcode) { 1642 case SystemZ::CR: 1643 return SystemZ::CRJ; 1644 case SystemZ::CGR: 1645 return SystemZ::CGRJ; 1646 case SystemZ::CHI: 1647 return SystemZ::CIJ; 1648 case SystemZ::CGHI: 1649 return SystemZ::CGIJ; 1650 case SystemZ::CLR: 1651 return SystemZ::CLRJ; 1652 case SystemZ::CLGR: 1653 return SystemZ::CLGRJ; 1654 case SystemZ::CLFI: 1655 return SystemZ::CLIJ; 1656 case SystemZ::CLGFI: 1657 return SystemZ::CLGIJ; 1658 default: 1659 return 0; 1660 } 1661 case SystemZII::CompareAndReturn: 1662 switch (Opcode) { 1663 case SystemZ::CR: 1664 return SystemZ::CRBReturn; 1665 case SystemZ::CGR: 1666 return SystemZ::CGRBReturn; 1667 case SystemZ::CHI: 1668 return SystemZ::CIBReturn; 1669 case SystemZ::CGHI: 1670 return SystemZ::CGIBReturn; 1671 case SystemZ::CLR: 1672 return SystemZ::CLRBReturn; 1673 case SystemZ::CLGR: 1674 return SystemZ::CLGRBReturn; 1675 case SystemZ::CLFI: 1676 return SystemZ::CLIBReturn; 1677 case SystemZ::CLGFI: 1678 return SystemZ::CLGIBReturn; 1679 default: 1680 return 0; 1681 } 1682 case SystemZII::CompareAndSibcall: 1683 switch (Opcode) { 1684 case SystemZ::CR: 1685 return SystemZ::CRBCall; 1686 case SystemZ::CGR: 1687 return SystemZ::CGRBCall; 1688 case SystemZ::CHI: 1689 return SystemZ::CIBCall; 1690 case SystemZ::CGHI: 1691 return SystemZ::CGIBCall; 1692 case SystemZ::CLR: 1693 return SystemZ::CLRBCall; 1694 case SystemZ::CLGR: 1695 return SystemZ::CLGRBCall; 1696 case SystemZ::CLFI: 1697 return SystemZ::CLIBCall; 1698 case SystemZ::CLGFI: 1699 return SystemZ::CLGIBCall; 1700 default: 1701 return 0; 1702 } 1703 case SystemZII::CompareAndTrap: 1704 switch (Opcode) { 1705 case SystemZ::CR: 1706 return SystemZ::CRT; 1707 case SystemZ::CGR: 1708 return SystemZ::CGRT; 1709 case SystemZ::CHI: 1710 return SystemZ::CIT; 1711 case SystemZ::CGHI: 1712 return SystemZ::CGIT; 1713 case SystemZ::CLR: 1714 return SystemZ::CLRT; 1715 case SystemZ::CLGR: 1716 return SystemZ::CLGRT; 1717 case SystemZ::CLFI: 1718 return SystemZ::CLFIT; 1719 case SystemZ::CLGFI: 1720 return SystemZ::CLGIT; 1721 case SystemZ::CL: 1722 return SystemZ::CLT; 1723 case SystemZ::CLG: 1724 return SystemZ::CLGT; 1725 default: 1726 return 0; 1727 } 1728 } 1729 return 0; 1730 } 1731 1732 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const { 1733 if (!STI.hasLoadAndTrap()) 1734 return 0; 1735 switch (Opcode) { 1736 case SystemZ::L: 1737 case SystemZ::LY: 1738 return SystemZ::LAT; 1739 case SystemZ::LG: 1740 return SystemZ::LGAT; 1741 case SystemZ::LFH: 1742 return SystemZ::LFHAT; 1743 case SystemZ::LLGF: 1744 return SystemZ::LLGFAT; 1745 case SystemZ::LLGT: 1746 return SystemZ::LLGTAT; 1747 } 1748 return 0; 1749 } 1750 1751 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 1752 MachineBasicBlock::iterator MBBI, 1753 unsigned Reg, uint64_t Value) const { 1754 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1755 unsigned Opcode; 1756 if (isInt<16>(Value)) 1757 Opcode = SystemZ::LGHI; 1758 else if (SystemZ::isImmLL(Value)) 1759 Opcode = SystemZ::LLILL; 1760 else if (SystemZ::isImmLH(Value)) { 1761 Opcode = SystemZ::LLILH; 1762 Value >>= 16; 1763 } else { 1764 assert(isInt<32>(Value) && "Huge values not handled yet"); 1765 Opcode = SystemZ::LGFI; 1766 } 1767 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 1768 } 1769 1770 bool SystemZInstrInfo:: 1771 areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb, 1772 AliasAnalysis *AA) const { 1773 1774 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) 1775 return false; 1776 1777 // If mem-operands show that the same address Value is used by both 1778 // instructions, check for non-overlapping offsets and widths. Not 1779 // sure if a register based analysis would be an improvement... 1780 1781 MachineMemOperand *MMOa = *MIa.memoperands_begin(); 1782 MachineMemOperand *MMOb = *MIb.memoperands_begin(); 1783 const Value *VALa = MMOa->getValue(); 1784 const Value *VALb = MMOb->getValue(); 1785 bool SameVal = (VALa && VALb && (VALa == VALb)); 1786 if (!SameVal) { 1787 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1788 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1789 if (PSVa && PSVb && (PSVa == PSVb)) 1790 SameVal = true; 1791 } 1792 if (SameVal) { 1793 int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset(); 1794 int WidthA = MMOa->getSize(), WidthB = MMOb->getSize(); 1795 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 1796 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 1797 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 1798 if (LowOffset + LowWidth <= HighOffset) 1799 return true; 1800 } 1801 1802 return false; 1803 } 1804