1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SystemZ implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZInstrInfo.h" 15 #include "SystemZInstrBuilder.h" 16 #include "SystemZTargetMachine.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 20 using namespace llvm; 21 22 #define GET_INSTRINFO_CTOR_DTOR 23 #define GET_INSTRMAP_INFO 24 #include "SystemZGenInstrInfo.inc" 25 26 // Return a mask with Count low bits set. 27 static uint64_t allOnes(unsigned int Count) { 28 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 29 } 30 31 // Reg should be a 32-bit GPR. Return true if it is a high register rather 32 // than a low register. 33 static bool isHighReg(unsigned int Reg) { 34 if (SystemZ::GRH32BitRegClass.contains(Reg)) 35 return true; 36 assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32"); 37 return false; 38 } 39 40 // Pin the vtable to this file. 41 void SystemZInstrInfo::anchor() {} 42 43 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti) 44 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 45 RI(), STI(sti) { 46 } 47 48 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 49 // each having the opcode given by NewOpcode. 50 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 51 unsigned NewOpcode) const { 52 MachineBasicBlock *MBB = MI->getParent(); 53 MachineFunction &MF = *MBB->getParent(); 54 55 // Get two load or store instructions. Use the original instruction for one 56 // of them (arbitrarily the second here) and create a clone for the other. 57 MachineInstr *EarlierMI = MF.CloneMachineInstr(MI); 58 MBB->insert(MI, EarlierMI); 59 60 // Set up the two 64-bit registers. 61 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 62 MachineOperand &LowRegOp = MI->getOperand(0); 63 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); 64 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); 65 66 // The address in the first (high) instruction is already correct. 67 // Adjust the offset in the second (low) instruction. 68 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 69 MachineOperand &LowOffsetOp = MI->getOperand(2); 70 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 71 72 // Clear the kill flags for the base and index registers in the first 73 // instruction. 74 EarlierMI->getOperand(1).setIsKill(false); 75 EarlierMI->getOperand(3).setIsKill(false); 76 77 // Set the opcodes. 78 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 79 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 80 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 81 82 EarlierMI->setDesc(get(HighOpcode)); 83 MI->setDesc(get(LowOpcode)); 84 } 85 86 // Split ADJDYNALLOC instruction MI. 87 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 88 MachineBasicBlock *MBB = MI->getParent(); 89 MachineFunction &MF = *MBB->getParent(); 90 MachineFrameInfo *MFFrame = MF.getFrameInfo(); 91 MachineOperand &OffsetMO = MI->getOperand(2); 92 93 uint64_t Offset = (MFFrame->getMaxCallFrameSize() + 94 SystemZMC::CallFrameSize + 95 OffsetMO.getImm()); 96 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 97 assert(NewOpcode && "No support for huge argument lists yet"); 98 MI->setDesc(get(NewOpcode)); 99 OffsetMO.setImm(Offset); 100 } 101 102 // MI is an RI-style pseudo instruction. Replace it with LowOpcode 103 // if the first operand is a low GR32 and HighOpcode if the first operand 104 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand 105 // and HighOpcode takes an unsigned 32-bit operand. In those cases, 106 // MI has the same kind of operand as LowOpcode, so needs to be converted 107 // if HighOpcode is used. 108 void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode, 109 unsigned HighOpcode, 110 bool ConvertHigh) const { 111 unsigned Reg = MI->getOperand(0).getReg(); 112 bool IsHigh = isHighReg(Reg); 113 MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode)); 114 if (IsHigh && ConvertHigh) 115 MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm())); 116 } 117 118 // MI is a three-operand RIE-style pseudo instruction. Replace it with 119 // LowOpcodeK if the registers are both low GR32s, otherwise use a move 120 // followed by HighOpcode or LowOpcode, depending on whether the target 121 // is a high or low GR32. 122 void SystemZInstrInfo::expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode, 123 unsigned LowOpcodeK, 124 unsigned HighOpcode) const { 125 unsigned DestReg = MI->getOperand(0).getReg(); 126 unsigned SrcReg = MI->getOperand(1).getReg(); 127 bool DestIsHigh = isHighReg(DestReg); 128 bool SrcIsHigh = isHighReg(SrcReg); 129 if (!DestIsHigh && !SrcIsHigh) 130 MI->setDesc(get(LowOpcodeK)); 131 else { 132 emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(), 133 DestReg, SrcReg, SystemZ::LR, 32, 134 MI->getOperand(1).isKill()); 135 MI->setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); 136 MI->getOperand(1).setReg(DestReg); 137 MI->tieOperands(0, 1); 138 } 139 } 140 141 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode 142 // if the first operand is a low GR32 and HighOpcode if the first operand 143 // is a high GR32. 144 void SystemZInstrInfo::expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode, 145 unsigned HighOpcode) const { 146 unsigned Reg = MI->getOperand(0).getReg(); 147 unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode, 148 MI->getOperand(2).getImm()); 149 MI->setDesc(get(Opcode)); 150 } 151 152 // MI is an RR-style pseudo instruction that zero-extends the low Size bits 153 // of one GRX32 into another. Replace it with LowOpcode if both operands 154 // are low registers, otherwise use RISB[LH]G. 155 void SystemZInstrInfo::expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode, 156 unsigned Size) const { 157 emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(), 158 MI->getOperand(0).getReg(), MI->getOperand(1).getReg(), 159 LowOpcode, Size, MI->getOperand(1).isKill()); 160 MI->eraseFromParent(); 161 } 162 163 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const { 164 MachineBasicBlock *MBB = MI->getParent(); 165 MachineFunction &MF = *MBB->getParent(); 166 const unsigned Reg = MI->getOperand(0).getReg(); 167 168 // Conveniently, all 4 instructions are cloned from LOAD_STACK_GUARD, 169 // so they already have operand 0 set to reg. 170 171 // ear <reg>, %a0 172 MachineInstr *Ear1MI = MF.CloneMachineInstr(MI); 173 MBB->insert(MI, Ear1MI); 174 Ear1MI->setDesc(get(SystemZ::EAR)); 175 MachineInstrBuilder(MF, Ear1MI).addImm(0); 176 177 // sllg <reg>, <reg>, 32 178 MachineInstr *SllgMI = MF.CloneMachineInstr(MI); 179 MBB->insert(MI, SllgMI); 180 SllgMI->setDesc(get(SystemZ::SLLG)); 181 MachineInstrBuilder(MF, SllgMI).addReg(Reg).addReg(0).addImm(32); 182 183 // ear <reg>, %a1 184 MachineInstr *Ear2MI = MF.CloneMachineInstr(MI); 185 MBB->insert(MI, Ear2MI); 186 Ear2MI->setDesc(get(SystemZ::EAR)); 187 MachineInstrBuilder(MF, Ear2MI).addImm(1); 188 189 // lg <reg>, 40(<reg>) 190 MI->setDesc(get(SystemZ::LG)); 191 MachineInstrBuilder(MF, MI).addReg(Reg).addImm(40).addReg(0); 192 } 193 194 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR 195 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg 196 // are low registers, otherwise use RISB[LH]G. Size is the number of bits 197 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). 198 // KillSrc is true if this move is the last use of SrcReg. 199 void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, 200 MachineBasicBlock::iterator MBBI, 201 DebugLoc DL, unsigned DestReg, 202 unsigned SrcReg, unsigned LowLowOpcode, 203 unsigned Size, bool KillSrc) const { 204 unsigned Opcode; 205 bool DestIsHigh = isHighReg(DestReg); 206 bool SrcIsHigh = isHighReg(SrcReg); 207 if (DestIsHigh && SrcIsHigh) 208 Opcode = SystemZ::RISBHH; 209 else if (DestIsHigh && !SrcIsHigh) 210 Opcode = SystemZ::RISBHL; 211 else if (!DestIsHigh && SrcIsHigh) 212 Opcode = SystemZ::RISBLH; 213 else { 214 BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) 215 .addReg(SrcReg, getKillRegState(KillSrc)); 216 return; 217 } 218 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); 219 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 220 .addReg(DestReg, RegState::Undef) 221 .addReg(SrcReg, getKillRegState(KillSrc)) 222 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); 223 } 224 225 // If MI is a simple load or store for a frame object, return the register 226 // it loads or stores and set FrameIndex to the index of the frame object. 227 // Return 0 otherwise. 228 // 229 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 230 static int isSimpleMove(const MachineInstr *MI, int &FrameIndex, 231 unsigned Flag) { 232 const MCInstrDesc &MCID = MI->getDesc(); 233 if ((MCID.TSFlags & Flag) && 234 MI->getOperand(1).isFI() && 235 MI->getOperand(2).getImm() == 0 && 236 MI->getOperand(3).getReg() == 0) { 237 FrameIndex = MI->getOperand(1).getIndex(); 238 return MI->getOperand(0).getReg(); 239 } 240 return 0; 241 } 242 243 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 244 int &FrameIndex) const { 245 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 246 } 247 248 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 249 int &FrameIndex) const { 250 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 251 } 252 253 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI, 254 int &DestFrameIndex, 255 int &SrcFrameIndex) const { 256 // Check for MVC 0(Length,FI1),0(FI2) 257 const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo(); 258 if (MI->getOpcode() != SystemZ::MVC || 259 !MI->getOperand(0).isFI() || 260 MI->getOperand(1).getImm() != 0 || 261 !MI->getOperand(3).isFI() || 262 MI->getOperand(4).getImm() != 0) 263 return false; 264 265 // Check that Length covers the full slots. 266 int64_t Length = MI->getOperand(2).getImm(); 267 unsigned FI1 = MI->getOperand(0).getIndex(); 268 unsigned FI2 = MI->getOperand(3).getIndex(); 269 if (MFI->getObjectSize(FI1) != Length || 270 MFI->getObjectSize(FI2) != Length) 271 return false; 272 273 DestFrameIndex = FI1; 274 SrcFrameIndex = FI2; 275 return true; 276 } 277 278 bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 279 MachineBasicBlock *&TBB, 280 MachineBasicBlock *&FBB, 281 SmallVectorImpl<MachineOperand> &Cond, 282 bool AllowModify) const { 283 // Most of the code and comments here are boilerplate. 284 285 // Start from the bottom of the block and work up, examining the 286 // terminator instructions. 287 MachineBasicBlock::iterator I = MBB.end(); 288 while (I != MBB.begin()) { 289 --I; 290 if (I->isDebugValue()) 291 continue; 292 293 // Working from the bottom, when we see a non-terminator instruction, we're 294 // done. 295 if (!isUnpredicatedTerminator(*I)) 296 break; 297 298 // A terminator that isn't a branch can't easily be handled by this 299 // analysis. 300 if (!I->isBranch()) 301 return true; 302 303 // Can't handle indirect branches. 304 SystemZII::Branch Branch(getBranchInfo(I)); 305 if (!Branch.Target->isMBB()) 306 return true; 307 308 // Punt on compound branches. 309 if (Branch.Type != SystemZII::BranchNormal) 310 return true; 311 312 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 313 // Handle unconditional branches. 314 if (!AllowModify) { 315 TBB = Branch.Target->getMBB(); 316 continue; 317 } 318 319 // If the block has any instructions after a JMP, delete them. 320 while (std::next(I) != MBB.end()) 321 std::next(I)->eraseFromParent(); 322 323 Cond.clear(); 324 FBB = nullptr; 325 326 // Delete the JMP if it's equivalent to a fall-through. 327 if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) { 328 TBB = nullptr; 329 I->eraseFromParent(); 330 I = MBB.end(); 331 continue; 332 } 333 334 // TBB is used to indicate the unconditinal destination. 335 TBB = Branch.Target->getMBB(); 336 continue; 337 } 338 339 // Working from the bottom, handle the first conditional branch. 340 if (Cond.empty()) { 341 // FIXME: add X86-style branch swap 342 FBB = TBB; 343 TBB = Branch.Target->getMBB(); 344 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 345 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 346 continue; 347 } 348 349 // Handle subsequent conditional branches. 350 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 351 352 // Only handle the case where all conditional branches branch to the same 353 // destination. 354 if (TBB != Branch.Target->getMBB()) 355 return true; 356 357 // If the conditions are the same, we can leave them alone. 358 unsigned OldCCValid = Cond[0].getImm(); 359 unsigned OldCCMask = Cond[1].getImm(); 360 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 361 continue; 362 363 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 364 return false; 365 } 366 367 return false; 368 } 369 370 unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 371 // Most of the code and comments here are boilerplate. 372 MachineBasicBlock::iterator I = MBB.end(); 373 unsigned Count = 0; 374 375 while (I != MBB.begin()) { 376 --I; 377 if (I->isDebugValue()) 378 continue; 379 if (!I->isBranch()) 380 break; 381 if (!getBranchInfo(I).Target->isMBB()) 382 break; 383 // Remove the branch. 384 I->eraseFromParent(); 385 I = MBB.end(); 386 ++Count; 387 } 388 389 return Count; 390 } 391 392 bool SystemZInstrInfo:: 393 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 394 assert(Cond.size() == 2 && "Invalid condition"); 395 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 396 return false; 397 } 398 399 unsigned 400 SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 401 MachineBasicBlock *FBB, 402 ArrayRef<MachineOperand> Cond, 403 DebugLoc DL) const { 404 // In this function we output 32-bit branches, which should always 405 // have enough range. They can be shortened and relaxed by later code 406 // in the pipeline, if desired. 407 408 // Shouldn't be a fall through. 409 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 410 assert((Cond.size() == 2 || Cond.size() == 0) && 411 "SystemZ branch conditions have one component!"); 412 413 if (Cond.empty()) { 414 // Unconditional branch? 415 assert(!FBB && "Unconditional branch with multiple successors!"); 416 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 417 return 1; 418 } 419 420 // Conditional branch. 421 unsigned Count = 0; 422 unsigned CCValid = Cond[0].getImm(); 423 unsigned CCMask = Cond[1].getImm(); 424 BuildMI(&MBB, DL, get(SystemZ::BRC)) 425 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 426 ++Count; 427 428 if (FBB) { 429 // Two-way Conditional branch. Insert the second branch. 430 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 431 ++Count; 432 } 433 return Count; 434 } 435 436 bool SystemZInstrInfo::analyzeCompare(const MachineInstr *MI, 437 unsigned &SrcReg, unsigned &SrcReg2, 438 int &Mask, int &Value) const { 439 assert(MI->isCompare() && "Caller should have checked for a comparison"); 440 441 if (MI->getNumExplicitOperands() == 2 && 442 MI->getOperand(0).isReg() && 443 MI->getOperand(1).isImm()) { 444 SrcReg = MI->getOperand(0).getReg(); 445 SrcReg2 = 0; 446 Value = MI->getOperand(1).getImm(); 447 Mask = ~0; 448 return true; 449 } 450 451 return false; 452 } 453 454 // If Reg is a virtual register, return its definition, otherwise return null. 455 static MachineInstr *getDef(unsigned Reg, 456 const MachineRegisterInfo *MRI) { 457 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 458 return nullptr; 459 return MRI->getUniqueVRegDef(Reg); 460 } 461 462 // Return true if MI is a shift of type Opcode by Imm bits. 463 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) { 464 return (MI->getOpcode() == Opcode && 465 !MI->getOperand(2).getReg() && 466 MI->getOperand(3).getImm() == Imm); 467 } 468 469 // If the destination of MI has no uses, delete it as dead. 470 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) { 471 if (MRI->use_nodbg_empty(MI->getOperand(0).getReg())) 472 MI->eraseFromParent(); 473 } 474 475 // Compare compares SrcReg against zero. Check whether SrcReg contains 476 // the result of an IPM sequence whose input CC survives until Compare, 477 // and whether Compare is therefore redundant. Delete it and return 478 // true if so. 479 static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg, 480 const MachineRegisterInfo *MRI, 481 const TargetRegisterInfo *TRI) { 482 MachineInstr *LGFR = nullptr; 483 MachineInstr *RLL = getDef(SrcReg, MRI); 484 if (RLL && RLL->getOpcode() == SystemZ::LGFR) { 485 LGFR = RLL; 486 RLL = getDef(LGFR->getOperand(1).getReg(), MRI); 487 } 488 if (!RLL || !isShift(RLL, SystemZ::RLL, 31)) 489 return false; 490 491 MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI); 492 if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC)) 493 return false; 494 495 MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI); 496 if (!IPM || IPM->getOpcode() != SystemZ::IPM) 497 return false; 498 499 // Check that there are no assignments to CC between the IPM and Compare, 500 if (IPM->getParent() != Compare->getParent()) 501 return false; 502 MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare; 503 for (++MBBI; MBBI != MBBE; ++MBBI) { 504 MachineInstr *MI = MBBI; 505 if (MI->modifiesRegister(SystemZ::CC, TRI)) 506 return false; 507 } 508 509 Compare->eraseFromParent(); 510 if (LGFR) 511 eraseIfDead(LGFR, MRI); 512 eraseIfDead(RLL, MRI); 513 eraseIfDead(SRL, MRI); 514 eraseIfDead(IPM, MRI); 515 516 return true; 517 } 518 519 bool 520 SystemZInstrInfo::optimizeCompareInstr(MachineInstr *Compare, 521 unsigned SrcReg, unsigned SrcReg2, 522 int Mask, int Value, 523 const MachineRegisterInfo *MRI) const { 524 assert(!SrcReg2 && "Only optimizing constant comparisons so far"); 525 bool IsLogical = (Compare->getDesc().TSFlags & SystemZII::IsLogical) != 0; 526 return Value == 0 && !IsLogical && 527 removeIPMBasedCompare(Compare, SrcReg, MRI, &RI); 528 } 529 530 // If Opcode is a move that has a conditional variant, return that variant, 531 // otherwise return 0. 532 static unsigned getConditionalMove(unsigned Opcode) { 533 switch (Opcode) { 534 case SystemZ::LR: return SystemZ::LOCR; 535 case SystemZ::LGR: return SystemZ::LOCGR; 536 default: return 0; 537 } 538 } 539 540 bool SystemZInstrInfo::isPredicable(MachineInstr &MI) const { 541 unsigned Opcode = MI.getOpcode(); 542 if (STI.hasLoadStoreOnCond() && getConditionalMove(Opcode)) 543 return true; 544 if (Opcode == SystemZ::Return || 545 Opcode == SystemZ::CallJG || 546 Opcode == SystemZ::CallBR) 547 return true; 548 return false; 549 } 550 551 bool SystemZInstrInfo:: 552 isProfitableToIfCvt(MachineBasicBlock &MBB, 553 unsigned NumCycles, unsigned ExtraPredCycles, 554 BranchProbability Probability) const { 555 // Avoid using conditional returns at the end of a loop (since then 556 // we'd need to emit an unconditional branch to the beginning anyway, 557 // making the loop body longer). This doesn't apply for low-probability 558 // loops (eg. compare-and-swap retry), so just decide based on branch 559 // probability instead of looping structure. 560 if (MBB.succ_empty() && Probability < BranchProbability(1, 8)) 561 return false; 562 // For now only convert single instructions. 563 return NumCycles == 1; 564 } 565 566 bool SystemZInstrInfo:: 567 isProfitableToIfCvt(MachineBasicBlock &TMBB, 568 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 569 MachineBasicBlock &FMBB, 570 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 571 BranchProbability Probability) const { 572 // For now avoid converting mutually-exclusive cases. 573 return false; 574 } 575 576 bool SystemZInstrInfo:: 577 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 578 BranchProbability Probability) const { 579 // For now only duplicate single instructions. 580 return NumCycles == 1; 581 } 582 583 bool SystemZInstrInfo::PredicateInstruction( 584 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 585 assert(Pred.size() == 2 && "Invalid condition"); 586 unsigned CCValid = Pred[0].getImm(); 587 unsigned CCMask = Pred[1].getImm(); 588 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 589 unsigned Opcode = MI.getOpcode(); 590 if (STI.hasLoadStoreOnCond()) { 591 if (unsigned CondOpcode = getConditionalMove(Opcode)) { 592 MI.setDesc(get(CondOpcode)); 593 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 594 .addImm(CCValid) 595 .addImm(CCMask) 596 .addReg(SystemZ::CC, RegState::Implicit); 597 return true; 598 } 599 } 600 if (Opcode == SystemZ::Return) { 601 MI.setDesc(get(SystemZ::CondReturn)); 602 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 603 .addImm(CCValid).addImm(CCMask) 604 .addReg(SystemZ::CC, RegState::Implicit); 605 return true; 606 } 607 if (Opcode == SystemZ::CallJG) { 608 const GlobalValue *Global = MI.getOperand(0).getGlobal(); 609 const uint32_t *RegMask = MI.getOperand(1).getRegMask(); 610 MI.RemoveOperand(1); 611 MI.RemoveOperand(0); 612 MI.setDesc(get(SystemZ::CallBRCL)); 613 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 614 .addImm(CCValid).addImm(CCMask) 615 .addGlobalAddress(Global) 616 .addRegMask(RegMask) 617 .addReg(SystemZ::CC, RegState::Implicit); 618 return true; 619 } 620 if (Opcode == SystemZ::CallBR) { 621 const uint32_t *RegMask = MI.getOperand(0).getRegMask(); 622 MI.RemoveOperand(0); 623 MI.setDesc(get(SystemZ::CallBCR)); 624 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 625 .addImm(CCValid).addImm(CCMask) 626 .addRegMask(RegMask) 627 .addReg(SystemZ::CC, RegState::Implicit); 628 return true; 629 } 630 return false; 631 } 632 633 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 634 MachineBasicBlock::iterator MBBI, 635 DebugLoc DL, unsigned DestReg, 636 unsigned SrcReg, bool KillSrc) const { 637 // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too. 638 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 639 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), 640 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); 641 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), 642 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); 643 return; 644 } 645 646 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { 647 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc); 648 return; 649 } 650 651 // Everything else needs only one instruction. 652 unsigned Opcode; 653 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 654 Opcode = SystemZ::LGR; 655 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 656 // For z13 we prefer LDR over LER to avoid partial register dependencies. 657 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER; 658 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 659 Opcode = SystemZ::LDR; 660 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 661 Opcode = SystemZ::LXR; 662 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg)) 663 Opcode = SystemZ::VLR32; 664 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg)) 665 Opcode = SystemZ::VLR64; 666 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg)) 667 Opcode = SystemZ::VLR; 668 else 669 llvm_unreachable("Impossible reg-to-reg copy"); 670 671 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 672 .addReg(SrcReg, getKillRegState(KillSrc)); 673 } 674 675 void SystemZInstrInfo::storeRegToStackSlot( 676 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, 677 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 678 const TargetRegisterInfo *TRI) const { 679 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 680 681 // Callers may expect a single instruction, so keep 128-bit moves 682 // together for now and lower them after register allocation. 683 unsigned LoadOpcode, StoreOpcode; 684 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 685 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 686 .addReg(SrcReg, getKillRegState(isKill)), 687 FrameIdx); 688 } 689 690 void SystemZInstrInfo::loadRegFromStackSlot( 691 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, 692 int FrameIdx, const TargetRegisterClass *RC, 693 const TargetRegisterInfo *TRI) const { 694 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 695 696 // Callers may expect a single instruction, so keep 128-bit moves 697 // together for now and lower them after register allocation. 698 unsigned LoadOpcode, StoreOpcode; 699 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 700 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 701 FrameIdx); 702 } 703 704 // Return true if MI is a simple load or store with a 12-bit displacement 705 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 706 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 707 const MCInstrDesc &MCID = MI->getDesc(); 708 return ((MCID.TSFlags & Flag) && 709 isUInt<12>(MI->getOperand(2).getImm()) && 710 MI->getOperand(3).getReg() == 0); 711 } 712 713 namespace { 714 struct LogicOp { 715 LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {} 716 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 717 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 718 719 explicit operator bool() const { return RegSize; } 720 721 unsigned RegSize, ImmLSB, ImmSize; 722 }; 723 } // end anonymous namespace 724 725 static LogicOp interpretAndImmediate(unsigned Opcode) { 726 switch (Opcode) { 727 case SystemZ::NILMux: return LogicOp(32, 0, 16); 728 case SystemZ::NIHMux: return LogicOp(32, 16, 16); 729 case SystemZ::NILL64: return LogicOp(64, 0, 16); 730 case SystemZ::NILH64: return LogicOp(64, 16, 16); 731 case SystemZ::NIHL64: return LogicOp(64, 32, 16); 732 case SystemZ::NIHH64: return LogicOp(64, 48, 16); 733 case SystemZ::NIFMux: return LogicOp(32, 0, 32); 734 case SystemZ::NILF64: return LogicOp(64, 0, 32); 735 case SystemZ::NIHF64: return LogicOp(64, 32, 32); 736 default: return LogicOp(); 737 } 738 } 739 740 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) { 741 if (OldMI->registerDefIsDead(SystemZ::CC)) { 742 MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC); 743 if (CCDef != nullptr) 744 CCDef->setIsDead(true); 745 } 746 } 747 748 // Used to return from convertToThreeAddress after replacing two-address 749 // instruction OldMI with three-address instruction NewMI. 750 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI, 751 MachineInstr *NewMI, 752 LiveVariables *LV) { 753 if (LV) { 754 unsigned NumOps = OldMI->getNumOperands(); 755 for (unsigned I = 1; I < NumOps; ++I) { 756 MachineOperand &Op = OldMI->getOperand(I); 757 if (Op.isReg() && Op.isKill()) 758 LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI); 759 } 760 } 761 transferDeadCC(OldMI, NewMI); 762 return NewMI; 763 } 764 765 MachineInstr * 766 SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 767 MachineBasicBlock::iterator &MBBI, 768 LiveVariables *LV) const { 769 MachineInstr *MI = MBBI; 770 MachineBasicBlock *MBB = MI->getParent(); 771 MachineFunction *MF = MBB->getParent(); 772 MachineRegisterInfo &MRI = MF->getRegInfo(); 773 774 unsigned Opcode = MI->getOpcode(); 775 unsigned NumOps = MI->getNumOperands(); 776 777 // Try to convert something like SLL into SLLK, if supported. 778 // We prefer to keep the two-operand form where possible both 779 // because it tends to be shorter and because some instructions 780 // have memory forms that can be used during spilling. 781 if (STI.hasDistinctOps()) { 782 MachineOperand &Dest = MI->getOperand(0); 783 MachineOperand &Src = MI->getOperand(1); 784 unsigned DestReg = Dest.getReg(); 785 unsigned SrcReg = Src.getReg(); 786 // AHIMux is only really a three-operand instruction when both operands 787 // are low registers. Try to constrain both operands to be low if 788 // possible. 789 if (Opcode == SystemZ::AHIMux && 790 TargetRegisterInfo::isVirtualRegister(DestReg) && 791 TargetRegisterInfo::isVirtualRegister(SrcReg) && 792 MRI.getRegClass(DestReg)->contains(SystemZ::R1L) && 793 MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) { 794 MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass); 795 MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass); 796 } 797 int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); 798 if (ThreeOperandOpcode >= 0) { 799 // Create three address instruction without adding the implicit 800 // operands. Those will instead be copied over from the original 801 // instruction by the loop below. 802 MachineInstrBuilder MIB(*MF, 803 MF->CreateMachineInstr(get(ThreeOperandOpcode), 804 MI->getDebugLoc(), /*NoImplicit=*/true)); 805 MIB.addOperand(Dest); 806 // Keep the kill state, but drop the tied flag. 807 MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()); 808 // Keep the remaining operands as-is. 809 for (unsigned I = 2; I < NumOps; ++I) 810 MIB.addOperand(MI->getOperand(I)); 811 MBB->insert(MI, MIB); 812 return finishConvertToThreeAddress(MI, MIB, LV); 813 } 814 } 815 816 // Try to convert an AND into an RISBG-type instruction. 817 if (LogicOp And = interpretAndImmediate(Opcode)) { 818 uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB; 819 // AND IMMEDIATE leaves the other bits of the register unchanged. 820 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 821 unsigned Start, End; 822 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 823 unsigned NewOpcode; 824 if (And.RegSize == 64) { 825 NewOpcode = SystemZ::RISBG; 826 // Prefer RISBGN if available, since it does not clobber CC. 827 if (STI.hasMiscellaneousExtensions()) 828 NewOpcode = SystemZ::RISBGN; 829 } else { 830 NewOpcode = SystemZ::RISBMux; 831 Start &= 31; 832 End &= 31; 833 } 834 MachineOperand &Dest = MI->getOperand(0); 835 MachineOperand &Src = MI->getOperand(1); 836 MachineInstrBuilder MIB = 837 BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode)) 838 .addOperand(Dest).addReg(0) 839 .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()) 840 .addImm(Start).addImm(End + 128).addImm(0); 841 return finishConvertToThreeAddress(MI, MIB, LV); 842 } 843 } 844 return nullptr; 845 } 846 847 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 848 MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops, 849 MachineBasicBlock::iterator InsertPt, int FrameIndex) const { 850 const MachineFrameInfo *MFI = MF.getFrameInfo(); 851 unsigned Size = MFI->getObjectSize(FrameIndex); 852 unsigned Opcode = MI->getOpcode(); 853 854 // XXX This is an introduction of a CC def and is illegal! Reactivate 855 // with a check of liveness of CC reg. 856 #if 0 857 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 858 if ((Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && 859 isInt<8>(MI->getOperand(2).getImm()) && 860 !MI->getOperand(3).getReg()) { 861 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST 862 MachineInstr *BuiltMI = 863 BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 864 get(SystemZ::AGSI)) 865 .addFrameIndex(FrameIndex) 866 .addImm(0) 867 .addImm(MI->getOperand(2).getImm()); 868 BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true); 869 return BuiltMI; 870 } 871 return nullptr; 872 } 873 #endif 874 875 // All other cases require a single operand. 876 if (Ops.size() != 1) 877 return nullptr; 878 879 unsigned OpNum = Ops[0]; 880 assert(Size == MF.getRegInfo() 881 .getRegClass(MI->getOperand(OpNum).getReg())->getSize() && 882 "Invalid size combination"); 883 884 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && 885 OpNum == 0 && 886 isInt<8>(MI->getOperand(2).getImm())) { 887 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST 888 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); 889 MachineInstr *BuiltMI = 890 BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 891 get(Opcode)) 892 .addFrameIndex(FrameIndex) 893 .addImm(0) 894 .addImm(MI->getOperand(2).getImm()); 895 transferDeadCC(MI, BuiltMI); 896 return BuiltMI; 897 } 898 899 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 900 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 901 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 902 // If we're spilling the destination of an LDGR or LGDR, store the 903 // source register instead. 904 if (OpNum == 0) { 905 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 906 return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 907 get(StoreOpcode)) 908 .addOperand(MI->getOperand(1)) 909 .addFrameIndex(FrameIndex) 910 .addImm(0) 911 .addReg(0); 912 } 913 // If we're spilling the source of an LDGR or LGDR, load the 914 // destination register instead. 915 if (OpNum == 1) { 916 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 917 unsigned Dest = MI->getOperand(0).getReg(); 918 return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 919 get(LoadOpcode), Dest) 920 .addFrameIndex(FrameIndex) 921 .addImm(0) 922 .addReg(0); 923 } 924 } 925 926 // Look for cases where the source of a simple store or the destination 927 // of a simple load is being spilled. Try to use MVC instead. 928 // 929 // Although MVC is in practice a fast choice in these cases, it is still 930 // logically a bytewise copy. This means that we cannot use it if the 931 // load or store is volatile. We also wouldn't be able to use MVC if 932 // the two memories partially overlap, but that case cannot occur here, 933 // because we know that one of the memories is a full frame index. 934 // 935 // For performance reasons, we also want to avoid using MVC if the addresses 936 // might be equal. We don't worry about that case here, because spill slot 937 // coloring happens later, and because we have special code to remove 938 // MVCs that turn out to be redundant. 939 if (OpNum == 0 && MI->hasOneMemOperand()) { 940 MachineMemOperand *MMO = *MI->memoperands_begin(); 941 if (MMO->getSize() == Size && !MMO->isVolatile()) { 942 // Handle conversion of loads. 943 if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) { 944 return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 945 get(SystemZ::MVC)) 946 .addFrameIndex(FrameIndex) 947 .addImm(0) 948 .addImm(Size) 949 .addOperand(MI->getOperand(1)) 950 .addImm(MI->getOperand(2).getImm()) 951 .addMemOperand(MMO); 952 } 953 // Handle conversion of stores. 954 if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) { 955 return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 956 get(SystemZ::MVC)) 957 .addOperand(MI->getOperand(1)) 958 .addImm(MI->getOperand(2).getImm()) 959 .addImm(Size) 960 .addFrameIndex(FrameIndex) 961 .addImm(0) 962 .addMemOperand(MMO); 963 } 964 } 965 } 966 967 // If the spilled operand is the final one, try to change <INSN>R 968 // into <INSN>. 969 int MemOpcode = SystemZ::getMemOpcode(Opcode); 970 if (MemOpcode >= 0) { 971 unsigned NumOps = MI->getNumExplicitOperands(); 972 if (OpNum == NumOps - 1) { 973 const MCInstrDesc &MemDesc = get(MemOpcode); 974 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 975 assert(AccessBytes != 0 && "Size of access should be known"); 976 assert(AccessBytes <= Size && "Access outside the frame index"); 977 uint64_t Offset = Size - AccessBytes; 978 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 979 MI->getDebugLoc(), get(MemOpcode)); 980 for (unsigned I = 0; I < OpNum; ++I) 981 MIB.addOperand(MI->getOperand(I)); 982 MIB.addFrameIndex(FrameIndex).addImm(Offset); 983 if (MemDesc.TSFlags & SystemZII::HasIndex) 984 MIB.addReg(0); 985 transferDeadCC(MI, MIB); 986 return MIB; 987 } 988 } 989 990 return nullptr; 991 } 992 993 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 994 MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops, 995 MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const { 996 return nullptr; 997 } 998 999 bool 1000 SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { 1001 switch (MI->getOpcode()) { 1002 case SystemZ::L128: 1003 splitMove(MI, SystemZ::LG); 1004 return true; 1005 1006 case SystemZ::ST128: 1007 splitMove(MI, SystemZ::STG); 1008 return true; 1009 1010 case SystemZ::LX: 1011 splitMove(MI, SystemZ::LD); 1012 return true; 1013 1014 case SystemZ::STX: 1015 splitMove(MI, SystemZ::STD); 1016 return true; 1017 1018 case SystemZ::LBMux: 1019 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); 1020 return true; 1021 1022 case SystemZ::LHMux: 1023 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); 1024 return true; 1025 1026 case SystemZ::LLCRMux: 1027 expandZExtPseudo(MI, SystemZ::LLCR, 8); 1028 return true; 1029 1030 case SystemZ::LLHRMux: 1031 expandZExtPseudo(MI, SystemZ::LLHR, 16); 1032 return true; 1033 1034 case SystemZ::LLCMux: 1035 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); 1036 return true; 1037 1038 case SystemZ::LLHMux: 1039 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); 1040 return true; 1041 1042 case SystemZ::LMux: 1043 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); 1044 return true; 1045 1046 case SystemZ::STCMux: 1047 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); 1048 return true; 1049 1050 case SystemZ::STHMux: 1051 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); 1052 return true; 1053 1054 case SystemZ::STMux: 1055 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); 1056 return true; 1057 1058 case SystemZ::LHIMux: 1059 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); 1060 return true; 1061 1062 case SystemZ::IIFMux: 1063 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); 1064 return true; 1065 1066 case SystemZ::IILMux: 1067 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); 1068 return true; 1069 1070 case SystemZ::IIHMux: 1071 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); 1072 return true; 1073 1074 case SystemZ::NIFMux: 1075 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); 1076 return true; 1077 1078 case SystemZ::NILMux: 1079 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); 1080 return true; 1081 1082 case SystemZ::NIHMux: 1083 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); 1084 return true; 1085 1086 case SystemZ::OIFMux: 1087 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); 1088 return true; 1089 1090 case SystemZ::OILMux: 1091 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); 1092 return true; 1093 1094 case SystemZ::OIHMux: 1095 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); 1096 return true; 1097 1098 case SystemZ::XIFMux: 1099 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); 1100 return true; 1101 1102 case SystemZ::TMLMux: 1103 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); 1104 return true; 1105 1106 case SystemZ::TMHMux: 1107 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); 1108 return true; 1109 1110 case SystemZ::AHIMux: 1111 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); 1112 return true; 1113 1114 case SystemZ::AHIMuxK: 1115 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); 1116 return true; 1117 1118 case SystemZ::AFIMux: 1119 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); 1120 return true; 1121 1122 case SystemZ::CFIMux: 1123 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); 1124 return true; 1125 1126 case SystemZ::CLFIMux: 1127 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); 1128 return true; 1129 1130 case SystemZ::CMux: 1131 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); 1132 return true; 1133 1134 case SystemZ::CLMux: 1135 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); 1136 return true; 1137 1138 case SystemZ::RISBMux: { 1139 bool DestIsHigh = isHighReg(MI->getOperand(0).getReg()); 1140 bool SrcIsHigh = isHighReg(MI->getOperand(2).getReg()); 1141 if (SrcIsHigh == DestIsHigh) 1142 MI->setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); 1143 else { 1144 MI->setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); 1145 MI->getOperand(5).setImm(MI->getOperand(5).getImm() ^ 32); 1146 } 1147 return true; 1148 } 1149 1150 case SystemZ::ADJDYNALLOC: 1151 splitAdjDynAlloc(MI); 1152 return true; 1153 1154 case TargetOpcode::LOAD_STACK_GUARD: 1155 expandLoadStackGuard(MI); 1156 return true; 1157 1158 default: 1159 return false; 1160 } 1161 } 1162 1163 uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const { 1164 if (MI->getOpcode() == TargetOpcode::INLINEASM) { 1165 const MachineFunction *MF = MI->getParent()->getParent(); 1166 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1167 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1168 } 1169 return MI->getDesc().getSize(); 1170 } 1171 1172 SystemZII::Branch 1173 SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const { 1174 switch (MI->getOpcode()) { 1175 case SystemZ::BR: 1176 case SystemZ::J: 1177 case SystemZ::JG: 1178 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 1179 SystemZ::CCMASK_ANY, &MI->getOperand(0)); 1180 1181 case SystemZ::BRC: 1182 case SystemZ::BRCL: 1183 return SystemZII::Branch(SystemZII::BranchNormal, 1184 MI->getOperand(0).getImm(), 1185 MI->getOperand(1).getImm(), &MI->getOperand(2)); 1186 1187 case SystemZ::BRCT: 1188 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 1189 SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); 1190 1191 case SystemZ::BRCTG: 1192 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 1193 SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); 1194 1195 case SystemZ::CIJ: 1196 case SystemZ::CRJ: 1197 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 1198 MI->getOperand(2).getImm(), &MI->getOperand(3)); 1199 1200 case SystemZ::CLIJ: 1201 case SystemZ::CLRJ: 1202 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, 1203 MI->getOperand(2).getImm(), &MI->getOperand(3)); 1204 1205 case SystemZ::CGIJ: 1206 case SystemZ::CGRJ: 1207 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 1208 MI->getOperand(2).getImm(), &MI->getOperand(3)); 1209 1210 case SystemZ::CLGIJ: 1211 case SystemZ::CLGRJ: 1212 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, 1213 MI->getOperand(2).getImm(), &MI->getOperand(3)); 1214 1215 default: 1216 llvm_unreachable("Unrecognized branch opcode"); 1217 } 1218 } 1219 1220 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 1221 unsigned &LoadOpcode, 1222 unsigned &StoreOpcode) const { 1223 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 1224 LoadOpcode = SystemZ::L; 1225 StoreOpcode = SystemZ::ST; 1226 } else if (RC == &SystemZ::GRH32BitRegClass) { 1227 LoadOpcode = SystemZ::LFH; 1228 StoreOpcode = SystemZ::STFH; 1229 } else if (RC == &SystemZ::GRX32BitRegClass) { 1230 LoadOpcode = SystemZ::LMux; 1231 StoreOpcode = SystemZ::STMux; 1232 } else if (RC == &SystemZ::GR64BitRegClass || 1233 RC == &SystemZ::ADDR64BitRegClass) { 1234 LoadOpcode = SystemZ::LG; 1235 StoreOpcode = SystemZ::STG; 1236 } else if (RC == &SystemZ::GR128BitRegClass || 1237 RC == &SystemZ::ADDR128BitRegClass) { 1238 LoadOpcode = SystemZ::L128; 1239 StoreOpcode = SystemZ::ST128; 1240 } else if (RC == &SystemZ::FP32BitRegClass) { 1241 LoadOpcode = SystemZ::LE; 1242 StoreOpcode = SystemZ::STE; 1243 } else if (RC == &SystemZ::FP64BitRegClass) { 1244 LoadOpcode = SystemZ::LD; 1245 StoreOpcode = SystemZ::STD; 1246 } else if (RC == &SystemZ::FP128BitRegClass) { 1247 LoadOpcode = SystemZ::LX; 1248 StoreOpcode = SystemZ::STX; 1249 } else if (RC == &SystemZ::VR32BitRegClass) { 1250 LoadOpcode = SystemZ::VL32; 1251 StoreOpcode = SystemZ::VST32; 1252 } else if (RC == &SystemZ::VR64BitRegClass) { 1253 LoadOpcode = SystemZ::VL64; 1254 StoreOpcode = SystemZ::VST64; 1255 } else if (RC == &SystemZ::VF128BitRegClass || 1256 RC == &SystemZ::VR128BitRegClass) { 1257 LoadOpcode = SystemZ::VL; 1258 StoreOpcode = SystemZ::VST; 1259 } else 1260 llvm_unreachable("Unsupported regclass to load or store"); 1261 } 1262 1263 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 1264 int64_t Offset) const { 1265 const MCInstrDesc &MCID = get(Opcode); 1266 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 1267 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 1268 // Get the instruction to use for unsigned 12-bit displacements. 1269 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 1270 if (Disp12Opcode >= 0) 1271 return Disp12Opcode; 1272 1273 // All address-related instructions can use unsigned 12-bit 1274 // displacements. 1275 return Opcode; 1276 } 1277 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 1278 // Get the instruction to use for signed 20-bit displacements. 1279 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 1280 if (Disp20Opcode >= 0) 1281 return Disp20Opcode; 1282 1283 // Check whether Opcode allows signed 20-bit displacements. 1284 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1285 return Opcode; 1286 } 1287 return 0; 1288 } 1289 1290 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 1291 switch (Opcode) { 1292 case SystemZ::L: return SystemZ::LT; 1293 case SystemZ::LY: return SystemZ::LT; 1294 case SystemZ::LG: return SystemZ::LTG; 1295 case SystemZ::LGF: return SystemZ::LTGF; 1296 case SystemZ::LR: return SystemZ::LTR; 1297 case SystemZ::LGFR: return SystemZ::LTGFR; 1298 case SystemZ::LGR: return SystemZ::LTGR; 1299 case SystemZ::LER: return SystemZ::LTEBR; 1300 case SystemZ::LDR: return SystemZ::LTDBR; 1301 case SystemZ::LXR: return SystemZ::LTXBR; 1302 case SystemZ::LCDFR: return SystemZ::LCDBR; 1303 case SystemZ::LPDFR: return SystemZ::LPDBR; 1304 case SystemZ::LNDFR: return SystemZ::LNDBR; 1305 case SystemZ::LCDFR_32: return SystemZ::LCEBR; 1306 case SystemZ::LPDFR_32: return SystemZ::LPEBR; 1307 case SystemZ::LNDFR_32: return SystemZ::LNEBR; 1308 // On zEC12 we prefer to use RISBGN. But if there is a chance to 1309 // actually use the condition code, we may turn it back into RISGB. 1310 // Note that RISBG is not really a "load-and-test" instruction, 1311 // but sets the same condition code values, so is OK to use here. 1312 case SystemZ::RISBGN: return SystemZ::RISBG; 1313 default: return 0; 1314 } 1315 } 1316 1317 // Return true if Mask matches the regexp 0*1+0*, given that zero masks 1318 // have already been filtered out. Store the first set bit in LSB and 1319 // the number of set bits in Length if so. 1320 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { 1321 unsigned First = findFirstSet(Mask); 1322 uint64_t Top = (Mask >> First) + 1; 1323 if ((Top & -Top) == Top) { 1324 LSB = First; 1325 Length = findFirstSet(Top); 1326 return true; 1327 } 1328 return false; 1329 } 1330 1331 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 1332 unsigned &Start, unsigned &End) const { 1333 // Reject trivial all-zero masks. 1334 Mask &= allOnes(BitSize); 1335 if (Mask == 0) 1336 return false; 1337 1338 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 1339 // the msb and End specifies the index of the lsb. 1340 unsigned LSB, Length; 1341 if (isStringOfOnes(Mask, LSB, Length)) { 1342 Start = 63 - (LSB + Length - 1); 1343 End = 63 - LSB; 1344 return true; 1345 } 1346 1347 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 1348 // of the low 1s and End specifies the lsb of the high 1s. 1349 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { 1350 assert(LSB > 0 && "Bottom bit must be set"); 1351 assert(LSB + Length < BitSize && "Top bit must be set"); 1352 Start = 63 - (LSB - 1); 1353 End = 63 - (LSB + Length); 1354 return true; 1355 } 1356 1357 return false; 1358 } 1359 1360 unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode, 1361 SystemZII::CompareAndBranchType Type, 1362 const MachineInstr *MI) const { 1363 switch (Opcode) { 1364 case SystemZ::CHI: 1365 case SystemZ::CGHI: 1366 if (!(MI && isInt<8>(MI->getOperand(1).getImm()))) 1367 return 0; 1368 break; 1369 case SystemZ::CLFI: 1370 case SystemZ::CLGFI: 1371 if (!(MI && isUInt<8>(MI->getOperand(1).getImm()))) 1372 return 0; 1373 } 1374 switch (Type) { 1375 case SystemZII::CompareAndBranch: 1376 switch (Opcode) { 1377 case SystemZ::CR: 1378 return SystemZ::CRJ; 1379 case SystemZ::CGR: 1380 return SystemZ::CGRJ; 1381 case SystemZ::CHI: 1382 return SystemZ::CIJ; 1383 case SystemZ::CGHI: 1384 return SystemZ::CGIJ; 1385 case SystemZ::CLR: 1386 return SystemZ::CLRJ; 1387 case SystemZ::CLGR: 1388 return SystemZ::CLGRJ; 1389 case SystemZ::CLFI: 1390 return SystemZ::CLIJ; 1391 case SystemZ::CLGFI: 1392 return SystemZ::CLGIJ; 1393 default: 1394 return 0; 1395 } 1396 case SystemZII::CompareAndReturn: 1397 switch (Opcode) { 1398 case SystemZ::CR: 1399 return SystemZ::CRBReturn; 1400 case SystemZ::CGR: 1401 return SystemZ::CGRBReturn; 1402 case SystemZ::CHI: 1403 return SystemZ::CIBReturn; 1404 case SystemZ::CGHI: 1405 return SystemZ::CGIBReturn; 1406 case SystemZ::CLR: 1407 return SystemZ::CLRBReturn; 1408 case SystemZ::CLGR: 1409 return SystemZ::CLGRBReturn; 1410 case SystemZ::CLFI: 1411 return SystemZ::CLIBReturn; 1412 case SystemZ::CLGFI: 1413 return SystemZ::CLGIBReturn; 1414 default: 1415 return 0; 1416 } 1417 case SystemZII::CompareAndSibcall: 1418 switch (Opcode) { 1419 case SystemZ::CR: 1420 return SystemZ::CRBCall; 1421 case SystemZ::CGR: 1422 return SystemZ::CGRBCall; 1423 case SystemZ::CHI: 1424 return SystemZ::CIBCall; 1425 case SystemZ::CGHI: 1426 return SystemZ::CGIBCall; 1427 case SystemZ::CLR: 1428 return SystemZ::CLRBCall; 1429 case SystemZ::CLGR: 1430 return SystemZ::CLGRBCall; 1431 case SystemZ::CLFI: 1432 return SystemZ::CLIBCall; 1433 case SystemZ::CLGFI: 1434 return SystemZ::CLGIBCall; 1435 default: 1436 return 0; 1437 } 1438 } 1439 return 0; 1440 } 1441 1442 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 1443 MachineBasicBlock::iterator MBBI, 1444 unsigned Reg, uint64_t Value) const { 1445 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1446 unsigned Opcode; 1447 if (isInt<16>(Value)) 1448 Opcode = SystemZ::LGHI; 1449 else if (SystemZ::isImmLL(Value)) 1450 Opcode = SystemZ::LLILL; 1451 else if (SystemZ::isImmLH(Value)) { 1452 Opcode = SystemZ::LLILH; 1453 Value >>= 16; 1454 } else { 1455 assert(isInt<32>(Value) && "Huge values not handled yet"); 1456 Opcode = SystemZ::LGFI; 1457 } 1458 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 1459 } 1460