1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the SystemZ implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZInstrInfo.h" 14 #include "MCTargetDesc/SystemZMCTargetDesc.h" 15 #include "SystemZ.h" 16 #include "SystemZInstrBuilder.h" 17 #include "SystemZSubtarget.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/LiveInterval.h" 20 #include "llvm/CodeGen/LiveIntervals.h" 21 #include "llvm/CodeGen/LiveVariables.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/SlotIndexes.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/MC/MCInstrDesc.h" 33 #include "llvm/MC/MCRegisterInfo.h" 34 #include "llvm/Support/BranchProbability.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include <cassert> 39 #include <cstdint> 40 #include <iterator> 41 42 using namespace llvm; 43 44 #define GET_INSTRINFO_CTOR_DTOR 45 #define GET_INSTRMAP_INFO 46 #include "SystemZGenInstrInfo.inc" 47 48 #define DEBUG_TYPE "systemz-II" 49 50 // Return a mask with Count low bits set. 51 static uint64_t allOnes(unsigned int Count) { 52 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 53 } 54 55 // Pin the vtable to this file. 56 void SystemZInstrInfo::anchor() {} 57 58 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti) 59 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 60 RI(), STI(sti) { 61 } 62 63 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 64 // each having the opcode given by NewOpcode. 65 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 66 unsigned NewOpcode) const { 67 MachineBasicBlock *MBB = MI->getParent(); 68 MachineFunction &MF = *MBB->getParent(); 69 70 // Get two load or store instructions. Use the original instruction for one 71 // of them (arbitrarily the second here) and create a clone for the other. 72 MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI); 73 MBB->insert(MI, EarlierMI); 74 75 // Set up the two 64-bit registers and remember super reg and its flags. 76 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 77 MachineOperand &LowRegOp = MI->getOperand(0); 78 Register Reg128 = LowRegOp.getReg(); 79 unsigned Reg128Killed = getKillRegState(LowRegOp.isKill()); 80 unsigned Reg128Undef = getUndefRegState(LowRegOp.isUndef()); 81 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); 82 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); 83 84 if (MI->mayStore()) { 85 // Add implicit uses of the super register in case one of the subregs is 86 // undefined. We could track liveness and skip storing an undefined 87 // subreg, but this is hopefully rare (discovered with llvm-stress). 88 // If Reg128 was killed, set kill flag on MI. 89 unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit); 90 MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl); 91 MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed)); 92 } 93 94 // The address in the first (high) instruction is already correct. 95 // Adjust the offset in the second (low) instruction. 96 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 97 MachineOperand &LowOffsetOp = MI->getOperand(2); 98 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 99 100 // Clear the kill flags on the registers in the first instruction. 101 if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse()) 102 EarlierMI->getOperand(0).setIsKill(false); 103 EarlierMI->getOperand(1).setIsKill(false); 104 EarlierMI->getOperand(3).setIsKill(false); 105 106 // Set the opcodes. 107 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 108 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 109 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 110 111 EarlierMI->setDesc(get(HighOpcode)); 112 MI->setDesc(get(LowOpcode)); 113 } 114 115 // Split ADJDYNALLOC instruction MI. 116 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 117 MachineBasicBlock *MBB = MI->getParent(); 118 MachineFunction &MF = *MBB->getParent(); 119 MachineFrameInfo &MFFrame = MF.getFrameInfo(); 120 MachineOperand &OffsetMO = MI->getOperand(2); 121 122 uint64_t Offset = (MFFrame.getMaxCallFrameSize() + 123 SystemZMC::CallFrameSize + 124 OffsetMO.getImm()); 125 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 126 assert(NewOpcode && "No support for huge argument lists yet"); 127 MI->setDesc(get(NewOpcode)); 128 OffsetMO.setImm(Offset); 129 } 130 131 // MI is an RI-style pseudo instruction. Replace it with LowOpcode 132 // if the first operand is a low GR32 and HighOpcode if the first operand 133 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand 134 // and HighOpcode takes an unsigned 32-bit operand. In those cases, 135 // MI has the same kind of operand as LowOpcode, so needs to be converted 136 // if HighOpcode is used. 137 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode, 138 unsigned HighOpcode, 139 bool ConvertHigh) const { 140 Register Reg = MI.getOperand(0).getReg(); 141 bool IsHigh = SystemZ::isHighReg(Reg); 142 MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode)); 143 if (IsHigh && ConvertHigh) 144 MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm())); 145 } 146 147 // MI is a three-operand RIE-style pseudo instruction. Replace it with 148 // LowOpcodeK if the registers are both low GR32s, otherwise use a move 149 // followed by HighOpcode or LowOpcode, depending on whether the target 150 // is a high or low GR32. 151 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode, 152 unsigned LowOpcodeK, 153 unsigned HighOpcode) const { 154 Register DestReg = MI.getOperand(0).getReg(); 155 Register SrcReg = MI.getOperand(1).getReg(); 156 bool DestIsHigh = SystemZ::isHighReg(DestReg); 157 bool SrcIsHigh = SystemZ::isHighReg(SrcReg); 158 if (!DestIsHigh && !SrcIsHigh) 159 MI.setDesc(get(LowOpcodeK)); 160 else { 161 if (DestReg != SrcReg) { 162 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg, 163 SystemZ::LR, 32, MI.getOperand(1).isKill(), 164 MI.getOperand(1).isUndef()); 165 MI.getOperand(1).setReg(DestReg); 166 } 167 MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); 168 MI.tieOperands(0, 1); 169 } 170 } 171 172 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode 173 // if the first operand is a low GR32 and HighOpcode if the first operand 174 // is a high GR32. 175 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode, 176 unsigned HighOpcode) const { 177 Register Reg = MI.getOperand(0).getReg(); 178 unsigned Opcode = getOpcodeForOffset( 179 SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode, 180 MI.getOperand(2).getImm()); 181 MI.setDesc(get(Opcode)); 182 } 183 184 // MI is a load-on-condition pseudo instruction with a single register 185 // (source or destination) operand. Replace it with LowOpcode if the 186 // register is a low GR32 and HighOpcode if the register is a high GR32. 187 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode, 188 unsigned HighOpcode) const { 189 Register Reg = MI.getOperand(0).getReg(); 190 unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode; 191 MI.setDesc(get(Opcode)); 192 } 193 194 // MI is an RR-style pseudo instruction that zero-extends the low Size bits 195 // of one GRX32 into another. Replace it with LowOpcode if both operands 196 // are low registers, otherwise use RISB[LH]G. 197 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode, 198 unsigned Size) const { 199 MachineInstrBuilder MIB = 200 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), 201 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode, 202 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef()); 203 204 // Keep the remaining operands as-is. 205 for (unsigned I = 2; I < MI.getNumOperands(); ++I) 206 MIB.add(MI.getOperand(I)); 207 208 MI.eraseFromParent(); 209 } 210 211 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const { 212 MachineBasicBlock *MBB = MI->getParent(); 213 MachineFunction &MF = *MBB->getParent(); 214 const Register Reg64 = MI->getOperand(0).getReg(); 215 const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32); 216 217 // EAR can only load the low subregister so us a shift for %a0 to produce 218 // the GR containing %a0 and %a1. 219 220 // ear <reg>, %a0 221 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32) 222 .addReg(SystemZ::A0) 223 .addReg(Reg64, RegState::ImplicitDefine); 224 225 // sllg <reg>, <reg>, 32 226 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64) 227 .addReg(Reg64) 228 .addReg(0) 229 .addImm(32); 230 231 // ear <reg>, %a1 232 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32) 233 .addReg(SystemZ::A1); 234 235 // lg <reg>, 40(<reg>) 236 MI->setDesc(get(SystemZ::LG)); 237 MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0); 238 } 239 240 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR 241 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg 242 // are low registers, otherwise use RISB[LH]G. Size is the number of bits 243 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). 244 // KillSrc is true if this move is the last use of SrcReg. 245 MachineInstrBuilder 246 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, 247 MachineBasicBlock::iterator MBBI, 248 const DebugLoc &DL, unsigned DestReg, 249 unsigned SrcReg, unsigned LowLowOpcode, 250 unsigned Size, bool KillSrc, 251 bool UndefSrc) const { 252 unsigned Opcode; 253 bool DestIsHigh = SystemZ::isHighReg(DestReg); 254 bool SrcIsHigh = SystemZ::isHighReg(SrcReg); 255 if (DestIsHigh && SrcIsHigh) 256 Opcode = SystemZ::RISBHH; 257 else if (DestIsHigh && !SrcIsHigh) 258 Opcode = SystemZ::RISBHL; 259 else if (!DestIsHigh && SrcIsHigh) 260 Opcode = SystemZ::RISBLH; 261 else { 262 return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) 263 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)); 264 } 265 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); 266 return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 267 .addReg(DestReg, RegState::Undef) 268 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)) 269 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); 270 } 271 272 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI, 273 bool NewMI, 274 unsigned OpIdx1, 275 unsigned OpIdx2) const { 276 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { 277 if (NewMI) 278 return *MI.getParent()->getParent()->CloneMachineInstr(&MI); 279 return MI; 280 }; 281 282 switch (MI.getOpcode()) { 283 case SystemZ::SELRMux: 284 case SystemZ::SELFHR: 285 case SystemZ::SELR: 286 case SystemZ::SELGR: 287 case SystemZ::LOCRMux: 288 case SystemZ::LOCFHR: 289 case SystemZ::LOCR: 290 case SystemZ::LOCGR: { 291 auto &WorkingMI = cloneIfNew(MI); 292 // Invert condition. 293 unsigned CCValid = WorkingMI.getOperand(3).getImm(); 294 unsigned CCMask = WorkingMI.getOperand(4).getImm(); 295 WorkingMI.getOperand(4).setImm(CCMask ^ CCValid); 296 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 297 OpIdx1, OpIdx2); 298 } 299 default: 300 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 301 } 302 } 303 304 // If MI is a simple load or store for a frame object, return the register 305 // it loads or stores and set FrameIndex to the index of the frame object. 306 // Return 0 otherwise. 307 // 308 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 309 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex, 310 unsigned Flag) { 311 const MCInstrDesc &MCID = MI.getDesc(); 312 if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() && 313 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) { 314 FrameIndex = MI.getOperand(1).getIndex(); 315 return MI.getOperand(0).getReg(); 316 } 317 return 0; 318 } 319 320 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 321 int &FrameIndex) const { 322 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 323 } 324 325 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 326 int &FrameIndex) const { 327 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 328 } 329 330 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI, 331 int &DestFrameIndex, 332 int &SrcFrameIndex) const { 333 // Check for MVC 0(Length,FI1),0(FI2) 334 const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo(); 335 if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() || 336 MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() || 337 MI.getOperand(4).getImm() != 0) 338 return false; 339 340 // Check that Length covers the full slots. 341 int64_t Length = MI.getOperand(2).getImm(); 342 unsigned FI1 = MI.getOperand(0).getIndex(); 343 unsigned FI2 = MI.getOperand(3).getIndex(); 344 if (MFI.getObjectSize(FI1) != Length || 345 MFI.getObjectSize(FI2) != Length) 346 return false; 347 348 DestFrameIndex = FI1; 349 SrcFrameIndex = FI2; 350 return true; 351 } 352 353 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 354 MachineBasicBlock *&TBB, 355 MachineBasicBlock *&FBB, 356 SmallVectorImpl<MachineOperand> &Cond, 357 bool AllowModify) const { 358 // Most of the code and comments here are boilerplate. 359 360 // Start from the bottom of the block and work up, examining the 361 // terminator instructions. 362 MachineBasicBlock::iterator I = MBB.end(); 363 while (I != MBB.begin()) { 364 --I; 365 if (I->isDebugInstr()) 366 continue; 367 368 // Working from the bottom, when we see a non-terminator instruction, we're 369 // done. 370 if (!isUnpredicatedTerminator(*I)) 371 break; 372 373 // A terminator that isn't a branch can't easily be handled by this 374 // analysis. 375 if (!I->isBranch()) 376 return true; 377 378 // Can't handle indirect branches. 379 SystemZII::Branch Branch(getBranchInfo(*I)); 380 if (!Branch.hasMBBTarget()) 381 return true; 382 383 // Punt on compound branches. 384 if (Branch.Type != SystemZII::BranchNormal) 385 return true; 386 387 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 388 // Handle unconditional branches. 389 if (!AllowModify) { 390 TBB = Branch.getMBBTarget(); 391 continue; 392 } 393 394 // If the block has any instructions after a JMP, delete them. 395 while (std::next(I) != MBB.end()) 396 std::next(I)->eraseFromParent(); 397 398 Cond.clear(); 399 FBB = nullptr; 400 401 // Delete the JMP if it's equivalent to a fall-through. 402 if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) { 403 TBB = nullptr; 404 I->eraseFromParent(); 405 I = MBB.end(); 406 continue; 407 } 408 409 // TBB is used to indicate the unconditinal destination. 410 TBB = Branch.getMBBTarget(); 411 continue; 412 } 413 414 // Working from the bottom, handle the first conditional branch. 415 if (Cond.empty()) { 416 // FIXME: add X86-style branch swap 417 FBB = TBB; 418 TBB = Branch.getMBBTarget(); 419 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 420 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 421 continue; 422 } 423 424 // Handle subsequent conditional branches. 425 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 426 427 // Only handle the case where all conditional branches branch to the same 428 // destination. 429 if (TBB != Branch.getMBBTarget()) 430 return true; 431 432 // If the conditions are the same, we can leave them alone. 433 unsigned OldCCValid = Cond[0].getImm(); 434 unsigned OldCCMask = Cond[1].getImm(); 435 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 436 continue; 437 438 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 439 return false; 440 } 441 442 return false; 443 } 444 445 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB, 446 int *BytesRemoved) const { 447 assert(!BytesRemoved && "code size not handled"); 448 449 // Most of the code and comments here are boilerplate. 450 MachineBasicBlock::iterator I = MBB.end(); 451 unsigned Count = 0; 452 453 while (I != MBB.begin()) { 454 --I; 455 if (I->isDebugInstr()) 456 continue; 457 if (!I->isBranch()) 458 break; 459 if (!getBranchInfo(*I).hasMBBTarget()) 460 break; 461 // Remove the branch. 462 I->eraseFromParent(); 463 I = MBB.end(); 464 ++Count; 465 } 466 467 return Count; 468 } 469 470 bool SystemZInstrInfo:: 471 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 472 assert(Cond.size() == 2 && "Invalid condition"); 473 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 474 return false; 475 } 476 477 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB, 478 MachineBasicBlock *TBB, 479 MachineBasicBlock *FBB, 480 ArrayRef<MachineOperand> Cond, 481 const DebugLoc &DL, 482 int *BytesAdded) const { 483 // In this function we output 32-bit branches, which should always 484 // have enough range. They can be shortened and relaxed by later code 485 // in the pipeline, if desired. 486 487 // Shouldn't be a fall through. 488 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 489 assert((Cond.size() == 2 || Cond.size() == 0) && 490 "SystemZ branch conditions have one component!"); 491 assert(!BytesAdded && "code size not handled"); 492 493 if (Cond.empty()) { 494 // Unconditional branch? 495 assert(!FBB && "Unconditional branch with multiple successors!"); 496 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 497 return 1; 498 } 499 500 // Conditional branch. 501 unsigned Count = 0; 502 unsigned CCValid = Cond[0].getImm(); 503 unsigned CCMask = Cond[1].getImm(); 504 BuildMI(&MBB, DL, get(SystemZ::BRC)) 505 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 506 ++Count; 507 508 if (FBB) { 509 // Two-way Conditional branch. Insert the second branch. 510 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 511 ++Count; 512 } 513 return Count; 514 } 515 516 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 517 unsigned &SrcReg2, int &Mask, 518 int &Value) const { 519 assert(MI.isCompare() && "Caller should have checked for a comparison"); 520 521 if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() && 522 MI.getOperand(1).isImm()) { 523 SrcReg = MI.getOperand(0).getReg(); 524 SrcReg2 = 0; 525 Value = MI.getOperand(1).getImm(); 526 Mask = ~0; 527 return true; 528 } 529 530 return false; 531 } 532 533 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 534 ArrayRef<MachineOperand> Pred, 535 unsigned DstReg, unsigned TrueReg, 536 unsigned FalseReg, int &CondCycles, 537 int &TrueCycles, 538 int &FalseCycles) const { 539 // Not all subtargets have LOCR instructions. 540 if (!STI.hasLoadStoreOnCond()) 541 return false; 542 if (Pred.size() != 2) 543 return false; 544 545 // Check register classes. 546 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 547 const TargetRegisterClass *RC = 548 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 549 if (!RC) 550 return false; 551 552 // We have LOCR instructions for 32 and 64 bit general purpose registers. 553 if ((STI.hasLoadStoreOnCond2() && 554 SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) || 555 SystemZ::GR32BitRegClass.hasSubClassEq(RC) || 556 SystemZ::GR64BitRegClass.hasSubClassEq(RC)) { 557 CondCycles = 2; 558 TrueCycles = 2; 559 FalseCycles = 2; 560 return true; 561 } 562 563 // Can't do anything else. 564 return false; 565 } 566 567 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB, 568 MachineBasicBlock::iterator I, 569 const DebugLoc &DL, unsigned DstReg, 570 ArrayRef<MachineOperand> Pred, 571 unsigned TrueReg, 572 unsigned FalseReg) const { 573 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 574 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 575 576 assert(Pred.size() == 2 && "Invalid condition"); 577 unsigned CCValid = Pred[0].getImm(); 578 unsigned CCMask = Pred[1].getImm(); 579 580 unsigned Opc; 581 if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) { 582 if (STI.hasMiscellaneousExtensions3()) 583 Opc = SystemZ::SELRMux; 584 else if (STI.hasLoadStoreOnCond2()) 585 Opc = SystemZ::LOCRMux; 586 else { 587 Opc = SystemZ::LOCR; 588 MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass); 589 Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 590 Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 591 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg); 592 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg); 593 TrueReg = TReg; 594 FalseReg = FReg; 595 } 596 } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) { 597 if (STI.hasMiscellaneousExtensions3()) 598 Opc = SystemZ::SELGR; 599 else 600 Opc = SystemZ::LOCGR; 601 } else 602 llvm_unreachable("Invalid register class"); 603 604 BuildMI(MBB, I, DL, get(Opc), DstReg) 605 .addReg(FalseReg).addReg(TrueReg) 606 .addImm(CCValid).addImm(CCMask); 607 } 608 609 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 610 unsigned Reg, 611 MachineRegisterInfo *MRI) const { 612 unsigned DefOpc = DefMI.getOpcode(); 613 if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI && 614 DefOpc != SystemZ::LGHI) 615 return false; 616 if (DefMI.getOperand(0).getReg() != Reg) 617 return false; 618 int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm(); 619 620 unsigned UseOpc = UseMI.getOpcode(); 621 unsigned NewUseOpc; 622 unsigned UseIdx; 623 int CommuteIdx = -1; 624 bool TieOps = false; 625 switch (UseOpc) { 626 case SystemZ::SELRMux: 627 TieOps = true; 628 LLVM_FALLTHROUGH; 629 case SystemZ::LOCRMux: 630 if (!STI.hasLoadStoreOnCond2()) 631 return false; 632 NewUseOpc = SystemZ::LOCHIMux; 633 if (UseMI.getOperand(2).getReg() == Reg) 634 UseIdx = 2; 635 else if (UseMI.getOperand(1).getReg() == Reg) 636 UseIdx = 2, CommuteIdx = 1; 637 else 638 return false; 639 break; 640 case SystemZ::SELGR: 641 TieOps = true; 642 LLVM_FALLTHROUGH; 643 case SystemZ::LOCGR: 644 if (!STI.hasLoadStoreOnCond2()) 645 return false; 646 NewUseOpc = SystemZ::LOCGHI; 647 if (UseMI.getOperand(2).getReg() == Reg) 648 UseIdx = 2; 649 else if (UseMI.getOperand(1).getReg() == Reg) 650 UseIdx = 2, CommuteIdx = 1; 651 else 652 return false; 653 break; 654 default: 655 return false; 656 } 657 658 if (CommuteIdx != -1) 659 if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx)) 660 return false; 661 662 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 663 UseMI.setDesc(get(NewUseOpc)); 664 if (TieOps) 665 UseMI.tieOperands(0, 1); 666 UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal); 667 if (DeleteDef) 668 DefMI.eraseFromParent(); 669 670 return true; 671 } 672 673 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const { 674 unsigned Opcode = MI.getOpcode(); 675 if (Opcode == SystemZ::Return || 676 Opcode == SystemZ::Trap || 677 Opcode == SystemZ::CallJG || 678 Opcode == SystemZ::CallBR) 679 return true; 680 return false; 681 } 682 683 bool SystemZInstrInfo:: 684 isProfitableToIfCvt(MachineBasicBlock &MBB, 685 unsigned NumCycles, unsigned ExtraPredCycles, 686 BranchProbability Probability) const { 687 // Avoid using conditional returns at the end of a loop (since then 688 // we'd need to emit an unconditional branch to the beginning anyway, 689 // making the loop body longer). This doesn't apply for low-probability 690 // loops (eg. compare-and-swap retry), so just decide based on branch 691 // probability instead of looping structure. 692 // However, since Compare and Trap instructions cost the same as a regular 693 // Compare instruction, we should allow the if conversion to convert this 694 // into a Conditional Compare regardless of the branch probability. 695 if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap && 696 MBB.succ_empty() && Probability < BranchProbability(1, 8)) 697 return false; 698 // For now only convert single instructions. 699 return NumCycles == 1; 700 } 701 702 bool SystemZInstrInfo:: 703 isProfitableToIfCvt(MachineBasicBlock &TMBB, 704 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 705 MachineBasicBlock &FMBB, 706 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 707 BranchProbability Probability) const { 708 // For now avoid converting mutually-exclusive cases. 709 return false; 710 } 711 712 bool SystemZInstrInfo:: 713 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 714 BranchProbability Probability) const { 715 // For now only duplicate single instructions. 716 return NumCycles == 1; 717 } 718 719 bool SystemZInstrInfo::PredicateInstruction( 720 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 721 assert(Pred.size() == 2 && "Invalid condition"); 722 unsigned CCValid = Pred[0].getImm(); 723 unsigned CCMask = Pred[1].getImm(); 724 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 725 unsigned Opcode = MI.getOpcode(); 726 if (Opcode == SystemZ::Trap) { 727 MI.setDesc(get(SystemZ::CondTrap)); 728 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 729 .addImm(CCValid).addImm(CCMask) 730 .addReg(SystemZ::CC, RegState::Implicit); 731 return true; 732 } 733 if (Opcode == SystemZ::Return) { 734 MI.setDesc(get(SystemZ::CondReturn)); 735 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 736 .addImm(CCValid).addImm(CCMask) 737 .addReg(SystemZ::CC, RegState::Implicit); 738 return true; 739 } 740 if (Opcode == SystemZ::CallJG) { 741 MachineOperand FirstOp = MI.getOperand(0); 742 const uint32_t *RegMask = MI.getOperand(1).getRegMask(); 743 MI.RemoveOperand(1); 744 MI.RemoveOperand(0); 745 MI.setDesc(get(SystemZ::CallBRCL)); 746 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 747 .addImm(CCValid) 748 .addImm(CCMask) 749 .add(FirstOp) 750 .addRegMask(RegMask) 751 .addReg(SystemZ::CC, RegState::Implicit); 752 return true; 753 } 754 if (Opcode == SystemZ::CallBR) { 755 const uint32_t *RegMask = MI.getOperand(0).getRegMask(); 756 MI.RemoveOperand(0); 757 MI.setDesc(get(SystemZ::CallBCR)); 758 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 759 .addImm(CCValid).addImm(CCMask) 760 .addRegMask(RegMask) 761 .addReg(SystemZ::CC, RegState::Implicit); 762 return true; 763 } 764 return false; 765 } 766 767 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 768 MachineBasicBlock::iterator MBBI, 769 const DebugLoc &DL, MCRegister DestReg, 770 MCRegister SrcReg, bool KillSrc) const { 771 // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the 772 // super register in case one of the subregs is undefined. 773 // This handles ADDR128 too. 774 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 775 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), 776 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); 777 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI)) 778 .addReg(SrcReg, RegState::Implicit); 779 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), 780 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); 781 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI)) 782 .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit)); 783 return; 784 } 785 786 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { 787 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc, 788 false); 789 return; 790 } 791 792 // Move 128-bit floating-point values between VR128 and FP128. 793 if (SystemZ::VR128BitRegClass.contains(DestReg) && 794 SystemZ::FP128BitRegClass.contains(SrcReg)) { 795 MCRegister SrcRegHi = 796 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64), 797 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 798 MCRegister SrcRegLo = 799 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64), 800 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 801 802 BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg) 803 .addReg(SrcRegHi, getKillRegState(KillSrc)) 804 .addReg(SrcRegLo, getKillRegState(KillSrc)); 805 return; 806 } 807 if (SystemZ::FP128BitRegClass.contains(DestReg) && 808 SystemZ::VR128BitRegClass.contains(SrcReg)) { 809 MCRegister DestRegHi = 810 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64), 811 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 812 MCRegister DestRegLo = 813 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64), 814 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 815 816 if (DestRegHi != SrcReg) 817 copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false); 818 BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo) 819 .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1); 820 return; 821 } 822 823 // Move CC value from a GR32. 824 if (DestReg == SystemZ::CC) { 825 unsigned Opcode = 826 SystemZ::GR32BitRegClass.contains(SrcReg) ? SystemZ::TMLH : SystemZ::TMHH; 827 BuildMI(MBB, MBBI, DL, get(Opcode)) 828 .addReg(SrcReg, getKillRegState(KillSrc)) 829 .addImm(3 << (SystemZ::IPM_CC - 16)); 830 return; 831 } 832 833 // Everything else needs only one instruction. 834 unsigned Opcode; 835 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 836 Opcode = SystemZ::LGR; 837 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 838 // For z13 we prefer LDR over LER to avoid partial register dependencies. 839 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER; 840 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 841 Opcode = SystemZ::LDR; 842 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 843 Opcode = SystemZ::LXR; 844 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg)) 845 Opcode = SystemZ::VLR32; 846 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg)) 847 Opcode = SystemZ::VLR64; 848 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg)) 849 Opcode = SystemZ::VLR; 850 else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg)) 851 Opcode = SystemZ::CPYA; 852 else 853 llvm_unreachable("Impossible reg-to-reg copy"); 854 855 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 856 .addReg(SrcReg, getKillRegState(KillSrc)); 857 } 858 859 void SystemZInstrInfo::storeRegToStackSlot( 860 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register SrcReg, 861 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 862 const TargetRegisterInfo *TRI) const { 863 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 864 865 // Callers may expect a single instruction, so keep 128-bit moves 866 // together for now and lower them after register allocation. 867 unsigned LoadOpcode, StoreOpcode; 868 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 869 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 870 .addReg(SrcReg, getKillRegState(isKill)), 871 FrameIdx); 872 } 873 874 void SystemZInstrInfo::loadRegFromStackSlot( 875 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, Register DestReg, 876 int FrameIdx, const TargetRegisterClass *RC, 877 const TargetRegisterInfo *TRI) const { 878 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 879 880 // Callers may expect a single instruction, so keep 128-bit moves 881 // together for now and lower them after register allocation. 882 unsigned LoadOpcode, StoreOpcode; 883 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 884 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 885 FrameIdx); 886 } 887 888 // Return true if MI is a simple load or store with a 12-bit displacement 889 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 890 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 891 const MCInstrDesc &MCID = MI->getDesc(); 892 return ((MCID.TSFlags & Flag) && 893 isUInt<12>(MI->getOperand(2).getImm()) && 894 MI->getOperand(3).getReg() == 0); 895 } 896 897 namespace { 898 899 struct LogicOp { 900 LogicOp() = default; 901 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 902 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 903 904 explicit operator bool() const { return RegSize; } 905 906 unsigned RegSize = 0; 907 unsigned ImmLSB = 0; 908 unsigned ImmSize = 0; 909 }; 910 911 } // end anonymous namespace 912 913 static LogicOp interpretAndImmediate(unsigned Opcode) { 914 switch (Opcode) { 915 case SystemZ::NILMux: return LogicOp(32, 0, 16); 916 case SystemZ::NIHMux: return LogicOp(32, 16, 16); 917 case SystemZ::NILL64: return LogicOp(64, 0, 16); 918 case SystemZ::NILH64: return LogicOp(64, 16, 16); 919 case SystemZ::NIHL64: return LogicOp(64, 32, 16); 920 case SystemZ::NIHH64: return LogicOp(64, 48, 16); 921 case SystemZ::NIFMux: return LogicOp(32, 0, 32); 922 case SystemZ::NILF64: return LogicOp(64, 0, 32); 923 case SystemZ::NIHF64: return LogicOp(64, 32, 32); 924 default: return LogicOp(); 925 } 926 } 927 928 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) { 929 if (OldMI->registerDefIsDead(SystemZ::CC)) { 930 MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC); 931 if (CCDef != nullptr) 932 CCDef->setIsDead(true); 933 } 934 } 935 936 static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI, 937 MachineInstr::MIFlag Flag) { 938 if (OldMI->getFlag(Flag)) 939 NewMI->setFlag(Flag); 940 } 941 942 MachineInstr *SystemZInstrInfo::convertToThreeAddress( 943 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 944 MachineBasicBlock *MBB = MI.getParent(); 945 946 // Try to convert an AND into an RISBG-type instruction. 947 // TODO: It might be beneficial to select RISBG and shorten to AND instead. 948 if (LogicOp And = interpretAndImmediate(MI.getOpcode())) { 949 uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB; 950 // AND IMMEDIATE leaves the other bits of the register unchanged. 951 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 952 unsigned Start, End; 953 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 954 unsigned NewOpcode; 955 if (And.RegSize == 64) { 956 NewOpcode = SystemZ::RISBG; 957 // Prefer RISBGN if available, since it does not clobber CC. 958 if (STI.hasMiscellaneousExtensions()) 959 NewOpcode = SystemZ::RISBGN; 960 } else { 961 NewOpcode = SystemZ::RISBMux; 962 Start &= 31; 963 End &= 31; 964 } 965 MachineOperand &Dest = MI.getOperand(0); 966 MachineOperand &Src = MI.getOperand(1); 967 MachineInstrBuilder MIB = 968 BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode)) 969 .add(Dest) 970 .addReg(0) 971 .addReg(Src.getReg(), getKillRegState(Src.isKill()), 972 Src.getSubReg()) 973 .addImm(Start) 974 .addImm(End + 128) 975 .addImm(0); 976 if (LV) { 977 unsigned NumOps = MI.getNumOperands(); 978 for (unsigned I = 1; I < NumOps; ++I) { 979 MachineOperand &Op = MI.getOperand(I); 980 if (Op.isReg() && Op.isKill()) 981 LV->replaceKillInstruction(Op.getReg(), MI, *MIB); 982 } 983 } 984 transferDeadCC(&MI, MIB); 985 return MIB; 986 } 987 } 988 return nullptr; 989 } 990 991 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 992 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 993 MachineBasicBlock::iterator InsertPt, int FrameIndex, 994 LiveIntervals *LIS, VirtRegMap *VRM) const { 995 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 996 const MachineFrameInfo &MFI = MF.getFrameInfo(); 997 unsigned Size = MFI.getObjectSize(FrameIndex); 998 unsigned Opcode = MI.getOpcode(); 999 1000 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 1001 if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && 1002 isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) { 1003 1004 // Check CC liveness, since new instruction introduces a dead 1005 // def of CC. 1006 MCRegUnitIterator CCUnit(SystemZ::CC, TRI); 1007 LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit); 1008 ++CCUnit; 1009 assert(!CCUnit.isValid() && "CC only has one reg unit."); 1010 SlotIndex MISlot = 1011 LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot(); 1012 if (!CCLiveRange.liveAt(MISlot)) { 1013 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST 1014 MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt, 1015 MI.getDebugLoc(), get(SystemZ::AGSI)) 1016 .addFrameIndex(FrameIndex) 1017 .addImm(0) 1018 .addImm(MI.getOperand(2).getImm()); 1019 BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true); 1020 CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator()); 1021 return BuiltMI; 1022 } 1023 } 1024 return nullptr; 1025 } 1026 1027 // All other cases require a single operand. 1028 if (Ops.size() != 1) 1029 return nullptr; 1030 1031 unsigned OpNum = Ops[0]; 1032 assert(Size * 8 == 1033 TRI->getRegSizeInBits(*MF.getRegInfo() 1034 .getRegClass(MI.getOperand(OpNum).getReg())) && 1035 "Invalid size combination"); 1036 1037 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 && 1038 isInt<8>(MI.getOperand(2).getImm())) { 1039 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST 1040 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); 1041 MachineInstr *BuiltMI = 1042 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1043 .addFrameIndex(FrameIndex) 1044 .addImm(0) 1045 .addImm(MI.getOperand(2).getImm()); 1046 transferDeadCC(&MI, BuiltMI); 1047 transferMIFlag(&MI, BuiltMI, MachineInstr::NoSWrap); 1048 return BuiltMI; 1049 } 1050 1051 if ((Opcode == SystemZ::ALFI && OpNum == 0 && 1052 isInt<8>((int32_t)MI.getOperand(2).getImm())) || 1053 (Opcode == SystemZ::ALGFI && OpNum == 0 && 1054 isInt<8>((int64_t)MI.getOperand(2).getImm()))) { 1055 // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST 1056 Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI); 1057 MachineInstr *BuiltMI = 1058 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1059 .addFrameIndex(FrameIndex) 1060 .addImm(0) 1061 .addImm((int8_t)MI.getOperand(2).getImm()); 1062 transferDeadCC(&MI, BuiltMI); 1063 return BuiltMI; 1064 } 1065 1066 if ((Opcode == SystemZ::SLFI && OpNum == 0 && 1067 isInt<8>((int32_t)-MI.getOperand(2).getImm())) || 1068 (Opcode == SystemZ::SLGFI && OpNum == 0 && 1069 isInt<8>((int64_t)-MI.getOperand(2).getImm()))) { 1070 // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST 1071 Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI); 1072 MachineInstr *BuiltMI = 1073 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1074 .addFrameIndex(FrameIndex) 1075 .addImm(0) 1076 .addImm((int8_t)-MI.getOperand(2).getImm()); 1077 transferDeadCC(&MI, BuiltMI); 1078 return BuiltMI; 1079 } 1080 1081 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 1082 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 1083 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 1084 // If we're spilling the destination of an LDGR or LGDR, store the 1085 // source register instead. 1086 if (OpNum == 0) { 1087 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 1088 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1089 get(StoreOpcode)) 1090 .add(MI.getOperand(1)) 1091 .addFrameIndex(FrameIndex) 1092 .addImm(0) 1093 .addReg(0); 1094 } 1095 // If we're spilling the source of an LDGR or LGDR, load the 1096 // destination register instead. 1097 if (OpNum == 1) { 1098 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 1099 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1100 get(LoadOpcode)) 1101 .add(MI.getOperand(0)) 1102 .addFrameIndex(FrameIndex) 1103 .addImm(0) 1104 .addReg(0); 1105 } 1106 } 1107 1108 // Look for cases where the source of a simple store or the destination 1109 // of a simple load is being spilled. Try to use MVC instead. 1110 // 1111 // Although MVC is in practice a fast choice in these cases, it is still 1112 // logically a bytewise copy. This means that we cannot use it if the 1113 // load or store is volatile. We also wouldn't be able to use MVC if 1114 // the two memories partially overlap, but that case cannot occur here, 1115 // because we know that one of the memories is a full frame index. 1116 // 1117 // For performance reasons, we also want to avoid using MVC if the addresses 1118 // might be equal. We don't worry about that case here, because spill slot 1119 // coloring happens later, and because we have special code to remove 1120 // MVCs that turn out to be redundant. 1121 if (OpNum == 0 && MI.hasOneMemOperand()) { 1122 MachineMemOperand *MMO = *MI.memoperands_begin(); 1123 if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) { 1124 // Handle conversion of loads. 1125 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) { 1126 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1127 get(SystemZ::MVC)) 1128 .addFrameIndex(FrameIndex) 1129 .addImm(0) 1130 .addImm(Size) 1131 .add(MI.getOperand(1)) 1132 .addImm(MI.getOperand(2).getImm()) 1133 .addMemOperand(MMO); 1134 } 1135 // Handle conversion of stores. 1136 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) { 1137 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1138 get(SystemZ::MVC)) 1139 .add(MI.getOperand(1)) 1140 .addImm(MI.getOperand(2).getImm()) 1141 .addImm(Size) 1142 .addFrameIndex(FrameIndex) 1143 .addImm(0) 1144 .addMemOperand(MMO); 1145 } 1146 } 1147 } 1148 1149 // If the spilled operand is the final one or the instruction is 1150 // commutable, try to change <INSN>R into <INSN>. 1151 unsigned NumOps = MI.getNumExplicitOperands(); 1152 int MemOpcode = SystemZ::getMemOpcode(Opcode); 1153 if (MemOpcode == -1) 1154 return nullptr; 1155 1156 // Try to swap compare operands if possible. 1157 bool NeedsCommute = false; 1158 if ((MI.getOpcode() == SystemZ::CR || MI.getOpcode() == SystemZ::CGR || 1159 MI.getOpcode() == SystemZ::CLR || MI.getOpcode() == SystemZ::CLGR) && 1160 OpNum == 0 && prepareCompareSwapOperands(MI)) 1161 NeedsCommute = true; 1162 1163 bool CCOperands = false; 1164 if (MI.getOpcode() == SystemZ::LOCRMux || MI.getOpcode() == SystemZ::LOCGR || 1165 MI.getOpcode() == SystemZ::SELRMux || MI.getOpcode() == SystemZ::SELGR) { 1166 assert(MI.getNumOperands() == 6 && NumOps == 5 && 1167 "LOCR/SELR instruction operands corrupt?"); 1168 NumOps -= 2; 1169 CCOperands = true; 1170 } 1171 1172 // See if this is a 3-address instruction that is convertible to 2-address 1173 // and suitable for folding below. Only try this with virtual registers 1174 // and a provided VRM (during regalloc). 1175 if (SystemZ::getTwoOperandOpcode(Opcode) != -1) { 1176 if (VRM == nullptr) 1177 return nullptr; 1178 else { 1179 assert(NumOps == 3 && "Expected two source registers."); 1180 Register DstReg = MI.getOperand(0).getReg(); 1181 Register DstPhys = 1182 (Register::isVirtualRegister(DstReg) ? VRM->getPhys(DstReg) : DstReg); 1183 Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg() 1184 : ((OpNum == 1 && MI.isCommutable()) 1185 ? MI.getOperand(2).getReg() 1186 : Register())); 1187 if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg && 1188 Register::isVirtualRegister(SrcReg) && 1189 DstPhys == VRM->getPhys(SrcReg)) 1190 NeedsCommute = (OpNum == 1); 1191 else 1192 return nullptr; 1193 } 1194 } 1195 1196 if ((OpNum == NumOps - 1) || NeedsCommute) { 1197 const MCInstrDesc &MemDesc = get(MemOpcode); 1198 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 1199 assert(AccessBytes != 0 && "Size of access should be known"); 1200 assert(AccessBytes <= Size && "Access outside the frame index"); 1201 uint64_t Offset = Size - AccessBytes; 1202 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 1203 MI.getDebugLoc(), get(MemOpcode)); 1204 if (MI.isCompare()) { 1205 assert(NumOps == 2 && "Expected 2 register operands for a compare."); 1206 MIB.add(MI.getOperand(NeedsCommute ? 1 : 0)); 1207 } 1208 else { 1209 MIB.add(MI.getOperand(0)); 1210 if (NeedsCommute) 1211 MIB.add(MI.getOperand(2)); 1212 else 1213 for (unsigned I = 1; I < OpNum; ++I) 1214 MIB.add(MI.getOperand(I)); 1215 } 1216 MIB.addFrameIndex(FrameIndex).addImm(Offset); 1217 if (MemDesc.TSFlags & SystemZII::HasIndex) 1218 MIB.addReg(0); 1219 if (CCOperands) { 1220 unsigned CCValid = MI.getOperand(NumOps).getImm(); 1221 unsigned CCMask = MI.getOperand(NumOps + 1).getImm(); 1222 MIB.addImm(CCValid); 1223 MIB.addImm(NeedsCommute ? CCMask ^ CCValid : CCMask); 1224 } 1225 transferDeadCC(&MI, MIB); 1226 transferMIFlag(&MI, MIB, MachineInstr::NoSWrap); 1227 return MIB; 1228 } 1229 1230 return nullptr; 1231 } 1232 1233 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1234 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1235 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 1236 LiveIntervals *LIS) const { 1237 return nullptr; 1238 } 1239 1240 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1241 switch (MI.getOpcode()) { 1242 case SystemZ::L128: 1243 splitMove(MI, SystemZ::LG); 1244 return true; 1245 1246 case SystemZ::ST128: 1247 splitMove(MI, SystemZ::STG); 1248 return true; 1249 1250 case SystemZ::LX: 1251 splitMove(MI, SystemZ::LD); 1252 return true; 1253 1254 case SystemZ::STX: 1255 splitMove(MI, SystemZ::STD); 1256 return true; 1257 1258 case SystemZ::LBMux: 1259 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); 1260 return true; 1261 1262 case SystemZ::LHMux: 1263 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); 1264 return true; 1265 1266 case SystemZ::LLCRMux: 1267 expandZExtPseudo(MI, SystemZ::LLCR, 8); 1268 return true; 1269 1270 case SystemZ::LLHRMux: 1271 expandZExtPseudo(MI, SystemZ::LLHR, 16); 1272 return true; 1273 1274 case SystemZ::LLCMux: 1275 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); 1276 return true; 1277 1278 case SystemZ::LLHMux: 1279 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); 1280 return true; 1281 1282 case SystemZ::LMux: 1283 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); 1284 return true; 1285 1286 case SystemZ::LOCMux: 1287 expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH); 1288 return true; 1289 1290 case SystemZ::LOCHIMux: 1291 expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI); 1292 return true; 1293 1294 case SystemZ::STCMux: 1295 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); 1296 return true; 1297 1298 case SystemZ::STHMux: 1299 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); 1300 return true; 1301 1302 case SystemZ::STMux: 1303 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); 1304 return true; 1305 1306 case SystemZ::STOCMux: 1307 expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH); 1308 return true; 1309 1310 case SystemZ::LHIMux: 1311 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); 1312 return true; 1313 1314 case SystemZ::IIFMux: 1315 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); 1316 return true; 1317 1318 case SystemZ::IILMux: 1319 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); 1320 return true; 1321 1322 case SystemZ::IIHMux: 1323 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); 1324 return true; 1325 1326 case SystemZ::NIFMux: 1327 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); 1328 return true; 1329 1330 case SystemZ::NILMux: 1331 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); 1332 return true; 1333 1334 case SystemZ::NIHMux: 1335 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); 1336 return true; 1337 1338 case SystemZ::OIFMux: 1339 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); 1340 return true; 1341 1342 case SystemZ::OILMux: 1343 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); 1344 return true; 1345 1346 case SystemZ::OIHMux: 1347 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); 1348 return true; 1349 1350 case SystemZ::XIFMux: 1351 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); 1352 return true; 1353 1354 case SystemZ::TMLMux: 1355 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); 1356 return true; 1357 1358 case SystemZ::TMHMux: 1359 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); 1360 return true; 1361 1362 case SystemZ::AHIMux: 1363 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); 1364 return true; 1365 1366 case SystemZ::AHIMuxK: 1367 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); 1368 return true; 1369 1370 case SystemZ::AFIMux: 1371 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); 1372 return true; 1373 1374 case SystemZ::CHIMux: 1375 expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false); 1376 return true; 1377 1378 case SystemZ::CFIMux: 1379 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); 1380 return true; 1381 1382 case SystemZ::CLFIMux: 1383 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); 1384 return true; 1385 1386 case SystemZ::CMux: 1387 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); 1388 return true; 1389 1390 case SystemZ::CLMux: 1391 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); 1392 return true; 1393 1394 case SystemZ::RISBMux: { 1395 bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg()); 1396 bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg()); 1397 if (SrcIsHigh == DestIsHigh) 1398 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); 1399 else { 1400 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); 1401 MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32); 1402 } 1403 return true; 1404 } 1405 1406 case SystemZ::ADJDYNALLOC: 1407 splitAdjDynAlloc(MI); 1408 return true; 1409 1410 case TargetOpcode::LOAD_STACK_GUARD: 1411 expandLoadStackGuard(&MI); 1412 return true; 1413 1414 default: 1415 return false; 1416 } 1417 } 1418 1419 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1420 if (MI.isInlineAsm()) { 1421 const MachineFunction *MF = MI.getParent()->getParent(); 1422 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1423 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1424 } 1425 return MI.getDesc().getSize(); 1426 } 1427 1428 SystemZII::Branch 1429 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const { 1430 switch (MI.getOpcode()) { 1431 case SystemZ::BR: 1432 case SystemZ::BI: 1433 case SystemZ::J: 1434 case SystemZ::JG: 1435 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 1436 SystemZ::CCMASK_ANY, &MI.getOperand(0)); 1437 1438 case SystemZ::BRC: 1439 case SystemZ::BRCL: 1440 return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(), 1441 MI.getOperand(1).getImm(), &MI.getOperand(2)); 1442 1443 case SystemZ::BRCT: 1444 case SystemZ::BRCTH: 1445 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 1446 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1447 1448 case SystemZ::BRCTG: 1449 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 1450 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1451 1452 case SystemZ::CIJ: 1453 case SystemZ::CRJ: 1454 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 1455 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1456 1457 case SystemZ::CLIJ: 1458 case SystemZ::CLRJ: 1459 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, 1460 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1461 1462 case SystemZ::CGIJ: 1463 case SystemZ::CGRJ: 1464 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 1465 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1466 1467 case SystemZ::CLGIJ: 1468 case SystemZ::CLGRJ: 1469 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, 1470 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1471 1472 case SystemZ::INLINEASM_BR: 1473 // Don't try to analyze asm goto, so pass nullptr as branch target argument. 1474 return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr); 1475 1476 default: 1477 llvm_unreachable("Unrecognized branch opcode"); 1478 } 1479 } 1480 1481 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 1482 unsigned &LoadOpcode, 1483 unsigned &StoreOpcode) const { 1484 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 1485 LoadOpcode = SystemZ::L; 1486 StoreOpcode = SystemZ::ST; 1487 } else if (RC == &SystemZ::GRH32BitRegClass) { 1488 LoadOpcode = SystemZ::LFH; 1489 StoreOpcode = SystemZ::STFH; 1490 } else if (RC == &SystemZ::GRX32BitRegClass) { 1491 LoadOpcode = SystemZ::LMux; 1492 StoreOpcode = SystemZ::STMux; 1493 } else if (RC == &SystemZ::GR64BitRegClass || 1494 RC == &SystemZ::ADDR64BitRegClass) { 1495 LoadOpcode = SystemZ::LG; 1496 StoreOpcode = SystemZ::STG; 1497 } else if (RC == &SystemZ::GR128BitRegClass || 1498 RC == &SystemZ::ADDR128BitRegClass) { 1499 LoadOpcode = SystemZ::L128; 1500 StoreOpcode = SystemZ::ST128; 1501 } else if (RC == &SystemZ::FP32BitRegClass) { 1502 LoadOpcode = SystemZ::LE; 1503 StoreOpcode = SystemZ::STE; 1504 } else if (RC == &SystemZ::FP64BitRegClass) { 1505 LoadOpcode = SystemZ::LD; 1506 StoreOpcode = SystemZ::STD; 1507 } else if (RC == &SystemZ::FP128BitRegClass) { 1508 LoadOpcode = SystemZ::LX; 1509 StoreOpcode = SystemZ::STX; 1510 } else if (RC == &SystemZ::VR32BitRegClass) { 1511 LoadOpcode = SystemZ::VL32; 1512 StoreOpcode = SystemZ::VST32; 1513 } else if (RC == &SystemZ::VR64BitRegClass) { 1514 LoadOpcode = SystemZ::VL64; 1515 StoreOpcode = SystemZ::VST64; 1516 } else if (RC == &SystemZ::VF128BitRegClass || 1517 RC == &SystemZ::VR128BitRegClass) { 1518 LoadOpcode = SystemZ::VL; 1519 StoreOpcode = SystemZ::VST; 1520 } else 1521 llvm_unreachable("Unsupported regclass to load or store"); 1522 } 1523 1524 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 1525 int64_t Offset) const { 1526 const MCInstrDesc &MCID = get(Opcode); 1527 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 1528 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 1529 // Get the instruction to use for unsigned 12-bit displacements. 1530 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 1531 if (Disp12Opcode >= 0) 1532 return Disp12Opcode; 1533 1534 // All address-related instructions can use unsigned 12-bit 1535 // displacements. 1536 return Opcode; 1537 } 1538 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 1539 // Get the instruction to use for signed 20-bit displacements. 1540 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 1541 if (Disp20Opcode >= 0) 1542 return Disp20Opcode; 1543 1544 // Check whether Opcode allows signed 20-bit displacements. 1545 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1546 return Opcode; 1547 } 1548 return 0; 1549 } 1550 1551 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 1552 switch (Opcode) { 1553 case SystemZ::L: return SystemZ::LT; 1554 case SystemZ::LY: return SystemZ::LT; 1555 case SystemZ::LG: return SystemZ::LTG; 1556 case SystemZ::LGF: return SystemZ::LTGF; 1557 case SystemZ::LR: return SystemZ::LTR; 1558 case SystemZ::LGFR: return SystemZ::LTGFR; 1559 case SystemZ::LGR: return SystemZ::LTGR; 1560 case SystemZ::LER: return SystemZ::LTEBR; 1561 case SystemZ::LDR: return SystemZ::LTDBR; 1562 case SystemZ::LXR: return SystemZ::LTXBR; 1563 case SystemZ::LCDFR: return SystemZ::LCDBR; 1564 case SystemZ::LPDFR: return SystemZ::LPDBR; 1565 case SystemZ::LNDFR: return SystemZ::LNDBR; 1566 case SystemZ::LCDFR_32: return SystemZ::LCEBR; 1567 case SystemZ::LPDFR_32: return SystemZ::LPEBR; 1568 case SystemZ::LNDFR_32: return SystemZ::LNEBR; 1569 // On zEC12 we prefer to use RISBGN. But if there is a chance to 1570 // actually use the condition code, we may turn it back into RISGB. 1571 // Note that RISBG is not really a "load-and-test" instruction, 1572 // but sets the same condition code values, so is OK to use here. 1573 case SystemZ::RISBGN: return SystemZ::RISBG; 1574 default: return 0; 1575 } 1576 } 1577 1578 // Return true if Mask matches the regexp 0*1+0*, given that zero masks 1579 // have already been filtered out. Store the first set bit in LSB and 1580 // the number of set bits in Length if so. 1581 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { 1582 unsigned First = findFirstSet(Mask); 1583 uint64_t Top = (Mask >> First) + 1; 1584 if ((Top & -Top) == Top) { 1585 LSB = First; 1586 Length = findFirstSet(Top); 1587 return true; 1588 } 1589 return false; 1590 } 1591 1592 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 1593 unsigned &Start, unsigned &End) const { 1594 // Reject trivial all-zero masks. 1595 Mask &= allOnes(BitSize); 1596 if (Mask == 0) 1597 return false; 1598 1599 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 1600 // the msb and End specifies the index of the lsb. 1601 unsigned LSB, Length; 1602 if (isStringOfOnes(Mask, LSB, Length)) { 1603 Start = 63 - (LSB + Length - 1); 1604 End = 63 - LSB; 1605 return true; 1606 } 1607 1608 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 1609 // of the low 1s and End specifies the lsb of the high 1s. 1610 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { 1611 assert(LSB > 0 && "Bottom bit must be set"); 1612 assert(LSB + Length < BitSize && "Top bit must be set"); 1613 Start = 63 - (LSB - 1); 1614 End = 63 - (LSB + Length); 1615 return true; 1616 } 1617 1618 return false; 1619 } 1620 1621 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode, 1622 SystemZII::FusedCompareType Type, 1623 const MachineInstr *MI) const { 1624 switch (Opcode) { 1625 case SystemZ::CHI: 1626 case SystemZ::CGHI: 1627 if (!(MI && isInt<8>(MI->getOperand(1).getImm()))) 1628 return 0; 1629 break; 1630 case SystemZ::CLFI: 1631 case SystemZ::CLGFI: 1632 if (!(MI && isUInt<8>(MI->getOperand(1).getImm()))) 1633 return 0; 1634 break; 1635 case SystemZ::CL: 1636 case SystemZ::CLG: 1637 if (!STI.hasMiscellaneousExtensions()) 1638 return 0; 1639 if (!(MI && MI->getOperand(3).getReg() == 0)) 1640 return 0; 1641 break; 1642 } 1643 switch (Type) { 1644 case SystemZII::CompareAndBranch: 1645 switch (Opcode) { 1646 case SystemZ::CR: 1647 return SystemZ::CRJ; 1648 case SystemZ::CGR: 1649 return SystemZ::CGRJ; 1650 case SystemZ::CHI: 1651 return SystemZ::CIJ; 1652 case SystemZ::CGHI: 1653 return SystemZ::CGIJ; 1654 case SystemZ::CLR: 1655 return SystemZ::CLRJ; 1656 case SystemZ::CLGR: 1657 return SystemZ::CLGRJ; 1658 case SystemZ::CLFI: 1659 return SystemZ::CLIJ; 1660 case SystemZ::CLGFI: 1661 return SystemZ::CLGIJ; 1662 default: 1663 return 0; 1664 } 1665 case SystemZII::CompareAndReturn: 1666 switch (Opcode) { 1667 case SystemZ::CR: 1668 return SystemZ::CRBReturn; 1669 case SystemZ::CGR: 1670 return SystemZ::CGRBReturn; 1671 case SystemZ::CHI: 1672 return SystemZ::CIBReturn; 1673 case SystemZ::CGHI: 1674 return SystemZ::CGIBReturn; 1675 case SystemZ::CLR: 1676 return SystemZ::CLRBReturn; 1677 case SystemZ::CLGR: 1678 return SystemZ::CLGRBReturn; 1679 case SystemZ::CLFI: 1680 return SystemZ::CLIBReturn; 1681 case SystemZ::CLGFI: 1682 return SystemZ::CLGIBReturn; 1683 default: 1684 return 0; 1685 } 1686 case SystemZII::CompareAndSibcall: 1687 switch (Opcode) { 1688 case SystemZ::CR: 1689 return SystemZ::CRBCall; 1690 case SystemZ::CGR: 1691 return SystemZ::CGRBCall; 1692 case SystemZ::CHI: 1693 return SystemZ::CIBCall; 1694 case SystemZ::CGHI: 1695 return SystemZ::CGIBCall; 1696 case SystemZ::CLR: 1697 return SystemZ::CLRBCall; 1698 case SystemZ::CLGR: 1699 return SystemZ::CLGRBCall; 1700 case SystemZ::CLFI: 1701 return SystemZ::CLIBCall; 1702 case SystemZ::CLGFI: 1703 return SystemZ::CLGIBCall; 1704 default: 1705 return 0; 1706 } 1707 case SystemZII::CompareAndTrap: 1708 switch (Opcode) { 1709 case SystemZ::CR: 1710 return SystemZ::CRT; 1711 case SystemZ::CGR: 1712 return SystemZ::CGRT; 1713 case SystemZ::CHI: 1714 return SystemZ::CIT; 1715 case SystemZ::CGHI: 1716 return SystemZ::CGIT; 1717 case SystemZ::CLR: 1718 return SystemZ::CLRT; 1719 case SystemZ::CLGR: 1720 return SystemZ::CLGRT; 1721 case SystemZ::CLFI: 1722 return SystemZ::CLFIT; 1723 case SystemZ::CLGFI: 1724 return SystemZ::CLGIT; 1725 case SystemZ::CL: 1726 return SystemZ::CLT; 1727 case SystemZ::CLG: 1728 return SystemZ::CLGT; 1729 default: 1730 return 0; 1731 } 1732 } 1733 return 0; 1734 } 1735 1736 bool SystemZInstrInfo:: 1737 prepareCompareSwapOperands(MachineBasicBlock::iterator const MBBI) const { 1738 assert(MBBI->isCompare() && MBBI->getOperand(0).isReg() && 1739 MBBI->getOperand(1).isReg() && !MBBI->mayLoad() && 1740 "Not a compare reg/reg."); 1741 1742 MachineBasicBlock *MBB = MBBI->getParent(); 1743 bool CCLive = true; 1744 SmallVector<MachineInstr *, 4> CCUsers; 1745 for (MachineBasicBlock::iterator Itr = std::next(MBBI); 1746 Itr != MBB->end(); ++Itr) { 1747 if (Itr->readsRegister(SystemZ::CC)) { 1748 unsigned Flags = Itr->getDesc().TSFlags; 1749 if ((Flags & SystemZII::CCMaskFirst) || (Flags & SystemZII::CCMaskLast)) 1750 CCUsers.push_back(&*Itr); 1751 else 1752 return false; 1753 } 1754 if (Itr->definesRegister(SystemZ::CC)) { 1755 CCLive = false; 1756 break; 1757 } 1758 } 1759 if (CCLive) { 1760 LivePhysRegs LiveRegs(*MBB->getParent()->getSubtarget().getRegisterInfo()); 1761 LiveRegs.addLiveOuts(*MBB); 1762 if (LiveRegs.contains(SystemZ::CC)) 1763 return false; 1764 } 1765 1766 // Update all CC users. 1767 for (unsigned Idx = 0; Idx < CCUsers.size(); ++Idx) { 1768 unsigned Flags = CCUsers[Idx]->getDesc().TSFlags; 1769 unsigned FirstOpNum = ((Flags & SystemZII::CCMaskFirst) ? 1770 0 : CCUsers[Idx]->getNumExplicitOperands() - 2); 1771 MachineOperand &CCMaskMO = CCUsers[Idx]->getOperand(FirstOpNum + 1); 1772 unsigned NewCCMask = SystemZ::reverseCCMask(CCMaskMO.getImm()); 1773 CCMaskMO.setImm(NewCCMask); 1774 } 1775 1776 return true; 1777 } 1778 1779 unsigned SystemZ::reverseCCMask(unsigned CCMask) { 1780 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1781 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1782 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1783 (CCMask & SystemZ::CCMASK_CMP_UO)); 1784 } 1785 1786 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const { 1787 if (!STI.hasLoadAndTrap()) 1788 return 0; 1789 switch (Opcode) { 1790 case SystemZ::L: 1791 case SystemZ::LY: 1792 return SystemZ::LAT; 1793 case SystemZ::LG: 1794 return SystemZ::LGAT; 1795 case SystemZ::LFH: 1796 return SystemZ::LFHAT; 1797 case SystemZ::LLGF: 1798 return SystemZ::LLGFAT; 1799 case SystemZ::LLGT: 1800 return SystemZ::LLGTAT; 1801 } 1802 return 0; 1803 } 1804 1805 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 1806 MachineBasicBlock::iterator MBBI, 1807 unsigned Reg, uint64_t Value) const { 1808 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1809 unsigned Opcode; 1810 if (isInt<16>(Value)) 1811 Opcode = SystemZ::LGHI; 1812 else if (SystemZ::isImmLL(Value)) 1813 Opcode = SystemZ::LLILL; 1814 else if (SystemZ::isImmLH(Value)) { 1815 Opcode = SystemZ::LLILH; 1816 Value >>= 16; 1817 } else { 1818 assert(isInt<32>(Value) && "Huge values not handled yet"); 1819 Opcode = SystemZ::LGFI; 1820 } 1821 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 1822 } 1823 1824 bool SystemZInstrInfo::verifyInstruction(const MachineInstr &MI, 1825 StringRef &ErrInfo) const { 1826 const MCInstrDesc &MCID = MI.getDesc(); 1827 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1828 if (I >= MCID.getNumOperands()) 1829 break; 1830 const MachineOperand &Op = MI.getOperand(I); 1831 const MCOperandInfo &MCOI = MCID.OpInfo[I]; 1832 // Addressing modes have register and immediate operands. Op should be a 1833 // register (or frame index) operand if MCOI.RegClass contains a valid 1834 // register class, or an immediate otherwise. 1835 if (MCOI.OperandType == MCOI::OPERAND_MEMORY && 1836 ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) || 1837 (MCOI.RegClass == -1 && !Op.isImm()))) { 1838 ErrInfo = "Addressing mode operands corrupt!"; 1839 return false; 1840 } 1841 } 1842 1843 return true; 1844 } 1845 1846 bool SystemZInstrInfo:: 1847 areMemAccessesTriviallyDisjoint(const MachineInstr &MIa, 1848 const MachineInstr &MIb) const { 1849 1850 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) 1851 return false; 1852 1853 // If mem-operands show that the same address Value is used by both 1854 // instructions, check for non-overlapping offsets and widths. Not 1855 // sure if a register based analysis would be an improvement... 1856 1857 MachineMemOperand *MMOa = *MIa.memoperands_begin(); 1858 MachineMemOperand *MMOb = *MIb.memoperands_begin(); 1859 const Value *VALa = MMOa->getValue(); 1860 const Value *VALb = MMOb->getValue(); 1861 bool SameVal = (VALa && VALb && (VALa == VALb)); 1862 if (!SameVal) { 1863 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1864 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1865 if (PSVa && PSVb && (PSVa == PSVb)) 1866 SameVal = true; 1867 } 1868 if (SameVal) { 1869 int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset(); 1870 int WidthA = MMOa->getSize(), WidthB = MMOb->getSize(); 1871 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 1872 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 1873 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 1874 if (LowOffset + LowWidth <= HighOffset) 1875 return true; 1876 } 1877 1878 return false; 1879 } 1880