1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SystemZ implementation of the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "MCTargetDesc/SystemZMCTargetDesc.h"
15 #include "SystemZ.h"
16 #include "SystemZInstrBuilder.h"
17 #include "SystemZInstrInfo.h"
18 #include "SystemZSubtarget.h"
19 #include "llvm/CodeGen/LiveInterval.h"
20 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SlotIndexes.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCRegisterInfo.h"
33 #include "llvm/Support/BranchProbability.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <iterator>
42 
43 using namespace llvm;
44 
45 #define GET_INSTRINFO_CTOR_DTOR
46 #define GET_INSTRMAP_INFO
47 #include "SystemZGenInstrInfo.inc"
48 
49 // Return a mask with Count low bits set.
50 static uint64_t allOnes(unsigned int Count) {
51   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
52 }
53 
54 // Reg should be a 32-bit GPR.  Return true if it is a high register rather
55 // than a low register.
56 static bool isHighReg(unsigned int Reg) {
57   if (SystemZ::GRH32BitRegClass.contains(Reg))
58     return true;
59   assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32");
60   return false;
61 }
62 
63 // Pin the vtable to this file.
64 void SystemZInstrInfo::anchor() {}
65 
66 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
67   : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
68     RI(), STI(sti) {
69 }
70 
71 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
72 // each having the opcode given by NewOpcode.
73 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
74                                  unsigned NewOpcode) const {
75   MachineBasicBlock *MBB = MI->getParent();
76   MachineFunction &MF = *MBB->getParent();
77 
78   // Get two load or store instructions.  Use the original instruction for one
79   // of them (arbitrarily the second here) and create a clone for the other.
80   MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
81   MBB->insert(MI, EarlierMI);
82 
83   // Set up the two 64-bit registers.
84   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
85   MachineOperand &LowRegOp = MI->getOperand(0);
86   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
87   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
88 
89   // The address in the first (high) instruction is already correct.
90   // Adjust the offset in the second (low) instruction.
91   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
92   MachineOperand &LowOffsetOp = MI->getOperand(2);
93   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
94 
95   // Clear the kill flags for the base and index registers in the first
96   // instruction.
97   EarlierMI->getOperand(1).setIsKill(false);
98   EarlierMI->getOperand(3).setIsKill(false);
99 
100   // Set the opcodes.
101   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
102   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
103   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
104 
105   EarlierMI->setDesc(get(HighOpcode));
106   MI->setDesc(get(LowOpcode));
107 }
108 
109 // Split ADJDYNALLOC instruction MI.
110 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
111   MachineBasicBlock *MBB = MI->getParent();
112   MachineFunction &MF = *MBB->getParent();
113   MachineFrameInfo &MFFrame = MF.getFrameInfo();
114   MachineOperand &OffsetMO = MI->getOperand(2);
115 
116   uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
117                      SystemZMC::CallFrameSize +
118                      OffsetMO.getImm());
119   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
120   assert(NewOpcode && "No support for huge argument lists yet");
121   MI->setDesc(get(NewOpcode));
122   OffsetMO.setImm(Offset);
123 }
124 
125 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
126 // if the first operand is a low GR32 and HighOpcode if the first operand
127 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
128 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
129 // MI has the same kind of operand as LowOpcode, so needs to be converted
130 // if HighOpcode is used.
131 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
132                                       unsigned HighOpcode,
133                                       bool ConvertHigh) const {
134   unsigned Reg = MI.getOperand(0).getReg();
135   bool IsHigh = isHighReg(Reg);
136   MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
137   if (IsHigh && ConvertHigh)
138     MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
139 }
140 
141 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
142 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
143 // followed by HighOpcode or LowOpcode, depending on whether the target
144 // is a high or low GR32.
145 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
146                                        unsigned LowOpcodeK,
147                                        unsigned HighOpcode) const {
148   unsigned DestReg = MI.getOperand(0).getReg();
149   unsigned SrcReg = MI.getOperand(1).getReg();
150   bool DestIsHigh = isHighReg(DestReg);
151   bool SrcIsHigh = isHighReg(SrcReg);
152   if (!DestIsHigh && !SrcIsHigh)
153     MI.setDesc(get(LowOpcodeK));
154   else {
155     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
156                   SystemZ::LR, 32, MI.getOperand(1).isKill(),
157                   MI.getOperand(1).isUndef());
158     MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
159     MI.getOperand(1).setReg(DestReg);
160     MI.tieOperands(0, 1);
161   }
162 }
163 
164 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
165 // if the first operand is a low GR32 and HighOpcode if the first operand
166 // is a high GR32.
167 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
168                                        unsigned HighOpcode) const {
169   unsigned Reg = MI.getOperand(0).getReg();
170   unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode,
171                                        MI.getOperand(2).getImm());
172   MI.setDesc(get(Opcode));
173 }
174 
175 // MI is a load-on-condition pseudo instruction with a single register
176 // (source or destination) operand.  Replace it with LowOpcode if the
177 // register is a low GR32 and HighOpcode if the register is a high GR32.
178 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
179                                        unsigned HighOpcode) const {
180   unsigned Reg = MI.getOperand(0).getReg();
181   unsigned Opcode = isHighReg(Reg) ? HighOpcode : LowOpcode;
182   MI.setDesc(get(Opcode));
183 }
184 
185 // MI is a load-register-on-condition pseudo instruction.  Replace it with
186 // LowOpcode if source and destination are both low GR32s and HighOpcode if
187 // source and destination are both high GR32s.
188 void SystemZInstrInfo::expandLOCRPseudo(MachineInstr &MI, unsigned LowOpcode,
189                                         unsigned HighOpcode) const {
190   unsigned DestReg = MI.getOperand(0).getReg();
191   unsigned SrcReg = MI.getOperand(2).getReg();
192   bool DestIsHigh = isHighReg(DestReg);
193   bool SrcIsHigh = isHighReg(SrcReg);
194 
195   if (!DestIsHigh && !SrcIsHigh)
196     MI.setDesc(get(LowOpcode));
197   else if (DestIsHigh && SrcIsHigh)
198     MI.setDesc(get(HighOpcode));
199 
200   // If we were unable to implement the pseudo with a single instruction, we
201   // need to convert it back into a branch sequence.  This cannot be done here
202   // since the caller of expandPostRAPseudo does not handle changes to the CFG
203   // correctly.  This change is defered to the SystemZExpandPseudo pass.
204 }
205 
206 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
207 // of one GRX32 into another.  Replace it with LowOpcode if both operands
208 // are low registers, otherwise use RISB[LH]G.
209 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
210                                         unsigned Size) const {
211   emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
212                 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
213                 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
214   MI.eraseFromParent();
215 }
216 
217 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
218   MachineBasicBlock *MBB = MI->getParent();
219   MachineFunction &MF = *MBB->getParent();
220   const unsigned Reg = MI->getOperand(0).getReg();
221 
222   // Conveniently, all 4 instructions are cloned from LOAD_STACK_GUARD,
223   // so they already have operand 0 set to reg.
224 
225   // ear <reg>, %a0
226   MachineInstr *Ear1MI = MF.CloneMachineInstr(MI);
227   MBB->insert(MI, Ear1MI);
228   Ear1MI->setDesc(get(SystemZ::EAR));
229   MachineInstrBuilder(MF, Ear1MI).addReg(SystemZ::A0);
230 
231   // sllg <reg>, <reg>, 32
232   MachineInstr *SllgMI = MF.CloneMachineInstr(MI);
233   MBB->insert(MI, SllgMI);
234   SllgMI->setDesc(get(SystemZ::SLLG));
235   MachineInstrBuilder(MF, SllgMI).addReg(Reg).addReg(0).addImm(32);
236 
237   // ear <reg>, %a1
238   MachineInstr *Ear2MI = MF.CloneMachineInstr(MI);
239   MBB->insert(MI, Ear2MI);
240   Ear2MI->setDesc(get(SystemZ::EAR));
241   MachineInstrBuilder(MF, Ear2MI).addReg(SystemZ::A1);
242 
243   // lg <reg>, 40(<reg>)
244   MI->setDesc(get(SystemZ::LG));
245   MachineInstrBuilder(MF, MI).addReg(Reg).addImm(40).addReg(0);
246 }
247 
248 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
249 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
250 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
251 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
252 // KillSrc is true if this move is the last use of SrcReg.
253 void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
254                                      MachineBasicBlock::iterator MBBI,
255                                      const DebugLoc &DL, unsigned DestReg,
256                                      unsigned SrcReg, unsigned LowLowOpcode,
257                                      unsigned Size, bool KillSrc,
258                                      bool UndefSrc) const {
259   unsigned Opcode;
260   bool DestIsHigh = isHighReg(DestReg);
261   bool SrcIsHigh = isHighReg(SrcReg);
262   if (DestIsHigh && SrcIsHigh)
263     Opcode = SystemZ::RISBHH;
264   else if (DestIsHigh && !SrcIsHigh)
265     Opcode = SystemZ::RISBHL;
266   else if (!DestIsHigh && SrcIsHigh)
267     Opcode = SystemZ::RISBLH;
268   else {
269     BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
270       .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
271     return;
272   }
273   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
274   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
275     .addReg(DestReg, RegState::Undef)
276     .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
277     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
278 }
279 
280 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
281                                                        bool NewMI,
282                                                        unsigned OpIdx1,
283                                                        unsigned OpIdx2) const {
284   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
285     if (NewMI)
286       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
287     return MI;
288   };
289 
290   switch (MI.getOpcode()) {
291   case SystemZ::LOCRMux:
292   case SystemZ::LOCFHR:
293   case SystemZ::LOCR:
294   case SystemZ::LOCGR: {
295     auto &WorkingMI = cloneIfNew(MI);
296     // Invert condition.
297     unsigned CCValid = WorkingMI.getOperand(3).getImm();
298     unsigned CCMask = WorkingMI.getOperand(4).getImm();
299     WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
300     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
301                                                    OpIdx1, OpIdx2);
302   }
303   default:
304     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
305   }
306 }
307 
308 // If MI is a simple load or store for a frame object, return the register
309 // it loads or stores and set FrameIndex to the index of the frame object.
310 // Return 0 otherwise.
311 //
312 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
313 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
314                         unsigned Flag) {
315   const MCInstrDesc &MCID = MI.getDesc();
316   if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
317       MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
318     FrameIndex = MI.getOperand(1).getIndex();
319     return MI.getOperand(0).getReg();
320   }
321   return 0;
322 }
323 
324 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
325                                                int &FrameIndex) const {
326   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
327 }
328 
329 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
330                                               int &FrameIndex) const {
331   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
332 }
333 
334 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
335                                        int &DestFrameIndex,
336                                        int &SrcFrameIndex) const {
337   // Check for MVC 0(Length,FI1),0(FI2)
338   const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
339   if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
340       MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
341       MI.getOperand(4).getImm() != 0)
342     return false;
343 
344   // Check that Length covers the full slots.
345   int64_t Length = MI.getOperand(2).getImm();
346   unsigned FI1 = MI.getOperand(0).getIndex();
347   unsigned FI2 = MI.getOperand(3).getIndex();
348   if (MFI.getObjectSize(FI1) != Length ||
349       MFI.getObjectSize(FI2) != Length)
350     return false;
351 
352   DestFrameIndex = FI1;
353   SrcFrameIndex = FI2;
354   return true;
355 }
356 
357 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
358                                      MachineBasicBlock *&TBB,
359                                      MachineBasicBlock *&FBB,
360                                      SmallVectorImpl<MachineOperand> &Cond,
361                                      bool AllowModify) const {
362   // Most of the code and comments here are boilerplate.
363 
364   // Start from the bottom of the block and work up, examining the
365   // terminator instructions.
366   MachineBasicBlock::iterator I = MBB.end();
367   while (I != MBB.begin()) {
368     --I;
369     if (I->isDebugValue())
370       continue;
371 
372     // Working from the bottom, when we see a non-terminator instruction, we're
373     // done.
374     if (!isUnpredicatedTerminator(*I))
375       break;
376 
377     // A terminator that isn't a branch can't easily be handled by this
378     // analysis.
379     if (!I->isBranch())
380       return true;
381 
382     // Can't handle indirect branches.
383     SystemZII::Branch Branch(getBranchInfo(*I));
384     if (!Branch.Target->isMBB())
385       return true;
386 
387     // Punt on compound branches.
388     if (Branch.Type != SystemZII::BranchNormal)
389       return true;
390 
391     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
392       // Handle unconditional branches.
393       if (!AllowModify) {
394         TBB = Branch.Target->getMBB();
395         continue;
396       }
397 
398       // If the block has any instructions after a JMP, delete them.
399       while (std::next(I) != MBB.end())
400         std::next(I)->eraseFromParent();
401 
402       Cond.clear();
403       FBB = nullptr;
404 
405       // Delete the JMP if it's equivalent to a fall-through.
406       if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
407         TBB = nullptr;
408         I->eraseFromParent();
409         I = MBB.end();
410         continue;
411       }
412 
413       // TBB is used to indicate the unconditinal destination.
414       TBB = Branch.Target->getMBB();
415       continue;
416     }
417 
418     // Working from the bottom, handle the first conditional branch.
419     if (Cond.empty()) {
420       // FIXME: add X86-style branch swap
421       FBB = TBB;
422       TBB = Branch.Target->getMBB();
423       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
424       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
425       continue;
426     }
427 
428     // Handle subsequent conditional branches.
429     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
430 
431     // Only handle the case where all conditional branches branch to the same
432     // destination.
433     if (TBB != Branch.Target->getMBB())
434       return true;
435 
436     // If the conditions are the same, we can leave them alone.
437     unsigned OldCCValid = Cond[0].getImm();
438     unsigned OldCCMask = Cond[1].getImm();
439     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
440       continue;
441 
442     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
443     return false;
444   }
445 
446   return false;
447 }
448 
449 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
450                                         int *BytesRemoved) const {
451   assert(!BytesRemoved && "code size not handled");
452 
453   // Most of the code and comments here are boilerplate.
454   MachineBasicBlock::iterator I = MBB.end();
455   unsigned Count = 0;
456 
457   while (I != MBB.begin()) {
458     --I;
459     if (I->isDebugValue())
460       continue;
461     if (!I->isBranch())
462       break;
463     if (!getBranchInfo(*I).Target->isMBB())
464       break;
465     // Remove the branch.
466     I->eraseFromParent();
467     I = MBB.end();
468     ++Count;
469   }
470 
471   return Count;
472 }
473 
474 bool SystemZInstrInfo::
475 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
476   assert(Cond.size() == 2 && "Invalid condition");
477   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
478   return false;
479 }
480 
481 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
482                                         MachineBasicBlock *TBB,
483                                         MachineBasicBlock *FBB,
484                                         ArrayRef<MachineOperand> Cond,
485                                         const DebugLoc &DL,
486                                         int *BytesAdded) const {
487   // In this function we output 32-bit branches, which should always
488   // have enough range.  They can be shortened and relaxed by later code
489   // in the pipeline, if desired.
490 
491   // Shouldn't be a fall through.
492   assert(TBB && "insertBranch must not be told to insert a fallthrough");
493   assert((Cond.size() == 2 || Cond.size() == 0) &&
494          "SystemZ branch conditions have one component!");
495   assert(!BytesAdded && "code size not handled");
496 
497   if (Cond.empty()) {
498     // Unconditional branch?
499     assert(!FBB && "Unconditional branch with multiple successors!");
500     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
501     return 1;
502   }
503 
504   // Conditional branch.
505   unsigned Count = 0;
506   unsigned CCValid = Cond[0].getImm();
507   unsigned CCMask = Cond[1].getImm();
508   BuildMI(&MBB, DL, get(SystemZ::BRC))
509     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
510   ++Count;
511 
512   if (FBB) {
513     // Two-way Conditional branch. Insert the second branch.
514     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
515     ++Count;
516   }
517   return Count;
518 }
519 
520 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
521                                       unsigned &SrcReg2, int &Mask,
522                                       int &Value) const {
523   assert(MI.isCompare() && "Caller should have checked for a comparison");
524 
525   if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
526       MI.getOperand(1).isImm()) {
527     SrcReg = MI.getOperand(0).getReg();
528     SrcReg2 = 0;
529     Value = MI.getOperand(1).getImm();
530     Mask = ~0;
531     return true;
532   }
533 
534   return false;
535 }
536 
537 // If Reg is a virtual register, return its definition, otherwise return null.
538 static MachineInstr *getDef(unsigned Reg,
539                             const MachineRegisterInfo *MRI) {
540   if (TargetRegisterInfo::isPhysicalRegister(Reg))
541     return nullptr;
542   return MRI->getUniqueVRegDef(Reg);
543 }
544 
545 // Return true if MI is a shift of type Opcode by Imm bits.
546 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) {
547   return (MI->getOpcode() == Opcode &&
548           !MI->getOperand(2).getReg() &&
549           MI->getOperand(3).getImm() == Imm);
550 }
551 
552 // If the destination of MI has no uses, delete it as dead.
553 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) {
554   if (MRI->use_nodbg_empty(MI->getOperand(0).getReg()))
555     MI->eraseFromParent();
556 }
557 
558 // Compare compares SrcReg against zero.  Check whether SrcReg contains
559 // the result of an IPM sequence whose input CC survives until Compare,
560 // and whether Compare is therefore redundant.  Delete it and return
561 // true if so.
562 static bool removeIPMBasedCompare(MachineInstr &Compare, unsigned SrcReg,
563                                   const MachineRegisterInfo *MRI,
564                                   const TargetRegisterInfo *TRI) {
565   MachineInstr *LGFR = nullptr;
566   MachineInstr *RLL = getDef(SrcReg, MRI);
567   if (RLL && RLL->getOpcode() == SystemZ::LGFR) {
568     LGFR = RLL;
569     RLL = getDef(LGFR->getOperand(1).getReg(), MRI);
570   }
571   if (!RLL || !isShift(RLL, SystemZ::RLL, 31))
572     return false;
573 
574   MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI);
575   if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC))
576     return false;
577 
578   MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI);
579   if (!IPM || IPM->getOpcode() != SystemZ::IPM)
580     return false;
581 
582   // Check that there are no assignments to CC between the IPM and Compare,
583   if (IPM->getParent() != Compare.getParent())
584     return false;
585   MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare.getIterator();
586   for (++MBBI; MBBI != MBBE; ++MBBI) {
587     MachineInstr &MI = *MBBI;
588     if (MI.modifiesRegister(SystemZ::CC, TRI))
589       return false;
590   }
591 
592   Compare.eraseFromParent();
593   if (LGFR)
594     eraseIfDead(LGFR, MRI);
595   eraseIfDead(RLL, MRI);
596   eraseIfDead(SRL, MRI);
597   eraseIfDead(IPM, MRI);
598 
599   return true;
600 }
601 
602 bool SystemZInstrInfo::optimizeCompareInstr(
603     MachineInstr &Compare, unsigned SrcReg, unsigned SrcReg2, int Mask,
604     int Value, const MachineRegisterInfo *MRI) const {
605   assert(!SrcReg2 && "Only optimizing constant comparisons so far");
606   bool IsLogical = (Compare.getDesc().TSFlags & SystemZII::IsLogical) != 0;
607   return Value == 0 && !IsLogical &&
608          removeIPMBasedCompare(Compare, SrcReg, MRI, &RI);
609 }
610 
611 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
612                                        ArrayRef<MachineOperand> Pred,
613                                        unsigned TrueReg, unsigned FalseReg,
614                                        int &CondCycles, int &TrueCycles,
615                                        int &FalseCycles) const {
616   // Not all subtargets have LOCR instructions.
617   if (!STI.hasLoadStoreOnCond())
618     return false;
619   if (Pred.size() != 2)
620     return false;
621 
622   // Check register classes.
623   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
624   const TargetRegisterClass *RC =
625     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
626   if (!RC)
627     return false;
628 
629   // We have LOCR instructions for 32 and 64 bit general purpose registers.
630   if ((STI.hasLoadStoreOnCond2() &&
631        SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
632       SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
633       SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
634     CondCycles = 2;
635     TrueCycles = 2;
636     FalseCycles = 2;
637     return true;
638   }
639 
640   // Can't do anything else.
641   return false;
642 }
643 
644 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
645                                     MachineBasicBlock::iterator I,
646                                     const DebugLoc &DL, unsigned DstReg,
647                                     ArrayRef<MachineOperand> Pred,
648                                     unsigned TrueReg,
649                                     unsigned FalseReg) const {
650   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
651   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
652 
653   assert(Pred.size() == 2 && "Invalid condition");
654   unsigned CCValid = Pred[0].getImm();
655   unsigned CCMask = Pred[1].getImm();
656 
657   unsigned Opc;
658   if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
659     if (STI.hasLoadStoreOnCond2())
660       Opc = SystemZ::LOCRMux;
661     else {
662       Opc = SystemZ::LOCR;
663       MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
664     }
665   } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC))
666     Opc = SystemZ::LOCGR;
667   else
668     llvm_unreachable("Invalid register class");
669 
670   BuildMI(MBB, I, DL, get(Opc), DstReg)
671     .addReg(FalseReg).addReg(TrueReg)
672     .addImm(CCValid).addImm(CCMask);
673 }
674 
675 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
676                                      unsigned Reg,
677                                      MachineRegisterInfo *MRI) const {
678   unsigned DefOpc = DefMI.getOpcode();
679   if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
680       DefOpc != SystemZ::LGHI)
681     return false;
682   if (DefMI.getOperand(0).getReg() != Reg)
683     return false;
684   int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
685 
686   unsigned UseOpc = UseMI.getOpcode();
687   unsigned NewUseOpc;
688   unsigned UseIdx;
689   int CommuteIdx = -1;
690   switch (UseOpc) {
691   case SystemZ::LOCRMux:
692     if (!STI.hasLoadStoreOnCond2())
693       return false;
694     NewUseOpc = SystemZ::LOCHIMux;
695     if (UseMI.getOperand(2).getReg() == Reg)
696       UseIdx = 2;
697     else if (UseMI.getOperand(1).getReg() == Reg)
698       UseIdx = 2, CommuteIdx = 1;
699     else
700       return false;
701     break;
702   case SystemZ::LOCGR:
703     if (!STI.hasLoadStoreOnCond2())
704       return false;
705     NewUseOpc = SystemZ::LOCGHI;
706     if (UseMI.getOperand(2).getReg() == Reg)
707       UseIdx = 2;
708     else if (UseMI.getOperand(1).getReg() == Reg)
709       UseIdx = 2, CommuteIdx = 1;
710     else
711       return false;
712     break;
713   default:
714     return false;
715   }
716 
717   if (CommuteIdx != -1)
718     if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
719       return false;
720 
721   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
722   UseMI.setDesc(get(NewUseOpc));
723   UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
724   if (DeleteDef)
725     DefMI.eraseFromParent();
726 
727   return true;
728 }
729 
730 bool SystemZInstrInfo::isPredicable(MachineInstr &MI) const {
731   unsigned Opcode = MI.getOpcode();
732   if (Opcode == SystemZ::Return ||
733       Opcode == SystemZ::Trap ||
734       Opcode == SystemZ::CallJG ||
735       Opcode == SystemZ::CallBR)
736     return true;
737   return false;
738 }
739 
740 bool SystemZInstrInfo::
741 isProfitableToIfCvt(MachineBasicBlock &MBB,
742                     unsigned NumCycles, unsigned ExtraPredCycles,
743                     BranchProbability Probability) const {
744   // Avoid using conditional returns at the end of a loop (since then
745   // we'd need to emit an unconditional branch to the beginning anyway,
746   // making the loop body longer).  This doesn't apply for low-probability
747   // loops (eg. compare-and-swap retry), so just decide based on branch
748   // probability instead of looping structure.
749   // However, since Compare and Trap instructions cost the same as a regular
750   // Compare instruction, we should allow the if conversion to convert this
751   // into a Conditional Compare regardless of the branch probability.
752   if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
753       MBB.succ_empty() && Probability < BranchProbability(1, 8))
754     return false;
755   // For now only convert single instructions.
756   return NumCycles == 1;
757 }
758 
759 bool SystemZInstrInfo::
760 isProfitableToIfCvt(MachineBasicBlock &TMBB,
761                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
762                     MachineBasicBlock &FMBB,
763                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
764                     BranchProbability Probability) const {
765   // For now avoid converting mutually-exclusive cases.
766   return false;
767 }
768 
769 bool SystemZInstrInfo::
770 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
771                           BranchProbability Probability) const {
772   // For now only duplicate single instructions.
773   return NumCycles == 1;
774 }
775 
776 bool SystemZInstrInfo::PredicateInstruction(
777     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
778   assert(Pred.size() == 2 && "Invalid condition");
779   unsigned CCValid = Pred[0].getImm();
780   unsigned CCMask = Pred[1].getImm();
781   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
782   unsigned Opcode = MI.getOpcode();
783   if (Opcode == SystemZ::Trap) {
784     MI.setDesc(get(SystemZ::CondTrap));
785     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
786       .addImm(CCValid).addImm(CCMask)
787       .addReg(SystemZ::CC, RegState::Implicit);
788     return true;
789   }
790   if (Opcode == SystemZ::Return) {
791     MI.setDesc(get(SystemZ::CondReturn));
792     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
793       .addImm(CCValid).addImm(CCMask)
794       .addReg(SystemZ::CC, RegState::Implicit);
795     return true;
796   }
797   if (Opcode == SystemZ::CallJG) {
798     MachineOperand FirstOp = MI.getOperand(0);
799     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
800     MI.RemoveOperand(1);
801     MI.RemoveOperand(0);
802     MI.setDesc(get(SystemZ::CallBRCL));
803     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
804         .addImm(CCValid)
805         .addImm(CCMask)
806         .add(FirstOp)
807         .addRegMask(RegMask)
808         .addReg(SystemZ::CC, RegState::Implicit);
809     return true;
810   }
811   if (Opcode == SystemZ::CallBR) {
812     const uint32_t *RegMask = MI.getOperand(0).getRegMask();
813     MI.RemoveOperand(0);
814     MI.setDesc(get(SystemZ::CallBCR));
815     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
816       .addImm(CCValid).addImm(CCMask)
817       .addRegMask(RegMask)
818       .addReg(SystemZ::CC, RegState::Implicit);
819     return true;
820   }
821   return false;
822 }
823 
824 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
825                                    MachineBasicBlock::iterator MBBI,
826                                    const DebugLoc &DL, unsigned DestReg,
827                                    unsigned SrcReg, bool KillSrc) const {
828   // Split 128-bit GPR moves into two 64-bit moves.  This handles ADDR128 too.
829   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
830     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
831                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
832     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
833                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
834     return;
835   }
836 
837   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
838     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
839                   false);
840     return;
841   }
842 
843   // Everything else needs only one instruction.
844   unsigned Opcode;
845   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
846     Opcode = SystemZ::LGR;
847   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
848     // For z13 we prefer LDR over LER to avoid partial register dependencies.
849     Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
850   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
851     Opcode = SystemZ::LDR;
852   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
853     Opcode = SystemZ::LXR;
854   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
855     Opcode = SystemZ::VLR32;
856   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
857     Opcode = SystemZ::VLR64;
858   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
859     Opcode = SystemZ::VLR;
860   else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
861     Opcode = SystemZ::CPYA;
862   else if (SystemZ::AR32BitRegClass.contains(DestReg) &&
863            SystemZ::GR32BitRegClass.contains(SrcReg))
864     Opcode = SystemZ::SAR;
865   else if (SystemZ::GR32BitRegClass.contains(DestReg) &&
866            SystemZ::AR32BitRegClass.contains(SrcReg))
867     Opcode = SystemZ::EAR;
868   else
869     llvm_unreachable("Impossible reg-to-reg copy");
870 
871   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
872     .addReg(SrcReg, getKillRegState(KillSrc));
873 }
874 
875 void SystemZInstrInfo::storeRegToStackSlot(
876     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
877     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
878     const TargetRegisterInfo *TRI) const {
879   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
880 
881   // Callers may expect a single instruction, so keep 128-bit moves
882   // together for now and lower them after register allocation.
883   unsigned LoadOpcode, StoreOpcode;
884   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
885   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
886                         .addReg(SrcReg, getKillRegState(isKill)),
887                     FrameIdx);
888 }
889 
890 void SystemZInstrInfo::loadRegFromStackSlot(
891     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
892     int FrameIdx, const TargetRegisterClass *RC,
893     const TargetRegisterInfo *TRI) const {
894   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
895 
896   // Callers may expect a single instruction, so keep 128-bit moves
897   // together for now and lower them after register allocation.
898   unsigned LoadOpcode, StoreOpcode;
899   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
900   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
901                     FrameIdx);
902 }
903 
904 // Return true if MI is a simple load or store with a 12-bit displacement
905 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
906 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
907   const MCInstrDesc &MCID = MI->getDesc();
908   return ((MCID.TSFlags & Flag) &&
909           isUInt<12>(MI->getOperand(2).getImm()) &&
910           MI->getOperand(3).getReg() == 0);
911 }
912 
913 namespace {
914 
915 struct LogicOp {
916   LogicOp() = default;
917   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
918     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
919 
920   explicit operator bool() const { return RegSize; }
921 
922   unsigned RegSize = 0;
923   unsigned ImmLSB = 0;
924   unsigned ImmSize = 0;
925 };
926 
927 } // end anonymous namespace
928 
929 static LogicOp interpretAndImmediate(unsigned Opcode) {
930   switch (Opcode) {
931   case SystemZ::NILMux: return LogicOp(32,  0, 16);
932   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
933   case SystemZ::NILL64: return LogicOp(64,  0, 16);
934   case SystemZ::NILH64: return LogicOp(64, 16, 16);
935   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
936   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
937   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
938   case SystemZ::NILF64: return LogicOp(64,  0, 32);
939   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
940   default:              return LogicOp();
941   }
942 }
943 
944 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
945   if (OldMI->registerDefIsDead(SystemZ::CC)) {
946     MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
947     if (CCDef != nullptr)
948       CCDef->setIsDead(true);
949   }
950 }
951 
952 // Used to return from convertToThreeAddress after replacing two-address
953 // instruction OldMI with three-address instruction NewMI.
954 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
955                                                  MachineInstr *NewMI,
956                                                  LiveVariables *LV) {
957   if (LV) {
958     unsigned NumOps = OldMI->getNumOperands();
959     for (unsigned I = 1; I < NumOps; ++I) {
960       MachineOperand &Op = OldMI->getOperand(I);
961       if (Op.isReg() && Op.isKill())
962         LV->replaceKillInstruction(Op.getReg(), *OldMI, *NewMI);
963     }
964   }
965   transferDeadCC(OldMI, NewMI);
966   return NewMI;
967 }
968 
969 MachineInstr *SystemZInstrInfo::convertToThreeAddress(
970     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
971   MachineBasicBlock *MBB = MI.getParent();
972   MachineFunction *MF = MBB->getParent();
973   MachineRegisterInfo &MRI = MF->getRegInfo();
974 
975   unsigned Opcode = MI.getOpcode();
976   unsigned NumOps = MI.getNumOperands();
977 
978   // Try to convert something like SLL into SLLK, if supported.
979   // We prefer to keep the two-operand form where possible both
980   // because it tends to be shorter and because some instructions
981   // have memory forms that can be used during spilling.
982   if (STI.hasDistinctOps()) {
983     MachineOperand &Dest = MI.getOperand(0);
984     MachineOperand &Src = MI.getOperand(1);
985     unsigned DestReg = Dest.getReg();
986     unsigned SrcReg = Src.getReg();
987     // AHIMux is only really a three-operand instruction when both operands
988     // are low registers.  Try to constrain both operands to be low if
989     // possible.
990     if (Opcode == SystemZ::AHIMux &&
991         TargetRegisterInfo::isVirtualRegister(DestReg) &&
992         TargetRegisterInfo::isVirtualRegister(SrcReg) &&
993         MRI.getRegClass(DestReg)->contains(SystemZ::R1L) &&
994         MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) {
995       MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass);
996       MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass);
997     }
998     int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
999     if (ThreeOperandOpcode >= 0) {
1000       // Create three address instruction without adding the implicit
1001       // operands. Those will instead be copied over from the original
1002       // instruction by the loop below.
1003       MachineInstrBuilder MIB(
1004           *MF, MF->CreateMachineInstr(get(ThreeOperandOpcode), MI.getDebugLoc(),
1005                                       /*NoImplicit=*/true));
1006       MIB.add(Dest);
1007       // Keep the kill state, but drop the tied flag.
1008       MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
1009       // Keep the remaining operands as-is.
1010       for (unsigned I = 2; I < NumOps; ++I)
1011         MIB.add(MI.getOperand(I));
1012       MBB->insert(MI, MIB);
1013       return finishConvertToThreeAddress(&MI, MIB, LV);
1014     }
1015   }
1016 
1017   // Try to convert an AND into an RISBG-type instruction.
1018   if (LogicOp And = interpretAndImmediate(Opcode)) {
1019     uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
1020     // AND IMMEDIATE leaves the other bits of the register unchanged.
1021     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
1022     unsigned Start, End;
1023     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
1024       unsigned NewOpcode;
1025       if (And.RegSize == 64) {
1026         NewOpcode = SystemZ::RISBG;
1027         // Prefer RISBGN if available, since it does not clobber CC.
1028         if (STI.hasMiscellaneousExtensions())
1029           NewOpcode = SystemZ::RISBGN;
1030       } else {
1031         NewOpcode = SystemZ::RISBMux;
1032         Start &= 31;
1033         End &= 31;
1034       }
1035       MachineOperand &Dest = MI.getOperand(0);
1036       MachineOperand &Src = MI.getOperand(1);
1037       MachineInstrBuilder MIB =
1038           BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
1039               .add(Dest)
1040               .addReg(0)
1041               .addReg(Src.getReg(), getKillRegState(Src.isKill()),
1042                       Src.getSubReg())
1043               .addImm(Start)
1044               .addImm(End + 128)
1045               .addImm(0);
1046       return finishConvertToThreeAddress(&MI, MIB, LV);
1047     }
1048   }
1049   return nullptr;
1050 }
1051 
1052 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1053     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1054     MachineBasicBlock::iterator InsertPt, int FrameIndex,
1055     LiveIntervals *LIS) const {
1056   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1057   const MachineFrameInfo &MFI = MF.getFrameInfo();
1058   unsigned Size = MFI.getObjectSize(FrameIndex);
1059   unsigned Opcode = MI.getOpcode();
1060 
1061   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1062     if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1063         isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1064 
1065       // Check CC liveness, since new instruction introduces a dead
1066       // def of CC.
1067       MCRegUnitIterator CCUnit(SystemZ::CC, TRI);
1068       LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit);
1069       ++CCUnit;
1070       assert(!CCUnit.isValid() && "CC only has one reg unit.");
1071       SlotIndex MISlot =
1072           LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1073       if (!CCLiveRange.liveAt(MISlot)) {
1074         // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1075         MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1076                                         MI.getDebugLoc(), get(SystemZ::AGSI))
1077                                     .addFrameIndex(FrameIndex)
1078                                     .addImm(0)
1079                                     .addImm(MI.getOperand(2).getImm());
1080         BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1081         CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator());
1082         return BuiltMI;
1083       }
1084     }
1085     return nullptr;
1086   }
1087 
1088   // All other cases require a single operand.
1089   if (Ops.size() != 1)
1090     return nullptr;
1091 
1092   unsigned OpNum = Ops[0];
1093   assert(Size ==
1094              MF.getRegInfo()
1095                  .getRegClass(MI.getOperand(OpNum).getReg())
1096                  ->getSize() &&
1097          "Invalid size combination");
1098 
1099   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1100       isInt<8>(MI.getOperand(2).getImm())) {
1101     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1102     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1103     MachineInstr *BuiltMI =
1104         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1105             .addFrameIndex(FrameIndex)
1106             .addImm(0)
1107             .addImm(MI.getOperand(2).getImm());
1108     transferDeadCC(&MI, BuiltMI);
1109     return BuiltMI;
1110   }
1111 
1112   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1113     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1114     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1115     // If we're spilling the destination of an LDGR or LGDR, store the
1116     // source register instead.
1117     if (OpNum == 0) {
1118       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1119       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1120                      get(StoreOpcode))
1121           .add(MI.getOperand(1))
1122           .addFrameIndex(FrameIndex)
1123           .addImm(0)
1124           .addReg(0);
1125     }
1126     // If we're spilling the source of an LDGR or LGDR, load the
1127     // destination register instead.
1128     if (OpNum == 1) {
1129       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1130       unsigned Dest = MI.getOperand(0).getReg();
1131       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1132                      get(LoadOpcode), Dest)
1133           .addFrameIndex(FrameIndex)
1134           .addImm(0)
1135           .addReg(0);
1136     }
1137   }
1138 
1139   // Look for cases where the source of a simple store or the destination
1140   // of a simple load is being spilled.  Try to use MVC instead.
1141   //
1142   // Although MVC is in practice a fast choice in these cases, it is still
1143   // logically a bytewise copy.  This means that we cannot use it if the
1144   // load or store is volatile.  We also wouldn't be able to use MVC if
1145   // the two memories partially overlap, but that case cannot occur here,
1146   // because we know that one of the memories is a full frame index.
1147   //
1148   // For performance reasons, we also want to avoid using MVC if the addresses
1149   // might be equal.  We don't worry about that case here, because spill slot
1150   // coloring happens later, and because we have special code to remove
1151   // MVCs that turn out to be redundant.
1152   if (OpNum == 0 && MI.hasOneMemOperand()) {
1153     MachineMemOperand *MMO = *MI.memoperands_begin();
1154     if (MMO->getSize() == Size && !MMO->isVolatile()) {
1155       // Handle conversion of loads.
1156       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1157         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1158                        get(SystemZ::MVC))
1159             .addFrameIndex(FrameIndex)
1160             .addImm(0)
1161             .addImm(Size)
1162             .add(MI.getOperand(1))
1163             .addImm(MI.getOperand(2).getImm())
1164             .addMemOperand(MMO);
1165       }
1166       // Handle conversion of stores.
1167       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1168         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1169                        get(SystemZ::MVC))
1170             .add(MI.getOperand(1))
1171             .addImm(MI.getOperand(2).getImm())
1172             .addImm(Size)
1173             .addFrameIndex(FrameIndex)
1174             .addImm(0)
1175             .addMemOperand(MMO);
1176       }
1177     }
1178   }
1179 
1180   // If the spilled operand is the final one, try to change <INSN>R
1181   // into <INSN>.
1182   int MemOpcode = SystemZ::getMemOpcode(Opcode);
1183   if (MemOpcode >= 0) {
1184     unsigned NumOps = MI.getNumExplicitOperands();
1185     if (OpNum == NumOps - 1) {
1186       const MCInstrDesc &MemDesc = get(MemOpcode);
1187       uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1188       assert(AccessBytes != 0 && "Size of access should be known");
1189       assert(AccessBytes <= Size && "Access outside the frame index");
1190       uint64_t Offset = Size - AccessBytes;
1191       MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1192                                         MI.getDebugLoc(), get(MemOpcode));
1193       for (unsigned I = 0; I < OpNum; ++I)
1194         MIB.add(MI.getOperand(I));
1195       MIB.addFrameIndex(FrameIndex).addImm(Offset);
1196       if (MemDesc.TSFlags & SystemZII::HasIndex)
1197         MIB.addReg(0);
1198       transferDeadCC(&MI, MIB);
1199       return MIB;
1200     }
1201   }
1202 
1203   return nullptr;
1204 }
1205 
1206 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1207     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1208     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1209     LiveIntervals *LIS) const {
1210   return nullptr;
1211 }
1212 
1213 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1214   switch (MI.getOpcode()) {
1215   case SystemZ::L128:
1216     splitMove(MI, SystemZ::LG);
1217     return true;
1218 
1219   case SystemZ::ST128:
1220     splitMove(MI, SystemZ::STG);
1221     return true;
1222 
1223   case SystemZ::LX:
1224     splitMove(MI, SystemZ::LD);
1225     return true;
1226 
1227   case SystemZ::STX:
1228     splitMove(MI, SystemZ::STD);
1229     return true;
1230 
1231   case SystemZ::LBMux:
1232     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1233     return true;
1234 
1235   case SystemZ::LHMux:
1236     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1237     return true;
1238 
1239   case SystemZ::LLCRMux:
1240     expandZExtPseudo(MI, SystemZ::LLCR, 8);
1241     return true;
1242 
1243   case SystemZ::LLHRMux:
1244     expandZExtPseudo(MI, SystemZ::LLHR, 16);
1245     return true;
1246 
1247   case SystemZ::LLCMux:
1248     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1249     return true;
1250 
1251   case SystemZ::LLHMux:
1252     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1253     return true;
1254 
1255   case SystemZ::LMux:
1256     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1257     return true;
1258 
1259   case SystemZ::LOCMux:
1260     expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1261     return true;
1262 
1263   case SystemZ::LOCHIMux:
1264     expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1265     return true;
1266 
1267   case SystemZ::LOCRMux:
1268     expandLOCRPseudo(MI, SystemZ::LOCR, SystemZ::LOCFHR);
1269     return true;
1270 
1271   case SystemZ::STCMux:
1272     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1273     return true;
1274 
1275   case SystemZ::STHMux:
1276     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1277     return true;
1278 
1279   case SystemZ::STMux:
1280     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1281     return true;
1282 
1283   case SystemZ::STOCMux:
1284     expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1285     return true;
1286 
1287   case SystemZ::LHIMux:
1288     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1289     return true;
1290 
1291   case SystemZ::IIFMux:
1292     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1293     return true;
1294 
1295   case SystemZ::IILMux:
1296     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1297     return true;
1298 
1299   case SystemZ::IIHMux:
1300     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1301     return true;
1302 
1303   case SystemZ::NIFMux:
1304     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1305     return true;
1306 
1307   case SystemZ::NILMux:
1308     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1309     return true;
1310 
1311   case SystemZ::NIHMux:
1312     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1313     return true;
1314 
1315   case SystemZ::OIFMux:
1316     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1317     return true;
1318 
1319   case SystemZ::OILMux:
1320     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1321     return true;
1322 
1323   case SystemZ::OIHMux:
1324     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1325     return true;
1326 
1327   case SystemZ::XIFMux:
1328     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1329     return true;
1330 
1331   case SystemZ::TMLMux:
1332     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1333     return true;
1334 
1335   case SystemZ::TMHMux:
1336     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1337     return true;
1338 
1339   case SystemZ::AHIMux:
1340     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1341     return true;
1342 
1343   case SystemZ::AHIMuxK:
1344     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1345     return true;
1346 
1347   case SystemZ::AFIMux:
1348     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1349     return true;
1350 
1351   case SystemZ::CHIMux:
1352     expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1353     return true;
1354 
1355   case SystemZ::CFIMux:
1356     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1357     return true;
1358 
1359   case SystemZ::CLFIMux:
1360     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1361     return true;
1362 
1363   case SystemZ::CMux:
1364     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1365     return true;
1366 
1367   case SystemZ::CLMux:
1368     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1369     return true;
1370 
1371   case SystemZ::RISBMux: {
1372     bool DestIsHigh = isHighReg(MI.getOperand(0).getReg());
1373     bool SrcIsHigh = isHighReg(MI.getOperand(2).getReg());
1374     if (SrcIsHigh == DestIsHigh)
1375       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1376     else {
1377       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1378       MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1379     }
1380     return true;
1381   }
1382 
1383   case SystemZ::ADJDYNALLOC:
1384     splitAdjDynAlloc(MI);
1385     return true;
1386 
1387   case TargetOpcode::LOAD_STACK_GUARD:
1388     expandLoadStackGuard(&MI);
1389     return true;
1390 
1391   default:
1392     return false;
1393   }
1394 }
1395 
1396 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1397   if (MI.getOpcode() == TargetOpcode::INLINEASM) {
1398     const MachineFunction *MF = MI.getParent()->getParent();
1399     const char *AsmStr = MI.getOperand(0).getSymbolName();
1400     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1401   }
1402   return MI.getDesc().getSize();
1403 }
1404 
1405 SystemZII::Branch
1406 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1407   switch (MI.getOpcode()) {
1408   case SystemZ::BR:
1409   case SystemZ::J:
1410   case SystemZ::JG:
1411     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1412                              SystemZ::CCMASK_ANY, &MI.getOperand(0));
1413 
1414   case SystemZ::BRC:
1415   case SystemZ::BRCL:
1416     return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1417                              MI.getOperand(1).getImm(), &MI.getOperand(2));
1418 
1419   case SystemZ::BRCT:
1420   case SystemZ::BRCTH:
1421     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1422                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1423 
1424   case SystemZ::BRCTG:
1425     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1426                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1427 
1428   case SystemZ::CIJ:
1429   case SystemZ::CRJ:
1430     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1431                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1432 
1433   case SystemZ::CLIJ:
1434   case SystemZ::CLRJ:
1435     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1436                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1437 
1438   case SystemZ::CGIJ:
1439   case SystemZ::CGRJ:
1440     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1441                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1442 
1443   case SystemZ::CLGIJ:
1444   case SystemZ::CLGRJ:
1445     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1446                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1447 
1448   default:
1449     llvm_unreachable("Unrecognized branch opcode");
1450   }
1451 }
1452 
1453 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1454                                            unsigned &LoadOpcode,
1455                                            unsigned &StoreOpcode) const {
1456   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1457     LoadOpcode = SystemZ::L;
1458     StoreOpcode = SystemZ::ST;
1459   } else if (RC == &SystemZ::GRH32BitRegClass) {
1460     LoadOpcode = SystemZ::LFH;
1461     StoreOpcode = SystemZ::STFH;
1462   } else if (RC == &SystemZ::GRX32BitRegClass) {
1463     LoadOpcode = SystemZ::LMux;
1464     StoreOpcode = SystemZ::STMux;
1465   } else if (RC == &SystemZ::GR64BitRegClass ||
1466              RC == &SystemZ::ADDR64BitRegClass) {
1467     LoadOpcode = SystemZ::LG;
1468     StoreOpcode = SystemZ::STG;
1469   } else if (RC == &SystemZ::GR128BitRegClass ||
1470              RC == &SystemZ::ADDR128BitRegClass) {
1471     LoadOpcode = SystemZ::L128;
1472     StoreOpcode = SystemZ::ST128;
1473   } else if (RC == &SystemZ::FP32BitRegClass) {
1474     LoadOpcode = SystemZ::LE;
1475     StoreOpcode = SystemZ::STE;
1476   } else if (RC == &SystemZ::FP64BitRegClass) {
1477     LoadOpcode = SystemZ::LD;
1478     StoreOpcode = SystemZ::STD;
1479   } else if (RC == &SystemZ::FP128BitRegClass) {
1480     LoadOpcode = SystemZ::LX;
1481     StoreOpcode = SystemZ::STX;
1482   } else if (RC == &SystemZ::VR32BitRegClass) {
1483     LoadOpcode = SystemZ::VL32;
1484     StoreOpcode = SystemZ::VST32;
1485   } else if (RC == &SystemZ::VR64BitRegClass) {
1486     LoadOpcode = SystemZ::VL64;
1487     StoreOpcode = SystemZ::VST64;
1488   } else if (RC == &SystemZ::VF128BitRegClass ||
1489              RC == &SystemZ::VR128BitRegClass) {
1490     LoadOpcode = SystemZ::VL;
1491     StoreOpcode = SystemZ::VST;
1492   } else
1493     llvm_unreachable("Unsupported regclass to load or store");
1494 }
1495 
1496 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1497                                               int64_t Offset) const {
1498   const MCInstrDesc &MCID = get(Opcode);
1499   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1500   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1501     // Get the instruction to use for unsigned 12-bit displacements.
1502     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1503     if (Disp12Opcode >= 0)
1504       return Disp12Opcode;
1505 
1506     // All address-related instructions can use unsigned 12-bit
1507     // displacements.
1508     return Opcode;
1509   }
1510   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1511     // Get the instruction to use for signed 20-bit displacements.
1512     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1513     if (Disp20Opcode >= 0)
1514       return Disp20Opcode;
1515 
1516     // Check whether Opcode allows signed 20-bit displacements.
1517     if (MCID.TSFlags & SystemZII::Has20BitOffset)
1518       return Opcode;
1519   }
1520   return 0;
1521 }
1522 
1523 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1524   switch (Opcode) {
1525   case SystemZ::L:      return SystemZ::LT;
1526   case SystemZ::LY:     return SystemZ::LT;
1527   case SystemZ::LG:     return SystemZ::LTG;
1528   case SystemZ::LGF:    return SystemZ::LTGF;
1529   case SystemZ::LR:     return SystemZ::LTR;
1530   case SystemZ::LGFR:   return SystemZ::LTGFR;
1531   case SystemZ::LGR:    return SystemZ::LTGR;
1532   case SystemZ::LER:    return SystemZ::LTEBR;
1533   case SystemZ::LDR:    return SystemZ::LTDBR;
1534   case SystemZ::LXR:    return SystemZ::LTXBR;
1535   case SystemZ::LCDFR:  return SystemZ::LCDBR;
1536   case SystemZ::LPDFR:  return SystemZ::LPDBR;
1537   case SystemZ::LNDFR:  return SystemZ::LNDBR;
1538   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1539   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1540   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1541   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1542   // actually use the condition code, we may turn it back into RISGB.
1543   // Note that RISBG is not really a "load-and-test" instruction,
1544   // but sets the same condition code values, so is OK to use here.
1545   case SystemZ::RISBGN: return SystemZ::RISBG;
1546   default:              return 0;
1547   }
1548 }
1549 
1550 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1551 // have already been filtered out.  Store the first set bit in LSB and
1552 // the number of set bits in Length if so.
1553 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1554   unsigned First = findFirstSet(Mask);
1555   uint64_t Top = (Mask >> First) + 1;
1556   if ((Top & -Top) == Top) {
1557     LSB = First;
1558     Length = findFirstSet(Top);
1559     return true;
1560   }
1561   return false;
1562 }
1563 
1564 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1565                                    unsigned &Start, unsigned &End) const {
1566   // Reject trivial all-zero masks.
1567   Mask &= allOnes(BitSize);
1568   if (Mask == 0)
1569     return false;
1570 
1571   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1572   // the msb and End specifies the index of the lsb.
1573   unsigned LSB, Length;
1574   if (isStringOfOnes(Mask, LSB, Length)) {
1575     Start = 63 - (LSB + Length - 1);
1576     End = 63 - LSB;
1577     return true;
1578   }
1579 
1580   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1581   // of the low 1s and End specifies the lsb of the high 1s.
1582   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1583     assert(LSB > 0 && "Bottom bit must be set");
1584     assert(LSB + Length < BitSize && "Top bit must be set");
1585     Start = 63 - (LSB - 1);
1586     End = 63 - (LSB + Length);
1587     return true;
1588   }
1589 
1590   return false;
1591 }
1592 
1593 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1594                                            SystemZII::FusedCompareType Type,
1595                                            const MachineInstr *MI) const {
1596   switch (Opcode) {
1597   case SystemZ::CHI:
1598   case SystemZ::CGHI:
1599     if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1600       return 0;
1601     break;
1602   case SystemZ::CLFI:
1603   case SystemZ::CLGFI:
1604     if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1605       return 0;
1606     break;
1607   case SystemZ::CL:
1608   case SystemZ::CLG:
1609     if (!STI.hasMiscellaneousExtensions())
1610       return 0;
1611     if (!(MI && MI->getOperand(3).getReg() == 0))
1612       return 0;
1613     break;
1614   }
1615   switch (Type) {
1616   case SystemZII::CompareAndBranch:
1617     switch (Opcode) {
1618     case SystemZ::CR:
1619       return SystemZ::CRJ;
1620     case SystemZ::CGR:
1621       return SystemZ::CGRJ;
1622     case SystemZ::CHI:
1623       return SystemZ::CIJ;
1624     case SystemZ::CGHI:
1625       return SystemZ::CGIJ;
1626     case SystemZ::CLR:
1627       return SystemZ::CLRJ;
1628     case SystemZ::CLGR:
1629       return SystemZ::CLGRJ;
1630     case SystemZ::CLFI:
1631       return SystemZ::CLIJ;
1632     case SystemZ::CLGFI:
1633       return SystemZ::CLGIJ;
1634     default:
1635       return 0;
1636     }
1637   case SystemZII::CompareAndReturn:
1638     switch (Opcode) {
1639     case SystemZ::CR:
1640       return SystemZ::CRBReturn;
1641     case SystemZ::CGR:
1642       return SystemZ::CGRBReturn;
1643     case SystemZ::CHI:
1644       return SystemZ::CIBReturn;
1645     case SystemZ::CGHI:
1646       return SystemZ::CGIBReturn;
1647     case SystemZ::CLR:
1648       return SystemZ::CLRBReturn;
1649     case SystemZ::CLGR:
1650       return SystemZ::CLGRBReturn;
1651     case SystemZ::CLFI:
1652       return SystemZ::CLIBReturn;
1653     case SystemZ::CLGFI:
1654       return SystemZ::CLGIBReturn;
1655     default:
1656       return 0;
1657     }
1658   case SystemZII::CompareAndSibcall:
1659     switch (Opcode) {
1660     case SystemZ::CR:
1661       return SystemZ::CRBCall;
1662     case SystemZ::CGR:
1663       return SystemZ::CGRBCall;
1664     case SystemZ::CHI:
1665       return SystemZ::CIBCall;
1666     case SystemZ::CGHI:
1667       return SystemZ::CGIBCall;
1668     case SystemZ::CLR:
1669       return SystemZ::CLRBCall;
1670     case SystemZ::CLGR:
1671       return SystemZ::CLGRBCall;
1672     case SystemZ::CLFI:
1673       return SystemZ::CLIBCall;
1674     case SystemZ::CLGFI:
1675       return SystemZ::CLGIBCall;
1676     default:
1677       return 0;
1678     }
1679   case SystemZII::CompareAndTrap:
1680     switch (Opcode) {
1681     case SystemZ::CR:
1682       return SystemZ::CRT;
1683     case SystemZ::CGR:
1684       return SystemZ::CGRT;
1685     case SystemZ::CHI:
1686       return SystemZ::CIT;
1687     case SystemZ::CGHI:
1688       return SystemZ::CGIT;
1689     case SystemZ::CLR:
1690       return SystemZ::CLRT;
1691     case SystemZ::CLGR:
1692       return SystemZ::CLGRT;
1693     case SystemZ::CLFI:
1694       return SystemZ::CLFIT;
1695     case SystemZ::CLGFI:
1696       return SystemZ::CLGIT;
1697     case SystemZ::CL:
1698       return SystemZ::CLT;
1699     case SystemZ::CLG:
1700       return SystemZ::CLGT;
1701     default:
1702       return 0;
1703     }
1704   }
1705   return 0;
1706 }
1707 
1708 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1709   if (!STI.hasLoadAndTrap())
1710     return 0;
1711   switch (Opcode) {
1712   case SystemZ::L:
1713   case SystemZ::LY:
1714     return SystemZ::LAT;
1715   case SystemZ::LG:
1716     return SystemZ::LGAT;
1717   case SystemZ::LFH:
1718     return SystemZ::LFHAT;
1719   case SystemZ::LLGF:
1720     return SystemZ::LLGFAT;
1721   case SystemZ::LLGT:
1722     return SystemZ::LLGTAT;
1723   }
1724   return 0;
1725 }
1726 
1727 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1728                                      MachineBasicBlock::iterator MBBI,
1729                                      unsigned Reg, uint64_t Value) const {
1730   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1731   unsigned Opcode;
1732   if (isInt<16>(Value))
1733     Opcode = SystemZ::LGHI;
1734   else if (SystemZ::isImmLL(Value))
1735     Opcode = SystemZ::LLILL;
1736   else if (SystemZ::isImmLH(Value)) {
1737     Opcode = SystemZ::LLILH;
1738     Value >>= 16;
1739   } else {
1740     assert(isInt<32>(Value) && "Huge values not handled yet");
1741     Opcode = SystemZ::LGFI;
1742   }
1743   BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1744 }
1745 
1746 bool SystemZInstrInfo::
1747 areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
1748                                 AliasAnalysis *AA) const {
1749 
1750   if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
1751     return false;
1752 
1753   // If mem-operands show that the same address Value is used by both
1754   // instructions, check for non-overlapping offsets and widths. Not
1755   // sure if a register based analysis would be an improvement...
1756 
1757   MachineMemOperand *MMOa = *MIa.memoperands_begin();
1758   MachineMemOperand *MMOb = *MIb.memoperands_begin();
1759   const Value *VALa = MMOa->getValue();
1760   const Value *VALb = MMOb->getValue();
1761   bool SameVal = (VALa && VALb && (VALa == VALb));
1762   if (!SameVal) {
1763     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1764     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1765     if (PSVa && PSVb && (PSVa == PSVb))
1766       SameVal = true;
1767   }
1768   if (SameVal) {
1769     int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
1770     int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
1771     int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1772     int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1773     int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1774     if (LowOffset + LowWidth <= HighOffset)
1775       return true;
1776   }
1777 
1778   return false;
1779 }
1780