1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SystemZ implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MCTargetDesc/SystemZMCTargetDesc.h" 15 #include "SystemZ.h" 16 #include "SystemZInstrBuilder.h" 17 #include "SystemZInstrInfo.h" 18 #include "SystemZSubtarget.h" 19 #include "llvm/CodeGen/LiveInterval.h" 20 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 21 #include "llvm/CodeGen/LiveVariables.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineInstrBuilder.h" 27 #include "llvm/CodeGen/MachineMemOperand.h" 28 #include "llvm/CodeGen/MachineOperand.h" 29 #include "llvm/CodeGen/MachineRegisterInfo.h" 30 #include "llvm/CodeGen/SlotIndexes.h" 31 #include "llvm/MC/MCInstrDesc.h" 32 #include "llvm/MC/MCRegisterInfo.h" 33 #include "llvm/Support/BranchProbability.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <cassert> 40 #include <cstdint> 41 #include <iterator> 42 43 using namespace llvm; 44 45 #define GET_INSTRINFO_CTOR_DTOR 46 #define GET_INSTRMAP_INFO 47 #include "SystemZGenInstrInfo.inc" 48 49 // Return a mask with Count low bits set. 50 static uint64_t allOnes(unsigned int Count) { 51 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 52 } 53 54 // Reg should be a 32-bit GPR. Return true if it is a high register rather 55 // than a low register. 56 static bool isHighReg(unsigned int Reg) { 57 if (SystemZ::GRH32BitRegClass.contains(Reg)) 58 return true; 59 assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32"); 60 return false; 61 } 62 63 // Pin the vtable to this file. 64 void SystemZInstrInfo::anchor() {} 65 66 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti) 67 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 68 RI(), STI(sti) { 69 } 70 71 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 72 // each having the opcode given by NewOpcode. 73 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 74 unsigned NewOpcode) const { 75 MachineBasicBlock *MBB = MI->getParent(); 76 MachineFunction &MF = *MBB->getParent(); 77 78 // Get two load or store instructions. Use the original instruction for one 79 // of them (arbitrarily the second here) and create a clone for the other. 80 MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI); 81 MBB->insert(MI, EarlierMI); 82 83 // Set up the two 64-bit registers. 84 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 85 MachineOperand &LowRegOp = MI->getOperand(0); 86 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); 87 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); 88 89 // The address in the first (high) instruction is already correct. 90 // Adjust the offset in the second (low) instruction. 91 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 92 MachineOperand &LowOffsetOp = MI->getOperand(2); 93 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 94 95 // Clear the kill flags for the base and index registers in the first 96 // instruction. 97 EarlierMI->getOperand(1).setIsKill(false); 98 EarlierMI->getOperand(3).setIsKill(false); 99 100 // Set the opcodes. 101 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 102 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 103 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 104 105 EarlierMI->setDesc(get(HighOpcode)); 106 MI->setDesc(get(LowOpcode)); 107 } 108 109 // Split ADJDYNALLOC instruction MI. 110 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 111 MachineBasicBlock *MBB = MI->getParent(); 112 MachineFunction &MF = *MBB->getParent(); 113 MachineFrameInfo &MFFrame = MF.getFrameInfo(); 114 MachineOperand &OffsetMO = MI->getOperand(2); 115 116 uint64_t Offset = (MFFrame.getMaxCallFrameSize() + 117 SystemZMC::CallFrameSize + 118 OffsetMO.getImm()); 119 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 120 assert(NewOpcode && "No support for huge argument lists yet"); 121 MI->setDesc(get(NewOpcode)); 122 OffsetMO.setImm(Offset); 123 } 124 125 // MI is an RI-style pseudo instruction. Replace it with LowOpcode 126 // if the first operand is a low GR32 and HighOpcode if the first operand 127 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand 128 // and HighOpcode takes an unsigned 32-bit operand. In those cases, 129 // MI has the same kind of operand as LowOpcode, so needs to be converted 130 // if HighOpcode is used. 131 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode, 132 unsigned HighOpcode, 133 bool ConvertHigh) const { 134 unsigned Reg = MI.getOperand(0).getReg(); 135 bool IsHigh = isHighReg(Reg); 136 MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode)); 137 if (IsHigh && ConvertHigh) 138 MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm())); 139 } 140 141 // MI is a three-operand RIE-style pseudo instruction. Replace it with 142 // LowOpcodeK if the registers are both low GR32s, otherwise use a move 143 // followed by HighOpcode or LowOpcode, depending on whether the target 144 // is a high or low GR32. 145 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode, 146 unsigned LowOpcodeK, 147 unsigned HighOpcode) const { 148 unsigned DestReg = MI.getOperand(0).getReg(); 149 unsigned SrcReg = MI.getOperand(1).getReg(); 150 bool DestIsHigh = isHighReg(DestReg); 151 bool SrcIsHigh = isHighReg(SrcReg); 152 if (!DestIsHigh && !SrcIsHigh) 153 MI.setDesc(get(LowOpcodeK)); 154 else { 155 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg, 156 SystemZ::LR, 32, MI.getOperand(1).isKill(), 157 MI.getOperand(1).isUndef()); 158 MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); 159 MI.getOperand(1).setReg(DestReg); 160 MI.tieOperands(0, 1); 161 } 162 } 163 164 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode 165 // if the first operand is a low GR32 and HighOpcode if the first operand 166 // is a high GR32. 167 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode, 168 unsigned HighOpcode) const { 169 unsigned Reg = MI.getOperand(0).getReg(); 170 unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode, 171 MI.getOperand(2).getImm()); 172 MI.setDesc(get(Opcode)); 173 } 174 175 // MI is a load-on-condition pseudo instruction with a single register 176 // (source or destination) operand. Replace it with LowOpcode if the 177 // register is a low GR32 and HighOpcode if the register is a high GR32. 178 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode, 179 unsigned HighOpcode) const { 180 unsigned Reg = MI.getOperand(0).getReg(); 181 unsigned Opcode = isHighReg(Reg) ? HighOpcode : LowOpcode; 182 MI.setDesc(get(Opcode)); 183 } 184 185 // MI is a load-register-on-condition pseudo instruction. Replace it with 186 // LowOpcode if source and destination are both low GR32s and HighOpcode if 187 // source and destination are both high GR32s. 188 void SystemZInstrInfo::expandLOCRPseudo(MachineInstr &MI, unsigned LowOpcode, 189 unsigned HighOpcode) const { 190 unsigned DestReg = MI.getOperand(0).getReg(); 191 unsigned SrcReg = MI.getOperand(2).getReg(); 192 bool DestIsHigh = isHighReg(DestReg); 193 bool SrcIsHigh = isHighReg(SrcReg); 194 195 if (!DestIsHigh && !SrcIsHigh) 196 MI.setDesc(get(LowOpcode)); 197 else if (DestIsHigh && SrcIsHigh) 198 MI.setDesc(get(HighOpcode)); 199 200 // If we were unable to implement the pseudo with a single instruction, we 201 // need to convert it back into a branch sequence. This cannot be done here 202 // since the caller of expandPostRAPseudo does not handle changes to the CFG 203 // correctly. This change is defered to the SystemZExpandPseudo pass. 204 } 205 206 // MI is an RR-style pseudo instruction that zero-extends the low Size bits 207 // of one GRX32 into another. Replace it with LowOpcode if both operands 208 // are low registers, otherwise use RISB[LH]G. 209 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode, 210 unsigned Size) const { 211 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), 212 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode, 213 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef()); 214 MI.eraseFromParent(); 215 } 216 217 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const { 218 MachineBasicBlock *MBB = MI->getParent(); 219 MachineFunction &MF = *MBB->getParent(); 220 const unsigned Reg = MI->getOperand(0).getReg(); 221 222 // Conveniently, all 4 instructions are cloned from LOAD_STACK_GUARD, 223 // so they already have operand 0 set to reg. 224 225 // ear <reg>, %a0 226 MachineInstr *Ear1MI = MF.CloneMachineInstr(MI); 227 MBB->insert(MI, Ear1MI); 228 Ear1MI->setDesc(get(SystemZ::EAR)); 229 MachineInstrBuilder(MF, Ear1MI).addReg(SystemZ::A0); 230 231 // sllg <reg>, <reg>, 32 232 MachineInstr *SllgMI = MF.CloneMachineInstr(MI); 233 MBB->insert(MI, SllgMI); 234 SllgMI->setDesc(get(SystemZ::SLLG)); 235 MachineInstrBuilder(MF, SllgMI).addReg(Reg).addReg(0).addImm(32); 236 237 // ear <reg>, %a1 238 MachineInstr *Ear2MI = MF.CloneMachineInstr(MI); 239 MBB->insert(MI, Ear2MI); 240 Ear2MI->setDesc(get(SystemZ::EAR)); 241 MachineInstrBuilder(MF, Ear2MI).addReg(SystemZ::A1); 242 243 // lg <reg>, 40(<reg>) 244 MI->setDesc(get(SystemZ::LG)); 245 MachineInstrBuilder(MF, MI).addReg(Reg).addImm(40).addReg(0); 246 } 247 248 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR 249 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg 250 // are low registers, otherwise use RISB[LH]G. Size is the number of bits 251 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). 252 // KillSrc is true if this move is the last use of SrcReg. 253 void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, 254 MachineBasicBlock::iterator MBBI, 255 const DebugLoc &DL, unsigned DestReg, 256 unsigned SrcReg, unsigned LowLowOpcode, 257 unsigned Size, bool KillSrc, 258 bool UndefSrc) const { 259 unsigned Opcode; 260 bool DestIsHigh = isHighReg(DestReg); 261 bool SrcIsHigh = isHighReg(SrcReg); 262 if (DestIsHigh && SrcIsHigh) 263 Opcode = SystemZ::RISBHH; 264 else if (DestIsHigh && !SrcIsHigh) 265 Opcode = SystemZ::RISBHL; 266 else if (!DestIsHigh && SrcIsHigh) 267 Opcode = SystemZ::RISBLH; 268 else { 269 BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) 270 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)); 271 return; 272 } 273 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); 274 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 275 .addReg(DestReg, RegState::Undef) 276 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)) 277 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); 278 } 279 280 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI, 281 bool NewMI, 282 unsigned OpIdx1, 283 unsigned OpIdx2) const { 284 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { 285 if (NewMI) 286 return *MI.getParent()->getParent()->CloneMachineInstr(&MI); 287 return MI; 288 }; 289 290 switch (MI.getOpcode()) { 291 case SystemZ::LOCRMux: 292 case SystemZ::LOCFHR: 293 case SystemZ::LOCR: 294 case SystemZ::LOCGR: { 295 auto &WorkingMI = cloneIfNew(MI); 296 // Invert condition. 297 unsigned CCValid = WorkingMI.getOperand(3).getImm(); 298 unsigned CCMask = WorkingMI.getOperand(4).getImm(); 299 WorkingMI.getOperand(4).setImm(CCMask ^ CCValid); 300 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 301 OpIdx1, OpIdx2); 302 } 303 default: 304 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 305 } 306 } 307 308 // If MI is a simple load or store for a frame object, return the register 309 // it loads or stores and set FrameIndex to the index of the frame object. 310 // Return 0 otherwise. 311 // 312 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 313 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex, 314 unsigned Flag) { 315 const MCInstrDesc &MCID = MI.getDesc(); 316 if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() && 317 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) { 318 FrameIndex = MI.getOperand(1).getIndex(); 319 return MI.getOperand(0).getReg(); 320 } 321 return 0; 322 } 323 324 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 325 int &FrameIndex) const { 326 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 327 } 328 329 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 330 int &FrameIndex) const { 331 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 332 } 333 334 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI, 335 int &DestFrameIndex, 336 int &SrcFrameIndex) const { 337 // Check for MVC 0(Length,FI1),0(FI2) 338 const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo(); 339 if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() || 340 MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() || 341 MI.getOperand(4).getImm() != 0) 342 return false; 343 344 // Check that Length covers the full slots. 345 int64_t Length = MI.getOperand(2).getImm(); 346 unsigned FI1 = MI.getOperand(0).getIndex(); 347 unsigned FI2 = MI.getOperand(3).getIndex(); 348 if (MFI.getObjectSize(FI1) != Length || 349 MFI.getObjectSize(FI2) != Length) 350 return false; 351 352 DestFrameIndex = FI1; 353 SrcFrameIndex = FI2; 354 return true; 355 } 356 357 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 358 MachineBasicBlock *&TBB, 359 MachineBasicBlock *&FBB, 360 SmallVectorImpl<MachineOperand> &Cond, 361 bool AllowModify) const { 362 // Most of the code and comments here are boilerplate. 363 364 // Start from the bottom of the block and work up, examining the 365 // terminator instructions. 366 MachineBasicBlock::iterator I = MBB.end(); 367 while (I != MBB.begin()) { 368 --I; 369 if (I->isDebugValue()) 370 continue; 371 372 // Working from the bottom, when we see a non-terminator instruction, we're 373 // done. 374 if (!isUnpredicatedTerminator(*I)) 375 break; 376 377 // A terminator that isn't a branch can't easily be handled by this 378 // analysis. 379 if (!I->isBranch()) 380 return true; 381 382 // Can't handle indirect branches. 383 SystemZII::Branch Branch(getBranchInfo(*I)); 384 if (!Branch.Target->isMBB()) 385 return true; 386 387 // Punt on compound branches. 388 if (Branch.Type != SystemZII::BranchNormal) 389 return true; 390 391 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 392 // Handle unconditional branches. 393 if (!AllowModify) { 394 TBB = Branch.Target->getMBB(); 395 continue; 396 } 397 398 // If the block has any instructions after a JMP, delete them. 399 while (std::next(I) != MBB.end()) 400 std::next(I)->eraseFromParent(); 401 402 Cond.clear(); 403 FBB = nullptr; 404 405 // Delete the JMP if it's equivalent to a fall-through. 406 if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) { 407 TBB = nullptr; 408 I->eraseFromParent(); 409 I = MBB.end(); 410 continue; 411 } 412 413 // TBB is used to indicate the unconditinal destination. 414 TBB = Branch.Target->getMBB(); 415 continue; 416 } 417 418 // Working from the bottom, handle the first conditional branch. 419 if (Cond.empty()) { 420 // FIXME: add X86-style branch swap 421 FBB = TBB; 422 TBB = Branch.Target->getMBB(); 423 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 424 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 425 continue; 426 } 427 428 // Handle subsequent conditional branches. 429 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 430 431 // Only handle the case where all conditional branches branch to the same 432 // destination. 433 if (TBB != Branch.Target->getMBB()) 434 return true; 435 436 // If the conditions are the same, we can leave them alone. 437 unsigned OldCCValid = Cond[0].getImm(); 438 unsigned OldCCMask = Cond[1].getImm(); 439 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 440 continue; 441 442 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 443 return false; 444 } 445 446 return false; 447 } 448 449 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB, 450 int *BytesRemoved) const { 451 assert(!BytesRemoved && "code size not handled"); 452 453 // Most of the code and comments here are boilerplate. 454 MachineBasicBlock::iterator I = MBB.end(); 455 unsigned Count = 0; 456 457 while (I != MBB.begin()) { 458 --I; 459 if (I->isDebugValue()) 460 continue; 461 if (!I->isBranch()) 462 break; 463 if (!getBranchInfo(*I).Target->isMBB()) 464 break; 465 // Remove the branch. 466 I->eraseFromParent(); 467 I = MBB.end(); 468 ++Count; 469 } 470 471 return Count; 472 } 473 474 bool SystemZInstrInfo:: 475 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 476 assert(Cond.size() == 2 && "Invalid condition"); 477 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 478 return false; 479 } 480 481 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB, 482 MachineBasicBlock *TBB, 483 MachineBasicBlock *FBB, 484 ArrayRef<MachineOperand> Cond, 485 const DebugLoc &DL, 486 int *BytesAdded) const { 487 // In this function we output 32-bit branches, which should always 488 // have enough range. They can be shortened and relaxed by later code 489 // in the pipeline, if desired. 490 491 // Shouldn't be a fall through. 492 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 493 assert((Cond.size() == 2 || Cond.size() == 0) && 494 "SystemZ branch conditions have one component!"); 495 assert(!BytesAdded && "code size not handled"); 496 497 if (Cond.empty()) { 498 // Unconditional branch? 499 assert(!FBB && "Unconditional branch with multiple successors!"); 500 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 501 return 1; 502 } 503 504 // Conditional branch. 505 unsigned Count = 0; 506 unsigned CCValid = Cond[0].getImm(); 507 unsigned CCMask = Cond[1].getImm(); 508 BuildMI(&MBB, DL, get(SystemZ::BRC)) 509 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 510 ++Count; 511 512 if (FBB) { 513 // Two-way Conditional branch. Insert the second branch. 514 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 515 ++Count; 516 } 517 return Count; 518 } 519 520 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 521 unsigned &SrcReg2, int &Mask, 522 int &Value) const { 523 assert(MI.isCompare() && "Caller should have checked for a comparison"); 524 525 if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() && 526 MI.getOperand(1).isImm()) { 527 SrcReg = MI.getOperand(0).getReg(); 528 SrcReg2 = 0; 529 Value = MI.getOperand(1).getImm(); 530 Mask = ~0; 531 return true; 532 } 533 534 return false; 535 } 536 537 // If Reg is a virtual register, return its definition, otherwise return null. 538 static MachineInstr *getDef(unsigned Reg, 539 const MachineRegisterInfo *MRI) { 540 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 541 return nullptr; 542 return MRI->getUniqueVRegDef(Reg); 543 } 544 545 // Return true if MI is a shift of type Opcode by Imm bits. 546 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) { 547 return (MI->getOpcode() == Opcode && 548 !MI->getOperand(2).getReg() && 549 MI->getOperand(3).getImm() == Imm); 550 } 551 552 // If the destination of MI has no uses, delete it as dead. 553 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) { 554 if (MRI->use_nodbg_empty(MI->getOperand(0).getReg())) 555 MI->eraseFromParent(); 556 } 557 558 // Compare compares SrcReg against zero. Check whether SrcReg contains 559 // the result of an IPM sequence whose input CC survives until Compare, 560 // and whether Compare is therefore redundant. Delete it and return 561 // true if so. 562 static bool removeIPMBasedCompare(MachineInstr &Compare, unsigned SrcReg, 563 const MachineRegisterInfo *MRI, 564 const TargetRegisterInfo *TRI) { 565 MachineInstr *LGFR = nullptr; 566 MachineInstr *RLL = getDef(SrcReg, MRI); 567 if (RLL && RLL->getOpcode() == SystemZ::LGFR) { 568 LGFR = RLL; 569 RLL = getDef(LGFR->getOperand(1).getReg(), MRI); 570 } 571 if (!RLL || !isShift(RLL, SystemZ::RLL, 31)) 572 return false; 573 574 MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI); 575 if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC)) 576 return false; 577 578 MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI); 579 if (!IPM || IPM->getOpcode() != SystemZ::IPM) 580 return false; 581 582 // Check that there are no assignments to CC between the IPM and Compare, 583 if (IPM->getParent() != Compare.getParent()) 584 return false; 585 MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare.getIterator(); 586 for (++MBBI; MBBI != MBBE; ++MBBI) { 587 MachineInstr &MI = *MBBI; 588 if (MI.modifiesRegister(SystemZ::CC, TRI)) 589 return false; 590 } 591 592 Compare.eraseFromParent(); 593 if (LGFR) 594 eraseIfDead(LGFR, MRI); 595 eraseIfDead(RLL, MRI); 596 eraseIfDead(SRL, MRI); 597 eraseIfDead(IPM, MRI); 598 599 return true; 600 } 601 602 bool SystemZInstrInfo::optimizeCompareInstr( 603 MachineInstr &Compare, unsigned SrcReg, unsigned SrcReg2, int Mask, 604 int Value, const MachineRegisterInfo *MRI) const { 605 assert(!SrcReg2 && "Only optimizing constant comparisons so far"); 606 bool IsLogical = (Compare.getDesc().TSFlags & SystemZII::IsLogical) != 0; 607 return Value == 0 && !IsLogical && 608 removeIPMBasedCompare(Compare, SrcReg, MRI, &RI); 609 } 610 611 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 612 ArrayRef<MachineOperand> Pred, 613 unsigned TrueReg, unsigned FalseReg, 614 int &CondCycles, int &TrueCycles, 615 int &FalseCycles) const { 616 // Not all subtargets have LOCR instructions. 617 if (!STI.hasLoadStoreOnCond()) 618 return false; 619 if (Pred.size() != 2) 620 return false; 621 622 // Check register classes. 623 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 624 const TargetRegisterClass *RC = 625 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 626 if (!RC) 627 return false; 628 629 // We have LOCR instructions for 32 and 64 bit general purpose registers. 630 if ((STI.hasLoadStoreOnCond2() && 631 SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) || 632 SystemZ::GR32BitRegClass.hasSubClassEq(RC) || 633 SystemZ::GR64BitRegClass.hasSubClassEq(RC)) { 634 CondCycles = 2; 635 TrueCycles = 2; 636 FalseCycles = 2; 637 return true; 638 } 639 640 // Can't do anything else. 641 return false; 642 } 643 644 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB, 645 MachineBasicBlock::iterator I, 646 const DebugLoc &DL, unsigned DstReg, 647 ArrayRef<MachineOperand> Pred, 648 unsigned TrueReg, 649 unsigned FalseReg) const { 650 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 651 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 652 653 assert(Pred.size() == 2 && "Invalid condition"); 654 unsigned CCValid = Pred[0].getImm(); 655 unsigned CCMask = Pred[1].getImm(); 656 657 unsigned Opc; 658 if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) { 659 if (STI.hasLoadStoreOnCond2()) 660 Opc = SystemZ::LOCRMux; 661 else { 662 Opc = SystemZ::LOCR; 663 MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass); 664 } 665 } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) 666 Opc = SystemZ::LOCGR; 667 else 668 llvm_unreachable("Invalid register class"); 669 670 BuildMI(MBB, I, DL, get(Opc), DstReg) 671 .addReg(FalseReg).addReg(TrueReg) 672 .addImm(CCValid).addImm(CCMask); 673 } 674 675 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 676 unsigned Reg, 677 MachineRegisterInfo *MRI) const { 678 unsigned DefOpc = DefMI.getOpcode(); 679 if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI && 680 DefOpc != SystemZ::LGHI) 681 return false; 682 if (DefMI.getOperand(0).getReg() != Reg) 683 return false; 684 int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm(); 685 686 unsigned UseOpc = UseMI.getOpcode(); 687 unsigned NewUseOpc; 688 unsigned UseIdx; 689 int CommuteIdx = -1; 690 switch (UseOpc) { 691 case SystemZ::LOCRMux: 692 if (!STI.hasLoadStoreOnCond2()) 693 return false; 694 NewUseOpc = SystemZ::LOCHIMux; 695 if (UseMI.getOperand(2).getReg() == Reg) 696 UseIdx = 2; 697 else if (UseMI.getOperand(1).getReg() == Reg) 698 UseIdx = 2, CommuteIdx = 1; 699 else 700 return false; 701 break; 702 case SystemZ::LOCGR: 703 if (!STI.hasLoadStoreOnCond2()) 704 return false; 705 NewUseOpc = SystemZ::LOCGHI; 706 if (UseMI.getOperand(2).getReg() == Reg) 707 UseIdx = 2; 708 else if (UseMI.getOperand(1).getReg() == Reg) 709 UseIdx = 2, CommuteIdx = 1; 710 else 711 return false; 712 break; 713 default: 714 return false; 715 } 716 717 if (CommuteIdx != -1) 718 if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx)) 719 return false; 720 721 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 722 UseMI.setDesc(get(NewUseOpc)); 723 UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal); 724 if (DeleteDef) 725 DefMI.eraseFromParent(); 726 727 return true; 728 } 729 730 bool SystemZInstrInfo::isPredicable(MachineInstr &MI) const { 731 unsigned Opcode = MI.getOpcode(); 732 if (Opcode == SystemZ::Return || 733 Opcode == SystemZ::Trap || 734 Opcode == SystemZ::CallJG || 735 Opcode == SystemZ::CallBR) 736 return true; 737 return false; 738 } 739 740 bool SystemZInstrInfo:: 741 isProfitableToIfCvt(MachineBasicBlock &MBB, 742 unsigned NumCycles, unsigned ExtraPredCycles, 743 BranchProbability Probability) const { 744 // Avoid using conditional returns at the end of a loop (since then 745 // we'd need to emit an unconditional branch to the beginning anyway, 746 // making the loop body longer). This doesn't apply for low-probability 747 // loops (eg. compare-and-swap retry), so just decide based on branch 748 // probability instead of looping structure. 749 // However, since Compare and Trap instructions cost the same as a regular 750 // Compare instruction, we should allow the if conversion to convert this 751 // into a Conditional Compare regardless of the branch probability. 752 if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap && 753 MBB.succ_empty() && Probability < BranchProbability(1, 8)) 754 return false; 755 // For now only convert single instructions. 756 return NumCycles == 1; 757 } 758 759 bool SystemZInstrInfo:: 760 isProfitableToIfCvt(MachineBasicBlock &TMBB, 761 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 762 MachineBasicBlock &FMBB, 763 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 764 BranchProbability Probability) const { 765 // For now avoid converting mutually-exclusive cases. 766 return false; 767 } 768 769 bool SystemZInstrInfo:: 770 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 771 BranchProbability Probability) const { 772 // For now only duplicate single instructions. 773 return NumCycles == 1; 774 } 775 776 bool SystemZInstrInfo::PredicateInstruction( 777 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 778 assert(Pred.size() == 2 && "Invalid condition"); 779 unsigned CCValid = Pred[0].getImm(); 780 unsigned CCMask = Pred[1].getImm(); 781 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 782 unsigned Opcode = MI.getOpcode(); 783 if (Opcode == SystemZ::Trap) { 784 MI.setDesc(get(SystemZ::CondTrap)); 785 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 786 .addImm(CCValid).addImm(CCMask) 787 .addReg(SystemZ::CC, RegState::Implicit); 788 return true; 789 } 790 if (Opcode == SystemZ::Return) { 791 MI.setDesc(get(SystemZ::CondReturn)); 792 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 793 .addImm(CCValid).addImm(CCMask) 794 .addReg(SystemZ::CC, RegState::Implicit); 795 return true; 796 } 797 if (Opcode == SystemZ::CallJG) { 798 MachineOperand FirstOp = MI.getOperand(0); 799 const uint32_t *RegMask = MI.getOperand(1).getRegMask(); 800 MI.RemoveOperand(1); 801 MI.RemoveOperand(0); 802 MI.setDesc(get(SystemZ::CallBRCL)); 803 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 804 .addImm(CCValid) 805 .addImm(CCMask) 806 .add(FirstOp) 807 .addRegMask(RegMask) 808 .addReg(SystemZ::CC, RegState::Implicit); 809 return true; 810 } 811 if (Opcode == SystemZ::CallBR) { 812 const uint32_t *RegMask = MI.getOperand(0).getRegMask(); 813 MI.RemoveOperand(0); 814 MI.setDesc(get(SystemZ::CallBCR)); 815 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 816 .addImm(CCValid).addImm(CCMask) 817 .addRegMask(RegMask) 818 .addReg(SystemZ::CC, RegState::Implicit); 819 return true; 820 } 821 return false; 822 } 823 824 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 825 MachineBasicBlock::iterator MBBI, 826 const DebugLoc &DL, unsigned DestReg, 827 unsigned SrcReg, bool KillSrc) const { 828 // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too. 829 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 830 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), 831 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); 832 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), 833 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); 834 return; 835 } 836 837 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { 838 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc, 839 false); 840 return; 841 } 842 843 // Everything else needs only one instruction. 844 unsigned Opcode; 845 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 846 Opcode = SystemZ::LGR; 847 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 848 // For z13 we prefer LDR over LER to avoid partial register dependencies. 849 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER; 850 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 851 Opcode = SystemZ::LDR; 852 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 853 Opcode = SystemZ::LXR; 854 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg)) 855 Opcode = SystemZ::VLR32; 856 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg)) 857 Opcode = SystemZ::VLR64; 858 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg)) 859 Opcode = SystemZ::VLR; 860 else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg)) 861 Opcode = SystemZ::CPYA; 862 else if (SystemZ::AR32BitRegClass.contains(DestReg) && 863 SystemZ::GR32BitRegClass.contains(SrcReg)) 864 Opcode = SystemZ::SAR; 865 else if (SystemZ::GR32BitRegClass.contains(DestReg) && 866 SystemZ::AR32BitRegClass.contains(SrcReg)) 867 Opcode = SystemZ::EAR; 868 else 869 llvm_unreachable("Impossible reg-to-reg copy"); 870 871 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 872 .addReg(SrcReg, getKillRegState(KillSrc)); 873 } 874 875 void SystemZInstrInfo::storeRegToStackSlot( 876 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, 877 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 878 const TargetRegisterInfo *TRI) const { 879 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 880 881 // Callers may expect a single instruction, so keep 128-bit moves 882 // together for now and lower them after register allocation. 883 unsigned LoadOpcode, StoreOpcode; 884 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 885 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 886 .addReg(SrcReg, getKillRegState(isKill)), 887 FrameIdx); 888 } 889 890 void SystemZInstrInfo::loadRegFromStackSlot( 891 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, 892 int FrameIdx, const TargetRegisterClass *RC, 893 const TargetRegisterInfo *TRI) const { 894 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 895 896 // Callers may expect a single instruction, so keep 128-bit moves 897 // together for now and lower them after register allocation. 898 unsigned LoadOpcode, StoreOpcode; 899 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 900 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 901 FrameIdx); 902 } 903 904 // Return true if MI is a simple load or store with a 12-bit displacement 905 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 906 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 907 const MCInstrDesc &MCID = MI->getDesc(); 908 return ((MCID.TSFlags & Flag) && 909 isUInt<12>(MI->getOperand(2).getImm()) && 910 MI->getOperand(3).getReg() == 0); 911 } 912 913 namespace { 914 915 struct LogicOp { 916 LogicOp() = default; 917 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 918 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 919 920 explicit operator bool() const { return RegSize; } 921 922 unsigned RegSize = 0; 923 unsigned ImmLSB = 0; 924 unsigned ImmSize = 0; 925 }; 926 927 } // end anonymous namespace 928 929 static LogicOp interpretAndImmediate(unsigned Opcode) { 930 switch (Opcode) { 931 case SystemZ::NILMux: return LogicOp(32, 0, 16); 932 case SystemZ::NIHMux: return LogicOp(32, 16, 16); 933 case SystemZ::NILL64: return LogicOp(64, 0, 16); 934 case SystemZ::NILH64: return LogicOp(64, 16, 16); 935 case SystemZ::NIHL64: return LogicOp(64, 32, 16); 936 case SystemZ::NIHH64: return LogicOp(64, 48, 16); 937 case SystemZ::NIFMux: return LogicOp(32, 0, 32); 938 case SystemZ::NILF64: return LogicOp(64, 0, 32); 939 case SystemZ::NIHF64: return LogicOp(64, 32, 32); 940 default: return LogicOp(); 941 } 942 } 943 944 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) { 945 if (OldMI->registerDefIsDead(SystemZ::CC)) { 946 MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC); 947 if (CCDef != nullptr) 948 CCDef->setIsDead(true); 949 } 950 } 951 952 // Used to return from convertToThreeAddress after replacing two-address 953 // instruction OldMI with three-address instruction NewMI. 954 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI, 955 MachineInstr *NewMI, 956 LiveVariables *LV) { 957 if (LV) { 958 unsigned NumOps = OldMI->getNumOperands(); 959 for (unsigned I = 1; I < NumOps; ++I) { 960 MachineOperand &Op = OldMI->getOperand(I); 961 if (Op.isReg() && Op.isKill()) 962 LV->replaceKillInstruction(Op.getReg(), *OldMI, *NewMI); 963 } 964 } 965 transferDeadCC(OldMI, NewMI); 966 return NewMI; 967 } 968 969 MachineInstr *SystemZInstrInfo::convertToThreeAddress( 970 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 971 MachineBasicBlock *MBB = MI.getParent(); 972 MachineFunction *MF = MBB->getParent(); 973 MachineRegisterInfo &MRI = MF->getRegInfo(); 974 975 unsigned Opcode = MI.getOpcode(); 976 unsigned NumOps = MI.getNumOperands(); 977 978 // Try to convert something like SLL into SLLK, if supported. 979 // We prefer to keep the two-operand form where possible both 980 // because it tends to be shorter and because some instructions 981 // have memory forms that can be used during spilling. 982 if (STI.hasDistinctOps()) { 983 MachineOperand &Dest = MI.getOperand(0); 984 MachineOperand &Src = MI.getOperand(1); 985 unsigned DestReg = Dest.getReg(); 986 unsigned SrcReg = Src.getReg(); 987 // AHIMux is only really a three-operand instruction when both operands 988 // are low registers. Try to constrain both operands to be low if 989 // possible. 990 if (Opcode == SystemZ::AHIMux && 991 TargetRegisterInfo::isVirtualRegister(DestReg) && 992 TargetRegisterInfo::isVirtualRegister(SrcReg) && 993 MRI.getRegClass(DestReg)->contains(SystemZ::R1L) && 994 MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) { 995 MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass); 996 MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass); 997 } 998 int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); 999 if (ThreeOperandOpcode >= 0) { 1000 // Create three address instruction without adding the implicit 1001 // operands. Those will instead be copied over from the original 1002 // instruction by the loop below. 1003 MachineInstrBuilder MIB( 1004 *MF, MF->CreateMachineInstr(get(ThreeOperandOpcode), MI.getDebugLoc(), 1005 /*NoImplicit=*/true)); 1006 MIB.add(Dest); 1007 // Keep the kill state, but drop the tied flag. 1008 MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()); 1009 // Keep the remaining operands as-is. 1010 for (unsigned I = 2; I < NumOps; ++I) 1011 MIB.add(MI.getOperand(I)); 1012 MBB->insert(MI, MIB); 1013 return finishConvertToThreeAddress(&MI, MIB, LV); 1014 } 1015 } 1016 1017 // Try to convert an AND into an RISBG-type instruction. 1018 if (LogicOp And = interpretAndImmediate(Opcode)) { 1019 uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB; 1020 // AND IMMEDIATE leaves the other bits of the register unchanged. 1021 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 1022 unsigned Start, End; 1023 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 1024 unsigned NewOpcode; 1025 if (And.RegSize == 64) { 1026 NewOpcode = SystemZ::RISBG; 1027 // Prefer RISBGN if available, since it does not clobber CC. 1028 if (STI.hasMiscellaneousExtensions()) 1029 NewOpcode = SystemZ::RISBGN; 1030 } else { 1031 NewOpcode = SystemZ::RISBMux; 1032 Start &= 31; 1033 End &= 31; 1034 } 1035 MachineOperand &Dest = MI.getOperand(0); 1036 MachineOperand &Src = MI.getOperand(1); 1037 MachineInstrBuilder MIB = 1038 BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode)) 1039 .add(Dest) 1040 .addReg(0) 1041 .addReg(Src.getReg(), getKillRegState(Src.isKill()), 1042 Src.getSubReg()) 1043 .addImm(Start) 1044 .addImm(End + 128) 1045 .addImm(0); 1046 return finishConvertToThreeAddress(&MI, MIB, LV); 1047 } 1048 } 1049 return nullptr; 1050 } 1051 1052 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1053 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1054 MachineBasicBlock::iterator InsertPt, int FrameIndex, 1055 LiveIntervals *LIS) const { 1056 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1057 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1058 unsigned Size = MFI.getObjectSize(FrameIndex); 1059 unsigned Opcode = MI.getOpcode(); 1060 1061 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 1062 if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && 1063 isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) { 1064 1065 // Check CC liveness, since new instruction introduces a dead 1066 // def of CC. 1067 MCRegUnitIterator CCUnit(SystemZ::CC, TRI); 1068 LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit); 1069 ++CCUnit; 1070 assert(!CCUnit.isValid() && "CC only has one reg unit."); 1071 SlotIndex MISlot = 1072 LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot(); 1073 if (!CCLiveRange.liveAt(MISlot)) { 1074 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST 1075 MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt, 1076 MI.getDebugLoc(), get(SystemZ::AGSI)) 1077 .addFrameIndex(FrameIndex) 1078 .addImm(0) 1079 .addImm(MI.getOperand(2).getImm()); 1080 BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true); 1081 CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator()); 1082 return BuiltMI; 1083 } 1084 } 1085 return nullptr; 1086 } 1087 1088 // All other cases require a single operand. 1089 if (Ops.size() != 1) 1090 return nullptr; 1091 1092 unsigned OpNum = Ops[0]; 1093 assert(Size == 1094 MF.getRegInfo() 1095 .getRegClass(MI.getOperand(OpNum).getReg()) 1096 ->getSize() && 1097 "Invalid size combination"); 1098 1099 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 && 1100 isInt<8>(MI.getOperand(2).getImm())) { 1101 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST 1102 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); 1103 MachineInstr *BuiltMI = 1104 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1105 .addFrameIndex(FrameIndex) 1106 .addImm(0) 1107 .addImm(MI.getOperand(2).getImm()); 1108 transferDeadCC(&MI, BuiltMI); 1109 return BuiltMI; 1110 } 1111 1112 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 1113 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 1114 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 1115 // If we're spilling the destination of an LDGR or LGDR, store the 1116 // source register instead. 1117 if (OpNum == 0) { 1118 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 1119 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1120 get(StoreOpcode)) 1121 .add(MI.getOperand(1)) 1122 .addFrameIndex(FrameIndex) 1123 .addImm(0) 1124 .addReg(0); 1125 } 1126 // If we're spilling the source of an LDGR or LGDR, load the 1127 // destination register instead. 1128 if (OpNum == 1) { 1129 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 1130 unsigned Dest = MI.getOperand(0).getReg(); 1131 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1132 get(LoadOpcode), Dest) 1133 .addFrameIndex(FrameIndex) 1134 .addImm(0) 1135 .addReg(0); 1136 } 1137 } 1138 1139 // Look for cases where the source of a simple store or the destination 1140 // of a simple load is being spilled. Try to use MVC instead. 1141 // 1142 // Although MVC is in practice a fast choice in these cases, it is still 1143 // logically a bytewise copy. This means that we cannot use it if the 1144 // load or store is volatile. We also wouldn't be able to use MVC if 1145 // the two memories partially overlap, but that case cannot occur here, 1146 // because we know that one of the memories is a full frame index. 1147 // 1148 // For performance reasons, we also want to avoid using MVC if the addresses 1149 // might be equal. We don't worry about that case here, because spill slot 1150 // coloring happens later, and because we have special code to remove 1151 // MVCs that turn out to be redundant. 1152 if (OpNum == 0 && MI.hasOneMemOperand()) { 1153 MachineMemOperand *MMO = *MI.memoperands_begin(); 1154 if (MMO->getSize() == Size && !MMO->isVolatile()) { 1155 // Handle conversion of loads. 1156 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) { 1157 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1158 get(SystemZ::MVC)) 1159 .addFrameIndex(FrameIndex) 1160 .addImm(0) 1161 .addImm(Size) 1162 .add(MI.getOperand(1)) 1163 .addImm(MI.getOperand(2).getImm()) 1164 .addMemOperand(MMO); 1165 } 1166 // Handle conversion of stores. 1167 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) { 1168 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1169 get(SystemZ::MVC)) 1170 .add(MI.getOperand(1)) 1171 .addImm(MI.getOperand(2).getImm()) 1172 .addImm(Size) 1173 .addFrameIndex(FrameIndex) 1174 .addImm(0) 1175 .addMemOperand(MMO); 1176 } 1177 } 1178 } 1179 1180 // If the spilled operand is the final one, try to change <INSN>R 1181 // into <INSN>. 1182 int MemOpcode = SystemZ::getMemOpcode(Opcode); 1183 if (MemOpcode >= 0) { 1184 unsigned NumOps = MI.getNumExplicitOperands(); 1185 if (OpNum == NumOps - 1) { 1186 const MCInstrDesc &MemDesc = get(MemOpcode); 1187 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 1188 assert(AccessBytes != 0 && "Size of access should be known"); 1189 assert(AccessBytes <= Size && "Access outside the frame index"); 1190 uint64_t Offset = Size - AccessBytes; 1191 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 1192 MI.getDebugLoc(), get(MemOpcode)); 1193 for (unsigned I = 0; I < OpNum; ++I) 1194 MIB.add(MI.getOperand(I)); 1195 MIB.addFrameIndex(FrameIndex).addImm(Offset); 1196 if (MemDesc.TSFlags & SystemZII::HasIndex) 1197 MIB.addReg(0); 1198 transferDeadCC(&MI, MIB); 1199 return MIB; 1200 } 1201 } 1202 1203 return nullptr; 1204 } 1205 1206 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1207 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1208 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 1209 LiveIntervals *LIS) const { 1210 return nullptr; 1211 } 1212 1213 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1214 switch (MI.getOpcode()) { 1215 case SystemZ::L128: 1216 splitMove(MI, SystemZ::LG); 1217 return true; 1218 1219 case SystemZ::ST128: 1220 splitMove(MI, SystemZ::STG); 1221 return true; 1222 1223 case SystemZ::LX: 1224 splitMove(MI, SystemZ::LD); 1225 return true; 1226 1227 case SystemZ::STX: 1228 splitMove(MI, SystemZ::STD); 1229 return true; 1230 1231 case SystemZ::LBMux: 1232 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); 1233 return true; 1234 1235 case SystemZ::LHMux: 1236 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); 1237 return true; 1238 1239 case SystemZ::LLCRMux: 1240 expandZExtPseudo(MI, SystemZ::LLCR, 8); 1241 return true; 1242 1243 case SystemZ::LLHRMux: 1244 expandZExtPseudo(MI, SystemZ::LLHR, 16); 1245 return true; 1246 1247 case SystemZ::LLCMux: 1248 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); 1249 return true; 1250 1251 case SystemZ::LLHMux: 1252 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); 1253 return true; 1254 1255 case SystemZ::LMux: 1256 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); 1257 return true; 1258 1259 case SystemZ::LOCMux: 1260 expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH); 1261 return true; 1262 1263 case SystemZ::LOCHIMux: 1264 expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI); 1265 return true; 1266 1267 case SystemZ::LOCRMux: 1268 expandLOCRPseudo(MI, SystemZ::LOCR, SystemZ::LOCFHR); 1269 return true; 1270 1271 case SystemZ::STCMux: 1272 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); 1273 return true; 1274 1275 case SystemZ::STHMux: 1276 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); 1277 return true; 1278 1279 case SystemZ::STMux: 1280 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); 1281 return true; 1282 1283 case SystemZ::STOCMux: 1284 expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH); 1285 return true; 1286 1287 case SystemZ::LHIMux: 1288 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); 1289 return true; 1290 1291 case SystemZ::IIFMux: 1292 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); 1293 return true; 1294 1295 case SystemZ::IILMux: 1296 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); 1297 return true; 1298 1299 case SystemZ::IIHMux: 1300 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); 1301 return true; 1302 1303 case SystemZ::NIFMux: 1304 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); 1305 return true; 1306 1307 case SystemZ::NILMux: 1308 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); 1309 return true; 1310 1311 case SystemZ::NIHMux: 1312 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); 1313 return true; 1314 1315 case SystemZ::OIFMux: 1316 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); 1317 return true; 1318 1319 case SystemZ::OILMux: 1320 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); 1321 return true; 1322 1323 case SystemZ::OIHMux: 1324 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); 1325 return true; 1326 1327 case SystemZ::XIFMux: 1328 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); 1329 return true; 1330 1331 case SystemZ::TMLMux: 1332 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); 1333 return true; 1334 1335 case SystemZ::TMHMux: 1336 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); 1337 return true; 1338 1339 case SystemZ::AHIMux: 1340 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); 1341 return true; 1342 1343 case SystemZ::AHIMuxK: 1344 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); 1345 return true; 1346 1347 case SystemZ::AFIMux: 1348 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); 1349 return true; 1350 1351 case SystemZ::CHIMux: 1352 expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false); 1353 return true; 1354 1355 case SystemZ::CFIMux: 1356 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); 1357 return true; 1358 1359 case SystemZ::CLFIMux: 1360 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); 1361 return true; 1362 1363 case SystemZ::CMux: 1364 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); 1365 return true; 1366 1367 case SystemZ::CLMux: 1368 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); 1369 return true; 1370 1371 case SystemZ::RISBMux: { 1372 bool DestIsHigh = isHighReg(MI.getOperand(0).getReg()); 1373 bool SrcIsHigh = isHighReg(MI.getOperand(2).getReg()); 1374 if (SrcIsHigh == DestIsHigh) 1375 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); 1376 else { 1377 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); 1378 MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32); 1379 } 1380 return true; 1381 } 1382 1383 case SystemZ::ADJDYNALLOC: 1384 splitAdjDynAlloc(MI); 1385 return true; 1386 1387 case TargetOpcode::LOAD_STACK_GUARD: 1388 expandLoadStackGuard(&MI); 1389 return true; 1390 1391 default: 1392 return false; 1393 } 1394 } 1395 1396 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1397 if (MI.getOpcode() == TargetOpcode::INLINEASM) { 1398 const MachineFunction *MF = MI.getParent()->getParent(); 1399 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1400 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1401 } 1402 return MI.getDesc().getSize(); 1403 } 1404 1405 SystemZII::Branch 1406 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const { 1407 switch (MI.getOpcode()) { 1408 case SystemZ::BR: 1409 case SystemZ::J: 1410 case SystemZ::JG: 1411 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 1412 SystemZ::CCMASK_ANY, &MI.getOperand(0)); 1413 1414 case SystemZ::BRC: 1415 case SystemZ::BRCL: 1416 return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(), 1417 MI.getOperand(1).getImm(), &MI.getOperand(2)); 1418 1419 case SystemZ::BRCT: 1420 case SystemZ::BRCTH: 1421 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 1422 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1423 1424 case SystemZ::BRCTG: 1425 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 1426 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1427 1428 case SystemZ::CIJ: 1429 case SystemZ::CRJ: 1430 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 1431 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1432 1433 case SystemZ::CLIJ: 1434 case SystemZ::CLRJ: 1435 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, 1436 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1437 1438 case SystemZ::CGIJ: 1439 case SystemZ::CGRJ: 1440 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 1441 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1442 1443 case SystemZ::CLGIJ: 1444 case SystemZ::CLGRJ: 1445 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, 1446 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1447 1448 default: 1449 llvm_unreachable("Unrecognized branch opcode"); 1450 } 1451 } 1452 1453 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 1454 unsigned &LoadOpcode, 1455 unsigned &StoreOpcode) const { 1456 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 1457 LoadOpcode = SystemZ::L; 1458 StoreOpcode = SystemZ::ST; 1459 } else if (RC == &SystemZ::GRH32BitRegClass) { 1460 LoadOpcode = SystemZ::LFH; 1461 StoreOpcode = SystemZ::STFH; 1462 } else if (RC == &SystemZ::GRX32BitRegClass) { 1463 LoadOpcode = SystemZ::LMux; 1464 StoreOpcode = SystemZ::STMux; 1465 } else if (RC == &SystemZ::GR64BitRegClass || 1466 RC == &SystemZ::ADDR64BitRegClass) { 1467 LoadOpcode = SystemZ::LG; 1468 StoreOpcode = SystemZ::STG; 1469 } else if (RC == &SystemZ::GR128BitRegClass || 1470 RC == &SystemZ::ADDR128BitRegClass) { 1471 LoadOpcode = SystemZ::L128; 1472 StoreOpcode = SystemZ::ST128; 1473 } else if (RC == &SystemZ::FP32BitRegClass) { 1474 LoadOpcode = SystemZ::LE; 1475 StoreOpcode = SystemZ::STE; 1476 } else if (RC == &SystemZ::FP64BitRegClass) { 1477 LoadOpcode = SystemZ::LD; 1478 StoreOpcode = SystemZ::STD; 1479 } else if (RC == &SystemZ::FP128BitRegClass) { 1480 LoadOpcode = SystemZ::LX; 1481 StoreOpcode = SystemZ::STX; 1482 } else if (RC == &SystemZ::VR32BitRegClass) { 1483 LoadOpcode = SystemZ::VL32; 1484 StoreOpcode = SystemZ::VST32; 1485 } else if (RC == &SystemZ::VR64BitRegClass) { 1486 LoadOpcode = SystemZ::VL64; 1487 StoreOpcode = SystemZ::VST64; 1488 } else if (RC == &SystemZ::VF128BitRegClass || 1489 RC == &SystemZ::VR128BitRegClass) { 1490 LoadOpcode = SystemZ::VL; 1491 StoreOpcode = SystemZ::VST; 1492 } else 1493 llvm_unreachable("Unsupported regclass to load or store"); 1494 } 1495 1496 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 1497 int64_t Offset) const { 1498 const MCInstrDesc &MCID = get(Opcode); 1499 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 1500 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 1501 // Get the instruction to use for unsigned 12-bit displacements. 1502 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 1503 if (Disp12Opcode >= 0) 1504 return Disp12Opcode; 1505 1506 // All address-related instructions can use unsigned 12-bit 1507 // displacements. 1508 return Opcode; 1509 } 1510 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 1511 // Get the instruction to use for signed 20-bit displacements. 1512 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 1513 if (Disp20Opcode >= 0) 1514 return Disp20Opcode; 1515 1516 // Check whether Opcode allows signed 20-bit displacements. 1517 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1518 return Opcode; 1519 } 1520 return 0; 1521 } 1522 1523 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 1524 switch (Opcode) { 1525 case SystemZ::L: return SystemZ::LT; 1526 case SystemZ::LY: return SystemZ::LT; 1527 case SystemZ::LG: return SystemZ::LTG; 1528 case SystemZ::LGF: return SystemZ::LTGF; 1529 case SystemZ::LR: return SystemZ::LTR; 1530 case SystemZ::LGFR: return SystemZ::LTGFR; 1531 case SystemZ::LGR: return SystemZ::LTGR; 1532 case SystemZ::LER: return SystemZ::LTEBR; 1533 case SystemZ::LDR: return SystemZ::LTDBR; 1534 case SystemZ::LXR: return SystemZ::LTXBR; 1535 case SystemZ::LCDFR: return SystemZ::LCDBR; 1536 case SystemZ::LPDFR: return SystemZ::LPDBR; 1537 case SystemZ::LNDFR: return SystemZ::LNDBR; 1538 case SystemZ::LCDFR_32: return SystemZ::LCEBR; 1539 case SystemZ::LPDFR_32: return SystemZ::LPEBR; 1540 case SystemZ::LNDFR_32: return SystemZ::LNEBR; 1541 // On zEC12 we prefer to use RISBGN. But if there is a chance to 1542 // actually use the condition code, we may turn it back into RISGB. 1543 // Note that RISBG is not really a "load-and-test" instruction, 1544 // but sets the same condition code values, so is OK to use here. 1545 case SystemZ::RISBGN: return SystemZ::RISBG; 1546 default: return 0; 1547 } 1548 } 1549 1550 // Return true if Mask matches the regexp 0*1+0*, given that zero masks 1551 // have already been filtered out. Store the first set bit in LSB and 1552 // the number of set bits in Length if so. 1553 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { 1554 unsigned First = findFirstSet(Mask); 1555 uint64_t Top = (Mask >> First) + 1; 1556 if ((Top & -Top) == Top) { 1557 LSB = First; 1558 Length = findFirstSet(Top); 1559 return true; 1560 } 1561 return false; 1562 } 1563 1564 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 1565 unsigned &Start, unsigned &End) const { 1566 // Reject trivial all-zero masks. 1567 Mask &= allOnes(BitSize); 1568 if (Mask == 0) 1569 return false; 1570 1571 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 1572 // the msb and End specifies the index of the lsb. 1573 unsigned LSB, Length; 1574 if (isStringOfOnes(Mask, LSB, Length)) { 1575 Start = 63 - (LSB + Length - 1); 1576 End = 63 - LSB; 1577 return true; 1578 } 1579 1580 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 1581 // of the low 1s and End specifies the lsb of the high 1s. 1582 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { 1583 assert(LSB > 0 && "Bottom bit must be set"); 1584 assert(LSB + Length < BitSize && "Top bit must be set"); 1585 Start = 63 - (LSB - 1); 1586 End = 63 - (LSB + Length); 1587 return true; 1588 } 1589 1590 return false; 1591 } 1592 1593 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode, 1594 SystemZII::FusedCompareType Type, 1595 const MachineInstr *MI) const { 1596 switch (Opcode) { 1597 case SystemZ::CHI: 1598 case SystemZ::CGHI: 1599 if (!(MI && isInt<8>(MI->getOperand(1).getImm()))) 1600 return 0; 1601 break; 1602 case SystemZ::CLFI: 1603 case SystemZ::CLGFI: 1604 if (!(MI && isUInt<8>(MI->getOperand(1).getImm()))) 1605 return 0; 1606 break; 1607 case SystemZ::CL: 1608 case SystemZ::CLG: 1609 if (!STI.hasMiscellaneousExtensions()) 1610 return 0; 1611 if (!(MI && MI->getOperand(3).getReg() == 0)) 1612 return 0; 1613 break; 1614 } 1615 switch (Type) { 1616 case SystemZII::CompareAndBranch: 1617 switch (Opcode) { 1618 case SystemZ::CR: 1619 return SystemZ::CRJ; 1620 case SystemZ::CGR: 1621 return SystemZ::CGRJ; 1622 case SystemZ::CHI: 1623 return SystemZ::CIJ; 1624 case SystemZ::CGHI: 1625 return SystemZ::CGIJ; 1626 case SystemZ::CLR: 1627 return SystemZ::CLRJ; 1628 case SystemZ::CLGR: 1629 return SystemZ::CLGRJ; 1630 case SystemZ::CLFI: 1631 return SystemZ::CLIJ; 1632 case SystemZ::CLGFI: 1633 return SystemZ::CLGIJ; 1634 default: 1635 return 0; 1636 } 1637 case SystemZII::CompareAndReturn: 1638 switch (Opcode) { 1639 case SystemZ::CR: 1640 return SystemZ::CRBReturn; 1641 case SystemZ::CGR: 1642 return SystemZ::CGRBReturn; 1643 case SystemZ::CHI: 1644 return SystemZ::CIBReturn; 1645 case SystemZ::CGHI: 1646 return SystemZ::CGIBReturn; 1647 case SystemZ::CLR: 1648 return SystemZ::CLRBReturn; 1649 case SystemZ::CLGR: 1650 return SystemZ::CLGRBReturn; 1651 case SystemZ::CLFI: 1652 return SystemZ::CLIBReturn; 1653 case SystemZ::CLGFI: 1654 return SystemZ::CLGIBReturn; 1655 default: 1656 return 0; 1657 } 1658 case SystemZII::CompareAndSibcall: 1659 switch (Opcode) { 1660 case SystemZ::CR: 1661 return SystemZ::CRBCall; 1662 case SystemZ::CGR: 1663 return SystemZ::CGRBCall; 1664 case SystemZ::CHI: 1665 return SystemZ::CIBCall; 1666 case SystemZ::CGHI: 1667 return SystemZ::CGIBCall; 1668 case SystemZ::CLR: 1669 return SystemZ::CLRBCall; 1670 case SystemZ::CLGR: 1671 return SystemZ::CLGRBCall; 1672 case SystemZ::CLFI: 1673 return SystemZ::CLIBCall; 1674 case SystemZ::CLGFI: 1675 return SystemZ::CLGIBCall; 1676 default: 1677 return 0; 1678 } 1679 case SystemZII::CompareAndTrap: 1680 switch (Opcode) { 1681 case SystemZ::CR: 1682 return SystemZ::CRT; 1683 case SystemZ::CGR: 1684 return SystemZ::CGRT; 1685 case SystemZ::CHI: 1686 return SystemZ::CIT; 1687 case SystemZ::CGHI: 1688 return SystemZ::CGIT; 1689 case SystemZ::CLR: 1690 return SystemZ::CLRT; 1691 case SystemZ::CLGR: 1692 return SystemZ::CLGRT; 1693 case SystemZ::CLFI: 1694 return SystemZ::CLFIT; 1695 case SystemZ::CLGFI: 1696 return SystemZ::CLGIT; 1697 case SystemZ::CL: 1698 return SystemZ::CLT; 1699 case SystemZ::CLG: 1700 return SystemZ::CLGT; 1701 default: 1702 return 0; 1703 } 1704 } 1705 return 0; 1706 } 1707 1708 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const { 1709 if (!STI.hasLoadAndTrap()) 1710 return 0; 1711 switch (Opcode) { 1712 case SystemZ::L: 1713 case SystemZ::LY: 1714 return SystemZ::LAT; 1715 case SystemZ::LG: 1716 return SystemZ::LGAT; 1717 case SystemZ::LFH: 1718 return SystemZ::LFHAT; 1719 case SystemZ::LLGF: 1720 return SystemZ::LLGFAT; 1721 case SystemZ::LLGT: 1722 return SystemZ::LLGTAT; 1723 } 1724 return 0; 1725 } 1726 1727 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 1728 MachineBasicBlock::iterator MBBI, 1729 unsigned Reg, uint64_t Value) const { 1730 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1731 unsigned Opcode; 1732 if (isInt<16>(Value)) 1733 Opcode = SystemZ::LGHI; 1734 else if (SystemZ::isImmLL(Value)) 1735 Opcode = SystemZ::LLILL; 1736 else if (SystemZ::isImmLH(Value)) { 1737 Opcode = SystemZ::LLILH; 1738 Value >>= 16; 1739 } else { 1740 assert(isInt<32>(Value) && "Huge values not handled yet"); 1741 Opcode = SystemZ::LGFI; 1742 } 1743 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 1744 } 1745 1746 bool SystemZInstrInfo:: 1747 areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb, 1748 AliasAnalysis *AA) const { 1749 1750 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) 1751 return false; 1752 1753 // If mem-operands show that the same address Value is used by both 1754 // instructions, check for non-overlapping offsets and widths. Not 1755 // sure if a register based analysis would be an improvement... 1756 1757 MachineMemOperand *MMOa = *MIa.memoperands_begin(); 1758 MachineMemOperand *MMOb = *MIb.memoperands_begin(); 1759 const Value *VALa = MMOa->getValue(); 1760 const Value *VALb = MMOb->getValue(); 1761 bool SameVal = (VALa && VALb && (VALa == VALb)); 1762 if (!SameVal) { 1763 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1764 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1765 if (PSVa && PSVb && (PSVa == PSVb)) 1766 SameVal = true; 1767 } 1768 if (SameVal) { 1769 int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset(); 1770 int WidthA = MMOa->getSize(), WidthB = MMOb->getSize(); 1771 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 1772 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 1773 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 1774 if (LowOffset + LowWidth <= HighOffset) 1775 return true; 1776 } 1777 1778 return false; 1779 } 1780