1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SystemZ implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZInstrInfo.h" 15 #include "SystemZTargetMachine.h" 16 #include "SystemZInstrBuilder.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 20 #define GET_INSTRINFO_CTOR 21 #define GET_INSTRMAP_INFO 22 #include "SystemZGenInstrInfo.inc" 23 24 using namespace llvm; 25 26 // Return a mask with Count low bits set. 27 static uint64_t allOnes(unsigned int Count) { 28 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 29 } 30 31 // Reg should be a 32-bit GPR. Return true if it is a high register rather 32 // than a low register. 33 static bool isHighReg(unsigned int Reg) { 34 if (SystemZ::GRH32BitRegClass.contains(Reg)) 35 return true; 36 assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32"); 37 return false; 38 } 39 40 SystemZInstrInfo::SystemZInstrInfo(SystemZTargetMachine &tm) 41 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 42 RI(tm), TM(tm) { 43 } 44 45 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 46 // each having the opcode given by NewOpcode. 47 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 48 unsigned NewOpcode) const { 49 MachineBasicBlock *MBB = MI->getParent(); 50 MachineFunction &MF = *MBB->getParent(); 51 52 // Get two load or store instructions. Use the original instruction for one 53 // of them (arbitarily the second here) and create a clone for the other. 54 MachineInstr *EarlierMI = MF.CloneMachineInstr(MI); 55 MBB->insert(MI, EarlierMI); 56 57 // Set up the two 64-bit registers. 58 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 59 MachineOperand &LowRegOp = MI->getOperand(0); 60 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); 61 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); 62 63 // The address in the first (high) instruction is already correct. 64 // Adjust the offset in the second (low) instruction. 65 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 66 MachineOperand &LowOffsetOp = MI->getOperand(2); 67 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 68 69 // Set the opcodes. 70 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 71 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 72 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 73 74 EarlierMI->setDesc(get(HighOpcode)); 75 MI->setDesc(get(LowOpcode)); 76 } 77 78 // Split ADJDYNALLOC instruction MI. 79 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 80 MachineBasicBlock *MBB = MI->getParent(); 81 MachineFunction &MF = *MBB->getParent(); 82 MachineFrameInfo *MFFrame = MF.getFrameInfo(); 83 MachineOperand &OffsetMO = MI->getOperand(2); 84 85 uint64_t Offset = (MFFrame->getMaxCallFrameSize() + 86 SystemZMC::CallFrameSize + 87 OffsetMO.getImm()); 88 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 89 assert(NewOpcode && "No support for huge argument lists yet"); 90 MI->setDesc(get(NewOpcode)); 91 OffsetMO.setImm(Offset); 92 } 93 94 // MI is an RI-style pseudo instruction. Replace it with LowOpcode 95 // if the first operand is a low GR32 and HighOpcode if the first operand 96 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand 97 // and HighOpcode takes an unsigned 32-bit operand. In those cases, 98 // MI has the same kind of operand as LowOpcode, so needs to be converted 99 // if HighOpcode is used. 100 void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode, 101 unsigned HighOpcode, 102 bool ConvertHigh) const { 103 unsigned Reg = MI->getOperand(0).getReg(); 104 bool IsHigh = isHighReg(Reg); 105 MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode)); 106 if (IsHigh && ConvertHigh) 107 MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm())); 108 } 109 110 // MI is a three-operand RIE-style pseudo instruction. Replace it with 111 // LowOpcode3 if the registers are both low GR32s, otherwise use a move 112 // followed by HighOpcode or LowOpcode, depending on whether the target 113 // is a high or low GR32. 114 void SystemZInstrInfo::expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode, 115 unsigned LowOpcodeK, 116 unsigned HighOpcode) const { 117 unsigned DestReg = MI->getOperand(0).getReg(); 118 unsigned SrcReg = MI->getOperand(1).getReg(); 119 bool DestIsHigh = isHighReg(DestReg); 120 bool SrcIsHigh = isHighReg(SrcReg); 121 if (!DestIsHigh && !SrcIsHigh) 122 MI->setDesc(get(LowOpcodeK)); 123 else { 124 emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(), 125 DestReg, SrcReg, SystemZ::LR, 32, 126 MI->getOperand(1).isKill()); 127 MI->setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); 128 MI->getOperand(1).setReg(DestReg); 129 } 130 } 131 132 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode 133 // if the first operand is a low GR32 and HighOpcode if the first operand 134 // is a high GR32. 135 void SystemZInstrInfo::expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode, 136 unsigned HighOpcode) const { 137 unsigned Reg = MI->getOperand(0).getReg(); 138 unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode, 139 MI->getOperand(2).getImm()); 140 MI->setDesc(get(Opcode)); 141 } 142 143 // MI is an RR-style pseudo instruction that zero-extends the low Size bits 144 // of one GRX32 into another. Replace it with LowOpcode if both operands 145 // are low registers, otherwise use RISB[LH]G. 146 void SystemZInstrInfo::expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode, 147 unsigned Size) const { 148 emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(), 149 MI->getOperand(0).getReg(), MI->getOperand(1).getReg(), 150 LowOpcode, Size, MI->getOperand(1).isKill()); 151 MI->eraseFromParent(); 152 } 153 154 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR 155 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg 156 // are low registers, otherwise use RISB[LH]G. Size is the number of bits 157 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). 158 // KillSrc is true if this move is the last use of SrcReg. 159 void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, 160 MachineBasicBlock::iterator MBBI, 161 DebugLoc DL, unsigned DestReg, 162 unsigned SrcReg, unsigned LowLowOpcode, 163 unsigned Size, bool KillSrc) const { 164 unsigned Opcode; 165 bool DestIsHigh = isHighReg(DestReg); 166 bool SrcIsHigh = isHighReg(SrcReg); 167 if (DestIsHigh && SrcIsHigh) 168 Opcode = SystemZ::RISBHH; 169 else if (DestIsHigh && !SrcIsHigh) 170 Opcode = SystemZ::RISBHL; 171 else if (!DestIsHigh && SrcIsHigh) 172 Opcode = SystemZ::RISBLH; 173 else { 174 BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) 175 .addReg(SrcReg, getKillRegState(KillSrc)); 176 return; 177 } 178 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); 179 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 180 .addReg(DestReg, RegState::Undef) 181 .addReg(SrcReg, getKillRegState(KillSrc)) 182 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); 183 } 184 185 // If MI is a simple load or store for a frame object, return the register 186 // it loads or stores and set FrameIndex to the index of the frame object. 187 // Return 0 otherwise. 188 // 189 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 190 static int isSimpleMove(const MachineInstr *MI, int &FrameIndex, 191 unsigned Flag) { 192 const MCInstrDesc &MCID = MI->getDesc(); 193 if ((MCID.TSFlags & Flag) && 194 MI->getOperand(1).isFI() && 195 MI->getOperand(2).getImm() == 0 && 196 MI->getOperand(3).getReg() == 0) { 197 FrameIndex = MI->getOperand(1).getIndex(); 198 return MI->getOperand(0).getReg(); 199 } 200 return 0; 201 } 202 203 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 204 int &FrameIndex) const { 205 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 206 } 207 208 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 209 int &FrameIndex) const { 210 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 211 } 212 213 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI, 214 int &DestFrameIndex, 215 int &SrcFrameIndex) const { 216 // Check for MVC 0(Length,FI1),0(FI2) 217 const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo(); 218 if (MI->getOpcode() != SystemZ::MVC || 219 !MI->getOperand(0).isFI() || 220 MI->getOperand(1).getImm() != 0 || 221 !MI->getOperand(3).isFI() || 222 MI->getOperand(4).getImm() != 0) 223 return false; 224 225 // Check that Length covers the full slots. 226 int64_t Length = MI->getOperand(2).getImm(); 227 unsigned FI1 = MI->getOperand(0).getIndex(); 228 unsigned FI2 = MI->getOperand(3).getIndex(); 229 if (MFI->getObjectSize(FI1) != Length || 230 MFI->getObjectSize(FI2) != Length) 231 return false; 232 233 DestFrameIndex = FI1; 234 SrcFrameIndex = FI2; 235 return true; 236 } 237 238 bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 239 MachineBasicBlock *&TBB, 240 MachineBasicBlock *&FBB, 241 SmallVectorImpl<MachineOperand> &Cond, 242 bool AllowModify) const { 243 // Most of the code and comments here are boilerplate. 244 245 // Start from the bottom of the block and work up, examining the 246 // terminator instructions. 247 MachineBasicBlock::iterator I = MBB.end(); 248 while (I != MBB.begin()) { 249 --I; 250 if (I->isDebugValue()) 251 continue; 252 253 // Working from the bottom, when we see a non-terminator instruction, we're 254 // done. 255 if (!isUnpredicatedTerminator(I)) 256 break; 257 258 // A terminator that isn't a branch can't easily be handled by this 259 // analysis. 260 if (!I->isBranch()) 261 return true; 262 263 // Can't handle indirect branches. 264 SystemZII::Branch Branch(getBranchInfo(I)); 265 if (!Branch.Target->isMBB()) 266 return true; 267 268 // Punt on compound branches. 269 if (Branch.Type != SystemZII::BranchNormal) 270 return true; 271 272 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 273 // Handle unconditional branches. 274 if (!AllowModify) { 275 TBB = Branch.Target->getMBB(); 276 continue; 277 } 278 279 // If the block has any instructions after a JMP, delete them. 280 while (llvm::next(I) != MBB.end()) 281 llvm::next(I)->eraseFromParent(); 282 283 Cond.clear(); 284 FBB = 0; 285 286 // Delete the JMP if it's equivalent to a fall-through. 287 if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) { 288 TBB = 0; 289 I->eraseFromParent(); 290 I = MBB.end(); 291 continue; 292 } 293 294 // TBB is used to indicate the unconditinal destination. 295 TBB = Branch.Target->getMBB(); 296 continue; 297 } 298 299 // Working from the bottom, handle the first conditional branch. 300 if (Cond.empty()) { 301 // FIXME: add X86-style branch swap 302 FBB = TBB; 303 TBB = Branch.Target->getMBB(); 304 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 305 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 306 continue; 307 } 308 309 // Handle subsequent conditional branches. 310 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 311 312 // Only handle the case where all conditional branches branch to the same 313 // destination. 314 if (TBB != Branch.Target->getMBB()) 315 return true; 316 317 // If the conditions are the same, we can leave them alone. 318 unsigned OldCCValid = Cond[0].getImm(); 319 unsigned OldCCMask = Cond[1].getImm(); 320 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 321 continue; 322 323 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 324 return false; 325 } 326 327 return false; 328 } 329 330 unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 331 // Most of the code and comments here are boilerplate. 332 MachineBasicBlock::iterator I = MBB.end(); 333 unsigned Count = 0; 334 335 while (I != MBB.begin()) { 336 --I; 337 if (I->isDebugValue()) 338 continue; 339 if (!I->isBranch()) 340 break; 341 if (!getBranchInfo(I).Target->isMBB()) 342 break; 343 // Remove the branch. 344 I->eraseFromParent(); 345 I = MBB.end(); 346 ++Count; 347 } 348 349 return Count; 350 } 351 352 bool SystemZInstrInfo:: 353 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 354 assert(Cond.size() == 2 && "Invalid condition"); 355 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 356 return false; 357 } 358 359 unsigned 360 SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 361 MachineBasicBlock *FBB, 362 const SmallVectorImpl<MachineOperand> &Cond, 363 DebugLoc DL) const { 364 // In this function we output 32-bit branches, which should always 365 // have enough range. They can be shortened and relaxed by later code 366 // in the pipeline, if desired. 367 368 // Shouldn't be a fall through. 369 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 370 assert((Cond.size() == 2 || Cond.size() == 0) && 371 "SystemZ branch conditions have one component!"); 372 373 if (Cond.empty()) { 374 // Unconditional branch? 375 assert(!FBB && "Unconditional branch with multiple successors!"); 376 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 377 return 1; 378 } 379 380 // Conditional branch. 381 unsigned Count = 0; 382 unsigned CCValid = Cond[0].getImm(); 383 unsigned CCMask = Cond[1].getImm(); 384 BuildMI(&MBB, DL, get(SystemZ::BRC)) 385 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 386 ++Count; 387 388 if (FBB) { 389 // Two-way Conditional branch. Insert the second branch. 390 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 391 ++Count; 392 } 393 return Count; 394 } 395 396 bool SystemZInstrInfo::analyzeCompare(const MachineInstr *MI, 397 unsigned &SrcReg, unsigned &SrcReg2, 398 int &Mask, int &Value) const { 399 assert(MI->isCompare() && "Caller should have checked for a comparison"); 400 401 if (MI->getNumExplicitOperands() == 2 && 402 MI->getOperand(0).isReg() && 403 MI->getOperand(1).isImm()) { 404 SrcReg = MI->getOperand(0).getReg(); 405 SrcReg2 = 0; 406 Value = MI->getOperand(1).getImm(); 407 Mask = ~0; 408 return true; 409 } 410 411 return false; 412 } 413 414 // If Reg is a virtual register, return its definition, otherwise return null. 415 static MachineInstr *getDef(unsigned Reg, 416 const MachineRegisterInfo *MRI) { 417 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 418 return 0; 419 return MRI->getUniqueVRegDef(Reg); 420 } 421 422 // Return true if MI is a shift of type Opcode by Imm bits. 423 static bool isShift(MachineInstr *MI, int Opcode, int64_t Imm) { 424 return (MI->getOpcode() == Opcode && 425 !MI->getOperand(2).getReg() && 426 MI->getOperand(3).getImm() == Imm); 427 } 428 429 // If the destination of MI has no uses, delete it as dead. 430 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) { 431 if (MRI->use_nodbg_empty(MI->getOperand(0).getReg())) 432 MI->eraseFromParent(); 433 } 434 435 // Compare compares SrcReg against zero. Check whether SrcReg contains 436 // the result of an IPM sequence whose input CC survives until Compare, 437 // and whether Compare is therefore redundant. Delete it and return 438 // true if so. 439 static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg, 440 const MachineRegisterInfo *MRI, 441 const TargetRegisterInfo *TRI) { 442 MachineInstr *LGFR = 0; 443 MachineInstr *RLL = getDef(SrcReg, MRI); 444 if (RLL && RLL->getOpcode() == SystemZ::LGFR) { 445 LGFR = RLL; 446 RLL = getDef(LGFR->getOperand(1).getReg(), MRI); 447 } 448 if (!RLL || !isShift(RLL, SystemZ::RLL, 31)) 449 return false; 450 451 MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI); 452 if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC)) 453 return false; 454 455 MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI); 456 if (!IPM || IPM->getOpcode() != SystemZ::IPM) 457 return false; 458 459 // Check that there are no assignments to CC between the IPM and Compare, 460 if (IPM->getParent() != Compare->getParent()) 461 return false; 462 MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare; 463 for (++MBBI; MBBI != MBBE; ++MBBI) { 464 MachineInstr *MI = MBBI; 465 if (MI->modifiesRegister(SystemZ::CC, TRI)) 466 return false; 467 } 468 469 Compare->eraseFromParent(); 470 if (LGFR) 471 eraseIfDead(LGFR, MRI); 472 eraseIfDead(RLL, MRI); 473 eraseIfDead(SRL, MRI); 474 eraseIfDead(IPM, MRI); 475 476 return true; 477 } 478 479 bool 480 SystemZInstrInfo::optimizeCompareInstr(MachineInstr *Compare, 481 unsigned SrcReg, unsigned SrcReg2, 482 int Mask, int Value, 483 const MachineRegisterInfo *MRI) const { 484 assert(!SrcReg2 && "Only optimizing constant comparisons so far"); 485 bool IsLogical = (Compare->getDesc().TSFlags & SystemZII::IsLogical) != 0; 486 if (Value == 0 && 487 !IsLogical && 488 removeIPMBasedCompare(Compare, SrcReg, MRI, TM.getRegisterInfo())) 489 return true; 490 return false; 491 } 492 493 // If Opcode is a move that has a conditional variant, return that variant, 494 // otherwise return 0. 495 static unsigned getConditionalMove(unsigned Opcode) { 496 switch (Opcode) { 497 case SystemZ::LR: return SystemZ::LOCR; 498 case SystemZ::LGR: return SystemZ::LOCGR; 499 default: return 0; 500 } 501 } 502 503 bool SystemZInstrInfo::isPredicable(MachineInstr *MI) const { 504 unsigned Opcode = MI->getOpcode(); 505 if (TM.getSubtargetImpl()->hasLoadStoreOnCond() && 506 getConditionalMove(Opcode)) 507 return true; 508 return false; 509 } 510 511 bool SystemZInstrInfo:: 512 isProfitableToIfCvt(MachineBasicBlock &MBB, 513 unsigned NumCycles, unsigned ExtraPredCycles, 514 const BranchProbability &Probability) const { 515 // For now only convert single instructions. 516 return NumCycles == 1; 517 } 518 519 bool SystemZInstrInfo:: 520 isProfitableToIfCvt(MachineBasicBlock &TMBB, 521 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 522 MachineBasicBlock &FMBB, 523 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 524 const BranchProbability &Probability) const { 525 // For now avoid converting mutually-exclusive cases. 526 return false; 527 } 528 529 bool SystemZInstrInfo:: 530 PredicateInstruction(MachineInstr *MI, 531 const SmallVectorImpl<MachineOperand> &Pred) const { 532 assert(Pred.size() == 2 && "Invalid condition"); 533 unsigned CCValid = Pred[0].getImm(); 534 unsigned CCMask = Pred[1].getImm(); 535 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 536 unsigned Opcode = MI->getOpcode(); 537 if (TM.getSubtargetImpl()->hasLoadStoreOnCond()) { 538 if (unsigned CondOpcode = getConditionalMove(Opcode)) { 539 MI->setDesc(get(CondOpcode)); 540 MachineInstrBuilder(*MI->getParent()->getParent(), MI) 541 .addImm(CCValid).addImm(CCMask) 542 .addReg(SystemZ::CC, RegState::Implicit);; 543 return true; 544 } 545 } 546 return false; 547 } 548 549 void 550 SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 551 MachineBasicBlock::iterator MBBI, DebugLoc DL, 552 unsigned DestReg, unsigned SrcReg, 553 bool KillSrc) const { 554 // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too. 555 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 556 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), 557 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); 558 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), 559 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); 560 return; 561 } 562 563 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { 564 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc); 565 return; 566 } 567 568 // Everything else needs only one instruction. 569 unsigned Opcode; 570 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 571 Opcode = SystemZ::LGR; 572 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 573 Opcode = SystemZ::LER; 574 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 575 Opcode = SystemZ::LDR; 576 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 577 Opcode = SystemZ::LXR; 578 else 579 llvm_unreachable("Impossible reg-to-reg copy"); 580 581 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 582 .addReg(SrcReg, getKillRegState(KillSrc)); 583 } 584 585 void 586 SystemZInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, 587 MachineBasicBlock::iterator MBBI, 588 unsigned SrcReg, bool isKill, 589 int FrameIdx, 590 const TargetRegisterClass *RC, 591 const TargetRegisterInfo *TRI) const { 592 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 593 594 // Callers may expect a single instruction, so keep 128-bit moves 595 // together for now and lower them after register allocation. 596 unsigned LoadOpcode, StoreOpcode; 597 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 598 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 599 .addReg(SrcReg, getKillRegState(isKill)), FrameIdx); 600 } 601 602 void 603 SystemZInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, 604 MachineBasicBlock::iterator MBBI, 605 unsigned DestReg, int FrameIdx, 606 const TargetRegisterClass *RC, 607 const TargetRegisterInfo *TRI) const { 608 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 609 610 // Callers may expect a single instruction, so keep 128-bit moves 611 // together for now and lower them after register allocation. 612 unsigned LoadOpcode, StoreOpcode; 613 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 614 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 615 FrameIdx); 616 } 617 618 // Return true if MI is a simple load or store with a 12-bit displacement 619 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 620 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 621 const MCInstrDesc &MCID = MI->getDesc(); 622 return ((MCID.TSFlags & Flag) && 623 isUInt<12>(MI->getOperand(2).getImm()) && 624 MI->getOperand(3).getReg() == 0); 625 } 626 627 namespace { 628 struct LogicOp { 629 LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {} 630 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 631 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 632 633 operator bool() const { return RegSize; } 634 635 unsigned RegSize, ImmLSB, ImmSize; 636 }; 637 } 638 639 static LogicOp interpretAndImmediate(unsigned Opcode) { 640 switch (Opcode) { 641 case SystemZ::NILMux: return LogicOp(32, 0, 16); 642 case SystemZ::NIHMux: return LogicOp(32, 16, 16); 643 case SystemZ::NILL64: return LogicOp(64, 0, 16); 644 case SystemZ::NILH64: return LogicOp(64, 16, 16); 645 case SystemZ::NIHL64: return LogicOp(64, 32, 16); 646 case SystemZ::NIHH64: return LogicOp(64, 48, 16); 647 case SystemZ::NIFMux: return LogicOp(32, 0, 32); 648 case SystemZ::NILF64: return LogicOp(64, 0, 32); 649 case SystemZ::NIHF64: return LogicOp(64, 32, 32); 650 default: return LogicOp(); 651 } 652 } 653 654 // Used to return from convertToThreeAddress after replacing two-address 655 // instruction OldMI with three-address instruction NewMI. 656 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI, 657 MachineInstr *NewMI, 658 LiveVariables *LV) { 659 if (LV) { 660 unsigned NumOps = OldMI->getNumOperands(); 661 for (unsigned I = 1; I < NumOps; ++I) { 662 MachineOperand &Op = OldMI->getOperand(I); 663 if (Op.isReg() && Op.isKill()) 664 LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI); 665 } 666 } 667 return NewMI; 668 } 669 670 MachineInstr * 671 SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 672 MachineBasicBlock::iterator &MBBI, 673 LiveVariables *LV) const { 674 MachineInstr *MI = MBBI; 675 MachineBasicBlock *MBB = MI->getParent(); 676 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 677 678 unsigned Opcode = MI->getOpcode(); 679 unsigned NumOps = MI->getNumOperands(); 680 681 // Try to convert something like SLL into SLLK, if supported. 682 // We prefer to keep the two-operand form where possible both 683 // because it tends to be shorter and because some instructions 684 // have memory forms that can be used during spilling. 685 if (TM.getSubtargetImpl()->hasDistinctOps()) { 686 MachineOperand &Dest = MI->getOperand(0); 687 MachineOperand &Src = MI->getOperand(1); 688 unsigned DestReg = Dest.getReg(); 689 unsigned SrcReg = Src.getReg(); 690 // AHIMux is only really a three-operand instruction when both operands 691 // are low registers. Try to constrain both operands to be low if 692 // possible. 693 if (Opcode == SystemZ::AHIMux && 694 TargetRegisterInfo::isVirtualRegister(DestReg) && 695 TargetRegisterInfo::isVirtualRegister(SrcReg) && 696 MRI.getRegClass(DestReg)->contains(SystemZ::R1L) && 697 MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) { 698 MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass); 699 MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass); 700 } 701 int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); 702 if (ThreeOperandOpcode >= 0) { 703 MachineInstrBuilder MIB = 704 BuildMI(*MBB, MBBI, MI->getDebugLoc(), get(ThreeOperandOpcode)) 705 .addOperand(Dest); 706 // Keep the kill state, but drop the tied flag. 707 MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()); 708 // Keep the remaining operands as-is. 709 for (unsigned I = 2; I < NumOps; ++I) 710 MIB.addOperand(MI->getOperand(I)); 711 return finishConvertToThreeAddress(MI, MIB, LV); 712 } 713 } 714 715 // Try to convert an AND into an RISBG-type instruction. 716 if (LogicOp And = interpretAndImmediate(Opcode)) { 717 uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB; 718 // AND IMMEDIATE leaves the other bits of the register unchanged. 719 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 720 unsigned Start, End; 721 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 722 unsigned NewOpcode; 723 if (And.RegSize == 64) 724 NewOpcode = SystemZ::RISBG; 725 else { 726 NewOpcode = SystemZ::RISBMux; 727 Start &= 31; 728 End &= 31; 729 } 730 MachineOperand &Dest = MI->getOperand(0); 731 MachineOperand &Src = MI->getOperand(1); 732 MachineInstrBuilder MIB = 733 BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode)) 734 .addOperand(Dest).addReg(0) 735 .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()) 736 .addImm(Start).addImm(End + 128).addImm(0); 737 return finishConvertToThreeAddress(MI, MIB, LV); 738 } 739 } 740 return 0; 741 } 742 743 MachineInstr * 744 SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, 745 MachineInstr *MI, 746 const SmallVectorImpl<unsigned> &Ops, 747 int FrameIndex) const { 748 const MachineFrameInfo *MFI = MF.getFrameInfo(); 749 unsigned Size = MFI->getObjectSize(FrameIndex); 750 unsigned Opcode = MI->getOpcode(); 751 752 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 753 if ((Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && 754 isInt<8>(MI->getOperand(2).getImm()) && 755 !MI->getOperand(3).getReg()) { 756 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST 757 return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::AGSI)) 758 .addFrameIndex(FrameIndex).addImm(0) 759 .addImm(MI->getOperand(2).getImm()); 760 } 761 return 0; 762 } 763 764 // All other cases require a single operand. 765 if (Ops.size() != 1) 766 return 0; 767 768 unsigned OpNum = Ops[0]; 769 assert(Size == MF.getRegInfo() 770 .getRegClass(MI->getOperand(OpNum).getReg())->getSize() && 771 "Invalid size combination"); 772 773 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && 774 OpNum == 0 && 775 isInt<8>(MI->getOperand(2).getImm())) { 776 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST 777 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); 778 return BuildMI(MF, MI->getDebugLoc(), get(Opcode)) 779 .addFrameIndex(FrameIndex).addImm(0) 780 .addImm(MI->getOperand(2).getImm()); 781 } 782 783 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 784 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 785 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 786 // If we're spilling the destination of an LDGR or LGDR, store the 787 // source register instead. 788 if (OpNum == 0) { 789 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 790 return BuildMI(MF, MI->getDebugLoc(), get(StoreOpcode)) 791 .addOperand(MI->getOperand(1)).addFrameIndex(FrameIndex) 792 .addImm(0).addReg(0); 793 } 794 // If we're spilling the source of an LDGR or LGDR, load the 795 // destination register instead. 796 if (OpNum == 1) { 797 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 798 unsigned Dest = MI->getOperand(0).getReg(); 799 return BuildMI(MF, MI->getDebugLoc(), get(LoadOpcode), Dest) 800 .addFrameIndex(FrameIndex).addImm(0).addReg(0); 801 } 802 } 803 804 // Look for cases where the source of a simple store or the destination 805 // of a simple load is being spilled. Try to use MVC instead. 806 // 807 // Although MVC is in practice a fast choice in these cases, it is still 808 // logically a bytewise copy. This means that we cannot use it if the 809 // load or store is volatile. We also wouldn't be able to use MVC if 810 // the two memories partially overlap, but that case cannot occur here, 811 // because we know that one of the memories is a full frame index. 812 // 813 // For performance reasons, we also want to avoid using MVC if the addresses 814 // might be equal. We don't worry about that case here, because spill slot 815 // coloring happens later, and because we have special code to remove 816 // MVCs that turn out to be redundant. 817 if (OpNum == 0 && MI->hasOneMemOperand()) { 818 MachineMemOperand *MMO = *MI->memoperands_begin(); 819 if (MMO->getSize() == Size && !MMO->isVolatile()) { 820 // Handle conversion of loads. 821 if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) { 822 return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC)) 823 .addFrameIndex(FrameIndex).addImm(0).addImm(Size) 824 .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm()) 825 .addMemOperand(MMO); 826 } 827 // Handle conversion of stores. 828 if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) { 829 return BuildMI(MF, MI->getDebugLoc(), get(SystemZ::MVC)) 830 .addOperand(MI->getOperand(1)).addImm(MI->getOperand(2).getImm()) 831 .addImm(Size).addFrameIndex(FrameIndex).addImm(0) 832 .addMemOperand(MMO); 833 } 834 } 835 } 836 837 // If the spilled operand is the final one, try to change <INSN>R 838 // into <INSN>. 839 int MemOpcode = SystemZ::getMemOpcode(Opcode); 840 if (MemOpcode >= 0) { 841 unsigned NumOps = MI->getNumExplicitOperands(); 842 if (OpNum == NumOps - 1) { 843 const MCInstrDesc &MemDesc = get(MemOpcode); 844 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 845 assert(AccessBytes != 0 && "Size of access should be known"); 846 assert(AccessBytes <= Size && "Access outside the frame index"); 847 uint64_t Offset = Size - AccessBytes; 848 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), get(MemOpcode)); 849 for (unsigned I = 0; I < OpNum; ++I) 850 MIB.addOperand(MI->getOperand(I)); 851 MIB.addFrameIndex(FrameIndex).addImm(Offset); 852 if (MemDesc.TSFlags & SystemZII::HasIndex) 853 MIB.addReg(0); 854 return MIB; 855 } 856 } 857 858 return 0; 859 } 860 861 MachineInstr * 862 SystemZInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, MachineInstr* MI, 863 const SmallVectorImpl<unsigned> &Ops, 864 MachineInstr* LoadMI) const { 865 return 0; 866 } 867 868 bool 869 SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { 870 switch (MI->getOpcode()) { 871 case SystemZ::L128: 872 splitMove(MI, SystemZ::LG); 873 return true; 874 875 case SystemZ::ST128: 876 splitMove(MI, SystemZ::STG); 877 return true; 878 879 case SystemZ::LX: 880 splitMove(MI, SystemZ::LD); 881 return true; 882 883 case SystemZ::STX: 884 splitMove(MI, SystemZ::STD); 885 return true; 886 887 case SystemZ::LBMux: 888 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); 889 return true; 890 891 case SystemZ::LHMux: 892 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); 893 return true; 894 895 case SystemZ::LLCRMux: 896 expandZExtPseudo(MI, SystemZ::LLCR, 8); 897 return true; 898 899 case SystemZ::LLHRMux: 900 expandZExtPseudo(MI, SystemZ::LLHR, 16); 901 return true; 902 903 case SystemZ::LLCMux: 904 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); 905 return true; 906 907 case SystemZ::LLHMux: 908 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); 909 return true; 910 911 case SystemZ::LMux: 912 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); 913 return true; 914 915 case SystemZ::STCMux: 916 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); 917 return true; 918 919 case SystemZ::STHMux: 920 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); 921 return true; 922 923 case SystemZ::STMux: 924 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); 925 return true; 926 927 case SystemZ::LHIMux: 928 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); 929 return true; 930 931 case SystemZ::IIFMux: 932 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); 933 return true; 934 935 case SystemZ::IILMux: 936 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); 937 return true; 938 939 case SystemZ::IIHMux: 940 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); 941 return true; 942 943 case SystemZ::NIFMux: 944 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); 945 return true; 946 947 case SystemZ::NILMux: 948 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); 949 return true; 950 951 case SystemZ::NIHMux: 952 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); 953 return true; 954 955 case SystemZ::OIFMux: 956 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); 957 return true; 958 959 case SystemZ::OILMux: 960 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); 961 return true; 962 963 case SystemZ::OIHMux: 964 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); 965 return true; 966 967 case SystemZ::XIFMux: 968 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); 969 return true; 970 971 case SystemZ::TMLMux: 972 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); 973 return true; 974 975 case SystemZ::TMHMux: 976 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); 977 return true; 978 979 case SystemZ::AHIMux: 980 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); 981 return true; 982 983 case SystemZ::AHIMuxK: 984 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); 985 return true; 986 987 case SystemZ::AFIMux: 988 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); 989 return true; 990 991 case SystemZ::CFIMux: 992 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); 993 return true; 994 995 case SystemZ::CLFIMux: 996 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); 997 return true; 998 999 case SystemZ::CMux: 1000 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); 1001 return true; 1002 1003 case SystemZ::CLMux: 1004 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); 1005 return true; 1006 1007 case SystemZ::RISBMux: { 1008 bool DestIsHigh = isHighReg(MI->getOperand(0).getReg()); 1009 bool SrcIsHigh = isHighReg(MI->getOperand(2).getReg()); 1010 if (SrcIsHigh == DestIsHigh) 1011 MI->setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); 1012 else { 1013 MI->setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); 1014 MI->getOperand(5).setImm(MI->getOperand(5).getImm() ^ 32); 1015 } 1016 return true; 1017 } 1018 1019 case SystemZ::ADJDYNALLOC: 1020 splitAdjDynAlloc(MI); 1021 return true; 1022 1023 default: 1024 return false; 1025 } 1026 } 1027 1028 uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const { 1029 if (MI->getOpcode() == TargetOpcode::INLINEASM) { 1030 const MachineFunction *MF = MI->getParent()->getParent(); 1031 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1032 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1033 } 1034 return MI->getDesc().getSize(); 1035 } 1036 1037 SystemZII::Branch 1038 SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const { 1039 switch (MI->getOpcode()) { 1040 case SystemZ::BR: 1041 case SystemZ::J: 1042 case SystemZ::JG: 1043 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 1044 SystemZ::CCMASK_ANY, &MI->getOperand(0)); 1045 1046 case SystemZ::BRC: 1047 case SystemZ::BRCL: 1048 return SystemZII::Branch(SystemZII::BranchNormal, 1049 MI->getOperand(0).getImm(), 1050 MI->getOperand(1).getImm(), &MI->getOperand(2)); 1051 1052 case SystemZ::BRCT: 1053 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 1054 SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); 1055 1056 case SystemZ::BRCTG: 1057 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 1058 SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); 1059 1060 case SystemZ::CIJ: 1061 case SystemZ::CRJ: 1062 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 1063 MI->getOperand(2).getImm(), &MI->getOperand(3)); 1064 1065 case SystemZ::CLIJ: 1066 case SystemZ::CLRJ: 1067 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, 1068 MI->getOperand(2).getImm(), &MI->getOperand(3)); 1069 1070 case SystemZ::CGIJ: 1071 case SystemZ::CGRJ: 1072 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 1073 MI->getOperand(2).getImm(), &MI->getOperand(3)); 1074 1075 case SystemZ::CLGIJ: 1076 case SystemZ::CLGRJ: 1077 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, 1078 MI->getOperand(2).getImm(), &MI->getOperand(3)); 1079 1080 default: 1081 llvm_unreachable("Unrecognized branch opcode"); 1082 } 1083 } 1084 1085 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 1086 unsigned &LoadOpcode, 1087 unsigned &StoreOpcode) const { 1088 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 1089 LoadOpcode = SystemZ::L; 1090 StoreOpcode = SystemZ::ST; 1091 } else if (RC == &SystemZ::GRH32BitRegClass) { 1092 LoadOpcode = SystemZ::LFH; 1093 StoreOpcode = SystemZ::STFH; 1094 } else if (RC == &SystemZ::GRX32BitRegClass) { 1095 LoadOpcode = SystemZ::LMux; 1096 StoreOpcode = SystemZ::STMux; 1097 } else if (RC == &SystemZ::GR64BitRegClass || 1098 RC == &SystemZ::ADDR64BitRegClass) { 1099 LoadOpcode = SystemZ::LG; 1100 StoreOpcode = SystemZ::STG; 1101 } else if (RC == &SystemZ::GR128BitRegClass || 1102 RC == &SystemZ::ADDR128BitRegClass) { 1103 LoadOpcode = SystemZ::L128; 1104 StoreOpcode = SystemZ::ST128; 1105 } else if (RC == &SystemZ::FP32BitRegClass) { 1106 LoadOpcode = SystemZ::LE; 1107 StoreOpcode = SystemZ::STE; 1108 } else if (RC == &SystemZ::FP64BitRegClass) { 1109 LoadOpcode = SystemZ::LD; 1110 StoreOpcode = SystemZ::STD; 1111 } else if (RC == &SystemZ::FP128BitRegClass) { 1112 LoadOpcode = SystemZ::LX; 1113 StoreOpcode = SystemZ::STX; 1114 } else 1115 llvm_unreachable("Unsupported regclass to load or store"); 1116 } 1117 1118 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 1119 int64_t Offset) const { 1120 const MCInstrDesc &MCID = get(Opcode); 1121 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 1122 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 1123 // Get the instruction to use for unsigned 12-bit displacements. 1124 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 1125 if (Disp12Opcode >= 0) 1126 return Disp12Opcode; 1127 1128 // All address-related instructions can use unsigned 12-bit 1129 // displacements. 1130 return Opcode; 1131 } 1132 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 1133 // Get the instruction to use for signed 20-bit displacements. 1134 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 1135 if (Disp20Opcode >= 0) 1136 return Disp20Opcode; 1137 1138 // Check whether Opcode allows signed 20-bit displacements. 1139 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1140 return Opcode; 1141 } 1142 return 0; 1143 } 1144 1145 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 1146 switch (Opcode) { 1147 case SystemZ::L: return SystemZ::LT; 1148 case SystemZ::LY: return SystemZ::LT; 1149 case SystemZ::LG: return SystemZ::LTG; 1150 case SystemZ::LGF: return SystemZ::LTGF; 1151 case SystemZ::LR: return SystemZ::LTR; 1152 case SystemZ::LGFR: return SystemZ::LTGFR; 1153 case SystemZ::LGR: return SystemZ::LTGR; 1154 case SystemZ::LER: return SystemZ::LTEBR; 1155 case SystemZ::LDR: return SystemZ::LTDBR; 1156 case SystemZ::LXR: return SystemZ::LTXBR; 1157 default: return 0; 1158 } 1159 } 1160 1161 // Return true if Mask matches the regexp 0*1+0*, given that zero masks 1162 // have already been filtered out. Store the first set bit in LSB and 1163 // the number of set bits in Length if so. 1164 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { 1165 unsigned First = findFirstSet(Mask); 1166 uint64_t Top = (Mask >> First) + 1; 1167 if ((Top & -Top) == Top) { 1168 LSB = First; 1169 Length = findFirstSet(Top); 1170 return true; 1171 } 1172 return false; 1173 } 1174 1175 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 1176 unsigned &Start, unsigned &End) const { 1177 // Reject trivial all-zero masks. 1178 if (Mask == 0) 1179 return false; 1180 1181 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 1182 // the msb and End specifies the index of the lsb. 1183 unsigned LSB, Length; 1184 if (isStringOfOnes(Mask, LSB, Length)) { 1185 Start = 63 - (LSB + Length - 1); 1186 End = 63 - LSB; 1187 return true; 1188 } 1189 1190 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 1191 // of the low 1s and End specifies the lsb of the high 1s. 1192 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { 1193 assert(LSB > 0 && "Bottom bit must be set"); 1194 assert(LSB + Length < BitSize && "Top bit must be set"); 1195 Start = 63 - (LSB - 1); 1196 End = 63 - (LSB + Length); 1197 return true; 1198 } 1199 1200 return false; 1201 } 1202 1203 unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode, 1204 const MachineInstr *MI) const { 1205 switch (Opcode) { 1206 case SystemZ::CR: 1207 return SystemZ::CRJ; 1208 case SystemZ::CGR: 1209 return SystemZ::CGRJ; 1210 case SystemZ::CHI: 1211 return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0; 1212 case SystemZ::CGHI: 1213 return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0; 1214 case SystemZ::CLR: 1215 return SystemZ::CLRJ; 1216 case SystemZ::CLGR: 1217 return SystemZ::CLGRJ; 1218 case SystemZ::CLFI: 1219 return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLIJ : 0; 1220 case SystemZ::CLGFI: 1221 return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLGIJ : 0; 1222 default: 1223 return 0; 1224 } 1225 } 1226 1227 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 1228 MachineBasicBlock::iterator MBBI, 1229 unsigned Reg, uint64_t Value) const { 1230 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1231 unsigned Opcode; 1232 if (isInt<16>(Value)) 1233 Opcode = SystemZ::LGHI; 1234 else if (SystemZ::isImmLL(Value)) 1235 Opcode = SystemZ::LLILL; 1236 else if (SystemZ::isImmLH(Value)) { 1237 Opcode = SystemZ::LLILH; 1238 Value >>= 16; 1239 } else { 1240 assert(isInt<32>(Value) && "Huge values not handled yet"); 1241 Opcode = SystemZ::LGFI; 1242 } 1243 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 1244 } 1245