1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the SystemZ implementation of the TargetInstrInfo class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZInstrInfo.h" 14 #include "MCTargetDesc/SystemZMCTargetDesc.h" 15 #include "SystemZ.h" 16 #include "SystemZInstrBuilder.h" 17 #include "SystemZSubtarget.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/CodeGen/LiveInterval.h" 20 #include "llvm/CodeGen/LiveIntervals.h" 21 #include "llvm/CodeGen/LiveVariables.h" 22 #include "llvm/CodeGen/MachineBasicBlock.h" 23 #include "llvm/CodeGen/MachineFrameInfo.h" 24 #include "llvm/CodeGen/MachineFunction.h" 25 #include "llvm/CodeGen/MachineInstr.h" 26 #include "llvm/CodeGen/MachineMemOperand.h" 27 #include "llvm/CodeGen/MachineOperand.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/SlotIndexes.h" 30 #include "llvm/CodeGen/TargetInstrInfo.h" 31 #include "llvm/CodeGen/TargetSubtargetInfo.h" 32 #include "llvm/MC/MCInstrDesc.h" 33 #include "llvm/MC/MCRegisterInfo.h" 34 #include "llvm/Support/BranchProbability.h" 35 #include "llvm/Support/ErrorHandling.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include <cassert> 39 #include <cstdint> 40 #include <iterator> 41 42 using namespace llvm; 43 44 #define GET_INSTRINFO_CTOR_DTOR 45 #define GET_INSTRMAP_INFO 46 #include "SystemZGenInstrInfo.inc" 47 48 #define DEBUG_TYPE "systemz-II" 49 STATISTIC(LOCRMuxJumps, "Number of LOCRMux jump-sequences (lower is better)"); 50 51 // Return a mask with Count low bits set. 52 static uint64_t allOnes(unsigned int Count) { 53 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 54 } 55 56 // Reg should be a 32-bit GPR. Return true if it is a high register rather 57 // than a low register. 58 static bool isHighReg(unsigned int Reg) { 59 if (SystemZ::GRH32BitRegClass.contains(Reg)) 60 return true; 61 assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32"); 62 return false; 63 } 64 65 // Pin the vtable to this file. 66 void SystemZInstrInfo::anchor() {} 67 68 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti) 69 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 70 RI(), STI(sti) { 71 } 72 73 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 74 // each having the opcode given by NewOpcode. 75 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 76 unsigned NewOpcode) const { 77 MachineBasicBlock *MBB = MI->getParent(); 78 MachineFunction &MF = *MBB->getParent(); 79 80 // Get two load or store instructions. Use the original instruction for one 81 // of them (arbitrarily the second here) and create a clone for the other. 82 MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI); 83 MBB->insert(MI, EarlierMI); 84 85 // Set up the two 64-bit registers and remember super reg and its flags. 86 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 87 MachineOperand &LowRegOp = MI->getOperand(0); 88 unsigned Reg128 = LowRegOp.getReg(); 89 unsigned Reg128Killed = getKillRegState(LowRegOp.isKill()); 90 unsigned Reg128Undef = getUndefRegState(LowRegOp.isUndef()); 91 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); 92 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); 93 94 if (MI->mayStore()) { 95 // Add implicit uses of the super register in case one of the subregs is 96 // undefined. We could track liveness and skip storing an undefined 97 // subreg, but this is hopefully rare (discovered with llvm-stress). 98 // If Reg128 was killed, set kill flag on MI. 99 unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit); 100 MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl); 101 MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed)); 102 } 103 104 // The address in the first (high) instruction is already correct. 105 // Adjust the offset in the second (low) instruction. 106 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 107 MachineOperand &LowOffsetOp = MI->getOperand(2); 108 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 109 110 // Clear the kill flags on the registers in the first instruction. 111 if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse()) 112 EarlierMI->getOperand(0).setIsKill(false); 113 EarlierMI->getOperand(1).setIsKill(false); 114 EarlierMI->getOperand(3).setIsKill(false); 115 116 // Set the opcodes. 117 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 118 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 119 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 120 121 EarlierMI->setDesc(get(HighOpcode)); 122 MI->setDesc(get(LowOpcode)); 123 } 124 125 // Split ADJDYNALLOC instruction MI. 126 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 127 MachineBasicBlock *MBB = MI->getParent(); 128 MachineFunction &MF = *MBB->getParent(); 129 MachineFrameInfo &MFFrame = MF.getFrameInfo(); 130 MachineOperand &OffsetMO = MI->getOperand(2); 131 132 uint64_t Offset = (MFFrame.getMaxCallFrameSize() + 133 SystemZMC::CallFrameSize + 134 OffsetMO.getImm()); 135 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 136 assert(NewOpcode && "No support for huge argument lists yet"); 137 MI->setDesc(get(NewOpcode)); 138 OffsetMO.setImm(Offset); 139 } 140 141 // MI is an RI-style pseudo instruction. Replace it with LowOpcode 142 // if the first operand is a low GR32 and HighOpcode if the first operand 143 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand 144 // and HighOpcode takes an unsigned 32-bit operand. In those cases, 145 // MI has the same kind of operand as LowOpcode, so needs to be converted 146 // if HighOpcode is used. 147 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode, 148 unsigned HighOpcode, 149 bool ConvertHigh) const { 150 unsigned Reg = MI.getOperand(0).getReg(); 151 bool IsHigh = isHighReg(Reg); 152 MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode)); 153 if (IsHigh && ConvertHigh) 154 MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm())); 155 } 156 157 // MI is a three-operand RIE-style pseudo instruction. Replace it with 158 // LowOpcodeK if the registers are both low GR32s, otherwise use a move 159 // followed by HighOpcode or LowOpcode, depending on whether the target 160 // is a high or low GR32. 161 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode, 162 unsigned LowOpcodeK, 163 unsigned HighOpcode) const { 164 unsigned DestReg = MI.getOperand(0).getReg(); 165 unsigned SrcReg = MI.getOperand(1).getReg(); 166 bool DestIsHigh = isHighReg(DestReg); 167 bool SrcIsHigh = isHighReg(SrcReg); 168 if (!DestIsHigh && !SrcIsHigh) 169 MI.setDesc(get(LowOpcodeK)); 170 else { 171 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg, 172 SystemZ::LR, 32, MI.getOperand(1).isKill(), 173 MI.getOperand(1).isUndef()); 174 MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); 175 MI.getOperand(1).setReg(DestReg); 176 MI.tieOperands(0, 1); 177 } 178 } 179 180 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode 181 // if the first operand is a low GR32 and HighOpcode if the first operand 182 // is a high GR32. 183 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode, 184 unsigned HighOpcode) const { 185 unsigned Reg = MI.getOperand(0).getReg(); 186 unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode, 187 MI.getOperand(2).getImm()); 188 MI.setDesc(get(Opcode)); 189 } 190 191 // MI is a load-on-condition pseudo instruction with a single register 192 // (source or destination) operand. Replace it with LowOpcode if the 193 // register is a low GR32 and HighOpcode if the register is a high GR32. 194 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode, 195 unsigned HighOpcode) const { 196 unsigned Reg = MI.getOperand(0).getReg(); 197 unsigned Opcode = isHighReg(Reg) ? HighOpcode : LowOpcode; 198 MI.setDesc(get(Opcode)); 199 } 200 201 // MI is a load-register-on-condition pseudo instruction. Replace it with 202 // LowOpcode if source and destination are both low GR32s and HighOpcode if 203 // source and destination are both high GR32s. 204 void SystemZInstrInfo::expandLOCRPseudo(MachineInstr &MI, unsigned LowOpcode, 205 unsigned HighOpcode) const { 206 unsigned DestReg = MI.getOperand(0).getReg(); 207 unsigned SrcReg = MI.getOperand(2).getReg(); 208 bool DestIsHigh = isHighReg(DestReg); 209 bool SrcIsHigh = isHighReg(SrcReg); 210 211 if (!DestIsHigh && !SrcIsHigh) 212 MI.setDesc(get(LowOpcode)); 213 else if (DestIsHigh && SrcIsHigh) 214 MI.setDesc(get(HighOpcode)); 215 else 216 LOCRMuxJumps++; 217 218 // If we were unable to implement the pseudo with a single instruction, we 219 // need to convert it back into a branch sequence. This cannot be done here 220 // since the caller of expandPostRAPseudo does not handle changes to the CFG 221 // correctly. This change is defered to the SystemZExpandPseudo pass. 222 } 223 224 // MI is an RR-style pseudo instruction that zero-extends the low Size bits 225 // of one GRX32 into another. Replace it with LowOpcode if both operands 226 // are low registers, otherwise use RISB[LH]G. 227 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode, 228 unsigned Size) const { 229 MachineInstrBuilder MIB = 230 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), 231 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode, 232 Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef()); 233 234 // Keep the remaining operands as-is. 235 for (unsigned I = 2; I < MI.getNumOperands(); ++I) 236 MIB.add(MI.getOperand(I)); 237 238 MI.eraseFromParent(); 239 } 240 241 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const { 242 MachineBasicBlock *MBB = MI->getParent(); 243 MachineFunction &MF = *MBB->getParent(); 244 const unsigned Reg64 = MI->getOperand(0).getReg(); 245 const unsigned Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32); 246 247 // EAR can only load the low subregister so us a shift for %a0 to produce 248 // the GR containing %a0 and %a1. 249 250 // ear <reg>, %a0 251 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32) 252 .addReg(SystemZ::A0) 253 .addReg(Reg64, RegState::ImplicitDefine); 254 255 // sllg <reg>, <reg>, 32 256 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64) 257 .addReg(Reg64) 258 .addReg(0) 259 .addImm(32); 260 261 // ear <reg>, %a1 262 BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32) 263 .addReg(SystemZ::A1); 264 265 // lg <reg>, 40(<reg>) 266 MI->setDesc(get(SystemZ::LG)); 267 MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0); 268 } 269 270 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR 271 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg 272 // are low registers, otherwise use RISB[LH]G. Size is the number of bits 273 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). 274 // KillSrc is true if this move is the last use of SrcReg. 275 MachineInstrBuilder 276 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, 277 MachineBasicBlock::iterator MBBI, 278 const DebugLoc &DL, unsigned DestReg, 279 unsigned SrcReg, unsigned LowLowOpcode, 280 unsigned Size, bool KillSrc, 281 bool UndefSrc) const { 282 unsigned Opcode; 283 bool DestIsHigh = isHighReg(DestReg); 284 bool SrcIsHigh = isHighReg(SrcReg); 285 if (DestIsHigh && SrcIsHigh) 286 Opcode = SystemZ::RISBHH; 287 else if (DestIsHigh && !SrcIsHigh) 288 Opcode = SystemZ::RISBHL; 289 else if (!DestIsHigh && SrcIsHigh) 290 Opcode = SystemZ::RISBLH; 291 else { 292 return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) 293 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)); 294 } 295 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); 296 return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 297 .addReg(DestReg, RegState::Undef) 298 .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc)) 299 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); 300 } 301 302 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI, 303 bool NewMI, 304 unsigned OpIdx1, 305 unsigned OpIdx2) const { 306 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { 307 if (NewMI) 308 return *MI.getParent()->getParent()->CloneMachineInstr(&MI); 309 return MI; 310 }; 311 312 switch (MI.getOpcode()) { 313 case SystemZ::LOCRMux: 314 case SystemZ::LOCFHR: 315 case SystemZ::LOCR: 316 case SystemZ::LOCGR: { 317 auto &WorkingMI = cloneIfNew(MI); 318 // Invert condition. 319 unsigned CCValid = WorkingMI.getOperand(3).getImm(); 320 unsigned CCMask = WorkingMI.getOperand(4).getImm(); 321 WorkingMI.getOperand(4).setImm(CCMask ^ CCValid); 322 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 323 OpIdx1, OpIdx2); 324 } 325 default: 326 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 327 } 328 } 329 330 // If MI is a simple load or store for a frame object, return the register 331 // it loads or stores and set FrameIndex to the index of the frame object. 332 // Return 0 otherwise. 333 // 334 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 335 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex, 336 unsigned Flag) { 337 const MCInstrDesc &MCID = MI.getDesc(); 338 if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() && 339 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) { 340 FrameIndex = MI.getOperand(1).getIndex(); 341 return MI.getOperand(0).getReg(); 342 } 343 return 0; 344 } 345 346 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 347 int &FrameIndex) const { 348 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 349 } 350 351 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 352 int &FrameIndex) const { 353 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 354 } 355 356 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI, 357 int &DestFrameIndex, 358 int &SrcFrameIndex) const { 359 // Check for MVC 0(Length,FI1),0(FI2) 360 const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo(); 361 if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() || 362 MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() || 363 MI.getOperand(4).getImm() != 0) 364 return false; 365 366 // Check that Length covers the full slots. 367 int64_t Length = MI.getOperand(2).getImm(); 368 unsigned FI1 = MI.getOperand(0).getIndex(); 369 unsigned FI2 = MI.getOperand(3).getIndex(); 370 if (MFI.getObjectSize(FI1) != Length || 371 MFI.getObjectSize(FI2) != Length) 372 return false; 373 374 DestFrameIndex = FI1; 375 SrcFrameIndex = FI2; 376 return true; 377 } 378 379 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 380 MachineBasicBlock *&TBB, 381 MachineBasicBlock *&FBB, 382 SmallVectorImpl<MachineOperand> &Cond, 383 bool AllowModify) const { 384 // Most of the code and comments here are boilerplate. 385 386 // Start from the bottom of the block and work up, examining the 387 // terminator instructions. 388 MachineBasicBlock::iterator I = MBB.end(); 389 while (I != MBB.begin()) { 390 --I; 391 if (I->isDebugInstr()) 392 continue; 393 394 // Working from the bottom, when we see a non-terminator instruction, we're 395 // done. 396 if (!isUnpredicatedTerminator(*I)) 397 break; 398 399 // A terminator that isn't a branch can't easily be handled by this 400 // analysis. 401 if (!I->isBranch()) 402 return true; 403 404 // Can't handle indirect branches. 405 SystemZII::Branch Branch(getBranchInfo(*I)); 406 if (!Branch.Target->isMBB()) 407 return true; 408 409 // Punt on compound branches. 410 if (Branch.Type != SystemZII::BranchNormal) 411 return true; 412 413 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 414 // Handle unconditional branches. 415 if (!AllowModify) { 416 TBB = Branch.Target->getMBB(); 417 continue; 418 } 419 420 // If the block has any instructions after a JMP, delete them. 421 while (std::next(I) != MBB.end()) 422 std::next(I)->eraseFromParent(); 423 424 Cond.clear(); 425 FBB = nullptr; 426 427 // Delete the JMP if it's equivalent to a fall-through. 428 if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) { 429 TBB = nullptr; 430 I->eraseFromParent(); 431 I = MBB.end(); 432 continue; 433 } 434 435 // TBB is used to indicate the unconditinal destination. 436 TBB = Branch.Target->getMBB(); 437 continue; 438 } 439 440 // Working from the bottom, handle the first conditional branch. 441 if (Cond.empty()) { 442 // FIXME: add X86-style branch swap 443 FBB = TBB; 444 TBB = Branch.Target->getMBB(); 445 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 446 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 447 continue; 448 } 449 450 // Handle subsequent conditional branches. 451 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 452 453 // Only handle the case where all conditional branches branch to the same 454 // destination. 455 if (TBB != Branch.Target->getMBB()) 456 return true; 457 458 // If the conditions are the same, we can leave them alone. 459 unsigned OldCCValid = Cond[0].getImm(); 460 unsigned OldCCMask = Cond[1].getImm(); 461 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 462 continue; 463 464 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 465 return false; 466 } 467 468 return false; 469 } 470 471 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB, 472 int *BytesRemoved) const { 473 assert(!BytesRemoved && "code size not handled"); 474 475 // Most of the code and comments here are boilerplate. 476 MachineBasicBlock::iterator I = MBB.end(); 477 unsigned Count = 0; 478 479 while (I != MBB.begin()) { 480 --I; 481 if (I->isDebugInstr()) 482 continue; 483 if (!I->isBranch()) 484 break; 485 if (!getBranchInfo(*I).Target->isMBB()) 486 break; 487 // Remove the branch. 488 I->eraseFromParent(); 489 I = MBB.end(); 490 ++Count; 491 } 492 493 return Count; 494 } 495 496 bool SystemZInstrInfo:: 497 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 498 assert(Cond.size() == 2 && "Invalid condition"); 499 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 500 return false; 501 } 502 503 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB, 504 MachineBasicBlock *TBB, 505 MachineBasicBlock *FBB, 506 ArrayRef<MachineOperand> Cond, 507 const DebugLoc &DL, 508 int *BytesAdded) const { 509 // In this function we output 32-bit branches, which should always 510 // have enough range. They can be shortened and relaxed by later code 511 // in the pipeline, if desired. 512 513 // Shouldn't be a fall through. 514 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 515 assert((Cond.size() == 2 || Cond.size() == 0) && 516 "SystemZ branch conditions have one component!"); 517 assert(!BytesAdded && "code size not handled"); 518 519 if (Cond.empty()) { 520 // Unconditional branch? 521 assert(!FBB && "Unconditional branch with multiple successors!"); 522 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 523 return 1; 524 } 525 526 // Conditional branch. 527 unsigned Count = 0; 528 unsigned CCValid = Cond[0].getImm(); 529 unsigned CCMask = Cond[1].getImm(); 530 BuildMI(&MBB, DL, get(SystemZ::BRC)) 531 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 532 ++Count; 533 534 if (FBB) { 535 // Two-way Conditional branch. Insert the second branch. 536 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 537 ++Count; 538 } 539 return Count; 540 } 541 542 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 543 unsigned &SrcReg2, int &Mask, 544 int &Value) const { 545 assert(MI.isCompare() && "Caller should have checked for a comparison"); 546 547 if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() && 548 MI.getOperand(1).isImm()) { 549 SrcReg = MI.getOperand(0).getReg(); 550 SrcReg2 = 0; 551 Value = MI.getOperand(1).getImm(); 552 Mask = ~0; 553 return true; 554 } 555 556 return false; 557 } 558 559 // If Reg is a virtual register, return its definition, otherwise return null. 560 static MachineInstr *getDef(unsigned Reg, 561 const MachineRegisterInfo *MRI) { 562 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 563 return nullptr; 564 return MRI->getUniqueVRegDef(Reg); 565 } 566 567 // Return true if MI is a shift of type Opcode by Imm bits. 568 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) { 569 return (MI->getOpcode() == Opcode && 570 !MI->getOperand(2).getReg() && 571 MI->getOperand(3).getImm() == Imm); 572 } 573 574 // If the destination of MI has no uses, delete it as dead. 575 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) { 576 if (MRI->use_nodbg_empty(MI->getOperand(0).getReg())) 577 MI->eraseFromParent(); 578 } 579 580 // Compare compares SrcReg against zero. Check whether SrcReg contains 581 // the result of an IPM sequence whose input CC survives until Compare, 582 // and whether Compare is therefore redundant. Delete it and return 583 // true if so. 584 static bool removeIPMBasedCompare(MachineInstr &Compare, unsigned SrcReg, 585 const MachineRegisterInfo *MRI, 586 const TargetRegisterInfo *TRI) { 587 MachineInstr *LGFR = nullptr; 588 MachineInstr *RLL = getDef(SrcReg, MRI); 589 if (RLL && RLL->getOpcode() == SystemZ::LGFR) { 590 LGFR = RLL; 591 RLL = getDef(LGFR->getOperand(1).getReg(), MRI); 592 } 593 if (!RLL || !isShift(RLL, SystemZ::RLL, 31)) 594 return false; 595 596 MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI); 597 if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC)) 598 return false; 599 600 MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI); 601 if (!IPM || IPM->getOpcode() != SystemZ::IPM) 602 return false; 603 604 // Check that there are no assignments to CC between the IPM and Compare, 605 if (IPM->getParent() != Compare.getParent()) 606 return false; 607 MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare.getIterator(); 608 for (++MBBI; MBBI != MBBE; ++MBBI) { 609 MachineInstr &MI = *MBBI; 610 if (MI.modifiesRegister(SystemZ::CC, TRI)) 611 return false; 612 } 613 614 Compare.eraseFromParent(); 615 if (LGFR) 616 eraseIfDead(LGFR, MRI); 617 eraseIfDead(RLL, MRI); 618 eraseIfDead(SRL, MRI); 619 eraseIfDead(IPM, MRI); 620 621 return true; 622 } 623 624 bool SystemZInstrInfo::optimizeCompareInstr( 625 MachineInstr &Compare, unsigned SrcReg, unsigned SrcReg2, int Mask, 626 int Value, const MachineRegisterInfo *MRI) const { 627 assert(!SrcReg2 && "Only optimizing constant comparisons so far"); 628 bool IsLogical = (Compare.getDesc().TSFlags & SystemZII::IsLogical) != 0; 629 return Value == 0 && !IsLogical && 630 removeIPMBasedCompare(Compare, SrcReg, MRI, &RI); 631 } 632 633 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 634 ArrayRef<MachineOperand> Pred, 635 unsigned TrueReg, unsigned FalseReg, 636 int &CondCycles, int &TrueCycles, 637 int &FalseCycles) const { 638 // Not all subtargets have LOCR instructions. 639 if (!STI.hasLoadStoreOnCond()) 640 return false; 641 if (Pred.size() != 2) 642 return false; 643 644 // Check register classes. 645 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 646 const TargetRegisterClass *RC = 647 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 648 if (!RC) 649 return false; 650 651 // We have LOCR instructions for 32 and 64 bit general purpose registers. 652 if ((STI.hasLoadStoreOnCond2() && 653 SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) || 654 SystemZ::GR32BitRegClass.hasSubClassEq(RC) || 655 SystemZ::GR64BitRegClass.hasSubClassEq(RC)) { 656 CondCycles = 2; 657 TrueCycles = 2; 658 FalseCycles = 2; 659 return true; 660 } 661 662 // Can't do anything else. 663 return false; 664 } 665 666 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB, 667 MachineBasicBlock::iterator I, 668 const DebugLoc &DL, unsigned DstReg, 669 ArrayRef<MachineOperand> Pred, 670 unsigned TrueReg, 671 unsigned FalseReg) const { 672 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 673 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 674 675 assert(Pred.size() == 2 && "Invalid condition"); 676 unsigned CCValid = Pred[0].getImm(); 677 unsigned CCMask = Pred[1].getImm(); 678 679 unsigned Opc; 680 if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) { 681 if (STI.hasLoadStoreOnCond2()) 682 Opc = SystemZ::LOCRMux; 683 else { 684 Opc = SystemZ::LOCR; 685 MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass); 686 unsigned TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 687 unsigned FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass); 688 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg); 689 BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg); 690 TrueReg = TReg; 691 FalseReg = FReg; 692 } 693 } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) 694 Opc = SystemZ::LOCGR; 695 else 696 llvm_unreachable("Invalid register class"); 697 698 BuildMI(MBB, I, DL, get(Opc), DstReg) 699 .addReg(FalseReg).addReg(TrueReg) 700 .addImm(CCValid).addImm(CCMask); 701 } 702 703 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 704 unsigned Reg, 705 MachineRegisterInfo *MRI) const { 706 unsigned DefOpc = DefMI.getOpcode(); 707 if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI && 708 DefOpc != SystemZ::LGHI) 709 return false; 710 if (DefMI.getOperand(0).getReg() != Reg) 711 return false; 712 int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm(); 713 714 unsigned UseOpc = UseMI.getOpcode(); 715 unsigned NewUseOpc; 716 unsigned UseIdx; 717 int CommuteIdx = -1; 718 switch (UseOpc) { 719 case SystemZ::LOCRMux: 720 if (!STI.hasLoadStoreOnCond2()) 721 return false; 722 NewUseOpc = SystemZ::LOCHIMux; 723 if (UseMI.getOperand(2).getReg() == Reg) 724 UseIdx = 2; 725 else if (UseMI.getOperand(1).getReg() == Reg) 726 UseIdx = 2, CommuteIdx = 1; 727 else 728 return false; 729 break; 730 case SystemZ::LOCGR: 731 if (!STI.hasLoadStoreOnCond2()) 732 return false; 733 NewUseOpc = SystemZ::LOCGHI; 734 if (UseMI.getOperand(2).getReg() == Reg) 735 UseIdx = 2; 736 else if (UseMI.getOperand(1).getReg() == Reg) 737 UseIdx = 2, CommuteIdx = 1; 738 else 739 return false; 740 break; 741 default: 742 return false; 743 } 744 745 if (CommuteIdx != -1) 746 if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx)) 747 return false; 748 749 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 750 UseMI.setDesc(get(NewUseOpc)); 751 UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal); 752 if (DeleteDef) 753 DefMI.eraseFromParent(); 754 755 return true; 756 } 757 758 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const { 759 unsigned Opcode = MI.getOpcode(); 760 if (Opcode == SystemZ::Return || 761 Opcode == SystemZ::Trap || 762 Opcode == SystemZ::CallJG || 763 Opcode == SystemZ::CallBR) 764 return true; 765 return false; 766 } 767 768 bool SystemZInstrInfo:: 769 isProfitableToIfCvt(MachineBasicBlock &MBB, 770 unsigned NumCycles, unsigned ExtraPredCycles, 771 BranchProbability Probability) const { 772 // Avoid using conditional returns at the end of a loop (since then 773 // we'd need to emit an unconditional branch to the beginning anyway, 774 // making the loop body longer). This doesn't apply for low-probability 775 // loops (eg. compare-and-swap retry), so just decide based on branch 776 // probability instead of looping structure. 777 // However, since Compare and Trap instructions cost the same as a regular 778 // Compare instruction, we should allow the if conversion to convert this 779 // into a Conditional Compare regardless of the branch probability. 780 if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap && 781 MBB.succ_empty() && Probability < BranchProbability(1, 8)) 782 return false; 783 // For now only convert single instructions. 784 return NumCycles == 1; 785 } 786 787 bool SystemZInstrInfo:: 788 isProfitableToIfCvt(MachineBasicBlock &TMBB, 789 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 790 MachineBasicBlock &FMBB, 791 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 792 BranchProbability Probability) const { 793 // For now avoid converting mutually-exclusive cases. 794 return false; 795 } 796 797 bool SystemZInstrInfo:: 798 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 799 BranchProbability Probability) const { 800 // For now only duplicate single instructions. 801 return NumCycles == 1; 802 } 803 804 bool SystemZInstrInfo::PredicateInstruction( 805 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 806 assert(Pred.size() == 2 && "Invalid condition"); 807 unsigned CCValid = Pred[0].getImm(); 808 unsigned CCMask = Pred[1].getImm(); 809 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 810 unsigned Opcode = MI.getOpcode(); 811 if (Opcode == SystemZ::Trap) { 812 MI.setDesc(get(SystemZ::CondTrap)); 813 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 814 .addImm(CCValid).addImm(CCMask) 815 .addReg(SystemZ::CC, RegState::Implicit); 816 return true; 817 } 818 if (Opcode == SystemZ::Return) { 819 MI.setDesc(get(SystemZ::CondReturn)); 820 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 821 .addImm(CCValid).addImm(CCMask) 822 .addReg(SystemZ::CC, RegState::Implicit); 823 return true; 824 } 825 if (Opcode == SystemZ::CallJG) { 826 MachineOperand FirstOp = MI.getOperand(0); 827 const uint32_t *RegMask = MI.getOperand(1).getRegMask(); 828 MI.RemoveOperand(1); 829 MI.RemoveOperand(0); 830 MI.setDesc(get(SystemZ::CallBRCL)); 831 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 832 .addImm(CCValid) 833 .addImm(CCMask) 834 .add(FirstOp) 835 .addRegMask(RegMask) 836 .addReg(SystemZ::CC, RegState::Implicit); 837 return true; 838 } 839 if (Opcode == SystemZ::CallBR) { 840 const uint32_t *RegMask = MI.getOperand(0).getRegMask(); 841 MI.RemoveOperand(0); 842 MI.setDesc(get(SystemZ::CallBCR)); 843 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 844 .addImm(CCValid).addImm(CCMask) 845 .addRegMask(RegMask) 846 .addReg(SystemZ::CC, RegState::Implicit); 847 return true; 848 } 849 return false; 850 } 851 852 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 853 MachineBasicBlock::iterator MBBI, 854 const DebugLoc &DL, unsigned DestReg, 855 unsigned SrcReg, bool KillSrc) const { 856 // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the 857 // super register in case one of the subregs is undefined. 858 // This handles ADDR128 too. 859 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 860 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), 861 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); 862 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI)) 863 .addReg(SrcReg, RegState::Implicit); 864 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), 865 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); 866 MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI)) 867 .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit)); 868 return; 869 } 870 871 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { 872 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc, 873 false); 874 return; 875 } 876 877 // Move 128-bit floating-point values between VR128 and FP128. 878 if (SystemZ::VR128BitRegClass.contains(DestReg) && 879 SystemZ::FP128BitRegClass.contains(SrcReg)) { 880 unsigned SrcRegHi = 881 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64), 882 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 883 unsigned SrcRegLo = 884 RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64), 885 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 886 887 BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg) 888 .addReg(SrcRegHi, getKillRegState(KillSrc)) 889 .addReg(SrcRegLo, getKillRegState(KillSrc)); 890 return; 891 } 892 if (SystemZ::FP128BitRegClass.contains(DestReg) && 893 SystemZ::VR128BitRegClass.contains(SrcReg)) { 894 unsigned DestRegHi = 895 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64), 896 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 897 unsigned DestRegLo = 898 RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64), 899 SystemZ::subreg_h64, &SystemZ::VR128BitRegClass); 900 901 if (DestRegHi != SrcReg) 902 copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false); 903 BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo) 904 .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1); 905 return; 906 } 907 908 // Move CC value from/to a GR32. 909 if (SrcReg == SystemZ::CC) { 910 auto MIB = BuildMI(MBB, MBBI, DL, get(SystemZ::IPM), DestReg); 911 if (KillSrc) { 912 const MachineFunction *MF = MBB.getParent(); 913 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 914 MIB->addRegisterKilled(SrcReg, TRI); 915 } 916 return; 917 } 918 if (DestReg == SystemZ::CC) { 919 BuildMI(MBB, MBBI, DL, get(SystemZ::TMLH)) 920 .addReg(SrcReg, getKillRegState(KillSrc)) 921 .addImm(3 << (SystemZ::IPM_CC - 16)); 922 return; 923 } 924 925 // Everything else needs only one instruction. 926 unsigned Opcode; 927 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 928 Opcode = SystemZ::LGR; 929 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 930 // For z13 we prefer LDR over LER to avoid partial register dependencies. 931 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER; 932 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 933 Opcode = SystemZ::LDR; 934 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 935 Opcode = SystemZ::LXR; 936 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg)) 937 Opcode = SystemZ::VLR32; 938 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg)) 939 Opcode = SystemZ::VLR64; 940 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg)) 941 Opcode = SystemZ::VLR; 942 else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg)) 943 Opcode = SystemZ::CPYA; 944 else if (SystemZ::AR32BitRegClass.contains(DestReg) && 945 SystemZ::GR32BitRegClass.contains(SrcReg)) 946 Opcode = SystemZ::SAR; 947 else if (SystemZ::GR32BitRegClass.contains(DestReg) && 948 SystemZ::AR32BitRegClass.contains(SrcReg)) 949 Opcode = SystemZ::EAR; 950 else 951 llvm_unreachable("Impossible reg-to-reg copy"); 952 953 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 954 .addReg(SrcReg, getKillRegState(KillSrc)); 955 } 956 957 void SystemZInstrInfo::storeRegToStackSlot( 958 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, 959 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 960 const TargetRegisterInfo *TRI) const { 961 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 962 963 // Callers may expect a single instruction, so keep 128-bit moves 964 // together for now and lower them after register allocation. 965 unsigned LoadOpcode, StoreOpcode; 966 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 967 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 968 .addReg(SrcReg, getKillRegState(isKill)), 969 FrameIdx); 970 } 971 972 void SystemZInstrInfo::loadRegFromStackSlot( 973 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, 974 int FrameIdx, const TargetRegisterClass *RC, 975 const TargetRegisterInfo *TRI) const { 976 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 977 978 // Callers may expect a single instruction, so keep 128-bit moves 979 // together for now and lower them after register allocation. 980 unsigned LoadOpcode, StoreOpcode; 981 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 982 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 983 FrameIdx); 984 } 985 986 // Return true if MI is a simple load or store with a 12-bit displacement 987 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 988 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 989 const MCInstrDesc &MCID = MI->getDesc(); 990 return ((MCID.TSFlags & Flag) && 991 isUInt<12>(MI->getOperand(2).getImm()) && 992 MI->getOperand(3).getReg() == 0); 993 } 994 995 namespace { 996 997 struct LogicOp { 998 LogicOp() = default; 999 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 1000 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 1001 1002 explicit operator bool() const { return RegSize; } 1003 1004 unsigned RegSize = 0; 1005 unsigned ImmLSB = 0; 1006 unsigned ImmSize = 0; 1007 }; 1008 1009 } // end anonymous namespace 1010 1011 static LogicOp interpretAndImmediate(unsigned Opcode) { 1012 switch (Opcode) { 1013 case SystemZ::NILMux: return LogicOp(32, 0, 16); 1014 case SystemZ::NIHMux: return LogicOp(32, 16, 16); 1015 case SystemZ::NILL64: return LogicOp(64, 0, 16); 1016 case SystemZ::NILH64: return LogicOp(64, 16, 16); 1017 case SystemZ::NIHL64: return LogicOp(64, 32, 16); 1018 case SystemZ::NIHH64: return LogicOp(64, 48, 16); 1019 case SystemZ::NIFMux: return LogicOp(32, 0, 32); 1020 case SystemZ::NILF64: return LogicOp(64, 0, 32); 1021 case SystemZ::NIHF64: return LogicOp(64, 32, 32); 1022 default: return LogicOp(); 1023 } 1024 } 1025 1026 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) { 1027 if (OldMI->registerDefIsDead(SystemZ::CC)) { 1028 MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC); 1029 if (CCDef != nullptr) 1030 CCDef->setIsDead(true); 1031 } 1032 } 1033 1034 // Used to return from convertToThreeAddress after replacing two-address 1035 // instruction OldMI with three-address instruction NewMI. 1036 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI, 1037 MachineInstr *NewMI, 1038 LiveVariables *LV) { 1039 if (LV) { 1040 unsigned NumOps = OldMI->getNumOperands(); 1041 for (unsigned I = 1; I < NumOps; ++I) { 1042 MachineOperand &Op = OldMI->getOperand(I); 1043 if (Op.isReg() && Op.isKill()) 1044 LV->replaceKillInstruction(Op.getReg(), *OldMI, *NewMI); 1045 } 1046 } 1047 transferDeadCC(OldMI, NewMI); 1048 return NewMI; 1049 } 1050 1051 MachineInstr *SystemZInstrInfo::convertToThreeAddress( 1052 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 1053 MachineBasicBlock *MBB = MI.getParent(); 1054 MachineFunction *MF = MBB->getParent(); 1055 MachineRegisterInfo &MRI = MF->getRegInfo(); 1056 1057 unsigned Opcode = MI.getOpcode(); 1058 unsigned NumOps = MI.getNumOperands(); 1059 1060 // Try to convert something like SLL into SLLK, if supported. 1061 // We prefer to keep the two-operand form where possible both 1062 // because it tends to be shorter and because some instructions 1063 // have memory forms that can be used during spilling. 1064 if (STI.hasDistinctOps()) { 1065 MachineOperand &Dest = MI.getOperand(0); 1066 MachineOperand &Src = MI.getOperand(1); 1067 unsigned DestReg = Dest.getReg(); 1068 unsigned SrcReg = Src.getReg(); 1069 // AHIMux is only really a three-operand instruction when both operands 1070 // are low registers. Try to constrain both operands to be low if 1071 // possible. 1072 if (Opcode == SystemZ::AHIMux && 1073 TargetRegisterInfo::isVirtualRegister(DestReg) && 1074 TargetRegisterInfo::isVirtualRegister(SrcReg) && 1075 MRI.getRegClass(DestReg)->contains(SystemZ::R1L) && 1076 MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) { 1077 MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass); 1078 MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass); 1079 } 1080 int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); 1081 if (ThreeOperandOpcode >= 0) { 1082 // Create three address instruction without adding the implicit 1083 // operands. Those will instead be copied over from the original 1084 // instruction by the loop below. 1085 MachineInstrBuilder MIB( 1086 *MF, MF->CreateMachineInstr(get(ThreeOperandOpcode), MI.getDebugLoc(), 1087 /*NoImplicit=*/true)); 1088 MIB.add(Dest); 1089 // Keep the kill state, but drop the tied flag. 1090 MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()); 1091 // Keep the remaining operands as-is. 1092 for (unsigned I = 2; I < NumOps; ++I) 1093 MIB.add(MI.getOperand(I)); 1094 MBB->insert(MI, MIB); 1095 return finishConvertToThreeAddress(&MI, MIB, LV); 1096 } 1097 } 1098 1099 // Try to convert an AND into an RISBG-type instruction. 1100 if (LogicOp And = interpretAndImmediate(Opcode)) { 1101 uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB; 1102 // AND IMMEDIATE leaves the other bits of the register unchanged. 1103 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 1104 unsigned Start, End; 1105 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 1106 unsigned NewOpcode; 1107 if (And.RegSize == 64) { 1108 NewOpcode = SystemZ::RISBG; 1109 // Prefer RISBGN if available, since it does not clobber CC. 1110 if (STI.hasMiscellaneousExtensions()) 1111 NewOpcode = SystemZ::RISBGN; 1112 } else { 1113 NewOpcode = SystemZ::RISBMux; 1114 Start &= 31; 1115 End &= 31; 1116 } 1117 MachineOperand &Dest = MI.getOperand(0); 1118 MachineOperand &Src = MI.getOperand(1); 1119 MachineInstrBuilder MIB = 1120 BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode)) 1121 .add(Dest) 1122 .addReg(0) 1123 .addReg(Src.getReg(), getKillRegState(Src.isKill()), 1124 Src.getSubReg()) 1125 .addImm(Start) 1126 .addImm(End + 128) 1127 .addImm(0); 1128 return finishConvertToThreeAddress(&MI, MIB, LV); 1129 } 1130 } 1131 return nullptr; 1132 } 1133 1134 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1135 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1136 MachineBasicBlock::iterator InsertPt, int FrameIndex, 1137 LiveIntervals *LIS) const { 1138 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1139 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1140 unsigned Size = MFI.getObjectSize(FrameIndex); 1141 unsigned Opcode = MI.getOpcode(); 1142 1143 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 1144 if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && 1145 isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) { 1146 1147 // Check CC liveness, since new instruction introduces a dead 1148 // def of CC. 1149 MCRegUnitIterator CCUnit(SystemZ::CC, TRI); 1150 LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit); 1151 ++CCUnit; 1152 assert(!CCUnit.isValid() && "CC only has one reg unit."); 1153 SlotIndex MISlot = 1154 LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot(); 1155 if (!CCLiveRange.liveAt(MISlot)) { 1156 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST 1157 MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt, 1158 MI.getDebugLoc(), get(SystemZ::AGSI)) 1159 .addFrameIndex(FrameIndex) 1160 .addImm(0) 1161 .addImm(MI.getOperand(2).getImm()); 1162 BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true); 1163 CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator()); 1164 return BuiltMI; 1165 } 1166 } 1167 return nullptr; 1168 } 1169 1170 // All other cases require a single operand. 1171 if (Ops.size() != 1) 1172 return nullptr; 1173 1174 unsigned OpNum = Ops[0]; 1175 assert(Size * 8 == 1176 TRI->getRegSizeInBits(*MF.getRegInfo() 1177 .getRegClass(MI.getOperand(OpNum).getReg())) && 1178 "Invalid size combination"); 1179 1180 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 && 1181 isInt<8>(MI.getOperand(2).getImm())) { 1182 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST 1183 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); 1184 MachineInstr *BuiltMI = 1185 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1186 .addFrameIndex(FrameIndex) 1187 .addImm(0) 1188 .addImm(MI.getOperand(2).getImm()); 1189 transferDeadCC(&MI, BuiltMI); 1190 return BuiltMI; 1191 } 1192 1193 if ((Opcode == SystemZ::ALFI && OpNum == 0 && 1194 isInt<8>((int32_t)MI.getOperand(2).getImm())) || 1195 (Opcode == SystemZ::ALGFI && OpNum == 0 && 1196 isInt<8>((int64_t)MI.getOperand(2).getImm()))) { 1197 // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST 1198 Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI); 1199 MachineInstr *BuiltMI = 1200 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1201 .addFrameIndex(FrameIndex) 1202 .addImm(0) 1203 .addImm((int8_t)MI.getOperand(2).getImm()); 1204 transferDeadCC(&MI, BuiltMI); 1205 return BuiltMI; 1206 } 1207 1208 if ((Opcode == SystemZ::SLFI && OpNum == 0 && 1209 isInt<8>((int32_t)-MI.getOperand(2).getImm())) || 1210 (Opcode == SystemZ::SLGFI && OpNum == 0 && 1211 isInt<8>((int64_t)-MI.getOperand(2).getImm()))) { 1212 // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST 1213 Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI); 1214 MachineInstr *BuiltMI = 1215 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1216 .addFrameIndex(FrameIndex) 1217 .addImm(0) 1218 .addImm((int8_t)-MI.getOperand(2).getImm()); 1219 transferDeadCC(&MI, BuiltMI); 1220 return BuiltMI; 1221 } 1222 1223 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 1224 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 1225 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 1226 // If we're spilling the destination of an LDGR or LGDR, store the 1227 // source register instead. 1228 if (OpNum == 0) { 1229 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 1230 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1231 get(StoreOpcode)) 1232 .add(MI.getOperand(1)) 1233 .addFrameIndex(FrameIndex) 1234 .addImm(0) 1235 .addReg(0); 1236 } 1237 // If we're spilling the source of an LDGR or LGDR, load the 1238 // destination register instead. 1239 if (OpNum == 1) { 1240 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 1241 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1242 get(LoadOpcode)) 1243 .add(MI.getOperand(0)) 1244 .addFrameIndex(FrameIndex) 1245 .addImm(0) 1246 .addReg(0); 1247 } 1248 } 1249 1250 // Look for cases where the source of a simple store or the destination 1251 // of a simple load is being spilled. Try to use MVC instead. 1252 // 1253 // Although MVC is in practice a fast choice in these cases, it is still 1254 // logically a bytewise copy. This means that we cannot use it if the 1255 // load or store is volatile. We also wouldn't be able to use MVC if 1256 // the two memories partially overlap, but that case cannot occur here, 1257 // because we know that one of the memories is a full frame index. 1258 // 1259 // For performance reasons, we also want to avoid using MVC if the addresses 1260 // might be equal. We don't worry about that case here, because spill slot 1261 // coloring happens later, and because we have special code to remove 1262 // MVCs that turn out to be redundant. 1263 if (OpNum == 0 && MI.hasOneMemOperand()) { 1264 MachineMemOperand *MMO = *MI.memoperands_begin(); 1265 if (MMO->getSize() == Size && !MMO->isVolatile()) { 1266 // Handle conversion of loads. 1267 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) { 1268 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1269 get(SystemZ::MVC)) 1270 .addFrameIndex(FrameIndex) 1271 .addImm(0) 1272 .addImm(Size) 1273 .add(MI.getOperand(1)) 1274 .addImm(MI.getOperand(2).getImm()) 1275 .addMemOperand(MMO); 1276 } 1277 // Handle conversion of stores. 1278 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) { 1279 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1280 get(SystemZ::MVC)) 1281 .add(MI.getOperand(1)) 1282 .addImm(MI.getOperand(2).getImm()) 1283 .addImm(Size) 1284 .addFrameIndex(FrameIndex) 1285 .addImm(0) 1286 .addMemOperand(MMO); 1287 } 1288 } 1289 } 1290 1291 // If the spilled operand is the final one, try to change <INSN>R 1292 // into <INSN>. 1293 int MemOpcode = SystemZ::getMemOpcode(Opcode); 1294 if (MemOpcode >= 0) { 1295 unsigned NumOps = MI.getNumExplicitOperands(); 1296 if (OpNum == NumOps - 1) { 1297 const MCInstrDesc &MemDesc = get(MemOpcode); 1298 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 1299 assert(AccessBytes != 0 && "Size of access should be known"); 1300 assert(AccessBytes <= Size && "Access outside the frame index"); 1301 uint64_t Offset = Size - AccessBytes; 1302 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 1303 MI.getDebugLoc(), get(MemOpcode)); 1304 for (unsigned I = 0; I < OpNum; ++I) 1305 MIB.add(MI.getOperand(I)); 1306 MIB.addFrameIndex(FrameIndex).addImm(Offset); 1307 if (MemDesc.TSFlags & SystemZII::HasIndex) 1308 MIB.addReg(0); 1309 transferDeadCC(&MI, MIB); 1310 return MIB; 1311 } 1312 } 1313 1314 return nullptr; 1315 } 1316 1317 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1318 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1319 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 1320 LiveIntervals *LIS) const { 1321 return nullptr; 1322 } 1323 1324 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1325 switch (MI.getOpcode()) { 1326 case SystemZ::L128: 1327 splitMove(MI, SystemZ::LG); 1328 return true; 1329 1330 case SystemZ::ST128: 1331 splitMove(MI, SystemZ::STG); 1332 return true; 1333 1334 case SystemZ::LX: 1335 splitMove(MI, SystemZ::LD); 1336 return true; 1337 1338 case SystemZ::STX: 1339 splitMove(MI, SystemZ::STD); 1340 return true; 1341 1342 case SystemZ::LBMux: 1343 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); 1344 return true; 1345 1346 case SystemZ::LHMux: 1347 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); 1348 return true; 1349 1350 case SystemZ::LLCRMux: 1351 expandZExtPseudo(MI, SystemZ::LLCR, 8); 1352 return true; 1353 1354 case SystemZ::LLHRMux: 1355 expandZExtPseudo(MI, SystemZ::LLHR, 16); 1356 return true; 1357 1358 case SystemZ::LLCMux: 1359 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); 1360 return true; 1361 1362 case SystemZ::LLHMux: 1363 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); 1364 return true; 1365 1366 case SystemZ::LMux: 1367 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); 1368 return true; 1369 1370 case SystemZ::LOCMux: 1371 expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH); 1372 return true; 1373 1374 case SystemZ::LOCHIMux: 1375 expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI); 1376 return true; 1377 1378 case SystemZ::LOCRMux: 1379 expandLOCRPseudo(MI, SystemZ::LOCR, SystemZ::LOCFHR); 1380 return true; 1381 1382 case SystemZ::STCMux: 1383 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); 1384 return true; 1385 1386 case SystemZ::STHMux: 1387 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); 1388 return true; 1389 1390 case SystemZ::STMux: 1391 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); 1392 return true; 1393 1394 case SystemZ::STOCMux: 1395 expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH); 1396 return true; 1397 1398 case SystemZ::LHIMux: 1399 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); 1400 return true; 1401 1402 case SystemZ::IIFMux: 1403 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); 1404 return true; 1405 1406 case SystemZ::IILMux: 1407 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); 1408 return true; 1409 1410 case SystemZ::IIHMux: 1411 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); 1412 return true; 1413 1414 case SystemZ::NIFMux: 1415 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); 1416 return true; 1417 1418 case SystemZ::NILMux: 1419 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); 1420 return true; 1421 1422 case SystemZ::NIHMux: 1423 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); 1424 return true; 1425 1426 case SystemZ::OIFMux: 1427 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); 1428 return true; 1429 1430 case SystemZ::OILMux: 1431 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); 1432 return true; 1433 1434 case SystemZ::OIHMux: 1435 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); 1436 return true; 1437 1438 case SystemZ::XIFMux: 1439 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); 1440 return true; 1441 1442 case SystemZ::TMLMux: 1443 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); 1444 return true; 1445 1446 case SystemZ::TMHMux: 1447 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); 1448 return true; 1449 1450 case SystemZ::AHIMux: 1451 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); 1452 return true; 1453 1454 case SystemZ::AHIMuxK: 1455 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); 1456 return true; 1457 1458 case SystemZ::AFIMux: 1459 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); 1460 return true; 1461 1462 case SystemZ::CHIMux: 1463 expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false); 1464 return true; 1465 1466 case SystemZ::CFIMux: 1467 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); 1468 return true; 1469 1470 case SystemZ::CLFIMux: 1471 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); 1472 return true; 1473 1474 case SystemZ::CMux: 1475 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); 1476 return true; 1477 1478 case SystemZ::CLMux: 1479 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); 1480 return true; 1481 1482 case SystemZ::RISBMux: { 1483 bool DestIsHigh = isHighReg(MI.getOperand(0).getReg()); 1484 bool SrcIsHigh = isHighReg(MI.getOperand(2).getReg()); 1485 if (SrcIsHigh == DestIsHigh) 1486 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); 1487 else { 1488 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); 1489 MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32); 1490 } 1491 return true; 1492 } 1493 1494 case SystemZ::ADJDYNALLOC: 1495 splitAdjDynAlloc(MI); 1496 return true; 1497 1498 case TargetOpcode::LOAD_STACK_GUARD: 1499 expandLoadStackGuard(&MI); 1500 return true; 1501 1502 default: 1503 return false; 1504 } 1505 } 1506 1507 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1508 if (MI.getOpcode() == TargetOpcode::INLINEASM) { 1509 const MachineFunction *MF = MI.getParent()->getParent(); 1510 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1511 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1512 } 1513 return MI.getDesc().getSize(); 1514 } 1515 1516 SystemZII::Branch 1517 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const { 1518 switch (MI.getOpcode()) { 1519 case SystemZ::BR: 1520 case SystemZ::BI: 1521 case SystemZ::J: 1522 case SystemZ::JG: 1523 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 1524 SystemZ::CCMASK_ANY, &MI.getOperand(0)); 1525 1526 case SystemZ::BRC: 1527 case SystemZ::BRCL: 1528 return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(), 1529 MI.getOperand(1).getImm(), &MI.getOperand(2)); 1530 1531 case SystemZ::BRCT: 1532 case SystemZ::BRCTH: 1533 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 1534 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1535 1536 case SystemZ::BRCTG: 1537 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 1538 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1539 1540 case SystemZ::CIJ: 1541 case SystemZ::CRJ: 1542 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 1543 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1544 1545 case SystemZ::CLIJ: 1546 case SystemZ::CLRJ: 1547 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, 1548 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1549 1550 case SystemZ::CGIJ: 1551 case SystemZ::CGRJ: 1552 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 1553 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1554 1555 case SystemZ::CLGIJ: 1556 case SystemZ::CLGRJ: 1557 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, 1558 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1559 1560 default: 1561 llvm_unreachable("Unrecognized branch opcode"); 1562 } 1563 } 1564 1565 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 1566 unsigned &LoadOpcode, 1567 unsigned &StoreOpcode) const { 1568 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 1569 LoadOpcode = SystemZ::L; 1570 StoreOpcode = SystemZ::ST; 1571 } else if (RC == &SystemZ::GRH32BitRegClass) { 1572 LoadOpcode = SystemZ::LFH; 1573 StoreOpcode = SystemZ::STFH; 1574 } else if (RC == &SystemZ::GRX32BitRegClass) { 1575 LoadOpcode = SystemZ::LMux; 1576 StoreOpcode = SystemZ::STMux; 1577 } else if (RC == &SystemZ::GR64BitRegClass || 1578 RC == &SystemZ::ADDR64BitRegClass) { 1579 LoadOpcode = SystemZ::LG; 1580 StoreOpcode = SystemZ::STG; 1581 } else if (RC == &SystemZ::GR128BitRegClass || 1582 RC == &SystemZ::ADDR128BitRegClass) { 1583 LoadOpcode = SystemZ::L128; 1584 StoreOpcode = SystemZ::ST128; 1585 } else if (RC == &SystemZ::FP32BitRegClass) { 1586 LoadOpcode = SystemZ::LE; 1587 StoreOpcode = SystemZ::STE; 1588 } else if (RC == &SystemZ::FP64BitRegClass) { 1589 LoadOpcode = SystemZ::LD; 1590 StoreOpcode = SystemZ::STD; 1591 } else if (RC == &SystemZ::FP128BitRegClass) { 1592 LoadOpcode = SystemZ::LX; 1593 StoreOpcode = SystemZ::STX; 1594 } else if (RC == &SystemZ::VR32BitRegClass) { 1595 LoadOpcode = SystemZ::VL32; 1596 StoreOpcode = SystemZ::VST32; 1597 } else if (RC == &SystemZ::VR64BitRegClass) { 1598 LoadOpcode = SystemZ::VL64; 1599 StoreOpcode = SystemZ::VST64; 1600 } else if (RC == &SystemZ::VF128BitRegClass || 1601 RC == &SystemZ::VR128BitRegClass) { 1602 LoadOpcode = SystemZ::VL; 1603 StoreOpcode = SystemZ::VST; 1604 } else 1605 llvm_unreachable("Unsupported regclass to load or store"); 1606 } 1607 1608 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 1609 int64_t Offset) const { 1610 const MCInstrDesc &MCID = get(Opcode); 1611 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 1612 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 1613 // Get the instruction to use for unsigned 12-bit displacements. 1614 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 1615 if (Disp12Opcode >= 0) 1616 return Disp12Opcode; 1617 1618 // All address-related instructions can use unsigned 12-bit 1619 // displacements. 1620 return Opcode; 1621 } 1622 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 1623 // Get the instruction to use for signed 20-bit displacements. 1624 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 1625 if (Disp20Opcode >= 0) 1626 return Disp20Opcode; 1627 1628 // Check whether Opcode allows signed 20-bit displacements. 1629 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1630 return Opcode; 1631 } 1632 return 0; 1633 } 1634 1635 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 1636 switch (Opcode) { 1637 case SystemZ::L: return SystemZ::LT; 1638 case SystemZ::LY: return SystemZ::LT; 1639 case SystemZ::LG: return SystemZ::LTG; 1640 case SystemZ::LGF: return SystemZ::LTGF; 1641 case SystemZ::LR: return SystemZ::LTR; 1642 case SystemZ::LGFR: return SystemZ::LTGFR; 1643 case SystemZ::LGR: return SystemZ::LTGR; 1644 case SystemZ::LER: return SystemZ::LTEBR; 1645 case SystemZ::LDR: return SystemZ::LTDBR; 1646 case SystemZ::LXR: return SystemZ::LTXBR; 1647 case SystemZ::LCDFR: return SystemZ::LCDBR; 1648 case SystemZ::LPDFR: return SystemZ::LPDBR; 1649 case SystemZ::LNDFR: return SystemZ::LNDBR; 1650 case SystemZ::LCDFR_32: return SystemZ::LCEBR; 1651 case SystemZ::LPDFR_32: return SystemZ::LPEBR; 1652 case SystemZ::LNDFR_32: return SystemZ::LNEBR; 1653 // On zEC12 we prefer to use RISBGN. But if there is a chance to 1654 // actually use the condition code, we may turn it back into RISGB. 1655 // Note that RISBG is not really a "load-and-test" instruction, 1656 // but sets the same condition code values, so is OK to use here. 1657 case SystemZ::RISBGN: return SystemZ::RISBG; 1658 default: return 0; 1659 } 1660 } 1661 1662 // Return true if Mask matches the regexp 0*1+0*, given that zero masks 1663 // have already been filtered out. Store the first set bit in LSB and 1664 // the number of set bits in Length if so. 1665 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { 1666 unsigned First = findFirstSet(Mask); 1667 uint64_t Top = (Mask >> First) + 1; 1668 if ((Top & -Top) == Top) { 1669 LSB = First; 1670 Length = findFirstSet(Top); 1671 return true; 1672 } 1673 return false; 1674 } 1675 1676 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 1677 unsigned &Start, unsigned &End) const { 1678 // Reject trivial all-zero masks. 1679 Mask &= allOnes(BitSize); 1680 if (Mask == 0) 1681 return false; 1682 1683 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 1684 // the msb and End specifies the index of the lsb. 1685 unsigned LSB, Length; 1686 if (isStringOfOnes(Mask, LSB, Length)) { 1687 Start = 63 - (LSB + Length - 1); 1688 End = 63 - LSB; 1689 return true; 1690 } 1691 1692 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 1693 // of the low 1s and End specifies the lsb of the high 1s. 1694 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { 1695 assert(LSB > 0 && "Bottom bit must be set"); 1696 assert(LSB + Length < BitSize && "Top bit must be set"); 1697 Start = 63 - (LSB - 1); 1698 End = 63 - (LSB + Length); 1699 return true; 1700 } 1701 1702 return false; 1703 } 1704 1705 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode, 1706 SystemZII::FusedCompareType Type, 1707 const MachineInstr *MI) const { 1708 switch (Opcode) { 1709 case SystemZ::CHI: 1710 case SystemZ::CGHI: 1711 if (!(MI && isInt<8>(MI->getOperand(1).getImm()))) 1712 return 0; 1713 break; 1714 case SystemZ::CLFI: 1715 case SystemZ::CLGFI: 1716 if (!(MI && isUInt<8>(MI->getOperand(1).getImm()))) 1717 return 0; 1718 break; 1719 case SystemZ::CL: 1720 case SystemZ::CLG: 1721 if (!STI.hasMiscellaneousExtensions()) 1722 return 0; 1723 if (!(MI && MI->getOperand(3).getReg() == 0)) 1724 return 0; 1725 break; 1726 } 1727 switch (Type) { 1728 case SystemZII::CompareAndBranch: 1729 switch (Opcode) { 1730 case SystemZ::CR: 1731 return SystemZ::CRJ; 1732 case SystemZ::CGR: 1733 return SystemZ::CGRJ; 1734 case SystemZ::CHI: 1735 return SystemZ::CIJ; 1736 case SystemZ::CGHI: 1737 return SystemZ::CGIJ; 1738 case SystemZ::CLR: 1739 return SystemZ::CLRJ; 1740 case SystemZ::CLGR: 1741 return SystemZ::CLGRJ; 1742 case SystemZ::CLFI: 1743 return SystemZ::CLIJ; 1744 case SystemZ::CLGFI: 1745 return SystemZ::CLGIJ; 1746 default: 1747 return 0; 1748 } 1749 case SystemZII::CompareAndReturn: 1750 switch (Opcode) { 1751 case SystemZ::CR: 1752 return SystemZ::CRBReturn; 1753 case SystemZ::CGR: 1754 return SystemZ::CGRBReturn; 1755 case SystemZ::CHI: 1756 return SystemZ::CIBReturn; 1757 case SystemZ::CGHI: 1758 return SystemZ::CGIBReturn; 1759 case SystemZ::CLR: 1760 return SystemZ::CLRBReturn; 1761 case SystemZ::CLGR: 1762 return SystemZ::CLGRBReturn; 1763 case SystemZ::CLFI: 1764 return SystemZ::CLIBReturn; 1765 case SystemZ::CLGFI: 1766 return SystemZ::CLGIBReturn; 1767 default: 1768 return 0; 1769 } 1770 case SystemZII::CompareAndSibcall: 1771 switch (Opcode) { 1772 case SystemZ::CR: 1773 return SystemZ::CRBCall; 1774 case SystemZ::CGR: 1775 return SystemZ::CGRBCall; 1776 case SystemZ::CHI: 1777 return SystemZ::CIBCall; 1778 case SystemZ::CGHI: 1779 return SystemZ::CGIBCall; 1780 case SystemZ::CLR: 1781 return SystemZ::CLRBCall; 1782 case SystemZ::CLGR: 1783 return SystemZ::CLGRBCall; 1784 case SystemZ::CLFI: 1785 return SystemZ::CLIBCall; 1786 case SystemZ::CLGFI: 1787 return SystemZ::CLGIBCall; 1788 default: 1789 return 0; 1790 } 1791 case SystemZII::CompareAndTrap: 1792 switch (Opcode) { 1793 case SystemZ::CR: 1794 return SystemZ::CRT; 1795 case SystemZ::CGR: 1796 return SystemZ::CGRT; 1797 case SystemZ::CHI: 1798 return SystemZ::CIT; 1799 case SystemZ::CGHI: 1800 return SystemZ::CGIT; 1801 case SystemZ::CLR: 1802 return SystemZ::CLRT; 1803 case SystemZ::CLGR: 1804 return SystemZ::CLGRT; 1805 case SystemZ::CLFI: 1806 return SystemZ::CLFIT; 1807 case SystemZ::CLGFI: 1808 return SystemZ::CLGIT; 1809 case SystemZ::CL: 1810 return SystemZ::CLT; 1811 case SystemZ::CLG: 1812 return SystemZ::CLGT; 1813 default: 1814 return 0; 1815 } 1816 } 1817 return 0; 1818 } 1819 1820 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const { 1821 if (!STI.hasLoadAndTrap()) 1822 return 0; 1823 switch (Opcode) { 1824 case SystemZ::L: 1825 case SystemZ::LY: 1826 return SystemZ::LAT; 1827 case SystemZ::LG: 1828 return SystemZ::LGAT; 1829 case SystemZ::LFH: 1830 return SystemZ::LFHAT; 1831 case SystemZ::LLGF: 1832 return SystemZ::LLGFAT; 1833 case SystemZ::LLGT: 1834 return SystemZ::LLGTAT; 1835 } 1836 return 0; 1837 } 1838 1839 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 1840 MachineBasicBlock::iterator MBBI, 1841 unsigned Reg, uint64_t Value) const { 1842 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1843 unsigned Opcode; 1844 if (isInt<16>(Value)) 1845 Opcode = SystemZ::LGHI; 1846 else if (SystemZ::isImmLL(Value)) 1847 Opcode = SystemZ::LLILL; 1848 else if (SystemZ::isImmLH(Value)) { 1849 Opcode = SystemZ::LLILH; 1850 Value >>= 16; 1851 } else { 1852 assert(isInt<32>(Value) && "Huge values not handled yet"); 1853 Opcode = SystemZ::LGFI; 1854 } 1855 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 1856 } 1857 1858 bool SystemZInstrInfo:: 1859 areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb, 1860 AliasAnalysis *AA) const { 1861 1862 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) 1863 return false; 1864 1865 // If mem-operands show that the same address Value is used by both 1866 // instructions, check for non-overlapping offsets and widths. Not 1867 // sure if a register based analysis would be an improvement... 1868 1869 MachineMemOperand *MMOa = *MIa.memoperands_begin(); 1870 MachineMemOperand *MMOb = *MIb.memoperands_begin(); 1871 const Value *VALa = MMOa->getValue(); 1872 const Value *VALb = MMOb->getValue(); 1873 bool SameVal = (VALa && VALb && (VALa == VALb)); 1874 if (!SameVal) { 1875 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1876 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1877 if (PSVa && PSVb && (PSVa == PSVb)) 1878 SameVal = true; 1879 } 1880 if (SameVal) { 1881 int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset(); 1882 int WidthA = MMOa->getSize(), WidthB = MMOb->getSize(); 1883 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 1884 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 1885 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 1886 if (LowOffset + LowWidth <= HighOffset) 1887 return true; 1888 } 1889 1890 return false; 1891 } 1892