1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SystemZ implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZInstrInfo.h" 15 #include "SystemZInstrBuilder.h" 16 #include "SystemZTargetMachine.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 21 using namespace llvm; 22 23 #define GET_INSTRINFO_CTOR_DTOR 24 #define GET_INSTRMAP_INFO 25 #include "SystemZGenInstrInfo.inc" 26 27 // Return a mask with Count low bits set. 28 static uint64_t allOnes(unsigned int Count) { 29 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 30 } 31 32 // Reg should be a 32-bit GPR. Return true if it is a high register rather 33 // than a low register. 34 static bool isHighReg(unsigned int Reg) { 35 if (SystemZ::GRH32BitRegClass.contains(Reg)) 36 return true; 37 assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32"); 38 return false; 39 } 40 41 // Pin the vtable to this file. 42 void SystemZInstrInfo::anchor() {} 43 44 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti) 45 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 46 RI(), STI(sti) { 47 } 48 49 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 50 // each having the opcode given by NewOpcode. 51 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 52 unsigned NewOpcode) const { 53 MachineBasicBlock *MBB = MI->getParent(); 54 MachineFunction &MF = *MBB->getParent(); 55 56 // Get two load or store instructions. Use the original instruction for one 57 // of them (arbitrarily the second here) and create a clone for the other. 58 MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI); 59 MBB->insert(MI, EarlierMI); 60 61 // Set up the two 64-bit registers. 62 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 63 MachineOperand &LowRegOp = MI->getOperand(0); 64 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); 65 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); 66 67 // The address in the first (high) instruction is already correct. 68 // Adjust the offset in the second (low) instruction. 69 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 70 MachineOperand &LowOffsetOp = MI->getOperand(2); 71 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 72 73 // Clear the kill flags for the base and index registers in the first 74 // instruction. 75 EarlierMI->getOperand(1).setIsKill(false); 76 EarlierMI->getOperand(3).setIsKill(false); 77 78 // Set the opcodes. 79 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 80 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 81 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 82 83 EarlierMI->setDesc(get(HighOpcode)); 84 MI->setDesc(get(LowOpcode)); 85 } 86 87 // Split ADJDYNALLOC instruction MI. 88 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 89 MachineBasicBlock *MBB = MI->getParent(); 90 MachineFunction &MF = *MBB->getParent(); 91 MachineFrameInfo &MFFrame = MF.getFrameInfo(); 92 MachineOperand &OffsetMO = MI->getOperand(2); 93 94 uint64_t Offset = (MFFrame.getMaxCallFrameSize() + 95 SystemZMC::CallFrameSize + 96 OffsetMO.getImm()); 97 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 98 assert(NewOpcode && "No support for huge argument lists yet"); 99 MI->setDesc(get(NewOpcode)); 100 OffsetMO.setImm(Offset); 101 } 102 103 // MI is an RI-style pseudo instruction. Replace it with LowOpcode 104 // if the first operand is a low GR32 and HighOpcode if the first operand 105 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand 106 // and HighOpcode takes an unsigned 32-bit operand. In those cases, 107 // MI has the same kind of operand as LowOpcode, so needs to be converted 108 // if HighOpcode is used. 109 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode, 110 unsigned HighOpcode, 111 bool ConvertHigh) const { 112 unsigned Reg = MI.getOperand(0).getReg(); 113 bool IsHigh = isHighReg(Reg); 114 MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode)); 115 if (IsHigh && ConvertHigh) 116 MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm())); 117 } 118 119 // MI is a three-operand RIE-style pseudo instruction. Replace it with 120 // LowOpcodeK if the registers are both low GR32s, otherwise use a move 121 // followed by HighOpcode or LowOpcode, depending on whether the target 122 // is a high or low GR32. 123 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode, 124 unsigned LowOpcodeK, 125 unsigned HighOpcode) const { 126 unsigned DestReg = MI.getOperand(0).getReg(); 127 unsigned SrcReg = MI.getOperand(1).getReg(); 128 bool DestIsHigh = isHighReg(DestReg); 129 bool SrcIsHigh = isHighReg(SrcReg); 130 if (!DestIsHigh && !SrcIsHigh) 131 MI.setDesc(get(LowOpcodeK)); 132 else { 133 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg, 134 SystemZ::LR, 32, MI.getOperand(1).isKill()); 135 MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); 136 MI.getOperand(1).setReg(DestReg); 137 MI.tieOperands(0, 1); 138 } 139 } 140 141 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode 142 // if the first operand is a low GR32 and HighOpcode if the first operand 143 // is a high GR32. 144 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode, 145 unsigned HighOpcode) const { 146 unsigned Reg = MI.getOperand(0).getReg(); 147 unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode, 148 MI.getOperand(2).getImm()); 149 MI.setDesc(get(Opcode)); 150 } 151 152 // MI is a load-on-condition pseudo instruction with a single register 153 // (source or destination) operand. Replace it with LowOpcode if the 154 // register is a low GR32 and HighOpcode if the register is a high GR32. 155 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode, 156 unsigned HighOpcode) const { 157 unsigned Reg = MI.getOperand(0).getReg(); 158 unsigned Opcode = isHighReg(Reg) ? HighOpcode : LowOpcode; 159 MI.setDesc(get(Opcode)); 160 } 161 162 // MI is a load-register-on-condition pseudo instruction. Replace it with 163 // LowOpcode if source and destination are both low GR32s and HighOpcode if 164 // source and destination are both high GR32s. 165 void SystemZInstrInfo::expandLOCRPseudo(MachineInstr &MI, unsigned LowOpcode, 166 unsigned HighOpcode) const { 167 unsigned DestReg = MI.getOperand(0).getReg(); 168 unsigned SrcReg = MI.getOperand(2).getReg(); 169 bool DestIsHigh = isHighReg(DestReg); 170 bool SrcIsHigh = isHighReg(SrcReg); 171 172 if (!DestIsHigh && !SrcIsHigh) 173 MI.setDesc(get(LowOpcode)); 174 else if (DestIsHigh && SrcIsHigh) 175 MI.setDesc(get(HighOpcode)); 176 177 // If we were unable to implement the pseudo with a single instruction, we 178 // need to convert it back into a branch sequence. This cannot be done here 179 // since the caller of expandPostRAPseudo does not handle changes to the CFG 180 // correctly. This change is defered to the SystemZExpandPseudo pass. 181 } 182 183 // MI is an RR-style pseudo instruction that zero-extends the low Size bits 184 // of one GRX32 into another. Replace it with LowOpcode if both operands 185 // are low registers, otherwise use RISB[LH]G. 186 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode, 187 unsigned Size) const { 188 emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), 189 MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode, 190 Size, MI.getOperand(1).isKill()); 191 MI.eraseFromParent(); 192 } 193 194 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const { 195 MachineBasicBlock *MBB = MI->getParent(); 196 MachineFunction &MF = *MBB->getParent(); 197 const unsigned Reg = MI->getOperand(0).getReg(); 198 199 // Conveniently, all 4 instructions are cloned from LOAD_STACK_GUARD, 200 // so they already have operand 0 set to reg. 201 202 // ear <reg>, %a0 203 MachineInstr *Ear1MI = MF.CloneMachineInstr(MI); 204 MBB->insert(MI, Ear1MI); 205 Ear1MI->setDesc(get(SystemZ::EAR)); 206 MachineInstrBuilder(MF, Ear1MI).addReg(SystemZ::A0); 207 208 // sllg <reg>, <reg>, 32 209 MachineInstr *SllgMI = MF.CloneMachineInstr(MI); 210 MBB->insert(MI, SllgMI); 211 SllgMI->setDesc(get(SystemZ::SLLG)); 212 MachineInstrBuilder(MF, SllgMI).addReg(Reg).addReg(0).addImm(32); 213 214 // ear <reg>, %a1 215 MachineInstr *Ear2MI = MF.CloneMachineInstr(MI); 216 MBB->insert(MI, Ear2MI); 217 Ear2MI->setDesc(get(SystemZ::EAR)); 218 MachineInstrBuilder(MF, Ear2MI).addReg(SystemZ::A1); 219 220 // lg <reg>, 40(<reg>) 221 MI->setDesc(get(SystemZ::LG)); 222 MachineInstrBuilder(MF, MI).addReg(Reg).addImm(40).addReg(0); 223 } 224 225 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR 226 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg 227 // are low registers, otherwise use RISB[LH]G. Size is the number of bits 228 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). 229 // KillSrc is true if this move is the last use of SrcReg. 230 void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, 231 MachineBasicBlock::iterator MBBI, 232 const DebugLoc &DL, unsigned DestReg, 233 unsigned SrcReg, unsigned LowLowOpcode, 234 unsigned Size, bool KillSrc) const { 235 unsigned Opcode; 236 bool DestIsHigh = isHighReg(DestReg); 237 bool SrcIsHigh = isHighReg(SrcReg); 238 if (DestIsHigh && SrcIsHigh) 239 Opcode = SystemZ::RISBHH; 240 else if (DestIsHigh && !SrcIsHigh) 241 Opcode = SystemZ::RISBHL; 242 else if (!DestIsHigh && SrcIsHigh) 243 Opcode = SystemZ::RISBLH; 244 else { 245 BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) 246 .addReg(SrcReg, getKillRegState(KillSrc)); 247 return; 248 } 249 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); 250 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 251 .addReg(DestReg, RegState::Undef) 252 .addReg(SrcReg, getKillRegState(KillSrc)) 253 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); 254 } 255 256 257 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI, 258 bool NewMI, 259 unsigned OpIdx1, 260 unsigned OpIdx2) const { 261 auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & { 262 if (NewMI) 263 return *MI.getParent()->getParent()->CloneMachineInstr(&MI); 264 return MI; 265 }; 266 267 switch (MI.getOpcode()) { 268 case SystemZ::LOCRMux: 269 case SystemZ::LOCFHR: 270 case SystemZ::LOCR: 271 case SystemZ::LOCGR: { 272 auto &WorkingMI = cloneIfNew(MI); 273 // Invert condition. 274 unsigned CCValid = WorkingMI.getOperand(3).getImm(); 275 unsigned CCMask = WorkingMI.getOperand(4).getImm(); 276 WorkingMI.getOperand(4).setImm(CCMask ^ CCValid); 277 return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false, 278 OpIdx1, OpIdx2); 279 } 280 default: 281 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); 282 } 283 } 284 285 286 // If MI is a simple load or store for a frame object, return the register 287 // it loads or stores and set FrameIndex to the index of the frame object. 288 // Return 0 otherwise. 289 // 290 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 291 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex, 292 unsigned Flag) { 293 const MCInstrDesc &MCID = MI.getDesc(); 294 if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() && 295 MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) { 296 FrameIndex = MI.getOperand(1).getIndex(); 297 return MI.getOperand(0).getReg(); 298 } 299 return 0; 300 } 301 302 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI, 303 int &FrameIndex) const { 304 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 305 } 306 307 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI, 308 int &FrameIndex) const { 309 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 310 } 311 312 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI, 313 int &DestFrameIndex, 314 int &SrcFrameIndex) const { 315 // Check for MVC 0(Length,FI1),0(FI2) 316 const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo(); 317 if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() || 318 MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() || 319 MI.getOperand(4).getImm() != 0) 320 return false; 321 322 // Check that Length covers the full slots. 323 int64_t Length = MI.getOperand(2).getImm(); 324 unsigned FI1 = MI.getOperand(0).getIndex(); 325 unsigned FI2 = MI.getOperand(3).getIndex(); 326 if (MFI.getObjectSize(FI1) != Length || 327 MFI.getObjectSize(FI2) != Length) 328 return false; 329 330 DestFrameIndex = FI1; 331 SrcFrameIndex = FI2; 332 return true; 333 } 334 335 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 336 MachineBasicBlock *&TBB, 337 MachineBasicBlock *&FBB, 338 SmallVectorImpl<MachineOperand> &Cond, 339 bool AllowModify) const { 340 // Most of the code and comments here are boilerplate. 341 342 // Start from the bottom of the block and work up, examining the 343 // terminator instructions. 344 MachineBasicBlock::iterator I = MBB.end(); 345 while (I != MBB.begin()) { 346 --I; 347 if (I->isDebugValue()) 348 continue; 349 350 // Working from the bottom, when we see a non-terminator instruction, we're 351 // done. 352 if (!isUnpredicatedTerminator(*I)) 353 break; 354 355 // A terminator that isn't a branch can't easily be handled by this 356 // analysis. 357 if (!I->isBranch()) 358 return true; 359 360 // Can't handle indirect branches. 361 SystemZII::Branch Branch(getBranchInfo(*I)); 362 if (!Branch.Target->isMBB()) 363 return true; 364 365 // Punt on compound branches. 366 if (Branch.Type != SystemZII::BranchNormal) 367 return true; 368 369 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 370 // Handle unconditional branches. 371 if (!AllowModify) { 372 TBB = Branch.Target->getMBB(); 373 continue; 374 } 375 376 // If the block has any instructions after a JMP, delete them. 377 while (std::next(I) != MBB.end()) 378 std::next(I)->eraseFromParent(); 379 380 Cond.clear(); 381 FBB = nullptr; 382 383 // Delete the JMP if it's equivalent to a fall-through. 384 if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) { 385 TBB = nullptr; 386 I->eraseFromParent(); 387 I = MBB.end(); 388 continue; 389 } 390 391 // TBB is used to indicate the unconditinal destination. 392 TBB = Branch.Target->getMBB(); 393 continue; 394 } 395 396 // Working from the bottom, handle the first conditional branch. 397 if (Cond.empty()) { 398 // FIXME: add X86-style branch swap 399 FBB = TBB; 400 TBB = Branch.Target->getMBB(); 401 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 402 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 403 continue; 404 } 405 406 // Handle subsequent conditional branches. 407 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 408 409 // Only handle the case where all conditional branches branch to the same 410 // destination. 411 if (TBB != Branch.Target->getMBB()) 412 return true; 413 414 // If the conditions are the same, we can leave them alone. 415 unsigned OldCCValid = Cond[0].getImm(); 416 unsigned OldCCMask = Cond[1].getImm(); 417 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 418 continue; 419 420 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 421 return false; 422 } 423 424 return false; 425 } 426 427 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB, 428 int *BytesRemoved) const { 429 assert(!BytesRemoved && "code size not handled"); 430 431 // Most of the code and comments here are boilerplate. 432 MachineBasicBlock::iterator I = MBB.end(); 433 unsigned Count = 0; 434 435 while (I != MBB.begin()) { 436 --I; 437 if (I->isDebugValue()) 438 continue; 439 if (!I->isBranch()) 440 break; 441 if (!getBranchInfo(*I).Target->isMBB()) 442 break; 443 // Remove the branch. 444 I->eraseFromParent(); 445 I = MBB.end(); 446 ++Count; 447 } 448 449 return Count; 450 } 451 452 bool SystemZInstrInfo:: 453 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 454 assert(Cond.size() == 2 && "Invalid condition"); 455 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 456 return false; 457 } 458 459 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB, 460 MachineBasicBlock *TBB, 461 MachineBasicBlock *FBB, 462 ArrayRef<MachineOperand> Cond, 463 const DebugLoc &DL, 464 int *BytesAdded) const { 465 // In this function we output 32-bit branches, which should always 466 // have enough range. They can be shortened and relaxed by later code 467 // in the pipeline, if desired. 468 469 // Shouldn't be a fall through. 470 assert(TBB && "insertBranch must not be told to insert a fallthrough"); 471 assert((Cond.size() == 2 || Cond.size() == 0) && 472 "SystemZ branch conditions have one component!"); 473 assert(!BytesAdded && "code size not handled"); 474 475 if (Cond.empty()) { 476 // Unconditional branch? 477 assert(!FBB && "Unconditional branch with multiple successors!"); 478 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 479 return 1; 480 } 481 482 // Conditional branch. 483 unsigned Count = 0; 484 unsigned CCValid = Cond[0].getImm(); 485 unsigned CCMask = Cond[1].getImm(); 486 BuildMI(&MBB, DL, get(SystemZ::BRC)) 487 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 488 ++Count; 489 490 if (FBB) { 491 // Two-way Conditional branch. Insert the second branch. 492 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 493 ++Count; 494 } 495 return Count; 496 } 497 498 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg, 499 unsigned &SrcReg2, int &Mask, 500 int &Value) const { 501 assert(MI.isCompare() && "Caller should have checked for a comparison"); 502 503 if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() && 504 MI.getOperand(1).isImm()) { 505 SrcReg = MI.getOperand(0).getReg(); 506 SrcReg2 = 0; 507 Value = MI.getOperand(1).getImm(); 508 Mask = ~0; 509 return true; 510 } 511 512 return false; 513 } 514 515 // If Reg is a virtual register, return its definition, otherwise return null. 516 static MachineInstr *getDef(unsigned Reg, 517 const MachineRegisterInfo *MRI) { 518 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 519 return nullptr; 520 return MRI->getUniqueVRegDef(Reg); 521 } 522 523 // Return true if MI is a shift of type Opcode by Imm bits. 524 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) { 525 return (MI->getOpcode() == Opcode && 526 !MI->getOperand(2).getReg() && 527 MI->getOperand(3).getImm() == Imm); 528 } 529 530 // If the destination of MI has no uses, delete it as dead. 531 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) { 532 if (MRI->use_nodbg_empty(MI->getOperand(0).getReg())) 533 MI->eraseFromParent(); 534 } 535 536 // Compare compares SrcReg against zero. Check whether SrcReg contains 537 // the result of an IPM sequence whose input CC survives until Compare, 538 // and whether Compare is therefore redundant. Delete it and return 539 // true if so. 540 static bool removeIPMBasedCompare(MachineInstr &Compare, unsigned SrcReg, 541 const MachineRegisterInfo *MRI, 542 const TargetRegisterInfo *TRI) { 543 MachineInstr *LGFR = nullptr; 544 MachineInstr *RLL = getDef(SrcReg, MRI); 545 if (RLL && RLL->getOpcode() == SystemZ::LGFR) { 546 LGFR = RLL; 547 RLL = getDef(LGFR->getOperand(1).getReg(), MRI); 548 } 549 if (!RLL || !isShift(RLL, SystemZ::RLL, 31)) 550 return false; 551 552 MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI); 553 if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC)) 554 return false; 555 556 MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI); 557 if (!IPM || IPM->getOpcode() != SystemZ::IPM) 558 return false; 559 560 // Check that there are no assignments to CC between the IPM and Compare, 561 if (IPM->getParent() != Compare.getParent()) 562 return false; 563 MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare.getIterator(); 564 for (++MBBI; MBBI != MBBE; ++MBBI) { 565 MachineInstr &MI = *MBBI; 566 if (MI.modifiesRegister(SystemZ::CC, TRI)) 567 return false; 568 } 569 570 Compare.eraseFromParent(); 571 if (LGFR) 572 eraseIfDead(LGFR, MRI); 573 eraseIfDead(RLL, MRI); 574 eraseIfDead(SRL, MRI); 575 eraseIfDead(IPM, MRI); 576 577 return true; 578 } 579 580 bool SystemZInstrInfo::optimizeCompareInstr( 581 MachineInstr &Compare, unsigned SrcReg, unsigned SrcReg2, int Mask, 582 int Value, const MachineRegisterInfo *MRI) const { 583 assert(!SrcReg2 && "Only optimizing constant comparisons so far"); 584 bool IsLogical = (Compare.getDesc().TSFlags & SystemZII::IsLogical) != 0; 585 return Value == 0 && !IsLogical && 586 removeIPMBasedCompare(Compare, SrcReg, MRI, &RI); 587 } 588 589 590 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB, 591 ArrayRef<MachineOperand> Pred, 592 unsigned TrueReg, unsigned FalseReg, 593 int &CondCycles, int &TrueCycles, 594 int &FalseCycles) const { 595 // Not all subtargets have LOCR instructions. 596 if (!STI.hasLoadStoreOnCond()) 597 return false; 598 if (Pred.size() != 2) 599 return false; 600 601 // Check register classes. 602 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 603 const TargetRegisterClass *RC = 604 RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); 605 if (!RC) 606 return false; 607 608 // We have LOCR instructions for 32 and 64 bit general purpose registers. 609 if ((STI.hasLoadStoreOnCond2() && 610 SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) || 611 SystemZ::GR32BitRegClass.hasSubClassEq(RC) || 612 SystemZ::GR64BitRegClass.hasSubClassEq(RC)) { 613 CondCycles = 2; 614 TrueCycles = 2; 615 FalseCycles = 2; 616 return true; 617 } 618 619 // Can't do anything else. 620 return false; 621 } 622 623 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB, 624 MachineBasicBlock::iterator I, 625 const DebugLoc &DL, unsigned DstReg, 626 ArrayRef<MachineOperand> Pred, 627 unsigned TrueReg, 628 unsigned FalseReg) const { 629 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); 630 const TargetRegisterClass *RC = MRI.getRegClass(DstReg); 631 632 assert(Pred.size() == 2 && "Invalid condition"); 633 unsigned CCValid = Pred[0].getImm(); 634 unsigned CCMask = Pred[1].getImm(); 635 636 unsigned Opc; 637 if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) { 638 if (STI.hasLoadStoreOnCond2()) 639 Opc = SystemZ::LOCRMux; 640 else { 641 Opc = SystemZ::LOCR; 642 MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass); 643 } 644 } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) 645 Opc = SystemZ::LOCGR; 646 else 647 llvm_unreachable("Invalid register class"); 648 649 BuildMI(MBB, I, DL, get(Opc), DstReg) 650 .addReg(FalseReg).addReg(TrueReg) 651 .addImm(CCValid).addImm(CCMask); 652 } 653 654 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, 655 unsigned Reg, 656 MachineRegisterInfo *MRI) const { 657 unsigned DefOpc = DefMI.getOpcode(); 658 if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI && 659 DefOpc != SystemZ::LGHI) 660 return false; 661 if (DefMI.getOperand(0).getReg() != Reg) 662 return false; 663 int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm(); 664 665 unsigned UseOpc = UseMI.getOpcode(); 666 unsigned NewUseOpc; 667 unsigned UseIdx; 668 int CommuteIdx = -1; 669 switch (UseOpc) { 670 case SystemZ::LOCRMux: 671 if (!STI.hasLoadStoreOnCond2()) 672 return false; 673 NewUseOpc = SystemZ::LOCHIMux; 674 if (UseMI.getOperand(2).getReg() == Reg) 675 UseIdx = 2; 676 else if (UseMI.getOperand(1).getReg() == Reg) 677 UseIdx = 2, CommuteIdx = 1; 678 else 679 return false; 680 break; 681 case SystemZ::LOCGR: 682 if (!STI.hasLoadStoreOnCond2()) 683 return false; 684 NewUseOpc = SystemZ::LOCGHI; 685 if (UseMI.getOperand(2).getReg() == Reg) 686 UseIdx = 2; 687 else if (UseMI.getOperand(1).getReg() == Reg) 688 UseIdx = 2, CommuteIdx = 1; 689 else 690 return false; 691 break; 692 default: 693 return false; 694 } 695 696 if (CommuteIdx != -1) 697 if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx)) 698 return false; 699 700 bool DeleteDef = MRI->hasOneNonDBGUse(Reg); 701 UseMI.setDesc(get(NewUseOpc)); 702 UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal); 703 if (DeleteDef) 704 DefMI.eraseFromParent(); 705 706 return true; 707 } 708 709 bool SystemZInstrInfo::isPredicable(MachineInstr &MI) const { 710 unsigned Opcode = MI.getOpcode(); 711 if (Opcode == SystemZ::Return || 712 Opcode == SystemZ::Trap || 713 Opcode == SystemZ::CallJG || 714 Opcode == SystemZ::CallBR) 715 return true; 716 return false; 717 } 718 719 bool SystemZInstrInfo:: 720 isProfitableToIfCvt(MachineBasicBlock &MBB, 721 unsigned NumCycles, unsigned ExtraPredCycles, 722 BranchProbability Probability) const { 723 // Avoid using conditional returns at the end of a loop (since then 724 // we'd need to emit an unconditional branch to the beginning anyway, 725 // making the loop body longer). This doesn't apply for low-probability 726 // loops (eg. compare-and-swap retry), so just decide based on branch 727 // probability instead of looping structure. 728 // However, since Compare and Trap instructions cost the same as a regular 729 // Compare instruction, we should allow the if conversion to convert this 730 // into a Conditional Compare regardless of the branch probability. 731 if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap && 732 MBB.succ_empty() && Probability < BranchProbability(1, 8)) 733 return false; 734 // For now only convert single instructions. 735 return NumCycles == 1; 736 } 737 738 bool SystemZInstrInfo:: 739 isProfitableToIfCvt(MachineBasicBlock &TMBB, 740 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 741 MachineBasicBlock &FMBB, 742 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 743 BranchProbability Probability) const { 744 // For now avoid converting mutually-exclusive cases. 745 return false; 746 } 747 748 bool SystemZInstrInfo:: 749 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 750 BranchProbability Probability) const { 751 // For now only duplicate single instructions. 752 return NumCycles == 1; 753 } 754 755 bool SystemZInstrInfo::PredicateInstruction( 756 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 757 assert(Pred.size() == 2 && "Invalid condition"); 758 unsigned CCValid = Pred[0].getImm(); 759 unsigned CCMask = Pred[1].getImm(); 760 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 761 unsigned Opcode = MI.getOpcode(); 762 if (Opcode == SystemZ::Trap) { 763 MI.setDesc(get(SystemZ::CondTrap)); 764 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 765 .addImm(CCValid).addImm(CCMask) 766 .addReg(SystemZ::CC, RegState::Implicit); 767 return true; 768 } 769 if (Opcode == SystemZ::Return) { 770 MI.setDesc(get(SystemZ::CondReturn)); 771 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 772 .addImm(CCValid).addImm(CCMask) 773 .addReg(SystemZ::CC, RegState::Implicit); 774 return true; 775 } 776 if (Opcode == SystemZ::CallJG) { 777 MachineOperand FirstOp = MI.getOperand(0); 778 const uint32_t *RegMask = MI.getOperand(1).getRegMask(); 779 MI.RemoveOperand(1); 780 MI.RemoveOperand(0); 781 MI.setDesc(get(SystemZ::CallBRCL)); 782 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 783 .addImm(CCValid).addImm(CCMask) 784 .addOperand(FirstOp) 785 .addRegMask(RegMask) 786 .addReg(SystemZ::CC, RegState::Implicit); 787 return true; 788 } 789 if (Opcode == SystemZ::CallBR) { 790 const uint32_t *RegMask = MI.getOperand(0).getRegMask(); 791 MI.RemoveOperand(0); 792 MI.setDesc(get(SystemZ::CallBCR)); 793 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 794 .addImm(CCValid).addImm(CCMask) 795 .addRegMask(RegMask) 796 .addReg(SystemZ::CC, RegState::Implicit); 797 return true; 798 } 799 return false; 800 } 801 802 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 803 MachineBasicBlock::iterator MBBI, 804 const DebugLoc &DL, unsigned DestReg, 805 unsigned SrcReg, bool KillSrc) const { 806 // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too. 807 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 808 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), 809 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); 810 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), 811 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); 812 return; 813 } 814 815 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { 816 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc); 817 return; 818 } 819 820 // Everything else needs only one instruction. 821 unsigned Opcode; 822 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 823 Opcode = SystemZ::LGR; 824 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 825 // For z13 we prefer LDR over LER to avoid partial register dependencies. 826 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER; 827 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 828 Opcode = SystemZ::LDR; 829 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 830 Opcode = SystemZ::LXR; 831 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg)) 832 Opcode = SystemZ::VLR32; 833 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg)) 834 Opcode = SystemZ::VLR64; 835 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg)) 836 Opcode = SystemZ::VLR; 837 else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg)) 838 Opcode = SystemZ::CPYA; 839 else if (SystemZ::AR32BitRegClass.contains(DestReg) && 840 SystemZ::GR32BitRegClass.contains(SrcReg)) 841 Opcode = SystemZ::SAR; 842 else if (SystemZ::GR32BitRegClass.contains(DestReg) && 843 SystemZ::AR32BitRegClass.contains(SrcReg)) 844 Opcode = SystemZ::EAR; 845 else 846 llvm_unreachable("Impossible reg-to-reg copy"); 847 848 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 849 .addReg(SrcReg, getKillRegState(KillSrc)); 850 } 851 852 void SystemZInstrInfo::storeRegToStackSlot( 853 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, 854 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 855 const TargetRegisterInfo *TRI) const { 856 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 857 858 // Callers may expect a single instruction, so keep 128-bit moves 859 // together for now and lower them after register allocation. 860 unsigned LoadOpcode, StoreOpcode; 861 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 862 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 863 .addReg(SrcReg, getKillRegState(isKill)), 864 FrameIdx); 865 } 866 867 void SystemZInstrInfo::loadRegFromStackSlot( 868 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, 869 int FrameIdx, const TargetRegisterClass *RC, 870 const TargetRegisterInfo *TRI) const { 871 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 872 873 // Callers may expect a single instruction, so keep 128-bit moves 874 // together for now and lower them after register allocation. 875 unsigned LoadOpcode, StoreOpcode; 876 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 877 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 878 FrameIdx); 879 } 880 881 // Return true if MI is a simple load or store with a 12-bit displacement 882 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 883 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 884 const MCInstrDesc &MCID = MI->getDesc(); 885 return ((MCID.TSFlags & Flag) && 886 isUInt<12>(MI->getOperand(2).getImm()) && 887 MI->getOperand(3).getReg() == 0); 888 } 889 890 namespace { 891 struct LogicOp { 892 LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {} 893 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 894 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 895 896 explicit operator bool() const { return RegSize; } 897 898 unsigned RegSize, ImmLSB, ImmSize; 899 }; 900 } // end anonymous namespace 901 902 static LogicOp interpretAndImmediate(unsigned Opcode) { 903 switch (Opcode) { 904 case SystemZ::NILMux: return LogicOp(32, 0, 16); 905 case SystemZ::NIHMux: return LogicOp(32, 16, 16); 906 case SystemZ::NILL64: return LogicOp(64, 0, 16); 907 case SystemZ::NILH64: return LogicOp(64, 16, 16); 908 case SystemZ::NIHL64: return LogicOp(64, 32, 16); 909 case SystemZ::NIHH64: return LogicOp(64, 48, 16); 910 case SystemZ::NIFMux: return LogicOp(32, 0, 32); 911 case SystemZ::NILF64: return LogicOp(64, 0, 32); 912 case SystemZ::NIHF64: return LogicOp(64, 32, 32); 913 default: return LogicOp(); 914 } 915 } 916 917 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) { 918 if (OldMI->registerDefIsDead(SystemZ::CC)) { 919 MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC); 920 if (CCDef != nullptr) 921 CCDef->setIsDead(true); 922 } 923 } 924 925 // Used to return from convertToThreeAddress after replacing two-address 926 // instruction OldMI with three-address instruction NewMI. 927 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI, 928 MachineInstr *NewMI, 929 LiveVariables *LV) { 930 if (LV) { 931 unsigned NumOps = OldMI->getNumOperands(); 932 for (unsigned I = 1; I < NumOps; ++I) { 933 MachineOperand &Op = OldMI->getOperand(I); 934 if (Op.isReg() && Op.isKill()) 935 LV->replaceKillInstruction(Op.getReg(), *OldMI, *NewMI); 936 } 937 } 938 transferDeadCC(OldMI, NewMI); 939 return NewMI; 940 } 941 942 MachineInstr *SystemZInstrInfo::convertToThreeAddress( 943 MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const { 944 MachineBasicBlock *MBB = MI.getParent(); 945 MachineFunction *MF = MBB->getParent(); 946 MachineRegisterInfo &MRI = MF->getRegInfo(); 947 948 unsigned Opcode = MI.getOpcode(); 949 unsigned NumOps = MI.getNumOperands(); 950 951 // Try to convert something like SLL into SLLK, if supported. 952 // We prefer to keep the two-operand form where possible both 953 // because it tends to be shorter and because some instructions 954 // have memory forms that can be used during spilling. 955 if (STI.hasDistinctOps()) { 956 MachineOperand &Dest = MI.getOperand(0); 957 MachineOperand &Src = MI.getOperand(1); 958 unsigned DestReg = Dest.getReg(); 959 unsigned SrcReg = Src.getReg(); 960 // AHIMux is only really a three-operand instruction when both operands 961 // are low registers. Try to constrain both operands to be low if 962 // possible. 963 if (Opcode == SystemZ::AHIMux && 964 TargetRegisterInfo::isVirtualRegister(DestReg) && 965 TargetRegisterInfo::isVirtualRegister(SrcReg) && 966 MRI.getRegClass(DestReg)->contains(SystemZ::R1L) && 967 MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) { 968 MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass); 969 MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass); 970 } 971 int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); 972 if (ThreeOperandOpcode >= 0) { 973 // Create three address instruction without adding the implicit 974 // operands. Those will instead be copied over from the original 975 // instruction by the loop below. 976 MachineInstrBuilder MIB( 977 *MF, MF->CreateMachineInstr(get(ThreeOperandOpcode), MI.getDebugLoc(), 978 /*NoImplicit=*/true)); 979 MIB.addOperand(Dest); 980 // Keep the kill state, but drop the tied flag. 981 MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()); 982 // Keep the remaining operands as-is. 983 for (unsigned I = 2; I < NumOps; ++I) 984 MIB.addOperand(MI.getOperand(I)); 985 MBB->insert(MI, MIB); 986 return finishConvertToThreeAddress(&MI, MIB, LV); 987 } 988 } 989 990 // Try to convert an AND into an RISBG-type instruction. 991 if (LogicOp And = interpretAndImmediate(Opcode)) { 992 uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB; 993 // AND IMMEDIATE leaves the other bits of the register unchanged. 994 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 995 unsigned Start, End; 996 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 997 unsigned NewOpcode; 998 if (And.RegSize == 64) { 999 NewOpcode = SystemZ::RISBG; 1000 // Prefer RISBGN if available, since it does not clobber CC. 1001 if (STI.hasMiscellaneousExtensions()) 1002 NewOpcode = SystemZ::RISBGN; 1003 } else { 1004 NewOpcode = SystemZ::RISBMux; 1005 Start &= 31; 1006 End &= 31; 1007 } 1008 MachineOperand &Dest = MI.getOperand(0); 1009 MachineOperand &Src = MI.getOperand(1); 1010 MachineInstrBuilder MIB = 1011 BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode)) 1012 .addOperand(Dest) 1013 .addReg(0) 1014 .addReg(Src.getReg(), getKillRegState(Src.isKill()), 1015 Src.getSubReg()) 1016 .addImm(Start) 1017 .addImm(End + 128) 1018 .addImm(0); 1019 return finishConvertToThreeAddress(&MI, MIB, LV); 1020 } 1021 } 1022 return nullptr; 1023 } 1024 1025 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1026 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1027 MachineBasicBlock::iterator InsertPt, int FrameIndex, 1028 LiveIntervals *LIS) const { 1029 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1030 const MachineFrameInfo &MFI = MF.getFrameInfo(); 1031 unsigned Size = MFI.getObjectSize(FrameIndex); 1032 unsigned Opcode = MI.getOpcode(); 1033 1034 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 1035 if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && 1036 isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) { 1037 1038 // Check CC liveness, since new instruction introduces a dead 1039 // def of CC. 1040 MCRegUnitIterator CCUnit(SystemZ::CC, TRI); 1041 LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit); 1042 ++CCUnit; 1043 assert (!CCUnit.isValid() && "CC only has one reg unit."); 1044 SlotIndex MISlot = 1045 LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot(); 1046 if (!CCLiveRange.liveAt(MISlot)) { 1047 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST 1048 MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt, 1049 MI.getDebugLoc(), get(SystemZ::AGSI)) 1050 .addFrameIndex(FrameIndex) 1051 .addImm(0) 1052 .addImm(MI.getOperand(2).getImm()); 1053 BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true); 1054 CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator()); 1055 return BuiltMI; 1056 } 1057 } 1058 return nullptr; 1059 } 1060 1061 // All other cases require a single operand. 1062 if (Ops.size() != 1) 1063 return nullptr; 1064 1065 unsigned OpNum = Ops[0]; 1066 assert(Size == 1067 MF.getRegInfo() 1068 .getRegClass(MI.getOperand(OpNum).getReg()) 1069 ->getSize() && 1070 "Invalid size combination"); 1071 1072 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 && 1073 isInt<8>(MI.getOperand(2).getImm())) { 1074 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST 1075 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); 1076 MachineInstr *BuiltMI = 1077 BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode)) 1078 .addFrameIndex(FrameIndex) 1079 .addImm(0) 1080 .addImm(MI.getOperand(2).getImm()); 1081 transferDeadCC(&MI, BuiltMI); 1082 return BuiltMI; 1083 } 1084 1085 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 1086 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 1087 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 1088 // If we're spilling the destination of an LDGR or LGDR, store the 1089 // source register instead. 1090 if (OpNum == 0) { 1091 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 1092 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1093 get(StoreOpcode)) 1094 .addOperand(MI.getOperand(1)) 1095 .addFrameIndex(FrameIndex) 1096 .addImm(0) 1097 .addReg(0); 1098 } 1099 // If we're spilling the source of an LDGR or LGDR, load the 1100 // destination register instead. 1101 if (OpNum == 1) { 1102 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 1103 unsigned Dest = MI.getOperand(0).getReg(); 1104 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1105 get(LoadOpcode), Dest) 1106 .addFrameIndex(FrameIndex) 1107 .addImm(0) 1108 .addReg(0); 1109 } 1110 } 1111 1112 // Look for cases where the source of a simple store or the destination 1113 // of a simple load is being spilled. Try to use MVC instead. 1114 // 1115 // Although MVC is in practice a fast choice in these cases, it is still 1116 // logically a bytewise copy. This means that we cannot use it if the 1117 // load or store is volatile. We also wouldn't be able to use MVC if 1118 // the two memories partially overlap, but that case cannot occur here, 1119 // because we know that one of the memories is a full frame index. 1120 // 1121 // For performance reasons, we also want to avoid using MVC if the addresses 1122 // might be equal. We don't worry about that case here, because spill slot 1123 // coloring happens later, and because we have special code to remove 1124 // MVCs that turn out to be redundant. 1125 if (OpNum == 0 && MI.hasOneMemOperand()) { 1126 MachineMemOperand *MMO = *MI.memoperands_begin(); 1127 if (MMO->getSize() == Size && !MMO->isVolatile()) { 1128 // Handle conversion of loads. 1129 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) { 1130 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1131 get(SystemZ::MVC)) 1132 .addFrameIndex(FrameIndex) 1133 .addImm(0) 1134 .addImm(Size) 1135 .addOperand(MI.getOperand(1)) 1136 .addImm(MI.getOperand(2).getImm()) 1137 .addMemOperand(MMO); 1138 } 1139 // Handle conversion of stores. 1140 if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) { 1141 return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), 1142 get(SystemZ::MVC)) 1143 .addOperand(MI.getOperand(1)) 1144 .addImm(MI.getOperand(2).getImm()) 1145 .addImm(Size) 1146 .addFrameIndex(FrameIndex) 1147 .addImm(0) 1148 .addMemOperand(MMO); 1149 } 1150 } 1151 } 1152 1153 // If the spilled operand is the final one, try to change <INSN>R 1154 // into <INSN>. 1155 int MemOpcode = SystemZ::getMemOpcode(Opcode); 1156 if (MemOpcode >= 0) { 1157 unsigned NumOps = MI.getNumExplicitOperands(); 1158 if (OpNum == NumOps - 1) { 1159 const MCInstrDesc &MemDesc = get(MemOpcode); 1160 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 1161 assert(AccessBytes != 0 && "Size of access should be known"); 1162 assert(AccessBytes <= Size && "Access outside the frame index"); 1163 uint64_t Offset = Size - AccessBytes; 1164 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 1165 MI.getDebugLoc(), get(MemOpcode)); 1166 for (unsigned I = 0; I < OpNum; ++I) 1167 MIB.addOperand(MI.getOperand(I)); 1168 MIB.addFrameIndex(FrameIndex).addImm(Offset); 1169 if (MemDesc.TSFlags & SystemZII::HasIndex) 1170 MIB.addReg(0); 1171 transferDeadCC(&MI, MIB); 1172 return MIB; 1173 } 1174 } 1175 1176 return nullptr; 1177 } 1178 1179 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 1180 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops, 1181 MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, 1182 LiveIntervals *LIS) const { 1183 return nullptr; 1184 } 1185 1186 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const { 1187 switch (MI.getOpcode()) { 1188 case SystemZ::L128: 1189 splitMove(MI, SystemZ::LG); 1190 return true; 1191 1192 case SystemZ::ST128: 1193 splitMove(MI, SystemZ::STG); 1194 return true; 1195 1196 case SystemZ::LX: 1197 splitMove(MI, SystemZ::LD); 1198 return true; 1199 1200 case SystemZ::STX: 1201 splitMove(MI, SystemZ::STD); 1202 return true; 1203 1204 case SystemZ::LBMux: 1205 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); 1206 return true; 1207 1208 case SystemZ::LHMux: 1209 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); 1210 return true; 1211 1212 case SystemZ::LLCRMux: 1213 expandZExtPseudo(MI, SystemZ::LLCR, 8); 1214 return true; 1215 1216 case SystemZ::LLHRMux: 1217 expandZExtPseudo(MI, SystemZ::LLHR, 16); 1218 return true; 1219 1220 case SystemZ::LLCMux: 1221 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); 1222 return true; 1223 1224 case SystemZ::LLHMux: 1225 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); 1226 return true; 1227 1228 case SystemZ::LMux: 1229 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); 1230 return true; 1231 1232 case SystemZ::LOCMux: 1233 expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH); 1234 return true; 1235 1236 case SystemZ::LOCHIMux: 1237 expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI); 1238 return true; 1239 1240 case SystemZ::LOCRMux: 1241 expandLOCRPseudo(MI, SystemZ::LOCR, SystemZ::LOCFHR); 1242 return true; 1243 1244 case SystemZ::STCMux: 1245 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); 1246 return true; 1247 1248 case SystemZ::STHMux: 1249 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); 1250 return true; 1251 1252 case SystemZ::STMux: 1253 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); 1254 return true; 1255 1256 case SystemZ::STOCMux: 1257 expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH); 1258 return true; 1259 1260 case SystemZ::LHIMux: 1261 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); 1262 return true; 1263 1264 case SystemZ::IIFMux: 1265 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); 1266 return true; 1267 1268 case SystemZ::IILMux: 1269 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); 1270 return true; 1271 1272 case SystemZ::IIHMux: 1273 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); 1274 return true; 1275 1276 case SystemZ::NIFMux: 1277 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); 1278 return true; 1279 1280 case SystemZ::NILMux: 1281 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); 1282 return true; 1283 1284 case SystemZ::NIHMux: 1285 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); 1286 return true; 1287 1288 case SystemZ::OIFMux: 1289 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); 1290 return true; 1291 1292 case SystemZ::OILMux: 1293 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); 1294 return true; 1295 1296 case SystemZ::OIHMux: 1297 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); 1298 return true; 1299 1300 case SystemZ::XIFMux: 1301 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); 1302 return true; 1303 1304 case SystemZ::TMLMux: 1305 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); 1306 return true; 1307 1308 case SystemZ::TMHMux: 1309 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); 1310 return true; 1311 1312 case SystemZ::AHIMux: 1313 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); 1314 return true; 1315 1316 case SystemZ::AHIMuxK: 1317 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); 1318 return true; 1319 1320 case SystemZ::AFIMux: 1321 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); 1322 return true; 1323 1324 case SystemZ::CHIMux: 1325 expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false); 1326 return true; 1327 1328 case SystemZ::CFIMux: 1329 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); 1330 return true; 1331 1332 case SystemZ::CLFIMux: 1333 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); 1334 return true; 1335 1336 case SystemZ::CMux: 1337 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); 1338 return true; 1339 1340 case SystemZ::CLMux: 1341 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); 1342 return true; 1343 1344 case SystemZ::RISBMux: { 1345 bool DestIsHigh = isHighReg(MI.getOperand(0).getReg()); 1346 bool SrcIsHigh = isHighReg(MI.getOperand(2).getReg()); 1347 if (SrcIsHigh == DestIsHigh) 1348 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); 1349 else { 1350 MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); 1351 MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32); 1352 } 1353 return true; 1354 } 1355 1356 case SystemZ::ADJDYNALLOC: 1357 splitAdjDynAlloc(MI); 1358 return true; 1359 1360 case TargetOpcode::LOAD_STACK_GUARD: 1361 expandLoadStackGuard(&MI); 1362 return true; 1363 1364 default: 1365 return false; 1366 } 1367 } 1368 1369 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const { 1370 if (MI.getOpcode() == TargetOpcode::INLINEASM) { 1371 const MachineFunction *MF = MI.getParent()->getParent(); 1372 const char *AsmStr = MI.getOperand(0).getSymbolName(); 1373 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1374 } 1375 return MI.getDesc().getSize(); 1376 } 1377 1378 SystemZII::Branch 1379 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const { 1380 switch (MI.getOpcode()) { 1381 case SystemZ::BR: 1382 case SystemZ::J: 1383 case SystemZ::JG: 1384 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 1385 SystemZ::CCMASK_ANY, &MI.getOperand(0)); 1386 1387 case SystemZ::BRC: 1388 case SystemZ::BRCL: 1389 return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(), 1390 MI.getOperand(1).getImm(), &MI.getOperand(2)); 1391 1392 case SystemZ::BRCT: 1393 case SystemZ::BRCTH: 1394 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 1395 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1396 1397 case SystemZ::BRCTG: 1398 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 1399 SystemZ::CCMASK_CMP_NE, &MI.getOperand(2)); 1400 1401 case SystemZ::CIJ: 1402 case SystemZ::CRJ: 1403 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 1404 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1405 1406 case SystemZ::CLIJ: 1407 case SystemZ::CLRJ: 1408 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, 1409 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1410 1411 case SystemZ::CGIJ: 1412 case SystemZ::CGRJ: 1413 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 1414 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1415 1416 case SystemZ::CLGIJ: 1417 case SystemZ::CLGRJ: 1418 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, 1419 MI.getOperand(2).getImm(), &MI.getOperand(3)); 1420 1421 default: 1422 llvm_unreachable("Unrecognized branch opcode"); 1423 } 1424 } 1425 1426 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 1427 unsigned &LoadOpcode, 1428 unsigned &StoreOpcode) const { 1429 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 1430 LoadOpcode = SystemZ::L; 1431 StoreOpcode = SystemZ::ST; 1432 } else if (RC == &SystemZ::GRH32BitRegClass) { 1433 LoadOpcode = SystemZ::LFH; 1434 StoreOpcode = SystemZ::STFH; 1435 } else if (RC == &SystemZ::GRX32BitRegClass) { 1436 LoadOpcode = SystemZ::LMux; 1437 StoreOpcode = SystemZ::STMux; 1438 } else if (RC == &SystemZ::GR64BitRegClass || 1439 RC == &SystemZ::ADDR64BitRegClass) { 1440 LoadOpcode = SystemZ::LG; 1441 StoreOpcode = SystemZ::STG; 1442 } else if (RC == &SystemZ::GR128BitRegClass || 1443 RC == &SystemZ::ADDR128BitRegClass) { 1444 LoadOpcode = SystemZ::L128; 1445 StoreOpcode = SystemZ::ST128; 1446 } else if (RC == &SystemZ::FP32BitRegClass) { 1447 LoadOpcode = SystemZ::LE; 1448 StoreOpcode = SystemZ::STE; 1449 } else if (RC == &SystemZ::FP64BitRegClass) { 1450 LoadOpcode = SystemZ::LD; 1451 StoreOpcode = SystemZ::STD; 1452 } else if (RC == &SystemZ::FP128BitRegClass) { 1453 LoadOpcode = SystemZ::LX; 1454 StoreOpcode = SystemZ::STX; 1455 } else if (RC == &SystemZ::VR32BitRegClass) { 1456 LoadOpcode = SystemZ::VL32; 1457 StoreOpcode = SystemZ::VST32; 1458 } else if (RC == &SystemZ::VR64BitRegClass) { 1459 LoadOpcode = SystemZ::VL64; 1460 StoreOpcode = SystemZ::VST64; 1461 } else if (RC == &SystemZ::VF128BitRegClass || 1462 RC == &SystemZ::VR128BitRegClass) { 1463 LoadOpcode = SystemZ::VL; 1464 StoreOpcode = SystemZ::VST; 1465 } else 1466 llvm_unreachable("Unsupported regclass to load or store"); 1467 } 1468 1469 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 1470 int64_t Offset) const { 1471 const MCInstrDesc &MCID = get(Opcode); 1472 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 1473 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 1474 // Get the instruction to use for unsigned 12-bit displacements. 1475 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 1476 if (Disp12Opcode >= 0) 1477 return Disp12Opcode; 1478 1479 // All address-related instructions can use unsigned 12-bit 1480 // displacements. 1481 return Opcode; 1482 } 1483 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 1484 // Get the instruction to use for signed 20-bit displacements. 1485 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 1486 if (Disp20Opcode >= 0) 1487 return Disp20Opcode; 1488 1489 // Check whether Opcode allows signed 20-bit displacements. 1490 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1491 return Opcode; 1492 } 1493 return 0; 1494 } 1495 1496 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 1497 switch (Opcode) { 1498 case SystemZ::L: return SystemZ::LT; 1499 case SystemZ::LY: return SystemZ::LT; 1500 case SystemZ::LG: return SystemZ::LTG; 1501 case SystemZ::LGF: return SystemZ::LTGF; 1502 case SystemZ::LR: return SystemZ::LTR; 1503 case SystemZ::LGFR: return SystemZ::LTGFR; 1504 case SystemZ::LGR: return SystemZ::LTGR; 1505 case SystemZ::LER: return SystemZ::LTEBR; 1506 case SystemZ::LDR: return SystemZ::LTDBR; 1507 case SystemZ::LXR: return SystemZ::LTXBR; 1508 case SystemZ::LCDFR: return SystemZ::LCDBR; 1509 case SystemZ::LPDFR: return SystemZ::LPDBR; 1510 case SystemZ::LNDFR: return SystemZ::LNDBR; 1511 case SystemZ::LCDFR_32: return SystemZ::LCEBR; 1512 case SystemZ::LPDFR_32: return SystemZ::LPEBR; 1513 case SystemZ::LNDFR_32: return SystemZ::LNEBR; 1514 // On zEC12 we prefer to use RISBGN. But if there is a chance to 1515 // actually use the condition code, we may turn it back into RISGB. 1516 // Note that RISBG is not really a "load-and-test" instruction, 1517 // but sets the same condition code values, so is OK to use here. 1518 case SystemZ::RISBGN: return SystemZ::RISBG; 1519 default: return 0; 1520 } 1521 } 1522 1523 // Return true if Mask matches the regexp 0*1+0*, given that zero masks 1524 // have already been filtered out. Store the first set bit in LSB and 1525 // the number of set bits in Length if so. 1526 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { 1527 unsigned First = findFirstSet(Mask); 1528 uint64_t Top = (Mask >> First) + 1; 1529 if ((Top & -Top) == Top) { 1530 LSB = First; 1531 Length = findFirstSet(Top); 1532 return true; 1533 } 1534 return false; 1535 } 1536 1537 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 1538 unsigned &Start, unsigned &End) const { 1539 // Reject trivial all-zero masks. 1540 Mask &= allOnes(BitSize); 1541 if (Mask == 0) 1542 return false; 1543 1544 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 1545 // the msb and End specifies the index of the lsb. 1546 unsigned LSB, Length; 1547 if (isStringOfOnes(Mask, LSB, Length)) { 1548 Start = 63 - (LSB + Length - 1); 1549 End = 63 - LSB; 1550 return true; 1551 } 1552 1553 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 1554 // of the low 1s and End specifies the lsb of the high 1s. 1555 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { 1556 assert(LSB > 0 && "Bottom bit must be set"); 1557 assert(LSB + Length < BitSize && "Top bit must be set"); 1558 Start = 63 - (LSB - 1); 1559 End = 63 - (LSB + Length); 1560 return true; 1561 } 1562 1563 return false; 1564 } 1565 1566 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode, 1567 SystemZII::FusedCompareType Type, 1568 const MachineInstr *MI) const { 1569 switch (Opcode) { 1570 case SystemZ::CHI: 1571 case SystemZ::CGHI: 1572 if (!(MI && isInt<8>(MI->getOperand(1).getImm()))) 1573 return 0; 1574 break; 1575 case SystemZ::CLFI: 1576 case SystemZ::CLGFI: 1577 if (!(MI && isUInt<8>(MI->getOperand(1).getImm()))) 1578 return 0; 1579 break; 1580 case SystemZ::CL: 1581 case SystemZ::CLG: 1582 if (!STI.hasMiscellaneousExtensions()) 1583 return 0; 1584 if (!(MI && MI->getOperand(3).getReg() == 0)) 1585 return 0; 1586 break; 1587 } 1588 switch (Type) { 1589 case SystemZII::CompareAndBranch: 1590 switch (Opcode) { 1591 case SystemZ::CR: 1592 return SystemZ::CRJ; 1593 case SystemZ::CGR: 1594 return SystemZ::CGRJ; 1595 case SystemZ::CHI: 1596 return SystemZ::CIJ; 1597 case SystemZ::CGHI: 1598 return SystemZ::CGIJ; 1599 case SystemZ::CLR: 1600 return SystemZ::CLRJ; 1601 case SystemZ::CLGR: 1602 return SystemZ::CLGRJ; 1603 case SystemZ::CLFI: 1604 return SystemZ::CLIJ; 1605 case SystemZ::CLGFI: 1606 return SystemZ::CLGIJ; 1607 default: 1608 return 0; 1609 } 1610 case SystemZII::CompareAndReturn: 1611 switch (Opcode) { 1612 case SystemZ::CR: 1613 return SystemZ::CRBReturn; 1614 case SystemZ::CGR: 1615 return SystemZ::CGRBReturn; 1616 case SystemZ::CHI: 1617 return SystemZ::CIBReturn; 1618 case SystemZ::CGHI: 1619 return SystemZ::CGIBReturn; 1620 case SystemZ::CLR: 1621 return SystemZ::CLRBReturn; 1622 case SystemZ::CLGR: 1623 return SystemZ::CLGRBReturn; 1624 case SystemZ::CLFI: 1625 return SystemZ::CLIBReturn; 1626 case SystemZ::CLGFI: 1627 return SystemZ::CLGIBReturn; 1628 default: 1629 return 0; 1630 } 1631 case SystemZII::CompareAndSibcall: 1632 switch (Opcode) { 1633 case SystemZ::CR: 1634 return SystemZ::CRBCall; 1635 case SystemZ::CGR: 1636 return SystemZ::CGRBCall; 1637 case SystemZ::CHI: 1638 return SystemZ::CIBCall; 1639 case SystemZ::CGHI: 1640 return SystemZ::CGIBCall; 1641 case SystemZ::CLR: 1642 return SystemZ::CLRBCall; 1643 case SystemZ::CLGR: 1644 return SystemZ::CLGRBCall; 1645 case SystemZ::CLFI: 1646 return SystemZ::CLIBCall; 1647 case SystemZ::CLGFI: 1648 return SystemZ::CLGIBCall; 1649 default: 1650 return 0; 1651 } 1652 case SystemZII::CompareAndTrap: 1653 switch (Opcode) { 1654 case SystemZ::CR: 1655 return SystemZ::CRT; 1656 case SystemZ::CGR: 1657 return SystemZ::CGRT; 1658 case SystemZ::CHI: 1659 return SystemZ::CIT; 1660 case SystemZ::CGHI: 1661 return SystemZ::CGIT; 1662 case SystemZ::CLR: 1663 return SystemZ::CLRT; 1664 case SystemZ::CLGR: 1665 return SystemZ::CLGRT; 1666 case SystemZ::CLFI: 1667 return SystemZ::CLFIT; 1668 case SystemZ::CLGFI: 1669 return SystemZ::CLGIT; 1670 case SystemZ::CL: 1671 return SystemZ::CLT; 1672 case SystemZ::CLG: 1673 return SystemZ::CLGT; 1674 default: 1675 return 0; 1676 } 1677 } 1678 return 0; 1679 } 1680 1681 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const { 1682 if (!STI.hasLoadAndTrap()) 1683 return 0; 1684 switch (Opcode) { 1685 case SystemZ::L: 1686 case SystemZ::LY: 1687 return SystemZ::LAT; 1688 case SystemZ::LG: 1689 return SystemZ::LGAT; 1690 case SystemZ::LFH: 1691 return SystemZ::LFHAT; 1692 case SystemZ::LLGF: 1693 return SystemZ::LLGFAT; 1694 case SystemZ::LLGT: 1695 return SystemZ::LLGTAT; 1696 } 1697 return 0; 1698 } 1699 1700 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 1701 MachineBasicBlock::iterator MBBI, 1702 unsigned Reg, uint64_t Value) const { 1703 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1704 unsigned Opcode; 1705 if (isInt<16>(Value)) 1706 Opcode = SystemZ::LGHI; 1707 else if (SystemZ::isImmLL(Value)) 1708 Opcode = SystemZ::LLILL; 1709 else if (SystemZ::isImmLH(Value)) { 1710 Opcode = SystemZ::LLILH; 1711 Value >>= 16; 1712 } else { 1713 assert(isInt<32>(Value) && "Huge values not handled yet"); 1714 Opcode = SystemZ::LGFI; 1715 } 1716 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 1717 } 1718 1719 bool SystemZInstrInfo:: 1720 areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb, 1721 AliasAnalysis *AA) const { 1722 1723 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) 1724 return false; 1725 1726 // If mem-operands show that the same address Value is used by both 1727 // instructions, check for non-overlapping offsets and widths. Not 1728 // sure if a register based analysis would be an improvement... 1729 1730 MachineMemOperand *MMOa = *MIa.memoperands_begin(); 1731 MachineMemOperand *MMOb = *MIb.memoperands_begin(); 1732 const Value *VALa = MMOa->getValue(); 1733 const Value *VALb = MMOb->getValue(); 1734 bool SameVal = (VALa && VALb && (VALa == VALb)); 1735 if (!SameVal) { 1736 const PseudoSourceValue *PSVa = MMOa->getPseudoValue(); 1737 const PseudoSourceValue *PSVb = MMOb->getPseudoValue(); 1738 if (PSVa && PSVb && (PSVa == PSVb)) 1739 SameVal = true; 1740 } 1741 if (SameVal) { 1742 int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset(); 1743 int WidthA = MMOa->getSize(), WidthB = MMOb->getSize(); 1744 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; 1745 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; 1746 int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; 1747 if (LowOffset + LowWidth <= HighOffset) 1748 return true; 1749 } 1750 1751 return false; 1752 } 1753