1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the SystemZ implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZInstrInfo.h" 15 #include "SystemZInstrBuilder.h" 16 #include "SystemZTargetMachine.h" 17 #include "llvm/CodeGen/LiveVariables.h" 18 #include "llvm/CodeGen/MachineRegisterInfo.h" 19 20 using namespace llvm; 21 22 #define GET_INSTRINFO_CTOR_DTOR 23 #define GET_INSTRMAP_INFO 24 #include "SystemZGenInstrInfo.inc" 25 26 // Return a mask with Count low bits set. 27 static uint64_t allOnes(unsigned int Count) { 28 return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1; 29 } 30 31 // Reg should be a 32-bit GPR. Return true if it is a high register rather 32 // than a low register. 33 static bool isHighReg(unsigned int Reg) { 34 if (SystemZ::GRH32BitRegClass.contains(Reg)) 35 return true; 36 assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32"); 37 return false; 38 } 39 40 // Pin the vtable to this file. 41 void SystemZInstrInfo::anchor() {} 42 43 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti) 44 : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP), 45 RI(), STI(sti) { 46 } 47 48 // MI is a 128-bit load or store. Split it into two 64-bit loads or stores, 49 // each having the opcode given by NewOpcode. 50 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI, 51 unsigned NewOpcode) const { 52 MachineBasicBlock *MBB = MI->getParent(); 53 MachineFunction &MF = *MBB->getParent(); 54 55 // Get two load or store instructions. Use the original instruction for one 56 // of them (arbitrarily the second here) and create a clone for the other. 57 MachineInstr *EarlierMI = MF.CloneMachineInstr(MI); 58 MBB->insert(MI, EarlierMI); 59 60 // Set up the two 64-bit registers. 61 MachineOperand &HighRegOp = EarlierMI->getOperand(0); 62 MachineOperand &LowRegOp = MI->getOperand(0); 63 HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64)); 64 LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64)); 65 66 // The address in the first (high) instruction is already correct. 67 // Adjust the offset in the second (low) instruction. 68 MachineOperand &HighOffsetOp = EarlierMI->getOperand(2); 69 MachineOperand &LowOffsetOp = MI->getOperand(2); 70 LowOffsetOp.setImm(LowOffsetOp.getImm() + 8); 71 72 // Clear the kill flags for the base and index registers in the first 73 // instruction. 74 EarlierMI->getOperand(1).setIsKill(false); 75 EarlierMI->getOperand(3).setIsKill(false); 76 77 // Set the opcodes. 78 unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm()); 79 unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm()); 80 assert(HighOpcode && LowOpcode && "Both offsets should be in range"); 81 82 EarlierMI->setDesc(get(HighOpcode)); 83 MI->setDesc(get(LowOpcode)); 84 } 85 86 // Split ADJDYNALLOC instruction MI. 87 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const { 88 MachineBasicBlock *MBB = MI->getParent(); 89 MachineFunction &MF = *MBB->getParent(); 90 MachineFrameInfo *MFFrame = MF.getFrameInfo(); 91 MachineOperand &OffsetMO = MI->getOperand(2); 92 93 uint64_t Offset = (MFFrame->getMaxCallFrameSize() + 94 SystemZMC::CallFrameSize + 95 OffsetMO.getImm()); 96 unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset); 97 assert(NewOpcode && "No support for huge argument lists yet"); 98 MI->setDesc(get(NewOpcode)); 99 OffsetMO.setImm(Offset); 100 } 101 102 // MI is an RI-style pseudo instruction. Replace it with LowOpcode 103 // if the first operand is a low GR32 and HighOpcode if the first operand 104 // is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand 105 // and HighOpcode takes an unsigned 32-bit operand. In those cases, 106 // MI has the same kind of operand as LowOpcode, so needs to be converted 107 // if HighOpcode is used. 108 void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode, 109 unsigned HighOpcode, 110 bool ConvertHigh) const { 111 unsigned Reg = MI->getOperand(0).getReg(); 112 bool IsHigh = isHighReg(Reg); 113 MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode)); 114 if (IsHigh && ConvertHigh) 115 MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm())); 116 } 117 118 // MI is a three-operand RIE-style pseudo instruction. Replace it with 119 // LowOpcodeK if the registers are both low GR32s, otherwise use a move 120 // followed by HighOpcode or LowOpcode, depending on whether the target 121 // is a high or low GR32. 122 void SystemZInstrInfo::expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode, 123 unsigned LowOpcodeK, 124 unsigned HighOpcode) const { 125 unsigned DestReg = MI->getOperand(0).getReg(); 126 unsigned SrcReg = MI->getOperand(1).getReg(); 127 bool DestIsHigh = isHighReg(DestReg); 128 bool SrcIsHigh = isHighReg(SrcReg); 129 if (!DestIsHigh && !SrcIsHigh) 130 MI->setDesc(get(LowOpcodeK)); 131 else { 132 emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(), 133 DestReg, SrcReg, SystemZ::LR, 32, 134 MI->getOperand(1).isKill()); 135 MI->setDesc(get(DestIsHigh ? HighOpcode : LowOpcode)); 136 MI->getOperand(1).setReg(DestReg); 137 MI->tieOperands(0, 1); 138 } 139 } 140 141 // MI is an RXY-style pseudo instruction. Replace it with LowOpcode 142 // if the first operand is a low GR32 and HighOpcode if the first operand 143 // is a high GR32. 144 void SystemZInstrInfo::expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode, 145 unsigned HighOpcode) const { 146 unsigned Reg = MI->getOperand(0).getReg(); 147 unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode, 148 MI->getOperand(2).getImm()); 149 MI->setDesc(get(Opcode)); 150 } 151 152 // MI is an RR-style pseudo instruction that zero-extends the low Size bits 153 // of one GRX32 into another. Replace it with LowOpcode if both operands 154 // are low registers, otherwise use RISB[LH]G. 155 void SystemZInstrInfo::expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode, 156 unsigned Size) const { 157 emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(), 158 MI->getOperand(0).getReg(), MI->getOperand(1).getReg(), 159 LowOpcode, Size, MI->getOperand(1).isKill()); 160 MI->eraseFromParent(); 161 } 162 163 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR 164 // DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg 165 // are low registers, otherwise use RISB[LH]G. Size is the number of bits 166 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR). 167 // KillSrc is true if this move is the last use of SrcReg. 168 void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB, 169 MachineBasicBlock::iterator MBBI, 170 DebugLoc DL, unsigned DestReg, 171 unsigned SrcReg, unsigned LowLowOpcode, 172 unsigned Size, bool KillSrc) const { 173 unsigned Opcode; 174 bool DestIsHigh = isHighReg(DestReg); 175 bool SrcIsHigh = isHighReg(SrcReg); 176 if (DestIsHigh && SrcIsHigh) 177 Opcode = SystemZ::RISBHH; 178 else if (DestIsHigh && !SrcIsHigh) 179 Opcode = SystemZ::RISBHL; 180 else if (!DestIsHigh && SrcIsHigh) 181 Opcode = SystemZ::RISBLH; 182 else { 183 BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg) 184 .addReg(SrcReg, getKillRegState(KillSrc)); 185 return; 186 } 187 unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0); 188 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 189 .addReg(DestReg, RegState::Undef) 190 .addReg(SrcReg, getKillRegState(KillSrc)) 191 .addImm(32 - Size).addImm(128 + 31).addImm(Rotate); 192 } 193 194 // If MI is a simple load or store for a frame object, return the register 195 // it loads or stores and set FrameIndex to the index of the frame object. 196 // Return 0 otherwise. 197 // 198 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 199 static int isSimpleMove(const MachineInstr *MI, int &FrameIndex, 200 unsigned Flag) { 201 const MCInstrDesc &MCID = MI->getDesc(); 202 if ((MCID.TSFlags & Flag) && 203 MI->getOperand(1).isFI() && 204 MI->getOperand(2).getImm() == 0 && 205 MI->getOperand(3).getReg() == 0) { 206 FrameIndex = MI->getOperand(1).getIndex(); 207 return MI->getOperand(0).getReg(); 208 } 209 return 0; 210 } 211 212 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, 213 int &FrameIndex) const { 214 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad); 215 } 216 217 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI, 218 int &FrameIndex) const { 219 return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore); 220 } 221 222 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI, 223 int &DestFrameIndex, 224 int &SrcFrameIndex) const { 225 // Check for MVC 0(Length,FI1),0(FI2) 226 const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo(); 227 if (MI->getOpcode() != SystemZ::MVC || 228 !MI->getOperand(0).isFI() || 229 MI->getOperand(1).getImm() != 0 || 230 !MI->getOperand(3).isFI() || 231 MI->getOperand(4).getImm() != 0) 232 return false; 233 234 // Check that Length covers the full slots. 235 int64_t Length = MI->getOperand(2).getImm(); 236 unsigned FI1 = MI->getOperand(0).getIndex(); 237 unsigned FI2 = MI->getOperand(3).getIndex(); 238 if (MFI->getObjectSize(FI1) != Length || 239 MFI->getObjectSize(FI2) != Length) 240 return false; 241 242 DestFrameIndex = FI1; 243 SrcFrameIndex = FI2; 244 return true; 245 } 246 247 bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, 248 MachineBasicBlock *&TBB, 249 MachineBasicBlock *&FBB, 250 SmallVectorImpl<MachineOperand> &Cond, 251 bool AllowModify) const { 252 // Most of the code and comments here are boilerplate. 253 254 // Start from the bottom of the block and work up, examining the 255 // terminator instructions. 256 MachineBasicBlock::iterator I = MBB.end(); 257 while (I != MBB.begin()) { 258 --I; 259 if (I->isDebugValue()) 260 continue; 261 262 // Working from the bottom, when we see a non-terminator instruction, we're 263 // done. 264 if (!isUnpredicatedTerminator(*I)) 265 break; 266 267 // A terminator that isn't a branch can't easily be handled by this 268 // analysis. 269 if (!I->isBranch()) 270 return true; 271 272 // Can't handle indirect branches. 273 SystemZII::Branch Branch(getBranchInfo(I)); 274 if (!Branch.Target->isMBB()) 275 return true; 276 277 // Punt on compound branches. 278 if (Branch.Type != SystemZII::BranchNormal) 279 return true; 280 281 if (Branch.CCMask == SystemZ::CCMASK_ANY) { 282 // Handle unconditional branches. 283 if (!AllowModify) { 284 TBB = Branch.Target->getMBB(); 285 continue; 286 } 287 288 // If the block has any instructions after a JMP, delete them. 289 while (std::next(I) != MBB.end()) 290 std::next(I)->eraseFromParent(); 291 292 Cond.clear(); 293 FBB = nullptr; 294 295 // Delete the JMP if it's equivalent to a fall-through. 296 if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) { 297 TBB = nullptr; 298 I->eraseFromParent(); 299 I = MBB.end(); 300 continue; 301 } 302 303 // TBB is used to indicate the unconditinal destination. 304 TBB = Branch.Target->getMBB(); 305 continue; 306 } 307 308 // Working from the bottom, handle the first conditional branch. 309 if (Cond.empty()) { 310 // FIXME: add X86-style branch swap 311 FBB = TBB; 312 TBB = Branch.Target->getMBB(); 313 Cond.push_back(MachineOperand::CreateImm(Branch.CCValid)); 314 Cond.push_back(MachineOperand::CreateImm(Branch.CCMask)); 315 continue; 316 } 317 318 // Handle subsequent conditional branches. 319 assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch"); 320 321 // Only handle the case where all conditional branches branch to the same 322 // destination. 323 if (TBB != Branch.Target->getMBB()) 324 return true; 325 326 // If the conditions are the same, we can leave them alone. 327 unsigned OldCCValid = Cond[0].getImm(); 328 unsigned OldCCMask = Cond[1].getImm(); 329 if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask) 330 continue; 331 332 // FIXME: Try combining conditions like X86 does. Should be easy on Z! 333 return false; 334 } 335 336 return false; 337 } 338 339 unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 340 // Most of the code and comments here are boilerplate. 341 MachineBasicBlock::iterator I = MBB.end(); 342 unsigned Count = 0; 343 344 while (I != MBB.begin()) { 345 --I; 346 if (I->isDebugValue()) 347 continue; 348 if (!I->isBranch()) 349 break; 350 if (!getBranchInfo(I).Target->isMBB()) 351 break; 352 // Remove the branch. 353 I->eraseFromParent(); 354 I = MBB.end(); 355 ++Count; 356 } 357 358 return Count; 359 } 360 361 bool SystemZInstrInfo:: 362 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { 363 assert(Cond.size() == 2 && "Invalid condition"); 364 Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm()); 365 return false; 366 } 367 368 unsigned 369 SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 370 MachineBasicBlock *FBB, 371 ArrayRef<MachineOperand> Cond, 372 DebugLoc DL) const { 373 // In this function we output 32-bit branches, which should always 374 // have enough range. They can be shortened and relaxed by later code 375 // in the pipeline, if desired. 376 377 // Shouldn't be a fall through. 378 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 379 assert((Cond.size() == 2 || Cond.size() == 0) && 380 "SystemZ branch conditions have one component!"); 381 382 if (Cond.empty()) { 383 // Unconditional branch? 384 assert(!FBB && "Unconditional branch with multiple successors!"); 385 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB); 386 return 1; 387 } 388 389 // Conditional branch. 390 unsigned Count = 0; 391 unsigned CCValid = Cond[0].getImm(); 392 unsigned CCMask = Cond[1].getImm(); 393 BuildMI(&MBB, DL, get(SystemZ::BRC)) 394 .addImm(CCValid).addImm(CCMask).addMBB(TBB); 395 ++Count; 396 397 if (FBB) { 398 // Two-way Conditional branch. Insert the second branch. 399 BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB); 400 ++Count; 401 } 402 return Count; 403 } 404 405 bool SystemZInstrInfo::analyzeCompare(const MachineInstr *MI, 406 unsigned &SrcReg, unsigned &SrcReg2, 407 int &Mask, int &Value) const { 408 assert(MI->isCompare() && "Caller should have checked for a comparison"); 409 410 if (MI->getNumExplicitOperands() == 2 && 411 MI->getOperand(0).isReg() && 412 MI->getOperand(1).isImm()) { 413 SrcReg = MI->getOperand(0).getReg(); 414 SrcReg2 = 0; 415 Value = MI->getOperand(1).getImm(); 416 Mask = ~0; 417 return true; 418 } 419 420 return false; 421 } 422 423 // If Reg is a virtual register, return its definition, otherwise return null. 424 static MachineInstr *getDef(unsigned Reg, 425 const MachineRegisterInfo *MRI) { 426 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 427 return nullptr; 428 return MRI->getUniqueVRegDef(Reg); 429 } 430 431 // Return true if MI is a shift of type Opcode by Imm bits. 432 static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) { 433 return (MI->getOpcode() == Opcode && 434 !MI->getOperand(2).getReg() && 435 MI->getOperand(3).getImm() == Imm); 436 } 437 438 // If the destination of MI has no uses, delete it as dead. 439 static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) { 440 if (MRI->use_nodbg_empty(MI->getOperand(0).getReg())) 441 MI->eraseFromParent(); 442 } 443 444 // Compare compares SrcReg against zero. Check whether SrcReg contains 445 // the result of an IPM sequence whose input CC survives until Compare, 446 // and whether Compare is therefore redundant. Delete it and return 447 // true if so. 448 static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg, 449 const MachineRegisterInfo *MRI, 450 const TargetRegisterInfo *TRI) { 451 MachineInstr *LGFR = nullptr; 452 MachineInstr *RLL = getDef(SrcReg, MRI); 453 if (RLL && RLL->getOpcode() == SystemZ::LGFR) { 454 LGFR = RLL; 455 RLL = getDef(LGFR->getOperand(1).getReg(), MRI); 456 } 457 if (!RLL || !isShift(RLL, SystemZ::RLL, 31)) 458 return false; 459 460 MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI); 461 if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC)) 462 return false; 463 464 MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI); 465 if (!IPM || IPM->getOpcode() != SystemZ::IPM) 466 return false; 467 468 // Check that there are no assignments to CC between the IPM and Compare, 469 if (IPM->getParent() != Compare->getParent()) 470 return false; 471 MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare; 472 for (++MBBI; MBBI != MBBE; ++MBBI) { 473 MachineInstr *MI = MBBI; 474 if (MI->modifiesRegister(SystemZ::CC, TRI)) 475 return false; 476 } 477 478 Compare->eraseFromParent(); 479 if (LGFR) 480 eraseIfDead(LGFR, MRI); 481 eraseIfDead(RLL, MRI); 482 eraseIfDead(SRL, MRI); 483 eraseIfDead(IPM, MRI); 484 485 return true; 486 } 487 488 bool 489 SystemZInstrInfo::optimizeCompareInstr(MachineInstr *Compare, 490 unsigned SrcReg, unsigned SrcReg2, 491 int Mask, int Value, 492 const MachineRegisterInfo *MRI) const { 493 assert(!SrcReg2 && "Only optimizing constant comparisons so far"); 494 bool IsLogical = (Compare->getDesc().TSFlags & SystemZII::IsLogical) != 0; 495 return Value == 0 && !IsLogical && 496 removeIPMBasedCompare(Compare, SrcReg, MRI, &RI); 497 } 498 499 // If Opcode is a move that has a conditional variant, return that variant, 500 // otherwise return 0. 501 static unsigned getConditionalMove(unsigned Opcode) { 502 switch (Opcode) { 503 case SystemZ::LR: return SystemZ::LOCR; 504 case SystemZ::LGR: return SystemZ::LOCGR; 505 default: return 0; 506 } 507 } 508 509 bool SystemZInstrInfo::isPredicable(MachineInstr &MI) const { 510 unsigned Opcode = MI.getOpcode(); 511 if (STI.hasLoadStoreOnCond() && getConditionalMove(Opcode)) 512 return true; 513 if (Opcode == SystemZ::Return || 514 Opcode == SystemZ::CallJG || 515 Opcode == SystemZ::CallBR) 516 return true; 517 return false; 518 } 519 520 bool SystemZInstrInfo:: 521 isProfitableToIfCvt(MachineBasicBlock &MBB, 522 unsigned NumCycles, unsigned ExtraPredCycles, 523 BranchProbability Probability) const { 524 // Avoid using conditional returns at the end of a loop (since then 525 // we'd need to emit an unconditional branch to the beginning anyway, 526 // making the loop body longer). This doesn't apply for low-probability 527 // loops (eg. compare-and-swap retry), so just decide based on branch 528 // probability instead of looping structure. 529 if (MBB.succ_empty() && Probability < BranchProbability(1, 8)) 530 return false; 531 // For now only convert single instructions. 532 return NumCycles == 1; 533 } 534 535 bool SystemZInstrInfo:: 536 isProfitableToIfCvt(MachineBasicBlock &TMBB, 537 unsigned NumCyclesT, unsigned ExtraPredCyclesT, 538 MachineBasicBlock &FMBB, 539 unsigned NumCyclesF, unsigned ExtraPredCyclesF, 540 BranchProbability Probability) const { 541 // For now avoid converting mutually-exclusive cases. 542 return false; 543 } 544 545 bool SystemZInstrInfo:: 546 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles, 547 BranchProbability Probability) const { 548 // For now only duplicate single instructions. 549 return NumCycles == 1; 550 } 551 552 bool SystemZInstrInfo::PredicateInstruction( 553 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const { 554 assert(Pred.size() == 2 && "Invalid condition"); 555 unsigned CCValid = Pred[0].getImm(); 556 unsigned CCMask = Pred[1].getImm(); 557 assert(CCMask > 0 && CCMask < 15 && "Invalid predicate"); 558 unsigned Opcode = MI.getOpcode(); 559 if (STI.hasLoadStoreOnCond()) { 560 if (unsigned CondOpcode = getConditionalMove(Opcode)) { 561 MI.setDesc(get(CondOpcode)); 562 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 563 .addImm(CCValid) 564 .addImm(CCMask) 565 .addReg(SystemZ::CC, RegState::Implicit); 566 return true; 567 } 568 } 569 if (Opcode == SystemZ::Return) { 570 MI.setDesc(get(SystemZ::CondReturn)); 571 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 572 .addImm(CCValid).addImm(CCMask) 573 .addReg(SystemZ::CC, RegState::Implicit); 574 return true; 575 } 576 if (Opcode == SystemZ::CallJG) { 577 const GlobalValue *Global = MI.getOperand(0).getGlobal(); 578 const uint32_t *RegMask = MI.getOperand(1).getRegMask(); 579 MI.RemoveOperand(1); 580 MI.RemoveOperand(0); 581 MI.setDesc(get(SystemZ::CallBRCL)); 582 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 583 .addImm(CCValid).addImm(CCMask) 584 .addGlobalAddress(Global) 585 .addRegMask(RegMask) 586 .addReg(SystemZ::CC, RegState::Implicit); 587 return true; 588 } 589 if (Opcode == SystemZ::CallBR) { 590 const uint32_t *RegMask = MI.getOperand(0).getRegMask(); 591 MI.RemoveOperand(0); 592 MI.setDesc(get(SystemZ::CallBCR)); 593 MachineInstrBuilder(*MI.getParent()->getParent(), MI) 594 .addImm(CCValid).addImm(CCMask) 595 .addRegMask(RegMask) 596 .addReg(SystemZ::CC, RegState::Implicit); 597 return true; 598 } 599 return false; 600 } 601 602 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB, 603 MachineBasicBlock::iterator MBBI, 604 DebugLoc DL, unsigned DestReg, 605 unsigned SrcReg, bool KillSrc) const { 606 // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too. 607 if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) { 608 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64), 609 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc); 610 copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64), 611 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc); 612 return; 613 } 614 615 if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) { 616 emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc); 617 return; 618 } 619 620 // Everything else needs only one instruction. 621 unsigned Opcode; 622 if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg)) 623 Opcode = SystemZ::LGR; 624 else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg)) 625 // For z13 we prefer LDR over LER to avoid partial register dependencies. 626 Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER; 627 else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg)) 628 Opcode = SystemZ::LDR; 629 else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg)) 630 Opcode = SystemZ::LXR; 631 else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg)) 632 Opcode = SystemZ::VLR32; 633 else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg)) 634 Opcode = SystemZ::VLR64; 635 else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg)) 636 Opcode = SystemZ::VLR; 637 else 638 llvm_unreachable("Impossible reg-to-reg copy"); 639 640 BuildMI(MBB, MBBI, DL, get(Opcode), DestReg) 641 .addReg(SrcReg, getKillRegState(KillSrc)); 642 } 643 644 void SystemZInstrInfo::storeRegToStackSlot( 645 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg, 646 bool isKill, int FrameIdx, const TargetRegisterClass *RC, 647 const TargetRegisterInfo *TRI) const { 648 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 649 650 // Callers may expect a single instruction, so keep 128-bit moves 651 // together for now and lower them after register allocation. 652 unsigned LoadOpcode, StoreOpcode; 653 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 654 addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode)) 655 .addReg(SrcReg, getKillRegState(isKill)), 656 FrameIdx); 657 } 658 659 void SystemZInstrInfo::loadRegFromStackSlot( 660 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg, 661 int FrameIdx, const TargetRegisterClass *RC, 662 const TargetRegisterInfo *TRI) const { 663 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 664 665 // Callers may expect a single instruction, so keep 128-bit moves 666 // together for now and lower them after register allocation. 667 unsigned LoadOpcode, StoreOpcode; 668 getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode); 669 addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg), 670 FrameIdx); 671 } 672 673 // Return true if MI is a simple load or store with a 12-bit displacement 674 // and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores. 675 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) { 676 const MCInstrDesc &MCID = MI->getDesc(); 677 return ((MCID.TSFlags & Flag) && 678 isUInt<12>(MI->getOperand(2).getImm()) && 679 MI->getOperand(3).getReg() == 0); 680 } 681 682 namespace { 683 struct LogicOp { 684 LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {} 685 LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize) 686 : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {} 687 688 explicit operator bool() const { return RegSize; } 689 690 unsigned RegSize, ImmLSB, ImmSize; 691 }; 692 } // end anonymous namespace 693 694 static LogicOp interpretAndImmediate(unsigned Opcode) { 695 switch (Opcode) { 696 case SystemZ::NILMux: return LogicOp(32, 0, 16); 697 case SystemZ::NIHMux: return LogicOp(32, 16, 16); 698 case SystemZ::NILL64: return LogicOp(64, 0, 16); 699 case SystemZ::NILH64: return LogicOp(64, 16, 16); 700 case SystemZ::NIHL64: return LogicOp(64, 32, 16); 701 case SystemZ::NIHH64: return LogicOp(64, 48, 16); 702 case SystemZ::NIFMux: return LogicOp(32, 0, 32); 703 case SystemZ::NILF64: return LogicOp(64, 0, 32); 704 case SystemZ::NIHF64: return LogicOp(64, 32, 32); 705 default: return LogicOp(); 706 } 707 } 708 709 // Used to return from convertToThreeAddress after replacing two-address 710 // instruction OldMI with three-address instruction NewMI. 711 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI, 712 MachineInstr *NewMI, 713 LiveVariables *LV) { 714 if (LV) { 715 unsigned NumOps = OldMI->getNumOperands(); 716 for (unsigned I = 1; I < NumOps; ++I) { 717 MachineOperand &Op = OldMI->getOperand(I); 718 if (Op.isReg() && Op.isKill()) 719 LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI); 720 } 721 } 722 return NewMI; 723 } 724 725 MachineInstr * 726 SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI, 727 MachineBasicBlock::iterator &MBBI, 728 LiveVariables *LV) const { 729 MachineInstr *MI = MBBI; 730 MachineBasicBlock *MBB = MI->getParent(); 731 MachineFunction *MF = MBB->getParent(); 732 MachineRegisterInfo &MRI = MF->getRegInfo(); 733 734 unsigned Opcode = MI->getOpcode(); 735 unsigned NumOps = MI->getNumOperands(); 736 737 // Try to convert something like SLL into SLLK, if supported. 738 // We prefer to keep the two-operand form where possible both 739 // because it tends to be shorter and because some instructions 740 // have memory forms that can be used during spilling. 741 if (STI.hasDistinctOps()) { 742 MachineOperand &Dest = MI->getOperand(0); 743 MachineOperand &Src = MI->getOperand(1); 744 unsigned DestReg = Dest.getReg(); 745 unsigned SrcReg = Src.getReg(); 746 // AHIMux is only really a three-operand instruction when both operands 747 // are low registers. Try to constrain both operands to be low if 748 // possible. 749 if (Opcode == SystemZ::AHIMux && 750 TargetRegisterInfo::isVirtualRegister(DestReg) && 751 TargetRegisterInfo::isVirtualRegister(SrcReg) && 752 MRI.getRegClass(DestReg)->contains(SystemZ::R1L) && 753 MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) { 754 MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass); 755 MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass); 756 } 757 int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode); 758 if (ThreeOperandOpcode >= 0) { 759 // Create three address instruction without adding the implicit 760 // operands. Those will instead be copied over from the original 761 // instruction by the loop below. 762 MachineInstrBuilder MIB(*MF, 763 MF->CreateMachineInstr(get(ThreeOperandOpcode), 764 MI->getDebugLoc(), /*NoImplicit=*/true)); 765 MIB.addOperand(Dest); 766 // Keep the kill state, but drop the tied flag. 767 MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()); 768 // Keep the remaining operands as-is. 769 for (unsigned I = 2; I < NumOps; ++I) 770 MIB.addOperand(MI->getOperand(I)); 771 MBB->insert(MI, MIB); 772 return finishConvertToThreeAddress(MI, MIB, LV); 773 } 774 } 775 776 // Try to convert an AND into an RISBG-type instruction. 777 if (LogicOp And = interpretAndImmediate(Opcode)) { 778 uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB; 779 // AND IMMEDIATE leaves the other bits of the register unchanged. 780 Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB); 781 unsigned Start, End; 782 if (isRxSBGMask(Imm, And.RegSize, Start, End)) { 783 unsigned NewOpcode; 784 if (And.RegSize == 64) { 785 NewOpcode = SystemZ::RISBG; 786 // Prefer RISBGN if available, since it does not clobber CC. 787 if (STI.hasMiscellaneousExtensions()) 788 NewOpcode = SystemZ::RISBGN; 789 } else { 790 NewOpcode = SystemZ::RISBMux; 791 Start &= 31; 792 End &= 31; 793 } 794 MachineOperand &Dest = MI->getOperand(0); 795 MachineOperand &Src = MI->getOperand(1); 796 MachineInstrBuilder MIB = 797 BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode)) 798 .addOperand(Dest).addReg(0) 799 .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg()) 800 .addImm(Start).addImm(End + 128).addImm(0); 801 return finishConvertToThreeAddress(MI, MIB, LV); 802 } 803 } 804 return nullptr; 805 } 806 807 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 808 MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops, 809 MachineBasicBlock::iterator InsertPt, int FrameIndex) const { 810 const MachineFrameInfo *MFI = MF.getFrameInfo(); 811 unsigned Size = MFI->getObjectSize(FrameIndex); 812 unsigned Opcode = MI->getOpcode(); 813 814 if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { 815 if ((Opcode == SystemZ::LA || Opcode == SystemZ::LAY) && 816 isInt<8>(MI->getOperand(2).getImm()) && 817 !MI->getOperand(3).getReg()) { 818 // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST 819 return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 820 get(SystemZ::AGSI)) 821 .addFrameIndex(FrameIndex) 822 .addImm(0) 823 .addImm(MI->getOperand(2).getImm()); 824 } 825 return nullptr; 826 } 827 828 // All other cases require a single operand. 829 if (Ops.size() != 1) 830 return nullptr; 831 832 unsigned OpNum = Ops[0]; 833 assert(Size == MF.getRegInfo() 834 .getRegClass(MI->getOperand(OpNum).getReg())->getSize() && 835 "Invalid size combination"); 836 837 if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && 838 OpNum == 0 && 839 isInt<8>(MI->getOperand(2).getImm())) { 840 // A(G)HI %reg, CONST -> A(G)SI %mem, CONST 841 Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI); 842 return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 843 get(Opcode)) 844 .addFrameIndex(FrameIndex) 845 .addImm(0) 846 .addImm(MI->getOperand(2).getImm()); 847 } 848 849 if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) { 850 bool Op0IsGPR = (Opcode == SystemZ::LGDR); 851 bool Op1IsGPR = (Opcode == SystemZ::LDGR); 852 // If we're spilling the destination of an LDGR or LGDR, store the 853 // source register instead. 854 if (OpNum == 0) { 855 unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD; 856 return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 857 get(StoreOpcode)) 858 .addOperand(MI->getOperand(1)) 859 .addFrameIndex(FrameIndex) 860 .addImm(0) 861 .addReg(0); 862 } 863 // If we're spilling the source of an LDGR or LGDR, load the 864 // destination register instead. 865 if (OpNum == 1) { 866 unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD; 867 unsigned Dest = MI->getOperand(0).getReg(); 868 return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 869 get(LoadOpcode), Dest) 870 .addFrameIndex(FrameIndex) 871 .addImm(0) 872 .addReg(0); 873 } 874 } 875 876 // Look for cases where the source of a simple store or the destination 877 // of a simple load is being spilled. Try to use MVC instead. 878 // 879 // Although MVC is in practice a fast choice in these cases, it is still 880 // logically a bytewise copy. This means that we cannot use it if the 881 // load or store is volatile. We also wouldn't be able to use MVC if 882 // the two memories partially overlap, but that case cannot occur here, 883 // because we know that one of the memories is a full frame index. 884 // 885 // For performance reasons, we also want to avoid using MVC if the addresses 886 // might be equal. We don't worry about that case here, because spill slot 887 // coloring happens later, and because we have special code to remove 888 // MVCs that turn out to be redundant. 889 if (OpNum == 0 && MI->hasOneMemOperand()) { 890 MachineMemOperand *MMO = *MI->memoperands_begin(); 891 if (MMO->getSize() == Size && !MMO->isVolatile()) { 892 // Handle conversion of loads. 893 if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) { 894 return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 895 get(SystemZ::MVC)) 896 .addFrameIndex(FrameIndex) 897 .addImm(0) 898 .addImm(Size) 899 .addOperand(MI->getOperand(1)) 900 .addImm(MI->getOperand(2).getImm()) 901 .addMemOperand(MMO); 902 } 903 // Handle conversion of stores. 904 if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) { 905 return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(), 906 get(SystemZ::MVC)) 907 .addOperand(MI->getOperand(1)) 908 .addImm(MI->getOperand(2).getImm()) 909 .addImm(Size) 910 .addFrameIndex(FrameIndex) 911 .addImm(0) 912 .addMemOperand(MMO); 913 } 914 } 915 } 916 917 // If the spilled operand is the final one, try to change <INSN>R 918 // into <INSN>. 919 int MemOpcode = SystemZ::getMemOpcode(Opcode); 920 if (MemOpcode >= 0) { 921 unsigned NumOps = MI->getNumExplicitOperands(); 922 if (OpNum == NumOps - 1) { 923 const MCInstrDesc &MemDesc = get(MemOpcode); 924 uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags); 925 assert(AccessBytes != 0 && "Size of access should be known"); 926 assert(AccessBytes <= Size && "Access outside the frame index"); 927 uint64_t Offset = Size - AccessBytes; 928 MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, 929 MI->getDebugLoc(), get(MemOpcode)); 930 for (unsigned I = 0; I < OpNum; ++I) 931 MIB.addOperand(MI->getOperand(I)); 932 MIB.addFrameIndex(FrameIndex).addImm(Offset); 933 if (MemDesc.TSFlags & SystemZII::HasIndex) 934 MIB.addReg(0); 935 return MIB; 936 } 937 } 938 939 return nullptr; 940 } 941 942 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl( 943 MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops, 944 MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const { 945 return nullptr; 946 } 947 948 bool 949 SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { 950 switch (MI->getOpcode()) { 951 case SystemZ::L128: 952 splitMove(MI, SystemZ::LG); 953 return true; 954 955 case SystemZ::ST128: 956 splitMove(MI, SystemZ::STG); 957 return true; 958 959 case SystemZ::LX: 960 splitMove(MI, SystemZ::LD); 961 return true; 962 963 case SystemZ::STX: 964 splitMove(MI, SystemZ::STD); 965 return true; 966 967 case SystemZ::LBMux: 968 expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH); 969 return true; 970 971 case SystemZ::LHMux: 972 expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH); 973 return true; 974 975 case SystemZ::LLCRMux: 976 expandZExtPseudo(MI, SystemZ::LLCR, 8); 977 return true; 978 979 case SystemZ::LLHRMux: 980 expandZExtPseudo(MI, SystemZ::LLHR, 16); 981 return true; 982 983 case SystemZ::LLCMux: 984 expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH); 985 return true; 986 987 case SystemZ::LLHMux: 988 expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH); 989 return true; 990 991 case SystemZ::LMux: 992 expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH); 993 return true; 994 995 case SystemZ::STCMux: 996 expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH); 997 return true; 998 999 case SystemZ::STHMux: 1000 expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH); 1001 return true; 1002 1003 case SystemZ::STMux: 1004 expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH); 1005 return true; 1006 1007 case SystemZ::LHIMux: 1008 expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true); 1009 return true; 1010 1011 case SystemZ::IIFMux: 1012 expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false); 1013 return true; 1014 1015 case SystemZ::IILMux: 1016 expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false); 1017 return true; 1018 1019 case SystemZ::IIHMux: 1020 expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false); 1021 return true; 1022 1023 case SystemZ::NIFMux: 1024 expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false); 1025 return true; 1026 1027 case SystemZ::NILMux: 1028 expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false); 1029 return true; 1030 1031 case SystemZ::NIHMux: 1032 expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false); 1033 return true; 1034 1035 case SystemZ::OIFMux: 1036 expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false); 1037 return true; 1038 1039 case SystemZ::OILMux: 1040 expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false); 1041 return true; 1042 1043 case SystemZ::OIHMux: 1044 expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false); 1045 return true; 1046 1047 case SystemZ::XIFMux: 1048 expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false); 1049 return true; 1050 1051 case SystemZ::TMLMux: 1052 expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false); 1053 return true; 1054 1055 case SystemZ::TMHMux: 1056 expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false); 1057 return true; 1058 1059 case SystemZ::AHIMux: 1060 expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false); 1061 return true; 1062 1063 case SystemZ::AHIMuxK: 1064 expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH); 1065 return true; 1066 1067 case SystemZ::AFIMux: 1068 expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false); 1069 return true; 1070 1071 case SystemZ::CFIMux: 1072 expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false); 1073 return true; 1074 1075 case SystemZ::CLFIMux: 1076 expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false); 1077 return true; 1078 1079 case SystemZ::CMux: 1080 expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF); 1081 return true; 1082 1083 case SystemZ::CLMux: 1084 expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF); 1085 return true; 1086 1087 case SystemZ::RISBMux: { 1088 bool DestIsHigh = isHighReg(MI->getOperand(0).getReg()); 1089 bool SrcIsHigh = isHighReg(MI->getOperand(2).getReg()); 1090 if (SrcIsHigh == DestIsHigh) 1091 MI->setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL)); 1092 else { 1093 MI->setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH)); 1094 MI->getOperand(5).setImm(MI->getOperand(5).getImm() ^ 32); 1095 } 1096 return true; 1097 } 1098 1099 case SystemZ::ADJDYNALLOC: 1100 splitAdjDynAlloc(MI); 1101 return true; 1102 1103 default: 1104 return false; 1105 } 1106 } 1107 1108 uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const { 1109 if (MI->getOpcode() == TargetOpcode::INLINEASM) { 1110 const MachineFunction *MF = MI->getParent()->getParent(); 1111 const char *AsmStr = MI->getOperand(0).getSymbolName(); 1112 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 1113 } 1114 return MI->getDesc().getSize(); 1115 } 1116 1117 SystemZII::Branch 1118 SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const { 1119 switch (MI->getOpcode()) { 1120 case SystemZ::BR: 1121 case SystemZ::J: 1122 case SystemZ::JG: 1123 return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY, 1124 SystemZ::CCMASK_ANY, &MI->getOperand(0)); 1125 1126 case SystemZ::BRC: 1127 case SystemZ::BRCL: 1128 return SystemZII::Branch(SystemZII::BranchNormal, 1129 MI->getOperand(0).getImm(), 1130 MI->getOperand(1).getImm(), &MI->getOperand(2)); 1131 1132 case SystemZ::BRCT: 1133 return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP, 1134 SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); 1135 1136 case SystemZ::BRCTG: 1137 return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP, 1138 SystemZ::CCMASK_CMP_NE, &MI->getOperand(2)); 1139 1140 case SystemZ::CIJ: 1141 case SystemZ::CRJ: 1142 return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP, 1143 MI->getOperand(2).getImm(), &MI->getOperand(3)); 1144 1145 case SystemZ::CLIJ: 1146 case SystemZ::CLRJ: 1147 return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP, 1148 MI->getOperand(2).getImm(), &MI->getOperand(3)); 1149 1150 case SystemZ::CGIJ: 1151 case SystemZ::CGRJ: 1152 return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP, 1153 MI->getOperand(2).getImm(), &MI->getOperand(3)); 1154 1155 case SystemZ::CLGIJ: 1156 case SystemZ::CLGRJ: 1157 return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP, 1158 MI->getOperand(2).getImm(), &MI->getOperand(3)); 1159 1160 default: 1161 llvm_unreachable("Unrecognized branch opcode"); 1162 } 1163 } 1164 1165 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC, 1166 unsigned &LoadOpcode, 1167 unsigned &StoreOpcode) const { 1168 if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) { 1169 LoadOpcode = SystemZ::L; 1170 StoreOpcode = SystemZ::ST; 1171 } else if (RC == &SystemZ::GRH32BitRegClass) { 1172 LoadOpcode = SystemZ::LFH; 1173 StoreOpcode = SystemZ::STFH; 1174 } else if (RC == &SystemZ::GRX32BitRegClass) { 1175 LoadOpcode = SystemZ::LMux; 1176 StoreOpcode = SystemZ::STMux; 1177 } else if (RC == &SystemZ::GR64BitRegClass || 1178 RC == &SystemZ::ADDR64BitRegClass) { 1179 LoadOpcode = SystemZ::LG; 1180 StoreOpcode = SystemZ::STG; 1181 } else if (RC == &SystemZ::GR128BitRegClass || 1182 RC == &SystemZ::ADDR128BitRegClass) { 1183 LoadOpcode = SystemZ::L128; 1184 StoreOpcode = SystemZ::ST128; 1185 } else if (RC == &SystemZ::FP32BitRegClass) { 1186 LoadOpcode = SystemZ::LE; 1187 StoreOpcode = SystemZ::STE; 1188 } else if (RC == &SystemZ::FP64BitRegClass) { 1189 LoadOpcode = SystemZ::LD; 1190 StoreOpcode = SystemZ::STD; 1191 } else if (RC == &SystemZ::FP128BitRegClass) { 1192 LoadOpcode = SystemZ::LX; 1193 StoreOpcode = SystemZ::STX; 1194 } else if (RC == &SystemZ::VR32BitRegClass) { 1195 LoadOpcode = SystemZ::VL32; 1196 StoreOpcode = SystemZ::VST32; 1197 } else if (RC == &SystemZ::VR64BitRegClass) { 1198 LoadOpcode = SystemZ::VL64; 1199 StoreOpcode = SystemZ::VST64; 1200 } else if (RC == &SystemZ::VF128BitRegClass || 1201 RC == &SystemZ::VR128BitRegClass) { 1202 LoadOpcode = SystemZ::VL; 1203 StoreOpcode = SystemZ::VST; 1204 } else 1205 llvm_unreachable("Unsupported regclass to load or store"); 1206 } 1207 1208 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode, 1209 int64_t Offset) const { 1210 const MCInstrDesc &MCID = get(Opcode); 1211 int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset); 1212 if (isUInt<12>(Offset) && isUInt<12>(Offset2)) { 1213 // Get the instruction to use for unsigned 12-bit displacements. 1214 int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode); 1215 if (Disp12Opcode >= 0) 1216 return Disp12Opcode; 1217 1218 // All address-related instructions can use unsigned 12-bit 1219 // displacements. 1220 return Opcode; 1221 } 1222 if (isInt<20>(Offset) && isInt<20>(Offset2)) { 1223 // Get the instruction to use for signed 20-bit displacements. 1224 int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode); 1225 if (Disp20Opcode >= 0) 1226 return Disp20Opcode; 1227 1228 // Check whether Opcode allows signed 20-bit displacements. 1229 if (MCID.TSFlags & SystemZII::Has20BitOffset) 1230 return Opcode; 1231 } 1232 return 0; 1233 } 1234 1235 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const { 1236 switch (Opcode) { 1237 case SystemZ::L: return SystemZ::LT; 1238 case SystemZ::LY: return SystemZ::LT; 1239 case SystemZ::LG: return SystemZ::LTG; 1240 case SystemZ::LGF: return SystemZ::LTGF; 1241 case SystemZ::LR: return SystemZ::LTR; 1242 case SystemZ::LGFR: return SystemZ::LTGFR; 1243 case SystemZ::LGR: return SystemZ::LTGR; 1244 case SystemZ::LER: return SystemZ::LTEBR; 1245 case SystemZ::LDR: return SystemZ::LTDBR; 1246 case SystemZ::LXR: return SystemZ::LTXBR; 1247 case SystemZ::LCDFR: return SystemZ::LCDBR; 1248 case SystemZ::LPDFR: return SystemZ::LPDBR; 1249 case SystemZ::LNDFR: return SystemZ::LNDBR; 1250 case SystemZ::LCDFR_32: return SystemZ::LCEBR; 1251 case SystemZ::LPDFR_32: return SystemZ::LPEBR; 1252 case SystemZ::LNDFR_32: return SystemZ::LNEBR; 1253 // On zEC12 we prefer to use RISBGN. But if there is a chance to 1254 // actually use the condition code, we may turn it back into RISGB. 1255 // Note that RISBG is not really a "load-and-test" instruction, 1256 // but sets the same condition code values, so is OK to use here. 1257 case SystemZ::RISBGN: return SystemZ::RISBG; 1258 default: return 0; 1259 } 1260 } 1261 1262 // Return true if Mask matches the regexp 0*1+0*, given that zero masks 1263 // have already been filtered out. Store the first set bit in LSB and 1264 // the number of set bits in Length if so. 1265 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) { 1266 unsigned First = findFirstSet(Mask); 1267 uint64_t Top = (Mask >> First) + 1; 1268 if ((Top & -Top) == Top) { 1269 LSB = First; 1270 Length = findFirstSet(Top); 1271 return true; 1272 } 1273 return false; 1274 } 1275 1276 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize, 1277 unsigned &Start, unsigned &End) const { 1278 // Reject trivial all-zero masks. 1279 Mask &= allOnes(BitSize); 1280 if (Mask == 0) 1281 return false; 1282 1283 // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of 1284 // the msb and End specifies the index of the lsb. 1285 unsigned LSB, Length; 1286 if (isStringOfOnes(Mask, LSB, Length)) { 1287 Start = 63 - (LSB + Length - 1); 1288 End = 63 - LSB; 1289 return true; 1290 } 1291 1292 // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb 1293 // of the low 1s and End specifies the lsb of the high 1s. 1294 if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) { 1295 assert(LSB > 0 && "Bottom bit must be set"); 1296 assert(LSB + Length < BitSize && "Top bit must be set"); 1297 Start = 63 - (LSB - 1); 1298 End = 63 - (LSB + Length); 1299 return true; 1300 } 1301 1302 return false; 1303 } 1304 1305 unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode, 1306 SystemZII::CompareAndBranchType Type, 1307 const MachineInstr *MI) const { 1308 switch (Opcode) { 1309 case SystemZ::CHI: 1310 case SystemZ::CGHI: 1311 if (!(MI && isInt<8>(MI->getOperand(1).getImm()))) 1312 return 0; 1313 break; 1314 case SystemZ::CLFI: 1315 case SystemZ::CLGFI: 1316 if (!(MI && isUInt<8>(MI->getOperand(1).getImm()))) 1317 return 0; 1318 } 1319 switch (Type) { 1320 case SystemZII::CompareAndBranch: 1321 switch (Opcode) { 1322 case SystemZ::CR: 1323 return SystemZ::CRJ; 1324 case SystemZ::CGR: 1325 return SystemZ::CGRJ; 1326 case SystemZ::CHI: 1327 return SystemZ::CIJ; 1328 case SystemZ::CGHI: 1329 return SystemZ::CGIJ; 1330 case SystemZ::CLR: 1331 return SystemZ::CLRJ; 1332 case SystemZ::CLGR: 1333 return SystemZ::CLGRJ; 1334 case SystemZ::CLFI: 1335 return SystemZ::CLIJ; 1336 case SystemZ::CLGFI: 1337 return SystemZ::CLGIJ; 1338 default: 1339 return 0; 1340 } 1341 case SystemZII::CompareAndReturn: 1342 switch (Opcode) { 1343 case SystemZ::CR: 1344 return SystemZ::CRBReturn; 1345 case SystemZ::CGR: 1346 return SystemZ::CGRBReturn; 1347 case SystemZ::CHI: 1348 return SystemZ::CIBReturn; 1349 case SystemZ::CGHI: 1350 return SystemZ::CGIBReturn; 1351 case SystemZ::CLR: 1352 return SystemZ::CLRBReturn; 1353 case SystemZ::CLGR: 1354 return SystemZ::CLGRBReturn; 1355 case SystemZ::CLFI: 1356 return SystemZ::CLIBReturn; 1357 case SystemZ::CLGFI: 1358 return SystemZ::CLGIBReturn; 1359 default: 1360 return 0; 1361 } 1362 case SystemZII::CompareAndSibcall: 1363 switch (Opcode) { 1364 case SystemZ::CR: 1365 return SystemZ::CRBCall; 1366 case SystemZ::CGR: 1367 return SystemZ::CGRBCall; 1368 case SystemZ::CHI: 1369 return SystemZ::CIBCall; 1370 case SystemZ::CGHI: 1371 return SystemZ::CGIBCall; 1372 case SystemZ::CLR: 1373 return SystemZ::CLRBCall; 1374 case SystemZ::CLGR: 1375 return SystemZ::CLGRBCall; 1376 case SystemZ::CLFI: 1377 return SystemZ::CLIBCall; 1378 case SystemZ::CLGFI: 1379 return SystemZ::CLGIBCall; 1380 default: 1381 return 0; 1382 } 1383 } 1384 return 0; 1385 } 1386 1387 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB, 1388 MachineBasicBlock::iterator MBBI, 1389 unsigned Reg, uint64_t Value) const { 1390 DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc(); 1391 unsigned Opcode; 1392 if (isInt<16>(Value)) 1393 Opcode = SystemZ::LGHI; 1394 else if (SystemZ::isImmLL(Value)) 1395 Opcode = SystemZ::LLILL; 1396 else if (SystemZ::isImmLH(Value)) { 1397 Opcode = SystemZ::LLILH; 1398 Value >>= 16; 1399 } else { 1400 assert(isInt<32>(Value) && "Huge values not handled yet"); 1401 Opcode = SystemZ::LGFI; 1402 } 1403 BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value); 1404 } 1405