1 //===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SystemZ implementation of the TargetInstrInfo class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZInstrInfo.h"
14 #include "MCTargetDesc/SystemZMCTargetDesc.h"
15 #include "SystemZ.h"
16 #include "SystemZInstrBuilder.h"
17 #include "SystemZSubtarget.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/LiveInterval.h"
20 #include "llvm/CodeGen/LiveIntervals.h"
21 #include "llvm/CodeGen/LiveVariables.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/SlotIndexes.h"
30 #include "llvm/CodeGen/TargetInstrInfo.h"
31 #include "llvm/CodeGen/TargetSubtargetInfo.h"
32 #include "llvm/MC/MCInstrDesc.h"
33 #include "llvm/MC/MCRegisterInfo.h"
34 #include "llvm/Support/BranchProbability.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include <cassert>
39 #include <cstdint>
40 #include <iterator>
41 
42 using namespace llvm;
43 
44 #define GET_INSTRINFO_CTOR_DTOR
45 #define GET_INSTRMAP_INFO
46 #include "SystemZGenInstrInfo.inc"
47 
48 #define DEBUG_TYPE "systemz-II"
49 STATISTIC(LOCRMuxJumps, "Number of LOCRMux jump-sequences (lower is better)");
50 
51 // Return a mask with Count low bits set.
52 static uint64_t allOnes(unsigned int Count) {
53   return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
54 }
55 
56 // Reg should be a 32-bit GPR.  Return true if it is a high register rather
57 // than a low register.
58 static bool isHighReg(unsigned int Reg) {
59   if (SystemZ::GRH32BitRegClass.contains(Reg))
60     return true;
61   assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32");
62   return false;
63 }
64 
65 // Pin the vtable to this file.
66 void SystemZInstrInfo::anchor() {}
67 
68 SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
69   : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
70     RI(), STI(sti) {
71 }
72 
73 // MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
74 // each having the opcode given by NewOpcode.
75 void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
76                                  unsigned NewOpcode) const {
77   MachineBasicBlock *MBB = MI->getParent();
78   MachineFunction &MF = *MBB->getParent();
79 
80   // Get two load or store instructions.  Use the original instruction for one
81   // of them (arbitrarily the second here) and create a clone for the other.
82   MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
83   MBB->insert(MI, EarlierMI);
84 
85   // Set up the two 64-bit registers and remember super reg and its flags.
86   MachineOperand &HighRegOp = EarlierMI->getOperand(0);
87   MachineOperand &LowRegOp = MI->getOperand(0);
88   unsigned Reg128 = LowRegOp.getReg();
89   unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
90   unsigned Reg128Undef  = getUndefRegState(LowRegOp.isUndef());
91   HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
92   LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
93 
94   if (MI->mayStore()) {
95     // Add implicit uses of the super register in case one of the subregs is
96     // undefined. We could track liveness and skip storing an undefined
97     // subreg, but this is hopefully rare (discovered with llvm-stress).
98     // If Reg128 was killed, set kill flag on MI.
99     unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
100     MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
101     MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
102   }
103 
104   // The address in the first (high) instruction is already correct.
105   // Adjust the offset in the second (low) instruction.
106   MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
107   MachineOperand &LowOffsetOp = MI->getOperand(2);
108   LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
109 
110   // Clear the kill flags on the registers in the first instruction.
111   if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
112     EarlierMI->getOperand(0).setIsKill(false);
113   EarlierMI->getOperand(1).setIsKill(false);
114   EarlierMI->getOperand(3).setIsKill(false);
115 
116   // Set the opcodes.
117   unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
118   unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
119   assert(HighOpcode && LowOpcode && "Both offsets should be in range");
120 
121   EarlierMI->setDesc(get(HighOpcode));
122   MI->setDesc(get(LowOpcode));
123 }
124 
125 // Split ADJDYNALLOC instruction MI.
126 void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
127   MachineBasicBlock *MBB = MI->getParent();
128   MachineFunction &MF = *MBB->getParent();
129   MachineFrameInfo &MFFrame = MF.getFrameInfo();
130   MachineOperand &OffsetMO = MI->getOperand(2);
131 
132   uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
133                      SystemZMC::CallFrameSize +
134                      OffsetMO.getImm());
135   unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
136   assert(NewOpcode && "No support for huge argument lists yet");
137   MI->setDesc(get(NewOpcode));
138   OffsetMO.setImm(Offset);
139 }
140 
141 // MI is an RI-style pseudo instruction.  Replace it with LowOpcode
142 // if the first operand is a low GR32 and HighOpcode if the first operand
143 // is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
144 // and HighOpcode takes an unsigned 32-bit operand.  In those cases,
145 // MI has the same kind of operand as LowOpcode, so needs to be converted
146 // if HighOpcode is used.
147 void SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
148                                       unsigned HighOpcode,
149                                       bool ConvertHigh) const {
150   unsigned Reg = MI.getOperand(0).getReg();
151   bool IsHigh = isHighReg(Reg);
152   MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
153   if (IsHigh && ConvertHigh)
154     MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
155 }
156 
157 // MI is a three-operand RIE-style pseudo instruction.  Replace it with
158 // LowOpcodeK if the registers are both low GR32s, otherwise use a move
159 // followed by HighOpcode or LowOpcode, depending on whether the target
160 // is a high or low GR32.
161 void SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
162                                        unsigned LowOpcodeK,
163                                        unsigned HighOpcode) const {
164   unsigned DestReg = MI.getOperand(0).getReg();
165   unsigned SrcReg = MI.getOperand(1).getReg();
166   bool DestIsHigh = isHighReg(DestReg);
167   bool SrcIsHigh = isHighReg(SrcReg);
168   if (!DestIsHigh && !SrcIsHigh)
169     MI.setDesc(get(LowOpcodeK));
170   else {
171     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
172                   SystemZ::LR, 32, MI.getOperand(1).isKill(),
173                   MI.getOperand(1).isUndef());
174     MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
175     MI.getOperand(1).setReg(DestReg);
176     MI.tieOperands(0, 1);
177   }
178 }
179 
180 // MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
181 // if the first operand is a low GR32 and HighOpcode if the first operand
182 // is a high GR32.
183 void SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
184                                        unsigned HighOpcode) const {
185   unsigned Reg = MI.getOperand(0).getReg();
186   unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode,
187                                        MI.getOperand(2).getImm());
188   MI.setDesc(get(Opcode));
189 }
190 
191 // MI is a load-on-condition pseudo instruction with a single register
192 // (source or destination) operand.  Replace it with LowOpcode if the
193 // register is a low GR32 and HighOpcode if the register is a high GR32.
194 void SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
195                                        unsigned HighOpcode) const {
196   unsigned Reg = MI.getOperand(0).getReg();
197   unsigned Opcode = isHighReg(Reg) ? HighOpcode : LowOpcode;
198   MI.setDesc(get(Opcode));
199 }
200 
201 // MI is a load-register-on-condition pseudo instruction.  Replace it with
202 // LowOpcode if source and destination are both low GR32s and HighOpcode if
203 // source and destination are both high GR32s.
204 void SystemZInstrInfo::expandLOCRPseudo(MachineInstr &MI, unsigned LowOpcode,
205                                         unsigned HighOpcode) const {
206   unsigned DestReg = MI.getOperand(0).getReg();
207   unsigned SrcReg = MI.getOperand(2).getReg();
208   bool DestIsHigh = isHighReg(DestReg);
209   bool SrcIsHigh = isHighReg(SrcReg);
210 
211   if (!DestIsHigh && !SrcIsHigh)
212     MI.setDesc(get(LowOpcode));
213   else if (DestIsHigh && SrcIsHigh)
214     MI.setDesc(get(HighOpcode));
215   else
216     LOCRMuxJumps++;
217 
218   // If we were unable to implement the pseudo with a single instruction, we
219   // need to convert it back into a branch sequence.  This cannot be done here
220   // since the caller of expandPostRAPseudo does not handle changes to the CFG
221   // correctly.  This change is defered to the SystemZExpandPseudo pass.
222 }
223 
224 // MI is an RR-style pseudo instruction that zero-extends the low Size bits
225 // of one GRX32 into another.  Replace it with LowOpcode if both operands
226 // are low registers, otherwise use RISB[LH]G.
227 void SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
228                                         unsigned Size) const {
229   MachineInstrBuilder MIB =
230     emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
231                MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
232                Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
233 
234   // Keep the remaining operands as-is.
235   for (unsigned I = 2; I < MI.getNumOperands(); ++I)
236     MIB.add(MI.getOperand(I));
237 
238   MI.eraseFromParent();
239 }
240 
241 void SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
242   MachineBasicBlock *MBB = MI->getParent();
243   MachineFunction &MF = *MBB->getParent();
244   const unsigned Reg64 = MI->getOperand(0).getReg();
245   const unsigned Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
246 
247   // EAR can only load the low subregister so us a shift for %a0 to produce
248   // the GR containing %a0 and %a1.
249 
250   // ear <reg>, %a0
251   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
252     .addReg(SystemZ::A0)
253     .addReg(Reg64, RegState::ImplicitDefine);
254 
255   // sllg <reg>, <reg>, 32
256   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
257     .addReg(Reg64)
258     .addReg(0)
259     .addImm(32);
260 
261   // ear <reg>, %a1
262   BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
263     .addReg(SystemZ::A1);
264 
265   // lg <reg>, 40(<reg>)
266   MI->setDesc(get(SystemZ::LG));
267   MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
268 }
269 
270 // Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
271 // DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
272 // are low registers, otherwise use RISB[LH]G.  Size is the number of bits
273 // taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
274 // KillSrc is true if this move is the last use of SrcReg.
275 MachineInstrBuilder
276 SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
277                                 MachineBasicBlock::iterator MBBI,
278                                 const DebugLoc &DL, unsigned DestReg,
279                                 unsigned SrcReg, unsigned LowLowOpcode,
280                                 unsigned Size, bool KillSrc,
281                                 bool UndefSrc) const {
282   unsigned Opcode;
283   bool DestIsHigh = isHighReg(DestReg);
284   bool SrcIsHigh = isHighReg(SrcReg);
285   if (DestIsHigh && SrcIsHigh)
286     Opcode = SystemZ::RISBHH;
287   else if (DestIsHigh && !SrcIsHigh)
288     Opcode = SystemZ::RISBHL;
289   else if (!DestIsHigh && SrcIsHigh)
290     Opcode = SystemZ::RISBLH;
291   else {
292     return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
293       .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
294   }
295   unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
296   return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
297     .addReg(DestReg, RegState::Undef)
298     .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
299     .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
300 }
301 
302 MachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
303                                                        bool NewMI,
304                                                        unsigned OpIdx1,
305                                                        unsigned OpIdx2) const {
306   auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
307     if (NewMI)
308       return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
309     return MI;
310   };
311 
312   switch (MI.getOpcode()) {
313   case SystemZ::LOCRMux:
314   case SystemZ::LOCFHR:
315   case SystemZ::LOCR:
316   case SystemZ::LOCGR: {
317     auto &WorkingMI = cloneIfNew(MI);
318     // Invert condition.
319     unsigned CCValid = WorkingMI.getOperand(3).getImm();
320     unsigned CCMask = WorkingMI.getOperand(4).getImm();
321     WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
322     return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
323                                                    OpIdx1, OpIdx2);
324   }
325   default:
326     return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
327   }
328 }
329 
330 // If MI is a simple load or store for a frame object, return the register
331 // it loads or stores and set FrameIndex to the index of the frame object.
332 // Return 0 otherwise.
333 //
334 // Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
335 static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
336                         unsigned Flag) {
337   const MCInstrDesc &MCID = MI.getDesc();
338   if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
339       MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
340     FrameIndex = MI.getOperand(1).getIndex();
341     return MI.getOperand(0).getReg();
342   }
343   return 0;
344 }
345 
346 unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
347                                                int &FrameIndex) const {
348   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
349 }
350 
351 unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
352                                               int &FrameIndex) const {
353   return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
354 }
355 
356 bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
357                                        int &DestFrameIndex,
358                                        int &SrcFrameIndex) const {
359   // Check for MVC 0(Length,FI1),0(FI2)
360   const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
361   if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
362       MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
363       MI.getOperand(4).getImm() != 0)
364     return false;
365 
366   // Check that Length covers the full slots.
367   int64_t Length = MI.getOperand(2).getImm();
368   unsigned FI1 = MI.getOperand(0).getIndex();
369   unsigned FI2 = MI.getOperand(3).getIndex();
370   if (MFI.getObjectSize(FI1) != Length ||
371       MFI.getObjectSize(FI2) != Length)
372     return false;
373 
374   DestFrameIndex = FI1;
375   SrcFrameIndex = FI2;
376   return true;
377 }
378 
379 bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
380                                      MachineBasicBlock *&TBB,
381                                      MachineBasicBlock *&FBB,
382                                      SmallVectorImpl<MachineOperand> &Cond,
383                                      bool AllowModify) const {
384   // Most of the code and comments here are boilerplate.
385 
386   // Start from the bottom of the block and work up, examining the
387   // terminator instructions.
388   MachineBasicBlock::iterator I = MBB.end();
389   while (I != MBB.begin()) {
390     --I;
391     if (I->isDebugInstr())
392       continue;
393 
394     // Working from the bottom, when we see a non-terminator instruction, we're
395     // done.
396     if (!isUnpredicatedTerminator(*I))
397       break;
398 
399     // A terminator that isn't a branch can't easily be handled by this
400     // analysis.
401     if (!I->isBranch())
402       return true;
403 
404     // Can't handle indirect branches.
405     SystemZII::Branch Branch(getBranchInfo(*I));
406     if (!Branch.Target->isMBB())
407       return true;
408 
409     // Punt on compound branches.
410     if (Branch.Type != SystemZII::BranchNormal)
411       return true;
412 
413     if (Branch.CCMask == SystemZ::CCMASK_ANY) {
414       // Handle unconditional branches.
415       if (!AllowModify) {
416         TBB = Branch.Target->getMBB();
417         continue;
418       }
419 
420       // If the block has any instructions after a JMP, delete them.
421       while (std::next(I) != MBB.end())
422         std::next(I)->eraseFromParent();
423 
424       Cond.clear();
425       FBB = nullptr;
426 
427       // Delete the JMP if it's equivalent to a fall-through.
428       if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
429         TBB = nullptr;
430         I->eraseFromParent();
431         I = MBB.end();
432         continue;
433       }
434 
435       // TBB is used to indicate the unconditinal destination.
436       TBB = Branch.Target->getMBB();
437       continue;
438     }
439 
440     // Working from the bottom, handle the first conditional branch.
441     if (Cond.empty()) {
442       // FIXME: add X86-style branch swap
443       FBB = TBB;
444       TBB = Branch.Target->getMBB();
445       Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
446       Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
447       continue;
448     }
449 
450     // Handle subsequent conditional branches.
451     assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
452 
453     // Only handle the case where all conditional branches branch to the same
454     // destination.
455     if (TBB != Branch.Target->getMBB())
456       return true;
457 
458     // If the conditions are the same, we can leave them alone.
459     unsigned OldCCValid = Cond[0].getImm();
460     unsigned OldCCMask = Cond[1].getImm();
461     if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
462       continue;
463 
464     // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
465     return false;
466   }
467 
468   return false;
469 }
470 
471 unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
472                                         int *BytesRemoved) const {
473   assert(!BytesRemoved && "code size not handled");
474 
475   // Most of the code and comments here are boilerplate.
476   MachineBasicBlock::iterator I = MBB.end();
477   unsigned Count = 0;
478 
479   while (I != MBB.begin()) {
480     --I;
481     if (I->isDebugInstr())
482       continue;
483     if (!I->isBranch())
484       break;
485     if (!getBranchInfo(*I).Target->isMBB())
486       break;
487     // Remove the branch.
488     I->eraseFromParent();
489     I = MBB.end();
490     ++Count;
491   }
492 
493   return Count;
494 }
495 
496 bool SystemZInstrInfo::
497 reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
498   assert(Cond.size() == 2 && "Invalid condition");
499   Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
500   return false;
501 }
502 
503 unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
504                                         MachineBasicBlock *TBB,
505                                         MachineBasicBlock *FBB,
506                                         ArrayRef<MachineOperand> Cond,
507                                         const DebugLoc &DL,
508                                         int *BytesAdded) const {
509   // In this function we output 32-bit branches, which should always
510   // have enough range.  They can be shortened and relaxed by later code
511   // in the pipeline, if desired.
512 
513   // Shouldn't be a fall through.
514   assert(TBB && "insertBranch must not be told to insert a fallthrough");
515   assert((Cond.size() == 2 || Cond.size() == 0) &&
516          "SystemZ branch conditions have one component!");
517   assert(!BytesAdded && "code size not handled");
518 
519   if (Cond.empty()) {
520     // Unconditional branch?
521     assert(!FBB && "Unconditional branch with multiple successors!");
522     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
523     return 1;
524   }
525 
526   // Conditional branch.
527   unsigned Count = 0;
528   unsigned CCValid = Cond[0].getImm();
529   unsigned CCMask = Cond[1].getImm();
530   BuildMI(&MBB, DL, get(SystemZ::BRC))
531     .addImm(CCValid).addImm(CCMask).addMBB(TBB);
532   ++Count;
533 
534   if (FBB) {
535     // Two-way Conditional branch. Insert the second branch.
536     BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
537     ++Count;
538   }
539   return Count;
540 }
541 
542 bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
543                                       unsigned &SrcReg2, int &Mask,
544                                       int &Value) const {
545   assert(MI.isCompare() && "Caller should have checked for a comparison");
546 
547   if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
548       MI.getOperand(1).isImm()) {
549     SrcReg = MI.getOperand(0).getReg();
550     SrcReg2 = 0;
551     Value = MI.getOperand(1).getImm();
552     Mask = ~0;
553     return true;
554   }
555 
556   return false;
557 }
558 
559 bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
560                                        ArrayRef<MachineOperand> Pred,
561                                        unsigned TrueReg, unsigned FalseReg,
562                                        int &CondCycles, int &TrueCycles,
563                                        int &FalseCycles) const {
564   // Not all subtargets have LOCR instructions.
565   if (!STI.hasLoadStoreOnCond())
566     return false;
567   if (Pred.size() != 2)
568     return false;
569 
570   // Check register classes.
571   const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
572   const TargetRegisterClass *RC =
573     RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
574   if (!RC)
575     return false;
576 
577   // We have LOCR instructions for 32 and 64 bit general purpose registers.
578   if ((STI.hasLoadStoreOnCond2() &&
579        SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
580       SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
581       SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
582     CondCycles = 2;
583     TrueCycles = 2;
584     FalseCycles = 2;
585     return true;
586   }
587 
588   // Can't do anything else.
589   return false;
590 }
591 
592 void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
593                                     MachineBasicBlock::iterator I,
594                                     const DebugLoc &DL, unsigned DstReg,
595                                     ArrayRef<MachineOperand> Pred,
596                                     unsigned TrueReg,
597                                     unsigned FalseReg) const {
598   MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
599   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
600 
601   assert(Pred.size() == 2 && "Invalid condition");
602   unsigned CCValid = Pred[0].getImm();
603   unsigned CCMask = Pred[1].getImm();
604 
605   unsigned Opc;
606   if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
607     if (STI.hasLoadStoreOnCond2())
608       Opc = SystemZ::LOCRMux;
609     else {
610       Opc = SystemZ::LOCR;
611       MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
612       unsigned TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
613       unsigned FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
614       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
615       BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
616       TrueReg = TReg;
617       FalseReg = FReg;
618     }
619   } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC))
620     Opc = SystemZ::LOCGR;
621   else
622     llvm_unreachable("Invalid register class");
623 
624   BuildMI(MBB, I, DL, get(Opc), DstReg)
625     .addReg(FalseReg).addReg(TrueReg)
626     .addImm(CCValid).addImm(CCMask);
627 }
628 
629 bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
630                                      unsigned Reg,
631                                      MachineRegisterInfo *MRI) const {
632   unsigned DefOpc = DefMI.getOpcode();
633   if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
634       DefOpc != SystemZ::LGHI)
635     return false;
636   if (DefMI.getOperand(0).getReg() != Reg)
637     return false;
638   int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
639 
640   unsigned UseOpc = UseMI.getOpcode();
641   unsigned NewUseOpc;
642   unsigned UseIdx;
643   int CommuteIdx = -1;
644   switch (UseOpc) {
645   case SystemZ::LOCRMux:
646     if (!STI.hasLoadStoreOnCond2())
647       return false;
648     NewUseOpc = SystemZ::LOCHIMux;
649     if (UseMI.getOperand(2).getReg() == Reg)
650       UseIdx = 2;
651     else if (UseMI.getOperand(1).getReg() == Reg)
652       UseIdx = 2, CommuteIdx = 1;
653     else
654       return false;
655     break;
656   case SystemZ::LOCGR:
657     if (!STI.hasLoadStoreOnCond2())
658       return false;
659     NewUseOpc = SystemZ::LOCGHI;
660     if (UseMI.getOperand(2).getReg() == Reg)
661       UseIdx = 2;
662     else if (UseMI.getOperand(1).getReg() == Reg)
663       UseIdx = 2, CommuteIdx = 1;
664     else
665       return false;
666     break;
667   default:
668     return false;
669   }
670 
671   if (CommuteIdx != -1)
672     if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
673       return false;
674 
675   bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
676   UseMI.setDesc(get(NewUseOpc));
677   UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
678   if (DeleteDef)
679     DefMI.eraseFromParent();
680 
681   return true;
682 }
683 
684 bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
685   unsigned Opcode = MI.getOpcode();
686   if (Opcode == SystemZ::Return ||
687       Opcode == SystemZ::Trap ||
688       Opcode == SystemZ::CallJG ||
689       Opcode == SystemZ::CallBR)
690     return true;
691   return false;
692 }
693 
694 bool SystemZInstrInfo::
695 isProfitableToIfCvt(MachineBasicBlock &MBB,
696                     unsigned NumCycles, unsigned ExtraPredCycles,
697                     BranchProbability Probability) const {
698   // Avoid using conditional returns at the end of a loop (since then
699   // we'd need to emit an unconditional branch to the beginning anyway,
700   // making the loop body longer).  This doesn't apply for low-probability
701   // loops (eg. compare-and-swap retry), so just decide based on branch
702   // probability instead of looping structure.
703   // However, since Compare and Trap instructions cost the same as a regular
704   // Compare instruction, we should allow the if conversion to convert this
705   // into a Conditional Compare regardless of the branch probability.
706   if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
707       MBB.succ_empty() && Probability < BranchProbability(1, 8))
708     return false;
709   // For now only convert single instructions.
710   return NumCycles == 1;
711 }
712 
713 bool SystemZInstrInfo::
714 isProfitableToIfCvt(MachineBasicBlock &TMBB,
715                     unsigned NumCyclesT, unsigned ExtraPredCyclesT,
716                     MachineBasicBlock &FMBB,
717                     unsigned NumCyclesF, unsigned ExtraPredCyclesF,
718                     BranchProbability Probability) const {
719   // For now avoid converting mutually-exclusive cases.
720   return false;
721 }
722 
723 bool SystemZInstrInfo::
724 isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
725                           BranchProbability Probability) const {
726   // For now only duplicate single instructions.
727   return NumCycles == 1;
728 }
729 
730 bool SystemZInstrInfo::PredicateInstruction(
731     MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
732   assert(Pred.size() == 2 && "Invalid condition");
733   unsigned CCValid = Pred[0].getImm();
734   unsigned CCMask = Pred[1].getImm();
735   assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
736   unsigned Opcode = MI.getOpcode();
737   if (Opcode == SystemZ::Trap) {
738     MI.setDesc(get(SystemZ::CondTrap));
739     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
740       .addImm(CCValid).addImm(CCMask)
741       .addReg(SystemZ::CC, RegState::Implicit);
742     return true;
743   }
744   if (Opcode == SystemZ::Return) {
745     MI.setDesc(get(SystemZ::CondReturn));
746     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
747       .addImm(CCValid).addImm(CCMask)
748       .addReg(SystemZ::CC, RegState::Implicit);
749     return true;
750   }
751   if (Opcode == SystemZ::CallJG) {
752     MachineOperand FirstOp = MI.getOperand(0);
753     const uint32_t *RegMask = MI.getOperand(1).getRegMask();
754     MI.RemoveOperand(1);
755     MI.RemoveOperand(0);
756     MI.setDesc(get(SystemZ::CallBRCL));
757     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
758         .addImm(CCValid)
759         .addImm(CCMask)
760         .add(FirstOp)
761         .addRegMask(RegMask)
762         .addReg(SystemZ::CC, RegState::Implicit);
763     return true;
764   }
765   if (Opcode == SystemZ::CallBR) {
766     const uint32_t *RegMask = MI.getOperand(0).getRegMask();
767     MI.RemoveOperand(0);
768     MI.setDesc(get(SystemZ::CallBCR));
769     MachineInstrBuilder(*MI.getParent()->getParent(), MI)
770       .addImm(CCValid).addImm(CCMask)
771       .addRegMask(RegMask)
772       .addReg(SystemZ::CC, RegState::Implicit);
773     return true;
774   }
775   return false;
776 }
777 
778 void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
779                                    MachineBasicBlock::iterator MBBI,
780                                    const DebugLoc &DL, unsigned DestReg,
781                                    unsigned SrcReg, bool KillSrc) const {
782   // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
783   // super register in case one of the subregs is undefined.
784   // This handles ADDR128 too.
785   if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
786     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
787                 RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
788     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
789       .addReg(SrcReg, RegState::Implicit);
790     copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
791                 RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
792     MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
793       .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
794     return;
795   }
796 
797   if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
798     emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
799                   false);
800     return;
801   }
802 
803   // Move 128-bit floating-point values between VR128 and FP128.
804   if (SystemZ::VR128BitRegClass.contains(DestReg) &&
805       SystemZ::FP128BitRegClass.contains(SrcReg)) {
806     unsigned SrcRegHi =
807       RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
808                              SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
809     unsigned SrcRegLo =
810       RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
811                              SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
812 
813     BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
814       .addReg(SrcRegHi, getKillRegState(KillSrc))
815       .addReg(SrcRegLo, getKillRegState(KillSrc));
816     return;
817   }
818   if (SystemZ::FP128BitRegClass.contains(DestReg) &&
819       SystemZ::VR128BitRegClass.contains(SrcReg)) {
820     unsigned DestRegHi =
821       RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
822                              SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
823     unsigned DestRegLo =
824       RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
825                              SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
826 
827     if (DestRegHi != SrcReg)
828       copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
829     BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
830       .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
831     return;
832   }
833 
834   // Move CC value from/to a GR32.
835   if (SrcReg == SystemZ::CC) {
836     auto MIB = BuildMI(MBB, MBBI, DL, get(SystemZ::IPM), DestReg);
837     if (KillSrc) {
838       const MachineFunction *MF = MBB.getParent();
839       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
840       MIB->addRegisterKilled(SrcReg, TRI);
841     }
842     return;
843   }
844   if (DestReg == SystemZ::CC) {
845     BuildMI(MBB, MBBI, DL, get(SystemZ::TMLH))
846       .addReg(SrcReg, getKillRegState(KillSrc))
847       .addImm(3 << (SystemZ::IPM_CC - 16));
848     return;
849   }
850 
851   // Everything else needs only one instruction.
852   unsigned Opcode;
853   if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
854     Opcode = SystemZ::LGR;
855   else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
856     // For z13 we prefer LDR over LER to avoid partial register dependencies.
857     Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
858   else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
859     Opcode = SystemZ::LDR;
860   else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
861     Opcode = SystemZ::LXR;
862   else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
863     Opcode = SystemZ::VLR32;
864   else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
865     Opcode = SystemZ::VLR64;
866   else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
867     Opcode = SystemZ::VLR;
868   else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
869     Opcode = SystemZ::CPYA;
870   else if (SystemZ::AR32BitRegClass.contains(DestReg) &&
871            SystemZ::GR32BitRegClass.contains(SrcReg))
872     Opcode = SystemZ::SAR;
873   else if (SystemZ::GR32BitRegClass.contains(DestReg) &&
874            SystemZ::AR32BitRegClass.contains(SrcReg))
875     Opcode = SystemZ::EAR;
876   else
877     llvm_unreachable("Impossible reg-to-reg copy");
878 
879   BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
880     .addReg(SrcReg, getKillRegState(KillSrc));
881 }
882 
883 void SystemZInstrInfo::storeRegToStackSlot(
884     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
885     bool isKill, int FrameIdx, const TargetRegisterClass *RC,
886     const TargetRegisterInfo *TRI) const {
887   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
888 
889   // Callers may expect a single instruction, so keep 128-bit moves
890   // together for now and lower them after register allocation.
891   unsigned LoadOpcode, StoreOpcode;
892   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
893   addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
894                         .addReg(SrcReg, getKillRegState(isKill)),
895                     FrameIdx);
896 }
897 
898 void SystemZInstrInfo::loadRegFromStackSlot(
899     MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
900     int FrameIdx, const TargetRegisterClass *RC,
901     const TargetRegisterInfo *TRI) const {
902   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
903 
904   // Callers may expect a single instruction, so keep 128-bit moves
905   // together for now and lower them after register allocation.
906   unsigned LoadOpcode, StoreOpcode;
907   getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
908   addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
909                     FrameIdx);
910 }
911 
912 // Return true if MI is a simple load or store with a 12-bit displacement
913 // and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
914 static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
915   const MCInstrDesc &MCID = MI->getDesc();
916   return ((MCID.TSFlags & Flag) &&
917           isUInt<12>(MI->getOperand(2).getImm()) &&
918           MI->getOperand(3).getReg() == 0);
919 }
920 
921 namespace {
922 
923 struct LogicOp {
924   LogicOp() = default;
925   LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
926     : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
927 
928   explicit operator bool() const { return RegSize; }
929 
930   unsigned RegSize = 0;
931   unsigned ImmLSB = 0;
932   unsigned ImmSize = 0;
933 };
934 
935 } // end anonymous namespace
936 
937 static LogicOp interpretAndImmediate(unsigned Opcode) {
938   switch (Opcode) {
939   case SystemZ::NILMux: return LogicOp(32,  0, 16);
940   case SystemZ::NIHMux: return LogicOp(32, 16, 16);
941   case SystemZ::NILL64: return LogicOp(64,  0, 16);
942   case SystemZ::NILH64: return LogicOp(64, 16, 16);
943   case SystemZ::NIHL64: return LogicOp(64, 32, 16);
944   case SystemZ::NIHH64: return LogicOp(64, 48, 16);
945   case SystemZ::NIFMux: return LogicOp(32,  0, 32);
946   case SystemZ::NILF64: return LogicOp(64,  0, 32);
947   case SystemZ::NIHF64: return LogicOp(64, 32, 32);
948   default:              return LogicOp();
949   }
950 }
951 
952 static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
953   if (OldMI->registerDefIsDead(SystemZ::CC)) {
954     MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
955     if (CCDef != nullptr)
956       CCDef->setIsDead(true);
957   }
958 }
959 
960 // Used to return from convertToThreeAddress after replacing two-address
961 // instruction OldMI with three-address instruction NewMI.
962 static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
963                                                  MachineInstr *NewMI,
964                                                  LiveVariables *LV) {
965   if (LV) {
966     unsigned NumOps = OldMI->getNumOperands();
967     for (unsigned I = 1; I < NumOps; ++I) {
968       MachineOperand &Op = OldMI->getOperand(I);
969       if (Op.isReg() && Op.isKill())
970         LV->replaceKillInstruction(Op.getReg(), *OldMI, *NewMI);
971     }
972   }
973   transferDeadCC(OldMI, NewMI);
974   return NewMI;
975 }
976 
977 MachineInstr *SystemZInstrInfo::convertToThreeAddress(
978     MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
979   MachineBasicBlock *MBB = MI.getParent();
980   MachineFunction *MF = MBB->getParent();
981   MachineRegisterInfo &MRI = MF->getRegInfo();
982 
983   unsigned Opcode = MI.getOpcode();
984   unsigned NumOps = MI.getNumOperands();
985 
986   // Try to convert something like SLL into SLLK, if supported.
987   // We prefer to keep the two-operand form where possible both
988   // because it tends to be shorter and because some instructions
989   // have memory forms that can be used during spilling.
990   if (STI.hasDistinctOps()) {
991     MachineOperand &Dest = MI.getOperand(0);
992     MachineOperand &Src = MI.getOperand(1);
993     unsigned DestReg = Dest.getReg();
994     unsigned SrcReg = Src.getReg();
995     // AHIMux is only really a three-operand instruction when both operands
996     // are low registers.  Try to constrain both operands to be low if
997     // possible.
998     if (Opcode == SystemZ::AHIMux &&
999         TargetRegisterInfo::isVirtualRegister(DestReg) &&
1000         TargetRegisterInfo::isVirtualRegister(SrcReg) &&
1001         MRI.getRegClass(DestReg)->contains(SystemZ::R1L) &&
1002         MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) {
1003       MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass);
1004       MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass);
1005     }
1006     int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
1007     if (ThreeOperandOpcode >= 0) {
1008       // Create three address instruction without adding the implicit
1009       // operands. Those will instead be copied over from the original
1010       // instruction by the loop below.
1011       MachineInstrBuilder MIB(
1012           *MF, MF->CreateMachineInstr(get(ThreeOperandOpcode), MI.getDebugLoc(),
1013                                       /*NoImplicit=*/true));
1014       MIB.add(Dest);
1015       // Keep the kill state, but drop the tied flag.
1016       MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
1017       // Keep the remaining operands as-is.
1018       for (unsigned I = 2; I < NumOps; ++I)
1019         MIB.add(MI.getOperand(I));
1020       MBB->insert(MI, MIB);
1021       return finishConvertToThreeAddress(&MI, MIB, LV);
1022     }
1023   }
1024 
1025   // Try to convert an AND into an RISBG-type instruction.
1026   if (LogicOp And = interpretAndImmediate(Opcode)) {
1027     uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
1028     // AND IMMEDIATE leaves the other bits of the register unchanged.
1029     Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
1030     unsigned Start, End;
1031     if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
1032       unsigned NewOpcode;
1033       if (And.RegSize == 64) {
1034         NewOpcode = SystemZ::RISBG;
1035         // Prefer RISBGN if available, since it does not clobber CC.
1036         if (STI.hasMiscellaneousExtensions())
1037           NewOpcode = SystemZ::RISBGN;
1038       } else {
1039         NewOpcode = SystemZ::RISBMux;
1040         Start &= 31;
1041         End &= 31;
1042       }
1043       MachineOperand &Dest = MI.getOperand(0);
1044       MachineOperand &Src = MI.getOperand(1);
1045       MachineInstrBuilder MIB =
1046           BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
1047               .add(Dest)
1048               .addReg(0)
1049               .addReg(Src.getReg(), getKillRegState(Src.isKill()),
1050                       Src.getSubReg())
1051               .addImm(Start)
1052               .addImm(End + 128)
1053               .addImm(0);
1054       return finishConvertToThreeAddress(&MI, MIB, LV);
1055     }
1056   }
1057   return nullptr;
1058 }
1059 
1060 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1061     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1062     MachineBasicBlock::iterator InsertPt, int FrameIndex,
1063     LiveIntervals *LIS) const {
1064   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1065   const MachineFrameInfo &MFI = MF.getFrameInfo();
1066   unsigned Size = MFI.getObjectSize(FrameIndex);
1067   unsigned Opcode = MI.getOpcode();
1068 
1069   if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1070     if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1071         isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1072 
1073       // Check CC liveness, since new instruction introduces a dead
1074       // def of CC.
1075       MCRegUnitIterator CCUnit(SystemZ::CC, TRI);
1076       LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit);
1077       ++CCUnit;
1078       assert(!CCUnit.isValid() && "CC only has one reg unit.");
1079       SlotIndex MISlot =
1080           LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1081       if (!CCLiveRange.liveAt(MISlot)) {
1082         // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1083         MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1084                                         MI.getDebugLoc(), get(SystemZ::AGSI))
1085                                     .addFrameIndex(FrameIndex)
1086                                     .addImm(0)
1087                                     .addImm(MI.getOperand(2).getImm());
1088         BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1089         CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator());
1090         return BuiltMI;
1091       }
1092     }
1093     return nullptr;
1094   }
1095 
1096   // All other cases require a single operand.
1097   if (Ops.size() != 1)
1098     return nullptr;
1099 
1100   unsigned OpNum = Ops[0];
1101   assert(Size * 8 ==
1102            TRI->getRegSizeInBits(*MF.getRegInfo()
1103                                .getRegClass(MI.getOperand(OpNum).getReg())) &&
1104          "Invalid size combination");
1105 
1106   if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1107       isInt<8>(MI.getOperand(2).getImm())) {
1108     // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1109     Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1110     MachineInstr *BuiltMI =
1111         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1112             .addFrameIndex(FrameIndex)
1113             .addImm(0)
1114             .addImm(MI.getOperand(2).getImm());
1115     transferDeadCC(&MI, BuiltMI);
1116     return BuiltMI;
1117   }
1118 
1119   if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1120        isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1121       (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1122        isInt<8>((int64_t)MI.getOperand(2).getImm()))) {
1123     // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1124     Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1125     MachineInstr *BuiltMI =
1126         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1127             .addFrameIndex(FrameIndex)
1128             .addImm(0)
1129             .addImm((int8_t)MI.getOperand(2).getImm());
1130     transferDeadCC(&MI, BuiltMI);
1131     return BuiltMI;
1132   }
1133 
1134   if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1135        isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1136       (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1137        isInt<8>((int64_t)-MI.getOperand(2).getImm()))) {
1138     // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1139     Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1140     MachineInstr *BuiltMI =
1141         BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1142             .addFrameIndex(FrameIndex)
1143             .addImm(0)
1144             .addImm((int8_t)-MI.getOperand(2).getImm());
1145     transferDeadCC(&MI, BuiltMI);
1146     return BuiltMI;
1147   }
1148 
1149   if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1150     bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1151     bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1152     // If we're spilling the destination of an LDGR or LGDR, store the
1153     // source register instead.
1154     if (OpNum == 0) {
1155       unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1156       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1157                      get(StoreOpcode))
1158           .add(MI.getOperand(1))
1159           .addFrameIndex(FrameIndex)
1160           .addImm(0)
1161           .addReg(0);
1162     }
1163     // If we're spilling the source of an LDGR or LGDR, load the
1164     // destination register instead.
1165     if (OpNum == 1) {
1166       unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1167       return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1168                      get(LoadOpcode))
1169         .add(MI.getOperand(0))
1170         .addFrameIndex(FrameIndex)
1171         .addImm(0)
1172         .addReg(0);
1173     }
1174   }
1175 
1176   // Look for cases where the source of a simple store or the destination
1177   // of a simple load is being spilled.  Try to use MVC instead.
1178   //
1179   // Although MVC is in practice a fast choice in these cases, it is still
1180   // logically a bytewise copy.  This means that we cannot use it if the
1181   // load or store is volatile.  We also wouldn't be able to use MVC if
1182   // the two memories partially overlap, but that case cannot occur here,
1183   // because we know that one of the memories is a full frame index.
1184   //
1185   // For performance reasons, we also want to avoid using MVC if the addresses
1186   // might be equal.  We don't worry about that case here, because spill slot
1187   // coloring happens later, and because we have special code to remove
1188   // MVCs that turn out to be redundant.
1189   if (OpNum == 0 && MI.hasOneMemOperand()) {
1190     MachineMemOperand *MMO = *MI.memoperands_begin();
1191     if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) {
1192       // Handle conversion of loads.
1193       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1194         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1195                        get(SystemZ::MVC))
1196             .addFrameIndex(FrameIndex)
1197             .addImm(0)
1198             .addImm(Size)
1199             .add(MI.getOperand(1))
1200             .addImm(MI.getOperand(2).getImm())
1201             .addMemOperand(MMO);
1202       }
1203       // Handle conversion of stores.
1204       if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1205         return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1206                        get(SystemZ::MVC))
1207             .add(MI.getOperand(1))
1208             .addImm(MI.getOperand(2).getImm())
1209             .addImm(Size)
1210             .addFrameIndex(FrameIndex)
1211             .addImm(0)
1212             .addMemOperand(MMO);
1213       }
1214     }
1215   }
1216 
1217   // If the spilled operand is the final one, try to change <INSN>R
1218   // into <INSN>.
1219   int MemOpcode = SystemZ::getMemOpcode(Opcode);
1220   if (MemOpcode >= 0) {
1221     unsigned NumOps = MI.getNumExplicitOperands();
1222     if (OpNum == NumOps - 1) {
1223       const MCInstrDesc &MemDesc = get(MemOpcode);
1224       uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1225       assert(AccessBytes != 0 && "Size of access should be known");
1226       assert(AccessBytes <= Size && "Access outside the frame index");
1227       uint64_t Offset = Size - AccessBytes;
1228       MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1229                                         MI.getDebugLoc(), get(MemOpcode));
1230       for (unsigned I = 0; I < OpNum; ++I)
1231         MIB.add(MI.getOperand(I));
1232       MIB.addFrameIndex(FrameIndex).addImm(Offset);
1233       if (MemDesc.TSFlags & SystemZII::HasIndex)
1234         MIB.addReg(0);
1235       transferDeadCC(&MI, MIB);
1236       return MIB;
1237     }
1238   }
1239 
1240   return nullptr;
1241 }
1242 
1243 MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1244     MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1245     MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1246     LiveIntervals *LIS) const {
1247   return nullptr;
1248 }
1249 
1250 bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1251   switch (MI.getOpcode()) {
1252   case SystemZ::L128:
1253     splitMove(MI, SystemZ::LG);
1254     return true;
1255 
1256   case SystemZ::ST128:
1257     splitMove(MI, SystemZ::STG);
1258     return true;
1259 
1260   case SystemZ::LX:
1261     splitMove(MI, SystemZ::LD);
1262     return true;
1263 
1264   case SystemZ::STX:
1265     splitMove(MI, SystemZ::STD);
1266     return true;
1267 
1268   case SystemZ::LBMux:
1269     expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1270     return true;
1271 
1272   case SystemZ::LHMux:
1273     expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1274     return true;
1275 
1276   case SystemZ::LLCRMux:
1277     expandZExtPseudo(MI, SystemZ::LLCR, 8);
1278     return true;
1279 
1280   case SystemZ::LLHRMux:
1281     expandZExtPseudo(MI, SystemZ::LLHR, 16);
1282     return true;
1283 
1284   case SystemZ::LLCMux:
1285     expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1286     return true;
1287 
1288   case SystemZ::LLHMux:
1289     expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1290     return true;
1291 
1292   case SystemZ::LMux:
1293     expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1294     return true;
1295 
1296   case SystemZ::LOCMux:
1297     expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1298     return true;
1299 
1300   case SystemZ::LOCHIMux:
1301     expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1302     return true;
1303 
1304   case SystemZ::LOCRMux:
1305     expandLOCRPseudo(MI, SystemZ::LOCR, SystemZ::LOCFHR);
1306     return true;
1307 
1308   case SystemZ::STCMux:
1309     expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1310     return true;
1311 
1312   case SystemZ::STHMux:
1313     expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1314     return true;
1315 
1316   case SystemZ::STMux:
1317     expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1318     return true;
1319 
1320   case SystemZ::STOCMux:
1321     expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1322     return true;
1323 
1324   case SystemZ::LHIMux:
1325     expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1326     return true;
1327 
1328   case SystemZ::IIFMux:
1329     expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1330     return true;
1331 
1332   case SystemZ::IILMux:
1333     expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1334     return true;
1335 
1336   case SystemZ::IIHMux:
1337     expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1338     return true;
1339 
1340   case SystemZ::NIFMux:
1341     expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1342     return true;
1343 
1344   case SystemZ::NILMux:
1345     expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1346     return true;
1347 
1348   case SystemZ::NIHMux:
1349     expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1350     return true;
1351 
1352   case SystemZ::OIFMux:
1353     expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1354     return true;
1355 
1356   case SystemZ::OILMux:
1357     expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1358     return true;
1359 
1360   case SystemZ::OIHMux:
1361     expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1362     return true;
1363 
1364   case SystemZ::XIFMux:
1365     expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1366     return true;
1367 
1368   case SystemZ::TMLMux:
1369     expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1370     return true;
1371 
1372   case SystemZ::TMHMux:
1373     expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1374     return true;
1375 
1376   case SystemZ::AHIMux:
1377     expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1378     return true;
1379 
1380   case SystemZ::AHIMuxK:
1381     expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1382     return true;
1383 
1384   case SystemZ::AFIMux:
1385     expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1386     return true;
1387 
1388   case SystemZ::CHIMux:
1389     expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1390     return true;
1391 
1392   case SystemZ::CFIMux:
1393     expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1394     return true;
1395 
1396   case SystemZ::CLFIMux:
1397     expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1398     return true;
1399 
1400   case SystemZ::CMux:
1401     expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1402     return true;
1403 
1404   case SystemZ::CLMux:
1405     expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1406     return true;
1407 
1408   case SystemZ::RISBMux: {
1409     bool DestIsHigh = isHighReg(MI.getOperand(0).getReg());
1410     bool SrcIsHigh = isHighReg(MI.getOperand(2).getReg());
1411     if (SrcIsHigh == DestIsHigh)
1412       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1413     else {
1414       MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1415       MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1416     }
1417     return true;
1418   }
1419 
1420   case SystemZ::ADJDYNALLOC:
1421     splitAdjDynAlloc(MI);
1422     return true;
1423 
1424   case TargetOpcode::LOAD_STACK_GUARD:
1425     expandLoadStackGuard(&MI);
1426     return true;
1427 
1428   default:
1429     return false;
1430   }
1431 }
1432 
1433 unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1434   if (MI.isInlineAsm()) {
1435     const MachineFunction *MF = MI.getParent()->getParent();
1436     const char *AsmStr = MI.getOperand(0).getSymbolName();
1437     return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1438   }
1439   return MI.getDesc().getSize();
1440 }
1441 
1442 SystemZII::Branch
1443 SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1444   switch (MI.getOpcode()) {
1445   case SystemZ::BR:
1446   case SystemZ::BI:
1447   case SystemZ::J:
1448   case SystemZ::JG:
1449     return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1450                              SystemZ::CCMASK_ANY, &MI.getOperand(0));
1451 
1452   case SystemZ::BRC:
1453   case SystemZ::BRCL:
1454     return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1455                              MI.getOperand(1).getImm(), &MI.getOperand(2));
1456 
1457   case SystemZ::BRCT:
1458   case SystemZ::BRCTH:
1459     return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1460                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1461 
1462   case SystemZ::BRCTG:
1463     return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1464                              SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1465 
1466   case SystemZ::CIJ:
1467   case SystemZ::CRJ:
1468     return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1469                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1470 
1471   case SystemZ::CLIJ:
1472   case SystemZ::CLRJ:
1473     return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1474                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1475 
1476   case SystemZ::CGIJ:
1477   case SystemZ::CGRJ:
1478     return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1479                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1480 
1481   case SystemZ::CLGIJ:
1482   case SystemZ::CLGRJ:
1483     return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1484                              MI.getOperand(2).getImm(), &MI.getOperand(3));
1485 
1486   default:
1487     llvm_unreachable("Unrecognized branch opcode");
1488   }
1489 }
1490 
1491 void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1492                                            unsigned &LoadOpcode,
1493                                            unsigned &StoreOpcode) const {
1494   if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1495     LoadOpcode = SystemZ::L;
1496     StoreOpcode = SystemZ::ST;
1497   } else if (RC == &SystemZ::GRH32BitRegClass) {
1498     LoadOpcode = SystemZ::LFH;
1499     StoreOpcode = SystemZ::STFH;
1500   } else if (RC == &SystemZ::GRX32BitRegClass) {
1501     LoadOpcode = SystemZ::LMux;
1502     StoreOpcode = SystemZ::STMux;
1503   } else if (RC == &SystemZ::GR64BitRegClass ||
1504              RC == &SystemZ::ADDR64BitRegClass) {
1505     LoadOpcode = SystemZ::LG;
1506     StoreOpcode = SystemZ::STG;
1507   } else if (RC == &SystemZ::GR128BitRegClass ||
1508              RC == &SystemZ::ADDR128BitRegClass) {
1509     LoadOpcode = SystemZ::L128;
1510     StoreOpcode = SystemZ::ST128;
1511   } else if (RC == &SystemZ::FP32BitRegClass) {
1512     LoadOpcode = SystemZ::LE;
1513     StoreOpcode = SystemZ::STE;
1514   } else if (RC == &SystemZ::FP64BitRegClass) {
1515     LoadOpcode = SystemZ::LD;
1516     StoreOpcode = SystemZ::STD;
1517   } else if (RC == &SystemZ::FP128BitRegClass) {
1518     LoadOpcode = SystemZ::LX;
1519     StoreOpcode = SystemZ::STX;
1520   } else if (RC == &SystemZ::VR32BitRegClass) {
1521     LoadOpcode = SystemZ::VL32;
1522     StoreOpcode = SystemZ::VST32;
1523   } else if (RC == &SystemZ::VR64BitRegClass) {
1524     LoadOpcode = SystemZ::VL64;
1525     StoreOpcode = SystemZ::VST64;
1526   } else if (RC == &SystemZ::VF128BitRegClass ||
1527              RC == &SystemZ::VR128BitRegClass) {
1528     LoadOpcode = SystemZ::VL;
1529     StoreOpcode = SystemZ::VST;
1530   } else
1531     llvm_unreachable("Unsupported regclass to load or store");
1532 }
1533 
1534 unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1535                                               int64_t Offset) const {
1536   const MCInstrDesc &MCID = get(Opcode);
1537   int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1538   if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1539     // Get the instruction to use for unsigned 12-bit displacements.
1540     int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1541     if (Disp12Opcode >= 0)
1542       return Disp12Opcode;
1543 
1544     // All address-related instructions can use unsigned 12-bit
1545     // displacements.
1546     return Opcode;
1547   }
1548   if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1549     // Get the instruction to use for signed 20-bit displacements.
1550     int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1551     if (Disp20Opcode >= 0)
1552       return Disp20Opcode;
1553 
1554     // Check whether Opcode allows signed 20-bit displacements.
1555     if (MCID.TSFlags & SystemZII::Has20BitOffset)
1556       return Opcode;
1557   }
1558   return 0;
1559 }
1560 
1561 unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1562   switch (Opcode) {
1563   case SystemZ::L:      return SystemZ::LT;
1564   case SystemZ::LY:     return SystemZ::LT;
1565   case SystemZ::LG:     return SystemZ::LTG;
1566   case SystemZ::LGF:    return SystemZ::LTGF;
1567   case SystemZ::LR:     return SystemZ::LTR;
1568   case SystemZ::LGFR:   return SystemZ::LTGFR;
1569   case SystemZ::LGR:    return SystemZ::LTGR;
1570   case SystemZ::LER:    return SystemZ::LTEBR;
1571   case SystemZ::LDR:    return SystemZ::LTDBR;
1572   case SystemZ::LXR:    return SystemZ::LTXBR;
1573   case SystemZ::LCDFR:  return SystemZ::LCDBR;
1574   case SystemZ::LPDFR:  return SystemZ::LPDBR;
1575   case SystemZ::LNDFR:  return SystemZ::LNDBR;
1576   case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1577   case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1578   case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1579   // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1580   // actually use the condition code, we may turn it back into RISGB.
1581   // Note that RISBG is not really a "load-and-test" instruction,
1582   // but sets the same condition code values, so is OK to use here.
1583   case SystemZ::RISBGN: return SystemZ::RISBG;
1584   default:              return 0;
1585   }
1586 }
1587 
1588 // Return true if Mask matches the regexp 0*1+0*, given that zero masks
1589 // have already been filtered out.  Store the first set bit in LSB and
1590 // the number of set bits in Length if so.
1591 static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1592   unsigned First = findFirstSet(Mask);
1593   uint64_t Top = (Mask >> First) + 1;
1594   if ((Top & -Top) == Top) {
1595     LSB = First;
1596     Length = findFirstSet(Top);
1597     return true;
1598   }
1599   return false;
1600 }
1601 
1602 bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1603                                    unsigned &Start, unsigned &End) const {
1604   // Reject trivial all-zero masks.
1605   Mask &= allOnes(BitSize);
1606   if (Mask == 0)
1607     return false;
1608 
1609   // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1610   // the msb and End specifies the index of the lsb.
1611   unsigned LSB, Length;
1612   if (isStringOfOnes(Mask, LSB, Length)) {
1613     Start = 63 - (LSB + Length - 1);
1614     End = 63 - LSB;
1615     return true;
1616   }
1617 
1618   // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1619   // of the low 1s and End specifies the lsb of the high 1s.
1620   if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1621     assert(LSB > 0 && "Bottom bit must be set");
1622     assert(LSB + Length < BitSize && "Top bit must be set");
1623     Start = 63 - (LSB - 1);
1624     End = 63 - (LSB + Length);
1625     return true;
1626   }
1627 
1628   return false;
1629 }
1630 
1631 unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1632                                            SystemZII::FusedCompareType Type,
1633                                            const MachineInstr *MI) const {
1634   switch (Opcode) {
1635   case SystemZ::CHI:
1636   case SystemZ::CGHI:
1637     if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1638       return 0;
1639     break;
1640   case SystemZ::CLFI:
1641   case SystemZ::CLGFI:
1642     if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1643       return 0;
1644     break;
1645   case SystemZ::CL:
1646   case SystemZ::CLG:
1647     if (!STI.hasMiscellaneousExtensions())
1648       return 0;
1649     if (!(MI && MI->getOperand(3).getReg() == 0))
1650       return 0;
1651     break;
1652   }
1653   switch (Type) {
1654   case SystemZII::CompareAndBranch:
1655     switch (Opcode) {
1656     case SystemZ::CR:
1657       return SystemZ::CRJ;
1658     case SystemZ::CGR:
1659       return SystemZ::CGRJ;
1660     case SystemZ::CHI:
1661       return SystemZ::CIJ;
1662     case SystemZ::CGHI:
1663       return SystemZ::CGIJ;
1664     case SystemZ::CLR:
1665       return SystemZ::CLRJ;
1666     case SystemZ::CLGR:
1667       return SystemZ::CLGRJ;
1668     case SystemZ::CLFI:
1669       return SystemZ::CLIJ;
1670     case SystemZ::CLGFI:
1671       return SystemZ::CLGIJ;
1672     default:
1673       return 0;
1674     }
1675   case SystemZII::CompareAndReturn:
1676     switch (Opcode) {
1677     case SystemZ::CR:
1678       return SystemZ::CRBReturn;
1679     case SystemZ::CGR:
1680       return SystemZ::CGRBReturn;
1681     case SystemZ::CHI:
1682       return SystemZ::CIBReturn;
1683     case SystemZ::CGHI:
1684       return SystemZ::CGIBReturn;
1685     case SystemZ::CLR:
1686       return SystemZ::CLRBReturn;
1687     case SystemZ::CLGR:
1688       return SystemZ::CLGRBReturn;
1689     case SystemZ::CLFI:
1690       return SystemZ::CLIBReturn;
1691     case SystemZ::CLGFI:
1692       return SystemZ::CLGIBReturn;
1693     default:
1694       return 0;
1695     }
1696   case SystemZII::CompareAndSibcall:
1697     switch (Opcode) {
1698     case SystemZ::CR:
1699       return SystemZ::CRBCall;
1700     case SystemZ::CGR:
1701       return SystemZ::CGRBCall;
1702     case SystemZ::CHI:
1703       return SystemZ::CIBCall;
1704     case SystemZ::CGHI:
1705       return SystemZ::CGIBCall;
1706     case SystemZ::CLR:
1707       return SystemZ::CLRBCall;
1708     case SystemZ::CLGR:
1709       return SystemZ::CLGRBCall;
1710     case SystemZ::CLFI:
1711       return SystemZ::CLIBCall;
1712     case SystemZ::CLGFI:
1713       return SystemZ::CLGIBCall;
1714     default:
1715       return 0;
1716     }
1717   case SystemZII::CompareAndTrap:
1718     switch (Opcode) {
1719     case SystemZ::CR:
1720       return SystemZ::CRT;
1721     case SystemZ::CGR:
1722       return SystemZ::CGRT;
1723     case SystemZ::CHI:
1724       return SystemZ::CIT;
1725     case SystemZ::CGHI:
1726       return SystemZ::CGIT;
1727     case SystemZ::CLR:
1728       return SystemZ::CLRT;
1729     case SystemZ::CLGR:
1730       return SystemZ::CLGRT;
1731     case SystemZ::CLFI:
1732       return SystemZ::CLFIT;
1733     case SystemZ::CLGFI:
1734       return SystemZ::CLGIT;
1735     case SystemZ::CL:
1736       return SystemZ::CLT;
1737     case SystemZ::CLG:
1738       return SystemZ::CLGT;
1739     default:
1740       return 0;
1741     }
1742   }
1743   return 0;
1744 }
1745 
1746 unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1747   if (!STI.hasLoadAndTrap())
1748     return 0;
1749   switch (Opcode) {
1750   case SystemZ::L:
1751   case SystemZ::LY:
1752     return SystemZ::LAT;
1753   case SystemZ::LG:
1754     return SystemZ::LGAT;
1755   case SystemZ::LFH:
1756     return SystemZ::LFHAT;
1757   case SystemZ::LLGF:
1758     return SystemZ::LLGFAT;
1759   case SystemZ::LLGT:
1760     return SystemZ::LLGTAT;
1761   }
1762   return 0;
1763 }
1764 
1765 void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1766                                      MachineBasicBlock::iterator MBBI,
1767                                      unsigned Reg, uint64_t Value) const {
1768   DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1769   unsigned Opcode;
1770   if (isInt<16>(Value))
1771     Opcode = SystemZ::LGHI;
1772   else if (SystemZ::isImmLL(Value))
1773     Opcode = SystemZ::LLILL;
1774   else if (SystemZ::isImmLH(Value)) {
1775     Opcode = SystemZ::LLILH;
1776     Value >>= 16;
1777   } else {
1778     assert(isInt<32>(Value) && "Huge values not handled yet");
1779     Opcode = SystemZ::LGFI;
1780   }
1781   BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1782 }
1783 
1784 bool SystemZInstrInfo::
1785 areMemAccessesTriviallyDisjoint(MachineInstr &MIa, MachineInstr &MIb,
1786                                 AliasAnalysis *AA) const {
1787 
1788   if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
1789     return false;
1790 
1791   // If mem-operands show that the same address Value is used by both
1792   // instructions, check for non-overlapping offsets and widths. Not
1793   // sure if a register based analysis would be an improvement...
1794 
1795   MachineMemOperand *MMOa = *MIa.memoperands_begin();
1796   MachineMemOperand *MMOb = *MIb.memoperands_begin();
1797   const Value *VALa = MMOa->getValue();
1798   const Value *VALb = MMOb->getValue();
1799   bool SameVal = (VALa && VALb && (VALa == VALb));
1800   if (!SameVal) {
1801     const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1802     const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1803     if (PSVa && PSVb && (PSVa == PSVb))
1804       SameVal = true;
1805   }
1806   if (SameVal) {
1807     int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
1808     int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
1809     int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1810     int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1811     int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1812     if (LowOffset + LowWidth <= HighOffset)
1813       return true;
1814   }
1815 
1816   return false;
1817 }
1818