1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 84 85 // Set up the register classes. 86 if (Subtarget.hasHighWord()) 87 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 88 else 89 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 90 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 91 if (!useSoftFloat()) { 92 if (Subtarget.hasVector()) { 93 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 94 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 95 } else { 96 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 98 } 99 if (Subtarget.hasVectorEnhancements1()) 100 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 101 else 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 } 113 114 // Compute derived properties from the register classes 115 computeRegisterProperties(Subtarget.getRegisterInfo()); 116 117 // Set up special registers. 118 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 119 120 // TODO: It may be better to default to latency-oriented scheduling, however 121 // LLVM's current latency-oriented scheduler can't handle physreg definitions 122 // such as SystemZ has with CC, so set this to the register-pressure 123 // scheduler, because it can. 124 setSchedulingPreference(Sched::RegPressure); 125 126 setBooleanContents(ZeroOrOneBooleanContent); 127 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 128 129 // Instructions are strings of 2-byte aligned 2-byte values. 130 setMinFunctionAlignment(Align(2)); 131 // For performance reasons we prefer 16-byte alignment. 132 setPrefFunctionAlignment(Align(16)); 133 134 // Handle operations that are handled in a similar way for all types. 135 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 136 I <= MVT::LAST_FP_VALUETYPE; 137 ++I) { 138 MVT VT = MVT::SimpleValueType(I); 139 if (isTypeLegal(VT)) { 140 // Lower SET_CC into an IPM-based sequence. 141 setOperationAction(ISD::SETCC, VT, Custom); 142 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 143 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 144 145 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 146 setOperationAction(ISD::SELECT, VT, Expand); 147 148 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 149 setOperationAction(ISD::SELECT_CC, VT, Custom); 150 setOperationAction(ISD::BR_CC, VT, Custom); 151 } 152 } 153 154 // Expand jump table branches as address arithmetic followed by an 155 // indirect jump. 156 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 157 158 // Expand BRCOND into a BR_CC (see above). 159 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 160 161 // Handle integer types. 162 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 163 I <= MVT::LAST_INTEGER_VALUETYPE; 164 ++I) { 165 MVT VT = MVT::SimpleValueType(I); 166 if (isTypeLegal(VT)) { 167 // Expand individual DIV and REMs into DIVREMs. 168 setOperationAction(ISD::SDIV, VT, Expand); 169 setOperationAction(ISD::UDIV, VT, Expand); 170 setOperationAction(ISD::SREM, VT, Expand); 171 setOperationAction(ISD::UREM, VT, Expand); 172 setOperationAction(ISD::SDIVREM, VT, Custom); 173 setOperationAction(ISD::UDIVREM, VT, Custom); 174 175 // Support addition/subtraction with overflow. 176 setOperationAction(ISD::SADDO, VT, Custom); 177 setOperationAction(ISD::SSUBO, VT, Custom); 178 179 // Support addition/subtraction with carry. 180 setOperationAction(ISD::UADDO, VT, Custom); 181 setOperationAction(ISD::USUBO, VT, Custom); 182 183 // Support carry in as value rather than glue. 184 setOperationAction(ISD::ADDCARRY, VT, Custom); 185 setOperationAction(ISD::SUBCARRY, VT, Custom); 186 187 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 188 // stores, putting a serialization instruction after the stores. 189 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 190 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 191 192 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 193 // available, or if the operand is constant. 194 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 195 196 // Use POPCNT on z196 and above. 197 if (Subtarget.hasPopulationCount()) 198 setOperationAction(ISD::CTPOP, VT, Custom); 199 else 200 setOperationAction(ISD::CTPOP, VT, Expand); 201 202 // No special instructions for these. 203 setOperationAction(ISD::CTTZ, VT, Expand); 204 setOperationAction(ISD::ROTR, VT, Expand); 205 206 // Use *MUL_LOHI where possible instead of MULH*. 207 setOperationAction(ISD::MULHS, VT, Expand); 208 setOperationAction(ISD::MULHU, VT, Expand); 209 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 210 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 211 212 // Only z196 and above have native support for conversions to unsigned. 213 // On z10, promoting to i64 doesn't generate an inexact condition for 214 // values that are outside the i32 range but in the i64 range, so use 215 // the default expansion. 216 if (!Subtarget.hasFPExtension()) 217 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 218 219 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 220 // default to Expand, so need to be modified to Legal where appropriate. 221 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 222 if (Subtarget.hasFPExtension()) 223 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 224 225 // And similarly for STRICT_[SU]INT_TO_FP. 226 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 227 if (Subtarget.hasFPExtension()) 228 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 229 } 230 } 231 232 // Type legalization will convert 8- and 16-bit atomic operations into 233 // forms that operate on i32s (but still keeping the original memory VT). 234 // Lower them into full i32 operations. 235 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 236 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 237 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 238 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 239 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 240 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 242 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 243 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 244 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 245 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 246 247 // Even though i128 is not a legal type, we still need to custom lower 248 // the atomic operations in order to exploit SystemZ instructions. 249 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 250 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 251 252 // We can use the CC result of compare-and-swap to implement 253 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 254 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 255 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 256 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 257 258 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 259 260 // Traps are legal, as we will convert them to "j .+2". 261 setOperationAction(ISD::TRAP, MVT::Other, Legal); 262 263 // z10 has instructions for signed but not unsigned FP conversion. 264 // Handle unsigned 32-bit types as signed 64-bit types. 265 if (!Subtarget.hasFPExtension()) { 266 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 267 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 268 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 269 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 270 } 271 272 // We have native support for a 64-bit CTLZ, via FLOGR. 273 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 274 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 275 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 276 277 // On z15 we have native support for a 64-bit CTPOP. 278 if (Subtarget.hasMiscellaneousExtensions3()) { 279 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 280 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 281 } 282 283 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 284 setOperationAction(ISD::OR, MVT::i64, Custom); 285 286 // FIXME: Can we support these natively? 287 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 288 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 289 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 290 291 // We have native instructions for i8, i16 and i32 extensions, but not i1. 292 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 293 for (MVT VT : MVT::integer_valuetypes()) { 294 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 295 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 296 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 297 } 298 299 // Handle the various types of symbolic address. 300 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 301 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 302 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 303 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 304 setOperationAction(ISD::JumpTable, PtrVT, Custom); 305 306 // We need to handle dynamic allocations specially because of the 307 // 160-byte area at the bottom of the stack. 308 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 309 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 310 311 // Use custom expanders so that we can force the function to use 312 // a frame pointer. 313 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 314 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 315 316 // Handle prefetches with PFD or PFDRL. 317 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 318 319 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 320 // Assume by default that all vector operations need to be expanded. 321 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 322 if (getOperationAction(Opcode, VT) == Legal) 323 setOperationAction(Opcode, VT, Expand); 324 325 // Likewise all truncating stores and extending loads. 326 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 327 setTruncStoreAction(VT, InnerVT, Expand); 328 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 329 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 330 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 331 } 332 333 if (isTypeLegal(VT)) { 334 // These operations are legal for anything that can be stored in a 335 // vector register, even if there is no native support for the format 336 // as such. In particular, we can do these for v4f32 even though there 337 // are no specific instructions for that format. 338 setOperationAction(ISD::LOAD, VT, Legal); 339 setOperationAction(ISD::STORE, VT, Legal); 340 setOperationAction(ISD::VSELECT, VT, Legal); 341 setOperationAction(ISD::BITCAST, VT, Legal); 342 setOperationAction(ISD::UNDEF, VT, Legal); 343 344 // Likewise, except that we need to replace the nodes with something 345 // more specific. 346 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 347 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 348 } 349 } 350 351 // Handle integer vector types. 352 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 353 if (isTypeLegal(VT)) { 354 // These operations have direct equivalents. 355 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 356 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 357 setOperationAction(ISD::ADD, VT, Legal); 358 setOperationAction(ISD::SUB, VT, Legal); 359 if (VT != MVT::v2i64) 360 setOperationAction(ISD::MUL, VT, Legal); 361 setOperationAction(ISD::AND, VT, Legal); 362 setOperationAction(ISD::OR, VT, Legal); 363 setOperationAction(ISD::XOR, VT, Legal); 364 if (Subtarget.hasVectorEnhancements1()) 365 setOperationAction(ISD::CTPOP, VT, Legal); 366 else 367 setOperationAction(ISD::CTPOP, VT, Custom); 368 setOperationAction(ISD::CTTZ, VT, Legal); 369 setOperationAction(ISD::CTLZ, VT, Legal); 370 371 // Convert a GPR scalar to a vector by inserting it into element 0. 372 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 373 374 // Use a series of unpacks for extensions. 375 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 376 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 377 378 // Detect shifts by a scalar amount and convert them into 379 // V*_BY_SCALAR. 380 setOperationAction(ISD::SHL, VT, Custom); 381 setOperationAction(ISD::SRA, VT, Custom); 382 setOperationAction(ISD::SRL, VT, Custom); 383 384 // At present ROTL isn't matched by DAGCombiner. ROTR should be 385 // converted into ROTL. 386 setOperationAction(ISD::ROTL, VT, Expand); 387 setOperationAction(ISD::ROTR, VT, Expand); 388 389 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 390 // and inverting the result as necessary. 391 setOperationAction(ISD::SETCC, VT, Custom); 392 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 393 if (Subtarget.hasVectorEnhancements1()) 394 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 395 } 396 } 397 398 if (Subtarget.hasVector()) { 399 // There should be no need to check for float types other than v2f64 400 // since <2 x f32> isn't a legal type. 401 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 402 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 403 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 404 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 405 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 406 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 407 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 408 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 409 410 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 411 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 412 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 413 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 414 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 415 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 416 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 417 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 418 } 419 420 if (Subtarget.hasVectorEnhancements2()) { 421 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 422 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 423 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 424 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 425 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 426 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 427 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 428 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 429 430 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 431 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 432 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 433 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 434 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 435 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 436 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 437 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 438 } 439 440 // Handle floating-point types. 441 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 442 I <= MVT::LAST_FP_VALUETYPE; 443 ++I) { 444 MVT VT = MVT::SimpleValueType(I); 445 if (isTypeLegal(VT)) { 446 // We can use FI for FRINT. 447 setOperationAction(ISD::FRINT, VT, Legal); 448 449 // We can use the extended form of FI for other rounding operations. 450 if (Subtarget.hasFPExtension()) { 451 setOperationAction(ISD::FNEARBYINT, VT, Legal); 452 setOperationAction(ISD::FFLOOR, VT, Legal); 453 setOperationAction(ISD::FCEIL, VT, Legal); 454 setOperationAction(ISD::FTRUNC, VT, Legal); 455 setOperationAction(ISD::FROUND, VT, Legal); 456 } 457 458 // No special instructions for these. 459 setOperationAction(ISD::FSIN, VT, Expand); 460 setOperationAction(ISD::FCOS, VT, Expand); 461 setOperationAction(ISD::FSINCOS, VT, Expand); 462 setOperationAction(ISD::FREM, VT, Expand); 463 setOperationAction(ISD::FPOW, VT, Expand); 464 465 // Handle constrained floating-point operations. 466 setOperationAction(ISD::STRICT_FADD, VT, Legal); 467 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 468 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 469 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 470 setOperationAction(ISD::STRICT_FMA, VT, Legal); 471 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 472 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 473 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 474 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 475 if (Subtarget.hasFPExtension()) { 476 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 477 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 478 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 479 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 480 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 481 } 482 } 483 } 484 485 // Handle floating-point vector types. 486 if (Subtarget.hasVector()) { 487 // Scalar-to-vector conversion is just a subreg. 488 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 489 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 490 491 // Some insertions and extractions can be done directly but others 492 // need to go via integers. 493 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 494 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 495 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 496 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 497 498 // These operations have direct equivalents. 499 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 500 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 501 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 502 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 503 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 504 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 505 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 506 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 507 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 508 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 509 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 510 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 511 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 512 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 513 514 // Handle constrained floating-point operations. 515 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 516 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 517 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 518 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 519 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 520 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 521 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 522 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 523 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 524 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 525 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 526 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 527 } 528 529 // The vector enhancements facility 1 has instructions for these. 530 if (Subtarget.hasVectorEnhancements1()) { 531 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 532 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 533 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 534 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 535 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 536 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 537 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 538 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 539 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 540 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 541 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 542 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 543 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 544 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 545 546 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 547 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 548 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 549 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 550 551 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 552 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 553 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 554 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 555 556 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 557 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 558 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 559 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 560 561 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 562 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 563 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 564 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 565 566 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 567 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 568 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 569 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 570 571 // Handle constrained floating-point operations. 572 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 573 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 574 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 575 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 576 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 577 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 578 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 579 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 580 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 581 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 582 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 583 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 584 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 585 MVT::v4f32, MVT::v2f64 }) { 586 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 587 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 588 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 589 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 590 } 591 } 592 593 // We only have fused f128 multiply-addition on vector registers. 594 if (!Subtarget.hasVectorEnhancements1()) { 595 setOperationAction(ISD::FMA, MVT::f128, Expand); 596 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 597 } 598 599 // We don't have a copysign instruction on vector registers. 600 if (Subtarget.hasVectorEnhancements1()) 601 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 602 603 // Needed so that we don't try to implement f128 constant loads using 604 // a load-and-extend of a f80 constant (in cases where the constant 605 // would fit in an f80). 606 for (MVT VT : MVT::fp_valuetypes()) 607 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 608 609 // We don't have extending load instruction on vector registers. 610 if (Subtarget.hasVectorEnhancements1()) { 611 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 612 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 613 } 614 615 // Floating-point truncation and stores need to be done separately. 616 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 617 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 618 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 619 620 // We have 64-bit FPR<->GPR moves, but need special handling for 621 // 32-bit forms. 622 if (!Subtarget.hasVector()) { 623 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 624 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 625 } 626 627 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 628 // structure, but VAEND is a no-op. 629 setOperationAction(ISD::VASTART, MVT::Other, Custom); 630 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 631 setOperationAction(ISD::VAEND, MVT::Other, Expand); 632 633 // Codes for which we want to perform some z-specific combinations. 634 setTargetDAGCombine(ISD::ZERO_EXTEND); 635 setTargetDAGCombine(ISD::SIGN_EXTEND); 636 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 637 setTargetDAGCombine(ISD::LOAD); 638 setTargetDAGCombine(ISD::STORE); 639 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 640 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 641 setTargetDAGCombine(ISD::FP_ROUND); 642 setTargetDAGCombine(ISD::STRICT_FP_ROUND); 643 setTargetDAGCombine(ISD::FP_EXTEND); 644 setTargetDAGCombine(ISD::SINT_TO_FP); 645 setTargetDAGCombine(ISD::UINT_TO_FP); 646 setTargetDAGCombine(ISD::STRICT_FP_EXTEND); 647 setTargetDAGCombine(ISD::BSWAP); 648 setTargetDAGCombine(ISD::SDIV); 649 setTargetDAGCombine(ISD::UDIV); 650 setTargetDAGCombine(ISD::SREM); 651 setTargetDAGCombine(ISD::UREM); 652 setTargetDAGCombine(ISD::INTRINSIC_VOID); 653 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 654 655 // Handle intrinsics. 656 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 657 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 658 659 // We want to use MVC in preference to even a single load/store pair. 660 MaxStoresPerMemcpy = 0; 661 MaxStoresPerMemcpyOptSize = 0; 662 663 // The main memset sequence is a byte store followed by an MVC. 664 // Two STC or MV..I stores win over that, but the kind of fused stores 665 // generated by target-independent code don't when the byte value is 666 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 667 // than "STC;MVC". Handle the choice in target-specific code instead. 668 MaxStoresPerMemset = 0; 669 MaxStoresPerMemsetOptSize = 0; 670 671 // Default to having -disable-strictnode-mutation on 672 IsStrictFPEnabled = true; 673 } 674 675 bool SystemZTargetLowering::useSoftFloat() const { 676 return Subtarget.hasSoftFloat(); 677 } 678 679 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 680 LLVMContext &, EVT VT) const { 681 if (!VT.isVector()) 682 return MVT::i32; 683 return VT.changeVectorElementTypeToInteger(); 684 } 685 686 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 687 const MachineFunction &MF, EVT VT) const { 688 VT = VT.getScalarType(); 689 690 if (!VT.isSimple()) 691 return false; 692 693 switch (VT.getSimpleVT().SimpleTy) { 694 case MVT::f32: 695 case MVT::f64: 696 return true; 697 case MVT::f128: 698 return Subtarget.hasVectorEnhancements1(); 699 default: 700 break; 701 } 702 703 return false; 704 } 705 706 // Return true if the constant can be generated with a vector instruction, 707 // such as VGM, VGMB or VREPI. 708 bool SystemZVectorConstantInfo::isVectorConstantLegal( 709 const SystemZSubtarget &Subtarget) { 710 const SystemZInstrInfo *TII = 711 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 712 if (!Subtarget.hasVector() || 713 (isFP128 && !Subtarget.hasVectorEnhancements1())) 714 return false; 715 716 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 717 // preferred way of creating all-zero and all-one vectors so give it 718 // priority over other methods below. 719 unsigned Mask = 0; 720 unsigned I = 0; 721 for (; I < SystemZ::VectorBytes; ++I) { 722 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 723 if (Byte == 0xff) 724 Mask |= 1ULL << I; 725 else if (Byte != 0) 726 break; 727 } 728 if (I == SystemZ::VectorBytes) { 729 Opcode = SystemZISD::BYTE_MASK; 730 OpVals.push_back(Mask); 731 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 732 return true; 733 } 734 735 if (SplatBitSize > 64) 736 return false; 737 738 auto tryValue = [&](uint64_t Value) -> bool { 739 // Try VECTOR REPLICATE IMMEDIATE 740 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 741 if (isInt<16>(SignedValue)) { 742 OpVals.push_back(((unsigned) SignedValue)); 743 Opcode = SystemZISD::REPLICATE; 744 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 745 SystemZ::VectorBits / SplatBitSize); 746 return true; 747 } 748 // Try VECTOR GENERATE MASK 749 unsigned Start, End; 750 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 751 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 752 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 753 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 754 OpVals.push_back(Start - (64 - SplatBitSize)); 755 OpVals.push_back(End - (64 - SplatBitSize)); 756 Opcode = SystemZISD::ROTATE_MASK; 757 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 758 SystemZ::VectorBits / SplatBitSize); 759 return true; 760 } 761 return false; 762 }; 763 764 // First try assuming that any undefined bits above the highest set bit 765 // and below the lowest set bit are 1s. This increases the likelihood of 766 // being able to use a sign-extended element value in VECTOR REPLICATE 767 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 768 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 769 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 770 uint64_t Lower = 771 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 772 uint64_t Upper = 773 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 774 if (tryValue(SplatBitsZ | Upper | Lower)) 775 return true; 776 777 // Now try assuming that any undefined bits between the first and 778 // last defined set bits are set. This increases the chances of 779 // using a non-wraparound mask. 780 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 781 return tryValue(SplatBitsZ | Middle); 782 } 783 784 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 785 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 786 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 787 788 // Find the smallest splat. 789 SplatBits = FPImm.bitcastToAPInt(); 790 unsigned Width = SplatBits.getBitWidth(); 791 while (Width > 8) { 792 unsigned HalfSize = Width / 2; 793 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 794 APInt LowValue = SplatBits.trunc(HalfSize); 795 796 // If the two halves do not match, stop here. 797 if (HighValue != LowValue || 8 > HalfSize) 798 break; 799 800 SplatBits = HighValue; 801 Width = HalfSize; 802 } 803 SplatUndef = 0; 804 SplatBitSize = Width; 805 } 806 807 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 808 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 809 bool HasAnyUndefs; 810 811 // Get IntBits by finding the 128 bit splat. 812 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 813 true); 814 815 // Get SplatBits by finding the 8 bit or greater splat. 816 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 817 true); 818 } 819 820 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 821 bool ForCodeSize) const { 822 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 823 if (Imm.isZero() || Imm.isNegZero()) 824 return true; 825 826 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 827 } 828 829 /// Returns true if stack probing through inline assembly is requested. 830 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 831 // If the function specifically requests inline stack probes, emit them. 832 if (MF.getFunction().hasFnAttribute("probe-stack")) 833 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 834 "inline-asm"; 835 return false; 836 } 837 838 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 839 // We can use CGFI or CLGFI. 840 return isInt<32>(Imm) || isUInt<32>(Imm); 841 } 842 843 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 844 // We can use ALGFI or SLGFI. 845 return isUInt<32>(Imm) || isUInt<32>(-Imm); 846 } 847 848 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 849 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const { 850 // Unaligned accesses should never be slower than the expanded version. 851 // We check specifically for aligned accesses in the few cases where 852 // they are required. 853 if (Fast) 854 *Fast = true; 855 return true; 856 } 857 858 // Information about the addressing mode for a memory access. 859 struct AddressingMode { 860 // True if a long displacement is supported. 861 bool LongDisplacement; 862 863 // True if use of index register is supported. 864 bool IndexReg; 865 866 AddressingMode(bool LongDispl, bool IdxReg) : 867 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 868 }; 869 870 // Return the desired addressing mode for a Load which has only one use (in 871 // the same block) which is a Store. 872 static AddressingMode getLoadStoreAddrMode(bool HasVector, 873 Type *Ty) { 874 // With vector support a Load->Store combination may be combined to either 875 // an MVC or vector operations and it seems to work best to allow the 876 // vector addressing mode. 877 if (HasVector) 878 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 879 880 // Otherwise only the MVC case is special. 881 bool MVC = Ty->isIntegerTy(8); 882 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 883 } 884 885 // Return the addressing mode which seems most desirable given an LLVM 886 // Instruction pointer. 887 static AddressingMode 888 supportedAddressingMode(Instruction *I, bool HasVector) { 889 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 890 switch (II->getIntrinsicID()) { 891 default: break; 892 case Intrinsic::memset: 893 case Intrinsic::memmove: 894 case Intrinsic::memcpy: 895 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 896 } 897 } 898 899 if (isa<LoadInst>(I) && I->hasOneUse()) { 900 auto *SingleUser = cast<Instruction>(*I->user_begin()); 901 if (SingleUser->getParent() == I->getParent()) { 902 if (isa<ICmpInst>(SingleUser)) { 903 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 904 if (C->getBitWidth() <= 64 && 905 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 906 // Comparison of memory with 16 bit signed / unsigned immediate 907 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 908 } else if (isa<StoreInst>(SingleUser)) 909 // Load->Store 910 return getLoadStoreAddrMode(HasVector, I->getType()); 911 } 912 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 913 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 914 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 915 // Load->Store 916 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 917 } 918 919 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 920 921 // * Use LDE instead of LE/LEY for z13 to avoid partial register 922 // dependencies (LDE only supports small offsets). 923 // * Utilize the vector registers to hold floating point 924 // values (vector load / store instructions only support small 925 // offsets). 926 927 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 928 I->getOperand(0)->getType()); 929 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 930 bool IsVectorAccess = MemAccessTy->isVectorTy(); 931 932 // A store of an extracted vector element will be combined into a VSTE type 933 // instruction. 934 if (!IsVectorAccess && isa<StoreInst>(I)) { 935 Value *DataOp = I->getOperand(0); 936 if (isa<ExtractElementInst>(DataOp)) 937 IsVectorAccess = true; 938 } 939 940 // A load which gets inserted into a vector element will be combined into a 941 // VLE type instruction. 942 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 943 User *LoadUser = *I->user_begin(); 944 if (isa<InsertElementInst>(LoadUser)) 945 IsVectorAccess = true; 946 } 947 948 if (IsFPAccess || IsVectorAccess) 949 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 950 } 951 952 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 953 } 954 955 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 956 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 957 // Punt on globals for now, although they can be used in limited 958 // RELATIVE LONG cases. 959 if (AM.BaseGV) 960 return false; 961 962 // Require a 20-bit signed offset. 963 if (!isInt<20>(AM.BaseOffs)) 964 return false; 965 966 AddressingMode SupportedAM(true, true); 967 if (I != nullptr) 968 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 969 970 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 971 return false; 972 973 if (!SupportedAM.IndexReg) 974 // No indexing allowed. 975 return AM.Scale == 0; 976 else 977 // Indexing is OK but no scale factor can be applied. 978 return AM.Scale == 0 || AM.Scale == 1; 979 } 980 981 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 982 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 983 return false; 984 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 985 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 986 return FromBits > ToBits; 987 } 988 989 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 990 if (!FromVT.isInteger() || !ToVT.isInteger()) 991 return false; 992 unsigned FromBits = FromVT.getSizeInBits(); 993 unsigned ToBits = ToVT.getSizeInBits(); 994 return FromBits > ToBits; 995 } 996 997 //===----------------------------------------------------------------------===// 998 // Inline asm support 999 //===----------------------------------------------------------------------===// 1000 1001 TargetLowering::ConstraintType 1002 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 1003 if (Constraint.size() == 1) { 1004 switch (Constraint[0]) { 1005 case 'a': // Address register 1006 case 'd': // Data register (equivalent to 'r') 1007 case 'f': // Floating-point register 1008 case 'h': // High-part register 1009 case 'r': // General-purpose register 1010 case 'v': // Vector register 1011 return C_RegisterClass; 1012 1013 case 'Q': // Memory with base and unsigned 12-bit displacement 1014 case 'R': // Likewise, plus an index 1015 case 'S': // Memory with base and signed 20-bit displacement 1016 case 'T': // Likewise, plus an index 1017 case 'm': // Equivalent to 'T'. 1018 return C_Memory; 1019 1020 case 'I': // Unsigned 8-bit constant 1021 case 'J': // Unsigned 12-bit constant 1022 case 'K': // Signed 16-bit constant 1023 case 'L': // Signed 20-bit displacement (on all targets we support) 1024 case 'M': // 0x7fffffff 1025 return C_Immediate; 1026 1027 default: 1028 break; 1029 } 1030 } 1031 return TargetLowering::getConstraintType(Constraint); 1032 } 1033 1034 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1035 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1036 const char *constraint) const { 1037 ConstraintWeight weight = CW_Invalid; 1038 Value *CallOperandVal = info.CallOperandVal; 1039 // If we don't have a value, we can't do a match, 1040 // but allow it at the lowest weight. 1041 if (!CallOperandVal) 1042 return CW_Default; 1043 Type *type = CallOperandVal->getType(); 1044 // Look at the constraint type. 1045 switch (*constraint) { 1046 default: 1047 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1048 break; 1049 1050 case 'a': // Address register 1051 case 'd': // Data register (equivalent to 'r') 1052 case 'h': // High-part register 1053 case 'r': // General-purpose register 1054 if (CallOperandVal->getType()->isIntegerTy()) 1055 weight = CW_Register; 1056 break; 1057 1058 case 'f': // Floating-point register 1059 if (type->isFloatingPointTy()) 1060 weight = CW_Register; 1061 break; 1062 1063 case 'v': // Vector register 1064 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1065 Subtarget.hasVector()) 1066 weight = CW_Register; 1067 break; 1068 1069 case 'I': // Unsigned 8-bit constant 1070 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1071 if (isUInt<8>(C->getZExtValue())) 1072 weight = CW_Constant; 1073 break; 1074 1075 case 'J': // Unsigned 12-bit constant 1076 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1077 if (isUInt<12>(C->getZExtValue())) 1078 weight = CW_Constant; 1079 break; 1080 1081 case 'K': // Signed 16-bit constant 1082 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1083 if (isInt<16>(C->getSExtValue())) 1084 weight = CW_Constant; 1085 break; 1086 1087 case 'L': // Signed 20-bit displacement (on all targets we support) 1088 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1089 if (isInt<20>(C->getSExtValue())) 1090 weight = CW_Constant; 1091 break; 1092 1093 case 'M': // 0x7fffffff 1094 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1095 if (C->getZExtValue() == 0x7fffffff) 1096 weight = CW_Constant; 1097 break; 1098 } 1099 return weight; 1100 } 1101 1102 // Parse a "{tNNN}" register constraint for which the register type "t" 1103 // has already been verified. MC is the class associated with "t" and 1104 // Map maps 0-based register numbers to LLVM register numbers. 1105 static std::pair<unsigned, const TargetRegisterClass *> 1106 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1107 const unsigned *Map, unsigned Size) { 1108 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1109 if (isdigit(Constraint[2])) { 1110 unsigned Index; 1111 bool Failed = 1112 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1113 if (!Failed && Index < Size && Map[Index]) 1114 return std::make_pair(Map[Index], RC); 1115 } 1116 return std::make_pair(0U, nullptr); 1117 } 1118 1119 std::pair<unsigned, const TargetRegisterClass *> 1120 SystemZTargetLowering::getRegForInlineAsmConstraint( 1121 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1122 if (Constraint.size() == 1) { 1123 // GCC Constraint Letters 1124 switch (Constraint[0]) { 1125 default: break; 1126 case 'd': // Data register (equivalent to 'r') 1127 case 'r': // General-purpose register 1128 if (VT == MVT::i64) 1129 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1130 else if (VT == MVT::i128) 1131 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1132 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1133 1134 case 'a': // Address register 1135 if (VT == MVT::i64) 1136 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1137 else if (VT == MVT::i128) 1138 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1139 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1140 1141 case 'h': // High-part register (an LLVM extension) 1142 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1143 1144 case 'f': // Floating-point register 1145 if (!useSoftFloat()) { 1146 if (VT == MVT::f64) 1147 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1148 else if (VT == MVT::f128) 1149 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1150 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1151 } 1152 break; 1153 case 'v': // Vector register 1154 if (Subtarget.hasVector()) { 1155 if (VT == MVT::f32) 1156 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1157 if (VT == MVT::f64) 1158 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1159 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1160 } 1161 break; 1162 } 1163 } 1164 if (Constraint.size() > 0 && Constraint[0] == '{') { 1165 // We need to override the default register parsing for GPRs and FPRs 1166 // because the interpretation depends on VT. The internal names of 1167 // the registers are also different from the external names 1168 // (F0D and F0S instead of F0, etc.). 1169 if (Constraint[1] == 'r') { 1170 if (VT == MVT::i32) 1171 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1172 SystemZMC::GR32Regs, 16); 1173 if (VT == MVT::i128) 1174 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1175 SystemZMC::GR128Regs, 16); 1176 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1177 SystemZMC::GR64Regs, 16); 1178 } 1179 if (Constraint[1] == 'f') { 1180 if (useSoftFloat()) 1181 return std::make_pair( 1182 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1183 if (VT == MVT::f32) 1184 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1185 SystemZMC::FP32Regs, 16); 1186 if (VT == MVT::f128) 1187 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1188 SystemZMC::FP128Regs, 16); 1189 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1190 SystemZMC::FP64Regs, 16); 1191 } 1192 if (Constraint[1] == 'v') { 1193 if (!Subtarget.hasVector()) 1194 return std::make_pair( 1195 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1196 if (VT == MVT::f32) 1197 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1198 SystemZMC::VR32Regs, 32); 1199 if (VT == MVT::f64) 1200 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1201 SystemZMC::VR64Regs, 32); 1202 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1203 SystemZMC::VR128Regs, 32); 1204 } 1205 } 1206 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1207 } 1208 1209 // FIXME? Maybe this could be a TableGen attribute on some registers and 1210 // this table could be generated automatically from RegInfo. 1211 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1212 const MachineFunction &MF) const { 1213 1214 Register Reg = StringSwitch<Register>(RegName) 1215 .Case("r15", SystemZ::R15D) 1216 .Default(0); 1217 if (Reg) 1218 return Reg; 1219 report_fatal_error("Invalid register name global variable"); 1220 } 1221 1222 void SystemZTargetLowering:: 1223 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1224 std::vector<SDValue> &Ops, 1225 SelectionDAG &DAG) const { 1226 // Only support length 1 constraints for now. 1227 if (Constraint.length() == 1) { 1228 switch (Constraint[0]) { 1229 case 'I': // Unsigned 8-bit constant 1230 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1231 if (isUInt<8>(C->getZExtValue())) 1232 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1233 Op.getValueType())); 1234 return; 1235 1236 case 'J': // Unsigned 12-bit constant 1237 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1238 if (isUInt<12>(C->getZExtValue())) 1239 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1240 Op.getValueType())); 1241 return; 1242 1243 case 'K': // Signed 16-bit constant 1244 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1245 if (isInt<16>(C->getSExtValue())) 1246 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1247 Op.getValueType())); 1248 return; 1249 1250 case 'L': // Signed 20-bit displacement (on all targets we support) 1251 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1252 if (isInt<20>(C->getSExtValue())) 1253 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1254 Op.getValueType())); 1255 return; 1256 1257 case 'M': // 0x7fffffff 1258 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1259 if (C->getZExtValue() == 0x7fffffff) 1260 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1261 Op.getValueType())); 1262 return; 1263 } 1264 } 1265 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1266 } 1267 1268 //===----------------------------------------------------------------------===// 1269 // Calling conventions 1270 //===----------------------------------------------------------------------===// 1271 1272 #include "SystemZGenCallingConv.inc" 1273 1274 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1275 CallingConv::ID) const { 1276 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1277 SystemZ::R14D, 0 }; 1278 return ScratchRegs; 1279 } 1280 1281 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1282 Type *ToType) const { 1283 return isTruncateFree(FromType, ToType); 1284 } 1285 1286 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1287 return CI->isTailCall(); 1288 } 1289 1290 // We do not yet support 128-bit single-element vector types. If the user 1291 // attempts to use such types as function argument or return type, prefer 1292 // to error out instead of emitting code violating the ABI. 1293 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1294 if (ArgVT.isVector() && !VT.isVector()) 1295 report_fatal_error("Unsupported vector argument or return type"); 1296 } 1297 1298 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1299 for (unsigned i = 0; i < Ins.size(); ++i) 1300 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1301 } 1302 1303 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1304 for (unsigned i = 0; i < Outs.size(); ++i) 1305 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1306 } 1307 1308 // Value is a value that has been passed to us in the location described by VA 1309 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1310 // any loads onto Chain. 1311 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1312 CCValAssign &VA, SDValue Chain, 1313 SDValue Value) { 1314 // If the argument has been promoted from a smaller type, insert an 1315 // assertion to capture this. 1316 if (VA.getLocInfo() == CCValAssign::SExt) 1317 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1318 DAG.getValueType(VA.getValVT())); 1319 else if (VA.getLocInfo() == CCValAssign::ZExt) 1320 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1321 DAG.getValueType(VA.getValVT())); 1322 1323 if (VA.isExtInLoc()) 1324 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1325 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1326 // If this is a short vector argument loaded from the stack, 1327 // extend from i64 to full vector size and then bitcast. 1328 assert(VA.getLocVT() == MVT::i64); 1329 assert(VA.getValVT().isVector()); 1330 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1331 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1332 } else 1333 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1334 return Value; 1335 } 1336 1337 // Value is a value of type VA.getValVT() that we need to copy into 1338 // the location described by VA. Return a copy of Value converted to 1339 // VA.getValVT(). The caller is responsible for handling indirect values. 1340 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1341 CCValAssign &VA, SDValue Value) { 1342 switch (VA.getLocInfo()) { 1343 case CCValAssign::SExt: 1344 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1345 case CCValAssign::ZExt: 1346 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1347 case CCValAssign::AExt: 1348 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1349 case CCValAssign::BCvt: 1350 // If this is a short vector argument to be stored to the stack, 1351 // bitcast to v2i64 and then extract first element. 1352 assert(VA.getLocVT() == MVT::i64); 1353 assert(VA.getValVT().isVector()); 1354 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1355 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1356 DAG.getConstant(0, DL, MVT::i32)); 1357 case CCValAssign::Full: 1358 return Value; 1359 default: 1360 llvm_unreachable("Unhandled getLocInfo()"); 1361 } 1362 } 1363 1364 SDValue SystemZTargetLowering::LowerFormalArguments( 1365 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1366 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1367 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1368 MachineFunction &MF = DAG.getMachineFunction(); 1369 MachineFrameInfo &MFI = MF.getFrameInfo(); 1370 MachineRegisterInfo &MRI = MF.getRegInfo(); 1371 SystemZMachineFunctionInfo *FuncInfo = 1372 MF.getInfo<SystemZMachineFunctionInfo>(); 1373 auto *TFL = 1374 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1375 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1376 1377 // Detect unsupported vector argument types. 1378 if (Subtarget.hasVector()) 1379 VerifyVectorTypes(Ins); 1380 1381 // Assign locations to all of the incoming arguments. 1382 SmallVector<CCValAssign, 16> ArgLocs; 1383 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1384 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1385 1386 unsigned NumFixedGPRs = 0; 1387 unsigned NumFixedFPRs = 0; 1388 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1389 SDValue ArgValue; 1390 CCValAssign &VA = ArgLocs[I]; 1391 EVT LocVT = VA.getLocVT(); 1392 if (VA.isRegLoc()) { 1393 // Arguments passed in registers 1394 const TargetRegisterClass *RC; 1395 switch (LocVT.getSimpleVT().SimpleTy) { 1396 default: 1397 // Integers smaller than i64 should be promoted to i64. 1398 llvm_unreachable("Unexpected argument type"); 1399 case MVT::i32: 1400 NumFixedGPRs += 1; 1401 RC = &SystemZ::GR32BitRegClass; 1402 break; 1403 case MVT::i64: 1404 NumFixedGPRs += 1; 1405 RC = &SystemZ::GR64BitRegClass; 1406 break; 1407 case MVT::f32: 1408 NumFixedFPRs += 1; 1409 RC = &SystemZ::FP32BitRegClass; 1410 break; 1411 case MVT::f64: 1412 NumFixedFPRs += 1; 1413 RC = &SystemZ::FP64BitRegClass; 1414 break; 1415 case MVT::v16i8: 1416 case MVT::v8i16: 1417 case MVT::v4i32: 1418 case MVT::v2i64: 1419 case MVT::v4f32: 1420 case MVT::v2f64: 1421 RC = &SystemZ::VR128BitRegClass; 1422 break; 1423 } 1424 1425 Register VReg = MRI.createVirtualRegister(RC); 1426 MRI.addLiveIn(VA.getLocReg(), VReg); 1427 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1428 } else { 1429 assert(VA.isMemLoc() && "Argument not register or memory"); 1430 1431 // Create the frame index object for this incoming parameter. 1432 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1433 VA.getLocMemOffset(), true); 1434 1435 // Create the SelectionDAG nodes corresponding to a load 1436 // from this parameter. Unpromoted ints and floats are 1437 // passed as right-justified 8-byte values. 1438 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1439 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1440 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1441 DAG.getIntPtrConstant(4, DL)); 1442 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1443 MachinePointerInfo::getFixedStack(MF, FI)); 1444 } 1445 1446 // Convert the value of the argument register into the value that's 1447 // being passed. 1448 if (VA.getLocInfo() == CCValAssign::Indirect) { 1449 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1450 MachinePointerInfo())); 1451 // If the original argument was split (e.g. i128), we need 1452 // to load all parts of it here (using the same address). 1453 unsigned ArgIndex = Ins[I].OrigArgIndex; 1454 assert (Ins[I].PartOffset == 0); 1455 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1456 CCValAssign &PartVA = ArgLocs[I + 1]; 1457 unsigned PartOffset = Ins[I + 1].PartOffset; 1458 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1459 DAG.getIntPtrConstant(PartOffset, DL)); 1460 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1461 MachinePointerInfo())); 1462 ++I; 1463 } 1464 } else 1465 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1466 } 1467 1468 if (IsVarArg) { 1469 // Save the number of non-varargs registers for later use by va_start, etc. 1470 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1471 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1472 1473 // Likewise the address (in the form of a frame index) of where the 1474 // first stack vararg would be. The 1-byte size here is arbitrary. 1475 int64_t StackSize = CCInfo.getNextStackOffset(); 1476 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1477 1478 // ...and a similar frame index for the caller-allocated save area 1479 // that will be used to store the incoming registers. 1480 int64_t RegSaveOffset = 1481 -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1482 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1483 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1484 1485 // Store the FPR varargs in the reserved frame slots. (We store the 1486 // GPRs as part of the prologue.) 1487 if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) { 1488 SDValue MemOps[SystemZ::NumArgFPRs]; 1489 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1490 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]); 1491 int FI = 1492 MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true); 1493 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1494 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1495 &SystemZ::FP64BitRegClass); 1496 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1497 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1498 MachinePointerInfo::getFixedStack(MF, FI)); 1499 } 1500 // Join the stores, which are independent of one another. 1501 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1502 makeArrayRef(&MemOps[NumFixedFPRs], 1503 SystemZ::NumArgFPRs-NumFixedFPRs)); 1504 } 1505 } 1506 1507 return Chain; 1508 } 1509 1510 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1511 SmallVectorImpl<CCValAssign> &ArgLocs, 1512 SmallVectorImpl<ISD::OutputArg> &Outs) { 1513 // Punt if there are any indirect or stack arguments, or if the call 1514 // needs the callee-saved argument register R6, or if the call uses 1515 // the callee-saved register arguments SwiftSelf and SwiftError. 1516 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1517 CCValAssign &VA = ArgLocs[I]; 1518 if (VA.getLocInfo() == CCValAssign::Indirect) 1519 return false; 1520 if (!VA.isRegLoc()) 1521 return false; 1522 Register Reg = VA.getLocReg(); 1523 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1524 return false; 1525 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1526 return false; 1527 } 1528 return true; 1529 } 1530 1531 SDValue 1532 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1533 SmallVectorImpl<SDValue> &InVals) const { 1534 SelectionDAG &DAG = CLI.DAG; 1535 SDLoc &DL = CLI.DL; 1536 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1537 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1538 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1539 SDValue Chain = CLI.Chain; 1540 SDValue Callee = CLI.Callee; 1541 bool &IsTailCall = CLI.IsTailCall; 1542 CallingConv::ID CallConv = CLI.CallConv; 1543 bool IsVarArg = CLI.IsVarArg; 1544 MachineFunction &MF = DAG.getMachineFunction(); 1545 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1546 1547 // Detect unsupported vector argument and return types. 1548 if (Subtarget.hasVector()) { 1549 VerifyVectorTypes(Outs); 1550 VerifyVectorTypes(Ins); 1551 } 1552 1553 // Analyze the operands of the call, assigning locations to each operand. 1554 SmallVector<CCValAssign, 16> ArgLocs; 1555 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1556 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1557 1558 // We don't support GuaranteedTailCallOpt, only automatically-detected 1559 // sibling calls. 1560 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1561 IsTailCall = false; 1562 1563 // Get a count of how many bytes are to be pushed on the stack. 1564 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1565 1566 // Mark the start of the call. 1567 if (!IsTailCall) 1568 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1569 1570 // Copy argument values to their designated locations. 1571 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1572 SmallVector<SDValue, 8> MemOpChains; 1573 SDValue StackPtr; 1574 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1575 CCValAssign &VA = ArgLocs[I]; 1576 SDValue ArgValue = OutVals[I]; 1577 1578 if (VA.getLocInfo() == CCValAssign::Indirect) { 1579 // Store the argument in a stack slot and pass its address. 1580 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1581 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1582 MemOpChains.push_back( 1583 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1584 MachinePointerInfo::getFixedStack(MF, FI))); 1585 // If the original argument was split (e.g. i128), we need 1586 // to store all parts of it here (and pass just one address). 1587 unsigned ArgIndex = Outs[I].OrigArgIndex; 1588 assert (Outs[I].PartOffset == 0); 1589 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1590 SDValue PartValue = OutVals[I + 1]; 1591 unsigned PartOffset = Outs[I + 1].PartOffset; 1592 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1593 DAG.getIntPtrConstant(PartOffset, DL)); 1594 MemOpChains.push_back( 1595 DAG.getStore(Chain, DL, PartValue, Address, 1596 MachinePointerInfo::getFixedStack(MF, FI))); 1597 ++I; 1598 } 1599 ArgValue = SpillSlot; 1600 } else 1601 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1602 1603 if (VA.isRegLoc()) 1604 // Queue up the argument copies and emit them at the end. 1605 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1606 else { 1607 assert(VA.isMemLoc() && "Argument not register or memory"); 1608 1609 // Work out the address of the stack slot. Unpromoted ints and 1610 // floats are passed as right-justified 8-byte values. 1611 if (!StackPtr.getNode()) 1612 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1613 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1614 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1615 Offset += 4; 1616 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1617 DAG.getIntPtrConstant(Offset, DL)); 1618 1619 // Emit the store. 1620 MemOpChains.push_back( 1621 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1622 } 1623 } 1624 1625 // Join the stores, which are independent of one another. 1626 if (!MemOpChains.empty()) 1627 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1628 1629 // Accept direct calls by converting symbolic call addresses to the 1630 // associated Target* opcodes. Force %r1 to be used for indirect 1631 // tail calls. 1632 SDValue Glue; 1633 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1634 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1635 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1636 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1637 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1638 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1639 } else if (IsTailCall) { 1640 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1641 Glue = Chain.getValue(1); 1642 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1643 } 1644 1645 // Build a sequence of copy-to-reg nodes, chained and glued together. 1646 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1647 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1648 RegsToPass[I].second, Glue); 1649 Glue = Chain.getValue(1); 1650 } 1651 1652 // The first call operand is the chain and the second is the target address. 1653 SmallVector<SDValue, 8> Ops; 1654 Ops.push_back(Chain); 1655 Ops.push_back(Callee); 1656 1657 // Add argument registers to the end of the list so that they are 1658 // known live into the call. 1659 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1660 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1661 RegsToPass[I].second.getValueType())); 1662 1663 // Add a register mask operand representing the call-preserved registers. 1664 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1665 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1666 assert(Mask && "Missing call preserved mask for calling convention"); 1667 Ops.push_back(DAG.getRegisterMask(Mask)); 1668 1669 // Glue the call to the argument copies, if any. 1670 if (Glue.getNode()) 1671 Ops.push_back(Glue); 1672 1673 // Emit the call. 1674 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1675 if (IsTailCall) 1676 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1677 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1678 Glue = Chain.getValue(1); 1679 1680 // Mark the end of the call, which is glued to the call itself. 1681 Chain = DAG.getCALLSEQ_END(Chain, 1682 DAG.getConstant(NumBytes, DL, PtrVT, true), 1683 DAG.getConstant(0, DL, PtrVT, true), 1684 Glue, DL); 1685 Glue = Chain.getValue(1); 1686 1687 // Assign locations to each value returned by this call. 1688 SmallVector<CCValAssign, 16> RetLocs; 1689 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1690 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1691 1692 // Copy all of the result registers out of their specified physreg. 1693 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1694 CCValAssign &VA = RetLocs[I]; 1695 1696 // Copy the value out, gluing the copy to the end of the call sequence. 1697 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1698 VA.getLocVT(), Glue); 1699 Chain = RetValue.getValue(1); 1700 Glue = RetValue.getValue(2); 1701 1702 // Convert the value of the return register into the value that's 1703 // being returned. 1704 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1705 } 1706 1707 return Chain; 1708 } 1709 1710 bool SystemZTargetLowering:: 1711 CanLowerReturn(CallingConv::ID CallConv, 1712 MachineFunction &MF, bool isVarArg, 1713 const SmallVectorImpl<ISD::OutputArg> &Outs, 1714 LLVMContext &Context) const { 1715 // Detect unsupported vector return types. 1716 if (Subtarget.hasVector()) 1717 VerifyVectorTypes(Outs); 1718 1719 // Special case that we cannot easily detect in RetCC_SystemZ since 1720 // i128 is not a legal type. 1721 for (auto &Out : Outs) 1722 if (Out.ArgVT == MVT::i128) 1723 return false; 1724 1725 SmallVector<CCValAssign, 16> RetLocs; 1726 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1727 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1728 } 1729 1730 SDValue 1731 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1732 bool IsVarArg, 1733 const SmallVectorImpl<ISD::OutputArg> &Outs, 1734 const SmallVectorImpl<SDValue> &OutVals, 1735 const SDLoc &DL, SelectionDAG &DAG) const { 1736 MachineFunction &MF = DAG.getMachineFunction(); 1737 1738 // Detect unsupported vector return types. 1739 if (Subtarget.hasVector()) 1740 VerifyVectorTypes(Outs); 1741 1742 // Assign locations to each returned value. 1743 SmallVector<CCValAssign, 16> RetLocs; 1744 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1745 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1746 1747 // Quick exit for void returns 1748 if (RetLocs.empty()) 1749 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1750 1751 if (CallConv == CallingConv::GHC) 1752 report_fatal_error("GHC functions return void only"); 1753 1754 // Copy the result values into the output registers. 1755 SDValue Glue; 1756 SmallVector<SDValue, 4> RetOps; 1757 RetOps.push_back(Chain); 1758 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1759 CCValAssign &VA = RetLocs[I]; 1760 SDValue RetValue = OutVals[I]; 1761 1762 // Make the return register live on exit. 1763 assert(VA.isRegLoc() && "Can only return in registers!"); 1764 1765 // Promote the value as required. 1766 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1767 1768 // Chain and glue the copies together. 1769 Register Reg = VA.getLocReg(); 1770 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1771 Glue = Chain.getValue(1); 1772 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1773 } 1774 1775 // Update chain and glue. 1776 RetOps[0] = Chain; 1777 if (Glue.getNode()) 1778 RetOps.push_back(Glue); 1779 1780 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1781 } 1782 1783 // Return true if Op is an intrinsic node with chain that returns the CC value 1784 // as its only (other) argument. Provide the associated SystemZISD opcode and 1785 // the mask of valid CC values if so. 1786 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1787 unsigned &CCValid) { 1788 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1789 switch (Id) { 1790 case Intrinsic::s390_tbegin: 1791 Opcode = SystemZISD::TBEGIN; 1792 CCValid = SystemZ::CCMASK_TBEGIN; 1793 return true; 1794 1795 case Intrinsic::s390_tbegin_nofloat: 1796 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1797 CCValid = SystemZ::CCMASK_TBEGIN; 1798 return true; 1799 1800 case Intrinsic::s390_tend: 1801 Opcode = SystemZISD::TEND; 1802 CCValid = SystemZ::CCMASK_TEND; 1803 return true; 1804 1805 default: 1806 return false; 1807 } 1808 } 1809 1810 // Return true if Op is an intrinsic node without chain that returns the 1811 // CC value as its final argument. Provide the associated SystemZISD 1812 // opcode and the mask of valid CC values if so. 1813 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1814 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1815 switch (Id) { 1816 case Intrinsic::s390_vpkshs: 1817 case Intrinsic::s390_vpksfs: 1818 case Intrinsic::s390_vpksgs: 1819 Opcode = SystemZISD::PACKS_CC; 1820 CCValid = SystemZ::CCMASK_VCMP; 1821 return true; 1822 1823 case Intrinsic::s390_vpklshs: 1824 case Intrinsic::s390_vpklsfs: 1825 case Intrinsic::s390_vpklsgs: 1826 Opcode = SystemZISD::PACKLS_CC; 1827 CCValid = SystemZ::CCMASK_VCMP; 1828 return true; 1829 1830 case Intrinsic::s390_vceqbs: 1831 case Intrinsic::s390_vceqhs: 1832 case Intrinsic::s390_vceqfs: 1833 case Intrinsic::s390_vceqgs: 1834 Opcode = SystemZISD::VICMPES; 1835 CCValid = SystemZ::CCMASK_VCMP; 1836 return true; 1837 1838 case Intrinsic::s390_vchbs: 1839 case Intrinsic::s390_vchhs: 1840 case Intrinsic::s390_vchfs: 1841 case Intrinsic::s390_vchgs: 1842 Opcode = SystemZISD::VICMPHS; 1843 CCValid = SystemZ::CCMASK_VCMP; 1844 return true; 1845 1846 case Intrinsic::s390_vchlbs: 1847 case Intrinsic::s390_vchlhs: 1848 case Intrinsic::s390_vchlfs: 1849 case Intrinsic::s390_vchlgs: 1850 Opcode = SystemZISD::VICMPHLS; 1851 CCValid = SystemZ::CCMASK_VCMP; 1852 return true; 1853 1854 case Intrinsic::s390_vtm: 1855 Opcode = SystemZISD::VTM; 1856 CCValid = SystemZ::CCMASK_VCMP; 1857 return true; 1858 1859 case Intrinsic::s390_vfaebs: 1860 case Intrinsic::s390_vfaehs: 1861 case Intrinsic::s390_vfaefs: 1862 Opcode = SystemZISD::VFAE_CC; 1863 CCValid = SystemZ::CCMASK_ANY; 1864 return true; 1865 1866 case Intrinsic::s390_vfaezbs: 1867 case Intrinsic::s390_vfaezhs: 1868 case Intrinsic::s390_vfaezfs: 1869 Opcode = SystemZISD::VFAEZ_CC; 1870 CCValid = SystemZ::CCMASK_ANY; 1871 return true; 1872 1873 case Intrinsic::s390_vfeebs: 1874 case Intrinsic::s390_vfeehs: 1875 case Intrinsic::s390_vfeefs: 1876 Opcode = SystemZISD::VFEE_CC; 1877 CCValid = SystemZ::CCMASK_ANY; 1878 return true; 1879 1880 case Intrinsic::s390_vfeezbs: 1881 case Intrinsic::s390_vfeezhs: 1882 case Intrinsic::s390_vfeezfs: 1883 Opcode = SystemZISD::VFEEZ_CC; 1884 CCValid = SystemZ::CCMASK_ANY; 1885 return true; 1886 1887 case Intrinsic::s390_vfenebs: 1888 case Intrinsic::s390_vfenehs: 1889 case Intrinsic::s390_vfenefs: 1890 Opcode = SystemZISD::VFENE_CC; 1891 CCValid = SystemZ::CCMASK_ANY; 1892 return true; 1893 1894 case Intrinsic::s390_vfenezbs: 1895 case Intrinsic::s390_vfenezhs: 1896 case Intrinsic::s390_vfenezfs: 1897 Opcode = SystemZISD::VFENEZ_CC; 1898 CCValid = SystemZ::CCMASK_ANY; 1899 return true; 1900 1901 case Intrinsic::s390_vistrbs: 1902 case Intrinsic::s390_vistrhs: 1903 case Intrinsic::s390_vistrfs: 1904 Opcode = SystemZISD::VISTR_CC; 1905 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1906 return true; 1907 1908 case Intrinsic::s390_vstrcbs: 1909 case Intrinsic::s390_vstrchs: 1910 case Intrinsic::s390_vstrcfs: 1911 Opcode = SystemZISD::VSTRC_CC; 1912 CCValid = SystemZ::CCMASK_ANY; 1913 return true; 1914 1915 case Intrinsic::s390_vstrczbs: 1916 case Intrinsic::s390_vstrczhs: 1917 case Intrinsic::s390_vstrczfs: 1918 Opcode = SystemZISD::VSTRCZ_CC; 1919 CCValid = SystemZ::CCMASK_ANY; 1920 return true; 1921 1922 case Intrinsic::s390_vstrsb: 1923 case Intrinsic::s390_vstrsh: 1924 case Intrinsic::s390_vstrsf: 1925 Opcode = SystemZISD::VSTRS_CC; 1926 CCValid = SystemZ::CCMASK_ANY; 1927 return true; 1928 1929 case Intrinsic::s390_vstrszb: 1930 case Intrinsic::s390_vstrszh: 1931 case Intrinsic::s390_vstrszf: 1932 Opcode = SystemZISD::VSTRSZ_CC; 1933 CCValid = SystemZ::CCMASK_ANY; 1934 return true; 1935 1936 case Intrinsic::s390_vfcedbs: 1937 case Intrinsic::s390_vfcesbs: 1938 Opcode = SystemZISD::VFCMPES; 1939 CCValid = SystemZ::CCMASK_VCMP; 1940 return true; 1941 1942 case Intrinsic::s390_vfchdbs: 1943 case Intrinsic::s390_vfchsbs: 1944 Opcode = SystemZISD::VFCMPHS; 1945 CCValid = SystemZ::CCMASK_VCMP; 1946 return true; 1947 1948 case Intrinsic::s390_vfchedbs: 1949 case Intrinsic::s390_vfchesbs: 1950 Opcode = SystemZISD::VFCMPHES; 1951 CCValid = SystemZ::CCMASK_VCMP; 1952 return true; 1953 1954 case Intrinsic::s390_vftcidb: 1955 case Intrinsic::s390_vftcisb: 1956 Opcode = SystemZISD::VFTCI; 1957 CCValid = SystemZ::CCMASK_VCMP; 1958 return true; 1959 1960 case Intrinsic::s390_tdc: 1961 Opcode = SystemZISD::TDC; 1962 CCValid = SystemZ::CCMASK_TDC; 1963 return true; 1964 1965 default: 1966 return false; 1967 } 1968 } 1969 1970 // Emit an intrinsic with chain and an explicit CC register result. 1971 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1972 unsigned Opcode) { 1973 // Copy all operands except the intrinsic ID. 1974 unsigned NumOps = Op.getNumOperands(); 1975 SmallVector<SDValue, 6> Ops; 1976 Ops.reserve(NumOps - 1); 1977 Ops.push_back(Op.getOperand(0)); 1978 for (unsigned I = 2; I < NumOps; ++I) 1979 Ops.push_back(Op.getOperand(I)); 1980 1981 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1982 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1983 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1984 SDValue OldChain = SDValue(Op.getNode(), 1); 1985 SDValue NewChain = SDValue(Intr.getNode(), 1); 1986 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1987 return Intr.getNode(); 1988 } 1989 1990 // Emit an intrinsic with an explicit CC register result. 1991 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1992 unsigned Opcode) { 1993 // Copy all operands except the intrinsic ID. 1994 unsigned NumOps = Op.getNumOperands(); 1995 SmallVector<SDValue, 6> Ops; 1996 Ops.reserve(NumOps - 1); 1997 for (unsigned I = 1; I < NumOps; ++I) 1998 Ops.push_back(Op.getOperand(I)); 1999 2000 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 2001 return Intr.getNode(); 2002 } 2003 2004 // CC is a comparison that will be implemented using an integer or 2005 // floating-point comparison. Return the condition code mask for 2006 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 2007 // unsigned comparisons and clear for signed ones. In the floating-point 2008 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 2009 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 2010 #define CONV(X) \ 2011 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2012 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2013 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2014 2015 switch (CC) { 2016 default: 2017 llvm_unreachable("Invalid integer condition!"); 2018 2019 CONV(EQ); 2020 CONV(NE); 2021 CONV(GT); 2022 CONV(GE); 2023 CONV(LT); 2024 CONV(LE); 2025 2026 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2027 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2028 } 2029 #undef CONV 2030 } 2031 2032 // If C can be converted to a comparison against zero, adjust the operands 2033 // as necessary. 2034 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2035 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2036 return; 2037 2038 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2039 if (!ConstOp1) 2040 return; 2041 2042 int64_t Value = ConstOp1->getSExtValue(); 2043 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2044 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2045 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2046 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2047 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2048 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2049 } 2050 } 2051 2052 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2053 // adjust the operands as necessary. 2054 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2055 Comparison &C) { 2056 // For us to make any changes, it must a comparison between a single-use 2057 // load and a constant. 2058 if (!C.Op0.hasOneUse() || 2059 C.Op0.getOpcode() != ISD::LOAD || 2060 C.Op1.getOpcode() != ISD::Constant) 2061 return; 2062 2063 // We must have an 8- or 16-bit load. 2064 auto *Load = cast<LoadSDNode>(C.Op0); 2065 unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 2066 if ((NumBits != 8 && NumBits != 16) || 2067 NumBits != Load->getMemoryVT().getStoreSizeInBits()) 2068 return; 2069 2070 // The load must be an extending one and the constant must be within the 2071 // range of the unextended value. 2072 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2073 uint64_t Value = ConstOp1->getZExtValue(); 2074 uint64_t Mask = (1 << NumBits) - 1; 2075 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2076 // Make sure that ConstOp1 is in range of C.Op0. 2077 int64_t SignedValue = ConstOp1->getSExtValue(); 2078 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2079 return; 2080 if (C.ICmpType != SystemZICMP::SignedOnly) { 2081 // Unsigned comparison between two sign-extended values is equivalent 2082 // to unsigned comparison between two zero-extended values. 2083 Value &= Mask; 2084 } else if (NumBits == 8) { 2085 // Try to treat the comparison as unsigned, so that we can use CLI. 2086 // Adjust CCMask and Value as necessary. 2087 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2088 // Test whether the high bit of the byte is set. 2089 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2090 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2091 // Test whether the high bit of the byte is clear. 2092 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2093 else 2094 // No instruction exists for this combination. 2095 return; 2096 C.ICmpType = SystemZICMP::UnsignedOnly; 2097 } 2098 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2099 if (Value > Mask) 2100 return; 2101 // If the constant is in range, we can use any comparison. 2102 C.ICmpType = SystemZICMP::Any; 2103 } else 2104 return; 2105 2106 // Make sure that the first operand is an i32 of the right extension type. 2107 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2108 ISD::SEXTLOAD : 2109 ISD::ZEXTLOAD); 2110 if (C.Op0.getValueType() != MVT::i32 || 2111 Load->getExtensionType() != ExtType) { 2112 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2113 Load->getBasePtr(), Load->getPointerInfo(), 2114 Load->getMemoryVT(), Load->getAlignment(), 2115 Load->getMemOperand()->getFlags()); 2116 // Update the chain uses. 2117 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2118 } 2119 2120 // Make sure that the second operand is an i32 with the right value. 2121 if (C.Op1.getValueType() != MVT::i32 || 2122 Value != ConstOp1->getZExtValue()) 2123 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2124 } 2125 2126 // Return true if Op is either an unextended load, or a load suitable 2127 // for integer register-memory comparisons of type ICmpType. 2128 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2129 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2130 if (Load) { 2131 // There are no instructions to compare a register with a memory byte. 2132 if (Load->getMemoryVT() == MVT::i8) 2133 return false; 2134 // Otherwise decide on extension type. 2135 switch (Load->getExtensionType()) { 2136 case ISD::NON_EXTLOAD: 2137 return true; 2138 case ISD::SEXTLOAD: 2139 return ICmpType != SystemZICMP::UnsignedOnly; 2140 case ISD::ZEXTLOAD: 2141 return ICmpType != SystemZICMP::SignedOnly; 2142 default: 2143 break; 2144 } 2145 } 2146 return false; 2147 } 2148 2149 // Return true if it is better to swap the operands of C. 2150 static bool shouldSwapCmpOperands(const Comparison &C) { 2151 // Leave f128 comparisons alone, since they have no memory forms. 2152 if (C.Op0.getValueType() == MVT::f128) 2153 return false; 2154 2155 // Always keep a floating-point constant second, since comparisons with 2156 // zero can use LOAD TEST and comparisons with other constants make a 2157 // natural memory operand. 2158 if (isa<ConstantFPSDNode>(C.Op1)) 2159 return false; 2160 2161 // Never swap comparisons with zero since there are many ways to optimize 2162 // those later. 2163 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2164 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2165 return false; 2166 2167 // Also keep natural memory operands second if the loaded value is 2168 // only used here. Several comparisons have memory forms. 2169 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2170 return false; 2171 2172 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2173 // In that case we generally prefer the memory to be second. 2174 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2175 // The only exceptions are when the second operand is a constant and 2176 // we can use things like CHHSI. 2177 if (!ConstOp1) 2178 return true; 2179 // The unsigned memory-immediate instructions can handle 16-bit 2180 // unsigned integers. 2181 if (C.ICmpType != SystemZICMP::SignedOnly && 2182 isUInt<16>(ConstOp1->getZExtValue())) 2183 return false; 2184 // The signed memory-immediate instructions can handle 16-bit 2185 // signed integers. 2186 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2187 isInt<16>(ConstOp1->getSExtValue())) 2188 return false; 2189 return true; 2190 } 2191 2192 // Try to promote the use of CGFR and CLGFR. 2193 unsigned Opcode0 = C.Op0.getOpcode(); 2194 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2195 return true; 2196 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2197 return true; 2198 if (C.ICmpType != SystemZICMP::SignedOnly && 2199 Opcode0 == ISD::AND && 2200 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2201 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2202 return true; 2203 2204 return false; 2205 } 2206 2207 // Check whether C tests for equality between X and Y and whether X - Y 2208 // or Y - X is also computed. In that case it's better to compare the 2209 // result of the subtraction against zero. 2210 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2211 Comparison &C) { 2212 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2213 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2214 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2215 SDNode *N = *I; 2216 if (N->getOpcode() == ISD::SUB && 2217 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2218 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2219 C.Op0 = SDValue(N, 0); 2220 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2221 return; 2222 } 2223 } 2224 } 2225 } 2226 2227 // Check whether C compares a floating-point value with zero and if that 2228 // floating-point value is also negated. In this case we can use the 2229 // negation to set CC, so avoiding separate LOAD AND TEST and 2230 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2231 static void adjustForFNeg(Comparison &C) { 2232 // This optimization is invalid for strict comparisons, since FNEG 2233 // does not raise any exceptions. 2234 if (C.Chain) 2235 return; 2236 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2237 if (C1 && C1->isZero()) { 2238 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2239 SDNode *N = *I; 2240 if (N->getOpcode() == ISD::FNEG) { 2241 C.Op0 = SDValue(N, 0); 2242 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2243 return; 2244 } 2245 } 2246 } 2247 } 2248 2249 // Check whether C compares (shl X, 32) with 0 and whether X is 2250 // also sign-extended. In that case it is better to test the result 2251 // of the sign extension using LTGFR. 2252 // 2253 // This case is important because InstCombine transforms a comparison 2254 // with (sext (trunc X)) into a comparison with (shl X, 32). 2255 static void adjustForLTGFR(Comparison &C) { 2256 // Check for a comparison between (shl X, 32) and 0. 2257 if (C.Op0.getOpcode() == ISD::SHL && 2258 C.Op0.getValueType() == MVT::i64 && 2259 C.Op1.getOpcode() == ISD::Constant && 2260 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2261 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2262 if (C1 && C1->getZExtValue() == 32) { 2263 SDValue ShlOp0 = C.Op0.getOperand(0); 2264 // See whether X has any SIGN_EXTEND_INREG uses. 2265 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2266 SDNode *N = *I; 2267 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2268 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2269 C.Op0 = SDValue(N, 0); 2270 return; 2271 } 2272 } 2273 } 2274 } 2275 } 2276 2277 // If C compares the truncation of an extending load, try to compare 2278 // the untruncated value instead. This exposes more opportunities to 2279 // reuse CC. 2280 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2281 Comparison &C) { 2282 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2283 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2284 C.Op1.getOpcode() == ISD::Constant && 2285 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2286 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2287 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2288 unsigned Type = L->getExtensionType(); 2289 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2290 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2291 C.Op0 = C.Op0.getOperand(0); 2292 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2293 } 2294 } 2295 } 2296 } 2297 2298 // Return true if shift operation N has an in-range constant shift value. 2299 // Store it in ShiftVal if so. 2300 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2301 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2302 if (!Shift) 2303 return false; 2304 2305 uint64_t Amount = Shift->getZExtValue(); 2306 if (Amount >= N.getValueSizeInBits()) 2307 return false; 2308 2309 ShiftVal = Amount; 2310 return true; 2311 } 2312 2313 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2314 // instruction and whether the CC value is descriptive enough to handle 2315 // a comparison of type Opcode between the AND result and CmpVal. 2316 // CCMask says which comparison result is being tested and BitSize is 2317 // the number of bits in the operands. If TEST UNDER MASK can be used, 2318 // return the corresponding CC mask, otherwise return 0. 2319 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2320 uint64_t Mask, uint64_t CmpVal, 2321 unsigned ICmpType) { 2322 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2323 2324 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2325 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2326 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2327 return 0; 2328 2329 // Work out the masks for the lowest and highest bits. 2330 unsigned HighShift = 63 - countLeadingZeros(Mask); 2331 uint64_t High = uint64_t(1) << HighShift; 2332 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2333 2334 // Signed ordered comparisons are effectively unsigned if the sign 2335 // bit is dropped. 2336 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2337 2338 // Check for equality comparisons with 0, or the equivalent. 2339 if (CmpVal == 0) { 2340 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2341 return SystemZ::CCMASK_TM_ALL_0; 2342 if (CCMask == SystemZ::CCMASK_CMP_NE) 2343 return SystemZ::CCMASK_TM_SOME_1; 2344 } 2345 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2346 if (CCMask == SystemZ::CCMASK_CMP_LT) 2347 return SystemZ::CCMASK_TM_ALL_0; 2348 if (CCMask == SystemZ::CCMASK_CMP_GE) 2349 return SystemZ::CCMASK_TM_SOME_1; 2350 } 2351 if (EffectivelyUnsigned && CmpVal < Low) { 2352 if (CCMask == SystemZ::CCMASK_CMP_LE) 2353 return SystemZ::CCMASK_TM_ALL_0; 2354 if (CCMask == SystemZ::CCMASK_CMP_GT) 2355 return SystemZ::CCMASK_TM_SOME_1; 2356 } 2357 2358 // Check for equality comparisons with the mask, or the equivalent. 2359 if (CmpVal == Mask) { 2360 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2361 return SystemZ::CCMASK_TM_ALL_1; 2362 if (CCMask == SystemZ::CCMASK_CMP_NE) 2363 return SystemZ::CCMASK_TM_SOME_0; 2364 } 2365 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2366 if (CCMask == SystemZ::CCMASK_CMP_GT) 2367 return SystemZ::CCMASK_TM_ALL_1; 2368 if (CCMask == SystemZ::CCMASK_CMP_LE) 2369 return SystemZ::CCMASK_TM_SOME_0; 2370 } 2371 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2372 if (CCMask == SystemZ::CCMASK_CMP_GE) 2373 return SystemZ::CCMASK_TM_ALL_1; 2374 if (CCMask == SystemZ::CCMASK_CMP_LT) 2375 return SystemZ::CCMASK_TM_SOME_0; 2376 } 2377 2378 // Check for ordered comparisons with the top bit. 2379 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2380 if (CCMask == SystemZ::CCMASK_CMP_LE) 2381 return SystemZ::CCMASK_TM_MSB_0; 2382 if (CCMask == SystemZ::CCMASK_CMP_GT) 2383 return SystemZ::CCMASK_TM_MSB_1; 2384 } 2385 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2386 if (CCMask == SystemZ::CCMASK_CMP_LT) 2387 return SystemZ::CCMASK_TM_MSB_0; 2388 if (CCMask == SystemZ::CCMASK_CMP_GE) 2389 return SystemZ::CCMASK_TM_MSB_1; 2390 } 2391 2392 // If there are just two bits, we can do equality checks for Low and High 2393 // as well. 2394 if (Mask == Low + High) { 2395 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2396 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2397 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2398 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2399 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2400 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2401 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2402 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2403 } 2404 2405 // Looks like we've exhausted our options. 2406 return 0; 2407 } 2408 2409 // See whether C can be implemented as a TEST UNDER MASK instruction. 2410 // Update the arguments with the TM version if so. 2411 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2412 Comparison &C) { 2413 // Check that we have a comparison with a constant. 2414 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2415 if (!ConstOp1) 2416 return; 2417 uint64_t CmpVal = ConstOp1->getZExtValue(); 2418 2419 // Check whether the nonconstant input is an AND with a constant mask. 2420 Comparison NewC(C); 2421 uint64_t MaskVal; 2422 ConstantSDNode *Mask = nullptr; 2423 if (C.Op0.getOpcode() == ISD::AND) { 2424 NewC.Op0 = C.Op0.getOperand(0); 2425 NewC.Op1 = C.Op0.getOperand(1); 2426 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2427 if (!Mask) 2428 return; 2429 MaskVal = Mask->getZExtValue(); 2430 } else { 2431 // There is no instruction to compare with a 64-bit immediate 2432 // so use TMHH instead if possible. We need an unsigned ordered 2433 // comparison with an i64 immediate. 2434 if (NewC.Op0.getValueType() != MVT::i64 || 2435 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2436 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2437 NewC.ICmpType == SystemZICMP::SignedOnly) 2438 return; 2439 // Convert LE and GT comparisons into LT and GE. 2440 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2441 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2442 if (CmpVal == uint64_t(-1)) 2443 return; 2444 CmpVal += 1; 2445 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2446 } 2447 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2448 // be masked off without changing the result. 2449 MaskVal = -(CmpVal & -CmpVal); 2450 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2451 } 2452 if (!MaskVal) 2453 return; 2454 2455 // Check whether the combination of mask, comparison value and comparison 2456 // type are suitable. 2457 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2458 unsigned NewCCMask, ShiftVal; 2459 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2460 NewC.Op0.getOpcode() == ISD::SHL && 2461 isSimpleShift(NewC.Op0, ShiftVal) && 2462 (MaskVal >> ShiftVal != 0) && 2463 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2464 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2465 MaskVal >> ShiftVal, 2466 CmpVal >> ShiftVal, 2467 SystemZICMP::Any))) { 2468 NewC.Op0 = NewC.Op0.getOperand(0); 2469 MaskVal >>= ShiftVal; 2470 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2471 NewC.Op0.getOpcode() == ISD::SRL && 2472 isSimpleShift(NewC.Op0, ShiftVal) && 2473 (MaskVal << ShiftVal != 0) && 2474 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2475 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2476 MaskVal << ShiftVal, 2477 CmpVal << ShiftVal, 2478 SystemZICMP::UnsignedOnly))) { 2479 NewC.Op0 = NewC.Op0.getOperand(0); 2480 MaskVal <<= ShiftVal; 2481 } else { 2482 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2483 NewC.ICmpType); 2484 if (!NewCCMask) 2485 return; 2486 } 2487 2488 // Go ahead and make the change. 2489 C.Opcode = SystemZISD::TM; 2490 C.Op0 = NewC.Op0; 2491 if (Mask && Mask->getZExtValue() == MaskVal) 2492 C.Op1 = SDValue(Mask, 0); 2493 else 2494 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2495 C.CCValid = SystemZ::CCMASK_TM; 2496 C.CCMask = NewCCMask; 2497 } 2498 2499 // See whether the comparison argument contains a redundant AND 2500 // and remove it if so. This sometimes happens due to the generic 2501 // BRCOND expansion. 2502 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2503 Comparison &C) { 2504 if (C.Op0.getOpcode() != ISD::AND) 2505 return; 2506 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2507 if (!Mask) 2508 return; 2509 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2510 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2511 return; 2512 2513 C.Op0 = C.Op0.getOperand(0); 2514 } 2515 2516 // Return a Comparison that tests the condition-code result of intrinsic 2517 // node Call against constant integer CC using comparison code Cond. 2518 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2519 // and CCValid is the set of possible condition-code results. 2520 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2521 SDValue Call, unsigned CCValid, uint64_t CC, 2522 ISD::CondCode Cond) { 2523 Comparison C(Call, SDValue(), SDValue()); 2524 C.Opcode = Opcode; 2525 C.CCValid = CCValid; 2526 if (Cond == ISD::SETEQ) 2527 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2528 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2529 else if (Cond == ISD::SETNE) 2530 // ...and the inverse of that. 2531 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2532 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2533 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2534 // always true for CC>3. 2535 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2536 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2537 // ...and the inverse of that. 2538 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2539 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2540 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2541 // always true for CC>3. 2542 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2543 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2544 // ...and the inverse of that. 2545 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2546 else 2547 llvm_unreachable("Unexpected integer comparison type"); 2548 C.CCMask &= CCValid; 2549 return C; 2550 } 2551 2552 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2553 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2554 ISD::CondCode Cond, const SDLoc &DL, 2555 SDValue Chain = SDValue(), 2556 bool IsSignaling = false) { 2557 if (CmpOp1.getOpcode() == ISD::Constant) { 2558 assert(!Chain); 2559 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2560 unsigned Opcode, CCValid; 2561 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2562 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2563 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2564 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2565 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2566 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2567 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2568 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2569 } 2570 Comparison C(CmpOp0, CmpOp1, Chain); 2571 C.CCMask = CCMaskForCondCode(Cond); 2572 if (C.Op0.getValueType().isFloatingPoint()) { 2573 C.CCValid = SystemZ::CCMASK_FCMP; 2574 if (!C.Chain) 2575 C.Opcode = SystemZISD::FCMP; 2576 else if (!IsSignaling) 2577 C.Opcode = SystemZISD::STRICT_FCMP; 2578 else 2579 C.Opcode = SystemZISD::STRICT_FCMPS; 2580 adjustForFNeg(C); 2581 } else { 2582 assert(!C.Chain); 2583 C.CCValid = SystemZ::CCMASK_ICMP; 2584 C.Opcode = SystemZISD::ICMP; 2585 // Choose the type of comparison. Equality and inequality tests can 2586 // use either signed or unsigned comparisons. The choice also doesn't 2587 // matter if both sign bits are known to be clear. In those cases we 2588 // want to give the main isel code the freedom to choose whichever 2589 // form fits best. 2590 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2591 C.CCMask == SystemZ::CCMASK_CMP_NE || 2592 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2593 C.ICmpType = SystemZICMP::Any; 2594 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2595 C.ICmpType = SystemZICMP::UnsignedOnly; 2596 else 2597 C.ICmpType = SystemZICMP::SignedOnly; 2598 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2599 adjustForRedundantAnd(DAG, DL, C); 2600 adjustZeroCmp(DAG, DL, C); 2601 adjustSubwordCmp(DAG, DL, C); 2602 adjustForSubtraction(DAG, DL, C); 2603 adjustForLTGFR(C); 2604 adjustICmpTruncate(DAG, DL, C); 2605 } 2606 2607 if (shouldSwapCmpOperands(C)) { 2608 std::swap(C.Op0, C.Op1); 2609 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2610 } 2611 2612 adjustForTestUnderMask(DAG, DL, C); 2613 return C; 2614 } 2615 2616 // Emit the comparison instruction described by C. 2617 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2618 if (!C.Op1.getNode()) { 2619 SDNode *Node; 2620 switch (C.Op0.getOpcode()) { 2621 case ISD::INTRINSIC_W_CHAIN: 2622 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2623 return SDValue(Node, 0); 2624 case ISD::INTRINSIC_WO_CHAIN: 2625 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2626 return SDValue(Node, Node->getNumValues() - 1); 2627 default: 2628 llvm_unreachable("Invalid comparison operands"); 2629 } 2630 } 2631 if (C.Opcode == SystemZISD::ICMP) 2632 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2633 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2634 if (C.Opcode == SystemZISD::TM) { 2635 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2636 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2637 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2638 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2639 } 2640 if (C.Chain) { 2641 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2642 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2643 } 2644 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2645 } 2646 2647 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2648 // 64 bits. Extend is the extension type to use. Store the high part 2649 // in Hi and the low part in Lo. 2650 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2651 SDValue Op0, SDValue Op1, SDValue &Hi, 2652 SDValue &Lo) { 2653 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2654 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2655 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2656 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2657 DAG.getConstant(32, DL, MVT::i64)); 2658 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2659 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2660 } 2661 2662 // Lower a binary operation that produces two VT results, one in each 2663 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2664 // and Opcode performs the GR128 operation. Store the even register result 2665 // in Even and the odd register result in Odd. 2666 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2667 unsigned Opcode, SDValue Op0, SDValue Op1, 2668 SDValue &Even, SDValue &Odd) { 2669 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2670 bool Is32Bit = is32Bit(VT); 2671 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2672 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2673 } 2674 2675 // Return an i32 value that is 1 if the CC value produced by CCReg is 2676 // in the mask CCMask and 0 otherwise. CC is known to have a value 2677 // in CCValid, so other values can be ignored. 2678 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2679 unsigned CCValid, unsigned CCMask) { 2680 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2681 DAG.getConstant(0, DL, MVT::i32), 2682 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2683 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2684 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2685 } 2686 2687 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2688 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2689 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2690 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2691 // floating-point comparisons. 2692 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2693 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2694 switch (CC) { 2695 case ISD::SETOEQ: 2696 case ISD::SETEQ: 2697 switch (Mode) { 2698 case CmpMode::Int: return SystemZISD::VICMPE; 2699 case CmpMode::FP: return SystemZISD::VFCMPE; 2700 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2701 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2702 } 2703 llvm_unreachable("Bad mode"); 2704 2705 case ISD::SETOGE: 2706 case ISD::SETGE: 2707 switch (Mode) { 2708 case CmpMode::Int: return 0; 2709 case CmpMode::FP: return SystemZISD::VFCMPHE; 2710 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2711 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2712 } 2713 llvm_unreachable("Bad mode"); 2714 2715 case ISD::SETOGT: 2716 case ISD::SETGT: 2717 switch (Mode) { 2718 case CmpMode::Int: return SystemZISD::VICMPH; 2719 case CmpMode::FP: return SystemZISD::VFCMPH; 2720 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2721 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2722 } 2723 llvm_unreachable("Bad mode"); 2724 2725 case ISD::SETUGT: 2726 switch (Mode) { 2727 case CmpMode::Int: return SystemZISD::VICMPHL; 2728 case CmpMode::FP: return 0; 2729 case CmpMode::StrictFP: return 0; 2730 case CmpMode::SignalingFP: return 0; 2731 } 2732 llvm_unreachable("Bad mode"); 2733 2734 default: 2735 return 0; 2736 } 2737 } 2738 2739 // Return the SystemZISD vector comparison operation for CC or its inverse, 2740 // or 0 if neither can be done directly. Indicate in Invert whether the 2741 // result is for the inverse of CC. Mode is as above. 2742 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2743 bool &Invert) { 2744 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2745 Invert = false; 2746 return Opcode; 2747 } 2748 2749 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2750 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2751 Invert = true; 2752 return Opcode; 2753 } 2754 2755 return 0; 2756 } 2757 2758 // Return a v2f64 that contains the extended form of elements Start and Start+1 2759 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2760 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2761 SDValue Op, SDValue Chain) { 2762 int Mask[] = { Start, -1, Start + 1, -1 }; 2763 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2764 if (Chain) { 2765 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2766 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2767 } 2768 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2769 } 2770 2771 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2772 // producing a result of type VT. If Chain is nonnull, return the strict form. 2773 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2774 const SDLoc &DL, EVT VT, 2775 SDValue CmpOp0, 2776 SDValue CmpOp1, 2777 SDValue Chain) const { 2778 // There is no hardware support for v4f32 (unless we have the vector 2779 // enhancements facility 1), so extend the vector into two v2f64s 2780 // and compare those. 2781 if (CmpOp0.getValueType() == MVT::v4f32 && 2782 !Subtarget.hasVectorEnhancements1()) { 2783 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2784 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2785 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2786 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2787 if (Chain) { 2788 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2789 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2790 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2791 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2792 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2793 H1.getValue(1), L1.getValue(1), 2794 HRes.getValue(1), LRes.getValue(1) }; 2795 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2796 SDValue Ops[2] = { Res, NewChain }; 2797 return DAG.getMergeValues(Ops, DL); 2798 } 2799 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2800 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2801 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2802 } 2803 if (Chain) { 2804 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2805 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2806 } 2807 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2808 } 2809 2810 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2811 // an integer mask of type VT. If Chain is nonnull, we have a strict 2812 // floating-point comparison. If in addition IsSignaling is true, we have 2813 // a strict signaling floating-point comparison. 2814 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2815 const SDLoc &DL, EVT VT, 2816 ISD::CondCode CC, 2817 SDValue CmpOp0, 2818 SDValue CmpOp1, 2819 SDValue Chain, 2820 bool IsSignaling) const { 2821 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2822 assert (!Chain || IsFP); 2823 assert (!IsSignaling || Chain); 2824 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2825 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2826 bool Invert = false; 2827 SDValue Cmp; 2828 switch (CC) { 2829 // Handle tests for order using (or (ogt y x) (oge x y)). 2830 case ISD::SETUO: 2831 Invert = true; 2832 LLVM_FALLTHROUGH; 2833 case ISD::SETO: { 2834 assert(IsFP && "Unexpected integer comparison"); 2835 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2836 DL, VT, CmpOp1, CmpOp0, Chain); 2837 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 2838 DL, VT, CmpOp0, CmpOp1, Chain); 2839 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2840 if (Chain) 2841 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2842 LT.getValue(1), GE.getValue(1)); 2843 break; 2844 } 2845 2846 // Handle <> tests using (or (ogt y x) (ogt x y)). 2847 case ISD::SETUEQ: 2848 Invert = true; 2849 LLVM_FALLTHROUGH; 2850 case ISD::SETONE: { 2851 assert(IsFP && "Unexpected integer comparison"); 2852 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2853 DL, VT, CmpOp1, CmpOp0, Chain); 2854 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2855 DL, VT, CmpOp0, CmpOp1, Chain); 2856 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2857 if (Chain) 2858 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2859 LT.getValue(1), GT.getValue(1)); 2860 break; 2861 } 2862 2863 // Otherwise a single comparison is enough. It doesn't really 2864 // matter whether we try the inversion or the swap first, since 2865 // there are no cases where both work. 2866 default: 2867 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2868 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 2869 else { 2870 CC = ISD::getSetCCSwappedOperands(CC); 2871 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2872 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 2873 else 2874 llvm_unreachable("Unhandled comparison"); 2875 } 2876 if (Chain) 2877 Chain = Cmp.getValue(1); 2878 break; 2879 } 2880 if (Invert) { 2881 SDValue Mask = 2882 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2883 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2884 } 2885 if (Chain && Chain.getNode() != Cmp.getNode()) { 2886 SDValue Ops[2] = { Cmp, Chain }; 2887 Cmp = DAG.getMergeValues(Ops, DL); 2888 } 2889 return Cmp; 2890 } 2891 2892 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2893 SelectionDAG &DAG) const { 2894 SDValue CmpOp0 = Op.getOperand(0); 2895 SDValue CmpOp1 = Op.getOperand(1); 2896 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2897 SDLoc DL(Op); 2898 EVT VT = Op.getValueType(); 2899 if (VT.isVector()) 2900 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2901 2902 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2903 SDValue CCReg = emitCmp(DAG, DL, C); 2904 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2905 } 2906 2907 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 2908 SelectionDAG &DAG, 2909 bool IsSignaling) const { 2910 SDValue Chain = Op.getOperand(0); 2911 SDValue CmpOp0 = Op.getOperand(1); 2912 SDValue CmpOp1 = Op.getOperand(2); 2913 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 2914 SDLoc DL(Op); 2915 EVT VT = Op.getNode()->getValueType(0); 2916 if (VT.isVector()) { 2917 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 2918 Chain, IsSignaling); 2919 return Res.getValue(Op.getResNo()); 2920 } 2921 2922 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 2923 SDValue CCReg = emitCmp(DAG, DL, C); 2924 CCReg->setFlags(Op->getFlags()); 2925 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2926 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 2927 return DAG.getMergeValues(Ops, DL); 2928 } 2929 2930 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2931 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2932 SDValue CmpOp0 = Op.getOperand(2); 2933 SDValue CmpOp1 = Op.getOperand(3); 2934 SDValue Dest = Op.getOperand(4); 2935 SDLoc DL(Op); 2936 2937 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2938 SDValue CCReg = emitCmp(DAG, DL, C); 2939 return DAG.getNode( 2940 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 2941 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2942 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2943 } 2944 2945 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2946 // allowing Pos and Neg to be wider than CmpOp. 2947 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2948 return (Neg.getOpcode() == ISD::SUB && 2949 Neg.getOperand(0).getOpcode() == ISD::Constant && 2950 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2951 Neg.getOperand(1) == Pos && 2952 (Pos == CmpOp || 2953 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2954 Pos.getOperand(0) == CmpOp))); 2955 } 2956 2957 // Return the absolute or negative absolute of Op; IsNegative decides which. 2958 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2959 bool IsNegative) { 2960 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2961 if (IsNegative) 2962 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2963 DAG.getConstant(0, DL, Op.getValueType()), Op); 2964 return Op; 2965 } 2966 2967 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2968 SelectionDAG &DAG) const { 2969 SDValue CmpOp0 = Op.getOperand(0); 2970 SDValue CmpOp1 = Op.getOperand(1); 2971 SDValue TrueOp = Op.getOperand(2); 2972 SDValue FalseOp = Op.getOperand(3); 2973 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2974 SDLoc DL(Op); 2975 2976 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2977 2978 // Check for absolute and negative-absolute selections, including those 2979 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2980 // This check supplements the one in DAGCombiner. 2981 if (C.Opcode == SystemZISD::ICMP && 2982 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2983 C.CCMask != SystemZ::CCMASK_CMP_NE && 2984 C.Op1.getOpcode() == ISD::Constant && 2985 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2986 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2987 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2988 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2989 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2990 } 2991 2992 SDValue CCReg = emitCmp(DAG, DL, C); 2993 SDValue Ops[] = {TrueOp, FalseOp, 2994 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2995 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 2996 2997 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2998 } 2999 3000 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 3001 SelectionDAG &DAG) const { 3002 SDLoc DL(Node); 3003 const GlobalValue *GV = Node->getGlobal(); 3004 int64_t Offset = Node->getOffset(); 3005 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3006 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 3007 3008 SDValue Result; 3009 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3010 if (isInt<32>(Offset)) { 3011 // Assign anchors at 1<<12 byte boundaries. 3012 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3013 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3014 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3015 3016 // The offset can be folded into the address if it is aligned to a 3017 // halfword. 3018 Offset -= Anchor; 3019 if (Offset != 0 && (Offset & 1) == 0) { 3020 SDValue Full = 3021 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3022 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3023 Offset = 0; 3024 } 3025 } else { 3026 // Conservatively load a constant offset greater than 32 bits into a 3027 // register below. 3028 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3029 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3030 } 3031 } else { 3032 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3033 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3034 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3035 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3036 } 3037 3038 // If there was a non-zero offset that we didn't fold, create an explicit 3039 // addition for it. 3040 if (Offset != 0) 3041 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3042 DAG.getConstant(Offset, DL, PtrVT)); 3043 3044 return Result; 3045 } 3046 3047 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3048 SelectionDAG &DAG, 3049 unsigned Opcode, 3050 SDValue GOTOffset) const { 3051 SDLoc DL(Node); 3052 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3053 SDValue Chain = DAG.getEntryNode(); 3054 SDValue Glue; 3055 3056 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3057 CallingConv::GHC) 3058 report_fatal_error("In GHC calling convention TLS is not supported"); 3059 3060 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3061 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3062 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3063 Glue = Chain.getValue(1); 3064 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3065 Glue = Chain.getValue(1); 3066 3067 // The first call operand is the chain and the second is the TLS symbol. 3068 SmallVector<SDValue, 8> Ops; 3069 Ops.push_back(Chain); 3070 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3071 Node->getValueType(0), 3072 0, 0)); 3073 3074 // Add argument registers to the end of the list so that they are 3075 // known live into the call. 3076 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3077 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3078 3079 // Add a register mask operand representing the call-preserved registers. 3080 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3081 const uint32_t *Mask = 3082 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3083 assert(Mask && "Missing call preserved mask for calling convention"); 3084 Ops.push_back(DAG.getRegisterMask(Mask)); 3085 3086 // Glue the call to the argument copies. 3087 Ops.push_back(Glue); 3088 3089 // Emit the call. 3090 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3091 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3092 Glue = Chain.getValue(1); 3093 3094 // Copy the return value from %r2. 3095 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3096 } 3097 3098 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3099 SelectionDAG &DAG) const { 3100 SDValue Chain = DAG.getEntryNode(); 3101 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3102 3103 // The high part of the thread pointer is in access register 0. 3104 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3105 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3106 3107 // The low part of the thread pointer is in access register 1. 3108 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3109 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3110 3111 // Merge them into a single 64-bit address. 3112 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3113 DAG.getConstant(32, DL, PtrVT)); 3114 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3115 } 3116 3117 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3118 SelectionDAG &DAG) const { 3119 if (DAG.getTarget().useEmulatedTLS()) 3120 return LowerToTLSEmulatedModel(Node, DAG); 3121 SDLoc DL(Node); 3122 const GlobalValue *GV = Node->getGlobal(); 3123 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3124 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3125 3126 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3127 CallingConv::GHC) 3128 report_fatal_error("In GHC calling convention TLS is not supported"); 3129 3130 SDValue TP = lowerThreadPointer(DL, DAG); 3131 3132 // Get the offset of GA from the thread pointer, based on the TLS model. 3133 SDValue Offset; 3134 switch (model) { 3135 case TLSModel::GeneralDynamic: { 3136 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3137 SystemZConstantPoolValue *CPV = 3138 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3139 3140 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3141 Offset = DAG.getLoad( 3142 PtrVT, DL, DAG.getEntryNode(), Offset, 3143 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3144 3145 // Call __tls_get_offset to retrieve the offset. 3146 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3147 break; 3148 } 3149 3150 case TLSModel::LocalDynamic: { 3151 // Load the GOT offset of the module ID. 3152 SystemZConstantPoolValue *CPV = 3153 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3154 3155 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3156 Offset = DAG.getLoad( 3157 PtrVT, DL, DAG.getEntryNode(), Offset, 3158 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3159 3160 // Call __tls_get_offset to retrieve the module base offset. 3161 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3162 3163 // Note: The SystemZLDCleanupPass will remove redundant computations 3164 // of the module base offset. Count total number of local-dynamic 3165 // accesses to trigger execution of that pass. 3166 SystemZMachineFunctionInfo* MFI = 3167 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3168 MFI->incNumLocalDynamicTLSAccesses(); 3169 3170 // Add the per-symbol offset. 3171 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3172 3173 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3174 DTPOffset = DAG.getLoad( 3175 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3176 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3177 3178 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3179 break; 3180 } 3181 3182 case TLSModel::InitialExec: { 3183 // Load the offset from the GOT. 3184 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3185 SystemZII::MO_INDNTPOFF); 3186 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3187 Offset = 3188 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3189 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3190 break; 3191 } 3192 3193 case TLSModel::LocalExec: { 3194 // Force the offset into the constant pool and load it from there. 3195 SystemZConstantPoolValue *CPV = 3196 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3197 3198 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3199 Offset = DAG.getLoad( 3200 PtrVT, DL, DAG.getEntryNode(), Offset, 3201 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3202 break; 3203 } 3204 } 3205 3206 // Add the base and offset together. 3207 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3208 } 3209 3210 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3211 SelectionDAG &DAG) const { 3212 SDLoc DL(Node); 3213 const BlockAddress *BA = Node->getBlockAddress(); 3214 int64_t Offset = Node->getOffset(); 3215 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3216 3217 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3218 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3219 return Result; 3220 } 3221 3222 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3223 SelectionDAG &DAG) const { 3224 SDLoc DL(JT); 3225 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3226 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3227 3228 // Use LARL to load the address of the table. 3229 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3230 } 3231 3232 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3233 SelectionDAG &DAG) const { 3234 SDLoc DL(CP); 3235 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3236 3237 SDValue Result; 3238 if (CP->isMachineConstantPoolEntry()) 3239 Result = 3240 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 3241 else 3242 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 3243 CP->getOffset()); 3244 3245 // Use LARL to load the address of the constant pool entry. 3246 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3247 } 3248 3249 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3250 SelectionDAG &DAG) const { 3251 auto *TFL = 3252 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 3253 MachineFunction &MF = DAG.getMachineFunction(); 3254 MachineFrameInfo &MFI = MF.getFrameInfo(); 3255 MFI.setFrameAddressIsTaken(true); 3256 3257 SDLoc DL(Op); 3258 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3259 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3260 3261 // Return null if the back chain is not present. 3262 bool HasBackChain = MF.getFunction().hasFnAttribute("backchain"); 3263 if (TFL->usePackedStack(MF) && !HasBackChain) 3264 return DAG.getConstant(0, DL, PtrVT); 3265 3266 // By definition, the frame address is the address of the back chain. 3267 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3268 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3269 3270 // FIXME The frontend should detect this case. 3271 if (Depth > 0) { 3272 report_fatal_error("Unsupported stack frame traversal count"); 3273 } 3274 3275 return BackChain; 3276 } 3277 3278 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3279 SelectionDAG &DAG) const { 3280 MachineFunction &MF = DAG.getMachineFunction(); 3281 MachineFrameInfo &MFI = MF.getFrameInfo(); 3282 MFI.setReturnAddressIsTaken(true); 3283 3284 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3285 return SDValue(); 3286 3287 SDLoc DL(Op); 3288 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3289 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3290 3291 // FIXME The frontend should detect this case. 3292 if (Depth > 0) { 3293 report_fatal_error("Unsupported stack frame traversal count"); 3294 } 3295 3296 // Return R14D, which has the return address. Mark it an implicit live-in. 3297 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3298 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3299 } 3300 3301 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3302 SelectionDAG &DAG) const { 3303 SDLoc DL(Op); 3304 SDValue In = Op.getOperand(0); 3305 EVT InVT = In.getValueType(); 3306 EVT ResVT = Op.getValueType(); 3307 3308 // Convert loads directly. This is normally done by DAGCombiner, 3309 // but we need this case for bitcasts that are created during lowering 3310 // and which are then lowered themselves. 3311 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3312 if (ISD::isNormalLoad(LoadN)) { 3313 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3314 LoadN->getBasePtr(), LoadN->getMemOperand()); 3315 // Update the chain uses. 3316 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3317 return NewLoad; 3318 } 3319 3320 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3321 SDValue In64; 3322 if (Subtarget.hasHighWord()) { 3323 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3324 MVT::i64); 3325 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3326 MVT::i64, SDValue(U64, 0), In); 3327 } else { 3328 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3329 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3330 DAG.getConstant(32, DL, MVT::i64)); 3331 } 3332 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3333 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3334 DL, MVT::f32, Out64); 3335 } 3336 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3337 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3338 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3339 MVT::f64, SDValue(U64, 0), In); 3340 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3341 if (Subtarget.hasHighWord()) 3342 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3343 MVT::i32, Out64); 3344 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3345 DAG.getConstant(32, DL, MVT::i64)); 3346 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3347 } 3348 llvm_unreachable("Unexpected bitcast combination"); 3349 } 3350 3351 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3352 SelectionDAG &DAG) const { 3353 MachineFunction &MF = DAG.getMachineFunction(); 3354 SystemZMachineFunctionInfo *FuncInfo = 3355 MF.getInfo<SystemZMachineFunctionInfo>(); 3356 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3357 3358 SDValue Chain = Op.getOperand(0); 3359 SDValue Addr = Op.getOperand(1); 3360 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3361 SDLoc DL(Op); 3362 3363 // The initial values of each field. 3364 const unsigned NumFields = 4; 3365 SDValue Fields[NumFields] = { 3366 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3367 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3368 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3369 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3370 }; 3371 3372 // Store each field into its respective slot. 3373 SDValue MemOps[NumFields]; 3374 unsigned Offset = 0; 3375 for (unsigned I = 0; I < NumFields; ++I) { 3376 SDValue FieldAddr = Addr; 3377 if (Offset != 0) 3378 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3379 DAG.getIntPtrConstant(Offset, DL)); 3380 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3381 MachinePointerInfo(SV, Offset)); 3382 Offset += 8; 3383 } 3384 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3385 } 3386 3387 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3388 SelectionDAG &DAG) const { 3389 SDValue Chain = Op.getOperand(0); 3390 SDValue DstPtr = Op.getOperand(1); 3391 SDValue SrcPtr = Op.getOperand(2); 3392 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3393 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3394 SDLoc DL(Op); 3395 3396 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3397 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3398 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3399 MachinePointerInfo(SrcSV)); 3400 } 3401 3402 SDValue SystemZTargetLowering:: 3403 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3404 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3405 MachineFunction &MF = DAG.getMachineFunction(); 3406 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3407 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3408 3409 SDValue Chain = Op.getOperand(0); 3410 SDValue Size = Op.getOperand(1); 3411 SDValue Align = Op.getOperand(2); 3412 SDLoc DL(Op); 3413 3414 // If user has set the no alignment function attribute, ignore 3415 // alloca alignments. 3416 uint64_t AlignVal = (RealignOpt ? 3417 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3418 3419 uint64_t StackAlign = TFI->getStackAlignment(); 3420 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3421 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3422 3423 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3424 SDValue NeededSpace = Size; 3425 3426 // Get a reference to the stack pointer. 3427 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3428 3429 // If we need a backchain, save it now. 3430 SDValue Backchain; 3431 if (StoreBackchain) 3432 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3433 3434 // Add extra space for alignment if needed. 3435 if (ExtraAlignSpace) 3436 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3437 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3438 3439 // Get the new stack pointer value. 3440 SDValue NewSP; 3441 if (hasInlineStackProbe(MF)) { 3442 NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, 3443 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); 3444 Chain = NewSP.getValue(1); 3445 } 3446 else { 3447 NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3448 // Copy the new stack pointer back. 3449 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3450 } 3451 3452 // The allocated data lives above the 160 bytes allocated for the standard 3453 // frame, plus any outgoing stack arguments. We don't know how much that 3454 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3455 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3456 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3457 3458 // Dynamically realign if needed. 3459 if (RequiredAlign > StackAlign) { 3460 Result = 3461 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3462 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3463 Result = 3464 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3465 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3466 } 3467 3468 if (StoreBackchain) 3469 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3470 3471 SDValue Ops[2] = { Result, Chain }; 3472 return DAG.getMergeValues(Ops, DL); 3473 } 3474 3475 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3476 SDValue Op, SelectionDAG &DAG) const { 3477 SDLoc DL(Op); 3478 3479 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3480 } 3481 3482 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3483 SelectionDAG &DAG) const { 3484 EVT VT = Op.getValueType(); 3485 SDLoc DL(Op); 3486 SDValue Ops[2]; 3487 if (is32Bit(VT)) 3488 // Just do a normal 64-bit multiplication and extract the results. 3489 // We define this so that it can be used for constant division. 3490 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3491 Op.getOperand(1), Ops[1], Ops[0]); 3492 else if (Subtarget.hasMiscellaneousExtensions2()) 3493 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3494 // the high result in the even register. ISD::SMUL_LOHI is defined to 3495 // return the low half first, so the results are in reverse order. 3496 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3497 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3498 else { 3499 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3500 // 3501 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3502 // 3503 // but using the fact that the upper halves are either all zeros 3504 // or all ones: 3505 // 3506 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3507 // 3508 // and grouping the right terms together since they are quicker than the 3509 // multiplication: 3510 // 3511 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3512 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3513 SDValue LL = Op.getOperand(0); 3514 SDValue RL = Op.getOperand(1); 3515 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3516 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3517 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3518 // the high result in the even register. ISD::SMUL_LOHI is defined to 3519 // return the low half first, so the results are in reverse order. 3520 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3521 LL, RL, Ops[1], Ops[0]); 3522 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3523 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3524 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3525 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3526 } 3527 return DAG.getMergeValues(Ops, DL); 3528 } 3529 3530 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3531 SelectionDAG &DAG) const { 3532 EVT VT = Op.getValueType(); 3533 SDLoc DL(Op); 3534 SDValue Ops[2]; 3535 if (is32Bit(VT)) 3536 // Just do a normal 64-bit multiplication and extract the results. 3537 // We define this so that it can be used for constant division. 3538 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3539 Op.getOperand(1), Ops[1], Ops[0]); 3540 else 3541 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3542 // the high result in the even register. ISD::UMUL_LOHI is defined to 3543 // return the low half first, so the results are in reverse order. 3544 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3545 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3546 return DAG.getMergeValues(Ops, DL); 3547 } 3548 3549 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3550 SelectionDAG &DAG) const { 3551 SDValue Op0 = Op.getOperand(0); 3552 SDValue Op1 = Op.getOperand(1); 3553 EVT VT = Op.getValueType(); 3554 SDLoc DL(Op); 3555 3556 // We use DSGF for 32-bit division. This means the first operand must 3557 // always be 64-bit, and the second operand should be 32-bit whenever 3558 // that is possible, to improve performance. 3559 if (is32Bit(VT)) 3560 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3561 else if (DAG.ComputeNumSignBits(Op1) > 32) 3562 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3563 3564 // DSG(F) returns the remainder in the even register and the 3565 // quotient in the odd register. 3566 SDValue Ops[2]; 3567 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3568 return DAG.getMergeValues(Ops, DL); 3569 } 3570 3571 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3572 SelectionDAG &DAG) const { 3573 EVT VT = Op.getValueType(); 3574 SDLoc DL(Op); 3575 3576 // DL(G) returns the remainder in the even register and the 3577 // quotient in the odd register. 3578 SDValue Ops[2]; 3579 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3580 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3581 return DAG.getMergeValues(Ops, DL); 3582 } 3583 3584 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3585 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3586 3587 // Get the known-zero masks for each operand. 3588 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3589 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3590 DAG.computeKnownBits(Ops[1])}; 3591 3592 // See if the upper 32 bits of one operand and the lower 32 bits of the 3593 // other are known zero. They are the low and high operands respectively. 3594 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3595 Known[1].Zero.getZExtValue() }; 3596 unsigned High, Low; 3597 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3598 High = 1, Low = 0; 3599 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3600 High = 0, Low = 1; 3601 else 3602 return Op; 3603 3604 SDValue LowOp = Ops[Low]; 3605 SDValue HighOp = Ops[High]; 3606 3607 // If the high part is a constant, we're better off using IILH. 3608 if (HighOp.getOpcode() == ISD::Constant) 3609 return Op; 3610 3611 // If the low part is a constant that is outside the range of LHI, 3612 // then we're better off using IILF. 3613 if (LowOp.getOpcode() == ISD::Constant) { 3614 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3615 if (!isInt<16>(Value)) 3616 return Op; 3617 } 3618 3619 // Check whether the high part is an AND that doesn't change the 3620 // high 32 bits and just masks out low bits. We can skip it if so. 3621 if (HighOp.getOpcode() == ISD::AND && 3622 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3623 SDValue HighOp0 = HighOp.getOperand(0); 3624 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3625 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3626 HighOp = HighOp0; 3627 } 3628 3629 // Take advantage of the fact that all GR32 operations only change the 3630 // low 32 bits by truncating Low to an i32 and inserting it directly 3631 // using a subreg. The interesting cases are those where the truncation 3632 // can be folded. 3633 SDLoc DL(Op); 3634 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3635 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3636 MVT::i64, HighOp, Low32); 3637 } 3638 3639 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3640 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3641 SelectionDAG &DAG) const { 3642 SDNode *N = Op.getNode(); 3643 SDValue LHS = N->getOperand(0); 3644 SDValue RHS = N->getOperand(1); 3645 SDLoc DL(N); 3646 unsigned BaseOp = 0; 3647 unsigned CCValid = 0; 3648 unsigned CCMask = 0; 3649 3650 switch (Op.getOpcode()) { 3651 default: llvm_unreachable("Unknown instruction!"); 3652 case ISD::SADDO: 3653 BaseOp = SystemZISD::SADDO; 3654 CCValid = SystemZ::CCMASK_ARITH; 3655 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3656 break; 3657 case ISD::SSUBO: 3658 BaseOp = SystemZISD::SSUBO; 3659 CCValid = SystemZ::CCMASK_ARITH; 3660 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3661 break; 3662 case ISD::UADDO: 3663 BaseOp = SystemZISD::UADDO; 3664 CCValid = SystemZ::CCMASK_LOGICAL; 3665 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3666 break; 3667 case ISD::USUBO: 3668 BaseOp = SystemZISD::USUBO; 3669 CCValid = SystemZ::CCMASK_LOGICAL; 3670 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3671 break; 3672 } 3673 3674 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3675 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3676 3677 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3678 if (N->getValueType(1) == MVT::i1) 3679 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3680 3681 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3682 } 3683 3684 static bool isAddCarryChain(SDValue Carry) { 3685 while (Carry.getOpcode() == ISD::ADDCARRY) 3686 Carry = Carry.getOperand(2); 3687 return Carry.getOpcode() == ISD::UADDO; 3688 } 3689 3690 static bool isSubBorrowChain(SDValue Carry) { 3691 while (Carry.getOpcode() == ISD::SUBCARRY) 3692 Carry = Carry.getOperand(2); 3693 return Carry.getOpcode() == ISD::USUBO; 3694 } 3695 3696 // Lower ADDCARRY/SUBCARRY nodes. 3697 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3698 SelectionDAG &DAG) const { 3699 3700 SDNode *N = Op.getNode(); 3701 MVT VT = N->getSimpleValueType(0); 3702 3703 // Let legalize expand this if it isn't a legal type yet. 3704 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3705 return SDValue(); 3706 3707 SDValue LHS = N->getOperand(0); 3708 SDValue RHS = N->getOperand(1); 3709 SDValue Carry = Op.getOperand(2); 3710 SDLoc DL(N); 3711 unsigned BaseOp = 0; 3712 unsigned CCValid = 0; 3713 unsigned CCMask = 0; 3714 3715 switch (Op.getOpcode()) { 3716 default: llvm_unreachable("Unknown instruction!"); 3717 case ISD::ADDCARRY: 3718 if (!isAddCarryChain(Carry)) 3719 return SDValue(); 3720 3721 BaseOp = SystemZISD::ADDCARRY; 3722 CCValid = SystemZ::CCMASK_LOGICAL; 3723 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3724 break; 3725 case ISD::SUBCARRY: 3726 if (!isSubBorrowChain(Carry)) 3727 return SDValue(); 3728 3729 BaseOp = SystemZISD::SUBCARRY; 3730 CCValid = SystemZ::CCMASK_LOGICAL; 3731 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3732 break; 3733 } 3734 3735 // Set the condition code from the carry flag. 3736 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3737 DAG.getConstant(CCValid, DL, MVT::i32), 3738 DAG.getConstant(CCMask, DL, MVT::i32)); 3739 3740 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3741 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3742 3743 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3744 if (N->getValueType(1) == MVT::i1) 3745 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3746 3747 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3748 } 3749 3750 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3751 SelectionDAG &DAG) const { 3752 EVT VT = Op.getValueType(); 3753 SDLoc DL(Op); 3754 Op = Op.getOperand(0); 3755 3756 // Handle vector types via VPOPCT. 3757 if (VT.isVector()) { 3758 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3759 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3760 switch (VT.getScalarSizeInBits()) { 3761 case 8: 3762 break; 3763 case 16: { 3764 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3765 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3766 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3767 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3768 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3769 break; 3770 } 3771 case 32: { 3772 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3773 DAG.getConstant(0, DL, MVT::i32)); 3774 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3775 break; 3776 } 3777 case 64: { 3778 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3779 DAG.getConstant(0, DL, MVT::i32)); 3780 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3781 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3782 break; 3783 } 3784 default: 3785 llvm_unreachable("Unexpected type"); 3786 } 3787 return Op; 3788 } 3789 3790 // Get the known-zero mask for the operand. 3791 KnownBits Known = DAG.computeKnownBits(Op); 3792 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 3793 if (NumSignificantBits == 0) 3794 return DAG.getConstant(0, DL, VT); 3795 3796 // Skip known-zero high parts of the operand. 3797 int64_t OrigBitSize = VT.getSizeInBits(); 3798 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3799 BitSize = std::min(BitSize, OrigBitSize); 3800 3801 // The POPCNT instruction counts the number of bits in each byte. 3802 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3803 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3804 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3805 3806 // Add up per-byte counts in a binary tree. All bits of Op at 3807 // position larger than BitSize remain zero throughout. 3808 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3809 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3810 if (BitSize != OrigBitSize) 3811 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3812 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3813 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3814 } 3815 3816 // Extract overall result from high byte. 3817 if (BitSize > 8) 3818 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3819 DAG.getConstant(BitSize - 8, DL, VT)); 3820 3821 return Op; 3822 } 3823 3824 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3825 SelectionDAG &DAG) const { 3826 SDLoc DL(Op); 3827 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3828 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3829 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3830 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3831 3832 // The only fence that needs an instruction is a sequentially-consistent 3833 // cross-thread fence. 3834 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3835 FenceSSID == SyncScope::System) { 3836 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3837 Op.getOperand(0)), 3838 0); 3839 } 3840 3841 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3842 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3843 } 3844 3845 // Op is an atomic load. Lower it into a normal volatile load. 3846 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3847 SelectionDAG &DAG) const { 3848 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3849 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3850 Node->getChain(), Node->getBasePtr(), 3851 Node->getMemoryVT(), Node->getMemOperand()); 3852 } 3853 3854 // Op is an atomic store. Lower it into a normal volatile store. 3855 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3856 SelectionDAG &DAG) const { 3857 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3858 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3859 Node->getBasePtr(), Node->getMemoryVT(), 3860 Node->getMemOperand()); 3861 // We have to enforce sequential consistency by performing a 3862 // serialization operation after the store. 3863 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3864 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3865 MVT::Other, Chain), 0); 3866 return Chain; 3867 } 3868 3869 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3870 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3871 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3872 SelectionDAG &DAG, 3873 unsigned Opcode) const { 3874 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3875 3876 // 32-bit operations need no code outside the main loop. 3877 EVT NarrowVT = Node->getMemoryVT(); 3878 EVT WideVT = MVT::i32; 3879 if (NarrowVT == WideVT) 3880 return Op; 3881 3882 int64_t BitSize = NarrowVT.getSizeInBits(); 3883 SDValue ChainIn = Node->getChain(); 3884 SDValue Addr = Node->getBasePtr(); 3885 SDValue Src2 = Node->getVal(); 3886 MachineMemOperand *MMO = Node->getMemOperand(); 3887 SDLoc DL(Node); 3888 EVT PtrVT = Addr.getValueType(); 3889 3890 // Convert atomic subtracts of constants into additions. 3891 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3892 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3893 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3894 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3895 } 3896 3897 // Get the address of the containing word. 3898 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3899 DAG.getConstant(-4, DL, PtrVT)); 3900 3901 // Get the number of bits that the word must be rotated left in order 3902 // to bring the field to the top bits of a GR32. 3903 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3904 DAG.getConstant(3, DL, PtrVT)); 3905 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3906 3907 // Get the complementing shift amount, for rotating a field in the top 3908 // bits back to its proper position. 3909 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3910 DAG.getConstant(0, DL, WideVT), BitShift); 3911 3912 // Extend the source operand to 32 bits and prepare it for the inner loop. 3913 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3914 // operations require the source to be shifted in advance. (This shift 3915 // can be folded if the source is constant.) For AND and NAND, the lower 3916 // bits must be set, while for other opcodes they should be left clear. 3917 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3918 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3919 DAG.getConstant(32 - BitSize, DL, WideVT)); 3920 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3921 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3922 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3923 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3924 3925 // Construct the ATOMIC_LOADW_* node. 3926 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3927 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3928 DAG.getConstant(BitSize, DL, WideVT) }; 3929 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3930 NarrowVT, MMO); 3931 3932 // Rotate the result of the final CS so that the field is in the lower 3933 // bits of a GR32, then truncate it. 3934 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3935 DAG.getConstant(BitSize, DL, WideVT)); 3936 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3937 3938 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3939 return DAG.getMergeValues(RetOps, DL); 3940 } 3941 3942 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3943 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3944 // operations into additions. 3945 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3946 SelectionDAG &DAG) const { 3947 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3948 EVT MemVT = Node->getMemoryVT(); 3949 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3950 // A full-width operation. 3951 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3952 SDValue Src2 = Node->getVal(); 3953 SDValue NegSrc2; 3954 SDLoc DL(Src2); 3955 3956 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3957 // Use an addition if the operand is constant and either LAA(G) is 3958 // available or the negative value is in the range of A(G)FHI. 3959 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3960 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3961 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3962 } else if (Subtarget.hasInterlockedAccess1()) 3963 // Use LAA(G) if available. 3964 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3965 Src2); 3966 3967 if (NegSrc2.getNode()) 3968 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3969 Node->getChain(), Node->getBasePtr(), NegSrc2, 3970 Node->getMemOperand()); 3971 3972 // Use the node as-is. 3973 return Op; 3974 } 3975 3976 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3977 } 3978 3979 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3980 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3981 SelectionDAG &DAG) const { 3982 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3983 SDValue ChainIn = Node->getOperand(0); 3984 SDValue Addr = Node->getOperand(1); 3985 SDValue CmpVal = Node->getOperand(2); 3986 SDValue SwapVal = Node->getOperand(3); 3987 MachineMemOperand *MMO = Node->getMemOperand(); 3988 SDLoc DL(Node); 3989 3990 // We have native support for 32-bit and 64-bit compare and swap, but we 3991 // still need to expand extracting the "success" result from the CC. 3992 EVT NarrowVT = Node->getMemoryVT(); 3993 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3994 if (NarrowVT == WideVT) { 3995 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3996 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3997 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3998 DL, Tys, Ops, NarrowVT, MMO); 3999 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4000 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4001 4002 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4003 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4004 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4005 return SDValue(); 4006 } 4007 4008 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 4009 // via a fullword ATOMIC_CMP_SWAPW operation. 4010 int64_t BitSize = NarrowVT.getSizeInBits(); 4011 EVT PtrVT = Addr.getValueType(); 4012 4013 // Get the address of the containing word. 4014 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4015 DAG.getConstant(-4, DL, PtrVT)); 4016 4017 // Get the number of bits that the word must be rotated left in order 4018 // to bring the field to the top bits of a GR32. 4019 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4020 DAG.getConstant(3, DL, PtrVT)); 4021 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4022 4023 // Get the complementing shift amount, for rotating a field in the top 4024 // bits back to its proper position. 4025 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4026 DAG.getConstant(0, DL, WideVT), BitShift); 4027 4028 // Construct the ATOMIC_CMP_SWAPW node. 4029 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4030 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4031 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4032 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4033 VTList, Ops, NarrowVT, MMO); 4034 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4035 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4036 4037 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4038 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4039 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4040 return SDValue(); 4041 } 4042 4043 MachineMemOperand::Flags 4044 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4045 // Because of how we convert atomic_load and atomic_store to normal loads and 4046 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4047 // since DAGCombine hasn't been updated to account for atomic, but non 4048 // volatile loads. (See D57601) 4049 if (auto *SI = dyn_cast<StoreInst>(&I)) 4050 if (SI->isAtomic()) 4051 return MachineMemOperand::MOVolatile; 4052 if (auto *LI = dyn_cast<LoadInst>(&I)) 4053 if (LI->isAtomic()) 4054 return MachineMemOperand::MOVolatile; 4055 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4056 if (AI->isAtomic()) 4057 return MachineMemOperand::MOVolatile; 4058 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4059 if (AI->isAtomic()) 4060 return MachineMemOperand::MOVolatile; 4061 return MachineMemOperand::MONone; 4062 } 4063 4064 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4065 SelectionDAG &DAG) const { 4066 MachineFunction &MF = DAG.getMachineFunction(); 4067 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4068 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4069 report_fatal_error("Variable-sized stack allocations are not supported " 4070 "in GHC calling convention"); 4071 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4072 SystemZ::R15D, Op.getValueType()); 4073 } 4074 4075 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4076 SelectionDAG &DAG) const { 4077 MachineFunction &MF = DAG.getMachineFunction(); 4078 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4079 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4080 4081 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4082 report_fatal_error("Variable-sized stack allocations are not supported " 4083 "in GHC calling convention"); 4084 4085 SDValue Chain = Op.getOperand(0); 4086 SDValue NewSP = Op.getOperand(1); 4087 SDValue Backchain; 4088 SDLoc DL(Op); 4089 4090 if (StoreBackchain) { 4091 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 4092 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 4093 } 4094 4095 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 4096 4097 if (StoreBackchain) 4098 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 4099 4100 return Chain; 4101 } 4102 4103 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4104 SelectionDAG &DAG) const { 4105 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4106 if (!IsData) 4107 // Just preserve the chain. 4108 return Op.getOperand(0); 4109 4110 SDLoc DL(Op); 4111 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4112 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4113 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4114 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4115 Op.getOperand(1)}; 4116 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4117 Node->getVTList(), Ops, 4118 Node->getMemoryVT(), Node->getMemOperand()); 4119 } 4120 4121 // Convert condition code in CCReg to an i32 value. 4122 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4123 SDLoc DL(CCReg); 4124 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4125 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4126 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4127 } 4128 4129 SDValue 4130 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4131 SelectionDAG &DAG) const { 4132 unsigned Opcode, CCValid; 4133 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4134 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4135 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4136 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4137 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4138 return SDValue(); 4139 } 4140 4141 return SDValue(); 4142 } 4143 4144 SDValue 4145 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4146 SelectionDAG &DAG) const { 4147 unsigned Opcode, CCValid; 4148 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4149 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4150 if (Op->getNumValues() == 1) 4151 return getCCResult(DAG, SDValue(Node, 0)); 4152 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4153 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4154 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4155 } 4156 4157 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4158 switch (Id) { 4159 case Intrinsic::thread_pointer: 4160 return lowerThreadPointer(SDLoc(Op), DAG); 4161 4162 case Intrinsic::s390_vpdi: 4163 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4164 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4165 4166 case Intrinsic::s390_vperm: 4167 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4168 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4169 4170 case Intrinsic::s390_vuphb: 4171 case Intrinsic::s390_vuphh: 4172 case Intrinsic::s390_vuphf: 4173 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4174 Op.getOperand(1)); 4175 4176 case Intrinsic::s390_vuplhb: 4177 case Intrinsic::s390_vuplhh: 4178 case Intrinsic::s390_vuplhf: 4179 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4180 Op.getOperand(1)); 4181 4182 case Intrinsic::s390_vuplb: 4183 case Intrinsic::s390_vuplhw: 4184 case Intrinsic::s390_vuplf: 4185 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4186 Op.getOperand(1)); 4187 4188 case Intrinsic::s390_vupllb: 4189 case Intrinsic::s390_vupllh: 4190 case Intrinsic::s390_vupllf: 4191 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4192 Op.getOperand(1)); 4193 4194 case Intrinsic::s390_vsumb: 4195 case Intrinsic::s390_vsumh: 4196 case Intrinsic::s390_vsumgh: 4197 case Intrinsic::s390_vsumgf: 4198 case Intrinsic::s390_vsumqf: 4199 case Intrinsic::s390_vsumqg: 4200 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4201 Op.getOperand(1), Op.getOperand(2)); 4202 } 4203 4204 return SDValue(); 4205 } 4206 4207 namespace { 4208 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4209 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4210 // Operand is the constant third operand, otherwise it is the number of 4211 // bytes in each element of the result. 4212 struct Permute { 4213 unsigned Opcode; 4214 unsigned Operand; 4215 unsigned char Bytes[SystemZ::VectorBytes]; 4216 }; 4217 } 4218 4219 static const Permute PermuteForms[] = { 4220 // VMRHG 4221 { SystemZISD::MERGE_HIGH, 8, 4222 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4223 // VMRHF 4224 { SystemZISD::MERGE_HIGH, 4, 4225 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4226 // VMRHH 4227 { SystemZISD::MERGE_HIGH, 2, 4228 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4229 // VMRHB 4230 { SystemZISD::MERGE_HIGH, 1, 4231 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4232 // VMRLG 4233 { SystemZISD::MERGE_LOW, 8, 4234 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4235 // VMRLF 4236 { SystemZISD::MERGE_LOW, 4, 4237 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4238 // VMRLH 4239 { SystemZISD::MERGE_LOW, 2, 4240 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4241 // VMRLB 4242 { SystemZISD::MERGE_LOW, 1, 4243 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4244 // VPKG 4245 { SystemZISD::PACK, 4, 4246 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4247 // VPKF 4248 { SystemZISD::PACK, 2, 4249 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4250 // VPKH 4251 { SystemZISD::PACK, 1, 4252 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4253 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4254 { SystemZISD::PERMUTE_DWORDS, 4, 4255 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4256 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4257 { SystemZISD::PERMUTE_DWORDS, 1, 4258 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4259 }; 4260 4261 // Called after matching a vector shuffle against a particular pattern. 4262 // Both the original shuffle and the pattern have two vector operands. 4263 // OpNos[0] is the operand of the original shuffle that should be used for 4264 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4265 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4266 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4267 // for operands 0 and 1 of the pattern. 4268 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4269 if (OpNos[0] < 0) { 4270 if (OpNos[1] < 0) 4271 return false; 4272 OpNo0 = OpNo1 = OpNos[1]; 4273 } else if (OpNos[1] < 0) { 4274 OpNo0 = OpNo1 = OpNos[0]; 4275 } else { 4276 OpNo0 = OpNos[0]; 4277 OpNo1 = OpNos[1]; 4278 } 4279 return true; 4280 } 4281 4282 // Bytes is a VPERM-like permute vector, except that -1 is used for 4283 // undefined bytes. Return true if the VPERM can be implemented using P. 4284 // When returning true set OpNo0 to the VPERM operand that should be 4285 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4286 // 4287 // For example, if swapping the VPERM operands allows P to match, OpNo0 4288 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4289 // operand, but rewriting it to use two duplicated operands allows it to 4290 // match P, then OpNo0 and OpNo1 will be the same. 4291 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4292 unsigned &OpNo0, unsigned &OpNo1) { 4293 int OpNos[] = { -1, -1 }; 4294 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4295 int Elt = Bytes[I]; 4296 if (Elt >= 0) { 4297 // Make sure that the two permute vectors use the same suboperand 4298 // byte number. Only the operand numbers (the high bits) are 4299 // allowed to differ. 4300 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4301 return false; 4302 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4303 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4304 // Make sure that the operand mappings are consistent with previous 4305 // elements. 4306 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4307 return false; 4308 OpNos[ModelOpNo] = RealOpNo; 4309 } 4310 } 4311 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4312 } 4313 4314 // As above, but search for a matching permute. 4315 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4316 unsigned &OpNo0, unsigned &OpNo1) { 4317 for (auto &P : PermuteForms) 4318 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4319 return &P; 4320 return nullptr; 4321 } 4322 4323 // Bytes is a VPERM-like permute vector, except that -1 is used for 4324 // undefined bytes. This permute is an operand of an outer permute. 4325 // See whether redistributing the -1 bytes gives a shuffle that can be 4326 // implemented using P. If so, set Transform to a VPERM-like permute vector 4327 // that, when applied to the result of P, gives the original permute in Bytes. 4328 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4329 const Permute &P, 4330 SmallVectorImpl<int> &Transform) { 4331 unsigned To = 0; 4332 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4333 int Elt = Bytes[From]; 4334 if (Elt < 0) 4335 // Byte number From of the result is undefined. 4336 Transform[From] = -1; 4337 else { 4338 while (P.Bytes[To] != Elt) { 4339 To += 1; 4340 if (To == SystemZ::VectorBytes) 4341 return false; 4342 } 4343 Transform[From] = To; 4344 } 4345 } 4346 return true; 4347 } 4348 4349 // As above, but search for a matching permute. 4350 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4351 SmallVectorImpl<int> &Transform) { 4352 for (auto &P : PermuteForms) 4353 if (matchDoublePermute(Bytes, P, Transform)) 4354 return &P; 4355 return nullptr; 4356 } 4357 4358 // Convert the mask of the given shuffle op into a byte-level mask, 4359 // as if it had type vNi8. 4360 static bool getVPermMask(SDValue ShuffleOp, 4361 SmallVectorImpl<int> &Bytes) { 4362 EVT VT = ShuffleOp.getValueType(); 4363 unsigned NumElements = VT.getVectorNumElements(); 4364 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4365 4366 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4367 Bytes.resize(NumElements * BytesPerElement, -1); 4368 for (unsigned I = 0; I < NumElements; ++I) { 4369 int Index = VSN->getMaskElt(I); 4370 if (Index >= 0) 4371 for (unsigned J = 0; J < BytesPerElement; ++J) 4372 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4373 } 4374 return true; 4375 } 4376 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4377 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4378 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4379 Bytes.resize(NumElements * BytesPerElement, -1); 4380 for (unsigned I = 0; I < NumElements; ++I) 4381 for (unsigned J = 0; J < BytesPerElement; ++J) 4382 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4383 return true; 4384 } 4385 return false; 4386 } 4387 4388 // Bytes is a VPERM-like permute vector, except that -1 is used for 4389 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4390 // the result come from a contiguous sequence of bytes from one input. 4391 // Set Base to the selector for the first byte if so. 4392 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4393 unsigned BytesPerElement, int &Base) { 4394 Base = -1; 4395 for (unsigned I = 0; I < BytesPerElement; ++I) { 4396 if (Bytes[Start + I] >= 0) { 4397 unsigned Elem = Bytes[Start + I]; 4398 if (Base < 0) { 4399 Base = Elem - I; 4400 // Make sure the bytes would come from one input operand. 4401 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4402 return false; 4403 } else if (unsigned(Base) != Elem - I) 4404 return false; 4405 } 4406 } 4407 return true; 4408 } 4409 4410 // Bytes is a VPERM-like permute vector, except that -1 is used for 4411 // undefined bytes. Return true if it can be performed using VSLDB. 4412 // When returning true, set StartIndex to the shift amount and OpNo0 4413 // and OpNo1 to the VPERM operands that should be used as the first 4414 // and second shift operand respectively. 4415 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4416 unsigned &StartIndex, unsigned &OpNo0, 4417 unsigned &OpNo1) { 4418 int OpNos[] = { -1, -1 }; 4419 int Shift = -1; 4420 for (unsigned I = 0; I < 16; ++I) { 4421 int Index = Bytes[I]; 4422 if (Index >= 0) { 4423 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4424 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4425 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4426 if (Shift < 0) 4427 Shift = ExpectedShift; 4428 else if (Shift != ExpectedShift) 4429 return false; 4430 // Make sure that the operand mappings are consistent with previous 4431 // elements. 4432 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4433 return false; 4434 OpNos[ModelOpNo] = RealOpNo; 4435 } 4436 } 4437 StartIndex = Shift; 4438 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4439 } 4440 4441 // Create a node that performs P on operands Op0 and Op1, casting the 4442 // operands to the appropriate type. The type of the result is determined by P. 4443 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4444 const Permute &P, SDValue Op0, SDValue Op1) { 4445 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4446 // elements of a PACK are twice as wide as the outputs. 4447 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4448 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4449 P.Operand); 4450 // Cast both operands to the appropriate type. 4451 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4452 SystemZ::VectorBytes / InBytes); 4453 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4454 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4455 SDValue Op; 4456 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4457 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4458 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4459 } else if (P.Opcode == SystemZISD::PACK) { 4460 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4461 SystemZ::VectorBytes / P.Operand); 4462 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4463 } else { 4464 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4465 } 4466 return Op; 4467 } 4468 4469 static bool isZeroVector(SDValue N) { 4470 if (N->getOpcode() == ISD::BITCAST) 4471 N = N->getOperand(0); 4472 if (N->getOpcode() == ISD::SPLAT_VECTOR) 4473 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 4474 return Op->getZExtValue() == 0; 4475 return ISD::isBuildVectorAllZeros(N.getNode()); 4476 } 4477 4478 // Return the index of the zero/undef vector, or UINT32_MAX if not found. 4479 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { 4480 for (unsigned I = 0; I < Num ; I++) 4481 if (isZeroVector(Ops[I])) 4482 return I; 4483 return UINT32_MAX; 4484 } 4485 4486 // Bytes is a VPERM-like permute vector, except that -1 is used for 4487 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4488 // VSLDB or VPERM. 4489 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4490 SDValue *Ops, 4491 const SmallVectorImpl<int> &Bytes) { 4492 for (unsigned I = 0; I < 2; ++I) 4493 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4494 4495 // First see whether VSLDB can be used. 4496 unsigned StartIndex, OpNo0, OpNo1; 4497 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4498 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4499 Ops[OpNo1], 4500 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4501 4502 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 4503 // eliminate a zero vector by reusing any zero index in the permute vector. 4504 unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); 4505 if (ZeroVecIdx != UINT32_MAX) { 4506 bool MaskFirst = true; 4507 int ZeroIdx = -1; 4508 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4509 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4510 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4511 if (OpNo == ZeroVecIdx && I == 0) { 4512 // If the first byte is zero, use mask as first operand. 4513 ZeroIdx = 0; 4514 break; 4515 } 4516 if (OpNo != ZeroVecIdx && Byte == 0) { 4517 // If mask contains a zero, use it by placing that vector first. 4518 ZeroIdx = I + SystemZ::VectorBytes; 4519 MaskFirst = false; 4520 break; 4521 } 4522 } 4523 if (ZeroIdx != -1) { 4524 SDValue IndexNodes[SystemZ::VectorBytes]; 4525 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4526 if (Bytes[I] >= 0) { 4527 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4528 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4529 if (OpNo == ZeroVecIdx) 4530 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 4531 else { 4532 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 4533 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 4534 } 4535 } else 4536 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4537 } 4538 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4539 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 4540 if (MaskFirst) 4541 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 4542 Mask); 4543 else 4544 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 4545 Mask); 4546 } 4547 } 4548 4549 SDValue IndexNodes[SystemZ::VectorBytes]; 4550 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4551 if (Bytes[I] >= 0) 4552 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4553 else 4554 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4555 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4556 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 4557 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 4558 } 4559 4560 namespace { 4561 // Describes a general N-operand vector shuffle. 4562 struct GeneralShuffle { 4563 GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} 4564 void addUndef(); 4565 bool add(SDValue, unsigned); 4566 SDValue getNode(SelectionDAG &, const SDLoc &); 4567 void tryPrepareForUnpack(); 4568 bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } 4569 SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); 4570 4571 // The operands of the shuffle. 4572 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4573 4574 // Index I is -1 if byte I of the result is undefined. Otherwise the 4575 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4576 // Bytes[I] / SystemZ::VectorBytes. 4577 SmallVector<int, SystemZ::VectorBytes> Bytes; 4578 4579 // The type of the shuffle result. 4580 EVT VT; 4581 4582 // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. 4583 unsigned UnpackFromEltSize; 4584 }; 4585 } 4586 4587 // Add an extra undefined element to the shuffle. 4588 void GeneralShuffle::addUndef() { 4589 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4590 for (unsigned I = 0; I < BytesPerElement; ++I) 4591 Bytes.push_back(-1); 4592 } 4593 4594 // Add an extra element to the shuffle, taking it from element Elem of Op. 4595 // A null Op indicates a vector input whose value will be calculated later; 4596 // there is at most one such input per shuffle and it always has the same 4597 // type as the result. Aborts and returns false if the source vector elements 4598 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4599 // LLVM they become implicitly extended, but this is rare and not optimized. 4600 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4601 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4602 4603 // The source vector can have wider elements than the result, 4604 // either through an explicit TRUNCATE or because of type legalization. 4605 // We want the least significant part. 4606 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4607 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4608 4609 // Return false if the source elements are smaller than their destination 4610 // elements. 4611 if (FromBytesPerElement < BytesPerElement) 4612 return false; 4613 4614 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4615 (FromBytesPerElement - BytesPerElement)); 4616 4617 // Look through things like shuffles and bitcasts. 4618 while (Op.getNode()) { 4619 if (Op.getOpcode() == ISD::BITCAST) 4620 Op = Op.getOperand(0); 4621 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4622 // See whether the bytes we need come from a contiguous part of one 4623 // operand. 4624 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4625 if (!getVPermMask(Op, OpBytes)) 4626 break; 4627 int NewByte; 4628 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4629 break; 4630 if (NewByte < 0) { 4631 addUndef(); 4632 return true; 4633 } 4634 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4635 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4636 } else if (Op.isUndef()) { 4637 addUndef(); 4638 return true; 4639 } else 4640 break; 4641 } 4642 4643 // Make sure that the source of the extraction is in Ops. 4644 unsigned OpNo = 0; 4645 for (; OpNo < Ops.size(); ++OpNo) 4646 if (Ops[OpNo] == Op) 4647 break; 4648 if (OpNo == Ops.size()) 4649 Ops.push_back(Op); 4650 4651 // Add the element to Bytes. 4652 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4653 for (unsigned I = 0; I < BytesPerElement; ++I) 4654 Bytes.push_back(Base + I); 4655 4656 return true; 4657 } 4658 4659 // Return SDNodes for the completed shuffle. 4660 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4661 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4662 4663 if (Ops.size() == 0) 4664 return DAG.getUNDEF(VT); 4665 4666 // Use a single unpack if possible as the last operation. 4667 tryPrepareForUnpack(); 4668 4669 // Make sure that there are at least two shuffle operands. 4670 if (Ops.size() == 1) 4671 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4672 4673 // Create a tree of shuffles, deferring root node until after the loop. 4674 // Try to redistribute the undefined elements of non-root nodes so that 4675 // the non-root shuffles match something like a pack or merge, then adjust 4676 // the parent node's permute vector to compensate for the new order. 4677 // Among other things, this copes with vectors like <2 x i16> that were 4678 // padded with undefined elements during type legalization. 4679 // 4680 // In the best case this redistribution will lead to the whole tree 4681 // using packs and merges. It should rarely be a loss in other cases. 4682 unsigned Stride = 1; 4683 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4684 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4685 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4686 4687 // Create a mask for just these two operands. 4688 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4689 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4690 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4691 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4692 if (OpNo == I) 4693 NewBytes[J] = Byte; 4694 else if (OpNo == I + Stride) 4695 NewBytes[J] = SystemZ::VectorBytes + Byte; 4696 else 4697 NewBytes[J] = -1; 4698 } 4699 // See if it would be better to reorganize NewMask to avoid using VPERM. 4700 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4701 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4702 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4703 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4704 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4705 if (NewBytes[J] >= 0) { 4706 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4707 "Invalid double permute"); 4708 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4709 } else 4710 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4711 } 4712 } else { 4713 // Just use NewBytes on the operands. 4714 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4715 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4716 if (NewBytes[J] >= 0) 4717 Bytes[J] = I * SystemZ::VectorBytes + J; 4718 } 4719 } 4720 } 4721 4722 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4723 if (Stride > 1) { 4724 Ops[1] = Ops[Stride]; 4725 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4726 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4727 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4728 } 4729 4730 // Look for an instruction that can do the permute without resorting 4731 // to VPERM. 4732 unsigned OpNo0, OpNo1; 4733 SDValue Op; 4734 if (unpackWasPrepared() && Ops[1].isUndef()) 4735 Op = Ops[0]; 4736 else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4737 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4738 else 4739 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4740 4741 Op = insertUnpackIfPrepared(DAG, DL, Op); 4742 4743 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4744 } 4745 4746 #ifndef NDEBUG 4747 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { 4748 dbgs() << Msg.c_str() << " { "; 4749 for (unsigned i = 0; i < Bytes.size(); i++) 4750 dbgs() << Bytes[i] << " "; 4751 dbgs() << "}\n"; 4752 } 4753 #endif 4754 4755 // If the Bytes vector matches an unpack operation, prepare to do the unpack 4756 // after all else by removing the zero vector and the effect of the unpack on 4757 // Bytes. 4758 void GeneralShuffle::tryPrepareForUnpack() { 4759 uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); 4760 if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) 4761 return; 4762 4763 // Only do this if removing the zero vector reduces the depth, otherwise 4764 // the critical path will increase with the final unpack. 4765 if (Ops.size() > 2 && 4766 Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) 4767 return; 4768 4769 // Find an unpack that would allow removing the zero vector from Ops. 4770 UnpackFromEltSize = 1; 4771 for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { 4772 bool MatchUnpack = true; 4773 SmallVector<int, SystemZ::VectorBytes> SrcBytes; 4774 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { 4775 unsigned ToEltSize = UnpackFromEltSize * 2; 4776 bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; 4777 if (!IsZextByte) 4778 SrcBytes.push_back(Bytes[Elt]); 4779 if (Bytes[Elt] != -1) { 4780 unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; 4781 if (IsZextByte != (OpNo == ZeroVecOpNo)) { 4782 MatchUnpack = false; 4783 break; 4784 } 4785 } 4786 } 4787 if (MatchUnpack) { 4788 if (Ops.size() == 2) { 4789 // Don't use unpack if a single source operand needs rearrangement. 4790 for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) 4791 if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { 4792 UnpackFromEltSize = UINT_MAX; 4793 return; 4794 } 4795 } 4796 break; 4797 } 4798 } 4799 if (UnpackFromEltSize > 4) 4800 return; 4801 4802 LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " 4803 << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo 4804 << ".\n"; 4805 dumpBytes(Bytes, "Original Bytes vector:");); 4806 4807 // Apply the unpack in reverse to the Bytes array. 4808 unsigned B = 0; 4809 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { 4810 Elt += UnpackFromEltSize; 4811 for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) 4812 Bytes[B] = Bytes[Elt]; 4813 } 4814 while (B < SystemZ::VectorBytes) 4815 Bytes[B++] = -1; 4816 4817 // Remove the zero vector from Ops 4818 Ops.erase(&Ops[ZeroVecOpNo]); 4819 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4820 if (Bytes[I] >= 0) { 4821 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4822 if (OpNo > ZeroVecOpNo) 4823 Bytes[I] -= SystemZ::VectorBytes; 4824 } 4825 4826 LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); 4827 dbgs() << "\n";); 4828 } 4829 4830 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, 4831 const SDLoc &DL, 4832 SDValue Op) { 4833 if (!unpackWasPrepared()) 4834 return Op; 4835 unsigned InBits = UnpackFromEltSize * 8; 4836 EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), 4837 SystemZ::VectorBits / InBits); 4838 SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); 4839 unsigned OutBits = InBits * 2; 4840 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), 4841 SystemZ::VectorBits / OutBits); 4842 return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); 4843 } 4844 4845 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4846 static bool isScalarToVector(SDValue Op) { 4847 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4848 if (!Op.getOperand(I).isUndef()) 4849 return false; 4850 return true; 4851 } 4852 4853 // Return a vector of type VT that contains Value in the first element. 4854 // The other elements don't matter. 4855 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4856 SDValue Value) { 4857 // If we have a constant, replicate it to all elements and let the 4858 // BUILD_VECTOR lowering take care of it. 4859 if (Value.getOpcode() == ISD::Constant || 4860 Value.getOpcode() == ISD::ConstantFP) { 4861 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4862 return DAG.getBuildVector(VT, DL, Ops); 4863 } 4864 if (Value.isUndef()) 4865 return DAG.getUNDEF(VT); 4866 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4867 } 4868 4869 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4870 // element 1. Used for cases in which replication is cheap. 4871 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4872 SDValue Op0, SDValue Op1) { 4873 if (Op0.isUndef()) { 4874 if (Op1.isUndef()) 4875 return DAG.getUNDEF(VT); 4876 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4877 } 4878 if (Op1.isUndef()) 4879 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4880 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4881 buildScalarToVector(DAG, DL, VT, Op0), 4882 buildScalarToVector(DAG, DL, VT, Op1)); 4883 } 4884 4885 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4886 // vector for them. 4887 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4888 SDValue Op1) { 4889 if (Op0.isUndef() && Op1.isUndef()) 4890 return DAG.getUNDEF(MVT::v2i64); 4891 // If one of the two inputs is undefined then replicate the other one, 4892 // in order to avoid using another register unnecessarily. 4893 if (Op0.isUndef()) 4894 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4895 else if (Op1.isUndef()) 4896 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4897 else { 4898 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4899 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4900 } 4901 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4902 } 4903 4904 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4905 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4906 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4907 // would benefit from this representation and return it if so. 4908 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4909 BuildVectorSDNode *BVN) { 4910 EVT VT = BVN->getValueType(0); 4911 unsigned NumElements = VT.getVectorNumElements(); 4912 4913 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4914 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4915 // need a BUILD_VECTOR, add an additional placeholder operand for that 4916 // BUILD_VECTOR and store its operands in ResidueOps. 4917 GeneralShuffle GS(VT); 4918 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4919 bool FoundOne = false; 4920 for (unsigned I = 0; I < NumElements; ++I) { 4921 SDValue Op = BVN->getOperand(I); 4922 if (Op.getOpcode() == ISD::TRUNCATE) 4923 Op = Op.getOperand(0); 4924 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4925 Op.getOperand(1).getOpcode() == ISD::Constant) { 4926 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4927 if (!GS.add(Op.getOperand(0), Elem)) 4928 return SDValue(); 4929 FoundOne = true; 4930 } else if (Op.isUndef()) { 4931 GS.addUndef(); 4932 } else { 4933 if (!GS.add(SDValue(), ResidueOps.size())) 4934 return SDValue(); 4935 ResidueOps.push_back(BVN->getOperand(I)); 4936 } 4937 } 4938 4939 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4940 if (!FoundOne) 4941 return SDValue(); 4942 4943 // Create the BUILD_VECTOR for the remaining elements, if any. 4944 if (!ResidueOps.empty()) { 4945 while (ResidueOps.size() < NumElements) 4946 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4947 for (auto &Op : GS.Ops) { 4948 if (!Op.getNode()) { 4949 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4950 break; 4951 } 4952 } 4953 } 4954 return GS.getNode(DAG, SDLoc(BVN)); 4955 } 4956 4957 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 4958 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 4959 return true; 4960 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 4961 return true; 4962 return false; 4963 } 4964 4965 // Combine GPR scalar values Elems into a vector of type VT. 4966 SDValue 4967 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4968 SmallVectorImpl<SDValue> &Elems) const { 4969 // See whether there is a single replicated value. 4970 SDValue Single; 4971 unsigned int NumElements = Elems.size(); 4972 unsigned int Count = 0; 4973 for (auto Elem : Elems) { 4974 if (!Elem.isUndef()) { 4975 if (!Single.getNode()) 4976 Single = Elem; 4977 else if (Elem != Single) { 4978 Single = SDValue(); 4979 break; 4980 } 4981 Count += 1; 4982 } 4983 } 4984 // There are three cases here: 4985 // 4986 // - if the only defined element is a loaded one, the best sequence 4987 // is a replicating load. 4988 // 4989 // - otherwise, if the only defined element is an i64 value, we will 4990 // end up with the same VLVGP sequence regardless of whether we short-cut 4991 // for replication or fall through to the later code. 4992 // 4993 // - otherwise, if the only defined element is an i32 or smaller value, 4994 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4995 // This is only a win if the single defined element is used more than once. 4996 // In other cases we're better off using a single VLVGx. 4997 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 4998 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4999 5000 // If all elements are loads, use VLREP/VLEs (below). 5001 bool AllLoads = true; 5002 for (auto Elem : Elems) 5003 if (!isVectorElementLoad(Elem)) { 5004 AllLoads = false; 5005 break; 5006 } 5007 5008 // The best way of building a v2i64 from two i64s is to use VLVGP. 5009 if (VT == MVT::v2i64 && !AllLoads) 5010 return joinDwords(DAG, DL, Elems[0], Elems[1]); 5011 5012 // Use a 64-bit merge high to combine two doubles. 5013 if (VT == MVT::v2f64 && !AllLoads) 5014 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5015 5016 // Build v4f32 values directly from the FPRs: 5017 // 5018 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 5019 // V V VMRHF 5020 // <ABxx> <CDxx> 5021 // V VMRHG 5022 // <ABCD> 5023 if (VT == MVT::v4f32 && !AllLoads) { 5024 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5025 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 5026 // Avoid unnecessary undefs by reusing the other operand. 5027 if (Op01.isUndef()) 5028 Op01 = Op23; 5029 else if (Op23.isUndef()) 5030 Op23 = Op01; 5031 // Merging identical replications is a no-op. 5032 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 5033 return Op01; 5034 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 5035 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 5036 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 5037 DL, MVT::v2i64, Op01, Op23); 5038 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5039 } 5040 5041 // Collect the constant terms. 5042 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 5043 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 5044 5045 unsigned NumConstants = 0; 5046 for (unsigned I = 0; I < NumElements; ++I) { 5047 SDValue Elem = Elems[I]; 5048 if (Elem.getOpcode() == ISD::Constant || 5049 Elem.getOpcode() == ISD::ConstantFP) { 5050 NumConstants += 1; 5051 Constants[I] = Elem; 5052 Done[I] = true; 5053 } 5054 } 5055 // If there was at least one constant, fill in the other elements of 5056 // Constants with undefs to get a full vector constant and use that 5057 // as the starting point. 5058 SDValue Result; 5059 SDValue ReplicatedVal; 5060 if (NumConstants > 0) { 5061 for (unsigned I = 0; I < NumElements; ++I) 5062 if (!Constants[I].getNode()) 5063 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 5064 Result = DAG.getBuildVector(VT, DL, Constants); 5065 } else { 5066 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 5067 // avoid a false dependency on any previous contents of the vector 5068 // register. 5069 5070 // Use a VLREP if at least one element is a load. Make sure to replicate 5071 // the load with the most elements having its value. 5072 std::map<const SDNode*, unsigned> UseCounts; 5073 SDNode *LoadMaxUses = nullptr; 5074 for (unsigned I = 0; I < NumElements; ++I) 5075 if (isVectorElementLoad(Elems[I])) { 5076 SDNode *Ld = Elems[I].getNode(); 5077 UseCounts[Ld]++; 5078 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 5079 LoadMaxUses = Ld; 5080 } 5081 if (LoadMaxUses != nullptr) { 5082 ReplicatedVal = SDValue(LoadMaxUses, 0); 5083 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 5084 } else { 5085 // Try to use VLVGP. 5086 unsigned I1 = NumElements / 2 - 1; 5087 unsigned I2 = NumElements - 1; 5088 bool Def1 = !Elems[I1].isUndef(); 5089 bool Def2 = !Elems[I2].isUndef(); 5090 if (Def1 || Def2) { 5091 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 5092 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 5093 Result = DAG.getNode(ISD::BITCAST, DL, VT, 5094 joinDwords(DAG, DL, Elem1, Elem2)); 5095 Done[I1] = true; 5096 Done[I2] = true; 5097 } else 5098 Result = DAG.getUNDEF(VT); 5099 } 5100 } 5101 5102 // Use VLVGx to insert the other elements. 5103 for (unsigned I = 0; I < NumElements; ++I) 5104 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 5105 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 5106 DAG.getConstant(I, DL, MVT::i32)); 5107 return Result; 5108 } 5109 5110 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 5111 SelectionDAG &DAG) const { 5112 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 5113 SDLoc DL(Op); 5114 EVT VT = Op.getValueType(); 5115 5116 if (BVN->isConstant()) { 5117 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 5118 return Op; 5119 5120 // Fall back to loading it from memory. 5121 return SDValue(); 5122 } 5123 5124 // See if we should use shuffles to construct the vector from other vectors. 5125 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 5126 return Res; 5127 5128 // Detect SCALAR_TO_VECTOR conversions. 5129 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 5130 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 5131 5132 // Otherwise use buildVector to build the vector up from GPRs. 5133 unsigned NumElements = Op.getNumOperands(); 5134 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 5135 for (unsigned I = 0; I < NumElements; ++I) 5136 Ops[I] = Op.getOperand(I); 5137 return buildVector(DAG, DL, VT, Ops); 5138 } 5139 5140 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5141 SelectionDAG &DAG) const { 5142 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 5143 SDLoc DL(Op); 5144 EVT VT = Op.getValueType(); 5145 unsigned NumElements = VT.getVectorNumElements(); 5146 5147 if (VSN->isSplat()) { 5148 SDValue Op0 = Op.getOperand(0); 5149 unsigned Index = VSN->getSplatIndex(); 5150 assert(Index < VT.getVectorNumElements() && 5151 "Splat index should be defined and in first operand"); 5152 // See whether the value we're splatting is directly available as a scalar. 5153 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5154 Op0.getOpcode() == ISD::BUILD_VECTOR) 5155 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 5156 // Otherwise keep it as a vector-to-vector operation. 5157 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 5158 DAG.getTargetConstant(Index, DL, MVT::i32)); 5159 } 5160 5161 GeneralShuffle GS(VT); 5162 for (unsigned I = 0; I < NumElements; ++I) { 5163 int Elt = VSN->getMaskElt(I); 5164 if (Elt < 0) 5165 GS.addUndef(); 5166 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 5167 unsigned(Elt) % NumElements)) 5168 return SDValue(); 5169 } 5170 return GS.getNode(DAG, SDLoc(VSN)); 5171 } 5172 5173 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5174 SelectionDAG &DAG) const { 5175 SDLoc DL(Op); 5176 // Just insert the scalar into element 0 of an undefined vector. 5177 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 5178 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 5179 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 5180 } 5181 5182 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5183 SelectionDAG &DAG) const { 5184 // Handle insertions of floating-point values. 5185 SDLoc DL(Op); 5186 SDValue Op0 = Op.getOperand(0); 5187 SDValue Op1 = Op.getOperand(1); 5188 SDValue Op2 = Op.getOperand(2); 5189 EVT VT = Op.getValueType(); 5190 5191 // Insertions into constant indices of a v2f64 can be done using VPDI. 5192 // However, if the inserted value is a bitcast or a constant then it's 5193 // better to use GPRs, as below. 5194 if (VT == MVT::v2f64 && 5195 Op1.getOpcode() != ISD::BITCAST && 5196 Op1.getOpcode() != ISD::ConstantFP && 5197 Op2.getOpcode() == ISD::Constant) { 5198 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 5199 unsigned Mask = VT.getVectorNumElements() - 1; 5200 if (Index <= Mask) 5201 return Op; 5202 } 5203 5204 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5205 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5206 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5207 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5208 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5209 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5210 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5211 } 5212 5213 SDValue 5214 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5215 SelectionDAG &DAG) const { 5216 // Handle extractions of floating-point values. 5217 SDLoc DL(Op); 5218 SDValue Op0 = Op.getOperand(0); 5219 SDValue Op1 = Op.getOperand(1); 5220 EVT VT = Op.getValueType(); 5221 EVT VecVT = Op0.getValueType(); 5222 5223 // Extractions of constant indices can be done directly. 5224 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5225 uint64_t Index = CIndexN->getZExtValue(); 5226 unsigned Mask = VecVT.getVectorNumElements() - 1; 5227 if (Index <= Mask) 5228 return Op; 5229 } 5230 5231 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5232 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5233 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5234 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5235 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5236 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5237 } 5238 5239 SDValue SystemZTargetLowering:: 5240 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5241 SDValue PackedOp = Op.getOperand(0); 5242 EVT OutVT = Op.getValueType(); 5243 EVT InVT = PackedOp.getValueType(); 5244 unsigned ToBits = OutVT.getScalarSizeInBits(); 5245 unsigned FromBits = InVT.getScalarSizeInBits(); 5246 do { 5247 FromBits *= 2; 5248 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5249 SystemZ::VectorBits / FromBits); 5250 PackedOp = 5251 DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); 5252 } while (FromBits != ToBits); 5253 return PackedOp; 5254 } 5255 5256 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. 5257 SDValue SystemZTargetLowering:: 5258 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5259 SDValue PackedOp = Op.getOperand(0); 5260 SDLoc DL(Op); 5261 EVT OutVT = Op.getValueType(); 5262 EVT InVT = PackedOp.getValueType(); 5263 unsigned InNumElts = InVT.getVectorNumElements(); 5264 unsigned OutNumElts = OutVT.getVectorNumElements(); 5265 unsigned NumInPerOut = InNumElts / OutNumElts; 5266 5267 SDValue ZeroVec = 5268 DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); 5269 5270 SmallVector<int, 16> Mask(InNumElts); 5271 unsigned ZeroVecElt = InNumElts; 5272 for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { 5273 unsigned MaskElt = PackedElt * NumInPerOut; 5274 unsigned End = MaskElt + NumInPerOut - 1; 5275 for (; MaskElt < End; MaskElt++) 5276 Mask[MaskElt] = ZeroVecElt++; 5277 Mask[MaskElt] = PackedElt; 5278 } 5279 SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); 5280 return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); 5281 } 5282 5283 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5284 unsigned ByScalar) const { 5285 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5286 SDValue Op0 = Op.getOperand(0); 5287 SDValue Op1 = Op.getOperand(1); 5288 SDLoc DL(Op); 5289 EVT VT = Op.getValueType(); 5290 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5291 5292 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5293 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5294 APInt SplatBits, SplatUndef; 5295 unsigned SplatBitSize; 5296 bool HasAnyUndefs; 5297 // Check for constant splats. Use ElemBitSize as the minimum element 5298 // width and reject splats that need wider elements. 5299 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5300 ElemBitSize, true) && 5301 SplatBitSize == ElemBitSize) { 5302 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5303 DL, MVT::i32); 5304 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5305 } 5306 // Check for variable splats. 5307 BitVector UndefElements; 5308 SDValue Splat = BVN->getSplatValue(&UndefElements); 5309 if (Splat) { 5310 // Since i32 is the smallest legal type, we either need a no-op 5311 // or a truncation. 5312 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5313 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5314 } 5315 } 5316 5317 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5318 // and the shift amount is directly available in a GPR. 5319 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5320 if (VSN->isSplat()) { 5321 SDValue VSNOp0 = VSN->getOperand(0); 5322 unsigned Index = VSN->getSplatIndex(); 5323 assert(Index < VT.getVectorNumElements() && 5324 "Splat index should be defined and in first operand"); 5325 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5326 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5327 // Since i32 is the smallest legal type, we either need a no-op 5328 // or a truncation. 5329 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5330 VSNOp0.getOperand(Index)); 5331 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5332 } 5333 } 5334 } 5335 5336 // Otherwise just treat the current form as legal. 5337 return Op; 5338 } 5339 5340 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5341 SelectionDAG &DAG) const { 5342 switch (Op.getOpcode()) { 5343 case ISD::FRAMEADDR: 5344 return lowerFRAMEADDR(Op, DAG); 5345 case ISD::RETURNADDR: 5346 return lowerRETURNADDR(Op, DAG); 5347 case ISD::BR_CC: 5348 return lowerBR_CC(Op, DAG); 5349 case ISD::SELECT_CC: 5350 return lowerSELECT_CC(Op, DAG); 5351 case ISD::SETCC: 5352 return lowerSETCC(Op, DAG); 5353 case ISD::STRICT_FSETCC: 5354 return lowerSTRICT_FSETCC(Op, DAG, false); 5355 case ISD::STRICT_FSETCCS: 5356 return lowerSTRICT_FSETCC(Op, DAG, true); 5357 case ISD::GlobalAddress: 5358 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5359 case ISD::GlobalTLSAddress: 5360 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5361 case ISD::BlockAddress: 5362 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5363 case ISD::JumpTable: 5364 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5365 case ISD::ConstantPool: 5366 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5367 case ISD::BITCAST: 5368 return lowerBITCAST(Op, DAG); 5369 case ISD::VASTART: 5370 return lowerVASTART(Op, DAG); 5371 case ISD::VACOPY: 5372 return lowerVACOPY(Op, DAG); 5373 case ISD::DYNAMIC_STACKALLOC: 5374 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5375 case ISD::GET_DYNAMIC_AREA_OFFSET: 5376 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5377 case ISD::SMUL_LOHI: 5378 return lowerSMUL_LOHI(Op, DAG); 5379 case ISD::UMUL_LOHI: 5380 return lowerUMUL_LOHI(Op, DAG); 5381 case ISD::SDIVREM: 5382 return lowerSDIVREM(Op, DAG); 5383 case ISD::UDIVREM: 5384 return lowerUDIVREM(Op, DAG); 5385 case ISD::SADDO: 5386 case ISD::SSUBO: 5387 case ISD::UADDO: 5388 case ISD::USUBO: 5389 return lowerXALUO(Op, DAG); 5390 case ISD::ADDCARRY: 5391 case ISD::SUBCARRY: 5392 return lowerADDSUBCARRY(Op, DAG); 5393 case ISD::OR: 5394 return lowerOR(Op, DAG); 5395 case ISD::CTPOP: 5396 return lowerCTPOP(Op, DAG); 5397 case ISD::ATOMIC_FENCE: 5398 return lowerATOMIC_FENCE(Op, DAG); 5399 case ISD::ATOMIC_SWAP: 5400 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5401 case ISD::ATOMIC_STORE: 5402 return lowerATOMIC_STORE(Op, DAG); 5403 case ISD::ATOMIC_LOAD: 5404 return lowerATOMIC_LOAD(Op, DAG); 5405 case ISD::ATOMIC_LOAD_ADD: 5406 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5407 case ISD::ATOMIC_LOAD_SUB: 5408 return lowerATOMIC_LOAD_SUB(Op, DAG); 5409 case ISD::ATOMIC_LOAD_AND: 5410 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5411 case ISD::ATOMIC_LOAD_OR: 5412 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5413 case ISD::ATOMIC_LOAD_XOR: 5414 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5415 case ISD::ATOMIC_LOAD_NAND: 5416 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5417 case ISD::ATOMIC_LOAD_MIN: 5418 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5419 case ISD::ATOMIC_LOAD_MAX: 5420 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5421 case ISD::ATOMIC_LOAD_UMIN: 5422 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5423 case ISD::ATOMIC_LOAD_UMAX: 5424 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5425 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5426 return lowerATOMIC_CMP_SWAP(Op, DAG); 5427 case ISD::STACKSAVE: 5428 return lowerSTACKSAVE(Op, DAG); 5429 case ISD::STACKRESTORE: 5430 return lowerSTACKRESTORE(Op, DAG); 5431 case ISD::PREFETCH: 5432 return lowerPREFETCH(Op, DAG); 5433 case ISD::INTRINSIC_W_CHAIN: 5434 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5435 case ISD::INTRINSIC_WO_CHAIN: 5436 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5437 case ISD::BUILD_VECTOR: 5438 return lowerBUILD_VECTOR(Op, DAG); 5439 case ISD::VECTOR_SHUFFLE: 5440 return lowerVECTOR_SHUFFLE(Op, DAG); 5441 case ISD::SCALAR_TO_VECTOR: 5442 return lowerSCALAR_TO_VECTOR(Op, DAG); 5443 case ISD::INSERT_VECTOR_ELT: 5444 return lowerINSERT_VECTOR_ELT(Op, DAG); 5445 case ISD::EXTRACT_VECTOR_ELT: 5446 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5447 case ISD::SIGN_EXTEND_VECTOR_INREG: 5448 return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); 5449 case ISD::ZERO_EXTEND_VECTOR_INREG: 5450 return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); 5451 case ISD::SHL: 5452 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5453 case ISD::SRL: 5454 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5455 case ISD::SRA: 5456 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5457 default: 5458 llvm_unreachable("Unexpected node to lower"); 5459 } 5460 } 5461 5462 // Lower operations with invalid operand or result types (currently used 5463 // only for 128-bit integer types). 5464 5465 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 5466 SDLoc DL(In); 5467 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5468 DAG.getIntPtrConstant(0, DL)); 5469 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5470 DAG.getIntPtrConstant(1, DL)); 5471 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 5472 MVT::Untyped, Hi, Lo); 5473 return SDValue(Pair, 0); 5474 } 5475 5476 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 5477 SDLoc DL(In); 5478 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5479 DL, MVT::i64, In); 5480 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5481 DL, MVT::i64, In); 5482 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 5483 } 5484 5485 void 5486 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5487 SmallVectorImpl<SDValue> &Results, 5488 SelectionDAG &DAG) const { 5489 switch (N->getOpcode()) { 5490 case ISD::ATOMIC_LOAD: { 5491 SDLoc DL(N); 5492 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5493 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5494 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5495 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5496 DL, Tys, Ops, MVT::i128, MMO); 5497 Results.push_back(lowerGR128ToI128(DAG, Res)); 5498 Results.push_back(Res.getValue(1)); 5499 break; 5500 } 5501 case ISD::ATOMIC_STORE: { 5502 SDLoc DL(N); 5503 SDVTList Tys = DAG.getVTList(MVT::Other); 5504 SDValue Ops[] = { N->getOperand(0), 5505 lowerI128ToGR128(DAG, N->getOperand(2)), 5506 N->getOperand(1) }; 5507 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5508 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5509 DL, Tys, Ops, MVT::i128, MMO); 5510 // We have to enforce sequential consistency by performing a 5511 // serialization operation after the store. 5512 if (cast<AtomicSDNode>(N)->getOrdering() == 5513 AtomicOrdering::SequentiallyConsistent) 5514 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5515 MVT::Other, Res), 0); 5516 Results.push_back(Res); 5517 break; 5518 } 5519 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5520 SDLoc DL(N); 5521 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5522 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5523 lowerI128ToGR128(DAG, N->getOperand(2)), 5524 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5525 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5526 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5527 DL, Tys, Ops, MVT::i128, MMO); 5528 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5529 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5530 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5531 Results.push_back(lowerGR128ToI128(DAG, Res)); 5532 Results.push_back(Success); 5533 Results.push_back(Res.getValue(2)); 5534 break; 5535 } 5536 default: 5537 llvm_unreachable("Unexpected node to lower"); 5538 } 5539 } 5540 5541 void 5542 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5543 SmallVectorImpl<SDValue> &Results, 5544 SelectionDAG &DAG) const { 5545 return LowerOperationWrapper(N, Results, DAG); 5546 } 5547 5548 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5549 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5550 switch ((SystemZISD::NodeType)Opcode) { 5551 case SystemZISD::FIRST_NUMBER: break; 5552 OPCODE(RET_FLAG); 5553 OPCODE(CALL); 5554 OPCODE(SIBCALL); 5555 OPCODE(TLS_GDCALL); 5556 OPCODE(TLS_LDCALL); 5557 OPCODE(PCREL_WRAPPER); 5558 OPCODE(PCREL_OFFSET); 5559 OPCODE(IABS); 5560 OPCODE(ICMP); 5561 OPCODE(FCMP); 5562 OPCODE(STRICT_FCMP); 5563 OPCODE(STRICT_FCMPS); 5564 OPCODE(TM); 5565 OPCODE(BR_CCMASK); 5566 OPCODE(SELECT_CCMASK); 5567 OPCODE(ADJDYNALLOC); 5568 OPCODE(PROBED_ALLOCA); 5569 OPCODE(POPCNT); 5570 OPCODE(SMUL_LOHI); 5571 OPCODE(UMUL_LOHI); 5572 OPCODE(SDIVREM); 5573 OPCODE(UDIVREM); 5574 OPCODE(SADDO); 5575 OPCODE(SSUBO); 5576 OPCODE(UADDO); 5577 OPCODE(USUBO); 5578 OPCODE(ADDCARRY); 5579 OPCODE(SUBCARRY); 5580 OPCODE(GET_CCMASK); 5581 OPCODE(MVC); 5582 OPCODE(MVC_LOOP); 5583 OPCODE(NC); 5584 OPCODE(NC_LOOP); 5585 OPCODE(OC); 5586 OPCODE(OC_LOOP); 5587 OPCODE(XC); 5588 OPCODE(XC_LOOP); 5589 OPCODE(CLC); 5590 OPCODE(CLC_LOOP); 5591 OPCODE(STPCPY); 5592 OPCODE(STRCMP); 5593 OPCODE(SEARCH_STRING); 5594 OPCODE(IPM); 5595 OPCODE(MEMBARRIER); 5596 OPCODE(TBEGIN); 5597 OPCODE(TBEGIN_NOFLOAT); 5598 OPCODE(TEND); 5599 OPCODE(BYTE_MASK); 5600 OPCODE(ROTATE_MASK); 5601 OPCODE(REPLICATE); 5602 OPCODE(JOIN_DWORDS); 5603 OPCODE(SPLAT); 5604 OPCODE(MERGE_HIGH); 5605 OPCODE(MERGE_LOW); 5606 OPCODE(SHL_DOUBLE); 5607 OPCODE(PERMUTE_DWORDS); 5608 OPCODE(PERMUTE); 5609 OPCODE(PACK); 5610 OPCODE(PACKS_CC); 5611 OPCODE(PACKLS_CC); 5612 OPCODE(UNPACK_HIGH); 5613 OPCODE(UNPACKL_HIGH); 5614 OPCODE(UNPACK_LOW); 5615 OPCODE(UNPACKL_LOW); 5616 OPCODE(VSHL_BY_SCALAR); 5617 OPCODE(VSRL_BY_SCALAR); 5618 OPCODE(VSRA_BY_SCALAR); 5619 OPCODE(VSUM); 5620 OPCODE(VICMPE); 5621 OPCODE(VICMPH); 5622 OPCODE(VICMPHL); 5623 OPCODE(VICMPES); 5624 OPCODE(VICMPHS); 5625 OPCODE(VICMPHLS); 5626 OPCODE(VFCMPE); 5627 OPCODE(STRICT_VFCMPE); 5628 OPCODE(STRICT_VFCMPES); 5629 OPCODE(VFCMPH); 5630 OPCODE(STRICT_VFCMPH); 5631 OPCODE(STRICT_VFCMPHS); 5632 OPCODE(VFCMPHE); 5633 OPCODE(STRICT_VFCMPHE); 5634 OPCODE(STRICT_VFCMPHES); 5635 OPCODE(VFCMPES); 5636 OPCODE(VFCMPHS); 5637 OPCODE(VFCMPHES); 5638 OPCODE(VFTCI); 5639 OPCODE(VEXTEND); 5640 OPCODE(STRICT_VEXTEND); 5641 OPCODE(VROUND); 5642 OPCODE(STRICT_VROUND); 5643 OPCODE(VTM); 5644 OPCODE(VFAE_CC); 5645 OPCODE(VFAEZ_CC); 5646 OPCODE(VFEE_CC); 5647 OPCODE(VFEEZ_CC); 5648 OPCODE(VFENE_CC); 5649 OPCODE(VFENEZ_CC); 5650 OPCODE(VISTR_CC); 5651 OPCODE(VSTRC_CC); 5652 OPCODE(VSTRCZ_CC); 5653 OPCODE(VSTRS_CC); 5654 OPCODE(VSTRSZ_CC); 5655 OPCODE(TDC); 5656 OPCODE(ATOMIC_SWAPW); 5657 OPCODE(ATOMIC_LOADW_ADD); 5658 OPCODE(ATOMIC_LOADW_SUB); 5659 OPCODE(ATOMIC_LOADW_AND); 5660 OPCODE(ATOMIC_LOADW_OR); 5661 OPCODE(ATOMIC_LOADW_XOR); 5662 OPCODE(ATOMIC_LOADW_NAND); 5663 OPCODE(ATOMIC_LOADW_MIN); 5664 OPCODE(ATOMIC_LOADW_MAX); 5665 OPCODE(ATOMIC_LOADW_UMIN); 5666 OPCODE(ATOMIC_LOADW_UMAX); 5667 OPCODE(ATOMIC_CMP_SWAPW); 5668 OPCODE(ATOMIC_CMP_SWAP); 5669 OPCODE(ATOMIC_LOAD_128); 5670 OPCODE(ATOMIC_STORE_128); 5671 OPCODE(ATOMIC_CMP_SWAP_128); 5672 OPCODE(LRV); 5673 OPCODE(STRV); 5674 OPCODE(VLER); 5675 OPCODE(VSTER); 5676 OPCODE(PREFETCH); 5677 } 5678 return nullptr; 5679 #undef OPCODE 5680 } 5681 5682 // Return true if VT is a vector whose elements are a whole number of bytes 5683 // in width. Also check for presence of vector support. 5684 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5685 if (!Subtarget.hasVector()) 5686 return false; 5687 5688 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5689 } 5690 5691 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5692 // producing a result of type ResVT. Op is a possibly bitcast version 5693 // of the input vector and Index is the index (based on type VecVT) that 5694 // should be extracted. Return the new extraction if a simplification 5695 // was possible or if Force is true. 5696 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5697 EVT VecVT, SDValue Op, 5698 unsigned Index, 5699 DAGCombinerInfo &DCI, 5700 bool Force) const { 5701 SelectionDAG &DAG = DCI.DAG; 5702 5703 // The number of bytes being extracted. 5704 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5705 5706 for (;;) { 5707 unsigned Opcode = Op.getOpcode(); 5708 if (Opcode == ISD::BITCAST) 5709 // Look through bitcasts. 5710 Op = Op.getOperand(0); 5711 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5712 canTreatAsByteVector(Op.getValueType())) { 5713 // Get a VPERM-like permute mask and see whether the bytes covered 5714 // by the extracted element are a contiguous sequence from one 5715 // source operand. 5716 SmallVector<int, SystemZ::VectorBytes> Bytes; 5717 if (!getVPermMask(Op, Bytes)) 5718 break; 5719 int First; 5720 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5721 BytesPerElement, First)) 5722 break; 5723 if (First < 0) 5724 return DAG.getUNDEF(ResVT); 5725 // Make sure the contiguous sequence starts at a multiple of the 5726 // original element size. 5727 unsigned Byte = unsigned(First) % Bytes.size(); 5728 if (Byte % BytesPerElement != 0) 5729 break; 5730 // We can get the extracted value directly from an input. 5731 Index = Byte / BytesPerElement; 5732 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5733 Force = true; 5734 } else if (Opcode == ISD::BUILD_VECTOR && 5735 canTreatAsByteVector(Op.getValueType())) { 5736 // We can only optimize this case if the BUILD_VECTOR elements are 5737 // at least as wide as the extracted value. 5738 EVT OpVT = Op.getValueType(); 5739 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5740 if (OpBytesPerElement < BytesPerElement) 5741 break; 5742 // Make sure that the least-significant bit of the extracted value 5743 // is the least significant bit of an input. 5744 unsigned End = (Index + 1) * BytesPerElement; 5745 if (End % OpBytesPerElement != 0) 5746 break; 5747 // We're extracting the low part of one operand of the BUILD_VECTOR. 5748 Op = Op.getOperand(End / OpBytesPerElement - 1); 5749 if (!Op.getValueType().isInteger()) { 5750 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5751 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5752 DCI.AddToWorklist(Op.getNode()); 5753 } 5754 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5755 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5756 if (VT != ResVT) { 5757 DCI.AddToWorklist(Op.getNode()); 5758 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5759 } 5760 return Op; 5761 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5762 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5763 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5764 canTreatAsByteVector(Op.getValueType()) && 5765 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5766 // Make sure that only the unextended bits are significant. 5767 EVT ExtVT = Op.getValueType(); 5768 EVT OpVT = Op.getOperand(0).getValueType(); 5769 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5770 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5771 unsigned Byte = Index * BytesPerElement; 5772 unsigned SubByte = Byte % ExtBytesPerElement; 5773 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5774 if (SubByte < MinSubByte || 5775 SubByte + BytesPerElement > ExtBytesPerElement) 5776 break; 5777 // Get the byte offset of the unextended element 5778 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5779 // ...then add the byte offset relative to that element. 5780 Byte += SubByte - MinSubByte; 5781 if (Byte % BytesPerElement != 0) 5782 break; 5783 Op = Op.getOperand(0); 5784 Index = Byte / BytesPerElement; 5785 Force = true; 5786 } else 5787 break; 5788 } 5789 if (Force) { 5790 if (Op.getValueType() != VecVT) { 5791 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5792 DCI.AddToWorklist(Op.getNode()); 5793 } 5794 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5795 DAG.getConstant(Index, DL, MVT::i32)); 5796 } 5797 return SDValue(); 5798 } 5799 5800 // Optimize vector operations in scalar value Op on the basis that Op 5801 // is truncated to TruncVT. 5802 SDValue SystemZTargetLowering::combineTruncateExtract( 5803 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5804 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5805 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5806 // of type TruncVT. 5807 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5808 TruncVT.getSizeInBits() % 8 == 0) { 5809 SDValue Vec = Op.getOperand(0); 5810 EVT VecVT = Vec.getValueType(); 5811 if (canTreatAsByteVector(VecVT)) { 5812 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5813 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5814 unsigned TruncBytes = TruncVT.getStoreSize(); 5815 if (BytesPerElement % TruncBytes == 0) { 5816 // Calculate the value of Y' in the above description. We are 5817 // splitting the original elements into Scale equal-sized pieces 5818 // and for truncation purposes want the last (least-significant) 5819 // of these pieces for IndexN. This is easiest to do by calculating 5820 // the start index of the following element and then subtracting 1. 5821 unsigned Scale = BytesPerElement / TruncBytes; 5822 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5823 5824 // Defer the creation of the bitcast from X to combineExtract, 5825 // which might be able to optimize the extraction. 5826 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5827 VecVT.getStoreSize() / TruncBytes); 5828 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5829 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5830 } 5831 } 5832 } 5833 } 5834 return SDValue(); 5835 } 5836 5837 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5838 SDNode *N, DAGCombinerInfo &DCI) const { 5839 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5840 SelectionDAG &DAG = DCI.DAG; 5841 SDValue N0 = N->getOperand(0); 5842 EVT VT = N->getValueType(0); 5843 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5844 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5845 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5846 if (TrueOp && FalseOp) { 5847 SDLoc DL(N0); 5848 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5849 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5850 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5851 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5852 // If N0 has multiple uses, change other uses as well. 5853 if (!N0.hasOneUse()) { 5854 SDValue TruncSelect = 5855 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5856 DCI.CombineTo(N0.getNode(), TruncSelect); 5857 } 5858 return NewSelect; 5859 } 5860 } 5861 return SDValue(); 5862 } 5863 5864 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5865 SDNode *N, DAGCombinerInfo &DCI) const { 5866 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5867 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5868 // into (select_cc LHS, RHS, -1, 0, COND) 5869 SelectionDAG &DAG = DCI.DAG; 5870 SDValue N0 = N->getOperand(0); 5871 EVT VT = N->getValueType(0); 5872 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5873 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5874 N0 = N0.getOperand(0); 5875 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5876 SDLoc DL(N0); 5877 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5878 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5879 N0.getOperand(2) }; 5880 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5881 } 5882 return SDValue(); 5883 } 5884 5885 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5886 SDNode *N, DAGCombinerInfo &DCI) const { 5887 // Convert (sext (ashr (shl X, C1), C2)) to 5888 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5889 // cheap as narrower ones. 5890 SelectionDAG &DAG = DCI.DAG; 5891 SDValue N0 = N->getOperand(0); 5892 EVT VT = N->getValueType(0); 5893 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5894 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5895 SDValue Inner = N0.getOperand(0); 5896 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5897 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5898 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5899 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5900 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5901 EVT ShiftVT = N0.getOperand(1).getValueType(); 5902 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5903 Inner.getOperand(0)); 5904 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5905 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5906 ShiftVT)); 5907 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5908 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5909 } 5910 } 5911 } 5912 return SDValue(); 5913 } 5914 5915 SDValue SystemZTargetLowering::combineMERGE( 5916 SDNode *N, DAGCombinerInfo &DCI) const { 5917 SelectionDAG &DAG = DCI.DAG; 5918 unsigned Opcode = N->getOpcode(); 5919 SDValue Op0 = N->getOperand(0); 5920 SDValue Op1 = N->getOperand(1); 5921 if (Op0.getOpcode() == ISD::BITCAST) 5922 Op0 = Op0.getOperand(0); 5923 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5924 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5925 // for v4f32. 5926 if (Op1 == N->getOperand(0)) 5927 return Op1; 5928 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5929 EVT VT = Op1.getValueType(); 5930 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5931 if (ElemBytes <= 4) { 5932 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5933 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5934 EVT InVT = VT.changeVectorElementTypeToInteger(); 5935 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5936 SystemZ::VectorBytes / ElemBytes / 2); 5937 if (VT != InVT) { 5938 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5939 DCI.AddToWorklist(Op1.getNode()); 5940 } 5941 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5942 DCI.AddToWorklist(Op.getNode()); 5943 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5944 } 5945 } 5946 return SDValue(); 5947 } 5948 5949 SDValue SystemZTargetLowering::combineLOAD( 5950 SDNode *N, DAGCombinerInfo &DCI) const { 5951 SelectionDAG &DAG = DCI.DAG; 5952 EVT LdVT = N->getValueType(0); 5953 if (LdVT.isVector() || LdVT.isInteger()) 5954 return SDValue(); 5955 // Transform a scalar load that is REPLICATEd as well as having other 5956 // use(s) to the form where the other use(s) use the first element of the 5957 // REPLICATE instead of the load. Otherwise instruction selection will not 5958 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5959 // point loads. 5960 5961 SDValue Replicate; 5962 SmallVector<SDNode*, 8> OtherUses; 5963 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5964 UI != UE; ++UI) { 5965 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5966 if (Replicate) 5967 return SDValue(); // Should never happen 5968 Replicate = SDValue(*UI, 0); 5969 } 5970 else if (UI.getUse().getResNo() == 0) 5971 OtherUses.push_back(*UI); 5972 } 5973 if (!Replicate || OtherUses.empty()) 5974 return SDValue(); 5975 5976 SDLoc DL(N); 5977 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5978 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5979 // Update uses of the loaded Value while preserving old chains. 5980 for (SDNode *U : OtherUses) { 5981 SmallVector<SDValue, 8> Ops; 5982 for (SDValue Op : U->ops()) 5983 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5984 DAG.UpdateNodeOperands(U, Ops); 5985 } 5986 return SDValue(N, 0); 5987 } 5988 5989 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 5990 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 5991 return true; 5992 if (Subtarget.hasVectorEnhancements2()) 5993 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 5994 return true; 5995 return false; 5996 } 5997 5998 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 5999 if (!VT.isVector() || !VT.isSimple() || 6000 VT.getSizeInBits() != 128 || 6001 VT.getScalarSizeInBits() % 8 != 0) 6002 return false; 6003 6004 unsigned NumElts = VT.getVectorNumElements(); 6005 for (unsigned i = 0; i < NumElts; ++i) { 6006 if (M[i] < 0) continue; // ignore UNDEF indices 6007 if ((unsigned) M[i] != NumElts - 1 - i) 6008 return false; 6009 } 6010 6011 return true; 6012 } 6013 6014 SDValue SystemZTargetLowering::combineSTORE( 6015 SDNode *N, DAGCombinerInfo &DCI) const { 6016 SelectionDAG &DAG = DCI.DAG; 6017 auto *SN = cast<StoreSDNode>(N); 6018 auto &Op1 = N->getOperand(1); 6019 EVT MemVT = SN->getMemoryVT(); 6020 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 6021 // for the extraction to be done on a vMiN value, so that we can use VSTE. 6022 // If X has wider elements then convert it to: 6023 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 6024 if (MemVT.isInteger() && SN->isTruncatingStore()) { 6025 if (SDValue Value = 6026 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 6027 DCI.AddToWorklist(Value.getNode()); 6028 6029 // Rewrite the store with the new form of stored value. 6030 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 6031 SN->getBasePtr(), SN->getMemoryVT(), 6032 SN->getMemOperand()); 6033 } 6034 } 6035 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 6036 if (!SN->isTruncatingStore() && 6037 Op1.getOpcode() == ISD::BSWAP && 6038 Op1.getNode()->hasOneUse() && 6039 canLoadStoreByteSwapped(Op1.getValueType())) { 6040 6041 SDValue BSwapOp = Op1.getOperand(0); 6042 6043 if (BSwapOp.getValueType() == MVT::i16) 6044 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 6045 6046 SDValue Ops[] = { 6047 N->getOperand(0), BSwapOp, N->getOperand(2) 6048 }; 6049 6050 return 6051 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 6052 Ops, MemVT, SN->getMemOperand()); 6053 } 6054 // Combine STORE (element-swap) into VSTER 6055 if (!SN->isTruncatingStore() && 6056 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 6057 Op1.getNode()->hasOneUse() && 6058 Subtarget.hasVectorEnhancements2()) { 6059 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 6060 ArrayRef<int> ShuffleMask = SVN->getMask(); 6061 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 6062 SDValue Ops[] = { 6063 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 6064 }; 6065 6066 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 6067 DAG.getVTList(MVT::Other), 6068 Ops, MemVT, SN->getMemOperand()); 6069 } 6070 } 6071 6072 return SDValue(); 6073 } 6074 6075 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 6076 SDNode *N, DAGCombinerInfo &DCI) const { 6077 SelectionDAG &DAG = DCI.DAG; 6078 // Combine element-swap (LOAD) into VLER 6079 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6080 N->getOperand(0).hasOneUse() && 6081 Subtarget.hasVectorEnhancements2()) { 6082 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 6083 ArrayRef<int> ShuffleMask = SVN->getMask(); 6084 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 6085 SDValue Load = N->getOperand(0); 6086 LoadSDNode *LD = cast<LoadSDNode>(Load); 6087 6088 // Create the element-swapping load. 6089 SDValue Ops[] = { 6090 LD->getChain(), // Chain 6091 LD->getBasePtr() // Ptr 6092 }; 6093 SDValue ESLoad = 6094 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 6095 DAG.getVTList(LD->getValueType(0), MVT::Other), 6096 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6097 6098 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 6099 // by the load dead. 6100 DCI.CombineTo(N, ESLoad); 6101 6102 // Next, combine the load away, we give it a bogus result value but a real 6103 // chain result. The result value is dead because the shuffle is dead. 6104 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 6105 6106 // Return N so it doesn't get rechecked! 6107 return SDValue(N, 0); 6108 } 6109 } 6110 6111 return SDValue(); 6112 } 6113 6114 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 6115 SDNode *N, DAGCombinerInfo &DCI) const { 6116 SelectionDAG &DAG = DCI.DAG; 6117 6118 if (!Subtarget.hasVector()) 6119 return SDValue(); 6120 6121 // Look through bitcasts that retain the number of vector elements. 6122 SDValue Op = N->getOperand(0); 6123 if (Op.getOpcode() == ISD::BITCAST && 6124 Op.getValueType().isVector() && 6125 Op.getOperand(0).getValueType().isVector() && 6126 Op.getValueType().getVectorNumElements() == 6127 Op.getOperand(0).getValueType().getVectorNumElements()) 6128 Op = Op.getOperand(0); 6129 6130 // Pull BSWAP out of a vector extraction. 6131 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 6132 EVT VecVT = Op.getValueType(); 6133 EVT EltVT = VecVT.getVectorElementType(); 6134 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 6135 Op.getOperand(0), N->getOperand(1)); 6136 DCI.AddToWorklist(Op.getNode()); 6137 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 6138 if (EltVT != N->getValueType(0)) { 6139 DCI.AddToWorklist(Op.getNode()); 6140 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 6141 } 6142 return Op; 6143 } 6144 6145 // Try to simplify a vector extraction. 6146 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 6147 SDValue Op0 = N->getOperand(0); 6148 EVT VecVT = Op0.getValueType(); 6149 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 6150 IndexN->getZExtValue(), DCI, false); 6151 } 6152 return SDValue(); 6153 } 6154 6155 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 6156 SDNode *N, DAGCombinerInfo &DCI) const { 6157 SelectionDAG &DAG = DCI.DAG; 6158 // (join_dwords X, X) == (replicate X) 6159 if (N->getOperand(0) == N->getOperand(1)) 6160 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 6161 N->getOperand(0)); 6162 return SDValue(); 6163 } 6164 6165 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 6166 SDValue Chain1 = N1->getOperand(0); 6167 SDValue Chain2 = N2->getOperand(0); 6168 6169 // Trivial case: both nodes take the same chain. 6170 if (Chain1 == Chain2) 6171 return Chain1; 6172 6173 // FIXME - we could handle more complex cases via TokenFactor, 6174 // assuming we can verify that this would not create a cycle. 6175 return SDValue(); 6176 } 6177 6178 SDValue SystemZTargetLowering::combineFP_ROUND( 6179 SDNode *N, DAGCombinerInfo &DCI) const { 6180 6181 if (!Subtarget.hasVector()) 6182 return SDValue(); 6183 6184 // (fpround (extract_vector_elt X 0)) 6185 // (fpround (extract_vector_elt X 1)) -> 6186 // (extract_vector_elt (VROUND X) 0) 6187 // (extract_vector_elt (VROUND X) 2) 6188 // 6189 // This is a special case since the target doesn't really support v2f32s. 6190 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6191 SelectionDAG &DAG = DCI.DAG; 6192 SDValue Op0 = N->getOperand(OpNo); 6193 if (N->getValueType(0) == MVT::f32 && 6194 Op0.hasOneUse() && 6195 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6196 Op0.getOperand(0).getValueType() == MVT::v2f64 && 6197 Op0.getOperand(1).getOpcode() == ISD::Constant && 6198 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6199 SDValue Vec = Op0.getOperand(0); 6200 for (auto *U : Vec->uses()) { 6201 if (U != Op0.getNode() && 6202 U->hasOneUse() && 6203 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6204 U->getOperand(0) == Vec && 6205 U->getOperand(1).getOpcode() == ISD::Constant && 6206 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 6207 SDValue OtherRound = SDValue(*U->use_begin(), 0); 6208 if (OtherRound.getOpcode() == N->getOpcode() && 6209 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 6210 OtherRound.getValueType() == MVT::f32) { 6211 SDValue VRound, Chain; 6212 if (N->isStrictFPOpcode()) { 6213 Chain = MergeInputChains(N, OtherRound.getNode()); 6214 if (!Chain) 6215 continue; 6216 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 6217 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 6218 Chain = VRound.getValue(1); 6219 } else 6220 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 6221 MVT::v4f32, Vec); 6222 DCI.AddToWorklist(VRound.getNode()); 6223 SDValue Extract1 = 6224 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 6225 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 6226 DCI.AddToWorklist(Extract1.getNode()); 6227 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6228 if (Chain) 6229 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 6230 SDValue Extract0 = 6231 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 6232 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6233 if (Chain) 6234 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6235 N->getVTList(), Extract0, Chain); 6236 return Extract0; 6237 } 6238 } 6239 } 6240 } 6241 return SDValue(); 6242 } 6243 6244 SDValue SystemZTargetLowering::combineFP_EXTEND( 6245 SDNode *N, DAGCombinerInfo &DCI) const { 6246 6247 if (!Subtarget.hasVector()) 6248 return SDValue(); 6249 6250 // (fpextend (extract_vector_elt X 0)) 6251 // (fpextend (extract_vector_elt X 2)) -> 6252 // (extract_vector_elt (VEXTEND X) 0) 6253 // (extract_vector_elt (VEXTEND X) 1) 6254 // 6255 // This is a special case since the target doesn't really support v2f32s. 6256 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6257 SelectionDAG &DAG = DCI.DAG; 6258 SDValue Op0 = N->getOperand(OpNo); 6259 if (N->getValueType(0) == MVT::f64 && 6260 Op0.hasOneUse() && 6261 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6262 Op0.getOperand(0).getValueType() == MVT::v4f32 && 6263 Op0.getOperand(1).getOpcode() == ISD::Constant && 6264 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6265 SDValue Vec = Op0.getOperand(0); 6266 for (auto *U : Vec->uses()) { 6267 if (U != Op0.getNode() && 6268 U->hasOneUse() && 6269 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6270 U->getOperand(0) == Vec && 6271 U->getOperand(1).getOpcode() == ISD::Constant && 6272 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 6273 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6274 if (OtherExtend.getOpcode() == N->getOpcode() && 6275 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 6276 OtherExtend.getValueType() == MVT::f64) { 6277 SDValue VExtend, Chain; 6278 if (N->isStrictFPOpcode()) { 6279 Chain = MergeInputChains(N, OtherExtend.getNode()); 6280 if (!Chain) 6281 continue; 6282 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6283 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6284 Chain = VExtend.getValue(1); 6285 } else 6286 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 6287 MVT::v2f64, Vec); 6288 DCI.AddToWorklist(VExtend.getNode()); 6289 SDValue Extract1 = 6290 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 6291 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 6292 DCI.AddToWorklist(Extract1.getNode()); 6293 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6294 if (Chain) 6295 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 6296 SDValue Extract0 = 6297 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 6298 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6299 if (Chain) 6300 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6301 N->getVTList(), Extract0, Chain); 6302 return Extract0; 6303 } 6304 } 6305 } 6306 } 6307 return SDValue(); 6308 } 6309 6310 SDValue SystemZTargetLowering::combineINT_TO_FP( 6311 SDNode *N, DAGCombinerInfo &DCI) const { 6312 if (DCI.Level != BeforeLegalizeTypes) 6313 return SDValue(); 6314 unsigned Opcode = N->getOpcode(); 6315 EVT OutVT = N->getValueType(0); 6316 SelectionDAG &DAG = DCI.DAG; 6317 SDValue Op = N->getOperand(0); 6318 unsigned OutScalarBits = OutVT.getScalarSizeInBits(); 6319 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 6320 6321 // Insert an extension before type-legalization to avoid scalarization, e.g.: 6322 // v2f64 = uint_to_fp v2i16 6323 // => 6324 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 6325 if (OutVT.isVector() && OutScalarBits > InScalarBits) { 6326 MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()), 6327 OutVT.getVectorNumElements()); 6328 unsigned ExtOpcode = 6329 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 6330 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 6331 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 6332 } 6333 return SDValue(); 6334 } 6335 6336 SDValue SystemZTargetLowering::combineBSWAP( 6337 SDNode *N, DAGCombinerInfo &DCI) const { 6338 SelectionDAG &DAG = DCI.DAG; 6339 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6340 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6341 N->getOperand(0).hasOneUse() && 6342 canLoadStoreByteSwapped(N->getValueType(0))) { 6343 SDValue Load = N->getOperand(0); 6344 LoadSDNode *LD = cast<LoadSDNode>(Load); 6345 6346 // Create the byte-swapping load. 6347 SDValue Ops[] = { 6348 LD->getChain(), // Chain 6349 LD->getBasePtr() // Ptr 6350 }; 6351 EVT LoadVT = N->getValueType(0); 6352 if (LoadVT == MVT::i16) 6353 LoadVT = MVT::i32; 6354 SDValue BSLoad = 6355 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6356 DAG.getVTList(LoadVT, MVT::Other), 6357 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6358 6359 // If this is an i16 load, insert the truncate. 6360 SDValue ResVal = BSLoad; 6361 if (N->getValueType(0) == MVT::i16) 6362 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6363 6364 // First, combine the bswap away. This makes the value produced by the 6365 // load dead. 6366 DCI.CombineTo(N, ResVal); 6367 6368 // Next, combine the load away, we give it a bogus result value but a real 6369 // chain result. The result value is dead because the bswap is dead. 6370 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6371 6372 // Return N so it doesn't get rechecked! 6373 return SDValue(N, 0); 6374 } 6375 6376 // Look through bitcasts that retain the number of vector elements. 6377 SDValue Op = N->getOperand(0); 6378 if (Op.getOpcode() == ISD::BITCAST && 6379 Op.getValueType().isVector() && 6380 Op.getOperand(0).getValueType().isVector() && 6381 Op.getValueType().getVectorNumElements() == 6382 Op.getOperand(0).getValueType().getVectorNumElements()) 6383 Op = Op.getOperand(0); 6384 6385 // Push BSWAP into a vector insertion if at least one side then simplifies. 6386 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6387 SDValue Vec = Op.getOperand(0); 6388 SDValue Elt = Op.getOperand(1); 6389 SDValue Idx = Op.getOperand(2); 6390 6391 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6392 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6393 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6394 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6395 (canLoadStoreByteSwapped(N->getValueType(0)) && 6396 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6397 EVT VecVT = N->getValueType(0); 6398 EVT EltVT = N->getValueType(0).getVectorElementType(); 6399 if (VecVT != Vec.getValueType()) { 6400 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6401 DCI.AddToWorklist(Vec.getNode()); 6402 } 6403 if (EltVT != Elt.getValueType()) { 6404 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6405 DCI.AddToWorklist(Elt.getNode()); 6406 } 6407 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6408 DCI.AddToWorklist(Vec.getNode()); 6409 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6410 DCI.AddToWorklist(Elt.getNode()); 6411 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6412 Vec, Elt, Idx); 6413 } 6414 } 6415 6416 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6417 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6418 if (SV && Op.hasOneUse()) { 6419 SDValue Op0 = Op.getOperand(0); 6420 SDValue Op1 = Op.getOperand(1); 6421 6422 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6423 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6424 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6425 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6426 EVT VecVT = N->getValueType(0); 6427 if (VecVT != Op0.getValueType()) { 6428 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6429 DCI.AddToWorklist(Op0.getNode()); 6430 } 6431 if (VecVT != Op1.getValueType()) { 6432 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6433 DCI.AddToWorklist(Op1.getNode()); 6434 } 6435 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6436 DCI.AddToWorklist(Op0.getNode()); 6437 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6438 DCI.AddToWorklist(Op1.getNode()); 6439 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6440 } 6441 } 6442 6443 return SDValue(); 6444 } 6445 6446 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6447 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6448 // set by the CCReg instruction using the CCValid / CCMask masks, 6449 // If the CCReg instruction is itself a ICMP testing the condition 6450 // code set by some other instruction, see whether we can directly 6451 // use that condition code. 6452 6453 // Verify that we have an ICMP against some constant. 6454 if (CCValid != SystemZ::CCMASK_ICMP) 6455 return false; 6456 auto *ICmp = CCReg.getNode(); 6457 if (ICmp->getOpcode() != SystemZISD::ICMP) 6458 return false; 6459 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6460 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6461 if (!CompareRHS) 6462 return false; 6463 6464 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6465 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6466 // Verify that we have an appropriate mask for a EQ or NE comparison. 6467 bool Invert = false; 6468 if (CCMask == SystemZ::CCMASK_CMP_NE) 6469 Invert = !Invert; 6470 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6471 return false; 6472 6473 // Verify that the ICMP compares against one of select values. 6474 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6475 if (!TrueVal) 6476 return false; 6477 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6478 if (!FalseVal) 6479 return false; 6480 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6481 Invert = !Invert; 6482 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6483 return false; 6484 6485 // Compute the effective CC mask for the new branch or select. 6486 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6487 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6488 if (!NewCCValid || !NewCCMask) 6489 return false; 6490 CCValid = NewCCValid->getZExtValue(); 6491 CCMask = NewCCMask->getZExtValue(); 6492 if (Invert) 6493 CCMask ^= CCValid; 6494 6495 // Return the updated CCReg link. 6496 CCReg = CompareLHS->getOperand(4); 6497 return true; 6498 } 6499 6500 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6501 if (CompareLHS->getOpcode() == ISD::SRA) { 6502 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6503 if (!SRACount || SRACount->getZExtValue() != 30) 6504 return false; 6505 auto *SHL = CompareLHS->getOperand(0).getNode(); 6506 if (SHL->getOpcode() != ISD::SHL) 6507 return false; 6508 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6509 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6510 return false; 6511 auto *IPM = SHL->getOperand(0).getNode(); 6512 if (IPM->getOpcode() != SystemZISD::IPM) 6513 return false; 6514 6515 // Avoid introducing CC spills (because SRA would clobber CC). 6516 if (!CompareLHS->hasOneUse()) 6517 return false; 6518 // Verify that the ICMP compares against zero. 6519 if (CompareRHS->getZExtValue() != 0) 6520 return false; 6521 6522 // Compute the effective CC mask for the new branch or select. 6523 CCMask = SystemZ::reverseCCMask(CCMask); 6524 6525 // Return the updated CCReg link. 6526 CCReg = IPM->getOperand(0); 6527 return true; 6528 } 6529 6530 return false; 6531 } 6532 6533 SDValue SystemZTargetLowering::combineBR_CCMASK( 6534 SDNode *N, DAGCombinerInfo &DCI) const { 6535 SelectionDAG &DAG = DCI.DAG; 6536 6537 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6538 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6539 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6540 if (!CCValid || !CCMask) 6541 return SDValue(); 6542 6543 int CCValidVal = CCValid->getZExtValue(); 6544 int CCMaskVal = CCMask->getZExtValue(); 6545 SDValue Chain = N->getOperand(0); 6546 SDValue CCReg = N->getOperand(4); 6547 6548 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6549 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6550 Chain, 6551 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6552 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6553 N->getOperand(3), CCReg); 6554 return SDValue(); 6555 } 6556 6557 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6558 SDNode *N, DAGCombinerInfo &DCI) const { 6559 SelectionDAG &DAG = DCI.DAG; 6560 6561 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6562 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6563 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6564 if (!CCValid || !CCMask) 6565 return SDValue(); 6566 6567 int CCValidVal = CCValid->getZExtValue(); 6568 int CCMaskVal = CCMask->getZExtValue(); 6569 SDValue CCReg = N->getOperand(4); 6570 6571 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6572 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6573 N->getOperand(0), N->getOperand(1), 6574 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6575 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6576 CCReg); 6577 return SDValue(); 6578 } 6579 6580 6581 SDValue SystemZTargetLowering::combineGET_CCMASK( 6582 SDNode *N, DAGCombinerInfo &DCI) const { 6583 6584 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6585 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6586 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6587 if (!CCValid || !CCMask) 6588 return SDValue(); 6589 int CCValidVal = CCValid->getZExtValue(); 6590 int CCMaskVal = CCMask->getZExtValue(); 6591 6592 SDValue Select = N->getOperand(0); 6593 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6594 return SDValue(); 6595 6596 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6597 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6598 if (!SelectCCValid || !SelectCCMask) 6599 return SDValue(); 6600 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6601 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6602 6603 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6604 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6605 if (!TrueVal || !FalseVal) 6606 return SDValue(); 6607 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6608 ; 6609 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6610 SelectCCMaskVal ^= SelectCCValidVal; 6611 else 6612 return SDValue(); 6613 6614 if (SelectCCValidVal & ~CCValidVal) 6615 return SDValue(); 6616 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6617 return SDValue(); 6618 6619 return Select->getOperand(4); 6620 } 6621 6622 SDValue SystemZTargetLowering::combineIntDIVREM( 6623 SDNode *N, DAGCombinerInfo &DCI) const { 6624 SelectionDAG &DAG = DCI.DAG; 6625 EVT VT = N->getValueType(0); 6626 // In the case where the divisor is a vector of constants a cheaper 6627 // sequence of instructions can replace the divide. BuildSDIV is called to 6628 // do this during DAG combining, but it only succeeds when it can build a 6629 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6630 // since it is not Legal but Custom it can only happen before 6631 // legalization. Therefore we must scalarize this early before Combine 6632 // 1. For widened vectors, this is already the result of type legalization. 6633 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6634 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6635 return DAG.UnrollVectorOp(N); 6636 return SDValue(); 6637 } 6638 6639 SDValue SystemZTargetLowering::combineINTRINSIC( 6640 SDNode *N, DAGCombinerInfo &DCI) const { 6641 SelectionDAG &DAG = DCI.DAG; 6642 6643 unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 6644 switch (Id) { 6645 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 6646 // or larger is simply a vector load. 6647 case Intrinsic::s390_vll: 6648 case Intrinsic::s390_vlrl: 6649 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 6650 if (C->getZExtValue() >= 15) 6651 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 6652 N->getOperand(3), MachinePointerInfo()); 6653 break; 6654 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 6655 case Intrinsic::s390_vstl: 6656 case Intrinsic::s390_vstrl: 6657 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 6658 if (C->getZExtValue() >= 15) 6659 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 6660 N->getOperand(4), MachinePointerInfo()); 6661 break; 6662 } 6663 6664 return SDValue(); 6665 } 6666 6667 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6668 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6669 return N->getOperand(0); 6670 return N; 6671 } 6672 6673 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6674 DAGCombinerInfo &DCI) const { 6675 switch(N->getOpcode()) { 6676 default: break; 6677 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6678 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6679 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6680 case SystemZISD::MERGE_HIGH: 6681 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6682 case ISD::LOAD: return combineLOAD(N, DCI); 6683 case ISD::STORE: return combineSTORE(N, DCI); 6684 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6685 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6686 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6687 case ISD::STRICT_FP_ROUND: 6688 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6689 case ISD::STRICT_FP_EXTEND: 6690 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6691 case ISD::SINT_TO_FP: 6692 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 6693 case ISD::BSWAP: return combineBSWAP(N, DCI); 6694 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6695 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6696 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6697 case ISD::SDIV: 6698 case ISD::UDIV: 6699 case ISD::SREM: 6700 case ISD::UREM: return combineIntDIVREM(N, DCI); 6701 case ISD::INTRINSIC_W_CHAIN: 6702 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 6703 } 6704 6705 return SDValue(); 6706 } 6707 6708 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6709 // are for Op. 6710 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6711 unsigned OpNo) { 6712 EVT VT = Op.getValueType(); 6713 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6714 APInt SrcDemE; 6715 unsigned Opcode = Op.getOpcode(); 6716 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6717 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6718 switch (Id) { 6719 case Intrinsic::s390_vpksh: // PACKS 6720 case Intrinsic::s390_vpksf: 6721 case Intrinsic::s390_vpksg: 6722 case Intrinsic::s390_vpkshs: // PACKS_CC 6723 case Intrinsic::s390_vpksfs: 6724 case Intrinsic::s390_vpksgs: 6725 case Intrinsic::s390_vpklsh: // PACKLS 6726 case Intrinsic::s390_vpklsf: 6727 case Intrinsic::s390_vpklsg: 6728 case Intrinsic::s390_vpklshs: // PACKLS_CC 6729 case Intrinsic::s390_vpklsfs: 6730 case Intrinsic::s390_vpklsgs: 6731 // VECTOR PACK truncates the elements of two source vectors into one. 6732 SrcDemE = DemandedElts; 6733 if (OpNo == 2) 6734 SrcDemE.lshrInPlace(NumElts / 2); 6735 SrcDemE = SrcDemE.trunc(NumElts / 2); 6736 break; 6737 // VECTOR UNPACK extends half the elements of the source vector. 6738 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6739 case Intrinsic::s390_vuphh: 6740 case Intrinsic::s390_vuphf: 6741 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6742 case Intrinsic::s390_vuplhh: 6743 case Intrinsic::s390_vuplhf: 6744 SrcDemE = APInt(NumElts * 2, 0); 6745 SrcDemE.insertBits(DemandedElts, 0); 6746 break; 6747 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6748 case Intrinsic::s390_vuplhw: 6749 case Intrinsic::s390_vuplf: 6750 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6751 case Intrinsic::s390_vupllh: 6752 case Intrinsic::s390_vupllf: 6753 SrcDemE = APInt(NumElts * 2, 0); 6754 SrcDemE.insertBits(DemandedElts, NumElts); 6755 break; 6756 case Intrinsic::s390_vpdi: { 6757 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6758 SrcDemE = APInt(NumElts, 0); 6759 if (!DemandedElts[OpNo - 1]) 6760 break; 6761 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6762 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6763 // Demand input element 0 or 1, given by the mask bit value. 6764 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6765 break; 6766 } 6767 case Intrinsic::s390_vsldb: { 6768 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6769 assert(VT == MVT::v16i8 && "Unexpected type."); 6770 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6771 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6772 unsigned NumSrc0Els = 16 - FirstIdx; 6773 SrcDemE = APInt(NumElts, 0); 6774 if (OpNo == 1) { 6775 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6776 SrcDemE.insertBits(DemEls, FirstIdx); 6777 } else { 6778 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6779 SrcDemE.insertBits(DemEls, 0); 6780 } 6781 break; 6782 } 6783 case Intrinsic::s390_vperm: 6784 SrcDemE = APInt(NumElts, 1); 6785 break; 6786 default: 6787 llvm_unreachable("Unhandled intrinsic."); 6788 break; 6789 } 6790 } else { 6791 switch (Opcode) { 6792 case SystemZISD::JOIN_DWORDS: 6793 // Scalar operand. 6794 SrcDemE = APInt(1, 1); 6795 break; 6796 case SystemZISD::SELECT_CCMASK: 6797 SrcDemE = DemandedElts; 6798 break; 6799 default: 6800 llvm_unreachable("Unhandled opcode."); 6801 break; 6802 } 6803 } 6804 return SrcDemE; 6805 } 6806 6807 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6808 const APInt &DemandedElts, 6809 const SelectionDAG &DAG, unsigned Depth, 6810 unsigned OpNo) { 6811 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6812 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6813 KnownBits LHSKnown = 6814 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6815 KnownBits RHSKnown = 6816 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6817 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 6818 Known.One = LHSKnown.One & RHSKnown.One; 6819 } 6820 6821 void 6822 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6823 KnownBits &Known, 6824 const APInt &DemandedElts, 6825 const SelectionDAG &DAG, 6826 unsigned Depth) const { 6827 Known.resetAll(); 6828 6829 // Intrinsic CC result is returned in the two low bits. 6830 unsigned tmp0, tmp1; // not used 6831 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6832 Known.Zero.setBitsFrom(2); 6833 return; 6834 } 6835 EVT VT = Op.getValueType(); 6836 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6837 return; 6838 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6839 "KnownBits does not match VT in bitwidth"); 6840 assert ((!VT.isVector() || 6841 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6842 "DemandedElts does not match VT number of elements"); 6843 unsigned BitWidth = Known.getBitWidth(); 6844 unsigned Opcode = Op.getOpcode(); 6845 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6846 bool IsLogical = false; 6847 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6848 switch (Id) { 6849 case Intrinsic::s390_vpksh: // PACKS 6850 case Intrinsic::s390_vpksf: 6851 case Intrinsic::s390_vpksg: 6852 case Intrinsic::s390_vpkshs: // PACKS_CC 6853 case Intrinsic::s390_vpksfs: 6854 case Intrinsic::s390_vpksgs: 6855 case Intrinsic::s390_vpklsh: // PACKLS 6856 case Intrinsic::s390_vpklsf: 6857 case Intrinsic::s390_vpklsg: 6858 case Intrinsic::s390_vpklshs: // PACKLS_CC 6859 case Intrinsic::s390_vpklsfs: 6860 case Intrinsic::s390_vpklsgs: 6861 case Intrinsic::s390_vpdi: 6862 case Intrinsic::s390_vsldb: 6863 case Intrinsic::s390_vperm: 6864 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6865 break; 6866 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6867 case Intrinsic::s390_vuplhh: 6868 case Intrinsic::s390_vuplhf: 6869 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6870 case Intrinsic::s390_vupllh: 6871 case Intrinsic::s390_vupllf: 6872 IsLogical = true; 6873 LLVM_FALLTHROUGH; 6874 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6875 case Intrinsic::s390_vuphh: 6876 case Intrinsic::s390_vuphf: 6877 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6878 case Intrinsic::s390_vuplhw: 6879 case Intrinsic::s390_vuplf: { 6880 SDValue SrcOp = Op.getOperand(1); 6881 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6882 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6883 if (IsLogical) { 6884 Known = Known.zext(BitWidth); 6885 } else 6886 Known = Known.sext(BitWidth); 6887 break; 6888 } 6889 default: 6890 break; 6891 } 6892 } else { 6893 switch (Opcode) { 6894 case SystemZISD::JOIN_DWORDS: 6895 case SystemZISD::SELECT_CCMASK: 6896 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6897 break; 6898 case SystemZISD::REPLICATE: { 6899 SDValue SrcOp = Op.getOperand(0); 6900 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6901 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6902 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6903 break; 6904 } 6905 default: 6906 break; 6907 } 6908 } 6909 6910 // Known has the width of the source operand(s). Adjust if needed to match 6911 // the passed bitwidth. 6912 if (Known.getBitWidth() != BitWidth) 6913 Known = Known.anyextOrTrunc(BitWidth); 6914 } 6915 6916 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6917 const SelectionDAG &DAG, unsigned Depth, 6918 unsigned OpNo) { 6919 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6920 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6921 if (LHS == 1) return 1; // Early out. 6922 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6923 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6924 if (RHS == 1) return 1; // Early out. 6925 unsigned Common = std::min(LHS, RHS); 6926 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6927 EVT VT = Op.getValueType(); 6928 unsigned VTBits = VT.getScalarSizeInBits(); 6929 if (SrcBitWidth > VTBits) { // PACK 6930 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6931 if (Common > SrcExtraBits) 6932 return (Common - SrcExtraBits); 6933 return 1; 6934 } 6935 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6936 return Common; 6937 } 6938 6939 unsigned 6940 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6941 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6942 unsigned Depth) const { 6943 if (Op.getResNo() != 0) 6944 return 1; 6945 unsigned Opcode = Op.getOpcode(); 6946 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6947 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6948 switch (Id) { 6949 case Intrinsic::s390_vpksh: // PACKS 6950 case Intrinsic::s390_vpksf: 6951 case Intrinsic::s390_vpksg: 6952 case Intrinsic::s390_vpkshs: // PACKS_CC 6953 case Intrinsic::s390_vpksfs: 6954 case Intrinsic::s390_vpksgs: 6955 case Intrinsic::s390_vpklsh: // PACKLS 6956 case Intrinsic::s390_vpklsf: 6957 case Intrinsic::s390_vpklsg: 6958 case Intrinsic::s390_vpklshs: // PACKLS_CC 6959 case Intrinsic::s390_vpklsfs: 6960 case Intrinsic::s390_vpklsgs: 6961 case Intrinsic::s390_vpdi: 6962 case Intrinsic::s390_vsldb: 6963 case Intrinsic::s390_vperm: 6964 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6965 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6966 case Intrinsic::s390_vuphh: 6967 case Intrinsic::s390_vuphf: 6968 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6969 case Intrinsic::s390_vuplhw: 6970 case Intrinsic::s390_vuplf: { 6971 SDValue PackedOp = Op.getOperand(1); 6972 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6973 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6974 EVT VT = Op.getValueType(); 6975 unsigned VTBits = VT.getScalarSizeInBits(); 6976 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6977 return Tmp; 6978 } 6979 default: 6980 break; 6981 } 6982 } else { 6983 switch (Opcode) { 6984 case SystemZISD::SELECT_CCMASK: 6985 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6986 default: 6987 break; 6988 } 6989 } 6990 6991 return 1; 6992 } 6993 6994 unsigned 6995 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const { 6996 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 6997 unsigned StackAlign = TFI->getStackAlignment(); 6998 assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && 6999 "Unexpected stack alignment"); 7000 // The default stack probe size is 4096 if the function has no 7001 // stack-probe-size attribute. 7002 unsigned StackProbeSize = 4096; 7003 const Function &Fn = MF.getFunction(); 7004 if (Fn.hasFnAttribute("stack-probe-size")) 7005 Fn.getFnAttribute("stack-probe-size") 7006 .getValueAsString() 7007 .getAsInteger(0, StackProbeSize); 7008 // Round down to the stack alignment. 7009 StackProbeSize &= ~(StackAlign - 1); 7010 return StackProbeSize ? StackProbeSize : StackAlign; 7011 } 7012 7013 //===----------------------------------------------------------------------===// 7014 // Custom insertion 7015 //===----------------------------------------------------------------------===// 7016 7017 // Force base value Base into a register before MI. Return the register. 7018 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 7019 const SystemZInstrInfo *TII) { 7020 if (Base.isReg()) 7021 return Base.getReg(); 7022 7023 MachineBasicBlock *MBB = MI.getParent(); 7024 MachineFunction &MF = *MBB->getParent(); 7025 MachineRegisterInfo &MRI = MF.getRegInfo(); 7026 7027 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7028 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 7029 .add(Base) 7030 .addImm(0) 7031 .addReg(0); 7032 return Reg; 7033 } 7034 7035 // The CC operand of MI might be missing a kill marker because there 7036 // were multiple uses of CC, and ISel didn't know which to mark. 7037 // Figure out whether MI should have had a kill marker. 7038 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 7039 // Scan forward through BB for a use/def of CC. 7040 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 7041 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 7042 const MachineInstr& mi = *miI; 7043 if (mi.readsRegister(SystemZ::CC)) 7044 return false; 7045 if (mi.definesRegister(SystemZ::CC)) 7046 break; // Should have kill-flag - update below. 7047 } 7048 7049 // If we hit the end of the block, check whether CC is live into a 7050 // successor. 7051 if (miI == MBB->end()) { 7052 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 7053 if ((*SI)->isLiveIn(SystemZ::CC)) 7054 return false; 7055 } 7056 7057 return true; 7058 } 7059 7060 // Return true if it is OK for this Select pseudo-opcode to be cascaded 7061 // together with other Select pseudo-opcodes into a single basic-block with 7062 // a conditional jump around it. 7063 static bool isSelectPseudo(MachineInstr &MI) { 7064 switch (MI.getOpcode()) { 7065 case SystemZ::Select32: 7066 case SystemZ::Select64: 7067 case SystemZ::SelectF32: 7068 case SystemZ::SelectF64: 7069 case SystemZ::SelectF128: 7070 case SystemZ::SelectVR32: 7071 case SystemZ::SelectVR64: 7072 case SystemZ::SelectVR128: 7073 return true; 7074 7075 default: 7076 return false; 7077 } 7078 } 7079 7080 // Helper function, which inserts PHI functions into SinkMBB: 7081 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 7082 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 7083 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 7084 MachineBasicBlock *TrueMBB, 7085 MachineBasicBlock *FalseMBB, 7086 MachineBasicBlock *SinkMBB) { 7087 MachineFunction *MF = TrueMBB->getParent(); 7088 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 7089 7090 MachineInstr *FirstMI = Selects.front(); 7091 unsigned CCValid = FirstMI->getOperand(3).getImm(); 7092 unsigned CCMask = FirstMI->getOperand(4).getImm(); 7093 7094 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 7095 7096 // As we are creating the PHIs, we have to be careful if there is more than 7097 // one. Later Selects may reference the results of earlier Selects, but later 7098 // PHIs have to reference the individual true/false inputs from earlier PHIs. 7099 // That also means that PHI construction must work forward from earlier to 7100 // later, and that the code must maintain a mapping from earlier PHI's 7101 // destination registers, and the registers that went into the PHI. 7102 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 7103 7104 for (auto MI : Selects) { 7105 Register DestReg = MI->getOperand(0).getReg(); 7106 Register TrueReg = MI->getOperand(1).getReg(); 7107 Register FalseReg = MI->getOperand(2).getReg(); 7108 7109 // If this Select we are generating is the opposite condition from 7110 // the jump we generated, then we have to swap the operands for the 7111 // PHI that is going to be generated. 7112 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 7113 std::swap(TrueReg, FalseReg); 7114 7115 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 7116 TrueReg = RegRewriteTable[TrueReg].first; 7117 7118 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 7119 FalseReg = RegRewriteTable[FalseReg].second; 7120 7121 DebugLoc DL = MI->getDebugLoc(); 7122 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 7123 .addReg(TrueReg).addMBB(TrueMBB) 7124 .addReg(FalseReg).addMBB(FalseMBB); 7125 7126 // Add this PHI to the rewrite table. 7127 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 7128 } 7129 7130 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7131 } 7132 7133 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 7134 MachineBasicBlock * 7135 SystemZTargetLowering::emitSelect(MachineInstr &MI, 7136 MachineBasicBlock *MBB) const { 7137 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 7138 const SystemZInstrInfo *TII = 7139 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7140 7141 unsigned CCValid = MI.getOperand(3).getImm(); 7142 unsigned CCMask = MI.getOperand(4).getImm(); 7143 7144 // If we have a sequence of Select* pseudo instructions using the 7145 // same condition code value, we want to expand all of them into 7146 // a single pair of basic blocks using the same condition. 7147 SmallVector<MachineInstr*, 8> Selects; 7148 SmallVector<MachineInstr*, 8> DbgValues; 7149 Selects.push_back(&MI); 7150 unsigned Count = 0; 7151 for (MachineBasicBlock::iterator NextMIIt = 7152 std::next(MachineBasicBlock::iterator(MI)); 7153 NextMIIt != MBB->end(); ++NextMIIt) { 7154 if (isSelectPseudo(*NextMIIt)) { 7155 assert(NextMIIt->getOperand(3).getImm() == CCValid && 7156 "Bad CCValid operands since CC was not redefined."); 7157 if (NextMIIt->getOperand(4).getImm() == CCMask || 7158 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 7159 Selects.push_back(&*NextMIIt); 7160 continue; 7161 } 7162 break; 7163 } 7164 if (NextMIIt->definesRegister(SystemZ::CC) || 7165 NextMIIt->usesCustomInsertionHook()) 7166 break; 7167 bool User = false; 7168 for (auto SelMI : Selects) 7169 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 7170 User = true; 7171 break; 7172 } 7173 if (NextMIIt->isDebugInstr()) { 7174 if (User) { 7175 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 7176 DbgValues.push_back(&*NextMIIt); 7177 } 7178 } 7179 else if (User || ++Count > 20) 7180 break; 7181 } 7182 7183 MachineInstr *LastMI = Selects.back(); 7184 bool CCKilled = 7185 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 7186 MachineBasicBlock *StartMBB = MBB; 7187 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); 7188 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7189 7190 // Unless CC was killed in the last Select instruction, mark it as 7191 // live-in to both FalseMBB and JoinMBB. 7192 if (!CCKilled) { 7193 FalseMBB->addLiveIn(SystemZ::CC); 7194 JoinMBB->addLiveIn(SystemZ::CC); 7195 } 7196 7197 // StartMBB: 7198 // BRC CCMask, JoinMBB 7199 // # fallthrough to FalseMBB 7200 MBB = StartMBB; 7201 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 7202 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7203 MBB->addSuccessor(JoinMBB); 7204 MBB->addSuccessor(FalseMBB); 7205 7206 // FalseMBB: 7207 // # fallthrough to JoinMBB 7208 MBB = FalseMBB; 7209 MBB->addSuccessor(JoinMBB); 7210 7211 // JoinMBB: 7212 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 7213 // ... 7214 MBB = JoinMBB; 7215 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 7216 for (auto SelMI : Selects) 7217 SelMI->eraseFromParent(); 7218 7219 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 7220 for (auto DbgMI : DbgValues) 7221 MBB->splice(InsertPos, StartMBB, DbgMI); 7222 7223 return JoinMBB; 7224 } 7225 7226 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 7227 // StoreOpcode is the store to use and Invert says whether the store should 7228 // happen when the condition is false rather than true. If a STORE ON 7229 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 7230 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 7231 MachineBasicBlock *MBB, 7232 unsigned StoreOpcode, 7233 unsigned STOCOpcode, 7234 bool Invert) const { 7235 const SystemZInstrInfo *TII = 7236 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7237 7238 Register SrcReg = MI.getOperand(0).getReg(); 7239 MachineOperand Base = MI.getOperand(1); 7240 int64_t Disp = MI.getOperand(2).getImm(); 7241 Register IndexReg = MI.getOperand(3).getReg(); 7242 unsigned CCValid = MI.getOperand(4).getImm(); 7243 unsigned CCMask = MI.getOperand(5).getImm(); 7244 DebugLoc DL = MI.getDebugLoc(); 7245 7246 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 7247 7248 // Use STOCOpcode if possible. We could use different store patterns in 7249 // order to avoid matching the index register, but the performance trade-offs 7250 // might be more complicated in that case. 7251 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 7252 if (Invert) 7253 CCMask ^= CCValid; 7254 7255 // ISel pattern matching also adds a load memory operand of the same 7256 // address, so take special care to find the storing memory operand. 7257 MachineMemOperand *MMO = nullptr; 7258 for (auto *I : MI.memoperands()) 7259 if (I->isStore()) { 7260 MMO = I; 7261 break; 7262 } 7263 7264 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 7265 .addReg(SrcReg) 7266 .add(Base) 7267 .addImm(Disp) 7268 .addImm(CCValid) 7269 .addImm(CCMask) 7270 .addMemOperand(MMO); 7271 7272 MI.eraseFromParent(); 7273 return MBB; 7274 } 7275 7276 // Get the condition needed to branch around the store. 7277 if (!Invert) 7278 CCMask ^= CCValid; 7279 7280 MachineBasicBlock *StartMBB = MBB; 7281 MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); 7282 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7283 7284 // Unless CC was killed in the CondStore instruction, mark it as 7285 // live-in to both FalseMBB and JoinMBB. 7286 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 7287 FalseMBB->addLiveIn(SystemZ::CC); 7288 JoinMBB->addLiveIn(SystemZ::CC); 7289 } 7290 7291 // StartMBB: 7292 // BRC CCMask, JoinMBB 7293 // # fallthrough to FalseMBB 7294 MBB = StartMBB; 7295 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7296 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7297 MBB->addSuccessor(JoinMBB); 7298 MBB->addSuccessor(FalseMBB); 7299 7300 // FalseMBB: 7301 // store %SrcReg, %Disp(%Index,%Base) 7302 // # fallthrough to JoinMBB 7303 MBB = FalseMBB; 7304 BuildMI(MBB, DL, TII->get(StoreOpcode)) 7305 .addReg(SrcReg) 7306 .add(Base) 7307 .addImm(Disp) 7308 .addReg(IndexReg); 7309 MBB->addSuccessor(JoinMBB); 7310 7311 MI.eraseFromParent(); 7312 return JoinMBB; 7313 } 7314 7315 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 7316 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 7317 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 7318 // BitSize is the width of the field in bits, or 0 if this is a partword 7319 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 7320 // is one of the operands. Invert says whether the field should be 7321 // inverted after performing BinOpcode (e.g. for NAND). 7322 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 7323 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 7324 unsigned BitSize, bool Invert) const { 7325 MachineFunction &MF = *MBB->getParent(); 7326 const SystemZInstrInfo *TII = 7327 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7328 MachineRegisterInfo &MRI = MF.getRegInfo(); 7329 bool IsSubWord = (BitSize < 32); 7330 7331 // Extract the operands. Base can be a register or a frame index. 7332 // Src2 can be a register or immediate. 7333 Register Dest = MI.getOperand(0).getReg(); 7334 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7335 int64_t Disp = MI.getOperand(2).getImm(); 7336 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 7337 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 7338 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 7339 DebugLoc DL = MI.getDebugLoc(); 7340 if (IsSubWord) 7341 BitSize = MI.getOperand(6).getImm(); 7342 7343 // Subword operations use 32-bit registers. 7344 const TargetRegisterClass *RC = (BitSize <= 32 ? 7345 &SystemZ::GR32BitRegClass : 7346 &SystemZ::GR64BitRegClass); 7347 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7348 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7349 7350 // Get the right opcodes for the displacement. 7351 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7352 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7353 assert(LOpcode && CSOpcode && "Displacement out of range"); 7354 7355 // Create virtual registers for temporary results. 7356 Register OrigVal = MRI.createVirtualRegister(RC); 7357 Register OldVal = MRI.createVirtualRegister(RC); 7358 Register NewVal = (BinOpcode || IsSubWord ? 7359 MRI.createVirtualRegister(RC) : Src2.getReg()); 7360 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7361 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7362 7363 // Insert a basic block for the main loop. 7364 MachineBasicBlock *StartMBB = MBB; 7365 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7366 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7367 7368 // StartMBB: 7369 // ... 7370 // %OrigVal = L Disp(%Base) 7371 // # fall through to LoopMMB 7372 MBB = StartMBB; 7373 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7374 MBB->addSuccessor(LoopMBB); 7375 7376 // LoopMBB: 7377 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7378 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7379 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7380 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7381 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7382 // JNE LoopMBB 7383 // # fall through to DoneMMB 7384 MBB = LoopMBB; 7385 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7386 .addReg(OrigVal).addMBB(StartMBB) 7387 .addReg(Dest).addMBB(LoopMBB); 7388 if (IsSubWord) 7389 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7390 .addReg(OldVal).addReg(BitShift).addImm(0); 7391 if (Invert) { 7392 // Perform the operation normally and then invert every bit of the field. 7393 Register Tmp = MRI.createVirtualRegister(RC); 7394 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7395 if (BitSize <= 32) 7396 // XILF with the upper BitSize bits set. 7397 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7398 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7399 else { 7400 // Use LCGR and add -1 to the result, which is more compact than 7401 // an XILF, XILH pair. 7402 Register Tmp2 = MRI.createVirtualRegister(RC); 7403 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7404 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7405 .addReg(Tmp2).addImm(-1); 7406 } 7407 } else if (BinOpcode) 7408 // A simply binary operation. 7409 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7410 .addReg(RotatedOldVal) 7411 .add(Src2); 7412 else if (IsSubWord) 7413 // Use RISBG to rotate Src2 into position and use it to replace the 7414 // field in RotatedOldVal. 7415 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7416 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7417 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7418 if (IsSubWord) 7419 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7420 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7421 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7422 .addReg(OldVal) 7423 .addReg(NewVal) 7424 .add(Base) 7425 .addImm(Disp); 7426 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7427 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7428 MBB->addSuccessor(LoopMBB); 7429 MBB->addSuccessor(DoneMBB); 7430 7431 MI.eraseFromParent(); 7432 return DoneMBB; 7433 } 7434 7435 // Implement EmitInstrWithCustomInserter for pseudo 7436 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7437 // instruction that should be used to compare the current field with the 7438 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7439 // for when the current field should be kept. BitSize is the width of 7440 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7441 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7442 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7443 unsigned KeepOldMask, unsigned BitSize) const { 7444 MachineFunction &MF = *MBB->getParent(); 7445 const SystemZInstrInfo *TII = 7446 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7447 MachineRegisterInfo &MRI = MF.getRegInfo(); 7448 bool IsSubWord = (BitSize < 32); 7449 7450 // Extract the operands. Base can be a register or a frame index. 7451 Register Dest = MI.getOperand(0).getReg(); 7452 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7453 int64_t Disp = MI.getOperand(2).getImm(); 7454 Register Src2 = MI.getOperand(3).getReg(); 7455 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7456 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7457 DebugLoc DL = MI.getDebugLoc(); 7458 if (IsSubWord) 7459 BitSize = MI.getOperand(6).getImm(); 7460 7461 // Subword operations use 32-bit registers. 7462 const TargetRegisterClass *RC = (BitSize <= 32 ? 7463 &SystemZ::GR32BitRegClass : 7464 &SystemZ::GR64BitRegClass); 7465 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7466 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7467 7468 // Get the right opcodes for the displacement. 7469 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7470 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7471 assert(LOpcode && CSOpcode && "Displacement out of range"); 7472 7473 // Create virtual registers for temporary results. 7474 Register OrigVal = MRI.createVirtualRegister(RC); 7475 Register OldVal = MRI.createVirtualRegister(RC); 7476 Register NewVal = MRI.createVirtualRegister(RC); 7477 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7478 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7479 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7480 7481 // Insert 3 basic blocks for the loop. 7482 MachineBasicBlock *StartMBB = MBB; 7483 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7484 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7485 MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); 7486 MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); 7487 7488 // StartMBB: 7489 // ... 7490 // %OrigVal = L Disp(%Base) 7491 // # fall through to LoopMMB 7492 MBB = StartMBB; 7493 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7494 MBB->addSuccessor(LoopMBB); 7495 7496 // LoopMBB: 7497 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7498 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7499 // CompareOpcode %RotatedOldVal, %Src2 7500 // BRC KeepOldMask, UpdateMBB 7501 MBB = LoopMBB; 7502 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7503 .addReg(OrigVal).addMBB(StartMBB) 7504 .addReg(Dest).addMBB(UpdateMBB); 7505 if (IsSubWord) 7506 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7507 .addReg(OldVal).addReg(BitShift).addImm(0); 7508 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7509 .addReg(RotatedOldVal).addReg(Src2); 7510 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7511 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7512 MBB->addSuccessor(UpdateMBB); 7513 MBB->addSuccessor(UseAltMBB); 7514 7515 // UseAltMBB: 7516 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7517 // # fall through to UpdateMMB 7518 MBB = UseAltMBB; 7519 if (IsSubWord) 7520 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7521 .addReg(RotatedOldVal).addReg(Src2) 7522 .addImm(32).addImm(31 + BitSize).addImm(0); 7523 MBB->addSuccessor(UpdateMBB); 7524 7525 // UpdateMBB: 7526 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7527 // [ %RotatedAltVal, UseAltMBB ] 7528 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7529 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7530 // JNE LoopMBB 7531 // # fall through to DoneMMB 7532 MBB = UpdateMBB; 7533 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7534 .addReg(RotatedOldVal).addMBB(LoopMBB) 7535 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7536 if (IsSubWord) 7537 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7538 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7539 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7540 .addReg(OldVal) 7541 .addReg(NewVal) 7542 .add(Base) 7543 .addImm(Disp); 7544 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7545 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7546 MBB->addSuccessor(LoopMBB); 7547 MBB->addSuccessor(DoneMBB); 7548 7549 MI.eraseFromParent(); 7550 return DoneMBB; 7551 } 7552 7553 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7554 // instruction MI. 7555 MachineBasicBlock * 7556 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7557 MachineBasicBlock *MBB) const { 7558 7559 MachineFunction &MF = *MBB->getParent(); 7560 const SystemZInstrInfo *TII = 7561 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7562 MachineRegisterInfo &MRI = MF.getRegInfo(); 7563 7564 // Extract the operands. Base can be a register or a frame index. 7565 Register Dest = MI.getOperand(0).getReg(); 7566 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7567 int64_t Disp = MI.getOperand(2).getImm(); 7568 Register OrigCmpVal = MI.getOperand(3).getReg(); 7569 Register OrigSwapVal = MI.getOperand(4).getReg(); 7570 Register BitShift = MI.getOperand(5).getReg(); 7571 Register NegBitShift = MI.getOperand(6).getReg(); 7572 int64_t BitSize = MI.getOperand(7).getImm(); 7573 DebugLoc DL = MI.getDebugLoc(); 7574 7575 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7576 7577 // Get the right opcodes for the displacement. 7578 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7579 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7580 assert(LOpcode && CSOpcode && "Displacement out of range"); 7581 7582 // Create virtual registers for temporary results. 7583 Register OrigOldVal = MRI.createVirtualRegister(RC); 7584 Register OldVal = MRI.createVirtualRegister(RC); 7585 Register CmpVal = MRI.createVirtualRegister(RC); 7586 Register SwapVal = MRI.createVirtualRegister(RC); 7587 Register StoreVal = MRI.createVirtualRegister(RC); 7588 Register RetryOldVal = MRI.createVirtualRegister(RC); 7589 Register RetryCmpVal = MRI.createVirtualRegister(RC); 7590 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7591 7592 // Insert 2 basic blocks for the loop. 7593 MachineBasicBlock *StartMBB = MBB; 7594 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7595 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7596 MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); 7597 7598 // StartMBB: 7599 // ... 7600 // %OrigOldVal = L Disp(%Base) 7601 // # fall through to LoopMMB 7602 MBB = StartMBB; 7603 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7604 .add(Base) 7605 .addImm(Disp) 7606 .addReg(0); 7607 MBB->addSuccessor(LoopMBB); 7608 7609 // LoopMBB: 7610 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7611 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 7612 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7613 // %Dest = RLL %OldVal, BitSize(%BitShift) 7614 // ^^ The low BitSize bits contain the field 7615 // of interest. 7616 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 7617 // ^^ Replace the upper 32-BitSize bits of the 7618 // comparison value with those that we loaded, 7619 // so that we can use a full word comparison. 7620 // CR %Dest, %RetryCmpVal 7621 // JNE DoneMBB 7622 // # Fall through to SetMBB 7623 MBB = LoopMBB; 7624 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7625 .addReg(OrigOldVal).addMBB(StartMBB) 7626 .addReg(RetryOldVal).addMBB(SetMBB); 7627 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 7628 .addReg(OrigCmpVal).addMBB(StartMBB) 7629 .addReg(RetryCmpVal).addMBB(SetMBB); 7630 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7631 .addReg(OrigSwapVal).addMBB(StartMBB) 7632 .addReg(RetrySwapVal).addMBB(SetMBB); 7633 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 7634 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7635 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 7636 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7637 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7638 .addReg(Dest).addReg(RetryCmpVal); 7639 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7640 .addImm(SystemZ::CCMASK_ICMP) 7641 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7642 MBB->addSuccessor(DoneMBB); 7643 MBB->addSuccessor(SetMBB); 7644 7645 // SetMBB: 7646 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 7647 // ^^ Replace the upper 32-BitSize bits of the new 7648 // value with those that we loaded. 7649 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7650 // ^^ Rotate the new field to its proper position. 7651 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 7652 // JNE LoopMBB 7653 // # fall through to ExitMMB 7654 MBB = SetMBB; 7655 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7656 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7657 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7658 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7659 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7660 .addReg(OldVal) 7661 .addReg(StoreVal) 7662 .add(Base) 7663 .addImm(Disp); 7664 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7665 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7666 MBB->addSuccessor(LoopMBB); 7667 MBB->addSuccessor(DoneMBB); 7668 7669 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7670 // to the block after the loop. At this point, CC may have been defined 7671 // either by the CR in LoopMBB or by the CS in SetMBB. 7672 if (!MI.registerDefIsDead(SystemZ::CC)) 7673 DoneMBB->addLiveIn(SystemZ::CC); 7674 7675 MI.eraseFromParent(); 7676 return DoneMBB; 7677 } 7678 7679 // Emit a move from two GR64s to a GR128. 7680 MachineBasicBlock * 7681 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7682 MachineBasicBlock *MBB) const { 7683 MachineFunction &MF = *MBB->getParent(); 7684 const SystemZInstrInfo *TII = 7685 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7686 MachineRegisterInfo &MRI = MF.getRegInfo(); 7687 DebugLoc DL = MI.getDebugLoc(); 7688 7689 Register Dest = MI.getOperand(0).getReg(); 7690 Register Hi = MI.getOperand(1).getReg(); 7691 Register Lo = MI.getOperand(2).getReg(); 7692 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7693 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7694 7695 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7696 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7697 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7698 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7699 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7700 7701 MI.eraseFromParent(); 7702 return MBB; 7703 } 7704 7705 // Emit an extension from a GR64 to a GR128. ClearEven is true 7706 // if the high register of the GR128 value must be cleared or false if 7707 // it's "don't care". 7708 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7709 MachineBasicBlock *MBB, 7710 bool ClearEven) const { 7711 MachineFunction &MF = *MBB->getParent(); 7712 const SystemZInstrInfo *TII = 7713 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7714 MachineRegisterInfo &MRI = MF.getRegInfo(); 7715 DebugLoc DL = MI.getDebugLoc(); 7716 7717 Register Dest = MI.getOperand(0).getReg(); 7718 Register Src = MI.getOperand(1).getReg(); 7719 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7720 7721 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7722 if (ClearEven) { 7723 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7724 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7725 7726 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7727 .addImm(0); 7728 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7729 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7730 In128 = NewIn128; 7731 } 7732 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7733 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7734 7735 MI.eraseFromParent(); 7736 return MBB; 7737 } 7738 7739 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 7740 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7741 MachineFunction &MF = *MBB->getParent(); 7742 const SystemZInstrInfo *TII = 7743 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7744 MachineRegisterInfo &MRI = MF.getRegInfo(); 7745 DebugLoc DL = MI.getDebugLoc(); 7746 7747 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7748 uint64_t DestDisp = MI.getOperand(1).getImm(); 7749 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 7750 uint64_t SrcDisp = MI.getOperand(3).getImm(); 7751 uint64_t Length = MI.getOperand(4).getImm(); 7752 7753 // When generating more than one CLC, all but the last will need to 7754 // branch to the end when a difference is found. 7755 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 7756 SystemZ::splitBlockAfter(MI, MBB) : nullptr); 7757 7758 // Check for the loop form, in which operand 5 is the trip count. 7759 if (MI.getNumExplicitOperands() > 5) { 7760 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7761 7762 Register StartCountReg = MI.getOperand(5).getReg(); 7763 Register StartSrcReg = forceReg(MI, SrcBase, TII); 7764 Register StartDestReg = (HaveSingleBase ? StartSrcReg : 7765 forceReg(MI, DestBase, TII)); 7766 7767 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 7768 Register ThisSrcReg = MRI.createVirtualRegister(RC); 7769 Register ThisDestReg = (HaveSingleBase ? ThisSrcReg : 7770 MRI.createVirtualRegister(RC)); 7771 Register NextSrcReg = MRI.createVirtualRegister(RC); 7772 Register NextDestReg = (HaveSingleBase ? NextSrcReg : 7773 MRI.createVirtualRegister(RC)); 7774 7775 RC = &SystemZ::GR64BitRegClass; 7776 Register ThisCountReg = MRI.createVirtualRegister(RC); 7777 Register NextCountReg = MRI.createVirtualRegister(RC); 7778 7779 MachineBasicBlock *StartMBB = MBB; 7780 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7781 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7782 MachineBasicBlock *NextMBB = 7783 (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 7784 7785 // StartMBB: 7786 // # fall through to LoopMMB 7787 MBB->addSuccessor(LoopMBB); 7788 7789 // LoopMBB: 7790 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 7791 // [ %NextDestReg, NextMBB ] 7792 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 7793 // [ %NextSrcReg, NextMBB ] 7794 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 7795 // [ %NextCountReg, NextMBB ] 7796 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 7797 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 7798 // ( JLH EndMBB ) 7799 // 7800 // The prefetch is used only for MVC. The JLH is used only for CLC. 7801 MBB = LoopMBB; 7802 7803 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 7804 .addReg(StartDestReg).addMBB(StartMBB) 7805 .addReg(NextDestReg).addMBB(NextMBB); 7806 if (!HaveSingleBase) 7807 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 7808 .addReg(StartSrcReg).addMBB(StartMBB) 7809 .addReg(NextSrcReg).addMBB(NextMBB); 7810 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 7811 .addReg(StartCountReg).addMBB(StartMBB) 7812 .addReg(NextCountReg).addMBB(NextMBB); 7813 if (Opcode == SystemZ::MVC) 7814 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 7815 .addImm(SystemZ::PFD_WRITE) 7816 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 7817 BuildMI(MBB, DL, TII->get(Opcode)) 7818 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 7819 .addReg(ThisSrcReg).addImm(SrcDisp); 7820 if (EndMBB) { 7821 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7822 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7823 .addMBB(EndMBB); 7824 MBB->addSuccessor(EndMBB); 7825 MBB->addSuccessor(NextMBB); 7826 } 7827 7828 // NextMBB: 7829 // %NextDestReg = LA 256(%ThisDestReg) 7830 // %NextSrcReg = LA 256(%ThisSrcReg) 7831 // %NextCountReg = AGHI %ThisCountReg, -1 7832 // CGHI %NextCountReg, 0 7833 // JLH LoopMBB 7834 // # fall through to DoneMMB 7835 // 7836 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 7837 MBB = NextMBB; 7838 7839 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 7840 .addReg(ThisDestReg).addImm(256).addReg(0); 7841 if (!HaveSingleBase) 7842 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 7843 .addReg(ThisSrcReg).addImm(256).addReg(0); 7844 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7845 .addReg(ThisCountReg).addImm(-1); 7846 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7847 .addReg(NextCountReg).addImm(0); 7848 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7849 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7850 .addMBB(LoopMBB); 7851 MBB->addSuccessor(LoopMBB); 7852 MBB->addSuccessor(DoneMBB); 7853 7854 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7855 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7856 Length &= 255; 7857 if (EndMBB && !Length) 7858 // If the loop handled the whole CLC range, DoneMBB will be empty with 7859 // CC live-through into EndMBB, so add it as live-in. 7860 DoneMBB->addLiveIn(SystemZ::CC); 7861 MBB = DoneMBB; 7862 } 7863 // Handle any remaining bytes with straight-line code. 7864 while (Length > 0) { 7865 uint64_t ThisLength = std::min(Length, uint64_t(256)); 7866 // The previous iteration might have created out-of-range displacements. 7867 // Apply them using LAY if so. 7868 if (!isUInt<12>(DestDisp)) { 7869 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7870 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7871 .add(DestBase) 7872 .addImm(DestDisp) 7873 .addReg(0); 7874 DestBase = MachineOperand::CreateReg(Reg, false); 7875 DestDisp = 0; 7876 } 7877 if (!isUInt<12>(SrcDisp)) { 7878 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7879 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7880 .add(SrcBase) 7881 .addImm(SrcDisp) 7882 .addReg(0); 7883 SrcBase = MachineOperand::CreateReg(Reg, false); 7884 SrcDisp = 0; 7885 } 7886 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 7887 .add(DestBase) 7888 .addImm(DestDisp) 7889 .addImm(ThisLength) 7890 .add(SrcBase) 7891 .addImm(SrcDisp) 7892 .setMemRefs(MI.memoperands()); 7893 DestDisp += ThisLength; 7894 SrcDisp += ThisLength; 7895 Length -= ThisLength; 7896 // If there's another CLC to go, branch to the end if a difference 7897 // was found. 7898 if (EndMBB && Length > 0) { 7899 MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); 7900 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7901 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7902 .addMBB(EndMBB); 7903 MBB->addSuccessor(EndMBB); 7904 MBB->addSuccessor(NextMBB); 7905 MBB = NextMBB; 7906 } 7907 } 7908 if (EndMBB) { 7909 MBB->addSuccessor(EndMBB); 7910 MBB = EndMBB; 7911 MBB->addLiveIn(SystemZ::CC); 7912 } 7913 7914 MI.eraseFromParent(); 7915 return MBB; 7916 } 7917 7918 // Decompose string pseudo-instruction MI into a loop that continually performs 7919 // Opcode until CC != 3. 7920 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7921 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7922 MachineFunction &MF = *MBB->getParent(); 7923 const SystemZInstrInfo *TII = 7924 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7925 MachineRegisterInfo &MRI = MF.getRegInfo(); 7926 DebugLoc DL = MI.getDebugLoc(); 7927 7928 uint64_t End1Reg = MI.getOperand(0).getReg(); 7929 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7930 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7931 uint64_t CharReg = MI.getOperand(3).getReg(); 7932 7933 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7934 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7935 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7936 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7937 7938 MachineBasicBlock *StartMBB = MBB; 7939 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7940 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7941 7942 // StartMBB: 7943 // # fall through to LoopMMB 7944 MBB->addSuccessor(LoopMBB); 7945 7946 // LoopMBB: 7947 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7948 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7949 // R0L = %CharReg 7950 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7951 // JO LoopMBB 7952 // # fall through to DoneMMB 7953 // 7954 // The load of R0L can be hoisted by post-RA LICM. 7955 MBB = LoopMBB; 7956 7957 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7958 .addReg(Start1Reg).addMBB(StartMBB) 7959 .addReg(End1Reg).addMBB(LoopMBB); 7960 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7961 .addReg(Start2Reg).addMBB(StartMBB) 7962 .addReg(End2Reg).addMBB(LoopMBB); 7963 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7964 BuildMI(MBB, DL, TII->get(Opcode)) 7965 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7966 .addReg(This1Reg).addReg(This2Reg); 7967 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7968 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7969 MBB->addSuccessor(LoopMBB); 7970 MBB->addSuccessor(DoneMBB); 7971 7972 DoneMBB->addLiveIn(SystemZ::CC); 7973 7974 MI.eraseFromParent(); 7975 return DoneMBB; 7976 } 7977 7978 // Update TBEGIN instruction with final opcode and register clobbers. 7979 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7980 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7981 bool NoFloat) const { 7982 MachineFunction &MF = *MBB->getParent(); 7983 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7984 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7985 7986 // Update opcode. 7987 MI.setDesc(TII->get(Opcode)); 7988 7989 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7990 // Make sure to add the corresponding GRSM bits if they are missing. 7991 uint64_t Control = MI.getOperand(2).getImm(); 7992 static const unsigned GPRControlBit[16] = { 7993 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7994 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7995 }; 7996 Control |= GPRControlBit[15]; 7997 if (TFI->hasFP(MF)) 7998 Control |= GPRControlBit[11]; 7999 MI.getOperand(2).setImm(Control); 8000 8001 // Add GPR clobbers. 8002 for (int I = 0; I < 16; I++) { 8003 if ((Control & GPRControlBit[I]) == 0) { 8004 unsigned Reg = SystemZMC::GR64Regs[I]; 8005 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8006 } 8007 } 8008 8009 // Add FPR/VR clobbers. 8010 if (!NoFloat && (Control & 4) != 0) { 8011 if (Subtarget.hasVector()) { 8012 for (int I = 0; I < 32; I++) { 8013 unsigned Reg = SystemZMC::VR128Regs[I]; 8014 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8015 } 8016 } else { 8017 for (int I = 0; I < 16; I++) { 8018 unsigned Reg = SystemZMC::FP64Regs[I]; 8019 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8020 } 8021 } 8022 } 8023 8024 return MBB; 8025 } 8026 8027 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 8028 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8029 MachineFunction &MF = *MBB->getParent(); 8030 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8031 const SystemZInstrInfo *TII = 8032 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8033 DebugLoc DL = MI.getDebugLoc(); 8034 8035 Register SrcReg = MI.getOperand(0).getReg(); 8036 8037 // Create new virtual register of the same class as source. 8038 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 8039 Register DstReg = MRI->createVirtualRegister(RC); 8040 8041 // Replace pseudo with a normal load-and-test that models the def as 8042 // well. 8043 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 8044 .addReg(SrcReg) 8045 .setMIFlags(MI.getFlags()); 8046 MI.eraseFromParent(); 8047 8048 return MBB; 8049 } 8050 8051 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( 8052 MachineInstr &MI, MachineBasicBlock *MBB) const { 8053 MachineFunction &MF = *MBB->getParent(); 8054 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8055 const SystemZInstrInfo *TII = 8056 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8057 DebugLoc DL = MI.getDebugLoc(); 8058 const unsigned ProbeSize = getStackProbeSize(MF); 8059 Register DstReg = MI.getOperand(0).getReg(); 8060 Register SizeReg = MI.getOperand(2).getReg(); 8061 8062 MachineBasicBlock *StartMBB = MBB; 8063 MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); 8064 MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); 8065 MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); 8066 MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); 8067 MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); 8068 8069 MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), 8070 MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); 8071 8072 Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8073 Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8074 8075 // LoopTestMBB 8076 // BRC TailTestMBB 8077 // # fallthrough to LoopBodyMBB 8078 StartMBB->addSuccessor(LoopTestMBB); 8079 MBB = LoopTestMBB; 8080 BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) 8081 .addReg(SizeReg) 8082 .addMBB(StartMBB) 8083 .addReg(IncReg) 8084 .addMBB(LoopBodyMBB); 8085 BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) 8086 .addReg(PHIReg) 8087 .addImm(ProbeSize); 8088 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8089 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) 8090 .addMBB(TailTestMBB); 8091 MBB->addSuccessor(LoopBodyMBB); 8092 MBB->addSuccessor(TailTestMBB); 8093 8094 // LoopBodyMBB: Allocate and probe by means of a volatile compare. 8095 // J LoopTestMBB 8096 MBB = LoopBodyMBB; 8097 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) 8098 .addReg(PHIReg) 8099 .addImm(ProbeSize); 8100 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) 8101 .addReg(SystemZ::R15D) 8102 .addImm(ProbeSize); 8103 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8104 .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) 8105 .setMemRefs(VolLdMMO); 8106 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); 8107 MBB->addSuccessor(LoopTestMBB); 8108 8109 // TailTestMBB 8110 // BRC DoneMBB 8111 // # fallthrough to TailMBB 8112 MBB = TailTestMBB; 8113 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8114 .addReg(PHIReg) 8115 .addImm(0); 8116 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8117 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8118 .addMBB(DoneMBB); 8119 MBB->addSuccessor(TailMBB); 8120 MBB->addSuccessor(DoneMBB); 8121 8122 // TailMBB 8123 // # fallthrough to DoneMBB 8124 MBB = TailMBB; 8125 BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) 8126 .addReg(SystemZ::R15D) 8127 .addReg(PHIReg); 8128 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8129 .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) 8130 .setMemRefs(VolLdMMO); 8131 MBB->addSuccessor(DoneMBB); 8132 8133 // DoneMBB 8134 MBB = DoneMBB; 8135 BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) 8136 .addReg(SystemZ::R15D); 8137 8138 MI.eraseFromParent(); 8139 return DoneMBB; 8140 } 8141 8142 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 8143 MachineInstr &MI, MachineBasicBlock *MBB) const { 8144 switch (MI.getOpcode()) { 8145 case SystemZ::Select32: 8146 case SystemZ::Select64: 8147 case SystemZ::SelectF32: 8148 case SystemZ::SelectF64: 8149 case SystemZ::SelectF128: 8150 case SystemZ::SelectVR32: 8151 case SystemZ::SelectVR64: 8152 case SystemZ::SelectVR128: 8153 return emitSelect(MI, MBB); 8154 8155 case SystemZ::CondStore8Mux: 8156 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 8157 case SystemZ::CondStore8MuxInv: 8158 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 8159 case SystemZ::CondStore16Mux: 8160 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 8161 case SystemZ::CondStore16MuxInv: 8162 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 8163 case SystemZ::CondStore32Mux: 8164 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 8165 case SystemZ::CondStore32MuxInv: 8166 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 8167 case SystemZ::CondStore8: 8168 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 8169 case SystemZ::CondStore8Inv: 8170 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 8171 case SystemZ::CondStore16: 8172 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 8173 case SystemZ::CondStore16Inv: 8174 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 8175 case SystemZ::CondStore32: 8176 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 8177 case SystemZ::CondStore32Inv: 8178 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 8179 case SystemZ::CondStore64: 8180 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 8181 case SystemZ::CondStore64Inv: 8182 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 8183 case SystemZ::CondStoreF32: 8184 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 8185 case SystemZ::CondStoreF32Inv: 8186 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 8187 case SystemZ::CondStoreF64: 8188 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 8189 case SystemZ::CondStoreF64Inv: 8190 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 8191 8192 case SystemZ::PAIR128: 8193 return emitPair128(MI, MBB); 8194 case SystemZ::AEXT128: 8195 return emitExt128(MI, MBB, false); 8196 case SystemZ::ZEXT128: 8197 return emitExt128(MI, MBB, true); 8198 8199 case SystemZ::ATOMIC_SWAPW: 8200 return emitAtomicLoadBinary(MI, MBB, 0, 0); 8201 case SystemZ::ATOMIC_SWAP_32: 8202 return emitAtomicLoadBinary(MI, MBB, 0, 32); 8203 case SystemZ::ATOMIC_SWAP_64: 8204 return emitAtomicLoadBinary(MI, MBB, 0, 64); 8205 8206 case SystemZ::ATOMIC_LOADW_AR: 8207 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 8208 case SystemZ::ATOMIC_LOADW_AFI: 8209 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 8210 case SystemZ::ATOMIC_LOAD_AR: 8211 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 8212 case SystemZ::ATOMIC_LOAD_AHI: 8213 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 8214 case SystemZ::ATOMIC_LOAD_AFI: 8215 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 8216 case SystemZ::ATOMIC_LOAD_AGR: 8217 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 8218 case SystemZ::ATOMIC_LOAD_AGHI: 8219 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 8220 case SystemZ::ATOMIC_LOAD_AGFI: 8221 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 8222 8223 case SystemZ::ATOMIC_LOADW_SR: 8224 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 8225 case SystemZ::ATOMIC_LOAD_SR: 8226 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 8227 case SystemZ::ATOMIC_LOAD_SGR: 8228 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 8229 8230 case SystemZ::ATOMIC_LOADW_NR: 8231 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 8232 case SystemZ::ATOMIC_LOADW_NILH: 8233 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 8234 case SystemZ::ATOMIC_LOAD_NR: 8235 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 8236 case SystemZ::ATOMIC_LOAD_NILL: 8237 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 8238 case SystemZ::ATOMIC_LOAD_NILH: 8239 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 8240 case SystemZ::ATOMIC_LOAD_NILF: 8241 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 8242 case SystemZ::ATOMIC_LOAD_NGR: 8243 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 8244 case SystemZ::ATOMIC_LOAD_NILL64: 8245 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 8246 case SystemZ::ATOMIC_LOAD_NILH64: 8247 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 8248 case SystemZ::ATOMIC_LOAD_NIHL64: 8249 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 8250 case SystemZ::ATOMIC_LOAD_NIHH64: 8251 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 8252 case SystemZ::ATOMIC_LOAD_NILF64: 8253 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 8254 case SystemZ::ATOMIC_LOAD_NIHF64: 8255 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 8256 8257 case SystemZ::ATOMIC_LOADW_OR: 8258 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 8259 case SystemZ::ATOMIC_LOADW_OILH: 8260 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 8261 case SystemZ::ATOMIC_LOAD_OR: 8262 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 8263 case SystemZ::ATOMIC_LOAD_OILL: 8264 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 8265 case SystemZ::ATOMIC_LOAD_OILH: 8266 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 8267 case SystemZ::ATOMIC_LOAD_OILF: 8268 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 8269 case SystemZ::ATOMIC_LOAD_OGR: 8270 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 8271 case SystemZ::ATOMIC_LOAD_OILL64: 8272 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 8273 case SystemZ::ATOMIC_LOAD_OILH64: 8274 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 8275 case SystemZ::ATOMIC_LOAD_OIHL64: 8276 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 8277 case SystemZ::ATOMIC_LOAD_OIHH64: 8278 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 8279 case SystemZ::ATOMIC_LOAD_OILF64: 8280 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 8281 case SystemZ::ATOMIC_LOAD_OIHF64: 8282 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 8283 8284 case SystemZ::ATOMIC_LOADW_XR: 8285 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 8286 case SystemZ::ATOMIC_LOADW_XILF: 8287 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 8288 case SystemZ::ATOMIC_LOAD_XR: 8289 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 8290 case SystemZ::ATOMIC_LOAD_XILF: 8291 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 8292 case SystemZ::ATOMIC_LOAD_XGR: 8293 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 8294 case SystemZ::ATOMIC_LOAD_XILF64: 8295 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 8296 case SystemZ::ATOMIC_LOAD_XIHF64: 8297 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 8298 8299 case SystemZ::ATOMIC_LOADW_NRi: 8300 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 8301 case SystemZ::ATOMIC_LOADW_NILHi: 8302 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 8303 case SystemZ::ATOMIC_LOAD_NRi: 8304 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 8305 case SystemZ::ATOMIC_LOAD_NILLi: 8306 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 8307 case SystemZ::ATOMIC_LOAD_NILHi: 8308 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 8309 case SystemZ::ATOMIC_LOAD_NILFi: 8310 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 8311 case SystemZ::ATOMIC_LOAD_NGRi: 8312 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 8313 case SystemZ::ATOMIC_LOAD_NILL64i: 8314 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 8315 case SystemZ::ATOMIC_LOAD_NILH64i: 8316 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 8317 case SystemZ::ATOMIC_LOAD_NIHL64i: 8318 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 8319 case SystemZ::ATOMIC_LOAD_NIHH64i: 8320 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 8321 case SystemZ::ATOMIC_LOAD_NILF64i: 8322 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 8323 case SystemZ::ATOMIC_LOAD_NIHF64i: 8324 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 8325 8326 case SystemZ::ATOMIC_LOADW_MIN: 8327 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8328 SystemZ::CCMASK_CMP_LE, 0); 8329 case SystemZ::ATOMIC_LOAD_MIN_32: 8330 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8331 SystemZ::CCMASK_CMP_LE, 32); 8332 case SystemZ::ATOMIC_LOAD_MIN_64: 8333 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8334 SystemZ::CCMASK_CMP_LE, 64); 8335 8336 case SystemZ::ATOMIC_LOADW_MAX: 8337 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8338 SystemZ::CCMASK_CMP_GE, 0); 8339 case SystemZ::ATOMIC_LOAD_MAX_32: 8340 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8341 SystemZ::CCMASK_CMP_GE, 32); 8342 case SystemZ::ATOMIC_LOAD_MAX_64: 8343 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8344 SystemZ::CCMASK_CMP_GE, 64); 8345 8346 case SystemZ::ATOMIC_LOADW_UMIN: 8347 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8348 SystemZ::CCMASK_CMP_LE, 0); 8349 case SystemZ::ATOMIC_LOAD_UMIN_32: 8350 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8351 SystemZ::CCMASK_CMP_LE, 32); 8352 case SystemZ::ATOMIC_LOAD_UMIN_64: 8353 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8354 SystemZ::CCMASK_CMP_LE, 64); 8355 8356 case SystemZ::ATOMIC_LOADW_UMAX: 8357 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8358 SystemZ::CCMASK_CMP_GE, 0); 8359 case SystemZ::ATOMIC_LOAD_UMAX_32: 8360 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8361 SystemZ::CCMASK_CMP_GE, 32); 8362 case SystemZ::ATOMIC_LOAD_UMAX_64: 8363 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8364 SystemZ::CCMASK_CMP_GE, 64); 8365 8366 case SystemZ::ATOMIC_CMP_SWAPW: 8367 return emitAtomicCmpSwapW(MI, MBB); 8368 case SystemZ::MVCSequence: 8369 case SystemZ::MVCLoop: 8370 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 8371 case SystemZ::NCSequence: 8372 case SystemZ::NCLoop: 8373 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 8374 case SystemZ::OCSequence: 8375 case SystemZ::OCLoop: 8376 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 8377 case SystemZ::XCSequence: 8378 case SystemZ::XCLoop: 8379 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 8380 case SystemZ::CLCSequence: 8381 case SystemZ::CLCLoop: 8382 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 8383 case SystemZ::CLSTLoop: 8384 return emitStringWrapper(MI, MBB, SystemZ::CLST); 8385 case SystemZ::MVSTLoop: 8386 return emitStringWrapper(MI, MBB, SystemZ::MVST); 8387 case SystemZ::SRSTLoop: 8388 return emitStringWrapper(MI, MBB, SystemZ::SRST); 8389 case SystemZ::TBEGIN: 8390 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 8391 case SystemZ::TBEGIN_nofloat: 8392 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 8393 case SystemZ::TBEGINC: 8394 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 8395 case SystemZ::LTEBRCompare_VecPseudo: 8396 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 8397 case SystemZ::LTDBRCompare_VecPseudo: 8398 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 8399 case SystemZ::LTXBRCompare_VecPseudo: 8400 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 8401 8402 case SystemZ::PROBED_ALLOCA: 8403 return emitProbedAlloca(MI, MBB); 8404 8405 case TargetOpcode::STACKMAP: 8406 case TargetOpcode::PATCHPOINT: 8407 return emitPatchPoint(MI, MBB); 8408 8409 default: 8410 llvm_unreachable("Unexpected instr type to insert"); 8411 } 8412 } 8413 8414 // This is only used by the isel schedulers, and is needed only to prevent 8415 // compiler from crashing when list-ilp is used. 8416 const TargetRegisterClass * 8417 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 8418 if (VT == MVT::Untyped) 8419 return &SystemZ::ADDR128BitRegClass; 8420 return TargetLowering::getRepRegClassFor(VT); 8421 } 8422