1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/Support/CommandLine.h" 24 #include "llvm/IR/Intrinsics.h" 25 #include <cctype> 26 27 using namespace llvm; 28 29 #define DEBUG_TYPE "systemz-lower" 30 31 namespace { 32 // Represents a sequence for extracting a 0/1 value from an IPM result: 33 // (((X ^ XORValue) + AddValue) >> Bit) 34 struct IPMConversion { 35 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 36 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 37 38 int64_t XORValue; 39 int64_t AddValue; 40 unsigned Bit; 41 }; 42 43 // Represents information about a comparison. 44 struct Comparison { 45 Comparison(SDValue Op0In, SDValue Op1In) 46 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 47 48 // The operands to the comparison. 49 SDValue Op0, Op1; 50 51 // The opcode that should be used to compare Op0 and Op1. 52 unsigned Opcode; 53 54 // A SystemZICMP value. Only used for integer comparisons. 55 unsigned ICmpType; 56 57 // The mask of CC values that Opcode can produce. 58 unsigned CCValid; 59 60 // The mask of CC values for which the original condition is true. 61 unsigned CCMask; 62 }; 63 } // end anonymous namespace 64 65 // Classify VT as either 32 or 64 bit. 66 static bool is32Bit(EVT VT) { 67 switch (VT.getSimpleVT().SimpleTy) { 68 case MVT::i32: 69 return true; 70 case MVT::i64: 71 return false; 72 default: 73 llvm_unreachable("Unsupported type"); 74 } 75 } 76 77 // Return a version of MachineOperand that can be safely used before the 78 // final use. 79 static MachineOperand earlyUseOperand(MachineOperand Op) { 80 if (Op.isReg()) 81 Op.setIsKill(false); 82 return Op; 83 } 84 85 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 86 const SystemZSubtarget &STI) 87 : TargetLowering(TM), Subtarget(STI) { 88 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 89 90 // Set up the register classes. 91 if (Subtarget.hasHighWord()) 92 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 93 else 94 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 95 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 96 if (Subtarget.hasVector()) { 97 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 98 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 99 } else { 100 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 101 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 102 } 103 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 104 105 if (Subtarget.hasVector()) { 106 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 111 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 112 } 113 114 // Compute derived properties from the register classes 115 computeRegisterProperties(Subtarget.getRegisterInfo()); 116 117 // Set up special registers. 118 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 119 120 // TODO: It may be better to default to latency-oriented scheduling, however 121 // LLVM's current latency-oriented scheduler can't handle physreg definitions 122 // such as SystemZ has with CC, so set this to the register-pressure 123 // scheduler, because it can. 124 setSchedulingPreference(Sched::RegPressure); 125 126 setBooleanContents(ZeroOrOneBooleanContent); 127 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 128 129 // Instructions are strings of 2-byte aligned 2-byte values. 130 setMinFunctionAlignment(2); 131 132 // Handle operations that are handled in a similar way for all types. 133 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 134 I <= MVT::LAST_FP_VALUETYPE; 135 ++I) { 136 MVT VT = MVT::SimpleValueType(I); 137 if (isTypeLegal(VT)) { 138 // Lower SET_CC into an IPM-based sequence. 139 setOperationAction(ISD::SETCC, VT, Custom); 140 141 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 142 setOperationAction(ISD::SELECT, VT, Expand); 143 144 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 145 setOperationAction(ISD::SELECT_CC, VT, Custom); 146 setOperationAction(ISD::BR_CC, VT, Custom); 147 } 148 } 149 150 // Expand jump table branches as address arithmetic followed by an 151 // indirect jump. 152 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 153 154 // Expand BRCOND into a BR_CC (see above). 155 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 156 157 // Handle integer types. 158 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 159 I <= MVT::LAST_INTEGER_VALUETYPE; 160 ++I) { 161 MVT VT = MVT::SimpleValueType(I); 162 if (isTypeLegal(VT)) { 163 // Expand individual DIV and REMs into DIVREMs. 164 setOperationAction(ISD::SDIV, VT, Expand); 165 setOperationAction(ISD::UDIV, VT, Expand); 166 setOperationAction(ISD::SREM, VT, Expand); 167 setOperationAction(ISD::UREM, VT, Expand); 168 setOperationAction(ISD::SDIVREM, VT, Custom); 169 setOperationAction(ISD::UDIVREM, VT, Custom); 170 171 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 172 // stores, putting a serialization instruction after the stores. 173 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 174 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 175 176 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 177 // available, or if the operand is constant. 178 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 179 180 // Use POPCNT on z196 and above. 181 if (Subtarget.hasPopulationCount()) 182 setOperationAction(ISD::CTPOP, VT, Custom); 183 else 184 setOperationAction(ISD::CTPOP, VT, Expand); 185 186 // No special instructions for these. 187 setOperationAction(ISD::CTTZ, VT, Expand); 188 setOperationAction(ISD::ROTR, VT, Expand); 189 190 // Use *MUL_LOHI where possible instead of MULH*. 191 setOperationAction(ISD::MULHS, VT, Expand); 192 setOperationAction(ISD::MULHU, VT, Expand); 193 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 194 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 195 196 // Only z196 and above have native support for conversions to unsigned. 197 if (!Subtarget.hasFPExtension()) 198 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 199 } 200 } 201 202 // Type legalization will convert 8- and 16-bit atomic operations into 203 // forms that operate on i32s (but still keeping the original memory VT). 204 // Lower them into full i32 operations. 205 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 206 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 207 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 208 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 209 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 217 218 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 219 220 // Traps are legal, as we will convert them to "j .+2". 221 setOperationAction(ISD::TRAP, MVT::Other, Legal); 222 223 // z10 has instructions for signed but not unsigned FP conversion. 224 // Handle unsigned 32-bit types as signed 64-bit types. 225 if (!Subtarget.hasFPExtension()) { 226 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 227 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 228 } 229 230 // We have native support for a 64-bit CTLZ, via FLOGR. 231 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 232 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 233 234 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 235 setOperationAction(ISD::OR, MVT::i64, Custom); 236 237 // FIXME: Can we support these natively? 238 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 239 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 240 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 241 242 // We have native instructions for i8, i16 and i32 extensions, but not i1. 243 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 244 for (MVT VT : MVT::integer_valuetypes()) { 245 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 246 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 247 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 248 } 249 250 // Handle the various types of symbolic address. 251 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 252 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 253 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 254 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 255 setOperationAction(ISD::JumpTable, PtrVT, Custom); 256 257 // We need to handle dynamic allocations specially because of the 258 // 160-byte area at the bottom of the stack. 259 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 260 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 261 262 // Use custom expanders so that we can force the function to use 263 // a frame pointer. 264 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 265 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 266 267 // Handle prefetches with PFD or PFDRL. 268 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 269 270 for (MVT VT : MVT::vector_valuetypes()) { 271 // Assume by default that all vector operations need to be expanded. 272 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 273 if (getOperationAction(Opcode, VT) == Legal) 274 setOperationAction(Opcode, VT, Expand); 275 276 // Likewise all truncating stores and extending loads. 277 for (MVT InnerVT : MVT::vector_valuetypes()) { 278 setTruncStoreAction(VT, InnerVT, Expand); 279 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 280 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 281 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 282 } 283 284 if (isTypeLegal(VT)) { 285 // These operations are legal for anything that can be stored in a 286 // vector register, even if there is no native support for the format 287 // as such. In particular, we can do these for v4f32 even though there 288 // are no specific instructions for that format. 289 setOperationAction(ISD::LOAD, VT, Legal); 290 setOperationAction(ISD::STORE, VT, Legal); 291 setOperationAction(ISD::VSELECT, VT, Legal); 292 setOperationAction(ISD::BITCAST, VT, Legal); 293 setOperationAction(ISD::UNDEF, VT, Legal); 294 295 // Likewise, except that we need to replace the nodes with something 296 // more specific. 297 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 298 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 299 } 300 } 301 302 // Handle integer vector types. 303 for (MVT VT : MVT::integer_vector_valuetypes()) { 304 if (isTypeLegal(VT)) { 305 // These operations have direct equivalents. 306 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 307 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 308 setOperationAction(ISD::ADD, VT, Legal); 309 setOperationAction(ISD::SUB, VT, Legal); 310 if (VT != MVT::v2i64) 311 setOperationAction(ISD::MUL, VT, Legal); 312 setOperationAction(ISD::AND, VT, Legal); 313 setOperationAction(ISD::OR, VT, Legal); 314 setOperationAction(ISD::XOR, VT, Legal); 315 setOperationAction(ISD::CTPOP, VT, Custom); 316 setOperationAction(ISD::CTTZ, VT, Legal); 317 setOperationAction(ISD::CTLZ, VT, Legal); 318 319 // Convert a GPR scalar to a vector by inserting it into element 0. 320 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 321 322 // Use a series of unpacks for extensions. 323 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 324 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 325 326 // Detect shifts by a scalar amount and convert them into 327 // V*_BY_SCALAR. 328 setOperationAction(ISD::SHL, VT, Custom); 329 setOperationAction(ISD::SRA, VT, Custom); 330 setOperationAction(ISD::SRL, VT, Custom); 331 332 // At present ROTL isn't matched by DAGCombiner. ROTR should be 333 // converted into ROTL. 334 setOperationAction(ISD::ROTL, VT, Expand); 335 setOperationAction(ISD::ROTR, VT, Expand); 336 337 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 338 // and inverting the result as necessary. 339 setOperationAction(ISD::SETCC, VT, Custom); 340 } 341 } 342 343 if (Subtarget.hasVector()) { 344 // There should be no need to check for float types other than v2f64 345 // since <2 x f32> isn't a legal type. 346 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 347 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 348 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 349 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 350 } 351 352 // Handle floating-point types. 353 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 354 I <= MVT::LAST_FP_VALUETYPE; 355 ++I) { 356 MVT VT = MVT::SimpleValueType(I); 357 if (isTypeLegal(VT)) { 358 // We can use FI for FRINT. 359 setOperationAction(ISD::FRINT, VT, Legal); 360 361 // We can use the extended form of FI for other rounding operations. 362 if (Subtarget.hasFPExtension()) { 363 setOperationAction(ISD::FNEARBYINT, VT, Legal); 364 setOperationAction(ISD::FFLOOR, VT, Legal); 365 setOperationAction(ISD::FCEIL, VT, Legal); 366 setOperationAction(ISD::FTRUNC, VT, Legal); 367 setOperationAction(ISD::FROUND, VT, Legal); 368 } 369 370 // No special instructions for these. 371 setOperationAction(ISD::FSIN, VT, Expand); 372 setOperationAction(ISD::FCOS, VT, Expand); 373 setOperationAction(ISD::FSINCOS, VT, Expand); 374 setOperationAction(ISD::FREM, VT, Expand); 375 setOperationAction(ISD::FPOW, VT, Expand); 376 } 377 } 378 379 // Handle floating-point vector types. 380 if (Subtarget.hasVector()) { 381 // Scalar-to-vector conversion is just a subreg. 382 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 383 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 384 385 // Some insertions and extractions can be done directly but others 386 // need to go via integers. 387 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 388 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 389 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 390 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 391 392 // These operations have direct equivalents. 393 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 394 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 395 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 396 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 397 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 398 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 399 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 400 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 401 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 402 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 403 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 404 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 405 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 406 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 407 } 408 409 // We have fused multiply-addition for f32 and f64 but not f128. 410 setOperationAction(ISD::FMA, MVT::f32, Legal); 411 setOperationAction(ISD::FMA, MVT::f64, Legal); 412 setOperationAction(ISD::FMA, MVT::f128, Expand); 413 414 // Needed so that we don't try to implement f128 constant loads using 415 // a load-and-extend of a f80 constant (in cases where the constant 416 // would fit in an f80). 417 for (MVT VT : MVT::fp_valuetypes()) 418 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 419 420 // Floating-point truncation and stores need to be done separately. 421 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 422 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 423 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 424 425 // We have 64-bit FPR<->GPR moves, but need special handling for 426 // 32-bit forms. 427 if (!Subtarget.hasVector()) { 428 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 429 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 430 } 431 432 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 433 // structure, but VAEND is a no-op. 434 setOperationAction(ISD::VASTART, MVT::Other, Custom); 435 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 436 setOperationAction(ISD::VAEND, MVT::Other, Expand); 437 438 // Codes for which we want to perform some z-specific combinations. 439 setTargetDAGCombine(ISD::SIGN_EXTEND); 440 setTargetDAGCombine(ISD::STORE); 441 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 442 setTargetDAGCombine(ISD::FP_ROUND); 443 setTargetDAGCombine(ISD::BSWAP); 444 setTargetDAGCombine(ISD::SHL); 445 setTargetDAGCombine(ISD::SRA); 446 setTargetDAGCombine(ISD::SRL); 447 setTargetDAGCombine(ISD::ROTL); 448 449 // Handle intrinsics. 450 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 451 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 452 453 // We want to use MVC in preference to even a single load/store pair. 454 MaxStoresPerMemcpy = 0; 455 MaxStoresPerMemcpyOptSize = 0; 456 457 // The main memset sequence is a byte store followed by an MVC. 458 // Two STC or MV..I stores win over that, but the kind of fused stores 459 // generated by target-independent code don't when the byte value is 460 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 461 // than "STC;MVC". Handle the choice in target-specific code instead. 462 MaxStoresPerMemset = 0; 463 MaxStoresPerMemsetOptSize = 0; 464 } 465 466 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 467 LLVMContext &, EVT VT) const { 468 if (!VT.isVector()) 469 return MVT::i32; 470 return VT.changeVectorElementTypeToInteger(); 471 } 472 473 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 474 VT = VT.getScalarType(); 475 476 if (!VT.isSimple()) 477 return false; 478 479 switch (VT.getSimpleVT().SimpleTy) { 480 case MVT::f32: 481 case MVT::f64: 482 return true; 483 case MVT::f128: 484 return false; 485 default: 486 break; 487 } 488 489 return false; 490 } 491 492 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 493 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 494 return Imm.isZero() || Imm.isNegZero(); 495 } 496 497 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 498 // We can use CGFI or CLGFI. 499 return isInt<32>(Imm) || isUInt<32>(Imm); 500 } 501 502 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 503 // We can use ALGFI or SLGFI. 504 return isUInt<32>(Imm) || isUInt<32>(-Imm); 505 } 506 507 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 508 unsigned, 509 unsigned, 510 bool *Fast) const { 511 // Unaligned accesses should never be slower than the expanded version. 512 // We check specifically for aligned accesses in the few cases where 513 // they are required. 514 if (Fast) 515 *Fast = true; 516 return true; 517 } 518 519 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 520 const AddrMode &AM, Type *Ty, 521 unsigned AS) const { 522 // Punt on globals for now, although they can be used in limited 523 // RELATIVE LONG cases. 524 if (AM.BaseGV) 525 return false; 526 527 // Require a 20-bit signed offset. 528 if (!isInt<20>(AM.BaseOffs)) 529 return false; 530 531 // Indexing is OK but no scale factor can be applied. 532 return AM.Scale == 0 || AM.Scale == 1; 533 } 534 535 bool SystemZTargetLowering::isFoldableMemAccessOffset(Instruction *I, 536 int64_t Offset) const { 537 // This only applies to z13. 538 if (!Subtarget.hasVector()) 539 return true; 540 541 // * Use LDE instead of LE/LEY to avoid partial register 542 // dependencies (LDE only supports small offsets). 543 // * Utilize the vector registers to hold floating point 544 // values (vector load / store instructions only support small 545 // offsets). 546 547 assert (isa<LoadInst>(I) || isa<StoreInst>(I)); 548 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 549 I->getOperand(0)->getType()); 550 if (!isUInt<12>(Offset) && 551 (MemAccessTy->isFloatingPointTy() || MemAccessTy->isVectorTy())) 552 return false; 553 554 return true; 555 } 556 557 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 558 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 559 return false; 560 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 561 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 562 return FromBits > ToBits; 563 } 564 565 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 566 if (!FromVT.isInteger() || !ToVT.isInteger()) 567 return false; 568 unsigned FromBits = FromVT.getSizeInBits(); 569 unsigned ToBits = ToVT.getSizeInBits(); 570 return FromBits > ToBits; 571 } 572 573 //===----------------------------------------------------------------------===// 574 // Inline asm support 575 //===----------------------------------------------------------------------===// 576 577 TargetLowering::ConstraintType 578 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 579 if (Constraint.size() == 1) { 580 switch (Constraint[0]) { 581 case 'a': // Address register 582 case 'd': // Data register (equivalent to 'r') 583 case 'f': // Floating-point register 584 case 'h': // High-part register 585 case 'r': // General-purpose register 586 return C_RegisterClass; 587 588 case 'Q': // Memory with base and unsigned 12-bit displacement 589 case 'R': // Likewise, plus an index 590 case 'S': // Memory with base and signed 20-bit displacement 591 case 'T': // Likewise, plus an index 592 case 'm': // Equivalent to 'T'. 593 return C_Memory; 594 595 case 'I': // Unsigned 8-bit constant 596 case 'J': // Unsigned 12-bit constant 597 case 'K': // Signed 16-bit constant 598 case 'L': // Signed 20-bit displacement (on all targets we support) 599 case 'M': // 0x7fffffff 600 return C_Other; 601 602 default: 603 break; 604 } 605 } 606 return TargetLowering::getConstraintType(Constraint); 607 } 608 609 TargetLowering::ConstraintWeight SystemZTargetLowering:: 610 getSingleConstraintMatchWeight(AsmOperandInfo &info, 611 const char *constraint) const { 612 ConstraintWeight weight = CW_Invalid; 613 Value *CallOperandVal = info.CallOperandVal; 614 // If we don't have a value, we can't do a match, 615 // but allow it at the lowest weight. 616 if (!CallOperandVal) 617 return CW_Default; 618 Type *type = CallOperandVal->getType(); 619 // Look at the constraint type. 620 switch (*constraint) { 621 default: 622 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 623 break; 624 625 case 'a': // Address register 626 case 'd': // Data register (equivalent to 'r') 627 case 'h': // High-part register 628 case 'r': // General-purpose register 629 if (CallOperandVal->getType()->isIntegerTy()) 630 weight = CW_Register; 631 break; 632 633 case 'f': // Floating-point register 634 if (type->isFloatingPointTy()) 635 weight = CW_Register; 636 break; 637 638 case 'I': // Unsigned 8-bit constant 639 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 640 if (isUInt<8>(C->getZExtValue())) 641 weight = CW_Constant; 642 break; 643 644 case 'J': // Unsigned 12-bit constant 645 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 646 if (isUInt<12>(C->getZExtValue())) 647 weight = CW_Constant; 648 break; 649 650 case 'K': // Signed 16-bit constant 651 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 652 if (isInt<16>(C->getSExtValue())) 653 weight = CW_Constant; 654 break; 655 656 case 'L': // Signed 20-bit displacement (on all targets we support) 657 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 658 if (isInt<20>(C->getSExtValue())) 659 weight = CW_Constant; 660 break; 661 662 case 'M': // 0x7fffffff 663 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 664 if (C->getZExtValue() == 0x7fffffff) 665 weight = CW_Constant; 666 break; 667 } 668 return weight; 669 } 670 671 // Parse a "{tNNN}" register constraint for which the register type "t" 672 // has already been verified. MC is the class associated with "t" and 673 // Map maps 0-based register numbers to LLVM register numbers. 674 static std::pair<unsigned, const TargetRegisterClass *> 675 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 676 const unsigned *Map) { 677 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 678 if (isdigit(Constraint[2])) { 679 unsigned Index; 680 bool Failed = 681 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 682 if (!Failed && Index < 16 && Map[Index]) 683 return std::make_pair(Map[Index], RC); 684 } 685 return std::make_pair(0U, nullptr); 686 } 687 688 std::pair<unsigned, const TargetRegisterClass *> 689 SystemZTargetLowering::getRegForInlineAsmConstraint( 690 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 691 if (Constraint.size() == 1) { 692 // GCC Constraint Letters 693 switch (Constraint[0]) { 694 default: break; 695 case 'd': // Data register (equivalent to 'r') 696 case 'r': // General-purpose register 697 if (VT == MVT::i64) 698 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 699 else if (VT == MVT::i128) 700 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 701 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 702 703 case 'a': // Address register 704 if (VT == MVT::i64) 705 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 706 else if (VT == MVT::i128) 707 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 708 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 709 710 case 'h': // High-part register (an LLVM extension) 711 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 712 713 case 'f': // Floating-point register 714 if (VT == MVT::f64) 715 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 716 else if (VT == MVT::f128) 717 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 718 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 719 } 720 } 721 if (Constraint.size() > 0 && Constraint[0] == '{') { 722 // We need to override the default register parsing for GPRs and FPRs 723 // because the interpretation depends on VT. The internal names of 724 // the registers are also different from the external names 725 // (F0D and F0S instead of F0, etc.). 726 if (Constraint[1] == 'r') { 727 if (VT == MVT::i32) 728 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 729 SystemZMC::GR32Regs); 730 if (VT == MVT::i128) 731 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 732 SystemZMC::GR128Regs); 733 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 734 SystemZMC::GR64Regs); 735 } 736 if (Constraint[1] == 'f') { 737 if (VT == MVT::f32) 738 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 739 SystemZMC::FP32Regs); 740 if (VT == MVT::f128) 741 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 742 SystemZMC::FP128Regs); 743 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 744 SystemZMC::FP64Regs); 745 } 746 } 747 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 748 } 749 750 void SystemZTargetLowering:: 751 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 752 std::vector<SDValue> &Ops, 753 SelectionDAG &DAG) const { 754 // Only support length 1 constraints for now. 755 if (Constraint.length() == 1) { 756 switch (Constraint[0]) { 757 case 'I': // Unsigned 8-bit constant 758 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 759 if (isUInt<8>(C->getZExtValue())) 760 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 761 Op.getValueType())); 762 return; 763 764 case 'J': // Unsigned 12-bit constant 765 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 766 if (isUInt<12>(C->getZExtValue())) 767 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 768 Op.getValueType())); 769 return; 770 771 case 'K': // Signed 16-bit constant 772 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 773 if (isInt<16>(C->getSExtValue())) 774 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 775 Op.getValueType())); 776 return; 777 778 case 'L': // Signed 20-bit displacement (on all targets we support) 779 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 780 if (isInt<20>(C->getSExtValue())) 781 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 782 Op.getValueType())); 783 return; 784 785 case 'M': // 0x7fffffff 786 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 787 if (C->getZExtValue() == 0x7fffffff) 788 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 789 Op.getValueType())); 790 return; 791 } 792 } 793 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 794 } 795 796 //===----------------------------------------------------------------------===// 797 // Calling conventions 798 //===----------------------------------------------------------------------===// 799 800 #include "SystemZGenCallingConv.inc" 801 802 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 803 Type *ToType) const { 804 return isTruncateFree(FromType, ToType); 805 } 806 807 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 808 return CI->isTailCall(); 809 } 810 811 // We do not yet support 128-bit single-element vector types. If the user 812 // attempts to use such types as function argument or return type, prefer 813 // to error out instead of emitting code violating the ABI. 814 static void VerifyVectorType(MVT VT, EVT ArgVT) { 815 if (ArgVT.isVector() && !VT.isVector()) 816 report_fatal_error("Unsupported vector argument or return type"); 817 } 818 819 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 820 for (unsigned i = 0; i < Ins.size(); ++i) 821 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 822 } 823 824 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 825 for (unsigned i = 0; i < Outs.size(); ++i) 826 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 827 } 828 829 // Value is a value that has been passed to us in the location described by VA 830 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 831 // any loads onto Chain. 832 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 833 CCValAssign &VA, SDValue Chain, 834 SDValue Value) { 835 // If the argument has been promoted from a smaller type, insert an 836 // assertion to capture this. 837 if (VA.getLocInfo() == CCValAssign::SExt) 838 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 839 DAG.getValueType(VA.getValVT())); 840 else if (VA.getLocInfo() == CCValAssign::ZExt) 841 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 842 DAG.getValueType(VA.getValVT())); 843 844 if (VA.isExtInLoc()) 845 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 846 else if (VA.getLocInfo() == CCValAssign::BCvt) { 847 // If this is a short vector argument loaded from the stack, 848 // extend from i64 to full vector size and then bitcast. 849 assert(VA.getLocVT() == MVT::i64); 850 assert(VA.getValVT().isVector()); 851 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 852 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 853 } else 854 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 855 return Value; 856 } 857 858 // Value is a value of type VA.getValVT() that we need to copy into 859 // the location described by VA. Return a copy of Value converted to 860 // VA.getValVT(). The caller is responsible for handling indirect values. 861 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 862 CCValAssign &VA, SDValue Value) { 863 switch (VA.getLocInfo()) { 864 case CCValAssign::SExt: 865 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 866 case CCValAssign::ZExt: 867 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 868 case CCValAssign::AExt: 869 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 870 case CCValAssign::BCvt: 871 // If this is a short vector argument to be stored to the stack, 872 // bitcast to v2i64 and then extract first element. 873 assert(VA.getLocVT() == MVT::i64); 874 assert(VA.getValVT().isVector()); 875 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 876 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 877 DAG.getConstant(0, DL, MVT::i32)); 878 case CCValAssign::Full: 879 return Value; 880 default: 881 llvm_unreachable("Unhandled getLocInfo()"); 882 } 883 } 884 885 SDValue SystemZTargetLowering::LowerFormalArguments( 886 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 887 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 888 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 889 MachineFunction &MF = DAG.getMachineFunction(); 890 MachineFrameInfo &MFI = MF.getFrameInfo(); 891 MachineRegisterInfo &MRI = MF.getRegInfo(); 892 SystemZMachineFunctionInfo *FuncInfo = 893 MF.getInfo<SystemZMachineFunctionInfo>(); 894 auto *TFL = 895 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 896 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 897 898 // Detect unsupported vector argument types. 899 if (Subtarget.hasVector()) 900 VerifyVectorTypes(Ins); 901 902 // Assign locations to all of the incoming arguments. 903 SmallVector<CCValAssign, 16> ArgLocs; 904 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 905 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 906 907 unsigned NumFixedGPRs = 0; 908 unsigned NumFixedFPRs = 0; 909 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 910 SDValue ArgValue; 911 CCValAssign &VA = ArgLocs[I]; 912 EVT LocVT = VA.getLocVT(); 913 if (VA.isRegLoc()) { 914 // Arguments passed in registers 915 const TargetRegisterClass *RC; 916 switch (LocVT.getSimpleVT().SimpleTy) { 917 default: 918 // Integers smaller than i64 should be promoted to i64. 919 llvm_unreachable("Unexpected argument type"); 920 case MVT::i32: 921 NumFixedGPRs += 1; 922 RC = &SystemZ::GR32BitRegClass; 923 break; 924 case MVT::i64: 925 NumFixedGPRs += 1; 926 RC = &SystemZ::GR64BitRegClass; 927 break; 928 case MVT::f32: 929 NumFixedFPRs += 1; 930 RC = &SystemZ::FP32BitRegClass; 931 break; 932 case MVT::f64: 933 NumFixedFPRs += 1; 934 RC = &SystemZ::FP64BitRegClass; 935 break; 936 case MVT::v16i8: 937 case MVT::v8i16: 938 case MVT::v4i32: 939 case MVT::v2i64: 940 case MVT::v4f32: 941 case MVT::v2f64: 942 RC = &SystemZ::VR128BitRegClass; 943 break; 944 } 945 946 unsigned VReg = MRI.createVirtualRegister(RC); 947 MRI.addLiveIn(VA.getLocReg(), VReg); 948 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 949 } else { 950 assert(VA.isMemLoc() && "Argument not register or memory"); 951 952 // Create the frame index object for this incoming parameter. 953 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 954 VA.getLocMemOffset(), true); 955 956 // Create the SelectionDAG nodes corresponding to a load 957 // from this parameter. Unpromoted ints and floats are 958 // passed as right-justified 8-byte values. 959 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 960 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 961 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 962 DAG.getIntPtrConstant(4, DL)); 963 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 964 MachinePointerInfo::getFixedStack(MF, FI)); 965 } 966 967 // Convert the value of the argument register into the value that's 968 // being passed. 969 if (VA.getLocInfo() == CCValAssign::Indirect) { 970 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 971 MachinePointerInfo())); 972 // If the original argument was split (e.g. i128), we need 973 // to load all parts of it here (using the same address). 974 unsigned ArgIndex = Ins[I].OrigArgIndex; 975 assert (Ins[I].PartOffset == 0); 976 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 977 CCValAssign &PartVA = ArgLocs[I + 1]; 978 unsigned PartOffset = Ins[I + 1].PartOffset; 979 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 980 DAG.getIntPtrConstant(PartOffset, DL)); 981 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 982 MachinePointerInfo())); 983 ++I; 984 } 985 } else 986 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 987 } 988 989 if (IsVarArg) { 990 // Save the number of non-varargs registers for later use by va_start, etc. 991 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 992 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 993 994 // Likewise the address (in the form of a frame index) of where the 995 // first stack vararg would be. The 1-byte size here is arbitrary. 996 int64_t StackSize = CCInfo.getNextStackOffset(); 997 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 998 999 // ...and a similar frame index for the caller-allocated save area 1000 // that will be used to store the incoming registers. 1001 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1002 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1003 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1004 1005 // Store the FPR varargs in the reserved frame slots. (We store the 1006 // GPRs as part of the prologue.) 1007 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1008 SDValue MemOps[SystemZ::NumArgFPRs]; 1009 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1010 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1011 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1012 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1013 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1014 &SystemZ::FP64BitRegClass); 1015 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1016 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1017 MachinePointerInfo::getFixedStack(MF, FI)); 1018 } 1019 // Join the stores, which are independent of one another. 1020 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1021 makeArrayRef(&MemOps[NumFixedFPRs], 1022 SystemZ::NumArgFPRs-NumFixedFPRs)); 1023 } 1024 } 1025 1026 return Chain; 1027 } 1028 1029 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1030 SmallVectorImpl<CCValAssign> &ArgLocs, 1031 SmallVectorImpl<ISD::OutputArg> &Outs) { 1032 // Punt if there are any indirect or stack arguments, or if the call 1033 // needs the callee-saved argument register R6, or if the call uses 1034 // the callee-saved register arguments SwiftSelf and SwiftError. 1035 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1036 CCValAssign &VA = ArgLocs[I]; 1037 if (VA.getLocInfo() == CCValAssign::Indirect) 1038 return false; 1039 if (!VA.isRegLoc()) 1040 return false; 1041 unsigned Reg = VA.getLocReg(); 1042 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1043 return false; 1044 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1045 return false; 1046 } 1047 return true; 1048 } 1049 1050 SDValue 1051 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1052 SmallVectorImpl<SDValue> &InVals) const { 1053 SelectionDAG &DAG = CLI.DAG; 1054 SDLoc &DL = CLI.DL; 1055 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1056 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1057 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1058 SDValue Chain = CLI.Chain; 1059 SDValue Callee = CLI.Callee; 1060 bool &IsTailCall = CLI.IsTailCall; 1061 CallingConv::ID CallConv = CLI.CallConv; 1062 bool IsVarArg = CLI.IsVarArg; 1063 MachineFunction &MF = DAG.getMachineFunction(); 1064 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1065 1066 // Detect unsupported vector argument and return types. 1067 if (Subtarget.hasVector()) { 1068 VerifyVectorTypes(Outs); 1069 VerifyVectorTypes(Ins); 1070 } 1071 1072 // Analyze the operands of the call, assigning locations to each operand. 1073 SmallVector<CCValAssign, 16> ArgLocs; 1074 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1075 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1076 1077 // We don't support GuaranteedTailCallOpt, only automatically-detected 1078 // sibling calls. 1079 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1080 IsTailCall = false; 1081 1082 // Get a count of how many bytes are to be pushed on the stack. 1083 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1084 1085 // Mark the start of the call. 1086 if (!IsTailCall) 1087 Chain = DAG.getCALLSEQ_START(Chain, 1088 DAG.getConstant(NumBytes, DL, PtrVT, true), 1089 DL); 1090 1091 // Copy argument values to their designated locations. 1092 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1093 SmallVector<SDValue, 8> MemOpChains; 1094 SDValue StackPtr; 1095 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1096 CCValAssign &VA = ArgLocs[I]; 1097 SDValue ArgValue = OutVals[I]; 1098 1099 if (VA.getLocInfo() == CCValAssign::Indirect) { 1100 // Store the argument in a stack slot and pass its address. 1101 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1102 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1103 MemOpChains.push_back( 1104 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1105 MachinePointerInfo::getFixedStack(MF, FI))); 1106 // If the original argument was split (e.g. i128), we need 1107 // to store all parts of it here (and pass just one address). 1108 unsigned ArgIndex = Outs[I].OrigArgIndex; 1109 assert (Outs[I].PartOffset == 0); 1110 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1111 SDValue PartValue = OutVals[I + 1]; 1112 unsigned PartOffset = Outs[I + 1].PartOffset; 1113 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1114 DAG.getIntPtrConstant(PartOffset, DL)); 1115 MemOpChains.push_back( 1116 DAG.getStore(Chain, DL, PartValue, Address, 1117 MachinePointerInfo::getFixedStack(MF, FI))); 1118 ++I; 1119 } 1120 ArgValue = SpillSlot; 1121 } else 1122 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1123 1124 if (VA.isRegLoc()) 1125 // Queue up the argument copies and emit them at the end. 1126 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1127 else { 1128 assert(VA.isMemLoc() && "Argument not register or memory"); 1129 1130 // Work out the address of the stack slot. Unpromoted ints and 1131 // floats are passed as right-justified 8-byte values. 1132 if (!StackPtr.getNode()) 1133 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1134 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1135 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1136 Offset += 4; 1137 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1138 DAG.getIntPtrConstant(Offset, DL)); 1139 1140 // Emit the store. 1141 MemOpChains.push_back( 1142 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1143 } 1144 } 1145 1146 // Join the stores, which are independent of one another. 1147 if (!MemOpChains.empty()) 1148 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1149 1150 // Accept direct calls by converting symbolic call addresses to the 1151 // associated Target* opcodes. Force %r1 to be used for indirect 1152 // tail calls. 1153 SDValue Glue; 1154 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1155 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1156 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1157 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1158 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1159 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1160 } else if (IsTailCall) { 1161 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1162 Glue = Chain.getValue(1); 1163 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1164 } 1165 1166 // Build a sequence of copy-to-reg nodes, chained and glued together. 1167 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1168 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1169 RegsToPass[I].second, Glue); 1170 Glue = Chain.getValue(1); 1171 } 1172 1173 // The first call operand is the chain and the second is the target address. 1174 SmallVector<SDValue, 8> Ops; 1175 Ops.push_back(Chain); 1176 Ops.push_back(Callee); 1177 1178 // Add argument registers to the end of the list so that they are 1179 // known live into the call. 1180 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1181 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1182 RegsToPass[I].second.getValueType())); 1183 1184 // Add a register mask operand representing the call-preserved registers. 1185 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1186 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1187 assert(Mask && "Missing call preserved mask for calling convention"); 1188 Ops.push_back(DAG.getRegisterMask(Mask)); 1189 1190 // Glue the call to the argument copies, if any. 1191 if (Glue.getNode()) 1192 Ops.push_back(Glue); 1193 1194 // Emit the call. 1195 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1196 if (IsTailCall) 1197 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1198 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1199 Glue = Chain.getValue(1); 1200 1201 // Mark the end of the call, which is glued to the call itself. 1202 Chain = DAG.getCALLSEQ_END(Chain, 1203 DAG.getConstant(NumBytes, DL, PtrVT, true), 1204 DAG.getConstant(0, DL, PtrVT, true), 1205 Glue, DL); 1206 Glue = Chain.getValue(1); 1207 1208 // Assign locations to each value returned by this call. 1209 SmallVector<CCValAssign, 16> RetLocs; 1210 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1211 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1212 1213 // Copy all of the result registers out of their specified physreg. 1214 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1215 CCValAssign &VA = RetLocs[I]; 1216 1217 // Copy the value out, gluing the copy to the end of the call sequence. 1218 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1219 VA.getLocVT(), Glue); 1220 Chain = RetValue.getValue(1); 1221 Glue = RetValue.getValue(2); 1222 1223 // Convert the value of the return register into the value that's 1224 // being returned. 1225 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1226 } 1227 1228 return Chain; 1229 } 1230 1231 bool SystemZTargetLowering:: 1232 CanLowerReturn(CallingConv::ID CallConv, 1233 MachineFunction &MF, bool isVarArg, 1234 const SmallVectorImpl<ISD::OutputArg> &Outs, 1235 LLVMContext &Context) const { 1236 // Detect unsupported vector return types. 1237 if (Subtarget.hasVector()) 1238 VerifyVectorTypes(Outs); 1239 1240 // Special case that we cannot easily detect in RetCC_SystemZ since 1241 // i128 is not a legal type. 1242 for (auto &Out : Outs) 1243 if (Out.ArgVT == MVT::i128) 1244 return false; 1245 1246 SmallVector<CCValAssign, 16> RetLocs; 1247 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1248 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1249 } 1250 1251 SDValue 1252 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1253 bool IsVarArg, 1254 const SmallVectorImpl<ISD::OutputArg> &Outs, 1255 const SmallVectorImpl<SDValue> &OutVals, 1256 const SDLoc &DL, SelectionDAG &DAG) const { 1257 MachineFunction &MF = DAG.getMachineFunction(); 1258 1259 // Detect unsupported vector return types. 1260 if (Subtarget.hasVector()) 1261 VerifyVectorTypes(Outs); 1262 1263 // Assign locations to each returned value. 1264 SmallVector<CCValAssign, 16> RetLocs; 1265 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1266 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1267 1268 // Quick exit for void returns 1269 if (RetLocs.empty()) 1270 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1271 1272 // Copy the result values into the output registers. 1273 SDValue Glue; 1274 SmallVector<SDValue, 4> RetOps; 1275 RetOps.push_back(Chain); 1276 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1277 CCValAssign &VA = RetLocs[I]; 1278 SDValue RetValue = OutVals[I]; 1279 1280 // Make the return register live on exit. 1281 assert(VA.isRegLoc() && "Can only return in registers!"); 1282 1283 // Promote the value as required. 1284 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1285 1286 // Chain and glue the copies together. 1287 unsigned Reg = VA.getLocReg(); 1288 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1289 Glue = Chain.getValue(1); 1290 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1291 } 1292 1293 // Update chain and glue. 1294 RetOps[0] = Chain; 1295 if (Glue.getNode()) 1296 RetOps.push_back(Glue); 1297 1298 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1299 } 1300 1301 SDValue SystemZTargetLowering::prepareVolatileOrAtomicLoad( 1302 SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const { 1303 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1304 } 1305 1306 // Return true if Op is an intrinsic node with chain that returns the CC value 1307 // as its only (other) argument. Provide the associated SystemZISD opcode and 1308 // the mask of valid CC values if so. 1309 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1310 unsigned &CCValid) { 1311 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1312 switch (Id) { 1313 case Intrinsic::s390_tbegin: 1314 Opcode = SystemZISD::TBEGIN; 1315 CCValid = SystemZ::CCMASK_TBEGIN; 1316 return true; 1317 1318 case Intrinsic::s390_tbegin_nofloat: 1319 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1320 CCValid = SystemZ::CCMASK_TBEGIN; 1321 return true; 1322 1323 case Intrinsic::s390_tend: 1324 Opcode = SystemZISD::TEND; 1325 CCValid = SystemZ::CCMASK_TEND; 1326 return true; 1327 1328 default: 1329 return false; 1330 } 1331 } 1332 1333 // Return true if Op is an intrinsic node without chain that returns the 1334 // CC value as its final argument. Provide the associated SystemZISD 1335 // opcode and the mask of valid CC values if so. 1336 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1337 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1338 switch (Id) { 1339 case Intrinsic::s390_vpkshs: 1340 case Intrinsic::s390_vpksfs: 1341 case Intrinsic::s390_vpksgs: 1342 Opcode = SystemZISD::PACKS_CC; 1343 CCValid = SystemZ::CCMASK_VCMP; 1344 return true; 1345 1346 case Intrinsic::s390_vpklshs: 1347 case Intrinsic::s390_vpklsfs: 1348 case Intrinsic::s390_vpklsgs: 1349 Opcode = SystemZISD::PACKLS_CC; 1350 CCValid = SystemZ::CCMASK_VCMP; 1351 return true; 1352 1353 case Intrinsic::s390_vceqbs: 1354 case Intrinsic::s390_vceqhs: 1355 case Intrinsic::s390_vceqfs: 1356 case Intrinsic::s390_vceqgs: 1357 Opcode = SystemZISD::VICMPES; 1358 CCValid = SystemZ::CCMASK_VCMP; 1359 return true; 1360 1361 case Intrinsic::s390_vchbs: 1362 case Intrinsic::s390_vchhs: 1363 case Intrinsic::s390_vchfs: 1364 case Intrinsic::s390_vchgs: 1365 Opcode = SystemZISD::VICMPHS; 1366 CCValid = SystemZ::CCMASK_VCMP; 1367 return true; 1368 1369 case Intrinsic::s390_vchlbs: 1370 case Intrinsic::s390_vchlhs: 1371 case Intrinsic::s390_vchlfs: 1372 case Intrinsic::s390_vchlgs: 1373 Opcode = SystemZISD::VICMPHLS; 1374 CCValid = SystemZ::CCMASK_VCMP; 1375 return true; 1376 1377 case Intrinsic::s390_vtm: 1378 Opcode = SystemZISD::VTM; 1379 CCValid = SystemZ::CCMASK_VCMP; 1380 return true; 1381 1382 case Intrinsic::s390_vfaebs: 1383 case Intrinsic::s390_vfaehs: 1384 case Intrinsic::s390_vfaefs: 1385 Opcode = SystemZISD::VFAE_CC; 1386 CCValid = SystemZ::CCMASK_ANY; 1387 return true; 1388 1389 case Intrinsic::s390_vfaezbs: 1390 case Intrinsic::s390_vfaezhs: 1391 case Intrinsic::s390_vfaezfs: 1392 Opcode = SystemZISD::VFAEZ_CC; 1393 CCValid = SystemZ::CCMASK_ANY; 1394 return true; 1395 1396 case Intrinsic::s390_vfeebs: 1397 case Intrinsic::s390_vfeehs: 1398 case Intrinsic::s390_vfeefs: 1399 Opcode = SystemZISD::VFEE_CC; 1400 CCValid = SystemZ::CCMASK_ANY; 1401 return true; 1402 1403 case Intrinsic::s390_vfeezbs: 1404 case Intrinsic::s390_vfeezhs: 1405 case Intrinsic::s390_vfeezfs: 1406 Opcode = SystemZISD::VFEEZ_CC; 1407 CCValid = SystemZ::CCMASK_ANY; 1408 return true; 1409 1410 case Intrinsic::s390_vfenebs: 1411 case Intrinsic::s390_vfenehs: 1412 case Intrinsic::s390_vfenefs: 1413 Opcode = SystemZISD::VFENE_CC; 1414 CCValid = SystemZ::CCMASK_ANY; 1415 return true; 1416 1417 case Intrinsic::s390_vfenezbs: 1418 case Intrinsic::s390_vfenezhs: 1419 case Intrinsic::s390_vfenezfs: 1420 Opcode = SystemZISD::VFENEZ_CC; 1421 CCValid = SystemZ::CCMASK_ANY; 1422 return true; 1423 1424 case Intrinsic::s390_vistrbs: 1425 case Intrinsic::s390_vistrhs: 1426 case Intrinsic::s390_vistrfs: 1427 Opcode = SystemZISD::VISTR_CC; 1428 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1429 return true; 1430 1431 case Intrinsic::s390_vstrcbs: 1432 case Intrinsic::s390_vstrchs: 1433 case Intrinsic::s390_vstrcfs: 1434 Opcode = SystemZISD::VSTRC_CC; 1435 CCValid = SystemZ::CCMASK_ANY; 1436 return true; 1437 1438 case Intrinsic::s390_vstrczbs: 1439 case Intrinsic::s390_vstrczhs: 1440 case Intrinsic::s390_vstrczfs: 1441 Opcode = SystemZISD::VSTRCZ_CC; 1442 CCValid = SystemZ::CCMASK_ANY; 1443 return true; 1444 1445 case Intrinsic::s390_vfcedbs: 1446 Opcode = SystemZISD::VFCMPES; 1447 CCValid = SystemZ::CCMASK_VCMP; 1448 return true; 1449 1450 case Intrinsic::s390_vfchdbs: 1451 Opcode = SystemZISD::VFCMPHS; 1452 CCValid = SystemZ::CCMASK_VCMP; 1453 return true; 1454 1455 case Intrinsic::s390_vfchedbs: 1456 Opcode = SystemZISD::VFCMPHES; 1457 CCValid = SystemZ::CCMASK_VCMP; 1458 return true; 1459 1460 case Intrinsic::s390_vftcidb: 1461 Opcode = SystemZISD::VFTCI; 1462 CCValid = SystemZ::CCMASK_VCMP; 1463 return true; 1464 1465 case Intrinsic::s390_tdc: 1466 Opcode = SystemZISD::TDC; 1467 CCValid = SystemZ::CCMASK_TDC; 1468 return true; 1469 1470 default: 1471 return false; 1472 } 1473 } 1474 1475 // Emit an intrinsic with chain with a glued value instead of its CC result. 1476 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1477 unsigned Opcode) { 1478 // Copy all operands except the intrinsic ID. 1479 unsigned NumOps = Op.getNumOperands(); 1480 SmallVector<SDValue, 6> Ops; 1481 Ops.reserve(NumOps - 1); 1482 Ops.push_back(Op.getOperand(0)); 1483 for (unsigned I = 2; I < NumOps; ++I) 1484 Ops.push_back(Op.getOperand(I)); 1485 1486 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1487 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1488 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1489 SDValue OldChain = SDValue(Op.getNode(), 1); 1490 SDValue NewChain = SDValue(Intr.getNode(), 0); 1491 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1492 return Intr; 1493 } 1494 1495 // Emit an intrinsic with a glued value instead of its CC result. 1496 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1497 unsigned Opcode) { 1498 // Copy all operands except the intrinsic ID. 1499 unsigned NumOps = Op.getNumOperands(); 1500 SmallVector<SDValue, 6> Ops; 1501 Ops.reserve(NumOps - 1); 1502 for (unsigned I = 1; I < NumOps; ++I) 1503 Ops.push_back(Op.getOperand(I)); 1504 1505 if (Op->getNumValues() == 1) 1506 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1507 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1508 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1509 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1510 } 1511 1512 // CC is a comparison that will be implemented using an integer or 1513 // floating-point comparison. Return the condition code mask for 1514 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1515 // unsigned comparisons and clear for signed ones. In the floating-point 1516 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1517 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1518 #define CONV(X) \ 1519 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1520 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1521 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1522 1523 switch (CC) { 1524 default: 1525 llvm_unreachable("Invalid integer condition!"); 1526 1527 CONV(EQ); 1528 CONV(NE); 1529 CONV(GT); 1530 CONV(GE); 1531 CONV(LT); 1532 CONV(LE); 1533 1534 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1535 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1536 } 1537 #undef CONV 1538 } 1539 1540 // Return a sequence for getting a 1 from an IPM result when CC has a 1541 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1542 // The handling of CC values outside CCValid doesn't matter. 1543 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1544 // Deal with cases where the result can be taken directly from a bit 1545 // of the IPM result. 1546 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1547 return IPMConversion(0, 0, SystemZ::IPM_CC); 1548 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1549 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1550 1551 // Deal with cases where we can add a value to force the sign bit 1552 // to contain the right value. Putting the bit in 31 means we can 1553 // use SRL rather than RISBG(L), and also makes it easier to get a 1554 // 0/-1 value, so it has priority over the other tests below. 1555 // 1556 // These sequences rely on the fact that the upper two bits of the 1557 // IPM result are zero. 1558 uint64_t TopBit = uint64_t(1) << 31; 1559 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1560 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1561 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1562 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1563 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1564 | SystemZ::CCMASK_1 1565 | SystemZ::CCMASK_2))) 1566 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1567 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1568 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1569 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1570 | SystemZ::CCMASK_2 1571 | SystemZ::CCMASK_3))) 1572 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1573 1574 // Next try inverting the value and testing a bit. 0/1 could be 1575 // handled this way too, but we dealt with that case above. 1576 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1577 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1578 1579 // Handle cases where adding a value forces a non-sign bit to contain 1580 // the right value. 1581 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1582 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1583 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1584 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1585 1586 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1587 // can be done by inverting the low CC bit and applying one of the 1588 // sign-based extractions above. 1589 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1590 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1591 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1592 return IPMConversion(1 << SystemZ::IPM_CC, 1593 TopBit - (3 << SystemZ::IPM_CC), 31); 1594 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1595 | SystemZ::CCMASK_1 1596 | SystemZ::CCMASK_3))) 1597 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1598 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1599 | SystemZ::CCMASK_2 1600 | SystemZ::CCMASK_3))) 1601 return IPMConversion(1 << SystemZ::IPM_CC, 1602 TopBit - (1 << SystemZ::IPM_CC), 31); 1603 1604 llvm_unreachable("Unexpected CC combination"); 1605 } 1606 1607 // If C can be converted to a comparison against zero, adjust the operands 1608 // as necessary. 1609 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1610 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1611 return; 1612 1613 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1614 if (!ConstOp1) 1615 return; 1616 1617 int64_t Value = ConstOp1->getSExtValue(); 1618 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1619 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1620 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1621 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1622 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1623 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1624 } 1625 } 1626 1627 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1628 // adjust the operands as necessary. 1629 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1630 Comparison &C) { 1631 // For us to make any changes, it must a comparison between a single-use 1632 // load and a constant. 1633 if (!C.Op0.hasOneUse() || 1634 C.Op0.getOpcode() != ISD::LOAD || 1635 C.Op1.getOpcode() != ISD::Constant) 1636 return; 1637 1638 // We must have an 8- or 16-bit load. 1639 auto *Load = cast<LoadSDNode>(C.Op0); 1640 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1641 if (NumBits != 8 && NumBits != 16) 1642 return; 1643 1644 // The load must be an extending one and the constant must be within the 1645 // range of the unextended value. 1646 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1647 uint64_t Value = ConstOp1->getZExtValue(); 1648 uint64_t Mask = (1 << NumBits) - 1; 1649 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1650 // Make sure that ConstOp1 is in range of C.Op0. 1651 int64_t SignedValue = ConstOp1->getSExtValue(); 1652 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1653 return; 1654 if (C.ICmpType != SystemZICMP::SignedOnly) { 1655 // Unsigned comparison between two sign-extended values is equivalent 1656 // to unsigned comparison between two zero-extended values. 1657 Value &= Mask; 1658 } else if (NumBits == 8) { 1659 // Try to treat the comparison as unsigned, so that we can use CLI. 1660 // Adjust CCMask and Value as necessary. 1661 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1662 // Test whether the high bit of the byte is set. 1663 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1664 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1665 // Test whether the high bit of the byte is clear. 1666 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1667 else 1668 // No instruction exists for this combination. 1669 return; 1670 C.ICmpType = SystemZICMP::UnsignedOnly; 1671 } 1672 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1673 if (Value > Mask) 1674 return; 1675 // If the constant is in range, we can use any comparison. 1676 C.ICmpType = SystemZICMP::Any; 1677 } else 1678 return; 1679 1680 // Make sure that the first operand is an i32 of the right extension type. 1681 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1682 ISD::SEXTLOAD : 1683 ISD::ZEXTLOAD); 1684 if (C.Op0.getValueType() != MVT::i32 || 1685 Load->getExtensionType() != ExtType) 1686 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 1687 Load->getBasePtr(), Load->getPointerInfo(), 1688 Load->getMemoryVT(), Load->getAlignment(), 1689 Load->getMemOperand()->getFlags()); 1690 1691 // Make sure that the second operand is an i32 with the right value. 1692 if (C.Op1.getValueType() != MVT::i32 || 1693 Value != ConstOp1->getZExtValue()) 1694 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1695 } 1696 1697 // Return true if Op is either an unextended load, or a load suitable 1698 // for integer register-memory comparisons of type ICmpType. 1699 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1700 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1701 if (Load) { 1702 // There are no instructions to compare a register with a memory byte. 1703 if (Load->getMemoryVT() == MVT::i8) 1704 return false; 1705 // Otherwise decide on extension type. 1706 switch (Load->getExtensionType()) { 1707 case ISD::NON_EXTLOAD: 1708 return true; 1709 case ISD::SEXTLOAD: 1710 return ICmpType != SystemZICMP::UnsignedOnly; 1711 case ISD::ZEXTLOAD: 1712 return ICmpType != SystemZICMP::SignedOnly; 1713 default: 1714 break; 1715 } 1716 } 1717 return false; 1718 } 1719 1720 // Return true if it is better to swap the operands of C. 1721 static bool shouldSwapCmpOperands(const Comparison &C) { 1722 // Leave f128 comparisons alone, since they have no memory forms. 1723 if (C.Op0.getValueType() == MVT::f128) 1724 return false; 1725 1726 // Always keep a floating-point constant second, since comparisons with 1727 // zero can use LOAD TEST and comparisons with other constants make a 1728 // natural memory operand. 1729 if (isa<ConstantFPSDNode>(C.Op1)) 1730 return false; 1731 1732 // Never swap comparisons with zero since there are many ways to optimize 1733 // those later. 1734 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1735 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1736 return false; 1737 1738 // Also keep natural memory operands second if the loaded value is 1739 // only used here. Several comparisons have memory forms. 1740 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1741 return false; 1742 1743 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1744 // In that case we generally prefer the memory to be second. 1745 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1746 // The only exceptions are when the second operand is a constant and 1747 // we can use things like CHHSI. 1748 if (!ConstOp1) 1749 return true; 1750 // The unsigned memory-immediate instructions can handle 16-bit 1751 // unsigned integers. 1752 if (C.ICmpType != SystemZICMP::SignedOnly && 1753 isUInt<16>(ConstOp1->getZExtValue())) 1754 return false; 1755 // The signed memory-immediate instructions can handle 16-bit 1756 // signed integers. 1757 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1758 isInt<16>(ConstOp1->getSExtValue())) 1759 return false; 1760 return true; 1761 } 1762 1763 // Try to promote the use of CGFR and CLGFR. 1764 unsigned Opcode0 = C.Op0.getOpcode(); 1765 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1766 return true; 1767 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1768 return true; 1769 if (C.ICmpType != SystemZICMP::SignedOnly && 1770 Opcode0 == ISD::AND && 1771 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1772 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1773 return true; 1774 1775 return false; 1776 } 1777 1778 // Return a version of comparison CC mask CCMask in which the LT and GT 1779 // actions are swapped. 1780 static unsigned reverseCCMask(unsigned CCMask) { 1781 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1782 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1783 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1784 (CCMask & SystemZ::CCMASK_CMP_UO)); 1785 } 1786 1787 // Check whether C tests for equality between X and Y and whether X - Y 1788 // or Y - X is also computed. In that case it's better to compare the 1789 // result of the subtraction against zero. 1790 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 1791 Comparison &C) { 1792 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1793 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1794 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1795 SDNode *N = *I; 1796 if (N->getOpcode() == ISD::SUB && 1797 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1798 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1799 C.Op0 = SDValue(N, 0); 1800 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1801 return; 1802 } 1803 } 1804 } 1805 } 1806 1807 // Check whether C compares a floating-point value with zero and if that 1808 // floating-point value is also negated. In this case we can use the 1809 // negation to set CC, so avoiding separate LOAD AND TEST and 1810 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1811 static void adjustForFNeg(Comparison &C) { 1812 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1813 if (C1 && C1->isZero()) { 1814 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1815 SDNode *N = *I; 1816 if (N->getOpcode() == ISD::FNEG) { 1817 C.Op0 = SDValue(N, 0); 1818 C.CCMask = reverseCCMask(C.CCMask); 1819 return; 1820 } 1821 } 1822 } 1823 } 1824 1825 // Check whether C compares (shl X, 32) with 0 and whether X is 1826 // also sign-extended. In that case it is better to test the result 1827 // of the sign extension using LTGFR. 1828 // 1829 // This case is important because InstCombine transforms a comparison 1830 // with (sext (trunc X)) into a comparison with (shl X, 32). 1831 static void adjustForLTGFR(Comparison &C) { 1832 // Check for a comparison between (shl X, 32) and 0. 1833 if (C.Op0.getOpcode() == ISD::SHL && 1834 C.Op0.getValueType() == MVT::i64 && 1835 C.Op1.getOpcode() == ISD::Constant && 1836 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1837 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1838 if (C1 && C1->getZExtValue() == 32) { 1839 SDValue ShlOp0 = C.Op0.getOperand(0); 1840 // See whether X has any SIGN_EXTEND_INREG uses. 1841 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1842 SDNode *N = *I; 1843 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1844 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1845 C.Op0 = SDValue(N, 0); 1846 return; 1847 } 1848 } 1849 } 1850 } 1851 } 1852 1853 // If C compares the truncation of an extending load, try to compare 1854 // the untruncated value instead. This exposes more opportunities to 1855 // reuse CC. 1856 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 1857 Comparison &C) { 1858 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1859 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1860 C.Op1.getOpcode() == ISD::Constant && 1861 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1862 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1863 if (L->getMemoryVT().getStoreSizeInBits() 1864 <= C.Op0.getValueType().getSizeInBits()) { 1865 unsigned Type = L->getExtensionType(); 1866 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1867 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1868 C.Op0 = C.Op0.getOperand(0); 1869 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1870 } 1871 } 1872 } 1873 } 1874 1875 // Return true if shift operation N has an in-range constant shift value. 1876 // Store it in ShiftVal if so. 1877 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1878 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1879 if (!Shift) 1880 return false; 1881 1882 uint64_t Amount = Shift->getZExtValue(); 1883 if (Amount >= N.getValueType().getSizeInBits()) 1884 return false; 1885 1886 ShiftVal = Amount; 1887 return true; 1888 } 1889 1890 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1891 // instruction and whether the CC value is descriptive enough to handle 1892 // a comparison of type Opcode between the AND result and CmpVal. 1893 // CCMask says which comparison result is being tested and BitSize is 1894 // the number of bits in the operands. If TEST UNDER MASK can be used, 1895 // return the corresponding CC mask, otherwise return 0. 1896 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1897 uint64_t Mask, uint64_t CmpVal, 1898 unsigned ICmpType) { 1899 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1900 1901 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1902 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1903 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1904 return 0; 1905 1906 // Work out the masks for the lowest and highest bits. 1907 unsigned HighShift = 63 - countLeadingZeros(Mask); 1908 uint64_t High = uint64_t(1) << HighShift; 1909 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1910 1911 // Signed ordered comparisons are effectively unsigned if the sign 1912 // bit is dropped. 1913 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1914 1915 // Check for equality comparisons with 0, or the equivalent. 1916 if (CmpVal == 0) { 1917 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1918 return SystemZ::CCMASK_TM_ALL_0; 1919 if (CCMask == SystemZ::CCMASK_CMP_NE) 1920 return SystemZ::CCMASK_TM_SOME_1; 1921 } 1922 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 1923 if (CCMask == SystemZ::CCMASK_CMP_LT) 1924 return SystemZ::CCMASK_TM_ALL_0; 1925 if (CCMask == SystemZ::CCMASK_CMP_GE) 1926 return SystemZ::CCMASK_TM_SOME_1; 1927 } 1928 if (EffectivelyUnsigned && CmpVal < Low) { 1929 if (CCMask == SystemZ::CCMASK_CMP_LE) 1930 return SystemZ::CCMASK_TM_ALL_0; 1931 if (CCMask == SystemZ::CCMASK_CMP_GT) 1932 return SystemZ::CCMASK_TM_SOME_1; 1933 } 1934 1935 // Check for equality comparisons with the mask, or the equivalent. 1936 if (CmpVal == Mask) { 1937 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1938 return SystemZ::CCMASK_TM_ALL_1; 1939 if (CCMask == SystemZ::CCMASK_CMP_NE) 1940 return SystemZ::CCMASK_TM_SOME_0; 1941 } 1942 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1943 if (CCMask == SystemZ::CCMASK_CMP_GT) 1944 return SystemZ::CCMASK_TM_ALL_1; 1945 if (CCMask == SystemZ::CCMASK_CMP_LE) 1946 return SystemZ::CCMASK_TM_SOME_0; 1947 } 1948 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1949 if (CCMask == SystemZ::CCMASK_CMP_GE) 1950 return SystemZ::CCMASK_TM_ALL_1; 1951 if (CCMask == SystemZ::CCMASK_CMP_LT) 1952 return SystemZ::CCMASK_TM_SOME_0; 1953 } 1954 1955 // Check for ordered comparisons with the top bit. 1956 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1957 if (CCMask == SystemZ::CCMASK_CMP_LE) 1958 return SystemZ::CCMASK_TM_MSB_0; 1959 if (CCMask == SystemZ::CCMASK_CMP_GT) 1960 return SystemZ::CCMASK_TM_MSB_1; 1961 } 1962 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1963 if (CCMask == SystemZ::CCMASK_CMP_LT) 1964 return SystemZ::CCMASK_TM_MSB_0; 1965 if (CCMask == SystemZ::CCMASK_CMP_GE) 1966 return SystemZ::CCMASK_TM_MSB_1; 1967 } 1968 1969 // If there are just two bits, we can do equality checks for Low and High 1970 // as well. 1971 if (Mask == Low + High) { 1972 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1973 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1974 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1975 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1976 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1977 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1978 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1979 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1980 } 1981 1982 // Looks like we've exhausted our options. 1983 return 0; 1984 } 1985 1986 // See whether C can be implemented as a TEST UNDER MASK instruction. 1987 // Update the arguments with the TM version if so. 1988 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 1989 Comparison &C) { 1990 // Check that we have a comparison with a constant. 1991 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1992 if (!ConstOp1) 1993 return; 1994 uint64_t CmpVal = ConstOp1->getZExtValue(); 1995 1996 // Check whether the nonconstant input is an AND with a constant mask. 1997 Comparison NewC(C); 1998 uint64_t MaskVal; 1999 ConstantSDNode *Mask = nullptr; 2000 if (C.Op0.getOpcode() == ISD::AND) { 2001 NewC.Op0 = C.Op0.getOperand(0); 2002 NewC.Op1 = C.Op0.getOperand(1); 2003 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2004 if (!Mask) 2005 return; 2006 MaskVal = Mask->getZExtValue(); 2007 } else { 2008 // There is no instruction to compare with a 64-bit immediate 2009 // so use TMHH instead if possible. We need an unsigned ordered 2010 // comparison with an i64 immediate. 2011 if (NewC.Op0.getValueType() != MVT::i64 || 2012 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2013 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2014 NewC.ICmpType == SystemZICMP::SignedOnly) 2015 return; 2016 // Convert LE and GT comparisons into LT and GE. 2017 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2018 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2019 if (CmpVal == uint64_t(-1)) 2020 return; 2021 CmpVal += 1; 2022 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2023 } 2024 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2025 // be masked off without changing the result. 2026 MaskVal = -(CmpVal & -CmpVal); 2027 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2028 } 2029 if (!MaskVal) 2030 return; 2031 2032 // Check whether the combination of mask, comparison value and comparison 2033 // type are suitable. 2034 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); 2035 unsigned NewCCMask, ShiftVal; 2036 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2037 NewC.Op0.getOpcode() == ISD::SHL && 2038 isSimpleShift(NewC.Op0, ShiftVal) && 2039 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2040 MaskVal >> ShiftVal, 2041 CmpVal >> ShiftVal, 2042 SystemZICMP::Any))) { 2043 NewC.Op0 = NewC.Op0.getOperand(0); 2044 MaskVal >>= ShiftVal; 2045 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2046 NewC.Op0.getOpcode() == ISD::SRL && 2047 isSimpleShift(NewC.Op0, ShiftVal) && 2048 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2049 MaskVal << ShiftVal, 2050 CmpVal << ShiftVal, 2051 SystemZICMP::UnsignedOnly))) { 2052 NewC.Op0 = NewC.Op0.getOperand(0); 2053 MaskVal <<= ShiftVal; 2054 } else { 2055 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2056 NewC.ICmpType); 2057 if (!NewCCMask) 2058 return; 2059 } 2060 2061 // Go ahead and make the change. 2062 C.Opcode = SystemZISD::TM; 2063 C.Op0 = NewC.Op0; 2064 if (Mask && Mask->getZExtValue() == MaskVal) 2065 C.Op1 = SDValue(Mask, 0); 2066 else 2067 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2068 C.CCValid = SystemZ::CCMASK_TM; 2069 C.CCMask = NewCCMask; 2070 } 2071 2072 // Return a Comparison that tests the condition-code result of intrinsic 2073 // node Call against constant integer CC using comparison code Cond. 2074 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2075 // and CCValid is the set of possible condition-code results. 2076 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2077 SDValue Call, unsigned CCValid, uint64_t CC, 2078 ISD::CondCode Cond) { 2079 Comparison C(Call, SDValue()); 2080 C.Opcode = Opcode; 2081 C.CCValid = CCValid; 2082 if (Cond == ISD::SETEQ) 2083 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2084 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2085 else if (Cond == ISD::SETNE) 2086 // ...and the inverse of that. 2087 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2088 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2089 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2090 // always true for CC>3. 2091 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2092 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2093 // ...and the inverse of that. 2094 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2095 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2096 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2097 // always true for CC>3. 2098 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2099 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2100 // ...and the inverse of that. 2101 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2102 else 2103 llvm_unreachable("Unexpected integer comparison type"); 2104 C.CCMask &= CCValid; 2105 return C; 2106 } 2107 2108 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2109 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2110 ISD::CondCode Cond, const SDLoc &DL) { 2111 if (CmpOp1.getOpcode() == ISD::Constant) { 2112 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2113 unsigned Opcode, CCValid; 2114 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2115 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2116 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2117 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2118 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2119 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2120 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2121 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2122 } 2123 Comparison C(CmpOp0, CmpOp1); 2124 C.CCMask = CCMaskForCondCode(Cond); 2125 if (C.Op0.getValueType().isFloatingPoint()) { 2126 C.CCValid = SystemZ::CCMASK_FCMP; 2127 C.Opcode = SystemZISD::FCMP; 2128 adjustForFNeg(C); 2129 } else { 2130 C.CCValid = SystemZ::CCMASK_ICMP; 2131 C.Opcode = SystemZISD::ICMP; 2132 // Choose the type of comparison. Equality and inequality tests can 2133 // use either signed or unsigned comparisons. The choice also doesn't 2134 // matter if both sign bits are known to be clear. In those cases we 2135 // want to give the main isel code the freedom to choose whichever 2136 // form fits best. 2137 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2138 C.CCMask == SystemZ::CCMASK_CMP_NE || 2139 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2140 C.ICmpType = SystemZICMP::Any; 2141 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2142 C.ICmpType = SystemZICMP::UnsignedOnly; 2143 else 2144 C.ICmpType = SystemZICMP::SignedOnly; 2145 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2146 adjustZeroCmp(DAG, DL, C); 2147 adjustSubwordCmp(DAG, DL, C); 2148 adjustForSubtraction(DAG, DL, C); 2149 adjustForLTGFR(C); 2150 adjustICmpTruncate(DAG, DL, C); 2151 } 2152 2153 if (shouldSwapCmpOperands(C)) { 2154 std::swap(C.Op0, C.Op1); 2155 C.CCMask = reverseCCMask(C.CCMask); 2156 } 2157 2158 adjustForTestUnderMask(DAG, DL, C); 2159 return C; 2160 } 2161 2162 // Emit the comparison instruction described by C. 2163 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2164 if (!C.Op1.getNode()) { 2165 SDValue Op; 2166 switch (C.Op0.getOpcode()) { 2167 case ISD::INTRINSIC_W_CHAIN: 2168 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2169 break; 2170 case ISD::INTRINSIC_WO_CHAIN: 2171 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2172 break; 2173 default: 2174 llvm_unreachable("Invalid comparison operands"); 2175 } 2176 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2177 } 2178 if (C.Opcode == SystemZISD::ICMP) 2179 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2180 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2181 if (C.Opcode == SystemZISD::TM) { 2182 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2183 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2184 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2185 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2186 } 2187 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2188 } 2189 2190 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2191 // 64 bits. Extend is the extension type to use. Store the high part 2192 // in Hi and the low part in Lo. 2193 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2194 SDValue Op0, SDValue Op1, SDValue &Hi, 2195 SDValue &Lo) { 2196 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2197 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2198 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2199 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2200 DAG.getConstant(32, DL, MVT::i64)); 2201 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2202 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2203 } 2204 2205 // Lower a binary operation that produces two VT results, one in each 2206 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2207 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2208 // on the extended Op0 and (unextended) Op1. Store the even register result 2209 // in Even and the odd register result in Odd. 2210 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2211 unsigned Extend, unsigned Opcode, SDValue Op0, 2212 SDValue Op1, SDValue &Even, SDValue &Odd) { 2213 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2214 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2215 SDValue(In128, 0), Op1); 2216 bool Is32Bit = is32Bit(VT); 2217 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2218 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2219 } 2220 2221 // Return an i32 value that is 1 if the CC value produced by Glue is 2222 // in the mask CCMask and 0 otherwise. CC is known to have a value 2223 // in CCValid, so other values can be ignored. 2224 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue, 2225 unsigned CCValid, unsigned CCMask) { 2226 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2227 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2228 2229 if (Conversion.XORValue) 2230 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2231 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2232 2233 if (Conversion.AddValue) 2234 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2235 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2236 2237 // The SHR/AND sequence should get optimized to an RISBG. 2238 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2239 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2240 if (Conversion.Bit != 31) 2241 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2242 DAG.getConstant(1, DL, MVT::i32)); 2243 return Result; 2244 } 2245 2246 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2247 // be done directly. IsFP is true if CC is for a floating-point rather than 2248 // integer comparison. 2249 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2250 switch (CC) { 2251 case ISD::SETOEQ: 2252 case ISD::SETEQ: 2253 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2254 2255 case ISD::SETOGE: 2256 case ISD::SETGE: 2257 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2258 2259 case ISD::SETOGT: 2260 case ISD::SETGT: 2261 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2262 2263 case ISD::SETUGT: 2264 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2265 2266 default: 2267 return 0; 2268 } 2269 } 2270 2271 // Return the SystemZISD vector comparison operation for CC or its inverse, 2272 // or 0 if neither can be done directly. Indicate in Invert whether the 2273 // result is for the inverse of CC. IsFP is true if CC is for a 2274 // floating-point rather than integer comparison. 2275 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2276 bool &Invert) { 2277 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2278 Invert = false; 2279 return Opcode; 2280 } 2281 2282 CC = ISD::getSetCCInverse(CC, !IsFP); 2283 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2284 Invert = true; 2285 return Opcode; 2286 } 2287 2288 return 0; 2289 } 2290 2291 // Return a v2f64 that contains the extended form of elements Start and Start+1 2292 // of v4f32 value Op. 2293 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2294 SDValue Op) { 2295 int Mask[] = { Start, -1, Start + 1, -1 }; 2296 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2297 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2298 } 2299 2300 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2301 // producing a result of type VT. 2302 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &DL, 2303 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2304 // There is no hardware support for v4f32, so extend the vector into 2305 // two v2f64s and compare those. 2306 if (CmpOp0.getValueType() == MVT::v4f32) { 2307 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2308 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2309 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2310 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2311 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2312 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2313 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2314 } 2315 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2316 } 2317 2318 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2319 // an integer mask of type VT. 2320 static SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2321 ISD::CondCode CC, SDValue CmpOp0, 2322 SDValue CmpOp1) { 2323 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2324 bool Invert = false; 2325 SDValue Cmp; 2326 switch (CC) { 2327 // Handle tests for order using (or (ogt y x) (oge x y)). 2328 case ISD::SETUO: 2329 Invert = true; 2330 case ISD::SETO: { 2331 assert(IsFP && "Unexpected integer comparison"); 2332 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2333 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2334 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2335 break; 2336 } 2337 2338 // Handle <> tests using (or (ogt y x) (ogt x y)). 2339 case ISD::SETUEQ: 2340 Invert = true; 2341 case ISD::SETONE: { 2342 assert(IsFP && "Unexpected integer comparison"); 2343 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2344 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2345 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2346 break; 2347 } 2348 2349 // Otherwise a single comparison is enough. It doesn't really 2350 // matter whether we try the inversion or the swap first, since 2351 // there are no cases where both work. 2352 default: 2353 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2354 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2355 else { 2356 CC = ISD::getSetCCSwappedOperands(CC); 2357 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2358 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2359 else 2360 llvm_unreachable("Unhandled comparison"); 2361 } 2362 break; 2363 } 2364 if (Invert) { 2365 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2366 DAG.getConstant(65535, DL, MVT::i32)); 2367 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2368 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2369 } 2370 return Cmp; 2371 } 2372 2373 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2374 SelectionDAG &DAG) const { 2375 SDValue CmpOp0 = Op.getOperand(0); 2376 SDValue CmpOp1 = Op.getOperand(1); 2377 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2378 SDLoc DL(Op); 2379 EVT VT = Op.getValueType(); 2380 if (VT.isVector()) 2381 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2382 2383 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2384 SDValue Glue = emitCmp(DAG, DL, C); 2385 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2386 } 2387 2388 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2389 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2390 SDValue CmpOp0 = Op.getOperand(2); 2391 SDValue CmpOp1 = Op.getOperand(3); 2392 SDValue Dest = Op.getOperand(4); 2393 SDLoc DL(Op); 2394 2395 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2396 SDValue Glue = emitCmp(DAG, DL, C); 2397 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2398 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2399 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2400 } 2401 2402 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2403 // allowing Pos and Neg to be wider than CmpOp. 2404 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2405 return (Neg.getOpcode() == ISD::SUB && 2406 Neg.getOperand(0).getOpcode() == ISD::Constant && 2407 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2408 Neg.getOperand(1) == Pos && 2409 (Pos == CmpOp || 2410 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2411 Pos.getOperand(0) == CmpOp))); 2412 } 2413 2414 // Return the absolute or negative absolute of Op; IsNegative decides which. 2415 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2416 bool IsNegative) { 2417 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2418 if (IsNegative) 2419 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2420 DAG.getConstant(0, DL, Op.getValueType()), Op); 2421 return Op; 2422 } 2423 2424 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2425 SelectionDAG &DAG) const { 2426 SDValue CmpOp0 = Op.getOperand(0); 2427 SDValue CmpOp1 = Op.getOperand(1); 2428 SDValue TrueOp = Op.getOperand(2); 2429 SDValue FalseOp = Op.getOperand(3); 2430 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2431 SDLoc DL(Op); 2432 2433 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2434 2435 // Check for absolute and negative-absolute selections, including those 2436 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2437 // This check supplements the one in DAGCombiner. 2438 if (C.Opcode == SystemZISD::ICMP && 2439 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2440 C.CCMask != SystemZ::CCMASK_CMP_NE && 2441 C.Op1.getOpcode() == ISD::Constant && 2442 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2443 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2444 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2445 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2446 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2447 } 2448 2449 SDValue Glue = emitCmp(DAG, DL, C); 2450 2451 // Special case for handling -1/0 results. The shifts we use here 2452 // should get optimized with the IPM conversion sequence. 2453 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2454 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2455 if (TrueC && FalseC) { 2456 int64_t TrueVal = TrueC->getSExtValue(); 2457 int64_t FalseVal = FalseC->getSExtValue(); 2458 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2459 // Invert the condition if we want -1 on false. 2460 if (TrueVal == 0) 2461 C.CCMask ^= C.CCValid; 2462 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2463 EVT VT = Op.getValueType(); 2464 // Extend the result to VT. Upper bits are ignored. 2465 if (!is32Bit(VT)) 2466 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2467 // Sign-extend from the low bit. 2468 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2469 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2470 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2471 } 2472 } 2473 2474 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2475 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2476 2477 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2478 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2479 } 2480 2481 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2482 SelectionDAG &DAG) const { 2483 SDLoc DL(Node); 2484 const GlobalValue *GV = Node->getGlobal(); 2485 int64_t Offset = Node->getOffset(); 2486 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2487 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2488 2489 SDValue Result; 2490 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2491 // Assign anchors at 1<<12 byte boundaries. 2492 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2493 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2494 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2495 2496 // The offset can be folded into the address if it is aligned to a halfword. 2497 Offset -= Anchor; 2498 if (Offset != 0 && (Offset & 1) == 0) { 2499 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2500 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2501 Offset = 0; 2502 } 2503 } else { 2504 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2505 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2506 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2507 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2508 } 2509 2510 // If there was a non-zero offset that we didn't fold, create an explicit 2511 // addition for it. 2512 if (Offset != 0) 2513 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2514 DAG.getConstant(Offset, DL, PtrVT)); 2515 2516 return Result; 2517 } 2518 2519 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2520 SelectionDAG &DAG, 2521 unsigned Opcode, 2522 SDValue GOTOffset) const { 2523 SDLoc DL(Node); 2524 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2525 SDValue Chain = DAG.getEntryNode(); 2526 SDValue Glue; 2527 2528 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2529 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2530 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2531 Glue = Chain.getValue(1); 2532 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2533 Glue = Chain.getValue(1); 2534 2535 // The first call operand is the chain and the second is the TLS symbol. 2536 SmallVector<SDValue, 8> Ops; 2537 Ops.push_back(Chain); 2538 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2539 Node->getValueType(0), 2540 0, 0)); 2541 2542 // Add argument registers to the end of the list so that they are 2543 // known live into the call. 2544 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2545 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2546 2547 // Add a register mask operand representing the call-preserved registers. 2548 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2549 const uint32_t *Mask = 2550 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2551 assert(Mask && "Missing call preserved mask for calling convention"); 2552 Ops.push_back(DAG.getRegisterMask(Mask)); 2553 2554 // Glue the call to the argument copies. 2555 Ops.push_back(Glue); 2556 2557 // Emit the call. 2558 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2559 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2560 Glue = Chain.getValue(1); 2561 2562 // Copy the return value from %r2. 2563 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2564 } 2565 2566 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2567 SelectionDAG &DAG) const { 2568 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2569 2570 // The high part of the thread pointer is in access register 0. 2571 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2572 DAG.getConstant(0, DL, MVT::i32)); 2573 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2574 2575 // The low part of the thread pointer is in access register 1. 2576 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2577 DAG.getConstant(1, DL, MVT::i32)); 2578 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2579 2580 // Merge them into a single 64-bit address. 2581 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2582 DAG.getConstant(32, DL, PtrVT)); 2583 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2584 } 2585 2586 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2587 SelectionDAG &DAG) const { 2588 if (DAG.getTarget().Options.EmulatedTLS) 2589 return LowerToTLSEmulatedModel(Node, DAG); 2590 SDLoc DL(Node); 2591 const GlobalValue *GV = Node->getGlobal(); 2592 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2593 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2594 2595 SDValue TP = lowerThreadPointer(DL, DAG); 2596 2597 // Get the offset of GA from the thread pointer, based on the TLS model. 2598 SDValue Offset; 2599 switch (model) { 2600 case TLSModel::GeneralDynamic: { 2601 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2602 SystemZConstantPoolValue *CPV = 2603 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2604 2605 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2606 Offset = DAG.getLoad( 2607 PtrVT, DL, DAG.getEntryNode(), Offset, 2608 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2609 2610 // Call __tls_get_offset to retrieve the offset. 2611 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2612 break; 2613 } 2614 2615 case TLSModel::LocalDynamic: { 2616 // Load the GOT offset of the module ID. 2617 SystemZConstantPoolValue *CPV = 2618 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2619 2620 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2621 Offset = DAG.getLoad( 2622 PtrVT, DL, DAG.getEntryNode(), Offset, 2623 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2624 2625 // Call __tls_get_offset to retrieve the module base offset. 2626 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2627 2628 // Note: The SystemZLDCleanupPass will remove redundant computations 2629 // of the module base offset. Count total number of local-dynamic 2630 // accesses to trigger execution of that pass. 2631 SystemZMachineFunctionInfo* MFI = 2632 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2633 MFI->incNumLocalDynamicTLSAccesses(); 2634 2635 // Add the per-symbol offset. 2636 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2637 2638 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2639 DTPOffset = DAG.getLoad( 2640 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2641 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2642 2643 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2644 break; 2645 } 2646 2647 case TLSModel::InitialExec: { 2648 // Load the offset from the GOT. 2649 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2650 SystemZII::MO_INDNTPOFF); 2651 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2652 Offset = 2653 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2654 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2655 break; 2656 } 2657 2658 case TLSModel::LocalExec: { 2659 // Force the offset into the constant pool and load it from there. 2660 SystemZConstantPoolValue *CPV = 2661 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2662 2663 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2664 Offset = DAG.getLoad( 2665 PtrVT, DL, DAG.getEntryNode(), Offset, 2666 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2667 break; 2668 } 2669 } 2670 2671 // Add the base and offset together. 2672 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2673 } 2674 2675 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2676 SelectionDAG &DAG) const { 2677 SDLoc DL(Node); 2678 const BlockAddress *BA = Node->getBlockAddress(); 2679 int64_t Offset = Node->getOffset(); 2680 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2681 2682 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2683 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2684 return Result; 2685 } 2686 2687 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2688 SelectionDAG &DAG) const { 2689 SDLoc DL(JT); 2690 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2691 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2692 2693 // Use LARL to load the address of the table. 2694 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2695 } 2696 2697 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2698 SelectionDAG &DAG) const { 2699 SDLoc DL(CP); 2700 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2701 2702 SDValue Result; 2703 if (CP->isMachineConstantPoolEntry()) 2704 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2705 CP->getAlignment()); 2706 else 2707 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2708 CP->getAlignment(), CP->getOffset()); 2709 2710 // Use LARL to load the address of the constant pool entry. 2711 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2712 } 2713 2714 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 2715 SelectionDAG &DAG) const { 2716 MachineFunction &MF = DAG.getMachineFunction(); 2717 MachineFrameInfo &MFI = MF.getFrameInfo(); 2718 MFI.setFrameAddressIsTaken(true); 2719 2720 SDLoc DL(Op); 2721 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2722 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2723 2724 // If the back chain frame index has not been allocated yet, do so. 2725 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 2726 int BackChainIdx = FI->getFramePointerSaveIndex(); 2727 if (!BackChainIdx) { 2728 // By definition, the frame address is the address of the back chain. 2729 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 2730 FI->setFramePointerSaveIndex(BackChainIdx); 2731 } 2732 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 2733 2734 // FIXME The frontend should detect this case. 2735 if (Depth > 0) { 2736 report_fatal_error("Unsupported stack frame traversal count"); 2737 } 2738 2739 return BackChain; 2740 } 2741 2742 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 2743 SelectionDAG &DAG) const { 2744 MachineFunction &MF = DAG.getMachineFunction(); 2745 MachineFrameInfo &MFI = MF.getFrameInfo(); 2746 MFI.setReturnAddressIsTaken(true); 2747 2748 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2749 return SDValue(); 2750 2751 SDLoc DL(Op); 2752 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2753 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2754 2755 // FIXME The frontend should detect this case. 2756 if (Depth > 0) { 2757 report_fatal_error("Unsupported stack frame traversal count"); 2758 } 2759 2760 // Return R14D, which has the return address. Mark it an implicit live-in. 2761 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 2762 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 2763 } 2764 2765 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2766 SelectionDAG &DAG) const { 2767 SDLoc DL(Op); 2768 SDValue In = Op.getOperand(0); 2769 EVT InVT = In.getValueType(); 2770 EVT ResVT = Op.getValueType(); 2771 2772 // Convert loads directly. This is normally done by DAGCombiner, 2773 // but we need this case for bitcasts that are created during lowering 2774 // and which are then lowered themselves. 2775 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2776 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2777 LoadN->getMemOperand()); 2778 2779 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2780 SDValue In64; 2781 if (Subtarget.hasHighWord()) { 2782 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2783 MVT::i64); 2784 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2785 MVT::i64, SDValue(U64, 0), In); 2786 } else { 2787 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2788 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2789 DAG.getConstant(32, DL, MVT::i64)); 2790 } 2791 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2792 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2793 DL, MVT::f32, Out64); 2794 } 2795 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2796 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2797 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2798 MVT::f64, SDValue(U64, 0), In); 2799 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2800 if (Subtarget.hasHighWord()) 2801 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2802 MVT::i32, Out64); 2803 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2804 DAG.getConstant(32, DL, MVT::i64)); 2805 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2806 } 2807 llvm_unreachable("Unexpected bitcast combination"); 2808 } 2809 2810 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2811 SelectionDAG &DAG) const { 2812 MachineFunction &MF = DAG.getMachineFunction(); 2813 SystemZMachineFunctionInfo *FuncInfo = 2814 MF.getInfo<SystemZMachineFunctionInfo>(); 2815 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2816 2817 SDValue Chain = Op.getOperand(0); 2818 SDValue Addr = Op.getOperand(1); 2819 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2820 SDLoc DL(Op); 2821 2822 // The initial values of each field. 2823 const unsigned NumFields = 4; 2824 SDValue Fields[NumFields] = { 2825 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2826 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2827 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2828 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2829 }; 2830 2831 // Store each field into its respective slot. 2832 SDValue MemOps[NumFields]; 2833 unsigned Offset = 0; 2834 for (unsigned I = 0; I < NumFields; ++I) { 2835 SDValue FieldAddr = Addr; 2836 if (Offset != 0) 2837 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2838 DAG.getIntPtrConstant(Offset, DL)); 2839 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2840 MachinePointerInfo(SV, Offset)); 2841 Offset += 8; 2842 } 2843 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2844 } 2845 2846 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2847 SelectionDAG &DAG) const { 2848 SDValue Chain = Op.getOperand(0); 2849 SDValue DstPtr = Op.getOperand(1); 2850 SDValue SrcPtr = Op.getOperand(2); 2851 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2852 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2853 SDLoc DL(Op); 2854 2855 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2856 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2857 /*isTailCall*/false, 2858 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2859 } 2860 2861 SDValue SystemZTargetLowering:: 2862 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2863 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 2864 MachineFunction &MF = DAG.getMachineFunction(); 2865 bool RealignOpt = !MF.getFunction()-> hasFnAttribute("no-realign-stack"); 2866 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain"); 2867 2868 SDValue Chain = Op.getOperand(0); 2869 SDValue Size = Op.getOperand(1); 2870 SDValue Align = Op.getOperand(2); 2871 SDLoc DL(Op); 2872 2873 // If user has set the no alignment function attribute, ignore 2874 // alloca alignments. 2875 uint64_t AlignVal = (RealignOpt ? 2876 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 2877 2878 uint64_t StackAlign = TFI->getStackAlignment(); 2879 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 2880 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 2881 2882 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2883 SDValue NeededSpace = Size; 2884 2885 // Get a reference to the stack pointer. 2886 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2887 2888 // If we need a backchain, save it now. 2889 SDValue Backchain; 2890 if (StoreBackchain) 2891 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 2892 2893 // Add extra space for alignment if needed. 2894 if (ExtraAlignSpace) 2895 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 2896 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2897 2898 // Get the new stack pointer value. 2899 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 2900 2901 // Copy the new stack pointer back. 2902 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2903 2904 // The allocated data lives above the 160 bytes allocated for the standard 2905 // frame, plus any outgoing stack arguments. We don't know how much that 2906 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2907 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2908 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2909 2910 // Dynamically realign if needed. 2911 if (RequiredAlign > StackAlign) { 2912 Result = 2913 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 2914 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2915 Result = 2916 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 2917 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 2918 } 2919 2920 if (StoreBackchain) 2921 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 2922 2923 SDValue Ops[2] = { Result, Chain }; 2924 return DAG.getMergeValues(Ops, DL); 2925 } 2926 2927 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 2928 SDValue Op, SelectionDAG &DAG) const { 2929 SDLoc DL(Op); 2930 2931 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2932 } 2933 2934 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2935 SelectionDAG &DAG) const { 2936 EVT VT = Op.getValueType(); 2937 SDLoc DL(Op); 2938 SDValue Ops[2]; 2939 if (is32Bit(VT)) 2940 // Just do a normal 64-bit multiplication and extract the results. 2941 // We define this so that it can be used for constant division. 2942 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2943 Op.getOperand(1), Ops[1], Ops[0]); 2944 else { 2945 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2946 // 2947 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2948 // 2949 // but using the fact that the upper halves are either all zeros 2950 // or all ones: 2951 // 2952 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2953 // 2954 // and grouping the right terms together since they are quicker than the 2955 // multiplication: 2956 // 2957 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2958 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2959 SDValue LL = Op.getOperand(0); 2960 SDValue RL = Op.getOperand(1); 2961 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2962 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2963 // UMUL_LOHI64 returns the low result in the odd register and the high 2964 // result in the even register. SMUL_LOHI is defined to return the 2965 // low half first, so the results are in reverse order. 2966 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2967 LL, RL, Ops[1], Ops[0]); 2968 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2969 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2970 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2971 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2972 } 2973 return DAG.getMergeValues(Ops, DL); 2974 } 2975 2976 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2977 SelectionDAG &DAG) const { 2978 EVT VT = Op.getValueType(); 2979 SDLoc DL(Op); 2980 SDValue Ops[2]; 2981 if (is32Bit(VT)) 2982 // Just do a normal 64-bit multiplication and extract the results. 2983 // We define this so that it can be used for constant division. 2984 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 2985 Op.getOperand(1), Ops[1], Ops[0]); 2986 else 2987 // UMUL_LOHI64 returns the low result in the odd register and the high 2988 // result in the even register. UMUL_LOHI is defined to return the 2989 // low half first, so the results are in reverse order. 2990 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2991 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2992 return DAG.getMergeValues(Ops, DL); 2993 } 2994 2995 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 2996 SelectionDAG &DAG) const { 2997 SDValue Op0 = Op.getOperand(0); 2998 SDValue Op1 = Op.getOperand(1); 2999 EVT VT = Op.getValueType(); 3000 SDLoc DL(Op); 3001 unsigned Opcode; 3002 3003 // We use DSGF for 32-bit division. 3004 if (is32Bit(VT)) { 3005 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3006 Opcode = SystemZISD::SDIVREM32; 3007 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 3008 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3009 Opcode = SystemZISD::SDIVREM32; 3010 } else 3011 Opcode = SystemZISD::SDIVREM64; 3012 3013 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 3014 // input is "don't care". The instruction returns the remainder in 3015 // the even register and the quotient in the odd register. 3016 SDValue Ops[2]; 3017 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 3018 Op0, Op1, Ops[1], Ops[0]); 3019 return DAG.getMergeValues(Ops, DL); 3020 } 3021 3022 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3023 SelectionDAG &DAG) const { 3024 EVT VT = Op.getValueType(); 3025 SDLoc DL(Op); 3026 3027 // DL(G) uses a double-width dividend, so we need to clear the even 3028 // register in the GR128 input. The instruction returns the remainder 3029 // in the even register and the quotient in the odd register. 3030 SDValue Ops[2]; 3031 if (is32Bit(VT)) 3032 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 3033 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3034 else 3035 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 3036 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3037 return DAG.getMergeValues(Ops, DL); 3038 } 3039 3040 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3041 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3042 3043 // Get the known-zero masks for each operand. 3044 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 3045 APInt KnownZero[2], KnownOne[2]; 3046 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 3047 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 3048 3049 // See if the upper 32 bits of one operand and the lower 32 bits of the 3050 // other are known zero. They are the low and high operands respectively. 3051 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 3052 KnownZero[1].getZExtValue() }; 3053 unsigned High, Low; 3054 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3055 High = 1, Low = 0; 3056 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3057 High = 0, Low = 1; 3058 else 3059 return Op; 3060 3061 SDValue LowOp = Ops[Low]; 3062 SDValue HighOp = Ops[High]; 3063 3064 // If the high part is a constant, we're better off using IILH. 3065 if (HighOp.getOpcode() == ISD::Constant) 3066 return Op; 3067 3068 // If the low part is a constant that is outside the range of LHI, 3069 // then we're better off using IILF. 3070 if (LowOp.getOpcode() == ISD::Constant) { 3071 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3072 if (!isInt<16>(Value)) 3073 return Op; 3074 } 3075 3076 // Check whether the high part is an AND that doesn't change the 3077 // high 32 bits and just masks out low bits. We can skip it if so. 3078 if (HighOp.getOpcode() == ISD::AND && 3079 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3080 SDValue HighOp0 = HighOp.getOperand(0); 3081 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3082 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3083 HighOp = HighOp0; 3084 } 3085 3086 // Take advantage of the fact that all GR32 operations only change the 3087 // low 32 bits by truncating Low to an i32 and inserting it directly 3088 // using a subreg. The interesting cases are those where the truncation 3089 // can be folded. 3090 SDLoc DL(Op); 3091 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3092 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3093 MVT::i64, HighOp, Low32); 3094 } 3095 3096 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3097 SelectionDAG &DAG) const { 3098 EVT VT = Op.getValueType(); 3099 SDLoc DL(Op); 3100 Op = Op.getOperand(0); 3101 3102 // Handle vector types via VPOPCT. 3103 if (VT.isVector()) { 3104 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3105 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3106 switch (VT.getVectorElementType().getSizeInBits()) { 3107 case 8: 3108 break; 3109 case 16: { 3110 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3111 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3112 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3113 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3114 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3115 break; 3116 } 3117 case 32: { 3118 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3119 DAG.getConstant(0, DL, MVT::i32)); 3120 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3121 break; 3122 } 3123 case 64: { 3124 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3125 DAG.getConstant(0, DL, MVT::i32)); 3126 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3127 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3128 break; 3129 } 3130 default: 3131 llvm_unreachable("Unexpected type"); 3132 } 3133 return Op; 3134 } 3135 3136 // Get the known-zero mask for the operand. 3137 APInt KnownZero, KnownOne; 3138 DAG.computeKnownBits(Op, KnownZero, KnownOne); 3139 unsigned NumSignificantBits = (~KnownZero).getActiveBits(); 3140 if (NumSignificantBits == 0) 3141 return DAG.getConstant(0, DL, VT); 3142 3143 // Skip known-zero high parts of the operand. 3144 int64_t OrigBitSize = VT.getSizeInBits(); 3145 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3146 BitSize = std::min(BitSize, OrigBitSize); 3147 3148 // The POPCNT instruction counts the number of bits in each byte. 3149 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3150 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3151 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3152 3153 // Add up per-byte counts in a binary tree. All bits of Op at 3154 // position larger than BitSize remain zero throughout. 3155 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3156 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3157 if (BitSize != OrigBitSize) 3158 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3159 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3160 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3161 } 3162 3163 // Extract overall result from high byte. 3164 if (BitSize > 8) 3165 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3166 DAG.getConstant(BitSize - 8, DL, VT)); 3167 3168 return Op; 3169 } 3170 3171 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3172 SelectionDAG &DAG) const { 3173 SDLoc DL(Op); 3174 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3175 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3176 SynchronizationScope FenceScope = static_cast<SynchronizationScope>( 3177 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3178 3179 // The only fence that needs an instruction is a sequentially-consistent 3180 // cross-thread fence. 3181 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3182 FenceScope == CrossThread) { 3183 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3184 Op.getOperand(0)), 3185 0); 3186 } 3187 3188 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3189 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3190 } 3191 3192 // Op is an atomic load. Lower it into a normal volatile load. 3193 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3194 SelectionDAG &DAG) const { 3195 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3196 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3197 Node->getChain(), Node->getBasePtr(), 3198 Node->getMemoryVT(), Node->getMemOperand()); 3199 } 3200 3201 // Op is an atomic store. Lower it into a normal volatile store followed 3202 // by a serialization. 3203 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3204 SelectionDAG &DAG) const { 3205 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3206 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3207 Node->getBasePtr(), Node->getMemoryVT(), 3208 Node->getMemOperand()); 3209 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3210 Chain), 0); 3211 } 3212 3213 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3214 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3215 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3216 SelectionDAG &DAG, 3217 unsigned Opcode) const { 3218 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3219 3220 // 32-bit operations need no code outside the main loop. 3221 EVT NarrowVT = Node->getMemoryVT(); 3222 EVT WideVT = MVT::i32; 3223 if (NarrowVT == WideVT) 3224 return Op; 3225 3226 int64_t BitSize = NarrowVT.getSizeInBits(); 3227 SDValue ChainIn = Node->getChain(); 3228 SDValue Addr = Node->getBasePtr(); 3229 SDValue Src2 = Node->getVal(); 3230 MachineMemOperand *MMO = Node->getMemOperand(); 3231 SDLoc DL(Node); 3232 EVT PtrVT = Addr.getValueType(); 3233 3234 // Convert atomic subtracts of constants into additions. 3235 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3236 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3237 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3238 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3239 } 3240 3241 // Get the address of the containing word. 3242 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3243 DAG.getConstant(-4, DL, PtrVT)); 3244 3245 // Get the number of bits that the word must be rotated left in order 3246 // to bring the field to the top bits of a GR32. 3247 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3248 DAG.getConstant(3, DL, PtrVT)); 3249 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3250 3251 // Get the complementing shift amount, for rotating a field in the top 3252 // bits back to its proper position. 3253 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3254 DAG.getConstant(0, DL, WideVT), BitShift); 3255 3256 // Extend the source operand to 32 bits and prepare it for the inner loop. 3257 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3258 // operations require the source to be shifted in advance. (This shift 3259 // can be folded if the source is constant.) For AND and NAND, the lower 3260 // bits must be set, while for other opcodes they should be left clear. 3261 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3262 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3263 DAG.getConstant(32 - BitSize, DL, WideVT)); 3264 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3265 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3266 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3267 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3268 3269 // Construct the ATOMIC_LOADW_* node. 3270 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3271 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3272 DAG.getConstant(BitSize, DL, WideVT) }; 3273 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3274 NarrowVT, MMO); 3275 3276 // Rotate the result of the final CS so that the field is in the lower 3277 // bits of a GR32, then truncate it. 3278 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3279 DAG.getConstant(BitSize, DL, WideVT)); 3280 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3281 3282 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3283 return DAG.getMergeValues(RetOps, DL); 3284 } 3285 3286 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3287 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3288 // operations into additions. 3289 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3290 SelectionDAG &DAG) const { 3291 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3292 EVT MemVT = Node->getMemoryVT(); 3293 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3294 // A full-width operation. 3295 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3296 SDValue Src2 = Node->getVal(); 3297 SDValue NegSrc2; 3298 SDLoc DL(Src2); 3299 3300 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3301 // Use an addition if the operand is constant and either LAA(G) is 3302 // available or the negative value is in the range of A(G)FHI. 3303 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3304 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3305 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3306 } else if (Subtarget.hasInterlockedAccess1()) 3307 // Use LAA(G) if available. 3308 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3309 Src2); 3310 3311 if (NegSrc2.getNode()) 3312 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3313 Node->getChain(), Node->getBasePtr(), NegSrc2, 3314 Node->getMemOperand(), Node->getOrdering(), 3315 Node->getSynchScope()); 3316 3317 // Use the node as-is. 3318 return Op; 3319 } 3320 3321 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3322 } 3323 3324 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3325 // into a fullword ATOMIC_CMP_SWAPW operation. 3326 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3327 SelectionDAG &DAG) const { 3328 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3329 3330 // We have native support for 32-bit compare and swap. 3331 EVT NarrowVT = Node->getMemoryVT(); 3332 EVT WideVT = MVT::i32; 3333 if (NarrowVT == WideVT) 3334 return Op; 3335 3336 int64_t BitSize = NarrowVT.getSizeInBits(); 3337 SDValue ChainIn = Node->getOperand(0); 3338 SDValue Addr = Node->getOperand(1); 3339 SDValue CmpVal = Node->getOperand(2); 3340 SDValue SwapVal = Node->getOperand(3); 3341 MachineMemOperand *MMO = Node->getMemOperand(); 3342 SDLoc DL(Node); 3343 EVT PtrVT = Addr.getValueType(); 3344 3345 // Get the address of the containing word. 3346 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3347 DAG.getConstant(-4, DL, PtrVT)); 3348 3349 // Get the number of bits that the word must be rotated left in order 3350 // to bring the field to the top bits of a GR32. 3351 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3352 DAG.getConstant(3, DL, PtrVT)); 3353 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3354 3355 // Get the complementing shift amount, for rotating a field in the top 3356 // bits back to its proper position. 3357 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3358 DAG.getConstant(0, DL, WideVT), BitShift); 3359 3360 // Construct the ATOMIC_CMP_SWAPW node. 3361 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3362 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3363 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3364 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3365 VTList, Ops, NarrowVT, MMO); 3366 return AtomicOp; 3367 } 3368 3369 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3370 SelectionDAG &DAG) const { 3371 MachineFunction &MF = DAG.getMachineFunction(); 3372 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3373 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3374 SystemZ::R15D, Op.getValueType()); 3375 } 3376 3377 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3378 SelectionDAG &DAG) const { 3379 MachineFunction &MF = DAG.getMachineFunction(); 3380 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3381 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain"); 3382 3383 SDValue Chain = Op.getOperand(0); 3384 SDValue NewSP = Op.getOperand(1); 3385 SDValue Backchain; 3386 SDLoc DL(Op); 3387 3388 if (StoreBackchain) { 3389 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3390 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3391 } 3392 3393 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3394 3395 if (StoreBackchain) 3396 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3397 3398 return Chain; 3399 } 3400 3401 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3402 SelectionDAG &DAG) const { 3403 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3404 if (!IsData) 3405 // Just preserve the chain. 3406 return Op.getOperand(0); 3407 3408 SDLoc DL(Op); 3409 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3410 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3411 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3412 SDValue Ops[] = { 3413 Op.getOperand(0), 3414 DAG.getConstant(Code, DL, MVT::i32), 3415 Op.getOperand(1) 3416 }; 3417 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3418 Node->getVTList(), Ops, 3419 Node->getMemoryVT(), Node->getMemOperand()); 3420 } 3421 3422 // Return an i32 that contains the value of CC immediately after After, 3423 // whose final operand must be MVT::Glue. 3424 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3425 SDLoc DL(After); 3426 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3427 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3428 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3429 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3430 } 3431 3432 SDValue 3433 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3434 SelectionDAG &DAG) const { 3435 unsigned Opcode, CCValid; 3436 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3437 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3438 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3439 SDValue CC = getCCResult(DAG, Glued.getNode()); 3440 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3441 return SDValue(); 3442 } 3443 3444 return SDValue(); 3445 } 3446 3447 SDValue 3448 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3449 SelectionDAG &DAG) const { 3450 unsigned Opcode, CCValid; 3451 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3452 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3453 SDValue CC = getCCResult(DAG, Glued.getNode()); 3454 if (Op->getNumValues() == 1) 3455 return CC; 3456 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3457 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued, 3458 CC); 3459 } 3460 3461 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3462 switch (Id) { 3463 case Intrinsic::thread_pointer: 3464 return lowerThreadPointer(SDLoc(Op), DAG); 3465 3466 case Intrinsic::s390_vpdi: 3467 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3468 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3469 3470 case Intrinsic::s390_vperm: 3471 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3472 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3473 3474 case Intrinsic::s390_vuphb: 3475 case Intrinsic::s390_vuphh: 3476 case Intrinsic::s390_vuphf: 3477 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3478 Op.getOperand(1)); 3479 3480 case Intrinsic::s390_vuplhb: 3481 case Intrinsic::s390_vuplhh: 3482 case Intrinsic::s390_vuplhf: 3483 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3484 Op.getOperand(1)); 3485 3486 case Intrinsic::s390_vuplb: 3487 case Intrinsic::s390_vuplhw: 3488 case Intrinsic::s390_vuplf: 3489 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3490 Op.getOperand(1)); 3491 3492 case Intrinsic::s390_vupllb: 3493 case Intrinsic::s390_vupllh: 3494 case Intrinsic::s390_vupllf: 3495 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3496 Op.getOperand(1)); 3497 3498 case Intrinsic::s390_vsumb: 3499 case Intrinsic::s390_vsumh: 3500 case Intrinsic::s390_vsumgh: 3501 case Intrinsic::s390_vsumgf: 3502 case Intrinsic::s390_vsumqf: 3503 case Intrinsic::s390_vsumqg: 3504 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3505 Op.getOperand(1), Op.getOperand(2)); 3506 } 3507 3508 return SDValue(); 3509 } 3510 3511 namespace { 3512 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3513 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3514 // Operand is the constant third operand, otherwise it is the number of 3515 // bytes in each element of the result. 3516 struct Permute { 3517 unsigned Opcode; 3518 unsigned Operand; 3519 unsigned char Bytes[SystemZ::VectorBytes]; 3520 }; 3521 } 3522 3523 static const Permute PermuteForms[] = { 3524 // VMRHG 3525 { SystemZISD::MERGE_HIGH, 8, 3526 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3527 // VMRHF 3528 { SystemZISD::MERGE_HIGH, 4, 3529 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3530 // VMRHH 3531 { SystemZISD::MERGE_HIGH, 2, 3532 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3533 // VMRHB 3534 { SystemZISD::MERGE_HIGH, 1, 3535 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3536 // VMRLG 3537 { SystemZISD::MERGE_LOW, 8, 3538 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3539 // VMRLF 3540 { SystemZISD::MERGE_LOW, 4, 3541 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3542 // VMRLH 3543 { SystemZISD::MERGE_LOW, 2, 3544 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3545 // VMRLB 3546 { SystemZISD::MERGE_LOW, 1, 3547 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3548 // VPKG 3549 { SystemZISD::PACK, 4, 3550 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3551 // VPKF 3552 { SystemZISD::PACK, 2, 3553 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3554 // VPKH 3555 { SystemZISD::PACK, 1, 3556 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3557 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3558 { SystemZISD::PERMUTE_DWORDS, 4, 3559 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3560 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3561 { SystemZISD::PERMUTE_DWORDS, 1, 3562 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3563 }; 3564 3565 // Called after matching a vector shuffle against a particular pattern. 3566 // Both the original shuffle and the pattern have two vector operands. 3567 // OpNos[0] is the operand of the original shuffle that should be used for 3568 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3569 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3570 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3571 // for operands 0 and 1 of the pattern. 3572 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3573 if (OpNos[0] < 0) { 3574 if (OpNos[1] < 0) 3575 return false; 3576 OpNo0 = OpNo1 = OpNos[1]; 3577 } else if (OpNos[1] < 0) { 3578 OpNo0 = OpNo1 = OpNos[0]; 3579 } else { 3580 OpNo0 = OpNos[0]; 3581 OpNo1 = OpNos[1]; 3582 } 3583 return true; 3584 } 3585 3586 // Bytes is a VPERM-like permute vector, except that -1 is used for 3587 // undefined bytes. Return true if the VPERM can be implemented using P. 3588 // When returning true set OpNo0 to the VPERM operand that should be 3589 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3590 // 3591 // For example, if swapping the VPERM operands allows P to match, OpNo0 3592 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3593 // operand, but rewriting it to use two duplicated operands allows it to 3594 // match P, then OpNo0 and OpNo1 will be the same. 3595 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3596 unsigned &OpNo0, unsigned &OpNo1) { 3597 int OpNos[] = { -1, -1 }; 3598 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3599 int Elt = Bytes[I]; 3600 if (Elt >= 0) { 3601 // Make sure that the two permute vectors use the same suboperand 3602 // byte number. Only the operand numbers (the high bits) are 3603 // allowed to differ. 3604 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3605 return false; 3606 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3607 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3608 // Make sure that the operand mappings are consistent with previous 3609 // elements. 3610 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3611 return false; 3612 OpNos[ModelOpNo] = RealOpNo; 3613 } 3614 } 3615 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3616 } 3617 3618 // As above, but search for a matching permute. 3619 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3620 unsigned &OpNo0, unsigned &OpNo1) { 3621 for (auto &P : PermuteForms) 3622 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3623 return &P; 3624 return nullptr; 3625 } 3626 3627 // Bytes is a VPERM-like permute vector, except that -1 is used for 3628 // undefined bytes. This permute is an operand of an outer permute. 3629 // See whether redistributing the -1 bytes gives a shuffle that can be 3630 // implemented using P. If so, set Transform to a VPERM-like permute vector 3631 // that, when applied to the result of P, gives the original permute in Bytes. 3632 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3633 const Permute &P, 3634 SmallVectorImpl<int> &Transform) { 3635 unsigned To = 0; 3636 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3637 int Elt = Bytes[From]; 3638 if (Elt < 0) 3639 // Byte number From of the result is undefined. 3640 Transform[From] = -1; 3641 else { 3642 while (P.Bytes[To] != Elt) { 3643 To += 1; 3644 if (To == SystemZ::VectorBytes) 3645 return false; 3646 } 3647 Transform[From] = To; 3648 } 3649 } 3650 return true; 3651 } 3652 3653 // As above, but search for a matching permute. 3654 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3655 SmallVectorImpl<int> &Transform) { 3656 for (auto &P : PermuteForms) 3657 if (matchDoublePermute(Bytes, P, Transform)) 3658 return &P; 3659 return nullptr; 3660 } 3661 3662 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3663 // as if it had type vNi8. 3664 static void getVPermMask(ShuffleVectorSDNode *VSN, 3665 SmallVectorImpl<int> &Bytes) { 3666 EVT VT = VSN->getValueType(0); 3667 unsigned NumElements = VT.getVectorNumElements(); 3668 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3669 Bytes.resize(NumElements * BytesPerElement, -1); 3670 for (unsigned I = 0; I < NumElements; ++I) { 3671 int Index = VSN->getMaskElt(I); 3672 if (Index >= 0) 3673 for (unsigned J = 0; J < BytesPerElement; ++J) 3674 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3675 } 3676 } 3677 3678 // Bytes is a VPERM-like permute vector, except that -1 is used for 3679 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3680 // the result come from a contiguous sequence of bytes from one input. 3681 // Set Base to the selector for the first byte if so. 3682 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3683 unsigned BytesPerElement, int &Base) { 3684 Base = -1; 3685 for (unsigned I = 0; I < BytesPerElement; ++I) { 3686 if (Bytes[Start + I] >= 0) { 3687 unsigned Elem = Bytes[Start + I]; 3688 if (Base < 0) { 3689 Base = Elem - I; 3690 // Make sure the bytes would come from one input operand. 3691 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3692 return false; 3693 } else if (unsigned(Base) != Elem - I) 3694 return false; 3695 } 3696 } 3697 return true; 3698 } 3699 3700 // Bytes is a VPERM-like permute vector, except that -1 is used for 3701 // undefined bytes. Return true if it can be performed using VSLDI. 3702 // When returning true, set StartIndex to the shift amount and OpNo0 3703 // and OpNo1 to the VPERM operands that should be used as the first 3704 // and second shift operand respectively. 3705 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3706 unsigned &StartIndex, unsigned &OpNo0, 3707 unsigned &OpNo1) { 3708 int OpNos[] = { -1, -1 }; 3709 int Shift = -1; 3710 for (unsigned I = 0; I < 16; ++I) { 3711 int Index = Bytes[I]; 3712 if (Index >= 0) { 3713 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3714 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3715 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3716 if (Shift < 0) 3717 Shift = ExpectedShift; 3718 else if (Shift != ExpectedShift) 3719 return false; 3720 // Make sure that the operand mappings are consistent with previous 3721 // elements. 3722 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3723 return false; 3724 OpNos[ModelOpNo] = RealOpNo; 3725 } 3726 } 3727 StartIndex = Shift; 3728 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3729 } 3730 3731 // Create a node that performs P on operands Op0 and Op1, casting the 3732 // operands to the appropriate type. The type of the result is determined by P. 3733 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3734 const Permute &P, SDValue Op0, SDValue Op1) { 3735 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3736 // elements of a PACK are twice as wide as the outputs. 3737 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3738 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3739 P.Operand); 3740 // Cast both operands to the appropriate type. 3741 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3742 SystemZ::VectorBytes / InBytes); 3743 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3744 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3745 SDValue Op; 3746 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3747 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3748 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3749 } else if (P.Opcode == SystemZISD::PACK) { 3750 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3751 SystemZ::VectorBytes / P.Operand); 3752 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3753 } else { 3754 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3755 } 3756 return Op; 3757 } 3758 3759 // Bytes is a VPERM-like permute vector, except that -1 is used for 3760 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3761 // VSLDI or VPERM. 3762 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3763 SDValue *Ops, 3764 const SmallVectorImpl<int> &Bytes) { 3765 for (unsigned I = 0; I < 2; ++I) 3766 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3767 3768 // First see whether VSLDI can be used. 3769 unsigned StartIndex, OpNo0, OpNo1; 3770 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3771 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3772 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3773 3774 // Fall back on VPERM. Construct an SDNode for the permute vector. 3775 SDValue IndexNodes[SystemZ::VectorBytes]; 3776 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3777 if (Bytes[I] >= 0) 3778 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3779 else 3780 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3781 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 3782 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3783 } 3784 3785 namespace { 3786 // Describes a general N-operand vector shuffle. 3787 struct GeneralShuffle { 3788 GeneralShuffle(EVT vt) : VT(vt) {} 3789 void addUndef(); 3790 void add(SDValue, unsigned); 3791 SDValue getNode(SelectionDAG &, const SDLoc &); 3792 3793 // The operands of the shuffle. 3794 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3795 3796 // Index I is -1 if byte I of the result is undefined. Otherwise the 3797 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3798 // Bytes[I] / SystemZ::VectorBytes. 3799 SmallVector<int, SystemZ::VectorBytes> Bytes; 3800 3801 // The type of the shuffle result. 3802 EVT VT; 3803 }; 3804 } 3805 3806 // Add an extra undefined element to the shuffle. 3807 void GeneralShuffle::addUndef() { 3808 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3809 for (unsigned I = 0; I < BytesPerElement; ++I) 3810 Bytes.push_back(-1); 3811 } 3812 3813 // Add an extra element to the shuffle, taking it from element Elem of Op. 3814 // A null Op indicates a vector input whose value will be calculated later; 3815 // there is at most one such input per shuffle and it always has the same 3816 // type as the result. 3817 void GeneralShuffle::add(SDValue Op, unsigned Elem) { 3818 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3819 3820 // The source vector can have wider elements than the result, 3821 // either through an explicit TRUNCATE or because of type legalization. 3822 // We want the least significant part. 3823 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3824 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3825 assert(FromBytesPerElement >= BytesPerElement && 3826 "Invalid EXTRACT_VECTOR_ELT"); 3827 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3828 (FromBytesPerElement - BytesPerElement)); 3829 3830 // Look through things like shuffles and bitcasts. 3831 while (Op.getNode()) { 3832 if (Op.getOpcode() == ISD::BITCAST) 3833 Op = Op.getOperand(0); 3834 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3835 // See whether the bytes we need come from a contiguous part of one 3836 // operand. 3837 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3838 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3839 int NewByte; 3840 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3841 break; 3842 if (NewByte < 0) { 3843 addUndef(); 3844 return; 3845 } 3846 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3847 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3848 } else if (Op.isUndef()) { 3849 addUndef(); 3850 return; 3851 } else 3852 break; 3853 } 3854 3855 // Make sure that the source of the extraction is in Ops. 3856 unsigned OpNo = 0; 3857 for (; OpNo < Ops.size(); ++OpNo) 3858 if (Ops[OpNo] == Op) 3859 break; 3860 if (OpNo == Ops.size()) 3861 Ops.push_back(Op); 3862 3863 // Add the element to Bytes. 3864 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3865 for (unsigned I = 0; I < BytesPerElement; ++I) 3866 Bytes.push_back(Base + I); 3867 } 3868 3869 // Return SDNodes for the completed shuffle. 3870 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 3871 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3872 3873 if (Ops.size() == 0) 3874 return DAG.getUNDEF(VT); 3875 3876 // Make sure that there are at least two shuffle operands. 3877 if (Ops.size() == 1) 3878 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3879 3880 // Create a tree of shuffles, deferring root node until after the loop. 3881 // Try to redistribute the undefined elements of non-root nodes so that 3882 // the non-root shuffles match something like a pack or merge, then adjust 3883 // the parent node's permute vector to compensate for the new order. 3884 // Among other things, this copes with vectors like <2 x i16> that were 3885 // padded with undefined elements during type legalization. 3886 // 3887 // In the best case this redistribution will lead to the whole tree 3888 // using packs and merges. It should rarely be a loss in other cases. 3889 unsigned Stride = 1; 3890 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3891 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3892 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3893 3894 // Create a mask for just these two operands. 3895 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3896 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3897 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3898 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3899 if (OpNo == I) 3900 NewBytes[J] = Byte; 3901 else if (OpNo == I + Stride) 3902 NewBytes[J] = SystemZ::VectorBytes + Byte; 3903 else 3904 NewBytes[J] = -1; 3905 } 3906 // See if it would be better to reorganize NewMask to avoid using VPERM. 3907 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3908 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3909 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3910 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3911 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3912 if (NewBytes[J] >= 0) { 3913 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3914 "Invalid double permute"); 3915 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3916 } else 3917 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3918 } 3919 } else { 3920 // Just use NewBytes on the operands. 3921 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3922 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3923 if (NewBytes[J] >= 0) 3924 Bytes[J] = I * SystemZ::VectorBytes + J; 3925 } 3926 } 3927 } 3928 3929 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3930 if (Stride > 1) { 3931 Ops[1] = Ops[Stride]; 3932 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3933 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3934 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3935 } 3936 3937 // Look for an instruction that can do the permute without resorting 3938 // to VPERM. 3939 unsigned OpNo0, OpNo1; 3940 SDValue Op; 3941 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3942 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3943 else 3944 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3945 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3946 } 3947 3948 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3949 static bool isScalarToVector(SDValue Op) { 3950 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3951 if (!Op.getOperand(I).isUndef()) 3952 return false; 3953 return true; 3954 } 3955 3956 // Return a vector of type VT that contains Value in the first element. 3957 // The other elements don't matter. 3958 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 3959 SDValue Value) { 3960 // If we have a constant, replicate it to all elements and let the 3961 // BUILD_VECTOR lowering take care of it. 3962 if (Value.getOpcode() == ISD::Constant || 3963 Value.getOpcode() == ISD::ConstantFP) { 3964 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3965 return DAG.getBuildVector(VT, DL, Ops); 3966 } 3967 if (Value.isUndef()) 3968 return DAG.getUNDEF(VT); 3969 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 3970 } 3971 3972 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 3973 // element 1. Used for cases in which replication is cheap. 3974 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 3975 SDValue Op0, SDValue Op1) { 3976 if (Op0.isUndef()) { 3977 if (Op1.isUndef()) 3978 return DAG.getUNDEF(VT); 3979 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 3980 } 3981 if (Op1.isUndef()) 3982 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 3983 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 3984 buildScalarToVector(DAG, DL, VT, Op0), 3985 buildScalarToVector(DAG, DL, VT, Op1)); 3986 } 3987 3988 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 3989 // vector for them. 3990 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 3991 SDValue Op1) { 3992 if (Op0.isUndef() && Op1.isUndef()) 3993 return DAG.getUNDEF(MVT::v2i64); 3994 // If one of the two inputs is undefined then replicate the other one, 3995 // in order to avoid using another register unnecessarily. 3996 if (Op0.isUndef()) 3997 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3998 else if (Op1.isUndef()) 3999 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4000 else { 4001 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4002 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4003 } 4004 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4005 } 4006 4007 // Try to represent constant BUILD_VECTOR node BVN using a 4008 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 4009 // on success. 4010 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 4011 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 4012 unsigned BytesPerElement = ElemVT.getStoreSize(); 4013 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 4014 SDValue Op = BVN->getOperand(I); 4015 if (!Op.isUndef()) { 4016 uint64_t Value; 4017 if (Op.getOpcode() == ISD::Constant) 4018 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 4019 else if (Op.getOpcode() == ISD::ConstantFP) 4020 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 4021 .getZExtValue()); 4022 else 4023 return false; 4024 for (unsigned J = 0; J < BytesPerElement; ++J) { 4025 uint64_t Byte = (Value >> (J * 8)) & 0xff; 4026 if (Byte == 0xff) 4027 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 4028 else if (Byte != 0) 4029 return false; 4030 } 4031 } 4032 } 4033 return true; 4034 } 4035 4036 // Try to load a vector constant in which BitsPerElement-bit value Value 4037 // is replicated to fill the vector. VT is the type of the resulting 4038 // constant, which may have elements of a different size from BitsPerElement. 4039 // Return the SDValue of the constant on success, otherwise return 4040 // an empty value. 4041 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 4042 const SystemZInstrInfo *TII, 4043 const SDLoc &DL, EVT VT, uint64_t Value, 4044 unsigned BitsPerElement) { 4045 // Signed 16-bit values can be replicated using VREPI. 4046 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 4047 if (isInt<16>(SignedValue)) { 4048 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4049 SystemZ::VectorBits / BitsPerElement); 4050 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 4051 DAG.getConstant(SignedValue, DL, MVT::i32)); 4052 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4053 } 4054 // See whether rotating the constant left some N places gives a value that 4055 // is one less than a power of 2 (i.e. all zeros followed by all ones). 4056 // If so we can use VGM. 4057 unsigned Start, End; 4058 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 4059 // isRxSBGMask returns the bit numbers for a full 64-bit value, 4060 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 4061 // bit numbers for an BitsPerElement value, so that 0 denotes 4062 // 1 << (BitsPerElement-1). 4063 Start -= 64 - BitsPerElement; 4064 End -= 64 - BitsPerElement; 4065 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4066 SystemZ::VectorBits / BitsPerElement); 4067 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 4068 DAG.getConstant(Start, DL, MVT::i32), 4069 DAG.getConstant(End, DL, MVT::i32)); 4070 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4071 } 4072 return SDValue(); 4073 } 4074 4075 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4076 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4077 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4078 // would benefit from this representation and return it if so. 4079 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4080 BuildVectorSDNode *BVN) { 4081 EVT VT = BVN->getValueType(0); 4082 unsigned NumElements = VT.getVectorNumElements(); 4083 4084 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4085 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4086 // need a BUILD_VECTOR, add an additional placeholder operand for that 4087 // BUILD_VECTOR and store its operands in ResidueOps. 4088 GeneralShuffle GS(VT); 4089 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4090 bool FoundOne = false; 4091 for (unsigned I = 0; I < NumElements; ++I) { 4092 SDValue Op = BVN->getOperand(I); 4093 if (Op.getOpcode() == ISD::TRUNCATE) 4094 Op = Op.getOperand(0); 4095 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4096 Op.getOperand(1).getOpcode() == ISD::Constant) { 4097 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4098 GS.add(Op.getOperand(0), Elem); 4099 FoundOne = true; 4100 } else if (Op.isUndef()) { 4101 GS.addUndef(); 4102 } else { 4103 GS.add(SDValue(), ResidueOps.size()); 4104 ResidueOps.push_back(BVN->getOperand(I)); 4105 } 4106 } 4107 4108 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4109 if (!FoundOne) 4110 return SDValue(); 4111 4112 // Create the BUILD_VECTOR for the remaining elements, if any. 4113 if (!ResidueOps.empty()) { 4114 while (ResidueOps.size() < NumElements) 4115 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4116 for (auto &Op : GS.Ops) { 4117 if (!Op.getNode()) { 4118 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4119 break; 4120 } 4121 } 4122 } 4123 return GS.getNode(DAG, SDLoc(BVN)); 4124 } 4125 4126 // Combine GPR scalar values Elems into a vector of type VT. 4127 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4128 SmallVectorImpl<SDValue> &Elems) { 4129 // See whether there is a single replicated value. 4130 SDValue Single; 4131 unsigned int NumElements = Elems.size(); 4132 unsigned int Count = 0; 4133 for (auto Elem : Elems) { 4134 if (!Elem.isUndef()) { 4135 if (!Single.getNode()) 4136 Single = Elem; 4137 else if (Elem != Single) { 4138 Single = SDValue(); 4139 break; 4140 } 4141 Count += 1; 4142 } 4143 } 4144 // There are three cases here: 4145 // 4146 // - if the only defined element is a loaded one, the best sequence 4147 // is a replicating load. 4148 // 4149 // - otherwise, if the only defined element is an i64 value, we will 4150 // end up with the same VLVGP sequence regardless of whether we short-cut 4151 // for replication or fall through to the later code. 4152 // 4153 // - otherwise, if the only defined element is an i32 or smaller value, 4154 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4155 // This is only a win if the single defined element is used more than once. 4156 // In other cases we're better off using a single VLVGx. 4157 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4158 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4159 4160 // The best way of building a v2i64 from two i64s is to use VLVGP. 4161 if (VT == MVT::v2i64) 4162 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4163 4164 // Use a 64-bit merge high to combine two doubles. 4165 if (VT == MVT::v2f64) 4166 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4167 4168 // Build v4f32 values directly from the FPRs: 4169 // 4170 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4171 // V V VMRHF 4172 // <ABxx> <CDxx> 4173 // V VMRHG 4174 // <ABCD> 4175 if (VT == MVT::v4f32) { 4176 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4177 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4178 // Avoid unnecessary undefs by reusing the other operand. 4179 if (Op01.isUndef()) 4180 Op01 = Op23; 4181 else if (Op23.isUndef()) 4182 Op23 = Op01; 4183 // Merging identical replications is a no-op. 4184 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4185 return Op01; 4186 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4187 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4188 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4189 DL, MVT::v2i64, Op01, Op23); 4190 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4191 } 4192 4193 // Collect the constant terms. 4194 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4195 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4196 4197 unsigned NumConstants = 0; 4198 for (unsigned I = 0; I < NumElements; ++I) { 4199 SDValue Elem = Elems[I]; 4200 if (Elem.getOpcode() == ISD::Constant || 4201 Elem.getOpcode() == ISD::ConstantFP) { 4202 NumConstants += 1; 4203 Constants[I] = Elem; 4204 Done[I] = true; 4205 } 4206 } 4207 // If there was at least one constant, fill in the other elements of 4208 // Constants with undefs to get a full vector constant and use that 4209 // as the starting point. 4210 SDValue Result; 4211 if (NumConstants > 0) { 4212 for (unsigned I = 0; I < NumElements; ++I) 4213 if (!Constants[I].getNode()) 4214 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4215 Result = DAG.getBuildVector(VT, DL, Constants); 4216 } else { 4217 // Otherwise try to use VLVGP to start the sequence in order to 4218 // avoid a false dependency on any previous contents of the vector 4219 // register. This only makes sense if one of the associated elements 4220 // is defined. 4221 unsigned I1 = NumElements / 2 - 1; 4222 unsigned I2 = NumElements - 1; 4223 bool Def1 = !Elems[I1].isUndef(); 4224 bool Def2 = !Elems[I2].isUndef(); 4225 if (Def1 || Def2) { 4226 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4227 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4228 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4229 joinDwords(DAG, DL, Elem1, Elem2)); 4230 Done[I1] = true; 4231 Done[I2] = true; 4232 } else 4233 Result = DAG.getUNDEF(VT); 4234 } 4235 4236 // Use VLVGx to insert the other elements. 4237 for (unsigned I = 0; I < NumElements; ++I) 4238 if (!Done[I] && !Elems[I].isUndef()) 4239 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4240 DAG.getConstant(I, DL, MVT::i32)); 4241 return Result; 4242 } 4243 4244 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4245 SelectionDAG &DAG) const { 4246 const SystemZInstrInfo *TII = 4247 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4248 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4249 SDLoc DL(Op); 4250 EVT VT = Op.getValueType(); 4251 4252 if (BVN->isConstant()) { 4253 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4254 // preferred way of creating all-zero and all-one vectors so give it 4255 // priority over other methods below. 4256 uint64_t Mask = 0; 4257 if (tryBuildVectorByteMask(BVN, Mask)) { 4258 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4259 DAG.getConstant(Mask, DL, MVT::i32)); 4260 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4261 } 4262 4263 // Try using some form of replication. 4264 APInt SplatBits, SplatUndef; 4265 unsigned SplatBitSize; 4266 bool HasAnyUndefs; 4267 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4268 8, true) && 4269 SplatBitSize <= 64) { 4270 // First try assuming that any undefined bits above the highest set bit 4271 // and below the lowest set bit are 1s. This increases the likelihood of 4272 // being able to use a sign-extended element value in VECTOR REPLICATE 4273 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4274 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4275 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4276 uint64_t Lower = (SplatUndefZ 4277 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4278 uint64_t Upper = (SplatUndefZ 4279 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4280 uint64_t Value = SplatBitsZ | Upper | Lower; 4281 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4282 SplatBitSize); 4283 if (Op.getNode()) 4284 return Op; 4285 4286 // Now try assuming that any undefined bits between the first and 4287 // last defined set bits are set. This increases the chances of 4288 // using a non-wraparound mask. 4289 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4290 Value = SplatBitsZ | Middle; 4291 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4292 if (Op.getNode()) 4293 return Op; 4294 } 4295 4296 // Fall back to loading it from memory. 4297 return SDValue(); 4298 } 4299 4300 // See if we should use shuffles to construct the vector from other vectors. 4301 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4302 return Res; 4303 4304 // Detect SCALAR_TO_VECTOR conversions. 4305 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4306 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4307 4308 // Otherwise use buildVector to build the vector up from GPRs. 4309 unsigned NumElements = Op.getNumOperands(); 4310 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4311 for (unsigned I = 0; I < NumElements; ++I) 4312 Ops[I] = Op.getOperand(I); 4313 return buildVector(DAG, DL, VT, Ops); 4314 } 4315 4316 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4317 SelectionDAG &DAG) const { 4318 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4319 SDLoc DL(Op); 4320 EVT VT = Op.getValueType(); 4321 unsigned NumElements = VT.getVectorNumElements(); 4322 4323 if (VSN->isSplat()) { 4324 SDValue Op0 = Op.getOperand(0); 4325 unsigned Index = VSN->getSplatIndex(); 4326 assert(Index < VT.getVectorNumElements() && 4327 "Splat index should be defined and in first operand"); 4328 // See whether the value we're splatting is directly available as a scalar. 4329 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4330 Op0.getOpcode() == ISD::BUILD_VECTOR) 4331 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4332 // Otherwise keep it as a vector-to-vector operation. 4333 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4334 DAG.getConstant(Index, DL, MVT::i32)); 4335 } 4336 4337 GeneralShuffle GS(VT); 4338 for (unsigned I = 0; I < NumElements; ++I) { 4339 int Elt = VSN->getMaskElt(I); 4340 if (Elt < 0) 4341 GS.addUndef(); 4342 else 4343 GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4344 unsigned(Elt) % NumElements); 4345 } 4346 return GS.getNode(DAG, SDLoc(VSN)); 4347 } 4348 4349 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4350 SelectionDAG &DAG) const { 4351 SDLoc DL(Op); 4352 // Just insert the scalar into element 0 of an undefined vector. 4353 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4354 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4355 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4356 } 4357 4358 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4359 SelectionDAG &DAG) const { 4360 // Handle insertions of floating-point values. 4361 SDLoc DL(Op); 4362 SDValue Op0 = Op.getOperand(0); 4363 SDValue Op1 = Op.getOperand(1); 4364 SDValue Op2 = Op.getOperand(2); 4365 EVT VT = Op.getValueType(); 4366 4367 // Insertions into constant indices of a v2f64 can be done using VPDI. 4368 // However, if the inserted value is a bitcast or a constant then it's 4369 // better to use GPRs, as below. 4370 if (VT == MVT::v2f64 && 4371 Op1.getOpcode() != ISD::BITCAST && 4372 Op1.getOpcode() != ISD::ConstantFP && 4373 Op2.getOpcode() == ISD::Constant) { 4374 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4375 unsigned Mask = VT.getVectorNumElements() - 1; 4376 if (Index <= Mask) 4377 return Op; 4378 } 4379 4380 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4381 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); 4382 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4383 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4384 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4385 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4386 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4387 } 4388 4389 SDValue 4390 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4391 SelectionDAG &DAG) const { 4392 // Handle extractions of floating-point values. 4393 SDLoc DL(Op); 4394 SDValue Op0 = Op.getOperand(0); 4395 SDValue Op1 = Op.getOperand(1); 4396 EVT VT = Op.getValueType(); 4397 EVT VecVT = Op0.getValueType(); 4398 4399 // Extractions of constant indices can be done directly. 4400 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4401 uint64_t Index = CIndexN->getZExtValue(); 4402 unsigned Mask = VecVT.getVectorNumElements() - 1; 4403 if (Index <= Mask) 4404 return Op; 4405 } 4406 4407 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4408 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4409 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4410 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4411 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4412 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4413 } 4414 4415 SDValue 4416 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4417 unsigned UnpackHigh) const { 4418 SDValue PackedOp = Op.getOperand(0); 4419 EVT OutVT = Op.getValueType(); 4420 EVT InVT = PackedOp.getValueType(); 4421 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits(); 4422 unsigned FromBits = InVT.getVectorElementType().getSizeInBits(); 4423 do { 4424 FromBits *= 2; 4425 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4426 SystemZ::VectorBits / FromBits); 4427 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4428 } while (FromBits != ToBits); 4429 return PackedOp; 4430 } 4431 4432 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4433 unsigned ByScalar) const { 4434 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4435 SDValue Op0 = Op.getOperand(0); 4436 SDValue Op1 = Op.getOperand(1); 4437 SDLoc DL(Op); 4438 EVT VT = Op.getValueType(); 4439 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits(); 4440 4441 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4442 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4443 APInt SplatBits, SplatUndef; 4444 unsigned SplatBitSize; 4445 bool HasAnyUndefs; 4446 // Check for constant splats. Use ElemBitSize as the minimum element 4447 // width and reject splats that need wider elements. 4448 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4449 ElemBitSize, true) && 4450 SplatBitSize == ElemBitSize) { 4451 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4452 DL, MVT::i32); 4453 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4454 } 4455 // Check for variable splats. 4456 BitVector UndefElements; 4457 SDValue Splat = BVN->getSplatValue(&UndefElements); 4458 if (Splat) { 4459 // Since i32 is the smallest legal type, we either need a no-op 4460 // or a truncation. 4461 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4462 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4463 } 4464 } 4465 4466 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4467 // and the shift amount is directly available in a GPR. 4468 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4469 if (VSN->isSplat()) { 4470 SDValue VSNOp0 = VSN->getOperand(0); 4471 unsigned Index = VSN->getSplatIndex(); 4472 assert(Index < VT.getVectorNumElements() && 4473 "Splat index should be defined and in first operand"); 4474 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4475 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4476 // Since i32 is the smallest legal type, we either need a no-op 4477 // or a truncation. 4478 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4479 VSNOp0.getOperand(Index)); 4480 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4481 } 4482 } 4483 } 4484 4485 // Otherwise just treat the current form as legal. 4486 return Op; 4487 } 4488 4489 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4490 SelectionDAG &DAG) const { 4491 switch (Op.getOpcode()) { 4492 case ISD::FRAMEADDR: 4493 return lowerFRAMEADDR(Op, DAG); 4494 case ISD::RETURNADDR: 4495 return lowerRETURNADDR(Op, DAG); 4496 case ISD::BR_CC: 4497 return lowerBR_CC(Op, DAG); 4498 case ISD::SELECT_CC: 4499 return lowerSELECT_CC(Op, DAG); 4500 case ISD::SETCC: 4501 return lowerSETCC(Op, DAG); 4502 case ISD::GlobalAddress: 4503 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4504 case ISD::GlobalTLSAddress: 4505 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4506 case ISD::BlockAddress: 4507 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4508 case ISD::JumpTable: 4509 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4510 case ISD::ConstantPool: 4511 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4512 case ISD::BITCAST: 4513 return lowerBITCAST(Op, DAG); 4514 case ISD::VASTART: 4515 return lowerVASTART(Op, DAG); 4516 case ISD::VACOPY: 4517 return lowerVACOPY(Op, DAG); 4518 case ISD::DYNAMIC_STACKALLOC: 4519 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4520 case ISD::GET_DYNAMIC_AREA_OFFSET: 4521 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4522 case ISD::SMUL_LOHI: 4523 return lowerSMUL_LOHI(Op, DAG); 4524 case ISD::UMUL_LOHI: 4525 return lowerUMUL_LOHI(Op, DAG); 4526 case ISD::SDIVREM: 4527 return lowerSDIVREM(Op, DAG); 4528 case ISD::UDIVREM: 4529 return lowerUDIVREM(Op, DAG); 4530 case ISD::OR: 4531 return lowerOR(Op, DAG); 4532 case ISD::CTPOP: 4533 return lowerCTPOP(Op, DAG); 4534 case ISD::ATOMIC_FENCE: 4535 return lowerATOMIC_FENCE(Op, DAG); 4536 case ISD::ATOMIC_SWAP: 4537 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4538 case ISD::ATOMIC_STORE: 4539 return lowerATOMIC_STORE(Op, DAG); 4540 case ISD::ATOMIC_LOAD: 4541 return lowerATOMIC_LOAD(Op, DAG); 4542 case ISD::ATOMIC_LOAD_ADD: 4543 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4544 case ISD::ATOMIC_LOAD_SUB: 4545 return lowerATOMIC_LOAD_SUB(Op, DAG); 4546 case ISD::ATOMIC_LOAD_AND: 4547 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4548 case ISD::ATOMIC_LOAD_OR: 4549 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4550 case ISD::ATOMIC_LOAD_XOR: 4551 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4552 case ISD::ATOMIC_LOAD_NAND: 4553 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4554 case ISD::ATOMIC_LOAD_MIN: 4555 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4556 case ISD::ATOMIC_LOAD_MAX: 4557 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4558 case ISD::ATOMIC_LOAD_UMIN: 4559 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4560 case ISD::ATOMIC_LOAD_UMAX: 4561 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4562 case ISD::ATOMIC_CMP_SWAP: 4563 return lowerATOMIC_CMP_SWAP(Op, DAG); 4564 case ISD::STACKSAVE: 4565 return lowerSTACKSAVE(Op, DAG); 4566 case ISD::STACKRESTORE: 4567 return lowerSTACKRESTORE(Op, DAG); 4568 case ISD::PREFETCH: 4569 return lowerPREFETCH(Op, DAG); 4570 case ISD::INTRINSIC_W_CHAIN: 4571 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4572 case ISD::INTRINSIC_WO_CHAIN: 4573 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4574 case ISD::BUILD_VECTOR: 4575 return lowerBUILD_VECTOR(Op, DAG); 4576 case ISD::VECTOR_SHUFFLE: 4577 return lowerVECTOR_SHUFFLE(Op, DAG); 4578 case ISD::SCALAR_TO_VECTOR: 4579 return lowerSCALAR_TO_VECTOR(Op, DAG); 4580 case ISD::INSERT_VECTOR_ELT: 4581 return lowerINSERT_VECTOR_ELT(Op, DAG); 4582 case ISD::EXTRACT_VECTOR_ELT: 4583 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4584 case ISD::SIGN_EXTEND_VECTOR_INREG: 4585 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4586 case ISD::ZERO_EXTEND_VECTOR_INREG: 4587 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4588 case ISD::SHL: 4589 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4590 case ISD::SRL: 4591 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4592 case ISD::SRA: 4593 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4594 default: 4595 llvm_unreachable("Unexpected node to lower"); 4596 } 4597 } 4598 4599 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4600 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4601 switch ((SystemZISD::NodeType)Opcode) { 4602 case SystemZISD::FIRST_NUMBER: break; 4603 OPCODE(RET_FLAG); 4604 OPCODE(CALL); 4605 OPCODE(SIBCALL); 4606 OPCODE(TLS_GDCALL); 4607 OPCODE(TLS_LDCALL); 4608 OPCODE(PCREL_WRAPPER); 4609 OPCODE(PCREL_OFFSET); 4610 OPCODE(IABS); 4611 OPCODE(ICMP); 4612 OPCODE(FCMP); 4613 OPCODE(TM); 4614 OPCODE(BR_CCMASK); 4615 OPCODE(SELECT_CCMASK); 4616 OPCODE(ADJDYNALLOC); 4617 OPCODE(EXTRACT_ACCESS); 4618 OPCODE(POPCNT); 4619 OPCODE(UMUL_LOHI64); 4620 OPCODE(SDIVREM32); 4621 OPCODE(SDIVREM64); 4622 OPCODE(UDIVREM32); 4623 OPCODE(UDIVREM64); 4624 OPCODE(MVC); 4625 OPCODE(MVC_LOOP); 4626 OPCODE(NC); 4627 OPCODE(NC_LOOP); 4628 OPCODE(OC); 4629 OPCODE(OC_LOOP); 4630 OPCODE(XC); 4631 OPCODE(XC_LOOP); 4632 OPCODE(CLC); 4633 OPCODE(CLC_LOOP); 4634 OPCODE(STPCPY); 4635 OPCODE(STRCMP); 4636 OPCODE(SEARCH_STRING); 4637 OPCODE(IPM); 4638 OPCODE(SERIALIZE); 4639 OPCODE(MEMBARRIER); 4640 OPCODE(TBEGIN); 4641 OPCODE(TBEGIN_NOFLOAT); 4642 OPCODE(TEND); 4643 OPCODE(BYTE_MASK); 4644 OPCODE(ROTATE_MASK); 4645 OPCODE(REPLICATE); 4646 OPCODE(JOIN_DWORDS); 4647 OPCODE(SPLAT); 4648 OPCODE(MERGE_HIGH); 4649 OPCODE(MERGE_LOW); 4650 OPCODE(SHL_DOUBLE); 4651 OPCODE(PERMUTE_DWORDS); 4652 OPCODE(PERMUTE); 4653 OPCODE(PACK); 4654 OPCODE(PACKS_CC); 4655 OPCODE(PACKLS_CC); 4656 OPCODE(UNPACK_HIGH); 4657 OPCODE(UNPACKL_HIGH); 4658 OPCODE(UNPACK_LOW); 4659 OPCODE(UNPACKL_LOW); 4660 OPCODE(VSHL_BY_SCALAR); 4661 OPCODE(VSRL_BY_SCALAR); 4662 OPCODE(VSRA_BY_SCALAR); 4663 OPCODE(VSUM); 4664 OPCODE(VICMPE); 4665 OPCODE(VICMPH); 4666 OPCODE(VICMPHL); 4667 OPCODE(VICMPES); 4668 OPCODE(VICMPHS); 4669 OPCODE(VICMPHLS); 4670 OPCODE(VFCMPE); 4671 OPCODE(VFCMPH); 4672 OPCODE(VFCMPHE); 4673 OPCODE(VFCMPES); 4674 OPCODE(VFCMPHS); 4675 OPCODE(VFCMPHES); 4676 OPCODE(VFTCI); 4677 OPCODE(VEXTEND); 4678 OPCODE(VROUND); 4679 OPCODE(VTM); 4680 OPCODE(VFAE_CC); 4681 OPCODE(VFAEZ_CC); 4682 OPCODE(VFEE_CC); 4683 OPCODE(VFEEZ_CC); 4684 OPCODE(VFENE_CC); 4685 OPCODE(VFENEZ_CC); 4686 OPCODE(VISTR_CC); 4687 OPCODE(VSTRC_CC); 4688 OPCODE(VSTRCZ_CC); 4689 OPCODE(TDC); 4690 OPCODE(ATOMIC_SWAPW); 4691 OPCODE(ATOMIC_LOADW_ADD); 4692 OPCODE(ATOMIC_LOADW_SUB); 4693 OPCODE(ATOMIC_LOADW_AND); 4694 OPCODE(ATOMIC_LOADW_OR); 4695 OPCODE(ATOMIC_LOADW_XOR); 4696 OPCODE(ATOMIC_LOADW_NAND); 4697 OPCODE(ATOMIC_LOADW_MIN); 4698 OPCODE(ATOMIC_LOADW_MAX); 4699 OPCODE(ATOMIC_LOADW_UMIN); 4700 OPCODE(ATOMIC_LOADW_UMAX); 4701 OPCODE(ATOMIC_CMP_SWAPW); 4702 OPCODE(LRV); 4703 OPCODE(STRV); 4704 OPCODE(PREFETCH); 4705 } 4706 return nullptr; 4707 #undef OPCODE 4708 } 4709 4710 // Return true if VT is a vector whose elements are a whole number of bytes 4711 // in width. 4712 static bool canTreatAsByteVector(EVT VT) { 4713 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0; 4714 } 4715 4716 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4717 // producing a result of type ResVT. Op is a possibly bitcast version 4718 // of the input vector and Index is the index (based on type VecVT) that 4719 // should be extracted. Return the new extraction if a simplification 4720 // was possible or if Force is true. 4721 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 4722 EVT VecVT, SDValue Op, 4723 unsigned Index, 4724 DAGCombinerInfo &DCI, 4725 bool Force) const { 4726 SelectionDAG &DAG = DCI.DAG; 4727 4728 // The number of bytes being extracted. 4729 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4730 4731 for (;;) { 4732 unsigned Opcode = Op.getOpcode(); 4733 if (Opcode == ISD::BITCAST) 4734 // Look through bitcasts. 4735 Op = Op.getOperand(0); 4736 else if (Opcode == ISD::VECTOR_SHUFFLE && 4737 canTreatAsByteVector(Op.getValueType())) { 4738 // Get a VPERM-like permute mask and see whether the bytes covered 4739 // by the extracted element are a contiguous sequence from one 4740 // source operand. 4741 SmallVector<int, SystemZ::VectorBytes> Bytes; 4742 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4743 int First; 4744 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4745 BytesPerElement, First)) 4746 break; 4747 if (First < 0) 4748 return DAG.getUNDEF(ResVT); 4749 // Make sure the contiguous sequence starts at a multiple of the 4750 // original element size. 4751 unsigned Byte = unsigned(First) % Bytes.size(); 4752 if (Byte % BytesPerElement != 0) 4753 break; 4754 // We can get the extracted value directly from an input. 4755 Index = Byte / BytesPerElement; 4756 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4757 Force = true; 4758 } else if (Opcode == ISD::BUILD_VECTOR && 4759 canTreatAsByteVector(Op.getValueType())) { 4760 // We can only optimize this case if the BUILD_VECTOR elements are 4761 // at least as wide as the extracted value. 4762 EVT OpVT = Op.getValueType(); 4763 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4764 if (OpBytesPerElement < BytesPerElement) 4765 break; 4766 // Make sure that the least-significant bit of the extracted value 4767 // is the least significant bit of an input. 4768 unsigned End = (Index + 1) * BytesPerElement; 4769 if (End % OpBytesPerElement != 0) 4770 break; 4771 // We're extracting the low part of one operand of the BUILD_VECTOR. 4772 Op = Op.getOperand(End / OpBytesPerElement - 1); 4773 if (!Op.getValueType().isInteger()) { 4774 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()); 4775 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4776 DCI.AddToWorklist(Op.getNode()); 4777 } 4778 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4779 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4780 if (VT != ResVT) { 4781 DCI.AddToWorklist(Op.getNode()); 4782 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4783 } 4784 return Op; 4785 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4786 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4787 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4788 canTreatAsByteVector(Op.getValueType()) && 4789 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4790 // Make sure that only the unextended bits are significant. 4791 EVT ExtVT = Op.getValueType(); 4792 EVT OpVT = Op.getOperand(0).getValueType(); 4793 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4794 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4795 unsigned Byte = Index * BytesPerElement; 4796 unsigned SubByte = Byte % ExtBytesPerElement; 4797 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4798 if (SubByte < MinSubByte || 4799 SubByte + BytesPerElement > ExtBytesPerElement) 4800 break; 4801 // Get the byte offset of the unextended element 4802 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4803 // ...then add the byte offset relative to that element. 4804 Byte += SubByte - MinSubByte; 4805 if (Byte % BytesPerElement != 0) 4806 break; 4807 Op = Op.getOperand(0); 4808 Index = Byte / BytesPerElement; 4809 Force = true; 4810 } else 4811 break; 4812 } 4813 if (Force) { 4814 if (Op.getValueType() != VecVT) { 4815 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4816 DCI.AddToWorklist(Op.getNode()); 4817 } 4818 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4819 DAG.getConstant(Index, DL, MVT::i32)); 4820 } 4821 return SDValue(); 4822 } 4823 4824 // Optimize vector operations in scalar value Op on the basis that Op 4825 // is truncated to TruncVT. 4826 SDValue SystemZTargetLowering::combineTruncateExtract( 4827 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 4828 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4829 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4830 // of type TruncVT. 4831 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4832 TruncVT.getSizeInBits() % 8 == 0) { 4833 SDValue Vec = Op.getOperand(0); 4834 EVT VecVT = Vec.getValueType(); 4835 if (canTreatAsByteVector(VecVT)) { 4836 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4837 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4838 unsigned TruncBytes = TruncVT.getStoreSize(); 4839 if (BytesPerElement % TruncBytes == 0) { 4840 // Calculate the value of Y' in the above description. We are 4841 // splitting the original elements into Scale equal-sized pieces 4842 // and for truncation purposes want the last (least-significant) 4843 // of these pieces for IndexN. This is easiest to do by calculating 4844 // the start index of the following element and then subtracting 1. 4845 unsigned Scale = BytesPerElement / TruncBytes; 4846 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4847 4848 // Defer the creation of the bitcast from X to combineExtract, 4849 // which might be able to optimize the extraction. 4850 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4851 VecVT.getStoreSize() / TruncBytes); 4852 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4853 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4854 } 4855 } 4856 } 4857 } 4858 return SDValue(); 4859 } 4860 4861 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 4862 SDNode *N, DAGCombinerInfo &DCI) const { 4863 // Convert (sext (ashr (shl X, C1), C2)) to 4864 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4865 // cheap as narrower ones. 4866 SelectionDAG &DAG = DCI.DAG; 4867 SDValue N0 = N->getOperand(0); 4868 EVT VT = N->getValueType(0); 4869 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4870 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4871 SDValue Inner = N0.getOperand(0); 4872 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4873 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4874 unsigned Extra = (VT.getSizeInBits() - 4875 N0.getValueType().getSizeInBits()); 4876 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4877 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4878 EVT ShiftVT = N0.getOperand(1).getValueType(); 4879 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4880 Inner.getOperand(0)); 4881 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4882 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4883 ShiftVT)); 4884 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4885 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4886 } 4887 } 4888 } 4889 return SDValue(); 4890 } 4891 4892 SDValue SystemZTargetLowering::combineMERGE( 4893 SDNode *N, DAGCombinerInfo &DCI) const { 4894 SelectionDAG &DAG = DCI.DAG; 4895 unsigned Opcode = N->getOpcode(); 4896 SDValue Op0 = N->getOperand(0); 4897 SDValue Op1 = N->getOperand(1); 4898 if (Op0.getOpcode() == ISD::BITCAST) 4899 Op0 = Op0.getOperand(0); 4900 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4901 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4902 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4903 // for v4f32. 4904 if (Op1 == N->getOperand(0)) 4905 return Op1; 4906 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4907 EVT VT = Op1.getValueType(); 4908 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4909 if (ElemBytes <= 4) { 4910 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4911 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4912 EVT InVT = VT.changeVectorElementTypeToInteger(); 4913 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4914 SystemZ::VectorBytes / ElemBytes / 2); 4915 if (VT != InVT) { 4916 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4917 DCI.AddToWorklist(Op1.getNode()); 4918 } 4919 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4920 DCI.AddToWorklist(Op.getNode()); 4921 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4922 } 4923 } 4924 return SDValue(); 4925 } 4926 4927 SDValue SystemZTargetLowering::combineSTORE( 4928 SDNode *N, DAGCombinerInfo &DCI) const { 4929 SelectionDAG &DAG = DCI.DAG; 4930 auto *SN = cast<StoreSDNode>(N); 4931 auto &Op1 = N->getOperand(1); 4932 EVT MemVT = SN->getMemoryVT(); 4933 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4934 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4935 // If X has wider elements then convert it to: 4936 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4937 if (MemVT.isInteger()) { 4938 if (SDValue Value = 4939 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 4940 DCI.AddToWorklist(Value.getNode()); 4941 4942 // Rewrite the store with the new form of stored value. 4943 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4944 SN->getBasePtr(), SN->getMemoryVT(), 4945 SN->getMemOperand()); 4946 } 4947 } 4948 // Combine STORE (BSWAP) into STRVH/STRV/STRVG 4949 // See comment in combineBSWAP about volatile accesses. 4950 if (!SN->isVolatile() && 4951 Op1.getOpcode() == ISD::BSWAP && 4952 Op1.getNode()->hasOneUse() && 4953 (Op1.getValueType() == MVT::i16 || 4954 Op1.getValueType() == MVT::i32 || 4955 Op1.getValueType() == MVT::i64)) { 4956 4957 SDValue BSwapOp = Op1.getOperand(0); 4958 4959 if (BSwapOp.getValueType() == MVT::i16) 4960 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 4961 4962 SDValue Ops[] = { 4963 N->getOperand(0), BSwapOp, N->getOperand(2), 4964 DAG.getValueType(Op1.getValueType()) 4965 }; 4966 4967 return 4968 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 4969 Ops, MemVT, SN->getMemOperand()); 4970 } 4971 return SDValue(); 4972 } 4973 4974 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 4975 SDNode *N, DAGCombinerInfo &DCI) const { 4976 // Try to simplify a vector extraction. 4977 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 4978 SDValue Op0 = N->getOperand(0); 4979 EVT VecVT = Op0.getValueType(); 4980 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 4981 IndexN->getZExtValue(), DCI, false); 4982 } 4983 return SDValue(); 4984 } 4985 4986 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 4987 SDNode *N, DAGCombinerInfo &DCI) const { 4988 SelectionDAG &DAG = DCI.DAG; 4989 // (join_dwords X, X) == (replicate X) 4990 if (N->getOperand(0) == N->getOperand(1)) 4991 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 4992 N->getOperand(0)); 4993 return SDValue(); 4994 } 4995 4996 SDValue SystemZTargetLowering::combineFP_ROUND( 4997 SDNode *N, DAGCombinerInfo &DCI) const { 4998 // (fpround (extract_vector_elt X 0)) 4999 // (fpround (extract_vector_elt X 1)) -> 5000 // (extract_vector_elt (VROUND X) 0) 5001 // (extract_vector_elt (VROUND X) 1) 5002 // 5003 // This is a special case since the target doesn't really support v2f32s. 5004 SelectionDAG &DAG = DCI.DAG; 5005 SDValue Op0 = N->getOperand(0); 5006 if (N->getValueType(0) == MVT::f32 && 5007 Op0.hasOneUse() && 5008 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5009 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5010 Op0.getOperand(1).getOpcode() == ISD::Constant && 5011 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5012 SDValue Vec = Op0.getOperand(0); 5013 for (auto *U : Vec->uses()) { 5014 if (U != Op0.getNode() && 5015 U->hasOneUse() && 5016 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5017 U->getOperand(0) == Vec && 5018 U->getOperand(1).getOpcode() == ISD::Constant && 5019 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5020 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5021 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5022 OtherRound.getOperand(0) == SDValue(U, 0) && 5023 OtherRound.getValueType() == MVT::f32) { 5024 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5025 MVT::v4f32, Vec); 5026 DCI.AddToWorklist(VRound.getNode()); 5027 SDValue Extract1 = 5028 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5029 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5030 DCI.AddToWorklist(Extract1.getNode()); 5031 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5032 SDValue Extract0 = 5033 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5034 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5035 return Extract0; 5036 } 5037 } 5038 } 5039 } 5040 return SDValue(); 5041 } 5042 5043 SDValue SystemZTargetLowering::combineBSWAP( 5044 SDNode *N, DAGCombinerInfo &DCI) const { 5045 SelectionDAG &DAG = DCI.DAG; 5046 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG 5047 // These loads are allowed to access memory multiple times, and so we must check 5048 // that the loads are not volatile before performing the combine. 5049 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5050 N->getOperand(0).hasOneUse() && 5051 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 || 5052 N->getValueType(0) == MVT::i64) && 5053 !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) { 5054 SDValue Load = N->getOperand(0); 5055 LoadSDNode *LD = cast<LoadSDNode>(Load); 5056 5057 // Create the byte-swapping load. 5058 SDValue Ops[] = { 5059 LD->getChain(), // Chain 5060 LD->getBasePtr(), // Ptr 5061 DAG.getValueType(N->getValueType(0)) // VT 5062 }; 5063 SDValue BSLoad = 5064 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 5065 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 5066 MVT::i64 : MVT::i32, MVT::Other), 5067 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5068 5069 // If this is an i16 load, insert the truncate. 5070 SDValue ResVal = BSLoad; 5071 if (N->getValueType(0) == MVT::i16) 5072 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5073 5074 // First, combine the bswap away. This makes the value produced by the 5075 // load dead. 5076 DCI.CombineTo(N, ResVal); 5077 5078 // Next, combine the load away, we give it a bogus result value but a real 5079 // chain result. The result value is dead because the bswap is dead. 5080 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5081 5082 // Return N so it doesn't get rechecked! 5083 return SDValue(N, 0); 5084 } 5085 return SDValue(); 5086 } 5087 5088 SDValue SystemZTargetLowering::combineSHIFTROT( 5089 SDNode *N, DAGCombinerInfo &DCI) const { 5090 5091 SelectionDAG &DAG = DCI.DAG; 5092 5093 // Shift/rotate instructions only use the last 6 bits of the second operand 5094 // register. If the second operand is the result of an AND with an immediate 5095 // value that has its last 6 bits set, we can safely remove the AND operation. 5096 // 5097 // If the AND operation doesn't have the last 6 bits set, we can't remove it 5098 // entirely, but we can still truncate it to a 16-bit value. This prevents 5099 // us from ending up with a NILL with a signed operand, which will cause the 5100 // instruction printer to abort. 5101 SDValue N1 = N->getOperand(1); 5102 if (N1.getOpcode() == ISD::AND) { 5103 SDValue AndMaskOp = N1->getOperand(1); 5104 auto *AndMask = dyn_cast<ConstantSDNode>(AndMaskOp); 5105 5106 // The AND mask is constant 5107 if (AndMask) { 5108 auto AmtVal = AndMask->getZExtValue(); 5109 5110 // Bottom 6 bits are set 5111 if ((AmtVal & 0x3f) == 0x3f) { 5112 SDValue AndOp = N1->getOperand(0); 5113 5114 // This is the only use, so remove the node 5115 if (N1.hasOneUse()) { 5116 // Combine the AND away 5117 DCI.CombineTo(N1.getNode(), AndOp); 5118 5119 // Return N so it isn't rechecked 5120 return SDValue(N, 0); 5121 5122 // The node will be reused, so create a new node for this one use 5123 } else { 5124 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), 5125 N->getValueType(0), N->getOperand(0), 5126 AndOp); 5127 DCI.AddToWorklist(Replace.getNode()); 5128 5129 return Replace; 5130 } 5131 5132 // We can't remove the AND, but we can use NILL here (normally we would 5133 // use NILF). Only keep the last 16 bits of the mask. The actual 5134 // transformation will be handled by .td definitions. 5135 } else if (AmtVal >> 16 != 0) { 5136 SDValue AndOp = N1->getOperand(0); 5137 5138 auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff, 5139 SDLoc(AndMaskOp), 5140 AndMaskOp.getValueType()); 5141 5142 auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(), 5143 AndOp, NewMask); 5144 5145 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), 5146 N->getValueType(0), N->getOperand(0), 5147 NewAnd); 5148 DCI.AddToWorklist(Replace.getNode()); 5149 5150 return Replace; 5151 } 5152 } 5153 } 5154 5155 return SDValue(); 5156 } 5157 5158 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 5159 DAGCombinerInfo &DCI) const { 5160 switch(N->getOpcode()) { 5161 default: break; 5162 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 5163 case SystemZISD::MERGE_HIGH: 5164 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 5165 case ISD::STORE: return combineSTORE(N, DCI); 5166 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 5167 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 5168 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 5169 case ISD::BSWAP: return combineBSWAP(N, DCI); 5170 case ISD::SHL: 5171 case ISD::SRA: 5172 case ISD::SRL: 5173 case ISD::ROTL: return combineSHIFTROT(N, DCI); 5174 } 5175 5176 return SDValue(); 5177 } 5178 5179 //===----------------------------------------------------------------------===// 5180 // Custom insertion 5181 //===----------------------------------------------------------------------===// 5182 5183 // Create a new basic block after MBB. 5184 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 5185 MachineFunction &MF = *MBB->getParent(); 5186 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 5187 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 5188 return NewMBB; 5189 } 5190 5191 // Split MBB after MI and return the new block (the one that contains 5192 // instructions after MI). 5193 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 5194 MachineBasicBlock *MBB) { 5195 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5196 NewMBB->splice(NewMBB->begin(), MBB, 5197 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 5198 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5199 return NewMBB; 5200 } 5201 5202 // Split MBB before MI and return the new block (the one that contains MI). 5203 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 5204 MachineBasicBlock *MBB) { 5205 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5206 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 5207 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5208 return NewMBB; 5209 } 5210 5211 // Force base value Base into a register before MI. Return the register. 5212 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base, 5213 const SystemZInstrInfo *TII) { 5214 if (Base.isReg()) 5215 return Base.getReg(); 5216 5217 MachineBasicBlock *MBB = MI.getParent(); 5218 MachineFunction &MF = *MBB->getParent(); 5219 MachineRegisterInfo &MRI = MF.getRegInfo(); 5220 5221 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5222 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 5223 .addOperand(Base) 5224 .addImm(0) 5225 .addReg(0); 5226 return Reg; 5227 } 5228 5229 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 5230 MachineBasicBlock * 5231 SystemZTargetLowering::emitSelect(MachineInstr &MI, 5232 MachineBasicBlock *MBB) const { 5233 const SystemZInstrInfo *TII = 5234 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5235 5236 unsigned DestReg = MI.getOperand(0).getReg(); 5237 unsigned TrueReg = MI.getOperand(1).getReg(); 5238 unsigned FalseReg = MI.getOperand(2).getReg(); 5239 unsigned CCValid = MI.getOperand(3).getImm(); 5240 unsigned CCMask = MI.getOperand(4).getImm(); 5241 DebugLoc DL = MI.getDebugLoc(); 5242 5243 MachineBasicBlock *StartMBB = MBB; 5244 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5245 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5246 5247 // StartMBB: 5248 // BRC CCMask, JoinMBB 5249 // # fallthrough to FalseMBB 5250 MBB = StartMBB; 5251 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5252 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5253 MBB->addSuccessor(JoinMBB); 5254 MBB->addSuccessor(FalseMBB); 5255 5256 // FalseMBB: 5257 // # fallthrough to JoinMBB 5258 MBB = FalseMBB; 5259 MBB->addSuccessor(JoinMBB); 5260 5261 // JoinMBB: 5262 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 5263 // ... 5264 MBB = JoinMBB; 5265 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 5266 .addReg(TrueReg).addMBB(StartMBB) 5267 .addReg(FalseReg).addMBB(FalseMBB); 5268 5269 MI.eraseFromParent(); 5270 return JoinMBB; 5271 } 5272 5273 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 5274 // StoreOpcode is the store to use and Invert says whether the store should 5275 // happen when the condition is false rather than true. If a STORE ON 5276 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 5277 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 5278 MachineBasicBlock *MBB, 5279 unsigned StoreOpcode, 5280 unsigned STOCOpcode, 5281 bool Invert) const { 5282 const SystemZInstrInfo *TII = 5283 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5284 5285 unsigned SrcReg = MI.getOperand(0).getReg(); 5286 MachineOperand Base = MI.getOperand(1); 5287 int64_t Disp = MI.getOperand(2).getImm(); 5288 unsigned IndexReg = MI.getOperand(3).getReg(); 5289 unsigned CCValid = MI.getOperand(4).getImm(); 5290 unsigned CCMask = MI.getOperand(5).getImm(); 5291 DebugLoc DL = MI.getDebugLoc(); 5292 5293 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 5294 5295 // Use STOCOpcode if possible. We could use different store patterns in 5296 // order to avoid matching the index register, but the performance trade-offs 5297 // might be more complicated in that case. 5298 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 5299 if (Invert) 5300 CCMask ^= CCValid; 5301 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 5302 .addReg(SrcReg).addOperand(Base).addImm(Disp) 5303 .addImm(CCValid).addImm(CCMask); 5304 MI.eraseFromParent(); 5305 return MBB; 5306 } 5307 5308 // Get the condition needed to branch around the store. 5309 if (!Invert) 5310 CCMask ^= CCValid; 5311 5312 MachineBasicBlock *StartMBB = MBB; 5313 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5314 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5315 5316 // StartMBB: 5317 // BRC CCMask, JoinMBB 5318 // # fallthrough to FalseMBB 5319 MBB = StartMBB; 5320 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5321 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5322 MBB->addSuccessor(JoinMBB); 5323 MBB->addSuccessor(FalseMBB); 5324 5325 // FalseMBB: 5326 // store %SrcReg, %Disp(%Index,%Base) 5327 // # fallthrough to JoinMBB 5328 MBB = FalseMBB; 5329 BuildMI(MBB, DL, TII->get(StoreOpcode)) 5330 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 5331 MBB->addSuccessor(JoinMBB); 5332 5333 MI.eraseFromParent(); 5334 return JoinMBB; 5335 } 5336 5337 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 5338 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 5339 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 5340 // BitSize is the width of the field in bits, or 0 if this is a partword 5341 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 5342 // is one of the operands. Invert says whether the field should be 5343 // inverted after performing BinOpcode (e.g. for NAND). 5344 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 5345 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 5346 unsigned BitSize, bool Invert) const { 5347 MachineFunction &MF = *MBB->getParent(); 5348 const SystemZInstrInfo *TII = 5349 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5350 MachineRegisterInfo &MRI = MF.getRegInfo(); 5351 bool IsSubWord = (BitSize < 32); 5352 5353 // Extract the operands. Base can be a register or a frame index. 5354 // Src2 can be a register or immediate. 5355 unsigned Dest = MI.getOperand(0).getReg(); 5356 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5357 int64_t Disp = MI.getOperand(2).getImm(); 5358 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 5359 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 5360 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 5361 DebugLoc DL = MI.getDebugLoc(); 5362 if (IsSubWord) 5363 BitSize = MI.getOperand(6).getImm(); 5364 5365 // Subword operations use 32-bit registers. 5366 const TargetRegisterClass *RC = (BitSize <= 32 ? 5367 &SystemZ::GR32BitRegClass : 5368 &SystemZ::GR64BitRegClass); 5369 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5370 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5371 5372 // Get the right opcodes for the displacement. 5373 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5374 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5375 assert(LOpcode && CSOpcode && "Displacement out of range"); 5376 5377 // Create virtual registers for temporary results. 5378 unsigned OrigVal = MRI.createVirtualRegister(RC); 5379 unsigned OldVal = MRI.createVirtualRegister(RC); 5380 unsigned NewVal = (BinOpcode || IsSubWord ? 5381 MRI.createVirtualRegister(RC) : Src2.getReg()); 5382 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5383 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5384 5385 // Insert a basic block for the main loop. 5386 MachineBasicBlock *StartMBB = MBB; 5387 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5388 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5389 5390 // StartMBB: 5391 // ... 5392 // %OrigVal = L Disp(%Base) 5393 // # fall through to LoopMMB 5394 MBB = StartMBB; 5395 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5396 .addOperand(Base).addImm(Disp).addReg(0); 5397 MBB->addSuccessor(LoopMBB); 5398 5399 // LoopMBB: 5400 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 5401 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5402 // %RotatedNewVal = OP %RotatedOldVal, %Src2 5403 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5404 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5405 // JNE LoopMBB 5406 // # fall through to DoneMMB 5407 MBB = LoopMBB; 5408 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5409 .addReg(OrigVal).addMBB(StartMBB) 5410 .addReg(Dest).addMBB(LoopMBB); 5411 if (IsSubWord) 5412 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5413 .addReg(OldVal).addReg(BitShift).addImm(0); 5414 if (Invert) { 5415 // Perform the operation normally and then invert every bit of the field. 5416 unsigned Tmp = MRI.createVirtualRegister(RC); 5417 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 5418 .addReg(RotatedOldVal).addOperand(Src2); 5419 if (BitSize <= 32) 5420 // XILF with the upper BitSize bits set. 5421 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5422 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5423 else { 5424 // Use LCGR and add -1 to the result, which is more compact than 5425 // an XILF, XILH pair. 5426 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5427 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5428 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5429 .addReg(Tmp2).addImm(-1); 5430 } 5431 } else if (BinOpcode) 5432 // A simply binary operation. 5433 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5434 .addReg(RotatedOldVal).addOperand(Src2); 5435 else if (IsSubWord) 5436 // Use RISBG to rotate Src2 into position and use it to replace the 5437 // field in RotatedOldVal. 5438 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5439 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5440 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5441 if (IsSubWord) 5442 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5443 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5444 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5445 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5446 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5447 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5448 MBB->addSuccessor(LoopMBB); 5449 MBB->addSuccessor(DoneMBB); 5450 5451 MI.eraseFromParent(); 5452 return DoneMBB; 5453 } 5454 5455 // Implement EmitInstrWithCustomInserter for pseudo 5456 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5457 // instruction that should be used to compare the current field with the 5458 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5459 // for when the current field should be kept. BitSize is the width of 5460 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5461 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 5462 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 5463 unsigned KeepOldMask, unsigned BitSize) const { 5464 MachineFunction &MF = *MBB->getParent(); 5465 const SystemZInstrInfo *TII = 5466 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5467 MachineRegisterInfo &MRI = MF.getRegInfo(); 5468 bool IsSubWord = (BitSize < 32); 5469 5470 // Extract the operands. Base can be a register or a frame index. 5471 unsigned Dest = MI.getOperand(0).getReg(); 5472 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5473 int64_t Disp = MI.getOperand(2).getImm(); 5474 unsigned Src2 = MI.getOperand(3).getReg(); 5475 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 5476 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 5477 DebugLoc DL = MI.getDebugLoc(); 5478 if (IsSubWord) 5479 BitSize = MI.getOperand(6).getImm(); 5480 5481 // Subword operations use 32-bit registers. 5482 const TargetRegisterClass *RC = (BitSize <= 32 ? 5483 &SystemZ::GR32BitRegClass : 5484 &SystemZ::GR64BitRegClass); 5485 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5486 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5487 5488 // Get the right opcodes for the displacement. 5489 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5490 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5491 assert(LOpcode && CSOpcode && "Displacement out of range"); 5492 5493 // Create virtual registers for temporary results. 5494 unsigned OrigVal = MRI.createVirtualRegister(RC); 5495 unsigned OldVal = MRI.createVirtualRegister(RC); 5496 unsigned NewVal = MRI.createVirtualRegister(RC); 5497 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5498 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5499 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5500 5501 // Insert 3 basic blocks for the loop. 5502 MachineBasicBlock *StartMBB = MBB; 5503 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5504 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5505 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5506 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5507 5508 // StartMBB: 5509 // ... 5510 // %OrigVal = L Disp(%Base) 5511 // # fall through to LoopMMB 5512 MBB = StartMBB; 5513 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5514 .addOperand(Base).addImm(Disp).addReg(0); 5515 MBB->addSuccessor(LoopMBB); 5516 5517 // LoopMBB: 5518 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5519 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5520 // CompareOpcode %RotatedOldVal, %Src2 5521 // BRC KeepOldMask, UpdateMBB 5522 MBB = LoopMBB; 5523 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5524 .addReg(OrigVal).addMBB(StartMBB) 5525 .addReg(Dest).addMBB(UpdateMBB); 5526 if (IsSubWord) 5527 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5528 .addReg(OldVal).addReg(BitShift).addImm(0); 5529 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5530 .addReg(RotatedOldVal).addReg(Src2); 5531 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5532 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5533 MBB->addSuccessor(UpdateMBB); 5534 MBB->addSuccessor(UseAltMBB); 5535 5536 // UseAltMBB: 5537 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5538 // # fall through to UpdateMMB 5539 MBB = UseAltMBB; 5540 if (IsSubWord) 5541 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5542 .addReg(RotatedOldVal).addReg(Src2) 5543 .addImm(32).addImm(31 + BitSize).addImm(0); 5544 MBB->addSuccessor(UpdateMBB); 5545 5546 // UpdateMBB: 5547 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5548 // [ %RotatedAltVal, UseAltMBB ] 5549 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5550 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5551 // JNE LoopMBB 5552 // # fall through to DoneMMB 5553 MBB = UpdateMBB; 5554 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5555 .addReg(RotatedOldVal).addMBB(LoopMBB) 5556 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5557 if (IsSubWord) 5558 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5559 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5560 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5561 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5562 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5563 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5564 MBB->addSuccessor(LoopMBB); 5565 MBB->addSuccessor(DoneMBB); 5566 5567 MI.eraseFromParent(); 5568 return DoneMBB; 5569 } 5570 5571 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5572 // instruction MI. 5573 MachineBasicBlock * 5574 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 5575 MachineBasicBlock *MBB) const { 5576 5577 MachineFunction &MF = *MBB->getParent(); 5578 const SystemZInstrInfo *TII = 5579 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5580 MachineRegisterInfo &MRI = MF.getRegInfo(); 5581 5582 // Extract the operands. Base can be a register or a frame index. 5583 unsigned Dest = MI.getOperand(0).getReg(); 5584 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5585 int64_t Disp = MI.getOperand(2).getImm(); 5586 unsigned OrigCmpVal = MI.getOperand(3).getReg(); 5587 unsigned OrigSwapVal = MI.getOperand(4).getReg(); 5588 unsigned BitShift = MI.getOperand(5).getReg(); 5589 unsigned NegBitShift = MI.getOperand(6).getReg(); 5590 int64_t BitSize = MI.getOperand(7).getImm(); 5591 DebugLoc DL = MI.getDebugLoc(); 5592 5593 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5594 5595 // Get the right opcodes for the displacement. 5596 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5597 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5598 assert(LOpcode && CSOpcode && "Displacement out of range"); 5599 5600 // Create virtual registers for temporary results. 5601 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5602 unsigned OldVal = MRI.createVirtualRegister(RC); 5603 unsigned CmpVal = MRI.createVirtualRegister(RC); 5604 unsigned SwapVal = MRI.createVirtualRegister(RC); 5605 unsigned StoreVal = MRI.createVirtualRegister(RC); 5606 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5607 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5608 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5609 5610 // Insert 2 basic blocks for the loop. 5611 MachineBasicBlock *StartMBB = MBB; 5612 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5613 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5614 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5615 5616 // StartMBB: 5617 // ... 5618 // %OrigOldVal = L Disp(%Base) 5619 // # fall through to LoopMMB 5620 MBB = StartMBB; 5621 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5622 .addOperand(Base).addImm(Disp).addReg(0); 5623 MBB->addSuccessor(LoopMBB); 5624 5625 // LoopMBB: 5626 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5627 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5628 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5629 // %Dest = RLL %OldVal, BitSize(%BitShift) 5630 // ^^ The low BitSize bits contain the field 5631 // of interest. 5632 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5633 // ^^ Replace the upper 32-BitSize bits of the 5634 // comparison value with those that we loaded, 5635 // so that we can use a full word comparison. 5636 // CR %Dest, %RetryCmpVal 5637 // JNE DoneMBB 5638 // # Fall through to SetMBB 5639 MBB = LoopMBB; 5640 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5641 .addReg(OrigOldVal).addMBB(StartMBB) 5642 .addReg(RetryOldVal).addMBB(SetMBB); 5643 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5644 .addReg(OrigCmpVal).addMBB(StartMBB) 5645 .addReg(RetryCmpVal).addMBB(SetMBB); 5646 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5647 .addReg(OrigSwapVal).addMBB(StartMBB) 5648 .addReg(RetrySwapVal).addMBB(SetMBB); 5649 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5650 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5651 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5652 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5653 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5654 .addReg(Dest).addReg(RetryCmpVal); 5655 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5656 .addImm(SystemZ::CCMASK_ICMP) 5657 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5658 MBB->addSuccessor(DoneMBB); 5659 MBB->addSuccessor(SetMBB); 5660 5661 // SetMBB: 5662 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5663 // ^^ Replace the upper 32-BitSize bits of the new 5664 // value with those that we loaded. 5665 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5666 // ^^ Rotate the new field to its proper position. 5667 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5668 // JNE LoopMBB 5669 // # fall through to ExitMMB 5670 MBB = SetMBB; 5671 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5672 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5673 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5674 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5675 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5676 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 5677 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5678 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5679 MBB->addSuccessor(LoopMBB); 5680 MBB->addSuccessor(DoneMBB); 5681 5682 MI.eraseFromParent(); 5683 return DoneMBB; 5684 } 5685 5686 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5687 // if the high register of the GR128 value must be cleared or false if 5688 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5689 // and subreg_l64 when extending a GR64. 5690 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 5691 MachineBasicBlock *MBB, 5692 bool ClearEven, 5693 unsigned SubReg) const { 5694 MachineFunction &MF = *MBB->getParent(); 5695 const SystemZInstrInfo *TII = 5696 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5697 MachineRegisterInfo &MRI = MF.getRegInfo(); 5698 DebugLoc DL = MI.getDebugLoc(); 5699 5700 unsigned Dest = MI.getOperand(0).getReg(); 5701 unsigned Src = MI.getOperand(1).getReg(); 5702 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5703 5704 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5705 if (ClearEven) { 5706 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5707 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5708 5709 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5710 .addImm(0); 5711 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5712 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5713 In128 = NewIn128; 5714 } 5715 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5716 .addReg(In128).addReg(Src).addImm(SubReg); 5717 5718 MI.eraseFromParent(); 5719 return MBB; 5720 } 5721 5722 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 5723 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 5724 MachineFunction &MF = *MBB->getParent(); 5725 const SystemZInstrInfo *TII = 5726 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5727 MachineRegisterInfo &MRI = MF.getRegInfo(); 5728 DebugLoc DL = MI.getDebugLoc(); 5729 5730 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 5731 uint64_t DestDisp = MI.getOperand(1).getImm(); 5732 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 5733 uint64_t SrcDisp = MI.getOperand(3).getImm(); 5734 uint64_t Length = MI.getOperand(4).getImm(); 5735 5736 // When generating more than one CLC, all but the last will need to 5737 // branch to the end when a difference is found. 5738 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5739 splitBlockAfter(MI, MBB) : nullptr); 5740 5741 // Check for the loop form, in which operand 5 is the trip count. 5742 if (MI.getNumExplicitOperands() > 5) { 5743 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5744 5745 uint64_t StartCountReg = MI.getOperand(5).getReg(); 5746 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5747 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5748 forceReg(MI, DestBase, TII)); 5749 5750 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5751 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5752 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5753 MRI.createVirtualRegister(RC)); 5754 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5755 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5756 MRI.createVirtualRegister(RC)); 5757 5758 RC = &SystemZ::GR64BitRegClass; 5759 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5760 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5761 5762 MachineBasicBlock *StartMBB = MBB; 5763 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5764 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5765 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5766 5767 // StartMBB: 5768 // # fall through to LoopMMB 5769 MBB->addSuccessor(LoopMBB); 5770 5771 // LoopMBB: 5772 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5773 // [ %NextDestReg, NextMBB ] 5774 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5775 // [ %NextSrcReg, NextMBB ] 5776 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5777 // [ %NextCountReg, NextMBB ] 5778 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5779 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5780 // ( JLH EndMBB ) 5781 // 5782 // The prefetch is used only for MVC. The JLH is used only for CLC. 5783 MBB = LoopMBB; 5784 5785 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5786 .addReg(StartDestReg).addMBB(StartMBB) 5787 .addReg(NextDestReg).addMBB(NextMBB); 5788 if (!HaveSingleBase) 5789 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5790 .addReg(StartSrcReg).addMBB(StartMBB) 5791 .addReg(NextSrcReg).addMBB(NextMBB); 5792 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5793 .addReg(StartCountReg).addMBB(StartMBB) 5794 .addReg(NextCountReg).addMBB(NextMBB); 5795 if (Opcode == SystemZ::MVC) 5796 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5797 .addImm(SystemZ::PFD_WRITE) 5798 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5799 BuildMI(MBB, DL, TII->get(Opcode)) 5800 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5801 .addReg(ThisSrcReg).addImm(SrcDisp); 5802 if (EndMBB) { 5803 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5804 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5805 .addMBB(EndMBB); 5806 MBB->addSuccessor(EndMBB); 5807 MBB->addSuccessor(NextMBB); 5808 } 5809 5810 // NextMBB: 5811 // %NextDestReg = LA 256(%ThisDestReg) 5812 // %NextSrcReg = LA 256(%ThisSrcReg) 5813 // %NextCountReg = AGHI %ThisCountReg, -1 5814 // CGHI %NextCountReg, 0 5815 // JLH LoopMBB 5816 // # fall through to DoneMMB 5817 // 5818 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5819 MBB = NextMBB; 5820 5821 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5822 .addReg(ThisDestReg).addImm(256).addReg(0); 5823 if (!HaveSingleBase) 5824 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5825 .addReg(ThisSrcReg).addImm(256).addReg(0); 5826 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5827 .addReg(ThisCountReg).addImm(-1); 5828 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5829 .addReg(NextCountReg).addImm(0); 5830 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5831 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5832 .addMBB(LoopMBB); 5833 MBB->addSuccessor(LoopMBB); 5834 MBB->addSuccessor(DoneMBB); 5835 5836 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5837 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5838 Length &= 255; 5839 MBB = DoneMBB; 5840 } 5841 // Handle any remaining bytes with straight-line code. 5842 while (Length > 0) { 5843 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5844 // The previous iteration might have created out-of-range displacements. 5845 // Apply them using LAY if so. 5846 if (!isUInt<12>(DestDisp)) { 5847 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5848 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5849 .addOperand(DestBase) 5850 .addImm(DestDisp) 5851 .addReg(0); 5852 DestBase = MachineOperand::CreateReg(Reg, false); 5853 DestDisp = 0; 5854 } 5855 if (!isUInt<12>(SrcDisp)) { 5856 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5857 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5858 .addOperand(SrcBase) 5859 .addImm(SrcDisp) 5860 .addReg(0); 5861 SrcBase = MachineOperand::CreateReg(Reg, false); 5862 SrcDisp = 0; 5863 } 5864 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5865 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 5866 .addOperand(SrcBase).addImm(SrcDisp); 5867 DestDisp += ThisLength; 5868 SrcDisp += ThisLength; 5869 Length -= ThisLength; 5870 // If there's another CLC to go, branch to the end if a difference 5871 // was found. 5872 if (EndMBB && Length > 0) { 5873 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5874 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5875 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5876 .addMBB(EndMBB); 5877 MBB->addSuccessor(EndMBB); 5878 MBB->addSuccessor(NextMBB); 5879 MBB = NextMBB; 5880 } 5881 } 5882 if (EndMBB) { 5883 MBB->addSuccessor(EndMBB); 5884 MBB = EndMBB; 5885 MBB->addLiveIn(SystemZ::CC); 5886 } 5887 5888 MI.eraseFromParent(); 5889 return MBB; 5890 } 5891 5892 // Decompose string pseudo-instruction MI into a loop that continually performs 5893 // Opcode until CC != 3. 5894 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 5895 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 5896 MachineFunction &MF = *MBB->getParent(); 5897 const SystemZInstrInfo *TII = 5898 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5899 MachineRegisterInfo &MRI = MF.getRegInfo(); 5900 DebugLoc DL = MI.getDebugLoc(); 5901 5902 uint64_t End1Reg = MI.getOperand(0).getReg(); 5903 uint64_t Start1Reg = MI.getOperand(1).getReg(); 5904 uint64_t Start2Reg = MI.getOperand(2).getReg(); 5905 uint64_t CharReg = MI.getOperand(3).getReg(); 5906 5907 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5908 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5909 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5910 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5911 5912 MachineBasicBlock *StartMBB = MBB; 5913 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5914 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5915 5916 // StartMBB: 5917 // # fall through to LoopMMB 5918 MBB->addSuccessor(LoopMBB); 5919 5920 // LoopMBB: 5921 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5922 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5923 // R0L = %CharReg 5924 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5925 // JO LoopMBB 5926 // # fall through to DoneMMB 5927 // 5928 // The load of R0L can be hoisted by post-RA LICM. 5929 MBB = LoopMBB; 5930 5931 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5932 .addReg(Start1Reg).addMBB(StartMBB) 5933 .addReg(End1Reg).addMBB(LoopMBB); 5934 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 5935 .addReg(Start2Reg).addMBB(StartMBB) 5936 .addReg(End2Reg).addMBB(LoopMBB); 5937 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 5938 BuildMI(MBB, DL, TII->get(Opcode)) 5939 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 5940 .addReg(This1Reg).addReg(This2Reg); 5941 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5942 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 5943 MBB->addSuccessor(LoopMBB); 5944 MBB->addSuccessor(DoneMBB); 5945 5946 DoneMBB->addLiveIn(SystemZ::CC); 5947 5948 MI.eraseFromParent(); 5949 return DoneMBB; 5950 } 5951 5952 // Update TBEGIN instruction with final opcode and register clobbers. 5953 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 5954 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 5955 bool NoFloat) const { 5956 MachineFunction &MF = *MBB->getParent(); 5957 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 5958 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 5959 5960 // Update opcode. 5961 MI.setDesc(TII->get(Opcode)); 5962 5963 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 5964 // Make sure to add the corresponding GRSM bits if they are missing. 5965 uint64_t Control = MI.getOperand(2).getImm(); 5966 static const unsigned GPRControlBit[16] = { 5967 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 5968 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 5969 }; 5970 Control |= GPRControlBit[15]; 5971 if (TFI->hasFP(MF)) 5972 Control |= GPRControlBit[11]; 5973 MI.getOperand(2).setImm(Control); 5974 5975 // Add GPR clobbers. 5976 for (int I = 0; I < 16; I++) { 5977 if ((Control & GPRControlBit[I]) == 0) { 5978 unsigned Reg = SystemZMC::GR64Regs[I]; 5979 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 5980 } 5981 } 5982 5983 // Add FPR/VR clobbers. 5984 if (!NoFloat && (Control & 4) != 0) { 5985 if (Subtarget.hasVector()) { 5986 for (int I = 0; I < 32; I++) { 5987 unsigned Reg = SystemZMC::VR128Regs[I]; 5988 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 5989 } 5990 } else { 5991 for (int I = 0; I < 16; I++) { 5992 unsigned Reg = SystemZMC::FP64Regs[I]; 5993 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 5994 } 5995 } 5996 } 5997 5998 return MBB; 5999 } 6000 6001 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 6002 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6003 MachineFunction &MF = *MBB->getParent(); 6004 MachineRegisterInfo *MRI = &MF.getRegInfo(); 6005 const SystemZInstrInfo *TII = 6006 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6007 DebugLoc DL = MI.getDebugLoc(); 6008 6009 unsigned SrcReg = MI.getOperand(0).getReg(); 6010 6011 // Create new virtual register of the same class as source. 6012 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 6013 unsigned DstReg = MRI->createVirtualRegister(RC); 6014 6015 // Replace pseudo with a normal load-and-test that models the def as 6016 // well. 6017 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 6018 .addReg(SrcReg); 6019 MI.eraseFromParent(); 6020 6021 return MBB; 6022 } 6023 6024 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 6025 MachineInstr &MI, MachineBasicBlock *MBB) const { 6026 switch (MI.getOpcode()) { 6027 case SystemZ::Select32Mux: 6028 case SystemZ::Select32: 6029 case SystemZ::SelectF32: 6030 case SystemZ::Select64: 6031 case SystemZ::SelectF64: 6032 case SystemZ::SelectF128: 6033 return emitSelect(MI, MBB); 6034 6035 case SystemZ::CondStore8Mux: 6036 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 6037 case SystemZ::CondStore8MuxInv: 6038 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 6039 case SystemZ::CondStore16Mux: 6040 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 6041 case SystemZ::CondStore16MuxInv: 6042 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 6043 case SystemZ::CondStore8: 6044 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 6045 case SystemZ::CondStore8Inv: 6046 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 6047 case SystemZ::CondStore16: 6048 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 6049 case SystemZ::CondStore16Inv: 6050 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 6051 case SystemZ::CondStore32: 6052 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 6053 case SystemZ::CondStore32Inv: 6054 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 6055 case SystemZ::CondStore64: 6056 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 6057 case SystemZ::CondStore64Inv: 6058 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 6059 case SystemZ::CondStoreF32: 6060 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 6061 case SystemZ::CondStoreF32Inv: 6062 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 6063 case SystemZ::CondStoreF64: 6064 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 6065 case SystemZ::CondStoreF64Inv: 6066 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 6067 6068 case SystemZ::AEXT128_64: 6069 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 6070 case SystemZ::ZEXT128_32: 6071 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 6072 case SystemZ::ZEXT128_64: 6073 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 6074 6075 case SystemZ::ATOMIC_SWAPW: 6076 return emitAtomicLoadBinary(MI, MBB, 0, 0); 6077 case SystemZ::ATOMIC_SWAP_32: 6078 return emitAtomicLoadBinary(MI, MBB, 0, 32); 6079 case SystemZ::ATOMIC_SWAP_64: 6080 return emitAtomicLoadBinary(MI, MBB, 0, 64); 6081 6082 case SystemZ::ATOMIC_LOADW_AR: 6083 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 6084 case SystemZ::ATOMIC_LOADW_AFI: 6085 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 6086 case SystemZ::ATOMIC_LOAD_AR: 6087 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 6088 case SystemZ::ATOMIC_LOAD_AHI: 6089 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 6090 case SystemZ::ATOMIC_LOAD_AFI: 6091 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 6092 case SystemZ::ATOMIC_LOAD_AGR: 6093 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 6094 case SystemZ::ATOMIC_LOAD_AGHI: 6095 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 6096 case SystemZ::ATOMIC_LOAD_AGFI: 6097 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 6098 6099 case SystemZ::ATOMIC_LOADW_SR: 6100 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 6101 case SystemZ::ATOMIC_LOAD_SR: 6102 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 6103 case SystemZ::ATOMIC_LOAD_SGR: 6104 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 6105 6106 case SystemZ::ATOMIC_LOADW_NR: 6107 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 6108 case SystemZ::ATOMIC_LOADW_NILH: 6109 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 6110 case SystemZ::ATOMIC_LOAD_NR: 6111 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 6112 case SystemZ::ATOMIC_LOAD_NILL: 6113 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 6114 case SystemZ::ATOMIC_LOAD_NILH: 6115 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 6116 case SystemZ::ATOMIC_LOAD_NILF: 6117 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 6118 case SystemZ::ATOMIC_LOAD_NGR: 6119 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 6120 case SystemZ::ATOMIC_LOAD_NILL64: 6121 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 6122 case SystemZ::ATOMIC_LOAD_NILH64: 6123 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 6124 case SystemZ::ATOMIC_LOAD_NIHL64: 6125 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 6126 case SystemZ::ATOMIC_LOAD_NIHH64: 6127 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 6128 case SystemZ::ATOMIC_LOAD_NILF64: 6129 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 6130 case SystemZ::ATOMIC_LOAD_NIHF64: 6131 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 6132 6133 case SystemZ::ATOMIC_LOADW_OR: 6134 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 6135 case SystemZ::ATOMIC_LOADW_OILH: 6136 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 6137 case SystemZ::ATOMIC_LOAD_OR: 6138 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 6139 case SystemZ::ATOMIC_LOAD_OILL: 6140 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 6141 case SystemZ::ATOMIC_LOAD_OILH: 6142 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 6143 case SystemZ::ATOMIC_LOAD_OILF: 6144 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 6145 case SystemZ::ATOMIC_LOAD_OGR: 6146 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 6147 case SystemZ::ATOMIC_LOAD_OILL64: 6148 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 6149 case SystemZ::ATOMIC_LOAD_OILH64: 6150 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 6151 case SystemZ::ATOMIC_LOAD_OIHL64: 6152 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 6153 case SystemZ::ATOMIC_LOAD_OIHH64: 6154 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 6155 case SystemZ::ATOMIC_LOAD_OILF64: 6156 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 6157 case SystemZ::ATOMIC_LOAD_OIHF64: 6158 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 6159 6160 case SystemZ::ATOMIC_LOADW_XR: 6161 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 6162 case SystemZ::ATOMIC_LOADW_XILF: 6163 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 6164 case SystemZ::ATOMIC_LOAD_XR: 6165 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 6166 case SystemZ::ATOMIC_LOAD_XILF: 6167 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 6168 case SystemZ::ATOMIC_LOAD_XGR: 6169 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 6170 case SystemZ::ATOMIC_LOAD_XILF64: 6171 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 6172 case SystemZ::ATOMIC_LOAD_XIHF64: 6173 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 6174 6175 case SystemZ::ATOMIC_LOADW_NRi: 6176 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 6177 case SystemZ::ATOMIC_LOADW_NILHi: 6178 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 6179 case SystemZ::ATOMIC_LOAD_NRi: 6180 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 6181 case SystemZ::ATOMIC_LOAD_NILLi: 6182 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 6183 case SystemZ::ATOMIC_LOAD_NILHi: 6184 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 6185 case SystemZ::ATOMIC_LOAD_NILFi: 6186 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 6187 case SystemZ::ATOMIC_LOAD_NGRi: 6188 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 6189 case SystemZ::ATOMIC_LOAD_NILL64i: 6190 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 6191 case SystemZ::ATOMIC_LOAD_NILH64i: 6192 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 6193 case SystemZ::ATOMIC_LOAD_NIHL64i: 6194 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 6195 case SystemZ::ATOMIC_LOAD_NIHH64i: 6196 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 6197 case SystemZ::ATOMIC_LOAD_NILF64i: 6198 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 6199 case SystemZ::ATOMIC_LOAD_NIHF64i: 6200 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 6201 6202 case SystemZ::ATOMIC_LOADW_MIN: 6203 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6204 SystemZ::CCMASK_CMP_LE, 0); 6205 case SystemZ::ATOMIC_LOAD_MIN_32: 6206 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6207 SystemZ::CCMASK_CMP_LE, 32); 6208 case SystemZ::ATOMIC_LOAD_MIN_64: 6209 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 6210 SystemZ::CCMASK_CMP_LE, 64); 6211 6212 case SystemZ::ATOMIC_LOADW_MAX: 6213 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6214 SystemZ::CCMASK_CMP_GE, 0); 6215 case SystemZ::ATOMIC_LOAD_MAX_32: 6216 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6217 SystemZ::CCMASK_CMP_GE, 32); 6218 case SystemZ::ATOMIC_LOAD_MAX_64: 6219 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 6220 SystemZ::CCMASK_CMP_GE, 64); 6221 6222 case SystemZ::ATOMIC_LOADW_UMIN: 6223 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6224 SystemZ::CCMASK_CMP_LE, 0); 6225 case SystemZ::ATOMIC_LOAD_UMIN_32: 6226 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6227 SystemZ::CCMASK_CMP_LE, 32); 6228 case SystemZ::ATOMIC_LOAD_UMIN_64: 6229 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6230 SystemZ::CCMASK_CMP_LE, 64); 6231 6232 case SystemZ::ATOMIC_LOADW_UMAX: 6233 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6234 SystemZ::CCMASK_CMP_GE, 0); 6235 case SystemZ::ATOMIC_LOAD_UMAX_32: 6236 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6237 SystemZ::CCMASK_CMP_GE, 32); 6238 case SystemZ::ATOMIC_LOAD_UMAX_64: 6239 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6240 SystemZ::CCMASK_CMP_GE, 64); 6241 6242 case SystemZ::ATOMIC_CMP_SWAPW: 6243 return emitAtomicCmpSwapW(MI, MBB); 6244 case SystemZ::MVCSequence: 6245 case SystemZ::MVCLoop: 6246 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 6247 case SystemZ::NCSequence: 6248 case SystemZ::NCLoop: 6249 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 6250 case SystemZ::OCSequence: 6251 case SystemZ::OCLoop: 6252 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 6253 case SystemZ::XCSequence: 6254 case SystemZ::XCLoop: 6255 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 6256 case SystemZ::CLCSequence: 6257 case SystemZ::CLCLoop: 6258 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 6259 case SystemZ::CLSTLoop: 6260 return emitStringWrapper(MI, MBB, SystemZ::CLST); 6261 case SystemZ::MVSTLoop: 6262 return emitStringWrapper(MI, MBB, SystemZ::MVST); 6263 case SystemZ::SRSTLoop: 6264 return emitStringWrapper(MI, MBB, SystemZ::SRST); 6265 case SystemZ::TBEGIN: 6266 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 6267 case SystemZ::TBEGIN_nofloat: 6268 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 6269 case SystemZ::TBEGINC: 6270 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 6271 case SystemZ::LTEBRCompare_VecPseudo: 6272 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 6273 case SystemZ::LTDBRCompare_VecPseudo: 6274 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 6275 case SystemZ::LTXBRCompare_VecPseudo: 6276 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 6277 6278 default: 6279 llvm_unreachable("Unexpected instr type to insert"); 6280 } 6281 } 6282