1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZISelLowering.h"
15 #include "SystemZCallingConv.h"
16 #include "SystemZConstantPoolValue.h"
17 #include "SystemZMachineFunctionInfo.h"
18 #include "SystemZTargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/IR/Intrinsics.h"
25 #include <cctype>
26 
27 using namespace llvm;
28 
29 #define DEBUG_TYPE "systemz-lower"
30 
31 namespace {
32 // Represents a sequence for extracting a 0/1 value from an IPM result:
33 // (((X ^ XORValue) + AddValue) >> Bit)
34 struct IPMConversion {
35   IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit)
36     : XORValue(xorValue), AddValue(addValue), Bit(bit) {}
37 
38   int64_t XORValue;
39   int64_t AddValue;
40   unsigned Bit;
41 };
42 
43 // Represents information about a comparison.
44 struct Comparison {
45   Comparison(SDValue Op0In, SDValue Op1In)
46     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
47 
48   // The operands to the comparison.
49   SDValue Op0, Op1;
50 
51   // The opcode that should be used to compare Op0 and Op1.
52   unsigned Opcode;
53 
54   // A SystemZICMP value.  Only used for integer comparisons.
55   unsigned ICmpType;
56 
57   // The mask of CC values that Opcode can produce.
58   unsigned CCValid;
59 
60   // The mask of CC values for which the original condition is true.
61   unsigned CCMask;
62 };
63 } // end anonymous namespace
64 
65 // Classify VT as either 32 or 64 bit.
66 static bool is32Bit(EVT VT) {
67   switch (VT.getSimpleVT().SimpleTy) {
68   case MVT::i32:
69     return true;
70   case MVT::i64:
71     return false;
72   default:
73     llvm_unreachable("Unsupported type");
74   }
75 }
76 
77 // Return a version of MachineOperand that can be safely used before the
78 // final use.
79 static MachineOperand earlyUseOperand(MachineOperand Op) {
80   if (Op.isReg())
81     Op.setIsKill(false);
82   return Op;
83 }
84 
85 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
86                                              const SystemZSubtarget &STI)
87     : TargetLowering(TM), Subtarget(STI) {
88   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
89 
90   // Set up the register classes.
91   if (Subtarget.hasHighWord())
92     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
93   else
94     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
95   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
96   if (Subtarget.hasVector()) {
97     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
98     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
99   } else {
100     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
101     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
102   }
103   addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
104 
105   if (Subtarget.hasVector()) {
106     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
107     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
108     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
109     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
110     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
111     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
112   }
113 
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116 
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119 
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125 
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(2);
131 
132   // Handle operations that are handled in a similar way for all types.
133   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
134        I <= MVT::LAST_FP_VALUETYPE;
135        ++I) {
136     MVT VT = MVT::SimpleValueType(I);
137     if (isTypeLegal(VT)) {
138       // Lower SET_CC into an IPM-based sequence.
139       setOperationAction(ISD::SETCC, VT, Custom);
140 
141       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
142       setOperationAction(ISD::SELECT, VT, Expand);
143 
144       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
145       setOperationAction(ISD::SELECT_CC, VT, Custom);
146       setOperationAction(ISD::BR_CC,     VT, Custom);
147     }
148   }
149 
150   // Expand jump table branches as address arithmetic followed by an
151   // indirect jump.
152   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
153 
154   // Expand BRCOND into a BR_CC (see above).
155   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
156 
157   // Handle integer types.
158   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
159        I <= MVT::LAST_INTEGER_VALUETYPE;
160        ++I) {
161     MVT VT = MVT::SimpleValueType(I);
162     if (isTypeLegal(VT)) {
163       // Expand individual DIV and REMs into DIVREMs.
164       setOperationAction(ISD::SDIV, VT, Expand);
165       setOperationAction(ISD::UDIV, VT, Expand);
166       setOperationAction(ISD::SREM, VT, Expand);
167       setOperationAction(ISD::UREM, VT, Expand);
168       setOperationAction(ISD::SDIVREM, VT, Custom);
169       setOperationAction(ISD::UDIVREM, VT, Custom);
170 
171       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
172       // stores, putting a serialization instruction after the stores.
173       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
174       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
175 
176       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
177       // available, or if the operand is constant.
178       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
179 
180       // Use POPCNT on z196 and above.
181       if (Subtarget.hasPopulationCount())
182         setOperationAction(ISD::CTPOP, VT, Custom);
183       else
184         setOperationAction(ISD::CTPOP, VT, Expand);
185 
186       // No special instructions for these.
187       setOperationAction(ISD::CTTZ,            VT, Expand);
188       setOperationAction(ISD::ROTR,            VT, Expand);
189 
190       // Use *MUL_LOHI where possible instead of MULH*.
191       setOperationAction(ISD::MULHS, VT, Expand);
192       setOperationAction(ISD::MULHU, VT, Expand);
193       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
194       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
195 
196       // Only z196 and above have native support for conversions to unsigned.
197       if (!Subtarget.hasFPExtension())
198         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
199     }
200   }
201 
202   // Type legalization will convert 8- and 16-bit atomic operations into
203   // forms that operate on i32s (but still keeping the original memory VT).
204   // Lower them into full i32 operations.
205   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
206   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
207   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
208   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
209   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
210   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
211   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
212   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
213   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
214   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
215   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
216   setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Custom);
217 
218   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
219 
220   // Traps are legal, as we will convert them to "j .+2".
221   setOperationAction(ISD::TRAP, MVT::Other, Legal);
222 
223   // z10 has instructions for signed but not unsigned FP conversion.
224   // Handle unsigned 32-bit types as signed 64-bit types.
225   if (!Subtarget.hasFPExtension()) {
226     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
227     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
228   }
229 
230   // We have native support for a 64-bit CTLZ, via FLOGR.
231   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
232   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
233 
234   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
235   setOperationAction(ISD::OR, MVT::i64, Custom);
236 
237   // FIXME: Can we support these natively?
238   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
239   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
240   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
241 
242   // We have native instructions for i8, i16 and i32 extensions, but not i1.
243   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
244   for (MVT VT : MVT::integer_valuetypes()) {
245     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
246     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
247     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
248   }
249 
250   // Handle the various types of symbolic address.
251   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
252   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
253   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
254   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
255   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
256 
257   // We need to handle dynamic allocations specially because of the
258   // 160-byte area at the bottom of the stack.
259   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
260   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
261 
262   // Use custom expanders so that we can force the function to use
263   // a frame pointer.
264   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
265   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
266 
267   // Handle prefetches with PFD or PFDRL.
268   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
269 
270   for (MVT VT : MVT::vector_valuetypes()) {
271     // Assume by default that all vector operations need to be expanded.
272     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
273       if (getOperationAction(Opcode, VT) == Legal)
274         setOperationAction(Opcode, VT, Expand);
275 
276     // Likewise all truncating stores and extending loads.
277     for (MVT InnerVT : MVT::vector_valuetypes()) {
278       setTruncStoreAction(VT, InnerVT, Expand);
279       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
280       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
281       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
282     }
283 
284     if (isTypeLegal(VT)) {
285       // These operations are legal for anything that can be stored in a
286       // vector register, even if there is no native support for the format
287       // as such.  In particular, we can do these for v4f32 even though there
288       // are no specific instructions for that format.
289       setOperationAction(ISD::LOAD, VT, Legal);
290       setOperationAction(ISD::STORE, VT, Legal);
291       setOperationAction(ISD::VSELECT, VT, Legal);
292       setOperationAction(ISD::BITCAST, VT, Legal);
293       setOperationAction(ISD::UNDEF, VT, Legal);
294 
295       // Likewise, except that we need to replace the nodes with something
296       // more specific.
297       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
298       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
299     }
300   }
301 
302   // Handle integer vector types.
303   for (MVT VT : MVT::integer_vector_valuetypes()) {
304     if (isTypeLegal(VT)) {
305       // These operations have direct equivalents.
306       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
307       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
308       setOperationAction(ISD::ADD, VT, Legal);
309       setOperationAction(ISD::SUB, VT, Legal);
310       if (VT != MVT::v2i64)
311         setOperationAction(ISD::MUL, VT, Legal);
312       setOperationAction(ISD::AND, VT, Legal);
313       setOperationAction(ISD::OR, VT, Legal);
314       setOperationAction(ISD::XOR, VT, Legal);
315       setOperationAction(ISD::CTPOP, VT, Custom);
316       setOperationAction(ISD::CTTZ, VT, Legal);
317       setOperationAction(ISD::CTLZ, VT, Legal);
318 
319       // Convert a GPR scalar to a vector by inserting it into element 0.
320       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
321 
322       // Use a series of unpacks for extensions.
323       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
324       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
325 
326       // Detect shifts by a scalar amount and convert them into
327       // V*_BY_SCALAR.
328       setOperationAction(ISD::SHL, VT, Custom);
329       setOperationAction(ISD::SRA, VT, Custom);
330       setOperationAction(ISD::SRL, VT, Custom);
331 
332       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
333       // converted into ROTL.
334       setOperationAction(ISD::ROTL, VT, Expand);
335       setOperationAction(ISD::ROTR, VT, Expand);
336 
337       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
338       // and inverting the result as necessary.
339       setOperationAction(ISD::SETCC, VT, Custom);
340     }
341   }
342 
343   if (Subtarget.hasVector()) {
344     // There should be no need to check for float types other than v2f64
345     // since <2 x f32> isn't a legal type.
346     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
347     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
348     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
349     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
350   }
351 
352   // Handle floating-point types.
353   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
354        I <= MVT::LAST_FP_VALUETYPE;
355        ++I) {
356     MVT VT = MVT::SimpleValueType(I);
357     if (isTypeLegal(VT)) {
358       // We can use FI for FRINT.
359       setOperationAction(ISD::FRINT, VT, Legal);
360 
361       // We can use the extended form of FI for other rounding operations.
362       if (Subtarget.hasFPExtension()) {
363         setOperationAction(ISD::FNEARBYINT, VT, Legal);
364         setOperationAction(ISD::FFLOOR, VT, Legal);
365         setOperationAction(ISD::FCEIL, VT, Legal);
366         setOperationAction(ISD::FTRUNC, VT, Legal);
367         setOperationAction(ISD::FROUND, VT, Legal);
368       }
369 
370       // No special instructions for these.
371       setOperationAction(ISD::FSIN, VT, Expand);
372       setOperationAction(ISD::FCOS, VT, Expand);
373       setOperationAction(ISD::FSINCOS, VT, Expand);
374       setOperationAction(ISD::FREM, VT, Expand);
375       setOperationAction(ISD::FPOW, VT, Expand);
376     }
377   }
378 
379   // Handle floating-point vector types.
380   if (Subtarget.hasVector()) {
381     // Scalar-to-vector conversion is just a subreg.
382     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
383     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
384 
385     // Some insertions and extractions can be done directly but others
386     // need to go via integers.
387     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
388     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
389     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
390     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
391 
392     // These operations have direct equivalents.
393     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
394     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
395     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
396     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
397     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
398     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
399     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
400     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
401     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
402     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
403     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
404     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
405     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
406     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
407   }
408 
409   // We have fused multiply-addition for f32 and f64 but not f128.
410   setOperationAction(ISD::FMA, MVT::f32,  Legal);
411   setOperationAction(ISD::FMA, MVT::f64,  Legal);
412   setOperationAction(ISD::FMA, MVT::f128, Expand);
413 
414   // Needed so that we don't try to implement f128 constant loads using
415   // a load-and-extend of a f80 constant (in cases where the constant
416   // would fit in an f80).
417   for (MVT VT : MVT::fp_valuetypes())
418     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
419 
420   // Floating-point truncation and stores need to be done separately.
421   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
422   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
423   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
424 
425   // We have 64-bit FPR<->GPR moves, but need special handling for
426   // 32-bit forms.
427   if (!Subtarget.hasVector()) {
428     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
429     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
430   }
431 
432   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
433   // structure, but VAEND is a no-op.
434   setOperationAction(ISD::VASTART, MVT::Other, Custom);
435   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
436   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
437 
438   // Codes for which we want to perform some z-specific combinations.
439   setTargetDAGCombine(ISD::SIGN_EXTEND);
440   setTargetDAGCombine(ISD::STORE);
441   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
442   setTargetDAGCombine(ISD::FP_ROUND);
443   setTargetDAGCombine(ISD::BSWAP);
444   setTargetDAGCombine(ISD::SHL);
445   setTargetDAGCombine(ISD::SRA);
446   setTargetDAGCombine(ISD::SRL);
447   setTargetDAGCombine(ISD::ROTL);
448 
449   // Handle intrinsics.
450   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
451   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
452 
453   // We want to use MVC in preference to even a single load/store pair.
454   MaxStoresPerMemcpy = 0;
455   MaxStoresPerMemcpyOptSize = 0;
456 
457   // The main memset sequence is a byte store followed by an MVC.
458   // Two STC or MV..I stores win over that, but the kind of fused stores
459   // generated by target-independent code don't when the byte value is
460   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
461   // than "STC;MVC".  Handle the choice in target-specific code instead.
462   MaxStoresPerMemset = 0;
463   MaxStoresPerMemsetOptSize = 0;
464 }
465 
466 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
467                                               LLVMContext &, EVT VT) const {
468   if (!VT.isVector())
469     return MVT::i32;
470   return VT.changeVectorElementTypeToInteger();
471 }
472 
473 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
474   VT = VT.getScalarType();
475 
476   if (!VT.isSimple())
477     return false;
478 
479   switch (VT.getSimpleVT().SimpleTy) {
480   case MVT::f32:
481   case MVT::f64:
482     return true;
483   case MVT::f128:
484     return false;
485   default:
486     break;
487   }
488 
489   return false;
490 }
491 
492 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
493   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
494   return Imm.isZero() || Imm.isNegZero();
495 }
496 
497 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
498   // We can use CGFI or CLGFI.
499   return isInt<32>(Imm) || isUInt<32>(Imm);
500 }
501 
502 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
503   // We can use ALGFI or SLGFI.
504   return isUInt<32>(Imm) || isUInt<32>(-Imm);
505 }
506 
507 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
508                                                            unsigned,
509                                                            unsigned,
510                                                            bool *Fast) const {
511   // Unaligned accesses should never be slower than the expanded version.
512   // We check specifically for aligned accesses in the few cases where
513   // they are required.
514   if (Fast)
515     *Fast = true;
516   return true;
517 }
518 
519 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
520                                                   const AddrMode &AM, Type *Ty,
521                                                   unsigned AS) const {
522   // Punt on globals for now, although they can be used in limited
523   // RELATIVE LONG cases.
524   if (AM.BaseGV)
525     return false;
526 
527   // Require a 20-bit signed offset.
528   if (!isInt<20>(AM.BaseOffs))
529     return false;
530 
531   // Indexing is OK but no scale factor can be applied.
532   return AM.Scale == 0 || AM.Scale == 1;
533 }
534 
535 bool SystemZTargetLowering::isFoldableMemAccessOffset(Instruction *I,
536                                                       int64_t Offset) const {
537   // This only applies to z13.
538   if (!Subtarget.hasVector())
539     return true;
540 
541   // * Use LDE instead of LE/LEY to avoid partial register
542   //   dependencies (LDE only supports small offsets).
543   // * Utilize the vector registers to hold floating point
544   //   values (vector load / store instructions only support small
545   //   offsets).
546 
547   assert (isa<LoadInst>(I) || isa<StoreInst>(I));
548   Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
549                        I->getOperand(0)->getType());
550   if (!isUInt<12>(Offset) &&
551       (MemAccessTy->isFloatingPointTy() || MemAccessTy->isVectorTy()))
552     return false;
553 
554   return true;
555 }
556 
557 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
558   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
559     return false;
560   unsigned FromBits = FromType->getPrimitiveSizeInBits();
561   unsigned ToBits = ToType->getPrimitiveSizeInBits();
562   return FromBits > ToBits;
563 }
564 
565 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
566   if (!FromVT.isInteger() || !ToVT.isInteger())
567     return false;
568   unsigned FromBits = FromVT.getSizeInBits();
569   unsigned ToBits = ToVT.getSizeInBits();
570   return FromBits > ToBits;
571 }
572 
573 //===----------------------------------------------------------------------===//
574 // Inline asm support
575 //===----------------------------------------------------------------------===//
576 
577 TargetLowering::ConstraintType
578 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
579   if (Constraint.size() == 1) {
580     switch (Constraint[0]) {
581     case 'a': // Address register
582     case 'd': // Data register (equivalent to 'r')
583     case 'f': // Floating-point register
584     case 'h': // High-part register
585     case 'r': // General-purpose register
586       return C_RegisterClass;
587 
588     case 'Q': // Memory with base and unsigned 12-bit displacement
589     case 'R': // Likewise, plus an index
590     case 'S': // Memory with base and signed 20-bit displacement
591     case 'T': // Likewise, plus an index
592     case 'm': // Equivalent to 'T'.
593       return C_Memory;
594 
595     case 'I': // Unsigned 8-bit constant
596     case 'J': // Unsigned 12-bit constant
597     case 'K': // Signed 16-bit constant
598     case 'L': // Signed 20-bit displacement (on all targets we support)
599     case 'M': // 0x7fffffff
600       return C_Other;
601 
602     default:
603       break;
604     }
605   }
606   return TargetLowering::getConstraintType(Constraint);
607 }
608 
609 TargetLowering::ConstraintWeight SystemZTargetLowering::
610 getSingleConstraintMatchWeight(AsmOperandInfo &info,
611                                const char *constraint) const {
612   ConstraintWeight weight = CW_Invalid;
613   Value *CallOperandVal = info.CallOperandVal;
614   // If we don't have a value, we can't do a match,
615   // but allow it at the lowest weight.
616   if (!CallOperandVal)
617     return CW_Default;
618   Type *type = CallOperandVal->getType();
619   // Look at the constraint type.
620   switch (*constraint) {
621   default:
622     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
623     break;
624 
625   case 'a': // Address register
626   case 'd': // Data register (equivalent to 'r')
627   case 'h': // High-part register
628   case 'r': // General-purpose register
629     if (CallOperandVal->getType()->isIntegerTy())
630       weight = CW_Register;
631     break;
632 
633   case 'f': // Floating-point register
634     if (type->isFloatingPointTy())
635       weight = CW_Register;
636     break;
637 
638   case 'I': // Unsigned 8-bit constant
639     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
640       if (isUInt<8>(C->getZExtValue()))
641         weight = CW_Constant;
642     break;
643 
644   case 'J': // Unsigned 12-bit constant
645     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
646       if (isUInt<12>(C->getZExtValue()))
647         weight = CW_Constant;
648     break;
649 
650   case 'K': // Signed 16-bit constant
651     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
652       if (isInt<16>(C->getSExtValue()))
653         weight = CW_Constant;
654     break;
655 
656   case 'L': // Signed 20-bit displacement (on all targets we support)
657     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
658       if (isInt<20>(C->getSExtValue()))
659         weight = CW_Constant;
660     break;
661 
662   case 'M': // 0x7fffffff
663     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
664       if (C->getZExtValue() == 0x7fffffff)
665         weight = CW_Constant;
666     break;
667   }
668   return weight;
669 }
670 
671 // Parse a "{tNNN}" register constraint for which the register type "t"
672 // has already been verified.  MC is the class associated with "t" and
673 // Map maps 0-based register numbers to LLVM register numbers.
674 static std::pair<unsigned, const TargetRegisterClass *>
675 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
676                     const unsigned *Map) {
677   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
678   if (isdigit(Constraint[2])) {
679     unsigned Index;
680     bool Failed =
681         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
682     if (!Failed && Index < 16 && Map[Index])
683       return std::make_pair(Map[Index], RC);
684   }
685   return std::make_pair(0U, nullptr);
686 }
687 
688 std::pair<unsigned, const TargetRegisterClass *>
689 SystemZTargetLowering::getRegForInlineAsmConstraint(
690     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
691   if (Constraint.size() == 1) {
692     // GCC Constraint Letters
693     switch (Constraint[0]) {
694     default: break;
695     case 'd': // Data register (equivalent to 'r')
696     case 'r': // General-purpose register
697       if (VT == MVT::i64)
698         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
699       else if (VT == MVT::i128)
700         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
701       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
702 
703     case 'a': // Address register
704       if (VT == MVT::i64)
705         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
706       else if (VT == MVT::i128)
707         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
708       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
709 
710     case 'h': // High-part register (an LLVM extension)
711       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
712 
713     case 'f': // Floating-point register
714       if (VT == MVT::f64)
715         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
716       else if (VT == MVT::f128)
717         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
718       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
719     }
720   }
721   if (Constraint.size() > 0 && Constraint[0] == '{') {
722     // We need to override the default register parsing for GPRs and FPRs
723     // because the interpretation depends on VT.  The internal names of
724     // the registers are also different from the external names
725     // (F0D and F0S instead of F0, etc.).
726     if (Constraint[1] == 'r') {
727       if (VT == MVT::i32)
728         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
729                                    SystemZMC::GR32Regs);
730       if (VT == MVT::i128)
731         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
732                                    SystemZMC::GR128Regs);
733       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
734                                  SystemZMC::GR64Regs);
735     }
736     if (Constraint[1] == 'f') {
737       if (VT == MVT::f32)
738         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
739                                    SystemZMC::FP32Regs);
740       if (VT == MVT::f128)
741         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
742                                    SystemZMC::FP128Regs);
743       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
744                                  SystemZMC::FP64Regs);
745     }
746   }
747   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
748 }
749 
750 void SystemZTargetLowering::
751 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
752                              std::vector<SDValue> &Ops,
753                              SelectionDAG &DAG) const {
754   // Only support length 1 constraints for now.
755   if (Constraint.length() == 1) {
756     switch (Constraint[0]) {
757     case 'I': // Unsigned 8-bit constant
758       if (auto *C = dyn_cast<ConstantSDNode>(Op))
759         if (isUInt<8>(C->getZExtValue()))
760           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
761                                               Op.getValueType()));
762       return;
763 
764     case 'J': // Unsigned 12-bit constant
765       if (auto *C = dyn_cast<ConstantSDNode>(Op))
766         if (isUInt<12>(C->getZExtValue()))
767           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
768                                               Op.getValueType()));
769       return;
770 
771     case 'K': // Signed 16-bit constant
772       if (auto *C = dyn_cast<ConstantSDNode>(Op))
773         if (isInt<16>(C->getSExtValue()))
774           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
775                                               Op.getValueType()));
776       return;
777 
778     case 'L': // Signed 20-bit displacement (on all targets we support)
779       if (auto *C = dyn_cast<ConstantSDNode>(Op))
780         if (isInt<20>(C->getSExtValue()))
781           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
782                                               Op.getValueType()));
783       return;
784 
785     case 'M': // 0x7fffffff
786       if (auto *C = dyn_cast<ConstantSDNode>(Op))
787         if (C->getZExtValue() == 0x7fffffff)
788           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
789                                               Op.getValueType()));
790       return;
791     }
792   }
793   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
794 }
795 
796 //===----------------------------------------------------------------------===//
797 // Calling conventions
798 //===----------------------------------------------------------------------===//
799 
800 #include "SystemZGenCallingConv.inc"
801 
802 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
803                                                      Type *ToType) const {
804   return isTruncateFree(FromType, ToType);
805 }
806 
807 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
808   return CI->isTailCall();
809 }
810 
811 // We do not yet support 128-bit single-element vector types.  If the user
812 // attempts to use such types as function argument or return type, prefer
813 // to error out instead of emitting code violating the ABI.
814 static void VerifyVectorType(MVT VT, EVT ArgVT) {
815   if (ArgVT.isVector() && !VT.isVector())
816     report_fatal_error("Unsupported vector argument or return type");
817 }
818 
819 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
820   for (unsigned i = 0; i < Ins.size(); ++i)
821     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
822 }
823 
824 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
825   for (unsigned i = 0; i < Outs.size(); ++i)
826     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
827 }
828 
829 // Value is a value that has been passed to us in the location described by VA
830 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
831 // any loads onto Chain.
832 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
833                                    CCValAssign &VA, SDValue Chain,
834                                    SDValue Value) {
835   // If the argument has been promoted from a smaller type, insert an
836   // assertion to capture this.
837   if (VA.getLocInfo() == CCValAssign::SExt)
838     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
839                         DAG.getValueType(VA.getValVT()));
840   else if (VA.getLocInfo() == CCValAssign::ZExt)
841     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
842                         DAG.getValueType(VA.getValVT()));
843 
844   if (VA.isExtInLoc())
845     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
846   else if (VA.getLocInfo() == CCValAssign::BCvt) {
847     // If this is a short vector argument loaded from the stack,
848     // extend from i64 to full vector size and then bitcast.
849     assert(VA.getLocVT() == MVT::i64);
850     assert(VA.getValVT().isVector());
851     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
852     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
853   } else
854     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
855   return Value;
856 }
857 
858 // Value is a value of type VA.getValVT() that we need to copy into
859 // the location described by VA.  Return a copy of Value converted to
860 // VA.getValVT().  The caller is responsible for handling indirect values.
861 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
862                                    CCValAssign &VA, SDValue Value) {
863   switch (VA.getLocInfo()) {
864   case CCValAssign::SExt:
865     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
866   case CCValAssign::ZExt:
867     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
868   case CCValAssign::AExt:
869     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
870   case CCValAssign::BCvt:
871     // If this is a short vector argument to be stored to the stack,
872     // bitcast to v2i64 and then extract first element.
873     assert(VA.getLocVT() == MVT::i64);
874     assert(VA.getValVT().isVector());
875     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
876     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
877                        DAG.getConstant(0, DL, MVT::i32));
878   case CCValAssign::Full:
879     return Value;
880   default:
881     llvm_unreachable("Unhandled getLocInfo()");
882   }
883 }
884 
885 SDValue SystemZTargetLowering::LowerFormalArguments(
886     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
887     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
888     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
889   MachineFunction &MF = DAG.getMachineFunction();
890   MachineFrameInfo &MFI = MF.getFrameInfo();
891   MachineRegisterInfo &MRI = MF.getRegInfo();
892   SystemZMachineFunctionInfo *FuncInfo =
893       MF.getInfo<SystemZMachineFunctionInfo>();
894   auto *TFL =
895       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
896   EVT PtrVT = getPointerTy(DAG.getDataLayout());
897 
898   // Detect unsupported vector argument types.
899   if (Subtarget.hasVector())
900     VerifyVectorTypes(Ins);
901 
902   // Assign locations to all of the incoming arguments.
903   SmallVector<CCValAssign, 16> ArgLocs;
904   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
905   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
906 
907   unsigned NumFixedGPRs = 0;
908   unsigned NumFixedFPRs = 0;
909   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
910     SDValue ArgValue;
911     CCValAssign &VA = ArgLocs[I];
912     EVT LocVT = VA.getLocVT();
913     if (VA.isRegLoc()) {
914       // Arguments passed in registers
915       const TargetRegisterClass *RC;
916       switch (LocVT.getSimpleVT().SimpleTy) {
917       default:
918         // Integers smaller than i64 should be promoted to i64.
919         llvm_unreachable("Unexpected argument type");
920       case MVT::i32:
921         NumFixedGPRs += 1;
922         RC = &SystemZ::GR32BitRegClass;
923         break;
924       case MVT::i64:
925         NumFixedGPRs += 1;
926         RC = &SystemZ::GR64BitRegClass;
927         break;
928       case MVT::f32:
929         NumFixedFPRs += 1;
930         RC = &SystemZ::FP32BitRegClass;
931         break;
932       case MVT::f64:
933         NumFixedFPRs += 1;
934         RC = &SystemZ::FP64BitRegClass;
935         break;
936       case MVT::v16i8:
937       case MVT::v8i16:
938       case MVT::v4i32:
939       case MVT::v2i64:
940       case MVT::v4f32:
941       case MVT::v2f64:
942         RC = &SystemZ::VR128BitRegClass;
943         break;
944       }
945 
946       unsigned VReg = MRI.createVirtualRegister(RC);
947       MRI.addLiveIn(VA.getLocReg(), VReg);
948       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
949     } else {
950       assert(VA.isMemLoc() && "Argument not register or memory");
951 
952       // Create the frame index object for this incoming parameter.
953       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
954                                      VA.getLocMemOffset(), true);
955 
956       // Create the SelectionDAG nodes corresponding to a load
957       // from this parameter.  Unpromoted ints and floats are
958       // passed as right-justified 8-byte values.
959       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
960       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
961         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
962                           DAG.getIntPtrConstant(4, DL));
963       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
964                              MachinePointerInfo::getFixedStack(MF, FI));
965     }
966 
967     // Convert the value of the argument register into the value that's
968     // being passed.
969     if (VA.getLocInfo() == CCValAssign::Indirect) {
970       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
971                                    MachinePointerInfo()));
972       // If the original argument was split (e.g. i128), we need
973       // to load all parts of it here (using the same address).
974       unsigned ArgIndex = Ins[I].OrigArgIndex;
975       assert (Ins[I].PartOffset == 0);
976       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
977         CCValAssign &PartVA = ArgLocs[I + 1];
978         unsigned PartOffset = Ins[I + 1].PartOffset;
979         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
980                                       DAG.getIntPtrConstant(PartOffset, DL));
981         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
982                                      MachinePointerInfo()));
983         ++I;
984       }
985     } else
986       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
987   }
988 
989   if (IsVarArg) {
990     // Save the number of non-varargs registers for later use by va_start, etc.
991     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
992     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
993 
994     // Likewise the address (in the form of a frame index) of where the
995     // first stack vararg would be.  The 1-byte size here is arbitrary.
996     int64_t StackSize = CCInfo.getNextStackOffset();
997     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
998 
999     // ...and a similar frame index for the caller-allocated save area
1000     // that will be used to store the incoming registers.
1001     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1002     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1003     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1004 
1005     // Store the FPR varargs in the reserved frame slots.  (We store the
1006     // GPRs as part of the prologue.)
1007     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1008       SDValue MemOps[SystemZ::NumArgFPRs];
1009       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1010         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1011         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1012         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1013         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1014                                      &SystemZ::FP64BitRegClass);
1015         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1016         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1017                                  MachinePointerInfo::getFixedStack(MF, FI));
1018       }
1019       // Join the stores, which are independent of one another.
1020       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1021                           makeArrayRef(&MemOps[NumFixedFPRs],
1022                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1023     }
1024   }
1025 
1026   return Chain;
1027 }
1028 
1029 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1030                               SmallVectorImpl<CCValAssign> &ArgLocs,
1031                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1032   // Punt if there are any indirect or stack arguments, or if the call
1033   // needs the callee-saved argument register R6, or if the call uses
1034   // the callee-saved register arguments SwiftSelf and SwiftError.
1035   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1036     CCValAssign &VA = ArgLocs[I];
1037     if (VA.getLocInfo() == CCValAssign::Indirect)
1038       return false;
1039     if (!VA.isRegLoc())
1040       return false;
1041     unsigned Reg = VA.getLocReg();
1042     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1043       return false;
1044     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1045       return false;
1046   }
1047   return true;
1048 }
1049 
1050 SDValue
1051 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1052                                  SmallVectorImpl<SDValue> &InVals) const {
1053   SelectionDAG &DAG = CLI.DAG;
1054   SDLoc &DL = CLI.DL;
1055   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1056   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1057   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1058   SDValue Chain = CLI.Chain;
1059   SDValue Callee = CLI.Callee;
1060   bool &IsTailCall = CLI.IsTailCall;
1061   CallingConv::ID CallConv = CLI.CallConv;
1062   bool IsVarArg = CLI.IsVarArg;
1063   MachineFunction &MF = DAG.getMachineFunction();
1064   EVT PtrVT = getPointerTy(MF.getDataLayout());
1065 
1066   // Detect unsupported vector argument and return types.
1067   if (Subtarget.hasVector()) {
1068     VerifyVectorTypes(Outs);
1069     VerifyVectorTypes(Ins);
1070   }
1071 
1072   // Analyze the operands of the call, assigning locations to each operand.
1073   SmallVector<CCValAssign, 16> ArgLocs;
1074   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1075   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1076 
1077   // We don't support GuaranteedTailCallOpt, only automatically-detected
1078   // sibling calls.
1079   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1080     IsTailCall = false;
1081 
1082   // Get a count of how many bytes are to be pushed on the stack.
1083   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1084 
1085   // Mark the start of the call.
1086   if (!IsTailCall)
1087     Chain = DAG.getCALLSEQ_START(Chain,
1088                                  DAG.getConstant(NumBytes, DL, PtrVT, true),
1089                                  DL);
1090 
1091   // Copy argument values to their designated locations.
1092   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1093   SmallVector<SDValue, 8> MemOpChains;
1094   SDValue StackPtr;
1095   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1096     CCValAssign &VA = ArgLocs[I];
1097     SDValue ArgValue = OutVals[I];
1098 
1099     if (VA.getLocInfo() == CCValAssign::Indirect) {
1100       // Store the argument in a stack slot and pass its address.
1101       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1102       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1103       MemOpChains.push_back(
1104           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1105                        MachinePointerInfo::getFixedStack(MF, FI)));
1106       // If the original argument was split (e.g. i128), we need
1107       // to store all parts of it here (and pass just one address).
1108       unsigned ArgIndex = Outs[I].OrigArgIndex;
1109       assert (Outs[I].PartOffset == 0);
1110       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1111         SDValue PartValue = OutVals[I + 1];
1112         unsigned PartOffset = Outs[I + 1].PartOffset;
1113         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1114                                       DAG.getIntPtrConstant(PartOffset, DL));
1115         MemOpChains.push_back(
1116             DAG.getStore(Chain, DL, PartValue, Address,
1117                          MachinePointerInfo::getFixedStack(MF, FI)));
1118         ++I;
1119       }
1120       ArgValue = SpillSlot;
1121     } else
1122       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1123 
1124     if (VA.isRegLoc())
1125       // Queue up the argument copies and emit them at the end.
1126       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1127     else {
1128       assert(VA.isMemLoc() && "Argument not register or memory");
1129 
1130       // Work out the address of the stack slot.  Unpromoted ints and
1131       // floats are passed as right-justified 8-byte values.
1132       if (!StackPtr.getNode())
1133         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1134       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1135       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1136         Offset += 4;
1137       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1138                                     DAG.getIntPtrConstant(Offset, DL));
1139 
1140       // Emit the store.
1141       MemOpChains.push_back(
1142           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1143     }
1144   }
1145 
1146   // Join the stores, which are independent of one another.
1147   if (!MemOpChains.empty())
1148     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1149 
1150   // Accept direct calls by converting symbolic call addresses to the
1151   // associated Target* opcodes.  Force %r1 to be used for indirect
1152   // tail calls.
1153   SDValue Glue;
1154   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1155     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1156     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1157   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1158     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1159     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1160   } else if (IsTailCall) {
1161     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1162     Glue = Chain.getValue(1);
1163     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1164   }
1165 
1166   // Build a sequence of copy-to-reg nodes, chained and glued together.
1167   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1168     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1169                              RegsToPass[I].second, Glue);
1170     Glue = Chain.getValue(1);
1171   }
1172 
1173   // The first call operand is the chain and the second is the target address.
1174   SmallVector<SDValue, 8> Ops;
1175   Ops.push_back(Chain);
1176   Ops.push_back(Callee);
1177 
1178   // Add argument registers to the end of the list so that they are
1179   // known live into the call.
1180   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1181     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1182                                   RegsToPass[I].second.getValueType()));
1183 
1184   // Add a register mask operand representing the call-preserved registers.
1185   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1186   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1187   assert(Mask && "Missing call preserved mask for calling convention");
1188   Ops.push_back(DAG.getRegisterMask(Mask));
1189 
1190   // Glue the call to the argument copies, if any.
1191   if (Glue.getNode())
1192     Ops.push_back(Glue);
1193 
1194   // Emit the call.
1195   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1196   if (IsTailCall)
1197     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1198   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1199   Glue = Chain.getValue(1);
1200 
1201   // Mark the end of the call, which is glued to the call itself.
1202   Chain = DAG.getCALLSEQ_END(Chain,
1203                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1204                              DAG.getConstant(0, DL, PtrVT, true),
1205                              Glue, DL);
1206   Glue = Chain.getValue(1);
1207 
1208   // Assign locations to each value returned by this call.
1209   SmallVector<CCValAssign, 16> RetLocs;
1210   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1211   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1212 
1213   // Copy all of the result registers out of their specified physreg.
1214   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1215     CCValAssign &VA = RetLocs[I];
1216 
1217     // Copy the value out, gluing the copy to the end of the call sequence.
1218     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1219                                           VA.getLocVT(), Glue);
1220     Chain = RetValue.getValue(1);
1221     Glue = RetValue.getValue(2);
1222 
1223     // Convert the value of the return register into the value that's
1224     // being returned.
1225     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1226   }
1227 
1228   return Chain;
1229 }
1230 
1231 bool SystemZTargetLowering::
1232 CanLowerReturn(CallingConv::ID CallConv,
1233                MachineFunction &MF, bool isVarArg,
1234                const SmallVectorImpl<ISD::OutputArg> &Outs,
1235                LLVMContext &Context) const {
1236   // Detect unsupported vector return types.
1237   if (Subtarget.hasVector())
1238     VerifyVectorTypes(Outs);
1239 
1240   // Special case that we cannot easily detect in RetCC_SystemZ since
1241   // i128 is not a legal type.
1242   for (auto &Out : Outs)
1243     if (Out.ArgVT == MVT::i128)
1244       return false;
1245 
1246   SmallVector<CCValAssign, 16> RetLocs;
1247   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1248   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1249 }
1250 
1251 SDValue
1252 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1253                                    bool IsVarArg,
1254                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1255                                    const SmallVectorImpl<SDValue> &OutVals,
1256                                    const SDLoc &DL, SelectionDAG &DAG) const {
1257   MachineFunction &MF = DAG.getMachineFunction();
1258 
1259   // Detect unsupported vector return types.
1260   if (Subtarget.hasVector())
1261     VerifyVectorTypes(Outs);
1262 
1263   // Assign locations to each returned value.
1264   SmallVector<CCValAssign, 16> RetLocs;
1265   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1266   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1267 
1268   // Quick exit for void returns
1269   if (RetLocs.empty())
1270     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1271 
1272   // Copy the result values into the output registers.
1273   SDValue Glue;
1274   SmallVector<SDValue, 4> RetOps;
1275   RetOps.push_back(Chain);
1276   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1277     CCValAssign &VA = RetLocs[I];
1278     SDValue RetValue = OutVals[I];
1279 
1280     // Make the return register live on exit.
1281     assert(VA.isRegLoc() && "Can only return in registers!");
1282 
1283     // Promote the value as required.
1284     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1285 
1286     // Chain and glue the copies together.
1287     unsigned Reg = VA.getLocReg();
1288     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1289     Glue = Chain.getValue(1);
1290     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1291   }
1292 
1293   // Update chain and glue.
1294   RetOps[0] = Chain;
1295   if (Glue.getNode())
1296     RetOps.push_back(Glue);
1297 
1298   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1299 }
1300 
1301 SDValue SystemZTargetLowering::prepareVolatileOrAtomicLoad(
1302     SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const {
1303   return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain);
1304 }
1305 
1306 // Return true if Op is an intrinsic node with chain that returns the CC value
1307 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1308 // the mask of valid CC values if so.
1309 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1310                                       unsigned &CCValid) {
1311   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1312   switch (Id) {
1313   case Intrinsic::s390_tbegin:
1314     Opcode = SystemZISD::TBEGIN;
1315     CCValid = SystemZ::CCMASK_TBEGIN;
1316     return true;
1317 
1318   case Intrinsic::s390_tbegin_nofloat:
1319     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1320     CCValid = SystemZ::CCMASK_TBEGIN;
1321     return true;
1322 
1323   case Intrinsic::s390_tend:
1324     Opcode = SystemZISD::TEND;
1325     CCValid = SystemZ::CCMASK_TEND;
1326     return true;
1327 
1328   default:
1329     return false;
1330   }
1331 }
1332 
1333 // Return true if Op is an intrinsic node without chain that returns the
1334 // CC value as its final argument.  Provide the associated SystemZISD
1335 // opcode and the mask of valid CC values if so.
1336 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1337   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1338   switch (Id) {
1339   case Intrinsic::s390_vpkshs:
1340   case Intrinsic::s390_vpksfs:
1341   case Intrinsic::s390_vpksgs:
1342     Opcode = SystemZISD::PACKS_CC;
1343     CCValid = SystemZ::CCMASK_VCMP;
1344     return true;
1345 
1346   case Intrinsic::s390_vpklshs:
1347   case Intrinsic::s390_vpklsfs:
1348   case Intrinsic::s390_vpklsgs:
1349     Opcode = SystemZISD::PACKLS_CC;
1350     CCValid = SystemZ::CCMASK_VCMP;
1351     return true;
1352 
1353   case Intrinsic::s390_vceqbs:
1354   case Intrinsic::s390_vceqhs:
1355   case Intrinsic::s390_vceqfs:
1356   case Intrinsic::s390_vceqgs:
1357     Opcode = SystemZISD::VICMPES;
1358     CCValid = SystemZ::CCMASK_VCMP;
1359     return true;
1360 
1361   case Intrinsic::s390_vchbs:
1362   case Intrinsic::s390_vchhs:
1363   case Intrinsic::s390_vchfs:
1364   case Intrinsic::s390_vchgs:
1365     Opcode = SystemZISD::VICMPHS;
1366     CCValid = SystemZ::CCMASK_VCMP;
1367     return true;
1368 
1369   case Intrinsic::s390_vchlbs:
1370   case Intrinsic::s390_vchlhs:
1371   case Intrinsic::s390_vchlfs:
1372   case Intrinsic::s390_vchlgs:
1373     Opcode = SystemZISD::VICMPHLS;
1374     CCValid = SystemZ::CCMASK_VCMP;
1375     return true;
1376 
1377   case Intrinsic::s390_vtm:
1378     Opcode = SystemZISD::VTM;
1379     CCValid = SystemZ::CCMASK_VCMP;
1380     return true;
1381 
1382   case Intrinsic::s390_vfaebs:
1383   case Intrinsic::s390_vfaehs:
1384   case Intrinsic::s390_vfaefs:
1385     Opcode = SystemZISD::VFAE_CC;
1386     CCValid = SystemZ::CCMASK_ANY;
1387     return true;
1388 
1389   case Intrinsic::s390_vfaezbs:
1390   case Intrinsic::s390_vfaezhs:
1391   case Intrinsic::s390_vfaezfs:
1392     Opcode = SystemZISD::VFAEZ_CC;
1393     CCValid = SystemZ::CCMASK_ANY;
1394     return true;
1395 
1396   case Intrinsic::s390_vfeebs:
1397   case Intrinsic::s390_vfeehs:
1398   case Intrinsic::s390_vfeefs:
1399     Opcode = SystemZISD::VFEE_CC;
1400     CCValid = SystemZ::CCMASK_ANY;
1401     return true;
1402 
1403   case Intrinsic::s390_vfeezbs:
1404   case Intrinsic::s390_vfeezhs:
1405   case Intrinsic::s390_vfeezfs:
1406     Opcode = SystemZISD::VFEEZ_CC;
1407     CCValid = SystemZ::CCMASK_ANY;
1408     return true;
1409 
1410   case Intrinsic::s390_vfenebs:
1411   case Intrinsic::s390_vfenehs:
1412   case Intrinsic::s390_vfenefs:
1413     Opcode = SystemZISD::VFENE_CC;
1414     CCValid = SystemZ::CCMASK_ANY;
1415     return true;
1416 
1417   case Intrinsic::s390_vfenezbs:
1418   case Intrinsic::s390_vfenezhs:
1419   case Intrinsic::s390_vfenezfs:
1420     Opcode = SystemZISD::VFENEZ_CC;
1421     CCValid = SystemZ::CCMASK_ANY;
1422     return true;
1423 
1424   case Intrinsic::s390_vistrbs:
1425   case Intrinsic::s390_vistrhs:
1426   case Intrinsic::s390_vistrfs:
1427     Opcode = SystemZISD::VISTR_CC;
1428     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1429     return true;
1430 
1431   case Intrinsic::s390_vstrcbs:
1432   case Intrinsic::s390_vstrchs:
1433   case Intrinsic::s390_vstrcfs:
1434     Opcode = SystemZISD::VSTRC_CC;
1435     CCValid = SystemZ::CCMASK_ANY;
1436     return true;
1437 
1438   case Intrinsic::s390_vstrczbs:
1439   case Intrinsic::s390_vstrczhs:
1440   case Intrinsic::s390_vstrczfs:
1441     Opcode = SystemZISD::VSTRCZ_CC;
1442     CCValid = SystemZ::CCMASK_ANY;
1443     return true;
1444 
1445   case Intrinsic::s390_vfcedbs:
1446     Opcode = SystemZISD::VFCMPES;
1447     CCValid = SystemZ::CCMASK_VCMP;
1448     return true;
1449 
1450   case Intrinsic::s390_vfchdbs:
1451     Opcode = SystemZISD::VFCMPHS;
1452     CCValid = SystemZ::CCMASK_VCMP;
1453     return true;
1454 
1455   case Intrinsic::s390_vfchedbs:
1456     Opcode = SystemZISD::VFCMPHES;
1457     CCValid = SystemZ::CCMASK_VCMP;
1458     return true;
1459 
1460   case Intrinsic::s390_vftcidb:
1461     Opcode = SystemZISD::VFTCI;
1462     CCValid = SystemZ::CCMASK_VCMP;
1463     return true;
1464 
1465   case Intrinsic::s390_tdc:
1466     Opcode = SystemZISD::TDC;
1467     CCValid = SystemZ::CCMASK_TDC;
1468     return true;
1469 
1470   default:
1471     return false;
1472   }
1473 }
1474 
1475 // Emit an intrinsic with chain with a glued value instead of its CC result.
1476 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
1477                                              unsigned Opcode) {
1478   // Copy all operands except the intrinsic ID.
1479   unsigned NumOps = Op.getNumOperands();
1480   SmallVector<SDValue, 6> Ops;
1481   Ops.reserve(NumOps - 1);
1482   Ops.push_back(Op.getOperand(0));
1483   for (unsigned I = 2; I < NumOps; ++I)
1484     Ops.push_back(Op.getOperand(I));
1485 
1486   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1487   SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1488   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1489   SDValue OldChain = SDValue(Op.getNode(), 1);
1490   SDValue NewChain = SDValue(Intr.getNode(), 0);
1491   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1492   return Intr;
1493 }
1494 
1495 // Emit an intrinsic with a glued value instead of its CC result.
1496 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op,
1497                                      unsigned Opcode) {
1498   // Copy all operands except the intrinsic ID.
1499   unsigned NumOps = Op.getNumOperands();
1500   SmallVector<SDValue, 6> Ops;
1501   Ops.reserve(NumOps - 1);
1502   for (unsigned I = 1; I < NumOps; ++I)
1503     Ops.push_back(Op.getOperand(I));
1504 
1505   if (Op->getNumValues() == 1)
1506     return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops);
1507   assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result");
1508   SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue);
1509   return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1510 }
1511 
1512 // CC is a comparison that will be implemented using an integer or
1513 // floating-point comparison.  Return the condition code mask for
1514 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1515 // unsigned comparisons and clear for signed ones.  In the floating-point
1516 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1517 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1518 #define CONV(X) \
1519   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1520   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1521   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1522 
1523   switch (CC) {
1524   default:
1525     llvm_unreachable("Invalid integer condition!");
1526 
1527   CONV(EQ);
1528   CONV(NE);
1529   CONV(GT);
1530   CONV(GE);
1531   CONV(LT);
1532   CONV(LE);
1533 
1534   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1535   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1536   }
1537 #undef CONV
1538 }
1539 
1540 // Return a sequence for getting a 1 from an IPM result when CC has a
1541 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask.
1542 // The handling of CC values outside CCValid doesn't matter.
1543 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) {
1544   // Deal with cases where the result can be taken directly from a bit
1545   // of the IPM result.
1546   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3)))
1547     return IPMConversion(0, 0, SystemZ::IPM_CC);
1548   if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3)))
1549     return IPMConversion(0, 0, SystemZ::IPM_CC + 1);
1550 
1551   // Deal with cases where we can add a value to force the sign bit
1552   // to contain the right value.  Putting the bit in 31 means we can
1553   // use SRL rather than RISBG(L), and also makes it easier to get a
1554   // 0/-1 value, so it has priority over the other tests below.
1555   //
1556   // These sequences rely on the fact that the upper two bits of the
1557   // IPM result are zero.
1558   uint64_t TopBit = uint64_t(1) << 31;
1559   if (CCMask == (CCValid & SystemZ::CCMASK_0))
1560     return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31);
1561   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1)))
1562     return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31);
1563   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1564                             | SystemZ::CCMASK_1
1565                             | SystemZ::CCMASK_2)))
1566     return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31);
1567   if (CCMask == (CCValid & SystemZ::CCMASK_3))
1568     return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31);
1569   if (CCMask == (CCValid & (SystemZ::CCMASK_1
1570                             | SystemZ::CCMASK_2
1571                             | SystemZ::CCMASK_3)))
1572     return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31);
1573 
1574   // Next try inverting the value and testing a bit.  0/1 could be
1575   // handled this way too, but we dealt with that case above.
1576   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2)))
1577     return IPMConversion(-1, 0, SystemZ::IPM_CC);
1578 
1579   // Handle cases where adding a value forces a non-sign bit to contain
1580   // the right value.
1581   if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2)))
1582     return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1);
1583   if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3)))
1584     return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1);
1585 
1586   // The remaining cases are 1, 2, 0/1/3 and 0/2/3.  All these are
1587   // can be done by inverting the low CC bit and applying one of the
1588   // sign-based extractions above.
1589   if (CCMask == (CCValid & SystemZ::CCMASK_1))
1590     return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31);
1591   if (CCMask == (CCValid & SystemZ::CCMASK_2))
1592     return IPMConversion(1 << SystemZ::IPM_CC,
1593                          TopBit - (3 << SystemZ::IPM_CC), 31);
1594   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1595                             | SystemZ::CCMASK_1
1596                             | SystemZ::CCMASK_3)))
1597     return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31);
1598   if (CCMask == (CCValid & (SystemZ::CCMASK_0
1599                             | SystemZ::CCMASK_2
1600                             | SystemZ::CCMASK_3)))
1601     return IPMConversion(1 << SystemZ::IPM_CC,
1602                          TopBit - (1 << SystemZ::IPM_CC), 31);
1603 
1604   llvm_unreachable("Unexpected CC combination");
1605 }
1606 
1607 // If C can be converted to a comparison against zero, adjust the operands
1608 // as necessary.
1609 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1610   if (C.ICmpType == SystemZICMP::UnsignedOnly)
1611     return;
1612 
1613   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1614   if (!ConstOp1)
1615     return;
1616 
1617   int64_t Value = ConstOp1->getSExtValue();
1618   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1619       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1620       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1621       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1622     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1623     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1624   }
1625 }
1626 
1627 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1628 // adjust the operands as necessary.
1629 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1630                              Comparison &C) {
1631   // For us to make any changes, it must a comparison between a single-use
1632   // load and a constant.
1633   if (!C.Op0.hasOneUse() ||
1634       C.Op0.getOpcode() != ISD::LOAD ||
1635       C.Op1.getOpcode() != ISD::Constant)
1636     return;
1637 
1638   // We must have an 8- or 16-bit load.
1639   auto *Load = cast<LoadSDNode>(C.Op0);
1640   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1641   if (NumBits != 8 && NumBits != 16)
1642     return;
1643 
1644   // The load must be an extending one and the constant must be within the
1645   // range of the unextended value.
1646   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1647   uint64_t Value = ConstOp1->getZExtValue();
1648   uint64_t Mask = (1 << NumBits) - 1;
1649   if (Load->getExtensionType() == ISD::SEXTLOAD) {
1650     // Make sure that ConstOp1 is in range of C.Op0.
1651     int64_t SignedValue = ConstOp1->getSExtValue();
1652     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1653       return;
1654     if (C.ICmpType != SystemZICMP::SignedOnly) {
1655       // Unsigned comparison between two sign-extended values is equivalent
1656       // to unsigned comparison between two zero-extended values.
1657       Value &= Mask;
1658     } else if (NumBits == 8) {
1659       // Try to treat the comparison as unsigned, so that we can use CLI.
1660       // Adjust CCMask and Value as necessary.
1661       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1662         // Test whether the high bit of the byte is set.
1663         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1664       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1665         // Test whether the high bit of the byte is clear.
1666         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1667       else
1668         // No instruction exists for this combination.
1669         return;
1670       C.ICmpType = SystemZICMP::UnsignedOnly;
1671     }
1672   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1673     if (Value > Mask)
1674       return;
1675     // If the constant is in range, we can use any comparison.
1676     C.ICmpType = SystemZICMP::Any;
1677   } else
1678     return;
1679 
1680   // Make sure that the first operand is an i32 of the right extension type.
1681   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1682                               ISD::SEXTLOAD :
1683                               ISD::ZEXTLOAD);
1684   if (C.Op0.getValueType() != MVT::i32 ||
1685       Load->getExtensionType() != ExtType)
1686     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
1687                            Load->getBasePtr(), Load->getPointerInfo(),
1688                            Load->getMemoryVT(), Load->getAlignment(),
1689                            Load->getMemOperand()->getFlags());
1690 
1691   // Make sure that the second operand is an i32 with the right value.
1692   if (C.Op1.getValueType() != MVT::i32 ||
1693       Value != ConstOp1->getZExtValue())
1694     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1695 }
1696 
1697 // Return true if Op is either an unextended load, or a load suitable
1698 // for integer register-memory comparisons of type ICmpType.
1699 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1700   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1701   if (Load) {
1702     // There are no instructions to compare a register with a memory byte.
1703     if (Load->getMemoryVT() == MVT::i8)
1704       return false;
1705     // Otherwise decide on extension type.
1706     switch (Load->getExtensionType()) {
1707     case ISD::NON_EXTLOAD:
1708       return true;
1709     case ISD::SEXTLOAD:
1710       return ICmpType != SystemZICMP::UnsignedOnly;
1711     case ISD::ZEXTLOAD:
1712       return ICmpType != SystemZICMP::SignedOnly;
1713     default:
1714       break;
1715     }
1716   }
1717   return false;
1718 }
1719 
1720 // Return true if it is better to swap the operands of C.
1721 static bool shouldSwapCmpOperands(const Comparison &C) {
1722   // Leave f128 comparisons alone, since they have no memory forms.
1723   if (C.Op0.getValueType() == MVT::f128)
1724     return false;
1725 
1726   // Always keep a floating-point constant second, since comparisons with
1727   // zero can use LOAD TEST and comparisons with other constants make a
1728   // natural memory operand.
1729   if (isa<ConstantFPSDNode>(C.Op1))
1730     return false;
1731 
1732   // Never swap comparisons with zero since there are many ways to optimize
1733   // those later.
1734   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1735   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1736     return false;
1737 
1738   // Also keep natural memory operands second if the loaded value is
1739   // only used here.  Several comparisons have memory forms.
1740   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1741     return false;
1742 
1743   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1744   // In that case we generally prefer the memory to be second.
1745   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1746     // The only exceptions are when the second operand is a constant and
1747     // we can use things like CHHSI.
1748     if (!ConstOp1)
1749       return true;
1750     // The unsigned memory-immediate instructions can handle 16-bit
1751     // unsigned integers.
1752     if (C.ICmpType != SystemZICMP::SignedOnly &&
1753         isUInt<16>(ConstOp1->getZExtValue()))
1754       return false;
1755     // The signed memory-immediate instructions can handle 16-bit
1756     // signed integers.
1757     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1758         isInt<16>(ConstOp1->getSExtValue()))
1759       return false;
1760     return true;
1761   }
1762 
1763   // Try to promote the use of CGFR and CLGFR.
1764   unsigned Opcode0 = C.Op0.getOpcode();
1765   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1766     return true;
1767   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1768     return true;
1769   if (C.ICmpType != SystemZICMP::SignedOnly &&
1770       Opcode0 == ISD::AND &&
1771       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1772       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1773     return true;
1774 
1775   return false;
1776 }
1777 
1778 // Return a version of comparison CC mask CCMask in which the LT and GT
1779 // actions are swapped.
1780 static unsigned reverseCCMask(unsigned CCMask) {
1781   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1782           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1783           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1784           (CCMask & SystemZ::CCMASK_CMP_UO));
1785 }
1786 
1787 // Check whether C tests for equality between X and Y and whether X - Y
1788 // or Y - X is also computed.  In that case it's better to compare the
1789 // result of the subtraction against zero.
1790 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
1791                                  Comparison &C) {
1792   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1793       C.CCMask == SystemZ::CCMASK_CMP_NE) {
1794     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1795       SDNode *N = *I;
1796       if (N->getOpcode() == ISD::SUB &&
1797           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1798            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1799         C.Op0 = SDValue(N, 0);
1800         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
1801         return;
1802       }
1803     }
1804   }
1805 }
1806 
1807 // Check whether C compares a floating-point value with zero and if that
1808 // floating-point value is also negated.  In this case we can use the
1809 // negation to set CC, so avoiding separate LOAD AND TEST and
1810 // LOAD (NEGATIVE/COMPLEMENT) instructions.
1811 static void adjustForFNeg(Comparison &C) {
1812   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1813   if (C1 && C1->isZero()) {
1814     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1815       SDNode *N = *I;
1816       if (N->getOpcode() == ISD::FNEG) {
1817         C.Op0 = SDValue(N, 0);
1818         C.CCMask = reverseCCMask(C.CCMask);
1819         return;
1820       }
1821     }
1822   }
1823 }
1824 
1825 // Check whether C compares (shl X, 32) with 0 and whether X is
1826 // also sign-extended.  In that case it is better to test the result
1827 // of the sign extension using LTGFR.
1828 //
1829 // This case is important because InstCombine transforms a comparison
1830 // with (sext (trunc X)) into a comparison with (shl X, 32).
1831 static void adjustForLTGFR(Comparison &C) {
1832   // Check for a comparison between (shl X, 32) and 0.
1833   if (C.Op0.getOpcode() == ISD::SHL &&
1834       C.Op0.getValueType() == MVT::i64 &&
1835       C.Op1.getOpcode() == ISD::Constant &&
1836       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1837     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1838     if (C1 && C1->getZExtValue() == 32) {
1839       SDValue ShlOp0 = C.Op0.getOperand(0);
1840       // See whether X has any SIGN_EXTEND_INREG uses.
1841       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1842         SDNode *N = *I;
1843         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1844             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1845           C.Op0 = SDValue(N, 0);
1846           return;
1847         }
1848       }
1849     }
1850   }
1851 }
1852 
1853 // If C compares the truncation of an extending load, try to compare
1854 // the untruncated value instead.  This exposes more opportunities to
1855 // reuse CC.
1856 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
1857                                Comparison &C) {
1858   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1859       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1860       C.Op1.getOpcode() == ISD::Constant &&
1861       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1862     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1863     if (L->getMemoryVT().getStoreSizeInBits()
1864         <= C.Op0.getValueType().getSizeInBits()) {
1865       unsigned Type = L->getExtensionType();
1866       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1867           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1868         C.Op0 = C.Op0.getOperand(0);
1869         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
1870       }
1871     }
1872   }
1873 }
1874 
1875 // Return true if shift operation N has an in-range constant shift value.
1876 // Store it in ShiftVal if so.
1877 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1878   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1879   if (!Shift)
1880     return false;
1881 
1882   uint64_t Amount = Shift->getZExtValue();
1883   if (Amount >= N.getValueType().getSizeInBits())
1884     return false;
1885 
1886   ShiftVal = Amount;
1887   return true;
1888 }
1889 
1890 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
1891 // instruction and whether the CC value is descriptive enough to handle
1892 // a comparison of type Opcode between the AND result and CmpVal.
1893 // CCMask says which comparison result is being tested and BitSize is
1894 // the number of bits in the operands.  If TEST UNDER MASK can be used,
1895 // return the corresponding CC mask, otherwise return 0.
1896 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1897                                      uint64_t Mask, uint64_t CmpVal,
1898                                      unsigned ICmpType) {
1899   assert(Mask != 0 && "ANDs with zero should have been removed by now");
1900 
1901   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1902   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1903       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1904     return 0;
1905 
1906   // Work out the masks for the lowest and highest bits.
1907   unsigned HighShift = 63 - countLeadingZeros(Mask);
1908   uint64_t High = uint64_t(1) << HighShift;
1909   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1910 
1911   // Signed ordered comparisons are effectively unsigned if the sign
1912   // bit is dropped.
1913   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
1914 
1915   // Check for equality comparisons with 0, or the equivalent.
1916   if (CmpVal == 0) {
1917     if (CCMask == SystemZ::CCMASK_CMP_EQ)
1918       return SystemZ::CCMASK_TM_ALL_0;
1919     if (CCMask == SystemZ::CCMASK_CMP_NE)
1920       return SystemZ::CCMASK_TM_SOME_1;
1921   }
1922   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
1923     if (CCMask == SystemZ::CCMASK_CMP_LT)
1924       return SystemZ::CCMASK_TM_ALL_0;
1925     if (CCMask == SystemZ::CCMASK_CMP_GE)
1926       return SystemZ::CCMASK_TM_SOME_1;
1927   }
1928   if (EffectivelyUnsigned && CmpVal < Low) {
1929     if (CCMask == SystemZ::CCMASK_CMP_LE)
1930       return SystemZ::CCMASK_TM_ALL_0;
1931     if (CCMask == SystemZ::CCMASK_CMP_GT)
1932       return SystemZ::CCMASK_TM_SOME_1;
1933   }
1934 
1935   // Check for equality comparisons with the mask, or the equivalent.
1936   if (CmpVal == Mask) {
1937     if (CCMask == SystemZ::CCMASK_CMP_EQ)
1938       return SystemZ::CCMASK_TM_ALL_1;
1939     if (CCMask == SystemZ::CCMASK_CMP_NE)
1940       return SystemZ::CCMASK_TM_SOME_0;
1941   }
1942   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
1943     if (CCMask == SystemZ::CCMASK_CMP_GT)
1944       return SystemZ::CCMASK_TM_ALL_1;
1945     if (CCMask == SystemZ::CCMASK_CMP_LE)
1946       return SystemZ::CCMASK_TM_SOME_0;
1947   }
1948   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
1949     if (CCMask == SystemZ::CCMASK_CMP_GE)
1950       return SystemZ::CCMASK_TM_ALL_1;
1951     if (CCMask == SystemZ::CCMASK_CMP_LT)
1952       return SystemZ::CCMASK_TM_SOME_0;
1953   }
1954 
1955   // Check for ordered comparisons with the top bit.
1956   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
1957     if (CCMask == SystemZ::CCMASK_CMP_LE)
1958       return SystemZ::CCMASK_TM_MSB_0;
1959     if (CCMask == SystemZ::CCMASK_CMP_GT)
1960       return SystemZ::CCMASK_TM_MSB_1;
1961   }
1962   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
1963     if (CCMask == SystemZ::CCMASK_CMP_LT)
1964       return SystemZ::CCMASK_TM_MSB_0;
1965     if (CCMask == SystemZ::CCMASK_CMP_GE)
1966       return SystemZ::CCMASK_TM_MSB_1;
1967   }
1968 
1969   // If there are just two bits, we can do equality checks for Low and High
1970   // as well.
1971   if (Mask == Low + High) {
1972     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
1973       return SystemZ::CCMASK_TM_MIXED_MSB_0;
1974     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
1975       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
1976     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
1977       return SystemZ::CCMASK_TM_MIXED_MSB_1;
1978     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
1979       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
1980   }
1981 
1982   // Looks like we've exhausted our options.
1983   return 0;
1984 }
1985 
1986 // See whether C can be implemented as a TEST UNDER MASK instruction.
1987 // Update the arguments with the TM version if so.
1988 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
1989                                    Comparison &C) {
1990   // Check that we have a comparison with a constant.
1991   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1992   if (!ConstOp1)
1993     return;
1994   uint64_t CmpVal = ConstOp1->getZExtValue();
1995 
1996   // Check whether the nonconstant input is an AND with a constant mask.
1997   Comparison NewC(C);
1998   uint64_t MaskVal;
1999   ConstantSDNode *Mask = nullptr;
2000   if (C.Op0.getOpcode() == ISD::AND) {
2001     NewC.Op0 = C.Op0.getOperand(0);
2002     NewC.Op1 = C.Op0.getOperand(1);
2003     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2004     if (!Mask)
2005       return;
2006     MaskVal = Mask->getZExtValue();
2007   } else {
2008     // There is no instruction to compare with a 64-bit immediate
2009     // so use TMHH instead if possible.  We need an unsigned ordered
2010     // comparison with an i64 immediate.
2011     if (NewC.Op0.getValueType() != MVT::i64 ||
2012         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2013         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2014         NewC.ICmpType == SystemZICMP::SignedOnly)
2015       return;
2016     // Convert LE and GT comparisons into LT and GE.
2017     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2018         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2019       if (CmpVal == uint64_t(-1))
2020         return;
2021       CmpVal += 1;
2022       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2023     }
2024     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2025     // be masked off without changing the result.
2026     MaskVal = -(CmpVal & -CmpVal);
2027     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2028   }
2029   if (!MaskVal)
2030     return;
2031 
2032   // Check whether the combination of mask, comparison value and comparison
2033   // type are suitable.
2034   unsigned BitSize = NewC.Op0.getValueType().getSizeInBits();
2035   unsigned NewCCMask, ShiftVal;
2036   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2037       NewC.Op0.getOpcode() == ISD::SHL &&
2038       isSimpleShift(NewC.Op0, ShiftVal) &&
2039       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2040                                         MaskVal >> ShiftVal,
2041                                         CmpVal >> ShiftVal,
2042                                         SystemZICMP::Any))) {
2043     NewC.Op0 = NewC.Op0.getOperand(0);
2044     MaskVal >>= ShiftVal;
2045   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2046              NewC.Op0.getOpcode() == ISD::SRL &&
2047              isSimpleShift(NewC.Op0, ShiftVal) &&
2048              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2049                                                MaskVal << ShiftVal,
2050                                                CmpVal << ShiftVal,
2051                                                SystemZICMP::UnsignedOnly))) {
2052     NewC.Op0 = NewC.Op0.getOperand(0);
2053     MaskVal <<= ShiftVal;
2054   } else {
2055     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2056                                      NewC.ICmpType);
2057     if (!NewCCMask)
2058       return;
2059   }
2060 
2061   // Go ahead and make the change.
2062   C.Opcode = SystemZISD::TM;
2063   C.Op0 = NewC.Op0;
2064   if (Mask && Mask->getZExtValue() == MaskVal)
2065     C.Op1 = SDValue(Mask, 0);
2066   else
2067     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2068   C.CCValid = SystemZ::CCMASK_TM;
2069   C.CCMask = NewCCMask;
2070 }
2071 
2072 // Return a Comparison that tests the condition-code result of intrinsic
2073 // node Call against constant integer CC using comparison code Cond.
2074 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2075 // and CCValid is the set of possible condition-code results.
2076 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2077                                   SDValue Call, unsigned CCValid, uint64_t CC,
2078                                   ISD::CondCode Cond) {
2079   Comparison C(Call, SDValue());
2080   C.Opcode = Opcode;
2081   C.CCValid = CCValid;
2082   if (Cond == ISD::SETEQ)
2083     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2084     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2085   else if (Cond == ISD::SETNE)
2086     // ...and the inverse of that.
2087     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2088   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2089     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2090     // always true for CC>3.
2091     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2092   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2093     // ...and the inverse of that.
2094     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2095   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2096     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2097     // always true for CC>3.
2098     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2099   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2100     // ...and the inverse of that.
2101     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2102   else
2103     llvm_unreachable("Unexpected integer comparison type");
2104   C.CCMask &= CCValid;
2105   return C;
2106 }
2107 
2108 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2109 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2110                          ISD::CondCode Cond, const SDLoc &DL) {
2111   if (CmpOp1.getOpcode() == ISD::Constant) {
2112     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2113     unsigned Opcode, CCValid;
2114     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2115         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2116         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2117       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2118     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2119         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2120         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2121       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2122   }
2123   Comparison C(CmpOp0, CmpOp1);
2124   C.CCMask = CCMaskForCondCode(Cond);
2125   if (C.Op0.getValueType().isFloatingPoint()) {
2126     C.CCValid = SystemZ::CCMASK_FCMP;
2127     C.Opcode = SystemZISD::FCMP;
2128     adjustForFNeg(C);
2129   } else {
2130     C.CCValid = SystemZ::CCMASK_ICMP;
2131     C.Opcode = SystemZISD::ICMP;
2132     // Choose the type of comparison.  Equality and inequality tests can
2133     // use either signed or unsigned comparisons.  The choice also doesn't
2134     // matter if both sign bits are known to be clear.  In those cases we
2135     // want to give the main isel code the freedom to choose whichever
2136     // form fits best.
2137     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2138         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2139         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2140       C.ICmpType = SystemZICMP::Any;
2141     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2142       C.ICmpType = SystemZICMP::UnsignedOnly;
2143     else
2144       C.ICmpType = SystemZICMP::SignedOnly;
2145     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2146     adjustZeroCmp(DAG, DL, C);
2147     adjustSubwordCmp(DAG, DL, C);
2148     adjustForSubtraction(DAG, DL, C);
2149     adjustForLTGFR(C);
2150     adjustICmpTruncate(DAG, DL, C);
2151   }
2152 
2153   if (shouldSwapCmpOperands(C)) {
2154     std::swap(C.Op0, C.Op1);
2155     C.CCMask = reverseCCMask(C.CCMask);
2156   }
2157 
2158   adjustForTestUnderMask(DAG, DL, C);
2159   return C;
2160 }
2161 
2162 // Emit the comparison instruction described by C.
2163 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2164   if (!C.Op1.getNode()) {
2165     SDValue Op;
2166     switch (C.Op0.getOpcode()) {
2167     case ISD::INTRINSIC_W_CHAIN:
2168       Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
2169       break;
2170     case ISD::INTRINSIC_WO_CHAIN:
2171       Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode);
2172       break;
2173     default:
2174       llvm_unreachable("Invalid comparison operands");
2175     }
2176     return SDValue(Op.getNode(), Op->getNumValues() - 1);
2177   }
2178   if (C.Opcode == SystemZISD::ICMP)
2179     return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
2180                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
2181   if (C.Opcode == SystemZISD::TM) {
2182     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2183                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2184     return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
2185                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
2186   }
2187   return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
2188 }
2189 
2190 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2191 // 64 bits.  Extend is the extension type to use.  Store the high part
2192 // in Hi and the low part in Lo.
2193 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2194                             SDValue Op0, SDValue Op1, SDValue &Hi,
2195                             SDValue &Lo) {
2196   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2197   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2198   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2199   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2200                    DAG.getConstant(32, DL, MVT::i64));
2201   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2202   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2203 }
2204 
2205 // Lower a binary operation that produces two VT results, one in each
2206 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2207 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation
2208 // on the extended Op0 and (unextended) Op1.  Store the even register result
2209 // in Even and the odd register result in Odd.
2210 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2211                              unsigned Extend, unsigned Opcode, SDValue Op0,
2212                              SDValue Op1, SDValue &Even, SDValue &Odd) {
2213   SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0);
2214   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped,
2215                                SDValue(In128, 0), Op1);
2216   bool Is32Bit = is32Bit(VT);
2217   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2218   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2219 }
2220 
2221 // Return an i32 value that is 1 if the CC value produced by Glue is
2222 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2223 // in CCValid, so other values can be ignored.
2224 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue,
2225                          unsigned CCValid, unsigned CCMask) {
2226   IPMConversion Conversion = getIPMConversion(CCValid, CCMask);
2227   SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
2228 
2229   if (Conversion.XORValue)
2230     Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result,
2231                          DAG.getConstant(Conversion.XORValue, DL, MVT::i32));
2232 
2233   if (Conversion.AddValue)
2234     Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result,
2235                          DAG.getConstant(Conversion.AddValue, DL, MVT::i32));
2236 
2237   // The SHR/AND sequence should get optimized to an RISBG.
2238   Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result,
2239                        DAG.getConstant(Conversion.Bit, DL, MVT::i32));
2240   if (Conversion.Bit != 31)
2241     Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result,
2242                          DAG.getConstant(1, DL, MVT::i32));
2243   return Result;
2244 }
2245 
2246 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2247 // be done directly.  IsFP is true if CC is for a floating-point rather than
2248 // integer comparison.
2249 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2250   switch (CC) {
2251   case ISD::SETOEQ:
2252   case ISD::SETEQ:
2253     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2254 
2255   case ISD::SETOGE:
2256   case ISD::SETGE:
2257     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2258 
2259   case ISD::SETOGT:
2260   case ISD::SETGT:
2261     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2262 
2263   case ISD::SETUGT:
2264     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2265 
2266   default:
2267     return 0;
2268   }
2269 }
2270 
2271 // Return the SystemZISD vector comparison operation for CC or its inverse,
2272 // or 0 if neither can be done directly.  Indicate in Invert whether the
2273 // result is for the inverse of CC.  IsFP is true if CC is for a
2274 // floating-point rather than integer comparison.
2275 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2276                                             bool &Invert) {
2277   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2278     Invert = false;
2279     return Opcode;
2280   }
2281 
2282   CC = ISD::getSetCCInverse(CC, !IsFP);
2283   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2284     Invert = true;
2285     return Opcode;
2286   }
2287 
2288   return 0;
2289 }
2290 
2291 // Return a v2f64 that contains the extended form of elements Start and Start+1
2292 // of v4f32 value Op.
2293 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2294                                   SDValue Op) {
2295   int Mask[] = { Start, -1, Start + 1, -1 };
2296   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2297   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2298 }
2299 
2300 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2301 // producing a result of type VT.
2302 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &DL,
2303                             EVT VT, SDValue CmpOp0, SDValue CmpOp1) {
2304   // There is no hardware support for v4f32, so extend the vector into
2305   // two v2f64s and compare those.
2306   if (CmpOp0.getValueType() == MVT::v4f32) {
2307     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2308     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2309     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2310     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2311     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2312     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2313     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2314   }
2315   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2316 }
2317 
2318 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2319 // an integer mask of type VT.
2320 static SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2321                                 ISD::CondCode CC, SDValue CmpOp0,
2322                                 SDValue CmpOp1) {
2323   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2324   bool Invert = false;
2325   SDValue Cmp;
2326   switch (CC) {
2327     // Handle tests for order using (or (ogt y x) (oge x y)).
2328   case ISD::SETUO:
2329     Invert = true;
2330   case ISD::SETO: {
2331     assert(IsFP && "Unexpected integer comparison");
2332     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2333     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2334     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2335     break;
2336   }
2337 
2338     // Handle <> tests using (or (ogt y x) (ogt x y)).
2339   case ISD::SETUEQ:
2340     Invert = true;
2341   case ISD::SETONE: {
2342     assert(IsFP && "Unexpected integer comparison");
2343     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2344     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2345     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2346     break;
2347   }
2348 
2349     // Otherwise a single comparison is enough.  It doesn't really
2350     // matter whether we try the inversion or the swap first, since
2351     // there are no cases where both work.
2352   default:
2353     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2354       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2355     else {
2356       CC = ISD::getSetCCSwappedOperands(CC);
2357       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2358         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2359       else
2360         llvm_unreachable("Unhandled comparison");
2361     }
2362     break;
2363   }
2364   if (Invert) {
2365     SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2366                                DAG.getConstant(65535, DL, MVT::i32));
2367     Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2368     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2369   }
2370   return Cmp;
2371 }
2372 
2373 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2374                                           SelectionDAG &DAG) const {
2375   SDValue CmpOp0   = Op.getOperand(0);
2376   SDValue CmpOp1   = Op.getOperand(1);
2377   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2378   SDLoc DL(Op);
2379   EVT VT = Op.getValueType();
2380   if (VT.isVector())
2381     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2382 
2383   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2384   SDValue Glue = emitCmp(DAG, DL, C);
2385   return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2386 }
2387 
2388 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2389   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2390   SDValue CmpOp0   = Op.getOperand(2);
2391   SDValue CmpOp1   = Op.getOperand(3);
2392   SDValue Dest     = Op.getOperand(4);
2393   SDLoc DL(Op);
2394 
2395   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2396   SDValue Glue = emitCmp(DAG, DL, C);
2397   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2398                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2399                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue);
2400 }
2401 
2402 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2403 // allowing Pos and Neg to be wider than CmpOp.
2404 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2405   return (Neg.getOpcode() == ISD::SUB &&
2406           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2407           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2408           Neg.getOperand(1) == Pos &&
2409           (Pos == CmpOp ||
2410            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2411             Pos.getOperand(0) == CmpOp)));
2412 }
2413 
2414 // Return the absolute or negative absolute of Op; IsNegative decides which.
2415 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2416                            bool IsNegative) {
2417   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2418   if (IsNegative)
2419     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2420                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2421   return Op;
2422 }
2423 
2424 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2425                                               SelectionDAG &DAG) const {
2426   SDValue CmpOp0   = Op.getOperand(0);
2427   SDValue CmpOp1   = Op.getOperand(1);
2428   SDValue TrueOp   = Op.getOperand(2);
2429   SDValue FalseOp  = Op.getOperand(3);
2430   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2431   SDLoc DL(Op);
2432 
2433   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2434 
2435   // Check for absolute and negative-absolute selections, including those
2436   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2437   // This check supplements the one in DAGCombiner.
2438   if (C.Opcode == SystemZISD::ICMP &&
2439       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2440       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2441       C.Op1.getOpcode() == ISD::Constant &&
2442       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2443     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2444       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2445     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2446       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2447   }
2448 
2449   SDValue Glue = emitCmp(DAG, DL, C);
2450 
2451   // Special case for handling -1/0 results.  The shifts we use here
2452   // should get optimized with the IPM conversion sequence.
2453   auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp);
2454   auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp);
2455   if (TrueC && FalseC) {
2456     int64_t TrueVal = TrueC->getSExtValue();
2457     int64_t FalseVal = FalseC->getSExtValue();
2458     if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) {
2459       // Invert the condition if we want -1 on false.
2460       if (TrueVal == 0)
2461         C.CCMask ^= C.CCValid;
2462       SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2463       EVT VT = Op.getValueType();
2464       // Extend the result to VT.  Upper bits are ignored.
2465       if (!is32Bit(VT))
2466         Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result);
2467       // Sign-extend from the low bit.
2468       SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32);
2469       SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt);
2470       return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt);
2471     }
2472   }
2473 
2474   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2475                    DAG.getConstant(C.CCMask, DL, MVT::i32), Glue};
2476 
2477   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
2478   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops);
2479 }
2480 
2481 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2482                                                   SelectionDAG &DAG) const {
2483   SDLoc DL(Node);
2484   const GlobalValue *GV = Node->getGlobal();
2485   int64_t Offset = Node->getOffset();
2486   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2487   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2488 
2489   SDValue Result;
2490   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2491     // Assign anchors at 1<<12 byte boundaries.
2492     uint64_t Anchor = Offset & ~uint64_t(0xfff);
2493     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2494     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2495 
2496     // The offset can be folded into the address if it is aligned to a halfword.
2497     Offset -= Anchor;
2498     if (Offset != 0 && (Offset & 1) == 0) {
2499       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2500       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2501       Offset = 0;
2502     }
2503   } else {
2504     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2505     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2506     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2507                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2508   }
2509 
2510   // If there was a non-zero offset that we didn't fold, create an explicit
2511   // addition for it.
2512   if (Offset != 0)
2513     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2514                          DAG.getConstant(Offset, DL, PtrVT));
2515 
2516   return Result;
2517 }
2518 
2519 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2520                                                  SelectionDAG &DAG,
2521                                                  unsigned Opcode,
2522                                                  SDValue GOTOffset) const {
2523   SDLoc DL(Node);
2524   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2525   SDValue Chain = DAG.getEntryNode();
2526   SDValue Glue;
2527 
2528   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2529   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2530   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2531   Glue = Chain.getValue(1);
2532   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2533   Glue = Chain.getValue(1);
2534 
2535   // The first call operand is the chain and the second is the TLS symbol.
2536   SmallVector<SDValue, 8> Ops;
2537   Ops.push_back(Chain);
2538   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2539                                            Node->getValueType(0),
2540                                            0, 0));
2541 
2542   // Add argument registers to the end of the list so that they are
2543   // known live into the call.
2544   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2545   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2546 
2547   // Add a register mask operand representing the call-preserved registers.
2548   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2549   const uint32_t *Mask =
2550       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2551   assert(Mask && "Missing call preserved mask for calling convention");
2552   Ops.push_back(DAG.getRegisterMask(Mask));
2553 
2554   // Glue the call to the argument copies.
2555   Ops.push_back(Glue);
2556 
2557   // Emit the call.
2558   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2559   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2560   Glue = Chain.getValue(1);
2561 
2562   // Copy the return value from %r2.
2563   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2564 }
2565 
2566 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2567                                                   SelectionDAG &DAG) const {
2568   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2569 
2570   // The high part of the thread pointer is in access register 0.
2571   SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
2572                              DAG.getConstant(0, DL, MVT::i32));
2573   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2574 
2575   // The low part of the thread pointer is in access register 1.
2576   SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32,
2577                              DAG.getConstant(1, DL, MVT::i32));
2578   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2579 
2580   // Merge them into a single 64-bit address.
2581   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2582                                     DAG.getConstant(32, DL, PtrVT));
2583   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2584 }
2585 
2586 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2587                                                      SelectionDAG &DAG) const {
2588   if (DAG.getTarget().Options.EmulatedTLS)
2589     return LowerToTLSEmulatedModel(Node, DAG);
2590   SDLoc DL(Node);
2591   const GlobalValue *GV = Node->getGlobal();
2592   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2593   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2594 
2595   SDValue TP = lowerThreadPointer(DL, DAG);
2596 
2597   // Get the offset of GA from the thread pointer, based on the TLS model.
2598   SDValue Offset;
2599   switch (model) {
2600     case TLSModel::GeneralDynamic: {
2601       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2602       SystemZConstantPoolValue *CPV =
2603         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2604 
2605       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2606       Offset = DAG.getLoad(
2607           PtrVT, DL, DAG.getEntryNode(), Offset,
2608           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2609 
2610       // Call __tls_get_offset to retrieve the offset.
2611       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2612       break;
2613     }
2614 
2615     case TLSModel::LocalDynamic: {
2616       // Load the GOT offset of the module ID.
2617       SystemZConstantPoolValue *CPV =
2618         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2619 
2620       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2621       Offset = DAG.getLoad(
2622           PtrVT, DL, DAG.getEntryNode(), Offset,
2623           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2624 
2625       // Call __tls_get_offset to retrieve the module base offset.
2626       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2627 
2628       // Note: The SystemZLDCleanupPass will remove redundant computations
2629       // of the module base offset.  Count total number of local-dynamic
2630       // accesses to trigger execution of that pass.
2631       SystemZMachineFunctionInfo* MFI =
2632         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2633       MFI->incNumLocalDynamicTLSAccesses();
2634 
2635       // Add the per-symbol offset.
2636       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2637 
2638       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2639       DTPOffset = DAG.getLoad(
2640           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2641           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2642 
2643       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2644       break;
2645     }
2646 
2647     case TLSModel::InitialExec: {
2648       // Load the offset from the GOT.
2649       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2650                                           SystemZII::MO_INDNTPOFF);
2651       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2652       Offset =
2653           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2654                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2655       break;
2656     }
2657 
2658     case TLSModel::LocalExec: {
2659       // Force the offset into the constant pool and load it from there.
2660       SystemZConstantPoolValue *CPV =
2661         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2662 
2663       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2664       Offset = DAG.getLoad(
2665           PtrVT, DL, DAG.getEntryNode(), Offset,
2666           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2667       break;
2668     }
2669   }
2670 
2671   // Add the base and offset together.
2672   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2673 }
2674 
2675 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2676                                                  SelectionDAG &DAG) const {
2677   SDLoc DL(Node);
2678   const BlockAddress *BA = Node->getBlockAddress();
2679   int64_t Offset = Node->getOffset();
2680   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2681 
2682   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2683   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2684   return Result;
2685 }
2686 
2687 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2688                                               SelectionDAG &DAG) const {
2689   SDLoc DL(JT);
2690   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2691   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2692 
2693   // Use LARL to load the address of the table.
2694   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2695 }
2696 
2697 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2698                                                  SelectionDAG &DAG) const {
2699   SDLoc DL(CP);
2700   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2701 
2702   SDValue Result;
2703   if (CP->isMachineConstantPoolEntry())
2704     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2705                                        CP->getAlignment());
2706   else
2707     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2708                                        CP->getAlignment(), CP->getOffset());
2709 
2710   // Use LARL to load the address of the constant pool entry.
2711   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2712 }
2713 
2714 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
2715                                               SelectionDAG &DAG) const {
2716   MachineFunction &MF = DAG.getMachineFunction();
2717   MachineFrameInfo &MFI = MF.getFrameInfo();
2718   MFI.setFrameAddressIsTaken(true);
2719 
2720   SDLoc DL(Op);
2721   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2722   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2723 
2724   // If the back chain frame index has not been allocated yet, do so.
2725   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
2726   int BackChainIdx = FI->getFramePointerSaveIndex();
2727   if (!BackChainIdx) {
2728     // By definition, the frame address is the address of the back chain.
2729     BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
2730     FI->setFramePointerSaveIndex(BackChainIdx);
2731   }
2732   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
2733 
2734   // FIXME The frontend should detect this case.
2735   if (Depth > 0) {
2736     report_fatal_error("Unsupported stack frame traversal count");
2737   }
2738 
2739   return BackChain;
2740 }
2741 
2742 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
2743                                                SelectionDAG &DAG) const {
2744   MachineFunction &MF = DAG.getMachineFunction();
2745   MachineFrameInfo &MFI = MF.getFrameInfo();
2746   MFI.setReturnAddressIsTaken(true);
2747 
2748   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2749     return SDValue();
2750 
2751   SDLoc DL(Op);
2752   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2753   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2754 
2755   // FIXME The frontend should detect this case.
2756   if (Depth > 0) {
2757     report_fatal_error("Unsupported stack frame traversal count");
2758   }
2759 
2760   // Return R14D, which has the return address. Mark it an implicit live-in.
2761   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
2762   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
2763 }
2764 
2765 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2766                                             SelectionDAG &DAG) const {
2767   SDLoc DL(Op);
2768   SDValue In = Op.getOperand(0);
2769   EVT InVT = In.getValueType();
2770   EVT ResVT = Op.getValueType();
2771 
2772   // Convert loads directly.  This is normally done by DAGCombiner,
2773   // but we need this case for bitcasts that are created during lowering
2774   // and which are then lowered themselves.
2775   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2776     return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(),
2777                        LoadN->getMemOperand());
2778 
2779   if (InVT == MVT::i32 && ResVT == MVT::f32) {
2780     SDValue In64;
2781     if (Subtarget.hasHighWord()) {
2782       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2783                                        MVT::i64);
2784       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2785                                        MVT::i64, SDValue(U64, 0), In);
2786     } else {
2787       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2788       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
2789                          DAG.getConstant(32, DL, MVT::i64));
2790     }
2791     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
2792     return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
2793                                       DL, MVT::f32, Out64);
2794   }
2795   if (InVT == MVT::f32 && ResVT == MVT::i32) {
2796     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
2797     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
2798                                              MVT::f64, SDValue(U64, 0), In);
2799     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
2800     if (Subtarget.hasHighWord())
2801       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2802                                         MVT::i32, Out64);
2803     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
2804                                 DAG.getConstant(32, DL, MVT::i64));
2805     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
2806   }
2807   llvm_unreachable("Unexpected bitcast combination");
2808 }
2809 
2810 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2811                                             SelectionDAG &DAG) const {
2812   MachineFunction &MF = DAG.getMachineFunction();
2813   SystemZMachineFunctionInfo *FuncInfo =
2814     MF.getInfo<SystemZMachineFunctionInfo>();
2815   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2816 
2817   SDValue Chain   = Op.getOperand(0);
2818   SDValue Addr    = Op.getOperand(1);
2819   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2820   SDLoc DL(Op);
2821 
2822   // The initial values of each field.
2823   const unsigned NumFields = 4;
2824   SDValue Fields[NumFields] = {
2825     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
2826     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
2827     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
2828     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
2829   };
2830 
2831   // Store each field into its respective slot.
2832   SDValue MemOps[NumFields];
2833   unsigned Offset = 0;
2834   for (unsigned I = 0; I < NumFields; ++I) {
2835     SDValue FieldAddr = Addr;
2836     if (Offset != 0)
2837       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
2838                               DAG.getIntPtrConstant(Offset, DL));
2839     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
2840                              MachinePointerInfo(SV, Offset));
2841     Offset += 8;
2842   }
2843   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2844 }
2845 
2846 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
2847                                            SelectionDAG &DAG) const {
2848   SDValue Chain      = Op.getOperand(0);
2849   SDValue DstPtr     = Op.getOperand(1);
2850   SDValue SrcPtr     = Op.getOperand(2);
2851   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2852   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
2853   SDLoc DL(Op);
2854 
2855   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
2856                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
2857                        /*isTailCall*/false,
2858                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
2859 }
2860 
2861 SDValue SystemZTargetLowering::
2862 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2863   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
2864   MachineFunction &MF = DAG.getMachineFunction();
2865   bool RealignOpt = !MF.getFunction()-> hasFnAttribute("no-realign-stack");
2866   bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain");
2867 
2868   SDValue Chain = Op.getOperand(0);
2869   SDValue Size  = Op.getOperand(1);
2870   SDValue Align = Op.getOperand(2);
2871   SDLoc DL(Op);
2872 
2873   // If user has set the no alignment function attribute, ignore
2874   // alloca alignments.
2875   uint64_t AlignVal = (RealignOpt ?
2876                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
2877 
2878   uint64_t StackAlign = TFI->getStackAlignment();
2879   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
2880   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
2881 
2882   unsigned SPReg = getStackPointerRegisterToSaveRestore();
2883   SDValue NeededSpace = Size;
2884 
2885   // Get a reference to the stack pointer.
2886   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
2887 
2888   // If we need a backchain, save it now.
2889   SDValue Backchain;
2890   if (StoreBackchain)
2891     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
2892 
2893   // Add extra space for alignment if needed.
2894   if (ExtraAlignSpace)
2895     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
2896                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
2897 
2898   // Get the new stack pointer value.
2899   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
2900 
2901   // Copy the new stack pointer back.
2902   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2903 
2904   // The allocated data lives above the 160 bytes allocated for the standard
2905   // frame, plus any outgoing stack arguments.  We don't know how much that
2906   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2907   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2908   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2909 
2910   // Dynamically realign if needed.
2911   if (RequiredAlign > StackAlign) {
2912     Result =
2913       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
2914                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
2915     Result =
2916       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
2917                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
2918   }
2919 
2920   if (StoreBackchain)
2921     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
2922 
2923   SDValue Ops[2] = { Result, Chain };
2924   return DAG.getMergeValues(Ops, DL);
2925 }
2926 
2927 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
2928     SDValue Op, SelectionDAG &DAG) const {
2929   SDLoc DL(Op);
2930 
2931   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2932 }
2933 
2934 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
2935                                               SelectionDAG &DAG) const {
2936   EVT VT = Op.getValueType();
2937   SDLoc DL(Op);
2938   SDValue Ops[2];
2939   if (is32Bit(VT))
2940     // Just do a normal 64-bit multiplication and extract the results.
2941     // We define this so that it can be used for constant division.
2942     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
2943                     Op.getOperand(1), Ops[1], Ops[0]);
2944   else {
2945     // Do a full 128-bit multiplication based on UMUL_LOHI64:
2946     //
2947     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
2948     //
2949     // but using the fact that the upper halves are either all zeros
2950     // or all ones:
2951     //
2952     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
2953     //
2954     // and grouping the right terms together since they are quicker than the
2955     // multiplication:
2956     //
2957     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
2958     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
2959     SDValue LL = Op.getOperand(0);
2960     SDValue RL = Op.getOperand(1);
2961     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
2962     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
2963     // UMUL_LOHI64 returns the low result in the odd register and the high
2964     // result in the even register.  SMUL_LOHI is defined to return the
2965     // low half first, so the results are in reverse order.
2966     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2967                      LL, RL, Ops[1], Ops[0]);
2968     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
2969     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
2970     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
2971     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
2972   }
2973   return DAG.getMergeValues(Ops, DL);
2974 }
2975 
2976 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
2977                                               SelectionDAG &DAG) const {
2978   EVT VT = Op.getValueType();
2979   SDLoc DL(Op);
2980   SDValue Ops[2];
2981   if (is32Bit(VT))
2982     // Just do a normal 64-bit multiplication and extract the results.
2983     // We define this so that it can be used for constant division.
2984     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
2985                     Op.getOperand(1), Ops[1], Ops[0]);
2986   else
2987     // UMUL_LOHI64 returns the low result in the odd register and the high
2988     // result in the even register.  UMUL_LOHI is defined to return the
2989     // low half first, so the results are in reverse order.
2990     lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64,
2991                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
2992   return DAG.getMergeValues(Ops, DL);
2993 }
2994 
2995 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
2996                                             SelectionDAG &DAG) const {
2997   SDValue Op0 = Op.getOperand(0);
2998   SDValue Op1 = Op.getOperand(1);
2999   EVT VT = Op.getValueType();
3000   SDLoc DL(Op);
3001   unsigned Opcode;
3002 
3003   // We use DSGF for 32-bit division.
3004   if (is32Bit(VT)) {
3005     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3006     Opcode = SystemZISD::SDIVREM32;
3007   } else if (DAG.ComputeNumSignBits(Op1) > 32) {
3008     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3009     Opcode = SystemZISD::SDIVREM32;
3010   } else
3011     Opcode = SystemZISD::SDIVREM64;
3012 
3013   // DSG(F) takes a 64-bit dividend, so the even register in the GR128
3014   // input is "don't care".  The instruction returns the remainder in
3015   // the even register and the quotient in the odd register.
3016   SDValue Ops[2];
3017   lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode,
3018                    Op0, Op1, Ops[1], Ops[0]);
3019   return DAG.getMergeValues(Ops, DL);
3020 }
3021 
3022 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3023                                             SelectionDAG &DAG) const {
3024   EVT VT = Op.getValueType();
3025   SDLoc DL(Op);
3026 
3027   // DL(G) uses a double-width dividend, so we need to clear the even
3028   // register in the GR128 input.  The instruction returns the remainder
3029   // in the even register and the quotient in the odd register.
3030   SDValue Ops[2];
3031   if (is32Bit(VT))
3032     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32,
3033                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3034   else
3035     lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64,
3036                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3037   return DAG.getMergeValues(Ops, DL);
3038 }
3039 
3040 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3041   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3042 
3043   // Get the known-zero masks for each operand.
3044   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3045   APInt KnownZero[2], KnownOne[2];
3046   DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]);
3047   DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]);
3048 
3049   // See if the upper 32 bits of one operand and the lower 32 bits of the
3050   // other are known zero.  They are the low and high operands respectively.
3051   uint64_t Masks[] = { KnownZero[0].getZExtValue(),
3052                        KnownZero[1].getZExtValue() };
3053   unsigned High, Low;
3054   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3055     High = 1, Low = 0;
3056   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3057     High = 0, Low = 1;
3058   else
3059     return Op;
3060 
3061   SDValue LowOp = Ops[Low];
3062   SDValue HighOp = Ops[High];
3063 
3064   // If the high part is a constant, we're better off using IILH.
3065   if (HighOp.getOpcode() == ISD::Constant)
3066     return Op;
3067 
3068   // If the low part is a constant that is outside the range of LHI,
3069   // then we're better off using IILF.
3070   if (LowOp.getOpcode() == ISD::Constant) {
3071     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3072     if (!isInt<16>(Value))
3073       return Op;
3074   }
3075 
3076   // Check whether the high part is an AND that doesn't change the
3077   // high 32 bits and just masks out low bits.  We can skip it if so.
3078   if (HighOp.getOpcode() == ISD::AND &&
3079       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3080     SDValue HighOp0 = HighOp.getOperand(0);
3081     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3082     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3083       HighOp = HighOp0;
3084   }
3085 
3086   // Take advantage of the fact that all GR32 operations only change the
3087   // low 32 bits by truncating Low to an i32 and inserting it directly
3088   // using a subreg.  The interesting cases are those where the truncation
3089   // can be folded.
3090   SDLoc DL(Op);
3091   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3092   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3093                                    MVT::i64, HighOp, Low32);
3094 }
3095 
3096 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3097                                           SelectionDAG &DAG) const {
3098   EVT VT = Op.getValueType();
3099   SDLoc DL(Op);
3100   Op = Op.getOperand(0);
3101 
3102   // Handle vector types via VPOPCT.
3103   if (VT.isVector()) {
3104     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3105     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3106     switch (VT.getVectorElementType().getSizeInBits()) {
3107     case 8:
3108       break;
3109     case 16: {
3110       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3111       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3112       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3113       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3114       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3115       break;
3116     }
3117     case 32: {
3118       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3119                                 DAG.getConstant(0, DL, MVT::i32));
3120       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3121       break;
3122     }
3123     case 64: {
3124       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3125                                 DAG.getConstant(0, DL, MVT::i32));
3126       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3127       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3128       break;
3129     }
3130     default:
3131       llvm_unreachable("Unexpected type");
3132     }
3133     return Op;
3134   }
3135 
3136   // Get the known-zero mask for the operand.
3137   APInt KnownZero, KnownOne;
3138   DAG.computeKnownBits(Op, KnownZero, KnownOne);
3139   unsigned NumSignificantBits = (~KnownZero).getActiveBits();
3140   if (NumSignificantBits == 0)
3141     return DAG.getConstant(0, DL, VT);
3142 
3143   // Skip known-zero high parts of the operand.
3144   int64_t OrigBitSize = VT.getSizeInBits();
3145   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3146   BitSize = std::min(BitSize, OrigBitSize);
3147 
3148   // The POPCNT instruction counts the number of bits in each byte.
3149   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3150   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3151   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3152 
3153   // Add up per-byte counts in a binary tree.  All bits of Op at
3154   // position larger than BitSize remain zero throughout.
3155   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3156     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3157     if (BitSize != OrigBitSize)
3158       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3159                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3160     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3161   }
3162 
3163   // Extract overall result from high byte.
3164   if (BitSize > 8)
3165     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3166                      DAG.getConstant(BitSize - 8, DL, VT));
3167 
3168   return Op;
3169 }
3170 
3171 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3172                                                  SelectionDAG &DAG) const {
3173   SDLoc DL(Op);
3174   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3175     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3176   SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
3177     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3178 
3179   // The only fence that needs an instruction is a sequentially-consistent
3180   // cross-thread fence.
3181   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3182       FenceScope == CrossThread) {
3183     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3184                                       Op.getOperand(0)),
3185                    0);
3186   }
3187 
3188   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3189   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3190 }
3191 
3192 // Op is an atomic load.  Lower it into a normal volatile load.
3193 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3194                                                 SelectionDAG &DAG) const {
3195   auto *Node = cast<AtomicSDNode>(Op.getNode());
3196   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3197                         Node->getChain(), Node->getBasePtr(),
3198                         Node->getMemoryVT(), Node->getMemOperand());
3199 }
3200 
3201 // Op is an atomic store.  Lower it into a normal volatile store followed
3202 // by a serialization.
3203 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3204                                                  SelectionDAG &DAG) const {
3205   auto *Node = cast<AtomicSDNode>(Op.getNode());
3206   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3207                                     Node->getBasePtr(), Node->getMemoryVT(),
3208                                     Node->getMemOperand());
3209   return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other,
3210                                     Chain), 0);
3211 }
3212 
3213 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3214 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3215 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3216                                                    SelectionDAG &DAG,
3217                                                    unsigned Opcode) const {
3218   auto *Node = cast<AtomicSDNode>(Op.getNode());
3219 
3220   // 32-bit operations need no code outside the main loop.
3221   EVT NarrowVT = Node->getMemoryVT();
3222   EVT WideVT = MVT::i32;
3223   if (NarrowVT == WideVT)
3224     return Op;
3225 
3226   int64_t BitSize = NarrowVT.getSizeInBits();
3227   SDValue ChainIn = Node->getChain();
3228   SDValue Addr = Node->getBasePtr();
3229   SDValue Src2 = Node->getVal();
3230   MachineMemOperand *MMO = Node->getMemOperand();
3231   SDLoc DL(Node);
3232   EVT PtrVT = Addr.getValueType();
3233 
3234   // Convert atomic subtracts of constants into additions.
3235   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3236     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3237       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3238       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3239     }
3240 
3241   // Get the address of the containing word.
3242   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3243                                     DAG.getConstant(-4, DL, PtrVT));
3244 
3245   // Get the number of bits that the word must be rotated left in order
3246   // to bring the field to the top bits of a GR32.
3247   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3248                                  DAG.getConstant(3, DL, PtrVT));
3249   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3250 
3251   // Get the complementing shift amount, for rotating a field in the top
3252   // bits back to its proper position.
3253   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3254                                     DAG.getConstant(0, DL, WideVT), BitShift);
3255 
3256   // Extend the source operand to 32 bits and prepare it for the inner loop.
3257   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3258   // operations require the source to be shifted in advance.  (This shift
3259   // can be folded if the source is constant.)  For AND and NAND, the lower
3260   // bits must be set, while for other opcodes they should be left clear.
3261   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3262     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3263                        DAG.getConstant(32 - BitSize, DL, WideVT));
3264   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3265       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3266     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3267                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3268 
3269   // Construct the ATOMIC_LOADW_* node.
3270   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3271   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3272                     DAG.getConstant(BitSize, DL, WideVT) };
3273   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3274                                              NarrowVT, MMO);
3275 
3276   // Rotate the result of the final CS so that the field is in the lower
3277   // bits of a GR32, then truncate it.
3278   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3279                                     DAG.getConstant(BitSize, DL, WideVT));
3280   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3281 
3282   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3283   return DAG.getMergeValues(RetOps, DL);
3284 }
3285 
3286 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3287 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3288 // operations into additions.
3289 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3290                                                     SelectionDAG &DAG) const {
3291   auto *Node = cast<AtomicSDNode>(Op.getNode());
3292   EVT MemVT = Node->getMemoryVT();
3293   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3294     // A full-width operation.
3295     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3296     SDValue Src2 = Node->getVal();
3297     SDValue NegSrc2;
3298     SDLoc DL(Src2);
3299 
3300     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3301       // Use an addition if the operand is constant and either LAA(G) is
3302       // available or the negative value is in the range of A(G)FHI.
3303       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3304       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3305         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3306     } else if (Subtarget.hasInterlockedAccess1())
3307       // Use LAA(G) if available.
3308       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3309                             Src2);
3310 
3311     if (NegSrc2.getNode())
3312       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3313                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3314                            Node->getMemOperand(), Node->getOrdering(),
3315                            Node->getSynchScope());
3316 
3317     // Use the node as-is.
3318     return Op;
3319   }
3320 
3321   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3322 }
3323 
3324 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation.  Lower the first two
3325 // into a fullword ATOMIC_CMP_SWAPW operation.
3326 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3327                                                     SelectionDAG &DAG) const {
3328   auto *Node = cast<AtomicSDNode>(Op.getNode());
3329 
3330   // We have native support for 32-bit compare and swap.
3331   EVT NarrowVT = Node->getMemoryVT();
3332   EVT WideVT = MVT::i32;
3333   if (NarrowVT == WideVT)
3334     return Op;
3335 
3336   int64_t BitSize = NarrowVT.getSizeInBits();
3337   SDValue ChainIn = Node->getOperand(0);
3338   SDValue Addr = Node->getOperand(1);
3339   SDValue CmpVal = Node->getOperand(2);
3340   SDValue SwapVal = Node->getOperand(3);
3341   MachineMemOperand *MMO = Node->getMemOperand();
3342   SDLoc DL(Node);
3343   EVT PtrVT = Addr.getValueType();
3344 
3345   // Get the address of the containing word.
3346   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3347                                     DAG.getConstant(-4, DL, PtrVT));
3348 
3349   // Get the number of bits that the word must be rotated left in order
3350   // to bring the field to the top bits of a GR32.
3351   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3352                                  DAG.getConstant(3, DL, PtrVT));
3353   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3354 
3355   // Get the complementing shift amount, for rotating a field in the top
3356   // bits back to its proper position.
3357   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3358                                     DAG.getConstant(0, DL, WideVT), BitShift);
3359 
3360   // Construct the ATOMIC_CMP_SWAPW node.
3361   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3362   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3363                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3364   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3365                                              VTList, Ops, NarrowVT, MMO);
3366   return AtomicOp;
3367 }
3368 
3369 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3370                                               SelectionDAG &DAG) const {
3371   MachineFunction &MF = DAG.getMachineFunction();
3372   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3373   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3374                             SystemZ::R15D, Op.getValueType());
3375 }
3376 
3377 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3378                                                  SelectionDAG &DAG) const {
3379   MachineFunction &MF = DAG.getMachineFunction();
3380   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3381   bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain");
3382 
3383   SDValue Chain = Op.getOperand(0);
3384   SDValue NewSP = Op.getOperand(1);
3385   SDValue Backchain;
3386   SDLoc DL(Op);
3387 
3388   if (StoreBackchain) {
3389     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3390     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3391   }
3392 
3393   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3394 
3395   if (StoreBackchain)
3396     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3397 
3398   return Chain;
3399 }
3400 
3401 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3402                                              SelectionDAG &DAG) const {
3403   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3404   if (!IsData)
3405     // Just preserve the chain.
3406     return Op.getOperand(0);
3407 
3408   SDLoc DL(Op);
3409   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3410   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3411   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3412   SDValue Ops[] = {
3413     Op.getOperand(0),
3414     DAG.getConstant(Code, DL, MVT::i32),
3415     Op.getOperand(1)
3416   };
3417   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3418                                  Node->getVTList(), Ops,
3419                                  Node->getMemoryVT(), Node->getMemOperand());
3420 }
3421 
3422 // Return an i32 that contains the value of CC immediately after After,
3423 // whose final operand must be MVT::Glue.
3424 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
3425   SDLoc DL(After);
3426   SDValue Glue = SDValue(After, After->getNumValues() - 1);
3427   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
3428   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3429                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3430 }
3431 
3432 SDValue
3433 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3434                                               SelectionDAG &DAG) const {
3435   unsigned Opcode, CCValid;
3436   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3437     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3438     SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
3439     SDValue CC = getCCResult(DAG, Glued.getNode());
3440     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3441     return SDValue();
3442   }
3443 
3444   return SDValue();
3445 }
3446 
3447 SDValue
3448 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3449                                                SelectionDAG &DAG) const {
3450   unsigned Opcode, CCValid;
3451   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3452     SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode);
3453     SDValue CC = getCCResult(DAG, Glued.getNode());
3454     if (Op->getNumValues() == 1)
3455       return CC;
3456     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3457     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued,
3458                        CC);
3459   }
3460 
3461   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3462   switch (Id) {
3463   case Intrinsic::thread_pointer:
3464     return lowerThreadPointer(SDLoc(Op), DAG);
3465 
3466   case Intrinsic::s390_vpdi:
3467     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3468                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3469 
3470   case Intrinsic::s390_vperm:
3471     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3472                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3473 
3474   case Intrinsic::s390_vuphb:
3475   case Intrinsic::s390_vuphh:
3476   case Intrinsic::s390_vuphf:
3477     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3478                        Op.getOperand(1));
3479 
3480   case Intrinsic::s390_vuplhb:
3481   case Intrinsic::s390_vuplhh:
3482   case Intrinsic::s390_vuplhf:
3483     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3484                        Op.getOperand(1));
3485 
3486   case Intrinsic::s390_vuplb:
3487   case Intrinsic::s390_vuplhw:
3488   case Intrinsic::s390_vuplf:
3489     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3490                        Op.getOperand(1));
3491 
3492   case Intrinsic::s390_vupllb:
3493   case Intrinsic::s390_vupllh:
3494   case Intrinsic::s390_vupllf:
3495     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3496                        Op.getOperand(1));
3497 
3498   case Intrinsic::s390_vsumb:
3499   case Intrinsic::s390_vsumh:
3500   case Intrinsic::s390_vsumgh:
3501   case Intrinsic::s390_vsumgf:
3502   case Intrinsic::s390_vsumqf:
3503   case Intrinsic::s390_vsumqg:
3504     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3505                        Op.getOperand(1), Op.getOperand(2));
3506   }
3507 
3508   return SDValue();
3509 }
3510 
3511 namespace {
3512 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3513 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
3514 // Operand is the constant third operand, otherwise it is the number of
3515 // bytes in each element of the result.
3516 struct Permute {
3517   unsigned Opcode;
3518   unsigned Operand;
3519   unsigned char Bytes[SystemZ::VectorBytes];
3520 };
3521 }
3522 
3523 static const Permute PermuteForms[] = {
3524   // VMRHG
3525   { SystemZISD::MERGE_HIGH, 8,
3526     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3527   // VMRHF
3528   { SystemZISD::MERGE_HIGH, 4,
3529     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3530   // VMRHH
3531   { SystemZISD::MERGE_HIGH, 2,
3532     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3533   // VMRHB
3534   { SystemZISD::MERGE_HIGH, 1,
3535     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3536   // VMRLG
3537   { SystemZISD::MERGE_LOW, 8,
3538     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3539   // VMRLF
3540   { SystemZISD::MERGE_LOW, 4,
3541     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3542   // VMRLH
3543   { SystemZISD::MERGE_LOW, 2,
3544     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3545   // VMRLB
3546   { SystemZISD::MERGE_LOW, 1,
3547     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3548   // VPKG
3549   { SystemZISD::PACK, 4,
3550     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3551   // VPKF
3552   { SystemZISD::PACK, 2,
3553     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3554   // VPKH
3555   { SystemZISD::PACK, 1,
3556     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3557   // VPDI V1, V2, 4  (low half of V1, high half of V2)
3558   { SystemZISD::PERMUTE_DWORDS, 4,
3559     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3560   // VPDI V1, V2, 1  (high half of V1, low half of V2)
3561   { SystemZISD::PERMUTE_DWORDS, 1,
3562     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3563 };
3564 
3565 // Called after matching a vector shuffle against a particular pattern.
3566 // Both the original shuffle and the pattern have two vector operands.
3567 // OpNos[0] is the operand of the original shuffle that should be used for
3568 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3569 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
3570 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3571 // for operands 0 and 1 of the pattern.
3572 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3573   if (OpNos[0] < 0) {
3574     if (OpNos[1] < 0)
3575       return false;
3576     OpNo0 = OpNo1 = OpNos[1];
3577   } else if (OpNos[1] < 0) {
3578     OpNo0 = OpNo1 = OpNos[0];
3579   } else {
3580     OpNo0 = OpNos[0];
3581     OpNo1 = OpNos[1];
3582   }
3583   return true;
3584 }
3585 
3586 // Bytes is a VPERM-like permute vector, except that -1 is used for
3587 // undefined bytes.  Return true if the VPERM can be implemented using P.
3588 // When returning true set OpNo0 to the VPERM operand that should be
3589 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3590 //
3591 // For example, if swapping the VPERM operands allows P to match, OpNo0
3592 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
3593 // operand, but rewriting it to use two duplicated operands allows it to
3594 // match P, then OpNo0 and OpNo1 will be the same.
3595 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3596                          unsigned &OpNo0, unsigned &OpNo1) {
3597   int OpNos[] = { -1, -1 };
3598   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3599     int Elt = Bytes[I];
3600     if (Elt >= 0) {
3601       // Make sure that the two permute vectors use the same suboperand
3602       // byte number.  Only the operand numbers (the high bits) are
3603       // allowed to differ.
3604       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3605         return false;
3606       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3607       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3608       // Make sure that the operand mappings are consistent with previous
3609       // elements.
3610       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3611         return false;
3612       OpNos[ModelOpNo] = RealOpNo;
3613     }
3614   }
3615   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3616 }
3617 
3618 // As above, but search for a matching permute.
3619 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3620                                    unsigned &OpNo0, unsigned &OpNo1) {
3621   for (auto &P : PermuteForms)
3622     if (matchPermute(Bytes, P, OpNo0, OpNo1))
3623       return &P;
3624   return nullptr;
3625 }
3626 
3627 // Bytes is a VPERM-like permute vector, except that -1 is used for
3628 // undefined bytes.  This permute is an operand of an outer permute.
3629 // See whether redistributing the -1 bytes gives a shuffle that can be
3630 // implemented using P.  If so, set Transform to a VPERM-like permute vector
3631 // that, when applied to the result of P, gives the original permute in Bytes.
3632 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3633                                const Permute &P,
3634                                SmallVectorImpl<int> &Transform) {
3635   unsigned To = 0;
3636   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3637     int Elt = Bytes[From];
3638     if (Elt < 0)
3639       // Byte number From of the result is undefined.
3640       Transform[From] = -1;
3641     else {
3642       while (P.Bytes[To] != Elt) {
3643         To += 1;
3644         if (To == SystemZ::VectorBytes)
3645           return false;
3646       }
3647       Transform[From] = To;
3648     }
3649   }
3650   return true;
3651 }
3652 
3653 // As above, but search for a matching permute.
3654 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3655                                          SmallVectorImpl<int> &Transform) {
3656   for (auto &P : PermuteForms)
3657     if (matchDoublePermute(Bytes, P, Transform))
3658       return &P;
3659   return nullptr;
3660 }
3661 
3662 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
3663 // as if it had type vNi8.
3664 static void getVPermMask(ShuffleVectorSDNode *VSN,
3665                          SmallVectorImpl<int> &Bytes) {
3666   EVT VT = VSN->getValueType(0);
3667   unsigned NumElements = VT.getVectorNumElements();
3668   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3669   Bytes.resize(NumElements * BytesPerElement, -1);
3670   for (unsigned I = 0; I < NumElements; ++I) {
3671     int Index = VSN->getMaskElt(I);
3672     if (Index >= 0)
3673       for (unsigned J = 0; J < BytesPerElement; ++J)
3674         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3675   }
3676 }
3677 
3678 // Bytes is a VPERM-like permute vector, except that -1 is used for
3679 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
3680 // the result come from a contiguous sequence of bytes from one input.
3681 // Set Base to the selector for the first byte if so.
3682 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3683                             unsigned BytesPerElement, int &Base) {
3684   Base = -1;
3685   for (unsigned I = 0; I < BytesPerElement; ++I) {
3686     if (Bytes[Start + I] >= 0) {
3687       unsigned Elem = Bytes[Start + I];
3688       if (Base < 0) {
3689         Base = Elem - I;
3690         // Make sure the bytes would come from one input operand.
3691         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3692           return false;
3693       } else if (unsigned(Base) != Elem - I)
3694         return false;
3695     }
3696   }
3697   return true;
3698 }
3699 
3700 // Bytes is a VPERM-like permute vector, except that -1 is used for
3701 // undefined bytes.  Return true if it can be performed using VSLDI.
3702 // When returning true, set StartIndex to the shift amount and OpNo0
3703 // and OpNo1 to the VPERM operands that should be used as the first
3704 // and second shift operand respectively.
3705 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3706                                unsigned &StartIndex, unsigned &OpNo0,
3707                                unsigned &OpNo1) {
3708   int OpNos[] = { -1, -1 };
3709   int Shift = -1;
3710   for (unsigned I = 0; I < 16; ++I) {
3711     int Index = Bytes[I];
3712     if (Index >= 0) {
3713       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3714       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3715       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3716       if (Shift < 0)
3717         Shift = ExpectedShift;
3718       else if (Shift != ExpectedShift)
3719         return false;
3720       // Make sure that the operand mappings are consistent with previous
3721       // elements.
3722       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3723         return false;
3724       OpNos[ModelOpNo] = RealOpNo;
3725     }
3726   }
3727   StartIndex = Shift;
3728   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3729 }
3730 
3731 // Create a node that performs P on operands Op0 and Op1, casting the
3732 // operands to the appropriate type.  The type of the result is determined by P.
3733 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3734                               const Permute &P, SDValue Op0, SDValue Op1) {
3735   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
3736   // elements of a PACK are twice as wide as the outputs.
3737   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3738                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3739                       P.Operand);
3740   // Cast both operands to the appropriate type.
3741   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3742                               SystemZ::VectorBytes / InBytes);
3743   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3744   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3745   SDValue Op;
3746   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3747     SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3748     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3749   } else if (P.Opcode == SystemZISD::PACK) {
3750     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3751                                  SystemZ::VectorBytes / P.Operand);
3752     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
3753   } else {
3754     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
3755   }
3756   return Op;
3757 }
3758 
3759 // Bytes is a VPERM-like permute vector, except that -1 is used for
3760 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
3761 // VSLDI or VPERM.
3762 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3763                                      SDValue *Ops,
3764                                      const SmallVectorImpl<int> &Bytes) {
3765   for (unsigned I = 0; I < 2; ++I)
3766     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
3767 
3768   // First see whether VSLDI can be used.
3769   unsigned StartIndex, OpNo0, OpNo1;
3770   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
3771     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
3772                        Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
3773 
3774   // Fall back on VPERM.  Construct an SDNode for the permute vector.
3775   SDValue IndexNodes[SystemZ::VectorBytes];
3776   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3777     if (Bytes[I] >= 0)
3778       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
3779     else
3780       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
3781   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
3782   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
3783 }
3784 
3785 namespace {
3786 // Describes a general N-operand vector shuffle.
3787 struct GeneralShuffle {
3788   GeneralShuffle(EVT vt) : VT(vt) {}
3789   void addUndef();
3790   void add(SDValue, unsigned);
3791   SDValue getNode(SelectionDAG &, const SDLoc &);
3792 
3793   // The operands of the shuffle.
3794   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
3795 
3796   // Index I is -1 if byte I of the result is undefined.  Otherwise the
3797   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
3798   // Bytes[I] / SystemZ::VectorBytes.
3799   SmallVector<int, SystemZ::VectorBytes> Bytes;
3800 
3801   // The type of the shuffle result.
3802   EVT VT;
3803 };
3804 }
3805 
3806 // Add an extra undefined element to the shuffle.
3807 void GeneralShuffle::addUndef() {
3808   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3809   for (unsigned I = 0; I < BytesPerElement; ++I)
3810     Bytes.push_back(-1);
3811 }
3812 
3813 // Add an extra element to the shuffle, taking it from element Elem of Op.
3814 // A null Op indicates a vector input whose value will be calculated later;
3815 // there is at most one such input per shuffle and it always has the same
3816 // type as the result.
3817 void GeneralShuffle::add(SDValue Op, unsigned Elem) {
3818   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3819 
3820   // The source vector can have wider elements than the result,
3821   // either through an explicit TRUNCATE or because of type legalization.
3822   // We want the least significant part.
3823   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
3824   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
3825   assert(FromBytesPerElement >= BytesPerElement &&
3826          "Invalid EXTRACT_VECTOR_ELT");
3827   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
3828                    (FromBytesPerElement - BytesPerElement));
3829 
3830   // Look through things like shuffles and bitcasts.
3831   while (Op.getNode()) {
3832     if (Op.getOpcode() == ISD::BITCAST)
3833       Op = Op.getOperand(0);
3834     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
3835       // See whether the bytes we need come from a contiguous part of one
3836       // operand.
3837       SmallVector<int, SystemZ::VectorBytes> OpBytes;
3838       getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
3839       int NewByte;
3840       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
3841         break;
3842       if (NewByte < 0) {
3843         addUndef();
3844         return;
3845       }
3846       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
3847       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
3848     } else if (Op.isUndef()) {
3849       addUndef();
3850       return;
3851     } else
3852       break;
3853   }
3854 
3855   // Make sure that the source of the extraction is in Ops.
3856   unsigned OpNo = 0;
3857   for (; OpNo < Ops.size(); ++OpNo)
3858     if (Ops[OpNo] == Op)
3859       break;
3860   if (OpNo == Ops.size())
3861     Ops.push_back(Op);
3862 
3863   // Add the element to Bytes.
3864   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
3865   for (unsigned I = 0; I < BytesPerElement; ++I)
3866     Bytes.push_back(Base + I);
3867 }
3868 
3869 // Return SDNodes for the completed shuffle.
3870 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
3871   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
3872 
3873   if (Ops.size() == 0)
3874     return DAG.getUNDEF(VT);
3875 
3876   // Make sure that there are at least two shuffle operands.
3877   if (Ops.size() == 1)
3878     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
3879 
3880   // Create a tree of shuffles, deferring root node until after the loop.
3881   // Try to redistribute the undefined elements of non-root nodes so that
3882   // the non-root shuffles match something like a pack or merge, then adjust
3883   // the parent node's permute vector to compensate for the new order.
3884   // Among other things, this copes with vectors like <2 x i16> that were
3885   // padded with undefined elements during type legalization.
3886   //
3887   // In the best case this redistribution will lead to the whole tree
3888   // using packs and merges.  It should rarely be a loss in other cases.
3889   unsigned Stride = 1;
3890   for (; Stride * 2 < Ops.size(); Stride *= 2) {
3891     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
3892       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
3893 
3894       // Create a mask for just these two operands.
3895       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
3896       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
3897         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
3898         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
3899         if (OpNo == I)
3900           NewBytes[J] = Byte;
3901         else if (OpNo == I + Stride)
3902           NewBytes[J] = SystemZ::VectorBytes + Byte;
3903         else
3904           NewBytes[J] = -1;
3905       }
3906       // See if it would be better to reorganize NewMask to avoid using VPERM.
3907       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
3908       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
3909         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
3910         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
3911         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
3912           if (NewBytes[J] >= 0) {
3913             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
3914                    "Invalid double permute");
3915             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
3916           } else
3917             assert(NewBytesMap[J] < 0 && "Invalid double permute");
3918         }
3919       } else {
3920         // Just use NewBytes on the operands.
3921         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
3922         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
3923           if (NewBytes[J] >= 0)
3924             Bytes[J] = I * SystemZ::VectorBytes + J;
3925       }
3926     }
3927   }
3928 
3929   // Now we just have 2 inputs.  Put the second operand in Ops[1].
3930   if (Stride > 1) {
3931     Ops[1] = Ops[Stride];
3932     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3933       if (Bytes[I] >= int(SystemZ::VectorBytes))
3934         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
3935   }
3936 
3937   // Look for an instruction that can do the permute without resorting
3938   // to VPERM.
3939   unsigned OpNo0, OpNo1;
3940   SDValue Op;
3941   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
3942     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
3943   else
3944     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
3945   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
3946 }
3947 
3948 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
3949 static bool isScalarToVector(SDValue Op) {
3950   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
3951     if (!Op.getOperand(I).isUndef())
3952       return false;
3953   return true;
3954 }
3955 
3956 // Return a vector of type VT that contains Value in the first element.
3957 // The other elements don't matter.
3958 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
3959                                    SDValue Value) {
3960   // If we have a constant, replicate it to all elements and let the
3961   // BUILD_VECTOR lowering take care of it.
3962   if (Value.getOpcode() == ISD::Constant ||
3963       Value.getOpcode() == ISD::ConstantFP) {
3964     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
3965     return DAG.getBuildVector(VT, DL, Ops);
3966   }
3967   if (Value.isUndef())
3968     return DAG.getUNDEF(VT);
3969   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
3970 }
3971 
3972 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
3973 // element 1.  Used for cases in which replication is cheap.
3974 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
3975                                  SDValue Op0, SDValue Op1) {
3976   if (Op0.isUndef()) {
3977     if (Op1.isUndef())
3978       return DAG.getUNDEF(VT);
3979     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
3980   }
3981   if (Op1.isUndef())
3982     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
3983   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
3984                      buildScalarToVector(DAG, DL, VT, Op0),
3985                      buildScalarToVector(DAG, DL, VT, Op1));
3986 }
3987 
3988 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
3989 // vector for them.
3990 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
3991                           SDValue Op1) {
3992   if (Op0.isUndef() && Op1.isUndef())
3993     return DAG.getUNDEF(MVT::v2i64);
3994   // If one of the two inputs is undefined then replicate the other one,
3995   // in order to avoid using another register unnecessarily.
3996   if (Op0.isUndef())
3997     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
3998   else if (Op1.isUndef())
3999     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4000   else {
4001     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4002     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4003   }
4004   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4005 }
4006 
4007 // Try to represent constant BUILD_VECTOR node BVN using a
4008 // SystemZISD::BYTE_MASK-style mask.  Store the mask value in Mask
4009 // on success.
4010 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
4011   EVT ElemVT = BVN->getValueType(0).getVectorElementType();
4012   unsigned BytesPerElement = ElemVT.getStoreSize();
4013   for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
4014     SDValue Op = BVN->getOperand(I);
4015     if (!Op.isUndef()) {
4016       uint64_t Value;
4017       if (Op.getOpcode() == ISD::Constant)
4018         Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue();
4019       else if (Op.getOpcode() == ISD::ConstantFP)
4020         Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
4021                  .getZExtValue());
4022       else
4023         return false;
4024       for (unsigned J = 0; J < BytesPerElement; ++J) {
4025         uint64_t Byte = (Value >> (J * 8)) & 0xff;
4026         if (Byte == 0xff)
4027           Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
4028         else if (Byte != 0)
4029           return false;
4030       }
4031     }
4032   }
4033   return true;
4034 }
4035 
4036 // Try to load a vector constant in which BitsPerElement-bit value Value
4037 // is replicated to fill the vector.  VT is the type of the resulting
4038 // constant, which may have elements of a different size from BitsPerElement.
4039 // Return the SDValue of the constant on success, otherwise return
4040 // an empty value.
4041 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
4042                                        const SystemZInstrInfo *TII,
4043                                        const SDLoc &DL, EVT VT, uint64_t Value,
4044                                        unsigned BitsPerElement) {
4045   // Signed 16-bit values can be replicated using VREPI.
4046   int64_t SignedValue = SignExtend64(Value, BitsPerElement);
4047   if (isInt<16>(SignedValue)) {
4048     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4049                                  SystemZ::VectorBits / BitsPerElement);
4050     SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT,
4051                              DAG.getConstant(SignedValue, DL, MVT::i32));
4052     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4053   }
4054   // See whether rotating the constant left some N places gives a value that
4055   // is one less than a power of 2 (i.e. all zeros followed by all ones).
4056   // If so we can use VGM.
4057   unsigned Start, End;
4058   if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
4059     // isRxSBGMask returns the bit numbers for a full 64-bit value,
4060     // with 0 denoting 1 << 63 and 63 denoting 1.  Convert them to
4061     // bit numbers for an BitsPerElement value, so that 0 denotes
4062     // 1 << (BitsPerElement-1).
4063     Start -= 64 - BitsPerElement;
4064     End -= 64 - BitsPerElement;
4065     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4066                                  SystemZ::VectorBits / BitsPerElement);
4067     SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT,
4068                              DAG.getConstant(Start, DL, MVT::i32),
4069                              DAG.getConstant(End, DL, MVT::i32));
4070     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4071   }
4072   return SDValue();
4073 }
4074 
4075 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4076 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4077 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4078 // would benefit from this representation and return it if so.
4079 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4080                                      BuildVectorSDNode *BVN) {
4081   EVT VT = BVN->getValueType(0);
4082   unsigned NumElements = VT.getVectorNumElements();
4083 
4084   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4085   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4086   // need a BUILD_VECTOR, add an additional placeholder operand for that
4087   // BUILD_VECTOR and store its operands in ResidueOps.
4088   GeneralShuffle GS(VT);
4089   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4090   bool FoundOne = false;
4091   for (unsigned I = 0; I < NumElements; ++I) {
4092     SDValue Op = BVN->getOperand(I);
4093     if (Op.getOpcode() == ISD::TRUNCATE)
4094       Op = Op.getOperand(0);
4095     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4096         Op.getOperand(1).getOpcode() == ISD::Constant) {
4097       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4098       GS.add(Op.getOperand(0), Elem);
4099       FoundOne = true;
4100     } else if (Op.isUndef()) {
4101       GS.addUndef();
4102     } else {
4103       GS.add(SDValue(), ResidueOps.size());
4104       ResidueOps.push_back(BVN->getOperand(I));
4105     }
4106   }
4107 
4108   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4109   if (!FoundOne)
4110     return SDValue();
4111 
4112   // Create the BUILD_VECTOR for the remaining elements, if any.
4113   if (!ResidueOps.empty()) {
4114     while (ResidueOps.size() < NumElements)
4115       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4116     for (auto &Op : GS.Ops) {
4117       if (!Op.getNode()) {
4118         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4119         break;
4120       }
4121     }
4122   }
4123   return GS.getNode(DAG, SDLoc(BVN));
4124 }
4125 
4126 // Combine GPR scalar values Elems into a vector of type VT.
4127 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4128                            SmallVectorImpl<SDValue> &Elems) {
4129   // See whether there is a single replicated value.
4130   SDValue Single;
4131   unsigned int NumElements = Elems.size();
4132   unsigned int Count = 0;
4133   for (auto Elem : Elems) {
4134     if (!Elem.isUndef()) {
4135       if (!Single.getNode())
4136         Single = Elem;
4137       else if (Elem != Single) {
4138         Single = SDValue();
4139         break;
4140       }
4141       Count += 1;
4142     }
4143   }
4144   // There are three cases here:
4145   //
4146   // - if the only defined element is a loaded one, the best sequence
4147   //   is a replicating load.
4148   //
4149   // - otherwise, if the only defined element is an i64 value, we will
4150   //   end up with the same VLVGP sequence regardless of whether we short-cut
4151   //   for replication or fall through to the later code.
4152   //
4153   // - otherwise, if the only defined element is an i32 or smaller value,
4154   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4155   //   This is only a win if the single defined element is used more than once.
4156   //   In other cases we're better off using a single VLVGx.
4157   if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4158     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4159 
4160   // The best way of building a v2i64 from two i64s is to use VLVGP.
4161   if (VT == MVT::v2i64)
4162     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4163 
4164   // Use a 64-bit merge high to combine two doubles.
4165   if (VT == MVT::v2f64)
4166     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4167 
4168   // Build v4f32 values directly from the FPRs:
4169   //
4170   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4171   //         V              V         VMRHF
4172   //      <ABxx>         <CDxx>
4173   //                V                 VMRHG
4174   //              <ABCD>
4175   if (VT == MVT::v4f32) {
4176     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4177     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4178     // Avoid unnecessary undefs by reusing the other operand.
4179     if (Op01.isUndef())
4180       Op01 = Op23;
4181     else if (Op23.isUndef())
4182       Op23 = Op01;
4183     // Merging identical replications is a no-op.
4184     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4185       return Op01;
4186     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4187     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4188     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4189                              DL, MVT::v2i64, Op01, Op23);
4190     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4191   }
4192 
4193   // Collect the constant terms.
4194   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4195   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4196 
4197   unsigned NumConstants = 0;
4198   for (unsigned I = 0; I < NumElements; ++I) {
4199     SDValue Elem = Elems[I];
4200     if (Elem.getOpcode() == ISD::Constant ||
4201         Elem.getOpcode() == ISD::ConstantFP) {
4202       NumConstants += 1;
4203       Constants[I] = Elem;
4204       Done[I] = true;
4205     }
4206   }
4207   // If there was at least one constant, fill in the other elements of
4208   // Constants with undefs to get a full vector constant and use that
4209   // as the starting point.
4210   SDValue Result;
4211   if (NumConstants > 0) {
4212     for (unsigned I = 0; I < NumElements; ++I)
4213       if (!Constants[I].getNode())
4214         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4215     Result = DAG.getBuildVector(VT, DL, Constants);
4216   } else {
4217     // Otherwise try to use VLVGP to start the sequence in order to
4218     // avoid a false dependency on any previous contents of the vector
4219     // register.  This only makes sense if one of the associated elements
4220     // is defined.
4221     unsigned I1 = NumElements / 2 - 1;
4222     unsigned I2 = NumElements - 1;
4223     bool Def1 = !Elems[I1].isUndef();
4224     bool Def2 = !Elems[I2].isUndef();
4225     if (Def1 || Def2) {
4226       SDValue Elem1 = Elems[Def1 ? I1 : I2];
4227       SDValue Elem2 = Elems[Def2 ? I2 : I1];
4228       Result = DAG.getNode(ISD::BITCAST, DL, VT,
4229                            joinDwords(DAG, DL, Elem1, Elem2));
4230       Done[I1] = true;
4231       Done[I2] = true;
4232     } else
4233       Result = DAG.getUNDEF(VT);
4234   }
4235 
4236   // Use VLVGx to insert the other elements.
4237   for (unsigned I = 0; I < NumElements; ++I)
4238     if (!Done[I] && !Elems[I].isUndef())
4239       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4240                            DAG.getConstant(I, DL, MVT::i32));
4241   return Result;
4242 }
4243 
4244 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4245                                                  SelectionDAG &DAG) const {
4246   const SystemZInstrInfo *TII =
4247     static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4248   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4249   SDLoc DL(Op);
4250   EVT VT = Op.getValueType();
4251 
4252   if (BVN->isConstant()) {
4253     // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
4254     // preferred way of creating all-zero and all-one vectors so give it
4255     // priority over other methods below.
4256     uint64_t Mask = 0;
4257     if (tryBuildVectorByteMask(BVN, Mask)) {
4258       SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4259                                DAG.getConstant(Mask, DL, MVT::i32));
4260       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4261     }
4262 
4263     // Try using some form of replication.
4264     APInt SplatBits, SplatUndef;
4265     unsigned SplatBitSize;
4266     bool HasAnyUndefs;
4267     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4268                              8, true) &&
4269         SplatBitSize <= 64) {
4270       // First try assuming that any undefined bits above the highest set bit
4271       // and below the lowest set bit are 1s.  This increases the likelihood of
4272       // being able to use a sign-extended element value in VECTOR REPLICATE
4273       // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4274       uint64_t SplatBitsZ = SplatBits.getZExtValue();
4275       uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4276       uint64_t Lower = (SplatUndefZ
4277                         & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
4278       uint64_t Upper = (SplatUndefZ
4279                         & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4280       uint64_t Value = SplatBitsZ | Upper | Lower;
4281       SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4282                                            SplatBitSize);
4283       if (Op.getNode())
4284         return Op;
4285 
4286       // Now try assuming that any undefined bits between the first and
4287       // last defined set bits are set.  This increases the chances of
4288       // using a non-wraparound mask.
4289       uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4290       Value = SplatBitsZ | Middle;
4291       Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4292       if (Op.getNode())
4293         return Op;
4294     }
4295 
4296     // Fall back to loading it from memory.
4297     return SDValue();
4298   }
4299 
4300   // See if we should use shuffles to construct the vector from other vectors.
4301   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4302     return Res;
4303 
4304   // Detect SCALAR_TO_VECTOR conversions.
4305   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4306     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4307 
4308   // Otherwise use buildVector to build the vector up from GPRs.
4309   unsigned NumElements = Op.getNumOperands();
4310   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4311   for (unsigned I = 0; I < NumElements; ++I)
4312     Ops[I] = Op.getOperand(I);
4313   return buildVector(DAG, DL, VT, Ops);
4314 }
4315 
4316 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4317                                                    SelectionDAG &DAG) const {
4318   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4319   SDLoc DL(Op);
4320   EVT VT = Op.getValueType();
4321   unsigned NumElements = VT.getVectorNumElements();
4322 
4323   if (VSN->isSplat()) {
4324     SDValue Op0 = Op.getOperand(0);
4325     unsigned Index = VSN->getSplatIndex();
4326     assert(Index < VT.getVectorNumElements() &&
4327            "Splat index should be defined and in first operand");
4328     // See whether the value we're splatting is directly available as a scalar.
4329     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4330         Op0.getOpcode() == ISD::BUILD_VECTOR)
4331       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4332     // Otherwise keep it as a vector-to-vector operation.
4333     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4334                        DAG.getConstant(Index, DL, MVT::i32));
4335   }
4336 
4337   GeneralShuffle GS(VT);
4338   for (unsigned I = 0; I < NumElements; ++I) {
4339     int Elt = VSN->getMaskElt(I);
4340     if (Elt < 0)
4341       GS.addUndef();
4342     else
4343       GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4344              unsigned(Elt) % NumElements);
4345   }
4346   return GS.getNode(DAG, SDLoc(VSN));
4347 }
4348 
4349 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4350                                                      SelectionDAG &DAG) const {
4351   SDLoc DL(Op);
4352   // Just insert the scalar into element 0 of an undefined vector.
4353   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4354                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4355                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4356 }
4357 
4358 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4359                                                       SelectionDAG &DAG) const {
4360   // Handle insertions of floating-point values.
4361   SDLoc DL(Op);
4362   SDValue Op0 = Op.getOperand(0);
4363   SDValue Op1 = Op.getOperand(1);
4364   SDValue Op2 = Op.getOperand(2);
4365   EVT VT = Op.getValueType();
4366 
4367   // Insertions into constant indices of a v2f64 can be done using VPDI.
4368   // However, if the inserted value is a bitcast or a constant then it's
4369   // better to use GPRs, as below.
4370   if (VT == MVT::v2f64 &&
4371       Op1.getOpcode() != ISD::BITCAST &&
4372       Op1.getOpcode() != ISD::ConstantFP &&
4373       Op2.getOpcode() == ISD::Constant) {
4374     uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue();
4375     unsigned Mask = VT.getVectorNumElements() - 1;
4376     if (Index <= Mask)
4377       return Op;
4378   }
4379 
4380   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4381   MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits());
4382   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4383   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4384                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4385                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4386   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4387 }
4388 
4389 SDValue
4390 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4391                                                SelectionDAG &DAG) const {
4392   // Handle extractions of floating-point values.
4393   SDLoc DL(Op);
4394   SDValue Op0 = Op.getOperand(0);
4395   SDValue Op1 = Op.getOperand(1);
4396   EVT VT = Op.getValueType();
4397   EVT VecVT = Op0.getValueType();
4398 
4399   // Extractions of constant indices can be done directly.
4400   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4401     uint64_t Index = CIndexN->getZExtValue();
4402     unsigned Mask = VecVT.getVectorNumElements() - 1;
4403     if (Index <= Mask)
4404       return Op;
4405   }
4406 
4407   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4408   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4409   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4410   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4411                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4412   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4413 }
4414 
4415 SDValue
4416 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4417                                               unsigned UnpackHigh) const {
4418   SDValue PackedOp = Op.getOperand(0);
4419   EVT OutVT = Op.getValueType();
4420   EVT InVT = PackedOp.getValueType();
4421   unsigned ToBits = OutVT.getVectorElementType().getSizeInBits();
4422   unsigned FromBits = InVT.getVectorElementType().getSizeInBits();
4423   do {
4424     FromBits *= 2;
4425     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4426                                  SystemZ::VectorBits / FromBits);
4427     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4428   } while (FromBits != ToBits);
4429   return PackedOp;
4430 }
4431 
4432 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4433                                           unsigned ByScalar) const {
4434   // Look for cases where a vector shift can use the *_BY_SCALAR form.
4435   SDValue Op0 = Op.getOperand(0);
4436   SDValue Op1 = Op.getOperand(1);
4437   SDLoc DL(Op);
4438   EVT VT = Op.getValueType();
4439   unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits();
4440 
4441   // See whether the shift vector is a splat represented as BUILD_VECTOR.
4442   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4443     APInt SplatBits, SplatUndef;
4444     unsigned SplatBitSize;
4445     bool HasAnyUndefs;
4446     // Check for constant splats.  Use ElemBitSize as the minimum element
4447     // width and reject splats that need wider elements.
4448     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4449                              ElemBitSize, true) &&
4450         SplatBitSize == ElemBitSize) {
4451       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4452                                       DL, MVT::i32);
4453       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4454     }
4455     // Check for variable splats.
4456     BitVector UndefElements;
4457     SDValue Splat = BVN->getSplatValue(&UndefElements);
4458     if (Splat) {
4459       // Since i32 is the smallest legal type, we either need a no-op
4460       // or a truncation.
4461       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4462       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4463     }
4464   }
4465 
4466   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4467   // and the shift amount is directly available in a GPR.
4468   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4469     if (VSN->isSplat()) {
4470       SDValue VSNOp0 = VSN->getOperand(0);
4471       unsigned Index = VSN->getSplatIndex();
4472       assert(Index < VT.getVectorNumElements() &&
4473              "Splat index should be defined and in first operand");
4474       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4475           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4476         // Since i32 is the smallest legal type, we either need a no-op
4477         // or a truncation.
4478         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4479                                     VSNOp0.getOperand(Index));
4480         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4481       }
4482     }
4483   }
4484 
4485   // Otherwise just treat the current form as legal.
4486   return Op;
4487 }
4488 
4489 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4490                                               SelectionDAG &DAG) const {
4491   switch (Op.getOpcode()) {
4492   case ISD::FRAMEADDR:
4493     return lowerFRAMEADDR(Op, DAG);
4494   case ISD::RETURNADDR:
4495     return lowerRETURNADDR(Op, DAG);
4496   case ISD::BR_CC:
4497     return lowerBR_CC(Op, DAG);
4498   case ISD::SELECT_CC:
4499     return lowerSELECT_CC(Op, DAG);
4500   case ISD::SETCC:
4501     return lowerSETCC(Op, DAG);
4502   case ISD::GlobalAddress:
4503     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4504   case ISD::GlobalTLSAddress:
4505     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4506   case ISD::BlockAddress:
4507     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4508   case ISD::JumpTable:
4509     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4510   case ISD::ConstantPool:
4511     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4512   case ISD::BITCAST:
4513     return lowerBITCAST(Op, DAG);
4514   case ISD::VASTART:
4515     return lowerVASTART(Op, DAG);
4516   case ISD::VACOPY:
4517     return lowerVACOPY(Op, DAG);
4518   case ISD::DYNAMIC_STACKALLOC:
4519     return lowerDYNAMIC_STACKALLOC(Op, DAG);
4520   case ISD::GET_DYNAMIC_AREA_OFFSET:
4521     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4522   case ISD::SMUL_LOHI:
4523     return lowerSMUL_LOHI(Op, DAG);
4524   case ISD::UMUL_LOHI:
4525     return lowerUMUL_LOHI(Op, DAG);
4526   case ISD::SDIVREM:
4527     return lowerSDIVREM(Op, DAG);
4528   case ISD::UDIVREM:
4529     return lowerUDIVREM(Op, DAG);
4530   case ISD::OR:
4531     return lowerOR(Op, DAG);
4532   case ISD::CTPOP:
4533     return lowerCTPOP(Op, DAG);
4534   case ISD::ATOMIC_FENCE:
4535     return lowerATOMIC_FENCE(Op, DAG);
4536   case ISD::ATOMIC_SWAP:
4537     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4538   case ISD::ATOMIC_STORE:
4539     return lowerATOMIC_STORE(Op, DAG);
4540   case ISD::ATOMIC_LOAD:
4541     return lowerATOMIC_LOAD(Op, DAG);
4542   case ISD::ATOMIC_LOAD_ADD:
4543     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4544   case ISD::ATOMIC_LOAD_SUB:
4545     return lowerATOMIC_LOAD_SUB(Op, DAG);
4546   case ISD::ATOMIC_LOAD_AND:
4547     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4548   case ISD::ATOMIC_LOAD_OR:
4549     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4550   case ISD::ATOMIC_LOAD_XOR:
4551     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4552   case ISD::ATOMIC_LOAD_NAND:
4553     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4554   case ISD::ATOMIC_LOAD_MIN:
4555     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4556   case ISD::ATOMIC_LOAD_MAX:
4557     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4558   case ISD::ATOMIC_LOAD_UMIN:
4559     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4560   case ISD::ATOMIC_LOAD_UMAX:
4561     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4562   case ISD::ATOMIC_CMP_SWAP:
4563     return lowerATOMIC_CMP_SWAP(Op, DAG);
4564   case ISD::STACKSAVE:
4565     return lowerSTACKSAVE(Op, DAG);
4566   case ISD::STACKRESTORE:
4567     return lowerSTACKRESTORE(Op, DAG);
4568   case ISD::PREFETCH:
4569     return lowerPREFETCH(Op, DAG);
4570   case ISD::INTRINSIC_W_CHAIN:
4571     return lowerINTRINSIC_W_CHAIN(Op, DAG);
4572   case ISD::INTRINSIC_WO_CHAIN:
4573     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4574   case ISD::BUILD_VECTOR:
4575     return lowerBUILD_VECTOR(Op, DAG);
4576   case ISD::VECTOR_SHUFFLE:
4577     return lowerVECTOR_SHUFFLE(Op, DAG);
4578   case ISD::SCALAR_TO_VECTOR:
4579     return lowerSCALAR_TO_VECTOR(Op, DAG);
4580   case ISD::INSERT_VECTOR_ELT:
4581     return lowerINSERT_VECTOR_ELT(Op, DAG);
4582   case ISD::EXTRACT_VECTOR_ELT:
4583     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4584   case ISD::SIGN_EXTEND_VECTOR_INREG:
4585     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4586   case ISD::ZERO_EXTEND_VECTOR_INREG:
4587     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4588   case ISD::SHL:
4589     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4590   case ISD::SRL:
4591     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4592   case ISD::SRA:
4593     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4594   default:
4595     llvm_unreachable("Unexpected node to lower");
4596   }
4597 }
4598 
4599 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4600 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
4601   switch ((SystemZISD::NodeType)Opcode) {
4602     case SystemZISD::FIRST_NUMBER: break;
4603     OPCODE(RET_FLAG);
4604     OPCODE(CALL);
4605     OPCODE(SIBCALL);
4606     OPCODE(TLS_GDCALL);
4607     OPCODE(TLS_LDCALL);
4608     OPCODE(PCREL_WRAPPER);
4609     OPCODE(PCREL_OFFSET);
4610     OPCODE(IABS);
4611     OPCODE(ICMP);
4612     OPCODE(FCMP);
4613     OPCODE(TM);
4614     OPCODE(BR_CCMASK);
4615     OPCODE(SELECT_CCMASK);
4616     OPCODE(ADJDYNALLOC);
4617     OPCODE(EXTRACT_ACCESS);
4618     OPCODE(POPCNT);
4619     OPCODE(UMUL_LOHI64);
4620     OPCODE(SDIVREM32);
4621     OPCODE(SDIVREM64);
4622     OPCODE(UDIVREM32);
4623     OPCODE(UDIVREM64);
4624     OPCODE(MVC);
4625     OPCODE(MVC_LOOP);
4626     OPCODE(NC);
4627     OPCODE(NC_LOOP);
4628     OPCODE(OC);
4629     OPCODE(OC_LOOP);
4630     OPCODE(XC);
4631     OPCODE(XC_LOOP);
4632     OPCODE(CLC);
4633     OPCODE(CLC_LOOP);
4634     OPCODE(STPCPY);
4635     OPCODE(STRCMP);
4636     OPCODE(SEARCH_STRING);
4637     OPCODE(IPM);
4638     OPCODE(SERIALIZE);
4639     OPCODE(MEMBARRIER);
4640     OPCODE(TBEGIN);
4641     OPCODE(TBEGIN_NOFLOAT);
4642     OPCODE(TEND);
4643     OPCODE(BYTE_MASK);
4644     OPCODE(ROTATE_MASK);
4645     OPCODE(REPLICATE);
4646     OPCODE(JOIN_DWORDS);
4647     OPCODE(SPLAT);
4648     OPCODE(MERGE_HIGH);
4649     OPCODE(MERGE_LOW);
4650     OPCODE(SHL_DOUBLE);
4651     OPCODE(PERMUTE_DWORDS);
4652     OPCODE(PERMUTE);
4653     OPCODE(PACK);
4654     OPCODE(PACKS_CC);
4655     OPCODE(PACKLS_CC);
4656     OPCODE(UNPACK_HIGH);
4657     OPCODE(UNPACKL_HIGH);
4658     OPCODE(UNPACK_LOW);
4659     OPCODE(UNPACKL_LOW);
4660     OPCODE(VSHL_BY_SCALAR);
4661     OPCODE(VSRL_BY_SCALAR);
4662     OPCODE(VSRA_BY_SCALAR);
4663     OPCODE(VSUM);
4664     OPCODE(VICMPE);
4665     OPCODE(VICMPH);
4666     OPCODE(VICMPHL);
4667     OPCODE(VICMPES);
4668     OPCODE(VICMPHS);
4669     OPCODE(VICMPHLS);
4670     OPCODE(VFCMPE);
4671     OPCODE(VFCMPH);
4672     OPCODE(VFCMPHE);
4673     OPCODE(VFCMPES);
4674     OPCODE(VFCMPHS);
4675     OPCODE(VFCMPHES);
4676     OPCODE(VFTCI);
4677     OPCODE(VEXTEND);
4678     OPCODE(VROUND);
4679     OPCODE(VTM);
4680     OPCODE(VFAE_CC);
4681     OPCODE(VFAEZ_CC);
4682     OPCODE(VFEE_CC);
4683     OPCODE(VFEEZ_CC);
4684     OPCODE(VFENE_CC);
4685     OPCODE(VFENEZ_CC);
4686     OPCODE(VISTR_CC);
4687     OPCODE(VSTRC_CC);
4688     OPCODE(VSTRCZ_CC);
4689     OPCODE(TDC);
4690     OPCODE(ATOMIC_SWAPW);
4691     OPCODE(ATOMIC_LOADW_ADD);
4692     OPCODE(ATOMIC_LOADW_SUB);
4693     OPCODE(ATOMIC_LOADW_AND);
4694     OPCODE(ATOMIC_LOADW_OR);
4695     OPCODE(ATOMIC_LOADW_XOR);
4696     OPCODE(ATOMIC_LOADW_NAND);
4697     OPCODE(ATOMIC_LOADW_MIN);
4698     OPCODE(ATOMIC_LOADW_MAX);
4699     OPCODE(ATOMIC_LOADW_UMIN);
4700     OPCODE(ATOMIC_LOADW_UMAX);
4701     OPCODE(ATOMIC_CMP_SWAPW);
4702     OPCODE(LRV);
4703     OPCODE(STRV);
4704     OPCODE(PREFETCH);
4705   }
4706   return nullptr;
4707 #undef OPCODE
4708 }
4709 
4710 // Return true if VT is a vector whose elements are a whole number of bytes
4711 // in width.
4712 static bool canTreatAsByteVector(EVT VT) {
4713   return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0;
4714 }
4715 
4716 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
4717 // producing a result of type ResVT.  Op is a possibly bitcast version
4718 // of the input vector and Index is the index (based on type VecVT) that
4719 // should be extracted.  Return the new extraction if a simplification
4720 // was possible or if Force is true.
4721 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
4722                                               EVT VecVT, SDValue Op,
4723                                               unsigned Index,
4724                                               DAGCombinerInfo &DCI,
4725                                               bool Force) const {
4726   SelectionDAG &DAG = DCI.DAG;
4727 
4728   // The number of bytes being extracted.
4729   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4730 
4731   for (;;) {
4732     unsigned Opcode = Op.getOpcode();
4733     if (Opcode == ISD::BITCAST)
4734       // Look through bitcasts.
4735       Op = Op.getOperand(0);
4736     else if (Opcode == ISD::VECTOR_SHUFFLE &&
4737              canTreatAsByteVector(Op.getValueType())) {
4738       // Get a VPERM-like permute mask and see whether the bytes covered
4739       // by the extracted element are a contiguous sequence from one
4740       // source operand.
4741       SmallVector<int, SystemZ::VectorBytes> Bytes;
4742       getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
4743       int First;
4744       if (!getShuffleInput(Bytes, Index * BytesPerElement,
4745                            BytesPerElement, First))
4746         break;
4747       if (First < 0)
4748         return DAG.getUNDEF(ResVT);
4749       // Make sure the contiguous sequence starts at a multiple of the
4750       // original element size.
4751       unsigned Byte = unsigned(First) % Bytes.size();
4752       if (Byte % BytesPerElement != 0)
4753         break;
4754       // We can get the extracted value directly from an input.
4755       Index = Byte / BytesPerElement;
4756       Op = Op.getOperand(unsigned(First) / Bytes.size());
4757       Force = true;
4758     } else if (Opcode == ISD::BUILD_VECTOR &&
4759                canTreatAsByteVector(Op.getValueType())) {
4760       // We can only optimize this case if the BUILD_VECTOR elements are
4761       // at least as wide as the extracted value.
4762       EVT OpVT = Op.getValueType();
4763       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
4764       if (OpBytesPerElement < BytesPerElement)
4765         break;
4766       // Make sure that the least-significant bit of the extracted value
4767       // is the least significant bit of an input.
4768       unsigned End = (Index + 1) * BytesPerElement;
4769       if (End % OpBytesPerElement != 0)
4770         break;
4771       // We're extracting the low part of one operand of the BUILD_VECTOR.
4772       Op = Op.getOperand(End / OpBytesPerElement - 1);
4773       if (!Op.getValueType().isInteger()) {
4774         EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits());
4775         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4776         DCI.AddToWorklist(Op.getNode());
4777       }
4778       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
4779       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4780       if (VT != ResVT) {
4781         DCI.AddToWorklist(Op.getNode());
4782         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
4783       }
4784       return Op;
4785     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
4786                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
4787                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
4788                canTreatAsByteVector(Op.getValueType()) &&
4789                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
4790       // Make sure that only the unextended bits are significant.
4791       EVT ExtVT = Op.getValueType();
4792       EVT OpVT = Op.getOperand(0).getValueType();
4793       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
4794       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
4795       unsigned Byte = Index * BytesPerElement;
4796       unsigned SubByte = Byte % ExtBytesPerElement;
4797       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
4798       if (SubByte < MinSubByte ||
4799           SubByte + BytesPerElement > ExtBytesPerElement)
4800         break;
4801       // Get the byte offset of the unextended element
4802       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
4803       // ...then add the byte offset relative to that element.
4804       Byte += SubByte - MinSubByte;
4805       if (Byte % BytesPerElement != 0)
4806         break;
4807       Op = Op.getOperand(0);
4808       Index = Byte / BytesPerElement;
4809       Force = true;
4810     } else
4811       break;
4812   }
4813   if (Force) {
4814     if (Op.getValueType() != VecVT) {
4815       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
4816       DCI.AddToWorklist(Op.getNode());
4817     }
4818     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
4819                        DAG.getConstant(Index, DL, MVT::i32));
4820   }
4821   return SDValue();
4822 }
4823 
4824 // Optimize vector operations in scalar value Op on the basis that Op
4825 // is truncated to TruncVT.
4826 SDValue SystemZTargetLowering::combineTruncateExtract(
4827     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
4828   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
4829   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
4830   // of type TruncVT.
4831   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4832       TruncVT.getSizeInBits() % 8 == 0) {
4833     SDValue Vec = Op.getOperand(0);
4834     EVT VecVT = Vec.getValueType();
4835     if (canTreatAsByteVector(VecVT)) {
4836       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
4837         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4838         unsigned TruncBytes = TruncVT.getStoreSize();
4839         if (BytesPerElement % TruncBytes == 0) {
4840           // Calculate the value of Y' in the above description.  We are
4841           // splitting the original elements into Scale equal-sized pieces
4842           // and for truncation purposes want the last (least-significant)
4843           // of these pieces for IndexN.  This is easiest to do by calculating
4844           // the start index of the following element and then subtracting 1.
4845           unsigned Scale = BytesPerElement / TruncBytes;
4846           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
4847 
4848           // Defer the creation of the bitcast from X to combineExtract,
4849           // which might be able to optimize the extraction.
4850           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
4851                                    VecVT.getStoreSize() / TruncBytes);
4852           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
4853           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
4854         }
4855       }
4856     }
4857   }
4858   return SDValue();
4859 }
4860 
4861 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
4862     SDNode *N, DAGCombinerInfo &DCI) const {
4863   // Convert (sext (ashr (shl X, C1), C2)) to
4864   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
4865   // cheap as narrower ones.
4866   SelectionDAG &DAG = DCI.DAG;
4867   SDValue N0 = N->getOperand(0);
4868   EVT VT = N->getValueType(0);
4869   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
4870     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
4871     SDValue Inner = N0.getOperand(0);
4872     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
4873       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
4874         unsigned Extra = (VT.getSizeInBits() -
4875                           N0.getValueType().getSizeInBits());
4876         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
4877         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
4878         EVT ShiftVT = N0.getOperand(1).getValueType();
4879         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
4880                                   Inner.getOperand(0));
4881         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
4882                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
4883                                                   ShiftVT));
4884         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
4885                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
4886       }
4887     }
4888   }
4889   return SDValue();
4890 }
4891 
4892 SDValue SystemZTargetLowering::combineMERGE(
4893     SDNode *N, DAGCombinerInfo &DCI) const {
4894   SelectionDAG &DAG = DCI.DAG;
4895   unsigned Opcode = N->getOpcode();
4896   SDValue Op0 = N->getOperand(0);
4897   SDValue Op1 = N->getOperand(1);
4898   if (Op0.getOpcode() == ISD::BITCAST)
4899     Op0 = Op0.getOperand(0);
4900   if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
4901       cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
4902     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
4903     // for v4f32.
4904     if (Op1 == N->getOperand(0))
4905       return Op1;
4906     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
4907     EVT VT = Op1.getValueType();
4908     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
4909     if (ElemBytes <= 4) {
4910       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
4911                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
4912       EVT InVT = VT.changeVectorElementTypeToInteger();
4913       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
4914                                    SystemZ::VectorBytes / ElemBytes / 2);
4915       if (VT != InVT) {
4916         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
4917         DCI.AddToWorklist(Op1.getNode());
4918       }
4919       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
4920       DCI.AddToWorklist(Op.getNode());
4921       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
4922     }
4923   }
4924   return SDValue();
4925 }
4926 
4927 SDValue SystemZTargetLowering::combineSTORE(
4928     SDNode *N, DAGCombinerInfo &DCI) const {
4929   SelectionDAG &DAG = DCI.DAG;
4930   auto *SN = cast<StoreSDNode>(N);
4931   auto &Op1 = N->getOperand(1);
4932   EVT MemVT = SN->getMemoryVT();
4933   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
4934   // for the extraction to be done on a vMiN value, so that we can use VSTE.
4935   // If X has wider elements then convert it to:
4936   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
4937   if (MemVT.isInteger()) {
4938     if (SDValue Value =
4939             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
4940       DCI.AddToWorklist(Value.getNode());
4941 
4942       // Rewrite the store with the new form of stored value.
4943       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
4944                                SN->getBasePtr(), SN->getMemoryVT(),
4945                                SN->getMemOperand());
4946     }
4947   }
4948   // Combine STORE (BSWAP) into STRVH/STRV/STRVG
4949   // See comment in combineBSWAP about volatile accesses.
4950   if (!SN->isVolatile() &&
4951       Op1.getOpcode() == ISD::BSWAP &&
4952       Op1.getNode()->hasOneUse() &&
4953       (Op1.getValueType() == MVT::i16 ||
4954        Op1.getValueType() == MVT::i32 ||
4955        Op1.getValueType() == MVT::i64)) {
4956 
4957       SDValue BSwapOp = Op1.getOperand(0);
4958 
4959       if (BSwapOp.getValueType() == MVT::i16)
4960         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
4961 
4962       SDValue Ops[] = {
4963         N->getOperand(0), BSwapOp, N->getOperand(2),
4964         DAG.getValueType(Op1.getValueType())
4965       };
4966 
4967       return
4968         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
4969                                 Ops, MemVT, SN->getMemOperand());
4970     }
4971   return SDValue();
4972 }
4973 
4974 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
4975     SDNode *N, DAGCombinerInfo &DCI) const {
4976   // Try to simplify a vector extraction.
4977   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
4978     SDValue Op0 = N->getOperand(0);
4979     EVT VecVT = Op0.getValueType();
4980     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
4981                           IndexN->getZExtValue(), DCI, false);
4982   }
4983   return SDValue();
4984 }
4985 
4986 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
4987     SDNode *N, DAGCombinerInfo &DCI) const {
4988   SelectionDAG &DAG = DCI.DAG;
4989   // (join_dwords X, X) == (replicate X)
4990   if (N->getOperand(0) == N->getOperand(1))
4991     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
4992                        N->getOperand(0));
4993   return SDValue();
4994 }
4995 
4996 SDValue SystemZTargetLowering::combineFP_ROUND(
4997     SDNode *N, DAGCombinerInfo &DCI) const {
4998   // (fpround (extract_vector_elt X 0))
4999   // (fpround (extract_vector_elt X 1)) ->
5000   // (extract_vector_elt (VROUND X) 0)
5001   // (extract_vector_elt (VROUND X) 1)
5002   //
5003   // This is a special case since the target doesn't really support v2f32s.
5004   SelectionDAG &DAG = DCI.DAG;
5005   SDValue Op0 = N->getOperand(0);
5006   if (N->getValueType(0) == MVT::f32 &&
5007       Op0.hasOneUse() &&
5008       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5009       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5010       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5011       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5012     SDValue Vec = Op0.getOperand(0);
5013     for (auto *U : Vec->uses()) {
5014       if (U != Op0.getNode() &&
5015           U->hasOneUse() &&
5016           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5017           U->getOperand(0) == Vec &&
5018           U->getOperand(1).getOpcode() == ISD::Constant &&
5019           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5020         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5021         if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5022             OtherRound.getOperand(0) == SDValue(U, 0) &&
5023             OtherRound.getValueType() == MVT::f32) {
5024           SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5025                                        MVT::v4f32, Vec);
5026           DCI.AddToWorklist(VRound.getNode());
5027           SDValue Extract1 =
5028             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5029                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5030           DCI.AddToWorklist(Extract1.getNode());
5031           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5032           SDValue Extract0 =
5033             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5034                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5035           return Extract0;
5036         }
5037       }
5038     }
5039   }
5040   return SDValue();
5041 }
5042 
5043 SDValue SystemZTargetLowering::combineBSWAP(
5044     SDNode *N, DAGCombinerInfo &DCI) const {
5045   SelectionDAG &DAG = DCI.DAG;
5046   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5047   // These loads are allowed to access memory multiple times, and so we must check
5048   // that the loads are not volatile before performing the combine.
5049   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5050       N->getOperand(0).hasOneUse() &&
5051       (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5052        N->getValueType(0) == MVT::i64) &&
5053        !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) {
5054       SDValue Load = N->getOperand(0);
5055       LoadSDNode *LD = cast<LoadSDNode>(Load);
5056 
5057       // Create the byte-swapping load.
5058       SDValue Ops[] = {
5059         LD->getChain(),    // Chain
5060         LD->getBasePtr(),  // Ptr
5061         DAG.getValueType(N->getValueType(0)) // VT
5062       };
5063       SDValue BSLoad =
5064         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5065                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
5066                                               MVT::i64 : MVT::i32, MVT::Other),
5067                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5068 
5069       // If this is an i16 load, insert the truncate.
5070       SDValue ResVal = BSLoad;
5071       if (N->getValueType(0) == MVT::i16)
5072         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5073 
5074       // First, combine the bswap away.  This makes the value produced by the
5075       // load dead.
5076       DCI.CombineTo(N, ResVal);
5077 
5078       // Next, combine the load away, we give it a bogus result value but a real
5079       // chain result.  The result value is dead because the bswap is dead.
5080       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5081 
5082       // Return N so it doesn't get rechecked!
5083       return SDValue(N, 0);
5084     }
5085   return SDValue();
5086 }
5087 
5088 SDValue SystemZTargetLowering::combineSHIFTROT(
5089     SDNode *N, DAGCombinerInfo &DCI) const {
5090 
5091   SelectionDAG &DAG = DCI.DAG;
5092 
5093   // Shift/rotate instructions only use the last 6 bits of the second operand
5094   // register. If the second operand is the result of an AND with an immediate
5095   // value that has its last 6 bits set, we can safely remove the AND operation.
5096   //
5097   // If the AND operation doesn't have the last 6 bits set, we can't remove it
5098   // entirely, but we can still truncate it to a 16-bit value. This prevents
5099   // us from ending up with a NILL with a signed operand, which will cause the
5100   // instruction printer to abort.
5101   SDValue N1 = N->getOperand(1);
5102   if (N1.getOpcode() == ISD::AND) {
5103     SDValue AndMaskOp = N1->getOperand(1);
5104     auto *AndMask = dyn_cast<ConstantSDNode>(AndMaskOp);
5105 
5106     // The AND mask is constant
5107     if (AndMask) {
5108       auto AmtVal = AndMask->getZExtValue();
5109 
5110       // Bottom 6 bits are set
5111       if ((AmtVal & 0x3f) == 0x3f) {
5112         SDValue AndOp = N1->getOperand(0);
5113 
5114         // This is the only use, so remove the node
5115         if (N1.hasOneUse()) {
5116           // Combine the AND away
5117           DCI.CombineTo(N1.getNode(), AndOp);
5118 
5119           // Return N so it isn't rechecked
5120           return SDValue(N, 0);
5121 
5122         // The node will be reused, so create a new node for this one use
5123         } else {
5124           SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5125                                         N->getValueType(0), N->getOperand(0),
5126                                         AndOp);
5127           DCI.AddToWorklist(Replace.getNode());
5128 
5129           return Replace;
5130         }
5131 
5132       // We can't remove the AND, but we can use NILL here (normally we would
5133       // use NILF). Only keep the last 16 bits of the mask. The actual
5134       // transformation will be handled by .td definitions.
5135       } else if (AmtVal >> 16 != 0) {
5136         SDValue AndOp = N1->getOperand(0);
5137 
5138         auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff,
5139                                        SDLoc(AndMaskOp),
5140                                        AndMaskOp.getValueType());
5141 
5142         auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(),
5143                                   AndOp, NewMask);
5144 
5145         SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5146                                       N->getValueType(0), N->getOperand(0),
5147                                       NewAnd);
5148         DCI.AddToWorklist(Replace.getNode());
5149 
5150         return Replace;
5151       }
5152     }
5153   }
5154 
5155   return SDValue();
5156 }
5157 
5158 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5159                                                  DAGCombinerInfo &DCI) const {
5160   switch(N->getOpcode()) {
5161   default: break;
5162   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
5163   case SystemZISD::MERGE_HIGH:
5164   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
5165   case ISD::STORE:              return combineSTORE(N, DCI);
5166   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5167   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5168   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
5169   case ISD::BSWAP:              return combineBSWAP(N, DCI);
5170   case ISD::SHL:
5171   case ISD::SRA:
5172   case ISD::SRL:
5173   case ISD::ROTL:               return combineSHIFTROT(N, DCI);
5174   }
5175 
5176   return SDValue();
5177 }
5178 
5179 //===----------------------------------------------------------------------===//
5180 // Custom insertion
5181 //===----------------------------------------------------------------------===//
5182 
5183 // Create a new basic block after MBB.
5184 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
5185   MachineFunction &MF = *MBB->getParent();
5186   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
5187   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
5188   return NewMBB;
5189 }
5190 
5191 // Split MBB after MI and return the new block (the one that contains
5192 // instructions after MI).
5193 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
5194                                           MachineBasicBlock *MBB) {
5195   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5196   NewMBB->splice(NewMBB->begin(), MBB,
5197                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
5198   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5199   return NewMBB;
5200 }
5201 
5202 // Split MBB before MI and return the new block (the one that contains MI).
5203 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
5204                                            MachineBasicBlock *MBB) {
5205   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5206   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
5207   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5208   return NewMBB;
5209 }
5210 
5211 // Force base value Base into a register before MI.  Return the register.
5212 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
5213                          const SystemZInstrInfo *TII) {
5214   if (Base.isReg())
5215     return Base.getReg();
5216 
5217   MachineBasicBlock *MBB = MI.getParent();
5218   MachineFunction &MF = *MBB->getParent();
5219   MachineRegisterInfo &MRI = MF.getRegInfo();
5220 
5221   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5222   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
5223       .addOperand(Base)
5224       .addImm(0)
5225       .addReg(0);
5226   return Reg;
5227 }
5228 
5229 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
5230 MachineBasicBlock *
5231 SystemZTargetLowering::emitSelect(MachineInstr &MI,
5232                                   MachineBasicBlock *MBB) const {
5233   const SystemZInstrInfo *TII =
5234       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5235 
5236   unsigned DestReg = MI.getOperand(0).getReg();
5237   unsigned TrueReg = MI.getOperand(1).getReg();
5238   unsigned FalseReg = MI.getOperand(2).getReg();
5239   unsigned CCValid = MI.getOperand(3).getImm();
5240   unsigned CCMask = MI.getOperand(4).getImm();
5241   DebugLoc DL = MI.getDebugLoc();
5242 
5243   MachineBasicBlock *StartMBB = MBB;
5244   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
5245   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5246 
5247   //  StartMBB:
5248   //   BRC CCMask, JoinMBB
5249   //   # fallthrough to FalseMBB
5250   MBB = StartMBB;
5251   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5252     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5253   MBB->addSuccessor(JoinMBB);
5254   MBB->addSuccessor(FalseMBB);
5255 
5256   //  FalseMBB:
5257   //   # fallthrough to JoinMBB
5258   MBB = FalseMBB;
5259   MBB->addSuccessor(JoinMBB);
5260 
5261   //  JoinMBB:
5262   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
5263   //  ...
5264   MBB = JoinMBB;
5265   BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
5266     .addReg(TrueReg).addMBB(StartMBB)
5267     .addReg(FalseReg).addMBB(FalseMBB);
5268 
5269   MI.eraseFromParent();
5270   return JoinMBB;
5271 }
5272 
5273 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
5274 // StoreOpcode is the store to use and Invert says whether the store should
5275 // happen when the condition is false rather than true.  If a STORE ON
5276 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
5277 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
5278                                                         MachineBasicBlock *MBB,
5279                                                         unsigned StoreOpcode,
5280                                                         unsigned STOCOpcode,
5281                                                         bool Invert) const {
5282   const SystemZInstrInfo *TII =
5283       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5284 
5285   unsigned SrcReg = MI.getOperand(0).getReg();
5286   MachineOperand Base = MI.getOperand(1);
5287   int64_t Disp = MI.getOperand(2).getImm();
5288   unsigned IndexReg = MI.getOperand(3).getReg();
5289   unsigned CCValid = MI.getOperand(4).getImm();
5290   unsigned CCMask = MI.getOperand(5).getImm();
5291   DebugLoc DL = MI.getDebugLoc();
5292 
5293   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
5294 
5295   // Use STOCOpcode if possible.  We could use different store patterns in
5296   // order to avoid matching the index register, but the performance trade-offs
5297   // might be more complicated in that case.
5298   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
5299     if (Invert)
5300       CCMask ^= CCValid;
5301     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
5302       .addReg(SrcReg).addOperand(Base).addImm(Disp)
5303       .addImm(CCValid).addImm(CCMask);
5304     MI.eraseFromParent();
5305     return MBB;
5306   }
5307 
5308   // Get the condition needed to branch around the store.
5309   if (!Invert)
5310     CCMask ^= CCValid;
5311 
5312   MachineBasicBlock *StartMBB = MBB;
5313   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
5314   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5315 
5316   //  StartMBB:
5317   //   BRC CCMask, JoinMBB
5318   //   # fallthrough to FalseMBB
5319   MBB = StartMBB;
5320   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5321     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5322   MBB->addSuccessor(JoinMBB);
5323   MBB->addSuccessor(FalseMBB);
5324 
5325   //  FalseMBB:
5326   //   store %SrcReg, %Disp(%Index,%Base)
5327   //   # fallthrough to JoinMBB
5328   MBB = FalseMBB;
5329   BuildMI(MBB, DL, TII->get(StoreOpcode))
5330     .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg);
5331   MBB->addSuccessor(JoinMBB);
5332 
5333   MI.eraseFromParent();
5334   return JoinMBB;
5335 }
5336 
5337 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
5338 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
5339 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
5340 // BitSize is the width of the field in bits, or 0 if this is a partword
5341 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
5342 // is one of the operands.  Invert says whether the field should be
5343 // inverted after performing BinOpcode (e.g. for NAND).
5344 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
5345     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
5346     unsigned BitSize, bool Invert) const {
5347   MachineFunction &MF = *MBB->getParent();
5348   const SystemZInstrInfo *TII =
5349       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5350   MachineRegisterInfo &MRI = MF.getRegInfo();
5351   bool IsSubWord = (BitSize < 32);
5352 
5353   // Extract the operands.  Base can be a register or a frame index.
5354   // Src2 can be a register or immediate.
5355   unsigned Dest = MI.getOperand(0).getReg();
5356   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5357   int64_t Disp = MI.getOperand(2).getImm();
5358   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
5359   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5360   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5361   DebugLoc DL = MI.getDebugLoc();
5362   if (IsSubWord)
5363     BitSize = MI.getOperand(6).getImm();
5364 
5365   // Subword operations use 32-bit registers.
5366   const TargetRegisterClass *RC = (BitSize <= 32 ?
5367                                    &SystemZ::GR32BitRegClass :
5368                                    &SystemZ::GR64BitRegClass);
5369   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
5370   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5371 
5372   // Get the right opcodes for the displacement.
5373   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
5374   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5375   assert(LOpcode && CSOpcode && "Displacement out of range");
5376 
5377   // Create virtual registers for temporary results.
5378   unsigned OrigVal       = MRI.createVirtualRegister(RC);
5379   unsigned OldVal        = MRI.createVirtualRegister(RC);
5380   unsigned NewVal        = (BinOpcode || IsSubWord ?
5381                             MRI.createVirtualRegister(RC) : Src2.getReg());
5382   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5383   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5384 
5385   // Insert a basic block for the main loop.
5386   MachineBasicBlock *StartMBB = MBB;
5387   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
5388   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
5389 
5390   //  StartMBB:
5391   //   ...
5392   //   %OrigVal = L Disp(%Base)
5393   //   # fall through to LoopMMB
5394   MBB = StartMBB;
5395   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
5396     .addOperand(Base).addImm(Disp).addReg(0);
5397   MBB->addSuccessor(LoopMBB);
5398 
5399   //  LoopMBB:
5400   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
5401   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5402   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
5403   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
5404   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
5405   //   JNE LoopMBB
5406   //   # fall through to DoneMMB
5407   MBB = LoopMBB;
5408   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5409     .addReg(OrigVal).addMBB(StartMBB)
5410     .addReg(Dest).addMBB(LoopMBB);
5411   if (IsSubWord)
5412     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5413       .addReg(OldVal).addReg(BitShift).addImm(0);
5414   if (Invert) {
5415     // Perform the operation normally and then invert every bit of the field.
5416     unsigned Tmp = MRI.createVirtualRegister(RC);
5417     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp)
5418       .addReg(RotatedOldVal).addOperand(Src2);
5419     if (BitSize <= 32)
5420       // XILF with the upper BitSize bits set.
5421       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
5422         .addReg(Tmp).addImm(-1U << (32 - BitSize));
5423     else {
5424       // Use LCGR and add -1 to the result, which is more compact than
5425       // an XILF, XILH pair.
5426       unsigned Tmp2 = MRI.createVirtualRegister(RC);
5427       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
5428       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
5429         .addReg(Tmp2).addImm(-1);
5430     }
5431   } else if (BinOpcode)
5432     // A simply binary operation.
5433     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
5434       .addReg(RotatedOldVal).addOperand(Src2);
5435   else if (IsSubWord)
5436     // Use RISBG to rotate Src2 into position and use it to replace the
5437     // field in RotatedOldVal.
5438     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
5439       .addReg(RotatedOldVal).addReg(Src2.getReg())
5440       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
5441   if (IsSubWord)
5442     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5443       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5444   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5445     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
5446   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5447     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5448   MBB->addSuccessor(LoopMBB);
5449   MBB->addSuccessor(DoneMBB);
5450 
5451   MI.eraseFromParent();
5452   return DoneMBB;
5453 }
5454 
5455 // Implement EmitInstrWithCustomInserter for pseudo
5456 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
5457 // instruction that should be used to compare the current field with the
5458 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
5459 // for when the current field should be kept.  BitSize is the width of
5460 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
5461 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
5462     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
5463     unsigned KeepOldMask, unsigned BitSize) const {
5464   MachineFunction &MF = *MBB->getParent();
5465   const SystemZInstrInfo *TII =
5466       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5467   MachineRegisterInfo &MRI = MF.getRegInfo();
5468   bool IsSubWord = (BitSize < 32);
5469 
5470   // Extract the operands.  Base can be a register or a frame index.
5471   unsigned Dest = MI.getOperand(0).getReg();
5472   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5473   int64_t Disp = MI.getOperand(2).getImm();
5474   unsigned Src2 = MI.getOperand(3).getReg();
5475   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5476   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5477   DebugLoc DL = MI.getDebugLoc();
5478   if (IsSubWord)
5479     BitSize = MI.getOperand(6).getImm();
5480 
5481   // Subword operations use 32-bit registers.
5482   const TargetRegisterClass *RC = (BitSize <= 32 ?
5483                                    &SystemZ::GR32BitRegClass :
5484                                    &SystemZ::GR64BitRegClass);
5485   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
5486   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5487 
5488   // Get the right opcodes for the displacement.
5489   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
5490   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5491   assert(LOpcode && CSOpcode && "Displacement out of range");
5492 
5493   // Create virtual registers for temporary results.
5494   unsigned OrigVal       = MRI.createVirtualRegister(RC);
5495   unsigned OldVal        = MRI.createVirtualRegister(RC);
5496   unsigned NewVal        = MRI.createVirtualRegister(RC);
5497   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5498   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
5499   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5500 
5501   // Insert 3 basic blocks for the loop.
5502   MachineBasicBlock *StartMBB  = MBB;
5503   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
5504   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
5505   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
5506   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
5507 
5508   //  StartMBB:
5509   //   ...
5510   //   %OrigVal     = L Disp(%Base)
5511   //   # fall through to LoopMMB
5512   MBB = StartMBB;
5513   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal)
5514     .addOperand(Base).addImm(Disp).addReg(0);
5515   MBB->addSuccessor(LoopMBB);
5516 
5517   //  LoopMBB:
5518   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
5519   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5520   //   CompareOpcode %RotatedOldVal, %Src2
5521   //   BRC KeepOldMask, UpdateMBB
5522   MBB = LoopMBB;
5523   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5524     .addReg(OrigVal).addMBB(StartMBB)
5525     .addReg(Dest).addMBB(UpdateMBB);
5526   if (IsSubWord)
5527     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5528       .addReg(OldVal).addReg(BitShift).addImm(0);
5529   BuildMI(MBB, DL, TII->get(CompareOpcode))
5530     .addReg(RotatedOldVal).addReg(Src2);
5531   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5532     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
5533   MBB->addSuccessor(UpdateMBB);
5534   MBB->addSuccessor(UseAltMBB);
5535 
5536   //  UseAltMBB:
5537   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
5538   //   # fall through to UpdateMMB
5539   MBB = UseAltMBB;
5540   if (IsSubWord)
5541     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
5542       .addReg(RotatedOldVal).addReg(Src2)
5543       .addImm(32).addImm(31 + BitSize).addImm(0);
5544   MBB->addSuccessor(UpdateMBB);
5545 
5546   //  UpdateMBB:
5547   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
5548   //                        [ %RotatedAltVal, UseAltMBB ]
5549   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
5550   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
5551   //   JNE LoopMBB
5552   //   # fall through to DoneMMB
5553   MBB = UpdateMBB;
5554   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
5555     .addReg(RotatedOldVal).addMBB(LoopMBB)
5556     .addReg(RotatedAltVal).addMBB(UseAltMBB);
5557   if (IsSubWord)
5558     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5559       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5560   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5561     .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp);
5562   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5563     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5564   MBB->addSuccessor(LoopMBB);
5565   MBB->addSuccessor(DoneMBB);
5566 
5567   MI.eraseFromParent();
5568   return DoneMBB;
5569 }
5570 
5571 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
5572 // instruction MI.
5573 MachineBasicBlock *
5574 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
5575                                           MachineBasicBlock *MBB) const {
5576 
5577   MachineFunction &MF = *MBB->getParent();
5578   const SystemZInstrInfo *TII =
5579       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5580   MachineRegisterInfo &MRI = MF.getRegInfo();
5581 
5582   // Extract the operands.  Base can be a register or a frame index.
5583   unsigned Dest = MI.getOperand(0).getReg();
5584   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5585   int64_t Disp = MI.getOperand(2).getImm();
5586   unsigned OrigCmpVal = MI.getOperand(3).getReg();
5587   unsigned OrigSwapVal = MI.getOperand(4).getReg();
5588   unsigned BitShift = MI.getOperand(5).getReg();
5589   unsigned NegBitShift = MI.getOperand(6).getReg();
5590   int64_t BitSize = MI.getOperand(7).getImm();
5591   DebugLoc DL = MI.getDebugLoc();
5592 
5593   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
5594 
5595   // Get the right opcodes for the displacement.
5596   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
5597   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
5598   assert(LOpcode && CSOpcode && "Displacement out of range");
5599 
5600   // Create virtual registers for temporary results.
5601   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
5602   unsigned OldVal       = MRI.createVirtualRegister(RC);
5603   unsigned CmpVal       = MRI.createVirtualRegister(RC);
5604   unsigned SwapVal      = MRI.createVirtualRegister(RC);
5605   unsigned StoreVal     = MRI.createVirtualRegister(RC);
5606   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
5607   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
5608   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
5609 
5610   // Insert 2 basic blocks for the loop.
5611   MachineBasicBlock *StartMBB = MBB;
5612   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
5613   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
5614   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
5615 
5616   //  StartMBB:
5617   //   ...
5618   //   %OrigOldVal     = L Disp(%Base)
5619   //   # fall through to LoopMMB
5620   MBB = StartMBB;
5621   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
5622     .addOperand(Base).addImm(Disp).addReg(0);
5623   MBB->addSuccessor(LoopMBB);
5624 
5625   //  LoopMBB:
5626   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
5627   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
5628   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
5629   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
5630   //                      ^^ The low BitSize bits contain the field
5631   //                         of interest.
5632   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
5633   //                      ^^ Replace the upper 32-BitSize bits of the
5634   //                         comparison value with those that we loaded,
5635   //                         so that we can use a full word comparison.
5636   //   CR %Dest, %RetryCmpVal
5637   //   JNE DoneMBB
5638   //   # Fall through to SetMBB
5639   MBB = LoopMBB;
5640   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5641     .addReg(OrigOldVal).addMBB(StartMBB)
5642     .addReg(RetryOldVal).addMBB(SetMBB);
5643   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
5644     .addReg(OrigCmpVal).addMBB(StartMBB)
5645     .addReg(RetryCmpVal).addMBB(SetMBB);
5646   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
5647     .addReg(OrigSwapVal).addMBB(StartMBB)
5648     .addReg(RetrySwapVal).addMBB(SetMBB);
5649   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
5650     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
5651   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
5652     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
5653   BuildMI(MBB, DL, TII->get(SystemZ::CR))
5654     .addReg(Dest).addReg(RetryCmpVal);
5655   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5656     .addImm(SystemZ::CCMASK_ICMP)
5657     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
5658   MBB->addSuccessor(DoneMBB);
5659   MBB->addSuccessor(SetMBB);
5660 
5661   //  SetMBB:
5662   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
5663   //                      ^^ Replace the upper 32-BitSize bits of the new
5664   //                         value with those that we loaded.
5665   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
5666   //                      ^^ Rotate the new field to its proper position.
5667   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
5668   //   JNE LoopMBB
5669   //   # fall through to ExitMMB
5670   MBB = SetMBB;
5671   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
5672     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
5673   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
5674     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
5675   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
5676     .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp);
5677   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5678     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5679   MBB->addSuccessor(LoopMBB);
5680   MBB->addSuccessor(DoneMBB);
5681 
5682   MI.eraseFromParent();
5683   return DoneMBB;
5684 }
5685 
5686 // Emit an extension from a GR32 or GR64 to a GR128.  ClearEven is true
5687 // if the high register of the GR128 value must be cleared or false if
5688 // it's "don't care".  SubReg is subreg_l32 when extending a GR32
5689 // and subreg_l64 when extending a GR64.
5690 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
5691                                                      MachineBasicBlock *MBB,
5692                                                      bool ClearEven,
5693                                                      unsigned SubReg) const {
5694   MachineFunction &MF = *MBB->getParent();
5695   const SystemZInstrInfo *TII =
5696       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5697   MachineRegisterInfo &MRI = MF.getRegInfo();
5698   DebugLoc DL = MI.getDebugLoc();
5699 
5700   unsigned Dest = MI.getOperand(0).getReg();
5701   unsigned Src = MI.getOperand(1).getReg();
5702   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
5703 
5704   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
5705   if (ClearEven) {
5706     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
5707     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
5708 
5709     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
5710       .addImm(0);
5711     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
5712       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
5713     In128 = NewIn128;
5714   }
5715   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
5716     .addReg(In128).addReg(Src).addImm(SubReg);
5717 
5718   MI.eraseFromParent();
5719   return MBB;
5720 }
5721 
5722 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
5723     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
5724   MachineFunction &MF = *MBB->getParent();
5725   const SystemZInstrInfo *TII =
5726       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5727   MachineRegisterInfo &MRI = MF.getRegInfo();
5728   DebugLoc DL = MI.getDebugLoc();
5729 
5730   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
5731   uint64_t DestDisp = MI.getOperand(1).getImm();
5732   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
5733   uint64_t SrcDisp = MI.getOperand(3).getImm();
5734   uint64_t Length = MI.getOperand(4).getImm();
5735 
5736   // When generating more than one CLC, all but the last will need to
5737   // branch to the end when a difference is found.
5738   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
5739                                splitBlockAfter(MI, MBB) : nullptr);
5740 
5741   // Check for the loop form, in which operand 5 is the trip count.
5742   if (MI.getNumExplicitOperands() > 5) {
5743     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
5744 
5745     uint64_t StartCountReg = MI.getOperand(5).getReg();
5746     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
5747     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
5748                               forceReg(MI, DestBase, TII));
5749 
5750     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
5751     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
5752     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
5753                             MRI.createVirtualRegister(RC));
5754     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
5755     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
5756                             MRI.createVirtualRegister(RC));
5757 
5758     RC = &SystemZ::GR64BitRegClass;
5759     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
5760     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
5761 
5762     MachineBasicBlock *StartMBB = MBB;
5763     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
5764     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5765     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
5766 
5767     //  StartMBB:
5768     //   # fall through to LoopMMB
5769     MBB->addSuccessor(LoopMBB);
5770 
5771     //  LoopMBB:
5772     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
5773     //                      [ %NextDestReg, NextMBB ]
5774     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
5775     //                     [ %NextSrcReg, NextMBB ]
5776     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
5777     //                       [ %NextCountReg, NextMBB ]
5778     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
5779     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
5780     //   ( JLH EndMBB )
5781     //
5782     // The prefetch is used only for MVC.  The JLH is used only for CLC.
5783     MBB = LoopMBB;
5784 
5785     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
5786       .addReg(StartDestReg).addMBB(StartMBB)
5787       .addReg(NextDestReg).addMBB(NextMBB);
5788     if (!HaveSingleBase)
5789       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
5790         .addReg(StartSrcReg).addMBB(StartMBB)
5791         .addReg(NextSrcReg).addMBB(NextMBB);
5792     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
5793       .addReg(StartCountReg).addMBB(StartMBB)
5794       .addReg(NextCountReg).addMBB(NextMBB);
5795     if (Opcode == SystemZ::MVC)
5796       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
5797         .addImm(SystemZ::PFD_WRITE)
5798         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
5799     BuildMI(MBB, DL, TII->get(Opcode))
5800       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
5801       .addReg(ThisSrcReg).addImm(SrcDisp);
5802     if (EndMBB) {
5803       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5804         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5805         .addMBB(EndMBB);
5806       MBB->addSuccessor(EndMBB);
5807       MBB->addSuccessor(NextMBB);
5808     }
5809 
5810     // NextMBB:
5811     //   %NextDestReg = LA 256(%ThisDestReg)
5812     //   %NextSrcReg = LA 256(%ThisSrcReg)
5813     //   %NextCountReg = AGHI %ThisCountReg, -1
5814     //   CGHI %NextCountReg, 0
5815     //   JLH LoopMBB
5816     //   # fall through to DoneMMB
5817     //
5818     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
5819     MBB = NextMBB;
5820 
5821     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
5822       .addReg(ThisDestReg).addImm(256).addReg(0);
5823     if (!HaveSingleBase)
5824       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
5825         .addReg(ThisSrcReg).addImm(256).addReg(0);
5826     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
5827       .addReg(ThisCountReg).addImm(-1);
5828     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
5829       .addReg(NextCountReg).addImm(0);
5830     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5831       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5832       .addMBB(LoopMBB);
5833     MBB->addSuccessor(LoopMBB);
5834     MBB->addSuccessor(DoneMBB);
5835 
5836     DestBase = MachineOperand::CreateReg(NextDestReg, false);
5837     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
5838     Length &= 255;
5839     MBB = DoneMBB;
5840   }
5841   // Handle any remaining bytes with straight-line code.
5842   while (Length > 0) {
5843     uint64_t ThisLength = std::min(Length, uint64_t(256));
5844     // The previous iteration might have created out-of-range displacements.
5845     // Apply them using LAY if so.
5846     if (!isUInt<12>(DestDisp)) {
5847       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5848       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
5849           .addOperand(DestBase)
5850           .addImm(DestDisp)
5851           .addReg(0);
5852       DestBase = MachineOperand::CreateReg(Reg, false);
5853       DestDisp = 0;
5854     }
5855     if (!isUInt<12>(SrcDisp)) {
5856       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5857       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
5858           .addOperand(SrcBase)
5859           .addImm(SrcDisp)
5860           .addReg(0);
5861       SrcBase = MachineOperand::CreateReg(Reg, false);
5862       SrcDisp = 0;
5863     }
5864     BuildMI(*MBB, MI, DL, TII->get(Opcode))
5865       .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength)
5866       .addOperand(SrcBase).addImm(SrcDisp);
5867     DestDisp += ThisLength;
5868     SrcDisp += ThisLength;
5869     Length -= ThisLength;
5870     // If there's another CLC to go, branch to the end if a difference
5871     // was found.
5872     if (EndMBB && Length > 0) {
5873       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
5874       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5875         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
5876         .addMBB(EndMBB);
5877       MBB->addSuccessor(EndMBB);
5878       MBB->addSuccessor(NextMBB);
5879       MBB = NextMBB;
5880     }
5881   }
5882   if (EndMBB) {
5883     MBB->addSuccessor(EndMBB);
5884     MBB = EndMBB;
5885     MBB->addLiveIn(SystemZ::CC);
5886   }
5887 
5888   MI.eraseFromParent();
5889   return MBB;
5890 }
5891 
5892 // Decompose string pseudo-instruction MI into a loop that continually performs
5893 // Opcode until CC != 3.
5894 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
5895     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
5896   MachineFunction &MF = *MBB->getParent();
5897   const SystemZInstrInfo *TII =
5898       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5899   MachineRegisterInfo &MRI = MF.getRegInfo();
5900   DebugLoc DL = MI.getDebugLoc();
5901 
5902   uint64_t End1Reg = MI.getOperand(0).getReg();
5903   uint64_t Start1Reg = MI.getOperand(1).getReg();
5904   uint64_t Start2Reg = MI.getOperand(2).getReg();
5905   uint64_t CharReg = MI.getOperand(3).getReg();
5906 
5907   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
5908   uint64_t This1Reg = MRI.createVirtualRegister(RC);
5909   uint64_t This2Reg = MRI.createVirtualRegister(RC);
5910   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
5911 
5912   MachineBasicBlock *StartMBB = MBB;
5913   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
5914   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
5915 
5916   //  StartMBB:
5917   //   # fall through to LoopMMB
5918   MBB->addSuccessor(LoopMBB);
5919 
5920   //  LoopMBB:
5921   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
5922   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
5923   //   R0L = %CharReg
5924   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
5925   //   JO LoopMBB
5926   //   # fall through to DoneMMB
5927   //
5928   // The load of R0L can be hoisted by post-RA LICM.
5929   MBB = LoopMBB;
5930 
5931   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
5932     .addReg(Start1Reg).addMBB(StartMBB)
5933     .addReg(End1Reg).addMBB(LoopMBB);
5934   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
5935     .addReg(Start2Reg).addMBB(StartMBB)
5936     .addReg(End2Reg).addMBB(LoopMBB);
5937   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
5938   BuildMI(MBB, DL, TII->get(Opcode))
5939     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
5940     .addReg(This1Reg).addReg(This2Reg);
5941   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5942     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
5943   MBB->addSuccessor(LoopMBB);
5944   MBB->addSuccessor(DoneMBB);
5945 
5946   DoneMBB->addLiveIn(SystemZ::CC);
5947 
5948   MI.eraseFromParent();
5949   return DoneMBB;
5950 }
5951 
5952 // Update TBEGIN instruction with final opcode and register clobbers.
5953 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
5954     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
5955     bool NoFloat) const {
5956   MachineFunction &MF = *MBB->getParent();
5957   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
5958   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
5959 
5960   // Update opcode.
5961   MI.setDesc(TII->get(Opcode));
5962 
5963   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
5964   // Make sure to add the corresponding GRSM bits if they are missing.
5965   uint64_t Control = MI.getOperand(2).getImm();
5966   static const unsigned GPRControlBit[16] = {
5967     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
5968     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
5969   };
5970   Control |= GPRControlBit[15];
5971   if (TFI->hasFP(MF))
5972     Control |= GPRControlBit[11];
5973   MI.getOperand(2).setImm(Control);
5974 
5975   // Add GPR clobbers.
5976   for (int I = 0; I < 16; I++) {
5977     if ((Control & GPRControlBit[I]) == 0) {
5978       unsigned Reg = SystemZMC::GR64Regs[I];
5979       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
5980     }
5981   }
5982 
5983   // Add FPR/VR clobbers.
5984   if (!NoFloat && (Control & 4) != 0) {
5985     if (Subtarget.hasVector()) {
5986       for (int I = 0; I < 32; I++) {
5987         unsigned Reg = SystemZMC::VR128Regs[I];
5988         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
5989       }
5990     } else {
5991       for (int I = 0; I < 16; I++) {
5992         unsigned Reg = SystemZMC::FP64Regs[I];
5993         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
5994       }
5995     }
5996   }
5997 
5998   return MBB;
5999 }
6000 
6001 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
6002     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6003   MachineFunction &MF = *MBB->getParent();
6004   MachineRegisterInfo *MRI = &MF.getRegInfo();
6005   const SystemZInstrInfo *TII =
6006       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6007   DebugLoc DL = MI.getDebugLoc();
6008 
6009   unsigned SrcReg = MI.getOperand(0).getReg();
6010 
6011   // Create new virtual register of the same class as source.
6012   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
6013   unsigned DstReg = MRI->createVirtualRegister(RC);
6014 
6015   // Replace pseudo with a normal load-and-test that models the def as
6016   // well.
6017   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
6018     .addReg(SrcReg);
6019   MI.eraseFromParent();
6020 
6021   return MBB;
6022 }
6023 
6024 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
6025     MachineInstr &MI, MachineBasicBlock *MBB) const {
6026   switch (MI.getOpcode()) {
6027   case SystemZ::Select32Mux:
6028   case SystemZ::Select32:
6029   case SystemZ::SelectF32:
6030   case SystemZ::Select64:
6031   case SystemZ::SelectF64:
6032   case SystemZ::SelectF128:
6033     return emitSelect(MI, MBB);
6034 
6035   case SystemZ::CondStore8Mux:
6036     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
6037   case SystemZ::CondStore8MuxInv:
6038     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
6039   case SystemZ::CondStore16Mux:
6040     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
6041   case SystemZ::CondStore16MuxInv:
6042     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
6043   case SystemZ::CondStore8:
6044     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
6045   case SystemZ::CondStore8Inv:
6046     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
6047   case SystemZ::CondStore16:
6048     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
6049   case SystemZ::CondStore16Inv:
6050     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
6051   case SystemZ::CondStore32:
6052     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
6053   case SystemZ::CondStore32Inv:
6054     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
6055   case SystemZ::CondStore64:
6056     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
6057   case SystemZ::CondStore64Inv:
6058     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
6059   case SystemZ::CondStoreF32:
6060     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
6061   case SystemZ::CondStoreF32Inv:
6062     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
6063   case SystemZ::CondStoreF64:
6064     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
6065   case SystemZ::CondStoreF64Inv:
6066     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
6067 
6068   case SystemZ::AEXT128_64:
6069     return emitExt128(MI, MBB, false, SystemZ::subreg_l64);
6070   case SystemZ::ZEXT128_32:
6071     return emitExt128(MI, MBB, true, SystemZ::subreg_l32);
6072   case SystemZ::ZEXT128_64:
6073     return emitExt128(MI, MBB, true, SystemZ::subreg_l64);
6074 
6075   case SystemZ::ATOMIC_SWAPW:
6076     return emitAtomicLoadBinary(MI, MBB, 0, 0);
6077   case SystemZ::ATOMIC_SWAP_32:
6078     return emitAtomicLoadBinary(MI, MBB, 0, 32);
6079   case SystemZ::ATOMIC_SWAP_64:
6080     return emitAtomicLoadBinary(MI, MBB, 0, 64);
6081 
6082   case SystemZ::ATOMIC_LOADW_AR:
6083     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
6084   case SystemZ::ATOMIC_LOADW_AFI:
6085     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
6086   case SystemZ::ATOMIC_LOAD_AR:
6087     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
6088   case SystemZ::ATOMIC_LOAD_AHI:
6089     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
6090   case SystemZ::ATOMIC_LOAD_AFI:
6091     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
6092   case SystemZ::ATOMIC_LOAD_AGR:
6093     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
6094   case SystemZ::ATOMIC_LOAD_AGHI:
6095     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
6096   case SystemZ::ATOMIC_LOAD_AGFI:
6097     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
6098 
6099   case SystemZ::ATOMIC_LOADW_SR:
6100     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
6101   case SystemZ::ATOMIC_LOAD_SR:
6102     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
6103   case SystemZ::ATOMIC_LOAD_SGR:
6104     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
6105 
6106   case SystemZ::ATOMIC_LOADW_NR:
6107     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
6108   case SystemZ::ATOMIC_LOADW_NILH:
6109     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
6110   case SystemZ::ATOMIC_LOAD_NR:
6111     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
6112   case SystemZ::ATOMIC_LOAD_NILL:
6113     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
6114   case SystemZ::ATOMIC_LOAD_NILH:
6115     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
6116   case SystemZ::ATOMIC_LOAD_NILF:
6117     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
6118   case SystemZ::ATOMIC_LOAD_NGR:
6119     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
6120   case SystemZ::ATOMIC_LOAD_NILL64:
6121     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
6122   case SystemZ::ATOMIC_LOAD_NILH64:
6123     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
6124   case SystemZ::ATOMIC_LOAD_NIHL64:
6125     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
6126   case SystemZ::ATOMIC_LOAD_NIHH64:
6127     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
6128   case SystemZ::ATOMIC_LOAD_NILF64:
6129     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
6130   case SystemZ::ATOMIC_LOAD_NIHF64:
6131     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
6132 
6133   case SystemZ::ATOMIC_LOADW_OR:
6134     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
6135   case SystemZ::ATOMIC_LOADW_OILH:
6136     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
6137   case SystemZ::ATOMIC_LOAD_OR:
6138     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
6139   case SystemZ::ATOMIC_LOAD_OILL:
6140     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
6141   case SystemZ::ATOMIC_LOAD_OILH:
6142     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
6143   case SystemZ::ATOMIC_LOAD_OILF:
6144     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
6145   case SystemZ::ATOMIC_LOAD_OGR:
6146     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
6147   case SystemZ::ATOMIC_LOAD_OILL64:
6148     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
6149   case SystemZ::ATOMIC_LOAD_OILH64:
6150     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
6151   case SystemZ::ATOMIC_LOAD_OIHL64:
6152     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
6153   case SystemZ::ATOMIC_LOAD_OIHH64:
6154     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
6155   case SystemZ::ATOMIC_LOAD_OILF64:
6156     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
6157   case SystemZ::ATOMIC_LOAD_OIHF64:
6158     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
6159 
6160   case SystemZ::ATOMIC_LOADW_XR:
6161     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
6162   case SystemZ::ATOMIC_LOADW_XILF:
6163     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
6164   case SystemZ::ATOMIC_LOAD_XR:
6165     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
6166   case SystemZ::ATOMIC_LOAD_XILF:
6167     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
6168   case SystemZ::ATOMIC_LOAD_XGR:
6169     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
6170   case SystemZ::ATOMIC_LOAD_XILF64:
6171     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
6172   case SystemZ::ATOMIC_LOAD_XIHF64:
6173     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
6174 
6175   case SystemZ::ATOMIC_LOADW_NRi:
6176     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
6177   case SystemZ::ATOMIC_LOADW_NILHi:
6178     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
6179   case SystemZ::ATOMIC_LOAD_NRi:
6180     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
6181   case SystemZ::ATOMIC_LOAD_NILLi:
6182     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
6183   case SystemZ::ATOMIC_LOAD_NILHi:
6184     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
6185   case SystemZ::ATOMIC_LOAD_NILFi:
6186     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
6187   case SystemZ::ATOMIC_LOAD_NGRi:
6188     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
6189   case SystemZ::ATOMIC_LOAD_NILL64i:
6190     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
6191   case SystemZ::ATOMIC_LOAD_NILH64i:
6192     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
6193   case SystemZ::ATOMIC_LOAD_NIHL64i:
6194     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
6195   case SystemZ::ATOMIC_LOAD_NIHH64i:
6196     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
6197   case SystemZ::ATOMIC_LOAD_NILF64i:
6198     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
6199   case SystemZ::ATOMIC_LOAD_NIHF64i:
6200     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
6201 
6202   case SystemZ::ATOMIC_LOADW_MIN:
6203     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6204                                 SystemZ::CCMASK_CMP_LE, 0);
6205   case SystemZ::ATOMIC_LOAD_MIN_32:
6206     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6207                                 SystemZ::CCMASK_CMP_LE, 32);
6208   case SystemZ::ATOMIC_LOAD_MIN_64:
6209     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6210                                 SystemZ::CCMASK_CMP_LE, 64);
6211 
6212   case SystemZ::ATOMIC_LOADW_MAX:
6213     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6214                                 SystemZ::CCMASK_CMP_GE, 0);
6215   case SystemZ::ATOMIC_LOAD_MAX_32:
6216     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6217                                 SystemZ::CCMASK_CMP_GE, 32);
6218   case SystemZ::ATOMIC_LOAD_MAX_64:
6219     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6220                                 SystemZ::CCMASK_CMP_GE, 64);
6221 
6222   case SystemZ::ATOMIC_LOADW_UMIN:
6223     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6224                                 SystemZ::CCMASK_CMP_LE, 0);
6225   case SystemZ::ATOMIC_LOAD_UMIN_32:
6226     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6227                                 SystemZ::CCMASK_CMP_LE, 32);
6228   case SystemZ::ATOMIC_LOAD_UMIN_64:
6229     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6230                                 SystemZ::CCMASK_CMP_LE, 64);
6231 
6232   case SystemZ::ATOMIC_LOADW_UMAX:
6233     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6234                                 SystemZ::CCMASK_CMP_GE, 0);
6235   case SystemZ::ATOMIC_LOAD_UMAX_32:
6236     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6237                                 SystemZ::CCMASK_CMP_GE, 32);
6238   case SystemZ::ATOMIC_LOAD_UMAX_64:
6239     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6240                                 SystemZ::CCMASK_CMP_GE, 64);
6241 
6242   case SystemZ::ATOMIC_CMP_SWAPW:
6243     return emitAtomicCmpSwapW(MI, MBB);
6244   case SystemZ::MVCSequence:
6245   case SystemZ::MVCLoop:
6246     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
6247   case SystemZ::NCSequence:
6248   case SystemZ::NCLoop:
6249     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
6250   case SystemZ::OCSequence:
6251   case SystemZ::OCLoop:
6252     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
6253   case SystemZ::XCSequence:
6254   case SystemZ::XCLoop:
6255     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
6256   case SystemZ::CLCSequence:
6257   case SystemZ::CLCLoop:
6258     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
6259   case SystemZ::CLSTLoop:
6260     return emitStringWrapper(MI, MBB, SystemZ::CLST);
6261   case SystemZ::MVSTLoop:
6262     return emitStringWrapper(MI, MBB, SystemZ::MVST);
6263   case SystemZ::SRSTLoop:
6264     return emitStringWrapper(MI, MBB, SystemZ::SRST);
6265   case SystemZ::TBEGIN:
6266     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
6267   case SystemZ::TBEGIN_nofloat:
6268     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
6269   case SystemZ::TBEGINC:
6270     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
6271   case SystemZ::LTEBRCompare_VecPseudo:
6272     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
6273   case SystemZ::LTDBRCompare_VecPseudo:
6274     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
6275   case SystemZ::LTXBRCompare_VecPseudo:
6276     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
6277 
6278   default:
6279     llvm_unreachable("Unexpected instr type to insert");
6280   }
6281 }
6282