1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0)); 84 85 auto *Regs = STI.getSpecialRegisters(); 86 87 // Set up the register classes. 88 if (Subtarget.hasHighWord()) 89 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 90 else 91 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 92 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 93 if (!useSoftFloat()) { 94 if (Subtarget.hasVector()) { 95 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 96 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 97 } else { 98 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 99 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 100 } 101 if (Subtarget.hasVectorEnhancements1()) 102 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 103 else 104 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 105 106 if (Subtarget.hasVector()) { 107 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 111 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 112 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 113 } 114 } 115 116 // Compute derived properties from the register classes 117 computeRegisterProperties(Subtarget.getRegisterInfo()); 118 119 // Set up special registers. 120 setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister()); 121 122 // TODO: It may be better to default to latency-oriented scheduling, however 123 // LLVM's current latency-oriented scheduler can't handle physreg definitions 124 // such as SystemZ has with CC, so set this to the register-pressure 125 // scheduler, because it can. 126 setSchedulingPreference(Sched::RegPressure); 127 128 setBooleanContents(ZeroOrOneBooleanContent); 129 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 130 131 // Instructions are strings of 2-byte aligned 2-byte values. 132 setMinFunctionAlignment(Align(2)); 133 // For performance reasons we prefer 16-byte alignment. 134 setPrefFunctionAlignment(Align(16)); 135 136 // Handle operations that are handled in a similar way for all types. 137 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 138 I <= MVT::LAST_FP_VALUETYPE; 139 ++I) { 140 MVT VT = MVT::SimpleValueType(I); 141 if (isTypeLegal(VT)) { 142 // Lower SET_CC into an IPM-based sequence. 143 setOperationAction(ISD::SETCC, VT, Custom); 144 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 145 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 146 147 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 148 setOperationAction(ISD::SELECT, VT, Expand); 149 150 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 151 setOperationAction(ISD::SELECT_CC, VT, Custom); 152 setOperationAction(ISD::BR_CC, VT, Custom); 153 } 154 } 155 156 // Expand jump table branches as address arithmetic followed by an 157 // indirect jump. 158 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 159 160 // Expand BRCOND into a BR_CC (see above). 161 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 162 163 // Handle integer types. 164 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 165 I <= MVT::LAST_INTEGER_VALUETYPE; 166 ++I) { 167 MVT VT = MVT::SimpleValueType(I); 168 if (isTypeLegal(VT)) { 169 setOperationAction(ISD::ABS, VT, Legal); 170 171 // Expand individual DIV and REMs into DIVREMs. 172 setOperationAction(ISD::SDIV, VT, Expand); 173 setOperationAction(ISD::UDIV, VT, Expand); 174 setOperationAction(ISD::SREM, VT, Expand); 175 setOperationAction(ISD::UREM, VT, Expand); 176 setOperationAction(ISD::SDIVREM, VT, Custom); 177 setOperationAction(ISD::UDIVREM, VT, Custom); 178 179 // Support addition/subtraction with overflow. 180 setOperationAction(ISD::SADDO, VT, Custom); 181 setOperationAction(ISD::SSUBO, VT, Custom); 182 183 // Support addition/subtraction with carry. 184 setOperationAction(ISD::UADDO, VT, Custom); 185 setOperationAction(ISD::USUBO, VT, Custom); 186 187 // Support carry in as value rather than glue. 188 setOperationAction(ISD::ADDCARRY, VT, Custom); 189 setOperationAction(ISD::SUBCARRY, VT, Custom); 190 191 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 192 // stores, putting a serialization instruction after the stores. 193 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 194 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 195 196 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 197 // available, or if the operand is constant. 198 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 199 200 // Use POPCNT on z196 and above. 201 if (Subtarget.hasPopulationCount()) 202 setOperationAction(ISD::CTPOP, VT, Custom); 203 else 204 setOperationAction(ISD::CTPOP, VT, Expand); 205 206 // No special instructions for these. 207 setOperationAction(ISD::CTTZ, VT, Expand); 208 setOperationAction(ISD::ROTR, VT, Expand); 209 210 // Use *MUL_LOHI where possible instead of MULH*. 211 setOperationAction(ISD::MULHS, VT, Expand); 212 setOperationAction(ISD::MULHU, VT, Expand); 213 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 214 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 215 216 // Only z196 and above have native support for conversions to unsigned. 217 // On z10, promoting to i64 doesn't generate an inexact condition for 218 // values that are outside the i32 range but in the i64 range, so use 219 // the default expansion. 220 if (!Subtarget.hasFPExtension()) 221 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 222 223 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 224 // default to Expand, so need to be modified to Legal where appropriate. 225 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 226 if (Subtarget.hasFPExtension()) 227 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 228 229 // And similarly for STRICT_[SU]INT_TO_FP. 230 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 231 if (Subtarget.hasFPExtension()) 232 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 233 } 234 } 235 236 // Type legalization will convert 8- and 16-bit atomic operations into 237 // forms that operate on i32s (but still keeping the original memory VT). 238 // Lower them into full i32 operations. 239 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 240 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 242 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 243 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 244 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 245 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 246 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 247 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 248 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 249 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 250 251 // Even though i128 is not a legal type, we still need to custom lower 252 // the atomic operations in order to exploit SystemZ instructions. 253 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 254 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 255 256 // We can use the CC result of compare-and-swap to implement 257 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 258 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 259 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 260 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 261 262 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 263 264 // Traps are legal, as we will convert them to "j .+2". 265 setOperationAction(ISD::TRAP, MVT::Other, Legal); 266 267 // z10 has instructions for signed but not unsigned FP conversion. 268 // Handle unsigned 32-bit types as signed 64-bit types. 269 if (!Subtarget.hasFPExtension()) { 270 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 271 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 272 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 273 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 274 } 275 276 // We have native support for a 64-bit CTLZ, via FLOGR. 277 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 278 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 279 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 280 281 // On z15 we have native support for a 64-bit CTPOP. 282 if (Subtarget.hasMiscellaneousExtensions3()) { 283 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 284 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 285 } 286 287 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 288 setOperationAction(ISD::OR, MVT::i64, Custom); 289 290 // Expand 128 bit shifts without using a libcall. 291 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 292 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 293 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 294 setLibcallName(RTLIB::SRL_I128, nullptr); 295 setLibcallName(RTLIB::SHL_I128, nullptr); 296 setLibcallName(RTLIB::SRA_I128, nullptr); 297 298 // Handle bitcast from fp128 to i128. 299 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 300 301 // We have native instructions for i8, i16 and i32 extensions, but not i1. 302 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 303 for (MVT VT : MVT::integer_valuetypes()) { 304 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 305 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 306 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 307 } 308 309 // Handle the various types of symbolic address. 310 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 311 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 312 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 313 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 314 setOperationAction(ISD::JumpTable, PtrVT, Custom); 315 316 // We need to handle dynamic allocations specially because of the 317 // 160-byte area at the bottom of the stack. 318 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 319 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 320 321 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 322 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 323 324 // Handle prefetches with PFD or PFDRL. 325 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 326 327 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 328 // Assume by default that all vector operations need to be expanded. 329 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 330 if (getOperationAction(Opcode, VT) == Legal) 331 setOperationAction(Opcode, VT, Expand); 332 333 // Likewise all truncating stores and extending loads. 334 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 335 setTruncStoreAction(VT, InnerVT, Expand); 336 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 337 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 338 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 339 } 340 341 if (isTypeLegal(VT)) { 342 // These operations are legal for anything that can be stored in a 343 // vector register, even if there is no native support for the format 344 // as such. In particular, we can do these for v4f32 even though there 345 // are no specific instructions for that format. 346 setOperationAction(ISD::LOAD, VT, Legal); 347 setOperationAction(ISD::STORE, VT, Legal); 348 setOperationAction(ISD::VSELECT, VT, Legal); 349 setOperationAction(ISD::BITCAST, VT, Legal); 350 setOperationAction(ISD::UNDEF, VT, Legal); 351 352 // Likewise, except that we need to replace the nodes with something 353 // more specific. 354 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 355 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 356 } 357 } 358 359 // Handle integer vector types. 360 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 361 if (isTypeLegal(VT)) { 362 // These operations have direct equivalents. 363 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 364 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 365 setOperationAction(ISD::ADD, VT, Legal); 366 setOperationAction(ISD::SUB, VT, Legal); 367 if (VT != MVT::v2i64) 368 setOperationAction(ISD::MUL, VT, Legal); 369 setOperationAction(ISD::ABS, VT, Legal); 370 setOperationAction(ISD::AND, VT, Legal); 371 setOperationAction(ISD::OR, VT, Legal); 372 setOperationAction(ISD::XOR, VT, Legal); 373 if (Subtarget.hasVectorEnhancements1()) 374 setOperationAction(ISD::CTPOP, VT, Legal); 375 else 376 setOperationAction(ISD::CTPOP, VT, Custom); 377 setOperationAction(ISD::CTTZ, VT, Legal); 378 setOperationAction(ISD::CTLZ, VT, Legal); 379 380 // Convert a GPR scalar to a vector by inserting it into element 0. 381 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 382 383 // Use a series of unpacks for extensions. 384 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 385 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 386 387 // Detect shifts by a scalar amount and convert them into 388 // V*_BY_SCALAR. 389 setOperationAction(ISD::SHL, VT, Custom); 390 setOperationAction(ISD::SRA, VT, Custom); 391 setOperationAction(ISD::SRL, VT, Custom); 392 393 // At present ROTL isn't matched by DAGCombiner. ROTR should be 394 // converted into ROTL. 395 setOperationAction(ISD::ROTL, VT, Expand); 396 setOperationAction(ISD::ROTR, VT, Expand); 397 398 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 399 // and inverting the result as necessary. 400 setOperationAction(ISD::SETCC, VT, Custom); 401 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 402 if (Subtarget.hasVectorEnhancements1()) 403 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 404 } 405 } 406 407 if (Subtarget.hasVector()) { 408 // There should be no need to check for float types other than v2f64 409 // since <2 x f32> isn't a legal type. 410 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 411 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 412 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 413 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 414 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 415 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 416 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 417 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 418 419 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 420 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 421 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 422 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 423 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 424 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 425 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 426 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 427 } 428 429 if (Subtarget.hasVectorEnhancements2()) { 430 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 431 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 432 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 433 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 434 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 435 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 436 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 437 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 438 439 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 440 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 441 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 442 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 443 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 444 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 445 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 446 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 447 } 448 449 // Handle floating-point types. 450 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 451 I <= MVT::LAST_FP_VALUETYPE; 452 ++I) { 453 MVT VT = MVT::SimpleValueType(I); 454 if (isTypeLegal(VT)) { 455 // We can use FI for FRINT. 456 setOperationAction(ISD::FRINT, VT, Legal); 457 458 // We can use the extended form of FI for other rounding operations. 459 if (Subtarget.hasFPExtension()) { 460 setOperationAction(ISD::FNEARBYINT, VT, Legal); 461 setOperationAction(ISD::FFLOOR, VT, Legal); 462 setOperationAction(ISD::FCEIL, VT, Legal); 463 setOperationAction(ISD::FTRUNC, VT, Legal); 464 setOperationAction(ISD::FROUND, VT, Legal); 465 } 466 467 // No special instructions for these. 468 setOperationAction(ISD::FSIN, VT, Expand); 469 setOperationAction(ISD::FCOS, VT, Expand); 470 setOperationAction(ISD::FSINCOS, VT, Expand); 471 setOperationAction(ISD::FREM, VT, Expand); 472 setOperationAction(ISD::FPOW, VT, Expand); 473 474 // Handle constrained floating-point operations. 475 setOperationAction(ISD::STRICT_FADD, VT, Legal); 476 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 477 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 478 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 479 setOperationAction(ISD::STRICT_FMA, VT, Legal); 480 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 481 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 482 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 483 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 484 if (Subtarget.hasFPExtension()) { 485 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 486 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 487 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 488 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 489 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 490 } 491 } 492 } 493 494 // Handle floating-point vector types. 495 if (Subtarget.hasVector()) { 496 // Scalar-to-vector conversion is just a subreg. 497 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 498 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 499 500 // Some insertions and extractions can be done directly but others 501 // need to go via integers. 502 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 503 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 504 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 505 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 506 507 // These operations have direct equivalents. 508 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 509 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 510 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 511 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 512 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 513 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 514 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 515 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 516 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 517 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 518 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 519 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 520 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 521 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 522 523 // Handle constrained floating-point operations. 524 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 525 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 526 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 527 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 528 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 529 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 530 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 531 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 532 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 533 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 534 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 535 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 536 } 537 538 // The vector enhancements facility 1 has instructions for these. 539 if (Subtarget.hasVectorEnhancements1()) { 540 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 541 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 542 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 543 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 544 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 545 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 546 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 547 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 548 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 549 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 550 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 551 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 552 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 553 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 554 555 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 556 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 557 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 558 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 559 560 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 561 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 562 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 563 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 564 565 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 566 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 567 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 568 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 569 570 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 571 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 572 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 573 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 574 575 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 576 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 577 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 578 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 579 580 // Handle constrained floating-point operations. 581 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 582 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 583 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 584 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 585 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 586 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 587 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 588 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 589 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 590 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 591 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 592 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 593 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 594 MVT::v4f32, MVT::v2f64 }) { 595 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 596 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 597 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 598 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 599 } 600 } 601 602 // We only have fused f128 multiply-addition on vector registers. 603 if (!Subtarget.hasVectorEnhancements1()) { 604 setOperationAction(ISD::FMA, MVT::f128, Expand); 605 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 606 } 607 608 // We don't have a copysign instruction on vector registers. 609 if (Subtarget.hasVectorEnhancements1()) 610 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 611 612 // Needed so that we don't try to implement f128 constant loads using 613 // a load-and-extend of a f80 constant (in cases where the constant 614 // would fit in an f80). 615 for (MVT VT : MVT::fp_valuetypes()) 616 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 617 618 // We don't have extending load instruction on vector registers. 619 if (Subtarget.hasVectorEnhancements1()) { 620 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 621 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 622 } 623 624 // Floating-point truncation and stores need to be done separately. 625 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 626 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 627 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 628 629 // We have 64-bit FPR<->GPR moves, but need special handling for 630 // 32-bit forms. 631 if (!Subtarget.hasVector()) { 632 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 633 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 634 } 635 636 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 637 // structure, but VAEND is a no-op. 638 setOperationAction(ISD::VASTART, MVT::Other, Custom); 639 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 640 setOperationAction(ISD::VAEND, MVT::Other, Expand); 641 642 // Codes for which we want to perform some z-specific combinations. 643 setTargetDAGCombine({ISD::ZERO_EXTEND, 644 ISD::SIGN_EXTEND, 645 ISD::SIGN_EXTEND_INREG, 646 ISD::LOAD, 647 ISD::STORE, 648 ISD::VECTOR_SHUFFLE, 649 ISD::EXTRACT_VECTOR_ELT, 650 ISD::FP_ROUND, 651 ISD::STRICT_FP_ROUND, 652 ISD::FP_EXTEND, 653 ISD::SINT_TO_FP, 654 ISD::UINT_TO_FP, 655 ISD::STRICT_FP_EXTEND, 656 ISD::BSWAP, 657 ISD::SDIV, 658 ISD::UDIV, 659 ISD::SREM, 660 ISD::UREM, 661 ISD::INTRINSIC_VOID, 662 ISD::INTRINSIC_W_CHAIN}); 663 664 // Handle intrinsics. 665 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 666 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 667 668 // We want to use MVC in preference to even a single load/store pair. 669 MaxStoresPerMemcpy = 0; 670 MaxStoresPerMemcpyOptSize = 0; 671 672 // The main memset sequence is a byte store followed by an MVC. 673 // Two STC or MV..I stores win over that, but the kind of fused stores 674 // generated by target-independent code don't when the byte value is 675 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 676 // than "STC;MVC". Handle the choice in target-specific code instead. 677 MaxStoresPerMemset = 0; 678 MaxStoresPerMemsetOptSize = 0; 679 680 // Default to having -disable-strictnode-mutation on 681 IsStrictFPEnabled = true; 682 } 683 684 bool SystemZTargetLowering::useSoftFloat() const { 685 return Subtarget.hasSoftFloat(); 686 } 687 688 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 689 LLVMContext &, EVT VT) const { 690 if (!VT.isVector()) 691 return MVT::i32; 692 return VT.changeVectorElementTypeToInteger(); 693 } 694 695 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 696 const MachineFunction &MF, EVT VT) const { 697 VT = VT.getScalarType(); 698 699 if (!VT.isSimple()) 700 return false; 701 702 switch (VT.getSimpleVT().SimpleTy) { 703 case MVT::f32: 704 case MVT::f64: 705 return true; 706 case MVT::f128: 707 return Subtarget.hasVectorEnhancements1(); 708 default: 709 break; 710 } 711 712 return false; 713 } 714 715 // Return true if the constant can be generated with a vector instruction, 716 // such as VGM, VGMB or VREPI. 717 bool SystemZVectorConstantInfo::isVectorConstantLegal( 718 const SystemZSubtarget &Subtarget) { 719 const SystemZInstrInfo *TII = 720 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 721 if (!Subtarget.hasVector() || 722 (isFP128 && !Subtarget.hasVectorEnhancements1())) 723 return false; 724 725 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 726 // preferred way of creating all-zero and all-one vectors so give it 727 // priority over other methods below. 728 unsigned Mask = 0; 729 unsigned I = 0; 730 for (; I < SystemZ::VectorBytes; ++I) { 731 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 732 if (Byte == 0xff) 733 Mask |= 1ULL << I; 734 else if (Byte != 0) 735 break; 736 } 737 if (I == SystemZ::VectorBytes) { 738 Opcode = SystemZISD::BYTE_MASK; 739 OpVals.push_back(Mask); 740 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 741 return true; 742 } 743 744 if (SplatBitSize > 64) 745 return false; 746 747 auto tryValue = [&](uint64_t Value) -> bool { 748 // Try VECTOR REPLICATE IMMEDIATE 749 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 750 if (isInt<16>(SignedValue)) { 751 OpVals.push_back(((unsigned) SignedValue)); 752 Opcode = SystemZISD::REPLICATE; 753 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 754 SystemZ::VectorBits / SplatBitSize); 755 return true; 756 } 757 // Try VECTOR GENERATE MASK 758 unsigned Start, End; 759 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 760 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 761 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 762 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 763 OpVals.push_back(Start - (64 - SplatBitSize)); 764 OpVals.push_back(End - (64 - SplatBitSize)); 765 Opcode = SystemZISD::ROTATE_MASK; 766 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 767 SystemZ::VectorBits / SplatBitSize); 768 return true; 769 } 770 return false; 771 }; 772 773 // First try assuming that any undefined bits above the highest set bit 774 // and below the lowest set bit are 1s. This increases the likelihood of 775 // being able to use a sign-extended element value in VECTOR REPLICATE 776 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 777 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 778 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 779 uint64_t Lower = 780 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 781 uint64_t Upper = 782 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 783 if (tryValue(SplatBitsZ | Upper | Lower)) 784 return true; 785 786 // Now try assuming that any undefined bits between the first and 787 // last defined set bits are set. This increases the chances of 788 // using a non-wraparound mask. 789 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 790 return tryValue(SplatBitsZ | Middle); 791 } 792 793 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 794 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 795 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 796 SplatBits = FPImm.bitcastToAPInt(); 797 unsigned Width = SplatBits.getBitWidth(); 798 IntBits <<= (SystemZ::VectorBits - Width); 799 800 // Find the smallest splat. 801 while (Width > 8) { 802 unsigned HalfSize = Width / 2; 803 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 804 APInt LowValue = SplatBits.trunc(HalfSize); 805 806 // If the two halves do not match, stop here. 807 if (HighValue != LowValue || 8 > HalfSize) 808 break; 809 810 SplatBits = HighValue; 811 Width = HalfSize; 812 } 813 SplatUndef = 0; 814 SplatBitSize = Width; 815 } 816 817 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 818 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 819 bool HasAnyUndefs; 820 821 // Get IntBits by finding the 128 bit splat. 822 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 823 true); 824 825 // Get SplatBits by finding the 8 bit or greater splat. 826 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 827 true); 828 } 829 830 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 831 bool ForCodeSize) const { 832 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 833 if (Imm.isZero() || Imm.isNegZero()) 834 return true; 835 836 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 837 } 838 839 /// Returns true if stack probing through inline assembly is requested. 840 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 841 // If the function specifically requests inline stack probes, emit them. 842 if (MF.getFunction().hasFnAttribute("probe-stack")) 843 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 844 "inline-asm"; 845 return false; 846 } 847 848 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 849 // We can use CGFI or CLGFI. 850 return isInt<32>(Imm) || isUInt<32>(Imm); 851 } 852 853 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 854 // We can use ALGFI or SLGFI. 855 return isUInt<32>(Imm) || isUInt<32>(-Imm); 856 } 857 858 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 859 EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const { 860 // Unaligned accesses should never be slower than the expanded version. 861 // We check specifically for aligned accesses in the few cases where 862 // they are required. 863 if (Fast) 864 *Fast = true; 865 return true; 866 } 867 868 // Information about the addressing mode for a memory access. 869 struct AddressingMode { 870 // True if a long displacement is supported. 871 bool LongDisplacement; 872 873 // True if use of index register is supported. 874 bool IndexReg; 875 876 AddressingMode(bool LongDispl, bool IdxReg) : 877 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 878 }; 879 880 // Return the desired addressing mode for a Load which has only one use (in 881 // the same block) which is a Store. 882 static AddressingMode getLoadStoreAddrMode(bool HasVector, 883 Type *Ty) { 884 // With vector support a Load->Store combination may be combined to either 885 // an MVC or vector operations and it seems to work best to allow the 886 // vector addressing mode. 887 if (HasVector) 888 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 889 890 // Otherwise only the MVC case is special. 891 bool MVC = Ty->isIntegerTy(8); 892 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 893 } 894 895 // Return the addressing mode which seems most desirable given an LLVM 896 // Instruction pointer. 897 static AddressingMode 898 supportedAddressingMode(Instruction *I, bool HasVector) { 899 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 900 switch (II->getIntrinsicID()) { 901 default: break; 902 case Intrinsic::memset: 903 case Intrinsic::memmove: 904 case Intrinsic::memcpy: 905 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 906 } 907 } 908 909 if (isa<LoadInst>(I) && I->hasOneUse()) { 910 auto *SingleUser = cast<Instruction>(*I->user_begin()); 911 if (SingleUser->getParent() == I->getParent()) { 912 if (isa<ICmpInst>(SingleUser)) { 913 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 914 if (C->getBitWidth() <= 64 && 915 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 916 // Comparison of memory with 16 bit signed / unsigned immediate 917 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 918 } else if (isa<StoreInst>(SingleUser)) 919 // Load->Store 920 return getLoadStoreAddrMode(HasVector, I->getType()); 921 } 922 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 923 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 924 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 925 // Load->Store 926 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 927 } 928 929 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 930 931 // * Use LDE instead of LE/LEY for z13 to avoid partial register 932 // dependencies (LDE only supports small offsets). 933 // * Utilize the vector registers to hold floating point 934 // values (vector load / store instructions only support small 935 // offsets). 936 937 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 938 I->getOperand(0)->getType()); 939 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 940 bool IsVectorAccess = MemAccessTy->isVectorTy(); 941 942 // A store of an extracted vector element will be combined into a VSTE type 943 // instruction. 944 if (!IsVectorAccess && isa<StoreInst>(I)) { 945 Value *DataOp = I->getOperand(0); 946 if (isa<ExtractElementInst>(DataOp)) 947 IsVectorAccess = true; 948 } 949 950 // A load which gets inserted into a vector element will be combined into a 951 // VLE type instruction. 952 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 953 User *LoadUser = *I->user_begin(); 954 if (isa<InsertElementInst>(LoadUser)) 955 IsVectorAccess = true; 956 } 957 958 if (IsFPAccess || IsVectorAccess) 959 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 960 } 961 962 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 963 } 964 965 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 966 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 967 // Punt on globals for now, although they can be used in limited 968 // RELATIVE LONG cases. 969 if (AM.BaseGV) 970 return false; 971 972 // Require a 20-bit signed offset. 973 if (!isInt<20>(AM.BaseOffs)) 974 return false; 975 976 AddressingMode SupportedAM(true, true); 977 if (I != nullptr) 978 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 979 980 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 981 return false; 982 983 if (!SupportedAM.IndexReg) 984 // No indexing allowed. 985 return AM.Scale == 0; 986 else 987 // Indexing is OK but no scale factor can be applied. 988 return AM.Scale == 0 || AM.Scale == 1; 989 } 990 991 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 992 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 993 return false; 994 unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize(); 995 unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize(); 996 return FromBits > ToBits; 997 } 998 999 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 1000 if (!FromVT.isInteger() || !ToVT.isInteger()) 1001 return false; 1002 unsigned FromBits = FromVT.getFixedSizeInBits(); 1003 unsigned ToBits = ToVT.getFixedSizeInBits(); 1004 return FromBits > ToBits; 1005 } 1006 1007 //===----------------------------------------------------------------------===// 1008 // Inline asm support 1009 //===----------------------------------------------------------------------===// 1010 1011 TargetLowering::ConstraintType 1012 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 1013 if (Constraint.size() == 1) { 1014 switch (Constraint[0]) { 1015 case 'a': // Address register 1016 case 'd': // Data register (equivalent to 'r') 1017 case 'f': // Floating-point register 1018 case 'h': // High-part register 1019 case 'r': // General-purpose register 1020 case 'v': // Vector register 1021 return C_RegisterClass; 1022 1023 case 'Q': // Memory with base and unsigned 12-bit displacement 1024 case 'R': // Likewise, plus an index 1025 case 'S': // Memory with base and signed 20-bit displacement 1026 case 'T': // Likewise, plus an index 1027 case 'm': // Equivalent to 'T'. 1028 return C_Memory; 1029 1030 case 'I': // Unsigned 8-bit constant 1031 case 'J': // Unsigned 12-bit constant 1032 case 'K': // Signed 16-bit constant 1033 case 'L': // Signed 20-bit displacement (on all targets we support) 1034 case 'M': // 0x7fffffff 1035 return C_Immediate; 1036 1037 default: 1038 break; 1039 } 1040 } else if (Constraint.size() == 2 && Constraint[0] == 'Z') { 1041 switch (Constraint[1]) { 1042 case 'Q': // Address with base and unsigned 12-bit displacement 1043 case 'R': // Likewise, plus an index 1044 case 'S': // Address with base and signed 20-bit displacement 1045 case 'T': // Likewise, plus an index 1046 return C_Address; 1047 1048 default: 1049 break; 1050 } 1051 } 1052 return TargetLowering::getConstraintType(Constraint); 1053 } 1054 1055 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1056 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1057 const char *constraint) const { 1058 ConstraintWeight weight = CW_Invalid; 1059 Value *CallOperandVal = info.CallOperandVal; 1060 // If we don't have a value, we can't do a match, 1061 // but allow it at the lowest weight. 1062 if (!CallOperandVal) 1063 return CW_Default; 1064 Type *type = CallOperandVal->getType(); 1065 // Look at the constraint type. 1066 switch (*constraint) { 1067 default: 1068 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1069 break; 1070 1071 case 'a': // Address register 1072 case 'd': // Data register (equivalent to 'r') 1073 case 'h': // High-part register 1074 case 'r': // General-purpose register 1075 if (CallOperandVal->getType()->isIntegerTy()) 1076 weight = CW_Register; 1077 break; 1078 1079 case 'f': // Floating-point register 1080 if (type->isFloatingPointTy()) 1081 weight = CW_Register; 1082 break; 1083 1084 case 'v': // Vector register 1085 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1086 Subtarget.hasVector()) 1087 weight = CW_Register; 1088 break; 1089 1090 case 'I': // Unsigned 8-bit constant 1091 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1092 if (isUInt<8>(C->getZExtValue())) 1093 weight = CW_Constant; 1094 break; 1095 1096 case 'J': // Unsigned 12-bit constant 1097 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1098 if (isUInt<12>(C->getZExtValue())) 1099 weight = CW_Constant; 1100 break; 1101 1102 case 'K': // Signed 16-bit constant 1103 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1104 if (isInt<16>(C->getSExtValue())) 1105 weight = CW_Constant; 1106 break; 1107 1108 case 'L': // Signed 20-bit displacement (on all targets we support) 1109 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1110 if (isInt<20>(C->getSExtValue())) 1111 weight = CW_Constant; 1112 break; 1113 1114 case 'M': // 0x7fffffff 1115 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1116 if (C->getZExtValue() == 0x7fffffff) 1117 weight = CW_Constant; 1118 break; 1119 } 1120 return weight; 1121 } 1122 1123 // Parse a "{tNNN}" register constraint for which the register type "t" 1124 // has already been verified. MC is the class associated with "t" and 1125 // Map maps 0-based register numbers to LLVM register numbers. 1126 static std::pair<unsigned, const TargetRegisterClass *> 1127 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1128 const unsigned *Map, unsigned Size) { 1129 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1130 if (isdigit(Constraint[2])) { 1131 unsigned Index; 1132 bool Failed = 1133 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1134 if (!Failed && Index < Size && Map[Index]) 1135 return std::make_pair(Map[Index], RC); 1136 } 1137 return std::make_pair(0U, nullptr); 1138 } 1139 1140 std::pair<unsigned, const TargetRegisterClass *> 1141 SystemZTargetLowering::getRegForInlineAsmConstraint( 1142 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1143 if (Constraint.size() == 1) { 1144 // GCC Constraint Letters 1145 switch (Constraint[0]) { 1146 default: break; 1147 case 'd': // Data register (equivalent to 'r') 1148 case 'r': // General-purpose register 1149 if (VT == MVT::i64) 1150 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1151 else if (VT == MVT::i128) 1152 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1153 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1154 1155 case 'a': // Address register 1156 if (VT == MVT::i64) 1157 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1158 else if (VT == MVT::i128) 1159 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1160 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1161 1162 case 'h': // High-part register (an LLVM extension) 1163 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1164 1165 case 'f': // Floating-point register 1166 if (!useSoftFloat()) { 1167 if (VT == MVT::f64) 1168 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1169 else if (VT == MVT::f128) 1170 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1171 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1172 } 1173 break; 1174 case 'v': // Vector register 1175 if (Subtarget.hasVector()) { 1176 if (VT == MVT::f32) 1177 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1178 if (VT == MVT::f64) 1179 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1180 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1181 } 1182 break; 1183 } 1184 } 1185 if (Constraint.size() > 0 && Constraint[0] == '{') { 1186 // We need to override the default register parsing for GPRs and FPRs 1187 // because the interpretation depends on VT. The internal names of 1188 // the registers are also different from the external names 1189 // (F0D and F0S instead of F0, etc.). 1190 if (Constraint[1] == 'r') { 1191 if (VT == MVT::i32) 1192 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1193 SystemZMC::GR32Regs, 16); 1194 if (VT == MVT::i128) 1195 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1196 SystemZMC::GR128Regs, 16); 1197 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1198 SystemZMC::GR64Regs, 16); 1199 } 1200 if (Constraint[1] == 'f') { 1201 if (useSoftFloat()) 1202 return std::make_pair( 1203 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1204 if (VT == MVT::f32) 1205 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1206 SystemZMC::FP32Regs, 16); 1207 if (VT == MVT::f128) 1208 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1209 SystemZMC::FP128Regs, 16); 1210 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1211 SystemZMC::FP64Regs, 16); 1212 } 1213 if (Constraint[1] == 'v') { 1214 if (!Subtarget.hasVector()) 1215 return std::make_pair( 1216 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1217 if (VT == MVT::f32) 1218 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1219 SystemZMC::VR32Regs, 32); 1220 if (VT == MVT::f64) 1221 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1222 SystemZMC::VR64Regs, 32); 1223 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1224 SystemZMC::VR128Regs, 32); 1225 } 1226 } 1227 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1228 } 1229 1230 // FIXME? Maybe this could be a TableGen attribute on some registers and 1231 // this table could be generated automatically from RegInfo. 1232 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1233 const MachineFunction &MF) const { 1234 1235 Register Reg = StringSwitch<Register>(RegName) 1236 .Case("r15", SystemZ::R15D) 1237 .Default(0); 1238 if (Reg) 1239 return Reg; 1240 report_fatal_error("Invalid register name global variable"); 1241 } 1242 1243 void SystemZTargetLowering:: 1244 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1245 std::vector<SDValue> &Ops, 1246 SelectionDAG &DAG) const { 1247 // Only support length 1 constraints for now. 1248 if (Constraint.length() == 1) { 1249 switch (Constraint[0]) { 1250 case 'I': // Unsigned 8-bit constant 1251 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1252 if (isUInt<8>(C->getZExtValue())) 1253 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1254 Op.getValueType())); 1255 return; 1256 1257 case 'J': // Unsigned 12-bit constant 1258 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1259 if (isUInt<12>(C->getZExtValue())) 1260 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1261 Op.getValueType())); 1262 return; 1263 1264 case 'K': // Signed 16-bit constant 1265 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1266 if (isInt<16>(C->getSExtValue())) 1267 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1268 Op.getValueType())); 1269 return; 1270 1271 case 'L': // Signed 20-bit displacement (on all targets we support) 1272 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1273 if (isInt<20>(C->getSExtValue())) 1274 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1275 Op.getValueType())); 1276 return; 1277 1278 case 'M': // 0x7fffffff 1279 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1280 if (C->getZExtValue() == 0x7fffffff) 1281 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1282 Op.getValueType())); 1283 return; 1284 } 1285 } 1286 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1287 } 1288 1289 //===----------------------------------------------------------------------===// 1290 // Calling conventions 1291 //===----------------------------------------------------------------------===// 1292 1293 #include "SystemZGenCallingConv.inc" 1294 1295 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1296 CallingConv::ID) const { 1297 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1298 SystemZ::R14D, 0 }; 1299 return ScratchRegs; 1300 } 1301 1302 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1303 Type *ToType) const { 1304 return isTruncateFree(FromType, ToType); 1305 } 1306 1307 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1308 return CI->isTailCall(); 1309 } 1310 1311 // We do not yet support 128-bit single-element vector types. If the user 1312 // attempts to use such types as function argument or return type, prefer 1313 // to error out instead of emitting code violating the ABI. 1314 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1315 if (ArgVT.isVector() && !VT.isVector()) 1316 report_fatal_error("Unsupported vector argument or return type"); 1317 } 1318 1319 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1320 for (unsigned i = 0; i < Ins.size(); ++i) 1321 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1322 } 1323 1324 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1325 for (unsigned i = 0; i < Outs.size(); ++i) 1326 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1327 } 1328 1329 // Value is a value that has been passed to us in the location described by VA 1330 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1331 // any loads onto Chain. 1332 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1333 CCValAssign &VA, SDValue Chain, 1334 SDValue Value) { 1335 // If the argument has been promoted from a smaller type, insert an 1336 // assertion to capture this. 1337 if (VA.getLocInfo() == CCValAssign::SExt) 1338 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1339 DAG.getValueType(VA.getValVT())); 1340 else if (VA.getLocInfo() == CCValAssign::ZExt) 1341 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1342 DAG.getValueType(VA.getValVT())); 1343 1344 if (VA.isExtInLoc()) 1345 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1346 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1347 // If this is a short vector argument loaded from the stack, 1348 // extend from i64 to full vector size and then bitcast. 1349 assert(VA.getLocVT() == MVT::i64); 1350 assert(VA.getValVT().isVector()); 1351 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1352 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1353 } else 1354 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1355 return Value; 1356 } 1357 1358 // Value is a value of type VA.getValVT() that we need to copy into 1359 // the location described by VA. Return a copy of Value converted to 1360 // VA.getValVT(). The caller is responsible for handling indirect values. 1361 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1362 CCValAssign &VA, SDValue Value) { 1363 switch (VA.getLocInfo()) { 1364 case CCValAssign::SExt: 1365 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1366 case CCValAssign::ZExt: 1367 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1368 case CCValAssign::AExt: 1369 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1370 case CCValAssign::BCvt: { 1371 assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128); 1372 assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f64 || 1373 VA.getValVT() == MVT::f128); 1374 MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64 1375 ? MVT::v2i64 1376 : VA.getLocVT(); 1377 Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value); 1378 // For ELF, this is a short vector argument to be stored to the stack, 1379 // bitcast to v2i64 and then extract first element. 1380 if (BitCastToType == MVT::v2i64) 1381 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1382 DAG.getConstant(0, DL, MVT::i32)); 1383 return Value; 1384 } 1385 case CCValAssign::Full: 1386 return Value; 1387 default: 1388 llvm_unreachable("Unhandled getLocInfo()"); 1389 } 1390 } 1391 1392 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 1393 SDLoc DL(In); 1394 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1395 DAG.getIntPtrConstant(0, DL)); 1396 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1397 DAG.getIntPtrConstant(1, DL)); 1398 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 1399 MVT::Untyped, Hi, Lo); 1400 return SDValue(Pair, 0); 1401 } 1402 1403 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 1404 SDLoc DL(In); 1405 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 1406 DL, MVT::i64, In); 1407 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 1408 DL, MVT::i64, In); 1409 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 1410 } 1411 1412 bool SystemZTargetLowering::splitValueIntoRegisterParts( 1413 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 1414 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 1415 EVT ValueVT = Val.getValueType(); 1416 assert((ValueVT != MVT::i128 || 1417 ((NumParts == 1 && PartVT == MVT::Untyped) || 1418 (NumParts == 2 && PartVT == MVT::i64))) && 1419 "Unknown handling of i128 value."); 1420 if (ValueVT == MVT::i128 && NumParts == 1) { 1421 // Inline assembly operand. 1422 Parts[0] = lowerI128ToGR128(DAG, Val); 1423 return true; 1424 } 1425 return false; 1426 } 1427 1428 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue( 1429 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 1430 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 1431 assert((ValueVT != MVT::i128 || 1432 ((NumParts == 1 && PartVT == MVT::Untyped) || 1433 (NumParts == 2 && PartVT == MVT::i64))) && 1434 "Unknown handling of i128 value."); 1435 if (ValueVT == MVT::i128 && NumParts == 1) 1436 // Inline assembly operand. 1437 return lowerGR128ToI128(DAG, Parts[0]); 1438 return SDValue(); 1439 } 1440 1441 SDValue SystemZTargetLowering::LowerFormalArguments( 1442 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1443 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1444 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1445 MachineFunction &MF = DAG.getMachineFunction(); 1446 MachineFrameInfo &MFI = MF.getFrameInfo(); 1447 MachineRegisterInfo &MRI = MF.getRegInfo(); 1448 SystemZMachineFunctionInfo *FuncInfo = 1449 MF.getInfo<SystemZMachineFunctionInfo>(); 1450 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 1451 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1452 1453 // Detect unsupported vector argument types. 1454 if (Subtarget.hasVector()) 1455 VerifyVectorTypes(Ins); 1456 1457 // Assign locations to all of the incoming arguments. 1458 SmallVector<CCValAssign, 16> ArgLocs; 1459 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1460 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1461 1462 unsigned NumFixedGPRs = 0; 1463 unsigned NumFixedFPRs = 0; 1464 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1465 SDValue ArgValue; 1466 CCValAssign &VA = ArgLocs[I]; 1467 EVT LocVT = VA.getLocVT(); 1468 if (VA.isRegLoc()) { 1469 // Arguments passed in registers 1470 const TargetRegisterClass *RC; 1471 switch (LocVT.getSimpleVT().SimpleTy) { 1472 default: 1473 // Integers smaller than i64 should be promoted to i64. 1474 llvm_unreachable("Unexpected argument type"); 1475 case MVT::i32: 1476 NumFixedGPRs += 1; 1477 RC = &SystemZ::GR32BitRegClass; 1478 break; 1479 case MVT::i64: 1480 NumFixedGPRs += 1; 1481 RC = &SystemZ::GR64BitRegClass; 1482 break; 1483 case MVT::f32: 1484 NumFixedFPRs += 1; 1485 RC = &SystemZ::FP32BitRegClass; 1486 break; 1487 case MVT::f64: 1488 NumFixedFPRs += 1; 1489 RC = &SystemZ::FP64BitRegClass; 1490 break; 1491 case MVT::f128: 1492 NumFixedFPRs += 2; 1493 RC = &SystemZ::FP128BitRegClass; 1494 break; 1495 case MVT::v16i8: 1496 case MVT::v8i16: 1497 case MVT::v4i32: 1498 case MVT::v2i64: 1499 case MVT::v4f32: 1500 case MVT::v2f64: 1501 RC = &SystemZ::VR128BitRegClass; 1502 break; 1503 } 1504 1505 Register VReg = MRI.createVirtualRegister(RC); 1506 MRI.addLiveIn(VA.getLocReg(), VReg); 1507 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1508 } else { 1509 assert(VA.isMemLoc() && "Argument not register or memory"); 1510 1511 // Create the frame index object for this incoming parameter. 1512 // FIXME: Pre-include call frame size in the offset, should not 1513 // need to manually add it here. 1514 int64_t ArgSPOffset = VA.getLocMemOffset(); 1515 if (Subtarget.isTargetXPLINK64()) { 1516 auto &XPRegs = 1517 Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 1518 ArgSPOffset += XPRegs.getCallFrameSize(); 1519 } 1520 int FI = 1521 MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true); 1522 1523 // Create the SelectionDAG nodes corresponding to a load 1524 // from this parameter. Unpromoted ints and floats are 1525 // passed as right-justified 8-byte values. 1526 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1527 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1528 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1529 DAG.getIntPtrConstant(4, DL)); 1530 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1531 MachinePointerInfo::getFixedStack(MF, FI)); 1532 } 1533 1534 // Convert the value of the argument register into the value that's 1535 // being passed. 1536 if (VA.getLocInfo() == CCValAssign::Indirect) { 1537 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1538 MachinePointerInfo())); 1539 // If the original argument was split (e.g. i128), we need 1540 // to load all parts of it here (using the same address). 1541 unsigned ArgIndex = Ins[I].OrigArgIndex; 1542 assert (Ins[I].PartOffset == 0); 1543 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1544 CCValAssign &PartVA = ArgLocs[I + 1]; 1545 unsigned PartOffset = Ins[I + 1].PartOffset; 1546 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1547 DAG.getIntPtrConstant(PartOffset, DL)); 1548 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1549 MachinePointerInfo())); 1550 ++I; 1551 } 1552 } else 1553 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1554 } 1555 1556 // FIXME: Add support for lowering varargs for XPLINK64 in a later patch. 1557 if (IsVarArg && Subtarget.isTargetELF()) { 1558 // Save the number of non-varargs registers for later use by va_start, etc. 1559 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1560 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1561 1562 // Likewise the address (in the form of a frame index) of where the 1563 // first stack vararg would be. The 1-byte size here is arbitrary. 1564 int64_t StackSize = CCInfo.getNextStackOffset(); 1565 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1566 1567 // ...and a similar frame index for the caller-allocated save area 1568 // that will be used to store the incoming registers. 1569 int64_t RegSaveOffset = 1570 -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1571 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1572 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1573 1574 // Store the FPR varargs in the reserved frame slots. (We store the 1575 // GPRs as part of the prologue.) 1576 if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) { 1577 SDValue MemOps[SystemZ::ELFNumArgFPRs]; 1578 for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) { 1579 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]); 1580 int FI = 1581 MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true); 1582 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1583 Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I], 1584 &SystemZ::FP64BitRegClass); 1585 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1586 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1587 MachinePointerInfo::getFixedStack(MF, FI)); 1588 } 1589 // Join the stores, which are independent of one another. 1590 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1591 makeArrayRef(&MemOps[NumFixedFPRs], 1592 SystemZ::ELFNumArgFPRs-NumFixedFPRs)); 1593 } 1594 } 1595 1596 // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special 1597 // register (R5) 1598 return Chain; 1599 } 1600 1601 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1602 SmallVectorImpl<CCValAssign> &ArgLocs, 1603 SmallVectorImpl<ISD::OutputArg> &Outs) { 1604 // Punt if there are any indirect or stack arguments, or if the call 1605 // needs the callee-saved argument register R6, or if the call uses 1606 // the callee-saved register arguments SwiftSelf and SwiftError. 1607 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1608 CCValAssign &VA = ArgLocs[I]; 1609 if (VA.getLocInfo() == CCValAssign::Indirect) 1610 return false; 1611 if (!VA.isRegLoc()) 1612 return false; 1613 Register Reg = VA.getLocReg(); 1614 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1615 return false; 1616 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1617 return false; 1618 } 1619 return true; 1620 } 1621 1622 SDValue 1623 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1624 SmallVectorImpl<SDValue> &InVals) const { 1625 SelectionDAG &DAG = CLI.DAG; 1626 SDLoc &DL = CLI.DL; 1627 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1628 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1629 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1630 SDValue Chain = CLI.Chain; 1631 SDValue Callee = CLI.Callee; 1632 bool &IsTailCall = CLI.IsTailCall; 1633 CallingConv::ID CallConv = CLI.CallConv; 1634 bool IsVarArg = CLI.IsVarArg; 1635 MachineFunction &MF = DAG.getMachineFunction(); 1636 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1637 LLVMContext &Ctx = *DAG.getContext(); 1638 SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters(); 1639 1640 // FIXME: z/OS support to be added in later. 1641 if (Subtarget.isTargetXPLINK64()) 1642 IsTailCall = false; 1643 1644 // Detect unsupported vector argument and return types. 1645 if (Subtarget.hasVector()) { 1646 VerifyVectorTypes(Outs); 1647 VerifyVectorTypes(Ins); 1648 } 1649 1650 // Analyze the operands of the call, assigning locations to each operand. 1651 SmallVector<CCValAssign, 16> ArgLocs; 1652 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx); 1653 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1654 1655 // We don't support GuaranteedTailCallOpt, only automatically-detected 1656 // sibling calls. 1657 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1658 IsTailCall = false; 1659 1660 // Get a count of how many bytes are to be pushed on the stack. 1661 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1662 1663 if (Subtarget.isTargetXPLINK64()) 1664 // Although the XPLINK specifications for AMODE64 state that minimum size 1665 // of the param area is minimum 32 bytes and no rounding is otherwise 1666 // specified, we round this area in 64 bytes increments to be compatible 1667 // with existing compilers. 1668 NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64)); 1669 1670 // Mark the start of the call. 1671 if (!IsTailCall) 1672 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1673 1674 // Copy argument values to their designated locations. 1675 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1676 SmallVector<SDValue, 8> MemOpChains; 1677 SDValue StackPtr; 1678 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1679 CCValAssign &VA = ArgLocs[I]; 1680 SDValue ArgValue = OutVals[I]; 1681 1682 if (VA.getLocInfo() == CCValAssign::Indirect) { 1683 // Store the argument in a stack slot and pass its address. 1684 unsigned ArgIndex = Outs[I].OrigArgIndex; 1685 EVT SlotVT; 1686 if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1687 // Allocate the full stack space for a promoted (and split) argument. 1688 Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty; 1689 EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType); 1690 MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1691 unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1692 SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N); 1693 } else { 1694 SlotVT = Outs[I].ArgVT; 1695 } 1696 SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT); 1697 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1698 MemOpChains.push_back( 1699 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1700 MachinePointerInfo::getFixedStack(MF, FI))); 1701 // If the original argument was split (e.g. i128), we need 1702 // to store all parts of it here (and pass just one address). 1703 assert (Outs[I].PartOffset == 0); 1704 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1705 SDValue PartValue = OutVals[I + 1]; 1706 unsigned PartOffset = Outs[I + 1].PartOffset; 1707 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1708 DAG.getIntPtrConstant(PartOffset, DL)); 1709 MemOpChains.push_back( 1710 DAG.getStore(Chain, DL, PartValue, Address, 1711 MachinePointerInfo::getFixedStack(MF, FI))); 1712 assert((PartOffset + PartValue.getValueType().getStoreSize() <= 1713 SlotVT.getStoreSize()) && "Not enough space for argument part!"); 1714 ++I; 1715 } 1716 ArgValue = SpillSlot; 1717 } else 1718 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1719 1720 if (VA.isRegLoc()) { 1721 // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a 1722 // MVT::i128 type. We decompose the 128-bit type to a pair of its high 1723 // and low values. 1724 if (VA.getLocVT() == MVT::i128) 1725 ArgValue = lowerI128ToGR128(DAG, ArgValue); 1726 // Queue up the argument copies and emit them at the end. 1727 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1728 } else { 1729 assert(VA.isMemLoc() && "Argument not register or memory"); 1730 1731 // Work out the address of the stack slot. Unpromoted ints and 1732 // floats are passed as right-justified 8-byte values. 1733 if (!StackPtr.getNode()) 1734 StackPtr = DAG.getCopyFromReg(Chain, DL, 1735 Regs->getStackPointerRegister(), PtrVT); 1736 unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() + 1737 VA.getLocMemOffset(); 1738 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1739 Offset += 4; 1740 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1741 DAG.getIntPtrConstant(Offset, DL)); 1742 1743 // Emit the store. 1744 MemOpChains.push_back( 1745 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1746 1747 // Although long doubles or vectors are passed through the stack when 1748 // they are vararg (non-fixed arguments), if a long double or vector 1749 // occupies the third and fourth slot of the argument list GPR3 should 1750 // still shadow the third slot of the argument list. 1751 if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) { 1752 SDValue ShadowArgValue = 1753 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue, 1754 DAG.getIntPtrConstant(1, DL)); 1755 RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue)); 1756 } 1757 } 1758 } 1759 1760 // Join the stores, which are independent of one another. 1761 if (!MemOpChains.empty()) 1762 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1763 1764 // Accept direct calls by converting symbolic call addresses to the 1765 // associated Target* opcodes. Force %r1 to be used for indirect 1766 // tail calls. 1767 SDValue Glue; 1768 // FIXME: Add support for XPLINK using the ADA register. 1769 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1770 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1771 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1772 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1773 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1774 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1775 } else if (IsTailCall) { 1776 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1777 Glue = Chain.getValue(1); 1778 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1779 } 1780 1781 // Build a sequence of copy-to-reg nodes, chained and glued together. 1782 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1783 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1784 RegsToPass[I].second, Glue); 1785 Glue = Chain.getValue(1); 1786 } 1787 1788 // The first call operand is the chain and the second is the target address. 1789 SmallVector<SDValue, 8> Ops; 1790 Ops.push_back(Chain); 1791 Ops.push_back(Callee); 1792 1793 // Add argument registers to the end of the list so that they are 1794 // known live into the call. 1795 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1796 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1797 RegsToPass[I].second.getValueType())); 1798 1799 // Add a register mask operand representing the call-preserved registers. 1800 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1801 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1802 assert(Mask && "Missing call preserved mask for calling convention"); 1803 Ops.push_back(DAG.getRegisterMask(Mask)); 1804 1805 // Glue the call to the argument copies, if any. 1806 if (Glue.getNode()) 1807 Ops.push_back(Glue); 1808 1809 // Emit the call. 1810 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1811 if (IsTailCall) 1812 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1813 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1814 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 1815 Glue = Chain.getValue(1); 1816 1817 // Mark the end of the call, which is glued to the call itself. 1818 Chain = DAG.getCALLSEQ_END(Chain, 1819 DAG.getConstant(NumBytes, DL, PtrVT, true), 1820 DAG.getConstant(0, DL, PtrVT, true), 1821 Glue, DL); 1822 Glue = Chain.getValue(1); 1823 1824 // Assign locations to each value returned by this call. 1825 SmallVector<CCValAssign, 16> RetLocs; 1826 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx); 1827 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1828 1829 // Copy all of the result registers out of their specified physreg. 1830 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1831 CCValAssign &VA = RetLocs[I]; 1832 1833 // Copy the value out, gluing the copy to the end of the call sequence. 1834 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1835 VA.getLocVT(), Glue); 1836 Chain = RetValue.getValue(1); 1837 Glue = RetValue.getValue(2); 1838 1839 // Convert the value of the return register into the value that's 1840 // being returned. 1841 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1842 } 1843 1844 return Chain; 1845 } 1846 1847 // Generate a call taking the given operands as arguments and returning a 1848 // result of type RetVT. 1849 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall( 1850 SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT, 1851 ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL, 1852 bool DoesNotReturn, bool IsReturnValueUsed) const { 1853 TargetLowering::ArgListTy Args; 1854 Args.reserve(Ops.size()); 1855 1856 TargetLowering::ArgListEntry Entry; 1857 for (SDValue Op : Ops) { 1858 Entry.Node = Op; 1859 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1860 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 1861 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 1862 Args.push_back(Entry); 1863 } 1864 1865 SDValue Callee = 1866 DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout())); 1867 1868 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1869 TargetLowering::CallLoweringInfo CLI(DAG); 1870 bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned); 1871 CLI.setDebugLoc(DL) 1872 .setChain(Chain) 1873 .setCallee(CallConv, RetTy, Callee, std::move(Args)) 1874 .setNoReturn(DoesNotReturn) 1875 .setDiscardResult(!IsReturnValueUsed) 1876 .setSExtResult(SignExtend) 1877 .setZExtResult(!SignExtend); 1878 return LowerCallTo(CLI); 1879 } 1880 1881 bool SystemZTargetLowering:: 1882 CanLowerReturn(CallingConv::ID CallConv, 1883 MachineFunction &MF, bool isVarArg, 1884 const SmallVectorImpl<ISD::OutputArg> &Outs, 1885 LLVMContext &Context) const { 1886 // Detect unsupported vector return types. 1887 if (Subtarget.hasVector()) 1888 VerifyVectorTypes(Outs); 1889 1890 // Special case that we cannot easily detect in RetCC_SystemZ since 1891 // i128 is not a legal type. 1892 for (auto &Out : Outs) 1893 if (Out.ArgVT == MVT::i128) 1894 return false; 1895 1896 SmallVector<CCValAssign, 16> RetLocs; 1897 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1898 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1899 } 1900 1901 SDValue 1902 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1903 bool IsVarArg, 1904 const SmallVectorImpl<ISD::OutputArg> &Outs, 1905 const SmallVectorImpl<SDValue> &OutVals, 1906 const SDLoc &DL, SelectionDAG &DAG) const { 1907 MachineFunction &MF = DAG.getMachineFunction(); 1908 1909 // Detect unsupported vector return types. 1910 if (Subtarget.hasVector()) 1911 VerifyVectorTypes(Outs); 1912 1913 // Assign locations to each returned value. 1914 SmallVector<CCValAssign, 16> RetLocs; 1915 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1916 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1917 1918 // Quick exit for void returns 1919 if (RetLocs.empty()) 1920 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1921 1922 if (CallConv == CallingConv::GHC) 1923 report_fatal_error("GHC functions return void only"); 1924 1925 // Copy the result values into the output registers. 1926 SDValue Glue; 1927 SmallVector<SDValue, 4> RetOps; 1928 RetOps.push_back(Chain); 1929 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1930 CCValAssign &VA = RetLocs[I]; 1931 SDValue RetValue = OutVals[I]; 1932 1933 // Make the return register live on exit. 1934 assert(VA.isRegLoc() && "Can only return in registers!"); 1935 1936 // Promote the value as required. 1937 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1938 1939 // Chain and glue the copies together. 1940 Register Reg = VA.getLocReg(); 1941 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1942 Glue = Chain.getValue(1); 1943 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1944 } 1945 1946 // Update chain and glue. 1947 RetOps[0] = Chain; 1948 if (Glue.getNode()) 1949 RetOps.push_back(Glue); 1950 1951 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1952 } 1953 1954 // Return true if Op is an intrinsic node with chain that returns the CC value 1955 // as its only (other) argument. Provide the associated SystemZISD opcode and 1956 // the mask of valid CC values if so. 1957 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1958 unsigned &CCValid) { 1959 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1960 switch (Id) { 1961 case Intrinsic::s390_tbegin: 1962 Opcode = SystemZISD::TBEGIN; 1963 CCValid = SystemZ::CCMASK_TBEGIN; 1964 return true; 1965 1966 case Intrinsic::s390_tbegin_nofloat: 1967 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1968 CCValid = SystemZ::CCMASK_TBEGIN; 1969 return true; 1970 1971 case Intrinsic::s390_tend: 1972 Opcode = SystemZISD::TEND; 1973 CCValid = SystemZ::CCMASK_TEND; 1974 return true; 1975 1976 default: 1977 return false; 1978 } 1979 } 1980 1981 // Return true if Op is an intrinsic node without chain that returns the 1982 // CC value as its final argument. Provide the associated SystemZISD 1983 // opcode and the mask of valid CC values if so. 1984 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1985 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1986 switch (Id) { 1987 case Intrinsic::s390_vpkshs: 1988 case Intrinsic::s390_vpksfs: 1989 case Intrinsic::s390_vpksgs: 1990 Opcode = SystemZISD::PACKS_CC; 1991 CCValid = SystemZ::CCMASK_VCMP; 1992 return true; 1993 1994 case Intrinsic::s390_vpklshs: 1995 case Intrinsic::s390_vpklsfs: 1996 case Intrinsic::s390_vpklsgs: 1997 Opcode = SystemZISD::PACKLS_CC; 1998 CCValid = SystemZ::CCMASK_VCMP; 1999 return true; 2000 2001 case Intrinsic::s390_vceqbs: 2002 case Intrinsic::s390_vceqhs: 2003 case Intrinsic::s390_vceqfs: 2004 case Intrinsic::s390_vceqgs: 2005 Opcode = SystemZISD::VICMPES; 2006 CCValid = SystemZ::CCMASK_VCMP; 2007 return true; 2008 2009 case Intrinsic::s390_vchbs: 2010 case Intrinsic::s390_vchhs: 2011 case Intrinsic::s390_vchfs: 2012 case Intrinsic::s390_vchgs: 2013 Opcode = SystemZISD::VICMPHS; 2014 CCValid = SystemZ::CCMASK_VCMP; 2015 return true; 2016 2017 case Intrinsic::s390_vchlbs: 2018 case Intrinsic::s390_vchlhs: 2019 case Intrinsic::s390_vchlfs: 2020 case Intrinsic::s390_vchlgs: 2021 Opcode = SystemZISD::VICMPHLS; 2022 CCValid = SystemZ::CCMASK_VCMP; 2023 return true; 2024 2025 case Intrinsic::s390_vtm: 2026 Opcode = SystemZISD::VTM; 2027 CCValid = SystemZ::CCMASK_VCMP; 2028 return true; 2029 2030 case Intrinsic::s390_vfaebs: 2031 case Intrinsic::s390_vfaehs: 2032 case Intrinsic::s390_vfaefs: 2033 Opcode = SystemZISD::VFAE_CC; 2034 CCValid = SystemZ::CCMASK_ANY; 2035 return true; 2036 2037 case Intrinsic::s390_vfaezbs: 2038 case Intrinsic::s390_vfaezhs: 2039 case Intrinsic::s390_vfaezfs: 2040 Opcode = SystemZISD::VFAEZ_CC; 2041 CCValid = SystemZ::CCMASK_ANY; 2042 return true; 2043 2044 case Intrinsic::s390_vfeebs: 2045 case Intrinsic::s390_vfeehs: 2046 case Intrinsic::s390_vfeefs: 2047 Opcode = SystemZISD::VFEE_CC; 2048 CCValid = SystemZ::CCMASK_ANY; 2049 return true; 2050 2051 case Intrinsic::s390_vfeezbs: 2052 case Intrinsic::s390_vfeezhs: 2053 case Intrinsic::s390_vfeezfs: 2054 Opcode = SystemZISD::VFEEZ_CC; 2055 CCValid = SystemZ::CCMASK_ANY; 2056 return true; 2057 2058 case Intrinsic::s390_vfenebs: 2059 case Intrinsic::s390_vfenehs: 2060 case Intrinsic::s390_vfenefs: 2061 Opcode = SystemZISD::VFENE_CC; 2062 CCValid = SystemZ::CCMASK_ANY; 2063 return true; 2064 2065 case Intrinsic::s390_vfenezbs: 2066 case Intrinsic::s390_vfenezhs: 2067 case Intrinsic::s390_vfenezfs: 2068 Opcode = SystemZISD::VFENEZ_CC; 2069 CCValid = SystemZ::CCMASK_ANY; 2070 return true; 2071 2072 case Intrinsic::s390_vistrbs: 2073 case Intrinsic::s390_vistrhs: 2074 case Intrinsic::s390_vistrfs: 2075 Opcode = SystemZISD::VISTR_CC; 2076 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 2077 return true; 2078 2079 case Intrinsic::s390_vstrcbs: 2080 case Intrinsic::s390_vstrchs: 2081 case Intrinsic::s390_vstrcfs: 2082 Opcode = SystemZISD::VSTRC_CC; 2083 CCValid = SystemZ::CCMASK_ANY; 2084 return true; 2085 2086 case Intrinsic::s390_vstrczbs: 2087 case Intrinsic::s390_vstrczhs: 2088 case Intrinsic::s390_vstrczfs: 2089 Opcode = SystemZISD::VSTRCZ_CC; 2090 CCValid = SystemZ::CCMASK_ANY; 2091 return true; 2092 2093 case Intrinsic::s390_vstrsb: 2094 case Intrinsic::s390_vstrsh: 2095 case Intrinsic::s390_vstrsf: 2096 Opcode = SystemZISD::VSTRS_CC; 2097 CCValid = SystemZ::CCMASK_ANY; 2098 return true; 2099 2100 case Intrinsic::s390_vstrszb: 2101 case Intrinsic::s390_vstrszh: 2102 case Intrinsic::s390_vstrszf: 2103 Opcode = SystemZISD::VSTRSZ_CC; 2104 CCValid = SystemZ::CCMASK_ANY; 2105 return true; 2106 2107 case Intrinsic::s390_vfcedbs: 2108 case Intrinsic::s390_vfcesbs: 2109 Opcode = SystemZISD::VFCMPES; 2110 CCValid = SystemZ::CCMASK_VCMP; 2111 return true; 2112 2113 case Intrinsic::s390_vfchdbs: 2114 case Intrinsic::s390_vfchsbs: 2115 Opcode = SystemZISD::VFCMPHS; 2116 CCValid = SystemZ::CCMASK_VCMP; 2117 return true; 2118 2119 case Intrinsic::s390_vfchedbs: 2120 case Intrinsic::s390_vfchesbs: 2121 Opcode = SystemZISD::VFCMPHES; 2122 CCValid = SystemZ::CCMASK_VCMP; 2123 return true; 2124 2125 case Intrinsic::s390_vftcidb: 2126 case Intrinsic::s390_vftcisb: 2127 Opcode = SystemZISD::VFTCI; 2128 CCValid = SystemZ::CCMASK_VCMP; 2129 return true; 2130 2131 case Intrinsic::s390_tdc: 2132 Opcode = SystemZISD::TDC; 2133 CCValid = SystemZ::CCMASK_TDC; 2134 return true; 2135 2136 default: 2137 return false; 2138 } 2139 } 2140 2141 // Emit an intrinsic with chain and an explicit CC register result. 2142 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 2143 unsigned Opcode) { 2144 // Copy all operands except the intrinsic ID. 2145 unsigned NumOps = Op.getNumOperands(); 2146 SmallVector<SDValue, 6> Ops; 2147 Ops.reserve(NumOps - 1); 2148 Ops.push_back(Op.getOperand(0)); 2149 for (unsigned I = 2; I < NumOps; ++I) 2150 Ops.push_back(Op.getOperand(I)); 2151 2152 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 2153 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 2154 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 2155 SDValue OldChain = SDValue(Op.getNode(), 1); 2156 SDValue NewChain = SDValue(Intr.getNode(), 1); 2157 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 2158 return Intr.getNode(); 2159 } 2160 2161 // Emit an intrinsic with an explicit CC register result. 2162 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 2163 unsigned Opcode) { 2164 // Copy all operands except the intrinsic ID. 2165 unsigned NumOps = Op.getNumOperands(); 2166 SmallVector<SDValue, 6> Ops; 2167 Ops.reserve(NumOps - 1); 2168 for (unsigned I = 1; I < NumOps; ++I) 2169 Ops.push_back(Op.getOperand(I)); 2170 2171 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 2172 return Intr.getNode(); 2173 } 2174 2175 // CC is a comparison that will be implemented using an integer or 2176 // floating-point comparison. Return the condition code mask for 2177 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 2178 // unsigned comparisons and clear for signed ones. In the floating-point 2179 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 2180 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 2181 #define CONV(X) \ 2182 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2183 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2184 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2185 2186 switch (CC) { 2187 default: 2188 llvm_unreachable("Invalid integer condition!"); 2189 2190 CONV(EQ); 2191 CONV(NE); 2192 CONV(GT); 2193 CONV(GE); 2194 CONV(LT); 2195 CONV(LE); 2196 2197 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2198 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2199 } 2200 #undef CONV 2201 } 2202 2203 // If C can be converted to a comparison against zero, adjust the operands 2204 // as necessary. 2205 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2206 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2207 return; 2208 2209 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2210 if (!ConstOp1) 2211 return; 2212 2213 int64_t Value = ConstOp1->getSExtValue(); 2214 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2215 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2216 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2217 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2218 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2219 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2220 } 2221 } 2222 2223 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2224 // adjust the operands as necessary. 2225 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2226 Comparison &C) { 2227 // For us to make any changes, it must a comparison between a single-use 2228 // load and a constant. 2229 if (!C.Op0.hasOneUse() || 2230 C.Op0.getOpcode() != ISD::LOAD || 2231 C.Op1.getOpcode() != ISD::Constant) 2232 return; 2233 2234 // We must have an 8- or 16-bit load. 2235 auto *Load = cast<LoadSDNode>(C.Op0); 2236 unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 2237 if ((NumBits != 8 && NumBits != 16) || 2238 NumBits != Load->getMemoryVT().getStoreSizeInBits()) 2239 return; 2240 2241 // The load must be an extending one and the constant must be within the 2242 // range of the unextended value. 2243 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2244 uint64_t Value = ConstOp1->getZExtValue(); 2245 uint64_t Mask = (1 << NumBits) - 1; 2246 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2247 // Make sure that ConstOp1 is in range of C.Op0. 2248 int64_t SignedValue = ConstOp1->getSExtValue(); 2249 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2250 return; 2251 if (C.ICmpType != SystemZICMP::SignedOnly) { 2252 // Unsigned comparison between two sign-extended values is equivalent 2253 // to unsigned comparison between two zero-extended values. 2254 Value &= Mask; 2255 } else if (NumBits == 8) { 2256 // Try to treat the comparison as unsigned, so that we can use CLI. 2257 // Adjust CCMask and Value as necessary. 2258 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2259 // Test whether the high bit of the byte is set. 2260 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2261 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2262 // Test whether the high bit of the byte is clear. 2263 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2264 else 2265 // No instruction exists for this combination. 2266 return; 2267 C.ICmpType = SystemZICMP::UnsignedOnly; 2268 } 2269 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2270 if (Value > Mask) 2271 return; 2272 // If the constant is in range, we can use any comparison. 2273 C.ICmpType = SystemZICMP::Any; 2274 } else 2275 return; 2276 2277 // Make sure that the first operand is an i32 of the right extension type. 2278 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2279 ISD::SEXTLOAD : 2280 ISD::ZEXTLOAD); 2281 if (C.Op0.getValueType() != MVT::i32 || 2282 Load->getExtensionType() != ExtType) { 2283 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2284 Load->getBasePtr(), Load->getPointerInfo(), 2285 Load->getMemoryVT(), Load->getAlignment(), 2286 Load->getMemOperand()->getFlags()); 2287 // Update the chain uses. 2288 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2289 } 2290 2291 // Make sure that the second operand is an i32 with the right value. 2292 if (C.Op1.getValueType() != MVT::i32 || 2293 Value != ConstOp1->getZExtValue()) 2294 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2295 } 2296 2297 // Return true if Op is either an unextended load, or a load suitable 2298 // for integer register-memory comparisons of type ICmpType. 2299 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2300 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2301 if (Load) { 2302 // There are no instructions to compare a register with a memory byte. 2303 if (Load->getMemoryVT() == MVT::i8) 2304 return false; 2305 // Otherwise decide on extension type. 2306 switch (Load->getExtensionType()) { 2307 case ISD::NON_EXTLOAD: 2308 return true; 2309 case ISD::SEXTLOAD: 2310 return ICmpType != SystemZICMP::UnsignedOnly; 2311 case ISD::ZEXTLOAD: 2312 return ICmpType != SystemZICMP::SignedOnly; 2313 default: 2314 break; 2315 } 2316 } 2317 return false; 2318 } 2319 2320 // Return true if it is better to swap the operands of C. 2321 static bool shouldSwapCmpOperands(const Comparison &C) { 2322 // Leave f128 comparisons alone, since they have no memory forms. 2323 if (C.Op0.getValueType() == MVT::f128) 2324 return false; 2325 2326 // Always keep a floating-point constant second, since comparisons with 2327 // zero can use LOAD TEST and comparisons with other constants make a 2328 // natural memory operand. 2329 if (isa<ConstantFPSDNode>(C.Op1)) 2330 return false; 2331 2332 // Never swap comparisons with zero since there are many ways to optimize 2333 // those later. 2334 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2335 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2336 return false; 2337 2338 // Also keep natural memory operands second if the loaded value is 2339 // only used here. Several comparisons have memory forms. 2340 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2341 return false; 2342 2343 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2344 // In that case we generally prefer the memory to be second. 2345 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2346 // The only exceptions are when the second operand is a constant and 2347 // we can use things like CHHSI. 2348 if (!ConstOp1) 2349 return true; 2350 // The unsigned memory-immediate instructions can handle 16-bit 2351 // unsigned integers. 2352 if (C.ICmpType != SystemZICMP::SignedOnly && 2353 isUInt<16>(ConstOp1->getZExtValue())) 2354 return false; 2355 // The signed memory-immediate instructions can handle 16-bit 2356 // signed integers. 2357 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2358 isInt<16>(ConstOp1->getSExtValue())) 2359 return false; 2360 return true; 2361 } 2362 2363 // Try to promote the use of CGFR and CLGFR. 2364 unsigned Opcode0 = C.Op0.getOpcode(); 2365 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2366 return true; 2367 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2368 return true; 2369 if (C.ICmpType != SystemZICMP::SignedOnly && 2370 Opcode0 == ISD::AND && 2371 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2372 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2373 return true; 2374 2375 return false; 2376 } 2377 2378 // Check whether C tests for equality between X and Y and whether X - Y 2379 // or Y - X is also computed. In that case it's better to compare the 2380 // result of the subtraction against zero. 2381 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2382 Comparison &C) { 2383 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2384 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2385 for (SDNode *N : C.Op0->uses()) { 2386 if (N->getOpcode() == ISD::SUB && 2387 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2388 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2389 C.Op0 = SDValue(N, 0); 2390 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2391 return; 2392 } 2393 } 2394 } 2395 } 2396 2397 // Check whether C compares a floating-point value with zero and if that 2398 // floating-point value is also negated. In this case we can use the 2399 // negation to set CC, so avoiding separate LOAD AND TEST and 2400 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2401 static void adjustForFNeg(Comparison &C) { 2402 // This optimization is invalid for strict comparisons, since FNEG 2403 // does not raise any exceptions. 2404 if (C.Chain) 2405 return; 2406 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2407 if (C1 && C1->isZero()) { 2408 for (SDNode *N : C.Op0->uses()) { 2409 if (N->getOpcode() == ISD::FNEG) { 2410 C.Op0 = SDValue(N, 0); 2411 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2412 return; 2413 } 2414 } 2415 } 2416 } 2417 2418 // Check whether C compares (shl X, 32) with 0 and whether X is 2419 // also sign-extended. In that case it is better to test the result 2420 // of the sign extension using LTGFR. 2421 // 2422 // This case is important because InstCombine transforms a comparison 2423 // with (sext (trunc X)) into a comparison with (shl X, 32). 2424 static void adjustForLTGFR(Comparison &C) { 2425 // Check for a comparison between (shl X, 32) and 0. 2426 if (C.Op0.getOpcode() == ISD::SHL && 2427 C.Op0.getValueType() == MVT::i64 && 2428 C.Op1.getOpcode() == ISD::Constant && 2429 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2430 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2431 if (C1 && C1->getZExtValue() == 32) { 2432 SDValue ShlOp0 = C.Op0.getOperand(0); 2433 // See whether X has any SIGN_EXTEND_INREG uses. 2434 for (SDNode *N : ShlOp0->uses()) { 2435 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2436 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2437 C.Op0 = SDValue(N, 0); 2438 return; 2439 } 2440 } 2441 } 2442 } 2443 } 2444 2445 // If C compares the truncation of an extending load, try to compare 2446 // the untruncated value instead. This exposes more opportunities to 2447 // reuse CC. 2448 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2449 Comparison &C) { 2450 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2451 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2452 C.Op1.getOpcode() == ISD::Constant && 2453 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2454 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2455 if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <= 2456 C.Op0.getValueSizeInBits().getFixedSize()) { 2457 unsigned Type = L->getExtensionType(); 2458 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2459 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2460 C.Op0 = C.Op0.getOperand(0); 2461 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2462 } 2463 } 2464 } 2465 } 2466 2467 // Return true if shift operation N has an in-range constant shift value. 2468 // Store it in ShiftVal if so. 2469 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2470 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2471 if (!Shift) 2472 return false; 2473 2474 uint64_t Amount = Shift->getZExtValue(); 2475 if (Amount >= N.getValueSizeInBits()) 2476 return false; 2477 2478 ShiftVal = Amount; 2479 return true; 2480 } 2481 2482 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2483 // instruction and whether the CC value is descriptive enough to handle 2484 // a comparison of type Opcode between the AND result and CmpVal. 2485 // CCMask says which comparison result is being tested and BitSize is 2486 // the number of bits in the operands. If TEST UNDER MASK can be used, 2487 // return the corresponding CC mask, otherwise return 0. 2488 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2489 uint64_t Mask, uint64_t CmpVal, 2490 unsigned ICmpType) { 2491 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2492 2493 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2494 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2495 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2496 return 0; 2497 2498 // Work out the masks for the lowest and highest bits. 2499 unsigned HighShift = 63 - countLeadingZeros(Mask); 2500 uint64_t High = uint64_t(1) << HighShift; 2501 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2502 2503 // Signed ordered comparisons are effectively unsigned if the sign 2504 // bit is dropped. 2505 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2506 2507 // Check for equality comparisons with 0, or the equivalent. 2508 if (CmpVal == 0) { 2509 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2510 return SystemZ::CCMASK_TM_ALL_0; 2511 if (CCMask == SystemZ::CCMASK_CMP_NE) 2512 return SystemZ::CCMASK_TM_SOME_1; 2513 } 2514 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2515 if (CCMask == SystemZ::CCMASK_CMP_LT) 2516 return SystemZ::CCMASK_TM_ALL_0; 2517 if (CCMask == SystemZ::CCMASK_CMP_GE) 2518 return SystemZ::CCMASK_TM_SOME_1; 2519 } 2520 if (EffectivelyUnsigned && CmpVal < Low) { 2521 if (CCMask == SystemZ::CCMASK_CMP_LE) 2522 return SystemZ::CCMASK_TM_ALL_0; 2523 if (CCMask == SystemZ::CCMASK_CMP_GT) 2524 return SystemZ::CCMASK_TM_SOME_1; 2525 } 2526 2527 // Check for equality comparisons with the mask, or the equivalent. 2528 if (CmpVal == Mask) { 2529 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2530 return SystemZ::CCMASK_TM_ALL_1; 2531 if (CCMask == SystemZ::CCMASK_CMP_NE) 2532 return SystemZ::CCMASK_TM_SOME_0; 2533 } 2534 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2535 if (CCMask == SystemZ::CCMASK_CMP_GT) 2536 return SystemZ::CCMASK_TM_ALL_1; 2537 if (CCMask == SystemZ::CCMASK_CMP_LE) 2538 return SystemZ::CCMASK_TM_SOME_0; 2539 } 2540 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2541 if (CCMask == SystemZ::CCMASK_CMP_GE) 2542 return SystemZ::CCMASK_TM_ALL_1; 2543 if (CCMask == SystemZ::CCMASK_CMP_LT) 2544 return SystemZ::CCMASK_TM_SOME_0; 2545 } 2546 2547 // Check for ordered comparisons with the top bit. 2548 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2549 if (CCMask == SystemZ::CCMASK_CMP_LE) 2550 return SystemZ::CCMASK_TM_MSB_0; 2551 if (CCMask == SystemZ::CCMASK_CMP_GT) 2552 return SystemZ::CCMASK_TM_MSB_1; 2553 } 2554 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2555 if (CCMask == SystemZ::CCMASK_CMP_LT) 2556 return SystemZ::CCMASK_TM_MSB_0; 2557 if (CCMask == SystemZ::CCMASK_CMP_GE) 2558 return SystemZ::CCMASK_TM_MSB_1; 2559 } 2560 2561 // If there are just two bits, we can do equality checks for Low and High 2562 // as well. 2563 if (Mask == Low + High) { 2564 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2565 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2566 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2567 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2568 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2569 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2570 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2571 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2572 } 2573 2574 // Looks like we've exhausted our options. 2575 return 0; 2576 } 2577 2578 // See whether C can be implemented as a TEST UNDER MASK instruction. 2579 // Update the arguments with the TM version if so. 2580 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2581 Comparison &C) { 2582 // Check that we have a comparison with a constant. 2583 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2584 if (!ConstOp1) 2585 return; 2586 uint64_t CmpVal = ConstOp1->getZExtValue(); 2587 2588 // Check whether the nonconstant input is an AND with a constant mask. 2589 Comparison NewC(C); 2590 uint64_t MaskVal; 2591 ConstantSDNode *Mask = nullptr; 2592 if (C.Op0.getOpcode() == ISD::AND) { 2593 NewC.Op0 = C.Op0.getOperand(0); 2594 NewC.Op1 = C.Op0.getOperand(1); 2595 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2596 if (!Mask) 2597 return; 2598 MaskVal = Mask->getZExtValue(); 2599 } else { 2600 // There is no instruction to compare with a 64-bit immediate 2601 // so use TMHH instead if possible. We need an unsigned ordered 2602 // comparison with an i64 immediate. 2603 if (NewC.Op0.getValueType() != MVT::i64 || 2604 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2605 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2606 NewC.ICmpType == SystemZICMP::SignedOnly) 2607 return; 2608 // Convert LE and GT comparisons into LT and GE. 2609 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2610 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2611 if (CmpVal == uint64_t(-1)) 2612 return; 2613 CmpVal += 1; 2614 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2615 } 2616 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2617 // be masked off without changing the result. 2618 MaskVal = -(CmpVal & -CmpVal); 2619 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2620 } 2621 if (!MaskVal) 2622 return; 2623 2624 // Check whether the combination of mask, comparison value and comparison 2625 // type are suitable. 2626 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2627 unsigned NewCCMask, ShiftVal; 2628 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2629 NewC.Op0.getOpcode() == ISD::SHL && 2630 isSimpleShift(NewC.Op0, ShiftVal) && 2631 (MaskVal >> ShiftVal != 0) && 2632 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2633 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2634 MaskVal >> ShiftVal, 2635 CmpVal >> ShiftVal, 2636 SystemZICMP::Any))) { 2637 NewC.Op0 = NewC.Op0.getOperand(0); 2638 MaskVal >>= ShiftVal; 2639 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2640 NewC.Op0.getOpcode() == ISD::SRL && 2641 isSimpleShift(NewC.Op0, ShiftVal) && 2642 (MaskVal << ShiftVal != 0) && 2643 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2644 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2645 MaskVal << ShiftVal, 2646 CmpVal << ShiftVal, 2647 SystemZICMP::UnsignedOnly))) { 2648 NewC.Op0 = NewC.Op0.getOperand(0); 2649 MaskVal <<= ShiftVal; 2650 } else { 2651 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2652 NewC.ICmpType); 2653 if (!NewCCMask) 2654 return; 2655 } 2656 2657 // Go ahead and make the change. 2658 C.Opcode = SystemZISD::TM; 2659 C.Op0 = NewC.Op0; 2660 if (Mask && Mask->getZExtValue() == MaskVal) 2661 C.Op1 = SDValue(Mask, 0); 2662 else 2663 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2664 C.CCValid = SystemZ::CCMASK_TM; 2665 C.CCMask = NewCCMask; 2666 } 2667 2668 // See whether the comparison argument contains a redundant AND 2669 // and remove it if so. This sometimes happens due to the generic 2670 // BRCOND expansion. 2671 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2672 Comparison &C) { 2673 if (C.Op0.getOpcode() != ISD::AND) 2674 return; 2675 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2676 if (!Mask) 2677 return; 2678 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2679 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2680 return; 2681 2682 C.Op0 = C.Op0.getOperand(0); 2683 } 2684 2685 // Return a Comparison that tests the condition-code result of intrinsic 2686 // node Call against constant integer CC using comparison code Cond. 2687 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2688 // and CCValid is the set of possible condition-code results. 2689 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2690 SDValue Call, unsigned CCValid, uint64_t CC, 2691 ISD::CondCode Cond) { 2692 Comparison C(Call, SDValue(), SDValue()); 2693 C.Opcode = Opcode; 2694 C.CCValid = CCValid; 2695 if (Cond == ISD::SETEQ) 2696 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2697 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2698 else if (Cond == ISD::SETNE) 2699 // ...and the inverse of that. 2700 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2701 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2702 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2703 // always true for CC>3. 2704 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2705 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2706 // ...and the inverse of that. 2707 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2708 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2709 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2710 // always true for CC>3. 2711 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2712 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2713 // ...and the inverse of that. 2714 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2715 else 2716 llvm_unreachable("Unexpected integer comparison type"); 2717 C.CCMask &= CCValid; 2718 return C; 2719 } 2720 2721 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2722 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2723 ISD::CondCode Cond, const SDLoc &DL, 2724 SDValue Chain = SDValue(), 2725 bool IsSignaling = false) { 2726 if (CmpOp1.getOpcode() == ISD::Constant) { 2727 assert(!Chain); 2728 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2729 unsigned Opcode, CCValid; 2730 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2731 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2732 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2733 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2734 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2735 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2736 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2737 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2738 } 2739 Comparison C(CmpOp0, CmpOp1, Chain); 2740 C.CCMask = CCMaskForCondCode(Cond); 2741 if (C.Op0.getValueType().isFloatingPoint()) { 2742 C.CCValid = SystemZ::CCMASK_FCMP; 2743 if (!C.Chain) 2744 C.Opcode = SystemZISD::FCMP; 2745 else if (!IsSignaling) 2746 C.Opcode = SystemZISD::STRICT_FCMP; 2747 else 2748 C.Opcode = SystemZISD::STRICT_FCMPS; 2749 adjustForFNeg(C); 2750 } else { 2751 assert(!C.Chain); 2752 C.CCValid = SystemZ::CCMASK_ICMP; 2753 C.Opcode = SystemZISD::ICMP; 2754 // Choose the type of comparison. Equality and inequality tests can 2755 // use either signed or unsigned comparisons. The choice also doesn't 2756 // matter if both sign bits are known to be clear. In those cases we 2757 // want to give the main isel code the freedom to choose whichever 2758 // form fits best. 2759 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2760 C.CCMask == SystemZ::CCMASK_CMP_NE || 2761 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2762 C.ICmpType = SystemZICMP::Any; 2763 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2764 C.ICmpType = SystemZICMP::UnsignedOnly; 2765 else 2766 C.ICmpType = SystemZICMP::SignedOnly; 2767 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2768 adjustForRedundantAnd(DAG, DL, C); 2769 adjustZeroCmp(DAG, DL, C); 2770 adjustSubwordCmp(DAG, DL, C); 2771 adjustForSubtraction(DAG, DL, C); 2772 adjustForLTGFR(C); 2773 adjustICmpTruncate(DAG, DL, C); 2774 } 2775 2776 if (shouldSwapCmpOperands(C)) { 2777 std::swap(C.Op0, C.Op1); 2778 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2779 } 2780 2781 adjustForTestUnderMask(DAG, DL, C); 2782 return C; 2783 } 2784 2785 // Emit the comparison instruction described by C. 2786 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2787 if (!C.Op1.getNode()) { 2788 SDNode *Node; 2789 switch (C.Op0.getOpcode()) { 2790 case ISD::INTRINSIC_W_CHAIN: 2791 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2792 return SDValue(Node, 0); 2793 case ISD::INTRINSIC_WO_CHAIN: 2794 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2795 return SDValue(Node, Node->getNumValues() - 1); 2796 default: 2797 llvm_unreachable("Invalid comparison operands"); 2798 } 2799 } 2800 if (C.Opcode == SystemZISD::ICMP) 2801 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2802 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2803 if (C.Opcode == SystemZISD::TM) { 2804 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2805 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2806 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2807 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2808 } 2809 if (C.Chain) { 2810 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2811 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2812 } 2813 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2814 } 2815 2816 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2817 // 64 bits. Extend is the extension type to use. Store the high part 2818 // in Hi and the low part in Lo. 2819 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2820 SDValue Op0, SDValue Op1, SDValue &Hi, 2821 SDValue &Lo) { 2822 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2823 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2824 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2825 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2826 DAG.getConstant(32, DL, MVT::i64)); 2827 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2828 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2829 } 2830 2831 // Lower a binary operation that produces two VT results, one in each 2832 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2833 // and Opcode performs the GR128 operation. Store the even register result 2834 // in Even and the odd register result in Odd. 2835 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2836 unsigned Opcode, SDValue Op0, SDValue Op1, 2837 SDValue &Even, SDValue &Odd) { 2838 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2839 bool Is32Bit = is32Bit(VT); 2840 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2841 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2842 } 2843 2844 // Return an i32 value that is 1 if the CC value produced by CCReg is 2845 // in the mask CCMask and 0 otherwise. CC is known to have a value 2846 // in CCValid, so other values can be ignored. 2847 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2848 unsigned CCValid, unsigned CCMask) { 2849 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2850 DAG.getConstant(0, DL, MVT::i32), 2851 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2852 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2853 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2854 } 2855 2856 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2857 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2858 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2859 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2860 // floating-point comparisons. 2861 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2862 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2863 switch (CC) { 2864 case ISD::SETOEQ: 2865 case ISD::SETEQ: 2866 switch (Mode) { 2867 case CmpMode::Int: return SystemZISD::VICMPE; 2868 case CmpMode::FP: return SystemZISD::VFCMPE; 2869 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2870 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2871 } 2872 llvm_unreachable("Bad mode"); 2873 2874 case ISD::SETOGE: 2875 case ISD::SETGE: 2876 switch (Mode) { 2877 case CmpMode::Int: return 0; 2878 case CmpMode::FP: return SystemZISD::VFCMPHE; 2879 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2880 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2881 } 2882 llvm_unreachable("Bad mode"); 2883 2884 case ISD::SETOGT: 2885 case ISD::SETGT: 2886 switch (Mode) { 2887 case CmpMode::Int: return SystemZISD::VICMPH; 2888 case CmpMode::FP: return SystemZISD::VFCMPH; 2889 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2890 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2891 } 2892 llvm_unreachable("Bad mode"); 2893 2894 case ISD::SETUGT: 2895 switch (Mode) { 2896 case CmpMode::Int: return SystemZISD::VICMPHL; 2897 case CmpMode::FP: return 0; 2898 case CmpMode::StrictFP: return 0; 2899 case CmpMode::SignalingFP: return 0; 2900 } 2901 llvm_unreachable("Bad mode"); 2902 2903 default: 2904 return 0; 2905 } 2906 } 2907 2908 // Return the SystemZISD vector comparison operation for CC or its inverse, 2909 // or 0 if neither can be done directly. Indicate in Invert whether the 2910 // result is for the inverse of CC. Mode is as above. 2911 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2912 bool &Invert) { 2913 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2914 Invert = false; 2915 return Opcode; 2916 } 2917 2918 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2919 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2920 Invert = true; 2921 return Opcode; 2922 } 2923 2924 return 0; 2925 } 2926 2927 // Return a v2f64 that contains the extended form of elements Start and Start+1 2928 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2929 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2930 SDValue Op, SDValue Chain) { 2931 int Mask[] = { Start, -1, Start + 1, -1 }; 2932 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2933 if (Chain) { 2934 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2935 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2936 } 2937 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2938 } 2939 2940 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2941 // producing a result of type VT. If Chain is nonnull, return the strict form. 2942 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2943 const SDLoc &DL, EVT VT, 2944 SDValue CmpOp0, 2945 SDValue CmpOp1, 2946 SDValue Chain) const { 2947 // There is no hardware support for v4f32 (unless we have the vector 2948 // enhancements facility 1), so extend the vector into two v2f64s 2949 // and compare those. 2950 if (CmpOp0.getValueType() == MVT::v4f32 && 2951 !Subtarget.hasVectorEnhancements1()) { 2952 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2953 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2954 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2955 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2956 if (Chain) { 2957 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2958 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2959 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2960 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2961 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2962 H1.getValue(1), L1.getValue(1), 2963 HRes.getValue(1), LRes.getValue(1) }; 2964 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2965 SDValue Ops[2] = { Res, NewChain }; 2966 return DAG.getMergeValues(Ops, DL); 2967 } 2968 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2969 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2970 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2971 } 2972 if (Chain) { 2973 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2974 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2975 } 2976 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2977 } 2978 2979 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2980 // an integer mask of type VT. If Chain is nonnull, we have a strict 2981 // floating-point comparison. If in addition IsSignaling is true, we have 2982 // a strict signaling floating-point comparison. 2983 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2984 const SDLoc &DL, EVT VT, 2985 ISD::CondCode CC, 2986 SDValue CmpOp0, 2987 SDValue CmpOp1, 2988 SDValue Chain, 2989 bool IsSignaling) const { 2990 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2991 assert (!Chain || IsFP); 2992 assert (!IsSignaling || Chain); 2993 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2994 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2995 bool Invert = false; 2996 SDValue Cmp; 2997 switch (CC) { 2998 // Handle tests for order using (or (ogt y x) (oge x y)). 2999 case ISD::SETUO: 3000 Invert = true; 3001 LLVM_FALLTHROUGH; 3002 case ISD::SETO: { 3003 assert(IsFP && "Unexpected integer comparison"); 3004 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3005 DL, VT, CmpOp1, CmpOp0, Chain); 3006 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 3007 DL, VT, CmpOp0, CmpOp1, Chain); 3008 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 3009 if (Chain) 3010 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3011 LT.getValue(1), GE.getValue(1)); 3012 break; 3013 } 3014 3015 // Handle <> tests using (or (ogt y x) (ogt x y)). 3016 case ISD::SETUEQ: 3017 Invert = true; 3018 LLVM_FALLTHROUGH; 3019 case ISD::SETONE: { 3020 assert(IsFP && "Unexpected integer comparison"); 3021 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3022 DL, VT, CmpOp1, CmpOp0, Chain); 3023 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3024 DL, VT, CmpOp0, CmpOp1, Chain); 3025 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 3026 if (Chain) 3027 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3028 LT.getValue(1), GT.getValue(1)); 3029 break; 3030 } 3031 3032 // Otherwise a single comparison is enough. It doesn't really 3033 // matter whether we try the inversion or the swap first, since 3034 // there are no cases where both work. 3035 default: 3036 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3037 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 3038 else { 3039 CC = ISD::getSetCCSwappedOperands(CC); 3040 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3041 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 3042 else 3043 llvm_unreachable("Unhandled comparison"); 3044 } 3045 if (Chain) 3046 Chain = Cmp.getValue(1); 3047 break; 3048 } 3049 if (Invert) { 3050 SDValue Mask = 3051 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 3052 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 3053 } 3054 if (Chain && Chain.getNode() != Cmp.getNode()) { 3055 SDValue Ops[2] = { Cmp, Chain }; 3056 Cmp = DAG.getMergeValues(Ops, DL); 3057 } 3058 return Cmp; 3059 } 3060 3061 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 3062 SelectionDAG &DAG) const { 3063 SDValue CmpOp0 = Op.getOperand(0); 3064 SDValue CmpOp1 = Op.getOperand(1); 3065 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3066 SDLoc DL(Op); 3067 EVT VT = Op.getValueType(); 3068 if (VT.isVector()) 3069 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 3070 3071 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3072 SDValue CCReg = emitCmp(DAG, DL, C); 3073 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3074 } 3075 3076 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 3077 SelectionDAG &DAG, 3078 bool IsSignaling) const { 3079 SDValue Chain = Op.getOperand(0); 3080 SDValue CmpOp0 = Op.getOperand(1); 3081 SDValue CmpOp1 = Op.getOperand(2); 3082 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 3083 SDLoc DL(Op); 3084 EVT VT = Op.getNode()->getValueType(0); 3085 if (VT.isVector()) { 3086 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 3087 Chain, IsSignaling); 3088 return Res.getValue(Op.getResNo()); 3089 } 3090 3091 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 3092 SDValue CCReg = emitCmp(DAG, DL, C); 3093 CCReg->setFlags(Op->getFlags()); 3094 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3095 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 3096 return DAG.getMergeValues(Ops, DL); 3097 } 3098 3099 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 3100 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 3101 SDValue CmpOp0 = Op.getOperand(2); 3102 SDValue CmpOp1 = Op.getOperand(3); 3103 SDValue Dest = Op.getOperand(4); 3104 SDLoc DL(Op); 3105 3106 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3107 SDValue CCReg = emitCmp(DAG, DL, C); 3108 return DAG.getNode( 3109 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 3110 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3111 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 3112 } 3113 3114 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 3115 // allowing Pos and Neg to be wider than CmpOp. 3116 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 3117 return (Neg.getOpcode() == ISD::SUB && 3118 Neg.getOperand(0).getOpcode() == ISD::Constant && 3119 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 3120 Neg.getOperand(1) == Pos && 3121 (Pos == CmpOp || 3122 (Pos.getOpcode() == ISD::SIGN_EXTEND && 3123 Pos.getOperand(0) == CmpOp))); 3124 } 3125 3126 // Return the absolute or negative absolute of Op; IsNegative decides which. 3127 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 3128 bool IsNegative) { 3129 Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op); 3130 if (IsNegative) 3131 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 3132 DAG.getConstant(0, DL, Op.getValueType()), Op); 3133 return Op; 3134 } 3135 3136 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 3137 SelectionDAG &DAG) const { 3138 SDValue CmpOp0 = Op.getOperand(0); 3139 SDValue CmpOp1 = Op.getOperand(1); 3140 SDValue TrueOp = Op.getOperand(2); 3141 SDValue FalseOp = Op.getOperand(3); 3142 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3143 SDLoc DL(Op); 3144 3145 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3146 3147 // Check for absolute and negative-absolute selections, including those 3148 // where the comparison value is sign-extended (for LPGFR and LNGFR). 3149 // This check supplements the one in DAGCombiner. 3150 if (C.Opcode == SystemZISD::ICMP && 3151 C.CCMask != SystemZ::CCMASK_CMP_EQ && 3152 C.CCMask != SystemZ::CCMASK_CMP_NE && 3153 C.Op1.getOpcode() == ISD::Constant && 3154 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 3155 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 3156 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 3157 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 3158 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 3159 } 3160 3161 SDValue CCReg = emitCmp(DAG, DL, C); 3162 SDValue Ops[] = {TrueOp, FalseOp, 3163 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3164 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 3165 3166 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 3167 } 3168 3169 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 3170 SelectionDAG &DAG) const { 3171 SDLoc DL(Node); 3172 const GlobalValue *GV = Node->getGlobal(); 3173 int64_t Offset = Node->getOffset(); 3174 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3175 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 3176 3177 SDValue Result; 3178 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3179 if (isInt<32>(Offset)) { 3180 // Assign anchors at 1<<12 byte boundaries. 3181 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3182 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3183 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3184 3185 // The offset can be folded into the address if it is aligned to a 3186 // halfword. 3187 Offset -= Anchor; 3188 if (Offset != 0 && (Offset & 1) == 0) { 3189 SDValue Full = 3190 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3191 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3192 Offset = 0; 3193 } 3194 } else { 3195 // Conservatively load a constant offset greater than 32 bits into a 3196 // register below. 3197 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3198 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3199 } 3200 } else { 3201 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3202 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3203 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3204 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3205 } 3206 3207 // If there was a non-zero offset that we didn't fold, create an explicit 3208 // addition for it. 3209 if (Offset != 0) 3210 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3211 DAG.getConstant(Offset, DL, PtrVT)); 3212 3213 return Result; 3214 } 3215 3216 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3217 SelectionDAG &DAG, 3218 unsigned Opcode, 3219 SDValue GOTOffset) const { 3220 SDLoc DL(Node); 3221 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3222 SDValue Chain = DAG.getEntryNode(); 3223 SDValue Glue; 3224 3225 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3226 CallingConv::GHC) 3227 report_fatal_error("In GHC calling convention TLS is not supported"); 3228 3229 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3230 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3231 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3232 Glue = Chain.getValue(1); 3233 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3234 Glue = Chain.getValue(1); 3235 3236 // The first call operand is the chain and the second is the TLS symbol. 3237 SmallVector<SDValue, 8> Ops; 3238 Ops.push_back(Chain); 3239 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3240 Node->getValueType(0), 3241 0, 0)); 3242 3243 // Add argument registers to the end of the list so that they are 3244 // known live into the call. 3245 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3246 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3247 3248 // Add a register mask operand representing the call-preserved registers. 3249 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3250 const uint32_t *Mask = 3251 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3252 assert(Mask && "Missing call preserved mask for calling convention"); 3253 Ops.push_back(DAG.getRegisterMask(Mask)); 3254 3255 // Glue the call to the argument copies. 3256 Ops.push_back(Glue); 3257 3258 // Emit the call. 3259 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3260 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3261 Glue = Chain.getValue(1); 3262 3263 // Copy the return value from %r2. 3264 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3265 } 3266 3267 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3268 SelectionDAG &DAG) const { 3269 SDValue Chain = DAG.getEntryNode(); 3270 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3271 3272 // The high part of the thread pointer is in access register 0. 3273 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3274 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3275 3276 // The low part of the thread pointer is in access register 1. 3277 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3278 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3279 3280 // Merge them into a single 64-bit address. 3281 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3282 DAG.getConstant(32, DL, PtrVT)); 3283 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3284 } 3285 3286 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3287 SelectionDAG &DAG) const { 3288 if (DAG.getTarget().useEmulatedTLS()) 3289 return LowerToTLSEmulatedModel(Node, DAG); 3290 SDLoc DL(Node); 3291 const GlobalValue *GV = Node->getGlobal(); 3292 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3293 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3294 3295 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3296 CallingConv::GHC) 3297 report_fatal_error("In GHC calling convention TLS is not supported"); 3298 3299 SDValue TP = lowerThreadPointer(DL, DAG); 3300 3301 // Get the offset of GA from the thread pointer, based on the TLS model. 3302 SDValue Offset; 3303 switch (model) { 3304 case TLSModel::GeneralDynamic: { 3305 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3306 SystemZConstantPoolValue *CPV = 3307 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3308 3309 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3310 Offset = DAG.getLoad( 3311 PtrVT, DL, DAG.getEntryNode(), Offset, 3312 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3313 3314 // Call __tls_get_offset to retrieve the offset. 3315 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3316 break; 3317 } 3318 3319 case TLSModel::LocalDynamic: { 3320 // Load the GOT offset of the module ID. 3321 SystemZConstantPoolValue *CPV = 3322 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3323 3324 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3325 Offset = DAG.getLoad( 3326 PtrVT, DL, DAG.getEntryNode(), Offset, 3327 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3328 3329 // Call __tls_get_offset to retrieve the module base offset. 3330 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3331 3332 // Note: The SystemZLDCleanupPass will remove redundant computations 3333 // of the module base offset. Count total number of local-dynamic 3334 // accesses to trigger execution of that pass. 3335 SystemZMachineFunctionInfo* MFI = 3336 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3337 MFI->incNumLocalDynamicTLSAccesses(); 3338 3339 // Add the per-symbol offset. 3340 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3341 3342 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3343 DTPOffset = DAG.getLoad( 3344 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3345 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3346 3347 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3348 break; 3349 } 3350 3351 case TLSModel::InitialExec: { 3352 // Load the offset from the GOT. 3353 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3354 SystemZII::MO_INDNTPOFF); 3355 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3356 Offset = 3357 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3358 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3359 break; 3360 } 3361 3362 case TLSModel::LocalExec: { 3363 // Force the offset into the constant pool and load it from there. 3364 SystemZConstantPoolValue *CPV = 3365 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3366 3367 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3368 Offset = DAG.getLoad( 3369 PtrVT, DL, DAG.getEntryNode(), Offset, 3370 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3371 break; 3372 } 3373 } 3374 3375 // Add the base and offset together. 3376 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3377 } 3378 3379 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3380 SelectionDAG &DAG) const { 3381 SDLoc DL(Node); 3382 const BlockAddress *BA = Node->getBlockAddress(); 3383 int64_t Offset = Node->getOffset(); 3384 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3385 3386 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3387 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3388 return Result; 3389 } 3390 3391 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3392 SelectionDAG &DAG) const { 3393 SDLoc DL(JT); 3394 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3395 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3396 3397 // Use LARL to load the address of the table. 3398 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3399 } 3400 3401 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3402 SelectionDAG &DAG) const { 3403 SDLoc DL(CP); 3404 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3405 3406 SDValue Result; 3407 if (CP->isMachineConstantPoolEntry()) 3408 Result = 3409 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 3410 else 3411 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 3412 CP->getOffset()); 3413 3414 // Use LARL to load the address of the constant pool entry. 3415 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3416 } 3417 3418 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3419 SelectionDAG &DAG) const { 3420 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 3421 MachineFunction &MF = DAG.getMachineFunction(); 3422 MachineFrameInfo &MFI = MF.getFrameInfo(); 3423 MFI.setFrameAddressIsTaken(true); 3424 3425 SDLoc DL(Op); 3426 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3427 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3428 3429 // By definition, the frame address is the address of the back chain. (In 3430 // the case of packed stack without backchain, return the address where the 3431 // backchain would have been stored. This will either be an unused space or 3432 // contain a saved register). 3433 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3434 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3435 3436 // FIXME The frontend should detect this case. 3437 if (Depth > 0) { 3438 report_fatal_error("Unsupported stack frame traversal count"); 3439 } 3440 3441 return BackChain; 3442 } 3443 3444 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3445 SelectionDAG &DAG) const { 3446 MachineFunction &MF = DAG.getMachineFunction(); 3447 MachineFrameInfo &MFI = MF.getFrameInfo(); 3448 MFI.setReturnAddressIsTaken(true); 3449 3450 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3451 return SDValue(); 3452 3453 SDLoc DL(Op); 3454 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3455 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3456 3457 // FIXME The frontend should detect this case. 3458 if (Depth > 0) { 3459 report_fatal_error("Unsupported stack frame traversal count"); 3460 } 3461 3462 // Return R14D, which has the return address. Mark it an implicit live-in. 3463 Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3464 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3465 } 3466 3467 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3468 SelectionDAG &DAG) const { 3469 SDLoc DL(Op); 3470 SDValue In = Op.getOperand(0); 3471 EVT InVT = In.getValueType(); 3472 EVT ResVT = Op.getValueType(); 3473 3474 // Convert loads directly. This is normally done by DAGCombiner, 3475 // but we need this case for bitcasts that are created during lowering 3476 // and which are then lowered themselves. 3477 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3478 if (ISD::isNormalLoad(LoadN)) { 3479 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3480 LoadN->getBasePtr(), LoadN->getMemOperand()); 3481 // Update the chain uses. 3482 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3483 return NewLoad; 3484 } 3485 3486 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3487 SDValue In64; 3488 if (Subtarget.hasHighWord()) { 3489 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3490 MVT::i64); 3491 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3492 MVT::i64, SDValue(U64, 0), In); 3493 } else { 3494 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3495 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3496 DAG.getConstant(32, DL, MVT::i64)); 3497 } 3498 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3499 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3500 DL, MVT::f32, Out64); 3501 } 3502 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3503 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3504 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3505 MVT::f64, SDValue(U64, 0), In); 3506 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3507 if (Subtarget.hasHighWord()) 3508 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3509 MVT::i32, Out64); 3510 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3511 DAG.getConstant(32, DL, MVT::i64)); 3512 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3513 } 3514 llvm_unreachable("Unexpected bitcast combination"); 3515 } 3516 3517 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3518 SelectionDAG &DAG) const { 3519 3520 if (Subtarget.isTargetXPLINK64()) 3521 return lowerVASTART_XPLINK(Op, DAG); 3522 else 3523 return lowerVASTART_ELF(Op, DAG); 3524 } 3525 3526 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op, 3527 SelectionDAG &DAG) const { 3528 MachineFunction &MF = DAG.getMachineFunction(); 3529 SystemZMachineFunctionInfo *FuncInfo = 3530 MF.getInfo<SystemZMachineFunctionInfo>(); 3531 3532 SDLoc DL(Op); 3533 3534 // vastart just stores the address of the VarArgsFrameIndex slot into the 3535 // memory location argument. 3536 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3537 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 3538 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3539 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), 3540 MachinePointerInfo(SV)); 3541 } 3542 3543 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op, 3544 SelectionDAG &DAG) const { 3545 MachineFunction &MF = DAG.getMachineFunction(); 3546 SystemZMachineFunctionInfo *FuncInfo = 3547 MF.getInfo<SystemZMachineFunctionInfo>(); 3548 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3549 3550 SDValue Chain = Op.getOperand(0); 3551 SDValue Addr = Op.getOperand(1); 3552 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3553 SDLoc DL(Op); 3554 3555 // The initial values of each field. 3556 const unsigned NumFields = 4; 3557 SDValue Fields[NumFields] = { 3558 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3559 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3560 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3561 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3562 }; 3563 3564 // Store each field into its respective slot. 3565 SDValue MemOps[NumFields]; 3566 unsigned Offset = 0; 3567 for (unsigned I = 0; I < NumFields; ++I) { 3568 SDValue FieldAddr = Addr; 3569 if (Offset != 0) 3570 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3571 DAG.getIntPtrConstant(Offset, DL)); 3572 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3573 MachinePointerInfo(SV, Offset)); 3574 Offset += 8; 3575 } 3576 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3577 } 3578 3579 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3580 SelectionDAG &DAG) const { 3581 SDValue Chain = Op.getOperand(0); 3582 SDValue DstPtr = Op.getOperand(1); 3583 SDValue SrcPtr = Op.getOperand(2); 3584 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3585 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3586 SDLoc DL(Op); 3587 3588 uint32_t Sz = 3589 Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32; 3590 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL), 3591 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3592 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3593 MachinePointerInfo(SrcSV)); 3594 } 3595 3596 SDValue 3597 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 3598 SelectionDAG &DAG) const { 3599 if (Subtarget.isTargetXPLINK64()) 3600 return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG); 3601 else 3602 return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG); 3603 } 3604 3605 SDValue 3606 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, 3607 SelectionDAG &DAG) const { 3608 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3609 MachineFunction &MF = DAG.getMachineFunction(); 3610 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3611 SDValue Chain = Op.getOperand(0); 3612 SDValue Size = Op.getOperand(1); 3613 SDValue Align = Op.getOperand(2); 3614 SDLoc DL(Op); 3615 3616 // If user has set the no alignment function attribute, ignore 3617 // alloca alignments. 3618 uint64_t AlignVal = 3619 (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3620 3621 uint64_t StackAlign = TFI->getStackAlignment(); 3622 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3623 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3624 3625 SDValue NeededSpace = Size; 3626 3627 // Add extra space for alignment if needed. 3628 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3629 if (ExtraAlignSpace) 3630 NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace, 3631 DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 3632 3633 bool IsSigned = false; 3634 bool DoesNotReturn = false; 3635 bool IsReturnValueUsed = false; 3636 EVT VT = Op.getValueType(); 3637 SDValue AllocaCall = 3638 makeExternalCall(Chain, DAG, "@@ALCAXP", VT, makeArrayRef(NeededSpace), 3639 CallingConv::C, IsSigned, DL, DoesNotReturn, 3640 IsReturnValueUsed) 3641 .first; 3642 3643 // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue 3644 // to end of call in order to ensure it isn't broken up from the call 3645 // sequence. 3646 auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 3647 Register SPReg = Regs.getStackPointerRegister(); 3648 Chain = AllocaCall.getValue(1); 3649 SDValue Glue = AllocaCall.getValue(2); 3650 SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue); 3651 Chain = NewSPRegNode.getValue(1); 3652 3653 MVT PtrMVT = getPointerMemTy(MF.getDataLayout()); 3654 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT); 3655 SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust); 3656 3657 // Dynamically realign if needed. 3658 if (ExtraAlignSpace) { 3659 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3660 DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 3661 Result = DAG.getNode(ISD::AND, DL, PtrVT, Result, 3662 DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT)); 3663 } 3664 3665 SDValue Ops[2] = {Result, Chain}; 3666 return DAG.getMergeValues(Ops, DL); 3667 } 3668 3669 SDValue 3670 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, 3671 SelectionDAG &DAG) const { 3672 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3673 MachineFunction &MF = DAG.getMachineFunction(); 3674 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3675 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3676 3677 SDValue Chain = Op.getOperand(0); 3678 SDValue Size = Op.getOperand(1); 3679 SDValue Align = Op.getOperand(2); 3680 SDLoc DL(Op); 3681 3682 // If user has set the no alignment function attribute, ignore 3683 // alloca alignments. 3684 uint64_t AlignVal = 3685 (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3686 3687 uint64_t StackAlign = TFI->getStackAlignment(); 3688 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3689 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3690 3691 Register SPReg = getStackPointerRegisterToSaveRestore(); 3692 SDValue NeededSpace = Size; 3693 3694 // Get a reference to the stack pointer. 3695 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3696 3697 // If we need a backchain, save it now. 3698 SDValue Backchain; 3699 if (StoreBackchain) 3700 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 3701 MachinePointerInfo()); 3702 3703 // Add extra space for alignment if needed. 3704 if (ExtraAlignSpace) 3705 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3706 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3707 3708 // Get the new stack pointer value. 3709 SDValue NewSP; 3710 if (hasInlineStackProbe(MF)) { 3711 NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, 3712 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); 3713 Chain = NewSP.getValue(1); 3714 } 3715 else { 3716 NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3717 // Copy the new stack pointer back. 3718 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3719 } 3720 3721 // The allocated data lives above the 160 bytes allocated for the standard 3722 // frame, plus any outgoing stack arguments. We don't know how much that 3723 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3724 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3725 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3726 3727 // Dynamically realign if needed. 3728 if (RequiredAlign > StackAlign) { 3729 Result = 3730 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3731 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3732 Result = 3733 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3734 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3735 } 3736 3737 if (StoreBackchain) 3738 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 3739 MachinePointerInfo()); 3740 3741 SDValue Ops[2] = { Result, Chain }; 3742 return DAG.getMergeValues(Ops, DL); 3743 } 3744 3745 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3746 SDValue Op, SelectionDAG &DAG) const { 3747 SDLoc DL(Op); 3748 3749 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3750 } 3751 3752 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3753 SelectionDAG &DAG) const { 3754 EVT VT = Op.getValueType(); 3755 SDLoc DL(Op); 3756 SDValue Ops[2]; 3757 if (is32Bit(VT)) 3758 // Just do a normal 64-bit multiplication and extract the results. 3759 // We define this so that it can be used for constant division. 3760 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3761 Op.getOperand(1), Ops[1], Ops[0]); 3762 else if (Subtarget.hasMiscellaneousExtensions2()) 3763 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3764 // the high result in the even register. ISD::SMUL_LOHI is defined to 3765 // return the low half first, so the results are in reverse order. 3766 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3767 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3768 else { 3769 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3770 // 3771 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3772 // 3773 // but using the fact that the upper halves are either all zeros 3774 // or all ones: 3775 // 3776 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3777 // 3778 // and grouping the right terms together since they are quicker than the 3779 // multiplication: 3780 // 3781 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3782 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3783 SDValue LL = Op.getOperand(0); 3784 SDValue RL = Op.getOperand(1); 3785 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3786 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3787 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3788 // the high result in the even register. ISD::SMUL_LOHI is defined to 3789 // return the low half first, so the results are in reverse order. 3790 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3791 LL, RL, Ops[1], Ops[0]); 3792 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3793 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3794 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3795 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3796 } 3797 return DAG.getMergeValues(Ops, DL); 3798 } 3799 3800 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3801 SelectionDAG &DAG) const { 3802 EVT VT = Op.getValueType(); 3803 SDLoc DL(Op); 3804 SDValue Ops[2]; 3805 if (is32Bit(VT)) 3806 // Just do a normal 64-bit multiplication and extract the results. 3807 // We define this so that it can be used for constant division. 3808 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3809 Op.getOperand(1), Ops[1], Ops[0]); 3810 else 3811 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3812 // the high result in the even register. ISD::UMUL_LOHI is defined to 3813 // return the low half first, so the results are in reverse order. 3814 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3815 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3816 return DAG.getMergeValues(Ops, DL); 3817 } 3818 3819 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3820 SelectionDAG &DAG) const { 3821 SDValue Op0 = Op.getOperand(0); 3822 SDValue Op1 = Op.getOperand(1); 3823 EVT VT = Op.getValueType(); 3824 SDLoc DL(Op); 3825 3826 // We use DSGF for 32-bit division. This means the first operand must 3827 // always be 64-bit, and the second operand should be 32-bit whenever 3828 // that is possible, to improve performance. 3829 if (is32Bit(VT)) 3830 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3831 else if (DAG.ComputeNumSignBits(Op1) > 32) 3832 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3833 3834 // DSG(F) returns the remainder in the even register and the 3835 // quotient in the odd register. 3836 SDValue Ops[2]; 3837 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3838 return DAG.getMergeValues(Ops, DL); 3839 } 3840 3841 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3842 SelectionDAG &DAG) const { 3843 EVT VT = Op.getValueType(); 3844 SDLoc DL(Op); 3845 3846 // DL(G) returns the remainder in the even register and the 3847 // quotient in the odd register. 3848 SDValue Ops[2]; 3849 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3850 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3851 return DAG.getMergeValues(Ops, DL); 3852 } 3853 3854 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3855 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3856 3857 // Get the known-zero masks for each operand. 3858 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3859 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3860 DAG.computeKnownBits(Ops[1])}; 3861 3862 // See if the upper 32 bits of one operand and the lower 32 bits of the 3863 // other are known zero. They are the low and high operands respectively. 3864 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3865 Known[1].Zero.getZExtValue() }; 3866 unsigned High, Low; 3867 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3868 High = 1, Low = 0; 3869 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3870 High = 0, Low = 1; 3871 else 3872 return Op; 3873 3874 SDValue LowOp = Ops[Low]; 3875 SDValue HighOp = Ops[High]; 3876 3877 // If the high part is a constant, we're better off using IILH. 3878 if (HighOp.getOpcode() == ISD::Constant) 3879 return Op; 3880 3881 // If the low part is a constant that is outside the range of LHI, 3882 // then we're better off using IILF. 3883 if (LowOp.getOpcode() == ISD::Constant) { 3884 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3885 if (!isInt<16>(Value)) 3886 return Op; 3887 } 3888 3889 // Check whether the high part is an AND that doesn't change the 3890 // high 32 bits and just masks out low bits. We can skip it if so. 3891 if (HighOp.getOpcode() == ISD::AND && 3892 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3893 SDValue HighOp0 = HighOp.getOperand(0); 3894 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3895 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3896 HighOp = HighOp0; 3897 } 3898 3899 // Take advantage of the fact that all GR32 operations only change the 3900 // low 32 bits by truncating Low to an i32 and inserting it directly 3901 // using a subreg. The interesting cases are those where the truncation 3902 // can be folded. 3903 SDLoc DL(Op); 3904 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3905 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3906 MVT::i64, HighOp, Low32); 3907 } 3908 3909 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3910 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3911 SelectionDAG &DAG) const { 3912 SDNode *N = Op.getNode(); 3913 SDValue LHS = N->getOperand(0); 3914 SDValue RHS = N->getOperand(1); 3915 SDLoc DL(N); 3916 unsigned BaseOp = 0; 3917 unsigned CCValid = 0; 3918 unsigned CCMask = 0; 3919 3920 switch (Op.getOpcode()) { 3921 default: llvm_unreachable("Unknown instruction!"); 3922 case ISD::SADDO: 3923 BaseOp = SystemZISD::SADDO; 3924 CCValid = SystemZ::CCMASK_ARITH; 3925 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3926 break; 3927 case ISD::SSUBO: 3928 BaseOp = SystemZISD::SSUBO; 3929 CCValid = SystemZ::CCMASK_ARITH; 3930 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3931 break; 3932 case ISD::UADDO: 3933 BaseOp = SystemZISD::UADDO; 3934 CCValid = SystemZ::CCMASK_LOGICAL; 3935 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3936 break; 3937 case ISD::USUBO: 3938 BaseOp = SystemZISD::USUBO; 3939 CCValid = SystemZ::CCMASK_LOGICAL; 3940 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3941 break; 3942 } 3943 3944 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3945 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3946 3947 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3948 if (N->getValueType(1) == MVT::i1) 3949 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3950 3951 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3952 } 3953 3954 static bool isAddCarryChain(SDValue Carry) { 3955 while (Carry.getOpcode() == ISD::ADDCARRY) 3956 Carry = Carry.getOperand(2); 3957 return Carry.getOpcode() == ISD::UADDO; 3958 } 3959 3960 static bool isSubBorrowChain(SDValue Carry) { 3961 while (Carry.getOpcode() == ISD::SUBCARRY) 3962 Carry = Carry.getOperand(2); 3963 return Carry.getOpcode() == ISD::USUBO; 3964 } 3965 3966 // Lower ADDCARRY/SUBCARRY nodes. 3967 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3968 SelectionDAG &DAG) const { 3969 3970 SDNode *N = Op.getNode(); 3971 MVT VT = N->getSimpleValueType(0); 3972 3973 // Let legalize expand this if it isn't a legal type yet. 3974 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3975 return SDValue(); 3976 3977 SDValue LHS = N->getOperand(0); 3978 SDValue RHS = N->getOperand(1); 3979 SDValue Carry = Op.getOperand(2); 3980 SDLoc DL(N); 3981 unsigned BaseOp = 0; 3982 unsigned CCValid = 0; 3983 unsigned CCMask = 0; 3984 3985 switch (Op.getOpcode()) { 3986 default: llvm_unreachable("Unknown instruction!"); 3987 case ISD::ADDCARRY: 3988 if (!isAddCarryChain(Carry)) 3989 return SDValue(); 3990 3991 BaseOp = SystemZISD::ADDCARRY; 3992 CCValid = SystemZ::CCMASK_LOGICAL; 3993 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3994 break; 3995 case ISD::SUBCARRY: 3996 if (!isSubBorrowChain(Carry)) 3997 return SDValue(); 3998 3999 BaseOp = SystemZISD::SUBCARRY; 4000 CCValid = SystemZ::CCMASK_LOGICAL; 4001 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 4002 break; 4003 } 4004 4005 // Set the condition code from the carry flag. 4006 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 4007 DAG.getConstant(CCValid, DL, MVT::i32), 4008 DAG.getConstant(CCMask, DL, MVT::i32)); 4009 4010 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 4011 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 4012 4013 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 4014 if (N->getValueType(1) == MVT::i1) 4015 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 4016 4017 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 4018 } 4019 4020 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 4021 SelectionDAG &DAG) const { 4022 EVT VT = Op.getValueType(); 4023 SDLoc DL(Op); 4024 Op = Op.getOperand(0); 4025 4026 // Handle vector types via VPOPCT. 4027 if (VT.isVector()) { 4028 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 4029 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 4030 switch (VT.getScalarSizeInBits()) { 4031 case 8: 4032 break; 4033 case 16: { 4034 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4035 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 4036 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 4037 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 4038 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 4039 break; 4040 } 4041 case 32: { 4042 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 4043 DAG.getConstant(0, DL, MVT::i32)); 4044 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4045 break; 4046 } 4047 case 64: { 4048 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 4049 DAG.getConstant(0, DL, MVT::i32)); 4050 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 4051 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4052 break; 4053 } 4054 default: 4055 llvm_unreachable("Unexpected type"); 4056 } 4057 return Op; 4058 } 4059 4060 // Get the known-zero mask for the operand. 4061 KnownBits Known = DAG.computeKnownBits(Op); 4062 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 4063 if (NumSignificantBits == 0) 4064 return DAG.getConstant(0, DL, VT); 4065 4066 // Skip known-zero high parts of the operand. 4067 int64_t OrigBitSize = VT.getSizeInBits(); 4068 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 4069 BitSize = std::min(BitSize, OrigBitSize); 4070 4071 // The POPCNT instruction counts the number of bits in each byte. 4072 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 4073 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 4074 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4075 4076 // Add up per-byte counts in a binary tree. All bits of Op at 4077 // position larger than BitSize remain zero throughout. 4078 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 4079 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 4080 if (BitSize != OrigBitSize) 4081 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 4082 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 4083 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 4084 } 4085 4086 // Extract overall result from high byte. 4087 if (BitSize > 8) 4088 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 4089 DAG.getConstant(BitSize - 8, DL, VT)); 4090 4091 return Op; 4092 } 4093 4094 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 4095 SelectionDAG &DAG) const { 4096 SDLoc DL(Op); 4097 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 4098 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 4099 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 4100 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 4101 4102 // The only fence that needs an instruction is a sequentially-consistent 4103 // cross-thread fence. 4104 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 4105 FenceSSID == SyncScope::System) { 4106 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 4107 Op.getOperand(0)), 4108 0); 4109 } 4110 4111 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 4112 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 4113 } 4114 4115 // Op is an atomic load. Lower it into a normal volatile load. 4116 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 4117 SelectionDAG &DAG) const { 4118 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4119 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 4120 Node->getChain(), Node->getBasePtr(), 4121 Node->getMemoryVT(), Node->getMemOperand()); 4122 } 4123 4124 // Op is an atomic store. Lower it into a normal volatile store. 4125 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 4126 SelectionDAG &DAG) const { 4127 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4128 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 4129 Node->getBasePtr(), Node->getMemoryVT(), 4130 Node->getMemOperand()); 4131 // We have to enforce sequential consistency by performing a 4132 // serialization operation after the store. 4133 if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent) 4134 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 4135 MVT::Other, Chain), 0); 4136 return Chain; 4137 } 4138 4139 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 4140 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 4141 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 4142 SelectionDAG &DAG, 4143 unsigned Opcode) const { 4144 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4145 4146 // 32-bit operations need no code outside the main loop. 4147 EVT NarrowVT = Node->getMemoryVT(); 4148 EVT WideVT = MVT::i32; 4149 if (NarrowVT == WideVT) 4150 return Op; 4151 4152 int64_t BitSize = NarrowVT.getSizeInBits(); 4153 SDValue ChainIn = Node->getChain(); 4154 SDValue Addr = Node->getBasePtr(); 4155 SDValue Src2 = Node->getVal(); 4156 MachineMemOperand *MMO = Node->getMemOperand(); 4157 SDLoc DL(Node); 4158 EVT PtrVT = Addr.getValueType(); 4159 4160 // Convert atomic subtracts of constants into additions. 4161 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 4162 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 4163 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 4164 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 4165 } 4166 4167 // Get the address of the containing word. 4168 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4169 DAG.getConstant(-4, DL, PtrVT)); 4170 4171 // Get the number of bits that the word must be rotated left in order 4172 // to bring the field to the top bits of a GR32. 4173 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4174 DAG.getConstant(3, DL, PtrVT)); 4175 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4176 4177 // Get the complementing shift amount, for rotating a field in the top 4178 // bits back to its proper position. 4179 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4180 DAG.getConstant(0, DL, WideVT), BitShift); 4181 4182 // Extend the source operand to 32 bits and prepare it for the inner loop. 4183 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 4184 // operations require the source to be shifted in advance. (This shift 4185 // can be folded if the source is constant.) For AND and NAND, the lower 4186 // bits must be set, while for other opcodes they should be left clear. 4187 if (Opcode != SystemZISD::ATOMIC_SWAPW) 4188 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 4189 DAG.getConstant(32 - BitSize, DL, WideVT)); 4190 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 4191 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 4192 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 4193 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 4194 4195 // Construct the ATOMIC_LOADW_* node. 4196 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 4197 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 4198 DAG.getConstant(BitSize, DL, WideVT) }; 4199 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 4200 NarrowVT, MMO); 4201 4202 // Rotate the result of the final CS so that the field is in the lower 4203 // bits of a GR32, then truncate it. 4204 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 4205 DAG.getConstant(BitSize, DL, WideVT)); 4206 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 4207 4208 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 4209 return DAG.getMergeValues(RetOps, DL); 4210 } 4211 4212 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 4213 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 4214 // operations into additions. 4215 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 4216 SelectionDAG &DAG) const { 4217 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4218 EVT MemVT = Node->getMemoryVT(); 4219 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 4220 // A full-width operation. 4221 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 4222 SDValue Src2 = Node->getVal(); 4223 SDValue NegSrc2; 4224 SDLoc DL(Src2); 4225 4226 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 4227 // Use an addition if the operand is constant and either LAA(G) is 4228 // available or the negative value is in the range of A(G)FHI. 4229 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 4230 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 4231 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 4232 } else if (Subtarget.hasInterlockedAccess1()) 4233 // Use LAA(G) if available. 4234 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 4235 Src2); 4236 4237 if (NegSrc2.getNode()) 4238 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 4239 Node->getChain(), Node->getBasePtr(), NegSrc2, 4240 Node->getMemOperand()); 4241 4242 // Use the node as-is. 4243 return Op; 4244 } 4245 4246 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 4247 } 4248 4249 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 4250 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 4251 SelectionDAG &DAG) const { 4252 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4253 SDValue ChainIn = Node->getOperand(0); 4254 SDValue Addr = Node->getOperand(1); 4255 SDValue CmpVal = Node->getOperand(2); 4256 SDValue SwapVal = Node->getOperand(3); 4257 MachineMemOperand *MMO = Node->getMemOperand(); 4258 SDLoc DL(Node); 4259 4260 // We have native support for 32-bit and 64-bit compare and swap, but we 4261 // still need to expand extracting the "success" result from the CC. 4262 EVT NarrowVT = Node->getMemoryVT(); 4263 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 4264 if (NarrowVT == WideVT) { 4265 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4266 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 4267 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 4268 DL, Tys, Ops, NarrowVT, MMO); 4269 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4270 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4271 4272 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4273 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4274 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4275 return SDValue(); 4276 } 4277 4278 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 4279 // via a fullword ATOMIC_CMP_SWAPW operation. 4280 int64_t BitSize = NarrowVT.getSizeInBits(); 4281 EVT PtrVT = Addr.getValueType(); 4282 4283 // Get the address of the containing word. 4284 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4285 DAG.getConstant(-4, DL, PtrVT)); 4286 4287 // Get the number of bits that the word must be rotated left in order 4288 // to bring the field to the top bits of a GR32. 4289 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4290 DAG.getConstant(3, DL, PtrVT)); 4291 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4292 4293 // Get the complementing shift amount, for rotating a field in the top 4294 // bits back to its proper position. 4295 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4296 DAG.getConstant(0, DL, WideVT), BitShift); 4297 4298 // Construct the ATOMIC_CMP_SWAPW node. 4299 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4300 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4301 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4302 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4303 VTList, Ops, NarrowVT, MMO); 4304 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4305 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4306 4307 // emitAtomicCmpSwapW() will zero extend the result (original value). 4308 SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0), 4309 DAG.getValueType(NarrowVT)); 4310 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal); 4311 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4312 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4313 return SDValue(); 4314 } 4315 4316 MachineMemOperand::Flags 4317 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4318 // Because of how we convert atomic_load and atomic_store to normal loads and 4319 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4320 // since DAGCombine hasn't been updated to account for atomic, but non 4321 // volatile loads. (See D57601) 4322 if (auto *SI = dyn_cast<StoreInst>(&I)) 4323 if (SI->isAtomic()) 4324 return MachineMemOperand::MOVolatile; 4325 if (auto *LI = dyn_cast<LoadInst>(&I)) 4326 if (LI->isAtomic()) 4327 return MachineMemOperand::MOVolatile; 4328 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4329 if (AI->isAtomic()) 4330 return MachineMemOperand::MOVolatile; 4331 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4332 if (AI->isAtomic()) 4333 return MachineMemOperand::MOVolatile; 4334 return MachineMemOperand::MONone; 4335 } 4336 4337 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4338 SelectionDAG &DAG) const { 4339 MachineFunction &MF = DAG.getMachineFunction(); 4340 const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 4341 auto *Regs = Subtarget->getSpecialRegisters(); 4342 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4343 report_fatal_error("Variable-sized stack allocations are not supported " 4344 "in GHC calling convention"); 4345 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4346 Regs->getStackPointerRegister(), Op.getValueType()); 4347 } 4348 4349 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4350 SelectionDAG &DAG) const { 4351 MachineFunction &MF = DAG.getMachineFunction(); 4352 const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 4353 auto *Regs = Subtarget->getSpecialRegisters(); 4354 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4355 4356 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4357 report_fatal_error("Variable-sized stack allocations are not supported " 4358 "in GHC calling convention"); 4359 4360 SDValue Chain = Op.getOperand(0); 4361 SDValue NewSP = Op.getOperand(1); 4362 SDValue Backchain; 4363 SDLoc DL(Op); 4364 4365 if (StoreBackchain) { 4366 SDValue OldSP = DAG.getCopyFromReg( 4367 Chain, DL, Regs->getStackPointerRegister(), MVT::i64); 4368 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 4369 MachinePointerInfo()); 4370 } 4371 4372 Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP); 4373 4374 if (StoreBackchain) 4375 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 4376 MachinePointerInfo()); 4377 4378 return Chain; 4379 } 4380 4381 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4382 SelectionDAG &DAG) const { 4383 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4384 if (!IsData) 4385 // Just preserve the chain. 4386 return Op.getOperand(0); 4387 4388 SDLoc DL(Op); 4389 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4390 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4391 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4392 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4393 Op.getOperand(1)}; 4394 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4395 Node->getVTList(), Ops, 4396 Node->getMemoryVT(), Node->getMemOperand()); 4397 } 4398 4399 // Convert condition code in CCReg to an i32 value. 4400 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4401 SDLoc DL(CCReg); 4402 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4403 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4404 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4405 } 4406 4407 SDValue 4408 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4409 SelectionDAG &DAG) const { 4410 unsigned Opcode, CCValid; 4411 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4412 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4413 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4414 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4415 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4416 return SDValue(); 4417 } 4418 4419 return SDValue(); 4420 } 4421 4422 SDValue 4423 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4424 SelectionDAG &DAG) const { 4425 unsigned Opcode, CCValid; 4426 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4427 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4428 if (Op->getNumValues() == 1) 4429 return getCCResult(DAG, SDValue(Node, 0)); 4430 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4431 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4432 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4433 } 4434 4435 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4436 switch (Id) { 4437 case Intrinsic::thread_pointer: 4438 return lowerThreadPointer(SDLoc(Op), DAG); 4439 4440 case Intrinsic::s390_vpdi: 4441 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4442 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4443 4444 case Intrinsic::s390_vperm: 4445 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4446 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4447 4448 case Intrinsic::s390_vuphb: 4449 case Intrinsic::s390_vuphh: 4450 case Intrinsic::s390_vuphf: 4451 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4452 Op.getOperand(1)); 4453 4454 case Intrinsic::s390_vuplhb: 4455 case Intrinsic::s390_vuplhh: 4456 case Intrinsic::s390_vuplhf: 4457 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4458 Op.getOperand(1)); 4459 4460 case Intrinsic::s390_vuplb: 4461 case Intrinsic::s390_vuplhw: 4462 case Intrinsic::s390_vuplf: 4463 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4464 Op.getOperand(1)); 4465 4466 case Intrinsic::s390_vupllb: 4467 case Intrinsic::s390_vupllh: 4468 case Intrinsic::s390_vupllf: 4469 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4470 Op.getOperand(1)); 4471 4472 case Intrinsic::s390_vsumb: 4473 case Intrinsic::s390_vsumh: 4474 case Intrinsic::s390_vsumgh: 4475 case Intrinsic::s390_vsumgf: 4476 case Intrinsic::s390_vsumqf: 4477 case Intrinsic::s390_vsumqg: 4478 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4479 Op.getOperand(1), Op.getOperand(2)); 4480 } 4481 4482 return SDValue(); 4483 } 4484 4485 namespace { 4486 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4487 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4488 // Operand is the constant third operand, otherwise it is the number of 4489 // bytes in each element of the result. 4490 struct Permute { 4491 unsigned Opcode; 4492 unsigned Operand; 4493 unsigned char Bytes[SystemZ::VectorBytes]; 4494 }; 4495 } 4496 4497 static const Permute PermuteForms[] = { 4498 // VMRHG 4499 { SystemZISD::MERGE_HIGH, 8, 4500 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4501 // VMRHF 4502 { SystemZISD::MERGE_HIGH, 4, 4503 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4504 // VMRHH 4505 { SystemZISD::MERGE_HIGH, 2, 4506 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4507 // VMRHB 4508 { SystemZISD::MERGE_HIGH, 1, 4509 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4510 // VMRLG 4511 { SystemZISD::MERGE_LOW, 8, 4512 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4513 // VMRLF 4514 { SystemZISD::MERGE_LOW, 4, 4515 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4516 // VMRLH 4517 { SystemZISD::MERGE_LOW, 2, 4518 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4519 // VMRLB 4520 { SystemZISD::MERGE_LOW, 1, 4521 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4522 // VPKG 4523 { SystemZISD::PACK, 4, 4524 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4525 // VPKF 4526 { SystemZISD::PACK, 2, 4527 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4528 // VPKH 4529 { SystemZISD::PACK, 1, 4530 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4531 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4532 { SystemZISD::PERMUTE_DWORDS, 4, 4533 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4534 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4535 { SystemZISD::PERMUTE_DWORDS, 1, 4536 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4537 }; 4538 4539 // Called after matching a vector shuffle against a particular pattern. 4540 // Both the original shuffle and the pattern have two vector operands. 4541 // OpNos[0] is the operand of the original shuffle that should be used for 4542 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4543 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4544 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4545 // for operands 0 and 1 of the pattern. 4546 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4547 if (OpNos[0] < 0) { 4548 if (OpNos[1] < 0) 4549 return false; 4550 OpNo0 = OpNo1 = OpNos[1]; 4551 } else if (OpNos[1] < 0) { 4552 OpNo0 = OpNo1 = OpNos[0]; 4553 } else { 4554 OpNo0 = OpNos[0]; 4555 OpNo1 = OpNos[1]; 4556 } 4557 return true; 4558 } 4559 4560 // Bytes is a VPERM-like permute vector, except that -1 is used for 4561 // undefined bytes. Return true if the VPERM can be implemented using P. 4562 // When returning true set OpNo0 to the VPERM operand that should be 4563 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4564 // 4565 // For example, if swapping the VPERM operands allows P to match, OpNo0 4566 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4567 // operand, but rewriting it to use two duplicated operands allows it to 4568 // match P, then OpNo0 and OpNo1 will be the same. 4569 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4570 unsigned &OpNo0, unsigned &OpNo1) { 4571 int OpNos[] = { -1, -1 }; 4572 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4573 int Elt = Bytes[I]; 4574 if (Elt >= 0) { 4575 // Make sure that the two permute vectors use the same suboperand 4576 // byte number. Only the operand numbers (the high bits) are 4577 // allowed to differ. 4578 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4579 return false; 4580 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4581 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4582 // Make sure that the operand mappings are consistent with previous 4583 // elements. 4584 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4585 return false; 4586 OpNos[ModelOpNo] = RealOpNo; 4587 } 4588 } 4589 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4590 } 4591 4592 // As above, but search for a matching permute. 4593 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4594 unsigned &OpNo0, unsigned &OpNo1) { 4595 for (auto &P : PermuteForms) 4596 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4597 return &P; 4598 return nullptr; 4599 } 4600 4601 // Bytes is a VPERM-like permute vector, except that -1 is used for 4602 // undefined bytes. This permute is an operand of an outer permute. 4603 // See whether redistributing the -1 bytes gives a shuffle that can be 4604 // implemented using P. If so, set Transform to a VPERM-like permute vector 4605 // that, when applied to the result of P, gives the original permute in Bytes. 4606 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4607 const Permute &P, 4608 SmallVectorImpl<int> &Transform) { 4609 unsigned To = 0; 4610 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4611 int Elt = Bytes[From]; 4612 if (Elt < 0) 4613 // Byte number From of the result is undefined. 4614 Transform[From] = -1; 4615 else { 4616 while (P.Bytes[To] != Elt) { 4617 To += 1; 4618 if (To == SystemZ::VectorBytes) 4619 return false; 4620 } 4621 Transform[From] = To; 4622 } 4623 } 4624 return true; 4625 } 4626 4627 // As above, but search for a matching permute. 4628 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4629 SmallVectorImpl<int> &Transform) { 4630 for (auto &P : PermuteForms) 4631 if (matchDoublePermute(Bytes, P, Transform)) 4632 return &P; 4633 return nullptr; 4634 } 4635 4636 // Convert the mask of the given shuffle op into a byte-level mask, 4637 // as if it had type vNi8. 4638 static bool getVPermMask(SDValue ShuffleOp, 4639 SmallVectorImpl<int> &Bytes) { 4640 EVT VT = ShuffleOp.getValueType(); 4641 unsigned NumElements = VT.getVectorNumElements(); 4642 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4643 4644 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4645 Bytes.resize(NumElements * BytesPerElement, -1); 4646 for (unsigned I = 0; I < NumElements; ++I) { 4647 int Index = VSN->getMaskElt(I); 4648 if (Index >= 0) 4649 for (unsigned J = 0; J < BytesPerElement; ++J) 4650 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4651 } 4652 return true; 4653 } 4654 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4655 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4656 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4657 Bytes.resize(NumElements * BytesPerElement, -1); 4658 for (unsigned I = 0; I < NumElements; ++I) 4659 for (unsigned J = 0; J < BytesPerElement; ++J) 4660 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4661 return true; 4662 } 4663 return false; 4664 } 4665 4666 // Bytes is a VPERM-like permute vector, except that -1 is used for 4667 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4668 // the result come from a contiguous sequence of bytes from one input. 4669 // Set Base to the selector for the first byte if so. 4670 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4671 unsigned BytesPerElement, int &Base) { 4672 Base = -1; 4673 for (unsigned I = 0; I < BytesPerElement; ++I) { 4674 if (Bytes[Start + I] >= 0) { 4675 unsigned Elem = Bytes[Start + I]; 4676 if (Base < 0) { 4677 Base = Elem - I; 4678 // Make sure the bytes would come from one input operand. 4679 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4680 return false; 4681 } else if (unsigned(Base) != Elem - I) 4682 return false; 4683 } 4684 } 4685 return true; 4686 } 4687 4688 // Bytes is a VPERM-like permute vector, except that -1 is used for 4689 // undefined bytes. Return true if it can be performed using VSLDB. 4690 // When returning true, set StartIndex to the shift amount and OpNo0 4691 // and OpNo1 to the VPERM operands that should be used as the first 4692 // and second shift operand respectively. 4693 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4694 unsigned &StartIndex, unsigned &OpNo0, 4695 unsigned &OpNo1) { 4696 int OpNos[] = { -1, -1 }; 4697 int Shift = -1; 4698 for (unsigned I = 0; I < 16; ++I) { 4699 int Index = Bytes[I]; 4700 if (Index >= 0) { 4701 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4702 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4703 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4704 if (Shift < 0) 4705 Shift = ExpectedShift; 4706 else if (Shift != ExpectedShift) 4707 return false; 4708 // Make sure that the operand mappings are consistent with previous 4709 // elements. 4710 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4711 return false; 4712 OpNos[ModelOpNo] = RealOpNo; 4713 } 4714 } 4715 StartIndex = Shift; 4716 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4717 } 4718 4719 // Create a node that performs P on operands Op0 and Op1, casting the 4720 // operands to the appropriate type. The type of the result is determined by P. 4721 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4722 const Permute &P, SDValue Op0, SDValue Op1) { 4723 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4724 // elements of a PACK are twice as wide as the outputs. 4725 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4726 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4727 P.Operand); 4728 // Cast both operands to the appropriate type. 4729 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4730 SystemZ::VectorBytes / InBytes); 4731 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4732 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4733 SDValue Op; 4734 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4735 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4736 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4737 } else if (P.Opcode == SystemZISD::PACK) { 4738 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4739 SystemZ::VectorBytes / P.Operand); 4740 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4741 } else { 4742 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4743 } 4744 return Op; 4745 } 4746 4747 static bool isZeroVector(SDValue N) { 4748 if (N->getOpcode() == ISD::BITCAST) 4749 N = N->getOperand(0); 4750 if (N->getOpcode() == ISD::SPLAT_VECTOR) 4751 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 4752 return Op->getZExtValue() == 0; 4753 return ISD::isBuildVectorAllZeros(N.getNode()); 4754 } 4755 4756 // Return the index of the zero/undef vector, or UINT32_MAX if not found. 4757 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { 4758 for (unsigned I = 0; I < Num ; I++) 4759 if (isZeroVector(Ops[I])) 4760 return I; 4761 return UINT32_MAX; 4762 } 4763 4764 // Bytes is a VPERM-like permute vector, except that -1 is used for 4765 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4766 // VSLDB or VPERM. 4767 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4768 SDValue *Ops, 4769 const SmallVectorImpl<int> &Bytes) { 4770 for (unsigned I = 0; I < 2; ++I) 4771 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4772 4773 // First see whether VSLDB can be used. 4774 unsigned StartIndex, OpNo0, OpNo1; 4775 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4776 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4777 Ops[OpNo1], 4778 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4779 4780 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 4781 // eliminate a zero vector by reusing any zero index in the permute vector. 4782 unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); 4783 if (ZeroVecIdx != UINT32_MAX) { 4784 bool MaskFirst = true; 4785 int ZeroIdx = -1; 4786 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4787 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4788 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4789 if (OpNo == ZeroVecIdx && I == 0) { 4790 // If the first byte is zero, use mask as first operand. 4791 ZeroIdx = 0; 4792 break; 4793 } 4794 if (OpNo != ZeroVecIdx && Byte == 0) { 4795 // If mask contains a zero, use it by placing that vector first. 4796 ZeroIdx = I + SystemZ::VectorBytes; 4797 MaskFirst = false; 4798 break; 4799 } 4800 } 4801 if (ZeroIdx != -1) { 4802 SDValue IndexNodes[SystemZ::VectorBytes]; 4803 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4804 if (Bytes[I] >= 0) { 4805 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4806 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4807 if (OpNo == ZeroVecIdx) 4808 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 4809 else { 4810 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 4811 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 4812 } 4813 } else 4814 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4815 } 4816 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4817 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 4818 if (MaskFirst) 4819 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 4820 Mask); 4821 else 4822 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 4823 Mask); 4824 } 4825 } 4826 4827 SDValue IndexNodes[SystemZ::VectorBytes]; 4828 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4829 if (Bytes[I] >= 0) 4830 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4831 else 4832 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4833 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4834 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 4835 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 4836 } 4837 4838 namespace { 4839 // Describes a general N-operand vector shuffle. 4840 struct GeneralShuffle { 4841 GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} 4842 void addUndef(); 4843 bool add(SDValue, unsigned); 4844 SDValue getNode(SelectionDAG &, const SDLoc &); 4845 void tryPrepareForUnpack(); 4846 bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } 4847 SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); 4848 4849 // The operands of the shuffle. 4850 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4851 4852 // Index I is -1 if byte I of the result is undefined. Otherwise the 4853 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4854 // Bytes[I] / SystemZ::VectorBytes. 4855 SmallVector<int, SystemZ::VectorBytes> Bytes; 4856 4857 // The type of the shuffle result. 4858 EVT VT; 4859 4860 // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. 4861 unsigned UnpackFromEltSize; 4862 }; 4863 } 4864 4865 // Add an extra undefined element to the shuffle. 4866 void GeneralShuffle::addUndef() { 4867 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4868 for (unsigned I = 0; I < BytesPerElement; ++I) 4869 Bytes.push_back(-1); 4870 } 4871 4872 // Add an extra element to the shuffle, taking it from element Elem of Op. 4873 // A null Op indicates a vector input whose value will be calculated later; 4874 // there is at most one such input per shuffle and it always has the same 4875 // type as the result. Aborts and returns false if the source vector elements 4876 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4877 // LLVM they become implicitly extended, but this is rare and not optimized. 4878 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4879 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4880 4881 // The source vector can have wider elements than the result, 4882 // either through an explicit TRUNCATE or because of type legalization. 4883 // We want the least significant part. 4884 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4885 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4886 4887 // Return false if the source elements are smaller than their destination 4888 // elements. 4889 if (FromBytesPerElement < BytesPerElement) 4890 return false; 4891 4892 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4893 (FromBytesPerElement - BytesPerElement)); 4894 4895 // Look through things like shuffles and bitcasts. 4896 while (Op.getNode()) { 4897 if (Op.getOpcode() == ISD::BITCAST) 4898 Op = Op.getOperand(0); 4899 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4900 // See whether the bytes we need come from a contiguous part of one 4901 // operand. 4902 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4903 if (!getVPermMask(Op, OpBytes)) 4904 break; 4905 int NewByte; 4906 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4907 break; 4908 if (NewByte < 0) { 4909 addUndef(); 4910 return true; 4911 } 4912 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4913 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4914 } else if (Op.isUndef()) { 4915 addUndef(); 4916 return true; 4917 } else 4918 break; 4919 } 4920 4921 // Make sure that the source of the extraction is in Ops. 4922 unsigned OpNo = 0; 4923 for (; OpNo < Ops.size(); ++OpNo) 4924 if (Ops[OpNo] == Op) 4925 break; 4926 if (OpNo == Ops.size()) 4927 Ops.push_back(Op); 4928 4929 // Add the element to Bytes. 4930 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4931 for (unsigned I = 0; I < BytesPerElement; ++I) 4932 Bytes.push_back(Base + I); 4933 4934 return true; 4935 } 4936 4937 // Return SDNodes for the completed shuffle. 4938 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4939 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4940 4941 if (Ops.size() == 0) 4942 return DAG.getUNDEF(VT); 4943 4944 // Use a single unpack if possible as the last operation. 4945 tryPrepareForUnpack(); 4946 4947 // Make sure that there are at least two shuffle operands. 4948 if (Ops.size() == 1) 4949 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4950 4951 // Create a tree of shuffles, deferring root node until after the loop. 4952 // Try to redistribute the undefined elements of non-root nodes so that 4953 // the non-root shuffles match something like a pack or merge, then adjust 4954 // the parent node's permute vector to compensate for the new order. 4955 // Among other things, this copes with vectors like <2 x i16> that were 4956 // padded with undefined elements during type legalization. 4957 // 4958 // In the best case this redistribution will lead to the whole tree 4959 // using packs and merges. It should rarely be a loss in other cases. 4960 unsigned Stride = 1; 4961 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4962 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4963 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4964 4965 // Create a mask for just these two operands. 4966 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4967 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4968 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4969 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4970 if (OpNo == I) 4971 NewBytes[J] = Byte; 4972 else if (OpNo == I + Stride) 4973 NewBytes[J] = SystemZ::VectorBytes + Byte; 4974 else 4975 NewBytes[J] = -1; 4976 } 4977 // See if it would be better to reorganize NewMask to avoid using VPERM. 4978 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4979 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4980 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4981 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4982 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4983 if (NewBytes[J] >= 0) { 4984 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4985 "Invalid double permute"); 4986 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4987 } else 4988 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4989 } 4990 } else { 4991 // Just use NewBytes on the operands. 4992 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4993 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4994 if (NewBytes[J] >= 0) 4995 Bytes[J] = I * SystemZ::VectorBytes + J; 4996 } 4997 } 4998 } 4999 5000 // Now we just have 2 inputs. Put the second operand in Ops[1]. 5001 if (Stride > 1) { 5002 Ops[1] = Ops[Stride]; 5003 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5004 if (Bytes[I] >= int(SystemZ::VectorBytes)) 5005 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 5006 } 5007 5008 // Look for an instruction that can do the permute without resorting 5009 // to VPERM. 5010 unsigned OpNo0, OpNo1; 5011 SDValue Op; 5012 if (unpackWasPrepared() && Ops[1].isUndef()) 5013 Op = Ops[0]; 5014 else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 5015 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 5016 else 5017 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 5018 5019 Op = insertUnpackIfPrepared(DAG, DL, Op); 5020 5021 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5022 } 5023 5024 #ifndef NDEBUG 5025 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { 5026 dbgs() << Msg.c_str() << " { "; 5027 for (unsigned i = 0; i < Bytes.size(); i++) 5028 dbgs() << Bytes[i] << " "; 5029 dbgs() << "}\n"; 5030 } 5031 #endif 5032 5033 // If the Bytes vector matches an unpack operation, prepare to do the unpack 5034 // after all else by removing the zero vector and the effect of the unpack on 5035 // Bytes. 5036 void GeneralShuffle::tryPrepareForUnpack() { 5037 uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); 5038 if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) 5039 return; 5040 5041 // Only do this if removing the zero vector reduces the depth, otherwise 5042 // the critical path will increase with the final unpack. 5043 if (Ops.size() > 2 && 5044 Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) 5045 return; 5046 5047 // Find an unpack that would allow removing the zero vector from Ops. 5048 UnpackFromEltSize = 1; 5049 for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { 5050 bool MatchUnpack = true; 5051 SmallVector<int, SystemZ::VectorBytes> SrcBytes; 5052 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { 5053 unsigned ToEltSize = UnpackFromEltSize * 2; 5054 bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; 5055 if (!IsZextByte) 5056 SrcBytes.push_back(Bytes[Elt]); 5057 if (Bytes[Elt] != -1) { 5058 unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; 5059 if (IsZextByte != (OpNo == ZeroVecOpNo)) { 5060 MatchUnpack = false; 5061 break; 5062 } 5063 } 5064 } 5065 if (MatchUnpack) { 5066 if (Ops.size() == 2) { 5067 // Don't use unpack if a single source operand needs rearrangement. 5068 for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) 5069 if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { 5070 UnpackFromEltSize = UINT_MAX; 5071 return; 5072 } 5073 } 5074 break; 5075 } 5076 } 5077 if (UnpackFromEltSize > 4) 5078 return; 5079 5080 LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " 5081 << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo 5082 << ".\n"; 5083 dumpBytes(Bytes, "Original Bytes vector:");); 5084 5085 // Apply the unpack in reverse to the Bytes array. 5086 unsigned B = 0; 5087 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { 5088 Elt += UnpackFromEltSize; 5089 for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) 5090 Bytes[B] = Bytes[Elt]; 5091 } 5092 while (B < SystemZ::VectorBytes) 5093 Bytes[B++] = -1; 5094 5095 // Remove the zero vector from Ops 5096 Ops.erase(&Ops[ZeroVecOpNo]); 5097 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5098 if (Bytes[I] >= 0) { 5099 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 5100 if (OpNo > ZeroVecOpNo) 5101 Bytes[I] -= SystemZ::VectorBytes; 5102 } 5103 5104 LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); 5105 dbgs() << "\n";); 5106 } 5107 5108 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, 5109 const SDLoc &DL, 5110 SDValue Op) { 5111 if (!unpackWasPrepared()) 5112 return Op; 5113 unsigned InBits = UnpackFromEltSize * 8; 5114 EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), 5115 SystemZ::VectorBits / InBits); 5116 SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); 5117 unsigned OutBits = InBits * 2; 5118 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), 5119 SystemZ::VectorBits / OutBits); 5120 return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); 5121 } 5122 5123 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 5124 static bool isScalarToVector(SDValue Op) { 5125 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 5126 if (!Op.getOperand(I).isUndef()) 5127 return false; 5128 return true; 5129 } 5130 5131 // Return a vector of type VT that contains Value in the first element. 5132 // The other elements don't matter. 5133 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5134 SDValue Value) { 5135 // If we have a constant, replicate it to all elements and let the 5136 // BUILD_VECTOR lowering take care of it. 5137 if (Value.getOpcode() == ISD::Constant || 5138 Value.getOpcode() == ISD::ConstantFP) { 5139 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 5140 return DAG.getBuildVector(VT, DL, Ops); 5141 } 5142 if (Value.isUndef()) 5143 return DAG.getUNDEF(VT); 5144 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 5145 } 5146 5147 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 5148 // element 1. Used for cases in which replication is cheap. 5149 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5150 SDValue Op0, SDValue Op1) { 5151 if (Op0.isUndef()) { 5152 if (Op1.isUndef()) 5153 return DAG.getUNDEF(VT); 5154 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 5155 } 5156 if (Op1.isUndef()) 5157 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 5158 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 5159 buildScalarToVector(DAG, DL, VT, Op0), 5160 buildScalarToVector(DAG, DL, VT, Op1)); 5161 } 5162 5163 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 5164 // vector for them. 5165 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 5166 SDValue Op1) { 5167 if (Op0.isUndef() && Op1.isUndef()) 5168 return DAG.getUNDEF(MVT::v2i64); 5169 // If one of the two inputs is undefined then replicate the other one, 5170 // in order to avoid using another register unnecessarily. 5171 if (Op0.isUndef()) 5172 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5173 else if (Op1.isUndef()) 5174 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5175 else { 5176 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5177 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5178 } 5179 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 5180 } 5181 5182 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 5183 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 5184 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 5185 // would benefit from this representation and return it if so. 5186 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 5187 BuildVectorSDNode *BVN) { 5188 EVT VT = BVN->getValueType(0); 5189 unsigned NumElements = VT.getVectorNumElements(); 5190 5191 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 5192 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 5193 // need a BUILD_VECTOR, add an additional placeholder operand for that 5194 // BUILD_VECTOR and store its operands in ResidueOps. 5195 GeneralShuffle GS(VT); 5196 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 5197 bool FoundOne = false; 5198 for (unsigned I = 0; I < NumElements; ++I) { 5199 SDValue Op = BVN->getOperand(I); 5200 if (Op.getOpcode() == ISD::TRUNCATE) 5201 Op = Op.getOperand(0); 5202 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5203 Op.getOperand(1).getOpcode() == ISD::Constant) { 5204 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 5205 if (!GS.add(Op.getOperand(0), Elem)) 5206 return SDValue(); 5207 FoundOne = true; 5208 } else if (Op.isUndef()) { 5209 GS.addUndef(); 5210 } else { 5211 if (!GS.add(SDValue(), ResidueOps.size())) 5212 return SDValue(); 5213 ResidueOps.push_back(BVN->getOperand(I)); 5214 } 5215 } 5216 5217 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 5218 if (!FoundOne) 5219 return SDValue(); 5220 5221 // Create the BUILD_VECTOR for the remaining elements, if any. 5222 if (!ResidueOps.empty()) { 5223 while (ResidueOps.size() < NumElements) 5224 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 5225 for (auto &Op : GS.Ops) { 5226 if (!Op.getNode()) { 5227 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 5228 break; 5229 } 5230 } 5231 } 5232 return GS.getNode(DAG, SDLoc(BVN)); 5233 } 5234 5235 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 5236 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 5237 return true; 5238 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 5239 return true; 5240 return false; 5241 } 5242 5243 // Combine GPR scalar values Elems into a vector of type VT. 5244 SDValue 5245 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5246 SmallVectorImpl<SDValue> &Elems) const { 5247 // See whether there is a single replicated value. 5248 SDValue Single; 5249 unsigned int NumElements = Elems.size(); 5250 unsigned int Count = 0; 5251 for (auto Elem : Elems) { 5252 if (!Elem.isUndef()) { 5253 if (!Single.getNode()) 5254 Single = Elem; 5255 else if (Elem != Single) { 5256 Single = SDValue(); 5257 break; 5258 } 5259 Count += 1; 5260 } 5261 } 5262 // There are three cases here: 5263 // 5264 // - if the only defined element is a loaded one, the best sequence 5265 // is a replicating load. 5266 // 5267 // - otherwise, if the only defined element is an i64 value, we will 5268 // end up with the same VLVGP sequence regardless of whether we short-cut 5269 // for replication or fall through to the later code. 5270 // 5271 // - otherwise, if the only defined element is an i32 or smaller value, 5272 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 5273 // This is only a win if the single defined element is used more than once. 5274 // In other cases we're better off using a single VLVGx. 5275 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 5276 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 5277 5278 // If all elements are loads, use VLREP/VLEs (below). 5279 bool AllLoads = true; 5280 for (auto Elem : Elems) 5281 if (!isVectorElementLoad(Elem)) { 5282 AllLoads = false; 5283 break; 5284 } 5285 5286 // The best way of building a v2i64 from two i64s is to use VLVGP. 5287 if (VT == MVT::v2i64 && !AllLoads) 5288 return joinDwords(DAG, DL, Elems[0], Elems[1]); 5289 5290 // Use a 64-bit merge high to combine two doubles. 5291 if (VT == MVT::v2f64 && !AllLoads) 5292 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5293 5294 // Build v4f32 values directly from the FPRs: 5295 // 5296 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 5297 // V V VMRHF 5298 // <ABxx> <CDxx> 5299 // V VMRHG 5300 // <ABCD> 5301 if (VT == MVT::v4f32 && !AllLoads) { 5302 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5303 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 5304 // Avoid unnecessary undefs by reusing the other operand. 5305 if (Op01.isUndef()) 5306 Op01 = Op23; 5307 else if (Op23.isUndef()) 5308 Op23 = Op01; 5309 // Merging identical replications is a no-op. 5310 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 5311 return Op01; 5312 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 5313 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 5314 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 5315 DL, MVT::v2i64, Op01, Op23); 5316 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5317 } 5318 5319 // Collect the constant terms. 5320 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 5321 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 5322 5323 unsigned NumConstants = 0; 5324 for (unsigned I = 0; I < NumElements; ++I) { 5325 SDValue Elem = Elems[I]; 5326 if (Elem.getOpcode() == ISD::Constant || 5327 Elem.getOpcode() == ISD::ConstantFP) { 5328 NumConstants += 1; 5329 Constants[I] = Elem; 5330 Done[I] = true; 5331 } 5332 } 5333 // If there was at least one constant, fill in the other elements of 5334 // Constants with undefs to get a full vector constant and use that 5335 // as the starting point. 5336 SDValue Result; 5337 SDValue ReplicatedVal; 5338 if (NumConstants > 0) { 5339 for (unsigned I = 0; I < NumElements; ++I) 5340 if (!Constants[I].getNode()) 5341 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 5342 Result = DAG.getBuildVector(VT, DL, Constants); 5343 } else { 5344 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 5345 // avoid a false dependency on any previous contents of the vector 5346 // register. 5347 5348 // Use a VLREP if at least one element is a load. Make sure to replicate 5349 // the load with the most elements having its value. 5350 std::map<const SDNode*, unsigned> UseCounts; 5351 SDNode *LoadMaxUses = nullptr; 5352 for (unsigned I = 0; I < NumElements; ++I) 5353 if (isVectorElementLoad(Elems[I])) { 5354 SDNode *Ld = Elems[I].getNode(); 5355 UseCounts[Ld]++; 5356 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 5357 LoadMaxUses = Ld; 5358 } 5359 if (LoadMaxUses != nullptr) { 5360 ReplicatedVal = SDValue(LoadMaxUses, 0); 5361 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 5362 } else { 5363 // Try to use VLVGP. 5364 unsigned I1 = NumElements / 2 - 1; 5365 unsigned I2 = NumElements - 1; 5366 bool Def1 = !Elems[I1].isUndef(); 5367 bool Def2 = !Elems[I2].isUndef(); 5368 if (Def1 || Def2) { 5369 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 5370 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 5371 Result = DAG.getNode(ISD::BITCAST, DL, VT, 5372 joinDwords(DAG, DL, Elem1, Elem2)); 5373 Done[I1] = true; 5374 Done[I2] = true; 5375 } else 5376 Result = DAG.getUNDEF(VT); 5377 } 5378 } 5379 5380 // Use VLVGx to insert the other elements. 5381 for (unsigned I = 0; I < NumElements; ++I) 5382 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 5383 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 5384 DAG.getConstant(I, DL, MVT::i32)); 5385 return Result; 5386 } 5387 5388 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 5389 SelectionDAG &DAG) const { 5390 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 5391 SDLoc DL(Op); 5392 EVT VT = Op.getValueType(); 5393 5394 if (BVN->isConstant()) { 5395 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 5396 return Op; 5397 5398 // Fall back to loading it from memory. 5399 return SDValue(); 5400 } 5401 5402 // See if we should use shuffles to construct the vector from other vectors. 5403 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 5404 return Res; 5405 5406 // Detect SCALAR_TO_VECTOR conversions. 5407 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 5408 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 5409 5410 // Otherwise use buildVector to build the vector up from GPRs. 5411 unsigned NumElements = Op.getNumOperands(); 5412 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 5413 for (unsigned I = 0; I < NumElements; ++I) 5414 Ops[I] = Op.getOperand(I); 5415 return buildVector(DAG, DL, VT, Ops); 5416 } 5417 5418 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5419 SelectionDAG &DAG) const { 5420 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 5421 SDLoc DL(Op); 5422 EVT VT = Op.getValueType(); 5423 unsigned NumElements = VT.getVectorNumElements(); 5424 5425 if (VSN->isSplat()) { 5426 SDValue Op0 = Op.getOperand(0); 5427 unsigned Index = VSN->getSplatIndex(); 5428 assert(Index < VT.getVectorNumElements() && 5429 "Splat index should be defined and in first operand"); 5430 // See whether the value we're splatting is directly available as a scalar. 5431 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5432 Op0.getOpcode() == ISD::BUILD_VECTOR) 5433 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 5434 // Otherwise keep it as a vector-to-vector operation. 5435 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 5436 DAG.getTargetConstant(Index, DL, MVT::i32)); 5437 } 5438 5439 GeneralShuffle GS(VT); 5440 for (unsigned I = 0; I < NumElements; ++I) { 5441 int Elt = VSN->getMaskElt(I); 5442 if (Elt < 0) 5443 GS.addUndef(); 5444 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 5445 unsigned(Elt) % NumElements)) 5446 return SDValue(); 5447 } 5448 return GS.getNode(DAG, SDLoc(VSN)); 5449 } 5450 5451 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5452 SelectionDAG &DAG) const { 5453 SDLoc DL(Op); 5454 // Just insert the scalar into element 0 of an undefined vector. 5455 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 5456 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 5457 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 5458 } 5459 5460 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5461 SelectionDAG &DAG) const { 5462 // Handle insertions of floating-point values. 5463 SDLoc DL(Op); 5464 SDValue Op0 = Op.getOperand(0); 5465 SDValue Op1 = Op.getOperand(1); 5466 SDValue Op2 = Op.getOperand(2); 5467 EVT VT = Op.getValueType(); 5468 5469 // Insertions into constant indices of a v2f64 can be done using VPDI. 5470 // However, if the inserted value is a bitcast or a constant then it's 5471 // better to use GPRs, as below. 5472 if (VT == MVT::v2f64 && 5473 Op1.getOpcode() != ISD::BITCAST && 5474 Op1.getOpcode() != ISD::ConstantFP && 5475 Op2.getOpcode() == ISD::Constant) { 5476 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 5477 unsigned Mask = VT.getVectorNumElements() - 1; 5478 if (Index <= Mask) 5479 return Op; 5480 } 5481 5482 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5483 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5484 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5485 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5486 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5487 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5488 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5489 } 5490 5491 SDValue 5492 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5493 SelectionDAG &DAG) const { 5494 // Handle extractions of floating-point values. 5495 SDLoc DL(Op); 5496 SDValue Op0 = Op.getOperand(0); 5497 SDValue Op1 = Op.getOperand(1); 5498 EVT VT = Op.getValueType(); 5499 EVT VecVT = Op0.getValueType(); 5500 5501 // Extractions of constant indices can be done directly. 5502 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5503 uint64_t Index = CIndexN->getZExtValue(); 5504 unsigned Mask = VecVT.getVectorNumElements() - 1; 5505 if (Index <= Mask) 5506 return Op; 5507 } 5508 5509 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5510 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5511 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5512 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5513 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5514 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5515 } 5516 5517 SDValue SystemZTargetLowering:: 5518 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5519 SDValue PackedOp = Op.getOperand(0); 5520 EVT OutVT = Op.getValueType(); 5521 EVT InVT = PackedOp.getValueType(); 5522 unsigned ToBits = OutVT.getScalarSizeInBits(); 5523 unsigned FromBits = InVT.getScalarSizeInBits(); 5524 do { 5525 FromBits *= 2; 5526 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5527 SystemZ::VectorBits / FromBits); 5528 PackedOp = 5529 DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); 5530 } while (FromBits != ToBits); 5531 return PackedOp; 5532 } 5533 5534 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. 5535 SDValue SystemZTargetLowering:: 5536 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5537 SDValue PackedOp = Op.getOperand(0); 5538 SDLoc DL(Op); 5539 EVT OutVT = Op.getValueType(); 5540 EVT InVT = PackedOp.getValueType(); 5541 unsigned InNumElts = InVT.getVectorNumElements(); 5542 unsigned OutNumElts = OutVT.getVectorNumElements(); 5543 unsigned NumInPerOut = InNumElts / OutNumElts; 5544 5545 SDValue ZeroVec = 5546 DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); 5547 5548 SmallVector<int, 16> Mask(InNumElts); 5549 unsigned ZeroVecElt = InNumElts; 5550 for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { 5551 unsigned MaskElt = PackedElt * NumInPerOut; 5552 unsigned End = MaskElt + NumInPerOut - 1; 5553 for (; MaskElt < End; MaskElt++) 5554 Mask[MaskElt] = ZeroVecElt++; 5555 Mask[MaskElt] = PackedElt; 5556 } 5557 SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); 5558 return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); 5559 } 5560 5561 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5562 unsigned ByScalar) const { 5563 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5564 SDValue Op0 = Op.getOperand(0); 5565 SDValue Op1 = Op.getOperand(1); 5566 SDLoc DL(Op); 5567 EVT VT = Op.getValueType(); 5568 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5569 5570 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5571 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5572 APInt SplatBits, SplatUndef; 5573 unsigned SplatBitSize; 5574 bool HasAnyUndefs; 5575 // Check for constant splats. Use ElemBitSize as the minimum element 5576 // width and reject splats that need wider elements. 5577 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5578 ElemBitSize, true) && 5579 SplatBitSize == ElemBitSize) { 5580 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5581 DL, MVT::i32); 5582 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5583 } 5584 // Check for variable splats. 5585 BitVector UndefElements; 5586 SDValue Splat = BVN->getSplatValue(&UndefElements); 5587 if (Splat) { 5588 // Since i32 is the smallest legal type, we either need a no-op 5589 // or a truncation. 5590 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5591 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5592 } 5593 } 5594 5595 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5596 // and the shift amount is directly available in a GPR. 5597 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5598 if (VSN->isSplat()) { 5599 SDValue VSNOp0 = VSN->getOperand(0); 5600 unsigned Index = VSN->getSplatIndex(); 5601 assert(Index < VT.getVectorNumElements() && 5602 "Splat index should be defined and in first operand"); 5603 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5604 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5605 // Since i32 is the smallest legal type, we either need a no-op 5606 // or a truncation. 5607 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5608 VSNOp0.getOperand(Index)); 5609 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5610 } 5611 } 5612 } 5613 5614 // Otherwise just treat the current form as legal. 5615 return Op; 5616 } 5617 5618 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5619 SelectionDAG &DAG) const { 5620 switch (Op.getOpcode()) { 5621 case ISD::FRAMEADDR: 5622 return lowerFRAMEADDR(Op, DAG); 5623 case ISD::RETURNADDR: 5624 return lowerRETURNADDR(Op, DAG); 5625 case ISD::BR_CC: 5626 return lowerBR_CC(Op, DAG); 5627 case ISD::SELECT_CC: 5628 return lowerSELECT_CC(Op, DAG); 5629 case ISD::SETCC: 5630 return lowerSETCC(Op, DAG); 5631 case ISD::STRICT_FSETCC: 5632 return lowerSTRICT_FSETCC(Op, DAG, false); 5633 case ISD::STRICT_FSETCCS: 5634 return lowerSTRICT_FSETCC(Op, DAG, true); 5635 case ISD::GlobalAddress: 5636 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5637 case ISD::GlobalTLSAddress: 5638 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5639 case ISD::BlockAddress: 5640 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5641 case ISD::JumpTable: 5642 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5643 case ISD::ConstantPool: 5644 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5645 case ISD::BITCAST: 5646 return lowerBITCAST(Op, DAG); 5647 case ISD::VASTART: 5648 return lowerVASTART(Op, DAG); 5649 case ISD::VACOPY: 5650 return lowerVACOPY(Op, DAG); 5651 case ISD::DYNAMIC_STACKALLOC: 5652 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5653 case ISD::GET_DYNAMIC_AREA_OFFSET: 5654 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5655 case ISD::SMUL_LOHI: 5656 return lowerSMUL_LOHI(Op, DAG); 5657 case ISD::UMUL_LOHI: 5658 return lowerUMUL_LOHI(Op, DAG); 5659 case ISD::SDIVREM: 5660 return lowerSDIVREM(Op, DAG); 5661 case ISD::UDIVREM: 5662 return lowerUDIVREM(Op, DAG); 5663 case ISD::SADDO: 5664 case ISD::SSUBO: 5665 case ISD::UADDO: 5666 case ISD::USUBO: 5667 return lowerXALUO(Op, DAG); 5668 case ISD::ADDCARRY: 5669 case ISD::SUBCARRY: 5670 return lowerADDSUBCARRY(Op, DAG); 5671 case ISD::OR: 5672 return lowerOR(Op, DAG); 5673 case ISD::CTPOP: 5674 return lowerCTPOP(Op, DAG); 5675 case ISD::ATOMIC_FENCE: 5676 return lowerATOMIC_FENCE(Op, DAG); 5677 case ISD::ATOMIC_SWAP: 5678 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5679 case ISD::ATOMIC_STORE: 5680 return lowerATOMIC_STORE(Op, DAG); 5681 case ISD::ATOMIC_LOAD: 5682 return lowerATOMIC_LOAD(Op, DAG); 5683 case ISD::ATOMIC_LOAD_ADD: 5684 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5685 case ISD::ATOMIC_LOAD_SUB: 5686 return lowerATOMIC_LOAD_SUB(Op, DAG); 5687 case ISD::ATOMIC_LOAD_AND: 5688 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5689 case ISD::ATOMIC_LOAD_OR: 5690 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5691 case ISD::ATOMIC_LOAD_XOR: 5692 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5693 case ISD::ATOMIC_LOAD_NAND: 5694 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5695 case ISD::ATOMIC_LOAD_MIN: 5696 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5697 case ISD::ATOMIC_LOAD_MAX: 5698 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5699 case ISD::ATOMIC_LOAD_UMIN: 5700 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5701 case ISD::ATOMIC_LOAD_UMAX: 5702 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5703 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5704 return lowerATOMIC_CMP_SWAP(Op, DAG); 5705 case ISD::STACKSAVE: 5706 return lowerSTACKSAVE(Op, DAG); 5707 case ISD::STACKRESTORE: 5708 return lowerSTACKRESTORE(Op, DAG); 5709 case ISD::PREFETCH: 5710 return lowerPREFETCH(Op, DAG); 5711 case ISD::INTRINSIC_W_CHAIN: 5712 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5713 case ISD::INTRINSIC_WO_CHAIN: 5714 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5715 case ISD::BUILD_VECTOR: 5716 return lowerBUILD_VECTOR(Op, DAG); 5717 case ISD::VECTOR_SHUFFLE: 5718 return lowerVECTOR_SHUFFLE(Op, DAG); 5719 case ISD::SCALAR_TO_VECTOR: 5720 return lowerSCALAR_TO_VECTOR(Op, DAG); 5721 case ISD::INSERT_VECTOR_ELT: 5722 return lowerINSERT_VECTOR_ELT(Op, DAG); 5723 case ISD::EXTRACT_VECTOR_ELT: 5724 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5725 case ISD::SIGN_EXTEND_VECTOR_INREG: 5726 return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); 5727 case ISD::ZERO_EXTEND_VECTOR_INREG: 5728 return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); 5729 case ISD::SHL: 5730 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5731 case ISD::SRL: 5732 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5733 case ISD::SRA: 5734 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5735 default: 5736 llvm_unreachable("Unexpected node to lower"); 5737 } 5738 } 5739 5740 // Lower operations with invalid operand or result types (currently used 5741 // only for 128-bit integer types). 5742 void 5743 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5744 SmallVectorImpl<SDValue> &Results, 5745 SelectionDAG &DAG) const { 5746 switch (N->getOpcode()) { 5747 case ISD::ATOMIC_LOAD: { 5748 SDLoc DL(N); 5749 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5750 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5751 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5752 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5753 DL, Tys, Ops, MVT::i128, MMO); 5754 Results.push_back(lowerGR128ToI128(DAG, Res)); 5755 Results.push_back(Res.getValue(1)); 5756 break; 5757 } 5758 case ISD::ATOMIC_STORE: { 5759 SDLoc DL(N); 5760 SDVTList Tys = DAG.getVTList(MVT::Other); 5761 SDValue Ops[] = { N->getOperand(0), 5762 lowerI128ToGR128(DAG, N->getOperand(2)), 5763 N->getOperand(1) }; 5764 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5765 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5766 DL, Tys, Ops, MVT::i128, MMO); 5767 // We have to enforce sequential consistency by performing a 5768 // serialization operation after the store. 5769 if (cast<AtomicSDNode>(N)->getSuccessOrdering() == 5770 AtomicOrdering::SequentiallyConsistent) 5771 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5772 MVT::Other, Res), 0); 5773 Results.push_back(Res); 5774 break; 5775 } 5776 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5777 SDLoc DL(N); 5778 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5779 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5780 lowerI128ToGR128(DAG, N->getOperand(2)), 5781 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5782 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5783 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5784 DL, Tys, Ops, MVT::i128, MMO); 5785 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5786 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5787 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5788 Results.push_back(lowerGR128ToI128(DAG, Res)); 5789 Results.push_back(Success); 5790 Results.push_back(Res.getValue(2)); 5791 break; 5792 } 5793 case ISD::BITCAST: { 5794 SDValue Src = N->getOperand(0); 5795 if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 && 5796 !useSoftFloat()) { 5797 SDLoc DL(N); 5798 SDValue Lo, Hi; 5799 if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) { 5800 SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src); 5801 Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 5802 DAG.getConstant(1, DL, MVT::i32)); 5803 Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 5804 DAG.getConstant(0, DL, MVT::i32)); 5805 } else { 5806 assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass && 5807 "Unrecognized register class for f128."); 5808 SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5809 DL, MVT::f64, Src); 5810 SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5811 DL, MVT::f64, Src); 5812 Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP); 5813 Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP); 5814 } 5815 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi)); 5816 } 5817 break; 5818 } 5819 default: 5820 llvm_unreachable("Unexpected node to lower"); 5821 } 5822 } 5823 5824 void 5825 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5826 SmallVectorImpl<SDValue> &Results, 5827 SelectionDAG &DAG) const { 5828 return LowerOperationWrapper(N, Results, DAG); 5829 } 5830 5831 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5832 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5833 switch ((SystemZISD::NodeType)Opcode) { 5834 case SystemZISD::FIRST_NUMBER: break; 5835 OPCODE(RET_FLAG); 5836 OPCODE(CALL); 5837 OPCODE(SIBCALL); 5838 OPCODE(TLS_GDCALL); 5839 OPCODE(TLS_LDCALL); 5840 OPCODE(PCREL_WRAPPER); 5841 OPCODE(PCREL_OFFSET); 5842 OPCODE(ICMP); 5843 OPCODE(FCMP); 5844 OPCODE(STRICT_FCMP); 5845 OPCODE(STRICT_FCMPS); 5846 OPCODE(TM); 5847 OPCODE(BR_CCMASK); 5848 OPCODE(SELECT_CCMASK); 5849 OPCODE(ADJDYNALLOC); 5850 OPCODE(PROBED_ALLOCA); 5851 OPCODE(POPCNT); 5852 OPCODE(SMUL_LOHI); 5853 OPCODE(UMUL_LOHI); 5854 OPCODE(SDIVREM); 5855 OPCODE(UDIVREM); 5856 OPCODE(SADDO); 5857 OPCODE(SSUBO); 5858 OPCODE(UADDO); 5859 OPCODE(USUBO); 5860 OPCODE(ADDCARRY); 5861 OPCODE(SUBCARRY); 5862 OPCODE(GET_CCMASK); 5863 OPCODE(MVC); 5864 OPCODE(NC); 5865 OPCODE(OC); 5866 OPCODE(XC); 5867 OPCODE(CLC); 5868 OPCODE(MEMSET_MVC); 5869 OPCODE(STPCPY); 5870 OPCODE(STRCMP); 5871 OPCODE(SEARCH_STRING); 5872 OPCODE(IPM); 5873 OPCODE(MEMBARRIER); 5874 OPCODE(TBEGIN); 5875 OPCODE(TBEGIN_NOFLOAT); 5876 OPCODE(TEND); 5877 OPCODE(BYTE_MASK); 5878 OPCODE(ROTATE_MASK); 5879 OPCODE(REPLICATE); 5880 OPCODE(JOIN_DWORDS); 5881 OPCODE(SPLAT); 5882 OPCODE(MERGE_HIGH); 5883 OPCODE(MERGE_LOW); 5884 OPCODE(SHL_DOUBLE); 5885 OPCODE(PERMUTE_DWORDS); 5886 OPCODE(PERMUTE); 5887 OPCODE(PACK); 5888 OPCODE(PACKS_CC); 5889 OPCODE(PACKLS_CC); 5890 OPCODE(UNPACK_HIGH); 5891 OPCODE(UNPACKL_HIGH); 5892 OPCODE(UNPACK_LOW); 5893 OPCODE(UNPACKL_LOW); 5894 OPCODE(VSHL_BY_SCALAR); 5895 OPCODE(VSRL_BY_SCALAR); 5896 OPCODE(VSRA_BY_SCALAR); 5897 OPCODE(VSUM); 5898 OPCODE(VICMPE); 5899 OPCODE(VICMPH); 5900 OPCODE(VICMPHL); 5901 OPCODE(VICMPES); 5902 OPCODE(VICMPHS); 5903 OPCODE(VICMPHLS); 5904 OPCODE(VFCMPE); 5905 OPCODE(STRICT_VFCMPE); 5906 OPCODE(STRICT_VFCMPES); 5907 OPCODE(VFCMPH); 5908 OPCODE(STRICT_VFCMPH); 5909 OPCODE(STRICT_VFCMPHS); 5910 OPCODE(VFCMPHE); 5911 OPCODE(STRICT_VFCMPHE); 5912 OPCODE(STRICT_VFCMPHES); 5913 OPCODE(VFCMPES); 5914 OPCODE(VFCMPHS); 5915 OPCODE(VFCMPHES); 5916 OPCODE(VFTCI); 5917 OPCODE(VEXTEND); 5918 OPCODE(STRICT_VEXTEND); 5919 OPCODE(VROUND); 5920 OPCODE(STRICT_VROUND); 5921 OPCODE(VTM); 5922 OPCODE(VFAE_CC); 5923 OPCODE(VFAEZ_CC); 5924 OPCODE(VFEE_CC); 5925 OPCODE(VFEEZ_CC); 5926 OPCODE(VFENE_CC); 5927 OPCODE(VFENEZ_CC); 5928 OPCODE(VISTR_CC); 5929 OPCODE(VSTRC_CC); 5930 OPCODE(VSTRCZ_CC); 5931 OPCODE(VSTRS_CC); 5932 OPCODE(VSTRSZ_CC); 5933 OPCODE(TDC); 5934 OPCODE(ATOMIC_SWAPW); 5935 OPCODE(ATOMIC_LOADW_ADD); 5936 OPCODE(ATOMIC_LOADW_SUB); 5937 OPCODE(ATOMIC_LOADW_AND); 5938 OPCODE(ATOMIC_LOADW_OR); 5939 OPCODE(ATOMIC_LOADW_XOR); 5940 OPCODE(ATOMIC_LOADW_NAND); 5941 OPCODE(ATOMIC_LOADW_MIN); 5942 OPCODE(ATOMIC_LOADW_MAX); 5943 OPCODE(ATOMIC_LOADW_UMIN); 5944 OPCODE(ATOMIC_LOADW_UMAX); 5945 OPCODE(ATOMIC_CMP_SWAPW); 5946 OPCODE(ATOMIC_CMP_SWAP); 5947 OPCODE(ATOMIC_LOAD_128); 5948 OPCODE(ATOMIC_STORE_128); 5949 OPCODE(ATOMIC_CMP_SWAP_128); 5950 OPCODE(LRV); 5951 OPCODE(STRV); 5952 OPCODE(VLER); 5953 OPCODE(VSTER); 5954 OPCODE(PREFETCH); 5955 } 5956 return nullptr; 5957 #undef OPCODE 5958 } 5959 5960 // Return true if VT is a vector whose elements are a whole number of bytes 5961 // in width. Also check for presence of vector support. 5962 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5963 if (!Subtarget.hasVector()) 5964 return false; 5965 5966 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5967 } 5968 5969 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5970 // producing a result of type ResVT. Op is a possibly bitcast version 5971 // of the input vector and Index is the index (based on type VecVT) that 5972 // should be extracted. Return the new extraction if a simplification 5973 // was possible or if Force is true. 5974 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5975 EVT VecVT, SDValue Op, 5976 unsigned Index, 5977 DAGCombinerInfo &DCI, 5978 bool Force) const { 5979 SelectionDAG &DAG = DCI.DAG; 5980 5981 // The number of bytes being extracted. 5982 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5983 5984 for (;;) { 5985 unsigned Opcode = Op.getOpcode(); 5986 if (Opcode == ISD::BITCAST) 5987 // Look through bitcasts. 5988 Op = Op.getOperand(0); 5989 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5990 canTreatAsByteVector(Op.getValueType())) { 5991 // Get a VPERM-like permute mask and see whether the bytes covered 5992 // by the extracted element are a contiguous sequence from one 5993 // source operand. 5994 SmallVector<int, SystemZ::VectorBytes> Bytes; 5995 if (!getVPermMask(Op, Bytes)) 5996 break; 5997 int First; 5998 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5999 BytesPerElement, First)) 6000 break; 6001 if (First < 0) 6002 return DAG.getUNDEF(ResVT); 6003 // Make sure the contiguous sequence starts at a multiple of the 6004 // original element size. 6005 unsigned Byte = unsigned(First) % Bytes.size(); 6006 if (Byte % BytesPerElement != 0) 6007 break; 6008 // We can get the extracted value directly from an input. 6009 Index = Byte / BytesPerElement; 6010 Op = Op.getOperand(unsigned(First) / Bytes.size()); 6011 Force = true; 6012 } else if (Opcode == ISD::BUILD_VECTOR && 6013 canTreatAsByteVector(Op.getValueType())) { 6014 // We can only optimize this case if the BUILD_VECTOR elements are 6015 // at least as wide as the extracted value. 6016 EVT OpVT = Op.getValueType(); 6017 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 6018 if (OpBytesPerElement < BytesPerElement) 6019 break; 6020 // Make sure that the least-significant bit of the extracted value 6021 // is the least significant bit of an input. 6022 unsigned End = (Index + 1) * BytesPerElement; 6023 if (End % OpBytesPerElement != 0) 6024 break; 6025 // We're extracting the low part of one operand of the BUILD_VECTOR. 6026 Op = Op.getOperand(End / OpBytesPerElement - 1); 6027 if (!Op.getValueType().isInteger()) { 6028 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 6029 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 6030 DCI.AddToWorklist(Op.getNode()); 6031 } 6032 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 6033 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 6034 if (VT != ResVT) { 6035 DCI.AddToWorklist(Op.getNode()); 6036 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 6037 } 6038 return Op; 6039 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 6040 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 6041 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 6042 canTreatAsByteVector(Op.getValueType()) && 6043 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 6044 // Make sure that only the unextended bits are significant. 6045 EVT ExtVT = Op.getValueType(); 6046 EVT OpVT = Op.getOperand(0).getValueType(); 6047 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 6048 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 6049 unsigned Byte = Index * BytesPerElement; 6050 unsigned SubByte = Byte % ExtBytesPerElement; 6051 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 6052 if (SubByte < MinSubByte || 6053 SubByte + BytesPerElement > ExtBytesPerElement) 6054 break; 6055 // Get the byte offset of the unextended element 6056 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 6057 // ...then add the byte offset relative to that element. 6058 Byte += SubByte - MinSubByte; 6059 if (Byte % BytesPerElement != 0) 6060 break; 6061 Op = Op.getOperand(0); 6062 Index = Byte / BytesPerElement; 6063 Force = true; 6064 } else 6065 break; 6066 } 6067 if (Force) { 6068 if (Op.getValueType() != VecVT) { 6069 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 6070 DCI.AddToWorklist(Op.getNode()); 6071 } 6072 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 6073 DAG.getConstant(Index, DL, MVT::i32)); 6074 } 6075 return SDValue(); 6076 } 6077 6078 // Optimize vector operations in scalar value Op on the basis that Op 6079 // is truncated to TruncVT. 6080 SDValue SystemZTargetLowering::combineTruncateExtract( 6081 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 6082 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 6083 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 6084 // of type TruncVT. 6085 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6086 TruncVT.getSizeInBits() % 8 == 0) { 6087 SDValue Vec = Op.getOperand(0); 6088 EVT VecVT = Vec.getValueType(); 6089 if (canTreatAsByteVector(VecVT)) { 6090 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6091 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 6092 unsigned TruncBytes = TruncVT.getStoreSize(); 6093 if (BytesPerElement % TruncBytes == 0) { 6094 // Calculate the value of Y' in the above description. We are 6095 // splitting the original elements into Scale equal-sized pieces 6096 // and for truncation purposes want the last (least-significant) 6097 // of these pieces for IndexN. This is easiest to do by calculating 6098 // the start index of the following element and then subtracting 1. 6099 unsigned Scale = BytesPerElement / TruncBytes; 6100 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 6101 6102 // Defer the creation of the bitcast from X to combineExtract, 6103 // which might be able to optimize the extraction. 6104 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 6105 VecVT.getStoreSize() / TruncBytes); 6106 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 6107 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 6108 } 6109 } 6110 } 6111 } 6112 return SDValue(); 6113 } 6114 6115 SDValue SystemZTargetLowering::combineZERO_EXTEND( 6116 SDNode *N, DAGCombinerInfo &DCI) const { 6117 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 6118 SelectionDAG &DAG = DCI.DAG; 6119 SDValue N0 = N->getOperand(0); 6120 EVT VT = N->getValueType(0); 6121 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 6122 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 6123 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6124 if (TrueOp && FalseOp) { 6125 SDLoc DL(N0); 6126 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 6127 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 6128 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 6129 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 6130 // If N0 has multiple uses, change other uses as well. 6131 if (!N0.hasOneUse()) { 6132 SDValue TruncSelect = 6133 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 6134 DCI.CombineTo(N0.getNode(), TruncSelect); 6135 } 6136 return NewSelect; 6137 } 6138 } 6139 return SDValue(); 6140 } 6141 6142 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 6143 SDNode *N, DAGCombinerInfo &DCI) const { 6144 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 6145 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 6146 // into (select_cc LHS, RHS, -1, 0, COND) 6147 SelectionDAG &DAG = DCI.DAG; 6148 SDValue N0 = N->getOperand(0); 6149 EVT VT = N->getValueType(0); 6150 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6151 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 6152 N0 = N0.getOperand(0); 6153 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 6154 SDLoc DL(N0); 6155 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 6156 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 6157 N0.getOperand(2) }; 6158 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 6159 } 6160 return SDValue(); 6161 } 6162 6163 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 6164 SDNode *N, DAGCombinerInfo &DCI) const { 6165 // Convert (sext (ashr (shl X, C1), C2)) to 6166 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 6167 // cheap as narrower ones. 6168 SelectionDAG &DAG = DCI.DAG; 6169 SDValue N0 = N->getOperand(0); 6170 EVT VT = N->getValueType(0); 6171 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 6172 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6173 SDValue Inner = N0.getOperand(0); 6174 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 6175 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 6176 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 6177 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 6178 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 6179 EVT ShiftVT = N0.getOperand(1).getValueType(); 6180 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 6181 Inner.getOperand(0)); 6182 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 6183 DAG.getConstant(NewShlAmt, SDLoc(Inner), 6184 ShiftVT)); 6185 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 6186 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 6187 } 6188 } 6189 } 6190 return SDValue(); 6191 } 6192 6193 SDValue SystemZTargetLowering::combineMERGE( 6194 SDNode *N, DAGCombinerInfo &DCI) const { 6195 SelectionDAG &DAG = DCI.DAG; 6196 unsigned Opcode = N->getOpcode(); 6197 SDValue Op0 = N->getOperand(0); 6198 SDValue Op1 = N->getOperand(1); 6199 if (Op0.getOpcode() == ISD::BITCAST) 6200 Op0 = Op0.getOperand(0); 6201 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 6202 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 6203 // for v4f32. 6204 if (Op1 == N->getOperand(0)) 6205 return Op1; 6206 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 6207 EVT VT = Op1.getValueType(); 6208 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 6209 if (ElemBytes <= 4) { 6210 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 6211 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 6212 EVT InVT = VT.changeVectorElementTypeToInteger(); 6213 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 6214 SystemZ::VectorBytes / ElemBytes / 2); 6215 if (VT != InVT) { 6216 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 6217 DCI.AddToWorklist(Op1.getNode()); 6218 } 6219 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 6220 DCI.AddToWorklist(Op.getNode()); 6221 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 6222 } 6223 } 6224 return SDValue(); 6225 } 6226 6227 SDValue SystemZTargetLowering::combineLOAD( 6228 SDNode *N, DAGCombinerInfo &DCI) const { 6229 SelectionDAG &DAG = DCI.DAG; 6230 EVT LdVT = N->getValueType(0); 6231 if (LdVT.isVector() || LdVT.isInteger()) 6232 return SDValue(); 6233 // Transform a scalar load that is REPLICATEd as well as having other 6234 // use(s) to the form where the other use(s) use the first element of the 6235 // REPLICATE instead of the load. Otherwise instruction selection will not 6236 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 6237 // point loads. 6238 6239 SDValue Replicate; 6240 SmallVector<SDNode*, 8> OtherUses; 6241 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6242 UI != UE; ++UI) { 6243 if (UI->getOpcode() == SystemZISD::REPLICATE) { 6244 if (Replicate) 6245 return SDValue(); // Should never happen 6246 Replicate = SDValue(*UI, 0); 6247 } 6248 else if (UI.getUse().getResNo() == 0) 6249 OtherUses.push_back(*UI); 6250 } 6251 if (!Replicate || OtherUses.empty()) 6252 return SDValue(); 6253 6254 SDLoc DL(N); 6255 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 6256 Replicate, DAG.getConstant(0, DL, MVT::i32)); 6257 // Update uses of the loaded Value while preserving old chains. 6258 for (SDNode *U : OtherUses) { 6259 SmallVector<SDValue, 8> Ops; 6260 for (SDValue Op : U->ops()) 6261 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 6262 DAG.UpdateNodeOperands(U, Ops); 6263 } 6264 return SDValue(N, 0); 6265 } 6266 6267 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 6268 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 6269 return true; 6270 if (Subtarget.hasVectorEnhancements2()) 6271 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 6272 return true; 6273 return false; 6274 } 6275 6276 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 6277 if (!VT.isVector() || !VT.isSimple() || 6278 VT.getSizeInBits() != 128 || 6279 VT.getScalarSizeInBits() % 8 != 0) 6280 return false; 6281 6282 unsigned NumElts = VT.getVectorNumElements(); 6283 for (unsigned i = 0; i < NumElts; ++i) { 6284 if (M[i] < 0) continue; // ignore UNDEF indices 6285 if ((unsigned) M[i] != NumElts - 1 - i) 6286 return false; 6287 } 6288 6289 return true; 6290 } 6291 6292 SDValue SystemZTargetLowering::combineSTORE( 6293 SDNode *N, DAGCombinerInfo &DCI) const { 6294 SelectionDAG &DAG = DCI.DAG; 6295 auto *SN = cast<StoreSDNode>(N); 6296 auto &Op1 = N->getOperand(1); 6297 EVT MemVT = SN->getMemoryVT(); 6298 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 6299 // for the extraction to be done on a vMiN value, so that we can use VSTE. 6300 // If X has wider elements then convert it to: 6301 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 6302 if (MemVT.isInteger() && SN->isTruncatingStore()) { 6303 if (SDValue Value = 6304 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 6305 DCI.AddToWorklist(Value.getNode()); 6306 6307 // Rewrite the store with the new form of stored value. 6308 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 6309 SN->getBasePtr(), SN->getMemoryVT(), 6310 SN->getMemOperand()); 6311 } 6312 } 6313 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 6314 if (!SN->isTruncatingStore() && 6315 Op1.getOpcode() == ISD::BSWAP && 6316 Op1.getNode()->hasOneUse() && 6317 canLoadStoreByteSwapped(Op1.getValueType())) { 6318 6319 SDValue BSwapOp = Op1.getOperand(0); 6320 6321 if (BSwapOp.getValueType() == MVT::i16) 6322 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 6323 6324 SDValue Ops[] = { 6325 N->getOperand(0), BSwapOp, N->getOperand(2) 6326 }; 6327 6328 return 6329 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 6330 Ops, MemVT, SN->getMemOperand()); 6331 } 6332 // Combine STORE (element-swap) into VSTER 6333 if (!SN->isTruncatingStore() && 6334 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 6335 Op1.getNode()->hasOneUse() && 6336 Subtarget.hasVectorEnhancements2()) { 6337 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 6338 ArrayRef<int> ShuffleMask = SVN->getMask(); 6339 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 6340 SDValue Ops[] = { 6341 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 6342 }; 6343 6344 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 6345 DAG.getVTList(MVT::Other), 6346 Ops, MemVT, SN->getMemOperand()); 6347 } 6348 } 6349 6350 return SDValue(); 6351 } 6352 6353 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 6354 SDNode *N, DAGCombinerInfo &DCI) const { 6355 SelectionDAG &DAG = DCI.DAG; 6356 // Combine element-swap (LOAD) into VLER 6357 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6358 N->getOperand(0).hasOneUse() && 6359 Subtarget.hasVectorEnhancements2()) { 6360 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 6361 ArrayRef<int> ShuffleMask = SVN->getMask(); 6362 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 6363 SDValue Load = N->getOperand(0); 6364 LoadSDNode *LD = cast<LoadSDNode>(Load); 6365 6366 // Create the element-swapping load. 6367 SDValue Ops[] = { 6368 LD->getChain(), // Chain 6369 LD->getBasePtr() // Ptr 6370 }; 6371 SDValue ESLoad = 6372 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 6373 DAG.getVTList(LD->getValueType(0), MVT::Other), 6374 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6375 6376 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 6377 // by the load dead. 6378 DCI.CombineTo(N, ESLoad); 6379 6380 // Next, combine the load away, we give it a bogus result value but a real 6381 // chain result. The result value is dead because the shuffle is dead. 6382 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 6383 6384 // Return N so it doesn't get rechecked! 6385 return SDValue(N, 0); 6386 } 6387 } 6388 6389 return SDValue(); 6390 } 6391 6392 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 6393 SDNode *N, DAGCombinerInfo &DCI) const { 6394 SelectionDAG &DAG = DCI.DAG; 6395 6396 if (!Subtarget.hasVector()) 6397 return SDValue(); 6398 6399 // Look through bitcasts that retain the number of vector elements. 6400 SDValue Op = N->getOperand(0); 6401 if (Op.getOpcode() == ISD::BITCAST && 6402 Op.getValueType().isVector() && 6403 Op.getOperand(0).getValueType().isVector() && 6404 Op.getValueType().getVectorNumElements() == 6405 Op.getOperand(0).getValueType().getVectorNumElements()) 6406 Op = Op.getOperand(0); 6407 6408 // Pull BSWAP out of a vector extraction. 6409 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 6410 EVT VecVT = Op.getValueType(); 6411 EVT EltVT = VecVT.getVectorElementType(); 6412 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 6413 Op.getOperand(0), N->getOperand(1)); 6414 DCI.AddToWorklist(Op.getNode()); 6415 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 6416 if (EltVT != N->getValueType(0)) { 6417 DCI.AddToWorklist(Op.getNode()); 6418 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 6419 } 6420 return Op; 6421 } 6422 6423 // Try to simplify a vector extraction. 6424 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 6425 SDValue Op0 = N->getOperand(0); 6426 EVT VecVT = Op0.getValueType(); 6427 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 6428 IndexN->getZExtValue(), DCI, false); 6429 } 6430 return SDValue(); 6431 } 6432 6433 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 6434 SDNode *N, DAGCombinerInfo &DCI) const { 6435 SelectionDAG &DAG = DCI.DAG; 6436 // (join_dwords X, X) == (replicate X) 6437 if (N->getOperand(0) == N->getOperand(1)) 6438 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 6439 N->getOperand(0)); 6440 return SDValue(); 6441 } 6442 6443 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 6444 SDValue Chain1 = N1->getOperand(0); 6445 SDValue Chain2 = N2->getOperand(0); 6446 6447 // Trivial case: both nodes take the same chain. 6448 if (Chain1 == Chain2) 6449 return Chain1; 6450 6451 // FIXME - we could handle more complex cases via TokenFactor, 6452 // assuming we can verify that this would not create a cycle. 6453 return SDValue(); 6454 } 6455 6456 SDValue SystemZTargetLowering::combineFP_ROUND( 6457 SDNode *N, DAGCombinerInfo &DCI) const { 6458 6459 if (!Subtarget.hasVector()) 6460 return SDValue(); 6461 6462 // (fpround (extract_vector_elt X 0)) 6463 // (fpround (extract_vector_elt X 1)) -> 6464 // (extract_vector_elt (VROUND X) 0) 6465 // (extract_vector_elt (VROUND X) 2) 6466 // 6467 // This is a special case since the target doesn't really support v2f32s. 6468 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6469 SelectionDAG &DAG = DCI.DAG; 6470 SDValue Op0 = N->getOperand(OpNo); 6471 if (N->getValueType(0) == MVT::f32 && 6472 Op0.hasOneUse() && 6473 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6474 Op0.getOperand(0).getValueType() == MVT::v2f64 && 6475 Op0.getOperand(1).getOpcode() == ISD::Constant && 6476 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6477 SDValue Vec = Op0.getOperand(0); 6478 for (auto *U : Vec->uses()) { 6479 if (U != Op0.getNode() && 6480 U->hasOneUse() && 6481 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6482 U->getOperand(0) == Vec && 6483 U->getOperand(1).getOpcode() == ISD::Constant && 6484 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 6485 SDValue OtherRound = SDValue(*U->use_begin(), 0); 6486 if (OtherRound.getOpcode() == N->getOpcode() && 6487 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 6488 OtherRound.getValueType() == MVT::f32) { 6489 SDValue VRound, Chain; 6490 if (N->isStrictFPOpcode()) { 6491 Chain = MergeInputChains(N, OtherRound.getNode()); 6492 if (!Chain) 6493 continue; 6494 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 6495 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 6496 Chain = VRound.getValue(1); 6497 } else 6498 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 6499 MVT::v4f32, Vec); 6500 DCI.AddToWorklist(VRound.getNode()); 6501 SDValue Extract1 = 6502 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 6503 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 6504 DCI.AddToWorklist(Extract1.getNode()); 6505 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6506 if (Chain) 6507 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 6508 SDValue Extract0 = 6509 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 6510 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6511 if (Chain) 6512 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6513 N->getVTList(), Extract0, Chain); 6514 return Extract0; 6515 } 6516 } 6517 } 6518 } 6519 return SDValue(); 6520 } 6521 6522 SDValue SystemZTargetLowering::combineFP_EXTEND( 6523 SDNode *N, DAGCombinerInfo &DCI) const { 6524 6525 if (!Subtarget.hasVector()) 6526 return SDValue(); 6527 6528 // (fpextend (extract_vector_elt X 0)) 6529 // (fpextend (extract_vector_elt X 2)) -> 6530 // (extract_vector_elt (VEXTEND X) 0) 6531 // (extract_vector_elt (VEXTEND X) 1) 6532 // 6533 // This is a special case since the target doesn't really support v2f32s. 6534 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6535 SelectionDAG &DAG = DCI.DAG; 6536 SDValue Op0 = N->getOperand(OpNo); 6537 if (N->getValueType(0) == MVT::f64 && 6538 Op0.hasOneUse() && 6539 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6540 Op0.getOperand(0).getValueType() == MVT::v4f32 && 6541 Op0.getOperand(1).getOpcode() == ISD::Constant && 6542 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6543 SDValue Vec = Op0.getOperand(0); 6544 for (auto *U : Vec->uses()) { 6545 if (U != Op0.getNode() && 6546 U->hasOneUse() && 6547 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6548 U->getOperand(0) == Vec && 6549 U->getOperand(1).getOpcode() == ISD::Constant && 6550 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 6551 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6552 if (OtherExtend.getOpcode() == N->getOpcode() && 6553 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 6554 OtherExtend.getValueType() == MVT::f64) { 6555 SDValue VExtend, Chain; 6556 if (N->isStrictFPOpcode()) { 6557 Chain = MergeInputChains(N, OtherExtend.getNode()); 6558 if (!Chain) 6559 continue; 6560 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6561 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6562 Chain = VExtend.getValue(1); 6563 } else 6564 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 6565 MVT::v2f64, Vec); 6566 DCI.AddToWorklist(VExtend.getNode()); 6567 SDValue Extract1 = 6568 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 6569 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 6570 DCI.AddToWorklist(Extract1.getNode()); 6571 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6572 if (Chain) 6573 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 6574 SDValue Extract0 = 6575 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 6576 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6577 if (Chain) 6578 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6579 N->getVTList(), Extract0, Chain); 6580 return Extract0; 6581 } 6582 } 6583 } 6584 } 6585 return SDValue(); 6586 } 6587 6588 SDValue SystemZTargetLowering::combineINT_TO_FP( 6589 SDNode *N, DAGCombinerInfo &DCI) const { 6590 if (DCI.Level != BeforeLegalizeTypes) 6591 return SDValue(); 6592 unsigned Opcode = N->getOpcode(); 6593 EVT OutVT = N->getValueType(0); 6594 SelectionDAG &DAG = DCI.DAG; 6595 SDValue Op = N->getOperand(0); 6596 unsigned OutScalarBits = OutVT.getScalarSizeInBits(); 6597 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 6598 6599 // Insert an extension before type-legalization to avoid scalarization, e.g.: 6600 // v2f64 = uint_to_fp v2i16 6601 // => 6602 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 6603 if (OutVT.isVector() && OutScalarBits > InScalarBits) { 6604 MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()), 6605 OutVT.getVectorNumElements()); 6606 unsigned ExtOpcode = 6607 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 6608 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 6609 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 6610 } 6611 return SDValue(); 6612 } 6613 6614 SDValue SystemZTargetLowering::combineBSWAP( 6615 SDNode *N, DAGCombinerInfo &DCI) const { 6616 SelectionDAG &DAG = DCI.DAG; 6617 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6618 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6619 N->getOperand(0).hasOneUse() && 6620 canLoadStoreByteSwapped(N->getValueType(0))) { 6621 SDValue Load = N->getOperand(0); 6622 LoadSDNode *LD = cast<LoadSDNode>(Load); 6623 6624 // Create the byte-swapping load. 6625 SDValue Ops[] = { 6626 LD->getChain(), // Chain 6627 LD->getBasePtr() // Ptr 6628 }; 6629 EVT LoadVT = N->getValueType(0); 6630 if (LoadVT == MVT::i16) 6631 LoadVT = MVT::i32; 6632 SDValue BSLoad = 6633 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6634 DAG.getVTList(LoadVT, MVT::Other), 6635 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6636 6637 // If this is an i16 load, insert the truncate. 6638 SDValue ResVal = BSLoad; 6639 if (N->getValueType(0) == MVT::i16) 6640 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6641 6642 // First, combine the bswap away. This makes the value produced by the 6643 // load dead. 6644 DCI.CombineTo(N, ResVal); 6645 6646 // Next, combine the load away, we give it a bogus result value but a real 6647 // chain result. The result value is dead because the bswap is dead. 6648 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6649 6650 // Return N so it doesn't get rechecked! 6651 return SDValue(N, 0); 6652 } 6653 6654 // Look through bitcasts that retain the number of vector elements. 6655 SDValue Op = N->getOperand(0); 6656 if (Op.getOpcode() == ISD::BITCAST && 6657 Op.getValueType().isVector() && 6658 Op.getOperand(0).getValueType().isVector() && 6659 Op.getValueType().getVectorNumElements() == 6660 Op.getOperand(0).getValueType().getVectorNumElements()) 6661 Op = Op.getOperand(0); 6662 6663 // Push BSWAP into a vector insertion if at least one side then simplifies. 6664 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6665 SDValue Vec = Op.getOperand(0); 6666 SDValue Elt = Op.getOperand(1); 6667 SDValue Idx = Op.getOperand(2); 6668 6669 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6670 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6671 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6672 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6673 (canLoadStoreByteSwapped(N->getValueType(0)) && 6674 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6675 EVT VecVT = N->getValueType(0); 6676 EVT EltVT = N->getValueType(0).getVectorElementType(); 6677 if (VecVT != Vec.getValueType()) { 6678 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6679 DCI.AddToWorklist(Vec.getNode()); 6680 } 6681 if (EltVT != Elt.getValueType()) { 6682 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6683 DCI.AddToWorklist(Elt.getNode()); 6684 } 6685 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6686 DCI.AddToWorklist(Vec.getNode()); 6687 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6688 DCI.AddToWorklist(Elt.getNode()); 6689 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6690 Vec, Elt, Idx); 6691 } 6692 } 6693 6694 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6695 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6696 if (SV && Op.hasOneUse()) { 6697 SDValue Op0 = Op.getOperand(0); 6698 SDValue Op1 = Op.getOperand(1); 6699 6700 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6701 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6702 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6703 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6704 EVT VecVT = N->getValueType(0); 6705 if (VecVT != Op0.getValueType()) { 6706 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6707 DCI.AddToWorklist(Op0.getNode()); 6708 } 6709 if (VecVT != Op1.getValueType()) { 6710 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6711 DCI.AddToWorklist(Op1.getNode()); 6712 } 6713 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6714 DCI.AddToWorklist(Op0.getNode()); 6715 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6716 DCI.AddToWorklist(Op1.getNode()); 6717 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6718 } 6719 } 6720 6721 return SDValue(); 6722 } 6723 6724 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6725 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6726 // set by the CCReg instruction using the CCValid / CCMask masks, 6727 // If the CCReg instruction is itself a ICMP testing the condition 6728 // code set by some other instruction, see whether we can directly 6729 // use that condition code. 6730 6731 // Verify that we have an ICMP against some constant. 6732 if (CCValid != SystemZ::CCMASK_ICMP) 6733 return false; 6734 auto *ICmp = CCReg.getNode(); 6735 if (ICmp->getOpcode() != SystemZISD::ICMP) 6736 return false; 6737 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6738 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6739 if (!CompareRHS) 6740 return false; 6741 6742 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6743 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6744 // Verify that we have an appropriate mask for a EQ or NE comparison. 6745 bool Invert = false; 6746 if (CCMask == SystemZ::CCMASK_CMP_NE) 6747 Invert = !Invert; 6748 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6749 return false; 6750 6751 // Verify that the ICMP compares against one of select values. 6752 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6753 if (!TrueVal) 6754 return false; 6755 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6756 if (!FalseVal) 6757 return false; 6758 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6759 Invert = !Invert; 6760 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6761 return false; 6762 6763 // Compute the effective CC mask for the new branch or select. 6764 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6765 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6766 if (!NewCCValid || !NewCCMask) 6767 return false; 6768 CCValid = NewCCValid->getZExtValue(); 6769 CCMask = NewCCMask->getZExtValue(); 6770 if (Invert) 6771 CCMask ^= CCValid; 6772 6773 // Return the updated CCReg link. 6774 CCReg = CompareLHS->getOperand(4); 6775 return true; 6776 } 6777 6778 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6779 if (CompareLHS->getOpcode() == ISD::SRA) { 6780 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6781 if (!SRACount || SRACount->getZExtValue() != 30) 6782 return false; 6783 auto *SHL = CompareLHS->getOperand(0).getNode(); 6784 if (SHL->getOpcode() != ISD::SHL) 6785 return false; 6786 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6787 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6788 return false; 6789 auto *IPM = SHL->getOperand(0).getNode(); 6790 if (IPM->getOpcode() != SystemZISD::IPM) 6791 return false; 6792 6793 // Avoid introducing CC spills (because SRA would clobber CC). 6794 if (!CompareLHS->hasOneUse()) 6795 return false; 6796 // Verify that the ICMP compares against zero. 6797 if (CompareRHS->getZExtValue() != 0) 6798 return false; 6799 6800 // Compute the effective CC mask for the new branch or select. 6801 CCMask = SystemZ::reverseCCMask(CCMask); 6802 6803 // Return the updated CCReg link. 6804 CCReg = IPM->getOperand(0); 6805 return true; 6806 } 6807 6808 return false; 6809 } 6810 6811 SDValue SystemZTargetLowering::combineBR_CCMASK( 6812 SDNode *N, DAGCombinerInfo &DCI) const { 6813 SelectionDAG &DAG = DCI.DAG; 6814 6815 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6816 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6817 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6818 if (!CCValid || !CCMask) 6819 return SDValue(); 6820 6821 int CCValidVal = CCValid->getZExtValue(); 6822 int CCMaskVal = CCMask->getZExtValue(); 6823 SDValue Chain = N->getOperand(0); 6824 SDValue CCReg = N->getOperand(4); 6825 6826 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6827 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6828 Chain, 6829 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6830 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6831 N->getOperand(3), CCReg); 6832 return SDValue(); 6833 } 6834 6835 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6836 SDNode *N, DAGCombinerInfo &DCI) const { 6837 SelectionDAG &DAG = DCI.DAG; 6838 6839 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6840 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6841 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6842 if (!CCValid || !CCMask) 6843 return SDValue(); 6844 6845 int CCValidVal = CCValid->getZExtValue(); 6846 int CCMaskVal = CCMask->getZExtValue(); 6847 SDValue CCReg = N->getOperand(4); 6848 6849 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6850 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6851 N->getOperand(0), N->getOperand(1), 6852 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6853 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6854 CCReg); 6855 return SDValue(); 6856 } 6857 6858 6859 SDValue SystemZTargetLowering::combineGET_CCMASK( 6860 SDNode *N, DAGCombinerInfo &DCI) const { 6861 6862 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6863 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6864 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6865 if (!CCValid || !CCMask) 6866 return SDValue(); 6867 int CCValidVal = CCValid->getZExtValue(); 6868 int CCMaskVal = CCMask->getZExtValue(); 6869 6870 SDValue Select = N->getOperand(0); 6871 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6872 return SDValue(); 6873 6874 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6875 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6876 if (!SelectCCValid || !SelectCCMask) 6877 return SDValue(); 6878 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6879 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6880 6881 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6882 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6883 if (!TrueVal || !FalseVal) 6884 return SDValue(); 6885 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6886 ; 6887 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6888 SelectCCMaskVal ^= SelectCCValidVal; 6889 else 6890 return SDValue(); 6891 6892 if (SelectCCValidVal & ~CCValidVal) 6893 return SDValue(); 6894 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6895 return SDValue(); 6896 6897 return Select->getOperand(4); 6898 } 6899 6900 SDValue SystemZTargetLowering::combineIntDIVREM( 6901 SDNode *N, DAGCombinerInfo &DCI) const { 6902 SelectionDAG &DAG = DCI.DAG; 6903 EVT VT = N->getValueType(0); 6904 // In the case where the divisor is a vector of constants a cheaper 6905 // sequence of instructions can replace the divide. BuildSDIV is called to 6906 // do this during DAG combining, but it only succeeds when it can build a 6907 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6908 // since it is not Legal but Custom it can only happen before 6909 // legalization. Therefore we must scalarize this early before Combine 6910 // 1. For widened vectors, this is already the result of type legalization. 6911 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6912 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6913 return DAG.UnrollVectorOp(N); 6914 return SDValue(); 6915 } 6916 6917 SDValue SystemZTargetLowering::combineINTRINSIC( 6918 SDNode *N, DAGCombinerInfo &DCI) const { 6919 SelectionDAG &DAG = DCI.DAG; 6920 6921 unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 6922 switch (Id) { 6923 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 6924 // or larger is simply a vector load. 6925 case Intrinsic::s390_vll: 6926 case Intrinsic::s390_vlrl: 6927 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 6928 if (C->getZExtValue() >= 15) 6929 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 6930 N->getOperand(3), MachinePointerInfo()); 6931 break; 6932 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 6933 case Intrinsic::s390_vstl: 6934 case Intrinsic::s390_vstrl: 6935 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 6936 if (C->getZExtValue() >= 15) 6937 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 6938 N->getOperand(4), MachinePointerInfo()); 6939 break; 6940 } 6941 6942 return SDValue(); 6943 } 6944 6945 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6946 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6947 return N->getOperand(0); 6948 return N; 6949 } 6950 6951 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6952 DAGCombinerInfo &DCI) const { 6953 switch(N->getOpcode()) { 6954 default: break; 6955 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6956 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6957 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6958 case SystemZISD::MERGE_HIGH: 6959 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6960 case ISD::LOAD: return combineLOAD(N, DCI); 6961 case ISD::STORE: return combineSTORE(N, DCI); 6962 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6963 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6964 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6965 case ISD::STRICT_FP_ROUND: 6966 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6967 case ISD::STRICT_FP_EXTEND: 6968 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6969 case ISD::SINT_TO_FP: 6970 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 6971 case ISD::BSWAP: return combineBSWAP(N, DCI); 6972 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6973 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6974 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6975 case ISD::SDIV: 6976 case ISD::UDIV: 6977 case ISD::SREM: 6978 case ISD::UREM: return combineIntDIVREM(N, DCI); 6979 case ISD::INTRINSIC_W_CHAIN: 6980 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 6981 } 6982 6983 return SDValue(); 6984 } 6985 6986 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6987 // are for Op. 6988 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6989 unsigned OpNo) { 6990 EVT VT = Op.getValueType(); 6991 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6992 APInt SrcDemE; 6993 unsigned Opcode = Op.getOpcode(); 6994 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6995 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6996 switch (Id) { 6997 case Intrinsic::s390_vpksh: // PACKS 6998 case Intrinsic::s390_vpksf: 6999 case Intrinsic::s390_vpksg: 7000 case Intrinsic::s390_vpkshs: // PACKS_CC 7001 case Intrinsic::s390_vpksfs: 7002 case Intrinsic::s390_vpksgs: 7003 case Intrinsic::s390_vpklsh: // PACKLS 7004 case Intrinsic::s390_vpklsf: 7005 case Intrinsic::s390_vpklsg: 7006 case Intrinsic::s390_vpklshs: // PACKLS_CC 7007 case Intrinsic::s390_vpklsfs: 7008 case Intrinsic::s390_vpklsgs: 7009 // VECTOR PACK truncates the elements of two source vectors into one. 7010 SrcDemE = DemandedElts; 7011 if (OpNo == 2) 7012 SrcDemE.lshrInPlace(NumElts / 2); 7013 SrcDemE = SrcDemE.trunc(NumElts / 2); 7014 break; 7015 // VECTOR UNPACK extends half the elements of the source vector. 7016 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7017 case Intrinsic::s390_vuphh: 7018 case Intrinsic::s390_vuphf: 7019 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 7020 case Intrinsic::s390_vuplhh: 7021 case Intrinsic::s390_vuplhf: 7022 SrcDemE = APInt(NumElts * 2, 0); 7023 SrcDemE.insertBits(DemandedElts, 0); 7024 break; 7025 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7026 case Intrinsic::s390_vuplhw: 7027 case Intrinsic::s390_vuplf: 7028 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 7029 case Intrinsic::s390_vupllh: 7030 case Intrinsic::s390_vupllf: 7031 SrcDemE = APInt(NumElts * 2, 0); 7032 SrcDemE.insertBits(DemandedElts, NumElts); 7033 break; 7034 case Intrinsic::s390_vpdi: { 7035 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 7036 SrcDemE = APInt(NumElts, 0); 7037 if (!DemandedElts[OpNo - 1]) 7038 break; 7039 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 7040 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 7041 // Demand input element 0 or 1, given by the mask bit value. 7042 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 7043 break; 7044 } 7045 case Intrinsic::s390_vsldb: { 7046 // VECTOR SHIFT LEFT DOUBLE BY BYTE 7047 assert(VT == MVT::v16i8 && "Unexpected type."); 7048 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 7049 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 7050 unsigned NumSrc0Els = 16 - FirstIdx; 7051 SrcDemE = APInt(NumElts, 0); 7052 if (OpNo == 1) { 7053 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 7054 SrcDemE.insertBits(DemEls, FirstIdx); 7055 } else { 7056 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 7057 SrcDemE.insertBits(DemEls, 0); 7058 } 7059 break; 7060 } 7061 case Intrinsic::s390_vperm: 7062 SrcDemE = APInt(NumElts, 1); 7063 break; 7064 default: 7065 llvm_unreachable("Unhandled intrinsic."); 7066 break; 7067 } 7068 } else { 7069 switch (Opcode) { 7070 case SystemZISD::JOIN_DWORDS: 7071 // Scalar operand. 7072 SrcDemE = APInt(1, 1); 7073 break; 7074 case SystemZISD::SELECT_CCMASK: 7075 SrcDemE = DemandedElts; 7076 break; 7077 default: 7078 llvm_unreachable("Unhandled opcode."); 7079 break; 7080 } 7081 } 7082 return SrcDemE; 7083 } 7084 7085 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 7086 const APInt &DemandedElts, 7087 const SelectionDAG &DAG, unsigned Depth, 7088 unsigned OpNo) { 7089 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7090 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7091 KnownBits LHSKnown = 7092 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7093 KnownBits RHSKnown = 7094 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7095 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 7096 } 7097 7098 void 7099 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7100 KnownBits &Known, 7101 const APInt &DemandedElts, 7102 const SelectionDAG &DAG, 7103 unsigned Depth) const { 7104 Known.resetAll(); 7105 7106 // Intrinsic CC result is returned in the two low bits. 7107 unsigned tmp0, tmp1; // not used 7108 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 7109 Known.Zero.setBitsFrom(2); 7110 return; 7111 } 7112 EVT VT = Op.getValueType(); 7113 if (Op.getResNo() != 0 || VT == MVT::Untyped) 7114 return; 7115 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 7116 "KnownBits does not match VT in bitwidth"); 7117 assert ((!VT.isVector() || 7118 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 7119 "DemandedElts does not match VT number of elements"); 7120 unsigned BitWidth = Known.getBitWidth(); 7121 unsigned Opcode = Op.getOpcode(); 7122 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7123 bool IsLogical = false; 7124 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7125 switch (Id) { 7126 case Intrinsic::s390_vpksh: // PACKS 7127 case Intrinsic::s390_vpksf: 7128 case Intrinsic::s390_vpksg: 7129 case Intrinsic::s390_vpkshs: // PACKS_CC 7130 case Intrinsic::s390_vpksfs: 7131 case Intrinsic::s390_vpksgs: 7132 case Intrinsic::s390_vpklsh: // PACKLS 7133 case Intrinsic::s390_vpklsf: 7134 case Intrinsic::s390_vpklsg: 7135 case Intrinsic::s390_vpklshs: // PACKLS_CC 7136 case Intrinsic::s390_vpklsfs: 7137 case Intrinsic::s390_vpklsgs: 7138 case Intrinsic::s390_vpdi: 7139 case Intrinsic::s390_vsldb: 7140 case Intrinsic::s390_vperm: 7141 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 7142 break; 7143 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 7144 case Intrinsic::s390_vuplhh: 7145 case Intrinsic::s390_vuplhf: 7146 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 7147 case Intrinsic::s390_vupllh: 7148 case Intrinsic::s390_vupllf: 7149 IsLogical = true; 7150 LLVM_FALLTHROUGH; 7151 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7152 case Intrinsic::s390_vuphh: 7153 case Intrinsic::s390_vuphf: 7154 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7155 case Intrinsic::s390_vuplhw: 7156 case Intrinsic::s390_vuplf: { 7157 SDValue SrcOp = Op.getOperand(1); 7158 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 7159 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 7160 if (IsLogical) { 7161 Known = Known.zext(BitWidth); 7162 } else 7163 Known = Known.sext(BitWidth); 7164 break; 7165 } 7166 default: 7167 break; 7168 } 7169 } else { 7170 switch (Opcode) { 7171 case SystemZISD::JOIN_DWORDS: 7172 case SystemZISD::SELECT_CCMASK: 7173 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 7174 break; 7175 case SystemZISD::REPLICATE: { 7176 SDValue SrcOp = Op.getOperand(0); 7177 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 7178 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 7179 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 7180 break; 7181 } 7182 default: 7183 break; 7184 } 7185 } 7186 7187 // Known has the width of the source operand(s). Adjust if needed to match 7188 // the passed bitwidth. 7189 if (Known.getBitWidth() != BitWidth) 7190 Known = Known.anyextOrTrunc(BitWidth); 7191 } 7192 7193 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 7194 const SelectionDAG &DAG, unsigned Depth, 7195 unsigned OpNo) { 7196 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7197 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7198 if (LHS == 1) return 1; // Early out. 7199 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7200 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7201 if (RHS == 1) return 1; // Early out. 7202 unsigned Common = std::min(LHS, RHS); 7203 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 7204 EVT VT = Op.getValueType(); 7205 unsigned VTBits = VT.getScalarSizeInBits(); 7206 if (SrcBitWidth > VTBits) { // PACK 7207 unsigned SrcExtraBits = SrcBitWidth - VTBits; 7208 if (Common > SrcExtraBits) 7209 return (Common - SrcExtraBits); 7210 return 1; 7211 } 7212 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 7213 return Common; 7214 } 7215 7216 unsigned 7217 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 7218 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7219 unsigned Depth) const { 7220 if (Op.getResNo() != 0) 7221 return 1; 7222 unsigned Opcode = Op.getOpcode(); 7223 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7224 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7225 switch (Id) { 7226 case Intrinsic::s390_vpksh: // PACKS 7227 case Intrinsic::s390_vpksf: 7228 case Intrinsic::s390_vpksg: 7229 case Intrinsic::s390_vpkshs: // PACKS_CC 7230 case Intrinsic::s390_vpksfs: 7231 case Intrinsic::s390_vpksgs: 7232 case Intrinsic::s390_vpklsh: // PACKLS 7233 case Intrinsic::s390_vpklsf: 7234 case Intrinsic::s390_vpklsg: 7235 case Intrinsic::s390_vpklshs: // PACKLS_CC 7236 case Intrinsic::s390_vpklsfs: 7237 case Intrinsic::s390_vpklsgs: 7238 case Intrinsic::s390_vpdi: 7239 case Intrinsic::s390_vsldb: 7240 case Intrinsic::s390_vperm: 7241 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 7242 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7243 case Intrinsic::s390_vuphh: 7244 case Intrinsic::s390_vuphf: 7245 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7246 case Intrinsic::s390_vuplhw: 7247 case Intrinsic::s390_vuplf: { 7248 SDValue PackedOp = Op.getOperand(1); 7249 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 7250 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 7251 EVT VT = Op.getValueType(); 7252 unsigned VTBits = VT.getScalarSizeInBits(); 7253 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 7254 return Tmp; 7255 } 7256 default: 7257 break; 7258 } 7259 } else { 7260 switch (Opcode) { 7261 case SystemZISD::SELECT_CCMASK: 7262 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 7263 default: 7264 break; 7265 } 7266 } 7267 7268 return 1; 7269 } 7270 7271 unsigned 7272 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const { 7273 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7274 unsigned StackAlign = TFI->getStackAlignment(); 7275 assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && 7276 "Unexpected stack alignment"); 7277 // The default stack probe size is 4096 if the function has no 7278 // stack-probe-size attribute. 7279 unsigned StackProbeSize = 4096; 7280 const Function &Fn = MF.getFunction(); 7281 if (Fn.hasFnAttribute("stack-probe-size")) 7282 Fn.getFnAttribute("stack-probe-size") 7283 .getValueAsString() 7284 .getAsInteger(0, StackProbeSize); 7285 // Round down to the stack alignment. 7286 StackProbeSize &= ~(StackAlign - 1); 7287 return StackProbeSize ? StackProbeSize : StackAlign; 7288 } 7289 7290 //===----------------------------------------------------------------------===// 7291 // Custom insertion 7292 //===----------------------------------------------------------------------===// 7293 7294 // Force base value Base into a register before MI. Return the register. 7295 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 7296 const SystemZInstrInfo *TII) { 7297 MachineBasicBlock *MBB = MI.getParent(); 7298 MachineFunction &MF = *MBB->getParent(); 7299 MachineRegisterInfo &MRI = MF.getRegInfo(); 7300 7301 if (Base.isReg()) { 7302 // Copy Base into a new virtual register to help register coalescing in 7303 // cases with multiple uses. 7304 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7305 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg) 7306 .add(Base); 7307 return Reg; 7308 } 7309 7310 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7311 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 7312 .add(Base) 7313 .addImm(0) 7314 .addReg(0); 7315 return Reg; 7316 } 7317 7318 // The CC operand of MI might be missing a kill marker because there 7319 // were multiple uses of CC, and ISel didn't know which to mark. 7320 // Figure out whether MI should have had a kill marker. 7321 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 7322 // Scan forward through BB for a use/def of CC. 7323 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 7324 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 7325 const MachineInstr& mi = *miI; 7326 if (mi.readsRegister(SystemZ::CC)) 7327 return false; 7328 if (mi.definesRegister(SystemZ::CC)) 7329 break; // Should have kill-flag - update below. 7330 } 7331 7332 // If we hit the end of the block, check whether CC is live into a 7333 // successor. 7334 if (miI == MBB->end()) { 7335 for (const MachineBasicBlock *Succ : MBB->successors()) 7336 if (Succ->isLiveIn(SystemZ::CC)) 7337 return false; 7338 } 7339 7340 return true; 7341 } 7342 7343 // Return true if it is OK for this Select pseudo-opcode to be cascaded 7344 // together with other Select pseudo-opcodes into a single basic-block with 7345 // a conditional jump around it. 7346 static bool isSelectPseudo(MachineInstr &MI) { 7347 switch (MI.getOpcode()) { 7348 case SystemZ::Select32: 7349 case SystemZ::Select64: 7350 case SystemZ::SelectF32: 7351 case SystemZ::SelectF64: 7352 case SystemZ::SelectF128: 7353 case SystemZ::SelectVR32: 7354 case SystemZ::SelectVR64: 7355 case SystemZ::SelectVR128: 7356 return true; 7357 7358 default: 7359 return false; 7360 } 7361 } 7362 7363 // Helper function, which inserts PHI functions into SinkMBB: 7364 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 7365 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 7366 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 7367 MachineBasicBlock *TrueMBB, 7368 MachineBasicBlock *FalseMBB, 7369 MachineBasicBlock *SinkMBB) { 7370 MachineFunction *MF = TrueMBB->getParent(); 7371 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 7372 7373 MachineInstr *FirstMI = Selects.front(); 7374 unsigned CCValid = FirstMI->getOperand(3).getImm(); 7375 unsigned CCMask = FirstMI->getOperand(4).getImm(); 7376 7377 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 7378 7379 // As we are creating the PHIs, we have to be careful if there is more than 7380 // one. Later Selects may reference the results of earlier Selects, but later 7381 // PHIs have to reference the individual true/false inputs from earlier PHIs. 7382 // That also means that PHI construction must work forward from earlier to 7383 // later, and that the code must maintain a mapping from earlier PHI's 7384 // destination registers, and the registers that went into the PHI. 7385 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 7386 7387 for (auto MI : Selects) { 7388 Register DestReg = MI->getOperand(0).getReg(); 7389 Register TrueReg = MI->getOperand(1).getReg(); 7390 Register FalseReg = MI->getOperand(2).getReg(); 7391 7392 // If this Select we are generating is the opposite condition from 7393 // the jump we generated, then we have to swap the operands for the 7394 // PHI that is going to be generated. 7395 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 7396 std::swap(TrueReg, FalseReg); 7397 7398 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 7399 TrueReg = RegRewriteTable[TrueReg].first; 7400 7401 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 7402 FalseReg = RegRewriteTable[FalseReg].second; 7403 7404 DebugLoc DL = MI->getDebugLoc(); 7405 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 7406 .addReg(TrueReg).addMBB(TrueMBB) 7407 .addReg(FalseReg).addMBB(FalseMBB); 7408 7409 // Add this PHI to the rewrite table. 7410 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 7411 } 7412 7413 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7414 } 7415 7416 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 7417 MachineBasicBlock * 7418 SystemZTargetLowering::emitSelect(MachineInstr &MI, 7419 MachineBasicBlock *MBB) const { 7420 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 7421 const SystemZInstrInfo *TII = 7422 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7423 7424 unsigned CCValid = MI.getOperand(3).getImm(); 7425 unsigned CCMask = MI.getOperand(4).getImm(); 7426 7427 // If we have a sequence of Select* pseudo instructions using the 7428 // same condition code value, we want to expand all of them into 7429 // a single pair of basic blocks using the same condition. 7430 SmallVector<MachineInstr*, 8> Selects; 7431 SmallVector<MachineInstr*, 8> DbgValues; 7432 Selects.push_back(&MI); 7433 unsigned Count = 0; 7434 for (MachineBasicBlock::iterator NextMIIt = 7435 std::next(MachineBasicBlock::iterator(MI)); 7436 NextMIIt != MBB->end(); ++NextMIIt) { 7437 if (isSelectPseudo(*NextMIIt)) { 7438 assert(NextMIIt->getOperand(3).getImm() == CCValid && 7439 "Bad CCValid operands since CC was not redefined."); 7440 if (NextMIIt->getOperand(4).getImm() == CCMask || 7441 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 7442 Selects.push_back(&*NextMIIt); 7443 continue; 7444 } 7445 break; 7446 } 7447 if (NextMIIt->definesRegister(SystemZ::CC) || 7448 NextMIIt->usesCustomInsertionHook()) 7449 break; 7450 bool User = false; 7451 for (auto SelMI : Selects) 7452 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 7453 User = true; 7454 break; 7455 } 7456 if (NextMIIt->isDebugInstr()) { 7457 if (User) { 7458 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 7459 DbgValues.push_back(&*NextMIIt); 7460 } 7461 } 7462 else if (User || ++Count > 20) 7463 break; 7464 } 7465 7466 MachineInstr *LastMI = Selects.back(); 7467 bool CCKilled = 7468 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 7469 MachineBasicBlock *StartMBB = MBB; 7470 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); 7471 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7472 7473 // Unless CC was killed in the last Select instruction, mark it as 7474 // live-in to both FalseMBB and JoinMBB. 7475 if (!CCKilled) { 7476 FalseMBB->addLiveIn(SystemZ::CC); 7477 JoinMBB->addLiveIn(SystemZ::CC); 7478 } 7479 7480 // StartMBB: 7481 // BRC CCMask, JoinMBB 7482 // # fallthrough to FalseMBB 7483 MBB = StartMBB; 7484 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 7485 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7486 MBB->addSuccessor(JoinMBB); 7487 MBB->addSuccessor(FalseMBB); 7488 7489 // FalseMBB: 7490 // # fallthrough to JoinMBB 7491 MBB = FalseMBB; 7492 MBB->addSuccessor(JoinMBB); 7493 7494 // JoinMBB: 7495 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 7496 // ... 7497 MBB = JoinMBB; 7498 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 7499 for (auto SelMI : Selects) 7500 SelMI->eraseFromParent(); 7501 7502 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 7503 for (auto DbgMI : DbgValues) 7504 MBB->splice(InsertPos, StartMBB, DbgMI); 7505 7506 return JoinMBB; 7507 } 7508 7509 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 7510 // StoreOpcode is the store to use and Invert says whether the store should 7511 // happen when the condition is false rather than true. If a STORE ON 7512 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 7513 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 7514 MachineBasicBlock *MBB, 7515 unsigned StoreOpcode, 7516 unsigned STOCOpcode, 7517 bool Invert) const { 7518 const SystemZInstrInfo *TII = 7519 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7520 7521 Register SrcReg = MI.getOperand(0).getReg(); 7522 MachineOperand Base = MI.getOperand(1); 7523 int64_t Disp = MI.getOperand(2).getImm(); 7524 Register IndexReg = MI.getOperand(3).getReg(); 7525 unsigned CCValid = MI.getOperand(4).getImm(); 7526 unsigned CCMask = MI.getOperand(5).getImm(); 7527 DebugLoc DL = MI.getDebugLoc(); 7528 7529 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 7530 7531 // ISel pattern matching also adds a load memory operand of the same 7532 // address, so take special care to find the storing memory operand. 7533 MachineMemOperand *MMO = nullptr; 7534 for (auto *I : MI.memoperands()) 7535 if (I->isStore()) { 7536 MMO = I; 7537 break; 7538 } 7539 7540 // Use STOCOpcode if possible. We could use different store patterns in 7541 // order to avoid matching the index register, but the performance trade-offs 7542 // might be more complicated in that case. 7543 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 7544 if (Invert) 7545 CCMask ^= CCValid; 7546 7547 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 7548 .addReg(SrcReg) 7549 .add(Base) 7550 .addImm(Disp) 7551 .addImm(CCValid) 7552 .addImm(CCMask) 7553 .addMemOperand(MMO); 7554 7555 MI.eraseFromParent(); 7556 return MBB; 7557 } 7558 7559 // Get the condition needed to branch around the store. 7560 if (!Invert) 7561 CCMask ^= CCValid; 7562 7563 MachineBasicBlock *StartMBB = MBB; 7564 MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); 7565 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7566 7567 // Unless CC was killed in the CondStore instruction, mark it as 7568 // live-in to both FalseMBB and JoinMBB. 7569 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 7570 FalseMBB->addLiveIn(SystemZ::CC); 7571 JoinMBB->addLiveIn(SystemZ::CC); 7572 } 7573 7574 // StartMBB: 7575 // BRC CCMask, JoinMBB 7576 // # fallthrough to FalseMBB 7577 MBB = StartMBB; 7578 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7579 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7580 MBB->addSuccessor(JoinMBB); 7581 MBB->addSuccessor(FalseMBB); 7582 7583 // FalseMBB: 7584 // store %SrcReg, %Disp(%Index,%Base) 7585 // # fallthrough to JoinMBB 7586 MBB = FalseMBB; 7587 BuildMI(MBB, DL, TII->get(StoreOpcode)) 7588 .addReg(SrcReg) 7589 .add(Base) 7590 .addImm(Disp) 7591 .addReg(IndexReg) 7592 .addMemOperand(MMO); 7593 MBB->addSuccessor(JoinMBB); 7594 7595 MI.eraseFromParent(); 7596 return JoinMBB; 7597 } 7598 7599 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 7600 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 7601 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 7602 // BitSize is the width of the field in bits, or 0 if this is a partword 7603 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 7604 // is one of the operands. Invert says whether the field should be 7605 // inverted after performing BinOpcode (e.g. for NAND). 7606 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 7607 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 7608 unsigned BitSize, bool Invert) const { 7609 MachineFunction &MF = *MBB->getParent(); 7610 const SystemZInstrInfo *TII = 7611 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7612 MachineRegisterInfo &MRI = MF.getRegInfo(); 7613 bool IsSubWord = (BitSize < 32); 7614 7615 // Extract the operands. Base can be a register or a frame index. 7616 // Src2 can be a register or immediate. 7617 Register Dest = MI.getOperand(0).getReg(); 7618 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7619 int64_t Disp = MI.getOperand(2).getImm(); 7620 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 7621 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 7622 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 7623 DebugLoc DL = MI.getDebugLoc(); 7624 if (IsSubWord) 7625 BitSize = MI.getOperand(6).getImm(); 7626 7627 // Subword operations use 32-bit registers. 7628 const TargetRegisterClass *RC = (BitSize <= 32 ? 7629 &SystemZ::GR32BitRegClass : 7630 &SystemZ::GR64BitRegClass); 7631 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7632 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7633 7634 // Get the right opcodes for the displacement. 7635 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7636 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7637 assert(LOpcode && CSOpcode && "Displacement out of range"); 7638 7639 // Create virtual registers for temporary results. 7640 Register OrigVal = MRI.createVirtualRegister(RC); 7641 Register OldVal = MRI.createVirtualRegister(RC); 7642 Register NewVal = (BinOpcode || IsSubWord ? 7643 MRI.createVirtualRegister(RC) : Src2.getReg()); 7644 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7645 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7646 7647 // Insert a basic block for the main loop. 7648 MachineBasicBlock *StartMBB = MBB; 7649 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7650 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7651 7652 // StartMBB: 7653 // ... 7654 // %OrigVal = L Disp(%Base) 7655 // # fall through to LoopMBB 7656 MBB = StartMBB; 7657 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7658 MBB->addSuccessor(LoopMBB); 7659 7660 // LoopMBB: 7661 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7662 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7663 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7664 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7665 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7666 // JNE LoopMBB 7667 // # fall through to DoneMBB 7668 MBB = LoopMBB; 7669 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7670 .addReg(OrigVal).addMBB(StartMBB) 7671 .addReg(Dest).addMBB(LoopMBB); 7672 if (IsSubWord) 7673 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7674 .addReg(OldVal).addReg(BitShift).addImm(0); 7675 if (Invert) { 7676 // Perform the operation normally and then invert every bit of the field. 7677 Register Tmp = MRI.createVirtualRegister(RC); 7678 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7679 if (BitSize <= 32) 7680 // XILF with the upper BitSize bits set. 7681 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7682 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7683 else { 7684 // Use LCGR and add -1 to the result, which is more compact than 7685 // an XILF, XILH pair. 7686 Register Tmp2 = MRI.createVirtualRegister(RC); 7687 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7688 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7689 .addReg(Tmp2).addImm(-1); 7690 } 7691 } else if (BinOpcode) 7692 // A simply binary operation. 7693 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7694 .addReg(RotatedOldVal) 7695 .add(Src2); 7696 else if (IsSubWord) 7697 // Use RISBG to rotate Src2 into position and use it to replace the 7698 // field in RotatedOldVal. 7699 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7700 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7701 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7702 if (IsSubWord) 7703 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7704 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7705 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7706 .addReg(OldVal) 7707 .addReg(NewVal) 7708 .add(Base) 7709 .addImm(Disp); 7710 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7711 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7712 MBB->addSuccessor(LoopMBB); 7713 MBB->addSuccessor(DoneMBB); 7714 7715 MI.eraseFromParent(); 7716 return DoneMBB; 7717 } 7718 7719 // Implement EmitInstrWithCustomInserter for pseudo 7720 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7721 // instruction that should be used to compare the current field with the 7722 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7723 // for when the current field should be kept. BitSize is the width of 7724 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7725 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7726 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7727 unsigned KeepOldMask, unsigned BitSize) const { 7728 MachineFunction &MF = *MBB->getParent(); 7729 const SystemZInstrInfo *TII = 7730 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7731 MachineRegisterInfo &MRI = MF.getRegInfo(); 7732 bool IsSubWord = (BitSize < 32); 7733 7734 // Extract the operands. Base can be a register or a frame index. 7735 Register Dest = MI.getOperand(0).getReg(); 7736 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7737 int64_t Disp = MI.getOperand(2).getImm(); 7738 Register Src2 = MI.getOperand(3).getReg(); 7739 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7740 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7741 DebugLoc DL = MI.getDebugLoc(); 7742 if (IsSubWord) 7743 BitSize = MI.getOperand(6).getImm(); 7744 7745 // Subword operations use 32-bit registers. 7746 const TargetRegisterClass *RC = (BitSize <= 32 ? 7747 &SystemZ::GR32BitRegClass : 7748 &SystemZ::GR64BitRegClass); 7749 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7750 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7751 7752 // Get the right opcodes for the displacement. 7753 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7754 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7755 assert(LOpcode && CSOpcode && "Displacement out of range"); 7756 7757 // Create virtual registers for temporary results. 7758 Register OrigVal = MRI.createVirtualRegister(RC); 7759 Register OldVal = MRI.createVirtualRegister(RC); 7760 Register NewVal = MRI.createVirtualRegister(RC); 7761 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7762 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7763 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7764 7765 // Insert 3 basic blocks for the loop. 7766 MachineBasicBlock *StartMBB = MBB; 7767 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7768 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7769 MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); 7770 MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); 7771 7772 // StartMBB: 7773 // ... 7774 // %OrigVal = L Disp(%Base) 7775 // # fall through to LoopMBB 7776 MBB = StartMBB; 7777 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7778 MBB->addSuccessor(LoopMBB); 7779 7780 // LoopMBB: 7781 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7782 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7783 // CompareOpcode %RotatedOldVal, %Src2 7784 // BRC KeepOldMask, UpdateMBB 7785 MBB = LoopMBB; 7786 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7787 .addReg(OrigVal).addMBB(StartMBB) 7788 .addReg(Dest).addMBB(UpdateMBB); 7789 if (IsSubWord) 7790 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7791 .addReg(OldVal).addReg(BitShift).addImm(0); 7792 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7793 .addReg(RotatedOldVal).addReg(Src2); 7794 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7795 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7796 MBB->addSuccessor(UpdateMBB); 7797 MBB->addSuccessor(UseAltMBB); 7798 7799 // UseAltMBB: 7800 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7801 // # fall through to UpdateMBB 7802 MBB = UseAltMBB; 7803 if (IsSubWord) 7804 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7805 .addReg(RotatedOldVal).addReg(Src2) 7806 .addImm(32).addImm(31 + BitSize).addImm(0); 7807 MBB->addSuccessor(UpdateMBB); 7808 7809 // UpdateMBB: 7810 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7811 // [ %RotatedAltVal, UseAltMBB ] 7812 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7813 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7814 // JNE LoopMBB 7815 // # fall through to DoneMBB 7816 MBB = UpdateMBB; 7817 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7818 .addReg(RotatedOldVal).addMBB(LoopMBB) 7819 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7820 if (IsSubWord) 7821 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7822 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7823 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7824 .addReg(OldVal) 7825 .addReg(NewVal) 7826 .add(Base) 7827 .addImm(Disp); 7828 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7829 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7830 MBB->addSuccessor(LoopMBB); 7831 MBB->addSuccessor(DoneMBB); 7832 7833 MI.eraseFromParent(); 7834 return DoneMBB; 7835 } 7836 7837 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7838 // instruction MI. 7839 MachineBasicBlock * 7840 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7841 MachineBasicBlock *MBB) const { 7842 MachineFunction &MF = *MBB->getParent(); 7843 const SystemZInstrInfo *TII = 7844 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7845 MachineRegisterInfo &MRI = MF.getRegInfo(); 7846 7847 // Extract the operands. Base can be a register or a frame index. 7848 Register Dest = MI.getOperand(0).getReg(); 7849 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7850 int64_t Disp = MI.getOperand(2).getImm(); 7851 Register CmpVal = MI.getOperand(3).getReg(); 7852 Register OrigSwapVal = MI.getOperand(4).getReg(); 7853 Register BitShift = MI.getOperand(5).getReg(); 7854 Register NegBitShift = MI.getOperand(6).getReg(); 7855 int64_t BitSize = MI.getOperand(7).getImm(); 7856 DebugLoc DL = MI.getDebugLoc(); 7857 7858 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7859 7860 // Get the right opcodes for the displacement and zero-extension. 7861 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7862 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7863 unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR; 7864 assert(LOpcode && CSOpcode && "Displacement out of range"); 7865 7866 // Create virtual registers for temporary results. 7867 Register OrigOldVal = MRI.createVirtualRegister(RC); 7868 Register OldVal = MRI.createVirtualRegister(RC); 7869 Register SwapVal = MRI.createVirtualRegister(RC); 7870 Register StoreVal = MRI.createVirtualRegister(RC); 7871 Register OldValRot = MRI.createVirtualRegister(RC); 7872 Register RetryOldVal = MRI.createVirtualRegister(RC); 7873 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7874 7875 // Insert 2 basic blocks for the loop. 7876 MachineBasicBlock *StartMBB = MBB; 7877 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7878 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7879 MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); 7880 7881 // StartMBB: 7882 // ... 7883 // %OrigOldVal = L Disp(%Base) 7884 // # fall through to LoopMBB 7885 MBB = StartMBB; 7886 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7887 .add(Base) 7888 .addImm(Disp) 7889 .addReg(0); 7890 MBB->addSuccessor(LoopMBB); 7891 7892 // LoopMBB: 7893 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7894 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7895 // %OldValRot = RLL %OldVal, BitSize(%BitShift) 7896 // ^^ The low BitSize bits contain the field 7897 // of interest. 7898 // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0 7899 // ^^ Replace the upper 32-BitSize bits of the 7900 // swap value with those that we loaded and rotated. 7901 // %Dest = LL[CH] %OldValRot 7902 // CR %Dest, %CmpVal 7903 // JNE DoneMBB 7904 // # Fall through to SetMBB 7905 MBB = LoopMBB; 7906 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7907 .addReg(OrigOldVal).addMBB(StartMBB) 7908 .addReg(RetryOldVal).addMBB(SetMBB); 7909 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7910 .addReg(OrigSwapVal).addMBB(StartMBB) 7911 .addReg(RetrySwapVal).addMBB(SetMBB); 7912 BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot) 7913 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7914 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7915 .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0); 7916 BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest) 7917 .addReg(OldValRot); 7918 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7919 .addReg(Dest).addReg(CmpVal); 7920 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7921 .addImm(SystemZ::CCMASK_ICMP) 7922 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7923 MBB->addSuccessor(DoneMBB); 7924 MBB->addSuccessor(SetMBB); 7925 7926 // SetMBB: 7927 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7928 // ^^ Rotate the new field to its proper position. 7929 // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base) 7930 // JNE LoopMBB 7931 // # fall through to ExitMBB 7932 MBB = SetMBB; 7933 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7934 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7935 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7936 .addReg(OldVal) 7937 .addReg(StoreVal) 7938 .add(Base) 7939 .addImm(Disp); 7940 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7941 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7942 MBB->addSuccessor(LoopMBB); 7943 MBB->addSuccessor(DoneMBB); 7944 7945 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7946 // to the block after the loop. At this point, CC may have been defined 7947 // either by the CR in LoopMBB or by the CS in SetMBB. 7948 if (!MI.registerDefIsDead(SystemZ::CC)) 7949 DoneMBB->addLiveIn(SystemZ::CC); 7950 7951 MI.eraseFromParent(); 7952 return DoneMBB; 7953 } 7954 7955 // Emit a move from two GR64s to a GR128. 7956 MachineBasicBlock * 7957 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7958 MachineBasicBlock *MBB) const { 7959 MachineFunction &MF = *MBB->getParent(); 7960 const SystemZInstrInfo *TII = 7961 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7962 MachineRegisterInfo &MRI = MF.getRegInfo(); 7963 DebugLoc DL = MI.getDebugLoc(); 7964 7965 Register Dest = MI.getOperand(0).getReg(); 7966 Register Hi = MI.getOperand(1).getReg(); 7967 Register Lo = MI.getOperand(2).getReg(); 7968 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7969 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7970 7971 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7972 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7973 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7974 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7975 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7976 7977 MI.eraseFromParent(); 7978 return MBB; 7979 } 7980 7981 // Emit an extension from a GR64 to a GR128. ClearEven is true 7982 // if the high register of the GR128 value must be cleared or false if 7983 // it's "don't care". 7984 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7985 MachineBasicBlock *MBB, 7986 bool ClearEven) const { 7987 MachineFunction &MF = *MBB->getParent(); 7988 const SystemZInstrInfo *TII = 7989 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7990 MachineRegisterInfo &MRI = MF.getRegInfo(); 7991 DebugLoc DL = MI.getDebugLoc(); 7992 7993 Register Dest = MI.getOperand(0).getReg(); 7994 Register Src = MI.getOperand(1).getReg(); 7995 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7996 7997 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7998 if (ClearEven) { 7999 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 8000 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 8001 8002 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 8003 .addImm(0); 8004 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 8005 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 8006 In128 = NewIn128; 8007 } 8008 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 8009 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 8010 8011 MI.eraseFromParent(); 8012 return MBB; 8013 } 8014 8015 MachineBasicBlock * 8016 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI, 8017 MachineBasicBlock *MBB, 8018 unsigned Opcode, bool IsMemset) const { 8019 MachineFunction &MF = *MBB->getParent(); 8020 const SystemZInstrInfo *TII = 8021 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8022 MachineRegisterInfo &MRI = MF.getRegInfo(); 8023 DebugLoc DL = MI.getDebugLoc(); 8024 8025 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 8026 uint64_t DestDisp = MI.getOperand(1).getImm(); 8027 MachineOperand SrcBase = MachineOperand::CreateReg(0U, false); 8028 uint64_t SrcDisp; 8029 8030 // Fold the displacement Disp if it is out of range. 8031 auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void { 8032 if (!isUInt<12>(Disp)) { 8033 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8034 unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp); 8035 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg) 8036 .add(Base).addImm(Disp).addReg(0); 8037 Base = MachineOperand::CreateReg(Reg, false); 8038 Disp = 0; 8039 } 8040 }; 8041 8042 if (!IsMemset) { 8043 SrcBase = earlyUseOperand(MI.getOperand(2)); 8044 SrcDisp = MI.getOperand(3).getImm(); 8045 } else { 8046 SrcBase = DestBase; 8047 SrcDisp = DestDisp++; 8048 foldDisplIfNeeded(DestBase, DestDisp); 8049 } 8050 8051 MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4); 8052 bool IsImmForm = LengthMO.isImm(); 8053 bool IsRegForm = !IsImmForm; 8054 8055 // Build and insert one Opcode of Length, with special treatment for memset. 8056 auto insertMemMemOp = [&](MachineBasicBlock *InsMBB, 8057 MachineBasicBlock::iterator InsPos, 8058 MachineOperand DBase, uint64_t DDisp, 8059 MachineOperand SBase, uint64_t SDisp, 8060 unsigned Length) -> void { 8061 assert(Length > 0 && Length <= 256 && "Building memory op with bad length."); 8062 if (IsMemset) { 8063 MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3)); 8064 if (ByteMO.isImm()) 8065 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI)) 8066 .add(SBase).addImm(SDisp).add(ByteMO); 8067 else 8068 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC)) 8069 .add(ByteMO).add(SBase).addImm(SDisp).addReg(0); 8070 if (--Length == 0) 8071 return; 8072 } 8073 BuildMI(*MBB, InsPos, DL, TII->get(Opcode)) 8074 .add(DBase).addImm(DDisp).addImm(Length) 8075 .add(SBase).addImm(SDisp) 8076 .setMemRefs(MI.memoperands()); 8077 }; 8078 8079 bool NeedsLoop = false; 8080 uint64_t ImmLength = 0; 8081 Register LenAdjReg = SystemZ::NoRegister; 8082 if (IsImmForm) { 8083 ImmLength = LengthMO.getImm(); 8084 ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment. 8085 if (ImmLength == 0) { 8086 MI.eraseFromParent(); 8087 return MBB; 8088 } 8089 if (Opcode == SystemZ::CLC) { 8090 if (ImmLength > 3 * 256) 8091 // A two-CLC sequence is a clear win over a loop, not least because 8092 // it needs only one branch. A three-CLC sequence needs the same 8093 // number of branches as a loop (i.e. 2), but is shorter. That 8094 // brings us to lengths greater than 768 bytes. It seems relatively 8095 // likely that a difference will be found within the first 768 bytes, 8096 // so we just optimize for the smallest number of branch 8097 // instructions, in order to avoid polluting the prediction buffer 8098 // too much. 8099 NeedsLoop = true; 8100 } else if (ImmLength > 6 * 256) 8101 // The heuristic we use is to prefer loops for anything that would 8102 // require 7 or more MVCs. With these kinds of sizes there isn't much 8103 // to choose between straight-line code and looping code, since the 8104 // time will be dominated by the MVCs themselves. 8105 NeedsLoop = true; 8106 } else { 8107 NeedsLoop = true; 8108 LenAdjReg = LengthMO.getReg(); 8109 } 8110 8111 // When generating more than one CLC, all but the last will need to 8112 // branch to the end when a difference is found. 8113 MachineBasicBlock *EndMBB = 8114 (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop) 8115 ? SystemZ::splitBlockAfter(MI, MBB) 8116 : nullptr); 8117 8118 if (NeedsLoop) { 8119 Register StartCountReg = 8120 MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 8121 if (IsImmForm) { 8122 TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256); 8123 ImmLength &= 255; 8124 } else { 8125 BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg) 8126 .addReg(LenAdjReg) 8127 .addReg(0) 8128 .addImm(8); 8129 } 8130 8131 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 8132 auto loadZeroAddress = [&]() -> MachineOperand { 8133 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8134 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0); 8135 return MachineOperand::CreateReg(Reg, false); 8136 }; 8137 if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister) 8138 DestBase = loadZeroAddress(); 8139 if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister) 8140 SrcBase = HaveSingleBase ? DestBase : loadZeroAddress(); 8141 8142 MachineBasicBlock *StartMBB = nullptr; 8143 MachineBasicBlock *LoopMBB = nullptr; 8144 MachineBasicBlock *NextMBB = nullptr; 8145 MachineBasicBlock *DoneMBB = nullptr; 8146 MachineBasicBlock *AllDoneMBB = nullptr; 8147 8148 Register StartSrcReg = forceReg(MI, SrcBase, TII); 8149 Register StartDestReg = 8150 (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII)); 8151 8152 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 8153 Register ThisSrcReg = MRI.createVirtualRegister(RC); 8154 Register ThisDestReg = 8155 (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC)); 8156 Register NextSrcReg = MRI.createVirtualRegister(RC); 8157 Register NextDestReg = 8158 (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC)); 8159 RC = &SystemZ::GR64BitRegClass; 8160 Register ThisCountReg = MRI.createVirtualRegister(RC); 8161 Register NextCountReg = MRI.createVirtualRegister(RC); 8162 8163 if (IsRegForm) { 8164 AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8165 StartMBB = SystemZ::emitBlockAfter(MBB); 8166 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8167 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8168 DoneMBB = SystemZ::emitBlockAfter(NextMBB); 8169 8170 // MBB: 8171 // # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB. 8172 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8173 .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1); 8174 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8175 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8176 .addMBB(AllDoneMBB); 8177 MBB->addSuccessor(AllDoneMBB); 8178 if (!IsMemset) 8179 MBB->addSuccessor(StartMBB); 8180 else { 8181 // MemsetOneCheckMBB: 8182 // # Jump to MemsetOneMBB for a memset of length 1, or 8183 // # fall thru to StartMBB. 8184 MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB); 8185 MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin()); 8186 MBB->addSuccessor(MemsetOneCheckMBB); 8187 MBB = MemsetOneCheckMBB; 8188 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8189 .addReg(LenAdjReg).addImm(-1); 8190 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8191 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8192 .addMBB(MemsetOneMBB); 8193 MBB->addSuccessor(MemsetOneMBB, {10, 100}); 8194 MBB->addSuccessor(StartMBB, {90, 100}); 8195 8196 // MemsetOneMBB: 8197 // # Jump back to AllDoneMBB after a single MVI or STC. 8198 MBB = MemsetOneMBB; 8199 insertMemMemOp(MBB, MBB->end(), 8200 MachineOperand::CreateReg(StartDestReg, false), DestDisp, 8201 MachineOperand::CreateReg(StartSrcReg, false), SrcDisp, 8202 1); 8203 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB); 8204 MBB->addSuccessor(AllDoneMBB); 8205 } 8206 8207 // StartMBB: 8208 // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB. 8209 MBB = StartMBB; 8210 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8211 .addReg(StartCountReg).addImm(0); 8212 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8213 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8214 .addMBB(DoneMBB); 8215 MBB->addSuccessor(DoneMBB); 8216 MBB->addSuccessor(LoopMBB); 8217 } 8218 else { 8219 StartMBB = MBB; 8220 DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8221 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8222 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8223 8224 // StartMBB: 8225 // # fall through to LoopMBB 8226 MBB->addSuccessor(LoopMBB); 8227 8228 DestBase = MachineOperand::CreateReg(NextDestReg, false); 8229 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 8230 if (EndMBB && !ImmLength) 8231 // If the loop handled the whole CLC range, DoneMBB will be empty with 8232 // CC live-through into EndMBB, so add it as live-in. 8233 DoneMBB->addLiveIn(SystemZ::CC); 8234 } 8235 8236 // LoopMBB: 8237 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 8238 // [ %NextDestReg, NextMBB ] 8239 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 8240 // [ %NextSrcReg, NextMBB ] 8241 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 8242 // [ %NextCountReg, NextMBB ] 8243 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 8244 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 8245 // ( JLH EndMBB ) 8246 // 8247 // The prefetch is used only for MVC. The JLH is used only for CLC. 8248 MBB = LoopMBB; 8249 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 8250 .addReg(StartDestReg).addMBB(StartMBB) 8251 .addReg(NextDestReg).addMBB(NextMBB); 8252 if (!HaveSingleBase) 8253 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 8254 .addReg(StartSrcReg).addMBB(StartMBB) 8255 .addReg(NextSrcReg).addMBB(NextMBB); 8256 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 8257 .addReg(StartCountReg).addMBB(StartMBB) 8258 .addReg(NextCountReg).addMBB(NextMBB); 8259 if (Opcode == SystemZ::MVC) 8260 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 8261 .addImm(SystemZ::PFD_WRITE) 8262 .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0); 8263 insertMemMemOp(MBB, MBB->end(), 8264 MachineOperand::CreateReg(ThisDestReg, false), DestDisp, 8265 MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256); 8266 if (EndMBB) { 8267 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8268 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8269 .addMBB(EndMBB); 8270 MBB->addSuccessor(EndMBB); 8271 MBB->addSuccessor(NextMBB); 8272 } 8273 8274 // NextMBB: 8275 // %NextDestReg = LA 256(%ThisDestReg) 8276 // %NextSrcReg = LA 256(%ThisSrcReg) 8277 // %NextCountReg = AGHI %ThisCountReg, -1 8278 // CGHI %NextCountReg, 0 8279 // JLH LoopMBB 8280 // # fall through to DoneMBB 8281 // 8282 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 8283 MBB = NextMBB; 8284 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 8285 .addReg(ThisDestReg).addImm(256).addReg(0); 8286 if (!HaveSingleBase) 8287 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 8288 .addReg(ThisSrcReg).addImm(256).addReg(0); 8289 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 8290 .addReg(ThisCountReg).addImm(-1); 8291 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8292 .addReg(NextCountReg).addImm(0); 8293 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8294 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8295 .addMBB(LoopMBB); 8296 MBB->addSuccessor(LoopMBB); 8297 MBB->addSuccessor(DoneMBB); 8298 8299 MBB = DoneMBB; 8300 if (IsRegForm) { 8301 // DoneMBB: 8302 // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run. 8303 // # Use EXecute Relative Long for the remainder of the bytes. The target 8304 // instruction of the EXRL will have a length field of 1 since 0 is an 8305 // illegal value. The number of bytes processed becomes (%LenAdjReg & 8306 // 0xff) + 1. 8307 // # Fall through to AllDoneMBB. 8308 Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8309 Register RemDestReg = HaveSingleBase ? RemSrcReg 8310 : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8311 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg) 8312 .addReg(StartDestReg).addMBB(StartMBB) 8313 .addReg(NextDestReg).addMBB(NextMBB); 8314 if (!HaveSingleBase) 8315 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg) 8316 .addReg(StartSrcReg).addMBB(StartMBB) 8317 .addReg(NextSrcReg).addMBB(NextMBB); 8318 if (IsMemset) 8319 insertMemMemOp(MBB, MBB->end(), 8320 MachineOperand::CreateReg(RemDestReg, false), DestDisp, 8321 MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1); 8322 MachineInstrBuilder EXRL_MIB = 8323 BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo)) 8324 .addImm(Opcode) 8325 .addReg(LenAdjReg) 8326 .addReg(RemDestReg).addImm(DestDisp) 8327 .addReg(RemSrcReg).addImm(SrcDisp); 8328 MBB->addSuccessor(AllDoneMBB); 8329 MBB = AllDoneMBB; 8330 if (EndMBB) { 8331 EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine); 8332 MBB->addLiveIn(SystemZ::CC); 8333 } 8334 } 8335 } 8336 8337 // Handle any remaining bytes with straight-line code. 8338 while (ImmLength > 0) { 8339 uint64_t ThisLength = std::min(ImmLength, uint64_t(256)); 8340 // The previous iteration might have created out-of-range displacements. 8341 // Apply them using LA/LAY if so. 8342 foldDisplIfNeeded(DestBase, DestDisp); 8343 foldDisplIfNeeded(SrcBase, SrcDisp); 8344 insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength); 8345 DestDisp += ThisLength; 8346 SrcDisp += ThisLength; 8347 ImmLength -= ThisLength; 8348 // If there's another CLC to go, branch to the end if a difference 8349 // was found. 8350 if (EndMBB && ImmLength > 0) { 8351 MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); 8352 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8353 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8354 .addMBB(EndMBB); 8355 MBB->addSuccessor(EndMBB); 8356 MBB->addSuccessor(NextMBB); 8357 MBB = NextMBB; 8358 } 8359 } 8360 if (EndMBB) { 8361 MBB->addSuccessor(EndMBB); 8362 MBB = EndMBB; 8363 MBB->addLiveIn(SystemZ::CC); 8364 } 8365 8366 MI.eraseFromParent(); 8367 return MBB; 8368 } 8369 8370 // Decompose string pseudo-instruction MI into a loop that continually performs 8371 // Opcode until CC != 3. 8372 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 8373 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8374 MachineFunction &MF = *MBB->getParent(); 8375 const SystemZInstrInfo *TII = 8376 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8377 MachineRegisterInfo &MRI = MF.getRegInfo(); 8378 DebugLoc DL = MI.getDebugLoc(); 8379 8380 uint64_t End1Reg = MI.getOperand(0).getReg(); 8381 uint64_t Start1Reg = MI.getOperand(1).getReg(); 8382 uint64_t Start2Reg = MI.getOperand(2).getReg(); 8383 uint64_t CharReg = MI.getOperand(3).getReg(); 8384 8385 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 8386 uint64_t This1Reg = MRI.createVirtualRegister(RC); 8387 uint64_t This2Reg = MRI.createVirtualRegister(RC); 8388 uint64_t End2Reg = MRI.createVirtualRegister(RC); 8389 8390 MachineBasicBlock *StartMBB = MBB; 8391 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8392 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8393 8394 // StartMBB: 8395 // # fall through to LoopMBB 8396 MBB->addSuccessor(LoopMBB); 8397 8398 // LoopMBB: 8399 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 8400 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 8401 // R0L = %CharReg 8402 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 8403 // JO LoopMBB 8404 // # fall through to DoneMBB 8405 // 8406 // The load of R0L can be hoisted by post-RA LICM. 8407 MBB = LoopMBB; 8408 8409 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 8410 .addReg(Start1Reg).addMBB(StartMBB) 8411 .addReg(End1Reg).addMBB(LoopMBB); 8412 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 8413 .addReg(Start2Reg).addMBB(StartMBB) 8414 .addReg(End2Reg).addMBB(LoopMBB); 8415 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 8416 BuildMI(MBB, DL, TII->get(Opcode)) 8417 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 8418 .addReg(This1Reg).addReg(This2Reg); 8419 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8420 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 8421 MBB->addSuccessor(LoopMBB); 8422 MBB->addSuccessor(DoneMBB); 8423 8424 DoneMBB->addLiveIn(SystemZ::CC); 8425 8426 MI.eraseFromParent(); 8427 return DoneMBB; 8428 } 8429 8430 // Update TBEGIN instruction with final opcode and register clobbers. 8431 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 8432 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 8433 bool NoFloat) const { 8434 MachineFunction &MF = *MBB->getParent(); 8435 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 8436 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8437 8438 // Update opcode. 8439 MI.setDesc(TII->get(Opcode)); 8440 8441 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 8442 // Make sure to add the corresponding GRSM bits if they are missing. 8443 uint64_t Control = MI.getOperand(2).getImm(); 8444 static const unsigned GPRControlBit[16] = { 8445 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 8446 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 8447 }; 8448 Control |= GPRControlBit[15]; 8449 if (TFI->hasFP(MF)) 8450 Control |= GPRControlBit[11]; 8451 MI.getOperand(2).setImm(Control); 8452 8453 // Add GPR clobbers. 8454 for (int I = 0; I < 16; I++) { 8455 if ((Control & GPRControlBit[I]) == 0) { 8456 unsigned Reg = SystemZMC::GR64Regs[I]; 8457 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8458 } 8459 } 8460 8461 // Add FPR/VR clobbers. 8462 if (!NoFloat && (Control & 4) != 0) { 8463 if (Subtarget.hasVector()) { 8464 for (unsigned Reg : SystemZMC::VR128Regs) { 8465 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8466 } 8467 } else { 8468 for (unsigned Reg : SystemZMC::FP64Regs) { 8469 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8470 } 8471 } 8472 } 8473 8474 return MBB; 8475 } 8476 8477 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 8478 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8479 MachineFunction &MF = *MBB->getParent(); 8480 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8481 const SystemZInstrInfo *TII = 8482 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8483 DebugLoc DL = MI.getDebugLoc(); 8484 8485 Register SrcReg = MI.getOperand(0).getReg(); 8486 8487 // Create new virtual register of the same class as source. 8488 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 8489 Register DstReg = MRI->createVirtualRegister(RC); 8490 8491 // Replace pseudo with a normal load-and-test that models the def as 8492 // well. 8493 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 8494 .addReg(SrcReg) 8495 .setMIFlags(MI.getFlags()); 8496 MI.eraseFromParent(); 8497 8498 return MBB; 8499 } 8500 8501 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( 8502 MachineInstr &MI, MachineBasicBlock *MBB) const { 8503 MachineFunction &MF = *MBB->getParent(); 8504 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8505 const SystemZInstrInfo *TII = 8506 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8507 DebugLoc DL = MI.getDebugLoc(); 8508 const unsigned ProbeSize = getStackProbeSize(MF); 8509 Register DstReg = MI.getOperand(0).getReg(); 8510 Register SizeReg = MI.getOperand(2).getReg(); 8511 8512 MachineBasicBlock *StartMBB = MBB; 8513 MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); 8514 MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); 8515 MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); 8516 MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); 8517 MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); 8518 8519 MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), 8520 MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); 8521 8522 Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8523 Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8524 8525 // LoopTestMBB 8526 // BRC TailTestMBB 8527 // # fallthrough to LoopBodyMBB 8528 StartMBB->addSuccessor(LoopTestMBB); 8529 MBB = LoopTestMBB; 8530 BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) 8531 .addReg(SizeReg) 8532 .addMBB(StartMBB) 8533 .addReg(IncReg) 8534 .addMBB(LoopBodyMBB); 8535 BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) 8536 .addReg(PHIReg) 8537 .addImm(ProbeSize); 8538 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8539 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) 8540 .addMBB(TailTestMBB); 8541 MBB->addSuccessor(LoopBodyMBB); 8542 MBB->addSuccessor(TailTestMBB); 8543 8544 // LoopBodyMBB: Allocate and probe by means of a volatile compare. 8545 // J LoopTestMBB 8546 MBB = LoopBodyMBB; 8547 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) 8548 .addReg(PHIReg) 8549 .addImm(ProbeSize); 8550 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) 8551 .addReg(SystemZ::R15D) 8552 .addImm(ProbeSize); 8553 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8554 .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) 8555 .setMemRefs(VolLdMMO); 8556 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); 8557 MBB->addSuccessor(LoopTestMBB); 8558 8559 // TailTestMBB 8560 // BRC DoneMBB 8561 // # fallthrough to TailMBB 8562 MBB = TailTestMBB; 8563 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8564 .addReg(PHIReg) 8565 .addImm(0); 8566 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8567 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8568 .addMBB(DoneMBB); 8569 MBB->addSuccessor(TailMBB); 8570 MBB->addSuccessor(DoneMBB); 8571 8572 // TailMBB 8573 // # fallthrough to DoneMBB 8574 MBB = TailMBB; 8575 BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) 8576 .addReg(SystemZ::R15D) 8577 .addReg(PHIReg); 8578 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8579 .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) 8580 .setMemRefs(VolLdMMO); 8581 MBB->addSuccessor(DoneMBB); 8582 8583 // DoneMBB 8584 MBB = DoneMBB; 8585 BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) 8586 .addReg(SystemZ::R15D); 8587 8588 MI.eraseFromParent(); 8589 return DoneMBB; 8590 } 8591 8592 SDValue SystemZTargetLowering:: 8593 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const { 8594 MachineFunction &MF = DAG.getMachineFunction(); 8595 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 8596 SDLoc DL(SP); 8597 return DAG.getNode(ISD::ADD, DL, MVT::i64, SP, 8598 DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL)); 8599 } 8600 8601 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 8602 MachineInstr &MI, MachineBasicBlock *MBB) const { 8603 switch (MI.getOpcode()) { 8604 case SystemZ::Select32: 8605 case SystemZ::Select64: 8606 case SystemZ::SelectF32: 8607 case SystemZ::SelectF64: 8608 case SystemZ::SelectF128: 8609 case SystemZ::SelectVR32: 8610 case SystemZ::SelectVR64: 8611 case SystemZ::SelectVR128: 8612 return emitSelect(MI, MBB); 8613 8614 case SystemZ::CondStore8Mux: 8615 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 8616 case SystemZ::CondStore8MuxInv: 8617 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 8618 case SystemZ::CondStore16Mux: 8619 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 8620 case SystemZ::CondStore16MuxInv: 8621 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 8622 case SystemZ::CondStore32Mux: 8623 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 8624 case SystemZ::CondStore32MuxInv: 8625 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 8626 case SystemZ::CondStore8: 8627 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 8628 case SystemZ::CondStore8Inv: 8629 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 8630 case SystemZ::CondStore16: 8631 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 8632 case SystemZ::CondStore16Inv: 8633 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 8634 case SystemZ::CondStore32: 8635 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 8636 case SystemZ::CondStore32Inv: 8637 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 8638 case SystemZ::CondStore64: 8639 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 8640 case SystemZ::CondStore64Inv: 8641 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 8642 case SystemZ::CondStoreF32: 8643 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 8644 case SystemZ::CondStoreF32Inv: 8645 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 8646 case SystemZ::CondStoreF64: 8647 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 8648 case SystemZ::CondStoreF64Inv: 8649 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 8650 8651 case SystemZ::PAIR128: 8652 return emitPair128(MI, MBB); 8653 case SystemZ::AEXT128: 8654 return emitExt128(MI, MBB, false); 8655 case SystemZ::ZEXT128: 8656 return emitExt128(MI, MBB, true); 8657 8658 case SystemZ::ATOMIC_SWAPW: 8659 return emitAtomicLoadBinary(MI, MBB, 0, 0); 8660 case SystemZ::ATOMIC_SWAP_32: 8661 return emitAtomicLoadBinary(MI, MBB, 0, 32); 8662 case SystemZ::ATOMIC_SWAP_64: 8663 return emitAtomicLoadBinary(MI, MBB, 0, 64); 8664 8665 case SystemZ::ATOMIC_LOADW_AR: 8666 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 8667 case SystemZ::ATOMIC_LOADW_AFI: 8668 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 8669 case SystemZ::ATOMIC_LOAD_AR: 8670 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 8671 case SystemZ::ATOMIC_LOAD_AHI: 8672 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 8673 case SystemZ::ATOMIC_LOAD_AFI: 8674 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 8675 case SystemZ::ATOMIC_LOAD_AGR: 8676 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 8677 case SystemZ::ATOMIC_LOAD_AGHI: 8678 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 8679 case SystemZ::ATOMIC_LOAD_AGFI: 8680 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 8681 8682 case SystemZ::ATOMIC_LOADW_SR: 8683 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 8684 case SystemZ::ATOMIC_LOAD_SR: 8685 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 8686 case SystemZ::ATOMIC_LOAD_SGR: 8687 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 8688 8689 case SystemZ::ATOMIC_LOADW_NR: 8690 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 8691 case SystemZ::ATOMIC_LOADW_NILH: 8692 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 8693 case SystemZ::ATOMIC_LOAD_NR: 8694 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 8695 case SystemZ::ATOMIC_LOAD_NILL: 8696 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 8697 case SystemZ::ATOMIC_LOAD_NILH: 8698 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 8699 case SystemZ::ATOMIC_LOAD_NILF: 8700 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 8701 case SystemZ::ATOMIC_LOAD_NGR: 8702 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 8703 case SystemZ::ATOMIC_LOAD_NILL64: 8704 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 8705 case SystemZ::ATOMIC_LOAD_NILH64: 8706 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 8707 case SystemZ::ATOMIC_LOAD_NIHL64: 8708 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 8709 case SystemZ::ATOMIC_LOAD_NIHH64: 8710 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 8711 case SystemZ::ATOMIC_LOAD_NILF64: 8712 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 8713 case SystemZ::ATOMIC_LOAD_NIHF64: 8714 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 8715 8716 case SystemZ::ATOMIC_LOADW_OR: 8717 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 8718 case SystemZ::ATOMIC_LOADW_OILH: 8719 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 8720 case SystemZ::ATOMIC_LOAD_OR: 8721 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 8722 case SystemZ::ATOMIC_LOAD_OILL: 8723 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 8724 case SystemZ::ATOMIC_LOAD_OILH: 8725 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 8726 case SystemZ::ATOMIC_LOAD_OILF: 8727 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 8728 case SystemZ::ATOMIC_LOAD_OGR: 8729 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 8730 case SystemZ::ATOMIC_LOAD_OILL64: 8731 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 8732 case SystemZ::ATOMIC_LOAD_OILH64: 8733 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 8734 case SystemZ::ATOMIC_LOAD_OIHL64: 8735 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 8736 case SystemZ::ATOMIC_LOAD_OIHH64: 8737 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 8738 case SystemZ::ATOMIC_LOAD_OILF64: 8739 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 8740 case SystemZ::ATOMIC_LOAD_OIHF64: 8741 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 8742 8743 case SystemZ::ATOMIC_LOADW_XR: 8744 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 8745 case SystemZ::ATOMIC_LOADW_XILF: 8746 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 8747 case SystemZ::ATOMIC_LOAD_XR: 8748 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 8749 case SystemZ::ATOMIC_LOAD_XILF: 8750 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 8751 case SystemZ::ATOMIC_LOAD_XGR: 8752 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 8753 case SystemZ::ATOMIC_LOAD_XILF64: 8754 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 8755 case SystemZ::ATOMIC_LOAD_XIHF64: 8756 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 8757 8758 case SystemZ::ATOMIC_LOADW_NRi: 8759 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 8760 case SystemZ::ATOMIC_LOADW_NILHi: 8761 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 8762 case SystemZ::ATOMIC_LOAD_NRi: 8763 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 8764 case SystemZ::ATOMIC_LOAD_NILLi: 8765 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 8766 case SystemZ::ATOMIC_LOAD_NILHi: 8767 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 8768 case SystemZ::ATOMIC_LOAD_NILFi: 8769 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 8770 case SystemZ::ATOMIC_LOAD_NGRi: 8771 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 8772 case SystemZ::ATOMIC_LOAD_NILL64i: 8773 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 8774 case SystemZ::ATOMIC_LOAD_NILH64i: 8775 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 8776 case SystemZ::ATOMIC_LOAD_NIHL64i: 8777 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 8778 case SystemZ::ATOMIC_LOAD_NIHH64i: 8779 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 8780 case SystemZ::ATOMIC_LOAD_NILF64i: 8781 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 8782 case SystemZ::ATOMIC_LOAD_NIHF64i: 8783 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 8784 8785 case SystemZ::ATOMIC_LOADW_MIN: 8786 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8787 SystemZ::CCMASK_CMP_LE, 0); 8788 case SystemZ::ATOMIC_LOAD_MIN_32: 8789 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8790 SystemZ::CCMASK_CMP_LE, 32); 8791 case SystemZ::ATOMIC_LOAD_MIN_64: 8792 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8793 SystemZ::CCMASK_CMP_LE, 64); 8794 8795 case SystemZ::ATOMIC_LOADW_MAX: 8796 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8797 SystemZ::CCMASK_CMP_GE, 0); 8798 case SystemZ::ATOMIC_LOAD_MAX_32: 8799 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8800 SystemZ::CCMASK_CMP_GE, 32); 8801 case SystemZ::ATOMIC_LOAD_MAX_64: 8802 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8803 SystemZ::CCMASK_CMP_GE, 64); 8804 8805 case SystemZ::ATOMIC_LOADW_UMIN: 8806 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8807 SystemZ::CCMASK_CMP_LE, 0); 8808 case SystemZ::ATOMIC_LOAD_UMIN_32: 8809 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8810 SystemZ::CCMASK_CMP_LE, 32); 8811 case SystemZ::ATOMIC_LOAD_UMIN_64: 8812 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8813 SystemZ::CCMASK_CMP_LE, 64); 8814 8815 case SystemZ::ATOMIC_LOADW_UMAX: 8816 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8817 SystemZ::CCMASK_CMP_GE, 0); 8818 case SystemZ::ATOMIC_LOAD_UMAX_32: 8819 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8820 SystemZ::CCMASK_CMP_GE, 32); 8821 case SystemZ::ATOMIC_LOAD_UMAX_64: 8822 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8823 SystemZ::CCMASK_CMP_GE, 64); 8824 8825 case SystemZ::ATOMIC_CMP_SWAPW: 8826 return emitAtomicCmpSwapW(MI, MBB); 8827 case SystemZ::MVCImm: 8828 case SystemZ::MVCReg: 8829 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 8830 case SystemZ::NCImm: 8831 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 8832 case SystemZ::OCImm: 8833 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 8834 case SystemZ::XCImm: 8835 case SystemZ::XCReg: 8836 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 8837 case SystemZ::CLCImm: 8838 case SystemZ::CLCReg: 8839 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 8840 case SystemZ::MemsetImmImm: 8841 case SystemZ::MemsetImmReg: 8842 case SystemZ::MemsetRegImm: 8843 case SystemZ::MemsetRegReg: 8844 return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/); 8845 case SystemZ::CLSTLoop: 8846 return emitStringWrapper(MI, MBB, SystemZ::CLST); 8847 case SystemZ::MVSTLoop: 8848 return emitStringWrapper(MI, MBB, SystemZ::MVST); 8849 case SystemZ::SRSTLoop: 8850 return emitStringWrapper(MI, MBB, SystemZ::SRST); 8851 case SystemZ::TBEGIN: 8852 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 8853 case SystemZ::TBEGIN_nofloat: 8854 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 8855 case SystemZ::TBEGINC: 8856 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 8857 case SystemZ::LTEBRCompare_VecPseudo: 8858 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 8859 case SystemZ::LTDBRCompare_VecPseudo: 8860 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 8861 case SystemZ::LTXBRCompare_VecPseudo: 8862 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 8863 8864 case SystemZ::PROBED_ALLOCA: 8865 return emitProbedAlloca(MI, MBB); 8866 8867 case TargetOpcode::STACKMAP: 8868 case TargetOpcode::PATCHPOINT: 8869 return emitPatchPoint(MI, MBB); 8870 8871 default: 8872 llvm_unreachable("Unexpected instr type to insert"); 8873 } 8874 } 8875 8876 // This is only used by the isel schedulers, and is needed only to prevent 8877 // compiler from crashing when list-ilp is used. 8878 const TargetRegisterClass * 8879 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 8880 if (VT == MVT::Untyped) 8881 return &SystemZ::ADDR128BitRegClass; 8882 return TargetLowering::getRepRegClassFor(VT); 8883 } 8884