1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
84 
85   auto *Regs = STI.getSpecialRegisters();
86 
87   // Set up the register classes.
88   if (Subtarget.hasHighWord())
89     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
90   else
91     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
92   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
93   if (!useSoftFloat()) {
94     if (Subtarget.hasVector()) {
95       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
96       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
97     } else {
98       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
99       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
100     }
101     if (Subtarget.hasVectorEnhancements1())
102       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
103     else
104       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
105 
106     if (Subtarget.hasVector()) {
107       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
111       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
112       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
113     }
114   }
115 
116   // Compute derived properties from the register classes
117   computeRegisterProperties(Subtarget.getRegisterInfo());
118 
119   // Set up special registers.
120   setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
121 
122   // TODO: It may be better to default to latency-oriented scheduling, however
123   // LLVM's current latency-oriented scheduler can't handle physreg definitions
124   // such as SystemZ has with CC, so set this to the register-pressure
125   // scheduler, because it can.
126   setSchedulingPreference(Sched::RegPressure);
127 
128   setBooleanContents(ZeroOrOneBooleanContent);
129   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
130 
131   // Instructions are strings of 2-byte aligned 2-byte values.
132   setMinFunctionAlignment(Align(2));
133   // For performance reasons we prefer 16-byte alignment.
134   setPrefFunctionAlignment(Align(16));
135 
136   // Handle operations that are handled in a similar way for all types.
137   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
138        I <= MVT::LAST_FP_VALUETYPE;
139        ++I) {
140     MVT VT = MVT::SimpleValueType(I);
141     if (isTypeLegal(VT)) {
142       // Lower SET_CC into an IPM-based sequence.
143       setOperationAction(ISD::SETCC, VT, Custom);
144       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
145       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
146 
147       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
148       setOperationAction(ISD::SELECT, VT, Expand);
149 
150       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
151       setOperationAction(ISD::SELECT_CC, VT, Custom);
152       setOperationAction(ISD::BR_CC,     VT, Custom);
153     }
154   }
155 
156   // Expand jump table branches as address arithmetic followed by an
157   // indirect jump.
158   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
159 
160   // Expand BRCOND into a BR_CC (see above).
161   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
162 
163   // Handle integer types.
164   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
165        I <= MVT::LAST_INTEGER_VALUETYPE;
166        ++I) {
167     MVT VT = MVT::SimpleValueType(I);
168     if (isTypeLegal(VT)) {
169       setOperationAction(ISD::ABS, VT, Legal);
170 
171       // Expand individual DIV and REMs into DIVREMs.
172       setOperationAction(ISD::SDIV, VT, Expand);
173       setOperationAction(ISD::UDIV, VT, Expand);
174       setOperationAction(ISD::SREM, VT, Expand);
175       setOperationAction(ISD::UREM, VT, Expand);
176       setOperationAction(ISD::SDIVREM, VT, Custom);
177       setOperationAction(ISD::UDIVREM, VT, Custom);
178 
179       // Support addition/subtraction with overflow.
180       setOperationAction(ISD::SADDO, VT, Custom);
181       setOperationAction(ISD::SSUBO, VT, Custom);
182 
183       // Support addition/subtraction with carry.
184       setOperationAction(ISD::UADDO, VT, Custom);
185       setOperationAction(ISD::USUBO, VT, Custom);
186 
187       // Support carry in as value rather than glue.
188       setOperationAction(ISD::ADDCARRY, VT, Custom);
189       setOperationAction(ISD::SUBCARRY, VT, Custom);
190 
191       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
192       // stores, putting a serialization instruction after the stores.
193       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
194       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
195 
196       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
197       // available, or if the operand is constant.
198       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
199 
200       // Use POPCNT on z196 and above.
201       if (Subtarget.hasPopulationCount())
202         setOperationAction(ISD::CTPOP, VT, Custom);
203       else
204         setOperationAction(ISD::CTPOP, VT, Expand);
205 
206       // No special instructions for these.
207       setOperationAction(ISD::CTTZ,            VT, Expand);
208       setOperationAction(ISD::ROTR,            VT, Expand);
209 
210       // Use *MUL_LOHI where possible instead of MULH*.
211       setOperationAction(ISD::MULHS, VT, Expand);
212       setOperationAction(ISD::MULHU, VT, Expand);
213       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
214       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
215 
216       // Only z196 and above have native support for conversions to unsigned.
217       // On z10, promoting to i64 doesn't generate an inexact condition for
218       // values that are outside the i32 range but in the i64 range, so use
219       // the default expansion.
220       if (!Subtarget.hasFPExtension())
221         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
222 
223       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
224       // default to Expand, so need to be modified to Legal where appropriate.
225       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
226       if (Subtarget.hasFPExtension())
227         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
228 
229       // And similarly for STRICT_[SU]INT_TO_FP.
230       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
231       if (Subtarget.hasFPExtension())
232         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
233     }
234   }
235 
236   // Type legalization will convert 8- and 16-bit atomic operations into
237   // forms that operate on i32s (but still keeping the original memory VT).
238   // Lower them into full i32 operations.
239   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
248   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
249   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
250 
251   // Even though i128 is not a legal type, we still need to custom lower
252   // the atomic operations in order to exploit SystemZ instructions.
253   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
254   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
255 
256   // We can use the CC result of compare-and-swap to implement
257   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
259   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
260   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
261 
262   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
263 
264   // Traps are legal, as we will convert them to "j .+2".
265   setOperationAction(ISD::TRAP, MVT::Other, Legal);
266 
267   // z10 has instructions for signed but not unsigned FP conversion.
268   // Handle unsigned 32-bit types as signed 64-bit types.
269   if (!Subtarget.hasFPExtension()) {
270     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
272     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
273     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
274   }
275 
276   // We have native support for a 64-bit CTLZ, via FLOGR.
277   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
278   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
279   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
280 
281   // On z15 we have native support for a 64-bit CTPOP.
282   if (Subtarget.hasMiscellaneousExtensions3()) {
283     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
284     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
285   }
286 
287   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
288   setOperationAction(ISD::OR, MVT::i64, Custom);
289 
290   // Expand 128 bit shifts without using a libcall.
291   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
292   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
293   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
294   setLibcallName(RTLIB::SRL_I128, nullptr);
295   setLibcallName(RTLIB::SHL_I128, nullptr);
296   setLibcallName(RTLIB::SRA_I128, nullptr);
297 
298   // Handle bitcast from fp128 to i128.
299   setOperationAction(ISD::BITCAST, MVT::i128, Custom);
300 
301   // We have native instructions for i8, i16 and i32 extensions, but not i1.
302   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
303   for (MVT VT : MVT::integer_valuetypes()) {
304     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
305     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
306     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
307   }
308 
309   // Handle the various types of symbolic address.
310   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
311   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
312   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
313   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
314   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
315 
316   // We need to handle dynamic allocations specially because of the
317   // 160-byte area at the bottom of the stack.
318   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
319   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
320 
321   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
322   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
323 
324   // Handle prefetches with PFD or PFDRL.
325   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
326 
327   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
328     // Assume by default that all vector operations need to be expanded.
329     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
330       if (getOperationAction(Opcode, VT) == Legal)
331         setOperationAction(Opcode, VT, Expand);
332 
333     // Likewise all truncating stores and extending loads.
334     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
335       setTruncStoreAction(VT, InnerVT, Expand);
336       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
337       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
338       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
339     }
340 
341     if (isTypeLegal(VT)) {
342       // These operations are legal for anything that can be stored in a
343       // vector register, even if there is no native support for the format
344       // as such.  In particular, we can do these for v4f32 even though there
345       // are no specific instructions for that format.
346       setOperationAction(ISD::LOAD, VT, Legal);
347       setOperationAction(ISD::STORE, VT, Legal);
348       setOperationAction(ISD::VSELECT, VT, Legal);
349       setOperationAction(ISD::BITCAST, VT, Legal);
350       setOperationAction(ISD::UNDEF, VT, Legal);
351 
352       // Likewise, except that we need to replace the nodes with something
353       // more specific.
354       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
355       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
356     }
357   }
358 
359   // Handle integer vector types.
360   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
361     if (isTypeLegal(VT)) {
362       // These operations have direct equivalents.
363       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
364       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
365       setOperationAction(ISD::ADD, VT, Legal);
366       setOperationAction(ISD::SUB, VT, Legal);
367       if (VT != MVT::v2i64)
368         setOperationAction(ISD::MUL, VT, Legal);
369       setOperationAction(ISD::ABS, VT, Legal);
370       setOperationAction(ISD::AND, VT, Legal);
371       setOperationAction(ISD::OR, VT, Legal);
372       setOperationAction(ISD::XOR, VT, Legal);
373       if (Subtarget.hasVectorEnhancements1())
374         setOperationAction(ISD::CTPOP, VT, Legal);
375       else
376         setOperationAction(ISD::CTPOP, VT, Custom);
377       setOperationAction(ISD::CTTZ, VT, Legal);
378       setOperationAction(ISD::CTLZ, VT, Legal);
379 
380       // Convert a GPR scalar to a vector by inserting it into element 0.
381       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
382 
383       // Use a series of unpacks for extensions.
384       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
385       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
386 
387       // Detect shifts by a scalar amount and convert them into
388       // V*_BY_SCALAR.
389       setOperationAction(ISD::SHL, VT, Custom);
390       setOperationAction(ISD::SRA, VT, Custom);
391       setOperationAction(ISD::SRL, VT, Custom);
392 
393       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
394       // converted into ROTL.
395       setOperationAction(ISD::ROTL, VT, Expand);
396       setOperationAction(ISD::ROTR, VT, Expand);
397 
398       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
399       // and inverting the result as necessary.
400       setOperationAction(ISD::SETCC, VT, Custom);
401       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
402       if (Subtarget.hasVectorEnhancements1())
403         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
404     }
405   }
406 
407   if (Subtarget.hasVector()) {
408     // There should be no need to check for float types other than v2f64
409     // since <2 x f32> isn't a legal type.
410     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
418 
419     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
420     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
421     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
422     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
423     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
424     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
425     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
426     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
427   }
428 
429   if (Subtarget.hasVectorEnhancements2()) {
430     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
438 
439     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
440     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
441     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
442     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
443     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
444     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
445     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
446     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
447   }
448 
449   // Handle floating-point types.
450   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
451        I <= MVT::LAST_FP_VALUETYPE;
452        ++I) {
453     MVT VT = MVT::SimpleValueType(I);
454     if (isTypeLegal(VT)) {
455       // We can use FI for FRINT.
456       setOperationAction(ISD::FRINT, VT, Legal);
457 
458       // We can use the extended form of FI for other rounding operations.
459       if (Subtarget.hasFPExtension()) {
460         setOperationAction(ISD::FNEARBYINT, VT, Legal);
461         setOperationAction(ISD::FFLOOR, VT, Legal);
462         setOperationAction(ISD::FCEIL, VT, Legal);
463         setOperationAction(ISD::FTRUNC, VT, Legal);
464         setOperationAction(ISD::FROUND, VT, Legal);
465       }
466 
467       // No special instructions for these.
468       setOperationAction(ISD::FSIN, VT, Expand);
469       setOperationAction(ISD::FCOS, VT, Expand);
470       setOperationAction(ISD::FSINCOS, VT, Expand);
471       setOperationAction(ISD::FREM, VT, Expand);
472       setOperationAction(ISD::FPOW, VT, Expand);
473 
474       // Handle constrained floating-point operations.
475       setOperationAction(ISD::STRICT_FADD, VT, Legal);
476       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
477       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
478       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
479       setOperationAction(ISD::STRICT_FMA, VT, Legal);
480       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
481       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
482       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
483       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
484       if (Subtarget.hasFPExtension()) {
485         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
486         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
487         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
488         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
489         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
490       }
491     }
492   }
493 
494   // Handle floating-point vector types.
495   if (Subtarget.hasVector()) {
496     // Scalar-to-vector conversion is just a subreg.
497     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
498     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
499 
500     // Some insertions and extractions can be done directly but others
501     // need to go via integers.
502     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
503     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
504     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
505     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
506 
507     // These operations have direct equivalents.
508     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
509     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
510     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
511     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
512     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
513     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
514     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
515     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
516     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
517     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
518     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
519     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
520     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
521     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
522 
523     // Handle constrained floating-point operations.
524     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
527     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
530     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
531     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
532     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
533     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
534     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
535     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
536   }
537 
538   // The vector enhancements facility 1 has instructions for these.
539   if (Subtarget.hasVectorEnhancements1()) {
540     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
541     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
542     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
543     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
544     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
545     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
546     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
547     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
548     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
549     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
550     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
551     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
552     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
553     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
554 
555     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
556     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
557     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
558     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
559 
560     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
561     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
562     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
563     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
564 
565     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
566     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
567     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
568     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
569 
570     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
571     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
572     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
573     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
574 
575     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
576     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
577     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
578     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
579 
580     // Handle constrained floating-point operations.
581     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
584     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
587     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
588     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
589     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
590     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
591     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
592     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
593     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
594                      MVT::v4f32, MVT::v2f64 }) {
595       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
596       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
597       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
598       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
599     }
600   }
601 
602   // We only have fused f128 multiply-addition on vector registers.
603   if (!Subtarget.hasVectorEnhancements1()) {
604     setOperationAction(ISD::FMA, MVT::f128, Expand);
605     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
606   }
607 
608   // We don't have a copysign instruction on vector registers.
609   if (Subtarget.hasVectorEnhancements1())
610     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
611 
612   // Needed so that we don't try to implement f128 constant loads using
613   // a load-and-extend of a f80 constant (in cases where the constant
614   // would fit in an f80).
615   for (MVT VT : MVT::fp_valuetypes())
616     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
617 
618   // We don't have extending load instruction on vector registers.
619   if (Subtarget.hasVectorEnhancements1()) {
620     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
621     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
622   }
623 
624   // Floating-point truncation and stores need to be done separately.
625   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
626   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
627   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
628 
629   // We have 64-bit FPR<->GPR moves, but need special handling for
630   // 32-bit forms.
631   if (!Subtarget.hasVector()) {
632     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
633     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
634   }
635 
636   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
637   // structure, but VAEND is a no-op.
638   setOperationAction(ISD::VASTART, MVT::Other, Custom);
639   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
640   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
641 
642   // Codes for which we want to perform some z-specific combinations.
643   setTargetDAGCombine({ISD::ZERO_EXTEND,
644                        ISD::SIGN_EXTEND,
645                        ISD::SIGN_EXTEND_INREG,
646                        ISD::LOAD,
647                        ISD::STORE,
648                        ISD::VECTOR_SHUFFLE,
649                        ISD::EXTRACT_VECTOR_ELT,
650                        ISD::FP_ROUND,
651                        ISD::STRICT_FP_ROUND,
652                        ISD::FP_EXTEND,
653                        ISD::SINT_TO_FP,
654                        ISD::UINT_TO_FP,
655                        ISD::STRICT_FP_EXTEND,
656                        ISD::BSWAP,
657                        ISD::SDIV,
658                        ISD::UDIV,
659                        ISD::SREM,
660                        ISD::UREM,
661                        ISD::INTRINSIC_VOID,
662                        ISD::INTRINSIC_W_CHAIN});
663 
664   // Handle intrinsics.
665   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
666   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
667 
668   // We want to use MVC in preference to even a single load/store pair.
669   MaxStoresPerMemcpy = 0;
670   MaxStoresPerMemcpyOptSize = 0;
671 
672   // The main memset sequence is a byte store followed by an MVC.
673   // Two STC or MV..I stores win over that, but the kind of fused stores
674   // generated by target-independent code don't when the byte value is
675   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
676   // than "STC;MVC".  Handle the choice in target-specific code instead.
677   MaxStoresPerMemset = 0;
678   MaxStoresPerMemsetOptSize = 0;
679 
680   // Default to having -disable-strictnode-mutation on
681   IsStrictFPEnabled = true;
682 }
683 
684 bool SystemZTargetLowering::useSoftFloat() const {
685   return Subtarget.hasSoftFloat();
686 }
687 
688 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
689                                               LLVMContext &, EVT VT) const {
690   if (!VT.isVector())
691     return MVT::i32;
692   return VT.changeVectorElementTypeToInteger();
693 }
694 
695 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
696     const MachineFunction &MF, EVT VT) const {
697   VT = VT.getScalarType();
698 
699   if (!VT.isSimple())
700     return false;
701 
702   switch (VT.getSimpleVT().SimpleTy) {
703   case MVT::f32:
704   case MVT::f64:
705     return true;
706   case MVT::f128:
707     return Subtarget.hasVectorEnhancements1();
708   default:
709     break;
710   }
711 
712   return false;
713 }
714 
715 // Return true if the constant can be generated with a vector instruction,
716 // such as VGM, VGMB or VREPI.
717 bool SystemZVectorConstantInfo::isVectorConstantLegal(
718     const SystemZSubtarget &Subtarget) {
719   const SystemZInstrInfo *TII =
720       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
721   if (!Subtarget.hasVector() ||
722       (isFP128 && !Subtarget.hasVectorEnhancements1()))
723     return false;
724 
725   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
726   // preferred way of creating all-zero and all-one vectors so give it
727   // priority over other methods below.
728   unsigned Mask = 0;
729   unsigned I = 0;
730   for (; I < SystemZ::VectorBytes; ++I) {
731     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
732     if (Byte == 0xff)
733       Mask |= 1ULL << I;
734     else if (Byte != 0)
735       break;
736   }
737   if (I == SystemZ::VectorBytes) {
738     Opcode = SystemZISD::BYTE_MASK;
739     OpVals.push_back(Mask);
740     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
741     return true;
742   }
743 
744   if (SplatBitSize > 64)
745     return false;
746 
747   auto tryValue = [&](uint64_t Value) -> bool {
748     // Try VECTOR REPLICATE IMMEDIATE
749     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
750     if (isInt<16>(SignedValue)) {
751       OpVals.push_back(((unsigned) SignedValue));
752       Opcode = SystemZISD::REPLICATE;
753       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
754                                SystemZ::VectorBits / SplatBitSize);
755       return true;
756     }
757     // Try VECTOR GENERATE MASK
758     unsigned Start, End;
759     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
760       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
761       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
762       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
763       OpVals.push_back(Start - (64 - SplatBitSize));
764       OpVals.push_back(End - (64 - SplatBitSize));
765       Opcode = SystemZISD::ROTATE_MASK;
766       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
767                                SystemZ::VectorBits / SplatBitSize);
768       return true;
769     }
770     return false;
771   };
772 
773   // First try assuming that any undefined bits above the highest set bit
774   // and below the lowest set bit are 1s.  This increases the likelihood of
775   // being able to use a sign-extended element value in VECTOR REPLICATE
776   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
777   uint64_t SplatBitsZ = SplatBits.getZExtValue();
778   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
779   uint64_t Lower =
780       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
781   uint64_t Upper =
782       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
783   if (tryValue(SplatBitsZ | Upper | Lower))
784     return true;
785 
786   // Now try assuming that any undefined bits between the first and
787   // last defined set bits are set.  This increases the chances of
788   // using a non-wraparound mask.
789   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
790   return tryValue(SplatBitsZ | Middle);
791 }
792 
793 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
794   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
795   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
796   SplatBits = FPImm.bitcastToAPInt();
797   unsigned Width = SplatBits.getBitWidth();
798   IntBits <<= (SystemZ::VectorBits - Width);
799 
800   // Find the smallest splat.
801   while (Width > 8) {
802     unsigned HalfSize = Width / 2;
803     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
804     APInt LowValue = SplatBits.trunc(HalfSize);
805 
806     // If the two halves do not match, stop here.
807     if (HighValue != LowValue || 8 > HalfSize)
808       break;
809 
810     SplatBits = HighValue;
811     Width = HalfSize;
812   }
813   SplatUndef = 0;
814   SplatBitSize = Width;
815 }
816 
817 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
818   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
819   bool HasAnyUndefs;
820 
821   // Get IntBits by finding the 128 bit splat.
822   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
823                        true);
824 
825   // Get SplatBits by finding the 8 bit or greater splat.
826   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
827                        true);
828 }
829 
830 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
831                                          bool ForCodeSize) const {
832   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
833   if (Imm.isZero() || Imm.isNegZero())
834     return true;
835 
836   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
837 }
838 
839 /// Returns true if stack probing through inline assembly is requested.
840 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
841   // If the function specifically requests inline stack probes, emit them.
842   if (MF.getFunction().hasFnAttribute("probe-stack"))
843     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
844            "inline-asm";
845   return false;
846 }
847 
848 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
849   // We can use CGFI or CLGFI.
850   return isInt<32>(Imm) || isUInt<32>(Imm);
851 }
852 
853 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
854   // We can use ALGFI or SLGFI.
855   return isUInt<32>(Imm) || isUInt<32>(-Imm);
856 }
857 
858 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
859     EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const {
860   // Unaligned accesses should never be slower than the expanded version.
861   // We check specifically for aligned accesses in the few cases where
862   // they are required.
863   if (Fast)
864     *Fast = true;
865   return true;
866 }
867 
868 // Information about the addressing mode for a memory access.
869 struct AddressingMode {
870   // True if a long displacement is supported.
871   bool LongDisplacement;
872 
873   // True if use of index register is supported.
874   bool IndexReg;
875 
876   AddressingMode(bool LongDispl, bool IdxReg) :
877     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
878 };
879 
880 // Return the desired addressing mode for a Load which has only one use (in
881 // the same block) which is a Store.
882 static AddressingMode getLoadStoreAddrMode(bool HasVector,
883                                           Type *Ty) {
884   // With vector support a Load->Store combination may be combined to either
885   // an MVC or vector operations and it seems to work best to allow the
886   // vector addressing mode.
887   if (HasVector)
888     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
889 
890   // Otherwise only the MVC case is special.
891   bool MVC = Ty->isIntegerTy(8);
892   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
893 }
894 
895 // Return the addressing mode which seems most desirable given an LLVM
896 // Instruction pointer.
897 static AddressingMode
898 supportedAddressingMode(Instruction *I, bool HasVector) {
899   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
900     switch (II->getIntrinsicID()) {
901     default: break;
902     case Intrinsic::memset:
903     case Intrinsic::memmove:
904     case Intrinsic::memcpy:
905       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
906     }
907   }
908 
909   if (isa<LoadInst>(I) && I->hasOneUse()) {
910     auto *SingleUser = cast<Instruction>(*I->user_begin());
911     if (SingleUser->getParent() == I->getParent()) {
912       if (isa<ICmpInst>(SingleUser)) {
913         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
914           if (C->getBitWidth() <= 64 &&
915               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
916             // Comparison of memory with 16 bit signed / unsigned immediate
917             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
918       } else if (isa<StoreInst>(SingleUser))
919         // Load->Store
920         return getLoadStoreAddrMode(HasVector, I->getType());
921     }
922   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
923     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
924       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
925         // Load->Store
926         return getLoadStoreAddrMode(HasVector, LoadI->getType());
927   }
928 
929   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
930 
931     // * Use LDE instead of LE/LEY for z13 to avoid partial register
932     //   dependencies (LDE only supports small offsets).
933     // * Utilize the vector registers to hold floating point
934     //   values (vector load / store instructions only support small
935     //   offsets).
936 
937     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
938                          I->getOperand(0)->getType());
939     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
940     bool IsVectorAccess = MemAccessTy->isVectorTy();
941 
942     // A store of an extracted vector element will be combined into a VSTE type
943     // instruction.
944     if (!IsVectorAccess && isa<StoreInst>(I)) {
945       Value *DataOp = I->getOperand(0);
946       if (isa<ExtractElementInst>(DataOp))
947         IsVectorAccess = true;
948     }
949 
950     // A load which gets inserted into a vector element will be combined into a
951     // VLE type instruction.
952     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
953       User *LoadUser = *I->user_begin();
954       if (isa<InsertElementInst>(LoadUser))
955         IsVectorAccess = true;
956     }
957 
958     if (IsFPAccess || IsVectorAccess)
959       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
960   }
961 
962   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
963 }
964 
965 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
966        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
967   // Punt on globals for now, although they can be used in limited
968   // RELATIVE LONG cases.
969   if (AM.BaseGV)
970     return false;
971 
972   // Require a 20-bit signed offset.
973   if (!isInt<20>(AM.BaseOffs))
974     return false;
975 
976   AddressingMode SupportedAM(true, true);
977   if (I != nullptr)
978     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
979 
980   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
981     return false;
982 
983   if (!SupportedAM.IndexReg)
984     // No indexing allowed.
985     return AM.Scale == 0;
986   else
987     // Indexing is OK but no scale factor can be applied.
988     return AM.Scale == 0 || AM.Scale == 1;
989 }
990 
991 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
992   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
993     return false;
994   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
995   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
996   return FromBits > ToBits;
997 }
998 
999 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1000   if (!FromVT.isInteger() || !ToVT.isInteger())
1001     return false;
1002   unsigned FromBits = FromVT.getFixedSizeInBits();
1003   unsigned ToBits = ToVT.getFixedSizeInBits();
1004   return FromBits > ToBits;
1005 }
1006 
1007 //===----------------------------------------------------------------------===//
1008 // Inline asm support
1009 //===----------------------------------------------------------------------===//
1010 
1011 TargetLowering::ConstraintType
1012 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1013   if (Constraint.size() == 1) {
1014     switch (Constraint[0]) {
1015     case 'a': // Address register
1016     case 'd': // Data register (equivalent to 'r')
1017     case 'f': // Floating-point register
1018     case 'h': // High-part register
1019     case 'r': // General-purpose register
1020     case 'v': // Vector register
1021       return C_RegisterClass;
1022 
1023     case 'Q': // Memory with base and unsigned 12-bit displacement
1024     case 'R': // Likewise, plus an index
1025     case 'S': // Memory with base and signed 20-bit displacement
1026     case 'T': // Likewise, plus an index
1027     case 'm': // Equivalent to 'T'.
1028       return C_Memory;
1029 
1030     case 'I': // Unsigned 8-bit constant
1031     case 'J': // Unsigned 12-bit constant
1032     case 'K': // Signed 16-bit constant
1033     case 'L': // Signed 20-bit displacement (on all targets we support)
1034     case 'M': // 0x7fffffff
1035       return C_Immediate;
1036 
1037     default:
1038       break;
1039     }
1040   } else if (Constraint.size() == 2 && Constraint[0] == 'Z') {
1041     switch (Constraint[1]) {
1042     case 'Q': // Address with base and unsigned 12-bit displacement
1043     case 'R': // Likewise, plus an index
1044     case 'S': // Address with base and signed 20-bit displacement
1045     case 'T': // Likewise, plus an index
1046       return C_Address;
1047 
1048     default:
1049       break;
1050     }
1051   }
1052   return TargetLowering::getConstraintType(Constraint);
1053 }
1054 
1055 TargetLowering::ConstraintWeight SystemZTargetLowering::
1056 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1057                                const char *constraint) const {
1058   ConstraintWeight weight = CW_Invalid;
1059   Value *CallOperandVal = info.CallOperandVal;
1060   // If we don't have a value, we can't do a match,
1061   // but allow it at the lowest weight.
1062   if (!CallOperandVal)
1063     return CW_Default;
1064   Type *type = CallOperandVal->getType();
1065   // Look at the constraint type.
1066   switch (*constraint) {
1067   default:
1068     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1069     break;
1070 
1071   case 'a': // Address register
1072   case 'd': // Data register (equivalent to 'r')
1073   case 'h': // High-part register
1074   case 'r': // General-purpose register
1075     if (CallOperandVal->getType()->isIntegerTy())
1076       weight = CW_Register;
1077     break;
1078 
1079   case 'f': // Floating-point register
1080     if (type->isFloatingPointTy())
1081       weight = CW_Register;
1082     break;
1083 
1084   case 'v': // Vector register
1085     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1086         Subtarget.hasVector())
1087       weight = CW_Register;
1088     break;
1089 
1090   case 'I': // Unsigned 8-bit constant
1091     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1092       if (isUInt<8>(C->getZExtValue()))
1093         weight = CW_Constant;
1094     break;
1095 
1096   case 'J': // Unsigned 12-bit constant
1097     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1098       if (isUInt<12>(C->getZExtValue()))
1099         weight = CW_Constant;
1100     break;
1101 
1102   case 'K': // Signed 16-bit constant
1103     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1104       if (isInt<16>(C->getSExtValue()))
1105         weight = CW_Constant;
1106     break;
1107 
1108   case 'L': // Signed 20-bit displacement (on all targets we support)
1109     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1110       if (isInt<20>(C->getSExtValue()))
1111         weight = CW_Constant;
1112     break;
1113 
1114   case 'M': // 0x7fffffff
1115     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1116       if (C->getZExtValue() == 0x7fffffff)
1117         weight = CW_Constant;
1118     break;
1119   }
1120   return weight;
1121 }
1122 
1123 // Parse a "{tNNN}" register constraint for which the register type "t"
1124 // has already been verified.  MC is the class associated with "t" and
1125 // Map maps 0-based register numbers to LLVM register numbers.
1126 static std::pair<unsigned, const TargetRegisterClass *>
1127 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1128                     const unsigned *Map, unsigned Size) {
1129   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1130   if (isdigit(Constraint[2])) {
1131     unsigned Index;
1132     bool Failed =
1133         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1134     if (!Failed && Index < Size && Map[Index])
1135       return std::make_pair(Map[Index], RC);
1136   }
1137   return std::make_pair(0U, nullptr);
1138 }
1139 
1140 std::pair<unsigned, const TargetRegisterClass *>
1141 SystemZTargetLowering::getRegForInlineAsmConstraint(
1142     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1143   if (Constraint.size() == 1) {
1144     // GCC Constraint Letters
1145     switch (Constraint[0]) {
1146     default: break;
1147     case 'd': // Data register (equivalent to 'r')
1148     case 'r': // General-purpose register
1149       if (VT == MVT::i64)
1150         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1151       else if (VT == MVT::i128)
1152         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1153       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1154 
1155     case 'a': // Address register
1156       if (VT == MVT::i64)
1157         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1158       else if (VT == MVT::i128)
1159         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1160       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1161 
1162     case 'h': // High-part register (an LLVM extension)
1163       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1164 
1165     case 'f': // Floating-point register
1166       if (!useSoftFloat()) {
1167         if (VT == MVT::f64)
1168           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1169         else if (VT == MVT::f128)
1170           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1171         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1172       }
1173       break;
1174     case 'v': // Vector register
1175       if (Subtarget.hasVector()) {
1176         if (VT == MVT::f32)
1177           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1178         if (VT == MVT::f64)
1179           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1180         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1181       }
1182       break;
1183     }
1184   }
1185   if (Constraint.size() > 0 && Constraint[0] == '{') {
1186     // We need to override the default register parsing for GPRs and FPRs
1187     // because the interpretation depends on VT.  The internal names of
1188     // the registers are also different from the external names
1189     // (F0D and F0S instead of F0, etc.).
1190     if (Constraint[1] == 'r') {
1191       if (VT == MVT::i32)
1192         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1193                                    SystemZMC::GR32Regs, 16);
1194       if (VT == MVT::i128)
1195         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1196                                    SystemZMC::GR128Regs, 16);
1197       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1198                                  SystemZMC::GR64Regs, 16);
1199     }
1200     if (Constraint[1] == 'f') {
1201       if (useSoftFloat())
1202         return std::make_pair(
1203             0u, static_cast<const TargetRegisterClass *>(nullptr));
1204       if (VT == MVT::f32)
1205         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1206                                    SystemZMC::FP32Regs, 16);
1207       if (VT == MVT::f128)
1208         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1209                                    SystemZMC::FP128Regs, 16);
1210       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1211                                  SystemZMC::FP64Regs, 16);
1212     }
1213     if (Constraint[1] == 'v') {
1214       if (!Subtarget.hasVector())
1215         return std::make_pair(
1216             0u, static_cast<const TargetRegisterClass *>(nullptr));
1217       if (VT == MVT::f32)
1218         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1219                                    SystemZMC::VR32Regs, 32);
1220       if (VT == MVT::f64)
1221         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1222                                    SystemZMC::VR64Regs, 32);
1223       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1224                                  SystemZMC::VR128Regs, 32);
1225     }
1226   }
1227   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1228 }
1229 
1230 // FIXME? Maybe this could be a TableGen attribute on some registers and
1231 // this table could be generated automatically from RegInfo.
1232 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1233                                                   const MachineFunction &MF) const {
1234 
1235   Register Reg = StringSwitch<Register>(RegName)
1236                    .Case("r15", SystemZ::R15D)
1237                    .Default(0);
1238   if (Reg)
1239     return Reg;
1240   report_fatal_error("Invalid register name global variable");
1241 }
1242 
1243 void SystemZTargetLowering::
1244 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1245                              std::vector<SDValue> &Ops,
1246                              SelectionDAG &DAG) const {
1247   // Only support length 1 constraints for now.
1248   if (Constraint.length() == 1) {
1249     switch (Constraint[0]) {
1250     case 'I': // Unsigned 8-bit constant
1251       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1252         if (isUInt<8>(C->getZExtValue()))
1253           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1254                                               Op.getValueType()));
1255       return;
1256 
1257     case 'J': // Unsigned 12-bit constant
1258       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1259         if (isUInt<12>(C->getZExtValue()))
1260           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1261                                               Op.getValueType()));
1262       return;
1263 
1264     case 'K': // Signed 16-bit constant
1265       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1266         if (isInt<16>(C->getSExtValue()))
1267           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1268                                               Op.getValueType()));
1269       return;
1270 
1271     case 'L': // Signed 20-bit displacement (on all targets we support)
1272       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1273         if (isInt<20>(C->getSExtValue()))
1274           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1275                                               Op.getValueType()));
1276       return;
1277 
1278     case 'M': // 0x7fffffff
1279       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1280         if (C->getZExtValue() == 0x7fffffff)
1281           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1282                                               Op.getValueType()));
1283       return;
1284     }
1285   }
1286   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1287 }
1288 
1289 //===----------------------------------------------------------------------===//
1290 // Calling conventions
1291 //===----------------------------------------------------------------------===//
1292 
1293 #include "SystemZGenCallingConv.inc"
1294 
1295 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1296   CallingConv::ID) const {
1297   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1298                                            SystemZ::R14D, 0 };
1299   return ScratchRegs;
1300 }
1301 
1302 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1303                                                      Type *ToType) const {
1304   return isTruncateFree(FromType, ToType);
1305 }
1306 
1307 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1308   return CI->isTailCall();
1309 }
1310 
1311 // We do not yet support 128-bit single-element vector types.  If the user
1312 // attempts to use such types as function argument or return type, prefer
1313 // to error out instead of emitting code violating the ABI.
1314 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1315   if (ArgVT.isVector() && !VT.isVector())
1316     report_fatal_error("Unsupported vector argument or return type");
1317 }
1318 
1319 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1320   for (unsigned i = 0; i < Ins.size(); ++i)
1321     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1322 }
1323 
1324 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1325   for (unsigned i = 0; i < Outs.size(); ++i)
1326     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1327 }
1328 
1329 // Value is a value that has been passed to us in the location described by VA
1330 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1331 // any loads onto Chain.
1332 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1333                                    CCValAssign &VA, SDValue Chain,
1334                                    SDValue Value) {
1335   // If the argument has been promoted from a smaller type, insert an
1336   // assertion to capture this.
1337   if (VA.getLocInfo() == CCValAssign::SExt)
1338     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1339                         DAG.getValueType(VA.getValVT()));
1340   else if (VA.getLocInfo() == CCValAssign::ZExt)
1341     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1342                         DAG.getValueType(VA.getValVT()));
1343 
1344   if (VA.isExtInLoc())
1345     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1346   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1347     // If this is a short vector argument loaded from the stack,
1348     // extend from i64 to full vector size and then bitcast.
1349     assert(VA.getLocVT() == MVT::i64);
1350     assert(VA.getValVT().isVector());
1351     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1352     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1353   } else
1354     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1355   return Value;
1356 }
1357 
1358 // Value is a value of type VA.getValVT() that we need to copy into
1359 // the location described by VA.  Return a copy of Value converted to
1360 // VA.getValVT().  The caller is responsible for handling indirect values.
1361 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1362                                    CCValAssign &VA, SDValue Value) {
1363   switch (VA.getLocInfo()) {
1364   case CCValAssign::SExt:
1365     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1366   case CCValAssign::ZExt:
1367     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1368   case CCValAssign::AExt:
1369     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1370   case CCValAssign::BCvt: {
1371     assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1372     assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f64 ||
1373            VA.getValVT() == MVT::f128);
1374     MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1375                             ? MVT::v2i64
1376                             : VA.getLocVT();
1377     Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1378     // For ELF, this is a short vector argument to be stored to the stack,
1379     // bitcast to v2i64 and then extract first element.
1380     if (BitCastToType == MVT::v2i64)
1381       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1382                          DAG.getConstant(0, DL, MVT::i32));
1383     return Value;
1384   }
1385   case CCValAssign::Full:
1386     return Value;
1387   default:
1388     llvm_unreachable("Unhandled getLocInfo()");
1389   }
1390 }
1391 
1392 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1393   SDLoc DL(In);
1394   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1395                            DAG.getIntPtrConstant(0, DL));
1396   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1397                            DAG.getIntPtrConstant(1, DL));
1398   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1399                                     MVT::Untyped, Hi, Lo);
1400   return SDValue(Pair, 0);
1401 }
1402 
1403 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1404   SDLoc DL(In);
1405   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1406                                           DL, MVT::i64, In);
1407   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1408                                           DL, MVT::i64, In);
1409   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1410 }
1411 
1412 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1413     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1414     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
1415   EVT ValueVT = Val.getValueType();
1416   assert((ValueVT != MVT::i128 ||
1417           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1418            (NumParts == 2 && PartVT == MVT::i64))) &&
1419          "Unknown handling of i128 value.");
1420   if (ValueVT == MVT::i128 && NumParts == 1) {
1421     // Inline assembly operand.
1422     Parts[0] = lowerI128ToGR128(DAG, Val);
1423     return true;
1424   }
1425   return false;
1426 }
1427 
1428 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1429     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1430     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
1431   assert((ValueVT != MVT::i128 ||
1432           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1433            (NumParts == 2 && PartVT == MVT::i64))) &&
1434          "Unknown handling of i128 value.");
1435   if (ValueVT == MVT::i128 && NumParts == 1)
1436     // Inline assembly operand.
1437     return lowerGR128ToI128(DAG, Parts[0]);
1438   return SDValue();
1439 }
1440 
1441 SDValue SystemZTargetLowering::LowerFormalArguments(
1442     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1443     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1444     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1445   MachineFunction &MF = DAG.getMachineFunction();
1446   MachineFrameInfo &MFI = MF.getFrameInfo();
1447   MachineRegisterInfo &MRI = MF.getRegInfo();
1448   SystemZMachineFunctionInfo *FuncInfo =
1449       MF.getInfo<SystemZMachineFunctionInfo>();
1450   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1451   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1452 
1453   // Detect unsupported vector argument types.
1454   if (Subtarget.hasVector())
1455     VerifyVectorTypes(Ins);
1456 
1457   // Assign locations to all of the incoming arguments.
1458   SmallVector<CCValAssign, 16> ArgLocs;
1459   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1460   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1461 
1462   unsigned NumFixedGPRs = 0;
1463   unsigned NumFixedFPRs = 0;
1464   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1465     SDValue ArgValue;
1466     CCValAssign &VA = ArgLocs[I];
1467     EVT LocVT = VA.getLocVT();
1468     if (VA.isRegLoc()) {
1469       // Arguments passed in registers
1470       const TargetRegisterClass *RC;
1471       switch (LocVT.getSimpleVT().SimpleTy) {
1472       default:
1473         // Integers smaller than i64 should be promoted to i64.
1474         llvm_unreachable("Unexpected argument type");
1475       case MVT::i32:
1476         NumFixedGPRs += 1;
1477         RC = &SystemZ::GR32BitRegClass;
1478         break;
1479       case MVT::i64:
1480         NumFixedGPRs += 1;
1481         RC = &SystemZ::GR64BitRegClass;
1482         break;
1483       case MVT::f32:
1484         NumFixedFPRs += 1;
1485         RC = &SystemZ::FP32BitRegClass;
1486         break;
1487       case MVT::f64:
1488         NumFixedFPRs += 1;
1489         RC = &SystemZ::FP64BitRegClass;
1490         break;
1491       case MVT::f128:
1492         NumFixedFPRs += 2;
1493         RC = &SystemZ::FP128BitRegClass;
1494         break;
1495       case MVT::v16i8:
1496       case MVT::v8i16:
1497       case MVT::v4i32:
1498       case MVT::v2i64:
1499       case MVT::v4f32:
1500       case MVT::v2f64:
1501         RC = &SystemZ::VR128BitRegClass;
1502         break;
1503       }
1504 
1505       Register VReg = MRI.createVirtualRegister(RC);
1506       MRI.addLiveIn(VA.getLocReg(), VReg);
1507       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1508     } else {
1509       assert(VA.isMemLoc() && "Argument not register or memory");
1510 
1511       // Create the frame index object for this incoming parameter.
1512       // FIXME: Pre-include call frame size in the offset, should not
1513       // need to manually add it here.
1514       int64_t ArgSPOffset = VA.getLocMemOffset();
1515       if (Subtarget.isTargetXPLINK64()) {
1516         auto &XPRegs =
1517             Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
1518         ArgSPOffset += XPRegs.getCallFrameSize();
1519       }
1520       int FI =
1521           MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
1522 
1523       // Create the SelectionDAG nodes corresponding to a load
1524       // from this parameter.  Unpromoted ints and floats are
1525       // passed as right-justified 8-byte values.
1526       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1527       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1528         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1529                           DAG.getIntPtrConstant(4, DL));
1530       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1531                              MachinePointerInfo::getFixedStack(MF, FI));
1532     }
1533 
1534     // Convert the value of the argument register into the value that's
1535     // being passed.
1536     if (VA.getLocInfo() == CCValAssign::Indirect) {
1537       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1538                                    MachinePointerInfo()));
1539       // If the original argument was split (e.g. i128), we need
1540       // to load all parts of it here (using the same address).
1541       unsigned ArgIndex = Ins[I].OrigArgIndex;
1542       assert (Ins[I].PartOffset == 0);
1543       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1544         CCValAssign &PartVA = ArgLocs[I + 1];
1545         unsigned PartOffset = Ins[I + 1].PartOffset;
1546         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1547                                       DAG.getIntPtrConstant(PartOffset, DL));
1548         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1549                                      MachinePointerInfo()));
1550         ++I;
1551       }
1552     } else
1553       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1554   }
1555 
1556   // FIXME: Add support for lowering varargs for XPLINK64 in a later patch.
1557   if (IsVarArg && Subtarget.isTargetELF()) {
1558     // Save the number of non-varargs registers for later use by va_start, etc.
1559     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1560     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1561 
1562     // Likewise the address (in the form of a frame index) of where the
1563     // first stack vararg would be.  The 1-byte size here is arbitrary.
1564     int64_t StackSize = CCInfo.getNextStackOffset();
1565     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1566 
1567     // ...and a similar frame index for the caller-allocated save area
1568     // that will be used to store the incoming registers.
1569     int64_t RegSaveOffset =
1570       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1571     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1572     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1573 
1574     // Store the FPR varargs in the reserved frame slots.  (We store the
1575     // GPRs as part of the prologue.)
1576     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1577       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1578       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1579         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1580         int FI =
1581           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1582         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1583         Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1584                                      &SystemZ::FP64BitRegClass);
1585         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1586         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1587                                  MachinePointerInfo::getFixedStack(MF, FI));
1588       }
1589       // Join the stores, which are independent of one another.
1590       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1591                           makeArrayRef(&MemOps[NumFixedFPRs],
1592                                        SystemZ::ELFNumArgFPRs-NumFixedFPRs));
1593     }
1594   }
1595 
1596   // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special
1597   // register (R5)
1598   return Chain;
1599 }
1600 
1601 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1602                               SmallVectorImpl<CCValAssign> &ArgLocs,
1603                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1604   // Punt if there are any indirect or stack arguments, or if the call
1605   // needs the callee-saved argument register R6, or if the call uses
1606   // the callee-saved register arguments SwiftSelf and SwiftError.
1607   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1608     CCValAssign &VA = ArgLocs[I];
1609     if (VA.getLocInfo() == CCValAssign::Indirect)
1610       return false;
1611     if (!VA.isRegLoc())
1612       return false;
1613     Register Reg = VA.getLocReg();
1614     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1615       return false;
1616     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1617       return false;
1618   }
1619   return true;
1620 }
1621 
1622 SDValue
1623 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1624                                  SmallVectorImpl<SDValue> &InVals) const {
1625   SelectionDAG &DAG = CLI.DAG;
1626   SDLoc &DL = CLI.DL;
1627   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1628   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1629   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1630   SDValue Chain = CLI.Chain;
1631   SDValue Callee = CLI.Callee;
1632   bool &IsTailCall = CLI.IsTailCall;
1633   CallingConv::ID CallConv = CLI.CallConv;
1634   bool IsVarArg = CLI.IsVarArg;
1635   MachineFunction &MF = DAG.getMachineFunction();
1636   EVT PtrVT = getPointerTy(MF.getDataLayout());
1637   LLVMContext &Ctx = *DAG.getContext();
1638   SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1639 
1640   // FIXME: z/OS support to be added in later.
1641   if (Subtarget.isTargetXPLINK64())
1642     IsTailCall = false;
1643 
1644   // Detect unsupported vector argument and return types.
1645   if (Subtarget.hasVector()) {
1646     VerifyVectorTypes(Outs);
1647     VerifyVectorTypes(Ins);
1648   }
1649 
1650   // Analyze the operands of the call, assigning locations to each operand.
1651   SmallVector<CCValAssign, 16> ArgLocs;
1652   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1653   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1654 
1655   // We don't support GuaranteedTailCallOpt, only automatically-detected
1656   // sibling calls.
1657   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1658     IsTailCall = false;
1659 
1660   // Get a count of how many bytes are to be pushed on the stack.
1661   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1662 
1663   if (Subtarget.isTargetXPLINK64())
1664     // Although the XPLINK specifications for AMODE64 state that minimum size
1665     // of the param area is minimum 32 bytes and no rounding is otherwise
1666     // specified, we round this area in 64 bytes increments to be compatible
1667     // with existing compilers.
1668     NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64));
1669 
1670   // Mark the start of the call.
1671   if (!IsTailCall)
1672     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1673 
1674   // Copy argument values to their designated locations.
1675   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1676   SmallVector<SDValue, 8> MemOpChains;
1677   SDValue StackPtr;
1678   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1679     CCValAssign &VA = ArgLocs[I];
1680     SDValue ArgValue = OutVals[I];
1681 
1682     if (VA.getLocInfo() == CCValAssign::Indirect) {
1683       // Store the argument in a stack slot and pass its address.
1684       unsigned ArgIndex = Outs[I].OrigArgIndex;
1685       EVT SlotVT;
1686       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1687         // Allocate the full stack space for a promoted (and split) argument.
1688         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1689         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1690         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1691         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1692         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1693       } else {
1694         SlotVT = Outs[I].ArgVT;
1695       }
1696       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1697       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1698       MemOpChains.push_back(
1699           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1700                        MachinePointerInfo::getFixedStack(MF, FI)));
1701       // If the original argument was split (e.g. i128), we need
1702       // to store all parts of it here (and pass just one address).
1703       assert (Outs[I].PartOffset == 0);
1704       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1705         SDValue PartValue = OutVals[I + 1];
1706         unsigned PartOffset = Outs[I + 1].PartOffset;
1707         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1708                                       DAG.getIntPtrConstant(PartOffset, DL));
1709         MemOpChains.push_back(
1710             DAG.getStore(Chain, DL, PartValue, Address,
1711                          MachinePointerInfo::getFixedStack(MF, FI)));
1712         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1713                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1714         ++I;
1715       }
1716       ArgValue = SpillSlot;
1717     } else
1718       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1719 
1720     if (VA.isRegLoc()) {
1721       // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1722       // MVT::i128 type. We decompose the 128-bit type to a pair of its high
1723       // and low values.
1724       if (VA.getLocVT() == MVT::i128)
1725         ArgValue = lowerI128ToGR128(DAG, ArgValue);
1726       // Queue up the argument copies and emit them at the end.
1727       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1728     } else {
1729       assert(VA.isMemLoc() && "Argument not register or memory");
1730 
1731       // Work out the address of the stack slot.  Unpromoted ints and
1732       // floats are passed as right-justified 8-byte values.
1733       if (!StackPtr.getNode())
1734         StackPtr = DAG.getCopyFromReg(Chain, DL,
1735                                       Regs->getStackPointerRegister(), PtrVT);
1736       unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1737                         VA.getLocMemOffset();
1738       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1739         Offset += 4;
1740       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1741                                     DAG.getIntPtrConstant(Offset, DL));
1742 
1743       // Emit the store.
1744       MemOpChains.push_back(
1745           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1746 
1747       // Although long doubles or vectors are passed through the stack when
1748       // they are vararg (non-fixed arguments), if a long double or vector
1749       // occupies the third and fourth slot of the argument list GPR3 should
1750       // still shadow the third slot of the argument list.
1751       if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
1752         SDValue ShadowArgValue =
1753             DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
1754                         DAG.getIntPtrConstant(1, DL));
1755         RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
1756       }
1757     }
1758   }
1759 
1760   // Join the stores, which are independent of one another.
1761   if (!MemOpChains.empty())
1762     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1763 
1764   // Accept direct calls by converting symbolic call addresses to the
1765   // associated Target* opcodes.  Force %r1 to be used for indirect
1766   // tail calls.
1767   SDValue Glue;
1768   // FIXME: Add support for XPLINK using the ADA register.
1769   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1770     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1771     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1772   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1773     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1774     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1775   } else if (IsTailCall) {
1776     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1777     Glue = Chain.getValue(1);
1778     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1779   }
1780 
1781   // Build a sequence of copy-to-reg nodes, chained and glued together.
1782   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1783     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1784                              RegsToPass[I].second, Glue);
1785     Glue = Chain.getValue(1);
1786   }
1787 
1788   // The first call operand is the chain and the second is the target address.
1789   SmallVector<SDValue, 8> Ops;
1790   Ops.push_back(Chain);
1791   Ops.push_back(Callee);
1792 
1793   // Add argument registers to the end of the list so that they are
1794   // known live into the call.
1795   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1796     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1797                                   RegsToPass[I].second.getValueType()));
1798 
1799   // Add a register mask operand representing the call-preserved registers.
1800   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1801   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1802   assert(Mask && "Missing call preserved mask for calling convention");
1803   Ops.push_back(DAG.getRegisterMask(Mask));
1804 
1805   // Glue the call to the argument copies, if any.
1806   if (Glue.getNode())
1807     Ops.push_back(Glue);
1808 
1809   // Emit the call.
1810   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1811   if (IsTailCall)
1812     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1813   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1814   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1815   Glue = Chain.getValue(1);
1816 
1817   // Mark the end of the call, which is glued to the call itself.
1818   Chain = DAG.getCALLSEQ_END(Chain,
1819                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1820                              DAG.getConstant(0, DL, PtrVT, true),
1821                              Glue, DL);
1822   Glue = Chain.getValue(1);
1823 
1824   // Assign locations to each value returned by this call.
1825   SmallVector<CCValAssign, 16> RetLocs;
1826   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
1827   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1828 
1829   // Copy all of the result registers out of their specified physreg.
1830   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1831     CCValAssign &VA = RetLocs[I];
1832 
1833     // Copy the value out, gluing the copy to the end of the call sequence.
1834     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1835                                           VA.getLocVT(), Glue);
1836     Chain = RetValue.getValue(1);
1837     Glue = RetValue.getValue(2);
1838 
1839     // Convert the value of the return register into the value that's
1840     // being returned.
1841     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1842   }
1843 
1844   return Chain;
1845 }
1846 
1847 // Generate a call taking the given operands as arguments and returning a
1848 // result of type RetVT.
1849 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall(
1850     SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT,
1851     ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL,
1852     bool DoesNotReturn, bool IsReturnValueUsed) const {
1853   TargetLowering::ArgListTy Args;
1854   Args.reserve(Ops.size());
1855 
1856   TargetLowering::ArgListEntry Entry;
1857   for (SDValue Op : Ops) {
1858     Entry.Node = Op;
1859     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1860     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
1861     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
1862     Args.push_back(Entry);
1863   }
1864 
1865   SDValue Callee =
1866       DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout()));
1867 
1868   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1869   TargetLowering::CallLoweringInfo CLI(DAG);
1870   bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned);
1871   CLI.setDebugLoc(DL)
1872       .setChain(Chain)
1873       .setCallee(CallConv, RetTy, Callee, std::move(Args))
1874       .setNoReturn(DoesNotReturn)
1875       .setDiscardResult(!IsReturnValueUsed)
1876       .setSExtResult(SignExtend)
1877       .setZExtResult(!SignExtend);
1878   return LowerCallTo(CLI);
1879 }
1880 
1881 bool SystemZTargetLowering::
1882 CanLowerReturn(CallingConv::ID CallConv,
1883                MachineFunction &MF, bool isVarArg,
1884                const SmallVectorImpl<ISD::OutputArg> &Outs,
1885                LLVMContext &Context) const {
1886   // Detect unsupported vector return types.
1887   if (Subtarget.hasVector())
1888     VerifyVectorTypes(Outs);
1889 
1890   // Special case that we cannot easily detect in RetCC_SystemZ since
1891   // i128 is not a legal type.
1892   for (auto &Out : Outs)
1893     if (Out.ArgVT == MVT::i128)
1894       return false;
1895 
1896   SmallVector<CCValAssign, 16> RetLocs;
1897   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1898   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1899 }
1900 
1901 SDValue
1902 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1903                                    bool IsVarArg,
1904                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1905                                    const SmallVectorImpl<SDValue> &OutVals,
1906                                    const SDLoc &DL, SelectionDAG &DAG) const {
1907   MachineFunction &MF = DAG.getMachineFunction();
1908 
1909   // Detect unsupported vector return types.
1910   if (Subtarget.hasVector())
1911     VerifyVectorTypes(Outs);
1912 
1913   // Assign locations to each returned value.
1914   SmallVector<CCValAssign, 16> RetLocs;
1915   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1916   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1917 
1918   // Quick exit for void returns
1919   if (RetLocs.empty())
1920     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1921 
1922   if (CallConv == CallingConv::GHC)
1923     report_fatal_error("GHC functions return void only");
1924 
1925   // Copy the result values into the output registers.
1926   SDValue Glue;
1927   SmallVector<SDValue, 4> RetOps;
1928   RetOps.push_back(Chain);
1929   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1930     CCValAssign &VA = RetLocs[I];
1931     SDValue RetValue = OutVals[I];
1932 
1933     // Make the return register live on exit.
1934     assert(VA.isRegLoc() && "Can only return in registers!");
1935 
1936     // Promote the value as required.
1937     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1938 
1939     // Chain and glue the copies together.
1940     Register Reg = VA.getLocReg();
1941     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1942     Glue = Chain.getValue(1);
1943     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1944   }
1945 
1946   // Update chain and glue.
1947   RetOps[0] = Chain;
1948   if (Glue.getNode())
1949     RetOps.push_back(Glue);
1950 
1951   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1952 }
1953 
1954 // Return true if Op is an intrinsic node with chain that returns the CC value
1955 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1956 // the mask of valid CC values if so.
1957 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1958                                       unsigned &CCValid) {
1959   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1960   switch (Id) {
1961   case Intrinsic::s390_tbegin:
1962     Opcode = SystemZISD::TBEGIN;
1963     CCValid = SystemZ::CCMASK_TBEGIN;
1964     return true;
1965 
1966   case Intrinsic::s390_tbegin_nofloat:
1967     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1968     CCValid = SystemZ::CCMASK_TBEGIN;
1969     return true;
1970 
1971   case Intrinsic::s390_tend:
1972     Opcode = SystemZISD::TEND;
1973     CCValid = SystemZ::CCMASK_TEND;
1974     return true;
1975 
1976   default:
1977     return false;
1978   }
1979 }
1980 
1981 // Return true if Op is an intrinsic node without chain that returns the
1982 // CC value as its final argument.  Provide the associated SystemZISD
1983 // opcode and the mask of valid CC values if so.
1984 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1985   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1986   switch (Id) {
1987   case Intrinsic::s390_vpkshs:
1988   case Intrinsic::s390_vpksfs:
1989   case Intrinsic::s390_vpksgs:
1990     Opcode = SystemZISD::PACKS_CC;
1991     CCValid = SystemZ::CCMASK_VCMP;
1992     return true;
1993 
1994   case Intrinsic::s390_vpklshs:
1995   case Intrinsic::s390_vpklsfs:
1996   case Intrinsic::s390_vpklsgs:
1997     Opcode = SystemZISD::PACKLS_CC;
1998     CCValid = SystemZ::CCMASK_VCMP;
1999     return true;
2000 
2001   case Intrinsic::s390_vceqbs:
2002   case Intrinsic::s390_vceqhs:
2003   case Intrinsic::s390_vceqfs:
2004   case Intrinsic::s390_vceqgs:
2005     Opcode = SystemZISD::VICMPES;
2006     CCValid = SystemZ::CCMASK_VCMP;
2007     return true;
2008 
2009   case Intrinsic::s390_vchbs:
2010   case Intrinsic::s390_vchhs:
2011   case Intrinsic::s390_vchfs:
2012   case Intrinsic::s390_vchgs:
2013     Opcode = SystemZISD::VICMPHS;
2014     CCValid = SystemZ::CCMASK_VCMP;
2015     return true;
2016 
2017   case Intrinsic::s390_vchlbs:
2018   case Intrinsic::s390_vchlhs:
2019   case Intrinsic::s390_vchlfs:
2020   case Intrinsic::s390_vchlgs:
2021     Opcode = SystemZISD::VICMPHLS;
2022     CCValid = SystemZ::CCMASK_VCMP;
2023     return true;
2024 
2025   case Intrinsic::s390_vtm:
2026     Opcode = SystemZISD::VTM;
2027     CCValid = SystemZ::CCMASK_VCMP;
2028     return true;
2029 
2030   case Intrinsic::s390_vfaebs:
2031   case Intrinsic::s390_vfaehs:
2032   case Intrinsic::s390_vfaefs:
2033     Opcode = SystemZISD::VFAE_CC;
2034     CCValid = SystemZ::CCMASK_ANY;
2035     return true;
2036 
2037   case Intrinsic::s390_vfaezbs:
2038   case Intrinsic::s390_vfaezhs:
2039   case Intrinsic::s390_vfaezfs:
2040     Opcode = SystemZISD::VFAEZ_CC;
2041     CCValid = SystemZ::CCMASK_ANY;
2042     return true;
2043 
2044   case Intrinsic::s390_vfeebs:
2045   case Intrinsic::s390_vfeehs:
2046   case Intrinsic::s390_vfeefs:
2047     Opcode = SystemZISD::VFEE_CC;
2048     CCValid = SystemZ::CCMASK_ANY;
2049     return true;
2050 
2051   case Intrinsic::s390_vfeezbs:
2052   case Intrinsic::s390_vfeezhs:
2053   case Intrinsic::s390_vfeezfs:
2054     Opcode = SystemZISD::VFEEZ_CC;
2055     CCValid = SystemZ::CCMASK_ANY;
2056     return true;
2057 
2058   case Intrinsic::s390_vfenebs:
2059   case Intrinsic::s390_vfenehs:
2060   case Intrinsic::s390_vfenefs:
2061     Opcode = SystemZISD::VFENE_CC;
2062     CCValid = SystemZ::CCMASK_ANY;
2063     return true;
2064 
2065   case Intrinsic::s390_vfenezbs:
2066   case Intrinsic::s390_vfenezhs:
2067   case Intrinsic::s390_vfenezfs:
2068     Opcode = SystemZISD::VFENEZ_CC;
2069     CCValid = SystemZ::CCMASK_ANY;
2070     return true;
2071 
2072   case Intrinsic::s390_vistrbs:
2073   case Intrinsic::s390_vistrhs:
2074   case Intrinsic::s390_vistrfs:
2075     Opcode = SystemZISD::VISTR_CC;
2076     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2077     return true;
2078 
2079   case Intrinsic::s390_vstrcbs:
2080   case Intrinsic::s390_vstrchs:
2081   case Intrinsic::s390_vstrcfs:
2082     Opcode = SystemZISD::VSTRC_CC;
2083     CCValid = SystemZ::CCMASK_ANY;
2084     return true;
2085 
2086   case Intrinsic::s390_vstrczbs:
2087   case Intrinsic::s390_vstrczhs:
2088   case Intrinsic::s390_vstrczfs:
2089     Opcode = SystemZISD::VSTRCZ_CC;
2090     CCValid = SystemZ::CCMASK_ANY;
2091     return true;
2092 
2093   case Intrinsic::s390_vstrsb:
2094   case Intrinsic::s390_vstrsh:
2095   case Intrinsic::s390_vstrsf:
2096     Opcode = SystemZISD::VSTRS_CC;
2097     CCValid = SystemZ::CCMASK_ANY;
2098     return true;
2099 
2100   case Intrinsic::s390_vstrszb:
2101   case Intrinsic::s390_vstrszh:
2102   case Intrinsic::s390_vstrszf:
2103     Opcode = SystemZISD::VSTRSZ_CC;
2104     CCValid = SystemZ::CCMASK_ANY;
2105     return true;
2106 
2107   case Intrinsic::s390_vfcedbs:
2108   case Intrinsic::s390_vfcesbs:
2109     Opcode = SystemZISD::VFCMPES;
2110     CCValid = SystemZ::CCMASK_VCMP;
2111     return true;
2112 
2113   case Intrinsic::s390_vfchdbs:
2114   case Intrinsic::s390_vfchsbs:
2115     Opcode = SystemZISD::VFCMPHS;
2116     CCValid = SystemZ::CCMASK_VCMP;
2117     return true;
2118 
2119   case Intrinsic::s390_vfchedbs:
2120   case Intrinsic::s390_vfchesbs:
2121     Opcode = SystemZISD::VFCMPHES;
2122     CCValid = SystemZ::CCMASK_VCMP;
2123     return true;
2124 
2125   case Intrinsic::s390_vftcidb:
2126   case Intrinsic::s390_vftcisb:
2127     Opcode = SystemZISD::VFTCI;
2128     CCValid = SystemZ::CCMASK_VCMP;
2129     return true;
2130 
2131   case Intrinsic::s390_tdc:
2132     Opcode = SystemZISD::TDC;
2133     CCValid = SystemZ::CCMASK_TDC;
2134     return true;
2135 
2136   default:
2137     return false;
2138   }
2139 }
2140 
2141 // Emit an intrinsic with chain and an explicit CC register result.
2142 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2143                                            unsigned Opcode) {
2144   // Copy all operands except the intrinsic ID.
2145   unsigned NumOps = Op.getNumOperands();
2146   SmallVector<SDValue, 6> Ops;
2147   Ops.reserve(NumOps - 1);
2148   Ops.push_back(Op.getOperand(0));
2149   for (unsigned I = 2; I < NumOps; ++I)
2150     Ops.push_back(Op.getOperand(I));
2151 
2152   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2153   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2154   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2155   SDValue OldChain = SDValue(Op.getNode(), 1);
2156   SDValue NewChain = SDValue(Intr.getNode(), 1);
2157   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2158   return Intr.getNode();
2159 }
2160 
2161 // Emit an intrinsic with an explicit CC register result.
2162 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2163                                    unsigned Opcode) {
2164   // Copy all operands except the intrinsic ID.
2165   unsigned NumOps = Op.getNumOperands();
2166   SmallVector<SDValue, 6> Ops;
2167   Ops.reserve(NumOps - 1);
2168   for (unsigned I = 1; I < NumOps; ++I)
2169     Ops.push_back(Op.getOperand(I));
2170 
2171   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2172   return Intr.getNode();
2173 }
2174 
2175 // CC is a comparison that will be implemented using an integer or
2176 // floating-point comparison.  Return the condition code mask for
2177 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2178 // unsigned comparisons and clear for signed ones.  In the floating-point
2179 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2180 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2181 #define CONV(X) \
2182   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2183   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2184   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2185 
2186   switch (CC) {
2187   default:
2188     llvm_unreachable("Invalid integer condition!");
2189 
2190   CONV(EQ);
2191   CONV(NE);
2192   CONV(GT);
2193   CONV(GE);
2194   CONV(LT);
2195   CONV(LE);
2196 
2197   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2198   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2199   }
2200 #undef CONV
2201 }
2202 
2203 // If C can be converted to a comparison against zero, adjust the operands
2204 // as necessary.
2205 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2206   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2207     return;
2208 
2209   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2210   if (!ConstOp1)
2211     return;
2212 
2213   int64_t Value = ConstOp1->getSExtValue();
2214   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2215       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2216       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2217       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2218     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2219     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2220   }
2221 }
2222 
2223 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2224 // adjust the operands as necessary.
2225 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2226                              Comparison &C) {
2227   // For us to make any changes, it must a comparison between a single-use
2228   // load and a constant.
2229   if (!C.Op0.hasOneUse() ||
2230       C.Op0.getOpcode() != ISD::LOAD ||
2231       C.Op1.getOpcode() != ISD::Constant)
2232     return;
2233 
2234   // We must have an 8- or 16-bit load.
2235   auto *Load = cast<LoadSDNode>(C.Op0);
2236   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2237   if ((NumBits != 8 && NumBits != 16) ||
2238       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2239     return;
2240 
2241   // The load must be an extending one and the constant must be within the
2242   // range of the unextended value.
2243   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2244   uint64_t Value = ConstOp1->getZExtValue();
2245   uint64_t Mask = (1 << NumBits) - 1;
2246   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2247     // Make sure that ConstOp1 is in range of C.Op0.
2248     int64_t SignedValue = ConstOp1->getSExtValue();
2249     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2250       return;
2251     if (C.ICmpType != SystemZICMP::SignedOnly) {
2252       // Unsigned comparison between two sign-extended values is equivalent
2253       // to unsigned comparison between two zero-extended values.
2254       Value &= Mask;
2255     } else if (NumBits == 8) {
2256       // Try to treat the comparison as unsigned, so that we can use CLI.
2257       // Adjust CCMask and Value as necessary.
2258       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2259         // Test whether the high bit of the byte is set.
2260         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2261       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2262         // Test whether the high bit of the byte is clear.
2263         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2264       else
2265         // No instruction exists for this combination.
2266         return;
2267       C.ICmpType = SystemZICMP::UnsignedOnly;
2268     }
2269   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2270     if (Value > Mask)
2271       return;
2272     // If the constant is in range, we can use any comparison.
2273     C.ICmpType = SystemZICMP::Any;
2274   } else
2275     return;
2276 
2277   // Make sure that the first operand is an i32 of the right extension type.
2278   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2279                               ISD::SEXTLOAD :
2280                               ISD::ZEXTLOAD);
2281   if (C.Op0.getValueType() != MVT::i32 ||
2282       Load->getExtensionType() != ExtType) {
2283     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2284                            Load->getBasePtr(), Load->getPointerInfo(),
2285                            Load->getMemoryVT(), Load->getAlignment(),
2286                            Load->getMemOperand()->getFlags());
2287     // Update the chain uses.
2288     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2289   }
2290 
2291   // Make sure that the second operand is an i32 with the right value.
2292   if (C.Op1.getValueType() != MVT::i32 ||
2293       Value != ConstOp1->getZExtValue())
2294     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2295 }
2296 
2297 // Return true if Op is either an unextended load, or a load suitable
2298 // for integer register-memory comparisons of type ICmpType.
2299 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2300   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2301   if (Load) {
2302     // There are no instructions to compare a register with a memory byte.
2303     if (Load->getMemoryVT() == MVT::i8)
2304       return false;
2305     // Otherwise decide on extension type.
2306     switch (Load->getExtensionType()) {
2307     case ISD::NON_EXTLOAD:
2308       return true;
2309     case ISD::SEXTLOAD:
2310       return ICmpType != SystemZICMP::UnsignedOnly;
2311     case ISD::ZEXTLOAD:
2312       return ICmpType != SystemZICMP::SignedOnly;
2313     default:
2314       break;
2315     }
2316   }
2317   return false;
2318 }
2319 
2320 // Return true if it is better to swap the operands of C.
2321 static bool shouldSwapCmpOperands(const Comparison &C) {
2322   // Leave f128 comparisons alone, since they have no memory forms.
2323   if (C.Op0.getValueType() == MVT::f128)
2324     return false;
2325 
2326   // Always keep a floating-point constant second, since comparisons with
2327   // zero can use LOAD TEST and comparisons with other constants make a
2328   // natural memory operand.
2329   if (isa<ConstantFPSDNode>(C.Op1))
2330     return false;
2331 
2332   // Never swap comparisons with zero since there are many ways to optimize
2333   // those later.
2334   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2335   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2336     return false;
2337 
2338   // Also keep natural memory operands second if the loaded value is
2339   // only used here.  Several comparisons have memory forms.
2340   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2341     return false;
2342 
2343   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2344   // In that case we generally prefer the memory to be second.
2345   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2346     // The only exceptions are when the second operand is a constant and
2347     // we can use things like CHHSI.
2348     if (!ConstOp1)
2349       return true;
2350     // The unsigned memory-immediate instructions can handle 16-bit
2351     // unsigned integers.
2352     if (C.ICmpType != SystemZICMP::SignedOnly &&
2353         isUInt<16>(ConstOp1->getZExtValue()))
2354       return false;
2355     // The signed memory-immediate instructions can handle 16-bit
2356     // signed integers.
2357     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2358         isInt<16>(ConstOp1->getSExtValue()))
2359       return false;
2360     return true;
2361   }
2362 
2363   // Try to promote the use of CGFR and CLGFR.
2364   unsigned Opcode0 = C.Op0.getOpcode();
2365   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2366     return true;
2367   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2368     return true;
2369   if (C.ICmpType != SystemZICMP::SignedOnly &&
2370       Opcode0 == ISD::AND &&
2371       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2372       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2373     return true;
2374 
2375   return false;
2376 }
2377 
2378 // Check whether C tests for equality between X and Y and whether X - Y
2379 // or Y - X is also computed.  In that case it's better to compare the
2380 // result of the subtraction against zero.
2381 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2382                                  Comparison &C) {
2383   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2384       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2385     for (SDNode *N : C.Op0->uses()) {
2386       if (N->getOpcode() == ISD::SUB &&
2387           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2388            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2389         C.Op0 = SDValue(N, 0);
2390         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2391         return;
2392       }
2393     }
2394   }
2395 }
2396 
2397 // Check whether C compares a floating-point value with zero and if that
2398 // floating-point value is also negated.  In this case we can use the
2399 // negation to set CC, so avoiding separate LOAD AND TEST and
2400 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2401 static void adjustForFNeg(Comparison &C) {
2402   // This optimization is invalid for strict comparisons, since FNEG
2403   // does not raise any exceptions.
2404   if (C.Chain)
2405     return;
2406   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2407   if (C1 && C1->isZero()) {
2408     for (SDNode *N : C.Op0->uses()) {
2409       if (N->getOpcode() == ISD::FNEG) {
2410         C.Op0 = SDValue(N, 0);
2411         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2412         return;
2413       }
2414     }
2415   }
2416 }
2417 
2418 // Check whether C compares (shl X, 32) with 0 and whether X is
2419 // also sign-extended.  In that case it is better to test the result
2420 // of the sign extension using LTGFR.
2421 //
2422 // This case is important because InstCombine transforms a comparison
2423 // with (sext (trunc X)) into a comparison with (shl X, 32).
2424 static void adjustForLTGFR(Comparison &C) {
2425   // Check for a comparison between (shl X, 32) and 0.
2426   if (C.Op0.getOpcode() == ISD::SHL &&
2427       C.Op0.getValueType() == MVT::i64 &&
2428       C.Op1.getOpcode() == ISD::Constant &&
2429       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2430     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2431     if (C1 && C1->getZExtValue() == 32) {
2432       SDValue ShlOp0 = C.Op0.getOperand(0);
2433       // See whether X has any SIGN_EXTEND_INREG uses.
2434       for (SDNode *N : ShlOp0->uses()) {
2435         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2436             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2437           C.Op0 = SDValue(N, 0);
2438           return;
2439         }
2440       }
2441     }
2442   }
2443 }
2444 
2445 // If C compares the truncation of an extending load, try to compare
2446 // the untruncated value instead.  This exposes more opportunities to
2447 // reuse CC.
2448 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2449                                Comparison &C) {
2450   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2451       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2452       C.Op1.getOpcode() == ISD::Constant &&
2453       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2454     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2455     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2456         C.Op0.getValueSizeInBits().getFixedSize()) {
2457       unsigned Type = L->getExtensionType();
2458       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2459           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2460         C.Op0 = C.Op0.getOperand(0);
2461         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2462       }
2463     }
2464   }
2465 }
2466 
2467 // Return true if shift operation N has an in-range constant shift value.
2468 // Store it in ShiftVal if so.
2469 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2470   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2471   if (!Shift)
2472     return false;
2473 
2474   uint64_t Amount = Shift->getZExtValue();
2475   if (Amount >= N.getValueSizeInBits())
2476     return false;
2477 
2478   ShiftVal = Amount;
2479   return true;
2480 }
2481 
2482 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2483 // instruction and whether the CC value is descriptive enough to handle
2484 // a comparison of type Opcode between the AND result and CmpVal.
2485 // CCMask says which comparison result is being tested and BitSize is
2486 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2487 // return the corresponding CC mask, otherwise return 0.
2488 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2489                                      uint64_t Mask, uint64_t CmpVal,
2490                                      unsigned ICmpType) {
2491   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2492 
2493   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2494   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2495       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2496     return 0;
2497 
2498   // Work out the masks for the lowest and highest bits.
2499   unsigned HighShift = 63 - countLeadingZeros(Mask);
2500   uint64_t High = uint64_t(1) << HighShift;
2501   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2502 
2503   // Signed ordered comparisons are effectively unsigned if the sign
2504   // bit is dropped.
2505   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2506 
2507   // Check for equality comparisons with 0, or the equivalent.
2508   if (CmpVal == 0) {
2509     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2510       return SystemZ::CCMASK_TM_ALL_0;
2511     if (CCMask == SystemZ::CCMASK_CMP_NE)
2512       return SystemZ::CCMASK_TM_SOME_1;
2513   }
2514   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2515     if (CCMask == SystemZ::CCMASK_CMP_LT)
2516       return SystemZ::CCMASK_TM_ALL_0;
2517     if (CCMask == SystemZ::CCMASK_CMP_GE)
2518       return SystemZ::CCMASK_TM_SOME_1;
2519   }
2520   if (EffectivelyUnsigned && CmpVal < Low) {
2521     if (CCMask == SystemZ::CCMASK_CMP_LE)
2522       return SystemZ::CCMASK_TM_ALL_0;
2523     if (CCMask == SystemZ::CCMASK_CMP_GT)
2524       return SystemZ::CCMASK_TM_SOME_1;
2525   }
2526 
2527   // Check for equality comparisons with the mask, or the equivalent.
2528   if (CmpVal == Mask) {
2529     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2530       return SystemZ::CCMASK_TM_ALL_1;
2531     if (CCMask == SystemZ::CCMASK_CMP_NE)
2532       return SystemZ::CCMASK_TM_SOME_0;
2533   }
2534   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2535     if (CCMask == SystemZ::CCMASK_CMP_GT)
2536       return SystemZ::CCMASK_TM_ALL_1;
2537     if (CCMask == SystemZ::CCMASK_CMP_LE)
2538       return SystemZ::CCMASK_TM_SOME_0;
2539   }
2540   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2541     if (CCMask == SystemZ::CCMASK_CMP_GE)
2542       return SystemZ::CCMASK_TM_ALL_1;
2543     if (CCMask == SystemZ::CCMASK_CMP_LT)
2544       return SystemZ::CCMASK_TM_SOME_0;
2545   }
2546 
2547   // Check for ordered comparisons with the top bit.
2548   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2549     if (CCMask == SystemZ::CCMASK_CMP_LE)
2550       return SystemZ::CCMASK_TM_MSB_0;
2551     if (CCMask == SystemZ::CCMASK_CMP_GT)
2552       return SystemZ::CCMASK_TM_MSB_1;
2553   }
2554   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2555     if (CCMask == SystemZ::CCMASK_CMP_LT)
2556       return SystemZ::CCMASK_TM_MSB_0;
2557     if (CCMask == SystemZ::CCMASK_CMP_GE)
2558       return SystemZ::CCMASK_TM_MSB_1;
2559   }
2560 
2561   // If there are just two bits, we can do equality checks for Low and High
2562   // as well.
2563   if (Mask == Low + High) {
2564     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2565       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2566     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2567       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2568     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2569       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2570     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2571       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2572   }
2573 
2574   // Looks like we've exhausted our options.
2575   return 0;
2576 }
2577 
2578 // See whether C can be implemented as a TEST UNDER MASK instruction.
2579 // Update the arguments with the TM version if so.
2580 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2581                                    Comparison &C) {
2582   // Check that we have a comparison with a constant.
2583   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2584   if (!ConstOp1)
2585     return;
2586   uint64_t CmpVal = ConstOp1->getZExtValue();
2587 
2588   // Check whether the nonconstant input is an AND with a constant mask.
2589   Comparison NewC(C);
2590   uint64_t MaskVal;
2591   ConstantSDNode *Mask = nullptr;
2592   if (C.Op0.getOpcode() == ISD::AND) {
2593     NewC.Op0 = C.Op0.getOperand(0);
2594     NewC.Op1 = C.Op0.getOperand(1);
2595     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2596     if (!Mask)
2597       return;
2598     MaskVal = Mask->getZExtValue();
2599   } else {
2600     // There is no instruction to compare with a 64-bit immediate
2601     // so use TMHH instead if possible.  We need an unsigned ordered
2602     // comparison with an i64 immediate.
2603     if (NewC.Op0.getValueType() != MVT::i64 ||
2604         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2605         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2606         NewC.ICmpType == SystemZICMP::SignedOnly)
2607       return;
2608     // Convert LE and GT comparisons into LT and GE.
2609     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2610         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2611       if (CmpVal == uint64_t(-1))
2612         return;
2613       CmpVal += 1;
2614       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2615     }
2616     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2617     // be masked off without changing the result.
2618     MaskVal = -(CmpVal & -CmpVal);
2619     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2620   }
2621   if (!MaskVal)
2622     return;
2623 
2624   // Check whether the combination of mask, comparison value and comparison
2625   // type are suitable.
2626   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2627   unsigned NewCCMask, ShiftVal;
2628   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2629       NewC.Op0.getOpcode() == ISD::SHL &&
2630       isSimpleShift(NewC.Op0, ShiftVal) &&
2631       (MaskVal >> ShiftVal != 0) &&
2632       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2633       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2634                                         MaskVal >> ShiftVal,
2635                                         CmpVal >> ShiftVal,
2636                                         SystemZICMP::Any))) {
2637     NewC.Op0 = NewC.Op0.getOperand(0);
2638     MaskVal >>= ShiftVal;
2639   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2640              NewC.Op0.getOpcode() == ISD::SRL &&
2641              isSimpleShift(NewC.Op0, ShiftVal) &&
2642              (MaskVal << ShiftVal != 0) &&
2643              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2644              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2645                                                MaskVal << ShiftVal,
2646                                                CmpVal << ShiftVal,
2647                                                SystemZICMP::UnsignedOnly))) {
2648     NewC.Op0 = NewC.Op0.getOperand(0);
2649     MaskVal <<= ShiftVal;
2650   } else {
2651     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2652                                      NewC.ICmpType);
2653     if (!NewCCMask)
2654       return;
2655   }
2656 
2657   // Go ahead and make the change.
2658   C.Opcode = SystemZISD::TM;
2659   C.Op0 = NewC.Op0;
2660   if (Mask && Mask->getZExtValue() == MaskVal)
2661     C.Op1 = SDValue(Mask, 0);
2662   else
2663     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2664   C.CCValid = SystemZ::CCMASK_TM;
2665   C.CCMask = NewCCMask;
2666 }
2667 
2668 // See whether the comparison argument contains a redundant AND
2669 // and remove it if so.  This sometimes happens due to the generic
2670 // BRCOND expansion.
2671 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2672                                   Comparison &C) {
2673   if (C.Op0.getOpcode() != ISD::AND)
2674     return;
2675   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2676   if (!Mask)
2677     return;
2678   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2679   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2680     return;
2681 
2682   C.Op0 = C.Op0.getOperand(0);
2683 }
2684 
2685 // Return a Comparison that tests the condition-code result of intrinsic
2686 // node Call against constant integer CC using comparison code Cond.
2687 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2688 // and CCValid is the set of possible condition-code results.
2689 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2690                                   SDValue Call, unsigned CCValid, uint64_t CC,
2691                                   ISD::CondCode Cond) {
2692   Comparison C(Call, SDValue(), SDValue());
2693   C.Opcode = Opcode;
2694   C.CCValid = CCValid;
2695   if (Cond == ISD::SETEQ)
2696     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2697     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2698   else if (Cond == ISD::SETNE)
2699     // ...and the inverse of that.
2700     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2701   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2702     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2703     // always true for CC>3.
2704     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2705   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2706     // ...and the inverse of that.
2707     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2708   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2709     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2710     // always true for CC>3.
2711     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2712   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2713     // ...and the inverse of that.
2714     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2715   else
2716     llvm_unreachable("Unexpected integer comparison type");
2717   C.CCMask &= CCValid;
2718   return C;
2719 }
2720 
2721 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2722 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2723                          ISD::CondCode Cond, const SDLoc &DL,
2724                          SDValue Chain = SDValue(),
2725                          bool IsSignaling = false) {
2726   if (CmpOp1.getOpcode() == ISD::Constant) {
2727     assert(!Chain);
2728     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2729     unsigned Opcode, CCValid;
2730     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2731         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2732         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2733       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2734     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2735         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2736         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2737       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2738   }
2739   Comparison C(CmpOp0, CmpOp1, Chain);
2740   C.CCMask = CCMaskForCondCode(Cond);
2741   if (C.Op0.getValueType().isFloatingPoint()) {
2742     C.CCValid = SystemZ::CCMASK_FCMP;
2743     if (!C.Chain)
2744       C.Opcode = SystemZISD::FCMP;
2745     else if (!IsSignaling)
2746       C.Opcode = SystemZISD::STRICT_FCMP;
2747     else
2748       C.Opcode = SystemZISD::STRICT_FCMPS;
2749     adjustForFNeg(C);
2750   } else {
2751     assert(!C.Chain);
2752     C.CCValid = SystemZ::CCMASK_ICMP;
2753     C.Opcode = SystemZISD::ICMP;
2754     // Choose the type of comparison.  Equality and inequality tests can
2755     // use either signed or unsigned comparisons.  The choice also doesn't
2756     // matter if both sign bits are known to be clear.  In those cases we
2757     // want to give the main isel code the freedom to choose whichever
2758     // form fits best.
2759     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2760         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2761         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2762       C.ICmpType = SystemZICMP::Any;
2763     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2764       C.ICmpType = SystemZICMP::UnsignedOnly;
2765     else
2766       C.ICmpType = SystemZICMP::SignedOnly;
2767     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2768     adjustForRedundantAnd(DAG, DL, C);
2769     adjustZeroCmp(DAG, DL, C);
2770     adjustSubwordCmp(DAG, DL, C);
2771     adjustForSubtraction(DAG, DL, C);
2772     adjustForLTGFR(C);
2773     adjustICmpTruncate(DAG, DL, C);
2774   }
2775 
2776   if (shouldSwapCmpOperands(C)) {
2777     std::swap(C.Op0, C.Op1);
2778     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2779   }
2780 
2781   adjustForTestUnderMask(DAG, DL, C);
2782   return C;
2783 }
2784 
2785 // Emit the comparison instruction described by C.
2786 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2787   if (!C.Op1.getNode()) {
2788     SDNode *Node;
2789     switch (C.Op0.getOpcode()) {
2790     case ISD::INTRINSIC_W_CHAIN:
2791       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2792       return SDValue(Node, 0);
2793     case ISD::INTRINSIC_WO_CHAIN:
2794       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2795       return SDValue(Node, Node->getNumValues() - 1);
2796     default:
2797       llvm_unreachable("Invalid comparison operands");
2798     }
2799   }
2800   if (C.Opcode == SystemZISD::ICMP)
2801     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2802                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2803   if (C.Opcode == SystemZISD::TM) {
2804     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2805                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2806     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2807                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2808   }
2809   if (C.Chain) {
2810     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2811     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2812   }
2813   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2814 }
2815 
2816 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2817 // 64 bits.  Extend is the extension type to use.  Store the high part
2818 // in Hi and the low part in Lo.
2819 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2820                             SDValue Op0, SDValue Op1, SDValue &Hi,
2821                             SDValue &Lo) {
2822   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2823   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2824   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2825   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2826                    DAG.getConstant(32, DL, MVT::i64));
2827   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2828   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2829 }
2830 
2831 // Lower a binary operation that produces two VT results, one in each
2832 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2833 // and Opcode performs the GR128 operation.  Store the even register result
2834 // in Even and the odd register result in Odd.
2835 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2836                              unsigned Opcode, SDValue Op0, SDValue Op1,
2837                              SDValue &Even, SDValue &Odd) {
2838   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2839   bool Is32Bit = is32Bit(VT);
2840   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2841   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2842 }
2843 
2844 // Return an i32 value that is 1 if the CC value produced by CCReg is
2845 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2846 // in CCValid, so other values can be ignored.
2847 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2848                          unsigned CCValid, unsigned CCMask) {
2849   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2850                    DAG.getConstant(0, DL, MVT::i32),
2851                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2852                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2853   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2854 }
2855 
2856 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2857 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2858 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2859 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2860 // floating-point comparisons.
2861 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2862 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2863   switch (CC) {
2864   case ISD::SETOEQ:
2865   case ISD::SETEQ:
2866     switch (Mode) {
2867     case CmpMode::Int:         return SystemZISD::VICMPE;
2868     case CmpMode::FP:          return SystemZISD::VFCMPE;
2869     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2870     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2871     }
2872     llvm_unreachable("Bad mode");
2873 
2874   case ISD::SETOGE:
2875   case ISD::SETGE:
2876     switch (Mode) {
2877     case CmpMode::Int:         return 0;
2878     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2879     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2880     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2881     }
2882     llvm_unreachable("Bad mode");
2883 
2884   case ISD::SETOGT:
2885   case ISD::SETGT:
2886     switch (Mode) {
2887     case CmpMode::Int:         return SystemZISD::VICMPH;
2888     case CmpMode::FP:          return SystemZISD::VFCMPH;
2889     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2890     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2891     }
2892     llvm_unreachable("Bad mode");
2893 
2894   case ISD::SETUGT:
2895     switch (Mode) {
2896     case CmpMode::Int:         return SystemZISD::VICMPHL;
2897     case CmpMode::FP:          return 0;
2898     case CmpMode::StrictFP:    return 0;
2899     case CmpMode::SignalingFP: return 0;
2900     }
2901     llvm_unreachable("Bad mode");
2902 
2903   default:
2904     return 0;
2905   }
2906 }
2907 
2908 // Return the SystemZISD vector comparison operation for CC or its inverse,
2909 // or 0 if neither can be done directly.  Indicate in Invert whether the
2910 // result is for the inverse of CC.  Mode is as above.
2911 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2912                                             bool &Invert) {
2913   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2914     Invert = false;
2915     return Opcode;
2916   }
2917 
2918   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2919   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2920     Invert = true;
2921     return Opcode;
2922   }
2923 
2924   return 0;
2925 }
2926 
2927 // Return a v2f64 that contains the extended form of elements Start and Start+1
2928 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2929 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2930                                   SDValue Op, SDValue Chain) {
2931   int Mask[] = { Start, -1, Start + 1, -1 };
2932   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2933   if (Chain) {
2934     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2935     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2936   }
2937   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2938 }
2939 
2940 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2941 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2942 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2943                                             const SDLoc &DL, EVT VT,
2944                                             SDValue CmpOp0,
2945                                             SDValue CmpOp1,
2946                                             SDValue Chain) const {
2947   // There is no hardware support for v4f32 (unless we have the vector
2948   // enhancements facility 1), so extend the vector into two v2f64s
2949   // and compare those.
2950   if (CmpOp0.getValueType() == MVT::v4f32 &&
2951       !Subtarget.hasVectorEnhancements1()) {
2952     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2953     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2954     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2955     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2956     if (Chain) {
2957       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2958       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2959       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2960       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2961       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2962                             H1.getValue(1), L1.getValue(1),
2963                             HRes.getValue(1), LRes.getValue(1) };
2964       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2965       SDValue Ops[2] = { Res, NewChain };
2966       return DAG.getMergeValues(Ops, DL);
2967     }
2968     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2969     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2970     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2971   }
2972   if (Chain) {
2973     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2974     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2975   }
2976   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2977 }
2978 
2979 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2980 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2981 // floating-point comparison.  If in addition IsSignaling is true, we have
2982 // a strict signaling floating-point comparison.
2983 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2984                                                 const SDLoc &DL, EVT VT,
2985                                                 ISD::CondCode CC,
2986                                                 SDValue CmpOp0,
2987                                                 SDValue CmpOp1,
2988                                                 SDValue Chain,
2989                                                 bool IsSignaling) const {
2990   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2991   assert (!Chain || IsFP);
2992   assert (!IsSignaling || Chain);
2993   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2994                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2995   bool Invert = false;
2996   SDValue Cmp;
2997   switch (CC) {
2998     // Handle tests for order using (or (ogt y x) (oge x y)).
2999   case ISD::SETUO:
3000     Invert = true;
3001     LLVM_FALLTHROUGH;
3002   case ISD::SETO: {
3003     assert(IsFP && "Unexpected integer comparison");
3004     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3005                               DL, VT, CmpOp1, CmpOp0, Chain);
3006     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
3007                               DL, VT, CmpOp0, CmpOp1, Chain);
3008     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
3009     if (Chain)
3010       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3011                           LT.getValue(1), GE.getValue(1));
3012     break;
3013   }
3014 
3015     // Handle <> tests using (or (ogt y x) (ogt x y)).
3016   case ISD::SETUEQ:
3017     Invert = true;
3018     LLVM_FALLTHROUGH;
3019   case ISD::SETONE: {
3020     assert(IsFP && "Unexpected integer comparison");
3021     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3022                               DL, VT, CmpOp1, CmpOp0, Chain);
3023     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3024                               DL, VT, CmpOp0, CmpOp1, Chain);
3025     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
3026     if (Chain)
3027       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3028                           LT.getValue(1), GT.getValue(1));
3029     break;
3030   }
3031 
3032     // Otherwise a single comparison is enough.  It doesn't really
3033     // matter whether we try the inversion or the swap first, since
3034     // there are no cases where both work.
3035   default:
3036     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3037       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
3038     else {
3039       CC = ISD::getSetCCSwappedOperands(CC);
3040       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3041         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
3042       else
3043         llvm_unreachable("Unhandled comparison");
3044     }
3045     if (Chain)
3046       Chain = Cmp.getValue(1);
3047     break;
3048   }
3049   if (Invert) {
3050     SDValue Mask =
3051       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
3052     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3053   }
3054   if (Chain && Chain.getNode() != Cmp.getNode()) {
3055     SDValue Ops[2] = { Cmp, Chain };
3056     Cmp = DAG.getMergeValues(Ops, DL);
3057   }
3058   return Cmp;
3059 }
3060 
3061 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3062                                           SelectionDAG &DAG) const {
3063   SDValue CmpOp0   = Op.getOperand(0);
3064   SDValue CmpOp1   = Op.getOperand(1);
3065   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3066   SDLoc DL(Op);
3067   EVT VT = Op.getValueType();
3068   if (VT.isVector())
3069     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3070 
3071   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3072   SDValue CCReg = emitCmp(DAG, DL, C);
3073   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3074 }
3075 
3076 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3077                                                   SelectionDAG &DAG,
3078                                                   bool IsSignaling) const {
3079   SDValue Chain    = Op.getOperand(0);
3080   SDValue CmpOp0   = Op.getOperand(1);
3081   SDValue CmpOp1   = Op.getOperand(2);
3082   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3083   SDLoc DL(Op);
3084   EVT VT = Op.getNode()->getValueType(0);
3085   if (VT.isVector()) {
3086     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3087                                    Chain, IsSignaling);
3088     return Res.getValue(Op.getResNo());
3089   }
3090 
3091   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3092   SDValue CCReg = emitCmp(DAG, DL, C);
3093   CCReg->setFlags(Op->getFlags());
3094   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3095   SDValue Ops[2] = { Result, CCReg.getValue(1) };
3096   return DAG.getMergeValues(Ops, DL);
3097 }
3098 
3099 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3100   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3101   SDValue CmpOp0   = Op.getOperand(2);
3102   SDValue CmpOp1   = Op.getOperand(3);
3103   SDValue Dest     = Op.getOperand(4);
3104   SDLoc DL(Op);
3105 
3106   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3107   SDValue CCReg = emitCmp(DAG, DL, C);
3108   return DAG.getNode(
3109       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3110       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3111       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3112 }
3113 
3114 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3115 // allowing Pos and Neg to be wider than CmpOp.
3116 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3117   return (Neg.getOpcode() == ISD::SUB &&
3118           Neg.getOperand(0).getOpcode() == ISD::Constant &&
3119           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
3120           Neg.getOperand(1) == Pos &&
3121           (Pos == CmpOp ||
3122            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3123             Pos.getOperand(0) == CmpOp)));
3124 }
3125 
3126 // Return the absolute or negative absolute of Op; IsNegative decides which.
3127 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3128                            bool IsNegative) {
3129   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3130   if (IsNegative)
3131     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3132                      DAG.getConstant(0, DL, Op.getValueType()), Op);
3133   return Op;
3134 }
3135 
3136 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3137                                               SelectionDAG &DAG) const {
3138   SDValue CmpOp0   = Op.getOperand(0);
3139   SDValue CmpOp1   = Op.getOperand(1);
3140   SDValue TrueOp   = Op.getOperand(2);
3141   SDValue FalseOp  = Op.getOperand(3);
3142   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3143   SDLoc DL(Op);
3144 
3145   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3146 
3147   // Check for absolute and negative-absolute selections, including those
3148   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3149   // This check supplements the one in DAGCombiner.
3150   if (C.Opcode == SystemZISD::ICMP &&
3151       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3152       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3153       C.Op1.getOpcode() == ISD::Constant &&
3154       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
3155     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3156       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3157     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3158       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3159   }
3160 
3161   SDValue CCReg = emitCmp(DAG, DL, C);
3162   SDValue Ops[] = {TrueOp, FalseOp,
3163                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3164                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3165 
3166   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3167 }
3168 
3169 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3170                                                   SelectionDAG &DAG) const {
3171   SDLoc DL(Node);
3172   const GlobalValue *GV = Node->getGlobal();
3173   int64_t Offset = Node->getOffset();
3174   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3175   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3176 
3177   SDValue Result;
3178   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3179     if (isInt<32>(Offset)) {
3180       // Assign anchors at 1<<12 byte boundaries.
3181       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3182       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3183       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3184 
3185       // The offset can be folded into the address if it is aligned to a
3186       // halfword.
3187       Offset -= Anchor;
3188       if (Offset != 0 && (Offset & 1) == 0) {
3189         SDValue Full =
3190           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3191         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3192         Offset = 0;
3193       }
3194     } else {
3195       // Conservatively load a constant offset greater than 32 bits into a
3196       // register below.
3197       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3198       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3199     }
3200   } else {
3201     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3202     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3203     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3204                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3205   }
3206 
3207   // If there was a non-zero offset that we didn't fold, create an explicit
3208   // addition for it.
3209   if (Offset != 0)
3210     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3211                          DAG.getConstant(Offset, DL, PtrVT));
3212 
3213   return Result;
3214 }
3215 
3216 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3217                                                  SelectionDAG &DAG,
3218                                                  unsigned Opcode,
3219                                                  SDValue GOTOffset) const {
3220   SDLoc DL(Node);
3221   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3222   SDValue Chain = DAG.getEntryNode();
3223   SDValue Glue;
3224 
3225   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3226       CallingConv::GHC)
3227     report_fatal_error("In GHC calling convention TLS is not supported");
3228 
3229   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3230   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3231   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3232   Glue = Chain.getValue(1);
3233   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3234   Glue = Chain.getValue(1);
3235 
3236   // The first call operand is the chain and the second is the TLS symbol.
3237   SmallVector<SDValue, 8> Ops;
3238   Ops.push_back(Chain);
3239   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3240                                            Node->getValueType(0),
3241                                            0, 0));
3242 
3243   // Add argument registers to the end of the list so that they are
3244   // known live into the call.
3245   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3246   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3247 
3248   // Add a register mask operand representing the call-preserved registers.
3249   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3250   const uint32_t *Mask =
3251       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3252   assert(Mask && "Missing call preserved mask for calling convention");
3253   Ops.push_back(DAG.getRegisterMask(Mask));
3254 
3255   // Glue the call to the argument copies.
3256   Ops.push_back(Glue);
3257 
3258   // Emit the call.
3259   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3260   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3261   Glue = Chain.getValue(1);
3262 
3263   // Copy the return value from %r2.
3264   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3265 }
3266 
3267 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3268                                                   SelectionDAG &DAG) const {
3269   SDValue Chain = DAG.getEntryNode();
3270   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3271 
3272   // The high part of the thread pointer is in access register 0.
3273   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3274   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3275 
3276   // The low part of the thread pointer is in access register 1.
3277   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3278   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3279 
3280   // Merge them into a single 64-bit address.
3281   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3282                                     DAG.getConstant(32, DL, PtrVT));
3283   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3284 }
3285 
3286 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3287                                                      SelectionDAG &DAG) const {
3288   if (DAG.getTarget().useEmulatedTLS())
3289     return LowerToTLSEmulatedModel(Node, DAG);
3290   SDLoc DL(Node);
3291   const GlobalValue *GV = Node->getGlobal();
3292   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3293   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3294 
3295   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3296       CallingConv::GHC)
3297     report_fatal_error("In GHC calling convention TLS is not supported");
3298 
3299   SDValue TP = lowerThreadPointer(DL, DAG);
3300 
3301   // Get the offset of GA from the thread pointer, based on the TLS model.
3302   SDValue Offset;
3303   switch (model) {
3304     case TLSModel::GeneralDynamic: {
3305       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3306       SystemZConstantPoolValue *CPV =
3307         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3308 
3309       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3310       Offset = DAG.getLoad(
3311           PtrVT, DL, DAG.getEntryNode(), Offset,
3312           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3313 
3314       // Call __tls_get_offset to retrieve the offset.
3315       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3316       break;
3317     }
3318 
3319     case TLSModel::LocalDynamic: {
3320       // Load the GOT offset of the module ID.
3321       SystemZConstantPoolValue *CPV =
3322         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3323 
3324       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3325       Offset = DAG.getLoad(
3326           PtrVT, DL, DAG.getEntryNode(), Offset,
3327           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3328 
3329       // Call __tls_get_offset to retrieve the module base offset.
3330       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3331 
3332       // Note: The SystemZLDCleanupPass will remove redundant computations
3333       // of the module base offset.  Count total number of local-dynamic
3334       // accesses to trigger execution of that pass.
3335       SystemZMachineFunctionInfo* MFI =
3336         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3337       MFI->incNumLocalDynamicTLSAccesses();
3338 
3339       // Add the per-symbol offset.
3340       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3341 
3342       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3343       DTPOffset = DAG.getLoad(
3344           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3345           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3346 
3347       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3348       break;
3349     }
3350 
3351     case TLSModel::InitialExec: {
3352       // Load the offset from the GOT.
3353       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3354                                           SystemZII::MO_INDNTPOFF);
3355       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3356       Offset =
3357           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3358                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3359       break;
3360     }
3361 
3362     case TLSModel::LocalExec: {
3363       // Force the offset into the constant pool and load it from there.
3364       SystemZConstantPoolValue *CPV =
3365         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3366 
3367       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3368       Offset = DAG.getLoad(
3369           PtrVT, DL, DAG.getEntryNode(), Offset,
3370           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3371       break;
3372     }
3373   }
3374 
3375   // Add the base and offset together.
3376   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3377 }
3378 
3379 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3380                                                  SelectionDAG &DAG) const {
3381   SDLoc DL(Node);
3382   const BlockAddress *BA = Node->getBlockAddress();
3383   int64_t Offset = Node->getOffset();
3384   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3385 
3386   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3387   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3388   return Result;
3389 }
3390 
3391 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3392                                               SelectionDAG &DAG) const {
3393   SDLoc DL(JT);
3394   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3395   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3396 
3397   // Use LARL to load the address of the table.
3398   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3399 }
3400 
3401 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3402                                                  SelectionDAG &DAG) const {
3403   SDLoc DL(CP);
3404   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3405 
3406   SDValue Result;
3407   if (CP->isMachineConstantPoolEntry())
3408     Result =
3409         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3410   else
3411     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3412                                        CP->getOffset());
3413 
3414   // Use LARL to load the address of the constant pool entry.
3415   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3416 }
3417 
3418 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3419                                               SelectionDAG &DAG) const {
3420   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3421   MachineFunction &MF = DAG.getMachineFunction();
3422   MachineFrameInfo &MFI = MF.getFrameInfo();
3423   MFI.setFrameAddressIsTaken(true);
3424 
3425   SDLoc DL(Op);
3426   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3427   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3428 
3429   // By definition, the frame address is the address of the back chain.  (In
3430   // the case of packed stack without backchain, return the address where the
3431   // backchain would have been stored. This will either be an unused space or
3432   // contain a saved register).
3433   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3434   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3435 
3436   // FIXME The frontend should detect this case.
3437   if (Depth > 0) {
3438     report_fatal_error("Unsupported stack frame traversal count");
3439   }
3440 
3441   return BackChain;
3442 }
3443 
3444 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3445                                                SelectionDAG &DAG) const {
3446   MachineFunction &MF = DAG.getMachineFunction();
3447   MachineFrameInfo &MFI = MF.getFrameInfo();
3448   MFI.setReturnAddressIsTaken(true);
3449 
3450   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3451     return SDValue();
3452 
3453   SDLoc DL(Op);
3454   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3455   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3456 
3457   // FIXME The frontend should detect this case.
3458   if (Depth > 0) {
3459     report_fatal_error("Unsupported stack frame traversal count");
3460   }
3461 
3462   // Return R14D, which has the return address. Mark it an implicit live-in.
3463   Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3464   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3465 }
3466 
3467 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3468                                             SelectionDAG &DAG) const {
3469   SDLoc DL(Op);
3470   SDValue In = Op.getOperand(0);
3471   EVT InVT = In.getValueType();
3472   EVT ResVT = Op.getValueType();
3473 
3474   // Convert loads directly.  This is normally done by DAGCombiner,
3475   // but we need this case for bitcasts that are created during lowering
3476   // and which are then lowered themselves.
3477   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3478     if (ISD::isNormalLoad(LoadN)) {
3479       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3480                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3481       // Update the chain uses.
3482       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3483       return NewLoad;
3484     }
3485 
3486   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3487     SDValue In64;
3488     if (Subtarget.hasHighWord()) {
3489       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3490                                        MVT::i64);
3491       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3492                                        MVT::i64, SDValue(U64, 0), In);
3493     } else {
3494       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3495       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3496                          DAG.getConstant(32, DL, MVT::i64));
3497     }
3498     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3499     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3500                                       DL, MVT::f32, Out64);
3501   }
3502   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3503     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3504     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3505                                              MVT::f64, SDValue(U64, 0), In);
3506     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3507     if (Subtarget.hasHighWord())
3508       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3509                                         MVT::i32, Out64);
3510     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3511                                 DAG.getConstant(32, DL, MVT::i64));
3512     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3513   }
3514   llvm_unreachable("Unexpected bitcast combination");
3515 }
3516 
3517 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3518                                             SelectionDAG &DAG) const {
3519 
3520   if (Subtarget.isTargetXPLINK64())
3521     return lowerVASTART_XPLINK(Op, DAG);
3522   else
3523     return lowerVASTART_ELF(Op, DAG);
3524 }
3525 
3526 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op,
3527                                                    SelectionDAG &DAG) const {
3528   MachineFunction &MF = DAG.getMachineFunction();
3529   SystemZMachineFunctionInfo *FuncInfo =
3530       MF.getInfo<SystemZMachineFunctionInfo>();
3531 
3532   SDLoc DL(Op);
3533 
3534   // vastart just stores the address of the VarArgsFrameIndex slot into the
3535   // memory location argument.
3536   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3537   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3538   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3539   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3540                       MachinePointerInfo(SV));
3541 }
3542 
3543 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op,
3544                                                 SelectionDAG &DAG) const {
3545   MachineFunction &MF = DAG.getMachineFunction();
3546   SystemZMachineFunctionInfo *FuncInfo =
3547     MF.getInfo<SystemZMachineFunctionInfo>();
3548   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3549 
3550   SDValue Chain   = Op.getOperand(0);
3551   SDValue Addr    = Op.getOperand(1);
3552   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3553   SDLoc DL(Op);
3554 
3555   // The initial values of each field.
3556   const unsigned NumFields = 4;
3557   SDValue Fields[NumFields] = {
3558     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3559     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3560     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3561     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3562   };
3563 
3564   // Store each field into its respective slot.
3565   SDValue MemOps[NumFields];
3566   unsigned Offset = 0;
3567   for (unsigned I = 0; I < NumFields; ++I) {
3568     SDValue FieldAddr = Addr;
3569     if (Offset != 0)
3570       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3571                               DAG.getIntPtrConstant(Offset, DL));
3572     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3573                              MachinePointerInfo(SV, Offset));
3574     Offset += 8;
3575   }
3576   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3577 }
3578 
3579 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3580                                            SelectionDAG &DAG) const {
3581   SDValue Chain      = Op.getOperand(0);
3582   SDValue DstPtr     = Op.getOperand(1);
3583   SDValue SrcPtr     = Op.getOperand(2);
3584   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3585   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3586   SDLoc DL(Op);
3587 
3588   uint32_t Sz =
3589       Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32;
3590   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL),
3591                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3592                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3593                        MachinePointerInfo(SrcSV));
3594 }
3595 
3596 SDValue
3597 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
3598                                                SelectionDAG &DAG) const {
3599   if (Subtarget.isTargetXPLINK64())
3600     return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG);
3601   else
3602     return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG);
3603 }
3604 
3605 SDValue
3606 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op,
3607                                                       SelectionDAG &DAG) const {
3608   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3609   MachineFunction &MF = DAG.getMachineFunction();
3610   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3611   SDValue Chain = Op.getOperand(0);
3612   SDValue Size = Op.getOperand(1);
3613   SDValue Align = Op.getOperand(2);
3614   SDLoc DL(Op);
3615 
3616   // If user has set the no alignment function attribute, ignore
3617   // alloca alignments.
3618   uint64_t AlignVal =
3619       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3620 
3621   uint64_t StackAlign = TFI->getStackAlignment();
3622   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3623   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3624 
3625   SDValue NeededSpace = Size;
3626 
3627   // Add extra space for alignment if needed.
3628   EVT PtrVT = getPointerTy(MF.getDataLayout());
3629   if (ExtraAlignSpace)
3630     NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace,
3631                               DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3632 
3633   bool IsSigned = false;
3634   bool DoesNotReturn = false;
3635   bool IsReturnValueUsed = false;
3636   EVT VT = Op.getValueType();
3637   SDValue AllocaCall =
3638       makeExternalCall(Chain, DAG, "@@ALCAXP", VT, makeArrayRef(NeededSpace),
3639                        CallingConv::C, IsSigned, DL, DoesNotReturn,
3640                        IsReturnValueUsed)
3641           .first;
3642 
3643   // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue
3644   // to end of call in order to ensure it isn't broken up from the call
3645   // sequence.
3646   auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
3647   Register SPReg = Regs.getStackPointerRegister();
3648   Chain = AllocaCall.getValue(1);
3649   SDValue Glue = AllocaCall.getValue(2);
3650   SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue);
3651   Chain = NewSPRegNode.getValue(1);
3652 
3653   MVT PtrMVT = getPointerMemTy(MF.getDataLayout());
3654   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT);
3655   SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust);
3656 
3657   // Dynamically realign if needed.
3658   if (ExtraAlignSpace) {
3659     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3660                          DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3661     Result = DAG.getNode(ISD::AND, DL, PtrVT, Result,
3662                          DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT));
3663   }
3664 
3665   SDValue Ops[2] = {Result, Chain};
3666   return DAG.getMergeValues(Ops, DL);
3667 }
3668 
3669 SDValue
3670 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op,
3671                                                    SelectionDAG &DAG) const {
3672   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3673   MachineFunction &MF = DAG.getMachineFunction();
3674   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3675   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3676 
3677   SDValue Chain = Op.getOperand(0);
3678   SDValue Size  = Op.getOperand(1);
3679   SDValue Align = Op.getOperand(2);
3680   SDLoc DL(Op);
3681 
3682   // If user has set the no alignment function attribute, ignore
3683   // alloca alignments.
3684   uint64_t AlignVal =
3685       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3686 
3687   uint64_t StackAlign = TFI->getStackAlignment();
3688   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3689   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3690 
3691   Register SPReg = getStackPointerRegisterToSaveRestore();
3692   SDValue NeededSpace = Size;
3693 
3694   // Get a reference to the stack pointer.
3695   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3696 
3697   // If we need a backchain, save it now.
3698   SDValue Backchain;
3699   if (StoreBackchain)
3700     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3701                             MachinePointerInfo());
3702 
3703   // Add extra space for alignment if needed.
3704   if (ExtraAlignSpace)
3705     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3706                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3707 
3708   // Get the new stack pointer value.
3709   SDValue NewSP;
3710   if (hasInlineStackProbe(MF)) {
3711     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3712                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3713     Chain = NewSP.getValue(1);
3714   }
3715   else {
3716     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3717     // Copy the new stack pointer back.
3718     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3719   }
3720 
3721   // The allocated data lives above the 160 bytes allocated for the standard
3722   // frame, plus any outgoing stack arguments.  We don't know how much that
3723   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3724   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3725   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3726 
3727   // Dynamically realign if needed.
3728   if (RequiredAlign > StackAlign) {
3729     Result =
3730       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3731                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3732     Result =
3733       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3734                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3735   }
3736 
3737   if (StoreBackchain)
3738     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3739                          MachinePointerInfo());
3740 
3741   SDValue Ops[2] = { Result, Chain };
3742   return DAG.getMergeValues(Ops, DL);
3743 }
3744 
3745 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3746     SDValue Op, SelectionDAG &DAG) const {
3747   SDLoc DL(Op);
3748 
3749   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3750 }
3751 
3752 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3753                                               SelectionDAG &DAG) const {
3754   EVT VT = Op.getValueType();
3755   SDLoc DL(Op);
3756   SDValue Ops[2];
3757   if (is32Bit(VT))
3758     // Just do a normal 64-bit multiplication and extract the results.
3759     // We define this so that it can be used for constant division.
3760     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3761                     Op.getOperand(1), Ops[1], Ops[0]);
3762   else if (Subtarget.hasMiscellaneousExtensions2())
3763     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3764     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3765     // return the low half first, so the results are in reverse order.
3766     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3767                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3768   else {
3769     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3770     //
3771     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3772     //
3773     // but using the fact that the upper halves are either all zeros
3774     // or all ones:
3775     //
3776     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3777     //
3778     // and grouping the right terms together since they are quicker than the
3779     // multiplication:
3780     //
3781     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3782     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3783     SDValue LL = Op.getOperand(0);
3784     SDValue RL = Op.getOperand(1);
3785     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3786     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3787     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3788     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3789     // return the low half first, so the results are in reverse order.
3790     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3791                      LL, RL, Ops[1], Ops[0]);
3792     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3793     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3794     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3795     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3796   }
3797   return DAG.getMergeValues(Ops, DL);
3798 }
3799 
3800 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3801                                               SelectionDAG &DAG) const {
3802   EVT VT = Op.getValueType();
3803   SDLoc DL(Op);
3804   SDValue Ops[2];
3805   if (is32Bit(VT))
3806     // Just do a normal 64-bit multiplication and extract the results.
3807     // We define this so that it can be used for constant division.
3808     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3809                     Op.getOperand(1), Ops[1], Ops[0]);
3810   else
3811     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3812     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3813     // return the low half first, so the results are in reverse order.
3814     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3815                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3816   return DAG.getMergeValues(Ops, DL);
3817 }
3818 
3819 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3820                                             SelectionDAG &DAG) const {
3821   SDValue Op0 = Op.getOperand(0);
3822   SDValue Op1 = Op.getOperand(1);
3823   EVT VT = Op.getValueType();
3824   SDLoc DL(Op);
3825 
3826   // We use DSGF for 32-bit division.  This means the first operand must
3827   // always be 64-bit, and the second operand should be 32-bit whenever
3828   // that is possible, to improve performance.
3829   if (is32Bit(VT))
3830     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3831   else if (DAG.ComputeNumSignBits(Op1) > 32)
3832     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3833 
3834   // DSG(F) returns the remainder in the even register and the
3835   // quotient in the odd register.
3836   SDValue Ops[2];
3837   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3838   return DAG.getMergeValues(Ops, DL);
3839 }
3840 
3841 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3842                                             SelectionDAG &DAG) const {
3843   EVT VT = Op.getValueType();
3844   SDLoc DL(Op);
3845 
3846   // DL(G) returns the remainder in the even register and the
3847   // quotient in the odd register.
3848   SDValue Ops[2];
3849   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3850                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3851   return DAG.getMergeValues(Ops, DL);
3852 }
3853 
3854 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3855   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3856 
3857   // Get the known-zero masks for each operand.
3858   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3859   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3860                         DAG.computeKnownBits(Ops[1])};
3861 
3862   // See if the upper 32 bits of one operand and the lower 32 bits of the
3863   // other are known zero.  They are the low and high operands respectively.
3864   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3865                        Known[1].Zero.getZExtValue() };
3866   unsigned High, Low;
3867   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3868     High = 1, Low = 0;
3869   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3870     High = 0, Low = 1;
3871   else
3872     return Op;
3873 
3874   SDValue LowOp = Ops[Low];
3875   SDValue HighOp = Ops[High];
3876 
3877   // If the high part is a constant, we're better off using IILH.
3878   if (HighOp.getOpcode() == ISD::Constant)
3879     return Op;
3880 
3881   // If the low part is a constant that is outside the range of LHI,
3882   // then we're better off using IILF.
3883   if (LowOp.getOpcode() == ISD::Constant) {
3884     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3885     if (!isInt<16>(Value))
3886       return Op;
3887   }
3888 
3889   // Check whether the high part is an AND that doesn't change the
3890   // high 32 bits and just masks out low bits.  We can skip it if so.
3891   if (HighOp.getOpcode() == ISD::AND &&
3892       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3893     SDValue HighOp0 = HighOp.getOperand(0);
3894     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3895     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3896       HighOp = HighOp0;
3897   }
3898 
3899   // Take advantage of the fact that all GR32 operations only change the
3900   // low 32 bits by truncating Low to an i32 and inserting it directly
3901   // using a subreg.  The interesting cases are those where the truncation
3902   // can be folded.
3903   SDLoc DL(Op);
3904   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3905   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3906                                    MVT::i64, HighOp, Low32);
3907 }
3908 
3909 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3910 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3911                                           SelectionDAG &DAG) const {
3912   SDNode *N = Op.getNode();
3913   SDValue LHS = N->getOperand(0);
3914   SDValue RHS = N->getOperand(1);
3915   SDLoc DL(N);
3916   unsigned BaseOp = 0;
3917   unsigned CCValid = 0;
3918   unsigned CCMask = 0;
3919 
3920   switch (Op.getOpcode()) {
3921   default: llvm_unreachable("Unknown instruction!");
3922   case ISD::SADDO:
3923     BaseOp = SystemZISD::SADDO;
3924     CCValid = SystemZ::CCMASK_ARITH;
3925     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3926     break;
3927   case ISD::SSUBO:
3928     BaseOp = SystemZISD::SSUBO;
3929     CCValid = SystemZ::CCMASK_ARITH;
3930     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3931     break;
3932   case ISD::UADDO:
3933     BaseOp = SystemZISD::UADDO;
3934     CCValid = SystemZ::CCMASK_LOGICAL;
3935     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3936     break;
3937   case ISD::USUBO:
3938     BaseOp = SystemZISD::USUBO;
3939     CCValid = SystemZ::CCMASK_LOGICAL;
3940     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3941     break;
3942   }
3943 
3944   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3945   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3946 
3947   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3948   if (N->getValueType(1) == MVT::i1)
3949     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3950 
3951   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3952 }
3953 
3954 static bool isAddCarryChain(SDValue Carry) {
3955   while (Carry.getOpcode() == ISD::ADDCARRY)
3956     Carry = Carry.getOperand(2);
3957   return Carry.getOpcode() == ISD::UADDO;
3958 }
3959 
3960 static bool isSubBorrowChain(SDValue Carry) {
3961   while (Carry.getOpcode() == ISD::SUBCARRY)
3962     Carry = Carry.getOperand(2);
3963   return Carry.getOpcode() == ISD::USUBO;
3964 }
3965 
3966 // Lower ADDCARRY/SUBCARRY nodes.
3967 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3968                                                 SelectionDAG &DAG) const {
3969 
3970   SDNode *N = Op.getNode();
3971   MVT VT = N->getSimpleValueType(0);
3972 
3973   // Let legalize expand this if it isn't a legal type yet.
3974   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3975     return SDValue();
3976 
3977   SDValue LHS = N->getOperand(0);
3978   SDValue RHS = N->getOperand(1);
3979   SDValue Carry = Op.getOperand(2);
3980   SDLoc DL(N);
3981   unsigned BaseOp = 0;
3982   unsigned CCValid = 0;
3983   unsigned CCMask = 0;
3984 
3985   switch (Op.getOpcode()) {
3986   default: llvm_unreachable("Unknown instruction!");
3987   case ISD::ADDCARRY:
3988     if (!isAddCarryChain(Carry))
3989       return SDValue();
3990 
3991     BaseOp = SystemZISD::ADDCARRY;
3992     CCValid = SystemZ::CCMASK_LOGICAL;
3993     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3994     break;
3995   case ISD::SUBCARRY:
3996     if (!isSubBorrowChain(Carry))
3997       return SDValue();
3998 
3999     BaseOp = SystemZISD::SUBCARRY;
4000     CCValid = SystemZ::CCMASK_LOGICAL;
4001     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4002     break;
4003   }
4004 
4005   // Set the condition code from the carry flag.
4006   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
4007                       DAG.getConstant(CCValid, DL, MVT::i32),
4008                       DAG.getConstant(CCMask, DL, MVT::i32));
4009 
4010   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4011   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
4012 
4013   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4014   if (N->getValueType(1) == MVT::i1)
4015     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4016 
4017   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4018 }
4019 
4020 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
4021                                           SelectionDAG &DAG) const {
4022   EVT VT = Op.getValueType();
4023   SDLoc DL(Op);
4024   Op = Op.getOperand(0);
4025 
4026   // Handle vector types via VPOPCT.
4027   if (VT.isVector()) {
4028     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
4029     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
4030     switch (VT.getScalarSizeInBits()) {
4031     case 8:
4032       break;
4033     case 16: {
4034       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4035       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
4036       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
4037       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4038       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
4039       break;
4040     }
4041     case 32: {
4042       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4043                                             DAG.getConstant(0, DL, MVT::i32));
4044       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4045       break;
4046     }
4047     case 64: {
4048       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4049                                             DAG.getConstant(0, DL, MVT::i32));
4050       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
4051       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4052       break;
4053     }
4054     default:
4055       llvm_unreachable("Unexpected type");
4056     }
4057     return Op;
4058   }
4059 
4060   // Get the known-zero mask for the operand.
4061   KnownBits Known = DAG.computeKnownBits(Op);
4062   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
4063   if (NumSignificantBits == 0)
4064     return DAG.getConstant(0, DL, VT);
4065 
4066   // Skip known-zero high parts of the operand.
4067   int64_t OrigBitSize = VT.getSizeInBits();
4068   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
4069   BitSize = std::min(BitSize, OrigBitSize);
4070 
4071   // The POPCNT instruction counts the number of bits in each byte.
4072   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
4073   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
4074   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4075 
4076   // Add up per-byte counts in a binary tree.  All bits of Op at
4077   // position larger than BitSize remain zero throughout.
4078   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
4079     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
4080     if (BitSize != OrigBitSize)
4081       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
4082                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
4083     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4084   }
4085 
4086   // Extract overall result from high byte.
4087   if (BitSize > 8)
4088     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
4089                      DAG.getConstant(BitSize - 8, DL, VT));
4090 
4091   return Op;
4092 }
4093 
4094 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
4095                                                  SelectionDAG &DAG) const {
4096   SDLoc DL(Op);
4097   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
4098     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
4099   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
4100     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
4101 
4102   // The only fence that needs an instruction is a sequentially-consistent
4103   // cross-thread fence.
4104   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
4105       FenceSSID == SyncScope::System) {
4106     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
4107                                       Op.getOperand(0)),
4108                    0);
4109   }
4110 
4111   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
4112   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
4113 }
4114 
4115 // Op is an atomic load.  Lower it into a normal volatile load.
4116 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
4117                                                 SelectionDAG &DAG) const {
4118   auto *Node = cast<AtomicSDNode>(Op.getNode());
4119   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
4120                         Node->getChain(), Node->getBasePtr(),
4121                         Node->getMemoryVT(), Node->getMemOperand());
4122 }
4123 
4124 // Op is an atomic store.  Lower it into a normal volatile store.
4125 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
4126                                                  SelectionDAG &DAG) const {
4127   auto *Node = cast<AtomicSDNode>(Op.getNode());
4128   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
4129                                     Node->getBasePtr(), Node->getMemoryVT(),
4130                                     Node->getMemOperand());
4131   // We have to enforce sequential consistency by performing a
4132   // serialization operation after the store.
4133   if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
4134     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
4135                                        MVT::Other, Chain), 0);
4136   return Chain;
4137 }
4138 
4139 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
4140 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
4141 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
4142                                                    SelectionDAG &DAG,
4143                                                    unsigned Opcode) const {
4144   auto *Node = cast<AtomicSDNode>(Op.getNode());
4145 
4146   // 32-bit operations need no code outside the main loop.
4147   EVT NarrowVT = Node->getMemoryVT();
4148   EVT WideVT = MVT::i32;
4149   if (NarrowVT == WideVT)
4150     return Op;
4151 
4152   int64_t BitSize = NarrowVT.getSizeInBits();
4153   SDValue ChainIn = Node->getChain();
4154   SDValue Addr = Node->getBasePtr();
4155   SDValue Src2 = Node->getVal();
4156   MachineMemOperand *MMO = Node->getMemOperand();
4157   SDLoc DL(Node);
4158   EVT PtrVT = Addr.getValueType();
4159 
4160   // Convert atomic subtracts of constants into additions.
4161   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4162     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4163       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4164       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
4165     }
4166 
4167   // Get the address of the containing word.
4168   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4169                                     DAG.getConstant(-4, DL, PtrVT));
4170 
4171   // Get the number of bits that the word must be rotated left in order
4172   // to bring the field to the top bits of a GR32.
4173   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4174                                  DAG.getConstant(3, DL, PtrVT));
4175   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4176 
4177   // Get the complementing shift amount, for rotating a field in the top
4178   // bits back to its proper position.
4179   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4180                                     DAG.getConstant(0, DL, WideVT), BitShift);
4181 
4182   // Extend the source operand to 32 bits and prepare it for the inner loop.
4183   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4184   // operations require the source to be shifted in advance.  (This shift
4185   // can be folded if the source is constant.)  For AND and NAND, the lower
4186   // bits must be set, while for other opcodes they should be left clear.
4187   if (Opcode != SystemZISD::ATOMIC_SWAPW)
4188     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4189                        DAG.getConstant(32 - BitSize, DL, WideVT));
4190   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4191       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4192     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4193                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4194 
4195   // Construct the ATOMIC_LOADW_* node.
4196   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4197   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4198                     DAG.getConstant(BitSize, DL, WideVT) };
4199   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4200                                              NarrowVT, MMO);
4201 
4202   // Rotate the result of the final CS so that the field is in the lower
4203   // bits of a GR32, then truncate it.
4204   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4205                                     DAG.getConstant(BitSize, DL, WideVT));
4206   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4207 
4208   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4209   return DAG.getMergeValues(RetOps, DL);
4210 }
4211 
4212 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
4213 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
4214 // operations into additions.
4215 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4216                                                     SelectionDAG &DAG) const {
4217   auto *Node = cast<AtomicSDNode>(Op.getNode());
4218   EVT MemVT = Node->getMemoryVT();
4219   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4220     // A full-width operation.
4221     assert(Op.getValueType() == MemVT && "Mismatched VTs");
4222     SDValue Src2 = Node->getVal();
4223     SDValue NegSrc2;
4224     SDLoc DL(Src2);
4225 
4226     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
4227       // Use an addition if the operand is constant and either LAA(G) is
4228       // available or the negative value is in the range of A(G)FHI.
4229       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
4230       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
4231         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
4232     } else if (Subtarget.hasInterlockedAccess1())
4233       // Use LAA(G) if available.
4234       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
4235                             Src2);
4236 
4237     if (NegSrc2.getNode())
4238       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4239                            Node->getChain(), Node->getBasePtr(), NegSrc2,
4240                            Node->getMemOperand());
4241 
4242     // Use the node as-is.
4243     return Op;
4244   }
4245 
4246   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4247 }
4248 
4249 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4250 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4251                                                     SelectionDAG &DAG) const {
4252   auto *Node = cast<AtomicSDNode>(Op.getNode());
4253   SDValue ChainIn = Node->getOperand(0);
4254   SDValue Addr = Node->getOperand(1);
4255   SDValue CmpVal = Node->getOperand(2);
4256   SDValue SwapVal = Node->getOperand(3);
4257   MachineMemOperand *MMO = Node->getMemOperand();
4258   SDLoc DL(Node);
4259 
4260   // We have native support for 32-bit and 64-bit compare and swap, but we
4261   // still need to expand extracting the "success" result from the CC.
4262   EVT NarrowVT = Node->getMemoryVT();
4263   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4264   if (NarrowVT == WideVT) {
4265     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4266     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4267     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4268                                                DL, Tys, Ops, NarrowVT, MMO);
4269     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4270                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4271 
4272     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4273     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4274     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4275     return SDValue();
4276   }
4277 
4278   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4279   // via a fullword ATOMIC_CMP_SWAPW operation.
4280   int64_t BitSize = NarrowVT.getSizeInBits();
4281   EVT PtrVT = Addr.getValueType();
4282 
4283   // Get the address of the containing word.
4284   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4285                                     DAG.getConstant(-4, DL, PtrVT));
4286 
4287   // Get the number of bits that the word must be rotated left in order
4288   // to bring the field to the top bits of a GR32.
4289   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4290                                  DAG.getConstant(3, DL, PtrVT));
4291   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4292 
4293   // Get the complementing shift amount, for rotating a field in the top
4294   // bits back to its proper position.
4295   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4296                                     DAG.getConstant(0, DL, WideVT), BitShift);
4297 
4298   // Construct the ATOMIC_CMP_SWAPW node.
4299   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4300   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4301                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4302   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4303                                              VTList, Ops, NarrowVT, MMO);
4304   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4305                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4306 
4307   // emitAtomicCmpSwapW() will zero extend the result (original value).
4308   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4309                                 DAG.getValueType(NarrowVT));
4310   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4311   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4312   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4313   return SDValue();
4314 }
4315 
4316 MachineMemOperand::Flags
4317 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4318   // Because of how we convert atomic_load and atomic_store to normal loads and
4319   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4320   // since DAGCombine hasn't been updated to account for atomic, but non
4321   // volatile loads.  (See D57601)
4322   if (auto *SI = dyn_cast<StoreInst>(&I))
4323     if (SI->isAtomic())
4324       return MachineMemOperand::MOVolatile;
4325   if (auto *LI = dyn_cast<LoadInst>(&I))
4326     if (LI->isAtomic())
4327       return MachineMemOperand::MOVolatile;
4328   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4329     if (AI->isAtomic())
4330       return MachineMemOperand::MOVolatile;
4331   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4332     if (AI->isAtomic())
4333       return MachineMemOperand::MOVolatile;
4334   return MachineMemOperand::MONone;
4335 }
4336 
4337 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4338                                               SelectionDAG &DAG) const {
4339   MachineFunction &MF = DAG.getMachineFunction();
4340   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4341   auto *Regs = Subtarget->getSpecialRegisters();
4342   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4343     report_fatal_error("Variable-sized stack allocations are not supported "
4344                        "in GHC calling convention");
4345   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4346                             Regs->getStackPointerRegister(), Op.getValueType());
4347 }
4348 
4349 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4350                                                  SelectionDAG &DAG) const {
4351   MachineFunction &MF = DAG.getMachineFunction();
4352   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4353   auto *Regs = Subtarget->getSpecialRegisters();
4354   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4355 
4356   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4357     report_fatal_error("Variable-sized stack allocations are not supported "
4358                        "in GHC calling convention");
4359 
4360   SDValue Chain = Op.getOperand(0);
4361   SDValue NewSP = Op.getOperand(1);
4362   SDValue Backchain;
4363   SDLoc DL(Op);
4364 
4365   if (StoreBackchain) {
4366     SDValue OldSP = DAG.getCopyFromReg(
4367         Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4368     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4369                             MachinePointerInfo());
4370   }
4371 
4372   Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
4373 
4374   if (StoreBackchain)
4375     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4376                          MachinePointerInfo());
4377 
4378   return Chain;
4379 }
4380 
4381 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4382                                              SelectionDAG &DAG) const {
4383   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4384   if (!IsData)
4385     // Just preserve the chain.
4386     return Op.getOperand(0);
4387 
4388   SDLoc DL(Op);
4389   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4390   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4391   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4392   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4393                    Op.getOperand(1)};
4394   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4395                                  Node->getVTList(), Ops,
4396                                  Node->getMemoryVT(), Node->getMemOperand());
4397 }
4398 
4399 // Convert condition code in CCReg to an i32 value.
4400 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4401   SDLoc DL(CCReg);
4402   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4403   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4404                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4405 }
4406 
4407 SDValue
4408 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4409                                               SelectionDAG &DAG) const {
4410   unsigned Opcode, CCValid;
4411   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4412     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4413     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4414     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4415     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4416     return SDValue();
4417   }
4418 
4419   return SDValue();
4420 }
4421 
4422 SDValue
4423 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4424                                                SelectionDAG &DAG) const {
4425   unsigned Opcode, CCValid;
4426   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4427     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4428     if (Op->getNumValues() == 1)
4429       return getCCResult(DAG, SDValue(Node, 0));
4430     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4431     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4432                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4433   }
4434 
4435   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4436   switch (Id) {
4437   case Intrinsic::thread_pointer:
4438     return lowerThreadPointer(SDLoc(Op), DAG);
4439 
4440   case Intrinsic::s390_vpdi:
4441     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4442                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4443 
4444   case Intrinsic::s390_vperm:
4445     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4446                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4447 
4448   case Intrinsic::s390_vuphb:
4449   case Intrinsic::s390_vuphh:
4450   case Intrinsic::s390_vuphf:
4451     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4452                        Op.getOperand(1));
4453 
4454   case Intrinsic::s390_vuplhb:
4455   case Intrinsic::s390_vuplhh:
4456   case Intrinsic::s390_vuplhf:
4457     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4458                        Op.getOperand(1));
4459 
4460   case Intrinsic::s390_vuplb:
4461   case Intrinsic::s390_vuplhw:
4462   case Intrinsic::s390_vuplf:
4463     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4464                        Op.getOperand(1));
4465 
4466   case Intrinsic::s390_vupllb:
4467   case Intrinsic::s390_vupllh:
4468   case Intrinsic::s390_vupllf:
4469     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4470                        Op.getOperand(1));
4471 
4472   case Intrinsic::s390_vsumb:
4473   case Intrinsic::s390_vsumh:
4474   case Intrinsic::s390_vsumgh:
4475   case Intrinsic::s390_vsumgf:
4476   case Intrinsic::s390_vsumqf:
4477   case Intrinsic::s390_vsumqg:
4478     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4479                        Op.getOperand(1), Op.getOperand(2));
4480   }
4481 
4482   return SDValue();
4483 }
4484 
4485 namespace {
4486 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4487 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4488 // Operand is the constant third operand, otherwise it is the number of
4489 // bytes in each element of the result.
4490 struct Permute {
4491   unsigned Opcode;
4492   unsigned Operand;
4493   unsigned char Bytes[SystemZ::VectorBytes];
4494 };
4495 }
4496 
4497 static const Permute PermuteForms[] = {
4498   // VMRHG
4499   { SystemZISD::MERGE_HIGH, 8,
4500     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4501   // VMRHF
4502   { SystemZISD::MERGE_HIGH, 4,
4503     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4504   // VMRHH
4505   { SystemZISD::MERGE_HIGH, 2,
4506     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4507   // VMRHB
4508   { SystemZISD::MERGE_HIGH, 1,
4509     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4510   // VMRLG
4511   { SystemZISD::MERGE_LOW, 8,
4512     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4513   // VMRLF
4514   { SystemZISD::MERGE_LOW, 4,
4515     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4516   // VMRLH
4517   { SystemZISD::MERGE_LOW, 2,
4518     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4519   // VMRLB
4520   { SystemZISD::MERGE_LOW, 1,
4521     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4522   // VPKG
4523   { SystemZISD::PACK, 4,
4524     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4525   // VPKF
4526   { SystemZISD::PACK, 2,
4527     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4528   // VPKH
4529   { SystemZISD::PACK, 1,
4530     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4531   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4532   { SystemZISD::PERMUTE_DWORDS, 4,
4533     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4534   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4535   { SystemZISD::PERMUTE_DWORDS, 1,
4536     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4537 };
4538 
4539 // Called after matching a vector shuffle against a particular pattern.
4540 // Both the original shuffle and the pattern have two vector operands.
4541 // OpNos[0] is the operand of the original shuffle that should be used for
4542 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4543 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4544 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4545 // for operands 0 and 1 of the pattern.
4546 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4547   if (OpNos[0] < 0) {
4548     if (OpNos[1] < 0)
4549       return false;
4550     OpNo0 = OpNo1 = OpNos[1];
4551   } else if (OpNos[1] < 0) {
4552     OpNo0 = OpNo1 = OpNos[0];
4553   } else {
4554     OpNo0 = OpNos[0];
4555     OpNo1 = OpNos[1];
4556   }
4557   return true;
4558 }
4559 
4560 // Bytes is a VPERM-like permute vector, except that -1 is used for
4561 // undefined bytes.  Return true if the VPERM can be implemented using P.
4562 // When returning true set OpNo0 to the VPERM operand that should be
4563 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4564 //
4565 // For example, if swapping the VPERM operands allows P to match, OpNo0
4566 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4567 // operand, but rewriting it to use two duplicated operands allows it to
4568 // match P, then OpNo0 and OpNo1 will be the same.
4569 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4570                          unsigned &OpNo0, unsigned &OpNo1) {
4571   int OpNos[] = { -1, -1 };
4572   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4573     int Elt = Bytes[I];
4574     if (Elt >= 0) {
4575       // Make sure that the two permute vectors use the same suboperand
4576       // byte number.  Only the operand numbers (the high bits) are
4577       // allowed to differ.
4578       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4579         return false;
4580       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4581       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4582       // Make sure that the operand mappings are consistent with previous
4583       // elements.
4584       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4585         return false;
4586       OpNos[ModelOpNo] = RealOpNo;
4587     }
4588   }
4589   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4590 }
4591 
4592 // As above, but search for a matching permute.
4593 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4594                                    unsigned &OpNo0, unsigned &OpNo1) {
4595   for (auto &P : PermuteForms)
4596     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4597       return &P;
4598   return nullptr;
4599 }
4600 
4601 // Bytes is a VPERM-like permute vector, except that -1 is used for
4602 // undefined bytes.  This permute is an operand of an outer permute.
4603 // See whether redistributing the -1 bytes gives a shuffle that can be
4604 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4605 // that, when applied to the result of P, gives the original permute in Bytes.
4606 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4607                                const Permute &P,
4608                                SmallVectorImpl<int> &Transform) {
4609   unsigned To = 0;
4610   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4611     int Elt = Bytes[From];
4612     if (Elt < 0)
4613       // Byte number From of the result is undefined.
4614       Transform[From] = -1;
4615     else {
4616       while (P.Bytes[To] != Elt) {
4617         To += 1;
4618         if (To == SystemZ::VectorBytes)
4619           return false;
4620       }
4621       Transform[From] = To;
4622     }
4623   }
4624   return true;
4625 }
4626 
4627 // As above, but search for a matching permute.
4628 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4629                                          SmallVectorImpl<int> &Transform) {
4630   for (auto &P : PermuteForms)
4631     if (matchDoublePermute(Bytes, P, Transform))
4632       return &P;
4633   return nullptr;
4634 }
4635 
4636 // Convert the mask of the given shuffle op into a byte-level mask,
4637 // as if it had type vNi8.
4638 static bool getVPermMask(SDValue ShuffleOp,
4639                          SmallVectorImpl<int> &Bytes) {
4640   EVT VT = ShuffleOp.getValueType();
4641   unsigned NumElements = VT.getVectorNumElements();
4642   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4643 
4644   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4645     Bytes.resize(NumElements * BytesPerElement, -1);
4646     for (unsigned I = 0; I < NumElements; ++I) {
4647       int Index = VSN->getMaskElt(I);
4648       if (Index >= 0)
4649         for (unsigned J = 0; J < BytesPerElement; ++J)
4650           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4651     }
4652     return true;
4653   }
4654   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4655       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4656     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4657     Bytes.resize(NumElements * BytesPerElement, -1);
4658     for (unsigned I = 0; I < NumElements; ++I)
4659       for (unsigned J = 0; J < BytesPerElement; ++J)
4660         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4661     return true;
4662   }
4663   return false;
4664 }
4665 
4666 // Bytes is a VPERM-like permute vector, except that -1 is used for
4667 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4668 // the result come from a contiguous sequence of bytes from one input.
4669 // Set Base to the selector for the first byte if so.
4670 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4671                             unsigned BytesPerElement, int &Base) {
4672   Base = -1;
4673   for (unsigned I = 0; I < BytesPerElement; ++I) {
4674     if (Bytes[Start + I] >= 0) {
4675       unsigned Elem = Bytes[Start + I];
4676       if (Base < 0) {
4677         Base = Elem - I;
4678         // Make sure the bytes would come from one input operand.
4679         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4680           return false;
4681       } else if (unsigned(Base) != Elem - I)
4682         return false;
4683     }
4684   }
4685   return true;
4686 }
4687 
4688 // Bytes is a VPERM-like permute vector, except that -1 is used for
4689 // undefined bytes.  Return true if it can be performed using VSLDB.
4690 // When returning true, set StartIndex to the shift amount and OpNo0
4691 // and OpNo1 to the VPERM operands that should be used as the first
4692 // and second shift operand respectively.
4693 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4694                                unsigned &StartIndex, unsigned &OpNo0,
4695                                unsigned &OpNo1) {
4696   int OpNos[] = { -1, -1 };
4697   int Shift = -1;
4698   for (unsigned I = 0; I < 16; ++I) {
4699     int Index = Bytes[I];
4700     if (Index >= 0) {
4701       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4702       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4703       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4704       if (Shift < 0)
4705         Shift = ExpectedShift;
4706       else if (Shift != ExpectedShift)
4707         return false;
4708       // Make sure that the operand mappings are consistent with previous
4709       // elements.
4710       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4711         return false;
4712       OpNos[ModelOpNo] = RealOpNo;
4713     }
4714   }
4715   StartIndex = Shift;
4716   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4717 }
4718 
4719 // Create a node that performs P on operands Op0 and Op1, casting the
4720 // operands to the appropriate type.  The type of the result is determined by P.
4721 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4722                               const Permute &P, SDValue Op0, SDValue Op1) {
4723   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4724   // elements of a PACK are twice as wide as the outputs.
4725   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4726                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4727                       P.Operand);
4728   // Cast both operands to the appropriate type.
4729   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4730                               SystemZ::VectorBytes / InBytes);
4731   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4732   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4733   SDValue Op;
4734   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4735     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4736     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4737   } else if (P.Opcode == SystemZISD::PACK) {
4738     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4739                                  SystemZ::VectorBytes / P.Operand);
4740     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4741   } else {
4742     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4743   }
4744   return Op;
4745 }
4746 
4747 static bool isZeroVector(SDValue N) {
4748   if (N->getOpcode() == ISD::BITCAST)
4749     N = N->getOperand(0);
4750   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4751     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4752       return Op->getZExtValue() == 0;
4753   return ISD::isBuildVectorAllZeros(N.getNode());
4754 }
4755 
4756 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4757 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4758   for (unsigned I = 0; I < Num ; I++)
4759     if (isZeroVector(Ops[I]))
4760       return I;
4761   return UINT32_MAX;
4762 }
4763 
4764 // Bytes is a VPERM-like permute vector, except that -1 is used for
4765 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4766 // VSLDB or VPERM.
4767 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4768                                      SDValue *Ops,
4769                                      const SmallVectorImpl<int> &Bytes) {
4770   for (unsigned I = 0; I < 2; ++I)
4771     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4772 
4773   // First see whether VSLDB can be used.
4774   unsigned StartIndex, OpNo0, OpNo1;
4775   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4776     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4777                        Ops[OpNo1],
4778                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4779 
4780   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4781   // eliminate a zero vector by reusing any zero index in the permute vector.
4782   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4783   if (ZeroVecIdx != UINT32_MAX) {
4784     bool MaskFirst = true;
4785     int ZeroIdx = -1;
4786     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4787       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4788       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4789       if (OpNo == ZeroVecIdx && I == 0) {
4790         // If the first byte is zero, use mask as first operand.
4791         ZeroIdx = 0;
4792         break;
4793       }
4794       if (OpNo != ZeroVecIdx && Byte == 0) {
4795         // If mask contains a zero, use it by placing that vector first.
4796         ZeroIdx = I + SystemZ::VectorBytes;
4797         MaskFirst = false;
4798         break;
4799       }
4800     }
4801     if (ZeroIdx != -1) {
4802       SDValue IndexNodes[SystemZ::VectorBytes];
4803       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4804         if (Bytes[I] >= 0) {
4805           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4806           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4807           if (OpNo == ZeroVecIdx)
4808             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4809           else {
4810             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4811             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4812           }
4813         } else
4814           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4815       }
4816       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4817       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4818       if (MaskFirst)
4819         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4820                            Mask);
4821       else
4822         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4823                            Mask);
4824     }
4825   }
4826 
4827   SDValue IndexNodes[SystemZ::VectorBytes];
4828   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4829     if (Bytes[I] >= 0)
4830       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4831     else
4832       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4833   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4834   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4835                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4836 }
4837 
4838 namespace {
4839 // Describes a general N-operand vector shuffle.
4840 struct GeneralShuffle {
4841   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4842   void addUndef();
4843   bool add(SDValue, unsigned);
4844   SDValue getNode(SelectionDAG &, const SDLoc &);
4845   void tryPrepareForUnpack();
4846   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4847   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4848 
4849   // The operands of the shuffle.
4850   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4851 
4852   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4853   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4854   // Bytes[I] / SystemZ::VectorBytes.
4855   SmallVector<int, SystemZ::VectorBytes> Bytes;
4856 
4857   // The type of the shuffle result.
4858   EVT VT;
4859 
4860   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4861   unsigned UnpackFromEltSize;
4862 };
4863 }
4864 
4865 // Add an extra undefined element to the shuffle.
4866 void GeneralShuffle::addUndef() {
4867   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4868   for (unsigned I = 0; I < BytesPerElement; ++I)
4869     Bytes.push_back(-1);
4870 }
4871 
4872 // Add an extra element to the shuffle, taking it from element Elem of Op.
4873 // A null Op indicates a vector input whose value will be calculated later;
4874 // there is at most one such input per shuffle and it always has the same
4875 // type as the result. Aborts and returns false if the source vector elements
4876 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4877 // LLVM they become implicitly extended, but this is rare and not optimized.
4878 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4879   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4880 
4881   // The source vector can have wider elements than the result,
4882   // either through an explicit TRUNCATE or because of type legalization.
4883   // We want the least significant part.
4884   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4885   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4886 
4887   // Return false if the source elements are smaller than their destination
4888   // elements.
4889   if (FromBytesPerElement < BytesPerElement)
4890     return false;
4891 
4892   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4893                    (FromBytesPerElement - BytesPerElement));
4894 
4895   // Look through things like shuffles and bitcasts.
4896   while (Op.getNode()) {
4897     if (Op.getOpcode() == ISD::BITCAST)
4898       Op = Op.getOperand(0);
4899     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4900       // See whether the bytes we need come from a contiguous part of one
4901       // operand.
4902       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4903       if (!getVPermMask(Op, OpBytes))
4904         break;
4905       int NewByte;
4906       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4907         break;
4908       if (NewByte < 0) {
4909         addUndef();
4910         return true;
4911       }
4912       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4913       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4914     } else if (Op.isUndef()) {
4915       addUndef();
4916       return true;
4917     } else
4918       break;
4919   }
4920 
4921   // Make sure that the source of the extraction is in Ops.
4922   unsigned OpNo = 0;
4923   for (; OpNo < Ops.size(); ++OpNo)
4924     if (Ops[OpNo] == Op)
4925       break;
4926   if (OpNo == Ops.size())
4927     Ops.push_back(Op);
4928 
4929   // Add the element to Bytes.
4930   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4931   for (unsigned I = 0; I < BytesPerElement; ++I)
4932     Bytes.push_back(Base + I);
4933 
4934   return true;
4935 }
4936 
4937 // Return SDNodes for the completed shuffle.
4938 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4939   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4940 
4941   if (Ops.size() == 0)
4942     return DAG.getUNDEF(VT);
4943 
4944   // Use a single unpack if possible as the last operation.
4945   tryPrepareForUnpack();
4946 
4947   // Make sure that there are at least two shuffle operands.
4948   if (Ops.size() == 1)
4949     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4950 
4951   // Create a tree of shuffles, deferring root node until after the loop.
4952   // Try to redistribute the undefined elements of non-root nodes so that
4953   // the non-root shuffles match something like a pack or merge, then adjust
4954   // the parent node's permute vector to compensate for the new order.
4955   // Among other things, this copes with vectors like <2 x i16> that were
4956   // padded with undefined elements during type legalization.
4957   //
4958   // In the best case this redistribution will lead to the whole tree
4959   // using packs and merges.  It should rarely be a loss in other cases.
4960   unsigned Stride = 1;
4961   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4962     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4963       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4964 
4965       // Create a mask for just these two operands.
4966       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4967       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4968         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4969         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4970         if (OpNo == I)
4971           NewBytes[J] = Byte;
4972         else if (OpNo == I + Stride)
4973           NewBytes[J] = SystemZ::VectorBytes + Byte;
4974         else
4975           NewBytes[J] = -1;
4976       }
4977       // See if it would be better to reorganize NewMask to avoid using VPERM.
4978       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4979       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4980         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4981         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4982         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4983           if (NewBytes[J] >= 0) {
4984             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4985                    "Invalid double permute");
4986             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4987           } else
4988             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4989         }
4990       } else {
4991         // Just use NewBytes on the operands.
4992         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4993         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4994           if (NewBytes[J] >= 0)
4995             Bytes[J] = I * SystemZ::VectorBytes + J;
4996       }
4997     }
4998   }
4999 
5000   // Now we just have 2 inputs.  Put the second operand in Ops[1].
5001   if (Stride > 1) {
5002     Ops[1] = Ops[Stride];
5003     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5004       if (Bytes[I] >= int(SystemZ::VectorBytes))
5005         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
5006   }
5007 
5008   // Look for an instruction that can do the permute without resorting
5009   // to VPERM.
5010   unsigned OpNo0, OpNo1;
5011   SDValue Op;
5012   if (unpackWasPrepared() && Ops[1].isUndef())
5013     Op = Ops[0];
5014   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
5015     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
5016   else
5017     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
5018 
5019   Op = insertUnpackIfPrepared(DAG, DL, Op);
5020 
5021   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5022 }
5023 
5024 #ifndef NDEBUG
5025 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
5026   dbgs() << Msg.c_str() << " { ";
5027   for (unsigned i = 0; i < Bytes.size(); i++)
5028     dbgs() << Bytes[i] << " ";
5029   dbgs() << "}\n";
5030 }
5031 #endif
5032 
5033 // If the Bytes vector matches an unpack operation, prepare to do the unpack
5034 // after all else by removing the zero vector and the effect of the unpack on
5035 // Bytes.
5036 void GeneralShuffle::tryPrepareForUnpack() {
5037   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
5038   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
5039     return;
5040 
5041   // Only do this if removing the zero vector reduces the depth, otherwise
5042   // the critical path will increase with the final unpack.
5043   if (Ops.size() > 2 &&
5044       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
5045     return;
5046 
5047   // Find an unpack that would allow removing the zero vector from Ops.
5048   UnpackFromEltSize = 1;
5049   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
5050     bool MatchUnpack = true;
5051     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
5052     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
5053       unsigned ToEltSize = UnpackFromEltSize * 2;
5054       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
5055       if (!IsZextByte)
5056         SrcBytes.push_back(Bytes[Elt]);
5057       if (Bytes[Elt] != -1) {
5058         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
5059         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
5060           MatchUnpack = false;
5061           break;
5062         }
5063       }
5064     }
5065     if (MatchUnpack) {
5066       if (Ops.size() == 2) {
5067         // Don't use unpack if a single source operand needs rearrangement.
5068         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
5069           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
5070             UnpackFromEltSize = UINT_MAX;
5071             return;
5072           }
5073       }
5074       break;
5075     }
5076   }
5077   if (UnpackFromEltSize > 4)
5078     return;
5079 
5080   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
5081              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
5082              << ".\n";
5083              dumpBytes(Bytes, "Original Bytes vector:"););
5084 
5085   // Apply the unpack in reverse to the Bytes array.
5086   unsigned B = 0;
5087   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
5088     Elt += UnpackFromEltSize;
5089     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
5090       Bytes[B] = Bytes[Elt];
5091   }
5092   while (B < SystemZ::VectorBytes)
5093     Bytes[B++] = -1;
5094 
5095   // Remove the zero vector from Ops
5096   Ops.erase(&Ops[ZeroVecOpNo]);
5097   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5098     if (Bytes[I] >= 0) {
5099       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5100       if (OpNo > ZeroVecOpNo)
5101         Bytes[I] -= SystemZ::VectorBytes;
5102     }
5103 
5104   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
5105              dbgs() << "\n";);
5106 }
5107 
5108 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
5109                                                const SDLoc &DL,
5110                                                SDValue Op) {
5111   if (!unpackWasPrepared())
5112     return Op;
5113   unsigned InBits = UnpackFromEltSize * 8;
5114   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
5115                                 SystemZ::VectorBits / InBits);
5116   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
5117   unsigned OutBits = InBits * 2;
5118   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
5119                                SystemZ::VectorBits / OutBits);
5120   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
5121 }
5122 
5123 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
5124 static bool isScalarToVector(SDValue Op) {
5125   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
5126     if (!Op.getOperand(I).isUndef())
5127       return false;
5128   return true;
5129 }
5130 
5131 // Return a vector of type VT that contains Value in the first element.
5132 // The other elements don't matter.
5133 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5134                                    SDValue Value) {
5135   // If we have a constant, replicate it to all elements and let the
5136   // BUILD_VECTOR lowering take care of it.
5137   if (Value.getOpcode() == ISD::Constant ||
5138       Value.getOpcode() == ISD::ConstantFP) {
5139     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
5140     return DAG.getBuildVector(VT, DL, Ops);
5141   }
5142   if (Value.isUndef())
5143     return DAG.getUNDEF(VT);
5144   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
5145 }
5146 
5147 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
5148 // element 1.  Used for cases in which replication is cheap.
5149 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5150                                  SDValue Op0, SDValue Op1) {
5151   if (Op0.isUndef()) {
5152     if (Op1.isUndef())
5153       return DAG.getUNDEF(VT);
5154     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5155   }
5156   if (Op1.isUndef())
5157     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5158   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5159                      buildScalarToVector(DAG, DL, VT, Op0),
5160                      buildScalarToVector(DAG, DL, VT, Op1));
5161 }
5162 
5163 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5164 // vector for them.
5165 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5166                           SDValue Op1) {
5167   if (Op0.isUndef() && Op1.isUndef())
5168     return DAG.getUNDEF(MVT::v2i64);
5169   // If one of the two inputs is undefined then replicate the other one,
5170   // in order to avoid using another register unnecessarily.
5171   if (Op0.isUndef())
5172     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5173   else if (Op1.isUndef())
5174     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5175   else {
5176     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5177     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5178   }
5179   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5180 }
5181 
5182 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
5183 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
5184 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
5185 // would benefit from this representation and return it if so.
5186 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
5187                                      BuildVectorSDNode *BVN) {
5188   EVT VT = BVN->getValueType(0);
5189   unsigned NumElements = VT.getVectorNumElements();
5190 
5191   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
5192   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
5193   // need a BUILD_VECTOR, add an additional placeholder operand for that
5194   // BUILD_VECTOR and store its operands in ResidueOps.
5195   GeneralShuffle GS(VT);
5196   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
5197   bool FoundOne = false;
5198   for (unsigned I = 0; I < NumElements; ++I) {
5199     SDValue Op = BVN->getOperand(I);
5200     if (Op.getOpcode() == ISD::TRUNCATE)
5201       Op = Op.getOperand(0);
5202     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5203         Op.getOperand(1).getOpcode() == ISD::Constant) {
5204       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5205       if (!GS.add(Op.getOperand(0), Elem))
5206         return SDValue();
5207       FoundOne = true;
5208     } else if (Op.isUndef()) {
5209       GS.addUndef();
5210     } else {
5211       if (!GS.add(SDValue(), ResidueOps.size()))
5212         return SDValue();
5213       ResidueOps.push_back(BVN->getOperand(I));
5214     }
5215   }
5216 
5217   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5218   if (!FoundOne)
5219     return SDValue();
5220 
5221   // Create the BUILD_VECTOR for the remaining elements, if any.
5222   if (!ResidueOps.empty()) {
5223     while (ResidueOps.size() < NumElements)
5224       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5225     for (auto &Op : GS.Ops) {
5226       if (!Op.getNode()) {
5227         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5228         break;
5229       }
5230     }
5231   }
5232   return GS.getNode(DAG, SDLoc(BVN));
5233 }
5234 
5235 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5236   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5237     return true;
5238   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5239     return true;
5240   return false;
5241 }
5242 
5243 // Combine GPR scalar values Elems into a vector of type VT.
5244 SDValue
5245 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5246                                    SmallVectorImpl<SDValue> &Elems) const {
5247   // See whether there is a single replicated value.
5248   SDValue Single;
5249   unsigned int NumElements = Elems.size();
5250   unsigned int Count = 0;
5251   for (auto Elem : Elems) {
5252     if (!Elem.isUndef()) {
5253       if (!Single.getNode())
5254         Single = Elem;
5255       else if (Elem != Single) {
5256         Single = SDValue();
5257         break;
5258       }
5259       Count += 1;
5260     }
5261   }
5262   // There are three cases here:
5263   //
5264   // - if the only defined element is a loaded one, the best sequence
5265   //   is a replicating load.
5266   //
5267   // - otherwise, if the only defined element is an i64 value, we will
5268   //   end up with the same VLVGP sequence regardless of whether we short-cut
5269   //   for replication or fall through to the later code.
5270   //
5271   // - otherwise, if the only defined element is an i32 or smaller value,
5272   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5273   //   This is only a win if the single defined element is used more than once.
5274   //   In other cases we're better off using a single VLVGx.
5275   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5276     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5277 
5278   // If all elements are loads, use VLREP/VLEs (below).
5279   bool AllLoads = true;
5280   for (auto Elem : Elems)
5281     if (!isVectorElementLoad(Elem)) {
5282       AllLoads = false;
5283       break;
5284     }
5285 
5286   // The best way of building a v2i64 from two i64s is to use VLVGP.
5287   if (VT == MVT::v2i64 && !AllLoads)
5288     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5289 
5290   // Use a 64-bit merge high to combine two doubles.
5291   if (VT == MVT::v2f64 && !AllLoads)
5292     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5293 
5294   // Build v4f32 values directly from the FPRs:
5295   //
5296   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5297   //         V              V         VMRHF
5298   //      <ABxx>         <CDxx>
5299   //                V                 VMRHG
5300   //              <ABCD>
5301   if (VT == MVT::v4f32 && !AllLoads) {
5302     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5303     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5304     // Avoid unnecessary undefs by reusing the other operand.
5305     if (Op01.isUndef())
5306       Op01 = Op23;
5307     else if (Op23.isUndef())
5308       Op23 = Op01;
5309     // Merging identical replications is a no-op.
5310     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5311       return Op01;
5312     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5313     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5314     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5315                              DL, MVT::v2i64, Op01, Op23);
5316     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5317   }
5318 
5319   // Collect the constant terms.
5320   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5321   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5322 
5323   unsigned NumConstants = 0;
5324   for (unsigned I = 0; I < NumElements; ++I) {
5325     SDValue Elem = Elems[I];
5326     if (Elem.getOpcode() == ISD::Constant ||
5327         Elem.getOpcode() == ISD::ConstantFP) {
5328       NumConstants += 1;
5329       Constants[I] = Elem;
5330       Done[I] = true;
5331     }
5332   }
5333   // If there was at least one constant, fill in the other elements of
5334   // Constants with undefs to get a full vector constant and use that
5335   // as the starting point.
5336   SDValue Result;
5337   SDValue ReplicatedVal;
5338   if (NumConstants > 0) {
5339     for (unsigned I = 0; I < NumElements; ++I)
5340       if (!Constants[I].getNode())
5341         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5342     Result = DAG.getBuildVector(VT, DL, Constants);
5343   } else {
5344     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5345     // avoid a false dependency on any previous contents of the vector
5346     // register.
5347 
5348     // Use a VLREP if at least one element is a load. Make sure to replicate
5349     // the load with the most elements having its value.
5350     std::map<const SDNode*, unsigned> UseCounts;
5351     SDNode *LoadMaxUses = nullptr;
5352     for (unsigned I = 0; I < NumElements; ++I)
5353       if (isVectorElementLoad(Elems[I])) {
5354         SDNode *Ld = Elems[I].getNode();
5355         UseCounts[Ld]++;
5356         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5357           LoadMaxUses = Ld;
5358       }
5359     if (LoadMaxUses != nullptr) {
5360       ReplicatedVal = SDValue(LoadMaxUses, 0);
5361       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5362     } else {
5363       // Try to use VLVGP.
5364       unsigned I1 = NumElements / 2 - 1;
5365       unsigned I2 = NumElements - 1;
5366       bool Def1 = !Elems[I1].isUndef();
5367       bool Def2 = !Elems[I2].isUndef();
5368       if (Def1 || Def2) {
5369         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5370         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5371         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5372                              joinDwords(DAG, DL, Elem1, Elem2));
5373         Done[I1] = true;
5374         Done[I2] = true;
5375       } else
5376         Result = DAG.getUNDEF(VT);
5377     }
5378   }
5379 
5380   // Use VLVGx to insert the other elements.
5381   for (unsigned I = 0; I < NumElements; ++I)
5382     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5383       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5384                            DAG.getConstant(I, DL, MVT::i32));
5385   return Result;
5386 }
5387 
5388 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5389                                                  SelectionDAG &DAG) const {
5390   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5391   SDLoc DL(Op);
5392   EVT VT = Op.getValueType();
5393 
5394   if (BVN->isConstant()) {
5395     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5396       return Op;
5397 
5398     // Fall back to loading it from memory.
5399     return SDValue();
5400   }
5401 
5402   // See if we should use shuffles to construct the vector from other vectors.
5403   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5404     return Res;
5405 
5406   // Detect SCALAR_TO_VECTOR conversions.
5407   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5408     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5409 
5410   // Otherwise use buildVector to build the vector up from GPRs.
5411   unsigned NumElements = Op.getNumOperands();
5412   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5413   for (unsigned I = 0; I < NumElements; ++I)
5414     Ops[I] = Op.getOperand(I);
5415   return buildVector(DAG, DL, VT, Ops);
5416 }
5417 
5418 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5419                                                    SelectionDAG &DAG) const {
5420   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5421   SDLoc DL(Op);
5422   EVT VT = Op.getValueType();
5423   unsigned NumElements = VT.getVectorNumElements();
5424 
5425   if (VSN->isSplat()) {
5426     SDValue Op0 = Op.getOperand(0);
5427     unsigned Index = VSN->getSplatIndex();
5428     assert(Index < VT.getVectorNumElements() &&
5429            "Splat index should be defined and in first operand");
5430     // See whether the value we're splatting is directly available as a scalar.
5431     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5432         Op0.getOpcode() == ISD::BUILD_VECTOR)
5433       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5434     // Otherwise keep it as a vector-to-vector operation.
5435     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5436                        DAG.getTargetConstant(Index, DL, MVT::i32));
5437   }
5438 
5439   GeneralShuffle GS(VT);
5440   for (unsigned I = 0; I < NumElements; ++I) {
5441     int Elt = VSN->getMaskElt(I);
5442     if (Elt < 0)
5443       GS.addUndef();
5444     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5445                      unsigned(Elt) % NumElements))
5446       return SDValue();
5447   }
5448   return GS.getNode(DAG, SDLoc(VSN));
5449 }
5450 
5451 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5452                                                      SelectionDAG &DAG) const {
5453   SDLoc DL(Op);
5454   // Just insert the scalar into element 0 of an undefined vector.
5455   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5456                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5457                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5458 }
5459 
5460 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5461                                                       SelectionDAG &DAG) const {
5462   // Handle insertions of floating-point values.
5463   SDLoc DL(Op);
5464   SDValue Op0 = Op.getOperand(0);
5465   SDValue Op1 = Op.getOperand(1);
5466   SDValue Op2 = Op.getOperand(2);
5467   EVT VT = Op.getValueType();
5468 
5469   // Insertions into constant indices of a v2f64 can be done using VPDI.
5470   // However, if the inserted value is a bitcast or a constant then it's
5471   // better to use GPRs, as below.
5472   if (VT == MVT::v2f64 &&
5473       Op1.getOpcode() != ISD::BITCAST &&
5474       Op1.getOpcode() != ISD::ConstantFP &&
5475       Op2.getOpcode() == ISD::Constant) {
5476     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5477     unsigned Mask = VT.getVectorNumElements() - 1;
5478     if (Index <= Mask)
5479       return Op;
5480   }
5481 
5482   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5483   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5484   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5485   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5486                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5487                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5488   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5489 }
5490 
5491 SDValue
5492 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5493                                                SelectionDAG &DAG) const {
5494   // Handle extractions of floating-point values.
5495   SDLoc DL(Op);
5496   SDValue Op0 = Op.getOperand(0);
5497   SDValue Op1 = Op.getOperand(1);
5498   EVT VT = Op.getValueType();
5499   EVT VecVT = Op0.getValueType();
5500 
5501   // Extractions of constant indices can be done directly.
5502   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5503     uint64_t Index = CIndexN->getZExtValue();
5504     unsigned Mask = VecVT.getVectorNumElements() - 1;
5505     if (Index <= Mask)
5506       return Op;
5507   }
5508 
5509   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5510   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5511   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5512   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5513                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5514   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5515 }
5516 
5517 SDValue SystemZTargetLowering::
5518 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5519   SDValue PackedOp = Op.getOperand(0);
5520   EVT OutVT = Op.getValueType();
5521   EVT InVT = PackedOp.getValueType();
5522   unsigned ToBits = OutVT.getScalarSizeInBits();
5523   unsigned FromBits = InVT.getScalarSizeInBits();
5524   do {
5525     FromBits *= 2;
5526     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5527                                  SystemZ::VectorBits / FromBits);
5528     PackedOp =
5529       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5530   } while (FromBits != ToBits);
5531   return PackedOp;
5532 }
5533 
5534 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5535 SDValue SystemZTargetLowering::
5536 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5537   SDValue PackedOp = Op.getOperand(0);
5538   SDLoc DL(Op);
5539   EVT OutVT = Op.getValueType();
5540   EVT InVT = PackedOp.getValueType();
5541   unsigned InNumElts = InVT.getVectorNumElements();
5542   unsigned OutNumElts = OutVT.getVectorNumElements();
5543   unsigned NumInPerOut = InNumElts / OutNumElts;
5544 
5545   SDValue ZeroVec =
5546     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5547 
5548   SmallVector<int, 16> Mask(InNumElts);
5549   unsigned ZeroVecElt = InNumElts;
5550   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5551     unsigned MaskElt = PackedElt * NumInPerOut;
5552     unsigned End = MaskElt + NumInPerOut - 1;
5553     for (; MaskElt < End; MaskElt++)
5554       Mask[MaskElt] = ZeroVecElt++;
5555     Mask[MaskElt] = PackedElt;
5556   }
5557   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5558   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5559 }
5560 
5561 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5562                                           unsigned ByScalar) const {
5563   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5564   SDValue Op0 = Op.getOperand(0);
5565   SDValue Op1 = Op.getOperand(1);
5566   SDLoc DL(Op);
5567   EVT VT = Op.getValueType();
5568   unsigned ElemBitSize = VT.getScalarSizeInBits();
5569 
5570   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5571   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5572     APInt SplatBits, SplatUndef;
5573     unsigned SplatBitSize;
5574     bool HasAnyUndefs;
5575     // Check for constant splats.  Use ElemBitSize as the minimum element
5576     // width and reject splats that need wider elements.
5577     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5578                              ElemBitSize, true) &&
5579         SplatBitSize == ElemBitSize) {
5580       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5581                                       DL, MVT::i32);
5582       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5583     }
5584     // Check for variable splats.
5585     BitVector UndefElements;
5586     SDValue Splat = BVN->getSplatValue(&UndefElements);
5587     if (Splat) {
5588       // Since i32 is the smallest legal type, we either need a no-op
5589       // or a truncation.
5590       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5591       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5592     }
5593   }
5594 
5595   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5596   // and the shift amount is directly available in a GPR.
5597   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5598     if (VSN->isSplat()) {
5599       SDValue VSNOp0 = VSN->getOperand(0);
5600       unsigned Index = VSN->getSplatIndex();
5601       assert(Index < VT.getVectorNumElements() &&
5602              "Splat index should be defined and in first operand");
5603       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5604           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5605         // Since i32 is the smallest legal type, we either need a no-op
5606         // or a truncation.
5607         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5608                                     VSNOp0.getOperand(Index));
5609         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5610       }
5611     }
5612   }
5613 
5614   // Otherwise just treat the current form as legal.
5615   return Op;
5616 }
5617 
5618 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5619                                               SelectionDAG &DAG) const {
5620   switch (Op.getOpcode()) {
5621   case ISD::FRAMEADDR:
5622     return lowerFRAMEADDR(Op, DAG);
5623   case ISD::RETURNADDR:
5624     return lowerRETURNADDR(Op, DAG);
5625   case ISD::BR_CC:
5626     return lowerBR_CC(Op, DAG);
5627   case ISD::SELECT_CC:
5628     return lowerSELECT_CC(Op, DAG);
5629   case ISD::SETCC:
5630     return lowerSETCC(Op, DAG);
5631   case ISD::STRICT_FSETCC:
5632     return lowerSTRICT_FSETCC(Op, DAG, false);
5633   case ISD::STRICT_FSETCCS:
5634     return lowerSTRICT_FSETCC(Op, DAG, true);
5635   case ISD::GlobalAddress:
5636     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5637   case ISD::GlobalTLSAddress:
5638     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5639   case ISD::BlockAddress:
5640     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5641   case ISD::JumpTable:
5642     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5643   case ISD::ConstantPool:
5644     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5645   case ISD::BITCAST:
5646     return lowerBITCAST(Op, DAG);
5647   case ISD::VASTART:
5648     return lowerVASTART(Op, DAG);
5649   case ISD::VACOPY:
5650     return lowerVACOPY(Op, DAG);
5651   case ISD::DYNAMIC_STACKALLOC:
5652     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5653   case ISD::GET_DYNAMIC_AREA_OFFSET:
5654     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5655   case ISD::SMUL_LOHI:
5656     return lowerSMUL_LOHI(Op, DAG);
5657   case ISD::UMUL_LOHI:
5658     return lowerUMUL_LOHI(Op, DAG);
5659   case ISD::SDIVREM:
5660     return lowerSDIVREM(Op, DAG);
5661   case ISD::UDIVREM:
5662     return lowerUDIVREM(Op, DAG);
5663   case ISD::SADDO:
5664   case ISD::SSUBO:
5665   case ISD::UADDO:
5666   case ISD::USUBO:
5667     return lowerXALUO(Op, DAG);
5668   case ISD::ADDCARRY:
5669   case ISD::SUBCARRY:
5670     return lowerADDSUBCARRY(Op, DAG);
5671   case ISD::OR:
5672     return lowerOR(Op, DAG);
5673   case ISD::CTPOP:
5674     return lowerCTPOP(Op, DAG);
5675   case ISD::ATOMIC_FENCE:
5676     return lowerATOMIC_FENCE(Op, DAG);
5677   case ISD::ATOMIC_SWAP:
5678     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5679   case ISD::ATOMIC_STORE:
5680     return lowerATOMIC_STORE(Op, DAG);
5681   case ISD::ATOMIC_LOAD:
5682     return lowerATOMIC_LOAD(Op, DAG);
5683   case ISD::ATOMIC_LOAD_ADD:
5684     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5685   case ISD::ATOMIC_LOAD_SUB:
5686     return lowerATOMIC_LOAD_SUB(Op, DAG);
5687   case ISD::ATOMIC_LOAD_AND:
5688     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5689   case ISD::ATOMIC_LOAD_OR:
5690     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5691   case ISD::ATOMIC_LOAD_XOR:
5692     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5693   case ISD::ATOMIC_LOAD_NAND:
5694     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5695   case ISD::ATOMIC_LOAD_MIN:
5696     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5697   case ISD::ATOMIC_LOAD_MAX:
5698     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5699   case ISD::ATOMIC_LOAD_UMIN:
5700     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5701   case ISD::ATOMIC_LOAD_UMAX:
5702     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5703   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5704     return lowerATOMIC_CMP_SWAP(Op, DAG);
5705   case ISD::STACKSAVE:
5706     return lowerSTACKSAVE(Op, DAG);
5707   case ISD::STACKRESTORE:
5708     return lowerSTACKRESTORE(Op, DAG);
5709   case ISD::PREFETCH:
5710     return lowerPREFETCH(Op, DAG);
5711   case ISD::INTRINSIC_W_CHAIN:
5712     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5713   case ISD::INTRINSIC_WO_CHAIN:
5714     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5715   case ISD::BUILD_VECTOR:
5716     return lowerBUILD_VECTOR(Op, DAG);
5717   case ISD::VECTOR_SHUFFLE:
5718     return lowerVECTOR_SHUFFLE(Op, DAG);
5719   case ISD::SCALAR_TO_VECTOR:
5720     return lowerSCALAR_TO_VECTOR(Op, DAG);
5721   case ISD::INSERT_VECTOR_ELT:
5722     return lowerINSERT_VECTOR_ELT(Op, DAG);
5723   case ISD::EXTRACT_VECTOR_ELT:
5724     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5725   case ISD::SIGN_EXTEND_VECTOR_INREG:
5726     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5727   case ISD::ZERO_EXTEND_VECTOR_INREG:
5728     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5729   case ISD::SHL:
5730     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5731   case ISD::SRL:
5732     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5733   case ISD::SRA:
5734     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5735   default:
5736     llvm_unreachable("Unexpected node to lower");
5737   }
5738 }
5739 
5740 // Lower operations with invalid operand or result types (currently used
5741 // only for 128-bit integer types).
5742 void
5743 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5744                                              SmallVectorImpl<SDValue> &Results,
5745                                              SelectionDAG &DAG) const {
5746   switch (N->getOpcode()) {
5747   case ISD::ATOMIC_LOAD: {
5748     SDLoc DL(N);
5749     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5750     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5751     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5752     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5753                                           DL, Tys, Ops, MVT::i128, MMO);
5754     Results.push_back(lowerGR128ToI128(DAG, Res));
5755     Results.push_back(Res.getValue(1));
5756     break;
5757   }
5758   case ISD::ATOMIC_STORE: {
5759     SDLoc DL(N);
5760     SDVTList Tys = DAG.getVTList(MVT::Other);
5761     SDValue Ops[] = { N->getOperand(0),
5762                       lowerI128ToGR128(DAG, N->getOperand(2)),
5763                       N->getOperand(1) };
5764     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5765     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5766                                           DL, Tys, Ops, MVT::i128, MMO);
5767     // We have to enforce sequential consistency by performing a
5768     // serialization operation after the store.
5769     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
5770         AtomicOrdering::SequentiallyConsistent)
5771       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5772                                        MVT::Other, Res), 0);
5773     Results.push_back(Res);
5774     break;
5775   }
5776   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5777     SDLoc DL(N);
5778     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5779     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5780                       lowerI128ToGR128(DAG, N->getOperand(2)),
5781                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5782     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5783     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5784                                           DL, Tys, Ops, MVT::i128, MMO);
5785     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5786                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5787     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5788     Results.push_back(lowerGR128ToI128(DAG, Res));
5789     Results.push_back(Success);
5790     Results.push_back(Res.getValue(2));
5791     break;
5792   }
5793   case ISD::BITCAST: {
5794     SDValue Src = N->getOperand(0);
5795     if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
5796         !useSoftFloat()) {
5797       SDLoc DL(N);
5798       SDValue Lo, Hi;
5799       if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) {
5800         SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src);
5801         Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5802                          DAG.getConstant(1, DL, MVT::i32));
5803         Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5804                          DAG.getConstant(0, DL, MVT::i32));
5805       } else {
5806         assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass &&
5807                "Unrecognized register class for f128.");
5808         SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5809                                                   DL, MVT::f64, Src);
5810         SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5811                                                   DL, MVT::f64, Src);
5812         Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP);
5813         Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP);
5814       }
5815       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi));
5816     }
5817     break;
5818   }
5819   default:
5820     llvm_unreachable("Unexpected node to lower");
5821   }
5822 }
5823 
5824 void
5825 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5826                                           SmallVectorImpl<SDValue> &Results,
5827                                           SelectionDAG &DAG) const {
5828   return LowerOperationWrapper(N, Results, DAG);
5829 }
5830 
5831 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5832 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5833   switch ((SystemZISD::NodeType)Opcode) {
5834     case SystemZISD::FIRST_NUMBER: break;
5835     OPCODE(RET_FLAG);
5836     OPCODE(CALL);
5837     OPCODE(SIBCALL);
5838     OPCODE(TLS_GDCALL);
5839     OPCODE(TLS_LDCALL);
5840     OPCODE(PCREL_WRAPPER);
5841     OPCODE(PCREL_OFFSET);
5842     OPCODE(ICMP);
5843     OPCODE(FCMP);
5844     OPCODE(STRICT_FCMP);
5845     OPCODE(STRICT_FCMPS);
5846     OPCODE(TM);
5847     OPCODE(BR_CCMASK);
5848     OPCODE(SELECT_CCMASK);
5849     OPCODE(ADJDYNALLOC);
5850     OPCODE(PROBED_ALLOCA);
5851     OPCODE(POPCNT);
5852     OPCODE(SMUL_LOHI);
5853     OPCODE(UMUL_LOHI);
5854     OPCODE(SDIVREM);
5855     OPCODE(UDIVREM);
5856     OPCODE(SADDO);
5857     OPCODE(SSUBO);
5858     OPCODE(UADDO);
5859     OPCODE(USUBO);
5860     OPCODE(ADDCARRY);
5861     OPCODE(SUBCARRY);
5862     OPCODE(GET_CCMASK);
5863     OPCODE(MVC);
5864     OPCODE(NC);
5865     OPCODE(OC);
5866     OPCODE(XC);
5867     OPCODE(CLC);
5868     OPCODE(MEMSET_MVC);
5869     OPCODE(STPCPY);
5870     OPCODE(STRCMP);
5871     OPCODE(SEARCH_STRING);
5872     OPCODE(IPM);
5873     OPCODE(MEMBARRIER);
5874     OPCODE(TBEGIN);
5875     OPCODE(TBEGIN_NOFLOAT);
5876     OPCODE(TEND);
5877     OPCODE(BYTE_MASK);
5878     OPCODE(ROTATE_MASK);
5879     OPCODE(REPLICATE);
5880     OPCODE(JOIN_DWORDS);
5881     OPCODE(SPLAT);
5882     OPCODE(MERGE_HIGH);
5883     OPCODE(MERGE_LOW);
5884     OPCODE(SHL_DOUBLE);
5885     OPCODE(PERMUTE_DWORDS);
5886     OPCODE(PERMUTE);
5887     OPCODE(PACK);
5888     OPCODE(PACKS_CC);
5889     OPCODE(PACKLS_CC);
5890     OPCODE(UNPACK_HIGH);
5891     OPCODE(UNPACKL_HIGH);
5892     OPCODE(UNPACK_LOW);
5893     OPCODE(UNPACKL_LOW);
5894     OPCODE(VSHL_BY_SCALAR);
5895     OPCODE(VSRL_BY_SCALAR);
5896     OPCODE(VSRA_BY_SCALAR);
5897     OPCODE(VSUM);
5898     OPCODE(VICMPE);
5899     OPCODE(VICMPH);
5900     OPCODE(VICMPHL);
5901     OPCODE(VICMPES);
5902     OPCODE(VICMPHS);
5903     OPCODE(VICMPHLS);
5904     OPCODE(VFCMPE);
5905     OPCODE(STRICT_VFCMPE);
5906     OPCODE(STRICT_VFCMPES);
5907     OPCODE(VFCMPH);
5908     OPCODE(STRICT_VFCMPH);
5909     OPCODE(STRICT_VFCMPHS);
5910     OPCODE(VFCMPHE);
5911     OPCODE(STRICT_VFCMPHE);
5912     OPCODE(STRICT_VFCMPHES);
5913     OPCODE(VFCMPES);
5914     OPCODE(VFCMPHS);
5915     OPCODE(VFCMPHES);
5916     OPCODE(VFTCI);
5917     OPCODE(VEXTEND);
5918     OPCODE(STRICT_VEXTEND);
5919     OPCODE(VROUND);
5920     OPCODE(STRICT_VROUND);
5921     OPCODE(VTM);
5922     OPCODE(VFAE_CC);
5923     OPCODE(VFAEZ_CC);
5924     OPCODE(VFEE_CC);
5925     OPCODE(VFEEZ_CC);
5926     OPCODE(VFENE_CC);
5927     OPCODE(VFENEZ_CC);
5928     OPCODE(VISTR_CC);
5929     OPCODE(VSTRC_CC);
5930     OPCODE(VSTRCZ_CC);
5931     OPCODE(VSTRS_CC);
5932     OPCODE(VSTRSZ_CC);
5933     OPCODE(TDC);
5934     OPCODE(ATOMIC_SWAPW);
5935     OPCODE(ATOMIC_LOADW_ADD);
5936     OPCODE(ATOMIC_LOADW_SUB);
5937     OPCODE(ATOMIC_LOADW_AND);
5938     OPCODE(ATOMIC_LOADW_OR);
5939     OPCODE(ATOMIC_LOADW_XOR);
5940     OPCODE(ATOMIC_LOADW_NAND);
5941     OPCODE(ATOMIC_LOADW_MIN);
5942     OPCODE(ATOMIC_LOADW_MAX);
5943     OPCODE(ATOMIC_LOADW_UMIN);
5944     OPCODE(ATOMIC_LOADW_UMAX);
5945     OPCODE(ATOMIC_CMP_SWAPW);
5946     OPCODE(ATOMIC_CMP_SWAP);
5947     OPCODE(ATOMIC_LOAD_128);
5948     OPCODE(ATOMIC_STORE_128);
5949     OPCODE(ATOMIC_CMP_SWAP_128);
5950     OPCODE(LRV);
5951     OPCODE(STRV);
5952     OPCODE(VLER);
5953     OPCODE(VSTER);
5954     OPCODE(PREFETCH);
5955   }
5956   return nullptr;
5957 #undef OPCODE
5958 }
5959 
5960 // Return true if VT is a vector whose elements are a whole number of bytes
5961 // in width. Also check for presence of vector support.
5962 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5963   if (!Subtarget.hasVector())
5964     return false;
5965 
5966   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5967 }
5968 
5969 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5970 // producing a result of type ResVT.  Op is a possibly bitcast version
5971 // of the input vector and Index is the index (based on type VecVT) that
5972 // should be extracted.  Return the new extraction if a simplification
5973 // was possible or if Force is true.
5974 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5975                                               EVT VecVT, SDValue Op,
5976                                               unsigned Index,
5977                                               DAGCombinerInfo &DCI,
5978                                               bool Force) const {
5979   SelectionDAG &DAG = DCI.DAG;
5980 
5981   // The number of bytes being extracted.
5982   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5983 
5984   for (;;) {
5985     unsigned Opcode = Op.getOpcode();
5986     if (Opcode == ISD::BITCAST)
5987       // Look through bitcasts.
5988       Op = Op.getOperand(0);
5989     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5990              canTreatAsByteVector(Op.getValueType())) {
5991       // Get a VPERM-like permute mask and see whether the bytes covered
5992       // by the extracted element are a contiguous sequence from one
5993       // source operand.
5994       SmallVector<int, SystemZ::VectorBytes> Bytes;
5995       if (!getVPermMask(Op, Bytes))
5996         break;
5997       int First;
5998       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5999                            BytesPerElement, First))
6000         break;
6001       if (First < 0)
6002         return DAG.getUNDEF(ResVT);
6003       // Make sure the contiguous sequence starts at a multiple of the
6004       // original element size.
6005       unsigned Byte = unsigned(First) % Bytes.size();
6006       if (Byte % BytesPerElement != 0)
6007         break;
6008       // We can get the extracted value directly from an input.
6009       Index = Byte / BytesPerElement;
6010       Op = Op.getOperand(unsigned(First) / Bytes.size());
6011       Force = true;
6012     } else if (Opcode == ISD::BUILD_VECTOR &&
6013                canTreatAsByteVector(Op.getValueType())) {
6014       // We can only optimize this case if the BUILD_VECTOR elements are
6015       // at least as wide as the extracted value.
6016       EVT OpVT = Op.getValueType();
6017       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6018       if (OpBytesPerElement < BytesPerElement)
6019         break;
6020       // Make sure that the least-significant bit of the extracted value
6021       // is the least significant bit of an input.
6022       unsigned End = (Index + 1) * BytesPerElement;
6023       if (End % OpBytesPerElement != 0)
6024         break;
6025       // We're extracting the low part of one operand of the BUILD_VECTOR.
6026       Op = Op.getOperand(End / OpBytesPerElement - 1);
6027       if (!Op.getValueType().isInteger()) {
6028         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
6029         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
6030         DCI.AddToWorklist(Op.getNode());
6031       }
6032       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
6033       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
6034       if (VT != ResVT) {
6035         DCI.AddToWorklist(Op.getNode());
6036         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
6037       }
6038       return Op;
6039     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
6040                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
6041                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
6042                canTreatAsByteVector(Op.getValueType()) &&
6043                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
6044       // Make sure that only the unextended bits are significant.
6045       EVT ExtVT = Op.getValueType();
6046       EVT OpVT = Op.getOperand(0).getValueType();
6047       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
6048       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6049       unsigned Byte = Index * BytesPerElement;
6050       unsigned SubByte = Byte % ExtBytesPerElement;
6051       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
6052       if (SubByte < MinSubByte ||
6053           SubByte + BytesPerElement > ExtBytesPerElement)
6054         break;
6055       // Get the byte offset of the unextended element
6056       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
6057       // ...then add the byte offset relative to that element.
6058       Byte += SubByte - MinSubByte;
6059       if (Byte % BytesPerElement != 0)
6060         break;
6061       Op = Op.getOperand(0);
6062       Index = Byte / BytesPerElement;
6063       Force = true;
6064     } else
6065       break;
6066   }
6067   if (Force) {
6068     if (Op.getValueType() != VecVT) {
6069       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
6070       DCI.AddToWorklist(Op.getNode());
6071     }
6072     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
6073                        DAG.getConstant(Index, DL, MVT::i32));
6074   }
6075   return SDValue();
6076 }
6077 
6078 // Optimize vector operations in scalar value Op on the basis that Op
6079 // is truncated to TruncVT.
6080 SDValue SystemZTargetLowering::combineTruncateExtract(
6081     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
6082   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
6083   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
6084   // of type TruncVT.
6085   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6086       TruncVT.getSizeInBits() % 8 == 0) {
6087     SDValue Vec = Op.getOperand(0);
6088     EVT VecVT = Vec.getValueType();
6089     if (canTreatAsByteVector(VecVT)) {
6090       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6091         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6092         unsigned TruncBytes = TruncVT.getStoreSize();
6093         if (BytesPerElement % TruncBytes == 0) {
6094           // Calculate the value of Y' in the above description.  We are
6095           // splitting the original elements into Scale equal-sized pieces
6096           // and for truncation purposes want the last (least-significant)
6097           // of these pieces for IndexN.  This is easiest to do by calculating
6098           // the start index of the following element and then subtracting 1.
6099           unsigned Scale = BytesPerElement / TruncBytes;
6100           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
6101 
6102           // Defer the creation of the bitcast from X to combineExtract,
6103           // which might be able to optimize the extraction.
6104           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
6105                                    VecVT.getStoreSize() / TruncBytes);
6106           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
6107           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
6108         }
6109       }
6110     }
6111   }
6112   return SDValue();
6113 }
6114 
6115 SDValue SystemZTargetLowering::combineZERO_EXTEND(
6116     SDNode *N, DAGCombinerInfo &DCI) const {
6117   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
6118   SelectionDAG &DAG = DCI.DAG;
6119   SDValue N0 = N->getOperand(0);
6120   EVT VT = N->getValueType(0);
6121   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
6122     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
6123     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6124     if (TrueOp && FalseOp) {
6125       SDLoc DL(N0);
6126       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
6127                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
6128                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
6129       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
6130       // If N0 has multiple uses, change other uses as well.
6131       if (!N0.hasOneUse()) {
6132         SDValue TruncSelect =
6133           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
6134         DCI.CombineTo(N0.getNode(), TruncSelect);
6135       }
6136       return NewSelect;
6137     }
6138   }
6139   return SDValue();
6140 }
6141 
6142 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
6143     SDNode *N, DAGCombinerInfo &DCI) const {
6144   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
6145   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
6146   // into (select_cc LHS, RHS, -1, 0, COND)
6147   SelectionDAG &DAG = DCI.DAG;
6148   SDValue N0 = N->getOperand(0);
6149   EVT VT = N->getValueType(0);
6150   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6151   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
6152     N0 = N0.getOperand(0);
6153   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
6154     SDLoc DL(N0);
6155     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
6156                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
6157                       N0.getOperand(2) };
6158     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
6159   }
6160   return SDValue();
6161 }
6162 
6163 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
6164     SDNode *N, DAGCombinerInfo &DCI) const {
6165   // Convert (sext (ashr (shl X, C1), C2)) to
6166   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
6167   // cheap as narrower ones.
6168   SelectionDAG &DAG = DCI.DAG;
6169   SDValue N0 = N->getOperand(0);
6170   EVT VT = N->getValueType(0);
6171   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
6172     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6173     SDValue Inner = N0.getOperand(0);
6174     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
6175       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
6176         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
6177         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
6178         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
6179         EVT ShiftVT = N0.getOperand(1).getValueType();
6180         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
6181                                   Inner.getOperand(0));
6182         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
6183                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
6184                                                   ShiftVT));
6185         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
6186                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
6187       }
6188     }
6189   }
6190   return SDValue();
6191 }
6192 
6193 SDValue SystemZTargetLowering::combineMERGE(
6194     SDNode *N, DAGCombinerInfo &DCI) const {
6195   SelectionDAG &DAG = DCI.DAG;
6196   unsigned Opcode = N->getOpcode();
6197   SDValue Op0 = N->getOperand(0);
6198   SDValue Op1 = N->getOperand(1);
6199   if (Op0.getOpcode() == ISD::BITCAST)
6200     Op0 = Op0.getOperand(0);
6201   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6202     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
6203     // for v4f32.
6204     if (Op1 == N->getOperand(0))
6205       return Op1;
6206     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6207     EVT VT = Op1.getValueType();
6208     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6209     if (ElemBytes <= 4) {
6210       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6211                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6212       EVT InVT = VT.changeVectorElementTypeToInteger();
6213       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6214                                    SystemZ::VectorBytes / ElemBytes / 2);
6215       if (VT != InVT) {
6216         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6217         DCI.AddToWorklist(Op1.getNode());
6218       }
6219       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6220       DCI.AddToWorklist(Op.getNode());
6221       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6222     }
6223   }
6224   return SDValue();
6225 }
6226 
6227 SDValue SystemZTargetLowering::combineLOAD(
6228     SDNode *N, DAGCombinerInfo &DCI) const {
6229   SelectionDAG &DAG = DCI.DAG;
6230   EVT LdVT = N->getValueType(0);
6231   if (LdVT.isVector() || LdVT.isInteger())
6232     return SDValue();
6233   // Transform a scalar load that is REPLICATEd as well as having other
6234   // use(s) to the form where the other use(s) use the first element of the
6235   // REPLICATE instead of the load. Otherwise instruction selection will not
6236   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6237   // point loads.
6238 
6239   SDValue Replicate;
6240   SmallVector<SDNode*, 8> OtherUses;
6241   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6242        UI != UE; ++UI) {
6243     if (UI->getOpcode() == SystemZISD::REPLICATE) {
6244       if (Replicate)
6245         return SDValue(); // Should never happen
6246       Replicate = SDValue(*UI, 0);
6247     }
6248     else if (UI.getUse().getResNo() == 0)
6249       OtherUses.push_back(*UI);
6250   }
6251   if (!Replicate || OtherUses.empty())
6252     return SDValue();
6253 
6254   SDLoc DL(N);
6255   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6256                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6257   // Update uses of the loaded Value while preserving old chains.
6258   for (SDNode *U : OtherUses) {
6259     SmallVector<SDValue, 8> Ops;
6260     for (SDValue Op : U->ops())
6261       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6262     DAG.UpdateNodeOperands(U, Ops);
6263   }
6264   return SDValue(N, 0);
6265 }
6266 
6267 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6268   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6269     return true;
6270   if (Subtarget.hasVectorEnhancements2())
6271     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6272       return true;
6273   return false;
6274 }
6275 
6276 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6277   if (!VT.isVector() || !VT.isSimple() ||
6278       VT.getSizeInBits() != 128 ||
6279       VT.getScalarSizeInBits() % 8 != 0)
6280     return false;
6281 
6282   unsigned NumElts = VT.getVectorNumElements();
6283   for (unsigned i = 0; i < NumElts; ++i) {
6284     if (M[i] < 0) continue; // ignore UNDEF indices
6285     if ((unsigned) M[i] != NumElts - 1 - i)
6286       return false;
6287   }
6288 
6289   return true;
6290 }
6291 
6292 SDValue SystemZTargetLowering::combineSTORE(
6293     SDNode *N, DAGCombinerInfo &DCI) const {
6294   SelectionDAG &DAG = DCI.DAG;
6295   auto *SN = cast<StoreSDNode>(N);
6296   auto &Op1 = N->getOperand(1);
6297   EVT MemVT = SN->getMemoryVT();
6298   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6299   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6300   // If X has wider elements then convert it to:
6301   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6302   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6303     if (SDValue Value =
6304             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6305       DCI.AddToWorklist(Value.getNode());
6306 
6307       // Rewrite the store with the new form of stored value.
6308       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6309                                SN->getBasePtr(), SN->getMemoryVT(),
6310                                SN->getMemOperand());
6311     }
6312   }
6313   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6314   if (!SN->isTruncatingStore() &&
6315       Op1.getOpcode() == ISD::BSWAP &&
6316       Op1.getNode()->hasOneUse() &&
6317       canLoadStoreByteSwapped(Op1.getValueType())) {
6318 
6319       SDValue BSwapOp = Op1.getOperand(0);
6320 
6321       if (BSwapOp.getValueType() == MVT::i16)
6322         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6323 
6324       SDValue Ops[] = {
6325         N->getOperand(0), BSwapOp, N->getOperand(2)
6326       };
6327 
6328       return
6329         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6330                                 Ops, MemVT, SN->getMemOperand());
6331     }
6332   // Combine STORE (element-swap) into VSTER
6333   if (!SN->isTruncatingStore() &&
6334       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6335       Op1.getNode()->hasOneUse() &&
6336       Subtarget.hasVectorEnhancements2()) {
6337     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6338     ArrayRef<int> ShuffleMask = SVN->getMask();
6339     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6340       SDValue Ops[] = {
6341         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6342       };
6343 
6344       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6345                                      DAG.getVTList(MVT::Other),
6346                                      Ops, MemVT, SN->getMemOperand());
6347     }
6348   }
6349 
6350   return SDValue();
6351 }
6352 
6353 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6354     SDNode *N, DAGCombinerInfo &DCI) const {
6355   SelectionDAG &DAG = DCI.DAG;
6356   // Combine element-swap (LOAD) into VLER
6357   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6358       N->getOperand(0).hasOneUse() &&
6359       Subtarget.hasVectorEnhancements2()) {
6360     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6361     ArrayRef<int> ShuffleMask = SVN->getMask();
6362     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6363       SDValue Load = N->getOperand(0);
6364       LoadSDNode *LD = cast<LoadSDNode>(Load);
6365 
6366       // Create the element-swapping load.
6367       SDValue Ops[] = {
6368         LD->getChain(),    // Chain
6369         LD->getBasePtr()   // Ptr
6370       };
6371       SDValue ESLoad =
6372         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6373                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6374                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6375 
6376       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6377       // by the load dead.
6378       DCI.CombineTo(N, ESLoad);
6379 
6380       // Next, combine the load away, we give it a bogus result value but a real
6381       // chain result.  The result value is dead because the shuffle is dead.
6382       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6383 
6384       // Return N so it doesn't get rechecked!
6385       return SDValue(N, 0);
6386     }
6387   }
6388 
6389   return SDValue();
6390 }
6391 
6392 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6393     SDNode *N, DAGCombinerInfo &DCI) const {
6394   SelectionDAG &DAG = DCI.DAG;
6395 
6396   if (!Subtarget.hasVector())
6397     return SDValue();
6398 
6399   // Look through bitcasts that retain the number of vector elements.
6400   SDValue Op = N->getOperand(0);
6401   if (Op.getOpcode() == ISD::BITCAST &&
6402       Op.getValueType().isVector() &&
6403       Op.getOperand(0).getValueType().isVector() &&
6404       Op.getValueType().getVectorNumElements() ==
6405       Op.getOperand(0).getValueType().getVectorNumElements())
6406     Op = Op.getOperand(0);
6407 
6408   // Pull BSWAP out of a vector extraction.
6409   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6410     EVT VecVT = Op.getValueType();
6411     EVT EltVT = VecVT.getVectorElementType();
6412     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6413                      Op.getOperand(0), N->getOperand(1));
6414     DCI.AddToWorklist(Op.getNode());
6415     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6416     if (EltVT != N->getValueType(0)) {
6417       DCI.AddToWorklist(Op.getNode());
6418       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6419     }
6420     return Op;
6421   }
6422 
6423   // Try to simplify a vector extraction.
6424   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6425     SDValue Op0 = N->getOperand(0);
6426     EVT VecVT = Op0.getValueType();
6427     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6428                           IndexN->getZExtValue(), DCI, false);
6429   }
6430   return SDValue();
6431 }
6432 
6433 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6434     SDNode *N, DAGCombinerInfo &DCI) const {
6435   SelectionDAG &DAG = DCI.DAG;
6436   // (join_dwords X, X) == (replicate X)
6437   if (N->getOperand(0) == N->getOperand(1))
6438     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6439                        N->getOperand(0));
6440   return SDValue();
6441 }
6442 
6443 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6444   SDValue Chain1 = N1->getOperand(0);
6445   SDValue Chain2 = N2->getOperand(0);
6446 
6447   // Trivial case: both nodes take the same chain.
6448   if (Chain1 == Chain2)
6449     return Chain1;
6450 
6451   // FIXME - we could handle more complex cases via TokenFactor,
6452   // assuming we can verify that this would not create a cycle.
6453   return SDValue();
6454 }
6455 
6456 SDValue SystemZTargetLowering::combineFP_ROUND(
6457     SDNode *N, DAGCombinerInfo &DCI) const {
6458 
6459   if (!Subtarget.hasVector())
6460     return SDValue();
6461 
6462   // (fpround (extract_vector_elt X 0))
6463   // (fpround (extract_vector_elt X 1)) ->
6464   // (extract_vector_elt (VROUND X) 0)
6465   // (extract_vector_elt (VROUND X) 2)
6466   //
6467   // This is a special case since the target doesn't really support v2f32s.
6468   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6469   SelectionDAG &DAG = DCI.DAG;
6470   SDValue Op0 = N->getOperand(OpNo);
6471   if (N->getValueType(0) == MVT::f32 &&
6472       Op0.hasOneUse() &&
6473       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6474       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6475       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6476       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6477     SDValue Vec = Op0.getOperand(0);
6478     for (auto *U : Vec->uses()) {
6479       if (U != Op0.getNode() &&
6480           U->hasOneUse() &&
6481           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6482           U->getOperand(0) == Vec &&
6483           U->getOperand(1).getOpcode() == ISD::Constant &&
6484           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6485         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6486         if (OtherRound.getOpcode() == N->getOpcode() &&
6487             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6488             OtherRound.getValueType() == MVT::f32) {
6489           SDValue VRound, Chain;
6490           if (N->isStrictFPOpcode()) {
6491             Chain = MergeInputChains(N, OtherRound.getNode());
6492             if (!Chain)
6493               continue;
6494             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6495                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6496             Chain = VRound.getValue(1);
6497           } else
6498             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6499                                  MVT::v4f32, Vec);
6500           DCI.AddToWorklist(VRound.getNode());
6501           SDValue Extract1 =
6502             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6503                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6504           DCI.AddToWorklist(Extract1.getNode());
6505           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6506           if (Chain)
6507             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6508           SDValue Extract0 =
6509             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6510                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6511           if (Chain)
6512             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6513                                N->getVTList(), Extract0, Chain);
6514           return Extract0;
6515         }
6516       }
6517     }
6518   }
6519   return SDValue();
6520 }
6521 
6522 SDValue SystemZTargetLowering::combineFP_EXTEND(
6523     SDNode *N, DAGCombinerInfo &DCI) const {
6524 
6525   if (!Subtarget.hasVector())
6526     return SDValue();
6527 
6528   // (fpextend (extract_vector_elt X 0))
6529   // (fpextend (extract_vector_elt X 2)) ->
6530   // (extract_vector_elt (VEXTEND X) 0)
6531   // (extract_vector_elt (VEXTEND X) 1)
6532   //
6533   // This is a special case since the target doesn't really support v2f32s.
6534   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6535   SelectionDAG &DAG = DCI.DAG;
6536   SDValue Op0 = N->getOperand(OpNo);
6537   if (N->getValueType(0) == MVT::f64 &&
6538       Op0.hasOneUse() &&
6539       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6540       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6541       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6542       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6543     SDValue Vec = Op0.getOperand(0);
6544     for (auto *U : Vec->uses()) {
6545       if (U != Op0.getNode() &&
6546           U->hasOneUse() &&
6547           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6548           U->getOperand(0) == Vec &&
6549           U->getOperand(1).getOpcode() == ISD::Constant &&
6550           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6551         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6552         if (OtherExtend.getOpcode() == N->getOpcode() &&
6553             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6554             OtherExtend.getValueType() == MVT::f64) {
6555           SDValue VExtend, Chain;
6556           if (N->isStrictFPOpcode()) {
6557             Chain = MergeInputChains(N, OtherExtend.getNode());
6558             if (!Chain)
6559               continue;
6560             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6561                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6562             Chain = VExtend.getValue(1);
6563           } else
6564             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6565                                   MVT::v2f64, Vec);
6566           DCI.AddToWorklist(VExtend.getNode());
6567           SDValue Extract1 =
6568             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6569                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6570           DCI.AddToWorklist(Extract1.getNode());
6571           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6572           if (Chain)
6573             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6574           SDValue Extract0 =
6575             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6576                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6577           if (Chain)
6578             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6579                                N->getVTList(), Extract0, Chain);
6580           return Extract0;
6581         }
6582       }
6583     }
6584   }
6585   return SDValue();
6586 }
6587 
6588 SDValue SystemZTargetLowering::combineINT_TO_FP(
6589     SDNode *N, DAGCombinerInfo &DCI) const {
6590   if (DCI.Level != BeforeLegalizeTypes)
6591     return SDValue();
6592   unsigned Opcode = N->getOpcode();
6593   EVT OutVT = N->getValueType(0);
6594   SelectionDAG &DAG = DCI.DAG;
6595   SDValue Op = N->getOperand(0);
6596   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6597   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6598 
6599   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6600   // v2f64 = uint_to_fp v2i16
6601   // =>
6602   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6603   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6604     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6605                                  OutVT.getVectorNumElements());
6606     unsigned ExtOpcode =
6607       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6608     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6609     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6610   }
6611   return SDValue();
6612 }
6613 
6614 SDValue SystemZTargetLowering::combineBSWAP(
6615     SDNode *N, DAGCombinerInfo &DCI) const {
6616   SelectionDAG &DAG = DCI.DAG;
6617   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6618   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6619       N->getOperand(0).hasOneUse() &&
6620       canLoadStoreByteSwapped(N->getValueType(0))) {
6621       SDValue Load = N->getOperand(0);
6622       LoadSDNode *LD = cast<LoadSDNode>(Load);
6623 
6624       // Create the byte-swapping load.
6625       SDValue Ops[] = {
6626         LD->getChain(),    // Chain
6627         LD->getBasePtr()   // Ptr
6628       };
6629       EVT LoadVT = N->getValueType(0);
6630       if (LoadVT == MVT::i16)
6631         LoadVT = MVT::i32;
6632       SDValue BSLoad =
6633         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6634                                 DAG.getVTList(LoadVT, MVT::Other),
6635                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6636 
6637       // If this is an i16 load, insert the truncate.
6638       SDValue ResVal = BSLoad;
6639       if (N->getValueType(0) == MVT::i16)
6640         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6641 
6642       // First, combine the bswap away.  This makes the value produced by the
6643       // load dead.
6644       DCI.CombineTo(N, ResVal);
6645 
6646       // Next, combine the load away, we give it a bogus result value but a real
6647       // chain result.  The result value is dead because the bswap is dead.
6648       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6649 
6650       // Return N so it doesn't get rechecked!
6651       return SDValue(N, 0);
6652     }
6653 
6654   // Look through bitcasts that retain the number of vector elements.
6655   SDValue Op = N->getOperand(0);
6656   if (Op.getOpcode() == ISD::BITCAST &&
6657       Op.getValueType().isVector() &&
6658       Op.getOperand(0).getValueType().isVector() &&
6659       Op.getValueType().getVectorNumElements() ==
6660       Op.getOperand(0).getValueType().getVectorNumElements())
6661     Op = Op.getOperand(0);
6662 
6663   // Push BSWAP into a vector insertion if at least one side then simplifies.
6664   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6665     SDValue Vec = Op.getOperand(0);
6666     SDValue Elt = Op.getOperand(1);
6667     SDValue Idx = Op.getOperand(2);
6668 
6669     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6670         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6671         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6672         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6673         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6674          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6675       EVT VecVT = N->getValueType(0);
6676       EVT EltVT = N->getValueType(0).getVectorElementType();
6677       if (VecVT != Vec.getValueType()) {
6678         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6679         DCI.AddToWorklist(Vec.getNode());
6680       }
6681       if (EltVT != Elt.getValueType()) {
6682         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6683         DCI.AddToWorklist(Elt.getNode());
6684       }
6685       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6686       DCI.AddToWorklist(Vec.getNode());
6687       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6688       DCI.AddToWorklist(Elt.getNode());
6689       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6690                          Vec, Elt, Idx);
6691     }
6692   }
6693 
6694   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6695   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6696   if (SV && Op.hasOneUse()) {
6697     SDValue Op0 = Op.getOperand(0);
6698     SDValue Op1 = Op.getOperand(1);
6699 
6700     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6701         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6702         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6703         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6704       EVT VecVT = N->getValueType(0);
6705       if (VecVT != Op0.getValueType()) {
6706         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6707         DCI.AddToWorklist(Op0.getNode());
6708       }
6709       if (VecVT != Op1.getValueType()) {
6710         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6711         DCI.AddToWorklist(Op1.getNode());
6712       }
6713       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6714       DCI.AddToWorklist(Op0.getNode());
6715       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6716       DCI.AddToWorklist(Op1.getNode());
6717       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6718     }
6719   }
6720 
6721   return SDValue();
6722 }
6723 
6724 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6725   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6726   // set by the CCReg instruction using the CCValid / CCMask masks,
6727   // If the CCReg instruction is itself a ICMP testing the condition
6728   // code set by some other instruction, see whether we can directly
6729   // use that condition code.
6730 
6731   // Verify that we have an ICMP against some constant.
6732   if (CCValid != SystemZ::CCMASK_ICMP)
6733     return false;
6734   auto *ICmp = CCReg.getNode();
6735   if (ICmp->getOpcode() != SystemZISD::ICMP)
6736     return false;
6737   auto *CompareLHS = ICmp->getOperand(0).getNode();
6738   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6739   if (!CompareRHS)
6740     return false;
6741 
6742   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6743   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6744     // Verify that we have an appropriate mask for a EQ or NE comparison.
6745     bool Invert = false;
6746     if (CCMask == SystemZ::CCMASK_CMP_NE)
6747       Invert = !Invert;
6748     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6749       return false;
6750 
6751     // Verify that the ICMP compares against one of select values.
6752     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6753     if (!TrueVal)
6754       return false;
6755     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6756     if (!FalseVal)
6757       return false;
6758     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6759       Invert = !Invert;
6760     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6761       return false;
6762 
6763     // Compute the effective CC mask for the new branch or select.
6764     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6765     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6766     if (!NewCCValid || !NewCCMask)
6767       return false;
6768     CCValid = NewCCValid->getZExtValue();
6769     CCMask = NewCCMask->getZExtValue();
6770     if (Invert)
6771       CCMask ^= CCValid;
6772 
6773     // Return the updated CCReg link.
6774     CCReg = CompareLHS->getOperand(4);
6775     return true;
6776   }
6777 
6778   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6779   if (CompareLHS->getOpcode() == ISD::SRA) {
6780     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6781     if (!SRACount || SRACount->getZExtValue() != 30)
6782       return false;
6783     auto *SHL = CompareLHS->getOperand(0).getNode();
6784     if (SHL->getOpcode() != ISD::SHL)
6785       return false;
6786     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6787     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6788       return false;
6789     auto *IPM = SHL->getOperand(0).getNode();
6790     if (IPM->getOpcode() != SystemZISD::IPM)
6791       return false;
6792 
6793     // Avoid introducing CC spills (because SRA would clobber CC).
6794     if (!CompareLHS->hasOneUse())
6795       return false;
6796     // Verify that the ICMP compares against zero.
6797     if (CompareRHS->getZExtValue() != 0)
6798       return false;
6799 
6800     // Compute the effective CC mask for the new branch or select.
6801     CCMask = SystemZ::reverseCCMask(CCMask);
6802 
6803     // Return the updated CCReg link.
6804     CCReg = IPM->getOperand(0);
6805     return true;
6806   }
6807 
6808   return false;
6809 }
6810 
6811 SDValue SystemZTargetLowering::combineBR_CCMASK(
6812     SDNode *N, DAGCombinerInfo &DCI) const {
6813   SelectionDAG &DAG = DCI.DAG;
6814 
6815   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6816   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6817   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6818   if (!CCValid || !CCMask)
6819     return SDValue();
6820 
6821   int CCValidVal = CCValid->getZExtValue();
6822   int CCMaskVal = CCMask->getZExtValue();
6823   SDValue Chain = N->getOperand(0);
6824   SDValue CCReg = N->getOperand(4);
6825 
6826   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6827     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6828                        Chain,
6829                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6830                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6831                        N->getOperand(3), CCReg);
6832   return SDValue();
6833 }
6834 
6835 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6836     SDNode *N, DAGCombinerInfo &DCI) const {
6837   SelectionDAG &DAG = DCI.DAG;
6838 
6839   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6840   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6841   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6842   if (!CCValid || !CCMask)
6843     return SDValue();
6844 
6845   int CCValidVal = CCValid->getZExtValue();
6846   int CCMaskVal = CCMask->getZExtValue();
6847   SDValue CCReg = N->getOperand(4);
6848 
6849   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6850     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6851                        N->getOperand(0), N->getOperand(1),
6852                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6853                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6854                        CCReg);
6855   return SDValue();
6856 }
6857 
6858 
6859 SDValue SystemZTargetLowering::combineGET_CCMASK(
6860     SDNode *N, DAGCombinerInfo &DCI) const {
6861 
6862   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6863   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6864   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6865   if (!CCValid || !CCMask)
6866     return SDValue();
6867   int CCValidVal = CCValid->getZExtValue();
6868   int CCMaskVal = CCMask->getZExtValue();
6869 
6870   SDValue Select = N->getOperand(0);
6871   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6872     return SDValue();
6873 
6874   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6875   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6876   if (!SelectCCValid || !SelectCCMask)
6877     return SDValue();
6878   int SelectCCValidVal = SelectCCValid->getZExtValue();
6879   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6880 
6881   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6882   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6883   if (!TrueVal || !FalseVal)
6884     return SDValue();
6885   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6886     ;
6887   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6888     SelectCCMaskVal ^= SelectCCValidVal;
6889   else
6890     return SDValue();
6891 
6892   if (SelectCCValidVal & ~CCValidVal)
6893     return SDValue();
6894   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6895     return SDValue();
6896 
6897   return Select->getOperand(4);
6898 }
6899 
6900 SDValue SystemZTargetLowering::combineIntDIVREM(
6901     SDNode *N, DAGCombinerInfo &DCI) const {
6902   SelectionDAG &DAG = DCI.DAG;
6903   EVT VT = N->getValueType(0);
6904   // In the case where the divisor is a vector of constants a cheaper
6905   // sequence of instructions can replace the divide. BuildSDIV is called to
6906   // do this during DAG combining, but it only succeeds when it can build a
6907   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6908   // since it is not Legal but Custom it can only happen before
6909   // legalization. Therefore we must scalarize this early before Combine
6910   // 1. For widened vectors, this is already the result of type legalization.
6911   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6912       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6913     return DAG.UnrollVectorOp(N);
6914   return SDValue();
6915 }
6916 
6917 SDValue SystemZTargetLowering::combineINTRINSIC(
6918     SDNode *N, DAGCombinerInfo &DCI) const {
6919   SelectionDAG &DAG = DCI.DAG;
6920 
6921   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6922   switch (Id) {
6923   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6924   // or larger is simply a vector load.
6925   case Intrinsic::s390_vll:
6926   case Intrinsic::s390_vlrl:
6927     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6928       if (C->getZExtValue() >= 15)
6929         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6930                            N->getOperand(3), MachinePointerInfo());
6931     break;
6932   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6933   case Intrinsic::s390_vstl:
6934   case Intrinsic::s390_vstrl:
6935     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6936       if (C->getZExtValue() >= 15)
6937         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6938                             N->getOperand(4), MachinePointerInfo());
6939     break;
6940   }
6941 
6942   return SDValue();
6943 }
6944 
6945 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6946   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6947     return N->getOperand(0);
6948   return N;
6949 }
6950 
6951 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6952                                                  DAGCombinerInfo &DCI) const {
6953   switch(N->getOpcode()) {
6954   default: break;
6955   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6956   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6957   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6958   case SystemZISD::MERGE_HIGH:
6959   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6960   case ISD::LOAD:               return combineLOAD(N, DCI);
6961   case ISD::STORE:              return combineSTORE(N, DCI);
6962   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6963   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6964   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6965   case ISD::STRICT_FP_ROUND:
6966   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6967   case ISD::STRICT_FP_EXTEND:
6968   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6969   case ISD::SINT_TO_FP:
6970   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
6971   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6972   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6973   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6974   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6975   case ISD::SDIV:
6976   case ISD::UDIV:
6977   case ISD::SREM:
6978   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6979   case ISD::INTRINSIC_W_CHAIN:
6980   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
6981   }
6982 
6983   return SDValue();
6984 }
6985 
6986 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6987 // are for Op.
6988 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6989                                     unsigned OpNo) {
6990   EVT VT = Op.getValueType();
6991   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6992   APInt SrcDemE;
6993   unsigned Opcode = Op.getOpcode();
6994   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6995     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6996     switch (Id) {
6997     case Intrinsic::s390_vpksh:   // PACKS
6998     case Intrinsic::s390_vpksf:
6999     case Intrinsic::s390_vpksg:
7000     case Intrinsic::s390_vpkshs:  // PACKS_CC
7001     case Intrinsic::s390_vpksfs:
7002     case Intrinsic::s390_vpksgs:
7003     case Intrinsic::s390_vpklsh:  // PACKLS
7004     case Intrinsic::s390_vpklsf:
7005     case Intrinsic::s390_vpklsg:
7006     case Intrinsic::s390_vpklshs: // PACKLS_CC
7007     case Intrinsic::s390_vpklsfs:
7008     case Intrinsic::s390_vpklsgs:
7009       // VECTOR PACK truncates the elements of two source vectors into one.
7010       SrcDemE = DemandedElts;
7011       if (OpNo == 2)
7012         SrcDemE.lshrInPlace(NumElts / 2);
7013       SrcDemE = SrcDemE.trunc(NumElts / 2);
7014       break;
7015       // VECTOR UNPACK extends half the elements of the source vector.
7016     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7017     case Intrinsic::s390_vuphh:
7018     case Intrinsic::s390_vuphf:
7019     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7020     case Intrinsic::s390_vuplhh:
7021     case Intrinsic::s390_vuplhf:
7022       SrcDemE = APInt(NumElts * 2, 0);
7023       SrcDemE.insertBits(DemandedElts, 0);
7024       break;
7025     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7026     case Intrinsic::s390_vuplhw:
7027     case Intrinsic::s390_vuplf:
7028     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7029     case Intrinsic::s390_vupllh:
7030     case Intrinsic::s390_vupllf:
7031       SrcDemE = APInt(NumElts * 2, 0);
7032       SrcDemE.insertBits(DemandedElts, NumElts);
7033       break;
7034     case Intrinsic::s390_vpdi: {
7035       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
7036       SrcDemE = APInt(NumElts, 0);
7037       if (!DemandedElts[OpNo - 1])
7038         break;
7039       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7040       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
7041       // Demand input element 0 or 1, given by the mask bit value.
7042       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
7043       break;
7044     }
7045     case Intrinsic::s390_vsldb: {
7046       // VECTOR SHIFT LEFT DOUBLE BY BYTE
7047       assert(VT == MVT::v16i8 && "Unexpected type.");
7048       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7049       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
7050       unsigned NumSrc0Els = 16 - FirstIdx;
7051       SrcDemE = APInt(NumElts, 0);
7052       if (OpNo == 1) {
7053         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
7054         SrcDemE.insertBits(DemEls, FirstIdx);
7055       } else {
7056         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
7057         SrcDemE.insertBits(DemEls, 0);
7058       }
7059       break;
7060     }
7061     case Intrinsic::s390_vperm:
7062       SrcDemE = APInt(NumElts, 1);
7063       break;
7064     default:
7065       llvm_unreachable("Unhandled intrinsic.");
7066       break;
7067     }
7068   } else {
7069     switch (Opcode) {
7070     case SystemZISD::JOIN_DWORDS:
7071       // Scalar operand.
7072       SrcDemE = APInt(1, 1);
7073       break;
7074     case SystemZISD::SELECT_CCMASK:
7075       SrcDemE = DemandedElts;
7076       break;
7077     default:
7078       llvm_unreachable("Unhandled opcode.");
7079       break;
7080     }
7081   }
7082   return SrcDemE;
7083 }
7084 
7085 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
7086                                   const APInt &DemandedElts,
7087                                   const SelectionDAG &DAG, unsigned Depth,
7088                                   unsigned OpNo) {
7089   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7090   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7091   KnownBits LHSKnown =
7092       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7093   KnownBits RHSKnown =
7094       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7095   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
7096 }
7097 
7098 void
7099 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7100                                                      KnownBits &Known,
7101                                                      const APInt &DemandedElts,
7102                                                      const SelectionDAG &DAG,
7103                                                      unsigned Depth) const {
7104   Known.resetAll();
7105 
7106   // Intrinsic CC result is returned in the two low bits.
7107   unsigned tmp0, tmp1; // not used
7108   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
7109     Known.Zero.setBitsFrom(2);
7110     return;
7111   }
7112   EVT VT = Op.getValueType();
7113   if (Op.getResNo() != 0 || VT == MVT::Untyped)
7114     return;
7115   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
7116           "KnownBits does not match VT in bitwidth");
7117   assert ((!VT.isVector() ||
7118            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
7119           "DemandedElts does not match VT number of elements");
7120   unsigned BitWidth = Known.getBitWidth();
7121   unsigned Opcode = Op.getOpcode();
7122   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7123     bool IsLogical = false;
7124     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7125     switch (Id) {
7126     case Intrinsic::s390_vpksh:   // PACKS
7127     case Intrinsic::s390_vpksf:
7128     case Intrinsic::s390_vpksg:
7129     case Intrinsic::s390_vpkshs:  // PACKS_CC
7130     case Intrinsic::s390_vpksfs:
7131     case Intrinsic::s390_vpksgs:
7132     case Intrinsic::s390_vpklsh:  // PACKLS
7133     case Intrinsic::s390_vpklsf:
7134     case Intrinsic::s390_vpklsg:
7135     case Intrinsic::s390_vpklshs: // PACKLS_CC
7136     case Intrinsic::s390_vpklsfs:
7137     case Intrinsic::s390_vpklsgs:
7138     case Intrinsic::s390_vpdi:
7139     case Intrinsic::s390_vsldb:
7140     case Intrinsic::s390_vperm:
7141       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
7142       break;
7143     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7144     case Intrinsic::s390_vuplhh:
7145     case Intrinsic::s390_vuplhf:
7146     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7147     case Intrinsic::s390_vupllh:
7148     case Intrinsic::s390_vupllf:
7149       IsLogical = true;
7150       LLVM_FALLTHROUGH;
7151     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7152     case Intrinsic::s390_vuphh:
7153     case Intrinsic::s390_vuphf:
7154     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7155     case Intrinsic::s390_vuplhw:
7156     case Intrinsic::s390_vuplf: {
7157       SDValue SrcOp = Op.getOperand(1);
7158       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
7159       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
7160       if (IsLogical) {
7161         Known = Known.zext(BitWidth);
7162       } else
7163         Known = Known.sext(BitWidth);
7164       break;
7165     }
7166     default:
7167       break;
7168     }
7169   } else {
7170     switch (Opcode) {
7171     case SystemZISD::JOIN_DWORDS:
7172     case SystemZISD::SELECT_CCMASK:
7173       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
7174       break;
7175     case SystemZISD::REPLICATE: {
7176       SDValue SrcOp = Op.getOperand(0);
7177       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
7178       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
7179         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
7180       break;
7181     }
7182     default:
7183       break;
7184     }
7185   }
7186 
7187   // Known has the width of the source operand(s). Adjust if needed to match
7188   // the passed bitwidth.
7189   if (Known.getBitWidth() != BitWidth)
7190     Known = Known.anyextOrTrunc(BitWidth);
7191 }
7192 
7193 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
7194                                         const SelectionDAG &DAG, unsigned Depth,
7195                                         unsigned OpNo) {
7196   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7197   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7198   if (LHS == 1) return 1; // Early out.
7199   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7200   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7201   if (RHS == 1) return 1; // Early out.
7202   unsigned Common = std::min(LHS, RHS);
7203   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
7204   EVT VT = Op.getValueType();
7205   unsigned VTBits = VT.getScalarSizeInBits();
7206   if (SrcBitWidth > VTBits) { // PACK
7207     unsigned SrcExtraBits = SrcBitWidth - VTBits;
7208     if (Common > SrcExtraBits)
7209       return (Common - SrcExtraBits);
7210     return 1;
7211   }
7212   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
7213   return Common;
7214 }
7215 
7216 unsigned
7217 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
7218     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7219     unsigned Depth) const {
7220   if (Op.getResNo() != 0)
7221     return 1;
7222   unsigned Opcode = Op.getOpcode();
7223   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7224     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7225     switch (Id) {
7226     case Intrinsic::s390_vpksh:   // PACKS
7227     case Intrinsic::s390_vpksf:
7228     case Intrinsic::s390_vpksg:
7229     case Intrinsic::s390_vpkshs:  // PACKS_CC
7230     case Intrinsic::s390_vpksfs:
7231     case Intrinsic::s390_vpksgs:
7232     case Intrinsic::s390_vpklsh:  // PACKLS
7233     case Intrinsic::s390_vpklsf:
7234     case Intrinsic::s390_vpklsg:
7235     case Intrinsic::s390_vpklshs: // PACKLS_CC
7236     case Intrinsic::s390_vpklsfs:
7237     case Intrinsic::s390_vpklsgs:
7238     case Intrinsic::s390_vpdi:
7239     case Intrinsic::s390_vsldb:
7240     case Intrinsic::s390_vperm:
7241       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
7242     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7243     case Intrinsic::s390_vuphh:
7244     case Intrinsic::s390_vuphf:
7245     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7246     case Intrinsic::s390_vuplhw:
7247     case Intrinsic::s390_vuplf: {
7248       SDValue PackedOp = Op.getOperand(1);
7249       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
7250       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
7251       EVT VT = Op.getValueType();
7252       unsigned VTBits = VT.getScalarSizeInBits();
7253       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7254       return Tmp;
7255     }
7256     default:
7257       break;
7258     }
7259   } else {
7260     switch (Opcode) {
7261     case SystemZISD::SELECT_CCMASK:
7262       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7263     default:
7264       break;
7265     }
7266   }
7267 
7268   return 1;
7269 }
7270 
7271 unsigned
7272 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7273   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7274   unsigned StackAlign = TFI->getStackAlignment();
7275   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7276          "Unexpected stack alignment");
7277   // The default stack probe size is 4096 if the function has no
7278   // stack-probe-size attribute.
7279   unsigned StackProbeSize = 4096;
7280   const Function &Fn = MF.getFunction();
7281   if (Fn.hasFnAttribute("stack-probe-size"))
7282     Fn.getFnAttribute("stack-probe-size")
7283         .getValueAsString()
7284         .getAsInteger(0, StackProbeSize);
7285   // Round down to the stack alignment.
7286   StackProbeSize &= ~(StackAlign - 1);
7287   return StackProbeSize ? StackProbeSize : StackAlign;
7288 }
7289 
7290 //===----------------------------------------------------------------------===//
7291 // Custom insertion
7292 //===----------------------------------------------------------------------===//
7293 
7294 // Force base value Base into a register before MI.  Return the register.
7295 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7296                          const SystemZInstrInfo *TII) {
7297   MachineBasicBlock *MBB = MI.getParent();
7298   MachineFunction &MF = *MBB->getParent();
7299   MachineRegisterInfo &MRI = MF.getRegInfo();
7300 
7301   if (Base.isReg()) {
7302     // Copy Base into a new virtual register to help register coalescing in
7303     // cases with multiple uses.
7304     Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7305     BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
7306       .add(Base);
7307     return Reg;
7308   }
7309 
7310   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7311   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7312       .add(Base)
7313       .addImm(0)
7314       .addReg(0);
7315   return Reg;
7316 }
7317 
7318 // The CC operand of MI might be missing a kill marker because there
7319 // were multiple uses of CC, and ISel didn't know which to mark.
7320 // Figure out whether MI should have had a kill marker.
7321 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7322   // Scan forward through BB for a use/def of CC.
7323   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7324   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7325     const MachineInstr& mi = *miI;
7326     if (mi.readsRegister(SystemZ::CC))
7327       return false;
7328     if (mi.definesRegister(SystemZ::CC))
7329       break; // Should have kill-flag - update below.
7330   }
7331 
7332   // If we hit the end of the block, check whether CC is live into a
7333   // successor.
7334   if (miI == MBB->end()) {
7335     for (const MachineBasicBlock *Succ : MBB->successors())
7336       if (Succ->isLiveIn(SystemZ::CC))
7337         return false;
7338   }
7339 
7340   return true;
7341 }
7342 
7343 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7344 // together with other Select pseudo-opcodes into a single basic-block with
7345 // a conditional jump around it.
7346 static bool isSelectPseudo(MachineInstr &MI) {
7347   switch (MI.getOpcode()) {
7348   case SystemZ::Select32:
7349   case SystemZ::Select64:
7350   case SystemZ::SelectF32:
7351   case SystemZ::SelectF64:
7352   case SystemZ::SelectF128:
7353   case SystemZ::SelectVR32:
7354   case SystemZ::SelectVR64:
7355   case SystemZ::SelectVR128:
7356     return true;
7357 
7358   default:
7359     return false;
7360   }
7361 }
7362 
7363 // Helper function, which inserts PHI functions into SinkMBB:
7364 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7365 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7366 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7367                                  MachineBasicBlock *TrueMBB,
7368                                  MachineBasicBlock *FalseMBB,
7369                                  MachineBasicBlock *SinkMBB) {
7370   MachineFunction *MF = TrueMBB->getParent();
7371   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7372 
7373   MachineInstr *FirstMI = Selects.front();
7374   unsigned CCValid = FirstMI->getOperand(3).getImm();
7375   unsigned CCMask = FirstMI->getOperand(4).getImm();
7376 
7377   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7378 
7379   // As we are creating the PHIs, we have to be careful if there is more than
7380   // one.  Later Selects may reference the results of earlier Selects, but later
7381   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7382   // That also means that PHI construction must work forward from earlier to
7383   // later, and that the code must maintain a mapping from earlier PHI's
7384   // destination registers, and the registers that went into the PHI.
7385   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7386 
7387   for (auto MI : Selects) {
7388     Register DestReg = MI->getOperand(0).getReg();
7389     Register TrueReg = MI->getOperand(1).getReg();
7390     Register FalseReg = MI->getOperand(2).getReg();
7391 
7392     // If this Select we are generating is the opposite condition from
7393     // the jump we generated, then we have to swap the operands for the
7394     // PHI that is going to be generated.
7395     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7396       std::swap(TrueReg, FalseReg);
7397 
7398     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7399       TrueReg = RegRewriteTable[TrueReg].first;
7400 
7401     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7402       FalseReg = RegRewriteTable[FalseReg].second;
7403 
7404     DebugLoc DL = MI->getDebugLoc();
7405     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7406       .addReg(TrueReg).addMBB(TrueMBB)
7407       .addReg(FalseReg).addMBB(FalseMBB);
7408 
7409     // Add this PHI to the rewrite table.
7410     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7411   }
7412 
7413   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7414 }
7415 
7416 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7417 MachineBasicBlock *
7418 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7419                                   MachineBasicBlock *MBB) const {
7420   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7421   const SystemZInstrInfo *TII =
7422       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7423 
7424   unsigned CCValid = MI.getOperand(3).getImm();
7425   unsigned CCMask = MI.getOperand(4).getImm();
7426 
7427   // If we have a sequence of Select* pseudo instructions using the
7428   // same condition code value, we want to expand all of them into
7429   // a single pair of basic blocks using the same condition.
7430   SmallVector<MachineInstr*, 8> Selects;
7431   SmallVector<MachineInstr*, 8> DbgValues;
7432   Selects.push_back(&MI);
7433   unsigned Count = 0;
7434   for (MachineBasicBlock::iterator NextMIIt =
7435          std::next(MachineBasicBlock::iterator(MI));
7436        NextMIIt != MBB->end(); ++NextMIIt) {
7437     if (isSelectPseudo(*NextMIIt)) {
7438       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7439              "Bad CCValid operands since CC was not redefined.");
7440       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7441           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7442         Selects.push_back(&*NextMIIt);
7443         continue;
7444       }
7445       break;
7446     }
7447     if (NextMIIt->definesRegister(SystemZ::CC) ||
7448         NextMIIt->usesCustomInsertionHook())
7449       break;
7450     bool User = false;
7451     for (auto SelMI : Selects)
7452       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7453         User = true;
7454         break;
7455       }
7456     if (NextMIIt->isDebugInstr()) {
7457       if (User) {
7458         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7459         DbgValues.push_back(&*NextMIIt);
7460       }
7461     }
7462     else if (User || ++Count > 20)
7463       break;
7464   }
7465 
7466   MachineInstr *LastMI = Selects.back();
7467   bool CCKilled =
7468       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7469   MachineBasicBlock *StartMBB = MBB;
7470   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7471   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7472 
7473   // Unless CC was killed in the last Select instruction, mark it as
7474   // live-in to both FalseMBB and JoinMBB.
7475   if (!CCKilled) {
7476     FalseMBB->addLiveIn(SystemZ::CC);
7477     JoinMBB->addLiveIn(SystemZ::CC);
7478   }
7479 
7480   //  StartMBB:
7481   //   BRC CCMask, JoinMBB
7482   //   # fallthrough to FalseMBB
7483   MBB = StartMBB;
7484   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7485     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7486   MBB->addSuccessor(JoinMBB);
7487   MBB->addSuccessor(FalseMBB);
7488 
7489   //  FalseMBB:
7490   //   # fallthrough to JoinMBB
7491   MBB = FalseMBB;
7492   MBB->addSuccessor(JoinMBB);
7493 
7494   //  JoinMBB:
7495   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7496   //  ...
7497   MBB = JoinMBB;
7498   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7499   for (auto SelMI : Selects)
7500     SelMI->eraseFromParent();
7501 
7502   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7503   for (auto DbgMI : DbgValues)
7504     MBB->splice(InsertPos, StartMBB, DbgMI);
7505 
7506   return JoinMBB;
7507 }
7508 
7509 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7510 // StoreOpcode is the store to use and Invert says whether the store should
7511 // happen when the condition is false rather than true.  If a STORE ON
7512 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7513 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7514                                                         MachineBasicBlock *MBB,
7515                                                         unsigned StoreOpcode,
7516                                                         unsigned STOCOpcode,
7517                                                         bool Invert) const {
7518   const SystemZInstrInfo *TII =
7519       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7520 
7521   Register SrcReg = MI.getOperand(0).getReg();
7522   MachineOperand Base = MI.getOperand(1);
7523   int64_t Disp = MI.getOperand(2).getImm();
7524   Register IndexReg = MI.getOperand(3).getReg();
7525   unsigned CCValid = MI.getOperand(4).getImm();
7526   unsigned CCMask = MI.getOperand(5).getImm();
7527   DebugLoc DL = MI.getDebugLoc();
7528 
7529   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7530 
7531   // ISel pattern matching also adds a load memory operand of the same
7532   // address, so take special care to find the storing memory operand.
7533   MachineMemOperand *MMO = nullptr;
7534   for (auto *I : MI.memoperands())
7535     if (I->isStore()) {
7536       MMO = I;
7537       break;
7538     }
7539 
7540   // Use STOCOpcode if possible.  We could use different store patterns in
7541   // order to avoid matching the index register, but the performance trade-offs
7542   // might be more complicated in that case.
7543   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7544     if (Invert)
7545       CCMask ^= CCValid;
7546 
7547     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7548       .addReg(SrcReg)
7549       .add(Base)
7550       .addImm(Disp)
7551       .addImm(CCValid)
7552       .addImm(CCMask)
7553       .addMemOperand(MMO);
7554 
7555     MI.eraseFromParent();
7556     return MBB;
7557   }
7558 
7559   // Get the condition needed to branch around the store.
7560   if (!Invert)
7561     CCMask ^= CCValid;
7562 
7563   MachineBasicBlock *StartMBB = MBB;
7564   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7565   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7566 
7567   // Unless CC was killed in the CondStore instruction, mark it as
7568   // live-in to both FalseMBB and JoinMBB.
7569   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7570     FalseMBB->addLiveIn(SystemZ::CC);
7571     JoinMBB->addLiveIn(SystemZ::CC);
7572   }
7573 
7574   //  StartMBB:
7575   //   BRC CCMask, JoinMBB
7576   //   # fallthrough to FalseMBB
7577   MBB = StartMBB;
7578   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7579     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7580   MBB->addSuccessor(JoinMBB);
7581   MBB->addSuccessor(FalseMBB);
7582 
7583   //  FalseMBB:
7584   //   store %SrcReg, %Disp(%Index,%Base)
7585   //   # fallthrough to JoinMBB
7586   MBB = FalseMBB;
7587   BuildMI(MBB, DL, TII->get(StoreOpcode))
7588       .addReg(SrcReg)
7589       .add(Base)
7590       .addImm(Disp)
7591       .addReg(IndexReg)
7592       .addMemOperand(MMO);
7593   MBB->addSuccessor(JoinMBB);
7594 
7595   MI.eraseFromParent();
7596   return JoinMBB;
7597 }
7598 
7599 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7600 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7601 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7602 // BitSize is the width of the field in bits, or 0 if this is a partword
7603 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7604 // is one of the operands.  Invert says whether the field should be
7605 // inverted after performing BinOpcode (e.g. for NAND).
7606 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7607     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7608     unsigned BitSize, bool Invert) const {
7609   MachineFunction &MF = *MBB->getParent();
7610   const SystemZInstrInfo *TII =
7611       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7612   MachineRegisterInfo &MRI = MF.getRegInfo();
7613   bool IsSubWord = (BitSize < 32);
7614 
7615   // Extract the operands.  Base can be a register or a frame index.
7616   // Src2 can be a register or immediate.
7617   Register Dest = MI.getOperand(0).getReg();
7618   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7619   int64_t Disp = MI.getOperand(2).getImm();
7620   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7621   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7622   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7623   DebugLoc DL = MI.getDebugLoc();
7624   if (IsSubWord)
7625     BitSize = MI.getOperand(6).getImm();
7626 
7627   // Subword operations use 32-bit registers.
7628   const TargetRegisterClass *RC = (BitSize <= 32 ?
7629                                    &SystemZ::GR32BitRegClass :
7630                                    &SystemZ::GR64BitRegClass);
7631   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7632   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7633 
7634   // Get the right opcodes for the displacement.
7635   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7636   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7637   assert(LOpcode && CSOpcode && "Displacement out of range");
7638 
7639   // Create virtual registers for temporary results.
7640   Register OrigVal       = MRI.createVirtualRegister(RC);
7641   Register OldVal        = MRI.createVirtualRegister(RC);
7642   Register NewVal        = (BinOpcode || IsSubWord ?
7643                             MRI.createVirtualRegister(RC) : Src2.getReg());
7644   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7645   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7646 
7647   // Insert a basic block for the main loop.
7648   MachineBasicBlock *StartMBB = MBB;
7649   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7650   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7651 
7652   //  StartMBB:
7653   //   ...
7654   //   %OrigVal = L Disp(%Base)
7655   //   # fall through to LoopMBB
7656   MBB = StartMBB;
7657   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7658   MBB->addSuccessor(LoopMBB);
7659 
7660   //  LoopMBB:
7661   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7662   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7663   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7664   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7665   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7666   //   JNE LoopMBB
7667   //   # fall through to DoneMBB
7668   MBB = LoopMBB;
7669   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7670     .addReg(OrigVal).addMBB(StartMBB)
7671     .addReg(Dest).addMBB(LoopMBB);
7672   if (IsSubWord)
7673     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7674       .addReg(OldVal).addReg(BitShift).addImm(0);
7675   if (Invert) {
7676     // Perform the operation normally and then invert every bit of the field.
7677     Register Tmp = MRI.createVirtualRegister(RC);
7678     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7679     if (BitSize <= 32)
7680       // XILF with the upper BitSize bits set.
7681       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7682         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7683     else {
7684       // Use LCGR and add -1 to the result, which is more compact than
7685       // an XILF, XILH pair.
7686       Register Tmp2 = MRI.createVirtualRegister(RC);
7687       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7688       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7689         .addReg(Tmp2).addImm(-1);
7690     }
7691   } else if (BinOpcode)
7692     // A simply binary operation.
7693     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7694         .addReg(RotatedOldVal)
7695         .add(Src2);
7696   else if (IsSubWord)
7697     // Use RISBG to rotate Src2 into position and use it to replace the
7698     // field in RotatedOldVal.
7699     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7700       .addReg(RotatedOldVal).addReg(Src2.getReg())
7701       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7702   if (IsSubWord)
7703     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7704       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7705   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7706       .addReg(OldVal)
7707       .addReg(NewVal)
7708       .add(Base)
7709       .addImm(Disp);
7710   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7711     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7712   MBB->addSuccessor(LoopMBB);
7713   MBB->addSuccessor(DoneMBB);
7714 
7715   MI.eraseFromParent();
7716   return DoneMBB;
7717 }
7718 
7719 // Implement EmitInstrWithCustomInserter for pseudo
7720 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7721 // instruction that should be used to compare the current field with the
7722 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7723 // for when the current field should be kept.  BitSize is the width of
7724 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7725 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7726     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7727     unsigned KeepOldMask, unsigned BitSize) const {
7728   MachineFunction &MF = *MBB->getParent();
7729   const SystemZInstrInfo *TII =
7730       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7731   MachineRegisterInfo &MRI = MF.getRegInfo();
7732   bool IsSubWord = (BitSize < 32);
7733 
7734   // Extract the operands.  Base can be a register or a frame index.
7735   Register Dest = MI.getOperand(0).getReg();
7736   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7737   int64_t Disp = MI.getOperand(2).getImm();
7738   Register Src2 = MI.getOperand(3).getReg();
7739   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7740   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7741   DebugLoc DL = MI.getDebugLoc();
7742   if (IsSubWord)
7743     BitSize = MI.getOperand(6).getImm();
7744 
7745   // Subword operations use 32-bit registers.
7746   const TargetRegisterClass *RC = (BitSize <= 32 ?
7747                                    &SystemZ::GR32BitRegClass :
7748                                    &SystemZ::GR64BitRegClass);
7749   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7750   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7751 
7752   // Get the right opcodes for the displacement.
7753   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7754   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7755   assert(LOpcode && CSOpcode && "Displacement out of range");
7756 
7757   // Create virtual registers for temporary results.
7758   Register OrigVal       = MRI.createVirtualRegister(RC);
7759   Register OldVal        = MRI.createVirtualRegister(RC);
7760   Register NewVal        = MRI.createVirtualRegister(RC);
7761   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7762   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7763   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7764 
7765   // Insert 3 basic blocks for the loop.
7766   MachineBasicBlock *StartMBB  = MBB;
7767   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7768   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7769   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7770   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7771 
7772   //  StartMBB:
7773   //   ...
7774   //   %OrigVal     = L Disp(%Base)
7775   //   # fall through to LoopMBB
7776   MBB = StartMBB;
7777   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7778   MBB->addSuccessor(LoopMBB);
7779 
7780   //  LoopMBB:
7781   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7782   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7783   //   CompareOpcode %RotatedOldVal, %Src2
7784   //   BRC KeepOldMask, UpdateMBB
7785   MBB = LoopMBB;
7786   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7787     .addReg(OrigVal).addMBB(StartMBB)
7788     .addReg(Dest).addMBB(UpdateMBB);
7789   if (IsSubWord)
7790     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7791       .addReg(OldVal).addReg(BitShift).addImm(0);
7792   BuildMI(MBB, DL, TII->get(CompareOpcode))
7793     .addReg(RotatedOldVal).addReg(Src2);
7794   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7795     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7796   MBB->addSuccessor(UpdateMBB);
7797   MBB->addSuccessor(UseAltMBB);
7798 
7799   //  UseAltMBB:
7800   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7801   //   # fall through to UpdateMBB
7802   MBB = UseAltMBB;
7803   if (IsSubWord)
7804     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7805       .addReg(RotatedOldVal).addReg(Src2)
7806       .addImm(32).addImm(31 + BitSize).addImm(0);
7807   MBB->addSuccessor(UpdateMBB);
7808 
7809   //  UpdateMBB:
7810   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7811   //                        [ %RotatedAltVal, UseAltMBB ]
7812   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7813   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7814   //   JNE LoopMBB
7815   //   # fall through to DoneMBB
7816   MBB = UpdateMBB;
7817   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7818     .addReg(RotatedOldVal).addMBB(LoopMBB)
7819     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7820   if (IsSubWord)
7821     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7822       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7823   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7824       .addReg(OldVal)
7825       .addReg(NewVal)
7826       .add(Base)
7827       .addImm(Disp);
7828   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7829     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7830   MBB->addSuccessor(LoopMBB);
7831   MBB->addSuccessor(DoneMBB);
7832 
7833   MI.eraseFromParent();
7834   return DoneMBB;
7835 }
7836 
7837 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7838 // instruction MI.
7839 MachineBasicBlock *
7840 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7841                                           MachineBasicBlock *MBB) const {
7842   MachineFunction &MF = *MBB->getParent();
7843   const SystemZInstrInfo *TII =
7844       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7845   MachineRegisterInfo &MRI = MF.getRegInfo();
7846 
7847   // Extract the operands.  Base can be a register or a frame index.
7848   Register Dest = MI.getOperand(0).getReg();
7849   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7850   int64_t Disp = MI.getOperand(2).getImm();
7851   Register CmpVal = MI.getOperand(3).getReg();
7852   Register OrigSwapVal = MI.getOperand(4).getReg();
7853   Register BitShift = MI.getOperand(5).getReg();
7854   Register NegBitShift = MI.getOperand(6).getReg();
7855   int64_t BitSize = MI.getOperand(7).getImm();
7856   DebugLoc DL = MI.getDebugLoc();
7857 
7858   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7859 
7860   // Get the right opcodes for the displacement and zero-extension.
7861   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7862   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7863   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
7864   assert(LOpcode && CSOpcode && "Displacement out of range");
7865 
7866   // Create virtual registers for temporary results.
7867   Register OrigOldVal = MRI.createVirtualRegister(RC);
7868   Register OldVal = MRI.createVirtualRegister(RC);
7869   Register SwapVal = MRI.createVirtualRegister(RC);
7870   Register StoreVal = MRI.createVirtualRegister(RC);
7871   Register OldValRot = MRI.createVirtualRegister(RC);
7872   Register RetryOldVal = MRI.createVirtualRegister(RC);
7873   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7874 
7875   // Insert 2 basic blocks for the loop.
7876   MachineBasicBlock *StartMBB = MBB;
7877   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7878   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7879   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7880 
7881   //  StartMBB:
7882   //   ...
7883   //   %OrigOldVal     = L Disp(%Base)
7884   //   # fall through to LoopMBB
7885   MBB = StartMBB;
7886   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7887       .add(Base)
7888       .addImm(Disp)
7889       .addReg(0);
7890   MBB->addSuccessor(LoopMBB);
7891 
7892   //  LoopMBB:
7893   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7894   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7895   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
7896   //                      ^^ The low BitSize bits contain the field
7897   //                         of interest.
7898   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
7899   //                      ^^ Replace the upper 32-BitSize bits of the
7900   //                         swap value with those that we loaded and rotated.
7901   //   %Dest = LL[CH] %OldValRot
7902   //   CR %Dest, %CmpVal
7903   //   JNE DoneMBB
7904   //   # Fall through to SetMBB
7905   MBB = LoopMBB;
7906   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7907     .addReg(OrigOldVal).addMBB(StartMBB)
7908     .addReg(RetryOldVal).addMBB(SetMBB);
7909   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7910     .addReg(OrigSwapVal).addMBB(StartMBB)
7911     .addReg(RetrySwapVal).addMBB(SetMBB);
7912   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
7913     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7914   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7915     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
7916   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
7917     .addReg(OldValRot);
7918   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7919     .addReg(Dest).addReg(CmpVal);
7920   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7921     .addImm(SystemZ::CCMASK_ICMP)
7922     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7923   MBB->addSuccessor(DoneMBB);
7924   MBB->addSuccessor(SetMBB);
7925 
7926   //  SetMBB:
7927   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7928   //                      ^^ Rotate the new field to its proper position.
7929   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
7930   //   JNE LoopMBB
7931   //   # fall through to ExitMBB
7932   MBB = SetMBB;
7933   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7934     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7935   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7936       .addReg(OldVal)
7937       .addReg(StoreVal)
7938       .add(Base)
7939       .addImm(Disp);
7940   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7941     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7942   MBB->addSuccessor(LoopMBB);
7943   MBB->addSuccessor(DoneMBB);
7944 
7945   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7946   // to the block after the loop.  At this point, CC may have been defined
7947   // either by the CR in LoopMBB or by the CS in SetMBB.
7948   if (!MI.registerDefIsDead(SystemZ::CC))
7949     DoneMBB->addLiveIn(SystemZ::CC);
7950 
7951   MI.eraseFromParent();
7952   return DoneMBB;
7953 }
7954 
7955 // Emit a move from two GR64s to a GR128.
7956 MachineBasicBlock *
7957 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7958                                    MachineBasicBlock *MBB) const {
7959   MachineFunction &MF = *MBB->getParent();
7960   const SystemZInstrInfo *TII =
7961       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7962   MachineRegisterInfo &MRI = MF.getRegInfo();
7963   DebugLoc DL = MI.getDebugLoc();
7964 
7965   Register Dest = MI.getOperand(0).getReg();
7966   Register Hi = MI.getOperand(1).getReg();
7967   Register Lo = MI.getOperand(2).getReg();
7968   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7969   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7970 
7971   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7972   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7973     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7974   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7975     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7976 
7977   MI.eraseFromParent();
7978   return MBB;
7979 }
7980 
7981 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7982 // if the high register of the GR128 value must be cleared or false if
7983 // it's "don't care".
7984 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7985                                                      MachineBasicBlock *MBB,
7986                                                      bool ClearEven) const {
7987   MachineFunction &MF = *MBB->getParent();
7988   const SystemZInstrInfo *TII =
7989       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7990   MachineRegisterInfo &MRI = MF.getRegInfo();
7991   DebugLoc DL = MI.getDebugLoc();
7992 
7993   Register Dest = MI.getOperand(0).getReg();
7994   Register Src = MI.getOperand(1).getReg();
7995   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7996 
7997   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7998   if (ClearEven) {
7999     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8000     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8001 
8002     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
8003       .addImm(0);
8004     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
8005       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
8006     In128 = NewIn128;
8007   }
8008   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8009     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
8010 
8011   MI.eraseFromParent();
8012   return MBB;
8013 }
8014 
8015 MachineBasicBlock *
8016 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
8017                                          MachineBasicBlock *MBB,
8018                                          unsigned Opcode, bool IsMemset) const {
8019   MachineFunction &MF = *MBB->getParent();
8020   const SystemZInstrInfo *TII =
8021       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8022   MachineRegisterInfo &MRI = MF.getRegInfo();
8023   DebugLoc DL = MI.getDebugLoc();
8024 
8025   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
8026   uint64_t DestDisp = MI.getOperand(1).getImm();
8027   MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
8028   uint64_t SrcDisp;
8029 
8030   // Fold the displacement Disp if it is out of range.
8031   auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
8032     if (!isUInt<12>(Disp)) {
8033       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8034       unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
8035       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
8036         .add(Base).addImm(Disp).addReg(0);
8037       Base = MachineOperand::CreateReg(Reg, false);
8038       Disp = 0;
8039     }
8040   };
8041 
8042   if (!IsMemset) {
8043     SrcBase = earlyUseOperand(MI.getOperand(2));
8044     SrcDisp = MI.getOperand(3).getImm();
8045   } else {
8046     SrcBase = DestBase;
8047     SrcDisp = DestDisp++;
8048     foldDisplIfNeeded(DestBase, DestDisp);
8049   }
8050 
8051   MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
8052   bool IsImmForm = LengthMO.isImm();
8053   bool IsRegForm = !IsImmForm;
8054 
8055   // Build and insert one Opcode of Length, with special treatment for memset.
8056   auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
8057                             MachineBasicBlock::iterator InsPos,
8058                             MachineOperand DBase, uint64_t DDisp,
8059                             MachineOperand SBase, uint64_t SDisp,
8060                             unsigned Length) -> void {
8061     assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
8062     if (IsMemset) {
8063       MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
8064       if (ByteMO.isImm())
8065         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
8066           .add(SBase).addImm(SDisp).add(ByteMO);
8067       else
8068         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
8069           .add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
8070       if (--Length == 0)
8071         return;
8072     }
8073     BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
8074       .add(DBase).addImm(DDisp).addImm(Length)
8075       .add(SBase).addImm(SDisp)
8076       .setMemRefs(MI.memoperands());
8077   };
8078 
8079   bool NeedsLoop = false;
8080   uint64_t ImmLength = 0;
8081   Register LenAdjReg = SystemZ::NoRegister;
8082   if (IsImmForm) {
8083     ImmLength = LengthMO.getImm();
8084     ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
8085     if (ImmLength == 0) {
8086       MI.eraseFromParent();
8087       return MBB;
8088     }
8089     if (Opcode == SystemZ::CLC) {
8090       if (ImmLength > 3 * 256)
8091         // A two-CLC sequence is a clear win over a loop, not least because
8092         // it needs only one branch.  A three-CLC sequence needs the same
8093         // number of branches as a loop (i.e. 2), but is shorter.  That
8094         // brings us to lengths greater than 768 bytes.  It seems relatively
8095         // likely that a difference will be found within the first 768 bytes,
8096         // so we just optimize for the smallest number of branch
8097         // instructions, in order to avoid polluting the prediction buffer
8098         // too much.
8099         NeedsLoop = true;
8100     } else if (ImmLength > 6 * 256)
8101       // The heuristic we use is to prefer loops for anything that would
8102       // require 7 or more MVCs.  With these kinds of sizes there isn't much
8103       // to choose between straight-line code and looping code, since the
8104       // time will be dominated by the MVCs themselves.
8105       NeedsLoop = true;
8106   } else {
8107     NeedsLoop = true;
8108     LenAdjReg = LengthMO.getReg();
8109   }
8110 
8111   // When generating more than one CLC, all but the last will need to
8112   // branch to the end when a difference is found.
8113   MachineBasicBlock *EndMBB =
8114       (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
8115            ? SystemZ::splitBlockAfter(MI, MBB)
8116            : nullptr);
8117 
8118   if (NeedsLoop) {
8119     Register StartCountReg =
8120       MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8121     if (IsImmForm) {
8122       TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
8123       ImmLength &= 255;
8124     } else {
8125       BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
8126         .addReg(LenAdjReg)
8127         .addReg(0)
8128         .addImm(8);
8129     }
8130 
8131     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
8132     auto loadZeroAddress = [&]() -> MachineOperand {
8133       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8134       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
8135       return MachineOperand::CreateReg(Reg, false);
8136     };
8137     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
8138       DestBase = loadZeroAddress();
8139     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
8140       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
8141 
8142     MachineBasicBlock *StartMBB = nullptr;
8143     MachineBasicBlock *LoopMBB = nullptr;
8144     MachineBasicBlock *NextMBB = nullptr;
8145     MachineBasicBlock *DoneMBB = nullptr;
8146     MachineBasicBlock *AllDoneMBB = nullptr;
8147 
8148     Register StartSrcReg = forceReg(MI, SrcBase, TII);
8149     Register StartDestReg =
8150         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
8151 
8152     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
8153     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
8154     Register ThisDestReg =
8155         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
8156     Register NextSrcReg  = MRI.createVirtualRegister(RC);
8157     Register NextDestReg =
8158         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
8159     RC = &SystemZ::GR64BitRegClass;
8160     Register ThisCountReg = MRI.createVirtualRegister(RC);
8161     Register NextCountReg = MRI.createVirtualRegister(RC);
8162 
8163     if (IsRegForm) {
8164       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8165       StartMBB = SystemZ::emitBlockAfter(MBB);
8166       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8167       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8168       DoneMBB = SystemZ::emitBlockAfter(NextMBB);
8169 
8170       //  MBB:
8171       //   # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
8172       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8173         .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
8174       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8175         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8176         .addMBB(AllDoneMBB);
8177       MBB->addSuccessor(AllDoneMBB);
8178       if (!IsMemset)
8179         MBB->addSuccessor(StartMBB);
8180       else {
8181         // MemsetOneCheckMBB:
8182         // # Jump to MemsetOneMBB for a memset of length 1, or
8183         // # fall thru to StartMBB.
8184         MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
8185         MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
8186         MBB->addSuccessor(MemsetOneCheckMBB);
8187         MBB = MemsetOneCheckMBB;
8188         BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8189           .addReg(LenAdjReg).addImm(-1);
8190         BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8191           .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8192           .addMBB(MemsetOneMBB);
8193         MBB->addSuccessor(MemsetOneMBB, {10, 100});
8194         MBB->addSuccessor(StartMBB, {90, 100});
8195 
8196         // MemsetOneMBB:
8197         // # Jump back to AllDoneMBB after a single MVI or STC.
8198         MBB = MemsetOneMBB;
8199         insertMemMemOp(MBB, MBB->end(),
8200                        MachineOperand::CreateReg(StartDestReg, false), DestDisp,
8201                        MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
8202                        1);
8203         BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
8204         MBB->addSuccessor(AllDoneMBB);
8205       }
8206 
8207       // StartMBB:
8208       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
8209       MBB = StartMBB;
8210       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8211         .addReg(StartCountReg).addImm(0);
8212       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8213         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8214         .addMBB(DoneMBB);
8215       MBB->addSuccessor(DoneMBB);
8216       MBB->addSuccessor(LoopMBB);
8217     }
8218     else {
8219       StartMBB = MBB;
8220       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8221       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8222       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8223 
8224       //  StartMBB:
8225       //   # fall through to LoopMBB
8226       MBB->addSuccessor(LoopMBB);
8227 
8228       DestBase = MachineOperand::CreateReg(NextDestReg, false);
8229       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
8230       if (EndMBB && !ImmLength)
8231         // If the loop handled the whole CLC range, DoneMBB will be empty with
8232         // CC live-through into EndMBB, so add it as live-in.
8233         DoneMBB->addLiveIn(SystemZ::CC);
8234     }
8235 
8236     //  LoopMBB:
8237     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
8238     //                      [ %NextDestReg, NextMBB ]
8239     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
8240     //                     [ %NextSrcReg, NextMBB ]
8241     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
8242     //                       [ %NextCountReg, NextMBB ]
8243     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
8244     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
8245     //   ( JLH EndMBB )
8246     //
8247     // The prefetch is used only for MVC.  The JLH is used only for CLC.
8248     MBB = LoopMBB;
8249     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
8250       .addReg(StartDestReg).addMBB(StartMBB)
8251       .addReg(NextDestReg).addMBB(NextMBB);
8252     if (!HaveSingleBase)
8253       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
8254         .addReg(StartSrcReg).addMBB(StartMBB)
8255         .addReg(NextSrcReg).addMBB(NextMBB);
8256     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
8257       .addReg(StartCountReg).addMBB(StartMBB)
8258       .addReg(NextCountReg).addMBB(NextMBB);
8259     if (Opcode == SystemZ::MVC)
8260       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
8261         .addImm(SystemZ::PFD_WRITE)
8262         .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
8263     insertMemMemOp(MBB, MBB->end(),
8264                    MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
8265                    MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
8266     if (EndMBB) {
8267       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8268         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8269         .addMBB(EndMBB);
8270       MBB->addSuccessor(EndMBB);
8271       MBB->addSuccessor(NextMBB);
8272     }
8273 
8274     // NextMBB:
8275     //   %NextDestReg = LA 256(%ThisDestReg)
8276     //   %NextSrcReg = LA 256(%ThisSrcReg)
8277     //   %NextCountReg = AGHI %ThisCountReg, -1
8278     //   CGHI %NextCountReg, 0
8279     //   JLH LoopMBB
8280     //   # fall through to DoneMBB
8281     //
8282     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
8283     MBB = NextMBB;
8284     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
8285       .addReg(ThisDestReg).addImm(256).addReg(0);
8286     if (!HaveSingleBase)
8287       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
8288         .addReg(ThisSrcReg).addImm(256).addReg(0);
8289     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
8290       .addReg(ThisCountReg).addImm(-1);
8291     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8292       .addReg(NextCountReg).addImm(0);
8293     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8294       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8295       .addMBB(LoopMBB);
8296     MBB->addSuccessor(LoopMBB);
8297     MBB->addSuccessor(DoneMBB);
8298 
8299     MBB = DoneMBB;
8300     if (IsRegForm) {
8301       // DoneMBB:
8302       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
8303       // # Use EXecute Relative Long for the remainder of the bytes. The target
8304       //   instruction of the EXRL will have a length field of 1 since 0 is an
8305       //   illegal value. The number of bytes processed becomes (%LenAdjReg &
8306       //   0xff) + 1.
8307       // # Fall through to AllDoneMBB.
8308       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8309       Register RemDestReg = HaveSingleBase ? RemSrcReg
8310         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8311       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
8312         .addReg(StartDestReg).addMBB(StartMBB)
8313         .addReg(NextDestReg).addMBB(NextMBB);
8314       if (!HaveSingleBase)
8315         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
8316           .addReg(StartSrcReg).addMBB(StartMBB)
8317           .addReg(NextSrcReg).addMBB(NextMBB);
8318       if (IsMemset)
8319         insertMemMemOp(MBB, MBB->end(),
8320                        MachineOperand::CreateReg(RemDestReg, false), DestDisp,
8321                        MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
8322       MachineInstrBuilder EXRL_MIB =
8323         BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
8324           .addImm(Opcode)
8325           .addReg(LenAdjReg)
8326           .addReg(RemDestReg).addImm(DestDisp)
8327           .addReg(RemSrcReg).addImm(SrcDisp);
8328       MBB->addSuccessor(AllDoneMBB);
8329       MBB = AllDoneMBB;
8330       if (EndMBB) {
8331         EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
8332         MBB->addLiveIn(SystemZ::CC);
8333       }
8334     }
8335   }
8336 
8337   // Handle any remaining bytes with straight-line code.
8338   while (ImmLength > 0) {
8339     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
8340     // The previous iteration might have created out-of-range displacements.
8341     // Apply them using LA/LAY if so.
8342     foldDisplIfNeeded(DestBase, DestDisp);
8343     foldDisplIfNeeded(SrcBase, SrcDisp);
8344     insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
8345     DestDisp += ThisLength;
8346     SrcDisp += ThisLength;
8347     ImmLength -= ThisLength;
8348     // If there's another CLC to go, branch to the end if a difference
8349     // was found.
8350     if (EndMBB && ImmLength > 0) {
8351       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
8352       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8353         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8354         .addMBB(EndMBB);
8355       MBB->addSuccessor(EndMBB);
8356       MBB->addSuccessor(NextMBB);
8357       MBB = NextMBB;
8358     }
8359   }
8360   if (EndMBB) {
8361     MBB->addSuccessor(EndMBB);
8362     MBB = EndMBB;
8363     MBB->addLiveIn(SystemZ::CC);
8364   }
8365 
8366   MI.eraseFromParent();
8367   return MBB;
8368 }
8369 
8370 // Decompose string pseudo-instruction MI into a loop that continually performs
8371 // Opcode until CC != 3.
8372 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
8373     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8374   MachineFunction &MF = *MBB->getParent();
8375   const SystemZInstrInfo *TII =
8376       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8377   MachineRegisterInfo &MRI = MF.getRegInfo();
8378   DebugLoc DL = MI.getDebugLoc();
8379 
8380   uint64_t End1Reg = MI.getOperand(0).getReg();
8381   uint64_t Start1Reg = MI.getOperand(1).getReg();
8382   uint64_t Start2Reg = MI.getOperand(2).getReg();
8383   uint64_t CharReg = MI.getOperand(3).getReg();
8384 
8385   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
8386   uint64_t This1Reg = MRI.createVirtualRegister(RC);
8387   uint64_t This2Reg = MRI.createVirtualRegister(RC);
8388   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
8389 
8390   MachineBasicBlock *StartMBB = MBB;
8391   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8392   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8393 
8394   //  StartMBB:
8395   //   # fall through to LoopMBB
8396   MBB->addSuccessor(LoopMBB);
8397 
8398   //  LoopMBB:
8399   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
8400   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
8401   //   R0L = %CharReg
8402   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
8403   //   JO LoopMBB
8404   //   # fall through to DoneMBB
8405   //
8406   // The load of R0L can be hoisted by post-RA LICM.
8407   MBB = LoopMBB;
8408 
8409   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
8410     .addReg(Start1Reg).addMBB(StartMBB)
8411     .addReg(End1Reg).addMBB(LoopMBB);
8412   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
8413     .addReg(Start2Reg).addMBB(StartMBB)
8414     .addReg(End2Reg).addMBB(LoopMBB);
8415   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
8416   BuildMI(MBB, DL, TII->get(Opcode))
8417     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
8418     .addReg(This1Reg).addReg(This2Reg);
8419   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8420     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
8421   MBB->addSuccessor(LoopMBB);
8422   MBB->addSuccessor(DoneMBB);
8423 
8424   DoneMBB->addLiveIn(SystemZ::CC);
8425 
8426   MI.eraseFromParent();
8427   return DoneMBB;
8428 }
8429 
8430 // Update TBEGIN instruction with final opcode and register clobbers.
8431 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
8432     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
8433     bool NoFloat) const {
8434   MachineFunction &MF = *MBB->getParent();
8435   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8436   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8437 
8438   // Update opcode.
8439   MI.setDesc(TII->get(Opcode));
8440 
8441   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
8442   // Make sure to add the corresponding GRSM bits if they are missing.
8443   uint64_t Control = MI.getOperand(2).getImm();
8444   static const unsigned GPRControlBit[16] = {
8445     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8446     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8447   };
8448   Control |= GPRControlBit[15];
8449   if (TFI->hasFP(MF))
8450     Control |= GPRControlBit[11];
8451   MI.getOperand(2).setImm(Control);
8452 
8453   // Add GPR clobbers.
8454   for (int I = 0; I < 16; I++) {
8455     if ((Control & GPRControlBit[I]) == 0) {
8456       unsigned Reg = SystemZMC::GR64Regs[I];
8457       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8458     }
8459   }
8460 
8461   // Add FPR/VR clobbers.
8462   if (!NoFloat && (Control & 4) != 0) {
8463     if (Subtarget.hasVector()) {
8464       for (unsigned Reg : SystemZMC::VR128Regs) {
8465         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8466       }
8467     } else {
8468       for (unsigned Reg : SystemZMC::FP64Regs) {
8469         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8470       }
8471     }
8472   }
8473 
8474   return MBB;
8475 }
8476 
8477 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8478     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8479   MachineFunction &MF = *MBB->getParent();
8480   MachineRegisterInfo *MRI = &MF.getRegInfo();
8481   const SystemZInstrInfo *TII =
8482       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8483   DebugLoc DL = MI.getDebugLoc();
8484 
8485   Register SrcReg = MI.getOperand(0).getReg();
8486 
8487   // Create new virtual register of the same class as source.
8488   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8489   Register DstReg = MRI->createVirtualRegister(RC);
8490 
8491   // Replace pseudo with a normal load-and-test that models the def as
8492   // well.
8493   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8494     .addReg(SrcReg)
8495     .setMIFlags(MI.getFlags());
8496   MI.eraseFromParent();
8497 
8498   return MBB;
8499 }
8500 
8501 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8502     MachineInstr &MI, MachineBasicBlock *MBB) const {
8503   MachineFunction &MF = *MBB->getParent();
8504   MachineRegisterInfo *MRI = &MF.getRegInfo();
8505   const SystemZInstrInfo *TII =
8506       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8507   DebugLoc DL = MI.getDebugLoc();
8508   const unsigned ProbeSize = getStackProbeSize(MF);
8509   Register DstReg = MI.getOperand(0).getReg();
8510   Register SizeReg = MI.getOperand(2).getReg();
8511 
8512   MachineBasicBlock *StartMBB = MBB;
8513   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8514   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8515   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8516   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8517   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8518 
8519   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8520     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8521 
8522   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8523   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8524 
8525   //  LoopTestMBB
8526   //  BRC TailTestMBB
8527   //  # fallthrough to LoopBodyMBB
8528   StartMBB->addSuccessor(LoopTestMBB);
8529   MBB = LoopTestMBB;
8530   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8531     .addReg(SizeReg)
8532     .addMBB(StartMBB)
8533     .addReg(IncReg)
8534     .addMBB(LoopBodyMBB);
8535   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8536     .addReg(PHIReg)
8537     .addImm(ProbeSize);
8538   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8539     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8540     .addMBB(TailTestMBB);
8541   MBB->addSuccessor(LoopBodyMBB);
8542   MBB->addSuccessor(TailTestMBB);
8543 
8544   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8545   //  J LoopTestMBB
8546   MBB = LoopBodyMBB;
8547   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8548     .addReg(PHIReg)
8549     .addImm(ProbeSize);
8550   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8551     .addReg(SystemZ::R15D)
8552     .addImm(ProbeSize);
8553   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8554     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8555     .setMemRefs(VolLdMMO);
8556   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8557   MBB->addSuccessor(LoopTestMBB);
8558 
8559   //  TailTestMBB
8560   //  BRC DoneMBB
8561   //  # fallthrough to TailMBB
8562   MBB = TailTestMBB;
8563   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8564     .addReg(PHIReg)
8565     .addImm(0);
8566   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8567     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8568     .addMBB(DoneMBB);
8569   MBB->addSuccessor(TailMBB);
8570   MBB->addSuccessor(DoneMBB);
8571 
8572   //  TailMBB
8573   //  # fallthrough to DoneMBB
8574   MBB = TailMBB;
8575   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8576     .addReg(SystemZ::R15D)
8577     .addReg(PHIReg);
8578   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8579     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8580     .setMemRefs(VolLdMMO);
8581   MBB->addSuccessor(DoneMBB);
8582 
8583   //  DoneMBB
8584   MBB = DoneMBB;
8585   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8586     .addReg(SystemZ::R15D);
8587 
8588   MI.eraseFromParent();
8589   return DoneMBB;
8590 }
8591 
8592 SDValue SystemZTargetLowering::
8593 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8594   MachineFunction &MF = DAG.getMachineFunction();
8595   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
8596   SDLoc DL(SP);
8597   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8598                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8599 }
8600 
8601 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8602     MachineInstr &MI, MachineBasicBlock *MBB) const {
8603   switch (MI.getOpcode()) {
8604   case SystemZ::Select32:
8605   case SystemZ::Select64:
8606   case SystemZ::SelectF32:
8607   case SystemZ::SelectF64:
8608   case SystemZ::SelectF128:
8609   case SystemZ::SelectVR32:
8610   case SystemZ::SelectVR64:
8611   case SystemZ::SelectVR128:
8612     return emitSelect(MI, MBB);
8613 
8614   case SystemZ::CondStore8Mux:
8615     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8616   case SystemZ::CondStore8MuxInv:
8617     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8618   case SystemZ::CondStore16Mux:
8619     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8620   case SystemZ::CondStore16MuxInv:
8621     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8622   case SystemZ::CondStore32Mux:
8623     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8624   case SystemZ::CondStore32MuxInv:
8625     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8626   case SystemZ::CondStore8:
8627     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8628   case SystemZ::CondStore8Inv:
8629     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8630   case SystemZ::CondStore16:
8631     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8632   case SystemZ::CondStore16Inv:
8633     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8634   case SystemZ::CondStore32:
8635     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8636   case SystemZ::CondStore32Inv:
8637     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8638   case SystemZ::CondStore64:
8639     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8640   case SystemZ::CondStore64Inv:
8641     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8642   case SystemZ::CondStoreF32:
8643     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8644   case SystemZ::CondStoreF32Inv:
8645     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8646   case SystemZ::CondStoreF64:
8647     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8648   case SystemZ::CondStoreF64Inv:
8649     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8650 
8651   case SystemZ::PAIR128:
8652     return emitPair128(MI, MBB);
8653   case SystemZ::AEXT128:
8654     return emitExt128(MI, MBB, false);
8655   case SystemZ::ZEXT128:
8656     return emitExt128(MI, MBB, true);
8657 
8658   case SystemZ::ATOMIC_SWAPW:
8659     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8660   case SystemZ::ATOMIC_SWAP_32:
8661     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8662   case SystemZ::ATOMIC_SWAP_64:
8663     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8664 
8665   case SystemZ::ATOMIC_LOADW_AR:
8666     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8667   case SystemZ::ATOMIC_LOADW_AFI:
8668     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8669   case SystemZ::ATOMIC_LOAD_AR:
8670     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8671   case SystemZ::ATOMIC_LOAD_AHI:
8672     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8673   case SystemZ::ATOMIC_LOAD_AFI:
8674     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8675   case SystemZ::ATOMIC_LOAD_AGR:
8676     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8677   case SystemZ::ATOMIC_LOAD_AGHI:
8678     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8679   case SystemZ::ATOMIC_LOAD_AGFI:
8680     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8681 
8682   case SystemZ::ATOMIC_LOADW_SR:
8683     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8684   case SystemZ::ATOMIC_LOAD_SR:
8685     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8686   case SystemZ::ATOMIC_LOAD_SGR:
8687     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8688 
8689   case SystemZ::ATOMIC_LOADW_NR:
8690     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8691   case SystemZ::ATOMIC_LOADW_NILH:
8692     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8693   case SystemZ::ATOMIC_LOAD_NR:
8694     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8695   case SystemZ::ATOMIC_LOAD_NILL:
8696     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8697   case SystemZ::ATOMIC_LOAD_NILH:
8698     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8699   case SystemZ::ATOMIC_LOAD_NILF:
8700     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8701   case SystemZ::ATOMIC_LOAD_NGR:
8702     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8703   case SystemZ::ATOMIC_LOAD_NILL64:
8704     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8705   case SystemZ::ATOMIC_LOAD_NILH64:
8706     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8707   case SystemZ::ATOMIC_LOAD_NIHL64:
8708     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8709   case SystemZ::ATOMIC_LOAD_NIHH64:
8710     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8711   case SystemZ::ATOMIC_LOAD_NILF64:
8712     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8713   case SystemZ::ATOMIC_LOAD_NIHF64:
8714     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8715 
8716   case SystemZ::ATOMIC_LOADW_OR:
8717     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8718   case SystemZ::ATOMIC_LOADW_OILH:
8719     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8720   case SystemZ::ATOMIC_LOAD_OR:
8721     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8722   case SystemZ::ATOMIC_LOAD_OILL:
8723     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8724   case SystemZ::ATOMIC_LOAD_OILH:
8725     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8726   case SystemZ::ATOMIC_LOAD_OILF:
8727     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8728   case SystemZ::ATOMIC_LOAD_OGR:
8729     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8730   case SystemZ::ATOMIC_LOAD_OILL64:
8731     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8732   case SystemZ::ATOMIC_LOAD_OILH64:
8733     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8734   case SystemZ::ATOMIC_LOAD_OIHL64:
8735     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8736   case SystemZ::ATOMIC_LOAD_OIHH64:
8737     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8738   case SystemZ::ATOMIC_LOAD_OILF64:
8739     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8740   case SystemZ::ATOMIC_LOAD_OIHF64:
8741     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8742 
8743   case SystemZ::ATOMIC_LOADW_XR:
8744     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8745   case SystemZ::ATOMIC_LOADW_XILF:
8746     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8747   case SystemZ::ATOMIC_LOAD_XR:
8748     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8749   case SystemZ::ATOMIC_LOAD_XILF:
8750     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8751   case SystemZ::ATOMIC_LOAD_XGR:
8752     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8753   case SystemZ::ATOMIC_LOAD_XILF64:
8754     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8755   case SystemZ::ATOMIC_LOAD_XIHF64:
8756     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8757 
8758   case SystemZ::ATOMIC_LOADW_NRi:
8759     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8760   case SystemZ::ATOMIC_LOADW_NILHi:
8761     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8762   case SystemZ::ATOMIC_LOAD_NRi:
8763     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8764   case SystemZ::ATOMIC_LOAD_NILLi:
8765     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8766   case SystemZ::ATOMIC_LOAD_NILHi:
8767     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8768   case SystemZ::ATOMIC_LOAD_NILFi:
8769     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8770   case SystemZ::ATOMIC_LOAD_NGRi:
8771     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8772   case SystemZ::ATOMIC_LOAD_NILL64i:
8773     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8774   case SystemZ::ATOMIC_LOAD_NILH64i:
8775     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8776   case SystemZ::ATOMIC_LOAD_NIHL64i:
8777     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8778   case SystemZ::ATOMIC_LOAD_NIHH64i:
8779     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8780   case SystemZ::ATOMIC_LOAD_NILF64i:
8781     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8782   case SystemZ::ATOMIC_LOAD_NIHF64i:
8783     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8784 
8785   case SystemZ::ATOMIC_LOADW_MIN:
8786     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8787                                 SystemZ::CCMASK_CMP_LE, 0);
8788   case SystemZ::ATOMIC_LOAD_MIN_32:
8789     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8790                                 SystemZ::CCMASK_CMP_LE, 32);
8791   case SystemZ::ATOMIC_LOAD_MIN_64:
8792     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8793                                 SystemZ::CCMASK_CMP_LE, 64);
8794 
8795   case SystemZ::ATOMIC_LOADW_MAX:
8796     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8797                                 SystemZ::CCMASK_CMP_GE, 0);
8798   case SystemZ::ATOMIC_LOAD_MAX_32:
8799     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8800                                 SystemZ::CCMASK_CMP_GE, 32);
8801   case SystemZ::ATOMIC_LOAD_MAX_64:
8802     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8803                                 SystemZ::CCMASK_CMP_GE, 64);
8804 
8805   case SystemZ::ATOMIC_LOADW_UMIN:
8806     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8807                                 SystemZ::CCMASK_CMP_LE, 0);
8808   case SystemZ::ATOMIC_LOAD_UMIN_32:
8809     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8810                                 SystemZ::CCMASK_CMP_LE, 32);
8811   case SystemZ::ATOMIC_LOAD_UMIN_64:
8812     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8813                                 SystemZ::CCMASK_CMP_LE, 64);
8814 
8815   case SystemZ::ATOMIC_LOADW_UMAX:
8816     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8817                                 SystemZ::CCMASK_CMP_GE, 0);
8818   case SystemZ::ATOMIC_LOAD_UMAX_32:
8819     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8820                                 SystemZ::CCMASK_CMP_GE, 32);
8821   case SystemZ::ATOMIC_LOAD_UMAX_64:
8822     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8823                                 SystemZ::CCMASK_CMP_GE, 64);
8824 
8825   case SystemZ::ATOMIC_CMP_SWAPW:
8826     return emitAtomicCmpSwapW(MI, MBB);
8827   case SystemZ::MVCImm:
8828   case SystemZ::MVCReg:
8829     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8830   case SystemZ::NCImm:
8831     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8832   case SystemZ::OCImm:
8833     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8834   case SystemZ::XCImm:
8835   case SystemZ::XCReg:
8836     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8837   case SystemZ::CLCImm:
8838   case SystemZ::CLCReg:
8839     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8840   case SystemZ::MemsetImmImm:
8841   case SystemZ::MemsetImmReg:
8842   case SystemZ::MemsetRegImm:
8843   case SystemZ::MemsetRegReg:
8844     return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
8845   case SystemZ::CLSTLoop:
8846     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8847   case SystemZ::MVSTLoop:
8848     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8849   case SystemZ::SRSTLoop:
8850     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8851   case SystemZ::TBEGIN:
8852     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8853   case SystemZ::TBEGIN_nofloat:
8854     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8855   case SystemZ::TBEGINC:
8856     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8857   case SystemZ::LTEBRCompare_VecPseudo:
8858     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8859   case SystemZ::LTDBRCompare_VecPseudo:
8860     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8861   case SystemZ::LTXBRCompare_VecPseudo:
8862     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8863 
8864   case SystemZ::PROBED_ALLOCA:
8865     return emitProbedAlloca(MI, MBB);
8866 
8867   case TargetOpcode::STACKMAP:
8868   case TargetOpcode::PATCHPOINT:
8869     return emitPatchPoint(MI, MBB);
8870 
8871   default:
8872     llvm_unreachable("Unexpected instr type to insert");
8873   }
8874 }
8875 
8876 // This is only used by the isel schedulers, and is needed only to prevent
8877 // compiler from crashing when list-ilp is used.
8878 const TargetRegisterClass *
8879 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8880   if (VT == MVT::Untyped)
8881     return &SystemZ::ADDR128BitRegClass;
8882   return TargetLowering::getRepRegClassFor(VT);
8883 }
8884