1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/Intrinsics.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/KnownBits.h" 26 #include <cctype> 27 28 using namespace llvm; 29 30 #define DEBUG_TYPE "systemz-lower" 31 32 namespace { 33 // Represents information about a comparison. 34 struct Comparison { 35 Comparison(SDValue Op0In, SDValue Op1In) 36 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 37 38 // The operands to the comparison. 39 SDValue Op0, Op1; 40 41 // The opcode that should be used to compare Op0 and Op1. 42 unsigned Opcode; 43 44 // A SystemZICMP value. Only used for integer comparisons. 45 unsigned ICmpType; 46 47 // The mask of CC values that Opcode can produce. 48 unsigned CCValid; 49 50 // The mask of CC values for which the original condition is true. 51 unsigned CCMask; 52 }; 53 } // end anonymous namespace 54 55 // Classify VT as either 32 or 64 bit. 56 static bool is32Bit(EVT VT) { 57 switch (VT.getSimpleVT().SimpleTy) { 58 case MVT::i32: 59 return true; 60 case MVT::i64: 61 return false; 62 default: 63 llvm_unreachable("Unsupported type"); 64 } 65 } 66 67 // Return a version of MachineOperand that can be safely used before the 68 // final use. 69 static MachineOperand earlyUseOperand(MachineOperand Op) { 70 if (Op.isReg()) 71 Op.setIsKill(false); 72 return Op; 73 } 74 75 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 76 const SystemZSubtarget &STI) 77 : TargetLowering(TM), Subtarget(STI) { 78 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 79 80 // Set up the register classes. 81 if (Subtarget.hasHighWord()) 82 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 83 else 84 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 85 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 86 if (Subtarget.hasVector()) { 87 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 88 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 89 } else { 90 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 91 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 92 } 93 if (Subtarget.hasVectorEnhancements1()) 94 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 95 else 96 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 97 98 if (Subtarget.hasVector()) { 99 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 100 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 101 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 102 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 103 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 104 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 105 } 106 107 // Compute derived properties from the register classes 108 computeRegisterProperties(Subtarget.getRegisterInfo()); 109 110 // Set up special registers. 111 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 112 113 // TODO: It may be better to default to latency-oriented scheduling, however 114 // LLVM's current latency-oriented scheduler can't handle physreg definitions 115 // such as SystemZ has with CC, so set this to the register-pressure 116 // scheduler, because it can. 117 setSchedulingPreference(Sched::RegPressure); 118 119 setBooleanContents(ZeroOrOneBooleanContent); 120 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 121 122 // Instructions are strings of 2-byte aligned 2-byte values. 123 setMinFunctionAlignment(Align(2)); 124 // For performance reasons we prefer 16-byte alignment. 125 setPrefFunctionAlignment(Align(16)); 126 127 // Handle operations that are handled in a similar way for all types. 128 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 129 I <= MVT::LAST_FP_VALUETYPE; 130 ++I) { 131 MVT VT = MVT::SimpleValueType(I); 132 if (isTypeLegal(VT)) { 133 // Lower SET_CC into an IPM-based sequence. 134 setOperationAction(ISD::SETCC, VT, Custom); 135 136 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 137 setOperationAction(ISD::SELECT, VT, Expand); 138 139 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 140 setOperationAction(ISD::SELECT_CC, VT, Custom); 141 setOperationAction(ISD::BR_CC, VT, Custom); 142 } 143 } 144 145 // Expand jump table branches as address arithmetic followed by an 146 // indirect jump. 147 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 148 149 // Expand BRCOND into a BR_CC (see above). 150 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 151 152 // Handle integer types. 153 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 154 I <= MVT::LAST_INTEGER_VALUETYPE; 155 ++I) { 156 MVT VT = MVT::SimpleValueType(I); 157 if (isTypeLegal(VT)) { 158 // Expand individual DIV and REMs into DIVREMs. 159 setOperationAction(ISD::SDIV, VT, Expand); 160 setOperationAction(ISD::UDIV, VT, Expand); 161 setOperationAction(ISD::SREM, VT, Expand); 162 setOperationAction(ISD::UREM, VT, Expand); 163 setOperationAction(ISD::SDIVREM, VT, Custom); 164 setOperationAction(ISD::UDIVREM, VT, Custom); 165 166 // Support addition/subtraction with overflow. 167 setOperationAction(ISD::SADDO, VT, Custom); 168 setOperationAction(ISD::SSUBO, VT, Custom); 169 170 // Support addition/subtraction with carry. 171 setOperationAction(ISD::UADDO, VT, Custom); 172 setOperationAction(ISD::USUBO, VT, Custom); 173 174 // Support carry in as value rather than glue. 175 setOperationAction(ISD::ADDCARRY, VT, Custom); 176 setOperationAction(ISD::SUBCARRY, VT, Custom); 177 178 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 179 // stores, putting a serialization instruction after the stores. 180 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 181 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 182 183 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 184 // available, or if the operand is constant. 185 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 186 187 // Use POPCNT on z196 and above. 188 if (Subtarget.hasPopulationCount()) 189 setOperationAction(ISD::CTPOP, VT, Custom); 190 else 191 setOperationAction(ISD::CTPOP, VT, Expand); 192 193 // No special instructions for these. 194 setOperationAction(ISD::CTTZ, VT, Expand); 195 setOperationAction(ISD::ROTR, VT, Expand); 196 197 // Use *MUL_LOHI where possible instead of MULH*. 198 setOperationAction(ISD::MULHS, VT, Expand); 199 setOperationAction(ISD::MULHU, VT, Expand); 200 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 201 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 202 203 // Only z196 and above have native support for conversions to unsigned. 204 // On z10, promoting to i64 doesn't generate an inexact condition for 205 // values that are outside the i32 range but in the i64 range, so use 206 // the default expansion. 207 if (!Subtarget.hasFPExtension()) 208 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 209 210 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 211 // default to Expand, so need to be modified to Legal where appropriate. 212 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 213 if (Subtarget.hasFPExtension()) 214 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 215 } 216 } 217 218 // Type legalization will convert 8- and 16-bit atomic operations into 219 // forms that operate on i32s (but still keeping the original memory VT). 220 // Lower them into full i32 operations. 221 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 222 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 223 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 224 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 225 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 226 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 227 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 228 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 229 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 230 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 231 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 232 233 // Even though i128 is not a legal type, we still need to custom lower 234 // the atomic operations in order to exploit SystemZ instructions. 235 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 236 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 237 238 // We can use the CC result of compare-and-swap to implement 239 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 240 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 242 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 243 244 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 245 246 // Traps are legal, as we will convert them to "j .+2". 247 setOperationAction(ISD::TRAP, MVT::Other, Legal); 248 249 // z10 has instructions for signed but not unsigned FP conversion. 250 // Handle unsigned 32-bit types as signed 64-bit types. 251 if (!Subtarget.hasFPExtension()) { 252 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 253 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 254 } 255 256 // We have native support for a 64-bit CTLZ, via FLOGR. 257 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 258 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 259 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 260 261 // On z15 we have native support for a 64-bit CTPOP. 262 if (Subtarget.hasMiscellaneousExtensions3()) { 263 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 264 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 265 } 266 267 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 268 setOperationAction(ISD::OR, MVT::i64, Custom); 269 270 // FIXME: Can we support these natively? 271 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 272 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 273 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 274 275 // We have native instructions for i8, i16 and i32 extensions, but not i1. 276 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 277 for (MVT VT : MVT::integer_valuetypes()) { 278 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 279 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 280 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 281 } 282 283 // Handle the various types of symbolic address. 284 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 285 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 286 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 287 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 288 setOperationAction(ISD::JumpTable, PtrVT, Custom); 289 290 // We need to handle dynamic allocations specially because of the 291 // 160-byte area at the bottom of the stack. 292 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 293 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 294 295 // Use custom expanders so that we can force the function to use 296 // a frame pointer. 297 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 298 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 299 300 // Handle prefetches with PFD or PFDRL. 301 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 302 303 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 304 // Assume by default that all vector operations need to be expanded. 305 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 306 if (getOperationAction(Opcode, VT) == Legal) 307 setOperationAction(Opcode, VT, Expand); 308 309 // Likewise all truncating stores and extending loads. 310 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 311 setTruncStoreAction(VT, InnerVT, Expand); 312 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 313 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 314 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 315 } 316 317 if (isTypeLegal(VT)) { 318 // These operations are legal for anything that can be stored in a 319 // vector register, even if there is no native support for the format 320 // as such. In particular, we can do these for v4f32 even though there 321 // are no specific instructions for that format. 322 setOperationAction(ISD::LOAD, VT, Legal); 323 setOperationAction(ISD::STORE, VT, Legal); 324 setOperationAction(ISD::VSELECT, VT, Legal); 325 setOperationAction(ISD::BITCAST, VT, Legal); 326 setOperationAction(ISD::UNDEF, VT, Legal); 327 328 // Likewise, except that we need to replace the nodes with something 329 // more specific. 330 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 331 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 332 } 333 } 334 335 // Handle integer vector types. 336 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 337 if (isTypeLegal(VT)) { 338 // These operations have direct equivalents. 339 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 340 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 341 setOperationAction(ISD::ADD, VT, Legal); 342 setOperationAction(ISD::SUB, VT, Legal); 343 if (VT != MVT::v2i64) 344 setOperationAction(ISD::MUL, VT, Legal); 345 setOperationAction(ISD::AND, VT, Legal); 346 setOperationAction(ISD::OR, VT, Legal); 347 setOperationAction(ISD::XOR, VT, Legal); 348 if (Subtarget.hasVectorEnhancements1()) 349 setOperationAction(ISD::CTPOP, VT, Legal); 350 else 351 setOperationAction(ISD::CTPOP, VT, Custom); 352 setOperationAction(ISD::CTTZ, VT, Legal); 353 setOperationAction(ISD::CTLZ, VT, Legal); 354 355 // Convert a GPR scalar to a vector by inserting it into element 0. 356 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 357 358 // Use a series of unpacks for extensions. 359 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 360 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 361 362 // Detect shifts by a scalar amount and convert them into 363 // V*_BY_SCALAR. 364 setOperationAction(ISD::SHL, VT, Custom); 365 setOperationAction(ISD::SRA, VT, Custom); 366 setOperationAction(ISD::SRL, VT, Custom); 367 368 // At present ROTL isn't matched by DAGCombiner. ROTR should be 369 // converted into ROTL. 370 setOperationAction(ISD::ROTL, VT, Expand); 371 setOperationAction(ISD::ROTR, VT, Expand); 372 373 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 374 // and inverting the result as necessary. 375 setOperationAction(ISD::SETCC, VT, Custom); 376 } 377 } 378 379 if (Subtarget.hasVector()) { 380 // There should be no need to check for float types other than v2f64 381 // since <2 x f32> isn't a legal type. 382 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 383 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 384 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 385 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 386 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 387 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 388 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 389 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 390 391 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 392 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 393 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 394 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 395 } 396 397 if (Subtarget.hasVectorEnhancements2()) { 398 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 399 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 400 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 401 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 402 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 403 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 404 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 405 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 406 407 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 408 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 409 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 410 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 411 } 412 413 // Handle floating-point types. 414 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 415 I <= MVT::LAST_FP_VALUETYPE; 416 ++I) { 417 MVT VT = MVT::SimpleValueType(I); 418 if (isTypeLegal(VT)) { 419 // We can use FI for FRINT. 420 setOperationAction(ISD::FRINT, VT, Legal); 421 422 // We can use the extended form of FI for other rounding operations. 423 if (Subtarget.hasFPExtension()) { 424 setOperationAction(ISD::FNEARBYINT, VT, Legal); 425 setOperationAction(ISD::FFLOOR, VT, Legal); 426 setOperationAction(ISD::FCEIL, VT, Legal); 427 setOperationAction(ISD::FTRUNC, VT, Legal); 428 setOperationAction(ISD::FROUND, VT, Legal); 429 } 430 431 // No special instructions for these. 432 setOperationAction(ISD::FSIN, VT, Expand); 433 setOperationAction(ISD::FCOS, VT, Expand); 434 setOperationAction(ISD::FSINCOS, VT, Expand); 435 setOperationAction(ISD::FREM, VT, Expand); 436 setOperationAction(ISD::FPOW, VT, Expand); 437 438 // Handle constrained floating-point operations. 439 setOperationAction(ISD::STRICT_FADD, VT, Legal); 440 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 441 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 442 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 443 setOperationAction(ISD::STRICT_FMA, VT, Legal); 444 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 445 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 446 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 447 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 448 if (Subtarget.hasFPExtension()) { 449 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 450 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 451 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 452 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 453 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 454 } 455 } 456 } 457 458 // Handle floating-point vector types. 459 if (Subtarget.hasVector()) { 460 // Scalar-to-vector conversion is just a subreg. 461 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 462 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 463 464 // Some insertions and extractions can be done directly but others 465 // need to go via integers. 466 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 467 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 468 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 469 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 470 471 // These operations have direct equivalents. 472 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 473 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 474 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 475 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 476 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 477 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 478 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 479 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 480 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 481 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 482 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 483 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 484 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 485 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 486 487 // Handle constrained floating-point operations. 488 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 489 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 490 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 491 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 492 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 493 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 494 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 495 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 496 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 497 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 498 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 499 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 500 } 501 502 // The vector enhancements facility 1 has instructions for these. 503 if (Subtarget.hasVectorEnhancements1()) { 504 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 505 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 506 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 507 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 508 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 509 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 510 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 511 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 512 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 513 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 514 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 515 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 516 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 517 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 518 519 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 520 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 521 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 522 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 523 524 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 525 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 526 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 527 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 528 529 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 530 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 531 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 532 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 533 534 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 535 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 536 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 537 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 538 539 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 540 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 541 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 542 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 543 544 // Handle constrained floating-point operations. 545 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 546 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 547 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 548 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 549 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 550 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 551 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 552 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 553 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 554 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 555 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 556 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 557 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 558 MVT::v4f32, MVT::v2f64 }) { 559 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 560 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 561 } 562 } 563 564 // We have fused multiply-addition for f32 and f64 but not f128. 565 setOperationAction(ISD::FMA, MVT::f32, Legal); 566 setOperationAction(ISD::FMA, MVT::f64, Legal); 567 if (Subtarget.hasVectorEnhancements1()) 568 setOperationAction(ISD::FMA, MVT::f128, Legal); 569 else 570 setOperationAction(ISD::FMA, MVT::f128, Expand); 571 572 // We don't have a copysign instruction on vector registers. 573 if (Subtarget.hasVectorEnhancements1()) 574 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 575 576 // Needed so that we don't try to implement f128 constant loads using 577 // a load-and-extend of a f80 constant (in cases where the constant 578 // would fit in an f80). 579 for (MVT VT : MVT::fp_valuetypes()) 580 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 581 582 // We don't have extending load instruction on vector registers. 583 if (Subtarget.hasVectorEnhancements1()) { 584 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 585 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 586 } 587 588 // Floating-point truncation and stores need to be done separately. 589 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 590 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 591 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 592 593 // We have 64-bit FPR<->GPR moves, but need special handling for 594 // 32-bit forms. 595 if (!Subtarget.hasVector()) { 596 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 597 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 598 } 599 600 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 601 // structure, but VAEND is a no-op. 602 setOperationAction(ISD::VASTART, MVT::Other, Custom); 603 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 604 setOperationAction(ISD::VAEND, MVT::Other, Expand); 605 606 // Codes for which we want to perform some z-specific combinations. 607 setTargetDAGCombine(ISD::ZERO_EXTEND); 608 setTargetDAGCombine(ISD::SIGN_EXTEND); 609 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 610 setTargetDAGCombine(ISD::LOAD); 611 setTargetDAGCombine(ISD::STORE); 612 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 613 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 614 setTargetDAGCombine(ISD::FP_ROUND); 615 setTargetDAGCombine(ISD::FP_EXTEND); 616 setTargetDAGCombine(ISD::BSWAP); 617 setTargetDAGCombine(ISD::SDIV); 618 setTargetDAGCombine(ISD::UDIV); 619 setTargetDAGCombine(ISD::SREM); 620 setTargetDAGCombine(ISD::UREM); 621 622 // Handle intrinsics. 623 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 624 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 625 626 // We want to use MVC in preference to even a single load/store pair. 627 MaxStoresPerMemcpy = 0; 628 MaxStoresPerMemcpyOptSize = 0; 629 630 // The main memset sequence is a byte store followed by an MVC. 631 // Two STC or MV..I stores win over that, but the kind of fused stores 632 // generated by target-independent code don't when the byte value is 633 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 634 // than "STC;MVC". Handle the choice in target-specific code instead. 635 MaxStoresPerMemset = 0; 636 MaxStoresPerMemsetOptSize = 0; 637 } 638 639 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 640 LLVMContext &, EVT VT) const { 641 if (!VT.isVector()) 642 return MVT::i32; 643 return VT.changeVectorElementTypeToInteger(); 644 } 645 646 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 647 VT = VT.getScalarType(); 648 649 if (!VT.isSimple()) 650 return false; 651 652 switch (VT.getSimpleVT().SimpleTy) { 653 case MVT::f32: 654 case MVT::f64: 655 return true; 656 case MVT::f128: 657 return Subtarget.hasVectorEnhancements1(); 658 default: 659 break; 660 } 661 662 return false; 663 } 664 665 // Return true if the constant can be generated with a vector instruction, 666 // such as VGM, VGMB or VREPI. 667 bool SystemZVectorConstantInfo::isVectorConstantLegal( 668 const SystemZSubtarget &Subtarget) { 669 const SystemZInstrInfo *TII = 670 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 671 if (!Subtarget.hasVector() || 672 (isFP128 && !Subtarget.hasVectorEnhancements1())) 673 return false; 674 675 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 676 // preferred way of creating all-zero and all-one vectors so give it 677 // priority over other methods below. 678 unsigned Mask = 0; 679 unsigned I = 0; 680 for (; I < SystemZ::VectorBytes; ++I) { 681 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 682 if (Byte == 0xff) 683 Mask |= 1ULL << I; 684 else if (Byte != 0) 685 break; 686 } 687 if (I == SystemZ::VectorBytes) { 688 Opcode = SystemZISD::BYTE_MASK; 689 OpVals.push_back(Mask); 690 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 691 return true; 692 } 693 694 if (SplatBitSize > 64) 695 return false; 696 697 auto tryValue = [&](uint64_t Value) -> bool { 698 // Try VECTOR REPLICATE IMMEDIATE 699 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 700 if (isInt<16>(SignedValue)) { 701 OpVals.push_back(((unsigned) SignedValue)); 702 Opcode = SystemZISD::REPLICATE; 703 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 704 SystemZ::VectorBits / SplatBitSize); 705 return true; 706 } 707 // Try VECTOR GENERATE MASK 708 unsigned Start, End; 709 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 710 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 711 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 712 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 713 OpVals.push_back(Start - (64 - SplatBitSize)); 714 OpVals.push_back(End - (64 - SplatBitSize)); 715 Opcode = SystemZISD::ROTATE_MASK; 716 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 717 SystemZ::VectorBits / SplatBitSize); 718 return true; 719 } 720 return false; 721 }; 722 723 // First try assuming that any undefined bits above the highest set bit 724 // and below the lowest set bit are 1s. This increases the likelihood of 725 // being able to use a sign-extended element value in VECTOR REPLICATE 726 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 727 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 728 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 729 uint64_t Lower = 730 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 731 uint64_t Upper = 732 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 733 if (tryValue(SplatBitsZ | Upper | Lower)) 734 return true; 735 736 // Now try assuming that any undefined bits between the first and 737 // last defined set bits are set. This increases the chances of 738 // using a non-wraparound mask. 739 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 740 return tryValue(SplatBitsZ | Middle); 741 } 742 743 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 744 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 745 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 746 747 // Find the smallest splat. 748 SplatBits = FPImm.bitcastToAPInt(); 749 unsigned Width = SplatBits.getBitWidth(); 750 while (Width > 8) { 751 unsigned HalfSize = Width / 2; 752 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 753 APInt LowValue = SplatBits.trunc(HalfSize); 754 755 // If the two halves do not match, stop here. 756 if (HighValue != LowValue || 8 > HalfSize) 757 break; 758 759 SplatBits = HighValue; 760 Width = HalfSize; 761 } 762 SplatUndef = 0; 763 SplatBitSize = Width; 764 } 765 766 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 767 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 768 bool HasAnyUndefs; 769 770 // Get IntBits by finding the 128 bit splat. 771 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 772 true); 773 774 // Get SplatBits by finding the 8 bit or greater splat. 775 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 776 true); 777 } 778 779 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 780 bool ForCodeSize) const { 781 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 782 if (Imm.isZero() || Imm.isNegZero()) 783 return true; 784 785 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 786 } 787 788 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 789 // We can use CGFI or CLGFI. 790 return isInt<32>(Imm) || isUInt<32>(Imm); 791 } 792 793 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 794 // We can use ALGFI or SLGFI. 795 return isUInt<32>(Imm) || isUInt<32>(-Imm); 796 } 797 798 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 799 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const { 800 // Unaligned accesses should never be slower than the expanded version. 801 // We check specifically for aligned accesses in the few cases where 802 // they are required. 803 if (Fast) 804 *Fast = true; 805 return true; 806 } 807 808 // Information about the addressing mode for a memory access. 809 struct AddressingMode { 810 // True if a long displacement is supported. 811 bool LongDisplacement; 812 813 // True if use of index register is supported. 814 bool IndexReg; 815 816 AddressingMode(bool LongDispl, bool IdxReg) : 817 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 818 }; 819 820 // Return the desired addressing mode for a Load which has only one use (in 821 // the same block) which is a Store. 822 static AddressingMode getLoadStoreAddrMode(bool HasVector, 823 Type *Ty) { 824 // With vector support a Load->Store combination may be combined to either 825 // an MVC or vector operations and it seems to work best to allow the 826 // vector addressing mode. 827 if (HasVector) 828 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 829 830 // Otherwise only the MVC case is special. 831 bool MVC = Ty->isIntegerTy(8); 832 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 833 } 834 835 // Return the addressing mode which seems most desirable given an LLVM 836 // Instruction pointer. 837 static AddressingMode 838 supportedAddressingMode(Instruction *I, bool HasVector) { 839 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 840 switch (II->getIntrinsicID()) { 841 default: break; 842 case Intrinsic::memset: 843 case Intrinsic::memmove: 844 case Intrinsic::memcpy: 845 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 846 } 847 } 848 849 if (isa<LoadInst>(I) && I->hasOneUse()) { 850 auto *SingleUser = cast<Instruction>(*I->user_begin()); 851 if (SingleUser->getParent() == I->getParent()) { 852 if (isa<ICmpInst>(SingleUser)) { 853 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 854 if (C->getBitWidth() <= 64 && 855 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 856 // Comparison of memory with 16 bit signed / unsigned immediate 857 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 858 } else if (isa<StoreInst>(SingleUser)) 859 // Load->Store 860 return getLoadStoreAddrMode(HasVector, I->getType()); 861 } 862 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 863 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 864 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 865 // Load->Store 866 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 867 } 868 869 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 870 871 // * Use LDE instead of LE/LEY for z13 to avoid partial register 872 // dependencies (LDE only supports small offsets). 873 // * Utilize the vector registers to hold floating point 874 // values (vector load / store instructions only support small 875 // offsets). 876 877 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 878 I->getOperand(0)->getType()); 879 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 880 bool IsVectorAccess = MemAccessTy->isVectorTy(); 881 882 // A store of an extracted vector element will be combined into a VSTE type 883 // instruction. 884 if (!IsVectorAccess && isa<StoreInst>(I)) { 885 Value *DataOp = I->getOperand(0); 886 if (isa<ExtractElementInst>(DataOp)) 887 IsVectorAccess = true; 888 } 889 890 // A load which gets inserted into a vector element will be combined into a 891 // VLE type instruction. 892 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 893 User *LoadUser = *I->user_begin(); 894 if (isa<InsertElementInst>(LoadUser)) 895 IsVectorAccess = true; 896 } 897 898 if (IsFPAccess || IsVectorAccess) 899 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 900 } 901 902 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 903 } 904 905 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 906 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 907 // Punt on globals for now, although they can be used in limited 908 // RELATIVE LONG cases. 909 if (AM.BaseGV) 910 return false; 911 912 // Require a 20-bit signed offset. 913 if (!isInt<20>(AM.BaseOffs)) 914 return false; 915 916 AddressingMode SupportedAM(true, true); 917 if (I != nullptr) 918 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 919 920 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 921 return false; 922 923 if (!SupportedAM.IndexReg) 924 // No indexing allowed. 925 return AM.Scale == 0; 926 else 927 // Indexing is OK but no scale factor can be applied. 928 return AM.Scale == 0 || AM.Scale == 1; 929 } 930 931 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 932 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 933 return false; 934 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 935 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 936 return FromBits > ToBits; 937 } 938 939 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 940 if (!FromVT.isInteger() || !ToVT.isInteger()) 941 return false; 942 unsigned FromBits = FromVT.getSizeInBits(); 943 unsigned ToBits = ToVT.getSizeInBits(); 944 return FromBits > ToBits; 945 } 946 947 //===----------------------------------------------------------------------===// 948 // Inline asm support 949 //===----------------------------------------------------------------------===// 950 951 TargetLowering::ConstraintType 952 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 953 if (Constraint.size() == 1) { 954 switch (Constraint[0]) { 955 case 'a': // Address register 956 case 'd': // Data register (equivalent to 'r') 957 case 'f': // Floating-point register 958 case 'h': // High-part register 959 case 'r': // General-purpose register 960 case 'v': // Vector register 961 return C_RegisterClass; 962 963 case 'Q': // Memory with base and unsigned 12-bit displacement 964 case 'R': // Likewise, plus an index 965 case 'S': // Memory with base and signed 20-bit displacement 966 case 'T': // Likewise, plus an index 967 case 'm': // Equivalent to 'T'. 968 return C_Memory; 969 970 case 'I': // Unsigned 8-bit constant 971 case 'J': // Unsigned 12-bit constant 972 case 'K': // Signed 16-bit constant 973 case 'L': // Signed 20-bit displacement (on all targets we support) 974 case 'M': // 0x7fffffff 975 return C_Immediate; 976 977 default: 978 break; 979 } 980 } 981 return TargetLowering::getConstraintType(Constraint); 982 } 983 984 TargetLowering::ConstraintWeight SystemZTargetLowering:: 985 getSingleConstraintMatchWeight(AsmOperandInfo &info, 986 const char *constraint) const { 987 ConstraintWeight weight = CW_Invalid; 988 Value *CallOperandVal = info.CallOperandVal; 989 // If we don't have a value, we can't do a match, 990 // but allow it at the lowest weight. 991 if (!CallOperandVal) 992 return CW_Default; 993 Type *type = CallOperandVal->getType(); 994 // Look at the constraint type. 995 switch (*constraint) { 996 default: 997 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 998 break; 999 1000 case 'a': // Address register 1001 case 'd': // Data register (equivalent to 'r') 1002 case 'h': // High-part register 1003 case 'r': // General-purpose register 1004 if (CallOperandVal->getType()->isIntegerTy()) 1005 weight = CW_Register; 1006 break; 1007 1008 case 'f': // Floating-point register 1009 if (type->isFloatingPointTy()) 1010 weight = CW_Register; 1011 break; 1012 1013 case 'v': // Vector register 1014 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1015 Subtarget.hasVector()) 1016 weight = CW_Register; 1017 break; 1018 1019 case 'I': // Unsigned 8-bit constant 1020 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1021 if (isUInt<8>(C->getZExtValue())) 1022 weight = CW_Constant; 1023 break; 1024 1025 case 'J': // Unsigned 12-bit constant 1026 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1027 if (isUInt<12>(C->getZExtValue())) 1028 weight = CW_Constant; 1029 break; 1030 1031 case 'K': // Signed 16-bit constant 1032 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1033 if (isInt<16>(C->getSExtValue())) 1034 weight = CW_Constant; 1035 break; 1036 1037 case 'L': // Signed 20-bit displacement (on all targets we support) 1038 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1039 if (isInt<20>(C->getSExtValue())) 1040 weight = CW_Constant; 1041 break; 1042 1043 case 'M': // 0x7fffffff 1044 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1045 if (C->getZExtValue() == 0x7fffffff) 1046 weight = CW_Constant; 1047 break; 1048 } 1049 return weight; 1050 } 1051 1052 // Parse a "{tNNN}" register constraint for which the register type "t" 1053 // has already been verified. MC is the class associated with "t" and 1054 // Map maps 0-based register numbers to LLVM register numbers. 1055 static std::pair<unsigned, const TargetRegisterClass *> 1056 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1057 const unsigned *Map, unsigned Size) { 1058 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1059 if (isdigit(Constraint[2])) { 1060 unsigned Index; 1061 bool Failed = 1062 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1063 if (!Failed && Index < Size && Map[Index]) 1064 return std::make_pair(Map[Index], RC); 1065 } 1066 return std::make_pair(0U, nullptr); 1067 } 1068 1069 std::pair<unsigned, const TargetRegisterClass *> 1070 SystemZTargetLowering::getRegForInlineAsmConstraint( 1071 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1072 if (Constraint.size() == 1) { 1073 // GCC Constraint Letters 1074 switch (Constraint[0]) { 1075 default: break; 1076 case 'd': // Data register (equivalent to 'r') 1077 case 'r': // General-purpose register 1078 if (VT == MVT::i64) 1079 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1080 else if (VT == MVT::i128) 1081 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1082 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1083 1084 case 'a': // Address register 1085 if (VT == MVT::i64) 1086 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1087 else if (VT == MVT::i128) 1088 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1089 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1090 1091 case 'h': // High-part register (an LLVM extension) 1092 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1093 1094 case 'f': // Floating-point register 1095 if (VT == MVT::f64) 1096 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1097 else if (VT == MVT::f128) 1098 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1099 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1100 1101 case 'v': // Vector register 1102 if (Subtarget.hasVector()) { 1103 if (VT == MVT::f32) 1104 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1105 if (VT == MVT::f64) 1106 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1107 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1108 } 1109 break; 1110 } 1111 } 1112 if (Constraint.size() > 0 && Constraint[0] == '{') { 1113 // We need to override the default register parsing for GPRs and FPRs 1114 // because the interpretation depends on VT. The internal names of 1115 // the registers are also different from the external names 1116 // (F0D and F0S instead of F0, etc.). 1117 if (Constraint[1] == 'r') { 1118 if (VT == MVT::i32) 1119 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1120 SystemZMC::GR32Regs, 16); 1121 if (VT == MVT::i128) 1122 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1123 SystemZMC::GR128Regs, 16); 1124 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1125 SystemZMC::GR64Regs, 16); 1126 } 1127 if (Constraint[1] == 'f') { 1128 if (VT == MVT::f32) 1129 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1130 SystemZMC::FP32Regs, 16); 1131 if (VT == MVT::f128) 1132 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1133 SystemZMC::FP128Regs, 16); 1134 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1135 SystemZMC::FP64Regs, 16); 1136 } 1137 if (Constraint[1] == 'v') { 1138 if (VT == MVT::f32) 1139 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1140 SystemZMC::VR32Regs, 32); 1141 if (VT == MVT::f64) 1142 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1143 SystemZMC::VR64Regs, 32); 1144 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1145 SystemZMC::VR128Regs, 32); 1146 } 1147 } 1148 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1149 } 1150 1151 void SystemZTargetLowering:: 1152 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1153 std::vector<SDValue> &Ops, 1154 SelectionDAG &DAG) const { 1155 // Only support length 1 constraints for now. 1156 if (Constraint.length() == 1) { 1157 switch (Constraint[0]) { 1158 case 'I': // Unsigned 8-bit constant 1159 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1160 if (isUInt<8>(C->getZExtValue())) 1161 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1162 Op.getValueType())); 1163 return; 1164 1165 case 'J': // Unsigned 12-bit constant 1166 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1167 if (isUInt<12>(C->getZExtValue())) 1168 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1169 Op.getValueType())); 1170 return; 1171 1172 case 'K': // Signed 16-bit constant 1173 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1174 if (isInt<16>(C->getSExtValue())) 1175 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1176 Op.getValueType())); 1177 return; 1178 1179 case 'L': // Signed 20-bit displacement (on all targets we support) 1180 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1181 if (isInt<20>(C->getSExtValue())) 1182 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1183 Op.getValueType())); 1184 return; 1185 1186 case 'M': // 0x7fffffff 1187 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1188 if (C->getZExtValue() == 0x7fffffff) 1189 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1190 Op.getValueType())); 1191 return; 1192 } 1193 } 1194 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1195 } 1196 1197 //===----------------------------------------------------------------------===// 1198 // Calling conventions 1199 //===----------------------------------------------------------------------===// 1200 1201 #include "SystemZGenCallingConv.inc" 1202 1203 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1204 CallingConv::ID) const { 1205 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1206 SystemZ::R14D, 0 }; 1207 return ScratchRegs; 1208 } 1209 1210 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1211 Type *ToType) const { 1212 return isTruncateFree(FromType, ToType); 1213 } 1214 1215 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1216 return CI->isTailCall(); 1217 } 1218 1219 // We do not yet support 128-bit single-element vector types. If the user 1220 // attempts to use such types as function argument or return type, prefer 1221 // to error out instead of emitting code violating the ABI. 1222 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1223 if (ArgVT.isVector() && !VT.isVector()) 1224 report_fatal_error("Unsupported vector argument or return type"); 1225 } 1226 1227 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1228 for (unsigned i = 0; i < Ins.size(); ++i) 1229 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1230 } 1231 1232 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1233 for (unsigned i = 0; i < Outs.size(); ++i) 1234 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1235 } 1236 1237 // Value is a value that has been passed to us in the location described by VA 1238 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1239 // any loads onto Chain. 1240 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1241 CCValAssign &VA, SDValue Chain, 1242 SDValue Value) { 1243 // If the argument has been promoted from a smaller type, insert an 1244 // assertion to capture this. 1245 if (VA.getLocInfo() == CCValAssign::SExt) 1246 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1247 DAG.getValueType(VA.getValVT())); 1248 else if (VA.getLocInfo() == CCValAssign::ZExt) 1249 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1250 DAG.getValueType(VA.getValVT())); 1251 1252 if (VA.isExtInLoc()) 1253 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1254 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1255 // If this is a short vector argument loaded from the stack, 1256 // extend from i64 to full vector size and then bitcast. 1257 assert(VA.getLocVT() == MVT::i64); 1258 assert(VA.getValVT().isVector()); 1259 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1260 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1261 } else 1262 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1263 return Value; 1264 } 1265 1266 // Value is a value of type VA.getValVT() that we need to copy into 1267 // the location described by VA. Return a copy of Value converted to 1268 // VA.getValVT(). The caller is responsible for handling indirect values. 1269 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1270 CCValAssign &VA, SDValue Value) { 1271 switch (VA.getLocInfo()) { 1272 case CCValAssign::SExt: 1273 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1274 case CCValAssign::ZExt: 1275 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1276 case CCValAssign::AExt: 1277 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1278 case CCValAssign::BCvt: 1279 // If this is a short vector argument to be stored to the stack, 1280 // bitcast to v2i64 and then extract first element. 1281 assert(VA.getLocVT() == MVT::i64); 1282 assert(VA.getValVT().isVector()); 1283 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1284 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1285 DAG.getConstant(0, DL, MVT::i32)); 1286 case CCValAssign::Full: 1287 return Value; 1288 default: 1289 llvm_unreachable("Unhandled getLocInfo()"); 1290 } 1291 } 1292 1293 SDValue SystemZTargetLowering::LowerFormalArguments( 1294 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1295 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1296 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1297 MachineFunction &MF = DAG.getMachineFunction(); 1298 MachineFrameInfo &MFI = MF.getFrameInfo(); 1299 MachineRegisterInfo &MRI = MF.getRegInfo(); 1300 SystemZMachineFunctionInfo *FuncInfo = 1301 MF.getInfo<SystemZMachineFunctionInfo>(); 1302 auto *TFL = 1303 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1304 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1305 1306 // Detect unsupported vector argument types. 1307 if (Subtarget.hasVector()) 1308 VerifyVectorTypes(Ins); 1309 1310 // Assign locations to all of the incoming arguments. 1311 SmallVector<CCValAssign, 16> ArgLocs; 1312 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1313 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1314 1315 unsigned NumFixedGPRs = 0; 1316 unsigned NumFixedFPRs = 0; 1317 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1318 SDValue ArgValue; 1319 CCValAssign &VA = ArgLocs[I]; 1320 EVT LocVT = VA.getLocVT(); 1321 if (VA.isRegLoc()) { 1322 // Arguments passed in registers 1323 const TargetRegisterClass *RC; 1324 switch (LocVT.getSimpleVT().SimpleTy) { 1325 default: 1326 // Integers smaller than i64 should be promoted to i64. 1327 llvm_unreachable("Unexpected argument type"); 1328 case MVT::i32: 1329 NumFixedGPRs += 1; 1330 RC = &SystemZ::GR32BitRegClass; 1331 break; 1332 case MVT::i64: 1333 NumFixedGPRs += 1; 1334 RC = &SystemZ::GR64BitRegClass; 1335 break; 1336 case MVT::f32: 1337 NumFixedFPRs += 1; 1338 RC = &SystemZ::FP32BitRegClass; 1339 break; 1340 case MVT::f64: 1341 NumFixedFPRs += 1; 1342 RC = &SystemZ::FP64BitRegClass; 1343 break; 1344 case MVT::v16i8: 1345 case MVT::v8i16: 1346 case MVT::v4i32: 1347 case MVT::v2i64: 1348 case MVT::v4f32: 1349 case MVT::v2f64: 1350 RC = &SystemZ::VR128BitRegClass; 1351 break; 1352 } 1353 1354 Register VReg = MRI.createVirtualRegister(RC); 1355 MRI.addLiveIn(VA.getLocReg(), VReg); 1356 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1357 } else { 1358 assert(VA.isMemLoc() && "Argument not register or memory"); 1359 1360 // Create the frame index object for this incoming parameter. 1361 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1362 VA.getLocMemOffset(), true); 1363 1364 // Create the SelectionDAG nodes corresponding to a load 1365 // from this parameter. Unpromoted ints and floats are 1366 // passed as right-justified 8-byte values. 1367 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1368 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1369 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1370 DAG.getIntPtrConstant(4, DL)); 1371 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1372 MachinePointerInfo::getFixedStack(MF, FI)); 1373 } 1374 1375 // Convert the value of the argument register into the value that's 1376 // being passed. 1377 if (VA.getLocInfo() == CCValAssign::Indirect) { 1378 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1379 MachinePointerInfo())); 1380 // If the original argument was split (e.g. i128), we need 1381 // to load all parts of it here (using the same address). 1382 unsigned ArgIndex = Ins[I].OrigArgIndex; 1383 assert (Ins[I].PartOffset == 0); 1384 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1385 CCValAssign &PartVA = ArgLocs[I + 1]; 1386 unsigned PartOffset = Ins[I + 1].PartOffset; 1387 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1388 DAG.getIntPtrConstant(PartOffset, DL)); 1389 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1390 MachinePointerInfo())); 1391 ++I; 1392 } 1393 } else 1394 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1395 } 1396 1397 if (IsVarArg) { 1398 // Save the number of non-varargs registers for later use by va_start, etc. 1399 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1400 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1401 1402 // Likewise the address (in the form of a frame index) of where the 1403 // first stack vararg would be. The 1-byte size here is arbitrary. 1404 int64_t StackSize = CCInfo.getNextStackOffset(); 1405 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1406 1407 // ...and a similar frame index for the caller-allocated save area 1408 // that will be used to store the incoming registers. 1409 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1410 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1411 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1412 1413 // Store the FPR varargs in the reserved frame slots. (We store the 1414 // GPRs as part of the prologue.) 1415 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1416 SDValue MemOps[SystemZ::NumArgFPRs]; 1417 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1418 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1419 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1420 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1421 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1422 &SystemZ::FP64BitRegClass); 1423 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1424 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1425 MachinePointerInfo::getFixedStack(MF, FI)); 1426 } 1427 // Join the stores, which are independent of one another. 1428 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1429 makeArrayRef(&MemOps[NumFixedFPRs], 1430 SystemZ::NumArgFPRs-NumFixedFPRs)); 1431 } 1432 } 1433 1434 return Chain; 1435 } 1436 1437 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1438 SmallVectorImpl<CCValAssign> &ArgLocs, 1439 SmallVectorImpl<ISD::OutputArg> &Outs) { 1440 // Punt if there are any indirect or stack arguments, or if the call 1441 // needs the callee-saved argument register R6, or if the call uses 1442 // the callee-saved register arguments SwiftSelf and SwiftError. 1443 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1444 CCValAssign &VA = ArgLocs[I]; 1445 if (VA.getLocInfo() == CCValAssign::Indirect) 1446 return false; 1447 if (!VA.isRegLoc()) 1448 return false; 1449 Register Reg = VA.getLocReg(); 1450 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1451 return false; 1452 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1453 return false; 1454 } 1455 return true; 1456 } 1457 1458 SDValue 1459 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1460 SmallVectorImpl<SDValue> &InVals) const { 1461 SelectionDAG &DAG = CLI.DAG; 1462 SDLoc &DL = CLI.DL; 1463 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1464 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1465 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1466 SDValue Chain = CLI.Chain; 1467 SDValue Callee = CLI.Callee; 1468 bool &IsTailCall = CLI.IsTailCall; 1469 CallingConv::ID CallConv = CLI.CallConv; 1470 bool IsVarArg = CLI.IsVarArg; 1471 MachineFunction &MF = DAG.getMachineFunction(); 1472 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1473 1474 // Detect unsupported vector argument and return types. 1475 if (Subtarget.hasVector()) { 1476 VerifyVectorTypes(Outs); 1477 VerifyVectorTypes(Ins); 1478 } 1479 1480 // Analyze the operands of the call, assigning locations to each operand. 1481 SmallVector<CCValAssign, 16> ArgLocs; 1482 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1483 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1484 1485 // We don't support GuaranteedTailCallOpt, only automatically-detected 1486 // sibling calls. 1487 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1488 IsTailCall = false; 1489 1490 // Get a count of how many bytes are to be pushed on the stack. 1491 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1492 1493 // Mark the start of the call. 1494 if (!IsTailCall) 1495 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1496 1497 // Copy argument values to their designated locations. 1498 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1499 SmallVector<SDValue, 8> MemOpChains; 1500 SDValue StackPtr; 1501 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1502 CCValAssign &VA = ArgLocs[I]; 1503 SDValue ArgValue = OutVals[I]; 1504 1505 if (VA.getLocInfo() == CCValAssign::Indirect) { 1506 // Store the argument in a stack slot and pass its address. 1507 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1508 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1509 MemOpChains.push_back( 1510 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1511 MachinePointerInfo::getFixedStack(MF, FI))); 1512 // If the original argument was split (e.g. i128), we need 1513 // to store all parts of it here (and pass just one address). 1514 unsigned ArgIndex = Outs[I].OrigArgIndex; 1515 assert (Outs[I].PartOffset == 0); 1516 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1517 SDValue PartValue = OutVals[I + 1]; 1518 unsigned PartOffset = Outs[I + 1].PartOffset; 1519 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1520 DAG.getIntPtrConstant(PartOffset, DL)); 1521 MemOpChains.push_back( 1522 DAG.getStore(Chain, DL, PartValue, Address, 1523 MachinePointerInfo::getFixedStack(MF, FI))); 1524 ++I; 1525 } 1526 ArgValue = SpillSlot; 1527 } else 1528 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1529 1530 if (VA.isRegLoc()) 1531 // Queue up the argument copies and emit them at the end. 1532 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1533 else { 1534 assert(VA.isMemLoc() && "Argument not register or memory"); 1535 1536 // Work out the address of the stack slot. Unpromoted ints and 1537 // floats are passed as right-justified 8-byte values. 1538 if (!StackPtr.getNode()) 1539 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1540 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1541 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1542 Offset += 4; 1543 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1544 DAG.getIntPtrConstant(Offset, DL)); 1545 1546 // Emit the store. 1547 MemOpChains.push_back( 1548 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1549 } 1550 } 1551 1552 // Join the stores, which are independent of one another. 1553 if (!MemOpChains.empty()) 1554 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1555 1556 // Accept direct calls by converting symbolic call addresses to the 1557 // associated Target* opcodes. Force %r1 to be used for indirect 1558 // tail calls. 1559 SDValue Glue; 1560 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1561 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1562 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1563 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1564 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1565 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1566 } else if (IsTailCall) { 1567 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1568 Glue = Chain.getValue(1); 1569 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1570 } 1571 1572 // Build a sequence of copy-to-reg nodes, chained and glued together. 1573 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1574 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1575 RegsToPass[I].second, Glue); 1576 Glue = Chain.getValue(1); 1577 } 1578 1579 // The first call operand is the chain and the second is the target address. 1580 SmallVector<SDValue, 8> Ops; 1581 Ops.push_back(Chain); 1582 Ops.push_back(Callee); 1583 1584 // Add argument registers to the end of the list so that they are 1585 // known live into the call. 1586 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1587 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1588 RegsToPass[I].second.getValueType())); 1589 1590 // Add a register mask operand representing the call-preserved registers. 1591 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1592 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1593 assert(Mask && "Missing call preserved mask for calling convention"); 1594 Ops.push_back(DAG.getRegisterMask(Mask)); 1595 1596 // Glue the call to the argument copies, if any. 1597 if (Glue.getNode()) 1598 Ops.push_back(Glue); 1599 1600 // Emit the call. 1601 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1602 if (IsTailCall) 1603 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1604 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1605 Glue = Chain.getValue(1); 1606 1607 // Mark the end of the call, which is glued to the call itself. 1608 Chain = DAG.getCALLSEQ_END(Chain, 1609 DAG.getConstant(NumBytes, DL, PtrVT, true), 1610 DAG.getConstant(0, DL, PtrVT, true), 1611 Glue, DL); 1612 Glue = Chain.getValue(1); 1613 1614 // Assign locations to each value returned by this call. 1615 SmallVector<CCValAssign, 16> RetLocs; 1616 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1617 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1618 1619 // Copy all of the result registers out of their specified physreg. 1620 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1621 CCValAssign &VA = RetLocs[I]; 1622 1623 // Copy the value out, gluing the copy to the end of the call sequence. 1624 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1625 VA.getLocVT(), Glue); 1626 Chain = RetValue.getValue(1); 1627 Glue = RetValue.getValue(2); 1628 1629 // Convert the value of the return register into the value that's 1630 // being returned. 1631 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1632 } 1633 1634 return Chain; 1635 } 1636 1637 bool SystemZTargetLowering:: 1638 CanLowerReturn(CallingConv::ID CallConv, 1639 MachineFunction &MF, bool isVarArg, 1640 const SmallVectorImpl<ISD::OutputArg> &Outs, 1641 LLVMContext &Context) const { 1642 // Detect unsupported vector return types. 1643 if (Subtarget.hasVector()) 1644 VerifyVectorTypes(Outs); 1645 1646 // Special case that we cannot easily detect in RetCC_SystemZ since 1647 // i128 is not a legal type. 1648 for (auto &Out : Outs) 1649 if (Out.ArgVT == MVT::i128) 1650 return false; 1651 1652 SmallVector<CCValAssign, 16> RetLocs; 1653 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1654 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1655 } 1656 1657 SDValue 1658 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1659 bool IsVarArg, 1660 const SmallVectorImpl<ISD::OutputArg> &Outs, 1661 const SmallVectorImpl<SDValue> &OutVals, 1662 const SDLoc &DL, SelectionDAG &DAG) const { 1663 MachineFunction &MF = DAG.getMachineFunction(); 1664 1665 // Detect unsupported vector return types. 1666 if (Subtarget.hasVector()) 1667 VerifyVectorTypes(Outs); 1668 1669 // Assign locations to each returned value. 1670 SmallVector<CCValAssign, 16> RetLocs; 1671 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1672 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1673 1674 // Quick exit for void returns 1675 if (RetLocs.empty()) 1676 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1677 1678 if (CallConv == CallingConv::GHC) 1679 report_fatal_error("GHC functions return void only"); 1680 1681 // Copy the result values into the output registers. 1682 SDValue Glue; 1683 SmallVector<SDValue, 4> RetOps; 1684 RetOps.push_back(Chain); 1685 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1686 CCValAssign &VA = RetLocs[I]; 1687 SDValue RetValue = OutVals[I]; 1688 1689 // Make the return register live on exit. 1690 assert(VA.isRegLoc() && "Can only return in registers!"); 1691 1692 // Promote the value as required. 1693 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1694 1695 // Chain and glue the copies together. 1696 Register Reg = VA.getLocReg(); 1697 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1698 Glue = Chain.getValue(1); 1699 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1700 } 1701 1702 // Update chain and glue. 1703 RetOps[0] = Chain; 1704 if (Glue.getNode()) 1705 RetOps.push_back(Glue); 1706 1707 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1708 } 1709 1710 // Return true if Op is an intrinsic node with chain that returns the CC value 1711 // as its only (other) argument. Provide the associated SystemZISD opcode and 1712 // the mask of valid CC values if so. 1713 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1714 unsigned &CCValid) { 1715 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1716 switch (Id) { 1717 case Intrinsic::s390_tbegin: 1718 Opcode = SystemZISD::TBEGIN; 1719 CCValid = SystemZ::CCMASK_TBEGIN; 1720 return true; 1721 1722 case Intrinsic::s390_tbegin_nofloat: 1723 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1724 CCValid = SystemZ::CCMASK_TBEGIN; 1725 return true; 1726 1727 case Intrinsic::s390_tend: 1728 Opcode = SystemZISD::TEND; 1729 CCValid = SystemZ::CCMASK_TEND; 1730 return true; 1731 1732 default: 1733 return false; 1734 } 1735 } 1736 1737 // Return true if Op is an intrinsic node without chain that returns the 1738 // CC value as its final argument. Provide the associated SystemZISD 1739 // opcode and the mask of valid CC values if so. 1740 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1741 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1742 switch (Id) { 1743 case Intrinsic::s390_vpkshs: 1744 case Intrinsic::s390_vpksfs: 1745 case Intrinsic::s390_vpksgs: 1746 Opcode = SystemZISD::PACKS_CC; 1747 CCValid = SystemZ::CCMASK_VCMP; 1748 return true; 1749 1750 case Intrinsic::s390_vpklshs: 1751 case Intrinsic::s390_vpklsfs: 1752 case Intrinsic::s390_vpklsgs: 1753 Opcode = SystemZISD::PACKLS_CC; 1754 CCValid = SystemZ::CCMASK_VCMP; 1755 return true; 1756 1757 case Intrinsic::s390_vceqbs: 1758 case Intrinsic::s390_vceqhs: 1759 case Intrinsic::s390_vceqfs: 1760 case Intrinsic::s390_vceqgs: 1761 Opcode = SystemZISD::VICMPES; 1762 CCValid = SystemZ::CCMASK_VCMP; 1763 return true; 1764 1765 case Intrinsic::s390_vchbs: 1766 case Intrinsic::s390_vchhs: 1767 case Intrinsic::s390_vchfs: 1768 case Intrinsic::s390_vchgs: 1769 Opcode = SystemZISD::VICMPHS; 1770 CCValid = SystemZ::CCMASK_VCMP; 1771 return true; 1772 1773 case Intrinsic::s390_vchlbs: 1774 case Intrinsic::s390_vchlhs: 1775 case Intrinsic::s390_vchlfs: 1776 case Intrinsic::s390_vchlgs: 1777 Opcode = SystemZISD::VICMPHLS; 1778 CCValid = SystemZ::CCMASK_VCMP; 1779 return true; 1780 1781 case Intrinsic::s390_vtm: 1782 Opcode = SystemZISD::VTM; 1783 CCValid = SystemZ::CCMASK_VCMP; 1784 return true; 1785 1786 case Intrinsic::s390_vfaebs: 1787 case Intrinsic::s390_vfaehs: 1788 case Intrinsic::s390_vfaefs: 1789 Opcode = SystemZISD::VFAE_CC; 1790 CCValid = SystemZ::CCMASK_ANY; 1791 return true; 1792 1793 case Intrinsic::s390_vfaezbs: 1794 case Intrinsic::s390_vfaezhs: 1795 case Intrinsic::s390_vfaezfs: 1796 Opcode = SystemZISD::VFAEZ_CC; 1797 CCValid = SystemZ::CCMASK_ANY; 1798 return true; 1799 1800 case Intrinsic::s390_vfeebs: 1801 case Intrinsic::s390_vfeehs: 1802 case Intrinsic::s390_vfeefs: 1803 Opcode = SystemZISD::VFEE_CC; 1804 CCValid = SystemZ::CCMASK_ANY; 1805 return true; 1806 1807 case Intrinsic::s390_vfeezbs: 1808 case Intrinsic::s390_vfeezhs: 1809 case Intrinsic::s390_vfeezfs: 1810 Opcode = SystemZISD::VFEEZ_CC; 1811 CCValid = SystemZ::CCMASK_ANY; 1812 return true; 1813 1814 case Intrinsic::s390_vfenebs: 1815 case Intrinsic::s390_vfenehs: 1816 case Intrinsic::s390_vfenefs: 1817 Opcode = SystemZISD::VFENE_CC; 1818 CCValid = SystemZ::CCMASK_ANY; 1819 return true; 1820 1821 case Intrinsic::s390_vfenezbs: 1822 case Intrinsic::s390_vfenezhs: 1823 case Intrinsic::s390_vfenezfs: 1824 Opcode = SystemZISD::VFENEZ_CC; 1825 CCValid = SystemZ::CCMASK_ANY; 1826 return true; 1827 1828 case Intrinsic::s390_vistrbs: 1829 case Intrinsic::s390_vistrhs: 1830 case Intrinsic::s390_vistrfs: 1831 Opcode = SystemZISD::VISTR_CC; 1832 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1833 return true; 1834 1835 case Intrinsic::s390_vstrcbs: 1836 case Intrinsic::s390_vstrchs: 1837 case Intrinsic::s390_vstrcfs: 1838 Opcode = SystemZISD::VSTRC_CC; 1839 CCValid = SystemZ::CCMASK_ANY; 1840 return true; 1841 1842 case Intrinsic::s390_vstrczbs: 1843 case Intrinsic::s390_vstrczhs: 1844 case Intrinsic::s390_vstrczfs: 1845 Opcode = SystemZISD::VSTRCZ_CC; 1846 CCValid = SystemZ::CCMASK_ANY; 1847 return true; 1848 1849 case Intrinsic::s390_vstrsb: 1850 case Intrinsic::s390_vstrsh: 1851 case Intrinsic::s390_vstrsf: 1852 Opcode = SystemZISD::VSTRS_CC; 1853 CCValid = SystemZ::CCMASK_ANY; 1854 return true; 1855 1856 case Intrinsic::s390_vstrszb: 1857 case Intrinsic::s390_vstrszh: 1858 case Intrinsic::s390_vstrszf: 1859 Opcode = SystemZISD::VSTRSZ_CC; 1860 CCValid = SystemZ::CCMASK_ANY; 1861 return true; 1862 1863 case Intrinsic::s390_vfcedbs: 1864 case Intrinsic::s390_vfcesbs: 1865 Opcode = SystemZISD::VFCMPES; 1866 CCValid = SystemZ::CCMASK_VCMP; 1867 return true; 1868 1869 case Intrinsic::s390_vfchdbs: 1870 case Intrinsic::s390_vfchsbs: 1871 Opcode = SystemZISD::VFCMPHS; 1872 CCValid = SystemZ::CCMASK_VCMP; 1873 return true; 1874 1875 case Intrinsic::s390_vfchedbs: 1876 case Intrinsic::s390_vfchesbs: 1877 Opcode = SystemZISD::VFCMPHES; 1878 CCValid = SystemZ::CCMASK_VCMP; 1879 return true; 1880 1881 case Intrinsic::s390_vftcidb: 1882 case Intrinsic::s390_vftcisb: 1883 Opcode = SystemZISD::VFTCI; 1884 CCValid = SystemZ::CCMASK_VCMP; 1885 return true; 1886 1887 case Intrinsic::s390_tdc: 1888 Opcode = SystemZISD::TDC; 1889 CCValid = SystemZ::CCMASK_TDC; 1890 return true; 1891 1892 default: 1893 return false; 1894 } 1895 } 1896 1897 // Emit an intrinsic with chain and an explicit CC register result. 1898 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1899 unsigned Opcode) { 1900 // Copy all operands except the intrinsic ID. 1901 unsigned NumOps = Op.getNumOperands(); 1902 SmallVector<SDValue, 6> Ops; 1903 Ops.reserve(NumOps - 1); 1904 Ops.push_back(Op.getOperand(0)); 1905 for (unsigned I = 2; I < NumOps; ++I) 1906 Ops.push_back(Op.getOperand(I)); 1907 1908 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1909 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1910 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1911 SDValue OldChain = SDValue(Op.getNode(), 1); 1912 SDValue NewChain = SDValue(Intr.getNode(), 1); 1913 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1914 return Intr.getNode(); 1915 } 1916 1917 // Emit an intrinsic with an explicit CC register result. 1918 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1919 unsigned Opcode) { 1920 // Copy all operands except the intrinsic ID. 1921 unsigned NumOps = Op.getNumOperands(); 1922 SmallVector<SDValue, 6> Ops; 1923 Ops.reserve(NumOps - 1); 1924 for (unsigned I = 1; I < NumOps; ++I) 1925 Ops.push_back(Op.getOperand(I)); 1926 1927 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1928 return Intr.getNode(); 1929 } 1930 1931 // CC is a comparison that will be implemented using an integer or 1932 // floating-point comparison. Return the condition code mask for 1933 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1934 // unsigned comparisons and clear for signed ones. In the floating-point 1935 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1936 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1937 #define CONV(X) \ 1938 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1939 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1940 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1941 1942 switch (CC) { 1943 default: 1944 llvm_unreachable("Invalid integer condition!"); 1945 1946 CONV(EQ); 1947 CONV(NE); 1948 CONV(GT); 1949 CONV(GE); 1950 CONV(LT); 1951 CONV(LE); 1952 1953 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1954 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1955 } 1956 #undef CONV 1957 } 1958 1959 // If C can be converted to a comparison against zero, adjust the operands 1960 // as necessary. 1961 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1962 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1963 return; 1964 1965 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1966 if (!ConstOp1) 1967 return; 1968 1969 int64_t Value = ConstOp1->getSExtValue(); 1970 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1971 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1972 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1973 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1974 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1975 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1976 } 1977 } 1978 1979 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1980 // adjust the operands as necessary. 1981 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1982 Comparison &C) { 1983 // For us to make any changes, it must a comparison between a single-use 1984 // load and a constant. 1985 if (!C.Op0.hasOneUse() || 1986 C.Op0.getOpcode() != ISD::LOAD || 1987 C.Op1.getOpcode() != ISD::Constant) 1988 return; 1989 1990 // We must have an 8- or 16-bit load. 1991 auto *Load = cast<LoadSDNode>(C.Op0); 1992 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1993 if (NumBits != 8 && NumBits != 16) 1994 return; 1995 1996 // The load must be an extending one and the constant must be within the 1997 // range of the unextended value. 1998 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1999 uint64_t Value = ConstOp1->getZExtValue(); 2000 uint64_t Mask = (1 << NumBits) - 1; 2001 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2002 // Make sure that ConstOp1 is in range of C.Op0. 2003 int64_t SignedValue = ConstOp1->getSExtValue(); 2004 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2005 return; 2006 if (C.ICmpType != SystemZICMP::SignedOnly) { 2007 // Unsigned comparison between two sign-extended values is equivalent 2008 // to unsigned comparison between two zero-extended values. 2009 Value &= Mask; 2010 } else if (NumBits == 8) { 2011 // Try to treat the comparison as unsigned, so that we can use CLI. 2012 // Adjust CCMask and Value as necessary. 2013 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2014 // Test whether the high bit of the byte is set. 2015 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2016 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2017 // Test whether the high bit of the byte is clear. 2018 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2019 else 2020 // No instruction exists for this combination. 2021 return; 2022 C.ICmpType = SystemZICMP::UnsignedOnly; 2023 } 2024 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2025 if (Value > Mask) 2026 return; 2027 // If the constant is in range, we can use any comparison. 2028 C.ICmpType = SystemZICMP::Any; 2029 } else 2030 return; 2031 2032 // Make sure that the first operand is an i32 of the right extension type. 2033 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2034 ISD::SEXTLOAD : 2035 ISD::ZEXTLOAD); 2036 if (C.Op0.getValueType() != MVT::i32 || 2037 Load->getExtensionType() != ExtType) { 2038 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2039 Load->getBasePtr(), Load->getPointerInfo(), 2040 Load->getMemoryVT(), Load->getAlignment(), 2041 Load->getMemOperand()->getFlags()); 2042 // Update the chain uses. 2043 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2044 } 2045 2046 // Make sure that the second operand is an i32 with the right value. 2047 if (C.Op1.getValueType() != MVT::i32 || 2048 Value != ConstOp1->getZExtValue()) 2049 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2050 } 2051 2052 // Return true if Op is either an unextended load, or a load suitable 2053 // for integer register-memory comparisons of type ICmpType. 2054 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2055 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2056 if (Load) { 2057 // There are no instructions to compare a register with a memory byte. 2058 if (Load->getMemoryVT() == MVT::i8) 2059 return false; 2060 // Otherwise decide on extension type. 2061 switch (Load->getExtensionType()) { 2062 case ISD::NON_EXTLOAD: 2063 return true; 2064 case ISD::SEXTLOAD: 2065 return ICmpType != SystemZICMP::UnsignedOnly; 2066 case ISD::ZEXTLOAD: 2067 return ICmpType != SystemZICMP::SignedOnly; 2068 default: 2069 break; 2070 } 2071 } 2072 return false; 2073 } 2074 2075 // Return true if it is better to swap the operands of C. 2076 static bool shouldSwapCmpOperands(const Comparison &C) { 2077 // Leave f128 comparisons alone, since they have no memory forms. 2078 if (C.Op0.getValueType() == MVT::f128) 2079 return false; 2080 2081 // Always keep a floating-point constant second, since comparisons with 2082 // zero can use LOAD TEST and comparisons with other constants make a 2083 // natural memory operand. 2084 if (isa<ConstantFPSDNode>(C.Op1)) 2085 return false; 2086 2087 // Never swap comparisons with zero since there are many ways to optimize 2088 // those later. 2089 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2090 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2091 return false; 2092 2093 // Also keep natural memory operands second if the loaded value is 2094 // only used here. Several comparisons have memory forms. 2095 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2096 return false; 2097 2098 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2099 // In that case we generally prefer the memory to be second. 2100 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2101 // The only exceptions are when the second operand is a constant and 2102 // we can use things like CHHSI. 2103 if (!ConstOp1) 2104 return true; 2105 // The unsigned memory-immediate instructions can handle 16-bit 2106 // unsigned integers. 2107 if (C.ICmpType != SystemZICMP::SignedOnly && 2108 isUInt<16>(ConstOp1->getZExtValue())) 2109 return false; 2110 // The signed memory-immediate instructions can handle 16-bit 2111 // signed integers. 2112 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2113 isInt<16>(ConstOp1->getSExtValue())) 2114 return false; 2115 return true; 2116 } 2117 2118 // Try to promote the use of CGFR and CLGFR. 2119 unsigned Opcode0 = C.Op0.getOpcode(); 2120 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2121 return true; 2122 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2123 return true; 2124 if (C.ICmpType != SystemZICMP::SignedOnly && 2125 Opcode0 == ISD::AND && 2126 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2127 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2128 return true; 2129 2130 return false; 2131 } 2132 2133 // Return a version of comparison CC mask CCMask in which the LT and GT 2134 // actions are swapped. 2135 static unsigned reverseCCMask(unsigned CCMask) { 2136 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 2137 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 2138 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 2139 (CCMask & SystemZ::CCMASK_CMP_UO)); 2140 } 2141 2142 // Check whether C tests for equality between X and Y and whether X - Y 2143 // or Y - X is also computed. In that case it's better to compare the 2144 // result of the subtraction against zero. 2145 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2146 Comparison &C) { 2147 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2148 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2149 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2150 SDNode *N = *I; 2151 if (N->getOpcode() == ISD::SUB && 2152 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2153 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2154 C.Op0 = SDValue(N, 0); 2155 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2156 return; 2157 } 2158 } 2159 } 2160 } 2161 2162 // Check whether C compares a floating-point value with zero and if that 2163 // floating-point value is also negated. In this case we can use the 2164 // negation to set CC, so avoiding separate LOAD AND TEST and 2165 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2166 static void adjustForFNeg(Comparison &C) { 2167 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2168 if (C1 && C1->isZero()) { 2169 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2170 SDNode *N = *I; 2171 if (N->getOpcode() == ISD::FNEG) { 2172 C.Op0 = SDValue(N, 0); 2173 C.CCMask = reverseCCMask(C.CCMask); 2174 return; 2175 } 2176 } 2177 } 2178 } 2179 2180 // Check whether C compares (shl X, 32) with 0 and whether X is 2181 // also sign-extended. In that case it is better to test the result 2182 // of the sign extension using LTGFR. 2183 // 2184 // This case is important because InstCombine transforms a comparison 2185 // with (sext (trunc X)) into a comparison with (shl X, 32). 2186 static void adjustForLTGFR(Comparison &C) { 2187 // Check for a comparison between (shl X, 32) and 0. 2188 if (C.Op0.getOpcode() == ISD::SHL && 2189 C.Op0.getValueType() == MVT::i64 && 2190 C.Op1.getOpcode() == ISD::Constant && 2191 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2192 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2193 if (C1 && C1->getZExtValue() == 32) { 2194 SDValue ShlOp0 = C.Op0.getOperand(0); 2195 // See whether X has any SIGN_EXTEND_INREG uses. 2196 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2197 SDNode *N = *I; 2198 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2199 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2200 C.Op0 = SDValue(N, 0); 2201 return; 2202 } 2203 } 2204 } 2205 } 2206 } 2207 2208 // If C compares the truncation of an extending load, try to compare 2209 // the untruncated value instead. This exposes more opportunities to 2210 // reuse CC. 2211 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2212 Comparison &C) { 2213 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2214 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2215 C.Op1.getOpcode() == ISD::Constant && 2216 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2217 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2218 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2219 unsigned Type = L->getExtensionType(); 2220 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2221 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2222 C.Op0 = C.Op0.getOperand(0); 2223 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2224 } 2225 } 2226 } 2227 } 2228 2229 // Return true if shift operation N has an in-range constant shift value. 2230 // Store it in ShiftVal if so. 2231 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2232 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2233 if (!Shift) 2234 return false; 2235 2236 uint64_t Amount = Shift->getZExtValue(); 2237 if (Amount >= N.getValueSizeInBits()) 2238 return false; 2239 2240 ShiftVal = Amount; 2241 return true; 2242 } 2243 2244 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2245 // instruction and whether the CC value is descriptive enough to handle 2246 // a comparison of type Opcode between the AND result and CmpVal. 2247 // CCMask says which comparison result is being tested and BitSize is 2248 // the number of bits in the operands. If TEST UNDER MASK can be used, 2249 // return the corresponding CC mask, otherwise return 0. 2250 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2251 uint64_t Mask, uint64_t CmpVal, 2252 unsigned ICmpType) { 2253 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2254 2255 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2256 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2257 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2258 return 0; 2259 2260 // Work out the masks for the lowest and highest bits. 2261 unsigned HighShift = 63 - countLeadingZeros(Mask); 2262 uint64_t High = uint64_t(1) << HighShift; 2263 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2264 2265 // Signed ordered comparisons are effectively unsigned if the sign 2266 // bit is dropped. 2267 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2268 2269 // Check for equality comparisons with 0, or the equivalent. 2270 if (CmpVal == 0) { 2271 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2272 return SystemZ::CCMASK_TM_ALL_0; 2273 if (CCMask == SystemZ::CCMASK_CMP_NE) 2274 return SystemZ::CCMASK_TM_SOME_1; 2275 } 2276 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2277 if (CCMask == SystemZ::CCMASK_CMP_LT) 2278 return SystemZ::CCMASK_TM_ALL_0; 2279 if (CCMask == SystemZ::CCMASK_CMP_GE) 2280 return SystemZ::CCMASK_TM_SOME_1; 2281 } 2282 if (EffectivelyUnsigned && CmpVal < Low) { 2283 if (CCMask == SystemZ::CCMASK_CMP_LE) 2284 return SystemZ::CCMASK_TM_ALL_0; 2285 if (CCMask == SystemZ::CCMASK_CMP_GT) 2286 return SystemZ::CCMASK_TM_SOME_1; 2287 } 2288 2289 // Check for equality comparisons with the mask, or the equivalent. 2290 if (CmpVal == Mask) { 2291 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2292 return SystemZ::CCMASK_TM_ALL_1; 2293 if (CCMask == SystemZ::CCMASK_CMP_NE) 2294 return SystemZ::CCMASK_TM_SOME_0; 2295 } 2296 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2297 if (CCMask == SystemZ::CCMASK_CMP_GT) 2298 return SystemZ::CCMASK_TM_ALL_1; 2299 if (CCMask == SystemZ::CCMASK_CMP_LE) 2300 return SystemZ::CCMASK_TM_SOME_0; 2301 } 2302 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2303 if (CCMask == SystemZ::CCMASK_CMP_GE) 2304 return SystemZ::CCMASK_TM_ALL_1; 2305 if (CCMask == SystemZ::CCMASK_CMP_LT) 2306 return SystemZ::CCMASK_TM_SOME_0; 2307 } 2308 2309 // Check for ordered comparisons with the top bit. 2310 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2311 if (CCMask == SystemZ::CCMASK_CMP_LE) 2312 return SystemZ::CCMASK_TM_MSB_0; 2313 if (CCMask == SystemZ::CCMASK_CMP_GT) 2314 return SystemZ::CCMASK_TM_MSB_1; 2315 } 2316 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2317 if (CCMask == SystemZ::CCMASK_CMP_LT) 2318 return SystemZ::CCMASK_TM_MSB_0; 2319 if (CCMask == SystemZ::CCMASK_CMP_GE) 2320 return SystemZ::CCMASK_TM_MSB_1; 2321 } 2322 2323 // If there are just two bits, we can do equality checks for Low and High 2324 // as well. 2325 if (Mask == Low + High) { 2326 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2327 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2328 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2329 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2330 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2331 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2332 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2333 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2334 } 2335 2336 // Looks like we've exhausted our options. 2337 return 0; 2338 } 2339 2340 // See whether C can be implemented as a TEST UNDER MASK instruction. 2341 // Update the arguments with the TM version if so. 2342 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2343 Comparison &C) { 2344 // Check that we have a comparison with a constant. 2345 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2346 if (!ConstOp1) 2347 return; 2348 uint64_t CmpVal = ConstOp1->getZExtValue(); 2349 2350 // Check whether the nonconstant input is an AND with a constant mask. 2351 Comparison NewC(C); 2352 uint64_t MaskVal; 2353 ConstantSDNode *Mask = nullptr; 2354 if (C.Op0.getOpcode() == ISD::AND) { 2355 NewC.Op0 = C.Op0.getOperand(0); 2356 NewC.Op1 = C.Op0.getOperand(1); 2357 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2358 if (!Mask) 2359 return; 2360 MaskVal = Mask->getZExtValue(); 2361 } else { 2362 // There is no instruction to compare with a 64-bit immediate 2363 // so use TMHH instead if possible. We need an unsigned ordered 2364 // comparison with an i64 immediate. 2365 if (NewC.Op0.getValueType() != MVT::i64 || 2366 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2367 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2368 NewC.ICmpType == SystemZICMP::SignedOnly) 2369 return; 2370 // Convert LE and GT comparisons into LT and GE. 2371 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2372 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2373 if (CmpVal == uint64_t(-1)) 2374 return; 2375 CmpVal += 1; 2376 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2377 } 2378 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2379 // be masked off without changing the result. 2380 MaskVal = -(CmpVal & -CmpVal); 2381 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2382 } 2383 if (!MaskVal) 2384 return; 2385 2386 // Check whether the combination of mask, comparison value and comparison 2387 // type are suitable. 2388 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2389 unsigned NewCCMask, ShiftVal; 2390 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2391 NewC.Op0.getOpcode() == ISD::SHL && 2392 isSimpleShift(NewC.Op0, ShiftVal) && 2393 (MaskVal >> ShiftVal != 0) && 2394 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2395 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2396 MaskVal >> ShiftVal, 2397 CmpVal >> ShiftVal, 2398 SystemZICMP::Any))) { 2399 NewC.Op0 = NewC.Op0.getOperand(0); 2400 MaskVal >>= ShiftVal; 2401 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2402 NewC.Op0.getOpcode() == ISD::SRL && 2403 isSimpleShift(NewC.Op0, ShiftVal) && 2404 (MaskVal << ShiftVal != 0) && 2405 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2406 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2407 MaskVal << ShiftVal, 2408 CmpVal << ShiftVal, 2409 SystemZICMP::UnsignedOnly))) { 2410 NewC.Op0 = NewC.Op0.getOperand(0); 2411 MaskVal <<= ShiftVal; 2412 } else { 2413 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2414 NewC.ICmpType); 2415 if (!NewCCMask) 2416 return; 2417 } 2418 2419 // Go ahead and make the change. 2420 C.Opcode = SystemZISD::TM; 2421 C.Op0 = NewC.Op0; 2422 if (Mask && Mask->getZExtValue() == MaskVal) 2423 C.Op1 = SDValue(Mask, 0); 2424 else 2425 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2426 C.CCValid = SystemZ::CCMASK_TM; 2427 C.CCMask = NewCCMask; 2428 } 2429 2430 // See whether the comparison argument contains a redundant AND 2431 // and remove it if so. This sometimes happens due to the generic 2432 // BRCOND expansion. 2433 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2434 Comparison &C) { 2435 if (C.Op0.getOpcode() != ISD::AND) 2436 return; 2437 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2438 if (!Mask) 2439 return; 2440 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2441 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2442 return; 2443 2444 C.Op0 = C.Op0.getOperand(0); 2445 } 2446 2447 // Return a Comparison that tests the condition-code result of intrinsic 2448 // node Call against constant integer CC using comparison code Cond. 2449 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2450 // and CCValid is the set of possible condition-code results. 2451 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2452 SDValue Call, unsigned CCValid, uint64_t CC, 2453 ISD::CondCode Cond) { 2454 Comparison C(Call, SDValue()); 2455 C.Opcode = Opcode; 2456 C.CCValid = CCValid; 2457 if (Cond == ISD::SETEQ) 2458 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2459 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2460 else if (Cond == ISD::SETNE) 2461 // ...and the inverse of that. 2462 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2463 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2464 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2465 // always true for CC>3. 2466 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2467 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2468 // ...and the inverse of that. 2469 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2470 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2471 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2472 // always true for CC>3. 2473 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2474 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2475 // ...and the inverse of that. 2476 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2477 else 2478 llvm_unreachable("Unexpected integer comparison type"); 2479 C.CCMask &= CCValid; 2480 return C; 2481 } 2482 2483 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2484 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2485 ISD::CondCode Cond, const SDLoc &DL) { 2486 if (CmpOp1.getOpcode() == ISD::Constant) { 2487 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2488 unsigned Opcode, CCValid; 2489 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2490 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2491 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2492 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2493 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2494 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2495 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2496 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2497 } 2498 Comparison C(CmpOp0, CmpOp1); 2499 C.CCMask = CCMaskForCondCode(Cond); 2500 if (C.Op0.getValueType().isFloatingPoint()) { 2501 C.CCValid = SystemZ::CCMASK_FCMP; 2502 C.Opcode = SystemZISD::FCMP; 2503 adjustForFNeg(C); 2504 } else { 2505 C.CCValid = SystemZ::CCMASK_ICMP; 2506 C.Opcode = SystemZISD::ICMP; 2507 // Choose the type of comparison. Equality and inequality tests can 2508 // use either signed or unsigned comparisons. The choice also doesn't 2509 // matter if both sign bits are known to be clear. In those cases we 2510 // want to give the main isel code the freedom to choose whichever 2511 // form fits best. 2512 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2513 C.CCMask == SystemZ::CCMASK_CMP_NE || 2514 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2515 C.ICmpType = SystemZICMP::Any; 2516 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2517 C.ICmpType = SystemZICMP::UnsignedOnly; 2518 else 2519 C.ICmpType = SystemZICMP::SignedOnly; 2520 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2521 adjustForRedundantAnd(DAG, DL, C); 2522 adjustZeroCmp(DAG, DL, C); 2523 adjustSubwordCmp(DAG, DL, C); 2524 adjustForSubtraction(DAG, DL, C); 2525 adjustForLTGFR(C); 2526 adjustICmpTruncate(DAG, DL, C); 2527 } 2528 2529 if (shouldSwapCmpOperands(C)) { 2530 std::swap(C.Op0, C.Op1); 2531 C.CCMask = reverseCCMask(C.CCMask); 2532 } 2533 2534 adjustForTestUnderMask(DAG, DL, C); 2535 return C; 2536 } 2537 2538 // Emit the comparison instruction described by C. 2539 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2540 if (!C.Op1.getNode()) { 2541 SDNode *Node; 2542 switch (C.Op0.getOpcode()) { 2543 case ISD::INTRINSIC_W_CHAIN: 2544 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2545 return SDValue(Node, 0); 2546 case ISD::INTRINSIC_WO_CHAIN: 2547 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2548 return SDValue(Node, Node->getNumValues() - 1); 2549 default: 2550 llvm_unreachable("Invalid comparison operands"); 2551 } 2552 } 2553 if (C.Opcode == SystemZISD::ICMP) 2554 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2555 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2556 if (C.Opcode == SystemZISD::TM) { 2557 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2558 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2559 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2560 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2561 } 2562 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2563 } 2564 2565 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2566 // 64 bits. Extend is the extension type to use. Store the high part 2567 // in Hi and the low part in Lo. 2568 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2569 SDValue Op0, SDValue Op1, SDValue &Hi, 2570 SDValue &Lo) { 2571 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2572 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2573 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2574 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2575 DAG.getConstant(32, DL, MVT::i64)); 2576 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2577 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2578 } 2579 2580 // Lower a binary operation that produces two VT results, one in each 2581 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2582 // and Opcode performs the GR128 operation. Store the even register result 2583 // in Even and the odd register result in Odd. 2584 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2585 unsigned Opcode, SDValue Op0, SDValue Op1, 2586 SDValue &Even, SDValue &Odd) { 2587 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2588 bool Is32Bit = is32Bit(VT); 2589 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2590 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2591 } 2592 2593 // Return an i32 value that is 1 if the CC value produced by CCReg is 2594 // in the mask CCMask and 0 otherwise. CC is known to have a value 2595 // in CCValid, so other values can be ignored. 2596 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2597 unsigned CCValid, unsigned CCMask) { 2598 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2599 DAG.getConstant(0, DL, MVT::i32), 2600 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2601 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2602 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2603 } 2604 2605 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2606 // be done directly. IsFP is true if CC is for a floating-point rather than 2607 // integer comparison. 2608 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2609 switch (CC) { 2610 case ISD::SETOEQ: 2611 case ISD::SETEQ: 2612 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2613 2614 case ISD::SETOGE: 2615 case ISD::SETGE: 2616 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2617 2618 case ISD::SETOGT: 2619 case ISD::SETGT: 2620 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2621 2622 case ISD::SETUGT: 2623 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2624 2625 default: 2626 return 0; 2627 } 2628 } 2629 2630 // Return the SystemZISD vector comparison operation for CC or its inverse, 2631 // or 0 if neither can be done directly. Indicate in Invert whether the 2632 // result is for the inverse of CC. IsFP is true if CC is for a 2633 // floating-point rather than integer comparison. 2634 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2635 bool &Invert) { 2636 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2637 Invert = false; 2638 return Opcode; 2639 } 2640 2641 CC = ISD::getSetCCInverse(CC, !IsFP); 2642 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2643 Invert = true; 2644 return Opcode; 2645 } 2646 2647 return 0; 2648 } 2649 2650 // Return a v2f64 that contains the extended form of elements Start and Start+1 2651 // of v4f32 value Op. 2652 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2653 SDValue Op) { 2654 int Mask[] = { Start, -1, Start + 1, -1 }; 2655 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2656 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2657 } 2658 2659 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2660 // producing a result of type VT. 2661 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2662 const SDLoc &DL, EVT VT, 2663 SDValue CmpOp0, 2664 SDValue CmpOp1) const { 2665 // There is no hardware support for v4f32 (unless we have the vector 2666 // enhancements facility 1), so extend the vector into two v2f64s 2667 // and compare those. 2668 if (CmpOp0.getValueType() == MVT::v4f32 && 2669 !Subtarget.hasVectorEnhancements1()) { 2670 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2671 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2672 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2673 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2674 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2675 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2676 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2677 } 2678 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2679 } 2680 2681 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2682 // an integer mask of type VT. 2683 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2684 const SDLoc &DL, EVT VT, 2685 ISD::CondCode CC, 2686 SDValue CmpOp0, 2687 SDValue CmpOp1) const { 2688 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2689 bool Invert = false; 2690 SDValue Cmp; 2691 switch (CC) { 2692 // Handle tests for order using (or (ogt y x) (oge x y)). 2693 case ISD::SETUO: 2694 Invert = true; 2695 LLVM_FALLTHROUGH; 2696 case ISD::SETO: { 2697 assert(IsFP && "Unexpected integer comparison"); 2698 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2699 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2700 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2701 break; 2702 } 2703 2704 // Handle <> tests using (or (ogt y x) (ogt x y)). 2705 case ISD::SETUEQ: 2706 Invert = true; 2707 LLVM_FALLTHROUGH; 2708 case ISD::SETONE: { 2709 assert(IsFP && "Unexpected integer comparison"); 2710 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2711 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2712 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2713 break; 2714 } 2715 2716 // Otherwise a single comparison is enough. It doesn't really 2717 // matter whether we try the inversion or the swap first, since 2718 // there are no cases where both work. 2719 default: 2720 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2721 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2722 else { 2723 CC = ISD::getSetCCSwappedOperands(CC); 2724 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2725 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2726 else 2727 llvm_unreachable("Unhandled comparison"); 2728 } 2729 break; 2730 } 2731 if (Invert) { 2732 SDValue Mask = 2733 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2734 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2735 } 2736 return Cmp; 2737 } 2738 2739 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2740 SelectionDAG &DAG) const { 2741 SDValue CmpOp0 = Op.getOperand(0); 2742 SDValue CmpOp1 = Op.getOperand(1); 2743 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2744 SDLoc DL(Op); 2745 EVT VT = Op.getValueType(); 2746 if (VT.isVector()) 2747 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2748 2749 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2750 SDValue CCReg = emitCmp(DAG, DL, C); 2751 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2752 } 2753 2754 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2755 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2756 SDValue CmpOp0 = Op.getOperand(2); 2757 SDValue CmpOp1 = Op.getOperand(3); 2758 SDValue Dest = Op.getOperand(4); 2759 SDLoc DL(Op); 2760 2761 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2762 SDValue CCReg = emitCmp(DAG, DL, C); 2763 return DAG.getNode( 2764 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 2765 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2766 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2767 } 2768 2769 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2770 // allowing Pos and Neg to be wider than CmpOp. 2771 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2772 return (Neg.getOpcode() == ISD::SUB && 2773 Neg.getOperand(0).getOpcode() == ISD::Constant && 2774 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2775 Neg.getOperand(1) == Pos && 2776 (Pos == CmpOp || 2777 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2778 Pos.getOperand(0) == CmpOp))); 2779 } 2780 2781 // Return the absolute or negative absolute of Op; IsNegative decides which. 2782 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2783 bool IsNegative) { 2784 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2785 if (IsNegative) 2786 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2787 DAG.getConstant(0, DL, Op.getValueType()), Op); 2788 return Op; 2789 } 2790 2791 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2792 SelectionDAG &DAG) const { 2793 SDValue CmpOp0 = Op.getOperand(0); 2794 SDValue CmpOp1 = Op.getOperand(1); 2795 SDValue TrueOp = Op.getOperand(2); 2796 SDValue FalseOp = Op.getOperand(3); 2797 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2798 SDLoc DL(Op); 2799 2800 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2801 2802 // Check for absolute and negative-absolute selections, including those 2803 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2804 // This check supplements the one in DAGCombiner. 2805 if (C.Opcode == SystemZISD::ICMP && 2806 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2807 C.CCMask != SystemZ::CCMASK_CMP_NE && 2808 C.Op1.getOpcode() == ISD::Constant && 2809 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2810 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2811 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2812 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2813 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2814 } 2815 2816 SDValue CCReg = emitCmp(DAG, DL, C); 2817 SDValue Ops[] = {TrueOp, FalseOp, 2818 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2819 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 2820 2821 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2822 } 2823 2824 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2825 SelectionDAG &DAG) const { 2826 SDLoc DL(Node); 2827 const GlobalValue *GV = Node->getGlobal(); 2828 int64_t Offset = Node->getOffset(); 2829 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2830 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2831 2832 SDValue Result; 2833 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2834 if (isInt<32>(Offset)) { 2835 // Assign anchors at 1<<12 byte boundaries. 2836 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2837 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2838 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2839 2840 // The offset can be folded into the address if it is aligned to a 2841 // halfword. 2842 Offset -= Anchor; 2843 if (Offset != 0 && (Offset & 1) == 0) { 2844 SDValue Full = 2845 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2846 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2847 Offset = 0; 2848 } 2849 } else { 2850 // Conservatively load a constant offset greater than 32 bits into a 2851 // register below. 2852 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 2853 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2854 } 2855 } else { 2856 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2857 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2858 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2859 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2860 } 2861 2862 // If there was a non-zero offset that we didn't fold, create an explicit 2863 // addition for it. 2864 if (Offset != 0) 2865 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2866 DAG.getConstant(Offset, DL, PtrVT)); 2867 2868 return Result; 2869 } 2870 2871 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2872 SelectionDAG &DAG, 2873 unsigned Opcode, 2874 SDValue GOTOffset) const { 2875 SDLoc DL(Node); 2876 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2877 SDValue Chain = DAG.getEntryNode(); 2878 SDValue Glue; 2879 2880 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2881 CallingConv::GHC) 2882 report_fatal_error("In GHC calling convention TLS is not supported"); 2883 2884 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2885 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2886 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2887 Glue = Chain.getValue(1); 2888 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2889 Glue = Chain.getValue(1); 2890 2891 // The first call operand is the chain and the second is the TLS symbol. 2892 SmallVector<SDValue, 8> Ops; 2893 Ops.push_back(Chain); 2894 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2895 Node->getValueType(0), 2896 0, 0)); 2897 2898 // Add argument registers to the end of the list so that they are 2899 // known live into the call. 2900 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2901 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2902 2903 // Add a register mask operand representing the call-preserved registers. 2904 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2905 const uint32_t *Mask = 2906 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2907 assert(Mask && "Missing call preserved mask for calling convention"); 2908 Ops.push_back(DAG.getRegisterMask(Mask)); 2909 2910 // Glue the call to the argument copies. 2911 Ops.push_back(Glue); 2912 2913 // Emit the call. 2914 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2915 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2916 Glue = Chain.getValue(1); 2917 2918 // Copy the return value from %r2. 2919 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2920 } 2921 2922 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2923 SelectionDAG &DAG) const { 2924 SDValue Chain = DAG.getEntryNode(); 2925 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2926 2927 // The high part of the thread pointer is in access register 0. 2928 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 2929 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2930 2931 // The low part of the thread pointer is in access register 1. 2932 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 2933 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2934 2935 // Merge them into a single 64-bit address. 2936 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2937 DAG.getConstant(32, DL, PtrVT)); 2938 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2939 } 2940 2941 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2942 SelectionDAG &DAG) const { 2943 if (DAG.getTarget().useEmulatedTLS()) 2944 return LowerToTLSEmulatedModel(Node, DAG); 2945 SDLoc DL(Node); 2946 const GlobalValue *GV = Node->getGlobal(); 2947 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2948 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2949 2950 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2951 CallingConv::GHC) 2952 report_fatal_error("In GHC calling convention TLS is not supported"); 2953 2954 SDValue TP = lowerThreadPointer(DL, DAG); 2955 2956 // Get the offset of GA from the thread pointer, based on the TLS model. 2957 SDValue Offset; 2958 switch (model) { 2959 case TLSModel::GeneralDynamic: { 2960 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2961 SystemZConstantPoolValue *CPV = 2962 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2963 2964 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2965 Offset = DAG.getLoad( 2966 PtrVT, DL, DAG.getEntryNode(), Offset, 2967 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2968 2969 // Call __tls_get_offset to retrieve the offset. 2970 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2971 break; 2972 } 2973 2974 case TLSModel::LocalDynamic: { 2975 // Load the GOT offset of the module ID. 2976 SystemZConstantPoolValue *CPV = 2977 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2978 2979 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2980 Offset = DAG.getLoad( 2981 PtrVT, DL, DAG.getEntryNode(), Offset, 2982 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2983 2984 // Call __tls_get_offset to retrieve the module base offset. 2985 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2986 2987 // Note: The SystemZLDCleanupPass will remove redundant computations 2988 // of the module base offset. Count total number of local-dynamic 2989 // accesses to trigger execution of that pass. 2990 SystemZMachineFunctionInfo* MFI = 2991 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2992 MFI->incNumLocalDynamicTLSAccesses(); 2993 2994 // Add the per-symbol offset. 2995 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2996 2997 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2998 DTPOffset = DAG.getLoad( 2999 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3000 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3001 3002 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3003 break; 3004 } 3005 3006 case TLSModel::InitialExec: { 3007 // Load the offset from the GOT. 3008 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3009 SystemZII::MO_INDNTPOFF); 3010 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3011 Offset = 3012 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3013 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3014 break; 3015 } 3016 3017 case TLSModel::LocalExec: { 3018 // Force the offset into the constant pool and load it from there. 3019 SystemZConstantPoolValue *CPV = 3020 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3021 3022 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3023 Offset = DAG.getLoad( 3024 PtrVT, DL, DAG.getEntryNode(), Offset, 3025 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3026 break; 3027 } 3028 } 3029 3030 // Add the base and offset together. 3031 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3032 } 3033 3034 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3035 SelectionDAG &DAG) const { 3036 SDLoc DL(Node); 3037 const BlockAddress *BA = Node->getBlockAddress(); 3038 int64_t Offset = Node->getOffset(); 3039 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3040 3041 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3042 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3043 return Result; 3044 } 3045 3046 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3047 SelectionDAG &DAG) const { 3048 SDLoc DL(JT); 3049 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3050 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3051 3052 // Use LARL to load the address of the table. 3053 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3054 } 3055 3056 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3057 SelectionDAG &DAG) const { 3058 SDLoc DL(CP); 3059 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3060 3061 SDValue Result; 3062 if (CP->isMachineConstantPoolEntry()) 3063 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 3064 CP->getAlignment()); 3065 else 3066 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 3067 CP->getAlignment(), CP->getOffset()); 3068 3069 // Use LARL to load the address of the constant pool entry. 3070 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3071 } 3072 3073 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3074 SelectionDAG &DAG) const { 3075 MachineFunction &MF = DAG.getMachineFunction(); 3076 MachineFrameInfo &MFI = MF.getFrameInfo(); 3077 MFI.setFrameAddressIsTaken(true); 3078 3079 SDLoc DL(Op); 3080 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3081 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3082 3083 // If the back chain frame index has not been allocated yet, do so. 3084 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 3085 int BackChainIdx = FI->getFramePointerSaveIndex(); 3086 if (!BackChainIdx) { 3087 // By definition, the frame address is the address of the back chain. 3088 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 3089 FI->setFramePointerSaveIndex(BackChainIdx); 3090 } 3091 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3092 3093 // FIXME The frontend should detect this case. 3094 if (Depth > 0) { 3095 report_fatal_error("Unsupported stack frame traversal count"); 3096 } 3097 3098 return BackChain; 3099 } 3100 3101 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3102 SelectionDAG &DAG) const { 3103 MachineFunction &MF = DAG.getMachineFunction(); 3104 MachineFrameInfo &MFI = MF.getFrameInfo(); 3105 MFI.setReturnAddressIsTaken(true); 3106 3107 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3108 return SDValue(); 3109 3110 SDLoc DL(Op); 3111 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3112 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3113 3114 // FIXME The frontend should detect this case. 3115 if (Depth > 0) { 3116 report_fatal_error("Unsupported stack frame traversal count"); 3117 } 3118 3119 // Return R14D, which has the return address. Mark it an implicit live-in. 3120 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3121 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3122 } 3123 3124 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3125 SelectionDAG &DAG) const { 3126 SDLoc DL(Op); 3127 SDValue In = Op.getOperand(0); 3128 EVT InVT = In.getValueType(); 3129 EVT ResVT = Op.getValueType(); 3130 3131 // Convert loads directly. This is normally done by DAGCombiner, 3132 // but we need this case for bitcasts that are created during lowering 3133 // and which are then lowered themselves. 3134 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3135 if (ISD::isNormalLoad(LoadN)) { 3136 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3137 LoadN->getBasePtr(), LoadN->getMemOperand()); 3138 // Update the chain uses. 3139 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3140 return NewLoad; 3141 } 3142 3143 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3144 SDValue In64; 3145 if (Subtarget.hasHighWord()) { 3146 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3147 MVT::i64); 3148 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3149 MVT::i64, SDValue(U64, 0), In); 3150 } else { 3151 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3152 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3153 DAG.getConstant(32, DL, MVT::i64)); 3154 } 3155 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3156 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3157 DL, MVT::f32, Out64); 3158 } 3159 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3160 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3161 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3162 MVT::f64, SDValue(U64, 0), In); 3163 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3164 if (Subtarget.hasHighWord()) 3165 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3166 MVT::i32, Out64); 3167 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3168 DAG.getConstant(32, DL, MVT::i64)); 3169 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3170 } 3171 llvm_unreachable("Unexpected bitcast combination"); 3172 } 3173 3174 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3175 SelectionDAG &DAG) const { 3176 MachineFunction &MF = DAG.getMachineFunction(); 3177 SystemZMachineFunctionInfo *FuncInfo = 3178 MF.getInfo<SystemZMachineFunctionInfo>(); 3179 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3180 3181 SDValue Chain = Op.getOperand(0); 3182 SDValue Addr = Op.getOperand(1); 3183 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3184 SDLoc DL(Op); 3185 3186 // The initial values of each field. 3187 const unsigned NumFields = 4; 3188 SDValue Fields[NumFields] = { 3189 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3190 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3191 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3192 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3193 }; 3194 3195 // Store each field into its respective slot. 3196 SDValue MemOps[NumFields]; 3197 unsigned Offset = 0; 3198 for (unsigned I = 0; I < NumFields; ++I) { 3199 SDValue FieldAddr = Addr; 3200 if (Offset != 0) 3201 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3202 DAG.getIntPtrConstant(Offset, DL)); 3203 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3204 MachinePointerInfo(SV, Offset)); 3205 Offset += 8; 3206 } 3207 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3208 } 3209 3210 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3211 SelectionDAG &DAG) const { 3212 SDValue Chain = Op.getOperand(0); 3213 SDValue DstPtr = Op.getOperand(1); 3214 SDValue SrcPtr = Op.getOperand(2); 3215 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3216 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3217 SDLoc DL(Op); 3218 3219 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3220 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 3221 /*isTailCall*/false, 3222 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 3223 } 3224 3225 SDValue SystemZTargetLowering:: 3226 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3227 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3228 MachineFunction &MF = DAG.getMachineFunction(); 3229 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3230 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3231 3232 SDValue Chain = Op.getOperand(0); 3233 SDValue Size = Op.getOperand(1); 3234 SDValue Align = Op.getOperand(2); 3235 SDLoc DL(Op); 3236 3237 // If user has set the no alignment function attribute, ignore 3238 // alloca alignments. 3239 uint64_t AlignVal = (RealignOpt ? 3240 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3241 3242 uint64_t StackAlign = TFI->getStackAlignment(); 3243 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3244 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3245 3246 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3247 SDValue NeededSpace = Size; 3248 3249 // Get a reference to the stack pointer. 3250 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3251 3252 // If we need a backchain, save it now. 3253 SDValue Backchain; 3254 if (StoreBackchain) 3255 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3256 3257 // Add extra space for alignment if needed. 3258 if (ExtraAlignSpace) 3259 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3260 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3261 3262 // Get the new stack pointer value. 3263 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3264 3265 // Copy the new stack pointer back. 3266 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3267 3268 // The allocated data lives above the 160 bytes allocated for the standard 3269 // frame, plus any outgoing stack arguments. We don't know how much that 3270 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3271 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3272 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3273 3274 // Dynamically realign if needed. 3275 if (RequiredAlign > StackAlign) { 3276 Result = 3277 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3278 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3279 Result = 3280 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3281 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3282 } 3283 3284 if (StoreBackchain) 3285 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3286 3287 SDValue Ops[2] = { Result, Chain }; 3288 return DAG.getMergeValues(Ops, DL); 3289 } 3290 3291 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3292 SDValue Op, SelectionDAG &DAG) const { 3293 SDLoc DL(Op); 3294 3295 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3296 } 3297 3298 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3299 SelectionDAG &DAG) const { 3300 EVT VT = Op.getValueType(); 3301 SDLoc DL(Op); 3302 SDValue Ops[2]; 3303 if (is32Bit(VT)) 3304 // Just do a normal 64-bit multiplication and extract the results. 3305 // We define this so that it can be used for constant division. 3306 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3307 Op.getOperand(1), Ops[1], Ops[0]); 3308 else if (Subtarget.hasMiscellaneousExtensions2()) 3309 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3310 // the high result in the even register. ISD::SMUL_LOHI is defined to 3311 // return the low half first, so the results are in reverse order. 3312 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3313 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3314 else { 3315 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3316 // 3317 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3318 // 3319 // but using the fact that the upper halves are either all zeros 3320 // or all ones: 3321 // 3322 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3323 // 3324 // and grouping the right terms together since they are quicker than the 3325 // multiplication: 3326 // 3327 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3328 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3329 SDValue LL = Op.getOperand(0); 3330 SDValue RL = Op.getOperand(1); 3331 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3332 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3333 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3334 // the high result in the even register. ISD::SMUL_LOHI is defined to 3335 // return the low half first, so the results are in reverse order. 3336 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3337 LL, RL, Ops[1], Ops[0]); 3338 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3339 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3340 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3341 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3342 } 3343 return DAG.getMergeValues(Ops, DL); 3344 } 3345 3346 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3347 SelectionDAG &DAG) const { 3348 EVT VT = Op.getValueType(); 3349 SDLoc DL(Op); 3350 SDValue Ops[2]; 3351 if (is32Bit(VT)) 3352 // Just do a normal 64-bit multiplication and extract the results. 3353 // We define this so that it can be used for constant division. 3354 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3355 Op.getOperand(1), Ops[1], Ops[0]); 3356 else 3357 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3358 // the high result in the even register. ISD::UMUL_LOHI is defined to 3359 // return the low half first, so the results are in reverse order. 3360 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3361 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3362 return DAG.getMergeValues(Ops, DL); 3363 } 3364 3365 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3366 SelectionDAG &DAG) const { 3367 SDValue Op0 = Op.getOperand(0); 3368 SDValue Op1 = Op.getOperand(1); 3369 EVT VT = Op.getValueType(); 3370 SDLoc DL(Op); 3371 3372 // We use DSGF for 32-bit division. This means the first operand must 3373 // always be 64-bit, and the second operand should be 32-bit whenever 3374 // that is possible, to improve performance. 3375 if (is32Bit(VT)) 3376 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3377 else if (DAG.ComputeNumSignBits(Op1) > 32) 3378 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3379 3380 // DSG(F) returns the remainder in the even register and the 3381 // quotient in the odd register. 3382 SDValue Ops[2]; 3383 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3384 return DAG.getMergeValues(Ops, DL); 3385 } 3386 3387 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3388 SelectionDAG &DAG) const { 3389 EVT VT = Op.getValueType(); 3390 SDLoc DL(Op); 3391 3392 // DL(G) returns the remainder in the even register and the 3393 // quotient in the odd register. 3394 SDValue Ops[2]; 3395 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3396 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3397 return DAG.getMergeValues(Ops, DL); 3398 } 3399 3400 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3401 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3402 3403 // Get the known-zero masks for each operand. 3404 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3405 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3406 DAG.computeKnownBits(Ops[1])}; 3407 3408 // See if the upper 32 bits of one operand and the lower 32 bits of the 3409 // other are known zero. They are the low and high operands respectively. 3410 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3411 Known[1].Zero.getZExtValue() }; 3412 unsigned High, Low; 3413 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3414 High = 1, Low = 0; 3415 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3416 High = 0, Low = 1; 3417 else 3418 return Op; 3419 3420 SDValue LowOp = Ops[Low]; 3421 SDValue HighOp = Ops[High]; 3422 3423 // If the high part is a constant, we're better off using IILH. 3424 if (HighOp.getOpcode() == ISD::Constant) 3425 return Op; 3426 3427 // If the low part is a constant that is outside the range of LHI, 3428 // then we're better off using IILF. 3429 if (LowOp.getOpcode() == ISD::Constant) { 3430 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3431 if (!isInt<16>(Value)) 3432 return Op; 3433 } 3434 3435 // Check whether the high part is an AND that doesn't change the 3436 // high 32 bits and just masks out low bits. We can skip it if so. 3437 if (HighOp.getOpcode() == ISD::AND && 3438 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3439 SDValue HighOp0 = HighOp.getOperand(0); 3440 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3441 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3442 HighOp = HighOp0; 3443 } 3444 3445 // Take advantage of the fact that all GR32 operations only change the 3446 // low 32 bits by truncating Low to an i32 and inserting it directly 3447 // using a subreg. The interesting cases are those where the truncation 3448 // can be folded. 3449 SDLoc DL(Op); 3450 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3451 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3452 MVT::i64, HighOp, Low32); 3453 } 3454 3455 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3456 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3457 SelectionDAG &DAG) const { 3458 SDNode *N = Op.getNode(); 3459 SDValue LHS = N->getOperand(0); 3460 SDValue RHS = N->getOperand(1); 3461 SDLoc DL(N); 3462 unsigned BaseOp = 0; 3463 unsigned CCValid = 0; 3464 unsigned CCMask = 0; 3465 3466 switch (Op.getOpcode()) { 3467 default: llvm_unreachable("Unknown instruction!"); 3468 case ISD::SADDO: 3469 BaseOp = SystemZISD::SADDO; 3470 CCValid = SystemZ::CCMASK_ARITH; 3471 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3472 break; 3473 case ISD::SSUBO: 3474 BaseOp = SystemZISD::SSUBO; 3475 CCValid = SystemZ::CCMASK_ARITH; 3476 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3477 break; 3478 case ISD::UADDO: 3479 BaseOp = SystemZISD::UADDO; 3480 CCValid = SystemZ::CCMASK_LOGICAL; 3481 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3482 break; 3483 case ISD::USUBO: 3484 BaseOp = SystemZISD::USUBO; 3485 CCValid = SystemZ::CCMASK_LOGICAL; 3486 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3487 break; 3488 } 3489 3490 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3491 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3492 3493 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3494 if (N->getValueType(1) == MVT::i1) 3495 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3496 3497 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3498 } 3499 3500 static bool isAddCarryChain(SDValue Carry) { 3501 while (Carry.getOpcode() == ISD::ADDCARRY) 3502 Carry = Carry.getOperand(2); 3503 return Carry.getOpcode() == ISD::UADDO; 3504 } 3505 3506 static bool isSubBorrowChain(SDValue Carry) { 3507 while (Carry.getOpcode() == ISD::SUBCARRY) 3508 Carry = Carry.getOperand(2); 3509 return Carry.getOpcode() == ISD::USUBO; 3510 } 3511 3512 // Lower ADDCARRY/SUBCARRY nodes. 3513 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3514 SelectionDAG &DAG) const { 3515 3516 SDNode *N = Op.getNode(); 3517 MVT VT = N->getSimpleValueType(0); 3518 3519 // Let legalize expand this if it isn't a legal type yet. 3520 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3521 return SDValue(); 3522 3523 SDValue LHS = N->getOperand(0); 3524 SDValue RHS = N->getOperand(1); 3525 SDValue Carry = Op.getOperand(2); 3526 SDLoc DL(N); 3527 unsigned BaseOp = 0; 3528 unsigned CCValid = 0; 3529 unsigned CCMask = 0; 3530 3531 switch (Op.getOpcode()) { 3532 default: llvm_unreachable("Unknown instruction!"); 3533 case ISD::ADDCARRY: 3534 if (!isAddCarryChain(Carry)) 3535 return SDValue(); 3536 3537 BaseOp = SystemZISD::ADDCARRY; 3538 CCValid = SystemZ::CCMASK_LOGICAL; 3539 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3540 break; 3541 case ISD::SUBCARRY: 3542 if (!isSubBorrowChain(Carry)) 3543 return SDValue(); 3544 3545 BaseOp = SystemZISD::SUBCARRY; 3546 CCValid = SystemZ::CCMASK_LOGICAL; 3547 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3548 break; 3549 } 3550 3551 // Set the condition code from the carry flag. 3552 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3553 DAG.getConstant(CCValid, DL, MVT::i32), 3554 DAG.getConstant(CCMask, DL, MVT::i32)); 3555 3556 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3557 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3558 3559 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3560 if (N->getValueType(1) == MVT::i1) 3561 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3562 3563 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3564 } 3565 3566 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3567 SelectionDAG &DAG) const { 3568 EVT VT = Op.getValueType(); 3569 SDLoc DL(Op); 3570 Op = Op.getOperand(0); 3571 3572 // Handle vector types via VPOPCT. 3573 if (VT.isVector()) { 3574 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3575 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3576 switch (VT.getScalarSizeInBits()) { 3577 case 8: 3578 break; 3579 case 16: { 3580 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3581 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3582 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3583 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3584 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3585 break; 3586 } 3587 case 32: { 3588 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3589 DAG.getConstant(0, DL, MVT::i32)); 3590 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3591 break; 3592 } 3593 case 64: { 3594 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3595 DAG.getConstant(0, DL, MVT::i32)); 3596 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3597 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3598 break; 3599 } 3600 default: 3601 llvm_unreachable("Unexpected type"); 3602 } 3603 return Op; 3604 } 3605 3606 // Get the known-zero mask for the operand. 3607 KnownBits Known = DAG.computeKnownBits(Op); 3608 unsigned NumSignificantBits = (~Known.Zero).getActiveBits(); 3609 if (NumSignificantBits == 0) 3610 return DAG.getConstant(0, DL, VT); 3611 3612 // Skip known-zero high parts of the operand. 3613 int64_t OrigBitSize = VT.getSizeInBits(); 3614 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3615 BitSize = std::min(BitSize, OrigBitSize); 3616 3617 // The POPCNT instruction counts the number of bits in each byte. 3618 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3619 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3620 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3621 3622 // Add up per-byte counts in a binary tree. All bits of Op at 3623 // position larger than BitSize remain zero throughout. 3624 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3625 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3626 if (BitSize != OrigBitSize) 3627 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3628 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3629 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3630 } 3631 3632 // Extract overall result from high byte. 3633 if (BitSize > 8) 3634 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3635 DAG.getConstant(BitSize - 8, DL, VT)); 3636 3637 return Op; 3638 } 3639 3640 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3641 SelectionDAG &DAG) const { 3642 SDLoc DL(Op); 3643 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3644 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3645 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3646 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3647 3648 // The only fence that needs an instruction is a sequentially-consistent 3649 // cross-thread fence. 3650 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3651 FenceSSID == SyncScope::System) { 3652 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3653 Op.getOperand(0)), 3654 0); 3655 } 3656 3657 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3658 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3659 } 3660 3661 // Op is an atomic load. Lower it into a normal volatile load. 3662 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3663 SelectionDAG &DAG) const { 3664 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3665 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3666 Node->getChain(), Node->getBasePtr(), 3667 Node->getMemoryVT(), Node->getMemOperand()); 3668 } 3669 3670 // Op is an atomic store. Lower it into a normal volatile store. 3671 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3672 SelectionDAG &DAG) const { 3673 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3674 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3675 Node->getBasePtr(), Node->getMemoryVT(), 3676 Node->getMemOperand()); 3677 // We have to enforce sequential consistency by performing a 3678 // serialization operation after the store. 3679 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3680 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3681 MVT::Other, Chain), 0); 3682 return Chain; 3683 } 3684 3685 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3686 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3687 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3688 SelectionDAG &DAG, 3689 unsigned Opcode) const { 3690 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3691 3692 // 32-bit operations need no code outside the main loop. 3693 EVT NarrowVT = Node->getMemoryVT(); 3694 EVT WideVT = MVT::i32; 3695 if (NarrowVT == WideVT) 3696 return Op; 3697 3698 int64_t BitSize = NarrowVT.getSizeInBits(); 3699 SDValue ChainIn = Node->getChain(); 3700 SDValue Addr = Node->getBasePtr(); 3701 SDValue Src2 = Node->getVal(); 3702 MachineMemOperand *MMO = Node->getMemOperand(); 3703 SDLoc DL(Node); 3704 EVT PtrVT = Addr.getValueType(); 3705 3706 // Convert atomic subtracts of constants into additions. 3707 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3708 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3709 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3710 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3711 } 3712 3713 // Get the address of the containing word. 3714 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3715 DAG.getConstant(-4, DL, PtrVT)); 3716 3717 // Get the number of bits that the word must be rotated left in order 3718 // to bring the field to the top bits of a GR32. 3719 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3720 DAG.getConstant(3, DL, PtrVT)); 3721 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3722 3723 // Get the complementing shift amount, for rotating a field in the top 3724 // bits back to its proper position. 3725 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3726 DAG.getConstant(0, DL, WideVT), BitShift); 3727 3728 // Extend the source operand to 32 bits and prepare it for the inner loop. 3729 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3730 // operations require the source to be shifted in advance. (This shift 3731 // can be folded if the source is constant.) For AND and NAND, the lower 3732 // bits must be set, while for other opcodes they should be left clear. 3733 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3734 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3735 DAG.getConstant(32 - BitSize, DL, WideVT)); 3736 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3737 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3738 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3739 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3740 3741 // Construct the ATOMIC_LOADW_* node. 3742 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3743 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3744 DAG.getConstant(BitSize, DL, WideVT) }; 3745 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3746 NarrowVT, MMO); 3747 3748 // Rotate the result of the final CS so that the field is in the lower 3749 // bits of a GR32, then truncate it. 3750 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3751 DAG.getConstant(BitSize, DL, WideVT)); 3752 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3753 3754 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3755 return DAG.getMergeValues(RetOps, DL); 3756 } 3757 3758 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3759 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3760 // operations into additions. 3761 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3762 SelectionDAG &DAG) const { 3763 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3764 EVT MemVT = Node->getMemoryVT(); 3765 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3766 // A full-width operation. 3767 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3768 SDValue Src2 = Node->getVal(); 3769 SDValue NegSrc2; 3770 SDLoc DL(Src2); 3771 3772 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3773 // Use an addition if the operand is constant and either LAA(G) is 3774 // available or the negative value is in the range of A(G)FHI. 3775 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3776 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3777 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3778 } else if (Subtarget.hasInterlockedAccess1()) 3779 // Use LAA(G) if available. 3780 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3781 Src2); 3782 3783 if (NegSrc2.getNode()) 3784 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3785 Node->getChain(), Node->getBasePtr(), NegSrc2, 3786 Node->getMemOperand()); 3787 3788 // Use the node as-is. 3789 return Op; 3790 } 3791 3792 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3793 } 3794 3795 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3796 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3797 SelectionDAG &DAG) const { 3798 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3799 SDValue ChainIn = Node->getOperand(0); 3800 SDValue Addr = Node->getOperand(1); 3801 SDValue CmpVal = Node->getOperand(2); 3802 SDValue SwapVal = Node->getOperand(3); 3803 MachineMemOperand *MMO = Node->getMemOperand(); 3804 SDLoc DL(Node); 3805 3806 // We have native support for 32-bit and 64-bit compare and swap, but we 3807 // still need to expand extracting the "success" result from the CC. 3808 EVT NarrowVT = Node->getMemoryVT(); 3809 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3810 if (NarrowVT == WideVT) { 3811 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3812 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3813 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3814 DL, Tys, Ops, NarrowVT, MMO); 3815 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3816 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3817 3818 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3819 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3820 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3821 return SDValue(); 3822 } 3823 3824 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3825 // via a fullword ATOMIC_CMP_SWAPW operation. 3826 int64_t BitSize = NarrowVT.getSizeInBits(); 3827 EVT PtrVT = Addr.getValueType(); 3828 3829 // Get the address of the containing word. 3830 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3831 DAG.getConstant(-4, DL, PtrVT)); 3832 3833 // Get the number of bits that the word must be rotated left in order 3834 // to bring the field to the top bits of a GR32. 3835 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3836 DAG.getConstant(3, DL, PtrVT)); 3837 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3838 3839 // Get the complementing shift amount, for rotating a field in the top 3840 // bits back to its proper position. 3841 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3842 DAG.getConstant(0, DL, WideVT), BitShift); 3843 3844 // Construct the ATOMIC_CMP_SWAPW node. 3845 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3846 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3847 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3848 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3849 VTList, Ops, NarrowVT, MMO); 3850 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3851 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 3852 3853 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3854 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3855 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3856 return SDValue(); 3857 } 3858 3859 MachineMemOperand::Flags 3860 SystemZTargetLowering::getMMOFlags(const Instruction &I) const { 3861 // Because of how we convert atomic_load and atomic_store to normal loads and 3862 // stores in the DAG, we need to ensure that the MMOs are marked volatile 3863 // since DAGCombine hasn't been updated to account for atomic, but non 3864 // volatile loads. (See D57601) 3865 if (auto *SI = dyn_cast<StoreInst>(&I)) 3866 if (SI->isAtomic()) 3867 return MachineMemOperand::MOVolatile; 3868 if (auto *LI = dyn_cast<LoadInst>(&I)) 3869 if (LI->isAtomic()) 3870 return MachineMemOperand::MOVolatile; 3871 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 3872 if (AI->isAtomic()) 3873 return MachineMemOperand::MOVolatile; 3874 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 3875 if (AI->isAtomic()) 3876 return MachineMemOperand::MOVolatile; 3877 return MachineMemOperand::MONone; 3878 } 3879 3880 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3881 SelectionDAG &DAG) const { 3882 MachineFunction &MF = DAG.getMachineFunction(); 3883 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3884 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 3885 report_fatal_error("Variable-sized stack allocations are not supported " 3886 "in GHC calling convention"); 3887 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3888 SystemZ::R15D, Op.getValueType()); 3889 } 3890 3891 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3892 SelectionDAG &DAG) const { 3893 MachineFunction &MF = DAG.getMachineFunction(); 3894 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3895 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3896 3897 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 3898 report_fatal_error("Variable-sized stack allocations are not supported " 3899 "in GHC calling convention"); 3900 3901 SDValue Chain = Op.getOperand(0); 3902 SDValue NewSP = Op.getOperand(1); 3903 SDValue Backchain; 3904 SDLoc DL(Op); 3905 3906 if (StoreBackchain) { 3907 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3908 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3909 } 3910 3911 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3912 3913 if (StoreBackchain) 3914 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3915 3916 return Chain; 3917 } 3918 3919 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3920 SelectionDAG &DAG) const { 3921 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3922 if (!IsData) 3923 // Just preserve the chain. 3924 return Op.getOperand(0); 3925 3926 SDLoc DL(Op); 3927 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3928 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3929 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3930 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 3931 Op.getOperand(1)}; 3932 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3933 Node->getVTList(), Ops, 3934 Node->getMemoryVT(), Node->getMemOperand()); 3935 } 3936 3937 // Convert condition code in CCReg to an i32 value. 3938 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 3939 SDLoc DL(CCReg); 3940 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 3941 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3942 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3943 } 3944 3945 SDValue 3946 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3947 SelectionDAG &DAG) const { 3948 unsigned Opcode, CCValid; 3949 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3950 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3951 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 3952 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 3953 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3954 return SDValue(); 3955 } 3956 3957 return SDValue(); 3958 } 3959 3960 SDValue 3961 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3962 SelectionDAG &DAG) const { 3963 unsigned Opcode, CCValid; 3964 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3965 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 3966 if (Op->getNumValues() == 1) 3967 return getCCResult(DAG, SDValue(Node, 0)); 3968 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3969 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 3970 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 3971 } 3972 3973 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3974 switch (Id) { 3975 case Intrinsic::thread_pointer: 3976 return lowerThreadPointer(SDLoc(Op), DAG); 3977 3978 case Intrinsic::s390_vpdi: 3979 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3980 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3981 3982 case Intrinsic::s390_vperm: 3983 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3984 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3985 3986 case Intrinsic::s390_vuphb: 3987 case Intrinsic::s390_vuphh: 3988 case Intrinsic::s390_vuphf: 3989 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3990 Op.getOperand(1)); 3991 3992 case Intrinsic::s390_vuplhb: 3993 case Intrinsic::s390_vuplhh: 3994 case Intrinsic::s390_vuplhf: 3995 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3996 Op.getOperand(1)); 3997 3998 case Intrinsic::s390_vuplb: 3999 case Intrinsic::s390_vuplhw: 4000 case Intrinsic::s390_vuplf: 4001 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4002 Op.getOperand(1)); 4003 4004 case Intrinsic::s390_vupllb: 4005 case Intrinsic::s390_vupllh: 4006 case Intrinsic::s390_vupllf: 4007 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4008 Op.getOperand(1)); 4009 4010 case Intrinsic::s390_vsumb: 4011 case Intrinsic::s390_vsumh: 4012 case Intrinsic::s390_vsumgh: 4013 case Intrinsic::s390_vsumgf: 4014 case Intrinsic::s390_vsumqf: 4015 case Intrinsic::s390_vsumqg: 4016 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4017 Op.getOperand(1), Op.getOperand(2)); 4018 } 4019 4020 return SDValue(); 4021 } 4022 4023 namespace { 4024 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4025 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4026 // Operand is the constant third operand, otherwise it is the number of 4027 // bytes in each element of the result. 4028 struct Permute { 4029 unsigned Opcode; 4030 unsigned Operand; 4031 unsigned char Bytes[SystemZ::VectorBytes]; 4032 }; 4033 } 4034 4035 static const Permute PermuteForms[] = { 4036 // VMRHG 4037 { SystemZISD::MERGE_HIGH, 8, 4038 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4039 // VMRHF 4040 { SystemZISD::MERGE_HIGH, 4, 4041 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4042 // VMRHH 4043 { SystemZISD::MERGE_HIGH, 2, 4044 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4045 // VMRHB 4046 { SystemZISD::MERGE_HIGH, 1, 4047 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4048 // VMRLG 4049 { SystemZISD::MERGE_LOW, 8, 4050 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4051 // VMRLF 4052 { SystemZISD::MERGE_LOW, 4, 4053 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4054 // VMRLH 4055 { SystemZISD::MERGE_LOW, 2, 4056 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4057 // VMRLB 4058 { SystemZISD::MERGE_LOW, 1, 4059 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4060 // VPKG 4061 { SystemZISD::PACK, 4, 4062 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4063 // VPKF 4064 { SystemZISD::PACK, 2, 4065 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4066 // VPKH 4067 { SystemZISD::PACK, 1, 4068 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4069 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4070 { SystemZISD::PERMUTE_DWORDS, 4, 4071 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4072 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4073 { SystemZISD::PERMUTE_DWORDS, 1, 4074 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4075 }; 4076 4077 // Called after matching a vector shuffle against a particular pattern. 4078 // Both the original shuffle and the pattern have two vector operands. 4079 // OpNos[0] is the operand of the original shuffle that should be used for 4080 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4081 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4082 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4083 // for operands 0 and 1 of the pattern. 4084 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4085 if (OpNos[0] < 0) { 4086 if (OpNos[1] < 0) 4087 return false; 4088 OpNo0 = OpNo1 = OpNos[1]; 4089 } else if (OpNos[1] < 0) { 4090 OpNo0 = OpNo1 = OpNos[0]; 4091 } else { 4092 OpNo0 = OpNos[0]; 4093 OpNo1 = OpNos[1]; 4094 } 4095 return true; 4096 } 4097 4098 // Bytes is a VPERM-like permute vector, except that -1 is used for 4099 // undefined bytes. Return true if the VPERM can be implemented using P. 4100 // When returning true set OpNo0 to the VPERM operand that should be 4101 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4102 // 4103 // For example, if swapping the VPERM operands allows P to match, OpNo0 4104 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4105 // operand, but rewriting it to use two duplicated operands allows it to 4106 // match P, then OpNo0 and OpNo1 will be the same. 4107 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4108 unsigned &OpNo0, unsigned &OpNo1) { 4109 int OpNos[] = { -1, -1 }; 4110 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4111 int Elt = Bytes[I]; 4112 if (Elt >= 0) { 4113 // Make sure that the two permute vectors use the same suboperand 4114 // byte number. Only the operand numbers (the high bits) are 4115 // allowed to differ. 4116 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4117 return false; 4118 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4119 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4120 // Make sure that the operand mappings are consistent with previous 4121 // elements. 4122 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4123 return false; 4124 OpNos[ModelOpNo] = RealOpNo; 4125 } 4126 } 4127 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4128 } 4129 4130 // As above, but search for a matching permute. 4131 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4132 unsigned &OpNo0, unsigned &OpNo1) { 4133 for (auto &P : PermuteForms) 4134 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4135 return &P; 4136 return nullptr; 4137 } 4138 4139 // Bytes is a VPERM-like permute vector, except that -1 is used for 4140 // undefined bytes. This permute is an operand of an outer permute. 4141 // See whether redistributing the -1 bytes gives a shuffle that can be 4142 // implemented using P. If so, set Transform to a VPERM-like permute vector 4143 // that, when applied to the result of P, gives the original permute in Bytes. 4144 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4145 const Permute &P, 4146 SmallVectorImpl<int> &Transform) { 4147 unsigned To = 0; 4148 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4149 int Elt = Bytes[From]; 4150 if (Elt < 0) 4151 // Byte number From of the result is undefined. 4152 Transform[From] = -1; 4153 else { 4154 while (P.Bytes[To] != Elt) { 4155 To += 1; 4156 if (To == SystemZ::VectorBytes) 4157 return false; 4158 } 4159 Transform[From] = To; 4160 } 4161 } 4162 return true; 4163 } 4164 4165 // As above, but search for a matching permute. 4166 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4167 SmallVectorImpl<int> &Transform) { 4168 for (auto &P : PermuteForms) 4169 if (matchDoublePermute(Bytes, P, Transform)) 4170 return &P; 4171 return nullptr; 4172 } 4173 4174 // Convert the mask of the given shuffle op into a byte-level mask, 4175 // as if it had type vNi8. 4176 static bool getVPermMask(SDValue ShuffleOp, 4177 SmallVectorImpl<int> &Bytes) { 4178 EVT VT = ShuffleOp.getValueType(); 4179 unsigned NumElements = VT.getVectorNumElements(); 4180 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4181 4182 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4183 Bytes.resize(NumElements * BytesPerElement, -1); 4184 for (unsigned I = 0; I < NumElements; ++I) { 4185 int Index = VSN->getMaskElt(I); 4186 if (Index >= 0) 4187 for (unsigned J = 0; J < BytesPerElement; ++J) 4188 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4189 } 4190 return true; 4191 } 4192 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4193 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4194 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4195 Bytes.resize(NumElements * BytesPerElement, -1); 4196 for (unsigned I = 0; I < NumElements; ++I) 4197 for (unsigned J = 0; J < BytesPerElement; ++J) 4198 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4199 return true; 4200 } 4201 return false; 4202 } 4203 4204 // Bytes is a VPERM-like permute vector, except that -1 is used for 4205 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4206 // the result come from a contiguous sequence of bytes from one input. 4207 // Set Base to the selector for the first byte if so. 4208 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4209 unsigned BytesPerElement, int &Base) { 4210 Base = -1; 4211 for (unsigned I = 0; I < BytesPerElement; ++I) { 4212 if (Bytes[Start + I] >= 0) { 4213 unsigned Elem = Bytes[Start + I]; 4214 if (Base < 0) { 4215 Base = Elem - I; 4216 // Make sure the bytes would come from one input operand. 4217 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4218 return false; 4219 } else if (unsigned(Base) != Elem - I) 4220 return false; 4221 } 4222 } 4223 return true; 4224 } 4225 4226 // Bytes is a VPERM-like permute vector, except that -1 is used for 4227 // undefined bytes. Return true if it can be performed using VSLDI. 4228 // When returning true, set StartIndex to the shift amount and OpNo0 4229 // and OpNo1 to the VPERM operands that should be used as the first 4230 // and second shift operand respectively. 4231 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4232 unsigned &StartIndex, unsigned &OpNo0, 4233 unsigned &OpNo1) { 4234 int OpNos[] = { -1, -1 }; 4235 int Shift = -1; 4236 for (unsigned I = 0; I < 16; ++I) { 4237 int Index = Bytes[I]; 4238 if (Index >= 0) { 4239 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4240 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4241 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4242 if (Shift < 0) 4243 Shift = ExpectedShift; 4244 else if (Shift != ExpectedShift) 4245 return false; 4246 // Make sure that the operand mappings are consistent with previous 4247 // elements. 4248 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4249 return false; 4250 OpNos[ModelOpNo] = RealOpNo; 4251 } 4252 } 4253 StartIndex = Shift; 4254 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4255 } 4256 4257 // Create a node that performs P on operands Op0 and Op1, casting the 4258 // operands to the appropriate type. The type of the result is determined by P. 4259 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4260 const Permute &P, SDValue Op0, SDValue Op1) { 4261 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4262 // elements of a PACK are twice as wide as the outputs. 4263 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4264 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4265 P.Operand); 4266 // Cast both operands to the appropriate type. 4267 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4268 SystemZ::VectorBytes / InBytes); 4269 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4270 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4271 SDValue Op; 4272 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4273 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4274 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4275 } else if (P.Opcode == SystemZISD::PACK) { 4276 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4277 SystemZ::VectorBytes / P.Operand); 4278 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4279 } else { 4280 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4281 } 4282 return Op; 4283 } 4284 4285 // Bytes is a VPERM-like permute vector, except that -1 is used for 4286 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4287 // VSLDI or VPERM. 4288 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4289 SDValue *Ops, 4290 const SmallVectorImpl<int> &Bytes) { 4291 for (unsigned I = 0; I < 2; ++I) 4292 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4293 4294 // First see whether VSLDI can be used. 4295 unsigned StartIndex, OpNo0, OpNo1; 4296 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4297 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4298 Ops[OpNo1], 4299 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4300 4301 // Fall back on VPERM. Construct an SDNode for the permute vector. 4302 SDValue IndexNodes[SystemZ::VectorBytes]; 4303 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4304 if (Bytes[I] >= 0) 4305 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4306 else 4307 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4308 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4309 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 4310 } 4311 4312 namespace { 4313 // Describes a general N-operand vector shuffle. 4314 struct GeneralShuffle { 4315 GeneralShuffle(EVT vt) : VT(vt) {} 4316 void addUndef(); 4317 bool add(SDValue, unsigned); 4318 SDValue getNode(SelectionDAG &, const SDLoc &); 4319 4320 // The operands of the shuffle. 4321 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4322 4323 // Index I is -1 if byte I of the result is undefined. Otherwise the 4324 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4325 // Bytes[I] / SystemZ::VectorBytes. 4326 SmallVector<int, SystemZ::VectorBytes> Bytes; 4327 4328 // The type of the shuffle result. 4329 EVT VT; 4330 }; 4331 } 4332 4333 // Add an extra undefined element to the shuffle. 4334 void GeneralShuffle::addUndef() { 4335 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4336 for (unsigned I = 0; I < BytesPerElement; ++I) 4337 Bytes.push_back(-1); 4338 } 4339 4340 // Add an extra element to the shuffle, taking it from element Elem of Op. 4341 // A null Op indicates a vector input whose value will be calculated later; 4342 // there is at most one such input per shuffle and it always has the same 4343 // type as the result. Aborts and returns false if the source vector elements 4344 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4345 // LLVM they become implicitly extended, but this is rare and not optimized. 4346 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4347 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4348 4349 // The source vector can have wider elements than the result, 4350 // either through an explicit TRUNCATE or because of type legalization. 4351 // We want the least significant part. 4352 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4353 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4354 4355 // Return false if the source elements are smaller than their destination 4356 // elements. 4357 if (FromBytesPerElement < BytesPerElement) 4358 return false; 4359 4360 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4361 (FromBytesPerElement - BytesPerElement)); 4362 4363 // Look through things like shuffles and bitcasts. 4364 while (Op.getNode()) { 4365 if (Op.getOpcode() == ISD::BITCAST) 4366 Op = Op.getOperand(0); 4367 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4368 // See whether the bytes we need come from a contiguous part of one 4369 // operand. 4370 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4371 if (!getVPermMask(Op, OpBytes)) 4372 break; 4373 int NewByte; 4374 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4375 break; 4376 if (NewByte < 0) { 4377 addUndef(); 4378 return true; 4379 } 4380 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4381 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4382 } else if (Op.isUndef()) { 4383 addUndef(); 4384 return true; 4385 } else 4386 break; 4387 } 4388 4389 // Make sure that the source of the extraction is in Ops. 4390 unsigned OpNo = 0; 4391 for (; OpNo < Ops.size(); ++OpNo) 4392 if (Ops[OpNo] == Op) 4393 break; 4394 if (OpNo == Ops.size()) 4395 Ops.push_back(Op); 4396 4397 // Add the element to Bytes. 4398 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4399 for (unsigned I = 0; I < BytesPerElement; ++I) 4400 Bytes.push_back(Base + I); 4401 4402 return true; 4403 } 4404 4405 // Return SDNodes for the completed shuffle. 4406 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4407 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4408 4409 if (Ops.size() == 0) 4410 return DAG.getUNDEF(VT); 4411 4412 // Make sure that there are at least two shuffle operands. 4413 if (Ops.size() == 1) 4414 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4415 4416 // Create a tree of shuffles, deferring root node until after the loop. 4417 // Try to redistribute the undefined elements of non-root nodes so that 4418 // the non-root shuffles match something like a pack or merge, then adjust 4419 // the parent node's permute vector to compensate for the new order. 4420 // Among other things, this copes with vectors like <2 x i16> that were 4421 // padded with undefined elements during type legalization. 4422 // 4423 // In the best case this redistribution will lead to the whole tree 4424 // using packs and merges. It should rarely be a loss in other cases. 4425 unsigned Stride = 1; 4426 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4427 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4428 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4429 4430 // Create a mask for just these two operands. 4431 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4432 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4433 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4434 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4435 if (OpNo == I) 4436 NewBytes[J] = Byte; 4437 else if (OpNo == I + Stride) 4438 NewBytes[J] = SystemZ::VectorBytes + Byte; 4439 else 4440 NewBytes[J] = -1; 4441 } 4442 // See if it would be better to reorganize NewMask to avoid using VPERM. 4443 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4444 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4445 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4446 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4447 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4448 if (NewBytes[J] >= 0) { 4449 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4450 "Invalid double permute"); 4451 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4452 } else 4453 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4454 } 4455 } else { 4456 // Just use NewBytes on the operands. 4457 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4458 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4459 if (NewBytes[J] >= 0) 4460 Bytes[J] = I * SystemZ::VectorBytes + J; 4461 } 4462 } 4463 } 4464 4465 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4466 if (Stride > 1) { 4467 Ops[1] = Ops[Stride]; 4468 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4469 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4470 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4471 } 4472 4473 // Look for an instruction that can do the permute without resorting 4474 // to VPERM. 4475 unsigned OpNo0, OpNo1; 4476 SDValue Op; 4477 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4478 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4479 else 4480 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4481 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4482 } 4483 4484 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4485 static bool isScalarToVector(SDValue Op) { 4486 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4487 if (!Op.getOperand(I).isUndef()) 4488 return false; 4489 return true; 4490 } 4491 4492 // Return a vector of type VT that contains Value in the first element. 4493 // The other elements don't matter. 4494 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4495 SDValue Value) { 4496 // If we have a constant, replicate it to all elements and let the 4497 // BUILD_VECTOR lowering take care of it. 4498 if (Value.getOpcode() == ISD::Constant || 4499 Value.getOpcode() == ISD::ConstantFP) { 4500 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4501 return DAG.getBuildVector(VT, DL, Ops); 4502 } 4503 if (Value.isUndef()) 4504 return DAG.getUNDEF(VT); 4505 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4506 } 4507 4508 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4509 // element 1. Used for cases in which replication is cheap. 4510 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4511 SDValue Op0, SDValue Op1) { 4512 if (Op0.isUndef()) { 4513 if (Op1.isUndef()) 4514 return DAG.getUNDEF(VT); 4515 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4516 } 4517 if (Op1.isUndef()) 4518 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4519 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4520 buildScalarToVector(DAG, DL, VT, Op0), 4521 buildScalarToVector(DAG, DL, VT, Op1)); 4522 } 4523 4524 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4525 // vector for them. 4526 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4527 SDValue Op1) { 4528 if (Op0.isUndef() && Op1.isUndef()) 4529 return DAG.getUNDEF(MVT::v2i64); 4530 // If one of the two inputs is undefined then replicate the other one, 4531 // in order to avoid using another register unnecessarily. 4532 if (Op0.isUndef()) 4533 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4534 else if (Op1.isUndef()) 4535 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4536 else { 4537 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4538 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4539 } 4540 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4541 } 4542 4543 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4544 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4545 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4546 // would benefit from this representation and return it if so. 4547 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4548 BuildVectorSDNode *BVN) { 4549 EVT VT = BVN->getValueType(0); 4550 unsigned NumElements = VT.getVectorNumElements(); 4551 4552 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4553 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4554 // need a BUILD_VECTOR, add an additional placeholder operand for that 4555 // BUILD_VECTOR and store its operands in ResidueOps. 4556 GeneralShuffle GS(VT); 4557 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4558 bool FoundOne = false; 4559 for (unsigned I = 0; I < NumElements; ++I) { 4560 SDValue Op = BVN->getOperand(I); 4561 if (Op.getOpcode() == ISD::TRUNCATE) 4562 Op = Op.getOperand(0); 4563 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4564 Op.getOperand(1).getOpcode() == ISD::Constant) { 4565 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4566 if (!GS.add(Op.getOperand(0), Elem)) 4567 return SDValue(); 4568 FoundOne = true; 4569 } else if (Op.isUndef()) { 4570 GS.addUndef(); 4571 } else { 4572 if (!GS.add(SDValue(), ResidueOps.size())) 4573 return SDValue(); 4574 ResidueOps.push_back(BVN->getOperand(I)); 4575 } 4576 } 4577 4578 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4579 if (!FoundOne) 4580 return SDValue(); 4581 4582 // Create the BUILD_VECTOR for the remaining elements, if any. 4583 if (!ResidueOps.empty()) { 4584 while (ResidueOps.size() < NumElements) 4585 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4586 for (auto &Op : GS.Ops) { 4587 if (!Op.getNode()) { 4588 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4589 break; 4590 } 4591 } 4592 } 4593 return GS.getNode(DAG, SDLoc(BVN)); 4594 } 4595 4596 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 4597 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 4598 return true; 4599 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 4600 return true; 4601 return false; 4602 } 4603 4604 // Combine GPR scalar values Elems into a vector of type VT. 4605 SDValue 4606 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4607 SmallVectorImpl<SDValue> &Elems) const { 4608 // See whether there is a single replicated value. 4609 SDValue Single; 4610 unsigned int NumElements = Elems.size(); 4611 unsigned int Count = 0; 4612 for (auto Elem : Elems) { 4613 if (!Elem.isUndef()) { 4614 if (!Single.getNode()) 4615 Single = Elem; 4616 else if (Elem != Single) { 4617 Single = SDValue(); 4618 break; 4619 } 4620 Count += 1; 4621 } 4622 } 4623 // There are three cases here: 4624 // 4625 // - if the only defined element is a loaded one, the best sequence 4626 // is a replicating load. 4627 // 4628 // - otherwise, if the only defined element is an i64 value, we will 4629 // end up with the same VLVGP sequence regardless of whether we short-cut 4630 // for replication or fall through to the later code. 4631 // 4632 // - otherwise, if the only defined element is an i32 or smaller value, 4633 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4634 // This is only a win if the single defined element is used more than once. 4635 // In other cases we're better off using a single VLVGx. 4636 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 4637 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4638 4639 // If all elements are loads, use VLREP/VLEs (below). 4640 bool AllLoads = true; 4641 for (auto Elem : Elems) 4642 if (!isVectorElementLoad(Elem)) { 4643 AllLoads = false; 4644 break; 4645 } 4646 4647 // The best way of building a v2i64 from two i64s is to use VLVGP. 4648 if (VT == MVT::v2i64 && !AllLoads) 4649 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4650 4651 // Use a 64-bit merge high to combine two doubles. 4652 if (VT == MVT::v2f64 && !AllLoads) 4653 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4654 4655 // Build v4f32 values directly from the FPRs: 4656 // 4657 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4658 // V V VMRHF 4659 // <ABxx> <CDxx> 4660 // V VMRHG 4661 // <ABCD> 4662 if (VT == MVT::v4f32 && !AllLoads) { 4663 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4664 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4665 // Avoid unnecessary undefs by reusing the other operand. 4666 if (Op01.isUndef()) 4667 Op01 = Op23; 4668 else if (Op23.isUndef()) 4669 Op23 = Op01; 4670 // Merging identical replications is a no-op. 4671 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4672 return Op01; 4673 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4674 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4675 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4676 DL, MVT::v2i64, Op01, Op23); 4677 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4678 } 4679 4680 // Collect the constant terms. 4681 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4682 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4683 4684 unsigned NumConstants = 0; 4685 for (unsigned I = 0; I < NumElements; ++I) { 4686 SDValue Elem = Elems[I]; 4687 if (Elem.getOpcode() == ISD::Constant || 4688 Elem.getOpcode() == ISD::ConstantFP) { 4689 NumConstants += 1; 4690 Constants[I] = Elem; 4691 Done[I] = true; 4692 } 4693 } 4694 // If there was at least one constant, fill in the other elements of 4695 // Constants with undefs to get a full vector constant and use that 4696 // as the starting point. 4697 SDValue Result; 4698 SDValue ReplicatedVal; 4699 if (NumConstants > 0) { 4700 for (unsigned I = 0; I < NumElements; ++I) 4701 if (!Constants[I].getNode()) 4702 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4703 Result = DAG.getBuildVector(VT, DL, Constants); 4704 } else { 4705 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4706 // avoid a false dependency on any previous contents of the vector 4707 // register. 4708 4709 // Use a VLREP if at least one element is a load. Make sure to replicate 4710 // the load with the most elements having its value. 4711 std::map<const SDNode*, unsigned> UseCounts; 4712 SDNode *LoadMaxUses = nullptr; 4713 for (unsigned I = 0; I < NumElements; ++I) 4714 if (isVectorElementLoad(Elems[I])) { 4715 SDNode *Ld = Elems[I].getNode(); 4716 UseCounts[Ld]++; 4717 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 4718 LoadMaxUses = Ld; 4719 } 4720 if (LoadMaxUses != nullptr) { 4721 ReplicatedVal = SDValue(LoadMaxUses, 0); 4722 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 4723 } else { 4724 // Try to use VLVGP. 4725 unsigned I1 = NumElements / 2 - 1; 4726 unsigned I2 = NumElements - 1; 4727 bool Def1 = !Elems[I1].isUndef(); 4728 bool Def2 = !Elems[I2].isUndef(); 4729 if (Def1 || Def2) { 4730 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4731 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4732 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4733 joinDwords(DAG, DL, Elem1, Elem2)); 4734 Done[I1] = true; 4735 Done[I2] = true; 4736 } else 4737 Result = DAG.getUNDEF(VT); 4738 } 4739 } 4740 4741 // Use VLVGx to insert the other elements. 4742 for (unsigned I = 0; I < NumElements; ++I) 4743 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 4744 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4745 DAG.getConstant(I, DL, MVT::i32)); 4746 return Result; 4747 } 4748 4749 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4750 SelectionDAG &DAG) const { 4751 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4752 SDLoc DL(Op); 4753 EVT VT = Op.getValueType(); 4754 4755 if (BVN->isConstant()) { 4756 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 4757 return Op; 4758 4759 // Fall back to loading it from memory. 4760 return SDValue(); 4761 } 4762 4763 // See if we should use shuffles to construct the vector from other vectors. 4764 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4765 return Res; 4766 4767 // Detect SCALAR_TO_VECTOR conversions. 4768 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4769 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4770 4771 // Otherwise use buildVector to build the vector up from GPRs. 4772 unsigned NumElements = Op.getNumOperands(); 4773 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4774 for (unsigned I = 0; I < NumElements; ++I) 4775 Ops[I] = Op.getOperand(I); 4776 return buildVector(DAG, DL, VT, Ops); 4777 } 4778 4779 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4780 SelectionDAG &DAG) const { 4781 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4782 SDLoc DL(Op); 4783 EVT VT = Op.getValueType(); 4784 unsigned NumElements = VT.getVectorNumElements(); 4785 4786 if (VSN->isSplat()) { 4787 SDValue Op0 = Op.getOperand(0); 4788 unsigned Index = VSN->getSplatIndex(); 4789 assert(Index < VT.getVectorNumElements() && 4790 "Splat index should be defined and in first operand"); 4791 // See whether the value we're splatting is directly available as a scalar. 4792 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4793 Op0.getOpcode() == ISD::BUILD_VECTOR) 4794 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4795 // Otherwise keep it as a vector-to-vector operation. 4796 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4797 DAG.getTargetConstant(Index, DL, MVT::i32)); 4798 } 4799 4800 GeneralShuffle GS(VT); 4801 for (unsigned I = 0; I < NumElements; ++I) { 4802 int Elt = VSN->getMaskElt(I); 4803 if (Elt < 0) 4804 GS.addUndef(); 4805 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4806 unsigned(Elt) % NumElements)) 4807 return SDValue(); 4808 } 4809 return GS.getNode(DAG, SDLoc(VSN)); 4810 } 4811 4812 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4813 SelectionDAG &DAG) const { 4814 SDLoc DL(Op); 4815 // Just insert the scalar into element 0 of an undefined vector. 4816 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4817 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4818 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4819 } 4820 4821 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4822 SelectionDAG &DAG) const { 4823 // Handle insertions of floating-point values. 4824 SDLoc DL(Op); 4825 SDValue Op0 = Op.getOperand(0); 4826 SDValue Op1 = Op.getOperand(1); 4827 SDValue Op2 = Op.getOperand(2); 4828 EVT VT = Op.getValueType(); 4829 4830 // Insertions into constant indices of a v2f64 can be done using VPDI. 4831 // However, if the inserted value is a bitcast or a constant then it's 4832 // better to use GPRs, as below. 4833 if (VT == MVT::v2f64 && 4834 Op1.getOpcode() != ISD::BITCAST && 4835 Op1.getOpcode() != ISD::ConstantFP && 4836 Op2.getOpcode() == ISD::Constant) { 4837 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 4838 unsigned Mask = VT.getVectorNumElements() - 1; 4839 if (Index <= Mask) 4840 return Op; 4841 } 4842 4843 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4844 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4845 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4846 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4847 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4848 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4849 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4850 } 4851 4852 SDValue 4853 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4854 SelectionDAG &DAG) const { 4855 // Handle extractions of floating-point values. 4856 SDLoc DL(Op); 4857 SDValue Op0 = Op.getOperand(0); 4858 SDValue Op1 = Op.getOperand(1); 4859 EVT VT = Op.getValueType(); 4860 EVT VecVT = Op0.getValueType(); 4861 4862 // Extractions of constant indices can be done directly. 4863 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4864 uint64_t Index = CIndexN->getZExtValue(); 4865 unsigned Mask = VecVT.getVectorNumElements() - 1; 4866 if (Index <= Mask) 4867 return Op; 4868 } 4869 4870 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4871 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4872 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4873 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4874 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4875 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4876 } 4877 4878 SDValue 4879 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4880 unsigned UnpackHigh) const { 4881 SDValue PackedOp = Op.getOperand(0); 4882 EVT OutVT = Op.getValueType(); 4883 EVT InVT = PackedOp.getValueType(); 4884 unsigned ToBits = OutVT.getScalarSizeInBits(); 4885 unsigned FromBits = InVT.getScalarSizeInBits(); 4886 do { 4887 FromBits *= 2; 4888 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4889 SystemZ::VectorBits / FromBits); 4890 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4891 } while (FromBits != ToBits); 4892 return PackedOp; 4893 } 4894 4895 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4896 unsigned ByScalar) const { 4897 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4898 SDValue Op0 = Op.getOperand(0); 4899 SDValue Op1 = Op.getOperand(1); 4900 SDLoc DL(Op); 4901 EVT VT = Op.getValueType(); 4902 unsigned ElemBitSize = VT.getScalarSizeInBits(); 4903 4904 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4905 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4906 APInt SplatBits, SplatUndef; 4907 unsigned SplatBitSize; 4908 bool HasAnyUndefs; 4909 // Check for constant splats. Use ElemBitSize as the minimum element 4910 // width and reject splats that need wider elements. 4911 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4912 ElemBitSize, true) && 4913 SplatBitSize == ElemBitSize) { 4914 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4915 DL, MVT::i32); 4916 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4917 } 4918 // Check for variable splats. 4919 BitVector UndefElements; 4920 SDValue Splat = BVN->getSplatValue(&UndefElements); 4921 if (Splat) { 4922 // Since i32 is the smallest legal type, we either need a no-op 4923 // or a truncation. 4924 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4925 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4926 } 4927 } 4928 4929 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4930 // and the shift amount is directly available in a GPR. 4931 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4932 if (VSN->isSplat()) { 4933 SDValue VSNOp0 = VSN->getOperand(0); 4934 unsigned Index = VSN->getSplatIndex(); 4935 assert(Index < VT.getVectorNumElements() && 4936 "Splat index should be defined and in first operand"); 4937 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4938 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4939 // Since i32 is the smallest legal type, we either need a no-op 4940 // or a truncation. 4941 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4942 VSNOp0.getOperand(Index)); 4943 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4944 } 4945 } 4946 } 4947 4948 // Otherwise just treat the current form as legal. 4949 return Op; 4950 } 4951 4952 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4953 SelectionDAG &DAG) const { 4954 switch (Op.getOpcode()) { 4955 case ISD::FRAMEADDR: 4956 return lowerFRAMEADDR(Op, DAG); 4957 case ISD::RETURNADDR: 4958 return lowerRETURNADDR(Op, DAG); 4959 case ISD::BR_CC: 4960 return lowerBR_CC(Op, DAG); 4961 case ISD::SELECT_CC: 4962 return lowerSELECT_CC(Op, DAG); 4963 case ISD::SETCC: 4964 return lowerSETCC(Op, DAG); 4965 case ISD::GlobalAddress: 4966 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4967 case ISD::GlobalTLSAddress: 4968 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4969 case ISD::BlockAddress: 4970 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4971 case ISD::JumpTable: 4972 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4973 case ISD::ConstantPool: 4974 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4975 case ISD::BITCAST: 4976 return lowerBITCAST(Op, DAG); 4977 case ISD::VASTART: 4978 return lowerVASTART(Op, DAG); 4979 case ISD::VACOPY: 4980 return lowerVACOPY(Op, DAG); 4981 case ISD::DYNAMIC_STACKALLOC: 4982 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4983 case ISD::GET_DYNAMIC_AREA_OFFSET: 4984 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4985 case ISD::SMUL_LOHI: 4986 return lowerSMUL_LOHI(Op, DAG); 4987 case ISD::UMUL_LOHI: 4988 return lowerUMUL_LOHI(Op, DAG); 4989 case ISD::SDIVREM: 4990 return lowerSDIVREM(Op, DAG); 4991 case ISD::UDIVREM: 4992 return lowerUDIVREM(Op, DAG); 4993 case ISD::SADDO: 4994 case ISD::SSUBO: 4995 case ISD::UADDO: 4996 case ISD::USUBO: 4997 return lowerXALUO(Op, DAG); 4998 case ISD::ADDCARRY: 4999 case ISD::SUBCARRY: 5000 return lowerADDSUBCARRY(Op, DAG); 5001 case ISD::OR: 5002 return lowerOR(Op, DAG); 5003 case ISD::CTPOP: 5004 return lowerCTPOP(Op, DAG); 5005 case ISD::ATOMIC_FENCE: 5006 return lowerATOMIC_FENCE(Op, DAG); 5007 case ISD::ATOMIC_SWAP: 5008 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5009 case ISD::ATOMIC_STORE: 5010 return lowerATOMIC_STORE(Op, DAG); 5011 case ISD::ATOMIC_LOAD: 5012 return lowerATOMIC_LOAD(Op, DAG); 5013 case ISD::ATOMIC_LOAD_ADD: 5014 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5015 case ISD::ATOMIC_LOAD_SUB: 5016 return lowerATOMIC_LOAD_SUB(Op, DAG); 5017 case ISD::ATOMIC_LOAD_AND: 5018 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5019 case ISD::ATOMIC_LOAD_OR: 5020 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5021 case ISD::ATOMIC_LOAD_XOR: 5022 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5023 case ISD::ATOMIC_LOAD_NAND: 5024 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5025 case ISD::ATOMIC_LOAD_MIN: 5026 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5027 case ISD::ATOMIC_LOAD_MAX: 5028 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5029 case ISD::ATOMIC_LOAD_UMIN: 5030 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5031 case ISD::ATOMIC_LOAD_UMAX: 5032 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5033 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5034 return lowerATOMIC_CMP_SWAP(Op, DAG); 5035 case ISD::STACKSAVE: 5036 return lowerSTACKSAVE(Op, DAG); 5037 case ISD::STACKRESTORE: 5038 return lowerSTACKRESTORE(Op, DAG); 5039 case ISD::PREFETCH: 5040 return lowerPREFETCH(Op, DAG); 5041 case ISD::INTRINSIC_W_CHAIN: 5042 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5043 case ISD::INTRINSIC_WO_CHAIN: 5044 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5045 case ISD::BUILD_VECTOR: 5046 return lowerBUILD_VECTOR(Op, DAG); 5047 case ISD::VECTOR_SHUFFLE: 5048 return lowerVECTOR_SHUFFLE(Op, DAG); 5049 case ISD::SCALAR_TO_VECTOR: 5050 return lowerSCALAR_TO_VECTOR(Op, DAG); 5051 case ISD::INSERT_VECTOR_ELT: 5052 return lowerINSERT_VECTOR_ELT(Op, DAG); 5053 case ISD::EXTRACT_VECTOR_ELT: 5054 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5055 case ISD::SIGN_EXTEND_VECTOR_INREG: 5056 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 5057 case ISD::ZERO_EXTEND_VECTOR_INREG: 5058 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 5059 case ISD::SHL: 5060 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5061 case ISD::SRL: 5062 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5063 case ISD::SRA: 5064 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5065 default: 5066 llvm_unreachable("Unexpected node to lower"); 5067 } 5068 } 5069 5070 // Lower operations with invalid operand or result types (currently used 5071 // only for 128-bit integer types). 5072 5073 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 5074 SDLoc DL(In); 5075 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5076 DAG.getIntPtrConstant(0, DL)); 5077 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5078 DAG.getIntPtrConstant(1, DL)); 5079 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 5080 MVT::Untyped, Hi, Lo); 5081 return SDValue(Pair, 0); 5082 } 5083 5084 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 5085 SDLoc DL(In); 5086 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5087 DL, MVT::i64, In); 5088 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5089 DL, MVT::i64, In); 5090 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 5091 } 5092 5093 void 5094 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5095 SmallVectorImpl<SDValue> &Results, 5096 SelectionDAG &DAG) const { 5097 switch (N->getOpcode()) { 5098 case ISD::ATOMIC_LOAD: { 5099 SDLoc DL(N); 5100 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5101 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5102 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5103 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5104 DL, Tys, Ops, MVT::i128, MMO); 5105 Results.push_back(lowerGR128ToI128(DAG, Res)); 5106 Results.push_back(Res.getValue(1)); 5107 break; 5108 } 5109 case ISD::ATOMIC_STORE: { 5110 SDLoc DL(N); 5111 SDVTList Tys = DAG.getVTList(MVT::Other); 5112 SDValue Ops[] = { N->getOperand(0), 5113 lowerI128ToGR128(DAG, N->getOperand(2)), 5114 N->getOperand(1) }; 5115 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5116 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5117 DL, Tys, Ops, MVT::i128, MMO); 5118 // We have to enforce sequential consistency by performing a 5119 // serialization operation after the store. 5120 if (cast<AtomicSDNode>(N)->getOrdering() == 5121 AtomicOrdering::SequentiallyConsistent) 5122 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5123 MVT::Other, Res), 0); 5124 Results.push_back(Res); 5125 break; 5126 } 5127 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5128 SDLoc DL(N); 5129 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5130 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5131 lowerI128ToGR128(DAG, N->getOperand(2)), 5132 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5133 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5134 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5135 DL, Tys, Ops, MVT::i128, MMO); 5136 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5137 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5138 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5139 Results.push_back(lowerGR128ToI128(DAG, Res)); 5140 Results.push_back(Success); 5141 Results.push_back(Res.getValue(2)); 5142 break; 5143 } 5144 default: 5145 llvm_unreachable("Unexpected node to lower"); 5146 } 5147 } 5148 5149 void 5150 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5151 SmallVectorImpl<SDValue> &Results, 5152 SelectionDAG &DAG) const { 5153 return LowerOperationWrapper(N, Results, DAG); 5154 } 5155 5156 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5157 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5158 switch ((SystemZISD::NodeType)Opcode) { 5159 case SystemZISD::FIRST_NUMBER: break; 5160 OPCODE(RET_FLAG); 5161 OPCODE(CALL); 5162 OPCODE(SIBCALL); 5163 OPCODE(TLS_GDCALL); 5164 OPCODE(TLS_LDCALL); 5165 OPCODE(PCREL_WRAPPER); 5166 OPCODE(PCREL_OFFSET); 5167 OPCODE(IABS); 5168 OPCODE(ICMP); 5169 OPCODE(FCMP); 5170 OPCODE(TM); 5171 OPCODE(BR_CCMASK); 5172 OPCODE(SELECT_CCMASK); 5173 OPCODE(ADJDYNALLOC); 5174 OPCODE(POPCNT); 5175 OPCODE(SMUL_LOHI); 5176 OPCODE(UMUL_LOHI); 5177 OPCODE(SDIVREM); 5178 OPCODE(UDIVREM); 5179 OPCODE(SADDO); 5180 OPCODE(SSUBO); 5181 OPCODE(UADDO); 5182 OPCODE(USUBO); 5183 OPCODE(ADDCARRY); 5184 OPCODE(SUBCARRY); 5185 OPCODE(GET_CCMASK); 5186 OPCODE(MVC); 5187 OPCODE(MVC_LOOP); 5188 OPCODE(NC); 5189 OPCODE(NC_LOOP); 5190 OPCODE(OC); 5191 OPCODE(OC_LOOP); 5192 OPCODE(XC); 5193 OPCODE(XC_LOOP); 5194 OPCODE(CLC); 5195 OPCODE(CLC_LOOP); 5196 OPCODE(STPCPY); 5197 OPCODE(STRCMP); 5198 OPCODE(SEARCH_STRING); 5199 OPCODE(IPM); 5200 OPCODE(MEMBARRIER); 5201 OPCODE(TBEGIN); 5202 OPCODE(TBEGIN_NOFLOAT); 5203 OPCODE(TEND); 5204 OPCODE(BYTE_MASK); 5205 OPCODE(ROTATE_MASK); 5206 OPCODE(REPLICATE); 5207 OPCODE(JOIN_DWORDS); 5208 OPCODE(SPLAT); 5209 OPCODE(MERGE_HIGH); 5210 OPCODE(MERGE_LOW); 5211 OPCODE(SHL_DOUBLE); 5212 OPCODE(PERMUTE_DWORDS); 5213 OPCODE(PERMUTE); 5214 OPCODE(PACK); 5215 OPCODE(PACKS_CC); 5216 OPCODE(PACKLS_CC); 5217 OPCODE(UNPACK_HIGH); 5218 OPCODE(UNPACKL_HIGH); 5219 OPCODE(UNPACK_LOW); 5220 OPCODE(UNPACKL_LOW); 5221 OPCODE(VSHL_BY_SCALAR); 5222 OPCODE(VSRL_BY_SCALAR); 5223 OPCODE(VSRA_BY_SCALAR); 5224 OPCODE(VSUM); 5225 OPCODE(VICMPE); 5226 OPCODE(VICMPH); 5227 OPCODE(VICMPHL); 5228 OPCODE(VICMPES); 5229 OPCODE(VICMPHS); 5230 OPCODE(VICMPHLS); 5231 OPCODE(VFCMPE); 5232 OPCODE(VFCMPH); 5233 OPCODE(VFCMPHE); 5234 OPCODE(VFCMPES); 5235 OPCODE(VFCMPHS); 5236 OPCODE(VFCMPHES); 5237 OPCODE(VFTCI); 5238 OPCODE(VEXTEND); 5239 OPCODE(VROUND); 5240 OPCODE(VTM); 5241 OPCODE(VFAE_CC); 5242 OPCODE(VFAEZ_CC); 5243 OPCODE(VFEE_CC); 5244 OPCODE(VFEEZ_CC); 5245 OPCODE(VFENE_CC); 5246 OPCODE(VFENEZ_CC); 5247 OPCODE(VISTR_CC); 5248 OPCODE(VSTRC_CC); 5249 OPCODE(VSTRCZ_CC); 5250 OPCODE(VSTRS_CC); 5251 OPCODE(VSTRSZ_CC); 5252 OPCODE(TDC); 5253 OPCODE(ATOMIC_SWAPW); 5254 OPCODE(ATOMIC_LOADW_ADD); 5255 OPCODE(ATOMIC_LOADW_SUB); 5256 OPCODE(ATOMIC_LOADW_AND); 5257 OPCODE(ATOMIC_LOADW_OR); 5258 OPCODE(ATOMIC_LOADW_XOR); 5259 OPCODE(ATOMIC_LOADW_NAND); 5260 OPCODE(ATOMIC_LOADW_MIN); 5261 OPCODE(ATOMIC_LOADW_MAX); 5262 OPCODE(ATOMIC_LOADW_UMIN); 5263 OPCODE(ATOMIC_LOADW_UMAX); 5264 OPCODE(ATOMIC_CMP_SWAPW); 5265 OPCODE(ATOMIC_CMP_SWAP); 5266 OPCODE(ATOMIC_LOAD_128); 5267 OPCODE(ATOMIC_STORE_128); 5268 OPCODE(ATOMIC_CMP_SWAP_128); 5269 OPCODE(LRV); 5270 OPCODE(STRV); 5271 OPCODE(VLER); 5272 OPCODE(VSTER); 5273 OPCODE(PREFETCH); 5274 } 5275 return nullptr; 5276 #undef OPCODE 5277 } 5278 5279 // Return true if VT is a vector whose elements are a whole number of bytes 5280 // in width. Also check for presence of vector support. 5281 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5282 if (!Subtarget.hasVector()) 5283 return false; 5284 5285 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5286 } 5287 5288 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5289 // producing a result of type ResVT. Op is a possibly bitcast version 5290 // of the input vector and Index is the index (based on type VecVT) that 5291 // should be extracted. Return the new extraction if a simplification 5292 // was possible or if Force is true. 5293 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5294 EVT VecVT, SDValue Op, 5295 unsigned Index, 5296 DAGCombinerInfo &DCI, 5297 bool Force) const { 5298 SelectionDAG &DAG = DCI.DAG; 5299 5300 // The number of bytes being extracted. 5301 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5302 5303 for (;;) { 5304 unsigned Opcode = Op.getOpcode(); 5305 if (Opcode == ISD::BITCAST) 5306 // Look through bitcasts. 5307 Op = Op.getOperand(0); 5308 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5309 canTreatAsByteVector(Op.getValueType())) { 5310 // Get a VPERM-like permute mask and see whether the bytes covered 5311 // by the extracted element are a contiguous sequence from one 5312 // source operand. 5313 SmallVector<int, SystemZ::VectorBytes> Bytes; 5314 if (!getVPermMask(Op, Bytes)) 5315 break; 5316 int First; 5317 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5318 BytesPerElement, First)) 5319 break; 5320 if (First < 0) 5321 return DAG.getUNDEF(ResVT); 5322 // Make sure the contiguous sequence starts at a multiple of the 5323 // original element size. 5324 unsigned Byte = unsigned(First) % Bytes.size(); 5325 if (Byte % BytesPerElement != 0) 5326 break; 5327 // We can get the extracted value directly from an input. 5328 Index = Byte / BytesPerElement; 5329 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5330 Force = true; 5331 } else if (Opcode == ISD::BUILD_VECTOR && 5332 canTreatAsByteVector(Op.getValueType())) { 5333 // We can only optimize this case if the BUILD_VECTOR elements are 5334 // at least as wide as the extracted value. 5335 EVT OpVT = Op.getValueType(); 5336 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5337 if (OpBytesPerElement < BytesPerElement) 5338 break; 5339 // Make sure that the least-significant bit of the extracted value 5340 // is the least significant bit of an input. 5341 unsigned End = (Index + 1) * BytesPerElement; 5342 if (End % OpBytesPerElement != 0) 5343 break; 5344 // We're extracting the low part of one operand of the BUILD_VECTOR. 5345 Op = Op.getOperand(End / OpBytesPerElement - 1); 5346 if (!Op.getValueType().isInteger()) { 5347 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5348 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5349 DCI.AddToWorklist(Op.getNode()); 5350 } 5351 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5352 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5353 if (VT != ResVT) { 5354 DCI.AddToWorklist(Op.getNode()); 5355 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5356 } 5357 return Op; 5358 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5359 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5360 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5361 canTreatAsByteVector(Op.getValueType()) && 5362 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5363 // Make sure that only the unextended bits are significant. 5364 EVT ExtVT = Op.getValueType(); 5365 EVT OpVT = Op.getOperand(0).getValueType(); 5366 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5367 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5368 unsigned Byte = Index * BytesPerElement; 5369 unsigned SubByte = Byte % ExtBytesPerElement; 5370 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5371 if (SubByte < MinSubByte || 5372 SubByte + BytesPerElement > ExtBytesPerElement) 5373 break; 5374 // Get the byte offset of the unextended element 5375 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5376 // ...then add the byte offset relative to that element. 5377 Byte += SubByte - MinSubByte; 5378 if (Byte % BytesPerElement != 0) 5379 break; 5380 Op = Op.getOperand(0); 5381 Index = Byte / BytesPerElement; 5382 Force = true; 5383 } else 5384 break; 5385 } 5386 if (Force) { 5387 if (Op.getValueType() != VecVT) { 5388 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5389 DCI.AddToWorklist(Op.getNode()); 5390 } 5391 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5392 DAG.getConstant(Index, DL, MVT::i32)); 5393 } 5394 return SDValue(); 5395 } 5396 5397 // Optimize vector operations in scalar value Op on the basis that Op 5398 // is truncated to TruncVT. 5399 SDValue SystemZTargetLowering::combineTruncateExtract( 5400 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5401 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5402 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5403 // of type TruncVT. 5404 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5405 TruncVT.getSizeInBits() % 8 == 0) { 5406 SDValue Vec = Op.getOperand(0); 5407 EVT VecVT = Vec.getValueType(); 5408 if (canTreatAsByteVector(VecVT)) { 5409 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5410 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5411 unsigned TruncBytes = TruncVT.getStoreSize(); 5412 if (BytesPerElement % TruncBytes == 0) { 5413 // Calculate the value of Y' in the above description. We are 5414 // splitting the original elements into Scale equal-sized pieces 5415 // and for truncation purposes want the last (least-significant) 5416 // of these pieces for IndexN. This is easiest to do by calculating 5417 // the start index of the following element and then subtracting 1. 5418 unsigned Scale = BytesPerElement / TruncBytes; 5419 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5420 5421 // Defer the creation of the bitcast from X to combineExtract, 5422 // which might be able to optimize the extraction. 5423 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5424 VecVT.getStoreSize() / TruncBytes); 5425 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5426 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5427 } 5428 } 5429 } 5430 } 5431 return SDValue(); 5432 } 5433 5434 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5435 SDNode *N, DAGCombinerInfo &DCI) const { 5436 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5437 SelectionDAG &DAG = DCI.DAG; 5438 SDValue N0 = N->getOperand(0); 5439 EVT VT = N->getValueType(0); 5440 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5441 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5442 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5443 if (TrueOp && FalseOp) { 5444 SDLoc DL(N0); 5445 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5446 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5447 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5448 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5449 // If N0 has multiple uses, change other uses as well. 5450 if (!N0.hasOneUse()) { 5451 SDValue TruncSelect = 5452 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5453 DCI.CombineTo(N0.getNode(), TruncSelect); 5454 } 5455 return NewSelect; 5456 } 5457 } 5458 return SDValue(); 5459 } 5460 5461 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5462 SDNode *N, DAGCombinerInfo &DCI) const { 5463 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5464 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5465 // into (select_cc LHS, RHS, -1, 0, COND) 5466 SelectionDAG &DAG = DCI.DAG; 5467 SDValue N0 = N->getOperand(0); 5468 EVT VT = N->getValueType(0); 5469 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5470 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5471 N0 = N0.getOperand(0); 5472 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5473 SDLoc DL(N0); 5474 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5475 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5476 N0.getOperand(2) }; 5477 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5478 } 5479 return SDValue(); 5480 } 5481 5482 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5483 SDNode *N, DAGCombinerInfo &DCI) const { 5484 // Convert (sext (ashr (shl X, C1), C2)) to 5485 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5486 // cheap as narrower ones. 5487 SelectionDAG &DAG = DCI.DAG; 5488 SDValue N0 = N->getOperand(0); 5489 EVT VT = N->getValueType(0); 5490 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5491 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5492 SDValue Inner = N0.getOperand(0); 5493 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5494 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5495 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5496 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5497 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5498 EVT ShiftVT = N0.getOperand(1).getValueType(); 5499 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5500 Inner.getOperand(0)); 5501 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5502 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5503 ShiftVT)); 5504 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5505 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5506 } 5507 } 5508 } 5509 return SDValue(); 5510 } 5511 5512 SDValue SystemZTargetLowering::combineMERGE( 5513 SDNode *N, DAGCombinerInfo &DCI) const { 5514 SelectionDAG &DAG = DCI.DAG; 5515 unsigned Opcode = N->getOpcode(); 5516 SDValue Op0 = N->getOperand(0); 5517 SDValue Op1 = N->getOperand(1); 5518 if (Op0.getOpcode() == ISD::BITCAST) 5519 Op0 = Op0.getOperand(0); 5520 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5521 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5522 // for v4f32. 5523 if (Op1 == N->getOperand(0)) 5524 return Op1; 5525 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5526 EVT VT = Op1.getValueType(); 5527 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5528 if (ElemBytes <= 4) { 5529 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5530 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5531 EVT InVT = VT.changeVectorElementTypeToInteger(); 5532 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5533 SystemZ::VectorBytes / ElemBytes / 2); 5534 if (VT != InVT) { 5535 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5536 DCI.AddToWorklist(Op1.getNode()); 5537 } 5538 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5539 DCI.AddToWorklist(Op.getNode()); 5540 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5541 } 5542 } 5543 return SDValue(); 5544 } 5545 5546 SDValue SystemZTargetLowering::combineLOAD( 5547 SDNode *N, DAGCombinerInfo &DCI) const { 5548 SelectionDAG &DAG = DCI.DAG; 5549 EVT LdVT = N->getValueType(0); 5550 if (LdVT.isVector() || LdVT.isInteger()) 5551 return SDValue(); 5552 // Transform a scalar load that is REPLICATEd as well as having other 5553 // use(s) to the form where the other use(s) use the first element of the 5554 // REPLICATE instead of the load. Otherwise instruction selection will not 5555 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5556 // point loads. 5557 5558 SDValue Replicate; 5559 SmallVector<SDNode*, 8> OtherUses; 5560 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5561 UI != UE; ++UI) { 5562 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5563 if (Replicate) 5564 return SDValue(); // Should never happen 5565 Replicate = SDValue(*UI, 0); 5566 } 5567 else if (UI.getUse().getResNo() == 0) 5568 OtherUses.push_back(*UI); 5569 } 5570 if (!Replicate || OtherUses.empty()) 5571 return SDValue(); 5572 5573 SDLoc DL(N); 5574 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5575 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5576 // Update uses of the loaded Value while preserving old chains. 5577 for (SDNode *U : OtherUses) { 5578 SmallVector<SDValue, 8> Ops; 5579 for (SDValue Op : U->ops()) 5580 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5581 DAG.UpdateNodeOperands(U, Ops); 5582 } 5583 return SDValue(N, 0); 5584 } 5585 5586 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 5587 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 5588 return true; 5589 if (Subtarget.hasVectorEnhancements2()) 5590 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 5591 return true; 5592 return false; 5593 } 5594 5595 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 5596 if (!VT.isVector() || !VT.isSimple() || 5597 VT.getSizeInBits() != 128 || 5598 VT.getScalarSizeInBits() % 8 != 0) 5599 return false; 5600 5601 unsigned NumElts = VT.getVectorNumElements(); 5602 for (unsigned i = 0; i < NumElts; ++i) { 5603 if (M[i] < 0) continue; // ignore UNDEF indices 5604 if ((unsigned) M[i] != NumElts - 1 - i) 5605 return false; 5606 } 5607 5608 return true; 5609 } 5610 5611 SDValue SystemZTargetLowering::combineSTORE( 5612 SDNode *N, DAGCombinerInfo &DCI) const { 5613 SelectionDAG &DAG = DCI.DAG; 5614 auto *SN = cast<StoreSDNode>(N); 5615 auto &Op1 = N->getOperand(1); 5616 EVT MemVT = SN->getMemoryVT(); 5617 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5618 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5619 // If X has wider elements then convert it to: 5620 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5621 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5622 if (SDValue Value = 5623 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5624 DCI.AddToWorklist(Value.getNode()); 5625 5626 // Rewrite the store with the new form of stored value. 5627 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5628 SN->getBasePtr(), SN->getMemoryVT(), 5629 SN->getMemOperand()); 5630 } 5631 } 5632 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 5633 if (!SN->isTruncatingStore() && 5634 Op1.getOpcode() == ISD::BSWAP && 5635 Op1.getNode()->hasOneUse() && 5636 canLoadStoreByteSwapped(Op1.getValueType())) { 5637 5638 SDValue BSwapOp = Op1.getOperand(0); 5639 5640 if (BSwapOp.getValueType() == MVT::i16) 5641 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5642 5643 SDValue Ops[] = { 5644 N->getOperand(0), BSwapOp, N->getOperand(2) 5645 }; 5646 5647 return 5648 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5649 Ops, MemVT, SN->getMemOperand()); 5650 } 5651 // Combine STORE (element-swap) into VSTER 5652 if (!SN->isTruncatingStore() && 5653 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 5654 Op1.getNode()->hasOneUse() && 5655 Subtarget.hasVectorEnhancements2()) { 5656 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 5657 ArrayRef<int> ShuffleMask = SVN->getMask(); 5658 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 5659 SDValue Ops[] = { 5660 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 5661 }; 5662 5663 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 5664 DAG.getVTList(MVT::Other), 5665 Ops, MemVT, SN->getMemOperand()); 5666 } 5667 } 5668 5669 return SDValue(); 5670 } 5671 5672 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 5673 SDNode *N, DAGCombinerInfo &DCI) const { 5674 SelectionDAG &DAG = DCI.DAG; 5675 // Combine element-swap (LOAD) into VLER 5676 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5677 N->getOperand(0).hasOneUse() && 5678 Subtarget.hasVectorEnhancements2()) { 5679 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 5680 ArrayRef<int> ShuffleMask = SVN->getMask(); 5681 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 5682 SDValue Load = N->getOperand(0); 5683 LoadSDNode *LD = cast<LoadSDNode>(Load); 5684 5685 // Create the element-swapping load. 5686 SDValue Ops[] = { 5687 LD->getChain(), // Chain 5688 LD->getBasePtr() // Ptr 5689 }; 5690 SDValue ESLoad = 5691 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 5692 DAG.getVTList(LD->getValueType(0), MVT::Other), 5693 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5694 5695 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 5696 // by the load dead. 5697 DCI.CombineTo(N, ESLoad); 5698 5699 // Next, combine the load away, we give it a bogus result value but a real 5700 // chain result. The result value is dead because the shuffle is dead. 5701 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 5702 5703 // Return N so it doesn't get rechecked! 5704 return SDValue(N, 0); 5705 } 5706 } 5707 5708 return SDValue(); 5709 } 5710 5711 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5712 SDNode *N, DAGCombinerInfo &DCI) const { 5713 SelectionDAG &DAG = DCI.DAG; 5714 5715 if (!Subtarget.hasVector()) 5716 return SDValue(); 5717 5718 // Look through bitcasts that retain the number of vector elements. 5719 SDValue Op = N->getOperand(0); 5720 if (Op.getOpcode() == ISD::BITCAST && 5721 Op.getValueType().isVector() && 5722 Op.getOperand(0).getValueType().isVector() && 5723 Op.getValueType().getVectorNumElements() == 5724 Op.getOperand(0).getValueType().getVectorNumElements()) 5725 Op = Op.getOperand(0); 5726 5727 // Pull BSWAP out of a vector extraction. 5728 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 5729 EVT VecVT = Op.getValueType(); 5730 EVT EltVT = VecVT.getVectorElementType(); 5731 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 5732 Op.getOperand(0), N->getOperand(1)); 5733 DCI.AddToWorklist(Op.getNode()); 5734 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 5735 if (EltVT != N->getValueType(0)) { 5736 DCI.AddToWorklist(Op.getNode()); 5737 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 5738 } 5739 return Op; 5740 } 5741 5742 // Try to simplify a vector extraction. 5743 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5744 SDValue Op0 = N->getOperand(0); 5745 EVT VecVT = Op0.getValueType(); 5746 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5747 IndexN->getZExtValue(), DCI, false); 5748 } 5749 return SDValue(); 5750 } 5751 5752 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5753 SDNode *N, DAGCombinerInfo &DCI) const { 5754 SelectionDAG &DAG = DCI.DAG; 5755 // (join_dwords X, X) == (replicate X) 5756 if (N->getOperand(0) == N->getOperand(1)) 5757 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5758 N->getOperand(0)); 5759 return SDValue(); 5760 } 5761 5762 SDValue SystemZTargetLowering::combineFP_ROUND( 5763 SDNode *N, DAGCombinerInfo &DCI) const { 5764 5765 if (!Subtarget.hasVector()) 5766 return SDValue(); 5767 5768 // (fpround (extract_vector_elt X 0)) 5769 // (fpround (extract_vector_elt X 1)) -> 5770 // (extract_vector_elt (VROUND X) 0) 5771 // (extract_vector_elt (VROUND X) 2) 5772 // 5773 // This is a special case since the target doesn't really support v2f32s. 5774 SelectionDAG &DAG = DCI.DAG; 5775 SDValue Op0 = N->getOperand(0); 5776 if (N->getValueType(0) == MVT::f32 && 5777 Op0.hasOneUse() && 5778 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5779 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5780 Op0.getOperand(1).getOpcode() == ISD::Constant && 5781 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5782 SDValue Vec = Op0.getOperand(0); 5783 for (auto *U : Vec->uses()) { 5784 if (U != Op0.getNode() && 5785 U->hasOneUse() && 5786 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5787 U->getOperand(0) == Vec && 5788 U->getOperand(1).getOpcode() == ISD::Constant && 5789 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5790 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5791 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5792 OtherRound.getOperand(0) == SDValue(U, 0) && 5793 OtherRound.getValueType() == MVT::f32) { 5794 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5795 MVT::v4f32, Vec); 5796 DCI.AddToWorklist(VRound.getNode()); 5797 SDValue Extract1 = 5798 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5799 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5800 DCI.AddToWorklist(Extract1.getNode()); 5801 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5802 SDValue Extract0 = 5803 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5804 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5805 return Extract0; 5806 } 5807 } 5808 } 5809 } 5810 return SDValue(); 5811 } 5812 5813 SDValue SystemZTargetLowering::combineFP_EXTEND( 5814 SDNode *N, DAGCombinerInfo &DCI) const { 5815 5816 if (!Subtarget.hasVector()) 5817 return SDValue(); 5818 5819 // (fpextend (extract_vector_elt X 0)) 5820 // (fpextend (extract_vector_elt X 2)) -> 5821 // (extract_vector_elt (VEXTEND X) 0) 5822 // (extract_vector_elt (VEXTEND X) 1) 5823 // 5824 // This is a special case since the target doesn't really support v2f32s. 5825 SelectionDAG &DAG = DCI.DAG; 5826 SDValue Op0 = N->getOperand(0); 5827 if (N->getValueType(0) == MVT::f64 && 5828 Op0.hasOneUse() && 5829 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5830 Op0.getOperand(0).getValueType() == MVT::v4f32 && 5831 Op0.getOperand(1).getOpcode() == ISD::Constant && 5832 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5833 SDValue Vec = Op0.getOperand(0); 5834 for (auto *U : Vec->uses()) { 5835 if (U != Op0.getNode() && 5836 U->hasOneUse() && 5837 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5838 U->getOperand(0) == Vec && 5839 U->getOperand(1).getOpcode() == ISD::Constant && 5840 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 5841 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 5842 if (OtherExtend.getOpcode() == ISD::FP_EXTEND && 5843 OtherExtend.getOperand(0) == SDValue(U, 0) && 5844 OtherExtend.getValueType() == MVT::f64) { 5845 SDValue VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 5846 MVT::v2f64, Vec); 5847 DCI.AddToWorklist(VExtend.getNode()); 5848 SDValue Extract1 = 5849 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 5850 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 5851 DCI.AddToWorklist(Extract1.getNode()); 5852 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 5853 SDValue Extract0 = 5854 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 5855 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5856 return Extract0; 5857 } 5858 } 5859 } 5860 } 5861 return SDValue(); 5862 } 5863 5864 SDValue SystemZTargetLowering::combineBSWAP( 5865 SDNode *N, DAGCombinerInfo &DCI) const { 5866 SelectionDAG &DAG = DCI.DAG; 5867 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 5868 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5869 N->getOperand(0).hasOneUse() && 5870 canLoadStoreByteSwapped(N->getValueType(0))) { 5871 SDValue Load = N->getOperand(0); 5872 LoadSDNode *LD = cast<LoadSDNode>(Load); 5873 5874 // Create the byte-swapping load. 5875 SDValue Ops[] = { 5876 LD->getChain(), // Chain 5877 LD->getBasePtr() // Ptr 5878 }; 5879 EVT LoadVT = N->getValueType(0); 5880 if (LoadVT == MVT::i16) 5881 LoadVT = MVT::i32; 5882 SDValue BSLoad = 5883 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 5884 DAG.getVTList(LoadVT, MVT::Other), 5885 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5886 5887 // If this is an i16 load, insert the truncate. 5888 SDValue ResVal = BSLoad; 5889 if (N->getValueType(0) == MVT::i16) 5890 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5891 5892 // First, combine the bswap away. This makes the value produced by the 5893 // load dead. 5894 DCI.CombineTo(N, ResVal); 5895 5896 // Next, combine the load away, we give it a bogus result value but a real 5897 // chain result. The result value is dead because the bswap is dead. 5898 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5899 5900 // Return N so it doesn't get rechecked! 5901 return SDValue(N, 0); 5902 } 5903 5904 // Look through bitcasts that retain the number of vector elements. 5905 SDValue Op = N->getOperand(0); 5906 if (Op.getOpcode() == ISD::BITCAST && 5907 Op.getValueType().isVector() && 5908 Op.getOperand(0).getValueType().isVector() && 5909 Op.getValueType().getVectorNumElements() == 5910 Op.getOperand(0).getValueType().getVectorNumElements()) 5911 Op = Op.getOperand(0); 5912 5913 // Push BSWAP into a vector insertion if at least one side then simplifies. 5914 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 5915 SDValue Vec = Op.getOperand(0); 5916 SDValue Elt = Op.getOperand(1); 5917 SDValue Idx = Op.getOperand(2); 5918 5919 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 5920 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 5921 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 5922 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 5923 (canLoadStoreByteSwapped(N->getValueType(0)) && 5924 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 5925 EVT VecVT = N->getValueType(0); 5926 EVT EltVT = N->getValueType(0).getVectorElementType(); 5927 if (VecVT != Vec.getValueType()) { 5928 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 5929 DCI.AddToWorklist(Vec.getNode()); 5930 } 5931 if (EltVT != Elt.getValueType()) { 5932 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 5933 DCI.AddToWorklist(Elt.getNode()); 5934 } 5935 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 5936 DCI.AddToWorklist(Vec.getNode()); 5937 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 5938 DCI.AddToWorklist(Elt.getNode()); 5939 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 5940 Vec, Elt, Idx); 5941 } 5942 } 5943 5944 // Push BSWAP into a vector shuffle if at least one side then simplifies. 5945 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 5946 if (SV && Op.hasOneUse()) { 5947 SDValue Op0 = Op.getOperand(0); 5948 SDValue Op1 = Op.getOperand(1); 5949 5950 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 5951 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 5952 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 5953 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 5954 EVT VecVT = N->getValueType(0); 5955 if (VecVT != Op0.getValueType()) { 5956 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 5957 DCI.AddToWorklist(Op0.getNode()); 5958 } 5959 if (VecVT != Op1.getValueType()) { 5960 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 5961 DCI.AddToWorklist(Op1.getNode()); 5962 } 5963 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 5964 DCI.AddToWorklist(Op0.getNode()); 5965 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 5966 DCI.AddToWorklist(Op1.getNode()); 5967 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 5968 } 5969 } 5970 5971 return SDValue(); 5972 } 5973 5974 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 5975 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 5976 // set by the CCReg instruction using the CCValid / CCMask masks, 5977 // If the CCReg instruction is itself a ICMP testing the condition 5978 // code set by some other instruction, see whether we can directly 5979 // use that condition code. 5980 5981 // Verify that we have an ICMP against some constant. 5982 if (CCValid != SystemZ::CCMASK_ICMP) 5983 return false; 5984 auto *ICmp = CCReg.getNode(); 5985 if (ICmp->getOpcode() != SystemZISD::ICMP) 5986 return false; 5987 auto *CompareLHS = ICmp->getOperand(0).getNode(); 5988 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 5989 if (!CompareRHS) 5990 return false; 5991 5992 // Optimize the case where CompareLHS is a SELECT_CCMASK. 5993 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 5994 // Verify that we have an appropriate mask for a EQ or NE comparison. 5995 bool Invert = false; 5996 if (CCMask == SystemZ::CCMASK_CMP_NE) 5997 Invert = !Invert; 5998 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 5999 return false; 6000 6001 // Verify that the ICMP compares against one of select values. 6002 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6003 if (!TrueVal) 6004 return false; 6005 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6006 if (!FalseVal) 6007 return false; 6008 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6009 Invert = !Invert; 6010 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6011 return false; 6012 6013 // Compute the effective CC mask for the new branch or select. 6014 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6015 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6016 if (!NewCCValid || !NewCCMask) 6017 return false; 6018 CCValid = NewCCValid->getZExtValue(); 6019 CCMask = NewCCMask->getZExtValue(); 6020 if (Invert) 6021 CCMask ^= CCValid; 6022 6023 // Return the updated CCReg link. 6024 CCReg = CompareLHS->getOperand(4); 6025 return true; 6026 } 6027 6028 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6029 if (CompareLHS->getOpcode() == ISD::SRA) { 6030 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6031 if (!SRACount || SRACount->getZExtValue() != 30) 6032 return false; 6033 auto *SHL = CompareLHS->getOperand(0).getNode(); 6034 if (SHL->getOpcode() != ISD::SHL) 6035 return false; 6036 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6037 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6038 return false; 6039 auto *IPM = SHL->getOperand(0).getNode(); 6040 if (IPM->getOpcode() != SystemZISD::IPM) 6041 return false; 6042 6043 // Avoid introducing CC spills (because SRA would clobber CC). 6044 if (!CompareLHS->hasOneUse()) 6045 return false; 6046 // Verify that the ICMP compares against zero. 6047 if (CompareRHS->getZExtValue() != 0) 6048 return false; 6049 6050 // Compute the effective CC mask for the new branch or select. 6051 switch (CCMask) { 6052 case SystemZ::CCMASK_CMP_EQ: break; 6053 case SystemZ::CCMASK_CMP_NE: break; 6054 case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break; 6055 case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break; 6056 case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break; 6057 case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break; 6058 default: return false; 6059 } 6060 6061 // Return the updated CCReg link. 6062 CCReg = IPM->getOperand(0); 6063 return true; 6064 } 6065 6066 return false; 6067 } 6068 6069 SDValue SystemZTargetLowering::combineBR_CCMASK( 6070 SDNode *N, DAGCombinerInfo &DCI) const { 6071 SelectionDAG &DAG = DCI.DAG; 6072 6073 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6074 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6075 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6076 if (!CCValid || !CCMask) 6077 return SDValue(); 6078 6079 int CCValidVal = CCValid->getZExtValue(); 6080 int CCMaskVal = CCMask->getZExtValue(); 6081 SDValue Chain = N->getOperand(0); 6082 SDValue CCReg = N->getOperand(4); 6083 6084 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6085 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6086 Chain, 6087 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6088 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6089 N->getOperand(3), CCReg); 6090 return SDValue(); 6091 } 6092 6093 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6094 SDNode *N, DAGCombinerInfo &DCI) const { 6095 SelectionDAG &DAG = DCI.DAG; 6096 6097 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6098 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6099 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6100 if (!CCValid || !CCMask) 6101 return SDValue(); 6102 6103 int CCValidVal = CCValid->getZExtValue(); 6104 int CCMaskVal = CCMask->getZExtValue(); 6105 SDValue CCReg = N->getOperand(4); 6106 6107 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6108 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6109 N->getOperand(0), N->getOperand(1), 6110 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6111 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6112 CCReg); 6113 return SDValue(); 6114 } 6115 6116 6117 SDValue SystemZTargetLowering::combineGET_CCMASK( 6118 SDNode *N, DAGCombinerInfo &DCI) const { 6119 6120 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6121 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6122 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6123 if (!CCValid || !CCMask) 6124 return SDValue(); 6125 int CCValidVal = CCValid->getZExtValue(); 6126 int CCMaskVal = CCMask->getZExtValue(); 6127 6128 SDValue Select = N->getOperand(0); 6129 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6130 return SDValue(); 6131 6132 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6133 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6134 if (!SelectCCValid || !SelectCCMask) 6135 return SDValue(); 6136 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6137 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6138 6139 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6140 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6141 if (!TrueVal || !FalseVal) 6142 return SDValue(); 6143 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6144 ; 6145 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6146 SelectCCMaskVal ^= SelectCCValidVal; 6147 else 6148 return SDValue(); 6149 6150 if (SelectCCValidVal & ~CCValidVal) 6151 return SDValue(); 6152 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6153 return SDValue(); 6154 6155 return Select->getOperand(4); 6156 } 6157 6158 SDValue SystemZTargetLowering::combineIntDIVREM( 6159 SDNode *N, DAGCombinerInfo &DCI) const { 6160 SelectionDAG &DAG = DCI.DAG; 6161 EVT VT = N->getValueType(0); 6162 // In the case where the divisor is a vector of constants a cheaper 6163 // sequence of instructions can replace the divide. BuildSDIV is called to 6164 // do this during DAG combining, but it only succeeds when it can build a 6165 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6166 // since it is not Legal but Custom it can only happen before 6167 // legalization. Therefore we must scalarize this early before Combine 6168 // 1. For widened vectors, this is already the result of type legalization. 6169 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6170 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6171 return DAG.UnrollVectorOp(N); 6172 return SDValue(); 6173 } 6174 6175 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6176 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6177 return N->getOperand(0); 6178 return N; 6179 } 6180 6181 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6182 DAGCombinerInfo &DCI) const { 6183 switch(N->getOpcode()) { 6184 default: break; 6185 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6186 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6187 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6188 case SystemZISD::MERGE_HIGH: 6189 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6190 case ISD::LOAD: return combineLOAD(N, DCI); 6191 case ISD::STORE: return combineSTORE(N, DCI); 6192 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6193 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6194 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6195 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6196 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6197 case ISD::BSWAP: return combineBSWAP(N, DCI); 6198 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6199 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6200 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6201 case ISD::SDIV: 6202 case ISD::UDIV: 6203 case ISD::SREM: 6204 case ISD::UREM: return combineIntDIVREM(N, DCI); 6205 } 6206 6207 return SDValue(); 6208 } 6209 6210 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6211 // are for Op. 6212 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6213 unsigned OpNo) { 6214 EVT VT = Op.getValueType(); 6215 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6216 APInt SrcDemE; 6217 unsigned Opcode = Op.getOpcode(); 6218 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6219 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6220 switch (Id) { 6221 case Intrinsic::s390_vpksh: // PACKS 6222 case Intrinsic::s390_vpksf: 6223 case Intrinsic::s390_vpksg: 6224 case Intrinsic::s390_vpkshs: // PACKS_CC 6225 case Intrinsic::s390_vpksfs: 6226 case Intrinsic::s390_vpksgs: 6227 case Intrinsic::s390_vpklsh: // PACKLS 6228 case Intrinsic::s390_vpklsf: 6229 case Intrinsic::s390_vpklsg: 6230 case Intrinsic::s390_vpklshs: // PACKLS_CC 6231 case Intrinsic::s390_vpklsfs: 6232 case Intrinsic::s390_vpklsgs: 6233 // VECTOR PACK truncates the elements of two source vectors into one. 6234 SrcDemE = DemandedElts; 6235 if (OpNo == 2) 6236 SrcDemE.lshrInPlace(NumElts / 2); 6237 SrcDemE = SrcDemE.trunc(NumElts / 2); 6238 break; 6239 // VECTOR UNPACK extends half the elements of the source vector. 6240 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6241 case Intrinsic::s390_vuphh: 6242 case Intrinsic::s390_vuphf: 6243 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6244 case Intrinsic::s390_vuplhh: 6245 case Intrinsic::s390_vuplhf: 6246 SrcDemE = APInt(NumElts * 2, 0); 6247 SrcDemE.insertBits(DemandedElts, 0); 6248 break; 6249 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6250 case Intrinsic::s390_vuplhw: 6251 case Intrinsic::s390_vuplf: 6252 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6253 case Intrinsic::s390_vupllh: 6254 case Intrinsic::s390_vupllf: 6255 SrcDemE = APInt(NumElts * 2, 0); 6256 SrcDemE.insertBits(DemandedElts, NumElts); 6257 break; 6258 case Intrinsic::s390_vpdi: { 6259 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6260 SrcDemE = APInt(NumElts, 0); 6261 if (!DemandedElts[OpNo - 1]) 6262 break; 6263 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6264 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6265 // Demand input element 0 or 1, given by the mask bit value. 6266 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6267 break; 6268 } 6269 case Intrinsic::s390_vsldb: { 6270 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6271 assert(VT == MVT::v16i8 && "Unexpected type."); 6272 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6273 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6274 unsigned NumSrc0Els = 16 - FirstIdx; 6275 SrcDemE = APInt(NumElts, 0); 6276 if (OpNo == 1) { 6277 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6278 SrcDemE.insertBits(DemEls, FirstIdx); 6279 } else { 6280 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6281 SrcDemE.insertBits(DemEls, 0); 6282 } 6283 break; 6284 } 6285 case Intrinsic::s390_vperm: 6286 SrcDemE = APInt(NumElts, 1); 6287 break; 6288 default: 6289 llvm_unreachable("Unhandled intrinsic."); 6290 break; 6291 } 6292 } else { 6293 switch (Opcode) { 6294 case SystemZISD::JOIN_DWORDS: 6295 // Scalar operand. 6296 SrcDemE = APInt(1, 1); 6297 break; 6298 case SystemZISD::SELECT_CCMASK: 6299 SrcDemE = DemandedElts; 6300 break; 6301 default: 6302 llvm_unreachable("Unhandled opcode."); 6303 break; 6304 } 6305 } 6306 return SrcDemE; 6307 } 6308 6309 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6310 const APInt &DemandedElts, 6311 const SelectionDAG &DAG, unsigned Depth, 6312 unsigned OpNo) { 6313 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6314 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6315 KnownBits LHSKnown = 6316 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6317 KnownBits RHSKnown = 6318 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6319 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 6320 Known.One = LHSKnown.One & RHSKnown.One; 6321 } 6322 6323 void 6324 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6325 KnownBits &Known, 6326 const APInt &DemandedElts, 6327 const SelectionDAG &DAG, 6328 unsigned Depth) const { 6329 Known.resetAll(); 6330 6331 // Intrinsic CC result is returned in the two low bits. 6332 unsigned tmp0, tmp1; // not used 6333 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6334 Known.Zero.setBitsFrom(2); 6335 return; 6336 } 6337 EVT VT = Op.getValueType(); 6338 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6339 return; 6340 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6341 "KnownBits does not match VT in bitwidth"); 6342 assert ((!VT.isVector() || 6343 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6344 "DemandedElts does not match VT number of elements"); 6345 unsigned BitWidth = Known.getBitWidth(); 6346 unsigned Opcode = Op.getOpcode(); 6347 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6348 bool IsLogical = false; 6349 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6350 switch (Id) { 6351 case Intrinsic::s390_vpksh: // PACKS 6352 case Intrinsic::s390_vpksf: 6353 case Intrinsic::s390_vpksg: 6354 case Intrinsic::s390_vpkshs: // PACKS_CC 6355 case Intrinsic::s390_vpksfs: 6356 case Intrinsic::s390_vpksgs: 6357 case Intrinsic::s390_vpklsh: // PACKLS 6358 case Intrinsic::s390_vpklsf: 6359 case Intrinsic::s390_vpklsg: 6360 case Intrinsic::s390_vpklshs: // PACKLS_CC 6361 case Intrinsic::s390_vpklsfs: 6362 case Intrinsic::s390_vpklsgs: 6363 case Intrinsic::s390_vpdi: 6364 case Intrinsic::s390_vsldb: 6365 case Intrinsic::s390_vperm: 6366 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6367 break; 6368 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6369 case Intrinsic::s390_vuplhh: 6370 case Intrinsic::s390_vuplhf: 6371 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6372 case Intrinsic::s390_vupllh: 6373 case Intrinsic::s390_vupllf: 6374 IsLogical = true; 6375 LLVM_FALLTHROUGH; 6376 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6377 case Intrinsic::s390_vuphh: 6378 case Intrinsic::s390_vuphf: 6379 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6380 case Intrinsic::s390_vuplhw: 6381 case Intrinsic::s390_vuplf: { 6382 SDValue SrcOp = Op.getOperand(1); 6383 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6384 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6385 if (IsLogical) { 6386 Known = Known.zext(BitWidth, true); 6387 } else 6388 Known = Known.sext(BitWidth); 6389 break; 6390 } 6391 default: 6392 break; 6393 } 6394 } else { 6395 switch (Opcode) { 6396 case SystemZISD::JOIN_DWORDS: 6397 case SystemZISD::SELECT_CCMASK: 6398 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6399 break; 6400 case SystemZISD::REPLICATE: { 6401 SDValue SrcOp = Op.getOperand(0); 6402 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6403 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6404 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6405 break; 6406 } 6407 default: 6408 break; 6409 } 6410 } 6411 6412 // Known has the width of the source operand(s). Adjust if needed to match 6413 // the passed bitwidth. 6414 if (Known.getBitWidth() != BitWidth) 6415 Known = Known.zextOrTrunc(BitWidth, false); 6416 } 6417 6418 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6419 const SelectionDAG &DAG, unsigned Depth, 6420 unsigned OpNo) { 6421 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6422 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6423 if (LHS == 1) return 1; // Early out. 6424 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6425 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6426 if (RHS == 1) return 1; // Early out. 6427 unsigned Common = std::min(LHS, RHS); 6428 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6429 EVT VT = Op.getValueType(); 6430 unsigned VTBits = VT.getScalarSizeInBits(); 6431 if (SrcBitWidth > VTBits) { // PACK 6432 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6433 if (Common > SrcExtraBits) 6434 return (Common - SrcExtraBits); 6435 return 1; 6436 } 6437 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6438 return Common; 6439 } 6440 6441 unsigned 6442 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6443 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6444 unsigned Depth) const { 6445 if (Op.getResNo() != 0) 6446 return 1; 6447 unsigned Opcode = Op.getOpcode(); 6448 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6449 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6450 switch (Id) { 6451 case Intrinsic::s390_vpksh: // PACKS 6452 case Intrinsic::s390_vpksf: 6453 case Intrinsic::s390_vpksg: 6454 case Intrinsic::s390_vpkshs: // PACKS_CC 6455 case Intrinsic::s390_vpksfs: 6456 case Intrinsic::s390_vpksgs: 6457 case Intrinsic::s390_vpklsh: // PACKLS 6458 case Intrinsic::s390_vpklsf: 6459 case Intrinsic::s390_vpklsg: 6460 case Intrinsic::s390_vpklshs: // PACKLS_CC 6461 case Intrinsic::s390_vpklsfs: 6462 case Intrinsic::s390_vpklsgs: 6463 case Intrinsic::s390_vpdi: 6464 case Intrinsic::s390_vsldb: 6465 case Intrinsic::s390_vperm: 6466 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6467 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6468 case Intrinsic::s390_vuphh: 6469 case Intrinsic::s390_vuphf: 6470 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6471 case Intrinsic::s390_vuplhw: 6472 case Intrinsic::s390_vuplf: { 6473 SDValue PackedOp = Op.getOperand(1); 6474 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6475 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6476 EVT VT = Op.getValueType(); 6477 unsigned VTBits = VT.getScalarSizeInBits(); 6478 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6479 return Tmp; 6480 } 6481 default: 6482 break; 6483 } 6484 } else { 6485 switch (Opcode) { 6486 case SystemZISD::SELECT_CCMASK: 6487 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6488 default: 6489 break; 6490 } 6491 } 6492 6493 return 1; 6494 } 6495 6496 //===----------------------------------------------------------------------===// 6497 // Custom insertion 6498 //===----------------------------------------------------------------------===// 6499 6500 // Create a new basic block after MBB. 6501 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 6502 MachineFunction &MF = *MBB->getParent(); 6503 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 6504 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 6505 return NewMBB; 6506 } 6507 6508 // Split MBB after MI and return the new block (the one that contains 6509 // instructions after MI). 6510 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 6511 MachineBasicBlock *MBB) { 6512 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6513 NewMBB->splice(NewMBB->begin(), MBB, 6514 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6515 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6516 return NewMBB; 6517 } 6518 6519 // Split MBB before MI and return the new block (the one that contains MI). 6520 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6521 MachineBasicBlock *MBB) { 6522 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6523 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6524 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6525 return NewMBB; 6526 } 6527 6528 // Force base value Base into a register before MI. Return the register. 6529 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 6530 const SystemZInstrInfo *TII) { 6531 if (Base.isReg()) 6532 return Base.getReg(); 6533 6534 MachineBasicBlock *MBB = MI.getParent(); 6535 MachineFunction &MF = *MBB->getParent(); 6536 MachineRegisterInfo &MRI = MF.getRegInfo(); 6537 6538 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6539 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6540 .add(Base) 6541 .addImm(0) 6542 .addReg(0); 6543 return Reg; 6544 } 6545 6546 // The CC operand of MI might be missing a kill marker because there 6547 // were multiple uses of CC, and ISel didn't know which to mark. 6548 // Figure out whether MI should have had a kill marker. 6549 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6550 // Scan forward through BB for a use/def of CC. 6551 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6552 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6553 const MachineInstr& mi = *miI; 6554 if (mi.readsRegister(SystemZ::CC)) 6555 return false; 6556 if (mi.definesRegister(SystemZ::CC)) 6557 break; // Should have kill-flag - update below. 6558 } 6559 6560 // If we hit the end of the block, check whether CC is live into a 6561 // successor. 6562 if (miI == MBB->end()) { 6563 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6564 if ((*SI)->isLiveIn(SystemZ::CC)) 6565 return false; 6566 } 6567 6568 return true; 6569 } 6570 6571 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6572 // together with other Select pseudo-opcodes into a single basic-block with 6573 // a conditional jump around it. 6574 static bool isSelectPseudo(MachineInstr &MI) { 6575 switch (MI.getOpcode()) { 6576 case SystemZ::Select32: 6577 case SystemZ::Select64: 6578 case SystemZ::SelectF32: 6579 case SystemZ::SelectF64: 6580 case SystemZ::SelectF128: 6581 case SystemZ::SelectVR32: 6582 case SystemZ::SelectVR64: 6583 case SystemZ::SelectVR128: 6584 return true; 6585 6586 default: 6587 return false; 6588 } 6589 } 6590 6591 // Helper function, which inserts PHI functions into SinkMBB: 6592 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6593 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 6594 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 6595 MachineBasicBlock *TrueMBB, 6596 MachineBasicBlock *FalseMBB, 6597 MachineBasicBlock *SinkMBB) { 6598 MachineFunction *MF = TrueMBB->getParent(); 6599 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6600 6601 MachineInstr *FirstMI = Selects.front(); 6602 unsigned CCValid = FirstMI->getOperand(3).getImm(); 6603 unsigned CCMask = FirstMI->getOperand(4).getImm(); 6604 6605 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6606 6607 // As we are creating the PHIs, we have to be careful if there is more than 6608 // one. Later Selects may reference the results of earlier Selects, but later 6609 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6610 // That also means that PHI construction must work forward from earlier to 6611 // later, and that the code must maintain a mapping from earlier PHI's 6612 // destination registers, and the registers that went into the PHI. 6613 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6614 6615 for (auto MI : Selects) { 6616 Register DestReg = MI->getOperand(0).getReg(); 6617 Register TrueReg = MI->getOperand(1).getReg(); 6618 Register FalseReg = MI->getOperand(2).getReg(); 6619 6620 // If this Select we are generating is the opposite condition from 6621 // the jump we generated, then we have to swap the operands for the 6622 // PHI that is going to be generated. 6623 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 6624 std::swap(TrueReg, FalseReg); 6625 6626 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6627 TrueReg = RegRewriteTable[TrueReg].first; 6628 6629 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6630 FalseReg = RegRewriteTable[FalseReg].second; 6631 6632 DebugLoc DL = MI->getDebugLoc(); 6633 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6634 .addReg(TrueReg).addMBB(TrueMBB) 6635 .addReg(FalseReg).addMBB(FalseMBB); 6636 6637 // Add this PHI to the rewrite table. 6638 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6639 } 6640 6641 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6642 } 6643 6644 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6645 MachineBasicBlock * 6646 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6647 MachineBasicBlock *MBB) const { 6648 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 6649 const SystemZInstrInfo *TII = 6650 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6651 6652 unsigned CCValid = MI.getOperand(3).getImm(); 6653 unsigned CCMask = MI.getOperand(4).getImm(); 6654 6655 // If we have a sequence of Select* pseudo instructions using the 6656 // same condition code value, we want to expand all of them into 6657 // a single pair of basic blocks using the same condition. 6658 SmallVector<MachineInstr*, 8> Selects; 6659 SmallVector<MachineInstr*, 8> DbgValues; 6660 Selects.push_back(&MI); 6661 unsigned Count = 0; 6662 for (MachineBasicBlock::iterator NextMIIt = 6663 std::next(MachineBasicBlock::iterator(MI)); 6664 NextMIIt != MBB->end(); ++NextMIIt) { 6665 if (NextMIIt->definesRegister(SystemZ::CC)) 6666 break; 6667 if (isSelectPseudo(*NextMIIt)) { 6668 assert(NextMIIt->getOperand(3).getImm() == CCValid && 6669 "Bad CCValid operands since CC was not redefined."); 6670 if (NextMIIt->getOperand(4).getImm() == CCMask || 6671 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 6672 Selects.push_back(&*NextMIIt); 6673 continue; 6674 } 6675 break; 6676 } 6677 bool User = false; 6678 for (auto SelMI : Selects) 6679 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 6680 User = true; 6681 break; 6682 } 6683 if (NextMIIt->isDebugInstr()) { 6684 if (User) { 6685 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 6686 DbgValues.push_back(&*NextMIIt); 6687 } 6688 } 6689 else if (User || ++Count > 20) 6690 break; 6691 } 6692 6693 MachineInstr *LastMI = Selects.back(); 6694 bool CCKilled = 6695 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 6696 MachineBasicBlock *StartMBB = MBB; 6697 MachineBasicBlock *JoinMBB = splitBlockAfter(LastMI, MBB); 6698 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6699 6700 // Unless CC was killed in the last Select instruction, mark it as 6701 // live-in to both FalseMBB and JoinMBB. 6702 if (!CCKilled) { 6703 FalseMBB->addLiveIn(SystemZ::CC); 6704 JoinMBB->addLiveIn(SystemZ::CC); 6705 } 6706 6707 // StartMBB: 6708 // BRC CCMask, JoinMBB 6709 // # fallthrough to FalseMBB 6710 MBB = StartMBB; 6711 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 6712 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6713 MBB->addSuccessor(JoinMBB); 6714 MBB->addSuccessor(FalseMBB); 6715 6716 // FalseMBB: 6717 // # fallthrough to JoinMBB 6718 MBB = FalseMBB; 6719 MBB->addSuccessor(JoinMBB); 6720 6721 // JoinMBB: 6722 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 6723 // ... 6724 MBB = JoinMBB; 6725 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 6726 for (auto SelMI : Selects) 6727 SelMI->eraseFromParent(); 6728 6729 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 6730 for (auto DbgMI : DbgValues) 6731 MBB->splice(InsertPos, StartMBB, DbgMI); 6732 6733 return JoinMBB; 6734 } 6735 6736 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 6737 // StoreOpcode is the store to use and Invert says whether the store should 6738 // happen when the condition is false rather than true. If a STORE ON 6739 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 6740 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 6741 MachineBasicBlock *MBB, 6742 unsigned StoreOpcode, 6743 unsigned STOCOpcode, 6744 bool Invert) const { 6745 const SystemZInstrInfo *TII = 6746 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6747 6748 Register SrcReg = MI.getOperand(0).getReg(); 6749 MachineOperand Base = MI.getOperand(1); 6750 int64_t Disp = MI.getOperand(2).getImm(); 6751 Register IndexReg = MI.getOperand(3).getReg(); 6752 unsigned CCValid = MI.getOperand(4).getImm(); 6753 unsigned CCMask = MI.getOperand(5).getImm(); 6754 DebugLoc DL = MI.getDebugLoc(); 6755 6756 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 6757 6758 // Use STOCOpcode if possible. We could use different store patterns in 6759 // order to avoid matching the index register, but the performance trade-offs 6760 // might be more complicated in that case. 6761 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 6762 if (Invert) 6763 CCMask ^= CCValid; 6764 6765 // ISel pattern matching also adds a load memory operand of the same 6766 // address, so take special care to find the storing memory operand. 6767 MachineMemOperand *MMO = nullptr; 6768 for (auto *I : MI.memoperands()) 6769 if (I->isStore()) { 6770 MMO = I; 6771 break; 6772 } 6773 6774 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 6775 .addReg(SrcReg) 6776 .add(Base) 6777 .addImm(Disp) 6778 .addImm(CCValid) 6779 .addImm(CCMask) 6780 .addMemOperand(MMO); 6781 6782 MI.eraseFromParent(); 6783 return MBB; 6784 } 6785 6786 // Get the condition needed to branch around the store. 6787 if (!Invert) 6788 CCMask ^= CCValid; 6789 6790 MachineBasicBlock *StartMBB = MBB; 6791 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6792 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6793 6794 // Unless CC was killed in the CondStore instruction, mark it as 6795 // live-in to both FalseMBB and JoinMBB. 6796 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 6797 FalseMBB->addLiveIn(SystemZ::CC); 6798 JoinMBB->addLiveIn(SystemZ::CC); 6799 } 6800 6801 // StartMBB: 6802 // BRC CCMask, JoinMBB 6803 // # fallthrough to FalseMBB 6804 MBB = StartMBB; 6805 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6806 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6807 MBB->addSuccessor(JoinMBB); 6808 MBB->addSuccessor(FalseMBB); 6809 6810 // FalseMBB: 6811 // store %SrcReg, %Disp(%Index,%Base) 6812 // # fallthrough to JoinMBB 6813 MBB = FalseMBB; 6814 BuildMI(MBB, DL, TII->get(StoreOpcode)) 6815 .addReg(SrcReg) 6816 .add(Base) 6817 .addImm(Disp) 6818 .addReg(IndexReg); 6819 MBB->addSuccessor(JoinMBB); 6820 6821 MI.eraseFromParent(); 6822 return JoinMBB; 6823 } 6824 6825 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 6826 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 6827 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 6828 // BitSize is the width of the field in bits, or 0 if this is a partword 6829 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 6830 // is one of the operands. Invert says whether the field should be 6831 // inverted after performing BinOpcode (e.g. for NAND). 6832 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 6833 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 6834 unsigned BitSize, bool Invert) const { 6835 MachineFunction &MF = *MBB->getParent(); 6836 const SystemZInstrInfo *TII = 6837 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6838 MachineRegisterInfo &MRI = MF.getRegInfo(); 6839 bool IsSubWord = (BitSize < 32); 6840 6841 // Extract the operands. Base can be a register or a frame index. 6842 // Src2 can be a register or immediate. 6843 Register Dest = MI.getOperand(0).getReg(); 6844 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6845 int64_t Disp = MI.getOperand(2).getImm(); 6846 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 6847 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 6848 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 6849 DebugLoc DL = MI.getDebugLoc(); 6850 if (IsSubWord) 6851 BitSize = MI.getOperand(6).getImm(); 6852 6853 // Subword operations use 32-bit registers. 6854 const TargetRegisterClass *RC = (BitSize <= 32 ? 6855 &SystemZ::GR32BitRegClass : 6856 &SystemZ::GR64BitRegClass); 6857 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6858 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6859 6860 // Get the right opcodes for the displacement. 6861 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6862 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6863 assert(LOpcode && CSOpcode && "Displacement out of range"); 6864 6865 // Create virtual registers for temporary results. 6866 Register OrigVal = MRI.createVirtualRegister(RC); 6867 Register OldVal = MRI.createVirtualRegister(RC); 6868 Register NewVal = (BinOpcode || IsSubWord ? 6869 MRI.createVirtualRegister(RC) : Src2.getReg()); 6870 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6871 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6872 6873 // Insert a basic block for the main loop. 6874 MachineBasicBlock *StartMBB = MBB; 6875 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6876 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6877 6878 // StartMBB: 6879 // ... 6880 // %OrigVal = L Disp(%Base) 6881 // # fall through to LoopMMB 6882 MBB = StartMBB; 6883 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 6884 MBB->addSuccessor(LoopMBB); 6885 6886 // LoopMBB: 6887 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 6888 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 6889 // %RotatedNewVal = OP %RotatedOldVal, %Src2 6890 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 6891 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 6892 // JNE LoopMBB 6893 // # fall through to DoneMMB 6894 MBB = LoopMBB; 6895 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6896 .addReg(OrigVal).addMBB(StartMBB) 6897 .addReg(Dest).addMBB(LoopMBB); 6898 if (IsSubWord) 6899 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 6900 .addReg(OldVal).addReg(BitShift).addImm(0); 6901 if (Invert) { 6902 // Perform the operation normally and then invert every bit of the field. 6903 Register Tmp = MRI.createVirtualRegister(RC); 6904 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 6905 if (BitSize <= 32) 6906 // XILF with the upper BitSize bits set. 6907 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 6908 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 6909 else { 6910 // Use LCGR and add -1 to the result, which is more compact than 6911 // an XILF, XILH pair. 6912 Register Tmp2 = MRI.createVirtualRegister(RC); 6913 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 6914 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 6915 .addReg(Tmp2).addImm(-1); 6916 } 6917 } else if (BinOpcode) 6918 // A simply binary operation. 6919 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 6920 .addReg(RotatedOldVal) 6921 .add(Src2); 6922 else if (IsSubWord) 6923 // Use RISBG to rotate Src2 into position and use it to replace the 6924 // field in RotatedOldVal. 6925 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 6926 .addReg(RotatedOldVal).addReg(Src2.getReg()) 6927 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 6928 if (IsSubWord) 6929 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 6930 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 6931 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 6932 .addReg(OldVal) 6933 .addReg(NewVal) 6934 .add(Base) 6935 .addImm(Disp); 6936 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6937 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6938 MBB->addSuccessor(LoopMBB); 6939 MBB->addSuccessor(DoneMBB); 6940 6941 MI.eraseFromParent(); 6942 return DoneMBB; 6943 } 6944 6945 // Implement EmitInstrWithCustomInserter for pseudo 6946 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 6947 // instruction that should be used to compare the current field with the 6948 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 6949 // for when the current field should be kept. BitSize is the width of 6950 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 6951 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 6952 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 6953 unsigned KeepOldMask, unsigned BitSize) const { 6954 MachineFunction &MF = *MBB->getParent(); 6955 const SystemZInstrInfo *TII = 6956 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6957 MachineRegisterInfo &MRI = MF.getRegInfo(); 6958 bool IsSubWord = (BitSize < 32); 6959 6960 // Extract the operands. Base can be a register or a frame index. 6961 Register Dest = MI.getOperand(0).getReg(); 6962 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6963 int64_t Disp = MI.getOperand(2).getImm(); 6964 Register Src2 = MI.getOperand(3).getReg(); 6965 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 6966 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 6967 DebugLoc DL = MI.getDebugLoc(); 6968 if (IsSubWord) 6969 BitSize = MI.getOperand(6).getImm(); 6970 6971 // Subword operations use 32-bit registers. 6972 const TargetRegisterClass *RC = (BitSize <= 32 ? 6973 &SystemZ::GR32BitRegClass : 6974 &SystemZ::GR64BitRegClass); 6975 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6976 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6977 6978 // Get the right opcodes for the displacement. 6979 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6980 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6981 assert(LOpcode && CSOpcode && "Displacement out of range"); 6982 6983 // Create virtual registers for temporary results. 6984 Register OrigVal = MRI.createVirtualRegister(RC); 6985 Register OldVal = MRI.createVirtualRegister(RC); 6986 Register NewVal = MRI.createVirtualRegister(RC); 6987 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6988 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 6989 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6990 6991 // Insert 3 basic blocks for the loop. 6992 MachineBasicBlock *StartMBB = MBB; 6993 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6994 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6995 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 6996 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 6997 6998 // StartMBB: 6999 // ... 7000 // %OrigVal = L Disp(%Base) 7001 // # fall through to LoopMMB 7002 MBB = StartMBB; 7003 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7004 MBB->addSuccessor(LoopMBB); 7005 7006 // LoopMBB: 7007 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7008 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7009 // CompareOpcode %RotatedOldVal, %Src2 7010 // BRC KeepOldMask, UpdateMBB 7011 MBB = LoopMBB; 7012 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7013 .addReg(OrigVal).addMBB(StartMBB) 7014 .addReg(Dest).addMBB(UpdateMBB); 7015 if (IsSubWord) 7016 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7017 .addReg(OldVal).addReg(BitShift).addImm(0); 7018 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7019 .addReg(RotatedOldVal).addReg(Src2); 7020 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7021 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7022 MBB->addSuccessor(UpdateMBB); 7023 MBB->addSuccessor(UseAltMBB); 7024 7025 // UseAltMBB: 7026 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7027 // # fall through to UpdateMMB 7028 MBB = UseAltMBB; 7029 if (IsSubWord) 7030 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7031 .addReg(RotatedOldVal).addReg(Src2) 7032 .addImm(32).addImm(31 + BitSize).addImm(0); 7033 MBB->addSuccessor(UpdateMBB); 7034 7035 // UpdateMBB: 7036 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7037 // [ %RotatedAltVal, UseAltMBB ] 7038 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7039 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7040 // JNE LoopMBB 7041 // # fall through to DoneMMB 7042 MBB = UpdateMBB; 7043 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7044 .addReg(RotatedOldVal).addMBB(LoopMBB) 7045 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7046 if (IsSubWord) 7047 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7048 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7049 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7050 .addReg(OldVal) 7051 .addReg(NewVal) 7052 .add(Base) 7053 .addImm(Disp); 7054 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7055 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7056 MBB->addSuccessor(LoopMBB); 7057 MBB->addSuccessor(DoneMBB); 7058 7059 MI.eraseFromParent(); 7060 return DoneMBB; 7061 } 7062 7063 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7064 // instruction MI. 7065 MachineBasicBlock * 7066 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7067 MachineBasicBlock *MBB) const { 7068 7069 MachineFunction &MF = *MBB->getParent(); 7070 const SystemZInstrInfo *TII = 7071 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7072 MachineRegisterInfo &MRI = MF.getRegInfo(); 7073 7074 // Extract the operands. Base can be a register or a frame index. 7075 Register Dest = MI.getOperand(0).getReg(); 7076 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7077 int64_t Disp = MI.getOperand(2).getImm(); 7078 Register OrigCmpVal = MI.getOperand(3).getReg(); 7079 Register OrigSwapVal = MI.getOperand(4).getReg(); 7080 Register BitShift = MI.getOperand(5).getReg(); 7081 Register NegBitShift = MI.getOperand(6).getReg(); 7082 int64_t BitSize = MI.getOperand(7).getImm(); 7083 DebugLoc DL = MI.getDebugLoc(); 7084 7085 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7086 7087 // Get the right opcodes for the displacement. 7088 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7089 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7090 assert(LOpcode && CSOpcode && "Displacement out of range"); 7091 7092 // Create virtual registers for temporary results. 7093 Register OrigOldVal = MRI.createVirtualRegister(RC); 7094 Register OldVal = MRI.createVirtualRegister(RC); 7095 Register CmpVal = MRI.createVirtualRegister(RC); 7096 Register SwapVal = MRI.createVirtualRegister(RC); 7097 Register StoreVal = MRI.createVirtualRegister(RC); 7098 Register RetryOldVal = MRI.createVirtualRegister(RC); 7099 Register RetryCmpVal = MRI.createVirtualRegister(RC); 7100 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7101 7102 // Insert 2 basic blocks for the loop. 7103 MachineBasicBlock *StartMBB = MBB; 7104 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7105 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7106 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 7107 7108 // StartMBB: 7109 // ... 7110 // %OrigOldVal = L Disp(%Base) 7111 // # fall through to LoopMMB 7112 MBB = StartMBB; 7113 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7114 .add(Base) 7115 .addImm(Disp) 7116 .addReg(0); 7117 MBB->addSuccessor(LoopMBB); 7118 7119 // LoopMBB: 7120 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7121 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 7122 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7123 // %Dest = RLL %OldVal, BitSize(%BitShift) 7124 // ^^ The low BitSize bits contain the field 7125 // of interest. 7126 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 7127 // ^^ Replace the upper 32-BitSize bits of the 7128 // comparison value with those that we loaded, 7129 // so that we can use a full word comparison. 7130 // CR %Dest, %RetryCmpVal 7131 // JNE DoneMBB 7132 // # Fall through to SetMBB 7133 MBB = LoopMBB; 7134 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7135 .addReg(OrigOldVal).addMBB(StartMBB) 7136 .addReg(RetryOldVal).addMBB(SetMBB); 7137 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 7138 .addReg(OrigCmpVal).addMBB(StartMBB) 7139 .addReg(RetryCmpVal).addMBB(SetMBB); 7140 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7141 .addReg(OrigSwapVal).addMBB(StartMBB) 7142 .addReg(RetrySwapVal).addMBB(SetMBB); 7143 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 7144 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7145 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 7146 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7147 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7148 .addReg(Dest).addReg(RetryCmpVal); 7149 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7150 .addImm(SystemZ::CCMASK_ICMP) 7151 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7152 MBB->addSuccessor(DoneMBB); 7153 MBB->addSuccessor(SetMBB); 7154 7155 // SetMBB: 7156 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 7157 // ^^ Replace the upper 32-BitSize bits of the new 7158 // value with those that we loaded. 7159 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7160 // ^^ Rotate the new field to its proper position. 7161 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 7162 // JNE LoopMBB 7163 // # fall through to ExitMMB 7164 MBB = SetMBB; 7165 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7166 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7167 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7168 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7169 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7170 .addReg(OldVal) 7171 .addReg(StoreVal) 7172 .add(Base) 7173 .addImm(Disp); 7174 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7175 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7176 MBB->addSuccessor(LoopMBB); 7177 MBB->addSuccessor(DoneMBB); 7178 7179 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7180 // to the block after the loop. At this point, CC may have been defined 7181 // either by the CR in LoopMBB or by the CS in SetMBB. 7182 if (!MI.registerDefIsDead(SystemZ::CC)) 7183 DoneMBB->addLiveIn(SystemZ::CC); 7184 7185 MI.eraseFromParent(); 7186 return DoneMBB; 7187 } 7188 7189 // Emit a move from two GR64s to a GR128. 7190 MachineBasicBlock * 7191 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7192 MachineBasicBlock *MBB) const { 7193 MachineFunction &MF = *MBB->getParent(); 7194 const SystemZInstrInfo *TII = 7195 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7196 MachineRegisterInfo &MRI = MF.getRegInfo(); 7197 DebugLoc DL = MI.getDebugLoc(); 7198 7199 Register Dest = MI.getOperand(0).getReg(); 7200 Register Hi = MI.getOperand(1).getReg(); 7201 Register Lo = MI.getOperand(2).getReg(); 7202 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7203 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7204 7205 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7206 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7207 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7208 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7209 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7210 7211 MI.eraseFromParent(); 7212 return MBB; 7213 } 7214 7215 // Emit an extension from a GR64 to a GR128. ClearEven is true 7216 // if the high register of the GR128 value must be cleared or false if 7217 // it's "don't care". 7218 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7219 MachineBasicBlock *MBB, 7220 bool ClearEven) const { 7221 MachineFunction &MF = *MBB->getParent(); 7222 const SystemZInstrInfo *TII = 7223 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7224 MachineRegisterInfo &MRI = MF.getRegInfo(); 7225 DebugLoc DL = MI.getDebugLoc(); 7226 7227 Register Dest = MI.getOperand(0).getReg(); 7228 Register Src = MI.getOperand(1).getReg(); 7229 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7230 7231 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7232 if (ClearEven) { 7233 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7234 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7235 7236 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7237 .addImm(0); 7238 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7239 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7240 In128 = NewIn128; 7241 } 7242 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7243 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7244 7245 MI.eraseFromParent(); 7246 return MBB; 7247 } 7248 7249 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 7250 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7251 MachineFunction &MF = *MBB->getParent(); 7252 const SystemZInstrInfo *TII = 7253 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7254 MachineRegisterInfo &MRI = MF.getRegInfo(); 7255 DebugLoc DL = MI.getDebugLoc(); 7256 7257 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7258 uint64_t DestDisp = MI.getOperand(1).getImm(); 7259 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 7260 uint64_t SrcDisp = MI.getOperand(3).getImm(); 7261 uint64_t Length = MI.getOperand(4).getImm(); 7262 7263 // When generating more than one CLC, all but the last will need to 7264 // branch to the end when a difference is found. 7265 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 7266 splitBlockAfter(MI, MBB) : nullptr); 7267 7268 // Check for the loop form, in which operand 5 is the trip count. 7269 if (MI.getNumExplicitOperands() > 5) { 7270 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7271 7272 Register StartCountReg = MI.getOperand(5).getReg(); 7273 Register StartSrcReg = forceReg(MI, SrcBase, TII); 7274 Register StartDestReg = (HaveSingleBase ? StartSrcReg : 7275 forceReg(MI, DestBase, TII)); 7276 7277 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 7278 Register ThisSrcReg = MRI.createVirtualRegister(RC); 7279 Register ThisDestReg = (HaveSingleBase ? ThisSrcReg : 7280 MRI.createVirtualRegister(RC)); 7281 Register NextSrcReg = MRI.createVirtualRegister(RC); 7282 Register NextDestReg = (HaveSingleBase ? NextSrcReg : 7283 MRI.createVirtualRegister(RC)); 7284 7285 RC = &SystemZ::GR64BitRegClass; 7286 Register ThisCountReg = MRI.createVirtualRegister(RC); 7287 Register NextCountReg = MRI.createVirtualRegister(RC); 7288 7289 MachineBasicBlock *StartMBB = MBB; 7290 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7291 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7292 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 7293 7294 // StartMBB: 7295 // # fall through to LoopMMB 7296 MBB->addSuccessor(LoopMBB); 7297 7298 // LoopMBB: 7299 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 7300 // [ %NextDestReg, NextMBB ] 7301 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 7302 // [ %NextSrcReg, NextMBB ] 7303 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 7304 // [ %NextCountReg, NextMBB ] 7305 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 7306 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 7307 // ( JLH EndMBB ) 7308 // 7309 // The prefetch is used only for MVC. The JLH is used only for CLC. 7310 MBB = LoopMBB; 7311 7312 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 7313 .addReg(StartDestReg).addMBB(StartMBB) 7314 .addReg(NextDestReg).addMBB(NextMBB); 7315 if (!HaveSingleBase) 7316 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 7317 .addReg(StartSrcReg).addMBB(StartMBB) 7318 .addReg(NextSrcReg).addMBB(NextMBB); 7319 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 7320 .addReg(StartCountReg).addMBB(StartMBB) 7321 .addReg(NextCountReg).addMBB(NextMBB); 7322 if (Opcode == SystemZ::MVC) 7323 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 7324 .addImm(SystemZ::PFD_WRITE) 7325 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 7326 BuildMI(MBB, DL, TII->get(Opcode)) 7327 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 7328 .addReg(ThisSrcReg).addImm(SrcDisp); 7329 if (EndMBB) { 7330 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7331 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7332 .addMBB(EndMBB); 7333 MBB->addSuccessor(EndMBB); 7334 MBB->addSuccessor(NextMBB); 7335 } 7336 7337 // NextMBB: 7338 // %NextDestReg = LA 256(%ThisDestReg) 7339 // %NextSrcReg = LA 256(%ThisSrcReg) 7340 // %NextCountReg = AGHI %ThisCountReg, -1 7341 // CGHI %NextCountReg, 0 7342 // JLH LoopMBB 7343 // # fall through to DoneMMB 7344 // 7345 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 7346 MBB = NextMBB; 7347 7348 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 7349 .addReg(ThisDestReg).addImm(256).addReg(0); 7350 if (!HaveSingleBase) 7351 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 7352 .addReg(ThisSrcReg).addImm(256).addReg(0); 7353 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7354 .addReg(ThisCountReg).addImm(-1); 7355 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7356 .addReg(NextCountReg).addImm(0); 7357 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7358 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7359 .addMBB(LoopMBB); 7360 MBB->addSuccessor(LoopMBB); 7361 MBB->addSuccessor(DoneMBB); 7362 7363 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7364 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7365 Length &= 255; 7366 if (EndMBB && !Length) 7367 // If the loop handled the whole CLC range, DoneMBB will be empty with 7368 // CC live-through into EndMBB, so add it as live-in. 7369 DoneMBB->addLiveIn(SystemZ::CC); 7370 MBB = DoneMBB; 7371 } 7372 // Handle any remaining bytes with straight-line code. 7373 while (Length > 0) { 7374 uint64_t ThisLength = std::min(Length, uint64_t(256)); 7375 // The previous iteration might have created out-of-range displacements. 7376 // Apply them using LAY if so. 7377 if (!isUInt<12>(DestDisp)) { 7378 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7379 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7380 .add(DestBase) 7381 .addImm(DestDisp) 7382 .addReg(0); 7383 DestBase = MachineOperand::CreateReg(Reg, false); 7384 DestDisp = 0; 7385 } 7386 if (!isUInt<12>(SrcDisp)) { 7387 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7388 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7389 .add(SrcBase) 7390 .addImm(SrcDisp) 7391 .addReg(0); 7392 SrcBase = MachineOperand::CreateReg(Reg, false); 7393 SrcDisp = 0; 7394 } 7395 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 7396 .add(DestBase) 7397 .addImm(DestDisp) 7398 .addImm(ThisLength) 7399 .add(SrcBase) 7400 .addImm(SrcDisp) 7401 .setMemRefs(MI.memoperands()); 7402 DestDisp += ThisLength; 7403 SrcDisp += ThisLength; 7404 Length -= ThisLength; 7405 // If there's another CLC to go, branch to the end if a difference 7406 // was found. 7407 if (EndMBB && Length > 0) { 7408 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 7409 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7410 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7411 .addMBB(EndMBB); 7412 MBB->addSuccessor(EndMBB); 7413 MBB->addSuccessor(NextMBB); 7414 MBB = NextMBB; 7415 } 7416 } 7417 if (EndMBB) { 7418 MBB->addSuccessor(EndMBB); 7419 MBB = EndMBB; 7420 MBB->addLiveIn(SystemZ::CC); 7421 } 7422 7423 MI.eraseFromParent(); 7424 return MBB; 7425 } 7426 7427 // Decompose string pseudo-instruction MI into a loop that continually performs 7428 // Opcode until CC != 3. 7429 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7430 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7431 MachineFunction &MF = *MBB->getParent(); 7432 const SystemZInstrInfo *TII = 7433 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7434 MachineRegisterInfo &MRI = MF.getRegInfo(); 7435 DebugLoc DL = MI.getDebugLoc(); 7436 7437 uint64_t End1Reg = MI.getOperand(0).getReg(); 7438 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7439 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7440 uint64_t CharReg = MI.getOperand(3).getReg(); 7441 7442 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7443 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7444 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7445 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7446 7447 MachineBasicBlock *StartMBB = MBB; 7448 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7449 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7450 7451 // StartMBB: 7452 // # fall through to LoopMMB 7453 MBB->addSuccessor(LoopMBB); 7454 7455 // LoopMBB: 7456 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7457 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7458 // R0L = %CharReg 7459 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7460 // JO LoopMBB 7461 // # fall through to DoneMMB 7462 // 7463 // The load of R0L can be hoisted by post-RA LICM. 7464 MBB = LoopMBB; 7465 7466 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7467 .addReg(Start1Reg).addMBB(StartMBB) 7468 .addReg(End1Reg).addMBB(LoopMBB); 7469 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7470 .addReg(Start2Reg).addMBB(StartMBB) 7471 .addReg(End2Reg).addMBB(LoopMBB); 7472 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7473 BuildMI(MBB, DL, TII->get(Opcode)) 7474 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7475 .addReg(This1Reg).addReg(This2Reg); 7476 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7477 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7478 MBB->addSuccessor(LoopMBB); 7479 MBB->addSuccessor(DoneMBB); 7480 7481 DoneMBB->addLiveIn(SystemZ::CC); 7482 7483 MI.eraseFromParent(); 7484 return DoneMBB; 7485 } 7486 7487 // Update TBEGIN instruction with final opcode and register clobbers. 7488 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7489 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7490 bool NoFloat) const { 7491 MachineFunction &MF = *MBB->getParent(); 7492 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7493 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7494 7495 // Update opcode. 7496 MI.setDesc(TII->get(Opcode)); 7497 7498 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7499 // Make sure to add the corresponding GRSM bits if they are missing. 7500 uint64_t Control = MI.getOperand(2).getImm(); 7501 static const unsigned GPRControlBit[16] = { 7502 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7503 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7504 }; 7505 Control |= GPRControlBit[15]; 7506 if (TFI->hasFP(MF)) 7507 Control |= GPRControlBit[11]; 7508 MI.getOperand(2).setImm(Control); 7509 7510 // Add GPR clobbers. 7511 for (int I = 0; I < 16; I++) { 7512 if ((Control & GPRControlBit[I]) == 0) { 7513 unsigned Reg = SystemZMC::GR64Regs[I]; 7514 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7515 } 7516 } 7517 7518 // Add FPR/VR clobbers. 7519 if (!NoFloat && (Control & 4) != 0) { 7520 if (Subtarget.hasVector()) { 7521 for (int I = 0; I < 32; I++) { 7522 unsigned Reg = SystemZMC::VR128Regs[I]; 7523 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7524 } 7525 } else { 7526 for (int I = 0; I < 16; I++) { 7527 unsigned Reg = SystemZMC::FP64Regs[I]; 7528 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7529 } 7530 } 7531 } 7532 7533 return MBB; 7534 } 7535 7536 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 7537 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7538 MachineFunction &MF = *MBB->getParent(); 7539 MachineRegisterInfo *MRI = &MF.getRegInfo(); 7540 const SystemZInstrInfo *TII = 7541 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7542 DebugLoc DL = MI.getDebugLoc(); 7543 7544 Register SrcReg = MI.getOperand(0).getReg(); 7545 7546 // Create new virtual register of the same class as source. 7547 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7548 Register DstReg = MRI->createVirtualRegister(RC); 7549 7550 // Replace pseudo with a normal load-and-test that models the def as 7551 // well. 7552 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7553 .addReg(SrcReg); 7554 MI.eraseFromParent(); 7555 7556 return MBB; 7557 } 7558 7559 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7560 MachineInstr &MI, MachineBasicBlock *MBB) const { 7561 switch (MI.getOpcode()) { 7562 case SystemZ::Select32: 7563 case SystemZ::Select64: 7564 case SystemZ::SelectF32: 7565 case SystemZ::SelectF64: 7566 case SystemZ::SelectF128: 7567 case SystemZ::SelectVR32: 7568 case SystemZ::SelectVR64: 7569 case SystemZ::SelectVR128: 7570 return emitSelect(MI, MBB); 7571 7572 case SystemZ::CondStore8Mux: 7573 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7574 case SystemZ::CondStore8MuxInv: 7575 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7576 case SystemZ::CondStore16Mux: 7577 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7578 case SystemZ::CondStore16MuxInv: 7579 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7580 case SystemZ::CondStore32Mux: 7581 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7582 case SystemZ::CondStore32MuxInv: 7583 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7584 case SystemZ::CondStore8: 7585 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7586 case SystemZ::CondStore8Inv: 7587 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7588 case SystemZ::CondStore16: 7589 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7590 case SystemZ::CondStore16Inv: 7591 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7592 case SystemZ::CondStore32: 7593 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7594 case SystemZ::CondStore32Inv: 7595 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7596 case SystemZ::CondStore64: 7597 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7598 case SystemZ::CondStore64Inv: 7599 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7600 case SystemZ::CondStoreF32: 7601 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7602 case SystemZ::CondStoreF32Inv: 7603 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7604 case SystemZ::CondStoreF64: 7605 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7606 case SystemZ::CondStoreF64Inv: 7607 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7608 7609 case SystemZ::PAIR128: 7610 return emitPair128(MI, MBB); 7611 case SystemZ::AEXT128: 7612 return emitExt128(MI, MBB, false); 7613 case SystemZ::ZEXT128: 7614 return emitExt128(MI, MBB, true); 7615 7616 case SystemZ::ATOMIC_SWAPW: 7617 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7618 case SystemZ::ATOMIC_SWAP_32: 7619 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7620 case SystemZ::ATOMIC_SWAP_64: 7621 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7622 7623 case SystemZ::ATOMIC_LOADW_AR: 7624 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7625 case SystemZ::ATOMIC_LOADW_AFI: 7626 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7627 case SystemZ::ATOMIC_LOAD_AR: 7628 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7629 case SystemZ::ATOMIC_LOAD_AHI: 7630 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7631 case SystemZ::ATOMIC_LOAD_AFI: 7632 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7633 case SystemZ::ATOMIC_LOAD_AGR: 7634 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7635 case SystemZ::ATOMIC_LOAD_AGHI: 7636 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7637 case SystemZ::ATOMIC_LOAD_AGFI: 7638 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7639 7640 case SystemZ::ATOMIC_LOADW_SR: 7641 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7642 case SystemZ::ATOMIC_LOAD_SR: 7643 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7644 case SystemZ::ATOMIC_LOAD_SGR: 7645 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7646 7647 case SystemZ::ATOMIC_LOADW_NR: 7648 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7649 case SystemZ::ATOMIC_LOADW_NILH: 7650 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7651 case SystemZ::ATOMIC_LOAD_NR: 7652 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7653 case SystemZ::ATOMIC_LOAD_NILL: 7654 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7655 case SystemZ::ATOMIC_LOAD_NILH: 7656 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7657 case SystemZ::ATOMIC_LOAD_NILF: 7658 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7659 case SystemZ::ATOMIC_LOAD_NGR: 7660 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7661 case SystemZ::ATOMIC_LOAD_NILL64: 7662 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7663 case SystemZ::ATOMIC_LOAD_NILH64: 7664 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7665 case SystemZ::ATOMIC_LOAD_NIHL64: 7666 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 7667 case SystemZ::ATOMIC_LOAD_NIHH64: 7668 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 7669 case SystemZ::ATOMIC_LOAD_NILF64: 7670 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 7671 case SystemZ::ATOMIC_LOAD_NIHF64: 7672 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 7673 7674 case SystemZ::ATOMIC_LOADW_OR: 7675 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 7676 case SystemZ::ATOMIC_LOADW_OILH: 7677 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 7678 case SystemZ::ATOMIC_LOAD_OR: 7679 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 7680 case SystemZ::ATOMIC_LOAD_OILL: 7681 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 7682 case SystemZ::ATOMIC_LOAD_OILH: 7683 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 7684 case SystemZ::ATOMIC_LOAD_OILF: 7685 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 7686 case SystemZ::ATOMIC_LOAD_OGR: 7687 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 7688 case SystemZ::ATOMIC_LOAD_OILL64: 7689 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 7690 case SystemZ::ATOMIC_LOAD_OILH64: 7691 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 7692 case SystemZ::ATOMIC_LOAD_OIHL64: 7693 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 7694 case SystemZ::ATOMIC_LOAD_OIHH64: 7695 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 7696 case SystemZ::ATOMIC_LOAD_OILF64: 7697 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 7698 case SystemZ::ATOMIC_LOAD_OIHF64: 7699 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 7700 7701 case SystemZ::ATOMIC_LOADW_XR: 7702 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 7703 case SystemZ::ATOMIC_LOADW_XILF: 7704 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 7705 case SystemZ::ATOMIC_LOAD_XR: 7706 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 7707 case SystemZ::ATOMIC_LOAD_XILF: 7708 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 7709 case SystemZ::ATOMIC_LOAD_XGR: 7710 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 7711 case SystemZ::ATOMIC_LOAD_XILF64: 7712 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 7713 case SystemZ::ATOMIC_LOAD_XIHF64: 7714 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 7715 7716 case SystemZ::ATOMIC_LOADW_NRi: 7717 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 7718 case SystemZ::ATOMIC_LOADW_NILHi: 7719 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 7720 case SystemZ::ATOMIC_LOAD_NRi: 7721 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 7722 case SystemZ::ATOMIC_LOAD_NILLi: 7723 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 7724 case SystemZ::ATOMIC_LOAD_NILHi: 7725 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 7726 case SystemZ::ATOMIC_LOAD_NILFi: 7727 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 7728 case SystemZ::ATOMIC_LOAD_NGRi: 7729 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 7730 case SystemZ::ATOMIC_LOAD_NILL64i: 7731 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 7732 case SystemZ::ATOMIC_LOAD_NILH64i: 7733 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 7734 case SystemZ::ATOMIC_LOAD_NIHL64i: 7735 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 7736 case SystemZ::ATOMIC_LOAD_NIHH64i: 7737 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 7738 case SystemZ::ATOMIC_LOAD_NILF64i: 7739 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 7740 case SystemZ::ATOMIC_LOAD_NIHF64i: 7741 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 7742 7743 case SystemZ::ATOMIC_LOADW_MIN: 7744 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7745 SystemZ::CCMASK_CMP_LE, 0); 7746 case SystemZ::ATOMIC_LOAD_MIN_32: 7747 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7748 SystemZ::CCMASK_CMP_LE, 32); 7749 case SystemZ::ATOMIC_LOAD_MIN_64: 7750 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7751 SystemZ::CCMASK_CMP_LE, 64); 7752 7753 case SystemZ::ATOMIC_LOADW_MAX: 7754 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7755 SystemZ::CCMASK_CMP_GE, 0); 7756 case SystemZ::ATOMIC_LOAD_MAX_32: 7757 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7758 SystemZ::CCMASK_CMP_GE, 32); 7759 case SystemZ::ATOMIC_LOAD_MAX_64: 7760 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7761 SystemZ::CCMASK_CMP_GE, 64); 7762 7763 case SystemZ::ATOMIC_LOADW_UMIN: 7764 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7765 SystemZ::CCMASK_CMP_LE, 0); 7766 case SystemZ::ATOMIC_LOAD_UMIN_32: 7767 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7768 SystemZ::CCMASK_CMP_LE, 32); 7769 case SystemZ::ATOMIC_LOAD_UMIN_64: 7770 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7771 SystemZ::CCMASK_CMP_LE, 64); 7772 7773 case SystemZ::ATOMIC_LOADW_UMAX: 7774 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7775 SystemZ::CCMASK_CMP_GE, 0); 7776 case SystemZ::ATOMIC_LOAD_UMAX_32: 7777 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7778 SystemZ::CCMASK_CMP_GE, 32); 7779 case SystemZ::ATOMIC_LOAD_UMAX_64: 7780 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7781 SystemZ::CCMASK_CMP_GE, 64); 7782 7783 case SystemZ::ATOMIC_CMP_SWAPW: 7784 return emitAtomicCmpSwapW(MI, MBB); 7785 case SystemZ::MVCSequence: 7786 case SystemZ::MVCLoop: 7787 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 7788 case SystemZ::NCSequence: 7789 case SystemZ::NCLoop: 7790 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 7791 case SystemZ::OCSequence: 7792 case SystemZ::OCLoop: 7793 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 7794 case SystemZ::XCSequence: 7795 case SystemZ::XCLoop: 7796 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 7797 case SystemZ::CLCSequence: 7798 case SystemZ::CLCLoop: 7799 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 7800 case SystemZ::CLSTLoop: 7801 return emitStringWrapper(MI, MBB, SystemZ::CLST); 7802 case SystemZ::MVSTLoop: 7803 return emitStringWrapper(MI, MBB, SystemZ::MVST); 7804 case SystemZ::SRSTLoop: 7805 return emitStringWrapper(MI, MBB, SystemZ::SRST); 7806 case SystemZ::TBEGIN: 7807 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 7808 case SystemZ::TBEGIN_nofloat: 7809 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 7810 case SystemZ::TBEGINC: 7811 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 7812 case SystemZ::LTEBRCompare_VecPseudo: 7813 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 7814 case SystemZ::LTDBRCompare_VecPseudo: 7815 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 7816 case SystemZ::LTXBRCompare_VecPseudo: 7817 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 7818 7819 case TargetOpcode::STACKMAP: 7820 case TargetOpcode::PATCHPOINT: 7821 return emitPatchPoint(MI, MBB); 7822 7823 default: 7824 llvm_unreachable("Unexpected instr type to insert"); 7825 } 7826 } 7827 7828 // This is only used by the isel schedulers, and is needed only to prevent 7829 // compiler from crashing when list-ilp is used. 7830 const TargetRegisterClass * 7831 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 7832 if (VT == MVT::Untyped) 7833 return &SystemZ::ADDR128BitRegClass; 7834 return TargetLowering::getRepRegClassFor(VT); 7835 } 7836