1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   // Set up the register classes.
86   if (Subtarget.hasHighWord())
87     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88   else
89     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91   if (!useSoftFloat()) {
92     if (Subtarget.hasVector()) {
93       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
94       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
95     } else {
96       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
98     }
99     if (Subtarget.hasVectorEnhancements1())
100       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
101     else
102       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103 
104     if (Subtarget.hasVector()) {
105       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111     }
112   }
113 
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116 
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119 
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125 
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(Align(2));
131   // For performance reasons we prefer 16-byte alignment.
132   setPrefFunctionAlignment(Align(16));
133 
134   // Handle operations that are handled in a similar way for all types.
135   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
136        I <= MVT::LAST_FP_VALUETYPE;
137        ++I) {
138     MVT VT = MVT::SimpleValueType(I);
139     if (isTypeLegal(VT)) {
140       // Lower SET_CC into an IPM-based sequence.
141       setOperationAction(ISD::SETCC, VT, Custom);
142       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
144 
145       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
146       setOperationAction(ISD::SELECT, VT, Expand);
147 
148       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
149       setOperationAction(ISD::SELECT_CC, VT, Custom);
150       setOperationAction(ISD::BR_CC,     VT, Custom);
151     }
152   }
153 
154   // Expand jump table branches as address arithmetic followed by an
155   // indirect jump.
156   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
157 
158   // Expand BRCOND into a BR_CC (see above).
159   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
160 
161   // Handle integer types.
162   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
163        I <= MVT::LAST_INTEGER_VALUETYPE;
164        ++I) {
165     MVT VT = MVT::SimpleValueType(I);
166     if (isTypeLegal(VT)) {
167       setOperationAction(ISD::ABS, VT, Legal);
168 
169       // Expand individual DIV and REMs into DIVREMs.
170       setOperationAction(ISD::SDIV, VT, Expand);
171       setOperationAction(ISD::UDIV, VT, Expand);
172       setOperationAction(ISD::SREM, VT, Expand);
173       setOperationAction(ISD::UREM, VT, Expand);
174       setOperationAction(ISD::SDIVREM, VT, Custom);
175       setOperationAction(ISD::UDIVREM, VT, Custom);
176 
177       // Support addition/subtraction with overflow.
178       setOperationAction(ISD::SADDO, VT, Custom);
179       setOperationAction(ISD::SSUBO, VT, Custom);
180 
181       // Support addition/subtraction with carry.
182       setOperationAction(ISD::UADDO, VT, Custom);
183       setOperationAction(ISD::USUBO, VT, Custom);
184 
185       // Support carry in as value rather than glue.
186       setOperationAction(ISD::ADDCARRY, VT, Custom);
187       setOperationAction(ISD::SUBCARRY, VT, Custom);
188 
189       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
190       // stores, putting a serialization instruction after the stores.
191       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
192       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
193 
194       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
195       // available, or if the operand is constant.
196       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
197 
198       // Use POPCNT on z196 and above.
199       if (Subtarget.hasPopulationCount())
200         setOperationAction(ISD::CTPOP, VT, Custom);
201       else
202         setOperationAction(ISD::CTPOP, VT, Expand);
203 
204       // No special instructions for these.
205       setOperationAction(ISD::CTTZ,            VT, Expand);
206       setOperationAction(ISD::ROTR,            VT, Expand);
207 
208       // Use *MUL_LOHI where possible instead of MULH*.
209       setOperationAction(ISD::MULHS, VT, Expand);
210       setOperationAction(ISD::MULHU, VT, Expand);
211       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
212       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
213 
214       // Only z196 and above have native support for conversions to unsigned.
215       // On z10, promoting to i64 doesn't generate an inexact condition for
216       // values that are outside the i32 range but in the i64 range, so use
217       // the default expansion.
218       if (!Subtarget.hasFPExtension())
219         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
220 
221       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
222       // default to Expand, so need to be modified to Legal where appropriate.
223       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
224       if (Subtarget.hasFPExtension())
225         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
226 
227       // And similarly for STRICT_[SU]INT_TO_FP.
228       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
229       if (Subtarget.hasFPExtension())
230         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
231     }
232   }
233 
234   // Type legalization will convert 8- and 16-bit atomic operations into
235   // forms that operate on i32s (but still keeping the original memory VT).
236   // Lower them into full i32 operations.
237   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
239   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
248 
249   // Even though i128 is not a legal type, we still need to custom lower
250   // the atomic operations in order to exploit SystemZ instructions.
251   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
252   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
253 
254   // We can use the CC result of compare-and-swap to implement
255   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
256   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
257   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
259 
260   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
261 
262   // Traps are legal, as we will convert them to "j .+2".
263   setOperationAction(ISD::TRAP, MVT::Other, Legal);
264 
265   // z10 has instructions for signed but not unsigned FP conversion.
266   // Handle unsigned 32-bit types as signed 64-bit types.
267   if (!Subtarget.hasFPExtension()) {
268     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
269     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
270     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
272   }
273 
274   // We have native support for a 64-bit CTLZ, via FLOGR.
275   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
276   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
277   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
278 
279   // On z15 we have native support for a 64-bit CTPOP.
280   if (Subtarget.hasMiscellaneousExtensions3()) {
281     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
282     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
283   }
284 
285   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
286   setOperationAction(ISD::OR, MVT::i64, Custom);
287 
288   // Expand 128 bit shifts without using a libcall.
289   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
290   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
291   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
292   setLibcallName(RTLIB::SRL_I128, nullptr);
293   setLibcallName(RTLIB::SHL_I128, nullptr);
294   setLibcallName(RTLIB::SRA_I128, nullptr);
295 
296   // Handle bitcast from fp128 to i128.
297   setOperationAction(ISD::BITCAST, MVT::i128, Custom);
298 
299   // We have native instructions for i8, i16 and i32 extensions, but not i1.
300   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
301   for (MVT VT : MVT::integer_valuetypes()) {
302     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
303     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
304     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
305   }
306 
307   // Handle the various types of symbolic address.
308   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
309   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
310   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
311   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
312   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
313 
314   // We need to handle dynamic allocations specially because of the
315   // 160-byte area at the bottom of the stack.
316   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
317   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
318 
319   // Use custom expanders so that we can force the function to use
320   // a frame pointer.
321   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
322   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
323 
324   // Handle prefetches with PFD or PFDRL.
325   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
326 
327   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
328     // Assume by default that all vector operations need to be expanded.
329     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
330       if (getOperationAction(Opcode, VT) == Legal)
331         setOperationAction(Opcode, VT, Expand);
332 
333     // Likewise all truncating stores and extending loads.
334     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
335       setTruncStoreAction(VT, InnerVT, Expand);
336       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
337       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
338       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
339     }
340 
341     if (isTypeLegal(VT)) {
342       // These operations are legal for anything that can be stored in a
343       // vector register, even if there is no native support for the format
344       // as such.  In particular, we can do these for v4f32 even though there
345       // are no specific instructions for that format.
346       setOperationAction(ISD::LOAD, VT, Legal);
347       setOperationAction(ISD::STORE, VT, Legal);
348       setOperationAction(ISD::VSELECT, VT, Legal);
349       setOperationAction(ISD::BITCAST, VT, Legal);
350       setOperationAction(ISD::UNDEF, VT, Legal);
351 
352       // Likewise, except that we need to replace the nodes with something
353       // more specific.
354       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
355       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
356     }
357   }
358 
359   // Handle integer vector types.
360   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
361     if (isTypeLegal(VT)) {
362       // These operations have direct equivalents.
363       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
364       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
365       setOperationAction(ISD::ADD, VT, Legal);
366       setOperationAction(ISD::SUB, VT, Legal);
367       if (VT != MVT::v2i64)
368         setOperationAction(ISD::MUL, VT, Legal);
369       setOperationAction(ISD::ABS, VT, Legal);
370       setOperationAction(ISD::AND, VT, Legal);
371       setOperationAction(ISD::OR, VT, Legal);
372       setOperationAction(ISD::XOR, VT, Legal);
373       if (Subtarget.hasVectorEnhancements1())
374         setOperationAction(ISD::CTPOP, VT, Legal);
375       else
376         setOperationAction(ISD::CTPOP, VT, Custom);
377       setOperationAction(ISD::CTTZ, VT, Legal);
378       setOperationAction(ISD::CTLZ, VT, Legal);
379 
380       // Convert a GPR scalar to a vector by inserting it into element 0.
381       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
382 
383       // Use a series of unpacks for extensions.
384       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
385       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
386 
387       // Detect shifts by a scalar amount and convert them into
388       // V*_BY_SCALAR.
389       setOperationAction(ISD::SHL, VT, Custom);
390       setOperationAction(ISD::SRA, VT, Custom);
391       setOperationAction(ISD::SRL, VT, Custom);
392 
393       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
394       // converted into ROTL.
395       setOperationAction(ISD::ROTL, VT, Expand);
396       setOperationAction(ISD::ROTR, VT, Expand);
397 
398       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
399       // and inverting the result as necessary.
400       setOperationAction(ISD::SETCC, VT, Custom);
401       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
402       if (Subtarget.hasVectorEnhancements1())
403         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
404     }
405   }
406 
407   if (Subtarget.hasVector()) {
408     // There should be no need to check for float types other than v2f64
409     // since <2 x f32> isn't a legal type.
410     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
418 
419     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
420     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
421     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
422     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
423     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
424     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
425     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
426     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
427   }
428 
429   if (Subtarget.hasVectorEnhancements2()) {
430     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
438 
439     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
440     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
441     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
442     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
443     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
444     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
445     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
446     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
447   }
448 
449   // Handle floating-point types.
450   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
451        I <= MVT::LAST_FP_VALUETYPE;
452        ++I) {
453     MVT VT = MVT::SimpleValueType(I);
454     if (isTypeLegal(VT)) {
455       // We can use FI for FRINT.
456       setOperationAction(ISD::FRINT, VT, Legal);
457 
458       // We can use the extended form of FI for other rounding operations.
459       if (Subtarget.hasFPExtension()) {
460         setOperationAction(ISD::FNEARBYINT, VT, Legal);
461         setOperationAction(ISD::FFLOOR, VT, Legal);
462         setOperationAction(ISD::FCEIL, VT, Legal);
463         setOperationAction(ISD::FTRUNC, VT, Legal);
464         setOperationAction(ISD::FROUND, VT, Legal);
465       }
466 
467       // No special instructions for these.
468       setOperationAction(ISD::FSIN, VT, Expand);
469       setOperationAction(ISD::FCOS, VT, Expand);
470       setOperationAction(ISD::FSINCOS, VT, Expand);
471       setOperationAction(ISD::FREM, VT, Expand);
472       setOperationAction(ISD::FPOW, VT, Expand);
473 
474       // Handle constrained floating-point operations.
475       setOperationAction(ISD::STRICT_FADD, VT, Legal);
476       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
477       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
478       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
479       setOperationAction(ISD::STRICT_FMA, VT, Legal);
480       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
481       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
482       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
483       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
484       if (Subtarget.hasFPExtension()) {
485         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
486         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
487         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
488         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
489         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
490       }
491     }
492   }
493 
494   // Handle floating-point vector types.
495   if (Subtarget.hasVector()) {
496     // Scalar-to-vector conversion is just a subreg.
497     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
498     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
499 
500     // Some insertions and extractions can be done directly but others
501     // need to go via integers.
502     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
503     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
504     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
505     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
506 
507     // These operations have direct equivalents.
508     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
509     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
510     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
511     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
512     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
513     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
514     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
515     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
516     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
517     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
518     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
519     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
520     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
521     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
522 
523     // Handle constrained floating-point operations.
524     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
527     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
530     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
531     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
532     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
533     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
534     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
535     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
536   }
537 
538   // The vector enhancements facility 1 has instructions for these.
539   if (Subtarget.hasVectorEnhancements1()) {
540     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
541     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
542     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
543     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
544     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
545     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
546     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
547     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
548     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
549     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
550     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
551     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
552     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
553     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
554 
555     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
556     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
557     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
558     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
559 
560     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
561     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
562     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
563     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
564 
565     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
566     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
567     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
568     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
569 
570     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
571     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
572     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
573     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
574 
575     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
576     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
577     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
578     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
579 
580     // Handle constrained floating-point operations.
581     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
584     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
587     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
588     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
589     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
590     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
591     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
592     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
593     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
594                      MVT::v4f32, MVT::v2f64 }) {
595       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
596       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
597       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
598       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
599     }
600   }
601 
602   // We only have fused f128 multiply-addition on vector registers.
603   if (!Subtarget.hasVectorEnhancements1()) {
604     setOperationAction(ISD::FMA, MVT::f128, Expand);
605     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
606   }
607 
608   // We don't have a copysign instruction on vector registers.
609   if (Subtarget.hasVectorEnhancements1())
610     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
611 
612   // Needed so that we don't try to implement f128 constant loads using
613   // a load-and-extend of a f80 constant (in cases where the constant
614   // would fit in an f80).
615   for (MVT VT : MVT::fp_valuetypes())
616     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
617 
618   // We don't have extending load instruction on vector registers.
619   if (Subtarget.hasVectorEnhancements1()) {
620     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
621     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
622   }
623 
624   // Floating-point truncation and stores need to be done separately.
625   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
626   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
627   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
628 
629   // We have 64-bit FPR<->GPR moves, but need special handling for
630   // 32-bit forms.
631   if (!Subtarget.hasVector()) {
632     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
633     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
634   }
635 
636   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
637   // structure, but VAEND is a no-op.
638   setOperationAction(ISD::VASTART, MVT::Other, Custom);
639   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
640   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
641 
642   // Codes for which we want to perform some z-specific combinations.
643   setTargetDAGCombine(ISD::ZERO_EXTEND);
644   setTargetDAGCombine(ISD::SIGN_EXTEND);
645   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
646   setTargetDAGCombine(ISD::LOAD);
647   setTargetDAGCombine(ISD::STORE);
648   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
649   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
650   setTargetDAGCombine(ISD::FP_ROUND);
651   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
652   setTargetDAGCombine(ISD::FP_EXTEND);
653   setTargetDAGCombine(ISD::SINT_TO_FP);
654   setTargetDAGCombine(ISD::UINT_TO_FP);
655   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
656   setTargetDAGCombine(ISD::BSWAP);
657   setTargetDAGCombine(ISD::SDIV);
658   setTargetDAGCombine(ISD::UDIV);
659   setTargetDAGCombine(ISD::SREM);
660   setTargetDAGCombine(ISD::UREM);
661   setTargetDAGCombine(ISD::INTRINSIC_VOID);
662   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
663 
664   // Handle intrinsics.
665   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
666   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
667 
668   // We want to use MVC in preference to even a single load/store pair.
669   MaxStoresPerMemcpy = 0;
670   MaxStoresPerMemcpyOptSize = 0;
671 
672   // The main memset sequence is a byte store followed by an MVC.
673   // Two STC or MV..I stores win over that, but the kind of fused stores
674   // generated by target-independent code don't when the byte value is
675   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
676   // than "STC;MVC".  Handle the choice in target-specific code instead.
677   MaxStoresPerMemset = 0;
678   MaxStoresPerMemsetOptSize = 0;
679 
680   // Default to having -disable-strictnode-mutation on
681   IsStrictFPEnabled = true;
682 }
683 
684 bool SystemZTargetLowering::useSoftFloat() const {
685   return Subtarget.hasSoftFloat();
686 }
687 
688 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
689                                               LLVMContext &, EVT VT) const {
690   if (!VT.isVector())
691     return MVT::i32;
692   return VT.changeVectorElementTypeToInteger();
693 }
694 
695 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
696     const MachineFunction &MF, EVT VT) const {
697   VT = VT.getScalarType();
698 
699   if (!VT.isSimple())
700     return false;
701 
702   switch (VT.getSimpleVT().SimpleTy) {
703   case MVT::f32:
704   case MVT::f64:
705     return true;
706   case MVT::f128:
707     return Subtarget.hasVectorEnhancements1();
708   default:
709     break;
710   }
711 
712   return false;
713 }
714 
715 // Return true if the constant can be generated with a vector instruction,
716 // such as VGM, VGMB or VREPI.
717 bool SystemZVectorConstantInfo::isVectorConstantLegal(
718     const SystemZSubtarget &Subtarget) {
719   const SystemZInstrInfo *TII =
720       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
721   if (!Subtarget.hasVector() ||
722       (isFP128 && !Subtarget.hasVectorEnhancements1()))
723     return false;
724 
725   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
726   // preferred way of creating all-zero and all-one vectors so give it
727   // priority over other methods below.
728   unsigned Mask = 0;
729   unsigned I = 0;
730   for (; I < SystemZ::VectorBytes; ++I) {
731     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
732     if (Byte == 0xff)
733       Mask |= 1ULL << I;
734     else if (Byte != 0)
735       break;
736   }
737   if (I == SystemZ::VectorBytes) {
738     Opcode = SystemZISD::BYTE_MASK;
739     OpVals.push_back(Mask);
740     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
741     return true;
742   }
743 
744   if (SplatBitSize > 64)
745     return false;
746 
747   auto tryValue = [&](uint64_t Value) -> bool {
748     // Try VECTOR REPLICATE IMMEDIATE
749     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
750     if (isInt<16>(SignedValue)) {
751       OpVals.push_back(((unsigned) SignedValue));
752       Opcode = SystemZISD::REPLICATE;
753       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
754                                SystemZ::VectorBits / SplatBitSize);
755       return true;
756     }
757     // Try VECTOR GENERATE MASK
758     unsigned Start, End;
759     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
760       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
761       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
762       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
763       OpVals.push_back(Start - (64 - SplatBitSize));
764       OpVals.push_back(End - (64 - SplatBitSize));
765       Opcode = SystemZISD::ROTATE_MASK;
766       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
767                                SystemZ::VectorBits / SplatBitSize);
768       return true;
769     }
770     return false;
771   };
772 
773   // First try assuming that any undefined bits above the highest set bit
774   // and below the lowest set bit are 1s.  This increases the likelihood of
775   // being able to use a sign-extended element value in VECTOR REPLICATE
776   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
777   uint64_t SplatBitsZ = SplatBits.getZExtValue();
778   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
779   uint64_t Lower =
780       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
781   uint64_t Upper =
782       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
783   if (tryValue(SplatBitsZ | Upper | Lower))
784     return true;
785 
786   // Now try assuming that any undefined bits between the first and
787   // last defined set bits are set.  This increases the chances of
788   // using a non-wraparound mask.
789   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
790   return tryValue(SplatBitsZ | Middle);
791 }
792 
793 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
794   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
795   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
796   SplatBits = FPImm.bitcastToAPInt();
797   unsigned Width = SplatBits.getBitWidth();
798   IntBits <<= (SystemZ::VectorBits - Width);
799 
800   // Find the smallest splat.
801   while (Width > 8) {
802     unsigned HalfSize = Width / 2;
803     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
804     APInt LowValue = SplatBits.trunc(HalfSize);
805 
806     // If the two halves do not match, stop here.
807     if (HighValue != LowValue || 8 > HalfSize)
808       break;
809 
810     SplatBits = HighValue;
811     Width = HalfSize;
812   }
813   SplatUndef = 0;
814   SplatBitSize = Width;
815 }
816 
817 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
818   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
819   bool HasAnyUndefs;
820 
821   // Get IntBits by finding the 128 bit splat.
822   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
823                        true);
824 
825   // Get SplatBits by finding the 8 bit or greater splat.
826   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
827                        true);
828 }
829 
830 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
831                                          bool ForCodeSize) const {
832   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
833   if (Imm.isZero() || Imm.isNegZero())
834     return true;
835 
836   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
837 }
838 
839 /// Returns true if stack probing through inline assembly is requested.
840 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
841   // If the function specifically requests inline stack probes, emit them.
842   if (MF.getFunction().hasFnAttribute("probe-stack"))
843     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
844            "inline-asm";
845   return false;
846 }
847 
848 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
849   // We can use CGFI or CLGFI.
850   return isInt<32>(Imm) || isUInt<32>(Imm);
851 }
852 
853 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
854   // We can use ALGFI or SLGFI.
855   return isUInt<32>(Imm) || isUInt<32>(-Imm);
856 }
857 
858 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
859     EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const {
860   // Unaligned accesses should never be slower than the expanded version.
861   // We check specifically for aligned accesses in the few cases where
862   // they are required.
863   if (Fast)
864     *Fast = true;
865   return true;
866 }
867 
868 // Information about the addressing mode for a memory access.
869 struct AddressingMode {
870   // True if a long displacement is supported.
871   bool LongDisplacement;
872 
873   // True if use of index register is supported.
874   bool IndexReg;
875 
876   AddressingMode(bool LongDispl, bool IdxReg) :
877     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
878 };
879 
880 // Return the desired addressing mode for a Load which has only one use (in
881 // the same block) which is a Store.
882 static AddressingMode getLoadStoreAddrMode(bool HasVector,
883                                           Type *Ty) {
884   // With vector support a Load->Store combination may be combined to either
885   // an MVC or vector operations and it seems to work best to allow the
886   // vector addressing mode.
887   if (HasVector)
888     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
889 
890   // Otherwise only the MVC case is special.
891   bool MVC = Ty->isIntegerTy(8);
892   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
893 }
894 
895 // Return the addressing mode which seems most desirable given an LLVM
896 // Instruction pointer.
897 static AddressingMode
898 supportedAddressingMode(Instruction *I, bool HasVector) {
899   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
900     switch (II->getIntrinsicID()) {
901     default: break;
902     case Intrinsic::memset:
903     case Intrinsic::memmove:
904     case Intrinsic::memcpy:
905       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
906     }
907   }
908 
909   if (isa<LoadInst>(I) && I->hasOneUse()) {
910     auto *SingleUser = cast<Instruction>(*I->user_begin());
911     if (SingleUser->getParent() == I->getParent()) {
912       if (isa<ICmpInst>(SingleUser)) {
913         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
914           if (C->getBitWidth() <= 64 &&
915               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
916             // Comparison of memory with 16 bit signed / unsigned immediate
917             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
918       } else if (isa<StoreInst>(SingleUser))
919         // Load->Store
920         return getLoadStoreAddrMode(HasVector, I->getType());
921     }
922   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
923     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
924       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
925         // Load->Store
926         return getLoadStoreAddrMode(HasVector, LoadI->getType());
927   }
928 
929   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
930 
931     // * Use LDE instead of LE/LEY for z13 to avoid partial register
932     //   dependencies (LDE only supports small offsets).
933     // * Utilize the vector registers to hold floating point
934     //   values (vector load / store instructions only support small
935     //   offsets).
936 
937     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
938                          I->getOperand(0)->getType());
939     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
940     bool IsVectorAccess = MemAccessTy->isVectorTy();
941 
942     // A store of an extracted vector element will be combined into a VSTE type
943     // instruction.
944     if (!IsVectorAccess && isa<StoreInst>(I)) {
945       Value *DataOp = I->getOperand(0);
946       if (isa<ExtractElementInst>(DataOp))
947         IsVectorAccess = true;
948     }
949 
950     // A load which gets inserted into a vector element will be combined into a
951     // VLE type instruction.
952     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
953       User *LoadUser = *I->user_begin();
954       if (isa<InsertElementInst>(LoadUser))
955         IsVectorAccess = true;
956     }
957 
958     if (IsFPAccess || IsVectorAccess)
959       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
960   }
961 
962   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
963 }
964 
965 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
966        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
967   // Punt on globals for now, although they can be used in limited
968   // RELATIVE LONG cases.
969   if (AM.BaseGV)
970     return false;
971 
972   // Require a 20-bit signed offset.
973   if (!isInt<20>(AM.BaseOffs))
974     return false;
975 
976   AddressingMode SupportedAM(true, true);
977   if (I != nullptr)
978     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
979 
980   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
981     return false;
982 
983   if (!SupportedAM.IndexReg)
984     // No indexing allowed.
985     return AM.Scale == 0;
986   else
987     // Indexing is OK but no scale factor can be applied.
988     return AM.Scale == 0 || AM.Scale == 1;
989 }
990 
991 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
992   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
993     return false;
994   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
995   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
996   return FromBits > ToBits;
997 }
998 
999 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1000   if (!FromVT.isInteger() || !ToVT.isInteger())
1001     return false;
1002   unsigned FromBits = FromVT.getFixedSizeInBits();
1003   unsigned ToBits = ToVT.getFixedSizeInBits();
1004   return FromBits > ToBits;
1005 }
1006 
1007 //===----------------------------------------------------------------------===//
1008 // Inline asm support
1009 //===----------------------------------------------------------------------===//
1010 
1011 TargetLowering::ConstraintType
1012 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1013   if (Constraint.size() == 1) {
1014     switch (Constraint[0]) {
1015     case 'a': // Address register
1016     case 'd': // Data register (equivalent to 'r')
1017     case 'f': // Floating-point register
1018     case 'h': // High-part register
1019     case 'r': // General-purpose register
1020     case 'v': // Vector register
1021       return C_RegisterClass;
1022 
1023     case 'Q': // Memory with base and unsigned 12-bit displacement
1024     case 'R': // Likewise, plus an index
1025     case 'S': // Memory with base and signed 20-bit displacement
1026     case 'T': // Likewise, plus an index
1027     case 'm': // Equivalent to 'T'.
1028       return C_Memory;
1029 
1030     case 'I': // Unsigned 8-bit constant
1031     case 'J': // Unsigned 12-bit constant
1032     case 'K': // Signed 16-bit constant
1033     case 'L': // Signed 20-bit displacement (on all targets we support)
1034     case 'M': // 0x7fffffff
1035       return C_Immediate;
1036 
1037     default:
1038       break;
1039     }
1040   }
1041   return TargetLowering::getConstraintType(Constraint);
1042 }
1043 
1044 TargetLowering::ConstraintWeight SystemZTargetLowering::
1045 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1046                                const char *constraint) const {
1047   ConstraintWeight weight = CW_Invalid;
1048   Value *CallOperandVal = info.CallOperandVal;
1049   // If we don't have a value, we can't do a match,
1050   // but allow it at the lowest weight.
1051   if (!CallOperandVal)
1052     return CW_Default;
1053   Type *type = CallOperandVal->getType();
1054   // Look at the constraint type.
1055   switch (*constraint) {
1056   default:
1057     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1058     break;
1059 
1060   case 'a': // Address register
1061   case 'd': // Data register (equivalent to 'r')
1062   case 'h': // High-part register
1063   case 'r': // General-purpose register
1064     if (CallOperandVal->getType()->isIntegerTy())
1065       weight = CW_Register;
1066     break;
1067 
1068   case 'f': // Floating-point register
1069     if (type->isFloatingPointTy())
1070       weight = CW_Register;
1071     break;
1072 
1073   case 'v': // Vector register
1074     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1075         Subtarget.hasVector())
1076       weight = CW_Register;
1077     break;
1078 
1079   case 'I': // Unsigned 8-bit constant
1080     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1081       if (isUInt<8>(C->getZExtValue()))
1082         weight = CW_Constant;
1083     break;
1084 
1085   case 'J': // Unsigned 12-bit constant
1086     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1087       if (isUInt<12>(C->getZExtValue()))
1088         weight = CW_Constant;
1089     break;
1090 
1091   case 'K': // Signed 16-bit constant
1092     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1093       if (isInt<16>(C->getSExtValue()))
1094         weight = CW_Constant;
1095     break;
1096 
1097   case 'L': // Signed 20-bit displacement (on all targets we support)
1098     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1099       if (isInt<20>(C->getSExtValue()))
1100         weight = CW_Constant;
1101     break;
1102 
1103   case 'M': // 0x7fffffff
1104     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1105       if (C->getZExtValue() == 0x7fffffff)
1106         weight = CW_Constant;
1107     break;
1108   }
1109   return weight;
1110 }
1111 
1112 // Parse a "{tNNN}" register constraint for which the register type "t"
1113 // has already been verified.  MC is the class associated with "t" and
1114 // Map maps 0-based register numbers to LLVM register numbers.
1115 static std::pair<unsigned, const TargetRegisterClass *>
1116 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1117                     const unsigned *Map, unsigned Size) {
1118   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1119   if (isdigit(Constraint[2])) {
1120     unsigned Index;
1121     bool Failed =
1122         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1123     if (!Failed && Index < Size && Map[Index])
1124       return std::make_pair(Map[Index], RC);
1125   }
1126   return std::make_pair(0U, nullptr);
1127 }
1128 
1129 std::pair<unsigned, const TargetRegisterClass *>
1130 SystemZTargetLowering::getRegForInlineAsmConstraint(
1131     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1132   if (Constraint.size() == 1) {
1133     // GCC Constraint Letters
1134     switch (Constraint[0]) {
1135     default: break;
1136     case 'd': // Data register (equivalent to 'r')
1137     case 'r': // General-purpose register
1138       if (VT == MVT::i64)
1139         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1140       else if (VT == MVT::i128)
1141         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1142       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1143 
1144     case 'a': // Address register
1145       if (VT == MVT::i64)
1146         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1147       else if (VT == MVT::i128)
1148         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1149       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1150 
1151     case 'h': // High-part register (an LLVM extension)
1152       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1153 
1154     case 'f': // Floating-point register
1155       if (!useSoftFloat()) {
1156         if (VT == MVT::f64)
1157           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1158         else if (VT == MVT::f128)
1159           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1160         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1161       }
1162       break;
1163     case 'v': // Vector register
1164       if (Subtarget.hasVector()) {
1165         if (VT == MVT::f32)
1166           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1167         if (VT == MVT::f64)
1168           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1169         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1170       }
1171       break;
1172     }
1173   }
1174   if (Constraint.size() > 0 && Constraint[0] == '{') {
1175     // We need to override the default register parsing for GPRs and FPRs
1176     // because the interpretation depends on VT.  The internal names of
1177     // the registers are also different from the external names
1178     // (F0D and F0S instead of F0, etc.).
1179     if (Constraint[1] == 'r') {
1180       if (VT == MVT::i32)
1181         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1182                                    SystemZMC::GR32Regs, 16);
1183       if (VT == MVT::i128)
1184         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1185                                    SystemZMC::GR128Regs, 16);
1186       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1187                                  SystemZMC::GR64Regs, 16);
1188     }
1189     if (Constraint[1] == 'f') {
1190       if (useSoftFloat())
1191         return std::make_pair(
1192             0u, static_cast<const TargetRegisterClass *>(nullptr));
1193       if (VT == MVT::f32)
1194         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1195                                    SystemZMC::FP32Regs, 16);
1196       if (VT == MVT::f128)
1197         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1198                                    SystemZMC::FP128Regs, 16);
1199       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1200                                  SystemZMC::FP64Regs, 16);
1201     }
1202     if (Constraint[1] == 'v') {
1203       if (!Subtarget.hasVector())
1204         return std::make_pair(
1205             0u, static_cast<const TargetRegisterClass *>(nullptr));
1206       if (VT == MVT::f32)
1207         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1208                                    SystemZMC::VR32Regs, 32);
1209       if (VT == MVT::f64)
1210         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1211                                    SystemZMC::VR64Regs, 32);
1212       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1213                                  SystemZMC::VR128Regs, 32);
1214     }
1215   }
1216   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1217 }
1218 
1219 // FIXME? Maybe this could be a TableGen attribute on some registers and
1220 // this table could be generated automatically from RegInfo.
1221 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1222                                                   const MachineFunction &MF) const {
1223 
1224   Register Reg = StringSwitch<Register>(RegName)
1225                    .Case("r15", SystemZ::R15D)
1226                    .Default(0);
1227   if (Reg)
1228     return Reg;
1229   report_fatal_error("Invalid register name global variable");
1230 }
1231 
1232 void SystemZTargetLowering::
1233 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1234                              std::vector<SDValue> &Ops,
1235                              SelectionDAG &DAG) const {
1236   // Only support length 1 constraints for now.
1237   if (Constraint.length() == 1) {
1238     switch (Constraint[0]) {
1239     case 'I': // Unsigned 8-bit constant
1240       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1241         if (isUInt<8>(C->getZExtValue()))
1242           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1243                                               Op.getValueType()));
1244       return;
1245 
1246     case 'J': // Unsigned 12-bit constant
1247       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1248         if (isUInt<12>(C->getZExtValue()))
1249           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1250                                               Op.getValueType()));
1251       return;
1252 
1253     case 'K': // Signed 16-bit constant
1254       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1255         if (isInt<16>(C->getSExtValue()))
1256           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1257                                               Op.getValueType()));
1258       return;
1259 
1260     case 'L': // Signed 20-bit displacement (on all targets we support)
1261       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1262         if (isInt<20>(C->getSExtValue()))
1263           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1264                                               Op.getValueType()));
1265       return;
1266 
1267     case 'M': // 0x7fffffff
1268       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1269         if (C->getZExtValue() == 0x7fffffff)
1270           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1271                                               Op.getValueType()));
1272       return;
1273     }
1274   }
1275   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1276 }
1277 
1278 //===----------------------------------------------------------------------===//
1279 // Calling conventions
1280 //===----------------------------------------------------------------------===//
1281 
1282 #include "SystemZGenCallingConv.inc"
1283 
1284 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1285   CallingConv::ID) const {
1286   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1287                                            SystemZ::R14D, 0 };
1288   return ScratchRegs;
1289 }
1290 
1291 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1292                                                      Type *ToType) const {
1293   return isTruncateFree(FromType, ToType);
1294 }
1295 
1296 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1297   return CI->isTailCall();
1298 }
1299 
1300 // We do not yet support 128-bit single-element vector types.  If the user
1301 // attempts to use such types as function argument or return type, prefer
1302 // to error out instead of emitting code violating the ABI.
1303 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1304   if (ArgVT.isVector() && !VT.isVector())
1305     report_fatal_error("Unsupported vector argument or return type");
1306 }
1307 
1308 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1309   for (unsigned i = 0; i < Ins.size(); ++i)
1310     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1311 }
1312 
1313 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1314   for (unsigned i = 0; i < Outs.size(); ++i)
1315     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1316 }
1317 
1318 // Value is a value that has been passed to us in the location described by VA
1319 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1320 // any loads onto Chain.
1321 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1322                                    CCValAssign &VA, SDValue Chain,
1323                                    SDValue Value) {
1324   // If the argument has been promoted from a smaller type, insert an
1325   // assertion to capture this.
1326   if (VA.getLocInfo() == CCValAssign::SExt)
1327     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1328                         DAG.getValueType(VA.getValVT()));
1329   else if (VA.getLocInfo() == CCValAssign::ZExt)
1330     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1331                         DAG.getValueType(VA.getValVT()));
1332 
1333   if (VA.isExtInLoc())
1334     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1335   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1336     // If this is a short vector argument loaded from the stack,
1337     // extend from i64 to full vector size and then bitcast.
1338     assert(VA.getLocVT() == MVT::i64);
1339     assert(VA.getValVT().isVector());
1340     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1341     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1342   } else
1343     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1344   return Value;
1345 }
1346 
1347 // Value is a value of type VA.getValVT() that we need to copy into
1348 // the location described by VA.  Return a copy of Value converted to
1349 // VA.getValVT().  The caller is responsible for handling indirect values.
1350 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1351                                    CCValAssign &VA, SDValue Value) {
1352   switch (VA.getLocInfo()) {
1353   case CCValAssign::SExt:
1354     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1355   case CCValAssign::ZExt:
1356     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1357   case CCValAssign::AExt:
1358     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1359   case CCValAssign::BCvt:
1360     // If this is a short vector argument to be stored to the stack,
1361     // bitcast to v2i64 and then extract first element.
1362     assert(VA.getLocVT() == MVT::i64);
1363     assert(VA.getValVT().isVector());
1364     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1365     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1366                        DAG.getConstant(0, DL, MVT::i32));
1367   case CCValAssign::Full:
1368     return Value;
1369   default:
1370     llvm_unreachable("Unhandled getLocInfo()");
1371   }
1372 }
1373 
1374 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1375   SDLoc DL(In);
1376   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1377                            DAG.getIntPtrConstant(0, DL));
1378   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1379                            DAG.getIntPtrConstant(1, DL));
1380   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1381                                     MVT::Untyped, Hi, Lo);
1382   return SDValue(Pair, 0);
1383 }
1384 
1385 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1386   SDLoc DL(In);
1387   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1388                                           DL, MVT::i64, In);
1389   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1390                                           DL, MVT::i64, In);
1391   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1392 }
1393 
1394 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1395     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1396     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
1397   EVT ValueVT = Val.getValueType();
1398   assert((ValueVT != MVT::i128 ||
1399           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1400            (NumParts == 2 && PartVT == MVT::i64))) &&
1401          "Unknown handling of i128 value.");
1402   if (ValueVT == MVT::i128 && NumParts == 1) {
1403     // Inline assembly operand.
1404     Parts[0] = lowerI128ToGR128(DAG, Val);
1405     return true;
1406   }
1407   return false;
1408 }
1409 
1410 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1411     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1412     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
1413   assert((ValueVT != MVT::i128 ||
1414           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1415            (NumParts == 2 && PartVT == MVT::i64))) &&
1416          "Unknown handling of i128 value.");
1417   if (ValueVT == MVT::i128 && NumParts == 1)
1418     // Inline assembly operand.
1419     return lowerGR128ToI128(DAG, Parts[0]);
1420   return SDValue();
1421 }
1422 
1423 SDValue SystemZTargetLowering::LowerFormalArguments(
1424     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1425     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1426     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1427   MachineFunction &MF = DAG.getMachineFunction();
1428   MachineFrameInfo &MFI = MF.getFrameInfo();
1429   MachineRegisterInfo &MRI = MF.getRegInfo();
1430   SystemZMachineFunctionInfo *FuncInfo =
1431       MF.getInfo<SystemZMachineFunctionInfo>();
1432   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1433   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1434 
1435   // Detect unsupported vector argument types.
1436   if (Subtarget.hasVector())
1437     VerifyVectorTypes(Ins);
1438 
1439   // Assign locations to all of the incoming arguments.
1440   SmallVector<CCValAssign, 16> ArgLocs;
1441   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1442   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1443 
1444   unsigned NumFixedGPRs = 0;
1445   unsigned NumFixedFPRs = 0;
1446   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1447     SDValue ArgValue;
1448     CCValAssign &VA = ArgLocs[I];
1449     EVT LocVT = VA.getLocVT();
1450     if (VA.isRegLoc()) {
1451       // Arguments passed in registers
1452       const TargetRegisterClass *RC;
1453       switch (LocVT.getSimpleVT().SimpleTy) {
1454       default:
1455         // Integers smaller than i64 should be promoted to i64.
1456         llvm_unreachable("Unexpected argument type");
1457       case MVT::i32:
1458         NumFixedGPRs += 1;
1459         RC = &SystemZ::GR32BitRegClass;
1460         break;
1461       case MVT::i64:
1462         NumFixedGPRs += 1;
1463         RC = &SystemZ::GR64BitRegClass;
1464         break;
1465       case MVT::f32:
1466         NumFixedFPRs += 1;
1467         RC = &SystemZ::FP32BitRegClass;
1468         break;
1469       case MVT::f64:
1470         NumFixedFPRs += 1;
1471         RC = &SystemZ::FP64BitRegClass;
1472         break;
1473       case MVT::v16i8:
1474       case MVT::v8i16:
1475       case MVT::v4i32:
1476       case MVT::v2i64:
1477       case MVT::v4f32:
1478       case MVT::v2f64:
1479         RC = &SystemZ::VR128BitRegClass;
1480         break;
1481       }
1482 
1483       Register VReg = MRI.createVirtualRegister(RC);
1484       MRI.addLiveIn(VA.getLocReg(), VReg);
1485       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1486     } else {
1487       assert(VA.isMemLoc() && "Argument not register or memory");
1488 
1489       // Create the frame index object for this incoming parameter.
1490       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1491                                      VA.getLocMemOffset(), true);
1492 
1493       // Create the SelectionDAG nodes corresponding to a load
1494       // from this parameter.  Unpromoted ints and floats are
1495       // passed as right-justified 8-byte values.
1496       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1497       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1498         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1499                           DAG.getIntPtrConstant(4, DL));
1500       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1501                              MachinePointerInfo::getFixedStack(MF, FI));
1502     }
1503 
1504     // Convert the value of the argument register into the value that's
1505     // being passed.
1506     if (VA.getLocInfo() == CCValAssign::Indirect) {
1507       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1508                                    MachinePointerInfo()));
1509       // If the original argument was split (e.g. i128), we need
1510       // to load all parts of it here (using the same address).
1511       unsigned ArgIndex = Ins[I].OrigArgIndex;
1512       assert (Ins[I].PartOffset == 0);
1513       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1514         CCValAssign &PartVA = ArgLocs[I + 1];
1515         unsigned PartOffset = Ins[I + 1].PartOffset;
1516         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1517                                       DAG.getIntPtrConstant(PartOffset, DL));
1518         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1519                                      MachinePointerInfo()));
1520         ++I;
1521       }
1522     } else
1523       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1524   }
1525 
1526   if (IsVarArg) {
1527     // Save the number of non-varargs registers for later use by va_start, etc.
1528     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1529     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1530 
1531     // Likewise the address (in the form of a frame index) of where the
1532     // first stack vararg would be.  The 1-byte size here is arbitrary.
1533     int64_t StackSize = CCInfo.getNextStackOffset();
1534     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1535 
1536     // ...and a similar frame index for the caller-allocated save area
1537     // that will be used to store the incoming registers.
1538     int64_t RegSaveOffset =
1539       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1540     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1541     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1542 
1543     // Store the FPR varargs in the reserved frame slots.  (We store the
1544     // GPRs as part of the prologue.)
1545     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1546       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1547       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1548         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1549         int FI =
1550           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1551         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1552         unsigned VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1553                                      &SystemZ::FP64BitRegClass);
1554         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1555         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1556                                  MachinePointerInfo::getFixedStack(MF, FI));
1557       }
1558       // Join the stores, which are independent of one another.
1559       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1560                           makeArrayRef(&MemOps[NumFixedFPRs],
1561                                        SystemZ::ELFNumArgFPRs-NumFixedFPRs));
1562     }
1563   }
1564 
1565   return Chain;
1566 }
1567 
1568 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1569                               SmallVectorImpl<CCValAssign> &ArgLocs,
1570                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1571   // Punt if there are any indirect or stack arguments, or if the call
1572   // needs the callee-saved argument register R6, or if the call uses
1573   // the callee-saved register arguments SwiftSelf and SwiftError.
1574   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1575     CCValAssign &VA = ArgLocs[I];
1576     if (VA.getLocInfo() == CCValAssign::Indirect)
1577       return false;
1578     if (!VA.isRegLoc())
1579       return false;
1580     Register Reg = VA.getLocReg();
1581     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1582       return false;
1583     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1584       return false;
1585   }
1586   return true;
1587 }
1588 
1589 SDValue
1590 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1591                                  SmallVectorImpl<SDValue> &InVals) const {
1592   SelectionDAG &DAG = CLI.DAG;
1593   SDLoc &DL = CLI.DL;
1594   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1595   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1596   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1597   SDValue Chain = CLI.Chain;
1598   SDValue Callee = CLI.Callee;
1599   bool &IsTailCall = CLI.IsTailCall;
1600   CallingConv::ID CallConv = CLI.CallConv;
1601   bool IsVarArg = CLI.IsVarArg;
1602   MachineFunction &MF = DAG.getMachineFunction();
1603   EVT PtrVT = getPointerTy(MF.getDataLayout());
1604   LLVMContext &Ctx = *DAG.getContext();
1605 
1606   // Detect unsupported vector argument and return types.
1607   if (Subtarget.hasVector()) {
1608     VerifyVectorTypes(Outs);
1609     VerifyVectorTypes(Ins);
1610   }
1611 
1612   // Analyze the operands of the call, assigning locations to each operand.
1613   SmallVector<CCValAssign, 16> ArgLocs;
1614   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1615   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1616 
1617   // We don't support GuaranteedTailCallOpt, only automatically-detected
1618   // sibling calls.
1619   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1620     IsTailCall = false;
1621 
1622   // Get a count of how many bytes are to be pushed on the stack.
1623   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1624 
1625   // Mark the start of the call.
1626   if (!IsTailCall)
1627     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1628 
1629   // Copy argument values to their designated locations.
1630   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1631   SmallVector<SDValue, 8> MemOpChains;
1632   SDValue StackPtr;
1633   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1634     CCValAssign &VA = ArgLocs[I];
1635     SDValue ArgValue = OutVals[I];
1636 
1637     if (VA.getLocInfo() == CCValAssign::Indirect) {
1638       // Store the argument in a stack slot and pass its address.
1639       unsigned ArgIndex = Outs[I].OrigArgIndex;
1640       EVT SlotVT;
1641       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1642         // Allocate the full stack space for a promoted (and split) argument.
1643         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1644         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1645         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1646         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1647         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1648       } else {
1649         SlotVT = Outs[I].ArgVT;
1650       }
1651       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1652       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1653       MemOpChains.push_back(
1654           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1655                        MachinePointerInfo::getFixedStack(MF, FI)));
1656       // If the original argument was split (e.g. i128), we need
1657       // to store all parts of it here (and pass just one address).
1658       assert (Outs[I].PartOffset == 0);
1659       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1660         SDValue PartValue = OutVals[I + 1];
1661         unsigned PartOffset = Outs[I + 1].PartOffset;
1662         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1663                                       DAG.getIntPtrConstant(PartOffset, DL));
1664         MemOpChains.push_back(
1665             DAG.getStore(Chain, DL, PartValue, Address,
1666                          MachinePointerInfo::getFixedStack(MF, FI)));
1667         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1668                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1669         ++I;
1670       }
1671       ArgValue = SpillSlot;
1672     } else
1673       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1674 
1675     if (VA.isRegLoc())
1676       // Queue up the argument copies and emit them at the end.
1677       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1678     else {
1679       assert(VA.isMemLoc() && "Argument not register or memory");
1680 
1681       // Work out the address of the stack slot.  Unpromoted ints and
1682       // floats are passed as right-justified 8-byte values.
1683       if (!StackPtr.getNode())
1684         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1685       unsigned Offset = SystemZMC::ELFCallFrameSize + VA.getLocMemOffset();
1686       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1687         Offset += 4;
1688       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1689                                     DAG.getIntPtrConstant(Offset, DL));
1690 
1691       // Emit the store.
1692       MemOpChains.push_back(
1693           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1694     }
1695   }
1696 
1697   // Join the stores, which are independent of one another.
1698   if (!MemOpChains.empty())
1699     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1700 
1701   // Accept direct calls by converting symbolic call addresses to the
1702   // associated Target* opcodes.  Force %r1 to be used for indirect
1703   // tail calls.
1704   SDValue Glue;
1705   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1706     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1707     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1708   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1709     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1710     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1711   } else if (IsTailCall) {
1712     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1713     Glue = Chain.getValue(1);
1714     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1715   }
1716 
1717   // Build a sequence of copy-to-reg nodes, chained and glued together.
1718   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1719     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1720                              RegsToPass[I].second, Glue);
1721     Glue = Chain.getValue(1);
1722   }
1723 
1724   // The first call operand is the chain and the second is the target address.
1725   SmallVector<SDValue, 8> Ops;
1726   Ops.push_back(Chain);
1727   Ops.push_back(Callee);
1728 
1729   // Add argument registers to the end of the list so that they are
1730   // known live into the call.
1731   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1732     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1733                                   RegsToPass[I].second.getValueType()));
1734 
1735   // Add a register mask operand representing the call-preserved registers.
1736   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1737   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1738   assert(Mask && "Missing call preserved mask for calling convention");
1739   Ops.push_back(DAG.getRegisterMask(Mask));
1740 
1741   // Glue the call to the argument copies, if any.
1742   if (Glue.getNode())
1743     Ops.push_back(Glue);
1744 
1745   // Emit the call.
1746   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1747   if (IsTailCall)
1748     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1749   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1750   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1751   Glue = Chain.getValue(1);
1752 
1753   // Mark the end of the call, which is glued to the call itself.
1754   Chain = DAG.getCALLSEQ_END(Chain,
1755                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1756                              DAG.getConstant(0, DL, PtrVT, true),
1757                              Glue, DL);
1758   Glue = Chain.getValue(1);
1759 
1760   // Assign locations to each value returned by this call.
1761   SmallVector<CCValAssign, 16> RetLocs;
1762   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
1763   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1764 
1765   // Copy all of the result registers out of their specified physreg.
1766   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1767     CCValAssign &VA = RetLocs[I];
1768 
1769     // Copy the value out, gluing the copy to the end of the call sequence.
1770     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1771                                           VA.getLocVT(), Glue);
1772     Chain = RetValue.getValue(1);
1773     Glue = RetValue.getValue(2);
1774 
1775     // Convert the value of the return register into the value that's
1776     // being returned.
1777     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1778   }
1779 
1780   return Chain;
1781 }
1782 
1783 bool SystemZTargetLowering::
1784 CanLowerReturn(CallingConv::ID CallConv,
1785                MachineFunction &MF, bool isVarArg,
1786                const SmallVectorImpl<ISD::OutputArg> &Outs,
1787                LLVMContext &Context) const {
1788   // Detect unsupported vector return types.
1789   if (Subtarget.hasVector())
1790     VerifyVectorTypes(Outs);
1791 
1792   // Special case that we cannot easily detect in RetCC_SystemZ since
1793   // i128 is not a legal type.
1794   for (auto &Out : Outs)
1795     if (Out.ArgVT == MVT::i128)
1796       return false;
1797 
1798   SmallVector<CCValAssign, 16> RetLocs;
1799   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1800   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1801 }
1802 
1803 SDValue
1804 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1805                                    bool IsVarArg,
1806                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1807                                    const SmallVectorImpl<SDValue> &OutVals,
1808                                    const SDLoc &DL, SelectionDAG &DAG) const {
1809   MachineFunction &MF = DAG.getMachineFunction();
1810 
1811   // Detect unsupported vector return types.
1812   if (Subtarget.hasVector())
1813     VerifyVectorTypes(Outs);
1814 
1815   // Assign locations to each returned value.
1816   SmallVector<CCValAssign, 16> RetLocs;
1817   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1818   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1819 
1820   // Quick exit for void returns
1821   if (RetLocs.empty())
1822     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1823 
1824   if (CallConv == CallingConv::GHC)
1825     report_fatal_error("GHC functions return void only");
1826 
1827   // Copy the result values into the output registers.
1828   SDValue Glue;
1829   SmallVector<SDValue, 4> RetOps;
1830   RetOps.push_back(Chain);
1831   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1832     CCValAssign &VA = RetLocs[I];
1833     SDValue RetValue = OutVals[I];
1834 
1835     // Make the return register live on exit.
1836     assert(VA.isRegLoc() && "Can only return in registers!");
1837 
1838     // Promote the value as required.
1839     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1840 
1841     // Chain and glue the copies together.
1842     Register Reg = VA.getLocReg();
1843     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1844     Glue = Chain.getValue(1);
1845     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1846   }
1847 
1848   // Update chain and glue.
1849   RetOps[0] = Chain;
1850   if (Glue.getNode())
1851     RetOps.push_back(Glue);
1852 
1853   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1854 }
1855 
1856 // Return true if Op is an intrinsic node with chain that returns the CC value
1857 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1858 // the mask of valid CC values if so.
1859 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1860                                       unsigned &CCValid) {
1861   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1862   switch (Id) {
1863   case Intrinsic::s390_tbegin:
1864     Opcode = SystemZISD::TBEGIN;
1865     CCValid = SystemZ::CCMASK_TBEGIN;
1866     return true;
1867 
1868   case Intrinsic::s390_tbegin_nofloat:
1869     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1870     CCValid = SystemZ::CCMASK_TBEGIN;
1871     return true;
1872 
1873   case Intrinsic::s390_tend:
1874     Opcode = SystemZISD::TEND;
1875     CCValid = SystemZ::CCMASK_TEND;
1876     return true;
1877 
1878   default:
1879     return false;
1880   }
1881 }
1882 
1883 // Return true if Op is an intrinsic node without chain that returns the
1884 // CC value as its final argument.  Provide the associated SystemZISD
1885 // opcode and the mask of valid CC values if so.
1886 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1887   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1888   switch (Id) {
1889   case Intrinsic::s390_vpkshs:
1890   case Intrinsic::s390_vpksfs:
1891   case Intrinsic::s390_vpksgs:
1892     Opcode = SystemZISD::PACKS_CC;
1893     CCValid = SystemZ::CCMASK_VCMP;
1894     return true;
1895 
1896   case Intrinsic::s390_vpklshs:
1897   case Intrinsic::s390_vpklsfs:
1898   case Intrinsic::s390_vpklsgs:
1899     Opcode = SystemZISD::PACKLS_CC;
1900     CCValid = SystemZ::CCMASK_VCMP;
1901     return true;
1902 
1903   case Intrinsic::s390_vceqbs:
1904   case Intrinsic::s390_vceqhs:
1905   case Intrinsic::s390_vceqfs:
1906   case Intrinsic::s390_vceqgs:
1907     Opcode = SystemZISD::VICMPES;
1908     CCValid = SystemZ::CCMASK_VCMP;
1909     return true;
1910 
1911   case Intrinsic::s390_vchbs:
1912   case Intrinsic::s390_vchhs:
1913   case Intrinsic::s390_vchfs:
1914   case Intrinsic::s390_vchgs:
1915     Opcode = SystemZISD::VICMPHS;
1916     CCValid = SystemZ::CCMASK_VCMP;
1917     return true;
1918 
1919   case Intrinsic::s390_vchlbs:
1920   case Intrinsic::s390_vchlhs:
1921   case Intrinsic::s390_vchlfs:
1922   case Intrinsic::s390_vchlgs:
1923     Opcode = SystemZISD::VICMPHLS;
1924     CCValid = SystemZ::CCMASK_VCMP;
1925     return true;
1926 
1927   case Intrinsic::s390_vtm:
1928     Opcode = SystemZISD::VTM;
1929     CCValid = SystemZ::CCMASK_VCMP;
1930     return true;
1931 
1932   case Intrinsic::s390_vfaebs:
1933   case Intrinsic::s390_vfaehs:
1934   case Intrinsic::s390_vfaefs:
1935     Opcode = SystemZISD::VFAE_CC;
1936     CCValid = SystemZ::CCMASK_ANY;
1937     return true;
1938 
1939   case Intrinsic::s390_vfaezbs:
1940   case Intrinsic::s390_vfaezhs:
1941   case Intrinsic::s390_vfaezfs:
1942     Opcode = SystemZISD::VFAEZ_CC;
1943     CCValid = SystemZ::CCMASK_ANY;
1944     return true;
1945 
1946   case Intrinsic::s390_vfeebs:
1947   case Intrinsic::s390_vfeehs:
1948   case Intrinsic::s390_vfeefs:
1949     Opcode = SystemZISD::VFEE_CC;
1950     CCValid = SystemZ::CCMASK_ANY;
1951     return true;
1952 
1953   case Intrinsic::s390_vfeezbs:
1954   case Intrinsic::s390_vfeezhs:
1955   case Intrinsic::s390_vfeezfs:
1956     Opcode = SystemZISD::VFEEZ_CC;
1957     CCValid = SystemZ::CCMASK_ANY;
1958     return true;
1959 
1960   case Intrinsic::s390_vfenebs:
1961   case Intrinsic::s390_vfenehs:
1962   case Intrinsic::s390_vfenefs:
1963     Opcode = SystemZISD::VFENE_CC;
1964     CCValid = SystemZ::CCMASK_ANY;
1965     return true;
1966 
1967   case Intrinsic::s390_vfenezbs:
1968   case Intrinsic::s390_vfenezhs:
1969   case Intrinsic::s390_vfenezfs:
1970     Opcode = SystemZISD::VFENEZ_CC;
1971     CCValid = SystemZ::CCMASK_ANY;
1972     return true;
1973 
1974   case Intrinsic::s390_vistrbs:
1975   case Intrinsic::s390_vistrhs:
1976   case Intrinsic::s390_vistrfs:
1977     Opcode = SystemZISD::VISTR_CC;
1978     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1979     return true;
1980 
1981   case Intrinsic::s390_vstrcbs:
1982   case Intrinsic::s390_vstrchs:
1983   case Intrinsic::s390_vstrcfs:
1984     Opcode = SystemZISD::VSTRC_CC;
1985     CCValid = SystemZ::CCMASK_ANY;
1986     return true;
1987 
1988   case Intrinsic::s390_vstrczbs:
1989   case Intrinsic::s390_vstrczhs:
1990   case Intrinsic::s390_vstrczfs:
1991     Opcode = SystemZISD::VSTRCZ_CC;
1992     CCValid = SystemZ::CCMASK_ANY;
1993     return true;
1994 
1995   case Intrinsic::s390_vstrsb:
1996   case Intrinsic::s390_vstrsh:
1997   case Intrinsic::s390_vstrsf:
1998     Opcode = SystemZISD::VSTRS_CC;
1999     CCValid = SystemZ::CCMASK_ANY;
2000     return true;
2001 
2002   case Intrinsic::s390_vstrszb:
2003   case Intrinsic::s390_vstrszh:
2004   case Intrinsic::s390_vstrszf:
2005     Opcode = SystemZISD::VSTRSZ_CC;
2006     CCValid = SystemZ::CCMASK_ANY;
2007     return true;
2008 
2009   case Intrinsic::s390_vfcedbs:
2010   case Intrinsic::s390_vfcesbs:
2011     Opcode = SystemZISD::VFCMPES;
2012     CCValid = SystemZ::CCMASK_VCMP;
2013     return true;
2014 
2015   case Intrinsic::s390_vfchdbs:
2016   case Intrinsic::s390_vfchsbs:
2017     Opcode = SystemZISD::VFCMPHS;
2018     CCValid = SystemZ::CCMASK_VCMP;
2019     return true;
2020 
2021   case Intrinsic::s390_vfchedbs:
2022   case Intrinsic::s390_vfchesbs:
2023     Opcode = SystemZISD::VFCMPHES;
2024     CCValid = SystemZ::CCMASK_VCMP;
2025     return true;
2026 
2027   case Intrinsic::s390_vftcidb:
2028   case Intrinsic::s390_vftcisb:
2029     Opcode = SystemZISD::VFTCI;
2030     CCValid = SystemZ::CCMASK_VCMP;
2031     return true;
2032 
2033   case Intrinsic::s390_tdc:
2034     Opcode = SystemZISD::TDC;
2035     CCValid = SystemZ::CCMASK_TDC;
2036     return true;
2037 
2038   default:
2039     return false;
2040   }
2041 }
2042 
2043 // Emit an intrinsic with chain and an explicit CC register result.
2044 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2045                                            unsigned Opcode) {
2046   // Copy all operands except the intrinsic ID.
2047   unsigned NumOps = Op.getNumOperands();
2048   SmallVector<SDValue, 6> Ops;
2049   Ops.reserve(NumOps - 1);
2050   Ops.push_back(Op.getOperand(0));
2051   for (unsigned I = 2; I < NumOps; ++I)
2052     Ops.push_back(Op.getOperand(I));
2053 
2054   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2055   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2056   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2057   SDValue OldChain = SDValue(Op.getNode(), 1);
2058   SDValue NewChain = SDValue(Intr.getNode(), 1);
2059   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2060   return Intr.getNode();
2061 }
2062 
2063 // Emit an intrinsic with an explicit CC register result.
2064 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2065                                    unsigned Opcode) {
2066   // Copy all operands except the intrinsic ID.
2067   unsigned NumOps = Op.getNumOperands();
2068   SmallVector<SDValue, 6> Ops;
2069   Ops.reserve(NumOps - 1);
2070   for (unsigned I = 1; I < NumOps; ++I)
2071     Ops.push_back(Op.getOperand(I));
2072 
2073   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2074   return Intr.getNode();
2075 }
2076 
2077 // CC is a comparison that will be implemented using an integer or
2078 // floating-point comparison.  Return the condition code mask for
2079 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2080 // unsigned comparisons and clear for signed ones.  In the floating-point
2081 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2082 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2083 #define CONV(X) \
2084   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2085   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2086   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2087 
2088   switch (CC) {
2089   default:
2090     llvm_unreachable("Invalid integer condition!");
2091 
2092   CONV(EQ);
2093   CONV(NE);
2094   CONV(GT);
2095   CONV(GE);
2096   CONV(LT);
2097   CONV(LE);
2098 
2099   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2100   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2101   }
2102 #undef CONV
2103 }
2104 
2105 // If C can be converted to a comparison against zero, adjust the operands
2106 // as necessary.
2107 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2108   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2109     return;
2110 
2111   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2112   if (!ConstOp1)
2113     return;
2114 
2115   int64_t Value = ConstOp1->getSExtValue();
2116   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2117       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2118       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2119       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2120     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2121     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2122   }
2123 }
2124 
2125 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2126 // adjust the operands as necessary.
2127 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2128                              Comparison &C) {
2129   // For us to make any changes, it must a comparison between a single-use
2130   // load and a constant.
2131   if (!C.Op0.hasOneUse() ||
2132       C.Op0.getOpcode() != ISD::LOAD ||
2133       C.Op1.getOpcode() != ISD::Constant)
2134     return;
2135 
2136   // We must have an 8- or 16-bit load.
2137   auto *Load = cast<LoadSDNode>(C.Op0);
2138   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2139   if ((NumBits != 8 && NumBits != 16) ||
2140       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2141     return;
2142 
2143   // The load must be an extending one and the constant must be within the
2144   // range of the unextended value.
2145   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2146   uint64_t Value = ConstOp1->getZExtValue();
2147   uint64_t Mask = (1 << NumBits) - 1;
2148   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2149     // Make sure that ConstOp1 is in range of C.Op0.
2150     int64_t SignedValue = ConstOp1->getSExtValue();
2151     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2152       return;
2153     if (C.ICmpType != SystemZICMP::SignedOnly) {
2154       // Unsigned comparison between two sign-extended values is equivalent
2155       // to unsigned comparison between two zero-extended values.
2156       Value &= Mask;
2157     } else if (NumBits == 8) {
2158       // Try to treat the comparison as unsigned, so that we can use CLI.
2159       // Adjust CCMask and Value as necessary.
2160       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2161         // Test whether the high bit of the byte is set.
2162         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2163       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2164         // Test whether the high bit of the byte is clear.
2165         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2166       else
2167         // No instruction exists for this combination.
2168         return;
2169       C.ICmpType = SystemZICMP::UnsignedOnly;
2170     }
2171   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2172     if (Value > Mask)
2173       return;
2174     // If the constant is in range, we can use any comparison.
2175     C.ICmpType = SystemZICMP::Any;
2176   } else
2177     return;
2178 
2179   // Make sure that the first operand is an i32 of the right extension type.
2180   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2181                               ISD::SEXTLOAD :
2182                               ISD::ZEXTLOAD);
2183   if (C.Op0.getValueType() != MVT::i32 ||
2184       Load->getExtensionType() != ExtType) {
2185     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2186                            Load->getBasePtr(), Load->getPointerInfo(),
2187                            Load->getMemoryVT(), Load->getAlignment(),
2188                            Load->getMemOperand()->getFlags());
2189     // Update the chain uses.
2190     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2191   }
2192 
2193   // Make sure that the second operand is an i32 with the right value.
2194   if (C.Op1.getValueType() != MVT::i32 ||
2195       Value != ConstOp1->getZExtValue())
2196     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2197 }
2198 
2199 // Return true if Op is either an unextended load, or a load suitable
2200 // for integer register-memory comparisons of type ICmpType.
2201 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2202   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2203   if (Load) {
2204     // There are no instructions to compare a register with a memory byte.
2205     if (Load->getMemoryVT() == MVT::i8)
2206       return false;
2207     // Otherwise decide on extension type.
2208     switch (Load->getExtensionType()) {
2209     case ISD::NON_EXTLOAD:
2210       return true;
2211     case ISD::SEXTLOAD:
2212       return ICmpType != SystemZICMP::UnsignedOnly;
2213     case ISD::ZEXTLOAD:
2214       return ICmpType != SystemZICMP::SignedOnly;
2215     default:
2216       break;
2217     }
2218   }
2219   return false;
2220 }
2221 
2222 // Return true if it is better to swap the operands of C.
2223 static bool shouldSwapCmpOperands(const Comparison &C) {
2224   // Leave f128 comparisons alone, since they have no memory forms.
2225   if (C.Op0.getValueType() == MVT::f128)
2226     return false;
2227 
2228   // Always keep a floating-point constant second, since comparisons with
2229   // zero can use LOAD TEST and comparisons with other constants make a
2230   // natural memory operand.
2231   if (isa<ConstantFPSDNode>(C.Op1))
2232     return false;
2233 
2234   // Never swap comparisons with zero since there are many ways to optimize
2235   // those later.
2236   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2237   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2238     return false;
2239 
2240   // Also keep natural memory operands second if the loaded value is
2241   // only used here.  Several comparisons have memory forms.
2242   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2243     return false;
2244 
2245   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2246   // In that case we generally prefer the memory to be second.
2247   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2248     // The only exceptions are when the second operand is a constant and
2249     // we can use things like CHHSI.
2250     if (!ConstOp1)
2251       return true;
2252     // The unsigned memory-immediate instructions can handle 16-bit
2253     // unsigned integers.
2254     if (C.ICmpType != SystemZICMP::SignedOnly &&
2255         isUInt<16>(ConstOp1->getZExtValue()))
2256       return false;
2257     // The signed memory-immediate instructions can handle 16-bit
2258     // signed integers.
2259     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2260         isInt<16>(ConstOp1->getSExtValue()))
2261       return false;
2262     return true;
2263   }
2264 
2265   // Try to promote the use of CGFR and CLGFR.
2266   unsigned Opcode0 = C.Op0.getOpcode();
2267   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2268     return true;
2269   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2270     return true;
2271   if (C.ICmpType != SystemZICMP::SignedOnly &&
2272       Opcode0 == ISD::AND &&
2273       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2274       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2275     return true;
2276 
2277   return false;
2278 }
2279 
2280 // Check whether C tests for equality between X and Y and whether X - Y
2281 // or Y - X is also computed.  In that case it's better to compare the
2282 // result of the subtraction against zero.
2283 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2284                                  Comparison &C) {
2285   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2286       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2287     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2288       SDNode *N = *I;
2289       if (N->getOpcode() == ISD::SUB &&
2290           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2291            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2292         C.Op0 = SDValue(N, 0);
2293         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2294         return;
2295       }
2296     }
2297   }
2298 }
2299 
2300 // Check whether C compares a floating-point value with zero and if that
2301 // floating-point value is also negated.  In this case we can use the
2302 // negation to set CC, so avoiding separate LOAD AND TEST and
2303 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2304 static void adjustForFNeg(Comparison &C) {
2305   // This optimization is invalid for strict comparisons, since FNEG
2306   // does not raise any exceptions.
2307   if (C.Chain)
2308     return;
2309   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2310   if (C1 && C1->isZero()) {
2311     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2312       SDNode *N = *I;
2313       if (N->getOpcode() == ISD::FNEG) {
2314         C.Op0 = SDValue(N, 0);
2315         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2316         return;
2317       }
2318     }
2319   }
2320 }
2321 
2322 // Check whether C compares (shl X, 32) with 0 and whether X is
2323 // also sign-extended.  In that case it is better to test the result
2324 // of the sign extension using LTGFR.
2325 //
2326 // This case is important because InstCombine transforms a comparison
2327 // with (sext (trunc X)) into a comparison with (shl X, 32).
2328 static void adjustForLTGFR(Comparison &C) {
2329   // Check for a comparison between (shl X, 32) and 0.
2330   if (C.Op0.getOpcode() == ISD::SHL &&
2331       C.Op0.getValueType() == MVT::i64 &&
2332       C.Op1.getOpcode() == ISD::Constant &&
2333       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2334     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2335     if (C1 && C1->getZExtValue() == 32) {
2336       SDValue ShlOp0 = C.Op0.getOperand(0);
2337       // See whether X has any SIGN_EXTEND_INREG uses.
2338       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2339         SDNode *N = *I;
2340         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2341             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2342           C.Op0 = SDValue(N, 0);
2343           return;
2344         }
2345       }
2346     }
2347   }
2348 }
2349 
2350 // If C compares the truncation of an extending load, try to compare
2351 // the untruncated value instead.  This exposes more opportunities to
2352 // reuse CC.
2353 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2354                                Comparison &C) {
2355   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2356       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2357       C.Op1.getOpcode() == ISD::Constant &&
2358       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2359     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2360     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2361         C.Op0.getValueSizeInBits().getFixedSize()) {
2362       unsigned Type = L->getExtensionType();
2363       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2364           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2365         C.Op0 = C.Op0.getOperand(0);
2366         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2367       }
2368     }
2369   }
2370 }
2371 
2372 // Return true if shift operation N has an in-range constant shift value.
2373 // Store it in ShiftVal if so.
2374 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2375   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2376   if (!Shift)
2377     return false;
2378 
2379   uint64_t Amount = Shift->getZExtValue();
2380   if (Amount >= N.getValueSizeInBits())
2381     return false;
2382 
2383   ShiftVal = Amount;
2384   return true;
2385 }
2386 
2387 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2388 // instruction and whether the CC value is descriptive enough to handle
2389 // a comparison of type Opcode between the AND result and CmpVal.
2390 // CCMask says which comparison result is being tested and BitSize is
2391 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2392 // return the corresponding CC mask, otherwise return 0.
2393 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2394                                      uint64_t Mask, uint64_t CmpVal,
2395                                      unsigned ICmpType) {
2396   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2397 
2398   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2399   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2400       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2401     return 0;
2402 
2403   // Work out the masks for the lowest and highest bits.
2404   unsigned HighShift = 63 - countLeadingZeros(Mask);
2405   uint64_t High = uint64_t(1) << HighShift;
2406   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2407 
2408   // Signed ordered comparisons are effectively unsigned if the sign
2409   // bit is dropped.
2410   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2411 
2412   // Check for equality comparisons with 0, or the equivalent.
2413   if (CmpVal == 0) {
2414     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2415       return SystemZ::CCMASK_TM_ALL_0;
2416     if (CCMask == SystemZ::CCMASK_CMP_NE)
2417       return SystemZ::CCMASK_TM_SOME_1;
2418   }
2419   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2420     if (CCMask == SystemZ::CCMASK_CMP_LT)
2421       return SystemZ::CCMASK_TM_ALL_0;
2422     if (CCMask == SystemZ::CCMASK_CMP_GE)
2423       return SystemZ::CCMASK_TM_SOME_1;
2424   }
2425   if (EffectivelyUnsigned && CmpVal < Low) {
2426     if (CCMask == SystemZ::CCMASK_CMP_LE)
2427       return SystemZ::CCMASK_TM_ALL_0;
2428     if (CCMask == SystemZ::CCMASK_CMP_GT)
2429       return SystemZ::CCMASK_TM_SOME_1;
2430   }
2431 
2432   // Check for equality comparisons with the mask, or the equivalent.
2433   if (CmpVal == Mask) {
2434     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2435       return SystemZ::CCMASK_TM_ALL_1;
2436     if (CCMask == SystemZ::CCMASK_CMP_NE)
2437       return SystemZ::CCMASK_TM_SOME_0;
2438   }
2439   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2440     if (CCMask == SystemZ::CCMASK_CMP_GT)
2441       return SystemZ::CCMASK_TM_ALL_1;
2442     if (CCMask == SystemZ::CCMASK_CMP_LE)
2443       return SystemZ::CCMASK_TM_SOME_0;
2444   }
2445   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2446     if (CCMask == SystemZ::CCMASK_CMP_GE)
2447       return SystemZ::CCMASK_TM_ALL_1;
2448     if (CCMask == SystemZ::CCMASK_CMP_LT)
2449       return SystemZ::CCMASK_TM_SOME_0;
2450   }
2451 
2452   // Check for ordered comparisons with the top bit.
2453   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2454     if (CCMask == SystemZ::CCMASK_CMP_LE)
2455       return SystemZ::CCMASK_TM_MSB_0;
2456     if (CCMask == SystemZ::CCMASK_CMP_GT)
2457       return SystemZ::CCMASK_TM_MSB_1;
2458   }
2459   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2460     if (CCMask == SystemZ::CCMASK_CMP_LT)
2461       return SystemZ::CCMASK_TM_MSB_0;
2462     if (CCMask == SystemZ::CCMASK_CMP_GE)
2463       return SystemZ::CCMASK_TM_MSB_1;
2464   }
2465 
2466   // If there are just two bits, we can do equality checks for Low and High
2467   // as well.
2468   if (Mask == Low + High) {
2469     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2470       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2471     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2472       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2473     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2474       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2475     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2476       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2477   }
2478 
2479   // Looks like we've exhausted our options.
2480   return 0;
2481 }
2482 
2483 // See whether C can be implemented as a TEST UNDER MASK instruction.
2484 // Update the arguments with the TM version if so.
2485 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2486                                    Comparison &C) {
2487   // Check that we have a comparison with a constant.
2488   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2489   if (!ConstOp1)
2490     return;
2491   uint64_t CmpVal = ConstOp1->getZExtValue();
2492 
2493   // Check whether the nonconstant input is an AND with a constant mask.
2494   Comparison NewC(C);
2495   uint64_t MaskVal;
2496   ConstantSDNode *Mask = nullptr;
2497   if (C.Op0.getOpcode() == ISD::AND) {
2498     NewC.Op0 = C.Op0.getOperand(0);
2499     NewC.Op1 = C.Op0.getOperand(1);
2500     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2501     if (!Mask)
2502       return;
2503     MaskVal = Mask->getZExtValue();
2504   } else {
2505     // There is no instruction to compare with a 64-bit immediate
2506     // so use TMHH instead if possible.  We need an unsigned ordered
2507     // comparison with an i64 immediate.
2508     if (NewC.Op0.getValueType() != MVT::i64 ||
2509         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2510         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2511         NewC.ICmpType == SystemZICMP::SignedOnly)
2512       return;
2513     // Convert LE and GT comparisons into LT and GE.
2514     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2515         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2516       if (CmpVal == uint64_t(-1))
2517         return;
2518       CmpVal += 1;
2519       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2520     }
2521     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2522     // be masked off without changing the result.
2523     MaskVal = -(CmpVal & -CmpVal);
2524     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2525   }
2526   if (!MaskVal)
2527     return;
2528 
2529   // Check whether the combination of mask, comparison value and comparison
2530   // type are suitable.
2531   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2532   unsigned NewCCMask, ShiftVal;
2533   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2534       NewC.Op0.getOpcode() == ISD::SHL &&
2535       isSimpleShift(NewC.Op0, ShiftVal) &&
2536       (MaskVal >> ShiftVal != 0) &&
2537       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2538       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2539                                         MaskVal >> ShiftVal,
2540                                         CmpVal >> ShiftVal,
2541                                         SystemZICMP::Any))) {
2542     NewC.Op0 = NewC.Op0.getOperand(0);
2543     MaskVal >>= ShiftVal;
2544   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2545              NewC.Op0.getOpcode() == ISD::SRL &&
2546              isSimpleShift(NewC.Op0, ShiftVal) &&
2547              (MaskVal << ShiftVal != 0) &&
2548              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2549              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2550                                                MaskVal << ShiftVal,
2551                                                CmpVal << ShiftVal,
2552                                                SystemZICMP::UnsignedOnly))) {
2553     NewC.Op0 = NewC.Op0.getOperand(0);
2554     MaskVal <<= ShiftVal;
2555   } else {
2556     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2557                                      NewC.ICmpType);
2558     if (!NewCCMask)
2559       return;
2560   }
2561 
2562   // Go ahead and make the change.
2563   C.Opcode = SystemZISD::TM;
2564   C.Op0 = NewC.Op0;
2565   if (Mask && Mask->getZExtValue() == MaskVal)
2566     C.Op1 = SDValue(Mask, 0);
2567   else
2568     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2569   C.CCValid = SystemZ::CCMASK_TM;
2570   C.CCMask = NewCCMask;
2571 }
2572 
2573 // See whether the comparison argument contains a redundant AND
2574 // and remove it if so.  This sometimes happens due to the generic
2575 // BRCOND expansion.
2576 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2577                                   Comparison &C) {
2578   if (C.Op0.getOpcode() != ISD::AND)
2579     return;
2580   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2581   if (!Mask)
2582     return;
2583   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2584   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2585     return;
2586 
2587   C.Op0 = C.Op0.getOperand(0);
2588 }
2589 
2590 // Return a Comparison that tests the condition-code result of intrinsic
2591 // node Call against constant integer CC using comparison code Cond.
2592 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2593 // and CCValid is the set of possible condition-code results.
2594 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2595                                   SDValue Call, unsigned CCValid, uint64_t CC,
2596                                   ISD::CondCode Cond) {
2597   Comparison C(Call, SDValue(), SDValue());
2598   C.Opcode = Opcode;
2599   C.CCValid = CCValid;
2600   if (Cond == ISD::SETEQ)
2601     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2602     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2603   else if (Cond == ISD::SETNE)
2604     // ...and the inverse of that.
2605     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2606   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2607     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2608     // always true for CC>3.
2609     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2610   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2611     // ...and the inverse of that.
2612     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2613   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2614     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2615     // always true for CC>3.
2616     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2617   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2618     // ...and the inverse of that.
2619     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2620   else
2621     llvm_unreachable("Unexpected integer comparison type");
2622   C.CCMask &= CCValid;
2623   return C;
2624 }
2625 
2626 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2627 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2628                          ISD::CondCode Cond, const SDLoc &DL,
2629                          SDValue Chain = SDValue(),
2630                          bool IsSignaling = false) {
2631   if (CmpOp1.getOpcode() == ISD::Constant) {
2632     assert(!Chain);
2633     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2634     unsigned Opcode, CCValid;
2635     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2636         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2637         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2638       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2639     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2640         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2641         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2642       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2643   }
2644   Comparison C(CmpOp0, CmpOp1, Chain);
2645   C.CCMask = CCMaskForCondCode(Cond);
2646   if (C.Op0.getValueType().isFloatingPoint()) {
2647     C.CCValid = SystemZ::CCMASK_FCMP;
2648     if (!C.Chain)
2649       C.Opcode = SystemZISD::FCMP;
2650     else if (!IsSignaling)
2651       C.Opcode = SystemZISD::STRICT_FCMP;
2652     else
2653       C.Opcode = SystemZISD::STRICT_FCMPS;
2654     adjustForFNeg(C);
2655   } else {
2656     assert(!C.Chain);
2657     C.CCValid = SystemZ::CCMASK_ICMP;
2658     C.Opcode = SystemZISD::ICMP;
2659     // Choose the type of comparison.  Equality and inequality tests can
2660     // use either signed or unsigned comparisons.  The choice also doesn't
2661     // matter if both sign bits are known to be clear.  In those cases we
2662     // want to give the main isel code the freedom to choose whichever
2663     // form fits best.
2664     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2665         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2666         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2667       C.ICmpType = SystemZICMP::Any;
2668     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2669       C.ICmpType = SystemZICMP::UnsignedOnly;
2670     else
2671       C.ICmpType = SystemZICMP::SignedOnly;
2672     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2673     adjustForRedundantAnd(DAG, DL, C);
2674     adjustZeroCmp(DAG, DL, C);
2675     adjustSubwordCmp(DAG, DL, C);
2676     adjustForSubtraction(DAG, DL, C);
2677     adjustForLTGFR(C);
2678     adjustICmpTruncate(DAG, DL, C);
2679   }
2680 
2681   if (shouldSwapCmpOperands(C)) {
2682     std::swap(C.Op0, C.Op1);
2683     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2684   }
2685 
2686   adjustForTestUnderMask(DAG, DL, C);
2687   return C;
2688 }
2689 
2690 // Emit the comparison instruction described by C.
2691 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2692   if (!C.Op1.getNode()) {
2693     SDNode *Node;
2694     switch (C.Op0.getOpcode()) {
2695     case ISD::INTRINSIC_W_CHAIN:
2696       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2697       return SDValue(Node, 0);
2698     case ISD::INTRINSIC_WO_CHAIN:
2699       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2700       return SDValue(Node, Node->getNumValues() - 1);
2701     default:
2702       llvm_unreachable("Invalid comparison operands");
2703     }
2704   }
2705   if (C.Opcode == SystemZISD::ICMP)
2706     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2707                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2708   if (C.Opcode == SystemZISD::TM) {
2709     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2710                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2711     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2712                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2713   }
2714   if (C.Chain) {
2715     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2716     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2717   }
2718   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2719 }
2720 
2721 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2722 // 64 bits.  Extend is the extension type to use.  Store the high part
2723 // in Hi and the low part in Lo.
2724 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2725                             SDValue Op0, SDValue Op1, SDValue &Hi,
2726                             SDValue &Lo) {
2727   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2728   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2729   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2730   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2731                    DAG.getConstant(32, DL, MVT::i64));
2732   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2733   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2734 }
2735 
2736 // Lower a binary operation that produces two VT results, one in each
2737 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2738 // and Opcode performs the GR128 operation.  Store the even register result
2739 // in Even and the odd register result in Odd.
2740 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2741                              unsigned Opcode, SDValue Op0, SDValue Op1,
2742                              SDValue &Even, SDValue &Odd) {
2743   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2744   bool Is32Bit = is32Bit(VT);
2745   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2746   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2747 }
2748 
2749 // Return an i32 value that is 1 if the CC value produced by CCReg is
2750 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2751 // in CCValid, so other values can be ignored.
2752 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2753                          unsigned CCValid, unsigned CCMask) {
2754   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2755                    DAG.getConstant(0, DL, MVT::i32),
2756                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2757                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2758   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2759 }
2760 
2761 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2762 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2763 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2764 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2765 // floating-point comparisons.
2766 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2767 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2768   switch (CC) {
2769   case ISD::SETOEQ:
2770   case ISD::SETEQ:
2771     switch (Mode) {
2772     case CmpMode::Int:         return SystemZISD::VICMPE;
2773     case CmpMode::FP:          return SystemZISD::VFCMPE;
2774     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2775     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2776     }
2777     llvm_unreachable("Bad mode");
2778 
2779   case ISD::SETOGE:
2780   case ISD::SETGE:
2781     switch (Mode) {
2782     case CmpMode::Int:         return 0;
2783     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2784     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2785     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2786     }
2787     llvm_unreachable("Bad mode");
2788 
2789   case ISD::SETOGT:
2790   case ISD::SETGT:
2791     switch (Mode) {
2792     case CmpMode::Int:         return SystemZISD::VICMPH;
2793     case CmpMode::FP:          return SystemZISD::VFCMPH;
2794     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2795     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2796     }
2797     llvm_unreachable("Bad mode");
2798 
2799   case ISD::SETUGT:
2800     switch (Mode) {
2801     case CmpMode::Int:         return SystemZISD::VICMPHL;
2802     case CmpMode::FP:          return 0;
2803     case CmpMode::StrictFP:    return 0;
2804     case CmpMode::SignalingFP: return 0;
2805     }
2806     llvm_unreachable("Bad mode");
2807 
2808   default:
2809     return 0;
2810   }
2811 }
2812 
2813 // Return the SystemZISD vector comparison operation for CC or its inverse,
2814 // or 0 if neither can be done directly.  Indicate in Invert whether the
2815 // result is for the inverse of CC.  Mode is as above.
2816 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2817                                             bool &Invert) {
2818   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2819     Invert = false;
2820     return Opcode;
2821   }
2822 
2823   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2824   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2825     Invert = true;
2826     return Opcode;
2827   }
2828 
2829   return 0;
2830 }
2831 
2832 // Return a v2f64 that contains the extended form of elements Start and Start+1
2833 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2834 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2835                                   SDValue Op, SDValue Chain) {
2836   int Mask[] = { Start, -1, Start + 1, -1 };
2837   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2838   if (Chain) {
2839     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2840     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2841   }
2842   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2843 }
2844 
2845 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2846 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2847 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2848                                             const SDLoc &DL, EVT VT,
2849                                             SDValue CmpOp0,
2850                                             SDValue CmpOp1,
2851                                             SDValue Chain) const {
2852   // There is no hardware support for v4f32 (unless we have the vector
2853   // enhancements facility 1), so extend the vector into two v2f64s
2854   // and compare those.
2855   if (CmpOp0.getValueType() == MVT::v4f32 &&
2856       !Subtarget.hasVectorEnhancements1()) {
2857     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2858     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2859     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2860     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2861     if (Chain) {
2862       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2863       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2864       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2865       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2866       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2867                             H1.getValue(1), L1.getValue(1),
2868                             HRes.getValue(1), LRes.getValue(1) };
2869       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2870       SDValue Ops[2] = { Res, NewChain };
2871       return DAG.getMergeValues(Ops, DL);
2872     }
2873     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2874     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2875     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2876   }
2877   if (Chain) {
2878     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2879     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2880   }
2881   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2882 }
2883 
2884 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2885 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2886 // floating-point comparison.  If in addition IsSignaling is true, we have
2887 // a strict signaling floating-point comparison.
2888 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2889                                                 const SDLoc &DL, EVT VT,
2890                                                 ISD::CondCode CC,
2891                                                 SDValue CmpOp0,
2892                                                 SDValue CmpOp1,
2893                                                 SDValue Chain,
2894                                                 bool IsSignaling) const {
2895   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2896   assert (!Chain || IsFP);
2897   assert (!IsSignaling || Chain);
2898   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2899                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2900   bool Invert = false;
2901   SDValue Cmp;
2902   switch (CC) {
2903     // Handle tests for order using (or (ogt y x) (oge x y)).
2904   case ISD::SETUO:
2905     Invert = true;
2906     LLVM_FALLTHROUGH;
2907   case ISD::SETO: {
2908     assert(IsFP && "Unexpected integer comparison");
2909     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2910                               DL, VT, CmpOp1, CmpOp0, Chain);
2911     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2912                               DL, VT, CmpOp0, CmpOp1, Chain);
2913     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2914     if (Chain)
2915       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2916                           LT.getValue(1), GE.getValue(1));
2917     break;
2918   }
2919 
2920     // Handle <> tests using (or (ogt y x) (ogt x y)).
2921   case ISD::SETUEQ:
2922     Invert = true;
2923     LLVM_FALLTHROUGH;
2924   case ISD::SETONE: {
2925     assert(IsFP && "Unexpected integer comparison");
2926     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2927                               DL, VT, CmpOp1, CmpOp0, Chain);
2928     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2929                               DL, VT, CmpOp0, CmpOp1, Chain);
2930     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2931     if (Chain)
2932       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2933                           LT.getValue(1), GT.getValue(1));
2934     break;
2935   }
2936 
2937     // Otherwise a single comparison is enough.  It doesn't really
2938     // matter whether we try the inversion or the swap first, since
2939     // there are no cases where both work.
2940   default:
2941     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2942       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2943     else {
2944       CC = ISD::getSetCCSwappedOperands(CC);
2945       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2946         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2947       else
2948         llvm_unreachable("Unhandled comparison");
2949     }
2950     if (Chain)
2951       Chain = Cmp.getValue(1);
2952     break;
2953   }
2954   if (Invert) {
2955     SDValue Mask =
2956       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2957     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2958   }
2959   if (Chain && Chain.getNode() != Cmp.getNode()) {
2960     SDValue Ops[2] = { Cmp, Chain };
2961     Cmp = DAG.getMergeValues(Ops, DL);
2962   }
2963   return Cmp;
2964 }
2965 
2966 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2967                                           SelectionDAG &DAG) const {
2968   SDValue CmpOp0   = Op.getOperand(0);
2969   SDValue CmpOp1   = Op.getOperand(1);
2970   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2971   SDLoc DL(Op);
2972   EVT VT = Op.getValueType();
2973   if (VT.isVector())
2974     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2975 
2976   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2977   SDValue CCReg = emitCmp(DAG, DL, C);
2978   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2979 }
2980 
2981 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2982                                                   SelectionDAG &DAG,
2983                                                   bool IsSignaling) const {
2984   SDValue Chain    = Op.getOperand(0);
2985   SDValue CmpOp0   = Op.getOperand(1);
2986   SDValue CmpOp1   = Op.getOperand(2);
2987   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2988   SDLoc DL(Op);
2989   EVT VT = Op.getNode()->getValueType(0);
2990   if (VT.isVector()) {
2991     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2992                                    Chain, IsSignaling);
2993     return Res.getValue(Op.getResNo());
2994   }
2995 
2996   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2997   SDValue CCReg = emitCmp(DAG, DL, C);
2998   CCReg->setFlags(Op->getFlags());
2999   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3000   SDValue Ops[2] = { Result, CCReg.getValue(1) };
3001   return DAG.getMergeValues(Ops, DL);
3002 }
3003 
3004 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3005   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3006   SDValue CmpOp0   = Op.getOperand(2);
3007   SDValue CmpOp1   = Op.getOperand(3);
3008   SDValue Dest     = Op.getOperand(4);
3009   SDLoc DL(Op);
3010 
3011   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3012   SDValue CCReg = emitCmp(DAG, DL, C);
3013   return DAG.getNode(
3014       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3015       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3016       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3017 }
3018 
3019 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3020 // allowing Pos and Neg to be wider than CmpOp.
3021 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3022   return (Neg.getOpcode() == ISD::SUB &&
3023           Neg.getOperand(0).getOpcode() == ISD::Constant &&
3024           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
3025           Neg.getOperand(1) == Pos &&
3026           (Pos == CmpOp ||
3027            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3028             Pos.getOperand(0) == CmpOp)));
3029 }
3030 
3031 // Return the absolute or negative absolute of Op; IsNegative decides which.
3032 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3033                            bool IsNegative) {
3034   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3035   if (IsNegative)
3036     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3037                      DAG.getConstant(0, DL, Op.getValueType()), Op);
3038   return Op;
3039 }
3040 
3041 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3042                                               SelectionDAG &DAG) const {
3043   SDValue CmpOp0   = Op.getOperand(0);
3044   SDValue CmpOp1   = Op.getOperand(1);
3045   SDValue TrueOp   = Op.getOperand(2);
3046   SDValue FalseOp  = Op.getOperand(3);
3047   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3048   SDLoc DL(Op);
3049 
3050   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3051 
3052   // Check for absolute and negative-absolute selections, including those
3053   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3054   // This check supplements the one in DAGCombiner.
3055   if (C.Opcode == SystemZISD::ICMP &&
3056       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3057       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3058       C.Op1.getOpcode() == ISD::Constant &&
3059       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
3060     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3061       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3062     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3063       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3064   }
3065 
3066   SDValue CCReg = emitCmp(DAG, DL, C);
3067   SDValue Ops[] = {TrueOp, FalseOp,
3068                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3069                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3070 
3071   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3072 }
3073 
3074 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3075                                                   SelectionDAG &DAG) const {
3076   SDLoc DL(Node);
3077   const GlobalValue *GV = Node->getGlobal();
3078   int64_t Offset = Node->getOffset();
3079   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3080   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3081 
3082   SDValue Result;
3083   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3084     if (isInt<32>(Offset)) {
3085       // Assign anchors at 1<<12 byte boundaries.
3086       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3087       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3088       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3089 
3090       // The offset can be folded into the address if it is aligned to a
3091       // halfword.
3092       Offset -= Anchor;
3093       if (Offset != 0 && (Offset & 1) == 0) {
3094         SDValue Full =
3095           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3096         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3097         Offset = 0;
3098       }
3099     } else {
3100       // Conservatively load a constant offset greater than 32 bits into a
3101       // register below.
3102       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3103       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3104     }
3105   } else {
3106     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3107     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3108     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3109                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3110   }
3111 
3112   // If there was a non-zero offset that we didn't fold, create an explicit
3113   // addition for it.
3114   if (Offset != 0)
3115     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3116                          DAG.getConstant(Offset, DL, PtrVT));
3117 
3118   return Result;
3119 }
3120 
3121 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3122                                                  SelectionDAG &DAG,
3123                                                  unsigned Opcode,
3124                                                  SDValue GOTOffset) const {
3125   SDLoc DL(Node);
3126   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3127   SDValue Chain = DAG.getEntryNode();
3128   SDValue Glue;
3129 
3130   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3131       CallingConv::GHC)
3132     report_fatal_error("In GHC calling convention TLS is not supported");
3133 
3134   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3135   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3136   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3137   Glue = Chain.getValue(1);
3138   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3139   Glue = Chain.getValue(1);
3140 
3141   // The first call operand is the chain and the second is the TLS symbol.
3142   SmallVector<SDValue, 8> Ops;
3143   Ops.push_back(Chain);
3144   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3145                                            Node->getValueType(0),
3146                                            0, 0));
3147 
3148   // Add argument registers to the end of the list so that they are
3149   // known live into the call.
3150   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3151   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3152 
3153   // Add a register mask operand representing the call-preserved registers.
3154   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3155   const uint32_t *Mask =
3156       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3157   assert(Mask && "Missing call preserved mask for calling convention");
3158   Ops.push_back(DAG.getRegisterMask(Mask));
3159 
3160   // Glue the call to the argument copies.
3161   Ops.push_back(Glue);
3162 
3163   // Emit the call.
3164   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3165   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3166   Glue = Chain.getValue(1);
3167 
3168   // Copy the return value from %r2.
3169   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3170 }
3171 
3172 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3173                                                   SelectionDAG &DAG) const {
3174   SDValue Chain = DAG.getEntryNode();
3175   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3176 
3177   // The high part of the thread pointer is in access register 0.
3178   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3179   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3180 
3181   // The low part of the thread pointer is in access register 1.
3182   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3183   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3184 
3185   // Merge them into a single 64-bit address.
3186   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3187                                     DAG.getConstant(32, DL, PtrVT));
3188   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3189 }
3190 
3191 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3192                                                      SelectionDAG &DAG) const {
3193   if (DAG.getTarget().useEmulatedTLS())
3194     return LowerToTLSEmulatedModel(Node, DAG);
3195   SDLoc DL(Node);
3196   const GlobalValue *GV = Node->getGlobal();
3197   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3198   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3199 
3200   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3201       CallingConv::GHC)
3202     report_fatal_error("In GHC calling convention TLS is not supported");
3203 
3204   SDValue TP = lowerThreadPointer(DL, DAG);
3205 
3206   // Get the offset of GA from the thread pointer, based on the TLS model.
3207   SDValue Offset;
3208   switch (model) {
3209     case TLSModel::GeneralDynamic: {
3210       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3211       SystemZConstantPoolValue *CPV =
3212         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3213 
3214       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3215       Offset = DAG.getLoad(
3216           PtrVT, DL, DAG.getEntryNode(), Offset,
3217           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3218 
3219       // Call __tls_get_offset to retrieve the offset.
3220       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3221       break;
3222     }
3223 
3224     case TLSModel::LocalDynamic: {
3225       // Load the GOT offset of the module ID.
3226       SystemZConstantPoolValue *CPV =
3227         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3228 
3229       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3230       Offset = DAG.getLoad(
3231           PtrVT, DL, DAG.getEntryNode(), Offset,
3232           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3233 
3234       // Call __tls_get_offset to retrieve the module base offset.
3235       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3236 
3237       // Note: The SystemZLDCleanupPass will remove redundant computations
3238       // of the module base offset.  Count total number of local-dynamic
3239       // accesses to trigger execution of that pass.
3240       SystemZMachineFunctionInfo* MFI =
3241         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3242       MFI->incNumLocalDynamicTLSAccesses();
3243 
3244       // Add the per-symbol offset.
3245       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3246 
3247       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3248       DTPOffset = DAG.getLoad(
3249           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3250           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3251 
3252       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3253       break;
3254     }
3255 
3256     case TLSModel::InitialExec: {
3257       // Load the offset from the GOT.
3258       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3259                                           SystemZII::MO_INDNTPOFF);
3260       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3261       Offset =
3262           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3263                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3264       break;
3265     }
3266 
3267     case TLSModel::LocalExec: {
3268       // Force the offset into the constant pool and load it from there.
3269       SystemZConstantPoolValue *CPV =
3270         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3271 
3272       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3273       Offset = DAG.getLoad(
3274           PtrVT, DL, DAG.getEntryNode(), Offset,
3275           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3276       break;
3277     }
3278   }
3279 
3280   // Add the base and offset together.
3281   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3282 }
3283 
3284 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3285                                                  SelectionDAG &DAG) const {
3286   SDLoc DL(Node);
3287   const BlockAddress *BA = Node->getBlockAddress();
3288   int64_t Offset = Node->getOffset();
3289   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3290 
3291   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3292   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3293   return Result;
3294 }
3295 
3296 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3297                                               SelectionDAG &DAG) const {
3298   SDLoc DL(JT);
3299   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3300   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3301 
3302   // Use LARL to load the address of the table.
3303   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3304 }
3305 
3306 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3307                                                  SelectionDAG &DAG) const {
3308   SDLoc DL(CP);
3309   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3310 
3311   SDValue Result;
3312   if (CP->isMachineConstantPoolEntry())
3313     Result =
3314         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3315   else
3316     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3317                                        CP->getOffset());
3318 
3319   // Use LARL to load the address of the constant pool entry.
3320   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3321 }
3322 
3323 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3324                                               SelectionDAG &DAG) const {
3325   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3326   MachineFunction &MF = DAG.getMachineFunction();
3327   MachineFrameInfo &MFI = MF.getFrameInfo();
3328   MFI.setFrameAddressIsTaken(true);
3329 
3330   SDLoc DL(Op);
3331   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3332   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3333 
3334   // By definition, the frame address is the address of the back chain.  (In
3335   // the case of packed stack without backchain, return the address where the
3336   // backchain would have been stored. This will either be an unused space or
3337   // contain a saved register).
3338   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3339   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3340 
3341   // FIXME The frontend should detect this case.
3342   if (Depth > 0) {
3343     report_fatal_error("Unsupported stack frame traversal count");
3344   }
3345 
3346   return BackChain;
3347 }
3348 
3349 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3350                                                SelectionDAG &DAG) const {
3351   MachineFunction &MF = DAG.getMachineFunction();
3352   MachineFrameInfo &MFI = MF.getFrameInfo();
3353   MFI.setReturnAddressIsTaken(true);
3354 
3355   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3356     return SDValue();
3357 
3358   SDLoc DL(Op);
3359   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3360   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3361 
3362   // FIXME The frontend should detect this case.
3363   if (Depth > 0) {
3364     report_fatal_error("Unsupported stack frame traversal count");
3365   }
3366 
3367   // Return R14D, which has the return address. Mark it an implicit live-in.
3368   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3369   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3370 }
3371 
3372 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3373                                             SelectionDAG &DAG) const {
3374   SDLoc DL(Op);
3375   SDValue In = Op.getOperand(0);
3376   EVT InVT = In.getValueType();
3377   EVT ResVT = Op.getValueType();
3378 
3379   // Convert loads directly.  This is normally done by DAGCombiner,
3380   // but we need this case for bitcasts that are created during lowering
3381   // and which are then lowered themselves.
3382   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3383     if (ISD::isNormalLoad(LoadN)) {
3384       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3385                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3386       // Update the chain uses.
3387       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3388       return NewLoad;
3389     }
3390 
3391   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3392     SDValue In64;
3393     if (Subtarget.hasHighWord()) {
3394       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3395                                        MVT::i64);
3396       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3397                                        MVT::i64, SDValue(U64, 0), In);
3398     } else {
3399       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3400       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3401                          DAG.getConstant(32, DL, MVT::i64));
3402     }
3403     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3404     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3405                                       DL, MVT::f32, Out64);
3406   }
3407   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3408     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3409     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3410                                              MVT::f64, SDValue(U64, 0), In);
3411     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3412     if (Subtarget.hasHighWord())
3413       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3414                                         MVT::i32, Out64);
3415     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3416                                 DAG.getConstant(32, DL, MVT::i64));
3417     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3418   }
3419   llvm_unreachable("Unexpected bitcast combination");
3420 }
3421 
3422 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3423                                             SelectionDAG &DAG) const {
3424   MachineFunction &MF = DAG.getMachineFunction();
3425   SystemZMachineFunctionInfo *FuncInfo =
3426     MF.getInfo<SystemZMachineFunctionInfo>();
3427   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3428 
3429   SDValue Chain   = Op.getOperand(0);
3430   SDValue Addr    = Op.getOperand(1);
3431   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3432   SDLoc DL(Op);
3433 
3434   // The initial values of each field.
3435   const unsigned NumFields = 4;
3436   SDValue Fields[NumFields] = {
3437     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3438     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3439     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3440     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3441   };
3442 
3443   // Store each field into its respective slot.
3444   SDValue MemOps[NumFields];
3445   unsigned Offset = 0;
3446   for (unsigned I = 0; I < NumFields; ++I) {
3447     SDValue FieldAddr = Addr;
3448     if (Offset != 0)
3449       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3450                               DAG.getIntPtrConstant(Offset, DL));
3451     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3452                              MachinePointerInfo(SV, Offset));
3453     Offset += 8;
3454   }
3455   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3456 }
3457 
3458 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3459                                            SelectionDAG &DAG) const {
3460   SDValue Chain      = Op.getOperand(0);
3461   SDValue DstPtr     = Op.getOperand(1);
3462   SDValue SrcPtr     = Op.getOperand(2);
3463   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3464   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3465   SDLoc DL(Op);
3466 
3467   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3468                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3469                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3470                        MachinePointerInfo(SrcSV));
3471 }
3472 
3473 SDValue SystemZTargetLowering::
3474 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3475   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3476   MachineFunction &MF = DAG.getMachineFunction();
3477   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3478   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3479 
3480   SDValue Chain = Op.getOperand(0);
3481   SDValue Size  = Op.getOperand(1);
3482   SDValue Align = Op.getOperand(2);
3483   SDLoc DL(Op);
3484 
3485   // If user has set the no alignment function attribute, ignore
3486   // alloca alignments.
3487   uint64_t AlignVal =
3488       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3489 
3490   uint64_t StackAlign = TFI->getStackAlignment();
3491   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3492   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3493 
3494   Register SPReg = getStackPointerRegisterToSaveRestore();
3495   SDValue NeededSpace = Size;
3496 
3497   // Get a reference to the stack pointer.
3498   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3499 
3500   // If we need a backchain, save it now.
3501   SDValue Backchain;
3502   if (StoreBackchain)
3503     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3504                             MachinePointerInfo());
3505 
3506   // Add extra space for alignment if needed.
3507   if (ExtraAlignSpace)
3508     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3509                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3510 
3511   // Get the new stack pointer value.
3512   SDValue NewSP;
3513   if (hasInlineStackProbe(MF)) {
3514     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3515                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3516     Chain = NewSP.getValue(1);
3517   }
3518   else {
3519     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3520     // Copy the new stack pointer back.
3521     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3522   }
3523 
3524   // The allocated data lives above the 160 bytes allocated for the standard
3525   // frame, plus any outgoing stack arguments.  We don't know how much that
3526   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3527   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3528   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3529 
3530   // Dynamically realign if needed.
3531   if (RequiredAlign > StackAlign) {
3532     Result =
3533       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3534                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3535     Result =
3536       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3537                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3538   }
3539 
3540   if (StoreBackchain)
3541     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3542                          MachinePointerInfo());
3543 
3544   SDValue Ops[2] = { Result, Chain };
3545   return DAG.getMergeValues(Ops, DL);
3546 }
3547 
3548 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3549     SDValue Op, SelectionDAG &DAG) const {
3550   SDLoc DL(Op);
3551 
3552   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3553 }
3554 
3555 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3556                                               SelectionDAG &DAG) const {
3557   EVT VT = Op.getValueType();
3558   SDLoc DL(Op);
3559   SDValue Ops[2];
3560   if (is32Bit(VT))
3561     // Just do a normal 64-bit multiplication and extract the results.
3562     // We define this so that it can be used for constant division.
3563     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3564                     Op.getOperand(1), Ops[1], Ops[0]);
3565   else if (Subtarget.hasMiscellaneousExtensions2())
3566     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3567     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3568     // return the low half first, so the results are in reverse order.
3569     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3570                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3571   else {
3572     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3573     //
3574     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3575     //
3576     // but using the fact that the upper halves are either all zeros
3577     // or all ones:
3578     //
3579     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3580     //
3581     // and grouping the right terms together since they are quicker than the
3582     // multiplication:
3583     //
3584     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3585     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3586     SDValue LL = Op.getOperand(0);
3587     SDValue RL = Op.getOperand(1);
3588     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3589     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3590     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3591     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3592     // return the low half first, so the results are in reverse order.
3593     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3594                      LL, RL, Ops[1], Ops[0]);
3595     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3596     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3597     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3598     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3599   }
3600   return DAG.getMergeValues(Ops, DL);
3601 }
3602 
3603 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3604                                               SelectionDAG &DAG) const {
3605   EVT VT = Op.getValueType();
3606   SDLoc DL(Op);
3607   SDValue Ops[2];
3608   if (is32Bit(VT))
3609     // Just do a normal 64-bit multiplication and extract the results.
3610     // We define this so that it can be used for constant division.
3611     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3612                     Op.getOperand(1), Ops[1], Ops[0]);
3613   else
3614     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3615     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3616     // return the low half first, so the results are in reverse order.
3617     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3618                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3619   return DAG.getMergeValues(Ops, DL);
3620 }
3621 
3622 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3623                                             SelectionDAG &DAG) const {
3624   SDValue Op0 = Op.getOperand(0);
3625   SDValue Op1 = Op.getOperand(1);
3626   EVT VT = Op.getValueType();
3627   SDLoc DL(Op);
3628 
3629   // We use DSGF for 32-bit division.  This means the first operand must
3630   // always be 64-bit, and the second operand should be 32-bit whenever
3631   // that is possible, to improve performance.
3632   if (is32Bit(VT))
3633     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3634   else if (DAG.ComputeNumSignBits(Op1) > 32)
3635     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3636 
3637   // DSG(F) returns the remainder in the even register and the
3638   // quotient in the odd register.
3639   SDValue Ops[2];
3640   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3641   return DAG.getMergeValues(Ops, DL);
3642 }
3643 
3644 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3645                                             SelectionDAG &DAG) const {
3646   EVT VT = Op.getValueType();
3647   SDLoc DL(Op);
3648 
3649   // DL(G) returns the remainder in the even register and the
3650   // quotient in the odd register.
3651   SDValue Ops[2];
3652   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3653                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3654   return DAG.getMergeValues(Ops, DL);
3655 }
3656 
3657 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3658   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3659 
3660   // Get the known-zero masks for each operand.
3661   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3662   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3663                         DAG.computeKnownBits(Ops[1])};
3664 
3665   // See if the upper 32 bits of one operand and the lower 32 bits of the
3666   // other are known zero.  They are the low and high operands respectively.
3667   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3668                        Known[1].Zero.getZExtValue() };
3669   unsigned High, Low;
3670   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3671     High = 1, Low = 0;
3672   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3673     High = 0, Low = 1;
3674   else
3675     return Op;
3676 
3677   SDValue LowOp = Ops[Low];
3678   SDValue HighOp = Ops[High];
3679 
3680   // If the high part is a constant, we're better off using IILH.
3681   if (HighOp.getOpcode() == ISD::Constant)
3682     return Op;
3683 
3684   // If the low part is a constant that is outside the range of LHI,
3685   // then we're better off using IILF.
3686   if (LowOp.getOpcode() == ISD::Constant) {
3687     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3688     if (!isInt<16>(Value))
3689       return Op;
3690   }
3691 
3692   // Check whether the high part is an AND that doesn't change the
3693   // high 32 bits and just masks out low bits.  We can skip it if so.
3694   if (HighOp.getOpcode() == ISD::AND &&
3695       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3696     SDValue HighOp0 = HighOp.getOperand(0);
3697     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3698     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3699       HighOp = HighOp0;
3700   }
3701 
3702   // Take advantage of the fact that all GR32 operations only change the
3703   // low 32 bits by truncating Low to an i32 and inserting it directly
3704   // using a subreg.  The interesting cases are those where the truncation
3705   // can be folded.
3706   SDLoc DL(Op);
3707   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3708   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3709                                    MVT::i64, HighOp, Low32);
3710 }
3711 
3712 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3713 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3714                                           SelectionDAG &DAG) const {
3715   SDNode *N = Op.getNode();
3716   SDValue LHS = N->getOperand(0);
3717   SDValue RHS = N->getOperand(1);
3718   SDLoc DL(N);
3719   unsigned BaseOp = 0;
3720   unsigned CCValid = 0;
3721   unsigned CCMask = 0;
3722 
3723   switch (Op.getOpcode()) {
3724   default: llvm_unreachable("Unknown instruction!");
3725   case ISD::SADDO:
3726     BaseOp = SystemZISD::SADDO;
3727     CCValid = SystemZ::CCMASK_ARITH;
3728     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3729     break;
3730   case ISD::SSUBO:
3731     BaseOp = SystemZISD::SSUBO;
3732     CCValid = SystemZ::CCMASK_ARITH;
3733     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3734     break;
3735   case ISD::UADDO:
3736     BaseOp = SystemZISD::UADDO;
3737     CCValid = SystemZ::CCMASK_LOGICAL;
3738     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3739     break;
3740   case ISD::USUBO:
3741     BaseOp = SystemZISD::USUBO;
3742     CCValid = SystemZ::CCMASK_LOGICAL;
3743     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3744     break;
3745   }
3746 
3747   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3748   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3749 
3750   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3751   if (N->getValueType(1) == MVT::i1)
3752     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3753 
3754   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3755 }
3756 
3757 static bool isAddCarryChain(SDValue Carry) {
3758   while (Carry.getOpcode() == ISD::ADDCARRY)
3759     Carry = Carry.getOperand(2);
3760   return Carry.getOpcode() == ISD::UADDO;
3761 }
3762 
3763 static bool isSubBorrowChain(SDValue Carry) {
3764   while (Carry.getOpcode() == ISD::SUBCARRY)
3765     Carry = Carry.getOperand(2);
3766   return Carry.getOpcode() == ISD::USUBO;
3767 }
3768 
3769 // Lower ADDCARRY/SUBCARRY nodes.
3770 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3771                                                 SelectionDAG &DAG) const {
3772 
3773   SDNode *N = Op.getNode();
3774   MVT VT = N->getSimpleValueType(0);
3775 
3776   // Let legalize expand this if it isn't a legal type yet.
3777   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3778     return SDValue();
3779 
3780   SDValue LHS = N->getOperand(0);
3781   SDValue RHS = N->getOperand(1);
3782   SDValue Carry = Op.getOperand(2);
3783   SDLoc DL(N);
3784   unsigned BaseOp = 0;
3785   unsigned CCValid = 0;
3786   unsigned CCMask = 0;
3787 
3788   switch (Op.getOpcode()) {
3789   default: llvm_unreachable("Unknown instruction!");
3790   case ISD::ADDCARRY:
3791     if (!isAddCarryChain(Carry))
3792       return SDValue();
3793 
3794     BaseOp = SystemZISD::ADDCARRY;
3795     CCValid = SystemZ::CCMASK_LOGICAL;
3796     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3797     break;
3798   case ISD::SUBCARRY:
3799     if (!isSubBorrowChain(Carry))
3800       return SDValue();
3801 
3802     BaseOp = SystemZISD::SUBCARRY;
3803     CCValid = SystemZ::CCMASK_LOGICAL;
3804     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3805     break;
3806   }
3807 
3808   // Set the condition code from the carry flag.
3809   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3810                       DAG.getConstant(CCValid, DL, MVT::i32),
3811                       DAG.getConstant(CCMask, DL, MVT::i32));
3812 
3813   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3814   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3815 
3816   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3817   if (N->getValueType(1) == MVT::i1)
3818     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3819 
3820   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3821 }
3822 
3823 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3824                                           SelectionDAG &DAG) const {
3825   EVT VT = Op.getValueType();
3826   SDLoc DL(Op);
3827   Op = Op.getOperand(0);
3828 
3829   // Handle vector types via VPOPCT.
3830   if (VT.isVector()) {
3831     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3832     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3833     switch (VT.getScalarSizeInBits()) {
3834     case 8:
3835       break;
3836     case 16: {
3837       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3838       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3839       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3840       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3841       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3842       break;
3843     }
3844     case 32: {
3845       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3846                                             DAG.getConstant(0, DL, MVT::i32));
3847       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3848       break;
3849     }
3850     case 64: {
3851       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3852                                             DAG.getConstant(0, DL, MVT::i32));
3853       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3854       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3855       break;
3856     }
3857     default:
3858       llvm_unreachable("Unexpected type");
3859     }
3860     return Op;
3861   }
3862 
3863   // Get the known-zero mask for the operand.
3864   KnownBits Known = DAG.computeKnownBits(Op);
3865   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3866   if (NumSignificantBits == 0)
3867     return DAG.getConstant(0, DL, VT);
3868 
3869   // Skip known-zero high parts of the operand.
3870   int64_t OrigBitSize = VT.getSizeInBits();
3871   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3872   BitSize = std::min(BitSize, OrigBitSize);
3873 
3874   // The POPCNT instruction counts the number of bits in each byte.
3875   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3876   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3877   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3878 
3879   // Add up per-byte counts in a binary tree.  All bits of Op at
3880   // position larger than BitSize remain zero throughout.
3881   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3882     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3883     if (BitSize != OrigBitSize)
3884       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3885                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3886     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3887   }
3888 
3889   // Extract overall result from high byte.
3890   if (BitSize > 8)
3891     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3892                      DAG.getConstant(BitSize - 8, DL, VT));
3893 
3894   return Op;
3895 }
3896 
3897 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3898                                                  SelectionDAG &DAG) const {
3899   SDLoc DL(Op);
3900   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3901     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3902   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3903     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3904 
3905   // The only fence that needs an instruction is a sequentially-consistent
3906   // cross-thread fence.
3907   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3908       FenceSSID == SyncScope::System) {
3909     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3910                                       Op.getOperand(0)),
3911                    0);
3912   }
3913 
3914   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3915   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3916 }
3917 
3918 // Op is an atomic load.  Lower it into a normal volatile load.
3919 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3920                                                 SelectionDAG &DAG) const {
3921   auto *Node = cast<AtomicSDNode>(Op.getNode());
3922   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3923                         Node->getChain(), Node->getBasePtr(),
3924                         Node->getMemoryVT(), Node->getMemOperand());
3925 }
3926 
3927 // Op is an atomic store.  Lower it into a normal volatile store.
3928 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3929                                                  SelectionDAG &DAG) const {
3930   auto *Node = cast<AtomicSDNode>(Op.getNode());
3931   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3932                                     Node->getBasePtr(), Node->getMemoryVT(),
3933                                     Node->getMemOperand());
3934   // We have to enforce sequential consistency by performing a
3935   // serialization operation after the store.
3936   if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
3937     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3938                                        MVT::Other, Chain), 0);
3939   return Chain;
3940 }
3941 
3942 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3943 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3944 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3945                                                    SelectionDAG &DAG,
3946                                                    unsigned Opcode) const {
3947   auto *Node = cast<AtomicSDNode>(Op.getNode());
3948 
3949   // 32-bit operations need no code outside the main loop.
3950   EVT NarrowVT = Node->getMemoryVT();
3951   EVT WideVT = MVT::i32;
3952   if (NarrowVT == WideVT)
3953     return Op;
3954 
3955   int64_t BitSize = NarrowVT.getSizeInBits();
3956   SDValue ChainIn = Node->getChain();
3957   SDValue Addr = Node->getBasePtr();
3958   SDValue Src2 = Node->getVal();
3959   MachineMemOperand *MMO = Node->getMemOperand();
3960   SDLoc DL(Node);
3961   EVT PtrVT = Addr.getValueType();
3962 
3963   // Convert atomic subtracts of constants into additions.
3964   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3965     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3966       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3967       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3968     }
3969 
3970   // Get the address of the containing word.
3971   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3972                                     DAG.getConstant(-4, DL, PtrVT));
3973 
3974   // Get the number of bits that the word must be rotated left in order
3975   // to bring the field to the top bits of a GR32.
3976   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3977                                  DAG.getConstant(3, DL, PtrVT));
3978   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3979 
3980   // Get the complementing shift amount, for rotating a field in the top
3981   // bits back to its proper position.
3982   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3983                                     DAG.getConstant(0, DL, WideVT), BitShift);
3984 
3985   // Extend the source operand to 32 bits and prepare it for the inner loop.
3986   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3987   // operations require the source to be shifted in advance.  (This shift
3988   // can be folded if the source is constant.)  For AND and NAND, the lower
3989   // bits must be set, while for other opcodes they should be left clear.
3990   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3991     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3992                        DAG.getConstant(32 - BitSize, DL, WideVT));
3993   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3994       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3995     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3996                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3997 
3998   // Construct the ATOMIC_LOADW_* node.
3999   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4000   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4001                     DAG.getConstant(BitSize, DL, WideVT) };
4002   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4003                                              NarrowVT, MMO);
4004 
4005   // Rotate the result of the final CS so that the field is in the lower
4006   // bits of a GR32, then truncate it.
4007   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4008                                     DAG.getConstant(BitSize, DL, WideVT));
4009   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4010 
4011   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4012   return DAG.getMergeValues(RetOps, DL);
4013 }
4014 
4015 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
4016 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
4017 // operations into additions.
4018 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4019                                                     SelectionDAG &DAG) const {
4020   auto *Node = cast<AtomicSDNode>(Op.getNode());
4021   EVT MemVT = Node->getMemoryVT();
4022   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4023     // A full-width operation.
4024     assert(Op.getValueType() == MemVT && "Mismatched VTs");
4025     SDValue Src2 = Node->getVal();
4026     SDValue NegSrc2;
4027     SDLoc DL(Src2);
4028 
4029     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
4030       // Use an addition if the operand is constant and either LAA(G) is
4031       // available or the negative value is in the range of A(G)FHI.
4032       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
4033       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
4034         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
4035     } else if (Subtarget.hasInterlockedAccess1())
4036       // Use LAA(G) if available.
4037       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
4038                             Src2);
4039 
4040     if (NegSrc2.getNode())
4041       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4042                            Node->getChain(), Node->getBasePtr(), NegSrc2,
4043                            Node->getMemOperand());
4044 
4045     // Use the node as-is.
4046     return Op;
4047   }
4048 
4049   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4050 }
4051 
4052 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4053 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4054                                                     SelectionDAG &DAG) const {
4055   auto *Node = cast<AtomicSDNode>(Op.getNode());
4056   SDValue ChainIn = Node->getOperand(0);
4057   SDValue Addr = Node->getOperand(1);
4058   SDValue CmpVal = Node->getOperand(2);
4059   SDValue SwapVal = Node->getOperand(3);
4060   MachineMemOperand *MMO = Node->getMemOperand();
4061   SDLoc DL(Node);
4062 
4063   // We have native support for 32-bit and 64-bit compare and swap, but we
4064   // still need to expand extracting the "success" result from the CC.
4065   EVT NarrowVT = Node->getMemoryVT();
4066   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4067   if (NarrowVT == WideVT) {
4068     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4069     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4070     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4071                                                DL, Tys, Ops, NarrowVT, MMO);
4072     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4073                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4074 
4075     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4076     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4077     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4078     return SDValue();
4079   }
4080 
4081   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4082   // via a fullword ATOMIC_CMP_SWAPW operation.
4083   int64_t BitSize = NarrowVT.getSizeInBits();
4084   EVT PtrVT = Addr.getValueType();
4085 
4086   // Get the address of the containing word.
4087   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4088                                     DAG.getConstant(-4, DL, PtrVT));
4089 
4090   // Get the number of bits that the word must be rotated left in order
4091   // to bring the field to the top bits of a GR32.
4092   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4093                                  DAG.getConstant(3, DL, PtrVT));
4094   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4095 
4096   // Get the complementing shift amount, for rotating a field in the top
4097   // bits back to its proper position.
4098   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4099                                     DAG.getConstant(0, DL, WideVT), BitShift);
4100 
4101   // Construct the ATOMIC_CMP_SWAPW node.
4102   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4103   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4104                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4105   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4106                                              VTList, Ops, NarrowVT, MMO);
4107   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4108                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4109 
4110   // emitAtomicCmpSwapW() will zero extend the result (original value).
4111   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4112                                 DAG.getValueType(NarrowVT));
4113   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4114   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4115   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4116   return SDValue();
4117 }
4118 
4119 MachineMemOperand::Flags
4120 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4121   // Because of how we convert atomic_load and atomic_store to normal loads and
4122   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4123   // since DAGCombine hasn't been updated to account for atomic, but non
4124   // volatile loads.  (See D57601)
4125   if (auto *SI = dyn_cast<StoreInst>(&I))
4126     if (SI->isAtomic())
4127       return MachineMemOperand::MOVolatile;
4128   if (auto *LI = dyn_cast<LoadInst>(&I))
4129     if (LI->isAtomic())
4130       return MachineMemOperand::MOVolatile;
4131   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4132     if (AI->isAtomic())
4133       return MachineMemOperand::MOVolatile;
4134   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4135     if (AI->isAtomic())
4136       return MachineMemOperand::MOVolatile;
4137   return MachineMemOperand::MONone;
4138 }
4139 
4140 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4141                                               SelectionDAG &DAG) const {
4142   MachineFunction &MF = DAG.getMachineFunction();
4143   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4144   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4145     report_fatal_error("Variable-sized stack allocations are not supported "
4146                        "in GHC calling convention");
4147   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4148                             SystemZ::R15D, Op.getValueType());
4149 }
4150 
4151 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4152                                                  SelectionDAG &DAG) const {
4153   MachineFunction &MF = DAG.getMachineFunction();
4154   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4155   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4156 
4157   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4158     report_fatal_error("Variable-sized stack allocations are not supported "
4159                        "in GHC calling convention");
4160 
4161   SDValue Chain = Op.getOperand(0);
4162   SDValue NewSP = Op.getOperand(1);
4163   SDValue Backchain;
4164   SDLoc DL(Op);
4165 
4166   if (StoreBackchain) {
4167     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4168     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4169                             MachinePointerInfo());
4170   }
4171 
4172   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4173 
4174   if (StoreBackchain)
4175     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4176                          MachinePointerInfo());
4177 
4178   return Chain;
4179 }
4180 
4181 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4182                                              SelectionDAG &DAG) const {
4183   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4184   if (!IsData)
4185     // Just preserve the chain.
4186     return Op.getOperand(0);
4187 
4188   SDLoc DL(Op);
4189   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4190   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4191   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4192   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4193                    Op.getOperand(1)};
4194   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4195                                  Node->getVTList(), Ops,
4196                                  Node->getMemoryVT(), Node->getMemOperand());
4197 }
4198 
4199 // Convert condition code in CCReg to an i32 value.
4200 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4201   SDLoc DL(CCReg);
4202   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4203   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4204                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4205 }
4206 
4207 SDValue
4208 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4209                                               SelectionDAG &DAG) const {
4210   unsigned Opcode, CCValid;
4211   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4212     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4213     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4214     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4215     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4216     return SDValue();
4217   }
4218 
4219   return SDValue();
4220 }
4221 
4222 SDValue
4223 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4224                                                SelectionDAG &DAG) const {
4225   unsigned Opcode, CCValid;
4226   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4227     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4228     if (Op->getNumValues() == 1)
4229       return getCCResult(DAG, SDValue(Node, 0));
4230     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4231     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4232                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4233   }
4234 
4235   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4236   switch (Id) {
4237   case Intrinsic::thread_pointer:
4238     return lowerThreadPointer(SDLoc(Op), DAG);
4239 
4240   case Intrinsic::s390_vpdi:
4241     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4242                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4243 
4244   case Intrinsic::s390_vperm:
4245     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4246                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4247 
4248   case Intrinsic::s390_vuphb:
4249   case Intrinsic::s390_vuphh:
4250   case Intrinsic::s390_vuphf:
4251     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4252                        Op.getOperand(1));
4253 
4254   case Intrinsic::s390_vuplhb:
4255   case Intrinsic::s390_vuplhh:
4256   case Intrinsic::s390_vuplhf:
4257     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4258                        Op.getOperand(1));
4259 
4260   case Intrinsic::s390_vuplb:
4261   case Intrinsic::s390_vuplhw:
4262   case Intrinsic::s390_vuplf:
4263     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4264                        Op.getOperand(1));
4265 
4266   case Intrinsic::s390_vupllb:
4267   case Intrinsic::s390_vupllh:
4268   case Intrinsic::s390_vupllf:
4269     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4270                        Op.getOperand(1));
4271 
4272   case Intrinsic::s390_vsumb:
4273   case Intrinsic::s390_vsumh:
4274   case Intrinsic::s390_vsumgh:
4275   case Intrinsic::s390_vsumgf:
4276   case Intrinsic::s390_vsumqf:
4277   case Intrinsic::s390_vsumqg:
4278     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4279                        Op.getOperand(1), Op.getOperand(2));
4280   }
4281 
4282   return SDValue();
4283 }
4284 
4285 namespace {
4286 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4287 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4288 // Operand is the constant third operand, otherwise it is the number of
4289 // bytes in each element of the result.
4290 struct Permute {
4291   unsigned Opcode;
4292   unsigned Operand;
4293   unsigned char Bytes[SystemZ::VectorBytes];
4294 };
4295 }
4296 
4297 static const Permute PermuteForms[] = {
4298   // VMRHG
4299   { SystemZISD::MERGE_HIGH, 8,
4300     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4301   // VMRHF
4302   { SystemZISD::MERGE_HIGH, 4,
4303     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4304   // VMRHH
4305   { SystemZISD::MERGE_HIGH, 2,
4306     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4307   // VMRHB
4308   { SystemZISD::MERGE_HIGH, 1,
4309     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4310   // VMRLG
4311   { SystemZISD::MERGE_LOW, 8,
4312     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4313   // VMRLF
4314   { SystemZISD::MERGE_LOW, 4,
4315     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4316   // VMRLH
4317   { SystemZISD::MERGE_LOW, 2,
4318     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4319   // VMRLB
4320   { SystemZISD::MERGE_LOW, 1,
4321     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4322   // VPKG
4323   { SystemZISD::PACK, 4,
4324     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4325   // VPKF
4326   { SystemZISD::PACK, 2,
4327     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4328   // VPKH
4329   { SystemZISD::PACK, 1,
4330     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4331   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4332   { SystemZISD::PERMUTE_DWORDS, 4,
4333     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4334   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4335   { SystemZISD::PERMUTE_DWORDS, 1,
4336     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4337 };
4338 
4339 // Called after matching a vector shuffle against a particular pattern.
4340 // Both the original shuffle and the pattern have two vector operands.
4341 // OpNos[0] is the operand of the original shuffle that should be used for
4342 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4343 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4344 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4345 // for operands 0 and 1 of the pattern.
4346 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4347   if (OpNos[0] < 0) {
4348     if (OpNos[1] < 0)
4349       return false;
4350     OpNo0 = OpNo1 = OpNos[1];
4351   } else if (OpNos[1] < 0) {
4352     OpNo0 = OpNo1 = OpNos[0];
4353   } else {
4354     OpNo0 = OpNos[0];
4355     OpNo1 = OpNos[1];
4356   }
4357   return true;
4358 }
4359 
4360 // Bytes is a VPERM-like permute vector, except that -1 is used for
4361 // undefined bytes.  Return true if the VPERM can be implemented using P.
4362 // When returning true set OpNo0 to the VPERM operand that should be
4363 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4364 //
4365 // For example, if swapping the VPERM operands allows P to match, OpNo0
4366 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4367 // operand, but rewriting it to use two duplicated operands allows it to
4368 // match P, then OpNo0 and OpNo1 will be the same.
4369 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4370                          unsigned &OpNo0, unsigned &OpNo1) {
4371   int OpNos[] = { -1, -1 };
4372   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4373     int Elt = Bytes[I];
4374     if (Elt >= 0) {
4375       // Make sure that the two permute vectors use the same suboperand
4376       // byte number.  Only the operand numbers (the high bits) are
4377       // allowed to differ.
4378       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4379         return false;
4380       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4381       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4382       // Make sure that the operand mappings are consistent with previous
4383       // elements.
4384       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4385         return false;
4386       OpNos[ModelOpNo] = RealOpNo;
4387     }
4388   }
4389   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4390 }
4391 
4392 // As above, but search for a matching permute.
4393 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4394                                    unsigned &OpNo0, unsigned &OpNo1) {
4395   for (auto &P : PermuteForms)
4396     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4397       return &P;
4398   return nullptr;
4399 }
4400 
4401 // Bytes is a VPERM-like permute vector, except that -1 is used for
4402 // undefined bytes.  This permute is an operand of an outer permute.
4403 // See whether redistributing the -1 bytes gives a shuffle that can be
4404 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4405 // that, when applied to the result of P, gives the original permute in Bytes.
4406 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4407                                const Permute &P,
4408                                SmallVectorImpl<int> &Transform) {
4409   unsigned To = 0;
4410   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4411     int Elt = Bytes[From];
4412     if (Elt < 0)
4413       // Byte number From of the result is undefined.
4414       Transform[From] = -1;
4415     else {
4416       while (P.Bytes[To] != Elt) {
4417         To += 1;
4418         if (To == SystemZ::VectorBytes)
4419           return false;
4420       }
4421       Transform[From] = To;
4422     }
4423   }
4424   return true;
4425 }
4426 
4427 // As above, but search for a matching permute.
4428 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4429                                          SmallVectorImpl<int> &Transform) {
4430   for (auto &P : PermuteForms)
4431     if (matchDoublePermute(Bytes, P, Transform))
4432       return &P;
4433   return nullptr;
4434 }
4435 
4436 // Convert the mask of the given shuffle op into a byte-level mask,
4437 // as if it had type vNi8.
4438 static bool getVPermMask(SDValue ShuffleOp,
4439                          SmallVectorImpl<int> &Bytes) {
4440   EVT VT = ShuffleOp.getValueType();
4441   unsigned NumElements = VT.getVectorNumElements();
4442   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4443 
4444   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4445     Bytes.resize(NumElements * BytesPerElement, -1);
4446     for (unsigned I = 0; I < NumElements; ++I) {
4447       int Index = VSN->getMaskElt(I);
4448       if (Index >= 0)
4449         for (unsigned J = 0; J < BytesPerElement; ++J)
4450           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4451     }
4452     return true;
4453   }
4454   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4455       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4456     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4457     Bytes.resize(NumElements * BytesPerElement, -1);
4458     for (unsigned I = 0; I < NumElements; ++I)
4459       for (unsigned J = 0; J < BytesPerElement; ++J)
4460         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4461     return true;
4462   }
4463   return false;
4464 }
4465 
4466 // Bytes is a VPERM-like permute vector, except that -1 is used for
4467 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4468 // the result come from a contiguous sequence of bytes from one input.
4469 // Set Base to the selector for the first byte if so.
4470 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4471                             unsigned BytesPerElement, int &Base) {
4472   Base = -1;
4473   for (unsigned I = 0; I < BytesPerElement; ++I) {
4474     if (Bytes[Start + I] >= 0) {
4475       unsigned Elem = Bytes[Start + I];
4476       if (Base < 0) {
4477         Base = Elem - I;
4478         // Make sure the bytes would come from one input operand.
4479         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4480           return false;
4481       } else if (unsigned(Base) != Elem - I)
4482         return false;
4483     }
4484   }
4485   return true;
4486 }
4487 
4488 // Bytes is a VPERM-like permute vector, except that -1 is used for
4489 // undefined bytes.  Return true if it can be performed using VSLDB.
4490 // When returning true, set StartIndex to the shift amount and OpNo0
4491 // and OpNo1 to the VPERM operands that should be used as the first
4492 // and second shift operand respectively.
4493 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4494                                unsigned &StartIndex, unsigned &OpNo0,
4495                                unsigned &OpNo1) {
4496   int OpNos[] = { -1, -1 };
4497   int Shift = -1;
4498   for (unsigned I = 0; I < 16; ++I) {
4499     int Index = Bytes[I];
4500     if (Index >= 0) {
4501       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4502       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4503       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4504       if (Shift < 0)
4505         Shift = ExpectedShift;
4506       else if (Shift != ExpectedShift)
4507         return false;
4508       // Make sure that the operand mappings are consistent with previous
4509       // elements.
4510       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4511         return false;
4512       OpNos[ModelOpNo] = RealOpNo;
4513     }
4514   }
4515   StartIndex = Shift;
4516   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4517 }
4518 
4519 // Create a node that performs P on operands Op0 and Op1, casting the
4520 // operands to the appropriate type.  The type of the result is determined by P.
4521 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4522                               const Permute &P, SDValue Op0, SDValue Op1) {
4523   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4524   // elements of a PACK are twice as wide as the outputs.
4525   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4526                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4527                       P.Operand);
4528   // Cast both operands to the appropriate type.
4529   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4530                               SystemZ::VectorBytes / InBytes);
4531   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4532   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4533   SDValue Op;
4534   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4535     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4536     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4537   } else if (P.Opcode == SystemZISD::PACK) {
4538     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4539                                  SystemZ::VectorBytes / P.Operand);
4540     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4541   } else {
4542     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4543   }
4544   return Op;
4545 }
4546 
4547 static bool isZeroVector(SDValue N) {
4548   if (N->getOpcode() == ISD::BITCAST)
4549     N = N->getOperand(0);
4550   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4551     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4552       return Op->getZExtValue() == 0;
4553   return ISD::isBuildVectorAllZeros(N.getNode());
4554 }
4555 
4556 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4557 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4558   for (unsigned I = 0; I < Num ; I++)
4559     if (isZeroVector(Ops[I]))
4560       return I;
4561   return UINT32_MAX;
4562 }
4563 
4564 // Bytes is a VPERM-like permute vector, except that -1 is used for
4565 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4566 // VSLDB or VPERM.
4567 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4568                                      SDValue *Ops,
4569                                      const SmallVectorImpl<int> &Bytes) {
4570   for (unsigned I = 0; I < 2; ++I)
4571     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4572 
4573   // First see whether VSLDB can be used.
4574   unsigned StartIndex, OpNo0, OpNo1;
4575   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4576     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4577                        Ops[OpNo1],
4578                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4579 
4580   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4581   // eliminate a zero vector by reusing any zero index in the permute vector.
4582   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4583   if (ZeroVecIdx != UINT32_MAX) {
4584     bool MaskFirst = true;
4585     int ZeroIdx = -1;
4586     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4587       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4588       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4589       if (OpNo == ZeroVecIdx && I == 0) {
4590         // If the first byte is zero, use mask as first operand.
4591         ZeroIdx = 0;
4592         break;
4593       }
4594       if (OpNo != ZeroVecIdx && Byte == 0) {
4595         // If mask contains a zero, use it by placing that vector first.
4596         ZeroIdx = I + SystemZ::VectorBytes;
4597         MaskFirst = false;
4598         break;
4599       }
4600     }
4601     if (ZeroIdx != -1) {
4602       SDValue IndexNodes[SystemZ::VectorBytes];
4603       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4604         if (Bytes[I] >= 0) {
4605           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4606           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4607           if (OpNo == ZeroVecIdx)
4608             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4609           else {
4610             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4611             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4612           }
4613         } else
4614           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4615       }
4616       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4617       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4618       if (MaskFirst)
4619         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4620                            Mask);
4621       else
4622         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4623                            Mask);
4624     }
4625   }
4626 
4627   SDValue IndexNodes[SystemZ::VectorBytes];
4628   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4629     if (Bytes[I] >= 0)
4630       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4631     else
4632       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4633   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4634   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4635                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4636 }
4637 
4638 namespace {
4639 // Describes a general N-operand vector shuffle.
4640 struct GeneralShuffle {
4641   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4642   void addUndef();
4643   bool add(SDValue, unsigned);
4644   SDValue getNode(SelectionDAG &, const SDLoc &);
4645   void tryPrepareForUnpack();
4646   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4647   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4648 
4649   // The operands of the shuffle.
4650   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4651 
4652   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4653   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4654   // Bytes[I] / SystemZ::VectorBytes.
4655   SmallVector<int, SystemZ::VectorBytes> Bytes;
4656 
4657   // The type of the shuffle result.
4658   EVT VT;
4659 
4660   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4661   unsigned UnpackFromEltSize;
4662 };
4663 }
4664 
4665 // Add an extra undefined element to the shuffle.
4666 void GeneralShuffle::addUndef() {
4667   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4668   for (unsigned I = 0; I < BytesPerElement; ++I)
4669     Bytes.push_back(-1);
4670 }
4671 
4672 // Add an extra element to the shuffle, taking it from element Elem of Op.
4673 // A null Op indicates a vector input whose value will be calculated later;
4674 // there is at most one such input per shuffle and it always has the same
4675 // type as the result. Aborts and returns false if the source vector elements
4676 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4677 // LLVM they become implicitly extended, but this is rare and not optimized.
4678 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4679   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4680 
4681   // The source vector can have wider elements than the result,
4682   // either through an explicit TRUNCATE or because of type legalization.
4683   // We want the least significant part.
4684   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4685   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4686 
4687   // Return false if the source elements are smaller than their destination
4688   // elements.
4689   if (FromBytesPerElement < BytesPerElement)
4690     return false;
4691 
4692   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4693                    (FromBytesPerElement - BytesPerElement));
4694 
4695   // Look through things like shuffles and bitcasts.
4696   while (Op.getNode()) {
4697     if (Op.getOpcode() == ISD::BITCAST)
4698       Op = Op.getOperand(0);
4699     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4700       // See whether the bytes we need come from a contiguous part of one
4701       // operand.
4702       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4703       if (!getVPermMask(Op, OpBytes))
4704         break;
4705       int NewByte;
4706       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4707         break;
4708       if (NewByte < 0) {
4709         addUndef();
4710         return true;
4711       }
4712       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4713       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4714     } else if (Op.isUndef()) {
4715       addUndef();
4716       return true;
4717     } else
4718       break;
4719   }
4720 
4721   // Make sure that the source of the extraction is in Ops.
4722   unsigned OpNo = 0;
4723   for (; OpNo < Ops.size(); ++OpNo)
4724     if (Ops[OpNo] == Op)
4725       break;
4726   if (OpNo == Ops.size())
4727     Ops.push_back(Op);
4728 
4729   // Add the element to Bytes.
4730   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4731   for (unsigned I = 0; I < BytesPerElement; ++I)
4732     Bytes.push_back(Base + I);
4733 
4734   return true;
4735 }
4736 
4737 // Return SDNodes for the completed shuffle.
4738 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4739   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4740 
4741   if (Ops.size() == 0)
4742     return DAG.getUNDEF(VT);
4743 
4744   // Use a single unpack if possible as the last operation.
4745   tryPrepareForUnpack();
4746 
4747   // Make sure that there are at least two shuffle operands.
4748   if (Ops.size() == 1)
4749     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4750 
4751   // Create a tree of shuffles, deferring root node until after the loop.
4752   // Try to redistribute the undefined elements of non-root nodes so that
4753   // the non-root shuffles match something like a pack or merge, then adjust
4754   // the parent node's permute vector to compensate for the new order.
4755   // Among other things, this copes with vectors like <2 x i16> that were
4756   // padded with undefined elements during type legalization.
4757   //
4758   // In the best case this redistribution will lead to the whole tree
4759   // using packs and merges.  It should rarely be a loss in other cases.
4760   unsigned Stride = 1;
4761   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4762     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4763       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4764 
4765       // Create a mask for just these two operands.
4766       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4767       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4768         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4769         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4770         if (OpNo == I)
4771           NewBytes[J] = Byte;
4772         else if (OpNo == I + Stride)
4773           NewBytes[J] = SystemZ::VectorBytes + Byte;
4774         else
4775           NewBytes[J] = -1;
4776       }
4777       // See if it would be better to reorganize NewMask to avoid using VPERM.
4778       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4779       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4780         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4781         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4782         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4783           if (NewBytes[J] >= 0) {
4784             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4785                    "Invalid double permute");
4786             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4787           } else
4788             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4789         }
4790       } else {
4791         // Just use NewBytes on the operands.
4792         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4793         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4794           if (NewBytes[J] >= 0)
4795             Bytes[J] = I * SystemZ::VectorBytes + J;
4796       }
4797     }
4798   }
4799 
4800   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4801   if (Stride > 1) {
4802     Ops[1] = Ops[Stride];
4803     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4804       if (Bytes[I] >= int(SystemZ::VectorBytes))
4805         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4806   }
4807 
4808   // Look for an instruction that can do the permute without resorting
4809   // to VPERM.
4810   unsigned OpNo0, OpNo1;
4811   SDValue Op;
4812   if (unpackWasPrepared() && Ops[1].isUndef())
4813     Op = Ops[0];
4814   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4815     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4816   else
4817     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4818 
4819   Op = insertUnpackIfPrepared(DAG, DL, Op);
4820 
4821   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4822 }
4823 
4824 #ifndef NDEBUG
4825 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
4826   dbgs() << Msg.c_str() << " { ";
4827   for (unsigned i = 0; i < Bytes.size(); i++)
4828     dbgs() << Bytes[i] << " ";
4829   dbgs() << "}\n";
4830 }
4831 #endif
4832 
4833 // If the Bytes vector matches an unpack operation, prepare to do the unpack
4834 // after all else by removing the zero vector and the effect of the unpack on
4835 // Bytes.
4836 void GeneralShuffle::tryPrepareForUnpack() {
4837   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
4838   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
4839     return;
4840 
4841   // Only do this if removing the zero vector reduces the depth, otherwise
4842   // the critical path will increase with the final unpack.
4843   if (Ops.size() > 2 &&
4844       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
4845     return;
4846 
4847   // Find an unpack that would allow removing the zero vector from Ops.
4848   UnpackFromEltSize = 1;
4849   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
4850     bool MatchUnpack = true;
4851     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
4852     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
4853       unsigned ToEltSize = UnpackFromEltSize * 2;
4854       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
4855       if (!IsZextByte)
4856         SrcBytes.push_back(Bytes[Elt]);
4857       if (Bytes[Elt] != -1) {
4858         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
4859         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
4860           MatchUnpack = false;
4861           break;
4862         }
4863       }
4864     }
4865     if (MatchUnpack) {
4866       if (Ops.size() == 2) {
4867         // Don't use unpack if a single source operand needs rearrangement.
4868         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
4869           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
4870             UnpackFromEltSize = UINT_MAX;
4871             return;
4872           }
4873       }
4874       break;
4875     }
4876   }
4877   if (UnpackFromEltSize > 4)
4878     return;
4879 
4880   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
4881              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
4882              << ".\n";
4883              dumpBytes(Bytes, "Original Bytes vector:"););
4884 
4885   // Apply the unpack in reverse to the Bytes array.
4886   unsigned B = 0;
4887   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
4888     Elt += UnpackFromEltSize;
4889     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
4890       Bytes[B] = Bytes[Elt];
4891   }
4892   while (B < SystemZ::VectorBytes)
4893     Bytes[B++] = -1;
4894 
4895   // Remove the zero vector from Ops
4896   Ops.erase(&Ops[ZeroVecOpNo]);
4897   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4898     if (Bytes[I] >= 0) {
4899       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4900       if (OpNo > ZeroVecOpNo)
4901         Bytes[I] -= SystemZ::VectorBytes;
4902     }
4903 
4904   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
4905              dbgs() << "\n";);
4906 }
4907 
4908 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
4909                                                const SDLoc &DL,
4910                                                SDValue Op) {
4911   if (!unpackWasPrepared())
4912     return Op;
4913   unsigned InBits = UnpackFromEltSize * 8;
4914   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
4915                                 SystemZ::VectorBits / InBits);
4916   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
4917   unsigned OutBits = InBits * 2;
4918   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
4919                                SystemZ::VectorBits / OutBits);
4920   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
4921 }
4922 
4923 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4924 static bool isScalarToVector(SDValue Op) {
4925   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4926     if (!Op.getOperand(I).isUndef())
4927       return false;
4928   return true;
4929 }
4930 
4931 // Return a vector of type VT that contains Value in the first element.
4932 // The other elements don't matter.
4933 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4934                                    SDValue Value) {
4935   // If we have a constant, replicate it to all elements and let the
4936   // BUILD_VECTOR lowering take care of it.
4937   if (Value.getOpcode() == ISD::Constant ||
4938       Value.getOpcode() == ISD::ConstantFP) {
4939     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4940     return DAG.getBuildVector(VT, DL, Ops);
4941   }
4942   if (Value.isUndef())
4943     return DAG.getUNDEF(VT);
4944   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4945 }
4946 
4947 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4948 // element 1.  Used for cases in which replication is cheap.
4949 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4950                                  SDValue Op0, SDValue Op1) {
4951   if (Op0.isUndef()) {
4952     if (Op1.isUndef())
4953       return DAG.getUNDEF(VT);
4954     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4955   }
4956   if (Op1.isUndef())
4957     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4958   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4959                      buildScalarToVector(DAG, DL, VT, Op0),
4960                      buildScalarToVector(DAG, DL, VT, Op1));
4961 }
4962 
4963 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4964 // vector for them.
4965 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4966                           SDValue Op1) {
4967   if (Op0.isUndef() && Op1.isUndef())
4968     return DAG.getUNDEF(MVT::v2i64);
4969   // If one of the two inputs is undefined then replicate the other one,
4970   // in order to avoid using another register unnecessarily.
4971   if (Op0.isUndef())
4972     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4973   else if (Op1.isUndef())
4974     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4975   else {
4976     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4977     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4978   }
4979   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4980 }
4981 
4982 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4983 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4984 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4985 // would benefit from this representation and return it if so.
4986 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4987                                      BuildVectorSDNode *BVN) {
4988   EVT VT = BVN->getValueType(0);
4989   unsigned NumElements = VT.getVectorNumElements();
4990 
4991   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4992   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4993   // need a BUILD_VECTOR, add an additional placeholder operand for that
4994   // BUILD_VECTOR and store its operands in ResidueOps.
4995   GeneralShuffle GS(VT);
4996   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4997   bool FoundOne = false;
4998   for (unsigned I = 0; I < NumElements; ++I) {
4999     SDValue Op = BVN->getOperand(I);
5000     if (Op.getOpcode() == ISD::TRUNCATE)
5001       Op = Op.getOperand(0);
5002     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5003         Op.getOperand(1).getOpcode() == ISD::Constant) {
5004       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5005       if (!GS.add(Op.getOperand(0), Elem))
5006         return SDValue();
5007       FoundOne = true;
5008     } else if (Op.isUndef()) {
5009       GS.addUndef();
5010     } else {
5011       if (!GS.add(SDValue(), ResidueOps.size()))
5012         return SDValue();
5013       ResidueOps.push_back(BVN->getOperand(I));
5014     }
5015   }
5016 
5017   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5018   if (!FoundOne)
5019     return SDValue();
5020 
5021   // Create the BUILD_VECTOR for the remaining elements, if any.
5022   if (!ResidueOps.empty()) {
5023     while (ResidueOps.size() < NumElements)
5024       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5025     for (auto &Op : GS.Ops) {
5026       if (!Op.getNode()) {
5027         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5028         break;
5029       }
5030     }
5031   }
5032   return GS.getNode(DAG, SDLoc(BVN));
5033 }
5034 
5035 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5036   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5037     return true;
5038   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5039     return true;
5040   return false;
5041 }
5042 
5043 // Combine GPR scalar values Elems into a vector of type VT.
5044 SDValue
5045 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5046                                    SmallVectorImpl<SDValue> &Elems) const {
5047   // See whether there is a single replicated value.
5048   SDValue Single;
5049   unsigned int NumElements = Elems.size();
5050   unsigned int Count = 0;
5051   for (auto Elem : Elems) {
5052     if (!Elem.isUndef()) {
5053       if (!Single.getNode())
5054         Single = Elem;
5055       else if (Elem != Single) {
5056         Single = SDValue();
5057         break;
5058       }
5059       Count += 1;
5060     }
5061   }
5062   // There are three cases here:
5063   //
5064   // - if the only defined element is a loaded one, the best sequence
5065   //   is a replicating load.
5066   //
5067   // - otherwise, if the only defined element is an i64 value, we will
5068   //   end up with the same VLVGP sequence regardless of whether we short-cut
5069   //   for replication or fall through to the later code.
5070   //
5071   // - otherwise, if the only defined element is an i32 or smaller value,
5072   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5073   //   This is only a win if the single defined element is used more than once.
5074   //   In other cases we're better off using a single VLVGx.
5075   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5076     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5077 
5078   // If all elements are loads, use VLREP/VLEs (below).
5079   bool AllLoads = true;
5080   for (auto Elem : Elems)
5081     if (!isVectorElementLoad(Elem)) {
5082       AllLoads = false;
5083       break;
5084     }
5085 
5086   // The best way of building a v2i64 from two i64s is to use VLVGP.
5087   if (VT == MVT::v2i64 && !AllLoads)
5088     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5089 
5090   // Use a 64-bit merge high to combine two doubles.
5091   if (VT == MVT::v2f64 && !AllLoads)
5092     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5093 
5094   // Build v4f32 values directly from the FPRs:
5095   //
5096   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5097   //         V              V         VMRHF
5098   //      <ABxx>         <CDxx>
5099   //                V                 VMRHG
5100   //              <ABCD>
5101   if (VT == MVT::v4f32 && !AllLoads) {
5102     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5103     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5104     // Avoid unnecessary undefs by reusing the other operand.
5105     if (Op01.isUndef())
5106       Op01 = Op23;
5107     else if (Op23.isUndef())
5108       Op23 = Op01;
5109     // Merging identical replications is a no-op.
5110     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5111       return Op01;
5112     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5113     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5114     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5115                              DL, MVT::v2i64, Op01, Op23);
5116     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5117   }
5118 
5119   // Collect the constant terms.
5120   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5121   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5122 
5123   unsigned NumConstants = 0;
5124   for (unsigned I = 0; I < NumElements; ++I) {
5125     SDValue Elem = Elems[I];
5126     if (Elem.getOpcode() == ISD::Constant ||
5127         Elem.getOpcode() == ISD::ConstantFP) {
5128       NumConstants += 1;
5129       Constants[I] = Elem;
5130       Done[I] = true;
5131     }
5132   }
5133   // If there was at least one constant, fill in the other elements of
5134   // Constants with undefs to get a full vector constant and use that
5135   // as the starting point.
5136   SDValue Result;
5137   SDValue ReplicatedVal;
5138   if (NumConstants > 0) {
5139     for (unsigned I = 0; I < NumElements; ++I)
5140       if (!Constants[I].getNode())
5141         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5142     Result = DAG.getBuildVector(VT, DL, Constants);
5143   } else {
5144     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5145     // avoid a false dependency on any previous contents of the vector
5146     // register.
5147 
5148     // Use a VLREP if at least one element is a load. Make sure to replicate
5149     // the load with the most elements having its value.
5150     std::map<const SDNode*, unsigned> UseCounts;
5151     SDNode *LoadMaxUses = nullptr;
5152     for (unsigned I = 0; I < NumElements; ++I)
5153       if (isVectorElementLoad(Elems[I])) {
5154         SDNode *Ld = Elems[I].getNode();
5155         UseCounts[Ld]++;
5156         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5157           LoadMaxUses = Ld;
5158       }
5159     if (LoadMaxUses != nullptr) {
5160       ReplicatedVal = SDValue(LoadMaxUses, 0);
5161       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5162     } else {
5163       // Try to use VLVGP.
5164       unsigned I1 = NumElements / 2 - 1;
5165       unsigned I2 = NumElements - 1;
5166       bool Def1 = !Elems[I1].isUndef();
5167       bool Def2 = !Elems[I2].isUndef();
5168       if (Def1 || Def2) {
5169         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5170         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5171         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5172                              joinDwords(DAG, DL, Elem1, Elem2));
5173         Done[I1] = true;
5174         Done[I2] = true;
5175       } else
5176         Result = DAG.getUNDEF(VT);
5177     }
5178   }
5179 
5180   // Use VLVGx to insert the other elements.
5181   for (unsigned I = 0; I < NumElements; ++I)
5182     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5183       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5184                            DAG.getConstant(I, DL, MVT::i32));
5185   return Result;
5186 }
5187 
5188 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5189                                                  SelectionDAG &DAG) const {
5190   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5191   SDLoc DL(Op);
5192   EVT VT = Op.getValueType();
5193 
5194   if (BVN->isConstant()) {
5195     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5196       return Op;
5197 
5198     // Fall back to loading it from memory.
5199     return SDValue();
5200   }
5201 
5202   // See if we should use shuffles to construct the vector from other vectors.
5203   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5204     return Res;
5205 
5206   // Detect SCALAR_TO_VECTOR conversions.
5207   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5208     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5209 
5210   // Otherwise use buildVector to build the vector up from GPRs.
5211   unsigned NumElements = Op.getNumOperands();
5212   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5213   for (unsigned I = 0; I < NumElements; ++I)
5214     Ops[I] = Op.getOperand(I);
5215   return buildVector(DAG, DL, VT, Ops);
5216 }
5217 
5218 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5219                                                    SelectionDAG &DAG) const {
5220   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5221   SDLoc DL(Op);
5222   EVT VT = Op.getValueType();
5223   unsigned NumElements = VT.getVectorNumElements();
5224 
5225   if (VSN->isSplat()) {
5226     SDValue Op0 = Op.getOperand(0);
5227     unsigned Index = VSN->getSplatIndex();
5228     assert(Index < VT.getVectorNumElements() &&
5229            "Splat index should be defined and in first operand");
5230     // See whether the value we're splatting is directly available as a scalar.
5231     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5232         Op0.getOpcode() == ISD::BUILD_VECTOR)
5233       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5234     // Otherwise keep it as a vector-to-vector operation.
5235     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5236                        DAG.getTargetConstant(Index, DL, MVT::i32));
5237   }
5238 
5239   GeneralShuffle GS(VT);
5240   for (unsigned I = 0; I < NumElements; ++I) {
5241     int Elt = VSN->getMaskElt(I);
5242     if (Elt < 0)
5243       GS.addUndef();
5244     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5245                      unsigned(Elt) % NumElements))
5246       return SDValue();
5247   }
5248   return GS.getNode(DAG, SDLoc(VSN));
5249 }
5250 
5251 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5252                                                      SelectionDAG &DAG) const {
5253   SDLoc DL(Op);
5254   // Just insert the scalar into element 0 of an undefined vector.
5255   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5256                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5257                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5258 }
5259 
5260 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5261                                                       SelectionDAG &DAG) const {
5262   // Handle insertions of floating-point values.
5263   SDLoc DL(Op);
5264   SDValue Op0 = Op.getOperand(0);
5265   SDValue Op1 = Op.getOperand(1);
5266   SDValue Op2 = Op.getOperand(2);
5267   EVT VT = Op.getValueType();
5268 
5269   // Insertions into constant indices of a v2f64 can be done using VPDI.
5270   // However, if the inserted value is a bitcast or a constant then it's
5271   // better to use GPRs, as below.
5272   if (VT == MVT::v2f64 &&
5273       Op1.getOpcode() != ISD::BITCAST &&
5274       Op1.getOpcode() != ISD::ConstantFP &&
5275       Op2.getOpcode() == ISD::Constant) {
5276     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5277     unsigned Mask = VT.getVectorNumElements() - 1;
5278     if (Index <= Mask)
5279       return Op;
5280   }
5281 
5282   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5283   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5284   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5285   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5286                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5287                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5288   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5289 }
5290 
5291 SDValue
5292 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5293                                                SelectionDAG &DAG) const {
5294   // Handle extractions of floating-point values.
5295   SDLoc DL(Op);
5296   SDValue Op0 = Op.getOperand(0);
5297   SDValue Op1 = Op.getOperand(1);
5298   EVT VT = Op.getValueType();
5299   EVT VecVT = Op0.getValueType();
5300 
5301   // Extractions of constant indices can be done directly.
5302   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5303     uint64_t Index = CIndexN->getZExtValue();
5304     unsigned Mask = VecVT.getVectorNumElements() - 1;
5305     if (Index <= Mask)
5306       return Op;
5307   }
5308 
5309   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5310   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5311   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5312   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5313                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5314   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5315 }
5316 
5317 SDValue SystemZTargetLowering::
5318 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5319   SDValue PackedOp = Op.getOperand(0);
5320   EVT OutVT = Op.getValueType();
5321   EVT InVT = PackedOp.getValueType();
5322   unsigned ToBits = OutVT.getScalarSizeInBits();
5323   unsigned FromBits = InVT.getScalarSizeInBits();
5324   do {
5325     FromBits *= 2;
5326     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5327                                  SystemZ::VectorBits / FromBits);
5328     PackedOp =
5329       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5330   } while (FromBits != ToBits);
5331   return PackedOp;
5332 }
5333 
5334 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5335 SDValue SystemZTargetLowering::
5336 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5337   SDValue PackedOp = Op.getOperand(0);
5338   SDLoc DL(Op);
5339   EVT OutVT = Op.getValueType();
5340   EVT InVT = PackedOp.getValueType();
5341   unsigned InNumElts = InVT.getVectorNumElements();
5342   unsigned OutNumElts = OutVT.getVectorNumElements();
5343   unsigned NumInPerOut = InNumElts / OutNumElts;
5344 
5345   SDValue ZeroVec =
5346     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5347 
5348   SmallVector<int, 16> Mask(InNumElts);
5349   unsigned ZeroVecElt = InNumElts;
5350   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5351     unsigned MaskElt = PackedElt * NumInPerOut;
5352     unsigned End = MaskElt + NumInPerOut - 1;
5353     for (; MaskElt < End; MaskElt++)
5354       Mask[MaskElt] = ZeroVecElt++;
5355     Mask[MaskElt] = PackedElt;
5356   }
5357   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5358   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5359 }
5360 
5361 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5362                                           unsigned ByScalar) const {
5363   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5364   SDValue Op0 = Op.getOperand(0);
5365   SDValue Op1 = Op.getOperand(1);
5366   SDLoc DL(Op);
5367   EVT VT = Op.getValueType();
5368   unsigned ElemBitSize = VT.getScalarSizeInBits();
5369 
5370   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5371   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5372     APInt SplatBits, SplatUndef;
5373     unsigned SplatBitSize;
5374     bool HasAnyUndefs;
5375     // Check for constant splats.  Use ElemBitSize as the minimum element
5376     // width and reject splats that need wider elements.
5377     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5378                              ElemBitSize, true) &&
5379         SplatBitSize == ElemBitSize) {
5380       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5381                                       DL, MVT::i32);
5382       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5383     }
5384     // Check for variable splats.
5385     BitVector UndefElements;
5386     SDValue Splat = BVN->getSplatValue(&UndefElements);
5387     if (Splat) {
5388       // Since i32 is the smallest legal type, we either need a no-op
5389       // or a truncation.
5390       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5391       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5392     }
5393   }
5394 
5395   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5396   // and the shift amount is directly available in a GPR.
5397   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5398     if (VSN->isSplat()) {
5399       SDValue VSNOp0 = VSN->getOperand(0);
5400       unsigned Index = VSN->getSplatIndex();
5401       assert(Index < VT.getVectorNumElements() &&
5402              "Splat index should be defined and in first operand");
5403       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5404           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5405         // Since i32 is the smallest legal type, we either need a no-op
5406         // or a truncation.
5407         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5408                                     VSNOp0.getOperand(Index));
5409         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5410       }
5411     }
5412   }
5413 
5414   // Otherwise just treat the current form as legal.
5415   return Op;
5416 }
5417 
5418 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5419                                               SelectionDAG &DAG) const {
5420   switch (Op.getOpcode()) {
5421   case ISD::FRAMEADDR:
5422     return lowerFRAMEADDR(Op, DAG);
5423   case ISD::RETURNADDR:
5424     return lowerRETURNADDR(Op, DAG);
5425   case ISD::BR_CC:
5426     return lowerBR_CC(Op, DAG);
5427   case ISD::SELECT_CC:
5428     return lowerSELECT_CC(Op, DAG);
5429   case ISD::SETCC:
5430     return lowerSETCC(Op, DAG);
5431   case ISD::STRICT_FSETCC:
5432     return lowerSTRICT_FSETCC(Op, DAG, false);
5433   case ISD::STRICT_FSETCCS:
5434     return lowerSTRICT_FSETCC(Op, DAG, true);
5435   case ISD::GlobalAddress:
5436     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5437   case ISD::GlobalTLSAddress:
5438     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5439   case ISD::BlockAddress:
5440     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5441   case ISD::JumpTable:
5442     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5443   case ISD::ConstantPool:
5444     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5445   case ISD::BITCAST:
5446     return lowerBITCAST(Op, DAG);
5447   case ISD::VASTART:
5448     return lowerVASTART(Op, DAG);
5449   case ISD::VACOPY:
5450     return lowerVACOPY(Op, DAG);
5451   case ISD::DYNAMIC_STACKALLOC:
5452     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5453   case ISD::GET_DYNAMIC_AREA_OFFSET:
5454     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5455   case ISD::SMUL_LOHI:
5456     return lowerSMUL_LOHI(Op, DAG);
5457   case ISD::UMUL_LOHI:
5458     return lowerUMUL_LOHI(Op, DAG);
5459   case ISD::SDIVREM:
5460     return lowerSDIVREM(Op, DAG);
5461   case ISD::UDIVREM:
5462     return lowerUDIVREM(Op, DAG);
5463   case ISD::SADDO:
5464   case ISD::SSUBO:
5465   case ISD::UADDO:
5466   case ISD::USUBO:
5467     return lowerXALUO(Op, DAG);
5468   case ISD::ADDCARRY:
5469   case ISD::SUBCARRY:
5470     return lowerADDSUBCARRY(Op, DAG);
5471   case ISD::OR:
5472     return lowerOR(Op, DAG);
5473   case ISD::CTPOP:
5474     return lowerCTPOP(Op, DAG);
5475   case ISD::ATOMIC_FENCE:
5476     return lowerATOMIC_FENCE(Op, DAG);
5477   case ISD::ATOMIC_SWAP:
5478     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5479   case ISD::ATOMIC_STORE:
5480     return lowerATOMIC_STORE(Op, DAG);
5481   case ISD::ATOMIC_LOAD:
5482     return lowerATOMIC_LOAD(Op, DAG);
5483   case ISD::ATOMIC_LOAD_ADD:
5484     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5485   case ISD::ATOMIC_LOAD_SUB:
5486     return lowerATOMIC_LOAD_SUB(Op, DAG);
5487   case ISD::ATOMIC_LOAD_AND:
5488     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5489   case ISD::ATOMIC_LOAD_OR:
5490     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5491   case ISD::ATOMIC_LOAD_XOR:
5492     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5493   case ISD::ATOMIC_LOAD_NAND:
5494     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5495   case ISD::ATOMIC_LOAD_MIN:
5496     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5497   case ISD::ATOMIC_LOAD_MAX:
5498     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5499   case ISD::ATOMIC_LOAD_UMIN:
5500     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5501   case ISD::ATOMIC_LOAD_UMAX:
5502     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5503   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5504     return lowerATOMIC_CMP_SWAP(Op, DAG);
5505   case ISD::STACKSAVE:
5506     return lowerSTACKSAVE(Op, DAG);
5507   case ISD::STACKRESTORE:
5508     return lowerSTACKRESTORE(Op, DAG);
5509   case ISD::PREFETCH:
5510     return lowerPREFETCH(Op, DAG);
5511   case ISD::INTRINSIC_W_CHAIN:
5512     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5513   case ISD::INTRINSIC_WO_CHAIN:
5514     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5515   case ISD::BUILD_VECTOR:
5516     return lowerBUILD_VECTOR(Op, DAG);
5517   case ISD::VECTOR_SHUFFLE:
5518     return lowerVECTOR_SHUFFLE(Op, DAG);
5519   case ISD::SCALAR_TO_VECTOR:
5520     return lowerSCALAR_TO_VECTOR(Op, DAG);
5521   case ISD::INSERT_VECTOR_ELT:
5522     return lowerINSERT_VECTOR_ELT(Op, DAG);
5523   case ISD::EXTRACT_VECTOR_ELT:
5524     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5525   case ISD::SIGN_EXTEND_VECTOR_INREG:
5526     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5527   case ISD::ZERO_EXTEND_VECTOR_INREG:
5528     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5529   case ISD::SHL:
5530     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5531   case ISD::SRL:
5532     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5533   case ISD::SRA:
5534     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5535   default:
5536     llvm_unreachable("Unexpected node to lower");
5537   }
5538 }
5539 
5540 // Lower operations with invalid operand or result types (currently used
5541 // only for 128-bit integer types).
5542 void
5543 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5544                                              SmallVectorImpl<SDValue> &Results,
5545                                              SelectionDAG &DAG) const {
5546   switch (N->getOpcode()) {
5547   case ISD::ATOMIC_LOAD: {
5548     SDLoc DL(N);
5549     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5550     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5551     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5552     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5553                                           DL, Tys, Ops, MVT::i128, MMO);
5554     Results.push_back(lowerGR128ToI128(DAG, Res));
5555     Results.push_back(Res.getValue(1));
5556     break;
5557   }
5558   case ISD::ATOMIC_STORE: {
5559     SDLoc DL(N);
5560     SDVTList Tys = DAG.getVTList(MVT::Other);
5561     SDValue Ops[] = { N->getOperand(0),
5562                       lowerI128ToGR128(DAG, N->getOperand(2)),
5563                       N->getOperand(1) };
5564     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5565     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5566                                           DL, Tys, Ops, MVT::i128, MMO);
5567     // We have to enforce sequential consistency by performing a
5568     // serialization operation after the store.
5569     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
5570         AtomicOrdering::SequentiallyConsistent)
5571       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5572                                        MVT::Other, Res), 0);
5573     Results.push_back(Res);
5574     break;
5575   }
5576   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5577     SDLoc DL(N);
5578     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5579     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5580                       lowerI128ToGR128(DAG, N->getOperand(2)),
5581                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5582     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5583     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5584                                           DL, Tys, Ops, MVT::i128, MMO);
5585     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5586                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5587     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5588     Results.push_back(lowerGR128ToI128(DAG, Res));
5589     Results.push_back(Success);
5590     Results.push_back(Res.getValue(2));
5591     break;
5592   }
5593   case ISD::BITCAST: {
5594     SDValue Src = N->getOperand(0);
5595     if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
5596         !useSoftFloat()) {
5597       SDLoc DL(N);
5598       SDValue Lo, Hi;
5599       if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) {
5600         SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src);
5601         Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5602                          DAG.getConstant(1, DL, MVT::i32));
5603         Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5604                          DAG.getConstant(0, DL, MVT::i32));
5605       } else {
5606         assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass &&
5607                "Unrecognized register class for f128.");
5608         SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5609                                                   DL, MVT::f64, Src);
5610         SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5611                                                   DL, MVT::f64, Src);
5612         Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP);
5613         Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP);
5614       }
5615       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi));
5616     }
5617     break;
5618   }
5619   default:
5620     llvm_unreachable("Unexpected node to lower");
5621   }
5622 }
5623 
5624 void
5625 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5626                                           SmallVectorImpl<SDValue> &Results,
5627                                           SelectionDAG &DAG) const {
5628   return LowerOperationWrapper(N, Results, DAG);
5629 }
5630 
5631 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5632 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5633   switch ((SystemZISD::NodeType)Opcode) {
5634     case SystemZISD::FIRST_NUMBER: break;
5635     OPCODE(RET_FLAG);
5636     OPCODE(CALL);
5637     OPCODE(SIBCALL);
5638     OPCODE(TLS_GDCALL);
5639     OPCODE(TLS_LDCALL);
5640     OPCODE(PCREL_WRAPPER);
5641     OPCODE(PCREL_OFFSET);
5642     OPCODE(ICMP);
5643     OPCODE(FCMP);
5644     OPCODE(STRICT_FCMP);
5645     OPCODE(STRICT_FCMPS);
5646     OPCODE(TM);
5647     OPCODE(BR_CCMASK);
5648     OPCODE(SELECT_CCMASK);
5649     OPCODE(ADJDYNALLOC);
5650     OPCODE(PROBED_ALLOCA);
5651     OPCODE(POPCNT);
5652     OPCODE(SMUL_LOHI);
5653     OPCODE(UMUL_LOHI);
5654     OPCODE(SDIVREM);
5655     OPCODE(UDIVREM);
5656     OPCODE(SADDO);
5657     OPCODE(SSUBO);
5658     OPCODE(UADDO);
5659     OPCODE(USUBO);
5660     OPCODE(ADDCARRY);
5661     OPCODE(SUBCARRY);
5662     OPCODE(GET_CCMASK);
5663     OPCODE(MVC);
5664     OPCODE(MVC_LOOP);
5665     OPCODE(NC);
5666     OPCODE(NC_LOOP);
5667     OPCODE(OC);
5668     OPCODE(OC_LOOP);
5669     OPCODE(XC);
5670     OPCODE(XC_LOOP);
5671     OPCODE(CLC);
5672     OPCODE(CLC_LOOP);
5673     OPCODE(STPCPY);
5674     OPCODE(STRCMP);
5675     OPCODE(SEARCH_STRING);
5676     OPCODE(IPM);
5677     OPCODE(MEMBARRIER);
5678     OPCODE(TBEGIN);
5679     OPCODE(TBEGIN_NOFLOAT);
5680     OPCODE(TEND);
5681     OPCODE(BYTE_MASK);
5682     OPCODE(ROTATE_MASK);
5683     OPCODE(REPLICATE);
5684     OPCODE(JOIN_DWORDS);
5685     OPCODE(SPLAT);
5686     OPCODE(MERGE_HIGH);
5687     OPCODE(MERGE_LOW);
5688     OPCODE(SHL_DOUBLE);
5689     OPCODE(PERMUTE_DWORDS);
5690     OPCODE(PERMUTE);
5691     OPCODE(PACK);
5692     OPCODE(PACKS_CC);
5693     OPCODE(PACKLS_CC);
5694     OPCODE(UNPACK_HIGH);
5695     OPCODE(UNPACKL_HIGH);
5696     OPCODE(UNPACK_LOW);
5697     OPCODE(UNPACKL_LOW);
5698     OPCODE(VSHL_BY_SCALAR);
5699     OPCODE(VSRL_BY_SCALAR);
5700     OPCODE(VSRA_BY_SCALAR);
5701     OPCODE(VSUM);
5702     OPCODE(VICMPE);
5703     OPCODE(VICMPH);
5704     OPCODE(VICMPHL);
5705     OPCODE(VICMPES);
5706     OPCODE(VICMPHS);
5707     OPCODE(VICMPHLS);
5708     OPCODE(VFCMPE);
5709     OPCODE(STRICT_VFCMPE);
5710     OPCODE(STRICT_VFCMPES);
5711     OPCODE(VFCMPH);
5712     OPCODE(STRICT_VFCMPH);
5713     OPCODE(STRICT_VFCMPHS);
5714     OPCODE(VFCMPHE);
5715     OPCODE(STRICT_VFCMPHE);
5716     OPCODE(STRICT_VFCMPHES);
5717     OPCODE(VFCMPES);
5718     OPCODE(VFCMPHS);
5719     OPCODE(VFCMPHES);
5720     OPCODE(VFTCI);
5721     OPCODE(VEXTEND);
5722     OPCODE(STRICT_VEXTEND);
5723     OPCODE(VROUND);
5724     OPCODE(STRICT_VROUND);
5725     OPCODE(VTM);
5726     OPCODE(VFAE_CC);
5727     OPCODE(VFAEZ_CC);
5728     OPCODE(VFEE_CC);
5729     OPCODE(VFEEZ_CC);
5730     OPCODE(VFENE_CC);
5731     OPCODE(VFENEZ_CC);
5732     OPCODE(VISTR_CC);
5733     OPCODE(VSTRC_CC);
5734     OPCODE(VSTRCZ_CC);
5735     OPCODE(VSTRS_CC);
5736     OPCODE(VSTRSZ_CC);
5737     OPCODE(TDC);
5738     OPCODE(ATOMIC_SWAPW);
5739     OPCODE(ATOMIC_LOADW_ADD);
5740     OPCODE(ATOMIC_LOADW_SUB);
5741     OPCODE(ATOMIC_LOADW_AND);
5742     OPCODE(ATOMIC_LOADW_OR);
5743     OPCODE(ATOMIC_LOADW_XOR);
5744     OPCODE(ATOMIC_LOADW_NAND);
5745     OPCODE(ATOMIC_LOADW_MIN);
5746     OPCODE(ATOMIC_LOADW_MAX);
5747     OPCODE(ATOMIC_LOADW_UMIN);
5748     OPCODE(ATOMIC_LOADW_UMAX);
5749     OPCODE(ATOMIC_CMP_SWAPW);
5750     OPCODE(ATOMIC_CMP_SWAP);
5751     OPCODE(ATOMIC_LOAD_128);
5752     OPCODE(ATOMIC_STORE_128);
5753     OPCODE(ATOMIC_CMP_SWAP_128);
5754     OPCODE(LRV);
5755     OPCODE(STRV);
5756     OPCODE(VLER);
5757     OPCODE(VSTER);
5758     OPCODE(PREFETCH);
5759   }
5760   return nullptr;
5761 #undef OPCODE
5762 }
5763 
5764 // Return true if VT is a vector whose elements are a whole number of bytes
5765 // in width. Also check for presence of vector support.
5766 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5767   if (!Subtarget.hasVector())
5768     return false;
5769 
5770   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5771 }
5772 
5773 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5774 // producing a result of type ResVT.  Op is a possibly bitcast version
5775 // of the input vector and Index is the index (based on type VecVT) that
5776 // should be extracted.  Return the new extraction if a simplification
5777 // was possible or if Force is true.
5778 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5779                                               EVT VecVT, SDValue Op,
5780                                               unsigned Index,
5781                                               DAGCombinerInfo &DCI,
5782                                               bool Force) const {
5783   SelectionDAG &DAG = DCI.DAG;
5784 
5785   // The number of bytes being extracted.
5786   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5787 
5788   for (;;) {
5789     unsigned Opcode = Op.getOpcode();
5790     if (Opcode == ISD::BITCAST)
5791       // Look through bitcasts.
5792       Op = Op.getOperand(0);
5793     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5794              canTreatAsByteVector(Op.getValueType())) {
5795       // Get a VPERM-like permute mask and see whether the bytes covered
5796       // by the extracted element are a contiguous sequence from one
5797       // source operand.
5798       SmallVector<int, SystemZ::VectorBytes> Bytes;
5799       if (!getVPermMask(Op, Bytes))
5800         break;
5801       int First;
5802       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5803                            BytesPerElement, First))
5804         break;
5805       if (First < 0)
5806         return DAG.getUNDEF(ResVT);
5807       // Make sure the contiguous sequence starts at a multiple of the
5808       // original element size.
5809       unsigned Byte = unsigned(First) % Bytes.size();
5810       if (Byte % BytesPerElement != 0)
5811         break;
5812       // We can get the extracted value directly from an input.
5813       Index = Byte / BytesPerElement;
5814       Op = Op.getOperand(unsigned(First) / Bytes.size());
5815       Force = true;
5816     } else if (Opcode == ISD::BUILD_VECTOR &&
5817                canTreatAsByteVector(Op.getValueType())) {
5818       // We can only optimize this case if the BUILD_VECTOR elements are
5819       // at least as wide as the extracted value.
5820       EVT OpVT = Op.getValueType();
5821       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5822       if (OpBytesPerElement < BytesPerElement)
5823         break;
5824       // Make sure that the least-significant bit of the extracted value
5825       // is the least significant bit of an input.
5826       unsigned End = (Index + 1) * BytesPerElement;
5827       if (End % OpBytesPerElement != 0)
5828         break;
5829       // We're extracting the low part of one operand of the BUILD_VECTOR.
5830       Op = Op.getOperand(End / OpBytesPerElement - 1);
5831       if (!Op.getValueType().isInteger()) {
5832         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5833         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5834         DCI.AddToWorklist(Op.getNode());
5835       }
5836       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5837       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5838       if (VT != ResVT) {
5839         DCI.AddToWorklist(Op.getNode());
5840         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5841       }
5842       return Op;
5843     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5844                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5845                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5846                canTreatAsByteVector(Op.getValueType()) &&
5847                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5848       // Make sure that only the unextended bits are significant.
5849       EVT ExtVT = Op.getValueType();
5850       EVT OpVT = Op.getOperand(0).getValueType();
5851       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5852       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5853       unsigned Byte = Index * BytesPerElement;
5854       unsigned SubByte = Byte % ExtBytesPerElement;
5855       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5856       if (SubByte < MinSubByte ||
5857           SubByte + BytesPerElement > ExtBytesPerElement)
5858         break;
5859       // Get the byte offset of the unextended element
5860       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5861       // ...then add the byte offset relative to that element.
5862       Byte += SubByte - MinSubByte;
5863       if (Byte % BytesPerElement != 0)
5864         break;
5865       Op = Op.getOperand(0);
5866       Index = Byte / BytesPerElement;
5867       Force = true;
5868     } else
5869       break;
5870   }
5871   if (Force) {
5872     if (Op.getValueType() != VecVT) {
5873       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5874       DCI.AddToWorklist(Op.getNode());
5875     }
5876     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5877                        DAG.getConstant(Index, DL, MVT::i32));
5878   }
5879   return SDValue();
5880 }
5881 
5882 // Optimize vector operations in scalar value Op on the basis that Op
5883 // is truncated to TruncVT.
5884 SDValue SystemZTargetLowering::combineTruncateExtract(
5885     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5886   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5887   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5888   // of type TruncVT.
5889   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5890       TruncVT.getSizeInBits() % 8 == 0) {
5891     SDValue Vec = Op.getOperand(0);
5892     EVT VecVT = Vec.getValueType();
5893     if (canTreatAsByteVector(VecVT)) {
5894       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5895         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5896         unsigned TruncBytes = TruncVT.getStoreSize();
5897         if (BytesPerElement % TruncBytes == 0) {
5898           // Calculate the value of Y' in the above description.  We are
5899           // splitting the original elements into Scale equal-sized pieces
5900           // and for truncation purposes want the last (least-significant)
5901           // of these pieces for IndexN.  This is easiest to do by calculating
5902           // the start index of the following element and then subtracting 1.
5903           unsigned Scale = BytesPerElement / TruncBytes;
5904           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5905 
5906           // Defer the creation of the bitcast from X to combineExtract,
5907           // which might be able to optimize the extraction.
5908           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5909                                    VecVT.getStoreSize() / TruncBytes);
5910           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5911           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5912         }
5913       }
5914     }
5915   }
5916   return SDValue();
5917 }
5918 
5919 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5920     SDNode *N, DAGCombinerInfo &DCI) const {
5921   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5922   SelectionDAG &DAG = DCI.DAG;
5923   SDValue N0 = N->getOperand(0);
5924   EVT VT = N->getValueType(0);
5925   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5926     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5927     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5928     if (TrueOp && FalseOp) {
5929       SDLoc DL(N0);
5930       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5931                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5932                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5933       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5934       // If N0 has multiple uses, change other uses as well.
5935       if (!N0.hasOneUse()) {
5936         SDValue TruncSelect =
5937           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5938         DCI.CombineTo(N0.getNode(), TruncSelect);
5939       }
5940       return NewSelect;
5941     }
5942   }
5943   return SDValue();
5944 }
5945 
5946 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5947     SDNode *N, DAGCombinerInfo &DCI) const {
5948   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5949   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5950   // into (select_cc LHS, RHS, -1, 0, COND)
5951   SelectionDAG &DAG = DCI.DAG;
5952   SDValue N0 = N->getOperand(0);
5953   EVT VT = N->getValueType(0);
5954   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5955   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5956     N0 = N0.getOperand(0);
5957   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5958     SDLoc DL(N0);
5959     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5960                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5961                       N0.getOperand(2) };
5962     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5963   }
5964   return SDValue();
5965 }
5966 
5967 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5968     SDNode *N, DAGCombinerInfo &DCI) const {
5969   // Convert (sext (ashr (shl X, C1), C2)) to
5970   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5971   // cheap as narrower ones.
5972   SelectionDAG &DAG = DCI.DAG;
5973   SDValue N0 = N->getOperand(0);
5974   EVT VT = N->getValueType(0);
5975   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5976     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5977     SDValue Inner = N0.getOperand(0);
5978     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5979       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5980         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5981         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5982         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5983         EVT ShiftVT = N0.getOperand(1).getValueType();
5984         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5985                                   Inner.getOperand(0));
5986         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5987                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5988                                                   ShiftVT));
5989         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5990                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5991       }
5992     }
5993   }
5994   return SDValue();
5995 }
5996 
5997 SDValue SystemZTargetLowering::combineMERGE(
5998     SDNode *N, DAGCombinerInfo &DCI) const {
5999   SelectionDAG &DAG = DCI.DAG;
6000   unsigned Opcode = N->getOpcode();
6001   SDValue Op0 = N->getOperand(0);
6002   SDValue Op1 = N->getOperand(1);
6003   if (Op0.getOpcode() == ISD::BITCAST)
6004     Op0 = Op0.getOperand(0);
6005   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6006     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
6007     // for v4f32.
6008     if (Op1 == N->getOperand(0))
6009       return Op1;
6010     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6011     EVT VT = Op1.getValueType();
6012     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6013     if (ElemBytes <= 4) {
6014       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6015                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6016       EVT InVT = VT.changeVectorElementTypeToInteger();
6017       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6018                                    SystemZ::VectorBytes / ElemBytes / 2);
6019       if (VT != InVT) {
6020         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6021         DCI.AddToWorklist(Op1.getNode());
6022       }
6023       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6024       DCI.AddToWorklist(Op.getNode());
6025       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6026     }
6027   }
6028   return SDValue();
6029 }
6030 
6031 SDValue SystemZTargetLowering::combineLOAD(
6032     SDNode *N, DAGCombinerInfo &DCI) const {
6033   SelectionDAG &DAG = DCI.DAG;
6034   EVT LdVT = N->getValueType(0);
6035   if (LdVT.isVector() || LdVT.isInteger())
6036     return SDValue();
6037   // Transform a scalar load that is REPLICATEd as well as having other
6038   // use(s) to the form where the other use(s) use the first element of the
6039   // REPLICATE instead of the load. Otherwise instruction selection will not
6040   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6041   // point loads.
6042 
6043   SDValue Replicate;
6044   SmallVector<SDNode*, 8> OtherUses;
6045   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6046        UI != UE; ++UI) {
6047     if (UI->getOpcode() == SystemZISD::REPLICATE) {
6048       if (Replicate)
6049         return SDValue(); // Should never happen
6050       Replicate = SDValue(*UI, 0);
6051     }
6052     else if (UI.getUse().getResNo() == 0)
6053       OtherUses.push_back(*UI);
6054   }
6055   if (!Replicate || OtherUses.empty())
6056     return SDValue();
6057 
6058   SDLoc DL(N);
6059   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6060                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6061   // Update uses of the loaded Value while preserving old chains.
6062   for (SDNode *U : OtherUses) {
6063     SmallVector<SDValue, 8> Ops;
6064     for (SDValue Op : U->ops())
6065       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6066     DAG.UpdateNodeOperands(U, Ops);
6067   }
6068   return SDValue(N, 0);
6069 }
6070 
6071 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6072   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6073     return true;
6074   if (Subtarget.hasVectorEnhancements2())
6075     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6076       return true;
6077   return false;
6078 }
6079 
6080 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6081   if (!VT.isVector() || !VT.isSimple() ||
6082       VT.getSizeInBits() != 128 ||
6083       VT.getScalarSizeInBits() % 8 != 0)
6084     return false;
6085 
6086   unsigned NumElts = VT.getVectorNumElements();
6087   for (unsigned i = 0; i < NumElts; ++i) {
6088     if (M[i] < 0) continue; // ignore UNDEF indices
6089     if ((unsigned) M[i] != NumElts - 1 - i)
6090       return false;
6091   }
6092 
6093   return true;
6094 }
6095 
6096 SDValue SystemZTargetLowering::combineSTORE(
6097     SDNode *N, DAGCombinerInfo &DCI) const {
6098   SelectionDAG &DAG = DCI.DAG;
6099   auto *SN = cast<StoreSDNode>(N);
6100   auto &Op1 = N->getOperand(1);
6101   EVT MemVT = SN->getMemoryVT();
6102   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6103   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6104   // If X has wider elements then convert it to:
6105   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6106   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6107     if (SDValue Value =
6108             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6109       DCI.AddToWorklist(Value.getNode());
6110 
6111       // Rewrite the store with the new form of stored value.
6112       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6113                                SN->getBasePtr(), SN->getMemoryVT(),
6114                                SN->getMemOperand());
6115     }
6116   }
6117   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6118   if (!SN->isTruncatingStore() &&
6119       Op1.getOpcode() == ISD::BSWAP &&
6120       Op1.getNode()->hasOneUse() &&
6121       canLoadStoreByteSwapped(Op1.getValueType())) {
6122 
6123       SDValue BSwapOp = Op1.getOperand(0);
6124 
6125       if (BSwapOp.getValueType() == MVT::i16)
6126         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6127 
6128       SDValue Ops[] = {
6129         N->getOperand(0), BSwapOp, N->getOperand(2)
6130       };
6131 
6132       return
6133         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6134                                 Ops, MemVT, SN->getMemOperand());
6135     }
6136   // Combine STORE (element-swap) into VSTER
6137   if (!SN->isTruncatingStore() &&
6138       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6139       Op1.getNode()->hasOneUse() &&
6140       Subtarget.hasVectorEnhancements2()) {
6141     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6142     ArrayRef<int> ShuffleMask = SVN->getMask();
6143     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6144       SDValue Ops[] = {
6145         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6146       };
6147 
6148       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6149                                      DAG.getVTList(MVT::Other),
6150                                      Ops, MemVT, SN->getMemOperand());
6151     }
6152   }
6153 
6154   return SDValue();
6155 }
6156 
6157 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6158     SDNode *N, DAGCombinerInfo &DCI) const {
6159   SelectionDAG &DAG = DCI.DAG;
6160   // Combine element-swap (LOAD) into VLER
6161   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6162       N->getOperand(0).hasOneUse() &&
6163       Subtarget.hasVectorEnhancements2()) {
6164     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6165     ArrayRef<int> ShuffleMask = SVN->getMask();
6166     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6167       SDValue Load = N->getOperand(0);
6168       LoadSDNode *LD = cast<LoadSDNode>(Load);
6169 
6170       // Create the element-swapping load.
6171       SDValue Ops[] = {
6172         LD->getChain(),    // Chain
6173         LD->getBasePtr()   // Ptr
6174       };
6175       SDValue ESLoad =
6176         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6177                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6178                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6179 
6180       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6181       // by the load dead.
6182       DCI.CombineTo(N, ESLoad);
6183 
6184       // Next, combine the load away, we give it a bogus result value but a real
6185       // chain result.  The result value is dead because the shuffle is dead.
6186       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6187 
6188       // Return N so it doesn't get rechecked!
6189       return SDValue(N, 0);
6190     }
6191   }
6192 
6193   return SDValue();
6194 }
6195 
6196 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6197     SDNode *N, DAGCombinerInfo &DCI) const {
6198   SelectionDAG &DAG = DCI.DAG;
6199 
6200   if (!Subtarget.hasVector())
6201     return SDValue();
6202 
6203   // Look through bitcasts that retain the number of vector elements.
6204   SDValue Op = N->getOperand(0);
6205   if (Op.getOpcode() == ISD::BITCAST &&
6206       Op.getValueType().isVector() &&
6207       Op.getOperand(0).getValueType().isVector() &&
6208       Op.getValueType().getVectorNumElements() ==
6209       Op.getOperand(0).getValueType().getVectorNumElements())
6210     Op = Op.getOperand(0);
6211 
6212   // Pull BSWAP out of a vector extraction.
6213   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6214     EVT VecVT = Op.getValueType();
6215     EVT EltVT = VecVT.getVectorElementType();
6216     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6217                      Op.getOperand(0), N->getOperand(1));
6218     DCI.AddToWorklist(Op.getNode());
6219     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6220     if (EltVT != N->getValueType(0)) {
6221       DCI.AddToWorklist(Op.getNode());
6222       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6223     }
6224     return Op;
6225   }
6226 
6227   // Try to simplify a vector extraction.
6228   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6229     SDValue Op0 = N->getOperand(0);
6230     EVT VecVT = Op0.getValueType();
6231     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6232                           IndexN->getZExtValue(), DCI, false);
6233   }
6234   return SDValue();
6235 }
6236 
6237 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6238     SDNode *N, DAGCombinerInfo &DCI) const {
6239   SelectionDAG &DAG = DCI.DAG;
6240   // (join_dwords X, X) == (replicate X)
6241   if (N->getOperand(0) == N->getOperand(1))
6242     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6243                        N->getOperand(0));
6244   return SDValue();
6245 }
6246 
6247 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6248   SDValue Chain1 = N1->getOperand(0);
6249   SDValue Chain2 = N2->getOperand(0);
6250 
6251   // Trivial case: both nodes take the same chain.
6252   if (Chain1 == Chain2)
6253     return Chain1;
6254 
6255   // FIXME - we could handle more complex cases via TokenFactor,
6256   // assuming we can verify that this would not create a cycle.
6257   return SDValue();
6258 }
6259 
6260 SDValue SystemZTargetLowering::combineFP_ROUND(
6261     SDNode *N, DAGCombinerInfo &DCI) const {
6262 
6263   if (!Subtarget.hasVector())
6264     return SDValue();
6265 
6266   // (fpround (extract_vector_elt X 0))
6267   // (fpround (extract_vector_elt X 1)) ->
6268   // (extract_vector_elt (VROUND X) 0)
6269   // (extract_vector_elt (VROUND X) 2)
6270   //
6271   // This is a special case since the target doesn't really support v2f32s.
6272   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6273   SelectionDAG &DAG = DCI.DAG;
6274   SDValue Op0 = N->getOperand(OpNo);
6275   if (N->getValueType(0) == MVT::f32 &&
6276       Op0.hasOneUse() &&
6277       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6278       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6279       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6280       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6281     SDValue Vec = Op0.getOperand(0);
6282     for (auto *U : Vec->uses()) {
6283       if (U != Op0.getNode() &&
6284           U->hasOneUse() &&
6285           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6286           U->getOperand(0) == Vec &&
6287           U->getOperand(1).getOpcode() == ISD::Constant &&
6288           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6289         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6290         if (OtherRound.getOpcode() == N->getOpcode() &&
6291             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6292             OtherRound.getValueType() == MVT::f32) {
6293           SDValue VRound, Chain;
6294           if (N->isStrictFPOpcode()) {
6295             Chain = MergeInputChains(N, OtherRound.getNode());
6296             if (!Chain)
6297               continue;
6298             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6299                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6300             Chain = VRound.getValue(1);
6301           } else
6302             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6303                                  MVT::v4f32, Vec);
6304           DCI.AddToWorklist(VRound.getNode());
6305           SDValue Extract1 =
6306             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6307                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6308           DCI.AddToWorklist(Extract1.getNode());
6309           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6310           if (Chain)
6311             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6312           SDValue Extract0 =
6313             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6314                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6315           if (Chain)
6316             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6317                                N->getVTList(), Extract0, Chain);
6318           return Extract0;
6319         }
6320       }
6321     }
6322   }
6323   return SDValue();
6324 }
6325 
6326 SDValue SystemZTargetLowering::combineFP_EXTEND(
6327     SDNode *N, DAGCombinerInfo &DCI) const {
6328 
6329   if (!Subtarget.hasVector())
6330     return SDValue();
6331 
6332   // (fpextend (extract_vector_elt X 0))
6333   // (fpextend (extract_vector_elt X 2)) ->
6334   // (extract_vector_elt (VEXTEND X) 0)
6335   // (extract_vector_elt (VEXTEND X) 1)
6336   //
6337   // This is a special case since the target doesn't really support v2f32s.
6338   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6339   SelectionDAG &DAG = DCI.DAG;
6340   SDValue Op0 = N->getOperand(OpNo);
6341   if (N->getValueType(0) == MVT::f64 &&
6342       Op0.hasOneUse() &&
6343       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6344       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6345       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6346       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6347     SDValue Vec = Op0.getOperand(0);
6348     for (auto *U : Vec->uses()) {
6349       if (U != Op0.getNode() &&
6350           U->hasOneUse() &&
6351           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6352           U->getOperand(0) == Vec &&
6353           U->getOperand(1).getOpcode() == ISD::Constant &&
6354           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6355         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6356         if (OtherExtend.getOpcode() == N->getOpcode() &&
6357             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6358             OtherExtend.getValueType() == MVT::f64) {
6359           SDValue VExtend, Chain;
6360           if (N->isStrictFPOpcode()) {
6361             Chain = MergeInputChains(N, OtherExtend.getNode());
6362             if (!Chain)
6363               continue;
6364             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6365                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6366             Chain = VExtend.getValue(1);
6367           } else
6368             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6369                                   MVT::v2f64, Vec);
6370           DCI.AddToWorklist(VExtend.getNode());
6371           SDValue Extract1 =
6372             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6373                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6374           DCI.AddToWorklist(Extract1.getNode());
6375           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6376           if (Chain)
6377             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6378           SDValue Extract0 =
6379             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6380                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6381           if (Chain)
6382             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6383                                N->getVTList(), Extract0, Chain);
6384           return Extract0;
6385         }
6386       }
6387     }
6388   }
6389   return SDValue();
6390 }
6391 
6392 SDValue SystemZTargetLowering::combineINT_TO_FP(
6393     SDNode *N, DAGCombinerInfo &DCI) const {
6394   if (DCI.Level != BeforeLegalizeTypes)
6395     return SDValue();
6396   unsigned Opcode = N->getOpcode();
6397   EVT OutVT = N->getValueType(0);
6398   SelectionDAG &DAG = DCI.DAG;
6399   SDValue Op = N->getOperand(0);
6400   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6401   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6402 
6403   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6404   // v2f64 = uint_to_fp v2i16
6405   // =>
6406   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6407   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6408     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6409                                  OutVT.getVectorNumElements());
6410     unsigned ExtOpcode =
6411       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6412     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6413     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6414   }
6415   return SDValue();
6416 }
6417 
6418 SDValue SystemZTargetLowering::combineBSWAP(
6419     SDNode *N, DAGCombinerInfo &DCI) const {
6420   SelectionDAG &DAG = DCI.DAG;
6421   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6422   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6423       N->getOperand(0).hasOneUse() &&
6424       canLoadStoreByteSwapped(N->getValueType(0))) {
6425       SDValue Load = N->getOperand(0);
6426       LoadSDNode *LD = cast<LoadSDNode>(Load);
6427 
6428       // Create the byte-swapping load.
6429       SDValue Ops[] = {
6430         LD->getChain(),    // Chain
6431         LD->getBasePtr()   // Ptr
6432       };
6433       EVT LoadVT = N->getValueType(0);
6434       if (LoadVT == MVT::i16)
6435         LoadVT = MVT::i32;
6436       SDValue BSLoad =
6437         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6438                                 DAG.getVTList(LoadVT, MVT::Other),
6439                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6440 
6441       // If this is an i16 load, insert the truncate.
6442       SDValue ResVal = BSLoad;
6443       if (N->getValueType(0) == MVT::i16)
6444         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6445 
6446       // First, combine the bswap away.  This makes the value produced by the
6447       // load dead.
6448       DCI.CombineTo(N, ResVal);
6449 
6450       // Next, combine the load away, we give it a bogus result value but a real
6451       // chain result.  The result value is dead because the bswap is dead.
6452       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6453 
6454       // Return N so it doesn't get rechecked!
6455       return SDValue(N, 0);
6456     }
6457 
6458   // Look through bitcasts that retain the number of vector elements.
6459   SDValue Op = N->getOperand(0);
6460   if (Op.getOpcode() == ISD::BITCAST &&
6461       Op.getValueType().isVector() &&
6462       Op.getOperand(0).getValueType().isVector() &&
6463       Op.getValueType().getVectorNumElements() ==
6464       Op.getOperand(0).getValueType().getVectorNumElements())
6465     Op = Op.getOperand(0);
6466 
6467   // Push BSWAP into a vector insertion if at least one side then simplifies.
6468   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6469     SDValue Vec = Op.getOperand(0);
6470     SDValue Elt = Op.getOperand(1);
6471     SDValue Idx = Op.getOperand(2);
6472 
6473     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6474         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6475         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6476         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6477         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6478          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6479       EVT VecVT = N->getValueType(0);
6480       EVT EltVT = N->getValueType(0).getVectorElementType();
6481       if (VecVT != Vec.getValueType()) {
6482         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6483         DCI.AddToWorklist(Vec.getNode());
6484       }
6485       if (EltVT != Elt.getValueType()) {
6486         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6487         DCI.AddToWorklist(Elt.getNode());
6488       }
6489       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6490       DCI.AddToWorklist(Vec.getNode());
6491       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6492       DCI.AddToWorklist(Elt.getNode());
6493       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6494                          Vec, Elt, Idx);
6495     }
6496   }
6497 
6498   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6499   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6500   if (SV && Op.hasOneUse()) {
6501     SDValue Op0 = Op.getOperand(0);
6502     SDValue Op1 = Op.getOperand(1);
6503 
6504     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6505         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6506         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6507         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6508       EVT VecVT = N->getValueType(0);
6509       if (VecVT != Op0.getValueType()) {
6510         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6511         DCI.AddToWorklist(Op0.getNode());
6512       }
6513       if (VecVT != Op1.getValueType()) {
6514         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6515         DCI.AddToWorklist(Op1.getNode());
6516       }
6517       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6518       DCI.AddToWorklist(Op0.getNode());
6519       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6520       DCI.AddToWorklist(Op1.getNode());
6521       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6522     }
6523   }
6524 
6525   return SDValue();
6526 }
6527 
6528 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6529   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6530   // set by the CCReg instruction using the CCValid / CCMask masks,
6531   // If the CCReg instruction is itself a ICMP testing the condition
6532   // code set by some other instruction, see whether we can directly
6533   // use that condition code.
6534 
6535   // Verify that we have an ICMP against some constant.
6536   if (CCValid != SystemZ::CCMASK_ICMP)
6537     return false;
6538   auto *ICmp = CCReg.getNode();
6539   if (ICmp->getOpcode() != SystemZISD::ICMP)
6540     return false;
6541   auto *CompareLHS = ICmp->getOperand(0).getNode();
6542   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6543   if (!CompareRHS)
6544     return false;
6545 
6546   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6547   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6548     // Verify that we have an appropriate mask for a EQ or NE comparison.
6549     bool Invert = false;
6550     if (CCMask == SystemZ::CCMASK_CMP_NE)
6551       Invert = !Invert;
6552     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6553       return false;
6554 
6555     // Verify that the ICMP compares against one of select values.
6556     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6557     if (!TrueVal)
6558       return false;
6559     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6560     if (!FalseVal)
6561       return false;
6562     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6563       Invert = !Invert;
6564     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6565       return false;
6566 
6567     // Compute the effective CC mask for the new branch or select.
6568     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6569     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6570     if (!NewCCValid || !NewCCMask)
6571       return false;
6572     CCValid = NewCCValid->getZExtValue();
6573     CCMask = NewCCMask->getZExtValue();
6574     if (Invert)
6575       CCMask ^= CCValid;
6576 
6577     // Return the updated CCReg link.
6578     CCReg = CompareLHS->getOperand(4);
6579     return true;
6580   }
6581 
6582   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6583   if (CompareLHS->getOpcode() == ISD::SRA) {
6584     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6585     if (!SRACount || SRACount->getZExtValue() != 30)
6586       return false;
6587     auto *SHL = CompareLHS->getOperand(0).getNode();
6588     if (SHL->getOpcode() != ISD::SHL)
6589       return false;
6590     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6591     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6592       return false;
6593     auto *IPM = SHL->getOperand(0).getNode();
6594     if (IPM->getOpcode() != SystemZISD::IPM)
6595       return false;
6596 
6597     // Avoid introducing CC spills (because SRA would clobber CC).
6598     if (!CompareLHS->hasOneUse())
6599       return false;
6600     // Verify that the ICMP compares against zero.
6601     if (CompareRHS->getZExtValue() != 0)
6602       return false;
6603 
6604     // Compute the effective CC mask for the new branch or select.
6605     CCMask = SystemZ::reverseCCMask(CCMask);
6606 
6607     // Return the updated CCReg link.
6608     CCReg = IPM->getOperand(0);
6609     return true;
6610   }
6611 
6612   return false;
6613 }
6614 
6615 SDValue SystemZTargetLowering::combineBR_CCMASK(
6616     SDNode *N, DAGCombinerInfo &DCI) const {
6617   SelectionDAG &DAG = DCI.DAG;
6618 
6619   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6620   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6621   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6622   if (!CCValid || !CCMask)
6623     return SDValue();
6624 
6625   int CCValidVal = CCValid->getZExtValue();
6626   int CCMaskVal = CCMask->getZExtValue();
6627   SDValue Chain = N->getOperand(0);
6628   SDValue CCReg = N->getOperand(4);
6629 
6630   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6631     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6632                        Chain,
6633                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6634                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6635                        N->getOperand(3), CCReg);
6636   return SDValue();
6637 }
6638 
6639 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6640     SDNode *N, DAGCombinerInfo &DCI) const {
6641   SelectionDAG &DAG = DCI.DAG;
6642 
6643   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6644   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6645   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6646   if (!CCValid || !CCMask)
6647     return SDValue();
6648 
6649   int CCValidVal = CCValid->getZExtValue();
6650   int CCMaskVal = CCMask->getZExtValue();
6651   SDValue CCReg = N->getOperand(4);
6652 
6653   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6654     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6655                        N->getOperand(0), N->getOperand(1),
6656                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6657                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6658                        CCReg);
6659   return SDValue();
6660 }
6661 
6662 
6663 SDValue SystemZTargetLowering::combineGET_CCMASK(
6664     SDNode *N, DAGCombinerInfo &DCI) const {
6665 
6666   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6667   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6668   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6669   if (!CCValid || !CCMask)
6670     return SDValue();
6671   int CCValidVal = CCValid->getZExtValue();
6672   int CCMaskVal = CCMask->getZExtValue();
6673 
6674   SDValue Select = N->getOperand(0);
6675   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6676     return SDValue();
6677 
6678   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6679   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6680   if (!SelectCCValid || !SelectCCMask)
6681     return SDValue();
6682   int SelectCCValidVal = SelectCCValid->getZExtValue();
6683   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6684 
6685   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6686   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6687   if (!TrueVal || !FalseVal)
6688     return SDValue();
6689   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6690     ;
6691   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6692     SelectCCMaskVal ^= SelectCCValidVal;
6693   else
6694     return SDValue();
6695 
6696   if (SelectCCValidVal & ~CCValidVal)
6697     return SDValue();
6698   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6699     return SDValue();
6700 
6701   return Select->getOperand(4);
6702 }
6703 
6704 SDValue SystemZTargetLowering::combineIntDIVREM(
6705     SDNode *N, DAGCombinerInfo &DCI) const {
6706   SelectionDAG &DAG = DCI.DAG;
6707   EVT VT = N->getValueType(0);
6708   // In the case where the divisor is a vector of constants a cheaper
6709   // sequence of instructions can replace the divide. BuildSDIV is called to
6710   // do this during DAG combining, but it only succeeds when it can build a
6711   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6712   // since it is not Legal but Custom it can only happen before
6713   // legalization. Therefore we must scalarize this early before Combine
6714   // 1. For widened vectors, this is already the result of type legalization.
6715   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6716       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6717     return DAG.UnrollVectorOp(N);
6718   return SDValue();
6719 }
6720 
6721 SDValue SystemZTargetLowering::combineINTRINSIC(
6722     SDNode *N, DAGCombinerInfo &DCI) const {
6723   SelectionDAG &DAG = DCI.DAG;
6724 
6725   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6726   switch (Id) {
6727   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6728   // or larger is simply a vector load.
6729   case Intrinsic::s390_vll:
6730   case Intrinsic::s390_vlrl:
6731     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6732       if (C->getZExtValue() >= 15)
6733         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6734                            N->getOperand(3), MachinePointerInfo());
6735     break;
6736   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6737   case Intrinsic::s390_vstl:
6738   case Intrinsic::s390_vstrl:
6739     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6740       if (C->getZExtValue() >= 15)
6741         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6742                             N->getOperand(4), MachinePointerInfo());
6743     break;
6744   }
6745 
6746   return SDValue();
6747 }
6748 
6749 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6750   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6751     return N->getOperand(0);
6752   return N;
6753 }
6754 
6755 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6756                                                  DAGCombinerInfo &DCI) const {
6757   switch(N->getOpcode()) {
6758   default: break;
6759   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6760   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6761   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6762   case SystemZISD::MERGE_HIGH:
6763   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6764   case ISD::LOAD:               return combineLOAD(N, DCI);
6765   case ISD::STORE:              return combineSTORE(N, DCI);
6766   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6767   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6768   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6769   case ISD::STRICT_FP_ROUND:
6770   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6771   case ISD::STRICT_FP_EXTEND:
6772   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6773   case ISD::SINT_TO_FP:
6774   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
6775   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6776   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6777   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6778   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6779   case ISD::SDIV:
6780   case ISD::UDIV:
6781   case ISD::SREM:
6782   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6783   case ISD::INTRINSIC_W_CHAIN:
6784   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
6785   }
6786 
6787   return SDValue();
6788 }
6789 
6790 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6791 // are for Op.
6792 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6793                                     unsigned OpNo) {
6794   EVT VT = Op.getValueType();
6795   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6796   APInt SrcDemE;
6797   unsigned Opcode = Op.getOpcode();
6798   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6799     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6800     switch (Id) {
6801     case Intrinsic::s390_vpksh:   // PACKS
6802     case Intrinsic::s390_vpksf:
6803     case Intrinsic::s390_vpksg:
6804     case Intrinsic::s390_vpkshs:  // PACKS_CC
6805     case Intrinsic::s390_vpksfs:
6806     case Intrinsic::s390_vpksgs:
6807     case Intrinsic::s390_vpklsh:  // PACKLS
6808     case Intrinsic::s390_vpklsf:
6809     case Intrinsic::s390_vpklsg:
6810     case Intrinsic::s390_vpklshs: // PACKLS_CC
6811     case Intrinsic::s390_vpklsfs:
6812     case Intrinsic::s390_vpklsgs:
6813       // VECTOR PACK truncates the elements of two source vectors into one.
6814       SrcDemE = DemandedElts;
6815       if (OpNo == 2)
6816         SrcDemE.lshrInPlace(NumElts / 2);
6817       SrcDemE = SrcDemE.trunc(NumElts / 2);
6818       break;
6819       // VECTOR UNPACK extends half the elements of the source vector.
6820     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6821     case Intrinsic::s390_vuphh:
6822     case Intrinsic::s390_vuphf:
6823     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6824     case Intrinsic::s390_vuplhh:
6825     case Intrinsic::s390_vuplhf:
6826       SrcDemE = APInt(NumElts * 2, 0);
6827       SrcDemE.insertBits(DemandedElts, 0);
6828       break;
6829     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6830     case Intrinsic::s390_vuplhw:
6831     case Intrinsic::s390_vuplf:
6832     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6833     case Intrinsic::s390_vupllh:
6834     case Intrinsic::s390_vupllf:
6835       SrcDemE = APInt(NumElts * 2, 0);
6836       SrcDemE.insertBits(DemandedElts, NumElts);
6837       break;
6838     case Intrinsic::s390_vpdi: {
6839       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6840       SrcDemE = APInt(NumElts, 0);
6841       if (!DemandedElts[OpNo - 1])
6842         break;
6843       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6844       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6845       // Demand input element 0 or 1, given by the mask bit value.
6846       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6847       break;
6848     }
6849     case Intrinsic::s390_vsldb: {
6850       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6851       assert(VT == MVT::v16i8 && "Unexpected type.");
6852       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6853       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6854       unsigned NumSrc0Els = 16 - FirstIdx;
6855       SrcDemE = APInt(NumElts, 0);
6856       if (OpNo == 1) {
6857         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6858         SrcDemE.insertBits(DemEls, FirstIdx);
6859       } else {
6860         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6861         SrcDemE.insertBits(DemEls, 0);
6862       }
6863       break;
6864     }
6865     case Intrinsic::s390_vperm:
6866       SrcDemE = APInt(NumElts, 1);
6867       break;
6868     default:
6869       llvm_unreachable("Unhandled intrinsic.");
6870       break;
6871     }
6872   } else {
6873     switch (Opcode) {
6874     case SystemZISD::JOIN_DWORDS:
6875       // Scalar operand.
6876       SrcDemE = APInt(1, 1);
6877       break;
6878     case SystemZISD::SELECT_CCMASK:
6879       SrcDemE = DemandedElts;
6880       break;
6881     default:
6882       llvm_unreachable("Unhandled opcode.");
6883       break;
6884     }
6885   }
6886   return SrcDemE;
6887 }
6888 
6889 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6890                                   const APInt &DemandedElts,
6891                                   const SelectionDAG &DAG, unsigned Depth,
6892                                   unsigned OpNo) {
6893   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6894   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6895   KnownBits LHSKnown =
6896       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6897   KnownBits RHSKnown =
6898       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6899   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
6900 }
6901 
6902 void
6903 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6904                                                      KnownBits &Known,
6905                                                      const APInt &DemandedElts,
6906                                                      const SelectionDAG &DAG,
6907                                                      unsigned Depth) const {
6908   Known.resetAll();
6909 
6910   // Intrinsic CC result is returned in the two low bits.
6911   unsigned tmp0, tmp1; // not used
6912   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6913     Known.Zero.setBitsFrom(2);
6914     return;
6915   }
6916   EVT VT = Op.getValueType();
6917   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6918     return;
6919   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6920           "KnownBits does not match VT in bitwidth");
6921   assert ((!VT.isVector() ||
6922            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6923           "DemandedElts does not match VT number of elements");
6924   unsigned BitWidth = Known.getBitWidth();
6925   unsigned Opcode = Op.getOpcode();
6926   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6927     bool IsLogical = false;
6928     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6929     switch (Id) {
6930     case Intrinsic::s390_vpksh:   // PACKS
6931     case Intrinsic::s390_vpksf:
6932     case Intrinsic::s390_vpksg:
6933     case Intrinsic::s390_vpkshs:  // PACKS_CC
6934     case Intrinsic::s390_vpksfs:
6935     case Intrinsic::s390_vpksgs:
6936     case Intrinsic::s390_vpklsh:  // PACKLS
6937     case Intrinsic::s390_vpklsf:
6938     case Intrinsic::s390_vpklsg:
6939     case Intrinsic::s390_vpklshs: // PACKLS_CC
6940     case Intrinsic::s390_vpklsfs:
6941     case Intrinsic::s390_vpklsgs:
6942     case Intrinsic::s390_vpdi:
6943     case Intrinsic::s390_vsldb:
6944     case Intrinsic::s390_vperm:
6945       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6946       break;
6947     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6948     case Intrinsic::s390_vuplhh:
6949     case Intrinsic::s390_vuplhf:
6950     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6951     case Intrinsic::s390_vupllh:
6952     case Intrinsic::s390_vupllf:
6953       IsLogical = true;
6954       LLVM_FALLTHROUGH;
6955     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6956     case Intrinsic::s390_vuphh:
6957     case Intrinsic::s390_vuphf:
6958     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6959     case Intrinsic::s390_vuplhw:
6960     case Intrinsic::s390_vuplf: {
6961       SDValue SrcOp = Op.getOperand(1);
6962       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6963       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6964       if (IsLogical) {
6965         Known = Known.zext(BitWidth);
6966       } else
6967         Known = Known.sext(BitWidth);
6968       break;
6969     }
6970     default:
6971       break;
6972     }
6973   } else {
6974     switch (Opcode) {
6975     case SystemZISD::JOIN_DWORDS:
6976     case SystemZISD::SELECT_CCMASK:
6977       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6978       break;
6979     case SystemZISD::REPLICATE: {
6980       SDValue SrcOp = Op.getOperand(0);
6981       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6982       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6983         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6984       break;
6985     }
6986     default:
6987       break;
6988     }
6989   }
6990 
6991   // Known has the width of the source operand(s). Adjust if needed to match
6992   // the passed bitwidth.
6993   if (Known.getBitWidth() != BitWidth)
6994     Known = Known.anyextOrTrunc(BitWidth);
6995 }
6996 
6997 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6998                                         const SelectionDAG &DAG, unsigned Depth,
6999                                         unsigned OpNo) {
7000   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7001   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7002   if (LHS == 1) return 1; // Early out.
7003   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7004   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7005   if (RHS == 1) return 1; // Early out.
7006   unsigned Common = std::min(LHS, RHS);
7007   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
7008   EVT VT = Op.getValueType();
7009   unsigned VTBits = VT.getScalarSizeInBits();
7010   if (SrcBitWidth > VTBits) { // PACK
7011     unsigned SrcExtraBits = SrcBitWidth - VTBits;
7012     if (Common > SrcExtraBits)
7013       return (Common - SrcExtraBits);
7014     return 1;
7015   }
7016   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
7017   return Common;
7018 }
7019 
7020 unsigned
7021 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
7022     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7023     unsigned Depth) const {
7024   if (Op.getResNo() != 0)
7025     return 1;
7026   unsigned Opcode = Op.getOpcode();
7027   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7028     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7029     switch (Id) {
7030     case Intrinsic::s390_vpksh:   // PACKS
7031     case Intrinsic::s390_vpksf:
7032     case Intrinsic::s390_vpksg:
7033     case Intrinsic::s390_vpkshs:  // PACKS_CC
7034     case Intrinsic::s390_vpksfs:
7035     case Intrinsic::s390_vpksgs:
7036     case Intrinsic::s390_vpklsh:  // PACKLS
7037     case Intrinsic::s390_vpklsf:
7038     case Intrinsic::s390_vpklsg:
7039     case Intrinsic::s390_vpklshs: // PACKLS_CC
7040     case Intrinsic::s390_vpklsfs:
7041     case Intrinsic::s390_vpklsgs:
7042     case Intrinsic::s390_vpdi:
7043     case Intrinsic::s390_vsldb:
7044     case Intrinsic::s390_vperm:
7045       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
7046     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7047     case Intrinsic::s390_vuphh:
7048     case Intrinsic::s390_vuphf:
7049     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7050     case Intrinsic::s390_vuplhw:
7051     case Intrinsic::s390_vuplf: {
7052       SDValue PackedOp = Op.getOperand(1);
7053       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
7054       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
7055       EVT VT = Op.getValueType();
7056       unsigned VTBits = VT.getScalarSizeInBits();
7057       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7058       return Tmp;
7059     }
7060     default:
7061       break;
7062     }
7063   } else {
7064     switch (Opcode) {
7065     case SystemZISD::SELECT_CCMASK:
7066       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7067     default:
7068       break;
7069     }
7070   }
7071 
7072   return 1;
7073 }
7074 
7075 unsigned
7076 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7077   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7078   unsigned StackAlign = TFI->getStackAlignment();
7079   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7080          "Unexpected stack alignment");
7081   // The default stack probe size is 4096 if the function has no
7082   // stack-probe-size attribute.
7083   unsigned StackProbeSize = 4096;
7084   const Function &Fn = MF.getFunction();
7085   if (Fn.hasFnAttribute("stack-probe-size"))
7086     Fn.getFnAttribute("stack-probe-size")
7087         .getValueAsString()
7088         .getAsInteger(0, StackProbeSize);
7089   // Round down to the stack alignment.
7090   StackProbeSize &= ~(StackAlign - 1);
7091   return StackProbeSize ? StackProbeSize : StackAlign;
7092 }
7093 
7094 //===----------------------------------------------------------------------===//
7095 // Custom insertion
7096 //===----------------------------------------------------------------------===//
7097 
7098 // Force base value Base into a register before MI.  Return the register.
7099 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7100                          const SystemZInstrInfo *TII) {
7101   if (Base.isReg())
7102     return Base.getReg();
7103 
7104   MachineBasicBlock *MBB = MI.getParent();
7105   MachineFunction &MF = *MBB->getParent();
7106   MachineRegisterInfo &MRI = MF.getRegInfo();
7107 
7108   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7109   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7110       .add(Base)
7111       .addImm(0)
7112       .addReg(0);
7113   return Reg;
7114 }
7115 
7116 // The CC operand of MI might be missing a kill marker because there
7117 // were multiple uses of CC, and ISel didn't know which to mark.
7118 // Figure out whether MI should have had a kill marker.
7119 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7120   // Scan forward through BB for a use/def of CC.
7121   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7122   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7123     const MachineInstr& mi = *miI;
7124     if (mi.readsRegister(SystemZ::CC))
7125       return false;
7126     if (mi.definesRegister(SystemZ::CC))
7127       break; // Should have kill-flag - update below.
7128   }
7129 
7130   // If we hit the end of the block, check whether CC is live into a
7131   // successor.
7132   if (miI == MBB->end()) {
7133     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
7134       if ((*SI)->isLiveIn(SystemZ::CC))
7135         return false;
7136   }
7137 
7138   return true;
7139 }
7140 
7141 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7142 // together with other Select pseudo-opcodes into a single basic-block with
7143 // a conditional jump around it.
7144 static bool isSelectPseudo(MachineInstr &MI) {
7145   switch (MI.getOpcode()) {
7146   case SystemZ::Select32:
7147   case SystemZ::Select64:
7148   case SystemZ::SelectF32:
7149   case SystemZ::SelectF64:
7150   case SystemZ::SelectF128:
7151   case SystemZ::SelectVR32:
7152   case SystemZ::SelectVR64:
7153   case SystemZ::SelectVR128:
7154     return true;
7155 
7156   default:
7157     return false;
7158   }
7159 }
7160 
7161 // Helper function, which inserts PHI functions into SinkMBB:
7162 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7163 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7164 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7165                                  MachineBasicBlock *TrueMBB,
7166                                  MachineBasicBlock *FalseMBB,
7167                                  MachineBasicBlock *SinkMBB) {
7168   MachineFunction *MF = TrueMBB->getParent();
7169   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7170 
7171   MachineInstr *FirstMI = Selects.front();
7172   unsigned CCValid = FirstMI->getOperand(3).getImm();
7173   unsigned CCMask = FirstMI->getOperand(4).getImm();
7174 
7175   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7176 
7177   // As we are creating the PHIs, we have to be careful if there is more than
7178   // one.  Later Selects may reference the results of earlier Selects, but later
7179   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7180   // That also means that PHI construction must work forward from earlier to
7181   // later, and that the code must maintain a mapping from earlier PHI's
7182   // destination registers, and the registers that went into the PHI.
7183   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7184 
7185   for (auto MI : Selects) {
7186     Register DestReg = MI->getOperand(0).getReg();
7187     Register TrueReg = MI->getOperand(1).getReg();
7188     Register FalseReg = MI->getOperand(2).getReg();
7189 
7190     // If this Select we are generating is the opposite condition from
7191     // the jump we generated, then we have to swap the operands for the
7192     // PHI that is going to be generated.
7193     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7194       std::swap(TrueReg, FalseReg);
7195 
7196     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7197       TrueReg = RegRewriteTable[TrueReg].first;
7198 
7199     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7200       FalseReg = RegRewriteTable[FalseReg].second;
7201 
7202     DebugLoc DL = MI->getDebugLoc();
7203     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7204       .addReg(TrueReg).addMBB(TrueMBB)
7205       .addReg(FalseReg).addMBB(FalseMBB);
7206 
7207     // Add this PHI to the rewrite table.
7208     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7209   }
7210 
7211   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7212 }
7213 
7214 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7215 MachineBasicBlock *
7216 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7217                                   MachineBasicBlock *MBB) const {
7218   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7219   const SystemZInstrInfo *TII =
7220       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7221 
7222   unsigned CCValid = MI.getOperand(3).getImm();
7223   unsigned CCMask = MI.getOperand(4).getImm();
7224 
7225   // If we have a sequence of Select* pseudo instructions using the
7226   // same condition code value, we want to expand all of them into
7227   // a single pair of basic blocks using the same condition.
7228   SmallVector<MachineInstr*, 8> Selects;
7229   SmallVector<MachineInstr*, 8> DbgValues;
7230   Selects.push_back(&MI);
7231   unsigned Count = 0;
7232   for (MachineBasicBlock::iterator NextMIIt =
7233          std::next(MachineBasicBlock::iterator(MI));
7234        NextMIIt != MBB->end(); ++NextMIIt) {
7235     if (isSelectPseudo(*NextMIIt)) {
7236       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7237              "Bad CCValid operands since CC was not redefined.");
7238       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7239           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7240         Selects.push_back(&*NextMIIt);
7241         continue;
7242       }
7243       break;
7244     }
7245     if (NextMIIt->definesRegister(SystemZ::CC) ||
7246         NextMIIt->usesCustomInsertionHook())
7247       break;
7248     bool User = false;
7249     for (auto SelMI : Selects)
7250       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7251         User = true;
7252         break;
7253       }
7254     if (NextMIIt->isDebugInstr()) {
7255       if (User) {
7256         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7257         DbgValues.push_back(&*NextMIIt);
7258       }
7259     }
7260     else if (User || ++Count > 20)
7261       break;
7262   }
7263 
7264   MachineInstr *LastMI = Selects.back();
7265   bool CCKilled =
7266       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7267   MachineBasicBlock *StartMBB = MBB;
7268   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7269   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7270 
7271   // Unless CC was killed in the last Select instruction, mark it as
7272   // live-in to both FalseMBB and JoinMBB.
7273   if (!CCKilled) {
7274     FalseMBB->addLiveIn(SystemZ::CC);
7275     JoinMBB->addLiveIn(SystemZ::CC);
7276   }
7277 
7278   //  StartMBB:
7279   //   BRC CCMask, JoinMBB
7280   //   # fallthrough to FalseMBB
7281   MBB = StartMBB;
7282   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7283     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7284   MBB->addSuccessor(JoinMBB);
7285   MBB->addSuccessor(FalseMBB);
7286 
7287   //  FalseMBB:
7288   //   # fallthrough to JoinMBB
7289   MBB = FalseMBB;
7290   MBB->addSuccessor(JoinMBB);
7291 
7292   //  JoinMBB:
7293   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7294   //  ...
7295   MBB = JoinMBB;
7296   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7297   for (auto SelMI : Selects)
7298     SelMI->eraseFromParent();
7299 
7300   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7301   for (auto DbgMI : DbgValues)
7302     MBB->splice(InsertPos, StartMBB, DbgMI);
7303 
7304   return JoinMBB;
7305 }
7306 
7307 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7308 // StoreOpcode is the store to use and Invert says whether the store should
7309 // happen when the condition is false rather than true.  If a STORE ON
7310 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7311 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7312                                                         MachineBasicBlock *MBB,
7313                                                         unsigned StoreOpcode,
7314                                                         unsigned STOCOpcode,
7315                                                         bool Invert) const {
7316   const SystemZInstrInfo *TII =
7317       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7318 
7319   Register SrcReg = MI.getOperand(0).getReg();
7320   MachineOperand Base = MI.getOperand(1);
7321   int64_t Disp = MI.getOperand(2).getImm();
7322   Register IndexReg = MI.getOperand(3).getReg();
7323   unsigned CCValid = MI.getOperand(4).getImm();
7324   unsigned CCMask = MI.getOperand(5).getImm();
7325   DebugLoc DL = MI.getDebugLoc();
7326 
7327   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7328 
7329   // ISel pattern matching also adds a load memory operand of the same
7330   // address, so take special care to find the storing memory operand.
7331   MachineMemOperand *MMO = nullptr;
7332   for (auto *I : MI.memoperands())
7333     if (I->isStore()) {
7334       MMO = I;
7335       break;
7336     }
7337 
7338   // Use STOCOpcode if possible.  We could use different store patterns in
7339   // order to avoid matching the index register, but the performance trade-offs
7340   // might be more complicated in that case.
7341   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7342     if (Invert)
7343       CCMask ^= CCValid;
7344 
7345     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7346       .addReg(SrcReg)
7347       .add(Base)
7348       .addImm(Disp)
7349       .addImm(CCValid)
7350       .addImm(CCMask)
7351       .addMemOperand(MMO);
7352 
7353     MI.eraseFromParent();
7354     return MBB;
7355   }
7356 
7357   // Get the condition needed to branch around the store.
7358   if (!Invert)
7359     CCMask ^= CCValid;
7360 
7361   MachineBasicBlock *StartMBB = MBB;
7362   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7363   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7364 
7365   // Unless CC was killed in the CondStore instruction, mark it as
7366   // live-in to both FalseMBB and JoinMBB.
7367   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7368     FalseMBB->addLiveIn(SystemZ::CC);
7369     JoinMBB->addLiveIn(SystemZ::CC);
7370   }
7371 
7372   //  StartMBB:
7373   //   BRC CCMask, JoinMBB
7374   //   # fallthrough to FalseMBB
7375   MBB = StartMBB;
7376   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7377     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7378   MBB->addSuccessor(JoinMBB);
7379   MBB->addSuccessor(FalseMBB);
7380 
7381   //  FalseMBB:
7382   //   store %SrcReg, %Disp(%Index,%Base)
7383   //   # fallthrough to JoinMBB
7384   MBB = FalseMBB;
7385   BuildMI(MBB, DL, TII->get(StoreOpcode))
7386       .addReg(SrcReg)
7387       .add(Base)
7388       .addImm(Disp)
7389       .addReg(IndexReg)
7390       .addMemOperand(MMO);
7391   MBB->addSuccessor(JoinMBB);
7392 
7393   MI.eraseFromParent();
7394   return JoinMBB;
7395 }
7396 
7397 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7398 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7399 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7400 // BitSize is the width of the field in bits, or 0 if this is a partword
7401 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7402 // is one of the operands.  Invert says whether the field should be
7403 // inverted after performing BinOpcode (e.g. for NAND).
7404 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7405     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7406     unsigned BitSize, bool Invert) const {
7407   MachineFunction &MF = *MBB->getParent();
7408   const SystemZInstrInfo *TII =
7409       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7410   MachineRegisterInfo &MRI = MF.getRegInfo();
7411   bool IsSubWord = (BitSize < 32);
7412 
7413   // Extract the operands.  Base can be a register or a frame index.
7414   // Src2 can be a register or immediate.
7415   Register Dest = MI.getOperand(0).getReg();
7416   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7417   int64_t Disp = MI.getOperand(2).getImm();
7418   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7419   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7420   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7421   DebugLoc DL = MI.getDebugLoc();
7422   if (IsSubWord)
7423     BitSize = MI.getOperand(6).getImm();
7424 
7425   // Subword operations use 32-bit registers.
7426   const TargetRegisterClass *RC = (BitSize <= 32 ?
7427                                    &SystemZ::GR32BitRegClass :
7428                                    &SystemZ::GR64BitRegClass);
7429   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7430   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7431 
7432   // Get the right opcodes for the displacement.
7433   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7434   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7435   assert(LOpcode && CSOpcode && "Displacement out of range");
7436 
7437   // Create virtual registers for temporary results.
7438   Register OrigVal       = MRI.createVirtualRegister(RC);
7439   Register OldVal        = MRI.createVirtualRegister(RC);
7440   Register NewVal        = (BinOpcode || IsSubWord ?
7441                             MRI.createVirtualRegister(RC) : Src2.getReg());
7442   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7443   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7444 
7445   // Insert a basic block for the main loop.
7446   MachineBasicBlock *StartMBB = MBB;
7447   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7448   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7449 
7450   //  StartMBB:
7451   //   ...
7452   //   %OrigVal = L Disp(%Base)
7453   //   # fall through to LoopMBB
7454   MBB = StartMBB;
7455   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7456   MBB->addSuccessor(LoopMBB);
7457 
7458   //  LoopMBB:
7459   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7460   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7461   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7462   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7463   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7464   //   JNE LoopMBB
7465   //   # fall through to DoneMBB
7466   MBB = LoopMBB;
7467   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7468     .addReg(OrigVal).addMBB(StartMBB)
7469     .addReg(Dest).addMBB(LoopMBB);
7470   if (IsSubWord)
7471     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7472       .addReg(OldVal).addReg(BitShift).addImm(0);
7473   if (Invert) {
7474     // Perform the operation normally and then invert every bit of the field.
7475     Register Tmp = MRI.createVirtualRegister(RC);
7476     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7477     if (BitSize <= 32)
7478       // XILF with the upper BitSize bits set.
7479       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7480         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7481     else {
7482       // Use LCGR and add -1 to the result, which is more compact than
7483       // an XILF, XILH pair.
7484       Register Tmp2 = MRI.createVirtualRegister(RC);
7485       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7486       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7487         .addReg(Tmp2).addImm(-1);
7488     }
7489   } else if (BinOpcode)
7490     // A simply binary operation.
7491     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7492         .addReg(RotatedOldVal)
7493         .add(Src2);
7494   else if (IsSubWord)
7495     // Use RISBG to rotate Src2 into position and use it to replace the
7496     // field in RotatedOldVal.
7497     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7498       .addReg(RotatedOldVal).addReg(Src2.getReg())
7499       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7500   if (IsSubWord)
7501     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7502       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7503   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7504       .addReg(OldVal)
7505       .addReg(NewVal)
7506       .add(Base)
7507       .addImm(Disp);
7508   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7509     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7510   MBB->addSuccessor(LoopMBB);
7511   MBB->addSuccessor(DoneMBB);
7512 
7513   MI.eraseFromParent();
7514   return DoneMBB;
7515 }
7516 
7517 // Implement EmitInstrWithCustomInserter for pseudo
7518 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7519 // instruction that should be used to compare the current field with the
7520 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7521 // for when the current field should be kept.  BitSize is the width of
7522 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7523 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7524     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7525     unsigned KeepOldMask, unsigned BitSize) const {
7526   MachineFunction &MF = *MBB->getParent();
7527   const SystemZInstrInfo *TII =
7528       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7529   MachineRegisterInfo &MRI = MF.getRegInfo();
7530   bool IsSubWord = (BitSize < 32);
7531 
7532   // Extract the operands.  Base can be a register or a frame index.
7533   Register Dest = MI.getOperand(0).getReg();
7534   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7535   int64_t Disp = MI.getOperand(2).getImm();
7536   Register Src2 = MI.getOperand(3).getReg();
7537   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7538   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7539   DebugLoc DL = MI.getDebugLoc();
7540   if (IsSubWord)
7541     BitSize = MI.getOperand(6).getImm();
7542 
7543   // Subword operations use 32-bit registers.
7544   const TargetRegisterClass *RC = (BitSize <= 32 ?
7545                                    &SystemZ::GR32BitRegClass :
7546                                    &SystemZ::GR64BitRegClass);
7547   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7548   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7549 
7550   // Get the right opcodes for the displacement.
7551   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7552   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7553   assert(LOpcode && CSOpcode && "Displacement out of range");
7554 
7555   // Create virtual registers for temporary results.
7556   Register OrigVal       = MRI.createVirtualRegister(RC);
7557   Register OldVal        = MRI.createVirtualRegister(RC);
7558   Register NewVal        = MRI.createVirtualRegister(RC);
7559   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7560   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7561   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7562 
7563   // Insert 3 basic blocks for the loop.
7564   MachineBasicBlock *StartMBB  = MBB;
7565   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7566   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7567   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7568   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7569 
7570   //  StartMBB:
7571   //   ...
7572   //   %OrigVal     = L Disp(%Base)
7573   //   # fall through to LoopMBB
7574   MBB = StartMBB;
7575   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7576   MBB->addSuccessor(LoopMBB);
7577 
7578   //  LoopMBB:
7579   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7580   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7581   //   CompareOpcode %RotatedOldVal, %Src2
7582   //   BRC KeepOldMask, UpdateMBB
7583   MBB = LoopMBB;
7584   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7585     .addReg(OrigVal).addMBB(StartMBB)
7586     .addReg(Dest).addMBB(UpdateMBB);
7587   if (IsSubWord)
7588     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7589       .addReg(OldVal).addReg(BitShift).addImm(0);
7590   BuildMI(MBB, DL, TII->get(CompareOpcode))
7591     .addReg(RotatedOldVal).addReg(Src2);
7592   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7593     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7594   MBB->addSuccessor(UpdateMBB);
7595   MBB->addSuccessor(UseAltMBB);
7596 
7597   //  UseAltMBB:
7598   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7599   //   # fall through to UpdateMBB
7600   MBB = UseAltMBB;
7601   if (IsSubWord)
7602     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7603       .addReg(RotatedOldVal).addReg(Src2)
7604       .addImm(32).addImm(31 + BitSize).addImm(0);
7605   MBB->addSuccessor(UpdateMBB);
7606 
7607   //  UpdateMBB:
7608   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7609   //                        [ %RotatedAltVal, UseAltMBB ]
7610   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7611   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7612   //   JNE LoopMBB
7613   //   # fall through to DoneMBB
7614   MBB = UpdateMBB;
7615   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7616     .addReg(RotatedOldVal).addMBB(LoopMBB)
7617     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7618   if (IsSubWord)
7619     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7620       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7621   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7622       .addReg(OldVal)
7623       .addReg(NewVal)
7624       .add(Base)
7625       .addImm(Disp);
7626   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7627     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7628   MBB->addSuccessor(LoopMBB);
7629   MBB->addSuccessor(DoneMBB);
7630 
7631   MI.eraseFromParent();
7632   return DoneMBB;
7633 }
7634 
7635 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7636 // instruction MI.
7637 MachineBasicBlock *
7638 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7639                                           MachineBasicBlock *MBB) const {
7640   MachineFunction &MF = *MBB->getParent();
7641   const SystemZInstrInfo *TII =
7642       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7643   MachineRegisterInfo &MRI = MF.getRegInfo();
7644 
7645   // Extract the operands.  Base can be a register or a frame index.
7646   Register Dest = MI.getOperand(0).getReg();
7647   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7648   int64_t Disp = MI.getOperand(2).getImm();
7649   Register CmpVal = MI.getOperand(3).getReg();
7650   Register OrigSwapVal = MI.getOperand(4).getReg();
7651   Register BitShift = MI.getOperand(5).getReg();
7652   Register NegBitShift = MI.getOperand(6).getReg();
7653   int64_t BitSize = MI.getOperand(7).getImm();
7654   DebugLoc DL = MI.getDebugLoc();
7655 
7656   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7657 
7658   // Get the right opcodes for the displacement and zero-extension.
7659   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7660   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7661   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
7662   assert(LOpcode && CSOpcode && "Displacement out of range");
7663 
7664   // Create virtual registers for temporary results.
7665   Register OrigOldVal = MRI.createVirtualRegister(RC);
7666   Register OldVal = MRI.createVirtualRegister(RC);
7667   Register SwapVal = MRI.createVirtualRegister(RC);
7668   Register StoreVal = MRI.createVirtualRegister(RC);
7669   Register OldValRot = MRI.createVirtualRegister(RC);
7670   Register RetryOldVal = MRI.createVirtualRegister(RC);
7671   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7672 
7673   // Insert 2 basic blocks for the loop.
7674   MachineBasicBlock *StartMBB = MBB;
7675   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7676   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7677   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7678 
7679   //  StartMBB:
7680   //   ...
7681   //   %OrigOldVal     = L Disp(%Base)
7682   //   # fall through to LoopMBB
7683   MBB = StartMBB;
7684   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7685       .add(Base)
7686       .addImm(Disp)
7687       .addReg(0);
7688   MBB->addSuccessor(LoopMBB);
7689 
7690   //  LoopMBB:
7691   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7692   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7693   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
7694   //                      ^^ The low BitSize bits contain the field
7695   //                         of interest.
7696   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
7697   //                      ^^ Replace the upper 32-BitSize bits of the
7698   //                         swap value with those that we loaded and rotated.
7699   //   %Dest = LL[CH] %OldValRot
7700   //   CR %Dest, %CmpVal
7701   //   JNE DoneMBB
7702   //   # Fall through to SetMBB
7703   MBB = LoopMBB;
7704   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7705     .addReg(OrigOldVal).addMBB(StartMBB)
7706     .addReg(RetryOldVal).addMBB(SetMBB);
7707   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7708     .addReg(OrigSwapVal).addMBB(StartMBB)
7709     .addReg(RetrySwapVal).addMBB(SetMBB);
7710   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
7711     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7712   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7713     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
7714   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
7715     .addReg(OldValRot);
7716   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7717     .addReg(Dest).addReg(CmpVal);
7718   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7719     .addImm(SystemZ::CCMASK_ICMP)
7720     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7721   MBB->addSuccessor(DoneMBB);
7722   MBB->addSuccessor(SetMBB);
7723 
7724   //  SetMBB:
7725   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7726   //                      ^^ Rotate the new field to its proper position.
7727   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
7728   //   JNE LoopMBB
7729   //   # fall through to ExitMBB
7730   MBB = SetMBB;
7731   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7732     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7733   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7734       .addReg(OldVal)
7735       .addReg(StoreVal)
7736       .add(Base)
7737       .addImm(Disp);
7738   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7739     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7740   MBB->addSuccessor(LoopMBB);
7741   MBB->addSuccessor(DoneMBB);
7742 
7743   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7744   // to the block after the loop.  At this point, CC may have been defined
7745   // either by the CR in LoopMBB or by the CS in SetMBB.
7746   if (!MI.registerDefIsDead(SystemZ::CC))
7747     DoneMBB->addLiveIn(SystemZ::CC);
7748 
7749   MI.eraseFromParent();
7750   return DoneMBB;
7751 }
7752 
7753 // Emit a move from two GR64s to a GR128.
7754 MachineBasicBlock *
7755 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7756                                    MachineBasicBlock *MBB) const {
7757   MachineFunction &MF = *MBB->getParent();
7758   const SystemZInstrInfo *TII =
7759       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7760   MachineRegisterInfo &MRI = MF.getRegInfo();
7761   DebugLoc DL = MI.getDebugLoc();
7762 
7763   Register Dest = MI.getOperand(0).getReg();
7764   Register Hi = MI.getOperand(1).getReg();
7765   Register Lo = MI.getOperand(2).getReg();
7766   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7767   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7768 
7769   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7770   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7771     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7772   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7773     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7774 
7775   MI.eraseFromParent();
7776   return MBB;
7777 }
7778 
7779 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7780 // if the high register of the GR128 value must be cleared or false if
7781 // it's "don't care".
7782 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7783                                                      MachineBasicBlock *MBB,
7784                                                      bool ClearEven) const {
7785   MachineFunction &MF = *MBB->getParent();
7786   const SystemZInstrInfo *TII =
7787       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7788   MachineRegisterInfo &MRI = MF.getRegInfo();
7789   DebugLoc DL = MI.getDebugLoc();
7790 
7791   Register Dest = MI.getOperand(0).getReg();
7792   Register Src = MI.getOperand(1).getReg();
7793   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7794 
7795   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7796   if (ClearEven) {
7797     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7798     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7799 
7800     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7801       .addImm(0);
7802     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7803       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7804     In128 = NewIn128;
7805   }
7806   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7807     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7808 
7809   MI.eraseFromParent();
7810   return MBB;
7811 }
7812 
7813 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7814     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7815   MachineFunction &MF = *MBB->getParent();
7816   const SystemZInstrInfo *TII =
7817       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7818   MachineRegisterInfo &MRI = MF.getRegInfo();
7819   DebugLoc DL = MI.getDebugLoc();
7820 
7821   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7822   uint64_t DestDisp = MI.getOperand(1).getImm();
7823   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7824   uint64_t SrcDisp = MI.getOperand(3).getImm();
7825   MachineOperand &LengthMO = MI.getOperand(4);
7826   uint64_t ImmLength = LengthMO.isImm() ? LengthMO.getImm() : 0;
7827   Register LenMinus1Reg =
7828       LengthMO.isReg() ? LengthMO.getReg() : SystemZ::NoRegister;
7829 
7830   // When generating more than one CLC, all but the last will need to
7831   // branch to the end when a difference is found.
7832   MachineBasicBlock *EndMBB = (ImmLength > 256 && Opcode == SystemZ::CLC
7833                                    ? SystemZ::splitBlockAfter(MI, MBB)
7834                                    : nullptr);
7835 
7836   // Check for the loop form, in which operand 5 is the trip count.
7837   if (MI.getNumExplicitOperands() > 5) {
7838     Register StartCountReg = MI.getOperand(5).getReg();
7839     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7840 
7841     auto loadZeroAddress = [&]() -> MachineOperand {
7842       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7843       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
7844       return MachineOperand::CreateReg(Reg, false);
7845     };
7846     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
7847       DestBase = loadZeroAddress();
7848     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
7849       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
7850 
7851     MachineBasicBlock *StartMBB = nullptr;
7852     MachineBasicBlock *LoopMBB = nullptr;
7853     MachineBasicBlock *NextMBB = nullptr;
7854     MachineBasicBlock *DoneMBB = nullptr;
7855     MachineBasicBlock *AllDoneMBB = nullptr;
7856 
7857     Register StartSrcReg = forceReg(MI, SrcBase, TII);
7858     Register StartDestReg =
7859         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
7860 
7861     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7862     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7863     Register ThisDestReg =
7864         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
7865     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7866     Register NextDestReg =
7867         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
7868     RC = &SystemZ::GR64BitRegClass;
7869     Register ThisCountReg = MRI.createVirtualRegister(RC);
7870     Register NextCountReg = MRI.createVirtualRegister(RC);
7871 
7872     if (LengthMO.isReg()) {
7873       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7874       StartMBB = SystemZ::emitBlockAfter(MBB);
7875       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7876       NextMBB = LoopMBB;
7877       DoneMBB = SystemZ::emitBlockAfter(LoopMBB);
7878 
7879       //  MBB:
7880       //   # Jump to AllDoneMBB if LenMinus1Reg is -1, or fall thru to StartMBB.
7881       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7882         .addReg(LenMinus1Reg).addImm(-1);
7883       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7884         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
7885         .addMBB(AllDoneMBB);
7886       MBB->addSuccessor(AllDoneMBB);
7887       MBB->addSuccessor(StartMBB);
7888 
7889       // StartMBB:
7890       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
7891       MBB = StartMBB;
7892       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7893         .addReg(StartCountReg).addImm(0);
7894       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7895         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
7896         .addMBB(DoneMBB);
7897       MBB->addSuccessor(DoneMBB);
7898       MBB->addSuccessor(LoopMBB);
7899     }
7900     else {
7901       StartMBB = MBB;
7902       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7903       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7904       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7905 
7906       //  StartMBB:
7907       //   # fall through to LoopMBB
7908       MBB->addSuccessor(LoopMBB);
7909 
7910       DestBase = MachineOperand::CreateReg(NextDestReg, false);
7911       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7912       ImmLength &= 255;
7913       if (EndMBB && !ImmLength)
7914         // If the loop handled the whole CLC range, DoneMBB will be empty with
7915         // CC live-through into EndMBB, so add it as live-in.
7916         DoneMBB->addLiveIn(SystemZ::CC);
7917     }
7918 
7919     //  LoopMBB:
7920     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7921     //                      [ %NextDestReg, NextMBB ]
7922     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7923     //                     [ %NextSrcReg, NextMBB ]
7924     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7925     //                       [ %NextCountReg, NextMBB ]
7926     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7927     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7928     //   ( JLH EndMBB )
7929     //
7930     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7931     MBB = LoopMBB;
7932     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7933       .addReg(StartDestReg).addMBB(StartMBB)
7934       .addReg(NextDestReg).addMBB(NextMBB);
7935     if (!HaveSingleBase)
7936       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7937         .addReg(StartSrcReg).addMBB(StartMBB)
7938         .addReg(NextSrcReg).addMBB(NextMBB);
7939     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7940       .addReg(StartCountReg).addMBB(StartMBB)
7941       .addReg(NextCountReg).addMBB(NextMBB);
7942     if (Opcode == SystemZ::MVC)
7943       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7944         .addImm(SystemZ::PFD_WRITE)
7945         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7946     BuildMI(MBB, DL, TII->get(Opcode))
7947       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7948       .addReg(ThisSrcReg).addImm(SrcDisp);
7949     if (EndMBB) {
7950       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7951         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7952         .addMBB(EndMBB);
7953       MBB->addSuccessor(EndMBB);
7954       MBB->addSuccessor(NextMBB);
7955     }
7956 
7957     // NextMBB:
7958     //   %NextDestReg = LA 256(%ThisDestReg)
7959     //   %NextSrcReg = LA 256(%ThisSrcReg)
7960     //   %NextCountReg = AGHI %ThisCountReg, -1
7961     //   CGHI %NextCountReg, 0
7962     //   JLH LoopMBB
7963     //   # fall through to DoneMBB
7964     //
7965     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7966     MBB = NextMBB;
7967     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7968       .addReg(ThisDestReg).addImm(256).addReg(0);
7969     if (!HaveSingleBase)
7970       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7971         .addReg(ThisSrcReg).addImm(256).addReg(0);
7972     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7973       .addReg(ThisCountReg).addImm(-1);
7974     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7975       .addReg(NextCountReg).addImm(0);
7976     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7977       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7978       .addMBB(LoopMBB);
7979     MBB->addSuccessor(LoopMBB);
7980     MBB->addSuccessor(DoneMBB);
7981 
7982     MBB = DoneMBB;
7983     if (LengthMO.isReg()) {
7984       // DoneMBB:
7985       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
7986       // # Use EXecute Relative Long for the remainder of the bytes. The target
7987       //   instruction of the EXRL will have a length field of 1 since 0 is an
7988       //   illegal value. The number of bytes processed becomes (%LenMinus1Reg &
7989       //   0xff) + 1.
7990       // # Fall through to AllDoneMBB.
7991       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7992       Register RemDestReg = HaveSingleBase ? RemSrcReg
7993         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7994       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
7995         .addReg(StartDestReg).addMBB(StartMBB)
7996         .addReg(NextDestReg).addMBB(LoopMBB);
7997       if (!HaveSingleBase)
7998         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
7999           .addReg(StartSrcReg).addMBB(StartMBB)
8000           .addReg(NextSrcReg).addMBB(LoopMBB);
8001       MRI.constrainRegClass(LenMinus1Reg, &SystemZ::ADDR64BitRegClass);
8002       BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
8003         .addImm(Opcode)
8004         .addReg(LenMinus1Reg)
8005         .addReg(RemDestReg).addImm(DestDisp)
8006         .addReg(RemSrcReg).addImm(SrcDisp);
8007       MBB->addSuccessor(AllDoneMBB);
8008       MBB = AllDoneMBB;
8009     }
8010   }
8011 
8012   // Handle any remaining bytes with straight-line code.
8013   while (ImmLength > 0) {
8014     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
8015     // The previous iteration might have created out-of-range displacements.
8016     // Apply them using LAY if so.
8017     if (!isUInt<12>(DestDisp)) {
8018       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8019       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
8020           .add(DestBase)
8021           .addImm(DestDisp)
8022           .addReg(0);
8023       DestBase = MachineOperand::CreateReg(Reg, false);
8024       DestDisp = 0;
8025     }
8026     if (!isUInt<12>(SrcDisp)) {
8027       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8028       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
8029           .add(SrcBase)
8030           .addImm(SrcDisp)
8031           .addReg(0);
8032       SrcBase = MachineOperand::CreateReg(Reg, false);
8033       SrcDisp = 0;
8034     }
8035     BuildMI(*MBB, MI, DL, TII->get(Opcode))
8036         .add(DestBase)
8037         .addImm(DestDisp)
8038         .addImm(ThisLength)
8039         .add(SrcBase)
8040         .addImm(SrcDisp)
8041         .setMemRefs(MI.memoperands());
8042     DestDisp += ThisLength;
8043     SrcDisp += ThisLength;
8044     ImmLength -= ThisLength;
8045     // If there's another CLC to go, branch to the end if a difference
8046     // was found.
8047     if (EndMBB && ImmLength > 0) {
8048       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
8049       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8050         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8051         .addMBB(EndMBB);
8052       MBB->addSuccessor(EndMBB);
8053       MBB->addSuccessor(NextMBB);
8054       MBB = NextMBB;
8055     }
8056   }
8057   if (EndMBB) {
8058     MBB->addSuccessor(EndMBB);
8059     MBB = EndMBB;
8060     MBB->addLiveIn(SystemZ::CC);
8061   }
8062 
8063   MI.eraseFromParent();
8064   return MBB;
8065 }
8066 
8067 // Decompose string pseudo-instruction MI into a loop that continually performs
8068 // Opcode until CC != 3.
8069 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
8070     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8071   MachineFunction &MF = *MBB->getParent();
8072   const SystemZInstrInfo *TII =
8073       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8074   MachineRegisterInfo &MRI = MF.getRegInfo();
8075   DebugLoc DL = MI.getDebugLoc();
8076 
8077   uint64_t End1Reg = MI.getOperand(0).getReg();
8078   uint64_t Start1Reg = MI.getOperand(1).getReg();
8079   uint64_t Start2Reg = MI.getOperand(2).getReg();
8080   uint64_t CharReg = MI.getOperand(3).getReg();
8081 
8082   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
8083   uint64_t This1Reg = MRI.createVirtualRegister(RC);
8084   uint64_t This2Reg = MRI.createVirtualRegister(RC);
8085   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
8086 
8087   MachineBasicBlock *StartMBB = MBB;
8088   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8089   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8090 
8091   //  StartMBB:
8092   //   # fall through to LoopMBB
8093   MBB->addSuccessor(LoopMBB);
8094 
8095   //  LoopMBB:
8096   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
8097   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
8098   //   R0L = %CharReg
8099   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
8100   //   JO LoopMBB
8101   //   # fall through to DoneMBB
8102   //
8103   // The load of R0L can be hoisted by post-RA LICM.
8104   MBB = LoopMBB;
8105 
8106   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
8107     .addReg(Start1Reg).addMBB(StartMBB)
8108     .addReg(End1Reg).addMBB(LoopMBB);
8109   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
8110     .addReg(Start2Reg).addMBB(StartMBB)
8111     .addReg(End2Reg).addMBB(LoopMBB);
8112   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
8113   BuildMI(MBB, DL, TII->get(Opcode))
8114     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
8115     .addReg(This1Reg).addReg(This2Reg);
8116   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8117     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
8118   MBB->addSuccessor(LoopMBB);
8119   MBB->addSuccessor(DoneMBB);
8120 
8121   DoneMBB->addLiveIn(SystemZ::CC);
8122 
8123   MI.eraseFromParent();
8124   return DoneMBB;
8125 }
8126 
8127 // Update TBEGIN instruction with final opcode and register clobbers.
8128 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
8129     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
8130     bool NoFloat) const {
8131   MachineFunction &MF = *MBB->getParent();
8132   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8133   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8134 
8135   // Update opcode.
8136   MI.setDesc(TII->get(Opcode));
8137 
8138   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
8139   // Make sure to add the corresponding GRSM bits if they are missing.
8140   uint64_t Control = MI.getOperand(2).getImm();
8141   static const unsigned GPRControlBit[16] = {
8142     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8143     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8144   };
8145   Control |= GPRControlBit[15];
8146   if (TFI->hasFP(MF))
8147     Control |= GPRControlBit[11];
8148   MI.getOperand(2).setImm(Control);
8149 
8150   // Add GPR clobbers.
8151   for (int I = 0; I < 16; I++) {
8152     if ((Control & GPRControlBit[I]) == 0) {
8153       unsigned Reg = SystemZMC::GR64Regs[I];
8154       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8155     }
8156   }
8157 
8158   // Add FPR/VR clobbers.
8159   if (!NoFloat && (Control & 4) != 0) {
8160     if (Subtarget.hasVector()) {
8161       for (int I = 0; I < 32; I++) {
8162         unsigned Reg = SystemZMC::VR128Regs[I];
8163         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8164       }
8165     } else {
8166       for (int I = 0; I < 16; I++) {
8167         unsigned Reg = SystemZMC::FP64Regs[I];
8168         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8169       }
8170     }
8171   }
8172 
8173   return MBB;
8174 }
8175 
8176 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8177     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8178   MachineFunction &MF = *MBB->getParent();
8179   MachineRegisterInfo *MRI = &MF.getRegInfo();
8180   const SystemZInstrInfo *TII =
8181       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8182   DebugLoc DL = MI.getDebugLoc();
8183 
8184   Register SrcReg = MI.getOperand(0).getReg();
8185 
8186   // Create new virtual register of the same class as source.
8187   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8188   Register DstReg = MRI->createVirtualRegister(RC);
8189 
8190   // Replace pseudo with a normal load-and-test that models the def as
8191   // well.
8192   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8193     .addReg(SrcReg)
8194     .setMIFlags(MI.getFlags());
8195   MI.eraseFromParent();
8196 
8197   return MBB;
8198 }
8199 
8200 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8201     MachineInstr &MI, MachineBasicBlock *MBB) const {
8202   MachineFunction &MF = *MBB->getParent();
8203   MachineRegisterInfo *MRI = &MF.getRegInfo();
8204   const SystemZInstrInfo *TII =
8205       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8206   DebugLoc DL = MI.getDebugLoc();
8207   const unsigned ProbeSize = getStackProbeSize(MF);
8208   Register DstReg = MI.getOperand(0).getReg();
8209   Register SizeReg = MI.getOperand(2).getReg();
8210 
8211   MachineBasicBlock *StartMBB = MBB;
8212   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8213   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8214   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8215   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8216   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8217 
8218   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8219     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8220 
8221   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8222   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8223 
8224   //  LoopTestMBB
8225   //  BRC TailTestMBB
8226   //  # fallthrough to LoopBodyMBB
8227   StartMBB->addSuccessor(LoopTestMBB);
8228   MBB = LoopTestMBB;
8229   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8230     .addReg(SizeReg)
8231     .addMBB(StartMBB)
8232     .addReg(IncReg)
8233     .addMBB(LoopBodyMBB);
8234   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8235     .addReg(PHIReg)
8236     .addImm(ProbeSize);
8237   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8238     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8239     .addMBB(TailTestMBB);
8240   MBB->addSuccessor(LoopBodyMBB);
8241   MBB->addSuccessor(TailTestMBB);
8242 
8243   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8244   //  J LoopTestMBB
8245   MBB = LoopBodyMBB;
8246   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8247     .addReg(PHIReg)
8248     .addImm(ProbeSize);
8249   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8250     .addReg(SystemZ::R15D)
8251     .addImm(ProbeSize);
8252   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8253     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8254     .setMemRefs(VolLdMMO);
8255   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8256   MBB->addSuccessor(LoopTestMBB);
8257 
8258   //  TailTestMBB
8259   //  BRC DoneMBB
8260   //  # fallthrough to TailMBB
8261   MBB = TailTestMBB;
8262   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8263     .addReg(PHIReg)
8264     .addImm(0);
8265   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8266     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8267     .addMBB(DoneMBB);
8268   MBB->addSuccessor(TailMBB);
8269   MBB->addSuccessor(DoneMBB);
8270 
8271   //  TailMBB
8272   //  # fallthrough to DoneMBB
8273   MBB = TailMBB;
8274   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8275     .addReg(SystemZ::R15D)
8276     .addReg(PHIReg);
8277   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8278     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8279     .setMemRefs(VolLdMMO);
8280   MBB->addSuccessor(DoneMBB);
8281 
8282   //  DoneMBB
8283   MBB = DoneMBB;
8284   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8285     .addReg(SystemZ::R15D);
8286 
8287   MI.eraseFromParent();
8288   return DoneMBB;
8289 }
8290 
8291 SDValue SystemZTargetLowering::
8292 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8293   MachineFunction &MF = DAG.getMachineFunction();
8294   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
8295   SDLoc DL(SP);
8296   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8297                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8298 }
8299 
8300 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8301     MachineInstr &MI, MachineBasicBlock *MBB) const {
8302   switch (MI.getOpcode()) {
8303   case SystemZ::Select32:
8304   case SystemZ::Select64:
8305   case SystemZ::SelectF32:
8306   case SystemZ::SelectF64:
8307   case SystemZ::SelectF128:
8308   case SystemZ::SelectVR32:
8309   case SystemZ::SelectVR64:
8310   case SystemZ::SelectVR128:
8311     return emitSelect(MI, MBB);
8312 
8313   case SystemZ::CondStore8Mux:
8314     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8315   case SystemZ::CondStore8MuxInv:
8316     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8317   case SystemZ::CondStore16Mux:
8318     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8319   case SystemZ::CondStore16MuxInv:
8320     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8321   case SystemZ::CondStore32Mux:
8322     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8323   case SystemZ::CondStore32MuxInv:
8324     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8325   case SystemZ::CondStore8:
8326     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8327   case SystemZ::CondStore8Inv:
8328     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8329   case SystemZ::CondStore16:
8330     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8331   case SystemZ::CondStore16Inv:
8332     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8333   case SystemZ::CondStore32:
8334     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8335   case SystemZ::CondStore32Inv:
8336     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8337   case SystemZ::CondStore64:
8338     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8339   case SystemZ::CondStore64Inv:
8340     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8341   case SystemZ::CondStoreF32:
8342     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8343   case SystemZ::CondStoreF32Inv:
8344     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8345   case SystemZ::CondStoreF64:
8346     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8347   case SystemZ::CondStoreF64Inv:
8348     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8349 
8350   case SystemZ::PAIR128:
8351     return emitPair128(MI, MBB);
8352   case SystemZ::AEXT128:
8353     return emitExt128(MI, MBB, false);
8354   case SystemZ::ZEXT128:
8355     return emitExt128(MI, MBB, true);
8356 
8357   case SystemZ::ATOMIC_SWAPW:
8358     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8359   case SystemZ::ATOMIC_SWAP_32:
8360     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8361   case SystemZ::ATOMIC_SWAP_64:
8362     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8363 
8364   case SystemZ::ATOMIC_LOADW_AR:
8365     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8366   case SystemZ::ATOMIC_LOADW_AFI:
8367     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8368   case SystemZ::ATOMIC_LOAD_AR:
8369     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8370   case SystemZ::ATOMIC_LOAD_AHI:
8371     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8372   case SystemZ::ATOMIC_LOAD_AFI:
8373     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8374   case SystemZ::ATOMIC_LOAD_AGR:
8375     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8376   case SystemZ::ATOMIC_LOAD_AGHI:
8377     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8378   case SystemZ::ATOMIC_LOAD_AGFI:
8379     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8380 
8381   case SystemZ::ATOMIC_LOADW_SR:
8382     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8383   case SystemZ::ATOMIC_LOAD_SR:
8384     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8385   case SystemZ::ATOMIC_LOAD_SGR:
8386     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8387 
8388   case SystemZ::ATOMIC_LOADW_NR:
8389     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8390   case SystemZ::ATOMIC_LOADW_NILH:
8391     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8392   case SystemZ::ATOMIC_LOAD_NR:
8393     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8394   case SystemZ::ATOMIC_LOAD_NILL:
8395     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8396   case SystemZ::ATOMIC_LOAD_NILH:
8397     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8398   case SystemZ::ATOMIC_LOAD_NILF:
8399     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8400   case SystemZ::ATOMIC_LOAD_NGR:
8401     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8402   case SystemZ::ATOMIC_LOAD_NILL64:
8403     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8404   case SystemZ::ATOMIC_LOAD_NILH64:
8405     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8406   case SystemZ::ATOMIC_LOAD_NIHL64:
8407     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8408   case SystemZ::ATOMIC_LOAD_NIHH64:
8409     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8410   case SystemZ::ATOMIC_LOAD_NILF64:
8411     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8412   case SystemZ::ATOMIC_LOAD_NIHF64:
8413     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8414 
8415   case SystemZ::ATOMIC_LOADW_OR:
8416     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8417   case SystemZ::ATOMIC_LOADW_OILH:
8418     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8419   case SystemZ::ATOMIC_LOAD_OR:
8420     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8421   case SystemZ::ATOMIC_LOAD_OILL:
8422     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8423   case SystemZ::ATOMIC_LOAD_OILH:
8424     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8425   case SystemZ::ATOMIC_LOAD_OILF:
8426     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8427   case SystemZ::ATOMIC_LOAD_OGR:
8428     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8429   case SystemZ::ATOMIC_LOAD_OILL64:
8430     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8431   case SystemZ::ATOMIC_LOAD_OILH64:
8432     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8433   case SystemZ::ATOMIC_LOAD_OIHL64:
8434     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8435   case SystemZ::ATOMIC_LOAD_OIHH64:
8436     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8437   case SystemZ::ATOMIC_LOAD_OILF64:
8438     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8439   case SystemZ::ATOMIC_LOAD_OIHF64:
8440     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8441 
8442   case SystemZ::ATOMIC_LOADW_XR:
8443     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8444   case SystemZ::ATOMIC_LOADW_XILF:
8445     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8446   case SystemZ::ATOMIC_LOAD_XR:
8447     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8448   case SystemZ::ATOMIC_LOAD_XILF:
8449     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8450   case SystemZ::ATOMIC_LOAD_XGR:
8451     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8452   case SystemZ::ATOMIC_LOAD_XILF64:
8453     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8454   case SystemZ::ATOMIC_LOAD_XIHF64:
8455     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8456 
8457   case SystemZ::ATOMIC_LOADW_NRi:
8458     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8459   case SystemZ::ATOMIC_LOADW_NILHi:
8460     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8461   case SystemZ::ATOMIC_LOAD_NRi:
8462     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8463   case SystemZ::ATOMIC_LOAD_NILLi:
8464     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8465   case SystemZ::ATOMIC_LOAD_NILHi:
8466     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8467   case SystemZ::ATOMIC_LOAD_NILFi:
8468     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8469   case SystemZ::ATOMIC_LOAD_NGRi:
8470     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8471   case SystemZ::ATOMIC_LOAD_NILL64i:
8472     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8473   case SystemZ::ATOMIC_LOAD_NILH64i:
8474     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8475   case SystemZ::ATOMIC_LOAD_NIHL64i:
8476     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8477   case SystemZ::ATOMIC_LOAD_NIHH64i:
8478     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8479   case SystemZ::ATOMIC_LOAD_NILF64i:
8480     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8481   case SystemZ::ATOMIC_LOAD_NIHF64i:
8482     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8483 
8484   case SystemZ::ATOMIC_LOADW_MIN:
8485     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8486                                 SystemZ::CCMASK_CMP_LE, 0);
8487   case SystemZ::ATOMIC_LOAD_MIN_32:
8488     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8489                                 SystemZ::CCMASK_CMP_LE, 32);
8490   case SystemZ::ATOMIC_LOAD_MIN_64:
8491     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8492                                 SystemZ::CCMASK_CMP_LE, 64);
8493 
8494   case SystemZ::ATOMIC_LOADW_MAX:
8495     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8496                                 SystemZ::CCMASK_CMP_GE, 0);
8497   case SystemZ::ATOMIC_LOAD_MAX_32:
8498     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8499                                 SystemZ::CCMASK_CMP_GE, 32);
8500   case SystemZ::ATOMIC_LOAD_MAX_64:
8501     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8502                                 SystemZ::CCMASK_CMP_GE, 64);
8503 
8504   case SystemZ::ATOMIC_LOADW_UMIN:
8505     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8506                                 SystemZ::CCMASK_CMP_LE, 0);
8507   case SystemZ::ATOMIC_LOAD_UMIN_32:
8508     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8509                                 SystemZ::CCMASK_CMP_LE, 32);
8510   case SystemZ::ATOMIC_LOAD_UMIN_64:
8511     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8512                                 SystemZ::CCMASK_CMP_LE, 64);
8513 
8514   case SystemZ::ATOMIC_LOADW_UMAX:
8515     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8516                                 SystemZ::CCMASK_CMP_GE, 0);
8517   case SystemZ::ATOMIC_LOAD_UMAX_32:
8518     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8519                                 SystemZ::CCMASK_CMP_GE, 32);
8520   case SystemZ::ATOMIC_LOAD_UMAX_64:
8521     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8522                                 SystemZ::CCMASK_CMP_GE, 64);
8523 
8524   case SystemZ::ATOMIC_CMP_SWAPW:
8525     return emitAtomicCmpSwapW(MI, MBB);
8526   case SystemZ::MVCSequence:
8527   case SystemZ::MVCLoop:
8528     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8529   case SystemZ::NCSequence:
8530   case SystemZ::NCLoop:
8531     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8532   case SystemZ::OCSequence:
8533   case SystemZ::OCLoop:
8534     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8535   case SystemZ::XCSequence:
8536   case SystemZ::XCLoop:
8537   case SystemZ::XCLoopVarLen:
8538     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8539   case SystemZ::CLCSequence:
8540   case SystemZ::CLCLoop:
8541     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8542   case SystemZ::CLSTLoop:
8543     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8544   case SystemZ::MVSTLoop:
8545     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8546   case SystemZ::SRSTLoop:
8547     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8548   case SystemZ::TBEGIN:
8549     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8550   case SystemZ::TBEGIN_nofloat:
8551     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8552   case SystemZ::TBEGINC:
8553     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8554   case SystemZ::LTEBRCompare_VecPseudo:
8555     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8556   case SystemZ::LTDBRCompare_VecPseudo:
8557     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8558   case SystemZ::LTXBRCompare_VecPseudo:
8559     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8560 
8561   case SystemZ::PROBED_ALLOCA:
8562     return emitProbedAlloca(MI, MBB);
8563 
8564   case TargetOpcode::STACKMAP:
8565   case TargetOpcode::PATCHPOINT:
8566     return emitPatchPoint(MI, MBB);
8567 
8568   default:
8569     llvm_unreachable("Unexpected instr type to insert");
8570   }
8571 }
8572 
8573 // This is only used by the isel schedulers, and is needed only to prevent
8574 // compiler from crashing when list-ilp is used.
8575 const TargetRegisterClass *
8576 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8577   if (VT == MVT::Untyped)
8578     return &SystemZ::ADDR128BitRegClass;
8579   return TargetLowering::getRepRegClassFor(VT);
8580 }
8581