1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 84 85 // Set up the register classes. 86 if (Subtarget.hasHighWord()) 87 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 88 else 89 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 90 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 91 if (!useSoftFloat()) { 92 if (Subtarget.hasVector()) { 93 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 94 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 95 } else { 96 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 98 } 99 if (Subtarget.hasVectorEnhancements1()) 100 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 101 else 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 } 113 114 // Compute derived properties from the register classes 115 computeRegisterProperties(Subtarget.getRegisterInfo()); 116 117 // Set up special registers. 118 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 119 120 // TODO: It may be better to default to latency-oriented scheduling, however 121 // LLVM's current latency-oriented scheduler can't handle physreg definitions 122 // such as SystemZ has with CC, so set this to the register-pressure 123 // scheduler, because it can. 124 setSchedulingPreference(Sched::RegPressure); 125 126 setBooleanContents(ZeroOrOneBooleanContent); 127 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 128 129 // Instructions are strings of 2-byte aligned 2-byte values. 130 setMinFunctionAlignment(Align(2)); 131 // For performance reasons we prefer 16-byte alignment. 132 setPrefFunctionAlignment(Align(16)); 133 134 // Handle operations that are handled in a similar way for all types. 135 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 136 I <= MVT::LAST_FP_VALUETYPE; 137 ++I) { 138 MVT VT = MVT::SimpleValueType(I); 139 if (isTypeLegal(VT)) { 140 // Lower SET_CC into an IPM-based sequence. 141 setOperationAction(ISD::SETCC, VT, Custom); 142 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 143 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 144 145 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 146 setOperationAction(ISD::SELECT, VT, Expand); 147 148 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 149 setOperationAction(ISD::SELECT_CC, VT, Custom); 150 setOperationAction(ISD::BR_CC, VT, Custom); 151 } 152 } 153 154 // Expand jump table branches as address arithmetic followed by an 155 // indirect jump. 156 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 157 158 // Expand BRCOND into a BR_CC (see above). 159 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 160 161 // Handle integer types. 162 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 163 I <= MVT::LAST_INTEGER_VALUETYPE; 164 ++I) { 165 MVT VT = MVT::SimpleValueType(I); 166 if (isTypeLegal(VT)) { 167 // Expand individual DIV and REMs into DIVREMs. 168 setOperationAction(ISD::SDIV, VT, Expand); 169 setOperationAction(ISD::UDIV, VT, Expand); 170 setOperationAction(ISD::SREM, VT, Expand); 171 setOperationAction(ISD::UREM, VT, Expand); 172 setOperationAction(ISD::SDIVREM, VT, Custom); 173 setOperationAction(ISD::UDIVREM, VT, Custom); 174 175 // Support addition/subtraction with overflow. 176 setOperationAction(ISD::SADDO, VT, Custom); 177 setOperationAction(ISD::SSUBO, VT, Custom); 178 179 // Support addition/subtraction with carry. 180 setOperationAction(ISD::UADDO, VT, Custom); 181 setOperationAction(ISD::USUBO, VT, Custom); 182 183 // Support carry in as value rather than glue. 184 setOperationAction(ISD::ADDCARRY, VT, Custom); 185 setOperationAction(ISD::SUBCARRY, VT, Custom); 186 187 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 188 // stores, putting a serialization instruction after the stores. 189 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 190 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 191 192 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 193 // available, or if the operand is constant. 194 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 195 196 // Use POPCNT on z196 and above. 197 if (Subtarget.hasPopulationCount()) 198 setOperationAction(ISD::CTPOP, VT, Custom); 199 else 200 setOperationAction(ISD::CTPOP, VT, Expand); 201 202 // No special instructions for these. 203 setOperationAction(ISD::CTTZ, VT, Expand); 204 setOperationAction(ISD::ROTR, VT, Expand); 205 206 // Use *MUL_LOHI where possible instead of MULH*. 207 setOperationAction(ISD::MULHS, VT, Expand); 208 setOperationAction(ISD::MULHU, VT, Expand); 209 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 210 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 211 212 // Only z196 and above have native support for conversions to unsigned. 213 // On z10, promoting to i64 doesn't generate an inexact condition for 214 // values that are outside the i32 range but in the i64 range, so use 215 // the default expansion. 216 if (!Subtarget.hasFPExtension()) 217 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 218 219 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 220 // default to Expand, so need to be modified to Legal where appropriate. 221 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 222 if (Subtarget.hasFPExtension()) 223 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 224 225 // And similarly for STRICT_[SU]INT_TO_FP. 226 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 227 if (Subtarget.hasFPExtension()) 228 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 229 } 230 } 231 232 // Type legalization will convert 8- and 16-bit atomic operations into 233 // forms that operate on i32s (but still keeping the original memory VT). 234 // Lower them into full i32 operations. 235 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 236 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 237 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 238 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 239 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 240 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 242 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 243 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 244 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 245 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 246 247 // Even though i128 is not a legal type, we still need to custom lower 248 // the atomic operations in order to exploit SystemZ instructions. 249 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 250 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 251 252 // We can use the CC result of compare-and-swap to implement 253 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 254 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 255 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 256 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 257 258 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 259 260 // Traps are legal, as we will convert them to "j .+2". 261 setOperationAction(ISD::TRAP, MVT::Other, Legal); 262 263 // z10 has instructions for signed but not unsigned FP conversion. 264 // Handle unsigned 32-bit types as signed 64-bit types. 265 if (!Subtarget.hasFPExtension()) { 266 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 267 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 268 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 269 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 270 } 271 272 // We have native support for a 64-bit CTLZ, via FLOGR. 273 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 274 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 275 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 276 277 // On z15 we have native support for a 64-bit CTPOP. 278 if (Subtarget.hasMiscellaneousExtensions3()) { 279 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 280 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 281 } 282 283 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 284 setOperationAction(ISD::OR, MVT::i64, Custom); 285 286 // FIXME: Can we support these natively? 287 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 288 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 289 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 290 291 // We have native instructions for i8, i16 and i32 extensions, but not i1. 292 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 293 for (MVT VT : MVT::integer_valuetypes()) { 294 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 295 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 296 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 297 } 298 299 // Handle the various types of symbolic address. 300 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 301 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 302 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 303 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 304 setOperationAction(ISD::JumpTable, PtrVT, Custom); 305 306 // We need to handle dynamic allocations specially because of the 307 // 160-byte area at the bottom of the stack. 308 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 309 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 310 311 // Use custom expanders so that we can force the function to use 312 // a frame pointer. 313 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 314 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 315 316 // Handle prefetches with PFD or PFDRL. 317 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 318 319 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 320 // Assume by default that all vector operations need to be expanded. 321 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 322 if (getOperationAction(Opcode, VT) == Legal) 323 setOperationAction(Opcode, VT, Expand); 324 325 // Likewise all truncating stores and extending loads. 326 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 327 setTruncStoreAction(VT, InnerVT, Expand); 328 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 329 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 330 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 331 } 332 333 if (isTypeLegal(VT)) { 334 // These operations are legal for anything that can be stored in a 335 // vector register, even if there is no native support for the format 336 // as such. In particular, we can do these for v4f32 even though there 337 // are no specific instructions for that format. 338 setOperationAction(ISD::LOAD, VT, Legal); 339 setOperationAction(ISD::STORE, VT, Legal); 340 setOperationAction(ISD::VSELECT, VT, Legal); 341 setOperationAction(ISD::BITCAST, VT, Legal); 342 setOperationAction(ISD::UNDEF, VT, Legal); 343 344 // Likewise, except that we need to replace the nodes with something 345 // more specific. 346 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 347 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 348 } 349 } 350 351 // Handle integer vector types. 352 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 353 if (isTypeLegal(VT)) { 354 // These operations have direct equivalents. 355 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 356 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 357 setOperationAction(ISD::ADD, VT, Legal); 358 setOperationAction(ISD::SUB, VT, Legal); 359 if (VT != MVT::v2i64) 360 setOperationAction(ISD::MUL, VT, Legal); 361 setOperationAction(ISD::AND, VT, Legal); 362 setOperationAction(ISD::OR, VT, Legal); 363 setOperationAction(ISD::XOR, VT, Legal); 364 if (Subtarget.hasVectorEnhancements1()) 365 setOperationAction(ISD::CTPOP, VT, Legal); 366 else 367 setOperationAction(ISD::CTPOP, VT, Custom); 368 setOperationAction(ISD::CTTZ, VT, Legal); 369 setOperationAction(ISD::CTLZ, VT, Legal); 370 371 // Convert a GPR scalar to a vector by inserting it into element 0. 372 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 373 374 // Use a series of unpacks for extensions. 375 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 376 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 377 378 // Detect shifts by a scalar amount and convert them into 379 // V*_BY_SCALAR. 380 setOperationAction(ISD::SHL, VT, Custom); 381 setOperationAction(ISD::SRA, VT, Custom); 382 setOperationAction(ISD::SRL, VT, Custom); 383 384 // At present ROTL isn't matched by DAGCombiner. ROTR should be 385 // converted into ROTL. 386 setOperationAction(ISD::ROTL, VT, Expand); 387 setOperationAction(ISD::ROTR, VT, Expand); 388 389 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 390 // and inverting the result as necessary. 391 setOperationAction(ISD::SETCC, VT, Custom); 392 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 393 if (Subtarget.hasVectorEnhancements1()) 394 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 395 } 396 } 397 398 if (Subtarget.hasVector()) { 399 // There should be no need to check for float types other than v2f64 400 // since <2 x f32> isn't a legal type. 401 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 402 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 403 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 404 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 405 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 406 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 407 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 408 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 409 410 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 411 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 412 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 413 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 414 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 415 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 416 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 417 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 418 } 419 420 if (Subtarget.hasVectorEnhancements2()) { 421 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 422 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 423 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 424 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 425 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 426 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 427 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 428 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 429 430 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 431 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 432 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 433 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 434 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 435 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 436 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 437 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 438 } 439 440 // Handle floating-point types. 441 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 442 I <= MVT::LAST_FP_VALUETYPE; 443 ++I) { 444 MVT VT = MVT::SimpleValueType(I); 445 if (isTypeLegal(VT)) { 446 // We can use FI for FRINT. 447 setOperationAction(ISD::FRINT, VT, Legal); 448 449 // We can use the extended form of FI for other rounding operations. 450 if (Subtarget.hasFPExtension()) { 451 setOperationAction(ISD::FNEARBYINT, VT, Legal); 452 setOperationAction(ISD::FFLOOR, VT, Legal); 453 setOperationAction(ISD::FCEIL, VT, Legal); 454 setOperationAction(ISD::FTRUNC, VT, Legal); 455 setOperationAction(ISD::FROUND, VT, Legal); 456 } 457 458 // No special instructions for these. 459 setOperationAction(ISD::FSIN, VT, Expand); 460 setOperationAction(ISD::FCOS, VT, Expand); 461 setOperationAction(ISD::FSINCOS, VT, Expand); 462 setOperationAction(ISD::FREM, VT, Expand); 463 setOperationAction(ISD::FPOW, VT, Expand); 464 465 // Handle constrained floating-point operations. 466 setOperationAction(ISD::STRICT_FADD, VT, Legal); 467 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 468 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 469 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 470 setOperationAction(ISD::STRICT_FMA, VT, Legal); 471 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 472 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 473 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 474 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 475 if (Subtarget.hasFPExtension()) { 476 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 477 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 478 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 479 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 480 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 481 } 482 } 483 } 484 485 // Handle floating-point vector types. 486 if (Subtarget.hasVector()) { 487 // Scalar-to-vector conversion is just a subreg. 488 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 489 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 490 491 // Some insertions and extractions can be done directly but others 492 // need to go via integers. 493 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 494 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 495 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 496 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 497 498 // These operations have direct equivalents. 499 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 500 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 501 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 502 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 503 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 504 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 505 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 506 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 507 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 508 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 509 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 510 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 511 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 512 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 513 514 // Handle constrained floating-point operations. 515 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 516 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 517 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 518 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 519 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 520 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 521 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 522 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 523 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 524 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 525 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 526 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 527 } 528 529 // The vector enhancements facility 1 has instructions for these. 530 if (Subtarget.hasVectorEnhancements1()) { 531 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 532 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 533 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 534 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 535 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 536 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 537 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 538 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 539 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 540 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 541 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 542 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 543 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 544 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 545 546 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 547 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 548 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 549 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 550 551 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 552 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 553 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 554 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 555 556 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 557 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 558 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 559 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 560 561 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 562 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 563 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 564 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 565 566 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 567 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 568 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 569 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 570 571 // Handle constrained floating-point operations. 572 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 573 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 574 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 575 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 576 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 577 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 578 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 579 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 580 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 581 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 582 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 583 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 584 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 585 MVT::v4f32, MVT::v2f64 }) { 586 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 587 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 588 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 589 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 590 } 591 } 592 593 // We only have fused f128 multiply-addition on vector registers. 594 if (!Subtarget.hasVectorEnhancements1()) { 595 setOperationAction(ISD::FMA, MVT::f128, Expand); 596 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 597 } 598 599 // We don't have a copysign instruction on vector registers. 600 if (Subtarget.hasVectorEnhancements1()) 601 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 602 603 // Needed so that we don't try to implement f128 constant loads using 604 // a load-and-extend of a f80 constant (in cases where the constant 605 // would fit in an f80). 606 for (MVT VT : MVT::fp_valuetypes()) 607 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 608 609 // We don't have extending load instruction on vector registers. 610 if (Subtarget.hasVectorEnhancements1()) { 611 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 612 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 613 } 614 615 // Floating-point truncation and stores need to be done separately. 616 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 617 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 618 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 619 620 // We have 64-bit FPR<->GPR moves, but need special handling for 621 // 32-bit forms. 622 if (!Subtarget.hasVector()) { 623 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 624 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 625 } 626 627 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 628 // structure, but VAEND is a no-op. 629 setOperationAction(ISD::VASTART, MVT::Other, Custom); 630 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 631 setOperationAction(ISD::VAEND, MVT::Other, Expand); 632 633 // Codes for which we want to perform some z-specific combinations. 634 setTargetDAGCombine(ISD::ZERO_EXTEND); 635 setTargetDAGCombine(ISD::SIGN_EXTEND); 636 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 637 setTargetDAGCombine(ISD::LOAD); 638 setTargetDAGCombine(ISD::STORE); 639 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 640 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 641 setTargetDAGCombine(ISD::FP_ROUND); 642 setTargetDAGCombine(ISD::STRICT_FP_ROUND); 643 setTargetDAGCombine(ISD::FP_EXTEND); 644 setTargetDAGCombine(ISD::STRICT_FP_EXTEND); 645 setTargetDAGCombine(ISD::BSWAP); 646 setTargetDAGCombine(ISD::SDIV); 647 setTargetDAGCombine(ISD::UDIV); 648 setTargetDAGCombine(ISD::SREM); 649 setTargetDAGCombine(ISD::UREM); 650 651 // Handle intrinsics. 652 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 653 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 654 655 // We want to use MVC in preference to even a single load/store pair. 656 MaxStoresPerMemcpy = 0; 657 MaxStoresPerMemcpyOptSize = 0; 658 659 // The main memset sequence is a byte store followed by an MVC. 660 // Two STC or MV..I stores win over that, but the kind of fused stores 661 // generated by target-independent code don't when the byte value is 662 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 663 // than "STC;MVC". Handle the choice in target-specific code instead. 664 MaxStoresPerMemset = 0; 665 MaxStoresPerMemsetOptSize = 0; 666 667 // Default to having -disable-strictnode-mutation on 668 IsStrictFPEnabled = true; 669 } 670 671 bool SystemZTargetLowering::useSoftFloat() const { 672 return Subtarget.hasSoftFloat(); 673 } 674 675 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 676 LLVMContext &, EVT VT) const { 677 if (!VT.isVector()) 678 return MVT::i32; 679 return VT.changeVectorElementTypeToInteger(); 680 } 681 682 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 683 const MachineFunction &MF, EVT VT) const { 684 VT = VT.getScalarType(); 685 686 if (!VT.isSimple()) 687 return false; 688 689 switch (VT.getSimpleVT().SimpleTy) { 690 case MVT::f32: 691 case MVT::f64: 692 return true; 693 case MVT::f128: 694 return Subtarget.hasVectorEnhancements1(); 695 default: 696 break; 697 } 698 699 return false; 700 } 701 702 // Return true if the constant can be generated with a vector instruction, 703 // such as VGM, VGMB or VREPI. 704 bool SystemZVectorConstantInfo::isVectorConstantLegal( 705 const SystemZSubtarget &Subtarget) { 706 const SystemZInstrInfo *TII = 707 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 708 if (!Subtarget.hasVector() || 709 (isFP128 && !Subtarget.hasVectorEnhancements1())) 710 return false; 711 712 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 713 // preferred way of creating all-zero and all-one vectors so give it 714 // priority over other methods below. 715 unsigned Mask = 0; 716 unsigned I = 0; 717 for (; I < SystemZ::VectorBytes; ++I) { 718 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 719 if (Byte == 0xff) 720 Mask |= 1ULL << I; 721 else if (Byte != 0) 722 break; 723 } 724 if (I == SystemZ::VectorBytes) { 725 Opcode = SystemZISD::BYTE_MASK; 726 OpVals.push_back(Mask); 727 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 728 return true; 729 } 730 731 if (SplatBitSize > 64) 732 return false; 733 734 auto tryValue = [&](uint64_t Value) -> bool { 735 // Try VECTOR REPLICATE IMMEDIATE 736 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 737 if (isInt<16>(SignedValue)) { 738 OpVals.push_back(((unsigned) SignedValue)); 739 Opcode = SystemZISD::REPLICATE; 740 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 741 SystemZ::VectorBits / SplatBitSize); 742 return true; 743 } 744 // Try VECTOR GENERATE MASK 745 unsigned Start, End; 746 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 747 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 748 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 749 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 750 OpVals.push_back(Start - (64 - SplatBitSize)); 751 OpVals.push_back(End - (64 - SplatBitSize)); 752 Opcode = SystemZISD::ROTATE_MASK; 753 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 754 SystemZ::VectorBits / SplatBitSize); 755 return true; 756 } 757 return false; 758 }; 759 760 // First try assuming that any undefined bits above the highest set bit 761 // and below the lowest set bit are 1s. This increases the likelihood of 762 // being able to use a sign-extended element value in VECTOR REPLICATE 763 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 764 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 765 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 766 uint64_t Lower = 767 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 768 uint64_t Upper = 769 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 770 if (tryValue(SplatBitsZ | Upper | Lower)) 771 return true; 772 773 // Now try assuming that any undefined bits between the first and 774 // last defined set bits are set. This increases the chances of 775 // using a non-wraparound mask. 776 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 777 return tryValue(SplatBitsZ | Middle); 778 } 779 780 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 781 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 782 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 783 784 // Find the smallest splat. 785 SplatBits = FPImm.bitcastToAPInt(); 786 unsigned Width = SplatBits.getBitWidth(); 787 while (Width > 8) { 788 unsigned HalfSize = Width / 2; 789 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 790 APInt LowValue = SplatBits.trunc(HalfSize); 791 792 // If the two halves do not match, stop here. 793 if (HighValue != LowValue || 8 > HalfSize) 794 break; 795 796 SplatBits = HighValue; 797 Width = HalfSize; 798 } 799 SplatUndef = 0; 800 SplatBitSize = Width; 801 } 802 803 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 804 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 805 bool HasAnyUndefs; 806 807 // Get IntBits by finding the 128 bit splat. 808 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 809 true); 810 811 // Get SplatBits by finding the 8 bit or greater splat. 812 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 813 true); 814 } 815 816 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 817 bool ForCodeSize) const { 818 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 819 if (Imm.isZero() || Imm.isNegZero()) 820 return true; 821 822 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 823 } 824 825 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 826 // We can use CGFI or CLGFI. 827 return isInt<32>(Imm) || isUInt<32>(Imm); 828 } 829 830 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 831 // We can use ALGFI or SLGFI. 832 return isUInt<32>(Imm) || isUInt<32>(-Imm); 833 } 834 835 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 836 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const { 837 // Unaligned accesses should never be slower than the expanded version. 838 // We check specifically for aligned accesses in the few cases where 839 // they are required. 840 if (Fast) 841 *Fast = true; 842 return true; 843 } 844 845 // Information about the addressing mode for a memory access. 846 struct AddressingMode { 847 // True if a long displacement is supported. 848 bool LongDisplacement; 849 850 // True if use of index register is supported. 851 bool IndexReg; 852 853 AddressingMode(bool LongDispl, bool IdxReg) : 854 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 855 }; 856 857 // Return the desired addressing mode for a Load which has only one use (in 858 // the same block) which is a Store. 859 static AddressingMode getLoadStoreAddrMode(bool HasVector, 860 Type *Ty) { 861 // With vector support a Load->Store combination may be combined to either 862 // an MVC or vector operations and it seems to work best to allow the 863 // vector addressing mode. 864 if (HasVector) 865 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 866 867 // Otherwise only the MVC case is special. 868 bool MVC = Ty->isIntegerTy(8); 869 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 870 } 871 872 // Return the addressing mode which seems most desirable given an LLVM 873 // Instruction pointer. 874 static AddressingMode 875 supportedAddressingMode(Instruction *I, bool HasVector) { 876 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 877 switch (II->getIntrinsicID()) { 878 default: break; 879 case Intrinsic::memset: 880 case Intrinsic::memmove: 881 case Intrinsic::memcpy: 882 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 883 } 884 } 885 886 if (isa<LoadInst>(I) && I->hasOneUse()) { 887 auto *SingleUser = cast<Instruction>(*I->user_begin()); 888 if (SingleUser->getParent() == I->getParent()) { 889 if (isa<ICmpInst>(SingleUser)) { 890 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 891 if (C->getBitWidth() <= 64 && 892 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 893 // Comparison of memory with 16 bit signed / unsigned immediate 894 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 895 } else if (isa<StoreInst>(SingleUser)) 896 // Load->Store 897 return getLoadStoreAddrMode(HasVector, I->getType()); 898 } 899 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 900 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 901 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 902 // Load->Store 903 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 904 } 905 906 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 907 908 // * Use LDE instead of LE/LEY for z13 to avoid partial register 909 // dependencies (LDE only supports small offsets). 910 // * Utilize the vector registers to hold floating point 911 // values (vector load / store instructions only support small 912 // offsets). 913 914 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 915 I->getOperand(0)->getType()); 916 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 917 bool IsVectorAccess = MemAccessTy->isVectorTy(); 918 919 // A store of an extracted vector element will be combined into a VSTE type 920 // instruction. 921 if (!IsVectorAccess && isa<StoreInst>(I)) { 922 Value *DataOp = I->getOperand(0); 923 if (isa<ExtractElementInst>(DataOp)) 924 IsVectorAccess = true; 925 } 926 927 // A load which gets inserted into a vector element will be combined into a 928 // VLE type instruction. 929 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 930 User *LoadUser = *I->user_begin(); 931 if (isa<InsertElementInst>(LoadUser)) 932 IsVectorAccess = true; 933 } 934 935 if (IsFPAccess || IsVectorAccess) 936 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 937 } 938 939 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 940 } 941 942 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 943 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 944 // Punt on globals for now, although they can be used in limited 945 // RELATIVE LONG cases. 946 if (AM.BaseGV) 947 return false; 948 949 // Require a 20-bit signed offset. 950 if (!isInt<20>(AM.BaseOffs)) 951 return false; 952 953 AddressingMode SupportedAM(true, true); 954 if (I != nullptr) 955 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 956 957 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 958 return false; 959 960 if (!SupportedAM.IndexReg) 961 // No indexing allowed. 962 return AM.Scale == 0; 963 else 964 // Indexing is OK but no scale factor can be applied. 965 return AM.Scale == 0 || AM.Scale == 1; 966 } 967 968 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 969 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 970 return false; 971 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 972 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 973 return FromBits > ToBits; 974 } 975 976 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 977 if (!FromVT.isInteger() || !ToVT.isInteger()) 978 return false; 979 unsigned FromBits = FromVT.getSizeInBits(); 980 unsigned ToBits = ToVT.getSizeInBits(); 981 return FromBits > ToBits; 982 } 983 984 //===----------------------------------------------------------------------===// 985 // Inline asm support 986 //===----------------------------------------------------------------------===// 987 988 TargetLowering::ConstraintType 989 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 990 if (Constraint.size() == 1) { 991 switch (Constraint[0]) { 992 case 'a': // Address register 993 case 'd': // Data register (equivalent to 'r') 994 case 'f': // Floating-point register 995 case 'h': // High-part register 996 case 'r': // General-purpose register 997 case 'v': // Vector register 998 return C_RegisterClass; 999 1000 case 'Q': // Memory with base and unsigned 12-bit displacement 1001 case 'R': // Likewise, plus an index 1002 case 'S': // Memory with base and signed 20-bit displacement 1003 case 'T': // Likewise, plus an index 1004 case 'm': // Equivalent to 'T'. 1005 return C_Memory; 1006 1007 case 'I': // Unsigned 8-bit constant 1008 case 'J': // Unsigned 12-bit constant 1009 case 'K': // Signed 16-bit constant 1010 case 'L': // Signed 20-bit displacement (on all targets we support) 1011 case 'M': // 0x7fffffff 1012 return C_Immediate; 1013 1014 default: 1015 break; 1016 } 1017 } 1018 return TargetLowering::getConstraintType(Constraint); 1019 } 1020 1021 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1022 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1023 const char *constraint) const { 1024 ConstraintWeight weight = CW_Invalid; 1025 Value *CallOperandVal = info.CallOperandVal; 1026 // If we don't have a value, we can't do a match, 1027 // but allow it at the lowest weight. 1028 if (!CallOperandVal) 1029 return CW_Default; 1030 Type *type = CallOperandVal->getType(); 1031 // Look at the constraint type. 1032 switch (*constraint) { 1033 default: 1034 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1035 break; 1036 1037 case 'a': // Address register 1038 case 'd': // Data register (equivalent to 'r') 1039 case 'h': // High-part register 1040 case 'r': // General-purpose register 1041 if (CallOperandVal->getType()->isIntegerTy()) 1042 weight = CW_Register; 1043 break; 1044 1045 case 'f': // Floating-point register 1046 if (type->isFloatingPointTy()) 1047 weight = CW_Register; 1048 break; 1049 1050 case 'v': // Vector register 1051 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1052 Subtarget.hasVector()) 1053 weight = CW_Register; 1054 break; 1055 1056 case 'I': // Unsigned 8-bit constant 1057 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1058 if (isUInt<8>(C->getZExtValue())) 1059 weight = CW_Constant; 1060 break; 1061 1062 case 'J': // Unsigned 12-bit constant 1063 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1064 if (isUInt<12>(C->getZExtValue())) 1065 weight = CW_Constant; 1066 break; 1067 1068 case 'K': // Signed 16-bit constant 1069 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1070 if (isInt<16>(C->getSExtValue())) 1071 weight = CW_Constant; 1072 break; 1073 1074 case 'L': // Signed 20-bit displacement (on all targets we support) 1075 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1076 if (isInt<20>(C->getSExtValue())) 1077 weight = CW_Constant; 1078 break; 1079 1080 case 'M': // 0x7fffffff 1081 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1082 if (C->getZExtValue() == 0x7fffffff) 1083 weight = CW_Constant; 1084 break; 1085 } 1086 return weight; 1087 } 1088 1089 // Parse a "{tNNN}" register constraint for which the register type "t" 1090 // has already been verified. MC is the class associated with "t" and 1091 // Map maps 0-based register numbers to LLVM register numbers. 1092 static std::pair<unsigned, const TargetRegisterClass *> 1093 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1094 const unsigned *Map, unsigned Size) { 1095 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1096 if (isdigit(Constraint[2])) { 1097 unsigned Index; 1098 bool Failed = 1099 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1100 if (!Failed && Index < Size && Map[Index]) 1101 return std::make_pair(Map[Index], RC); 1102 } 1103 return std::make_pair(0U, nullptr); 1104 } 1105 1106 std::pair<unsigned, const TargetRegisterClass *> 1107 SystemZTargetLowering::getRegForInlineAsmConstraint( 1108 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1109 if (Constraint.size() == 1) { 1110 // GCC Constraint Letters 1111 switch (Constraint[0]) { 1112 default: break; 1113 case 'd': // Data register (equivalent to 'r') 1114 case 'r': // General-purpose register 1115 if (VT == MVT::i64) 1116 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1117 else if (VT == MVT::i128) 1118 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1119 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1120 1121 case 'a': // Address register 1122 if (VT == MVT::i64) 1123 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1124 else if (VT == MVT::i128) 1125 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1126 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1127 1128 case 'h': // High-part register (an LLVM extension) 1129 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1130 1131 case 'f': // Floating-point register 1132 if (!useSoftFloat()) { 1133 if (VT == MVT::f64) 1134 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1135 else if (VT == MVT::f128) 1136 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1137 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1138 } 1139 break; 1140 case 'v': // Vector register 1141 if (Subtarget.hasVector()) { 1142 if (VT == MVT::f32) 1143 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1144 if (VT == MVT::f64) 1145 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1146 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1147 } 1148 break; 1149 } 1150 } 1151 if (Constraint.size() > 0 && Constraint[0] == '{') { 1152 // We need to override the default register parsing for GPRs and FPRs 1153 // because the interpretation depends on VT. The internal names of 1154 // the registers are also different from the external names 1155 // (F0D and F0S instead of F0, etc.). 1156 if (Constraint[1] == 'r') { 1157 if (VT == MVT::i32) 1158 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1159 SystemZMC::GR32Regs, 16); 1160 if (VT == MVT::i128) 1161 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1162 SystemZMC::GR128Regs, 16); 1163 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1164 SystemZMC::GR64Regs, 16); 1165 } 1166 if (Constraint[1] == 'f') { 1167 if (useSoftFloat()) 1168 return std::make_pair( 1169 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1170 if (VT == MVT::f32) 1171 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1172 SystemZMC::FP32Regs, 16); 1173 if (VT == MVT::f128) 1174 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1175 SystemZMC::FP128Regs, 16); 1176 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1177 SystemZMC::FP64Regs, 16); 1178 } 1179 if (Constraint[1] == 'v') { 1180 if (!Subtarget.hasVector()) 1181 return std::make_pair( 1182 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1183 if (VT == MVT::f32) 1184 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1185 SystemZMC::VR32Regs, 32); 1186 if (VT == MVT::f64) 1187 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1188 SystemZMC::VR64Regs, 32); 1189 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1190 SystemZMC::VR128Regs, 32); 1191 } 1192 } 1193 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1194 } 1195 1196 // FIXME? Maybe this could be a TableGen attribute on some registers and 1197 // this table could be generated automatically from RegInfo. 1198 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1199 const MachineFunction &MF) const { 1200 1201 Register Reg = StringSwitch<Register>(RegName) 1202 .Case("r15", SystemZ::R15D) 1203 .Default(0); 1204 if (Reg) 1205 return Reg; 1206 report_fatal_error("Invalid register name global variable"); 1207 } 1208 1209 void SystemZTargetLowering:: 1210 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1211 std::vector<SDValue> &Ops, 1212 SelectionDAG &DAG) const { 1213 // Only support length 1 constraints for now. 1214 if (Constraint.length() == 1) { 1215 switch (Constraint[0]) { 1216 case 'I': // Unsigned 8-bit constant 1217 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1218 if (isUInt<8>(C->getZExtValue())) 1219 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1220 Op.getValueType())); 1221 return; 1222 1223 case 'J': // Unsigned 12-bit constant 1224 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1225 if (isUInt<12>(C->getZExtValue())) 1226 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1227 Op.getValueType())); 1228 return; 1229 1230 case 'K': // Signed 16-bit constant 1231 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1232 if (isInt<16>(C->getSExtValue())) 1233 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1234 Op.getValueType())); 1235 return; 1236 1237 case 'L': // Signed 20-bit displacement (on all targets we support) 1238 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1239 if (isInt<20>(C->getSExtValue())) 1240 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1241 Op.getValueType())); 1242 return; 1243 1244 case 'M': // 0x7fffffff 1245 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1246 if (C->getZExtValue() == 0x7fffffff) 1247 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1248 Op.getValueType())); 1249 return; 1250 } 1251 } 1252 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1253 } 1254 1255 //===----------------------------------------------------------------------===// 1256 // Calling conventions 1257 //===----------------------------------------------------------------------===// 1258 1259 #include "SystemZGenCallingConv.inc" 1260 1261 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1262 CallingConv::ID) const { 1263 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1264 SystemZ::R14D, 0 }; 1265 return ScratchRegs; 1266 } 1267 1268 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1269 Type *ToType) const { 1270 return isTruncateFree(FromType, ToType); 1271 } 1272 1273 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1274 return CI->isTailCall(); 1275 } 1276 1277 // We do not yet support 128-bit single-element vector types. If the user 1278 // attempts to use such types as function argument or return type, prefer 1279 // to error out instead of emitting code violating the ABI. 1280 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1281 if (ArgVT.isVector() && !VT.isVector()) 1282 report_fatal_error("Unsupported vector argument or return type"); 1283 } 1284 1285 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1286 for (unsigned i = 0; i < Ins.size(); ++i) 1287 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1288 } 1289 1290 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1291 for (unsigned i = 0; i < Outs.size(); ++i) 1292 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1293 } 1294 1295 // Value is a value that has been passed to us in the location described by VA 1296 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1297 // any loads onto Chain. 1298 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1299 CCValAssign &VA, SDValue Chain, 1300 SDValue Value) { 1301 // If the argument has been promoted from a smaller type, insert an 1302 // assertion to capture this. 1303 if (VA.getLocInfo() == CCValAssign::SExt) 1304 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1305 DAG.getValueType(VA.getValVT())); 1306 else if (VA.getLocInfo() == CCValAssign::ZExt) 1307 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1308 DAG.getValueType(VA.getValVT())); 1309 1310 if (VA.isExtInLoc()) 1311 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1312 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1313 // If this is a short vector argument loaded from the stack, 1314 // extend from i64 to full vector size and then bitcast. 1315 assert(VA.getLocVT() == MVT::i64); 1316 assert(VA.getValVT().isVector()); 1317 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1318 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1319 } else 1320 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1321 return Value; 1322 } 1323 1324 // Value is a value of type VA.getValVT() that we need to copy into 1325 // the location described by VA. Return a copy of Value converted to 1326 // VA.getValVT(). The caller is responsible for handling indirect values. 1327 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1328 CCValAssign &VA, SDValue Value) { 1329 switch (VA.getLocInfo()) { 1330 case CCValAssign::SExt: 1331 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1332 case CCValAssign::ZExt: 1333 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1334 case CCValAssign::AExt: 1335 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1336 case CCValAssign::BCvt: 1337 // If this is a short vector argument to be stored to the stack, 1338 // bitcast to v2i64 and then extract first element. 1339 assert(VA.getLocVT() == MVT::i64); 1340 assert(VA.getValVT().isVector()); 1341 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1342 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1343 DAG.getConstant(0, DL, MVT::i32)); 1344 case CCValAssign::Full: 1345 return Value; 1346 default: 1347 llvm_unreachable("Unhandled getLocInfo()"); 1348 } 1349 } 1350 1351 SDValue SystemZTargetLowering::LowerFormalArguments( 1352 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1353 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1354 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1355 MachineFunction &MF = DAG.getMachineFunction(); 1356 MachineFrameInfo &MFI = MF.getFrameInfo(); 1357 MachineRegisterInfo &MRI = MF.getRegInfo(); 1358 SystemZMachineFunctionInfo *FuncInfo = 1359 MF.getInfo<SystemZMachineFunctionInfo>(); 1360 auto *TFL = 1361 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1362 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1363 1364 // Detect unsupported vector argument types. 1365 if (Subtarget.hasVector()) 1366 VerifyVectorTypes(Ins); 1367 1368 // Assign locations to all of the incoming arguments. 1369 SmallVector<CCValAssign, 16> ArgLocs; 1370 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1371 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1372 1373 unsigned NumFixedGPRs = 0; 1374 unsigned NumFixedFPRs = 0; 1375 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1376 SDValue ArgValue; 1377 CCValAssign &VA = ArgLocs[I]; 1378 EVT LocVT = VA.getLocVT(); 1379 if (VA.isRegLoc()) { 1380 // Arguments passed in registers 1381 const TargetRegisterClass *RC; 1382 switch (LocVT.getSimpleVT().SimpleTy) { 1383 default: 1384 // Integers smaller than i64 should be promoted to i64. 1385 llvm_unreachable("Unexpected argument type"); 1386 case MVT::i32: 1387 NumFixedGPRs += 1; 1388 RC = &SystemZ::GR32BitRegClass; 1389 break; 1390 case MVT::i64: 1391 NumFixedGPRs += 1; 1392 RC = &SystemZ::GR64BitRegClass; 1393 break; 1394 case MVT::f32: 1395 NumFixedFPRs += 1; 1396 RC = &SystemZ::FP32BitRegClass; 1397 break; 1398 case MVT::f64: 1399 NumFixedFPRs += 1; 1400 RC = &SystemZ::FP64BitRegClass; 1401 break; 1402 case MVT::v16i8: 1403 case MVT::v8i16: 1404 case MVT::v4i32: 1405 case MVT::v2i64: 1406 case MVT::v4f32: 1407 case MVT::v2f64: 1408 RC = &SystemZ::VR128BitRegClass; 1409 break; 1410 } 1411 1412 Register VReg = MRI.createVirtualRegister(RC); 1413 MRI.addLiveIn(VA.getLocReg(), VReg); 1414 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1415 } else { 1416 assert(VA.isMemLoc() && "Argument not register or memory"); 1417 1418 // Create the frame index object for this incoming parameter. 1419 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1420 VA.getLocMemOffset(), true); 1421 1422 // Create the SelectionDAG nodes corresponding to a load 1423 // from this parameter. Unpromoted ints and floats are 1424 // passed as right-justified 8-byte values. 1425 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1426 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1427 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1428 DAG.getIntPtrConstant(4, DL)); 1429 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1430 MachinePointerInfo::getFixedStack(MF, FI)); 1431 } 1432 1433 // Convert the value of the argument register into the value that's 1434 // being passed. 1435 if (VA.getLocInfo() == CCValAssign::Indirect) { 1436 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1437 MachinePointerInfo())); 1438 // If the original argument was split (e.g. i128), we need 1439 // to load all parts of it here (using the same address). 1440 unsigned ArgIndex = Ins[I].OrigArgIndex; 1441 assert (Ins[I].PartOffset == 0); 1442 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1443 CCValAssign &PartVA = ArgLocs[I + 1]; 1444 unsigned PartOffset = Ins[I + 1].PartOffset; 1445 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1446 DAG.getIntPtrConstant(PartOffset, DL)); 1447 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1448 MachinePointerInfo())); 1449 ++I; 1450 } 1451 } else 1452 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1453 } 1454 1455 if (IsVarArg) { 1456 // Save the number of non-varargs registers for later use by va_start, etc. 1457 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1458 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1459 1460 // Likewise the address (in the form of a frame index) of where the 1461 // first stack vararg would be. The 1-byte size here is arbitrary. 1462 int64_t StackSize = CCInfo.getNextStackOffset(); 1463 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1464 1465 // ...and a similar frame index for the caller-allocated save area 1466 // that will be used to store the incoming registers. 1467 int64_t RegSaveOffset = 1468 -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1469 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1470 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1471 1472 // Store the FPR varargs in the reserved frame slots. (We store the 1473 // GPRs as part of the prologue.) 1474 if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) { 1475 SDValue MemOps[SystemZ::NumArgFPRs]; 1476 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1477 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]); 1478 int FI = 1479 MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true); 1480 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1481 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1482 &SystemZ::FP64BitRegClass); 1483 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1484 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1485 MachinePointerInfo::getFixedStack(MF, FI)); 1486 } 1487 // Join the stores, which are independent of one another. 1488 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1489 makeArrayRef(&MemOps[NumFixedFPRs], 1490 SystemZ::NumArgFPRs-NumFixedFPRs)); 1491 } 1492 } 1493 1494 return Chain; 1495 } 1496 1497 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1498 SmallVectorImpl<CCValAssign> &ArgLocs, 1499 SmallVectorImpl<ISD::OutputArg> &Outs) { 1500 // Punt if there are any indirect or stack arguments, or if the call 1501 // needs the callee-saved argument register R6, or if the call uses 1502 // the callee-saved register arguments SwiftSelf and SwiftError. 1503 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1504 CCValAssign &VA = ArgLocs[I]; 1505 if (VA.getLocInfo() == CCValAssign::Indirect) 1506 return false; 1507 if (!VA.isRegLoc()) 1508 return false; 1509 Register Reg = VA.getLocReg(); 1510 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1511 return false; 1512 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1513 return false; 1514 } 1515 return true; 1516 } 1517 1518 SDValue 1519 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1520 SmallVectorImpl<SDValue> &InVals) const { 1521 SelectionDAG &DAG = CLI.DAG; 1522 SDLoc &DL = CLI.DL; 1523 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1524 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1525 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1526 SDValue Chain = CLI.Chain; 1527 SDValue Callee = CLI.Callee; 1528 bool &IsTailCall = CLI.IsTailCall; 1529 CallingConv::ID CallConv = CLI.CallConv; 1530 bool IsVarArg = CLI.IsVarArg; 1531 MachineFunction &MF = DAG.getMachineFunction(); 1532 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1533 1534 // Detect unsupported vector argument and return types. 1535 if (Subtarget.hasVector()) { 1536 VerifyVectorTypes(Outs); 1537 VerifyVectorTypes(Ins); 1538 } 1539 1540 // Analyze the operands of the call, assigning locations to each operand. 1541 SmallVector<CCValAssign, 16> ArgLocs; 1542 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1543 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1544 1545 // We don't support GuaranteedTailCallOpt, only automatically-detected 1546 // sibling calls. 1547 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1548 IsTailCall = false; 1549 1550 // Get a count of how many bytes are to be pushed on the stack. 1551 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1552 1553 // Mark the start of the call. 1554 if (!IsTailCall) 1555 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1556 1557 // Copy argument values to their designated locations. 1558 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1559 SmallVector<SDValue, 8> MemOpChains; 1560 SDValue StackPtr; 1561 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1562 CCValAssign &VA = ArgLocs[I]; 1563 SDValue ArgValue = OutVals[I]; 1564 1565 if (VA.getLocInfo() == CCValAssign::Indirect) { 1566 // Store the argument in a stack slot and pass its address. 1567 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1568 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1569 MemOpChains.push_back( 1570 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1571 MachinePointerInfo::getFixedStack(MF, FI))); 1572 // If the original argument was split (e.g. i128), we need 1573 // to store all parts of it here (and pass just one address). 1574 unsigned ArgIndex = Outs[I].OrigArgIndex; 1575 assert (Outs[I].PartOffset == 0); 1576 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1577 SDValue PartValue = OutVals[I + 1]; 1578 unsigned PartOffset = Outs[I + 1].PartOffset; 1579 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1580 DAG.getIntPtrConstant(PartOffset, DL)); 1581 MemOpChains.push_back( 1582 DAG.getStore(Chain, DL, PartValue, Address, 1583 MachinePointerInfo::getFixedStack(MF, FI))); 1584 ++I; 1585 } 1586 ArgValue = SpillSlot; 1587 } else 1588 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1589 1590 if (VA.isRegLoc()) 1591 // Queue up the argument copies and emit them at the end. 1592 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1593 else { 1594 assert(VA.isMemLoc() && "Argument not register or memory"); 1595 1596 // Work out the address of the stack slot. Unpromoted ints and 1597 // floats are passed as right-justified 8-byte values. 1598 if (!StackPtr.getNode()) 1599 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1600 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1601 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1602 Offset += 4; 1603 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1604 DAG.getIntPtrConstant(Offset, DL)); 1605 1606 // Emit the store. 1607 MemOpChains.push_back( 1608 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1609 } 1610 } 1611 1612 // Join the stores, which are independent of one another. 1613 if (!MemOpChains.empty()) 1614 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1615 1616 // Accept direct calls by converting symbolic call addresses to the 1617 // associated Target* opcodes. Force %r1 to be used for indirect 1618 // tail calls. 1619 SDValue Glue; 1620 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1621 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1622 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1623 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1624 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1625 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1626 } else if (IsTailCall) { 1627 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1628 Glue = Chain.getValue(1); 1629 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1630 } 1631 1632 // Build a sequence of copy-to-reg nodes, chained and glued together. 1633 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1634 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1635 RegsToPass[I].second, Glue); 1636 Glue = Chain.getValue(1); 1637 } 1638 1639 // The first call operand is the chain and the second is the target address. 1640 SmallVector<SDValue, 8> Ops; 1641 Ops.push_back(Chain); 1642 Ops.push_back(Callee); 1643 1644 // Add argument registers to the end of the list so that they are 1645 // known live into the call. 1646 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1647 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1648 RegsToPass[I].second.getValueType())); 1649 1650 // Add a register mask operand representing the call-preserved registers. 1651 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1652 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1653 assert(Mask && "Missing call preserved mask for calling convention"); 1654 Ops.push_back(DAG.getRegisterMask(Mask)); 1655 1656 // Glue the call to the argument copies, if any. 1657 if (Glue.getNode()) 1658 Ops.push_back(Glue); 1659 1660 // Emit the call. 1661 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1662 if (IsTailCall) 1663 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1664 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1665 Glue = Chain.getValue(1); 1666 1667 // Mark the end of the call, which is glued to the call itself. 1668 Chain = DAG.getCALLSEQ_END(Chain, 1669 DAG.getConstant(NumBytes, DL, PtrVT, true), 1670 DAG.getConstant(0, DL, PtrVT, true), 1671 Glue, DL); 1672 Glue = Chain.getValue(1); 1673 1674 // Assign locations to each value returned by this call. 1675 SmallVector<CCValAssign, 16> RetLocs; 1676 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1677 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1678 1679 // Copy all of the result registers out of their specified physreg. 1680 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1681 CCValAssign &VA = RetLocs[I]; 1682 1683 // Copy the value out, gluing the copy to the end of the call sequence. 1684 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1685 VA.getLocVT(), Glue); 1686 Chain = RetValue.getValue(1); 1687 Glue = RetValue.getValue(2); 1688 1689 // Convert the value of the return register into the value that's 1690 // being returned. 1691 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1692 } 1693 1694 return Chain; 1695 } 1696 1697 bool SystemZTargetLowering:: 1698 CanLowerReturn(CallingConv::ID CallConv, 1699 MachineFunction &MF, bool isVarArg, 1700 const SmallVectorImpl<ISD::OutputArg> &Outs, 1701 LLVMContext &Context) const { 1702 // Detect unsupported vector return types. 1703 if (Subtarget.hasVector()) 1704 VerifyVectorTypes(Outs); 1705 1706 // Special case that we cannot easily detect in RetCC_SystemZ since 1707 // i128 is not a legal type. 1708 for (auto &Out : Outs) 1709 if (Out.ArgVT == MVT::i128) 1710 return false; 1711 1712 SmallVector<CCValAssign, 16> RetLocs; 1713 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1714 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1715 } 1716 1717 SDValue 1718 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1719 bool IsVarArg, 1720 const SmallVectorImpl<ISD::OutputArg> &Outs, 1721 const SmallVectorImpl<SDValue> &OutVals, 1722 const SDLoc &DL, SelectionDAG &DAG) const { 1723 MachineFunction &MF = DAG.getMachineFunction(); 1724 1725 // Detect unsupported vector return types. 1726 if (Subtarget.hasVector()) 1727 VerifyVectorTypes(Outs); 1728 1729 // Assign locations to each returned value. 1730 SmallVector<CCValAssign, 16> RetLocs; 1731 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1732 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1733 1734 // Quick exit for void returns 1735 if (RetLocs.empty()) 1736 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1737 1738 if (CallConv == CallingConv::GHC) 1739 report_fatal_error("GHC functions return void only"); 1740 1741 // Copy the result values into the output registers. 1742 SDValue Glue; 1743 SmallVector<SDValue, 4> RetOps; 1744 RetOps.push_back(Chain); 1745 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1746 CCValAssign &VA = RetLocs[I]; 1747 SDValue RetValue = OutVals[I]; 1748 1749 // Make the return register live on exit. 1750 assert(VA.isRegLoc() && "Can only return in registers!"); 1751 1752 // Promote the value as required. 1753 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1754 1755 // Chain and glue the copies together. 1756 Register Reg = VA.getLocReg(); 1757 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1758 Glue = Chain.getValue(1); 1759 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1760 } 1761 1762 // Update chain and glue. 1763 RetOps[0] = Chain; 1764 if (Glue.getNode()) 1765 RetOps.push_back(Glue); 1766 1767 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1768 } 1769 1770 // Return true if Op is an intrinsic node with chain that returns the CC value 1771 // as its only (other) argument. Provide the associated SystemZISD opcode and 1772 // the mask of valid CC values if so. 1773 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1774 unsigned &CCValid) { 1775 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1776 switch (Id) { 1777 case Intrinsic::s390_tbegin: 1778 Opcode = SystemZISD::TBEGIN; 1779 CCValid = SystemZ::CCMASK_TBEGIN; 1780 return true; 1781 1782 case Intrinsic::s390_tbegin_nofloat: 1783 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1784 CCValid = SystemZ::CCMASK_TBEGIN; 1785 return true; 1786 1787 case Intrinsic::s390_tend: 1788 Opcode = SystemZISD::TEND; 1789 CCValid = SystemZ::CCMASK_TEND; 1790 return true; 1791 1792 default: 1793 return false; 1794 } 1795 } 1796 1797 // Return true if Op is an intrinsic node without chain that returns the 1798 // CC value as its final argument. Provide the associated SystemZISD 1799 // opcode and the mask of valid CC values if so. 1800 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1801 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1802 switch (Id) { 1803 case Intrinsic::s390_vpkshs: 1804 case Intrinsic::s390_vpksfs: 1805 case Intrinsic::s390_vpksgs: 1806 Opcode = SystemZISD::PACKS_CC; 1807 CCValid = SystemZ::CCMASK_VCMP; 1808 return true; 1809 1810 case Intrinsic::s390_vpklshs: 1811 case Intrinsic::s390_vpklsfs: 1812 case Intrinsic::s390_vpklsgs: 1813 Opcode = SystemZISD::PACKLS_CC; 1814 CCValid = SystemZ::CCMASK_VCMP; 1815 return true; 1816 1817 case Intrinsic::s390_vceqbs: 1818 case Intrinsic::s390_vceqhs: 1819 case Intrinsic::s390_vceqfs: 1820 case Intrinsic::s390_vceqgs: 1821 Opcode = SystemZISD::VICMPES; 1822 CCValid = SystemZ::CCMASK_VCMP; 1823 return true; 1824 1825 case Intrinsic::s390_vchbs: 1826 case Intrinsic::s390_vchhs: 1827 case Intrinsic::s390_vchfs: 1828 case Intrinsic::s390_vchgs: 1829 Opcode = SystemZISD::VICMPHS; 1830 CCValid = SystemZ::CCMASK_VCMP; 1831 return true; 1832 1833 case Intrinsic::s390_vchlbs: 1834 case Intrinsic::s390_vchlhs: 1835 case Intrinsic::s390_vchlfs: 1836 case Intrinsic::s390_vchlgs: 1837 Opcode = SystemZISD::VICMPHLS; 1838 CCValid = SystemZ::CCMASK_VCMP; 1839 return true; 1840 1841 case Intrinsic::s390_vtm: 1842 Opcode = SystemZISD::VTM; 1843 CCValid = SystemZ::CCMASK_VCMP; 1844 return true; 1845 1846 case Intrinsic::s390_vfaebs: 1847 case Intrinsic::s390_vfaehs: 1848 case Intrinsic::s390_vfaefs: 1849 Opcode = SystemZISD::VFAE_CC; 1850 CCValid = SystemZ::CCMASK_ANY; 1851 return true; 1852 1853 case Intrinsic::s390_vfaezbs: 1854 case Intrinsic::s390_vfaezhs: 1855 case Intrinsic::s390_vfaezfs: 1856 Opcode = SystemZISD::VFAEZ_CC; 1857 CCValid = SystemZ::CCMASK_ANY; 1858 return true; 1859 1860 case Intrinsic::s390_vfeebs: 1861 case Intrinsic::s390_vfeehs: 1862 case Intrinsic::s390_vfeefs: 1863 Opcode = SystemZISD::VFEE_CC; 1864 CCValid = SystemZ::CCMASK_ANY; 1865 return true; 1866 1867 case Intrinsic::s390_vfeezbs: 1868 case Intrinsic::s390_vfeezhs: 1869 case Intrinsic::s390_vfeezfs: 1870 Opcode = SystemZISD::VFEEZ_CC; 1871 CCValid = SystemZ::CCMASK_ANY; 1872 return true; 1873 1874 case Intrinsic::s390_vfenebs: 1875 case Intrinsic::s390_vfenehs: 1876 case Intrinsic::s390_vfenefs: 1877 Opcode = SystemZISD::VFENE_CC; 1878 CCValid = SystemZ::CCMASK_ANY; 1879 return true; 1880 1881 case Intrinsic::s390_vfenezbs: 1882 case Intrinsic::s390_vfenezhs: 1883 case Intrinsic::s390_vfenezfs: 1884 Opcode = SystemZISD::VFENEZ_CC; 1885 CCValid = SystemZ::CCMASK_ANY; 1886 return true; 1887 1888 case Intrinsic::s390_vistrbs: 1889 case Intrinsic::s390_vistrhs: 1890 case Intrinsic::s390_vistrfs: 1891 Opcode = SystemZISD::VISTR_CC; 1892 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1893 return true; 1894 1895 case Intrinsic::s390_vstrcbs: 1896 case Intrinsic::s390_vstrchs: 1897 case Intrinsic::s390_vstrcfs: 1898 Opcode = SystemZISD::VSTRC_CC; 1899 CCValid = SystemZ::CCMASK_ANY; 1900 return true; 1901 1902 case Intrinsic::s390_vstrczbs: 1903 case Intrinsic::s390_vstrczhs: 1904 case Intrinsic::s390_vstrczfs: 1905 Opcode = SystemZISD::VSTRCZ_CC; 1906 CCValid = SystemZ::CCMASK_ANY; 1907 return true; 1908 1909 case Intrinsic::s390_vstrsb: 1910 case Intrinsic::s390_vstrsh: 1911 case Intrinsic::s390_vstrsf: 1912 Opcode = SystemZISD::VSTRS_CC; 1913 CCValid = SystemZ::CCMASK_ANY; 1914 return true; 1915 1916 case Intrinsic::s390_vstrszb: 1917 case Intrinsic::s390_vstrszh: 1918 case Intrinsic::s390_vstrszf: 1919 Opcode = SystemZISD::VSTRSZ_CC; 1920 CCValid = SystemZ::CCMASK_ANY; 1921 return true; 1922 1923 case Intrinsic::s390_vfcedbs: 1924 case Intrinsic::s390_vfcesbs: 1925 Opcode = SystemZISD::VFCMPES; 1926 CCValid = SystemZ::CCMASK_VCMP; 1927 return true; 1928 1929 case Intrinsic::s390_vfchdbs: 1930 case Intrinsic::s390_vfchsbs: 1931 Opcode = SystemZISD::VFCMPHS; 1932 CCValid = SystemZ::CCMASK_VCMP; 1933 return true; 1934 1935 case Intrinsic::s390_vfchedbs: 1936 case Intrinsic::s390_vfchesbs: 1937 Opcode = SystemZISD::VFCMPHES; 1938 CCValid = SystemZ::CCMASK_VCMP; 1939 return true; 1940 1941 case Intrinsic::s390_vftcidb: 1942 case Intrinsic::s390_vftcisb: 1943 Opcode = SystemZISD::VFTCI; 1944 CCValid = SystemZ::CCMASK_VCMP; 1945 return true; 1946 1947 case Intrinsic::s390_tdc: 1948 Opcode = SystemZISD::TDC; 1949 CCValid = SystemZ::CCMASK_TDC; 1950 return true; 1951 1952 default: 1953 return false; 1954 } 1955 } 1956 1957 // Emit an intrinsic with chain and an explicit CC register result. 1958 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1959 unsigned Opcode) { 1960 // Copy all operands except the intrinsic ID. 1961 unsigned NumOps = Op.getNumOperands(); 1962 SmallVector<SDValue, 6> Ops; 1963 Ops.reserve(NumOps - 1); 1964 Ops.push_back(Op.getOperand(0)); 1965 for (unsigned I = 2; I < NumOps; ++I) 1966 Ops.push_back(Op.getOperand(I)); 1967 1968 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1969 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1970 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1971 SDValue OldChain = SDValue(Op.getNode(), 1); 1972 SDValue NewChain = SDValue(Intr.getNode(), 1); 1973 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1974 return Intr.getNode(); 1975 } 1976 1977 // Emit an intrinsic with an explicit CC register result. 1978 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1979 unsigned Opcode) { 1980 // Copy all operands except the intrinsic ID. 1981 unsigned NumOps = Op.getNumOperands(); 1982 SmallVector<SDValue, 6> Ops; 1983 Ops.reserve(NumOps - 1); 1984 for (unsigned I = 1; I < NumOps; ++I) 1985 Ops.push_back(Op.getOperand(I)); 1986 1987 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1988 return Intr.getNode(); 1989 } 1990 1991 // CC is a comparison that will be implemented using an integer or 1992 // floating-point comparison. Return the condition code mask for 1993 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1994 // unsigned comparisons and clear for signed ones. In the floating-point 1995 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1996 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1997 #define CONV(X) \ 1998 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1999 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2000 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2001 2002 switch (CC) { 2003 default: 2004 llvm_unreachable("Invalid integer condition!"); 2005 2006 CONV(EQ); 2007 CONV(NE); 2008 CONV(GT); 2009 CONV(GE); 2010 CONV(LT); 2011 CONV(LE); 2012 2013 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2014 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2015 } 2016 #undef CONV 2017 } 2018 2019 // If C can be converted to a comparison against zero, adjust the operands 2020 // as necessary. 2021 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2022 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2023 return; 2024 2025 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2026 if (!ConstOp1) 2027 return; 2028 2029 int64_t Value = ConstOp1->getSExtValue(); 2030 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2031 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2032 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2033 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2034 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2035 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2036 } 2037 } 2038 2039 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2040 // adjust the operands as necessary. 2041 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2042 Comparison &C) { 2043 // For us to make any changes, it must a comparison between a single-use 2044 // load and a constant. 2045 if (!C.Op0.hasOneUse() || 2046 C.Op0.getOpcode() != ISD::LOAD || 2047 C.Op1.getOpcode() != ISD::Constant) 2048 return; 2049 2050 // We must have an 8- or 16-bit load. 2051 auto *Load = cast<LoadSDNode>(C.Op0); 2052 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 2053 if (NumBits != 8 && NumBits != 16) 2054 return; 2055 2056 // The load must be an extending one and the constant must be within the 2057 // range of the unextended value. 2058 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2059 uint64_t Value = ConstOp1->getZExtValue(); 2060 uint64_t Mask = (1 << NumBits) - 1; 2061 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2062 // Make sure that ConstOp1 is in range of C.Op0. 2063 int64_t SignedValue = ConstOp1->getSExtValue(); 2064 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2065 return; 2066 if (C.ICmpType != SystemZICMP::SignedOnly) { 2067 // Unsigned comparison between two sign-extended values is equivalent 2068 // to unsigned comparison between two zero-extended values. 2069 Value &= Mask; 2070 } else if (NumBits == 8) { 2071 // Try to treat the comparison as unsigned, so that we can use CLI. 2072 // Adjust CCMask and Value as necessary. 2073 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2074 // Test whether the high bit of the byte is set. 2075 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2076 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2077 // Test whether the high bit of the byte is clear. 2078 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2079 else 2080 // No instruction exists for this combination. 2081 return; 2082 C.ICmpType = SystemZICMP::UnsignedOnly; 2083 } 2084 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2085 if (Value > Mask) 2086 return; 2087 // If the constant is in range, we can use any comparison. 2088 C.ICmpType = SystemZICMP::Any; 2089 } else 2090 return; 2091 2092 // Make sure that the first operand is an i32 of the right extension type. 2093 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2094 ISD::SEXTLOAD : 2095 ISD::ZEXTLOAD); 2096 if (C.Op0.getValueType() != MVT::i32 || 2097 Load->getExtensionType() != ExtType) { 2098 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2099 Load->getBasePtr(), Load->getPointerInfo(), 2100 Load->getMemoryVT(), Load->getAlignment(), 2101 Load->getMemOperand()->getFlags()); 2102 // Update the chain uses. 2103 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2104 } 2105 2106 // Make sure that the second operand is an i32 with the right value. 2107 if (C.Op1.getValueType() != MVT::i32 || 2108 Value != ConstOp1->getZExtValue()) 2109 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2110 } 2111 2112 // Return true if Op is either an unextended load, or a load suitable 2113 // for integer register-memory comparisons of type ICmpType. 2114 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2115 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2116 if (Load) { 2117 // There are no instructions to compare a register with a memory byte. 2118 if (Load->getMemoryVT() == MVT::i8) 2119 return false; 2120 // Otherwise decide on extension type. 2121 switch (Load->getExtensionType()) { 2122 case ISD::NON_EXTLOAD: 2123 return true; 2124 case ISD::SEXTLOAD: 2125 return ICmpType != SystemZICMP::UnsignedOnly; 2126 case ISD::ZEXTLOAD: 2127 return ICmpType != SystemZICMP::SignedOnly; 2128 default: 2129 break; 2130 } 2131 } 2132 return false; 2133 } 2134 2135 // Return true if it is better to swap the operands of C. 2136 static bool shouldSwapCmpOperands(const Comparison &C) { 2137 // Leave f128 comparisons alone, since they have no memory forms. 2138 if (C.Op0.getValueType() == MVT::f128) 2139 return false; 2140 2141 // Always keep a floating-point constant second, since comparisons with 2142 // zero can use LOAD TEST and comparisons with other constants make a 2143 // natural memory operand. 2144 if (isa<ConstantFPSDNode>(C.Op1)) 2145 return false; 2146 2147 // Never swap comparisons with zero since there are many ways to optimize 2148 // those later. 2149 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2150 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2151 return false; 2152 2153 // Also keep natural memory operands second if the loaded value is 2154 // only used here. Several comparisons have memory forms. 2155 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2156 return false; 2157 2158 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2159 // In that case we generally prefer the memory to be second. 2160 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2161 // The only exceptions are when the second operand is a constant and 2162 // we can use things like CHHSI. 2163 if (!ConstOp1) 2164 return true; 2165 // The unsigned memory-immediate instructions can handle 16-bit 2166 // unsigned integers. 2167 if (C.ICmpType != SystemZICMP::SignedOnly && 2168 isUInt<16>(ConstOp1->getZExtValue())) 2169 return false; 2170 // The signed memory-immediate instructions can handle 16-bit 2171 // signed integers. 2172 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2173 isInt<16>(ConstOp1->getSExtValue())) 2174 return false; 2175 return true; 2176 } 2177 2178 // Try to promote the use of CGFR and CLGFR. 2179 unsigned Opcode0 = C.Op0.getOpcode(); 2180 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2181 return true; 2182 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2183 return true; 2184 if (C.ICmpType != SystemZICMP::SignedOnly && 2185 Opcode0 == ISD::AND && 2186 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2187 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2188 return true; 2189 2190 return false; 2191 } 2192 2193 // Return a version of comparison CC mask CCMask in which the LT and GT 2194 // actions are swapped. 2195 static unsigned reverseCCMask(unsigned CCMask) { 2196 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 2197 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 2198 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 2199 (CCMask & SystemZ::CCMASK_CMP_UO)); 2200 } 2201 2202 // Check whether C tests for equality between X and Y and whether X - Y 2203 // or Y - X is also computed. In that case it's better to compare the 2204 // result of the subtraction against zero. 2205 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2206 Comparison &C) { 2207 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2208 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2209 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2210 SDNode *N = *I; 2211 if (N->getOpcode() == ISD::SUB && 2212 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2213 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2214 C.Op0 = SDValue(N, 0); 2215 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2216 return; 2217 } 2218 } 2219 } 2220 } 2221 2222 // Check whether C compares a floating-point value with zero and if that 2223 // floating-point value is also negated. In this case we can use the 2224 // negation to set CC, so avoiding separate LOAD AND TEST and 2225 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2226 static void adjustForFNeg(Comparison &C) { 2227 // This optimization is invalid for strict comparisons, since FNEG 2228 // does not raise any exceptions. 2229 if (C.Chain) 2230 return; 2231 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2232 if (C1 && C1->isZero()) { 2233 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2234 SDNode *N = *I; 2235 if (N->getOpcode() == ISD::FNEG) { 2236 C.Op0 = SDValue(N, 0); 2237 C.CCMask = reverseCCMask(C.CCMask); 2238 return; 2239 } 2240 } 2241 } 2242 } 2243 2244 // Check whether C compares (shl X, 32) with 0 and whether X is 2245 // also sign-extended. In that case it is better to test the result 2246 // of the sign extension using LTGFR. 2247 // 2248 // This case is important because InstCombine transforms a comparison 2249 // with (sext (trunc X)) into a comparison with (shl X, 32). 2250 static void adjustForLTGFR(Comparison &C) { 2251 // Check for a comparison between (shl X, 32) and 0. 2252 if (C.Op0.getOpcode() == ISD::SHL && 2253 C.Op0.getValueType() == MVT::i64 && 2254 C.Op1.getOpcode() == ISD::Constant && 2255 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2256 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2257 if (C1 && C1->getZExtValue() == 32) { 2258 SDValue ShlOp0 = C.Op0.getOperand(0); 2259 // See whether X has any SIGN_EXTEND_INREG uses. 2260 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2261 SDNode *N = *I; 2262 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2263 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2264 C.Op0 = SDValue(N, 0); 2265 return; 2266 } 2267 } 2268 } 2269 } 2270 } 2271 2272 // If C compares the truncation of an extending load, try to compare 2273 // the untruncated value instead. This exposes more opportunities to 2274 // reuse CC. 2275 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2276 Comparison &C) { 2277 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2278 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2279 C.Op1.getOpcode() == ISD::Constant && 2280 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2281 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2282 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2283 unsigned Type = L->getExtensionType(); 2284 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2285 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2286 C.Op0 = C.Op0.getOperand(0); 2287 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2288 } 2289 } 2290 } 2291 } 2292 2293 // Return true if shift operation N has an in-range constant shift value. 2294 // Store it in ShiftVal if so. 2295 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2296 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2297 if (!Shift) 2298 return false; 2299 2300 uint64_t Amount = Shift->getZExtValue(); 2301 if (Amount >= N.getValueSizeInBits()) 2302 return false; 2303 2304 ShiftVal = Amount; 2305 return true; 2306 } 2307 2308 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2309 // instruction and whether the CC value is descriptive enough to handle 2310 // a comparison of type Opcode between the AND result and CmpVal. 2311 // CCMask says which comparison result is being tested and BitSize is 2312 // the number of bits in the operands. If TEST UNDER MASK can be used, 2313 // return the corresponding CC mask, otherwise return 0. 2314 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2315 uint64_t Mask, uint64_t CmpVal, 2316 unsigned ICmpType) { 2317 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2318 2319 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2320 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2321 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2322 return 0; 2323 2324 // Work out the masks for the lowest and highest bits. 2325 unsigned HighShift = 63 - countLeadingZeros(Mask); 2326 uint64_t High = uint64_t(1) << HighShift; 2327 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2328 2329 // Signed ordered comparisons are effectively unsigned if the sign 2330 // bit is dropped. 2331 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2332 2333 // Check for equality comparisons with 0, or the equivalent. 2334 if (CmpVal == 0) { 2335 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2336 return SystemZ::CCMASK_TM_ALL_0; 2337 if (CCMask == SystemZ::CCMASK_CMP_NE) 2338 return SystemZ::CCMASK_TM_SOME_1; 2339 } 2340 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2341 if (CCMask == SystemZ::CCMASK_CMP_LT) 2342 return SystemZ::CCMASK_TM_ALL_0; 2343 if (CCMask == SystemZ::CCMASK_CMP_GE) 2344 return SystemZ::CCMASK_TM_SOME_1; 2345 } 2346 if (EffectivelyUnsigned && CmpVal < Low) { 2347 if (CCMask == SystemZ::CCMASK_CMP_LE) 2348 return SystemZ::CCMASK_TM_ALL_0; 2349 if (CCMask == SystemZ::CCMASK_CMP_GT) 2350 return SystemZ::CCMASK_TM_SOME_1; 2351 } 2352 2353 // Check for equality comparisons with the mask, or the equivalent. 2354 if (CmpVal == Mask) { 2355 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2356 return SystemZ::CCMASK_TM_ALL_1; 2357 if (CCMask == SystemZ::CCMASK_CMP_NE) 2358 return SystemZ::CCMASK_TM_SOME_0; 2359 } 2360 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2361 if (CCMask == SystemZ::CCMASK_CMP_GT) 2362 return SystemZ::CCMASK_TM_ALL_1; 2363 if (CCMask == SystemZ::CCMASK_CMP_LE) 2364 return SystemZ::CCMASK_TM_SOME_0; 2365 } 2366 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2367 if (CCMask == SystemZ::CCMASK_CMP_GE) 2368 return SystemZ::CCMASK_TM_ALL_1; 2369 if (CCMask == SystemZ::CCMASK_CMP_LT) 2370 return SystemZ::CCMASK_TM_SOME_0; 2371 } 2372 2373 // Check for ordered comparisons with the top bit. 2374 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2375 if (CCMask == SystemZ::CCMASK_CMP_LE) 2376 return SystemZ::CCMASK_TM_MSB_0; 2377 if (CCMask == SystemZ::CCMASK_CMP_GT) 2378 return SystemZ::CCMASK_TM_MSB_1; 2379 } 2380 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2381 if (CCMask == SystemZ::CCMASK_CMP_LT) 2382 return SystemZ::CCMASK_TM_MSB_0; 2383 if (CCMask == SystemZ::CCMASK_CMP_GE) 2384 return SystemZ::CCMASK_TM_MSB_1; 2385 } 2386 2387 // If there are just two bits, we can do equality checks for Low and High 2388 // as well. 2389 if (Mask == Low + High) { 2390 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2391 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2392 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2393 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2394 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2395 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2396 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2397 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2398 } 2399 2400 // Looks like we've exhausted our options. 2401 return 0; 2402 } 2403 2404 // See whether C can be implemented as a TEST UNDER MASK instruction. 2405 // Update the arguments with the TM version if so. 2406 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2407 Comparison &C) { 2408 // Check that we have a comparison with a constant. 2409 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2410 if (!ConstOp1) 2411 return; 2412 uint64_t CmpVal = ConstOp1->getZExtValue(); 2413 2414 // Check whether the nonconstant input is an AND with a constant mask. 2415 Comparison NewC(C); 2416 uint64_t MaskVal; 2417 ConstantSDNode *Mask = nullptr; 2418 if (C.Op0.getOpcode() == ISD::AND) { 2419 NewC.Op0 = C.Op0.getOperand(0); 2420 NewC.Op1 = C.Op0.getOperand(1); 2421 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2422 if (!Mask) 2423 return; 2424 MaskVal = Mask->getZExtValue(); 2425 } else { 2426 // There is no instruction to compare with a 64-bit immediate 2427 // so use TMHH instead if possible. We need an unsigned ordered 2428 // comparison with an i64 immediate. 2429 if (NewC.Op0.getValueType() != MVT::i64 || 2430 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2431 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2432 NewC.ICmpType == SystemZICMP::SignedOnly) 2433 return; 2434 // Convert LE and GT comparisons into LT and GE. 2435 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2436 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2437 if (CmpVal == uint64_t(-1)) 2438 return; 2439 CmpVal += 1; 2440 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2441 } 2442 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2443 // be masked off without changing the result. 2444 MaskVal = -(CmpVal & -CmpVal); 2445 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2446 } 2447 if (!MaskVal) 2448 return; 2449 2450 // Check whether the combination of mask, comparison value and comparison 2451 // type are suitable. 2452 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2453 unsigned NewCCMask, ShiftVal; 2454 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2455 NewC.Op0.getOpcode() == ISD::SHL && 2456 isSimpleShift(NewC.Op0, ShiftVal) && 2457 (MaskVal >> ShiftVal != 0) && 2458 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2459 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2460 MaskVal >> ShiftVal, 2461 CmpVal >> ShiftVal, 2462 SystemZICMP::Any))) { 2463 NewC.Op0 = NewC.Op0.getOperand(0); 2464 MaskVal >>= ShiftVal; 2465 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2466 NewC.Op0.getOpcode() == ISD::SRL && 2467 isSimpleShift(NewC.Op0, ShiftVal) && 2468 (MaskVal << ShiftVal != 0) && 2469 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2470 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2471 MaskVal << ShiftVal, 2472 CmpVal << ShiftVal, 2473 SystemZICMP::UnsignedOnly))) { 2474 NewC.Op0 = NewC.Op0.getOperand(0); 2475 MaskVal <<= ShiftVal; 2476 } else { 2477 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2478 NewC.ICmpType); 2479 if (!NewCCMask) 2480 return; 2481 } 2482 2483 // Go ahead and make the change. 2484 C.Opcode = SystemZISD::TM; 2485 C.Op0 = NewC.Op0; 2486 if (Mask && Mask->getZExtValue() == MaskVal) 2487 C.Op1 = SDValue(Mask, 0); 2488 else 2489 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2490 C.CCValid = SystemZ::CCMASK_TM; 2491 C.CCMask = NewCCMask; 2492 } 2493 2494 // See whether the comparison argument contains a redundant AND 2495 // and remove it if so. This sometimes happens due to the generic 2496 // BRCOND expansion. 2497 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2498 Comparison &C) { 2499 if (C.Op0.getOpcode() != ISD::AND) 2500 return; 2501 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2502 if (!Mask) 2503 return; 2504 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2505 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2506 return; 2507 2508 C.Op0 = C.Op0.getOperand(0); 2509 } 2510 2511 // Return a Comparison that tests the condition-code result of intrinsic 2512 // node Call against constant integer CC using comparison code Cond. 2513 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2514 // and CCValid is the set of possible condition-code results. 2515 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2516 SDValue Call, unsigned CCValid, uint64_t CC, 2517 ISD::CondCode Cond) { 2518 Comparison C(Call, SDValue(), SDValue()); 2519 C.Opcode = Opcode; 2520 C.CCValid = CCValid; 2521 if (Cond == ISD::SETEQ) 2522 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2523 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2524 else if (Cond == ISD::SETNE) 2525 // ...and the inverse of that. 2526 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2527 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2528 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2529 // always true for CC>3. 2530 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2531 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2532 // ...and the inverse of that. 2533 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2534 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2535 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2536 // always true for CC>3. 2537 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2538 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2539 // ...and the inverse of that. 2540 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2541 else 2542 llvm_unreachable("Unexpected integer comparison type"); 2543 C.CCMask &= CCValid; 2544 return C; 2545 } 2546 2547 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2548 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2549 ISD::CondCode Cond, const SDLoc &DL, 2550 SDValue Chain = SDValue(), 2551 bool IsSignaling = false) { 2552 if (CmpOp1.getOpcode() == ISD::Constant) { 2553 assert(!Chain); 2554 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2555 unsigned Opcode, CCValid; 2556 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2557 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2558 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2559 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2560 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2561 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2562 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2563 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2564 } 2565 Comparison C(CmpOp0, CmpOp1, Chain); 2566 C.CCMask = CCMaskForCondCode(Cond); 2567 if (C.Op0.getValueType().isFloatingPoint()) { 2568 C.CCValid = SystemZ::CCMASK_FCMP; 2569 if (!C.Chain) 2570 C.Opcode = SystemZISD::FCMP; 2571 else if (!IsSignaling) 2572 C.Opcode = SystemZISD::STRICT_FCMP; 2573 else 2574 C.Opcode = SystemZISD::STRICT_FCMPS; 2575 adjustForFNeg(C); 2576 } else { 2577 assert(!C.Chain); 2578 C.CCValid = SystemZ::CCMASK_ICMP; 2579 C.Opcode = SystemZISD::ICMP; 2580 // Choose the type of comparison. Equality and inequality tests can 2581 // use either signed or unsigned comparisons. The choice also doesn't 2582 // matter if both sign bits are known to be clear. In those cases we 2583 // want to give the main isel code the freedom to choose whichever 2584 // form fits best. 2585 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2586 C.CCMask == SystemZ::CCMASK_CMP_NE || 2587 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2588 C.ICmpType = SystemZICMP::Any; 2589 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2590 C.ICmpType = SystemZICMP::UnsignedOnly; 2591 else 2592 C.ICmpType = SystemZICMP::SignedOnly; 2593 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2594 adjustForRedundantAnd(DAG, DL, C); 2595 adjustZeroCmp(DAG, DL, C); 2596 adjustSubwordCmp(DAG, DL, C); 2597 adjustForSubtraction(DAG, DL, C); 2598 adjustForLTGFR(C); 2599 adjustICmpTruncate(DAG, DL, C); 2600 } 2601 2602 if (shouldSwapCmpOperands(C)) { 2603 std::swap(C.Op0, C.Op1); 2604 C.CCMask = reverseCCMask(C.CCMask); 2605 } 2606 2607 adjustForTestUnderMask(DAG, DL, C); 2608 return C; 2609 } 2610 2611 // Emit the comparison instruction described by C. 2612 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2613 if (!C.Op1.getNode()) { 2614 SDNode *Node; 2615 switch (C.Op0.getOpcode()) { 2616 case ISD::INTRINSIC_W_CHAIN: 2617 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2618 return SDValue(Node, 0); 2619 case ISD::INTRINSIC_WO_CHAIN: 2620 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2621 return SDValue(Node, Node->getNumValues() - 1); 2622 default: 2623 llvm_unreachable("Invalid comparison operands"); 2624 } 2625 } 2626 if (C.Opcode == SystemZISD::ICMP) 2627 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2628 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2629 if (C.Opcode == SystemZISD::TM) { 2630 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2631 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2632 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2633 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2634 } 2635 if (C.Chain) { 2636 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2637 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2638 } 2639 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2640 } 2641 2642 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2643 // 64 bits. Extend is the extension type to use. Store the high part 2644 // in Hi and the low part in Lo. 2645 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2646 SDValue Op0, SDValue Op1, SDValue &Hi, 2647 SDValue &Lo) { 2648 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2649 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2650 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2651 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2652 DAG.getConstant(32, DL, MVT::i64)); 2653 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2654 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2655 } 2656 2657 // Lower a binary operation that produces two VT results, one in each 2658 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2659 // and Opcode performs the GR128 operation. Store the even register result 2660 // in Even and the odd register result in Odd. 2661 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2662 unsigned Opcode, SDValue Op0, SDValue Op1, 2663 SDValue &Even, SDValue &Odd) { 2664 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2665 bool Is32Bit = is32Bit(VT); 2666 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2667 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2668 } 2669 2670 // Return an i32 value that is 1 if the CC value produced by CCReg is 2671 // in the mask CCMask and 0 otherwise. CC is known to have a value 2672 // in CCValid, so other values can be ignored. 2673 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2674 unsigned CCValid, unsigned CCMask) { 2675 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2676 DAG.getConstant(0, DL, MVT::i32), 2677 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2678 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2679 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2680 } 2681 2682 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2683 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2684 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2685 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2686 // floating-point comparisons. 2687 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2688 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2689 switch (CC) { 2690 case ISD::SETOEQ: 2691 case ISD::SETEQ: 2692 switch (Mode) { 2693 case CmpMode::Int: return SystemZISD::VICMPE; 2694 case CmpMode::FP: return SystemZISD::VFCMPE; 2695 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2696 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2697 } 2698 llvm_unreachable("Bad mode"); 2699 2700 case ISD::SETOGE: 2701 case ISD::SETGE: 2702 switch (Mode) { 2703 case CmpMode::Int: return 0; 2704 case CmpMode::FP: return SystemZISD::VFCMPHE; 2705 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2706 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2707 } 2708 llvm_unreachable("Bad mode"); 2709 2710 case ISD::SETOGT: 2711 case ISD::SETGT: 2712 switch (Mode) { 2713 case CmpMode::Int: return SystemZISD::VICMPH; 2714 case CmpMode::FP: return SystemZISD::VFCMPH; 2715 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2716 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2717 } 2718 llvm_unreachable("Bad mode"); 2719 2720 case ISD::SETUGT: 2721 switch (Mode) { 2722 case CmpMode::Int: return SystemZISD::VICMPHL; 2723 case CmpMode::FP: return 0; 2724 case CmpMode::StrictFP: return 0; 2725 case CmpMode::SignalingFP: return 0; 2726 } 2727 llvm_unreachable("Bad mode"); 2728 2729 default: 2730 return 0; 2731 } 2732 } 2733 2734 // Return the SystemZISD vector comparison operation for CC or its inverse, 2735 // or 0 if neither can be done directly. Indicate in Invert whether the 2736 // result is for the inverse of CC. Mode is as above. 2737 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2738 bool &Invert) { 2739 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2740 Invert = false; 2741 return Opcode; 2742 } 2743 2744 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2745 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2746 Invert = true; 2747 return Opcode; 2748 } 2749 2750 return 0; 2751 } 2752 2753 // Return a v2f64 that contains the extended form of elements Start and Start+1 2754 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2755 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2756 SDValue Op, SDValue Chain) { 2757 int Mask[] = { Start, -1, Start + 1, -1 }; 2758 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2759 if (Chain) { 2760 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2761 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2762 } 2763 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2764 } 2765 2766 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2767 // producing a result of type VT. If Chain is nonnull, return the strict form. 2768 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2769 const SDLoc &DL, EVT VT, 2770 SDValue CmpOp0, 2771 SDValue CmpOp1, 2772 SDValue Chain) const { 2773 // There is no hardware support for v4f32 (unless we have the vector 2774 // enhancements facility 1), so extend the vector into two v2f64s 2775 // and compare those. 2776 if (CmpOp0.getValueType() == MVT::v4f32 && 2777 !Subtarget.hasVectorEnhancements1()) { 2778 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2779 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2780 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2781 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2782 if (Chain) { 2783 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2784 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2785 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2786 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2787 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2788 H1.getValue(1), L1.getValue(1), 2789 HRes.getValue(1), LRes.getValue(1) }; 2790 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2791 SDValue Ops[2] = { Res, NewChain }; 2792 return DAG.getMergeValues(Ops, DL); 2793 } 2794 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2795 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2796 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2797 } 2798 if (Chain) { 2799 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2800 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2801 } 2802 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2803 } 2804 2805 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2806 // an integer mask of type VT. If Chain is nonnull, we have a strict 2807 // floating-point comparison. If in addition IsSignaling is true, we have 2808 // a strict signaling floating-point comparison. 2809 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2810 const SDLoc &DL, EVT VT, 2811 ISD::CondCode CC, 2812 SDValue CmpOp0, 2813 SDValue CmpOp1, 2814 SDValue Chain, 2815 bool IsSignaling) const { 2816 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2817 assert (!Chain || IsFP); 2818 assert (!IsSignaling || Chain); 2819 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2820 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2821 bool Invert = false; 2822 SDValue Cmp; 2823 switch (CC) { 2824 // Handle tests for order using (or (ogt y x) (oge x y)). 2825 case ISD::SETUO: 2826 Invert = true; 2827 LLVM_FALLTHROUGH; 2828 case ISD::SETO: { 2829 assert(IsFP && "Unexpected integer comparison"); 2830 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2831 DL, VT, CmpOp1, CmpOp0, Chain); 2832 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 2833 DL, VT, CmpOp0, CmpOp1, Chain); 2834 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2835 if (Chain) 2836 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2837 LT.getValue(1), GE.getValue(1)); 2838 break; 2839 } 2840 2841 // Handle <> tests using (or (ogt y x) (ogt x y)). 2842 case ISD::SETUEQ: 2843 Invert = true; 2844 LLVM_FALLTHROUGH; 2845 case ISD::SETONE: { 2846 assert(IsFP && "Unexpected integer comparison"); 2847 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2848 DL, VT, CmpOp1, CmpOp0, Chain); 2849 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2850 DL, VT, CmpOp0, CmpOp1, Chain); 2851 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2852 if (Chain) 2853 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2854 LT.getValue(1), GT.getValue(1)); 2855 break; 2856 } 2857 2858 // Otherwise a single comparison is enough. It doesn't really 2859 // matter whether we try the inversion or the swap first, since 2860 // there are no cases where both work. 2861 default: 2862 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2863 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 2864 else { 2865 CC = ISD::getSetCCSwappedOperands(CC); 2866 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2867 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 2868 else 2869 llvm_unreachable("Unhandled comparison"); 2870 } 2871 if (Chain) 2872 Chain = Cmp.getValue(1); 2873 break; 2874 } 2875 if (Invert) { 2876 SDValue Mask = 2877 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2878 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2879 } 2880 if (Chain && Chain.getNode() != Cmp.getNode()) { 2881 SDValue Ops[2] = { Cmp, Chain }; 2882 Cmp = DAG.getMergeValues(Ops, DL); 2883 } 2884 return Cmp; 2885 } 2886 2887 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2888 SelectionDAG &DAG) const { 2889 SDValue CmpOp0 = Op.getOperand(0); 2890 SDValue CmpOp1 = Op.getOperand(1); 2891 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2892 SDLoc DL(Op); 2893 EVT VT = Op.getValueType(); 2894 if (VT.isVector()) 2895 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2896 2897 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2898 SDValue CCReg = emitCmp(DAG, DL, C); 2899 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2900 } 2901 2902 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 2903 SelectionDAG &DAG, 2904 bool IsSignaling) const { 2905 SDValue Chain = Op.getOperand(0); 2906 SDValue CmpOp0 = Op.getOperand(1); 2907 SDValue CmpOp1 = Op.getOperand(2); 2908 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 2909 SDLoc DL(Op); 2910 EVT VT = Op.getNode()->getValueType(0); 2911 if (VT.isVector()) { 2912 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 2913 Chain, IsSignaling); 2914 return Res.getValue(Op.getResNo()); 2915 } 2916 2917 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 2918 SDValue CCReg = emitCmp(DAG, DL, C); 2919 CCReg->setFlags(Op->getFlags()); 2920 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2921 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 2922 return DAG.getMergeValues(Ops, DL); 2923 } 2924 2925 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2926 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2927 SDValue CmpOp0 = Op.getOperand(2); 2928 SDValue CmpOp1 = Op.getOperand(3); 2929 SDValue Dest = Op.getOperand(4); 2930 SDLoc DL(Op); 2931 2932 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2933 SDValue CCReg = emitCmp(DAG, DL, C); 2934 return DAG.getNode( 2935 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 2936 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2937 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2938 } 2939 2940 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2941 // allowing Pos and Neg to be wider than CmpOp. 2942 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2943 return (Neg.getOpcode() == ISD::SUB && 2944 Neg.getOperand(0).getOpcode() == ISD::Constant && 2945 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2946 Neg.getOperand(1) == Pos && 2947 (Pos == CmpOp || 2948 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2949 Pos.getOperand(0) == CmpOp))); 2950 } 2951 2952 // Return the absolute or negative absolute of Op; IsNegative decides which. 2953 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2954 bool IsNegative) { 2955 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2956 if (IsNegative) 2957 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2958 DAG.getConstant(0, DL, Op.getValueType()), Op); 2959 return Op; 2960 } 2961 2962 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2963 SelectionDAG &DAG) const { 2964 SDValue CmpOp0 = Op.getOperand(0); 2965 SDValue CmpOp1 = Op.getOperand(1); 2966 SDValue TrueOp = Op.getOperand(2); 2967 SDValue FalseOp = Op.getOperand(3); 2968 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2969 SDLoc DL(Op); 2970 2971 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2972 2973 // Check for absolute and negative-absolute selections, including those 2974 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2975 // This check supplements the one in DAGCombiner. 2976 if (C.Opcode == SystemZISD::ICMP && 2977 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2978 C.CCMask != SystemZ::CCMASK_CMP_NE && 2979 C.Op1.getOpcode() == ISD::Constant && 2980 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2981 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2982 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2983 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2984 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2985 } 2986 2987 SDValue CCReg = emitCmp(DAG, DL, C); 2988 SDValue Ops[] = {TrueOp, FalseOp, 2989 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2990 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 2991 2992 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2993 } 2994 2995 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2996 SelectionDAG &DAG) const { 2997 SDLoc DL(Node); 2998 const GlobalValue *GV = Node->getGlobal(); 2999 int64_t Offset = Node->getOffset(); 3000 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3001 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 3002 3003 SDValue Result; 3004 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3005 if (isInt<32>(Offset)) { 3006 // Assign anchors at 1<<12 byte boundaries. 3007 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3008 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3009 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3010 3011 // The offset can be folded into the address if it is aligned to a 3012 // halfword. 3013 Offset -= Anchor; 3014 if (Offset != 0 && (Offset & 1) == 0) { 3015 SDValue Full = 3016 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3017 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3018 Offset = 0; 3019 } 3020 } else { 3021 // Conservatively load a constant offset greater than 32 bits into a 3022 // register below. 3023 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3024 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3025 } 3026 } else { 3027 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3028 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3029 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3030 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3031 } 3032 3033 // If there was a non-zero offset that we didn't fold, create an explicit 3034 // addition for it. 3035 if (Offset != 0) 3036 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3037 DAG.getConstant(Offset, DL, PtrVT)); 3038 3039 return Result; 3040 } 3041 3042 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3043 SelectionDAG &DAG, 3044 unsigned Opcode, 3045 SDValue GOTOffset) const { 3046 SDLoc DL(Node); 3047 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3048 SDValue Chain = DAG.getEntryNode(); 3049 SDValue Glue; 3050 3051 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3052 CallingConv::GHC) 3053 report_fatal_error("In GHC calling convention TLS is not supported"); 3054 3055 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3056 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3057 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3058 Glue = Chain.getValue(1); 3059 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3060 Glue = Chain.getValue(1); 3061 3062 // The first call operand is the chain and the second is the TLS symbol. 3063 SmallVector<SDValue, 8> Ops; 3064 Ops.push_back(Chain); 3065 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3066 Node->getValueType(0), 3067 0, 0)); 3068 3069 // Add argument registers to the end of the list so that they are 3070 // known live into the call. 3071 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3072 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3073 3074 // Add a register mask operand representing the call-preserved registers. 3075 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3076 const uint32_t *Mask = 3077 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3078 assert(Mask && "Missing call preserved mask for calling convention"); 3079 Ops.push_back(DAG.getRegisterMask(Mask)); 3080 3081 // Glue the call to the argument copies. 3082 Ops.push_back(Glue); 3083 3084 // Emit the call. 3085 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3086 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3087 Glue = Chain.getValue(1); 3088 3089 // Copy the return value from %r2. 3090 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3091 } 3092 3093 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3094 SelectionDAG &DAG) const { 3095 SDValue Chain = DAG.getEntryNode(); 3096 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3097 3098 // The high part of the thread pointer is in access register 0. 3099 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3100 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3101 3102 // The low part of the thread pointer is in access register 1. 3103 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3104 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3105 3106 // Merge them into a single 64-bit address. 3107 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3108 DAG.getConstant(32, DL, PtrVT)); 3109 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3110 } 3111 3112 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3113 SelectionDAG &DAG) const { 3114 if (DAG.getTarget().useEmulatedTLS()) 3115 return LowerToTLSEmulatedModel(Node, DAG); 3116 SDLoc DL(Node); 3117 const GlobalValue *GV = Node->getGlobal(); 3118 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3119 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3120 3121 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3122 CallingConv::GHC) 3123 report_fatal_error("In GHC calling convention TLS is not supported"); 3124 3125 SDValue TP = lowerThreadPointer(DL, DAG); 3126 3127 // Get the offset of GA from the thread pointer, based on the TLS model. 3128 SDValue Offset; 3129 switch (model) { 3130 case TLSModel::GeneralDynamic: { 3131 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3132 SystemZConstantPoolValue *CPV = 3133 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3134 3135 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3136 Offset = DAG.getLoad( 3137 PtrVT, DL, DAG.getEntryNode(), Offset, 3138 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3139 3140 // Call __tls_get_offset to retrieve the offset. 3141 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3142 break; 3143 } 3144 3145 case TLSModel::LocalDynamic: { 3146 // Load the GOT offset of the module ID. 3147 SystemZConstantPoolValue *CPV = 3148 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3149 3150 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3151 Offset = DAG.getLoad( 3152 PtrVT, DL, DAG.getEntryNode(), Offset, 3153 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3154 3155 // Call __tls_get_offset to retrieve the module base offset. 3156 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3157 3158 // Note: The SystemZLDCleanupPass will remove redundant computations 3159 // of the module base offset. Count total number of local-dynamic 3160 // accesses to trigger execution of that pass. 3161 SystemZMachineFunctionInfo* MFI = 3162 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3163 MFI->incNumLocalDynamicTLSAccesses(); 3164 3165 // Add the per-symbol offset. 3166 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3167 3168 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 3169 DTPOffset = DAG.getLoad( 3170 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3171 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3172 3173 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3174 break; 3175 } 3176 3177 case TLSModel::InitialExec: { 3178 // Load the offset from the GOT. 3179 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3180 SystemZII::MO_INDNTPOFF); 3181 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3182 Offset = 3183 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3184 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3185 break; 3186 } 3187 3188 case TLSModel::LocalExec: { 3189 // Force the offset into the constant pool and load it from there. 3190 SystemZConstantPoolValue *CPV = 3191 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3192 3193 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3194 Offset = DAG.getLoad( 3195 PtrVT, DL, DAG.getEntryNode(), Offset, 3196 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3197 break; 3198 } 3199 } 3200 3201 // Add the base and offset together. 3202 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3203 } 3204 3205 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3206 SelectionDAG &DAG) const { 3207 SDLoc DL(Node); 3208 const BlockAddress *BA = Node->getBlockAddress(); 3209 int64_t Offset = Node->getOffset(); 3210 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3211 3212 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3213 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3214 return Result; 3215 } 3216 3217 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3218 SelectionDAG &DAG) const { 3219 SDLoc DL(JT); 3220 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3221 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3222 3223 // Use LARL to load the address of the table. 3224 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3225 } 3226 3227 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3228 SelectionDAG &DAG) const { 3229 SDLoc DL(CP); 3230 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3231 3232 SDValue Result; 3233 if (CP->isMachineConstantPoolEntry()) 3234 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 3235 CP->getAlignment()); 3236 else 3237 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 3238 CP->getAlignment(), CP->getOffset()); 3239 3240 // Use LARL to load the address of the constant pool entry. 3241 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3242 } 3243 3244 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3245 SelectionDAG &DAG) const { 3246 auto *TFL = 3247 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 3248 MachineFunction &MF = DAG.getMachineFunction(); 3249 MachineFrameInfo &MFI = MF.getFrameInfo(); 3250 MFI.setFrameAddressIsTaken(true); 3251 3252 SDLoc DL(Op); 3253 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3254 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3255 3256 // Return null if the back chain is not present. 3257 bool HasBackChain = MF.getFunction().hasFnAttribute("backchain"); 3258 if (TFL->usePackedStack(MF) && !HasBackChain) 3259 return DAG.getConstant(0, DL, PtrVT); 3260 3261 // By definition, the frame address is the address of the back chain. 3262 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3263 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3264 3265 // FIXME The frontend should detect this case. 3266 if (Depth > 0) { 3267 report_fatal_error("Unsupported stack frame traversal count"); 3268 } 3269 3270 return BackChain; 3271 } 3272 3273 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3274 SelectionDAG &DAG) const { 3275 MachineFunction &MF = DAG.getMachineFunction(); 3276 MachineFrameInfo &MFI = MF.getFrameInfo(); 3277 MFI.setReturnAddressIsTaken(true); 3278 3279 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3280 return SDValue(); 3281 3282 SDLoc DL(Op); 3283 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3284 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3285 3286 // FIXME The frontend should detect this case. 3287 if (Depth > 0) { 3288 report_fatal_error("Unsupported stack frame traversal count"); 3289 } 3290 3291 // Return R14D, which has the return address. Mark it an implicit live-in. 3292 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3293 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3294 } 3295 3296 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3297 SelectionDAG &DAG) const { 3298 SDLoc DL(Op); 3299 SDValue In = Op.getOperand(0); 3300 EVT InVT = In.getValueType(); 3301 EVT ResVT = Op.getValueType(); 3302 3303 // Convert loads directly. This is normally done by DAGCombiner, 3304 // but we need this case for bitcasts that are created during lowering 3305 // and which are then lowered themselves. 3306 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3307 if (ISD::isNormalLoad(LoadN)) { 3308 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3309 LoadN->getBasePtr(), LoadN->getMemOperand()); 3310 // Update the chain uses. 3311 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3312 return NewLoad; 3313 } 3314 3315 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3316 SDValue In64; 3317 if (Subtarget.hasHighWord()) { 3318 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3319 MVT::i64); 3320 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3321 MVT::i64, SDValue(U64, 0), In); 3322 } else { 3323 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3324 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3325 DAG.getConstant(32, DL, MVT::i64)); 3326 } 3327 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3328 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3329 DL, MVT::f32, Out64); 3330 } 3331 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3332 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3333 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3334 MVT::f64, SDValue(U64, 0), In); 3335 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3336 if (Subtarget.hasHighWord()) 3337 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3338 MVT::i32, Out64); 3339 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3340 DAG.getConstant(32, DL, MVT::i64)); 3341 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3342 } 3343 llvm_unreachable("Unexpected bitcast combination"); 3344 } 3345 3346 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3347 SelectionDAG &DAG) const { 3348 MachineFunction &MF = DAG.getMachineFunction(); 3349 SystemZMachineFunctionInfo *FuncInfo = 3350 MF.getInfo<SystemZMachineFunctionInfo>(); 3351 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3352 3353 SDValue Chain = Op.getOperand(0); 3354 SDValue Addr = Op.getOperand(1); 3355 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3356 SDLoc DL(Op); 3357 3358 // The initial values of each field. 3359 const unsigned NumFields = 4; 3360 SDValue Fields[NumFields] = { 3361 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3362 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3363 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3364 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3365 }; 3366 3367 // Store each field into its respective slot. 3368 SDValue MemOps[NumFields]; 3369 unsigned Offset = 0; 3370 for (unsigned I = 0; I < NumFields; ++I) { 3371 SDValue FieldAddr = Addr; 3372 if (Offset != 0) 3373 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3374 DAG.getIntPtrConstant(Offset, DL)); 3375 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3376 MachinePointerInfo(SV, Offset)); 3377 Offset += 8; 3378 } 3379 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3380 } 3381 3382 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3383 SelectionDAG &DAG) const { 3384 SDValue Chain = Op.getOperand(0); 3385 SDValue DstPtr = Op.getOperand(1); 3386 SDValue SrcPtr = Op.getOperand(2); 3387 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3388 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3389 SDLoc DL(Op); 3390 3391 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3392 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3393 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3394 MachinePointerInfo(SrcSV)); 3395 } 3396 3397 SDValue SystemZTargetLowering:: 3398 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3399 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3400 MachineFunction &MF = DAG.getMachineFunction(); 3401 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3402 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3403 3404 SDValue Chain = Op.getOperand(0); 3405 SDValue Size = Op.getOperand(1); 3406 SDValue Align = Op.getOperand(2); 3407 SDLoc DL(Op); 3408 3409 // If user has set the no alignment function attribute, ignore 3410 // alloca alignments. 3411 uint64_t AlignVal = (RealignOpt ? 3412 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3413 3414 uint64_t StackAlign = TFI->getStackAlignment(); 3415 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3416 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3417 3418 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3419 SDValue NeededSpace = Size; 3420 3421 // Get a reference to the stack pointer. 3422 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3423 3424 // If we need a backchain, save it now. 3425 SDValue Backchain; 3426 if (StoreBackchain) 3427 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3428 3429 // Add extra space for alignment if needed. 3430 if (ExtraAlignSpace) 3431 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3432 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3433 3434 // Get the new stack pointer value. 3435 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3436 3437 // Copy the new stack pointer back. 3438 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3439 3440 // The allocated data lives above the 160 bytes allocated for the standard 3441 // frame, plus any outgoing stack arguments. We don't know how much that 3442 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3443 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3444 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3445 3446 // Dynamically realign if needed. 3447 if (RequiredAlign > StackAlign) { 3448 Result = 3449 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3450 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3451 Result = 3452 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3453 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3454 } 3455 3456 if (StoreBackchain) 3457 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3458 3459 SDValue Ops[2] = { Result, Chain }; 3460 return DAG.getMergeValues(Ops, DL); 3461 } 3462 3463 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3464 SDValue Op, SelectionDAG &DAG) const { 3465 SDLoc DL(Op); 3466 3467 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3468 } 3469 3470 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3471 SelectionDAG &DAG) const { 3472 EVT VT = Op.getValueType(); 3473 SDLoc DL(Op); 3474 SDValue Ops[2]; 3475 if (is32Bit(VT)) 3476 // Just do a normal 64-bit multiplication and extract the results. 3477 // We define this so that it can be used for constant division. 3478 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3479 Op.getOperand(1), Ops[1], Ops[0]); 3480 else if (Subtarget.hasMiscellaneousExtensions2()) 3481 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3482 // the high result in the even register. ISD::SMUL_LOHI is defined to 3483 // return the low half first, so the results are in reverse order. 3484 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3485 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3486 else { 3487 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3488 // 3489 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3490 // 3491 // but using the fact that the upper halves are either all zeros 3492 // or all ones: 3493 // 3494 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3495 // 3496 // and grouping the right terms together since they are quicker than the 3497 // multiplication: 3498 // 3499 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3500 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3501 SDValue LL = Op.getOperand(0); 3502 SDValue RL = Op.getOperand(1); 3503 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3504 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3505 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3506 // the high result in the even register. ISD::SMUL_LOHI is defined to 3507 // return the low half first, so the results are in reverse order. 3508 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3509 LL, RL, Ops[1], Ops[0]); 3510 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3511 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3512 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3513 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3514 } 3515 return DAG.getMergeValues(Ops, DL); 3516 } 3517 3518 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3519 SelectionDAG &DAG) const { 3520 EVT VT = Op.getValueType(); 3521 SDLoc DL(Op); 3522 SDValue Ops[2]; 3523 if (is32Bit(VT)) 3524 // Just do a normal 64-bit multiplication and extract the results. 3525 // We define this so that it can be used for constant division. 3526 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3527 Op.getOperand(1), Ops[1], Ops[0]); 3528 else 3529 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3530 // the high result in the even register. ISD::UMUL_LOHI is defined to 3531 // return the low half first, so the results are in reverse order. 3532 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3533 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3534 return DAG.getMergeValues(Ops, DL); 3535 } 3536 3537 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3538 SelectionDAG &DAG) const { 3539 SDValue Op0 = Op.getOperand(0); 3540 SDValue Op1 = Op.getOperand(1); 3541 EVT VT = Op.getValueType(); 3542 SDLoc DL(Op); 3543 3544 // We use DSGF for 32-bit division. This means the first operand must 3545 // always be 64-bit, and the second operand should be 32-bit whenever 3546 // that is possible, to improve performance. 3547 if (is32Bit(VT)) 3548 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3549 else if (DAG.ComputeNumSignBits(Op1) > 32) 3550 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3551 3552 // DSG(F) returns the remainder in the even register and the 3553 // quotient in the odd register. 3554 SDValue Ops[2]; 3555 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3556 return DAG.getMergeValues(Ops, DL); 3557 } 3558 3559 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3560 SelectionDAG &DAG) const { 3561 EVT VT = Op.getValueType(); 3562 SDLoc DL(Op); 3563 3564 // DL(G) returns the remainder in the even register and the 3565 // quotient in the odd register. 3566 SDValue Ops[2]; 3567 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3568 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3569 return DAG.getMergeValues(Ops, DL); 3570 } 3571 3572 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3573 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3574 3575 // Get the known-zero masks for each operand. 3576 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3577 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3578 DAG.computeKnownBits(Ops[1])}; 3579 3580 // See if the upper 32 bits of one operand and the lower 32 bits of the 3581 // other are known zero. They are the low and high operands respectively. 3582 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3583 Known[1].Zero.getZExtValue() }; 3584 unsigned High, Low; 3585 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3586 High = 1, Low = 0; 3587 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3588 High = 0, Low = 1; 3589 else 3590 return Op; 3591 3592 SDValue LowOp = Ops[Low]; 3593 SDValue HighOp = Ops[High]; 3594 3595 // If the high part is a constant, we're better off using IILH. 3596 if (HighOp.getOpcode() == ISD::Constant) 3597 return Op; 3598 3599 // If the low part is a constant that is outside the range of LHI, 3600 // then we're better off using IILF. 3601 if (LowOp.getOpcode() == ISD::Constant) { 3602 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3603 if (!isInt<16>(Value)) 3604 return Op; 3605 } 3606 3607 // Check whether the high part is an AND that doesn't change the 3608 // high 32 bits and just masks out low bits. We can skip it if so. 3609 if (HighOp.getOpcode() == ISD::AND && 3610 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3611 SDValue HighOp0 = HighOp.getOperand(0); 3612 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3613 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3614 HighOp = HighOp0; 3615 } 3616 3617 // Take advantage of the fact that all GR32 operations only change the 3618 // low 32 bits by truncating Low to an i32 and inserting it directly 3619 // using a subreg. The interesting cases are those where the truncation 3620 // can be folded. 3621 SDLoc DL(Op); 3622 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3623 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3624 MVT::i64, HighOp, Low32); 3625 } 3626 3627 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3628 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3629 SelectionDAG &DAG) const { 3630 SDNode *N = Op.getNode(); 3631 SDValue LHS = N->getOperand(0); 3632 SDValue RHS = N->getOperand(1); 3633 SDLoc DL(N); 3634 unsigned BaseOp = 0; 3635 unsigned CCValid = 0; 3636 unsigned CCMask = 0; 3637 3638 switch (Op.getOpcode()) { 3639 default: llvm_unreachable("Unknown instruction!"); 3640 case ISD::SADDO: 3641 BaseOp = SystemZISD::SADDO; 3642 CCValid = SystemZ::CCMASK_ARITH; 3643 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3644 break; 3645 case ISD::SSUBO: 3646 BaseOp = SystemZISD::SSUBO; 3647 CCValid = SystemZ::CCMASK_ARITH; 3648 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3649 break; 3650 case ISD::UADDO: 3651 BaseOp = SystemZISD::UADDO; 3652 CCValid = SystemZ::CCMASK_LOGICAL; 3653 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3654 break; 3655 case ISD::USUBO: 3656 BaseOp = SystemZISD::USUBO; 3657 CCValid = SystemZ::CCMASK_LOGICAL; 3658 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3659 break; 3660 } 3661 3662 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3663 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3664 3665 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3666 if (N->getValueType(1) == MVT::i1) 3667 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3668 3669 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3670 } 3671 3672 static bool isAddCarryChain(SDValue Carry) { 3673 while (Carry.getOpcode() == ISD::ADDCARRY) 3674 Carry = Carry.getOperand(2); 3675 return Carry.getOpcode() == ISD::UADDO; 3676 } 3677 3678 static bool isSubBorrowChain(SDValue Carry) { 3679 while (Carry.getOpcode() == ISD::SUBCARRY) 3680 Carry = Carry.getOperand(2); 3681 return Carry.getOpcode() == ISD::USUBO; 3682 } 3683 3684 // Lower ADDCARRY/SUBCARRY nodes. 3685 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3686 SelectionDAG &DAG) const { 3687 3688 SDNode *N = Op.getNode(); 3689 MVT VT = N->getSimpleValueType(0); 3690 3691 // Let legalize expand this if it isn't a legal type yet. 3692 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3693 return SDValue(); 3694 3695 SDValue LHS = N->getOperand(0); 3696 SDValue RHS = N->getOperand(1); 3697 SDValue Carry = Op.getOperand(2); 3698 SDLoc DL(N); 3699 unsigned BaseOp = 0; 3700 unsigned CCValid = 0; 3701 unsigned CCMask = 0; 3702 3703 switch (Op.getOpcode()) { 3704 default: llvm_unreachable("Unknown instruction!"); 3705 case ISD::ADDCARRY: 3706 if (!isAddCarryChain(Carry)) 3707 return SDValue(); 3708 3709 BaseOp = SystemZISD::ADDCARRY; 3710 CCValid = SystemZ::CCMASK_LOGICAL; 3711 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3712 break; 3713 case ISD::SUBCARRY: 3714 if (!isSubBorrowChain(Carry)) 3715 return SDValue(); 3716 3717 BaseOp = SystemZISD::SUBCARRY; 3718 CCValid = SystemZ::CCMASK_LOGICAL; 3719 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3720 break; 3721 } 3722 3723 // Set the condition code from the carry flag. 3724 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3725 DAG.getConstant(CCValid, DL, MVT::i32), 3726 DAG.getConstant(CCMask, DL, MVT::i32)); 3727 3728 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3729 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3730 3731 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3732 if (N->getValueType(1) == MVT::i1) 3733 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3734 3735 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3736 } 3737 3738 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3739 SelectionDAG &DAG) const { 3740 EVT VT = Op.getValueType(); 3741 SDLoc DL(Op); 3742 Op = Op.getOperand(0); 3743 3744 // Handle vector types via VPOPCT. 3745 if (VT.isVector()) { 3746 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3747 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3748 switch (VT.getScalarSizeInBits()) { 3749 case 8: 3750 break; 3751 case 16: { 3752 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3753 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3754 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3755 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3756 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3757 break; 3758 } 3759 case 32: { 3760 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3761 DAG.getConstant(0, DL, MVT::i32)); 3762 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3763 break; 3764 } 3765 case 64: { 3766 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3767 DAG.getConstant(0, DL, MVT::i32)); 3768 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3769 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3770 break; 3771 } 3772 default: 3773 llvm_unreachable("Unexpected type"); 3774 } 3775 return Op; 3776 } 3777 3778 // Get the known-zero mask for the operand. 3779 KnownBits Known = DAG.computeKnownBits(Op); 3780 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 3781 if (NumSignificantBits == 0) 3782 return DAG.getConstant(0, DL, VT); 3783 3784 // Skip known-zero high parts of the operand. 3785 int64_t OrigBitSize = VT.getSizeInBits(); 3786 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3787 BitSize = std::min(BitSize, OrigBitSize); 3788 3789 // The POPCNT instruction counts the number of bits in each byte. 3790 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3791 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3792 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3793 3794 // Add up per-byte counts in a binary tree. All bits of Op at 3795 // position larger than BitSize remain zero throughout. 3796 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3797 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3798 if (BitSize != OrigBitSize) 3799 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3800 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3801 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3802 } 3803 3804 // Extract overall result from high byte. 3805 if (BitSize > 8) 3806 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3807 DAG.getConstant(BitSize - 8, DL, VT)); 3808 3809 return Op; 3810 } 3811 3812 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3813 SelectionDAG &DAG) const { 3814 SDLoc DL(Op); 3815 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3816 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3817 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3818 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3819 3820 // The only fence that needs an instruction is a sequentially-consistent 3821 // cross-thread fence. 3822 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3823 FenceSSID == SyncScope::System) { 3824 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3825 Op.getOperand(0)), 3826 0); 3827 } 3828 3829 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3830 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3831 } 3832 3833 // Op is an atomic load. Lower it into a normal volatile load. 3834 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3835 SelectionDAG &DAG) const { 3836 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3837 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3838 Node->getChain(), Node->getBasePtr(), 3839 Node->getMemoryVT(), Node->getMemOperand()); 3840 } 3841 3842 // Op is an atomic store. Lower it into a normal volatile store. 3843 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3844 SelectionDAG &DAG) const { 3845 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3846 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3847 Node->getBasePtr(), Node->getMemoryVT(), 3848 Node->getMemOperand()); 3849 // We have to enforce sequential consistency by performing a 3850 // serialization operation after the store. 3851 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3852 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3853 MVT::Other, Chain), 0); 3854 return Chain; 3855 } 3856 3857 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3858 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3859 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3860 SelectionDAG &DAG, 3861 unsigned Opcode) const { 3862 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3863 3864 // 32-bit operations need no code outside the main loop. 3865 EVT NarrowVT = Node->getMemoryVT(); 3866 EVT WideVT = MVT::i32; 3867 if (NarrowVT == WideVT) 3868 return Op; 3869 3870 int64_t BitSize = NarrowVT.getSizeInBits(); 3871 SDValue ChainIn = Node->getChain(); 3872 SDValue Addr = Node->getBasePtr(); 3873 SDValue Src2 = Node->getVal(); 3874 MachineMemOperand *MMO = Node->getMemOperand(); 3875 SDLoc DL(Node); 3876 EVT PtrVT = Addr.getValueType(); 3877 3878 // Convert atomic subtracts of constants into additions. 3879 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3880 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3881 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3882 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3883 } 3884 3885 // Get the address of the containing word. 3886 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3887 DAG.getConstant(-4, DL, PtrVT)); 3888 3889 // Get the number of bits that the word must be rotated left in order 3890 // to bring the field to the top bits of a GR32. 3891 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3892 DAG.getConstant(3, DL, PtrVT)); 3893 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3894 3895 // Get the complementing shift amount, for rotating a field in the top 3896 // bits back to its proper position. 3897 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3898 DAG.getConstant(0, DL, WideVT), BitShift); 3899 3900 // Extend the source operand to 32 bits and prepare it for the inner loop. 3901 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3902 // operations require the source to be shifted in advance. (This shift 3903 // can be folded if the source is constant.) For AND and NAND, the lower 3904 // bits must be set, while for other opcodes they should be left clear. 3905 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3906 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3907 DAG.getConstant(32 - BitSize, DL, WideVT)); 3908 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3909 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3910 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3911 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3912 3913 // Construct the ATOMIC_LOADW_* node. 3914 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3915 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3916 DAG.getConstant(BitSize, DL, WideVT) }; 3917 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3918 NarrowVT, MMO); 3919 3920 // Rotate the result of the final CS so that the field is in the lower 3921 // bits of a GR32, then truncate it. 3922 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3923 DAG.getConstant(BitSize, DL, WideVT)); 3924 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3925 3926 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3927 return DAG.getMergeValues(RetOps, DL); 3928 } 3929 3930 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3931 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3932 // operations into additions. 3933 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3934 SelectionDAG &DAG) const { 3935 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3936 EVT MemVT = Node->getMemoryVT(); 3937 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3938 // A full-width operation. 3939 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3940 SDValue Src2 = Node->getVal(); 3941 SDValue NegSrc2; 3942 SDLoc DL(Src2); 3943 3944 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3945 // Use an addition if the operand is constant and either LAA(G) is 3946 // available or the negative value is in the range of A(G)FHI. 3947 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3948 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3949 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3950 } else if (Subtarget.hasInterlockedAccess1()) 3951 // Use LAA(G) if available. 3952 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3953 Src2); 3954 3955 if (NegSrc2.getNode()) 3956 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3957 Node->getChain(), Node->getBasePtr(), NegSrc2, 3958 Node->getMemOperand()); 3959 3960 // Use the node as-is. 3961 return Op; 3962 } 3963 3964 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3965 } 3966 3967 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3968 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3969 SelectionDAG &DAG) const { 3970 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3971 SDValue ChainIn = Node->getOperand(0); 3972 SDValue Addr = Node->getOperand(1); 3973 SDValue CmpVal = Node->getOperand(2); 3974 SDValue SwapVal = Node->getOperand(3); 3975 MachineMemOperand *MMO = Node->getMemOperand(); 3976 SDLoc DL(Node); 3977 3978 // We have native support for 32-bit and 64-bit compare and swap, but we 3979 // still need to expand extracting the "success" result from the CC. 3980 EVT NarrowVT = Node->getMemoryVT(); 3981 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3982 if (NarrowVT == WideVT) { 3983 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3984 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3985 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3986 DL, Tys, Ops, NarrowVT, MMO); 3987 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3988 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3989 3990 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3991 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3992 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3993 return SDValue(); 3994 } 3995 3996 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3997 // via a fullword ATOMIC_CMP_SWAPW operation. 3998 int64_t BitSize = NarrowVT.getSizeInBits(); 3999 EVT PtrVT = Addr.getValueType(); 4000 4001 // Get the address of the containing word. 4002 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4003 DAG.getConstant(-4, DL, PtrVT)); 4004 4005 // Get the number of bits that the word must be rotated left in order 4006 // to bring the field to the top bits of a GR32. 4007 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4008 DAG.getConstant(3, DL, PtrVT)); 4009 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4010 4011 // Get the complementing shift amount, for rotating a field in the top 4012 // bits back to its proper position. 4013 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4014 DAG.getConstant(0, DL, WideVT), BitShift); 4015 4016 // Construct the ATOMIC_CMP_SWAPW node. 4017 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4018 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4019 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4020 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4021 VTList, Ops, NarrowVT, MMO); 4022 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4023 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4024 4025 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4026 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4027 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4028 return SDValue(); 4029 } 4030 4031 MachineMemOperand::Flags 4032 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4033 // Because of how we convert atomic_load and atomic_store to normal loads and 4034 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4035 // since DAGCombine hasn't been updated to account for atomic, but non 4036 // volatile loads. (See D57601) 4037 if (auto *SI = dyn_cast<StoreInst>(&I)) 4038 if (SI->isAtomic()) 4039 return MachineMemOperand::MOVolatile; 4040 if (auto *LI = dyn_cast<LoadInst>(&I)) 4041 if (LI->isAtomic()) 4042 return MachineMemOperand::MOVolatile; 4043 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4044 if (AI->isAtomic()) 4045 return MachineMemOperand::MOVolatile; 4046 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4047 if (AI->isAtomic()) 4048 return MachineMemOperand::MOVolatile; 4049 return MachineMemOperand::MONone; 4050 } 4051 4052 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4053 SelectionDAG &DAG) const { 4054 MachineFunction &MF = DAG.getMachineFunction(); 4055 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4056 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4057 report_fatal_error("Variable-sized stack allocations are not supported " 4058 "in GHC calling convention"); 4059 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4060 SystemZ::R15D, Op.getValueType()); 4061 } 4062 4063 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4064 SelectionDAG &DAG) const { 4065 MachineFunction &MF = DAG.getMachineFunction(); 4066 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4067 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4068 4069 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4070 report_fatal_error("Variable-sized stack allocations are not supported " 4071 "in GHC calling convention"); 4072 4073 SDValue Chain = Op.getOperand(0); 4074 SDValue NewSP = Op.getOperand(1); 4075 SDValue Backchain; 4076 SDLoc DL(Op); 4077 4078 if (StoreBackchain) { 4079 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 4080 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 4081 } 4082 4083 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 4084 4085 if (StoreBackchain) 4086 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 4087 4088 return Chain; 4089 } 4090 4091 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4092 SelectionDAG &DAG) const { 4093 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4094 if (!IsData) 4095 // Just preserve the chain. 4096 return Op.getOperand(0); 4097 4098 SDLoc DL(Op); 4099 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4100 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4101 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4102 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4103 Op.getOperand(1)}; 4104 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4105 Node->getVTList(), Ops, 4106 Node->getMemoryVT(), Node->getMemOperand()); 4107 } 4108 4109 // Convert condition code in CCReg to an i32 value. 4110 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4111 SDLoc DL(CCReg); 4112 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4113 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4114 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4115 } 4116 4117 SDValue 4118 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4119 SelectionDAG &DAG) const { 4120 unsigned Opcode, CCValid; 4121 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4122 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4123 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4124 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4125 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4126 return SDValue(); 4127 } 4128 4129 return SDValue(); 4130 } 4131 4132 SDValue 4133 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4134 SelectionDAG &DAG) const { 4135 unsigned Opcode, CCValid; 4136 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4137 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4138 if (Op->getNumValues() == 1) 4139 return getCCResult(DAG, SDValue(Node, 0)); 4140 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4141 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4142 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4143 } 4144 4145 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4146 switch (Id) { 4147 case Intrinsic::thread_pointer: 4148 return lowerThreadPointer(SDLoc(Op), DAG); 4149 4150 case Intrinsic::s390_vpdi: 4151 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4152 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4153 4154 case Intrinsic::s390_vperm: 4155 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4156 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4157 4158 case Intrinsic::s390_vuphb: 4159 case Intrinsic::s390_vuphh: 4160 case Intrinsic::s390_vuphf: 4161 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4162 Op.getOperand(1)); 4163 4164 case Intrinsic::s390_vuplhb: 4165 case Intrinsic::s390_vuplhh: 4166 case Intrinsic::s390_vuplhf: 4167 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4168 Op.getOperand(1)); 4169 4170 case Intrinsic::s390_vuplb: 4171 case Intrinsic::s390_vuplhw: 4172 case Intrinsic::s390_vuplf: 4173 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4174 Op.getOperand(1)); 4175 4176 case Intrinsic::s390_vupllb: 4177 case Intrinsic::s390_vupllh: 4178 case Intrinsic::s390_vupllf: 4179 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4180 Op.getOperand(1)); 4181 4182 case Intrinsic::s390_vsumb: 4183 case Intrinsic::s390_vsumh: 4184 case Intrinsic::s390_vsumgh: 4185 case Intrinsic::s390_vsumgf: 4186 case Intrinsic::s390_vsumqf: 4187 case Intrinsic::s390_vsumqg: 4188 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4189 Op.getOperand(1), Op.getOperand(2)); 4190 } 4191 4192 return SDValue(); 4193 } 4194 4195 namespace { 4196 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4197 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4198 // Operand is the constant third operand, otherwise it is the number of 4199 // bytes in each element of the result. 4200 struct Permute { 4201 unsigned Opcode; 4202 unsigned Operand; 4203 unsigned char Bytes[SystemZ::VectorBytes]; 4204 }; 4205 } 4206 4207 static const Permute PermuteForms[] = { 4208 // VMRHG 4209 { SystemZISD::MERGE_HIGH, 8, 4210 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4211 // VMRHF 4212 { SystemZISD::MERGE_HIGH, 4, 4213 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4214 // VMRHH 4215 { SystemZISD::MERGE_HIGH, 2, 4216 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4217 // VMRHB 4218 { SystemZISD::MERGE_HIGH, 1, 4219 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4220 // VMRLG 4221 { SystemZISD::MERGE_LOW, 8, 4222 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4223 // VMRLF 4224 { SystemZISD::MERGE_LOW, 4, 4225 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4226 // VMRLH 4227 { SystemZISD::MERGE_LOW, 2, 4228 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4229 // VMRLB 4230 { SystemZISD::MERGE_LOW, 1, 4231 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4232 // VPKG 4233 { SystemZISD::PACK, 4, 4234 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4235 // VPKF 4236 { SystemZISD::PACK, 2, 4237 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4238 // VPKH 4239 { SystemZISD::PACK, 1, 4240 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4241 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4242 { SystemZISD::PERMUTE_DWORDS, 4, 4243 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4244 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4245 { SystemZISD::PERMUTE_DWORDS, 1, 4246 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4247 }; 4248 4249 // Called after matching a vector shuffle against a particular pattern. 4250 // Both the original shuffle and the pattern have two vector operands. 4251 // OpNos[0] is the operand of the original shuffle that should be used for 4252 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4253 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4254 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4255 // for operands 0 and 1 of the pattern. 4256 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4257 if (OpNos[0] < 0) { 4258 if (OpNos[1] < 0) 4259 return false; 4260 OpNo0 = OpNo1 = OpNos[1]; 4261 } else if (OpNos[1] < 0) { 4262 OpNo0 = OpNo1 = OpNos[0]; 4263 } else { 4264 OpNo0 = OpNos[0]; 4265 OpNo1 = OpNos[1]; 4266 } 4267 return true; 4268 } 4269 4270 // Bytes is a VPERM-like permute vector, except that -1 is used for 4271 // undefined bytes. Return true if the VPERM can be implemented using P. 4272 // When returning true set OpNo0 to the VPERM operand that should be 4273 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4274 // 4275 // For example, if swapping the VPERM operands allows P to match, OpNo0 4276 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4277 // operand, but rewriting it to use two duplicated operands allows it to 4278 // match P, then OpNo0 and OpNo1 will be the same. 4279 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4280 unsigned &OpNo0, unsigned &OpNo1) { 4281 int OpNos[] = { -1, -1 }; 4282 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4283 int Elt = Bytes[I]; 4284 if (Elt >= 0) { 4285 // Make sure that the two permute vectors use the same suboperand 4286 // byte number. Only the operand numbers (the high bits) are 4287 // allowed to differ. 4288 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4289 return false; 4290 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4291 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4292 // Make sure that the operand mappings are consistent with previous 4293 // elements. 4294 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4295 return false; 4296 OpNos[ModelOpNo] = RealOpNo; 4297 } 4298 } 4299 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4300 } 4301 4302 // As above, but search for a matching permute. 4303 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4304 unsigned &OpNo0, unsigned &OpNo1) { 4305 for (auto &P : PermuteForms) 4306 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4307 return &P; 4308 return nullptr; 4309 } 4310 4311 // Bytes is a VPERM-like permute vector, except that -1 is used for 4312 // undefined bytes. This permute is an operand of an outer permute. 4313 // See whether redistributing the -1 bytes gives a shuffle that can be 4314 // implemented using P. If so, set Transform to a VPERM-like permute vector 4315 // that, when applied to the result of P, gives the original permute in Bytes. 4316 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4317 const Permute &P, 4318 SmallVectorImpl<int> &Transform) { 4319 unsigned To = 0; 4320 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4321 int Elt = Bytes[From]; 4322 if (Elt < 0) 4323 // Byte number From of the result is undefined. 4324 Transform[From] = -1; 4325 else { 4326 while (P.Bytes[To] != Elt) { 4327 To += 1; 4328 if (To == SystemZ::VectorBytes) 4329 return false; 4330 } 4331 Transform[From] = To; 4332 } 4333 } 4334 return true; 4335 } 4336 4337 // As above, but search for a matching permute. 4338 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4339 SmallVectorImpl<int> &Transform) { 4340 for (auto &P : PermuteForms) 4341 if (matchDoublePermute(Bytes, P, Transform)) 4342 return &P; 4343 return nullptr; 4344 } 4345 4346 // Convert the mask of the given shuffle op into a byte-level mask, 4347 // as if it had type vNi8. 4348 static bool getVPermMask(SDValue ShuffleOp, 4349 SmallVectorImpl<int> &Bytes) { 4350 EVT VT = ShuffleOp.getValueType(); 4351 unsigned NumElements = VT.getVectorNumElements(); 4352 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4353 4354 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4355 Bytes.resize(NumElements * BytesPerElement, -1); 4356 for (unsigned I = 0; I < NumElements; ++I) { 4357 int Index = VSN->getMaskElt(I); 4358 if (Index >= 0) 4359 for (unsigned J = 0; J < BytesPerElement; ++J) 4360 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4361 } 4362 return true; 4363 } 4364 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4365 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4366 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4367 Bytes.resize(NumElements * BytesPerElement, -1); 4368 for (unsigned I = 0; I < NumElements; ++I) 4369 for (unsigned J = 0; J < BytesPerElement; ++J) 4370 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4371 return true; 4372 } 4373 return false; 4374 } 4375 4376 // Bytes is a VPERM-like permute vector, except that -1 is used for 4377 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4378 // the result come from a contiguous sequence of bytes from one input. 4379 // Set Base to the selector for the first byte if so. 4380 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4381 unsigned BytesPerElement, int &Base) { 4382 Base = -1; 4383 for (unsigned I = 0; I < BytesPerElement; ++I) { 4384 if (Bytes[Start + I] >= 0) { 4385 unsigned Elem = Bytes[Start + I]; 4386 if (Base < 0) { 4387 Base = Elem - I; 4388 // Make sure the bytes would come from one input operand. 4389 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4390 return false; 4391 } else if (unsigned(Base) != Elem - I) 4392 return false; 4393 } 4394 } 4395 return true; 4396 } 4397 4398 // Bytes is a VPERM-like permute vector, except that -1 is used for 4399 // undefined bytes. Return true if it can be performed using VSLDI. 4400 // When returning true, set StartIndex to the shift amount and OpNo0 4401 // and OpNo1 to the VPERM operands that should be used as the first 4402 // and second shift operand respectively. 4403 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4404 unsigned &StartIndex, unsigned &OpNo0, 4405 unsigned &OpNo1) { 4406 int OpNos[] = { -1, -1 }; 4407 int Shift = -1; 4408 for (unsigned I = 0; I < 16; ++I) { 4409 int Index = Bytes[I]; 4410 if (Index >= 0) { 4411 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4412 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4413 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4414 if (Shift < 0) 4415 Shift = ExpectedShift; 4416 else if (Shift != ExpectedShift) 4417 return false; 4418 // Make sure that the operand mappings are consistent with previous 4419 // elements. 4420 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4421 return false; 4422 OpNos[ModelOpNo] = RealOpNo; 4423 } 4424 } 4425 StartIndex = Shift; 4426 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4427 } 4428 4429 // Create a node that performs P on operands Op0 and Op1, casting the 4430 // operands to the appropriate type. The type of the result is determined by P. 4431 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4432 const Permute &P, SDValue Op0, SDValue Op1) { 4433 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4434 // elements of a PACK are twice as wide as the outputs. 4435 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4436 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4437 P.Operand); 4438 // Cast both operands to the appropriate type. 4439 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4440 SystemZ::VectorBytes / InBytes); 4441 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4442 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4443 SDValue Op; 4444 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4445 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4446 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4447 } else if (P.Opcode == SystemZISD::PACK) { 4448 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4449 SystemZ::VectorBytes / P.Operand); 4450 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4451 } else { 4452 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4453 } 4454 return Op; 4455 } 4456 4457 // Bytes is a VPERM-like permute vector, except that -1 is used for 4458 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4459 // VSLDI or VPERM. 4460 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4461 SDValue *Ops, 4462 const SmallVectorImpl<int> &Bytes) { 4463 for (unsigned I = 0; I < 2; ++I) 4464 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4465 4466 // First see whether VSLDI can be used. 4467 unsigned StartIndex, OpNo0, OpNo1; 4468 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4469 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4470 Ops[OpNo1], 4471 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4472 4473 // Fall back on VPERM. Construct an SDNode for the permute vector. 4474 SDValue IndexNodes[SystemZ::VectorBytes]; 4475 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4476 if (Bytes[I] >= 0) 4477 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4478 else 4479 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4480 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4481 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 4482 } 4483 4484 namespace { 4485 // Describes a general N-operand vector shuffle. 4486 struct GeneralShuffle { 4487 GeneralShuffle(EVT vt) : VT(vt) {} 4488 void addUndef(); 4489 bool add(SDValue, unsigned); 4490 SDValue getNode(SelectionDAG &, const SDLoc &); 4491 4492 // The operands of the shuffle. 4493 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4494 4495 // Index I is -1 if byte I of the result is undefined. Otherwise the 4496 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4497 // Bytes[I] / SystemZ::VectorBytes. 4498 SmallVector<int, SystemZ::VectorBytes> Bytes; 4499 4500 // The type of the shuffle result. 4501 EVT VT; 4502 }; 4503 } 4504 4505 // Add an extra undefined element to the shuffle. 4506 void GeneralShuffle::addUndef() { 4507 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4508 for (unsigned I = 0; I < BytesPerElement; ++I) 4509 Bytes.push_back(-1); 4510 } 4511 4512 // Add an extra element to the shuffle, taking it from element Elem of Op. 4513 // A null Op indicates a vector input whose value will be calculated later; 4514 // there is at most one such input per shuffle and it always has the same 4515 // type as the result. Aborts and returns false if the source vector elements 4516 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4517 // LLVM they become implicitly extended, but this is rare and not optimized. 4518 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4519 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4520 4521 // The source vector can have wider elements than the result, 4522 // either through an explicit TRUNCATE or because of type legalization. 4523 // We want the least significant part. 4524 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4525 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4526 4527 // Return false if the source elements are smaller than their destination 4528 // elements. 4529 if (FromBytesPerElement < BytesPerElement) 4530 return false; 4531 4532 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4533 (FromBytesPerElement - BytesPerElement)); 4534 4535 // Look through things like shuffles and bitcasts. 4536 while (Op.getNode()) { 4537 if (Op.getOpcode() == ISD::BITCAST) 4538 Op = Op.getOperand(0); 4539 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4540 // See whether the bytes we need come from a contiguous part of one 4541 // operand. 4542 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4543 if (!getVPermMask(Op, OpBytes)) 4544 break; 4545 int NewByte; 4546 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4547 break; 4548 if (NewByte < 0) { 4549 addUndef(); 4550 return true; 4551 } 4552 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4553 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4554 } else if (Op.isUndef()) { 4555 addUndef(); 4556 return true; 4557 } else 4558 break; 4559 } 4560 4561 // Make sure that the source of the extraction is in Ops. 4562 unsigned OpNo = 0; 4563 for (; OpNo < Ops.size(); ++OpNo) 4564 if (Ops[OpNo] == Op) 4565 break; 4566 if (OpNo == Ops.size()) 4567 Ops.push_back(Op); 4568 4569 // Add the element to Bytes. 4570 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4571 for (unsigned I = 0; I < BytesPerElement; ++I) 4572 Bytes.push_back(Base + I); 4573 4574 return true; 4575 } 4576 4577 // Return SDNodes for the completed shuffle. 4578 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4579 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4580 4581 if (Ops.size() == 0) 4582 return DAG.getUNDEF(VT); 4583 4584 // Make sure that there are at least two shuffle operands. 4585 if (Ops.size() == 1) 4586 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4587 4588 // Create a tree of shuffles, deferring root node until after the loop. 4589 // Try to redistribute the undefined elements of non-root nodes so that 4590 // the non-root shuffles match something like a pack or merge, then adjust 4591 // the parent node's permute vector to compensate for the new order. 4592 // Among other things, this copes with vectors like <2 x i16> that were 4593 // padded with undefined elements during type legalization. 4594 // 4595 // In the best case this redistribution will lead to the whole tree 4596 // using packs and merges. It should rarely be a loss in other cases. 4597 unsigned Stride = 1; 4598 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4599 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4600 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4601 4602 // Create a mask for just these two operands. 4603 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4604 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4605 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4606 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4607 if (OpNo == I) 4608 NewBytes[J] = Byte; 4609 else if (OpNo == I + Stride) 4610 NewBytes[J] = SystemZ::VectorBytes + Byte; 4611 else 4612 NewBytes[J] = -1; 4613 } 4614 // See if it would be better to reorganize NewMask to avoid using VPERM. 4615 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4616 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4617 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4618 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4619 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4620 if (NewBytes[J] >= 0) { 4621 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4622 "Invalid double permute"); 4623 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4624 } else 4625 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4626 } 4627 } else { 4628 // Just use NewBytes on the operands. 4629 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4630 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4631 if (NewBytes[J] >= 0) 4632 Bytes[J] = I * SystemZ::VectorBytes + J; 4633 } 4634 } 4635 } 4636 4637 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4638 if (Stride > 1) { 4639 Ops[1] = Ops[Stride]; 4640 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4641 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4642 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4643 } 4644 4645 // Look for an instruction that can do the permute without resorting 4646 // to VPERM. 4647 unsigned OpNo0, OpNo1; 4648 SDValue Op; 4649 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4650 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4651 else 4652 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4653 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4654 } 4655 4656 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4657 static bool isScalarToVector(SDValue Op) { 4658 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4659 if (!Op.getOperand(I).isUndef()) 4660 return false; 4661 return true; 4662 } 4663 4664 // Return a vector of type VT that contains Value in the first element. 4665 // The other elements don't matter. 4666 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4667 SDValue Value) { 4668 // If we have a constant, replicate it to all elements and let the 4669 // BUILD_VECTOR lowering take care of it. 4670 if (Value.getOpcode() == ISD::Constant || 4671 Value.getOpcode() == ISD::ConstantFP) { 4672 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4673 return DAG.getBuildVector(VT, DL, Ops); 4674 } 4675 if (Value.isUndef()) 4676 return DAG.getUNDEF(VT); 4677 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4678 } 4679 4680 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4681 // element 1. Used for cases in which replication is cheap. 4682 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4683 SDValue Op0, SDValue Op1) { 4684 if (Op0.isUndef()) { 4685 if (Op1.isUndef()) 4686 return DAG.getUNDEF(VT); 4687 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4688 } 4689 if (Op1.isUndef()) 4690 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4691 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4692 buildScalarToVector(DAG, DL, VT, Op0), 4693 buildScalarToVector(DAG, DL, VT, Op1)); 4694 } 4695 4696 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4697 // vector for them. 4698 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4699 SDValue Op1) { 4700 if (Op0.isUndef() && Op1.isUndef()) 4701 return DAG.getUNDEF(MVT::v2i64); 4702 // If one of the two inputs is undefined then replicate the other one, 4703 // in order to avoid using another register unnecessarily. 4704 if (Op0.isUndef()) 4705 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4706 else if (Op1.isUndef()) 4707 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4708 else { 4709 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4710 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4711 } 4712 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4713 } 4714 4715 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4716 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4717 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4718 // would benefit from this representation and return it if so. 4719 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4720 BuildVectorSDNode *BVN) { 4721 EVT VT = BVN->getValueType(0); 4722 unsigned NumElements = VT.getVectorNumElements(); 4723 4724 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4725 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4726 // need a BUILD_VECTOR, add an additional placeholder operand for that 4727 // BUILD_VECTOR and store its operands in ResidueOps. 4728 GeneralShuffle GS(VT); 4729 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4730 bool FoundOne = false; 4731 for (unsigned I = 0; I < NumElements; ++I) { 4732 SDValue Op = BVN->getOperand(I); 4733 if (Op.getOpcode() == ISD::TRUNCATE) 4734 Op = Op.getOperand(0); 4735 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4736 Op.getOperand(1).getOpcode() == ISD::Constant) { 4737 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4738 if (!GS.add(Op.getOperand(0), Elem)) 4739 return SDValue(); 4740 FoundOne = true; 4741 } else if (Op.isUndef()) { 4742 GS.addUndef(); 4743 } else { 4744 if (!GS.add(SDValue(), ResidueOps.size())) 4745 return SDValue(); 4746 ResidueOps.push_back(BVN->getOperand(I)); 4747 } 4748 } 4749 4750 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4751 if (!FoundOne) 4752 return SDValue(); 4753 4754 // Create the BUILD_VECTOR for the remaining elements, if any. 4755 if (!ResidueOps.empty()) { 4756 while (ResidueOps.size() < NumElements) 4757 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4758 for (auto &Op : GS.Ops) { 4759 if (!Op.getNode()) { 4760 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4761 break; 4762 } 4763 } 4764 } 4765 return GS.getNode(DAG, SDLoc(BVN)); 4766 } 4767 4768 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 4769 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 4770 return true; 4771 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 4772 return true; 4773 return false; 4774 } 4775 4776 // Combine GPR scalar values Elems into a vector of type VT. 4777 SDValue 4778 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4779 SmallVectorImpl<SDValue> &Elems) const { 4780 // See whether there is a single replicated value. 4781 SDValue Single; 4782 unsigned int NumElements = Elems.size(); 4783 unsigned int Count = 0; 4784 for (auto Elem : Elems) { 4785 if (!Elem.isUndef()) { 4786 if (!Single.getNode()) 4787 Single = Elem; 4788 else if (Elem != Single) { 4789 Single = SDValue(); 4790 break; 4791 } 4792 Count += 1; 4793 } 4794 } 4795 // There are three cases here: 4796 // 4797 // - if the only defined element is a loaded one, the best sequence 4798 // is a replicating load. 4799 // 4800 // - otherwise, if the only defined element is an i64 value, we will 4801 // end up with the same VLVGP sequence regardless of whether we short-cut 4802 // for replication or fall through to the later code. 4803 // 4804 // - otherwise, if the only defined element is an i32 or smaller value, 4805 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4806 // This is only a win if the single defined element is used more than once. 4807 // In other cases we're better off using a single VLVGx. 4808 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 4809 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4810 4811 // If all elements are loads, use VLREP/VLEs (below). 4812 bool AllLoads = true; 4813 for (auto Elem : Elems) 4814 if (!isVectorElementLoad(Elem)) { 4815 AllLoads = false; 4816 break; 4817 } 4818 4819 // The best way of building a v2i64 from two i64s is to use VLVGP. 4820 if (VT == MVT::v2i64 && !AllLoads) 4821 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4822 4823 // Use a 64-bit merge high to combine two doubles. 4824 if (VT == MVT::v2f64 && !AllLoads) 4825 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4826 4827 // Build v4f32 values directly from the FPRs: 4828 // 4829 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4830 // V V VMRHF 4831 // <ABxx> <CDxx> 4832 // V VMRHG 4833 // <ABCD> 4834 if (VT == MVT::v4f32 && !AllLoads) { 4835 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4836 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4837 // Avoid unnecessary undefs by reusing the other operand. 4838 if (Op01.isUndef()) 4839 Op01 = Op23; 4840 else if (Op23.isUndef()) 4841 Op23 = Op01; 4842 // Merging identical replications is a no-op. 4843 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4844 return Op01; 4845 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4846 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4847 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4848 DL, MVT::v2i64, Op01, Op23); 4849 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4850 } 4851 4852 // Collect the constant terms. 4853 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4854 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4855 4856 unsigned NumConstants = 0; 4857 for (unsigned I = 0; I < NumElements; ++I) { 4858 SDValue Elem = Elems[I]; 4859 if (Elem.getOpcode() == ISD::Constant || 4860 Elem.getOpcode() == ISD::ConstantFP) { 4861 NumConstants += 1; 4862 Constants[I] = Elem; 4863 Done[I] = true; 4864 } 4865 } 4866 // If there was at least one constant, fill in the other elements of 4867 // Constants with undefs to get a full vector constant and use that 4868 // as the starting point. 4869 SDValue Result; 4870 SDValue ReplicatedVal; 4871 if (NumConstants > 0) { 4872 for (unsigned I = 0; I < NumElements; ++I) 4873 if (!Constants[I].getNode()) 4874 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4875 Result = DAG.getBuildVector(VT, DL, Constants); 4876 } else { 4877 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4878 // avoid a false dependency on any previous contents of the vector 4879 // register. 4880 4881 // Use a VLREP if at least one element is a load. Make sure to replicate 4882 // the load with the most elements having its value. 4883 std::map<const SDNode*, unsigned> UseCounts; 4884 SDNode *LoadMaxUses = nullptr; 4885 for (unsigned I = 0; I < NumElements; ++I) 4886 if (isVectorElementLoad(Elems[I])) { 4887 SDNode *Ld = Elems[I].getNode(); 4888 UseCounts[Ld]++; 4889 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 4890 LoadMaxUses = Ld; 4891 } 4892 if (LoadMaxUses != nullptr) { 4893 ReplicatedVal = SDValue(LoadMaxUses, 0); 4894 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 4895 } else { 4896 // Try to use VLVGP. 4897 unsigned I1 = NumElements / 2 - 1; 4898 unsigned I2 = NumElements - 1; 4899 bool Def1 = !Elems[I1].isUndef(); 4900 bool Def2 = !Elems[I2].isUndef(); 4901 if (Def1 || Def2) { 4902 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4903 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4904 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4905 joinDwords(DAG, DL, Elem1, Elem2)); 4906 Done[I1] = true; 4907 Done[I2] = true; 4908 } else 4909 Result = DAG.getUNDEF(VT); 4910 } 4911 } 4912 4913 // Use VLVGx to insert the other elements. 4914 for (unsigned I = 0; I < NumElements; ++I) 4915 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 4916 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4917 DAG.getConstant(I, DL, MVT::i32)); 4918 return Result; 4919 } 4920 4921 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4922 SelectionDAG &DAG) const { 4923 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4924 SDLoc DL(Op); 4925 EVT VT = Op.getValueType(); 4926 4927 if (BVN->isConstant()) { 4928 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 4929 return Op; 4930 4931 // Fall back to loading it from memory. 4932 return SDValue(); 4933 } 4934 4935 // See if we should use shuffles to construct the vector from other vectors. 4936 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4937 return Res; 4938 4939 // Detect SCALAR_TO_VECTOR conversions. 4940 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4941 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4942 4943 // Otherwise use buildVector to build the vector up from GPRs. 4944 unsigned NumElements = Op.getNumOperands(); 4945 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4946 for (unsigned I = 0; I < NumElements; ++I) 4947 Ops[I] = Op.getOperand(I); 4948 return buildVector(DAG, DL, VT, Ops); 4949 } 4950 4951 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4952 SelectionDAG &DAG) const { 4953 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4954 SDLoc DL(Op); 4955 EVT VT = Op.getValueType(); 4956 unsigned NumElements = VT.getVectorNumElements(); 4957 4958 if (VSN->isSplat()) { 4959 SDValue Op0 = Op.getOperand(0); 4960 unsigned Index = VSN->getSplatIndex(); 4961 assert(Index < VT.getVectorNumElements() && 4962 "Splat index should be defined and in first operand"); 4963 // See whether the value we're splatting is directly available as a scalar. 4964 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4965 Op0.getOpcode() == ISD::BUILD_VECTOR) 4966 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4967 // Otherwise keep it as a vector-to-vector operation. 4968 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4969 DAG.getTargetConstant(Index, DL, MVT::i32)); 4970 } 4971 4972 GeneralShuffle GS(VT); 4973 for (unsigned I = 0; I < NumElements; ++I) { 4974 int Elt = VSN->getMaskElt(I); 4975 if (Elt < 0) 4976 GS.addUndef(); 4977 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4978 unsigned(Elt) % NumElements)) 4979 return SDValue(); 4980 } 4981 return GS.getNode(DAG, SDLoc(VSN)); 4982 } 4983 4984 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4985 SelectionDAG &DAG) const { 4986 SDLoc DL(Op); 4987 // Just insert the scalar into element 0 of an undefined vector. 4988 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4989 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4990 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4991 } 4992 4993 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4994 SelectionDAG &DAG) const { 4995 // Handle insertions of floating-point values. 4996 SDLoc DL(Op); 4997 SDValue Op0 = Op.getOperand(0); 4998 SDValue Op1 = Op.getOperand(1); 4999 SDValue Op2 = Op.getOperand(2); 5000 EVT VT = Op.getValueType(); 5001 5002 // Insertions into constant indices of a v2f64 can be done using VPDI. 5003 // However, if the inserted value is a bitcast or a constant then it's 5004 // better to use GPRs, as below. 5005 if (VT == MVT::v2f64 && 5006 Op1.getOpcode() != ISD::BITCAST && 5007 Op1.getOpcode() != ISD::ConstantFP && 5008 Op2.getOpcode() == ISD::Constant) { 5009 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 5010 unsigned Mask = VT.getVectorNumElements() - 1; 5011 if (Index <= Mask) 5012 return Op; 5013 } 5014 5015 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5016 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5017 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5018 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5019 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5020 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5021 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5022 } 5023 5024 SDValue 5025 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5026 SelectionDAG &DAG) const { 5027 // Handle extractions of floating-point values. 5028 SDLoc DL(Op); 5029 SDValue Op0 = Op.getOperand(0); 5030 SDValue Op1 = Op.getOperand(1); 5031 EVT VT = Op.getValueType(); 5032 EVT VecVT = Op0.getValueType(); 5033 5034 // Extractions of constant indices can be done directly. 5035 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5036 uint64_t Index = CIndexN->getZExtValue(); 5037 unsigned Mask = VecVT.getVectorNumElements() - 1; 5038 if (Index <= Mask) 5039 return Op; 5040 } 5041 5042 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5043 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5044 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5045 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5046 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5047 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5048 } 5049 5050 SDValue 5051 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 5052 unsigned UnpackHigh) const { 5053 SDValue PackedOp = Op.getOperand(0); 5054 EVT OutVT = Op.getValueType(); 5055 EVT InVT = PackedOp.getValueType(); 5056 unsigned ToBits = OutVT.getScalarSizeInBits(); 5057 unsigned FromBits = InVT.getScalarSizeInBits(); 5058 do { 5059 FromBits *= 2; 5060 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5061 SystemZ::VectorBits / FromBits); 5062 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 5063 } while (FromBits != ToBits); 5064 return PackedOp; 5065 } 5066 5067 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5068 unsigned ByScalar) const { 5069 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5070 SDValue Op0 = Op.getOperand(0); 5071 SDValue Op1 = Op.getOperand(1); 5072 SDLoc DL(Op); 5073 EVT VT = Op.getValueType(); 5074 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5075 5076 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5077 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5078 APInt SplatBits, SplatUndef; 5079 unsigned SplatBitSize; 5080 bool HasAnyUndefs; 5081 // Check for constant splats. Use ElemBitSize as the minimum element 5082 // width and reject splats that need wider elements. 5083 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5084 ElemBitSize, true) && 5085 SplatBitSize == ElemBitSize) { 5086 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5087 DL, MVT::i32); 5088 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5089 } 5090 // Check for variable splats. 5091 BitVector UndefElements; 5092 SDValue Splat = BVN->getSplatValue(&UndefElements); 5093 if (Splat) { 5094 // Since i32 is the smallest legal type, we either need a no-op 5095 // or a truncation. 5096 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5097 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5098 } 5099 } 5100 5101 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5102 // and the shift amount is directly available in a GPR. 5103 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5104 if (VSN->isSplat()) { 5105 SDValue VSNOp0 = VSN->getOperand(0); 5106 unsigned Index = VSN->getSplatIndex(); 5107 assert(Index < VT.getVectorNumElements() && 5108 "Splat index should be defined and in first operand"); 5109 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5110 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5111 // Since i32 is the smallest legal type, we either need a no-op 5112 // or a truncation. 5113 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5114 VSNOp0.getOperand(Index)); 5115 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5116 } 5117 } 5118 } 5119 5120 // Otherwise just treat the current form as legal. 5121 return Op; 5122 } 5123 5124 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5125 SelectionDAG &DAG) const { 5126 switch (Op.getOpcode()) { 5127 case ISD::FRAMEADDR: 5128 return lowerFRAMEADDR(Op, DAG); 5129 case ISD::RETURNADDR: 5130 return lowerRETURNADDR(Op, DAG); 5131 case ISD::BR_CC: 5132 return lowerBR_CC(Op, DAG); 5133 case ISD::SELECT_CC: 5134 return lowerSELECT_CC(Op, DAG); 5135 case ISD::SETCC: 5136 return lowerSETCC(Op, DAG); 5137 case ISD::STRICT_FSETCC: 5138 return lowerSTRICT_FSETCC(Op, DAG, false); 5139 case ISD::STRICT_FSETCCS: 5140 return lowerSTRICT_FSETCC(Op, DAG, true); 5141 case ISD::GlobalAddress: 5142 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5143 case ISD::GlobalTLSAddress: 5144 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5145 case ISD::BlockAddress: 5146 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5147 case ISD::JumpTable: 5148 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5149 case ISD::ConstantPool: 5150 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5151 case ISD::BITCAST: 5152 return lowerBITCAST(Op, DAG); 5153 case ISD::VASTART: 5154 return lowerVASTART(Op, DAG); 5155 case ISD::VACOPY: 5156 return lowerVACOPY(Op, DAG); 5157 case ISD::DYNAMIC_STACKALLOC: 5158 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5159 case ISD::GET_DYNAMIC_AREA_OFFSET: 5160 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5161 case ISD::SMUL_LOHI: 5162 return lowerSMUL_LOHI(Op, DAG); 5163 case ISD::UMUL_LOHI: 5164 return lowerUMUL_LOHI(Op, DAG); 5165 case ISD::SDIVREM: 5166 return lowerSDIVREM(Op, DAG); 5167 case ISD::UDIVREM: 5168 return lowerUDIVREM(Op, DAG); 5169 case ISD::SADDO: 5170 case ISD::SSUBO: 5171 case ISD::UADDO: 5172 case ISD::USUBO: 5173 return lowerXALUO(Op, DAG); 5174 case ISD::ADDCARRY: 5175 case ISD::SUBCARRY: 5176 return lowerADDSUBCARRY(Op, DAG); 5177 case ISD::OR: 5178 return lowerOR(Op, DAG); 5179 case ISD::CTPOP: 5180 return lowerCTPOP(Op, DAG); 5181 case ISD::ATOMIC_FENCE: 5182 return lowerATOMIC_FENCE(Op, DAG); 5183 case ISD::ATOMIC_SWAP: 5184 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5185 case ISD::ATOMIC_STORE: 5186 return lowerATOMIC_STORE(Op, DAG); 5187 case ISD::ATOMIC_LOAD: 5188 return lowerATOMIC_LOAD(Op, DAG); 5189 case ISD::ATOMIC_LOAD_ADD: 5190 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5191 case ISD::ATOMIC_LOAD_SUB: 5192 return lowerATOMIC_LOAD_SUB(Op, DAG); 5193 case ISD::ATOMIC_LOAD_AND: 5194 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5195 case ISD::ATOMIC_LOAD_OR: 5196 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5197 case ISD::ATOMIC_LOAD_XOR: 5198 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5199 case ISD::ATOMIC_LOAD_NAND: 5200 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5201 case ISD::ATOMIC_LOAD_MIN: 5202 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5203 case ISD::ATOMIC_LOAD_MAX: 5204 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5205 case ISD::ATOMIC_LOAD_UMIN: 5206 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5207 case ISD::ATOMIC_LOAD_UMAX: 5208 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5209 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5210 return lowerATOMIC_CMP_SWAP(Op, DAG); 5211 case ISD::STACKSAVE: 5212 return lowerSTACKSAVE(Op, DAG); 5213 case ISD::STACKRESTORE: 5214 return lowerSTACKRESTORE(Op, DAG); 5215 case ISD::PREFETCH: 5216 return lowerPREFETCH(Op, DAG); 5217 case ISD::INTRINSIC_W_CHAIN: 5218 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5219 case ISD::INTRINSIC_WO_CHAIN: 5220 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5221 case ISD::BUILD_VECTOR: 5222 return lowerBUILD_VECTOR(Op, DAG); 5223 case ISD::VECTOR_SHUFFLE: 5224 return lowerVECTOR_SHUFFLE(Op, DAG); 5225 case ISD::SCALAR_TO_VECTOR: 5226 return lowerSCALAR_TO_VECTOR(Op, DAG); 5227 case ISD::INSERT_VECTOR_ELT: 5228 return lowerINSERT_VECTOR_ELT(Op, DAG); 5229 case ISD::EXTRACT_VECTOR_ELT: 5230 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5231 case ISD::SIGN_EXTEND_VECTOR_INREG: 5232 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 5233 case ISD::ZERO_EXTEND_VECTOR_INREG: 5234 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 5235 case ISD::SHL: 5236 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5237 case ISD::SRL: 5238 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5239 case ISD::SRA: 5240 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5241 default: 5242 llvm_unreachable("Unexpected node to lower"); 5243 } 5244 } 5245 5246 // Lower operations with invalid operand or result types (currently used 5247 // only for 128-bit integer types). 5248 5249 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 5250 SDLoc DL(In); 5251 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5252 DAG.getIntPtrConstant(0, DL)); 5253 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5254 DAG.getIntPtrConstant(1, DL)); 5255 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 5256 MVT::Untyped, Hi, Lo); 5257 return SDValue(Pair, 0); 5258 } 5259 5260 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 5261 SDLoc DL(In); 5262 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5263 DL, MVT::i64, In); 5264 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5265 DL, MVT::i64, In); 5266 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 5267 } 5268 5269 void 5270 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5271 SmallVectorImpl<SDValue> &Results, 5272 SelectionDAG &DAG) const { 5273 switch (N->getOpcode()) { 5274 case ISD::ATOMIC_LOAD: { 5275 SDLoc DL(N); 5276 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5277 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5278 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5279 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5280 DL, Tys, Ops, MVT::i128, MMO); 5281 Results.push_back(lowerGR128ToI128(DAG, Res)); 5282 Results.push_back(Res.getValue(1)); 5283 break; 5284 } 5285 case ISD::ATOMIC_STORE: { 5286 SDLoc DL(N); 5287 SDVTList Tys = DAG.getVTList(MVT::Other); 5288 SDValue Ops[] = { N->getOperand(0), 5289 lowerI128ToGR128(DAG, N->getOperand(2)), 5290 N->getOperand(1) }; 5291 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5292 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5293 DL, Tys, Ops, MVT::i128, MMO); 5294 // We have to enforce sequential consistency by performing a 5295 // serialization operation after the store. 5296 if (cast<AtomicSDNode>(N)->getOrdering() == 5297 AtomicOrdering::SequentiallyConsistent) 5298 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5299 MVT::Other, Res), 0); 5300 Results.push_back(Res); 5301 break; 5302 } 5303 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5304 SDLoc DL(N); 5305 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5306 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5307 lowerI128ToGR128(DAG, N->getOperand(2)), 5308 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5309 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5310 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5311 DL, Tys, Ops, MVT::i128, MMO); 5312 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5313 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5314 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5315 Results.push_back(lowerGR128ToI128(DAG, Res)); 5316 Results.push_back(Success); 5317 Results.push_back(Res.getValue(2)); 5318 break; 5319 } 5320 default: 5321 llvm_unreachable("Unexpected node to lower"); 5322 } 5323 } 5324 5325 void 5326 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5327 SmallVectorImpl<SDValue> &Results, 5328 SelectionDAG &DAG) const { 5329 return LowerOperationWrapper(N, Results, DAG); 5330 } 5331 5332 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5333 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5334 switch ((SystemZISD::NodeType)Opcode) { 5335 case SystemZISD::FIRST_NUMBER: break; 5336 OPCODE(RET_FLAG); 5337 OPCODE(CALL); 5338 OPCODE(SIBCALL); 5339 OPCODE(TLS_GDCALL); 5340 OPCODE(TLS_LDCALL); 5341 OPCODE(PCREL_WRAPPER); 5342 OPCODE(PCREL_OFFSET); 5343 OPCODE(IABS); 5344 OPCODE(ICMP); 5345 OPCODE(FCMP); 5346 OPCODE(STRICT_FCMP); 5347 OPCODE(STRICT_FCMPS); 5348 OPCODE(TM); 5349 OPCODE(BR_CCMASK); 5350 OPCODE(SELECT_CCMASK); 5351 OPCODE(ADJDYNALLOC); 5352 OPCODE(POPCNT); 5353 OPCODE(SMUL_LOHI); 5354 OPCODE(UMUL_LOHI); 5355 OPCODE(SDIVREM); 5356 OPCODE(UDIVREM); 5357 OPCODE(SADDO); 5358 OPCODE(SSUBO); 5359 OPCODE(UADDO); 5360 OPCODE(USUBO); 5361 OPCODE(ADDCARRY); 5362 OPCODE(SUBCARRY); 5363 OPCODE(GET_CCMASK); 5364 OPCODE(MVC); 5365 OPCODE(MVC_LOOP); 5366 OPCODE(NC); 5367 OPCODE(NC_LOOP); 5368 OPCODE(OC); 5369 OPCODE(OC_LOOP); 5370 OPCODE(XC); 5371 OPCODE(XC_LOOP); 5372 OPCODE(CLC); 5373 OPCODE(CLC_LOOP); 5374 OPCODE(STPCPY); 5375 OPCODE(STRCMP); 5376 OPCODE(SEARCH_STRING); 5377 OPCODE(IPM); 5378 OPCODE(MEMBARRIER); 5379 OPCODE(TBEGIN); 5380 OPCODE(TBEGIN_NOFLOAT); 5381 OPCODE(TEND); 5382 OPCODE(BYTE_MASK); 5383 OPCODE(ROTATE_MASK); 5384 OPCODE(REPLICATE); 5385 OPCODE(JOIN_DWORDS); 5386 OPCODE(SPLAT); 5387 OPCODE(MERGE_HIGH); 5388 OPCODE(MERGE_LOW); 5389 OPCODE(SHL_DOUBLE); 5390 OPCODE(PERMUTE_DWORDS); 5391 OPCODE(PERMUTE); 5392 OPCODE(PACK); 5393 OPCODE(PACKS_CC); 5394 OPCODE(PACKLS_CC); 5395 OPCODE(UNPACK_HIGH); 5396 OPCODE(UNPACKL_HIGH); 5397 OPCODE(UNPACK_LOW); 5398 OPCODE(UNPACKL_LOW); 5399 OPCODE(VSHL_BY_SCALAR); 5400 OPCODE(VSRL_BY_SCALAR); 5401 OPCODE(VSRA_BY_SCALAR); 5402 OPCODE(VSUM); 5403 OPCODE(VICMPE); 5404 OPCODE(VICMPH); 5405 OPCODE(VICMPHL); 5406 OPCODE(VICMPES); 5407 OPCODE(VICMPHS); 5408 OPCODE(VICMPHLS); 5409 OPCODE(VFCMPE); 5410 OPCODE(STRICT_VFCMPE); 5411 OPCODE(STRICT_VFCMPES); 5412 OPCODE(VFCMPH); 5413 OPCODE(STRICT_VFCMPH); 5414 OPCODE(STRICT_VFCMPHS); 5415 OPCODE(VFCMPHE); 5416 OPCODE(STRICT_VFCMPHE); 5417 OPCODE(STRICT_VFCMPHES); 5418 OPCODE(VFCMPES); 5419 OPCODE(VFCMPHS); 5420 OPCODE(VFCMPHES); 5421 OPCODE(VFTCI); 5422 OPCODE(VEXTEND); 5423 OPCODE(STRICT_VEXTEND); 5424 OPCODE(VROUND); 5425 OPCODE(STRICT_VROUND); 5426 OPCODE(VTM); 5427 OPCODE(VFAE_CC); 5428 OPCODE(VFAEZ_CC); 5429 OPCODE(VFEE_CC); 5430 OPCODE(VFEEZ_CC); 5431 OPCODE(VFENE_CC); 5432 OPCODE(VFENEZ_CC); 5433 OPCODE(VISTR_CC); 5434 OPCODE(VSTRC_CC); 5435 OPCODE(VSTRCZ_CC); 5436 OPCODE(VSTRS_CC); 5437 OPCODE(VSTRSZ_CC); 5438 OPCODE(TDC); 5439 OPCODE(ATOMIC_SWAPW); 5440 OPCODE(ATOMIC_LOADW_ADD); 5441 OPCODE(ATOMIC_LOADW_SUB); 5442 OPCODE(ATOMIC_LOADW_AND); 5443 OPCODE(ATOMIC_LOADW_OR); 5444 OPCODE(ATOMIC_LOADW_XOR); 5445 OPCODE(ATOMIC_LOADW_NAND); 5446 OPCODE(ATOMIC_LOADW_MIN); 5447 OPCODE(ATOMIC_LOADW_MAX); 5448 OPCODE(ATOMIC_LOADW_UMIN); 5449 OPCODE(ATOMIC_LOADW_UMAX); 5450 OPCODE(ATOMIC_CMP_SWAPW); 5451 OPCODE(ATOMIC_CMP_SWAP); 5452 OPCODE(ATOMIC_LOAD_128); 5453 OPCODE(ATOMIC_STORE_128); 5454 OPCODE(ATOMIC_CMP_SWAP_128); 5455 OPCODE(LRV); 5456 OPCODE(STRV); 5457 OPCODE(VLER); 5458 OPCODE(VSTER); 5459 OPCODE(PREFETCH); 5460 } 5461 return nullptr; 5462 #undef OPCODE 5463 } 5464 5465 // Return true if VT is a vector whose elements are a whole number of bytes 5466 // in width. Also check for presence of vector support. 5467 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5468 if (!Subtarget.hasVector()) 5469 return false; 5470 5471 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5472 } 5473 5474 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5475 // producing a result of type ResVT. Op is a possibly bitcast version 5476 // of the input vector and Index is the index (based on type VecVT) that 5477 // should be extracted. Return the new extraction if a simplification 5478 // was possible or if Force is true. 5479 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5480 EVT VecVT, SDValue Op, 5481 unsigned Index, 5482 DAGCombinerInfo &DCI, 5483 bool Force) const { 5484 SelectionDAG &DAG = DCI.DAG; 5485 5486 // The number of bytes being extracted. 5487 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5488 5489 for (;;) { 5490 unsigned Opcode = Op.getOpcode(); 5491 if (Opcode == ISD::BITCAST) 5492 // Look through bitcasts. 5493 Op = Op.getOperand(0); 5494 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5495 canTreatAsByteVector(Op.getValueType())) { 5496 // Get a VPERM-like permute mask and see whether the bytes covered 5497 // by the extracted element are a contiguous sequence from one 5498 // source operand. 5499 SmallVector<int, SystemZ::VectorBytes> Bytes; 5500 if (!getVPermMask(Op, Bytes)) 5501 break; 5502 int First; 5503 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5504 BytesPerElement, First)) 5505 break; 5506 if (First < 0) 5507 return DAG.getUNDEF(ResVT); 5508 // Make sure the contiguous sequence starts at a multiple of the 5509 // original element size. 5510 unsigned Byte = unsigned(First) % Bytes.size(); 5511 if (Byte % BytesPerElement != 0) 5512 break; 5513 // We can get the extracted value directly from an input. 5514 Index = Byte / BytesPerElement; 5515 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5516 Force = true; 5517 } else if (Opcode == ISD::BUILD_VECTOR && 5518 canTreatAsByteVector(Op.getValueType())) { 5519 // We can only optimize this case if the BUILD_VECTOR elements are 5520 // at least as wide as the extracted value. 5521 EVT OpVT = Op.getValueType(); 5522 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5523 if (OpBytesPerElement < BytesPerElement) 5524 break; 5525 // Make sure that the least-significant bit of the extracted value 5526 // is the least significant bit of an input. 5527 unsigned End = (Index + 1) * BytesPerElement; 5528 if (End % OpBytesPerElement != 0) 5529 break; 5530 // We're extracting the low part of one operand of the BUILD_VECTOR. 5531 Op = Op.getOperand(End / OpBytesPerElement - 1); 5532 if (!Op.getValueType().isInteger()) { 5533 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5534 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5535 DCI.AddToWorklist(Op.getNode()); 5536 } 5537 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5538 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5539 if (VT != ResVT) { 5540 DCI.AddToWorklist(Op.getNode()); 5541 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5542 } 5543 return Op; 5544 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5545 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5546 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5547 canTreatAsByteVector(Op.getValueType()) && 5548 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5549 // Make sure that only the unextended bits are significant. 5550 EVT ExtVT = Op.getValueType(); 5551 EVT OpVT = Op.getOperand(0).getValueType(); 5552 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5553 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5554 unsigned Byte = Index * BytesPerElement; 5555 unsigned SubByte = Byte % ExtBytesPerElement; 5556 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5557 if (SubByte < MinSubByte || 5558 SubByte + BytesPerElement > ExtBytesPerElement) 5559 break; 5560 // Get the byte offset of the unextended element 5561 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5562 // ...then add the byte offset relative to that element. 5563 Byte += SubByte - MinSubByte; 5564 if (Byte % BytesPerElement != 0) 5565 break; 5566 Op = Op.getOperand(0); 5567 Index = Byte / BytesPerElement; 5568 Force = true; 5569 } else 5570 break; 5571 } 5572 if (Force) { 5573 if (Op.getValueType() != VecVT) { 5574 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5575 DCI.AddToWorklist(Op.getNode()); 5576 } 5577 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5578 DAG.getConstant(Index, DL, MVT::i32)); 5579 } 5580 return SDValue(); 5581 } 5582 5583 // Optimize vector operations in scalar value Op on the basis that Op 5584 // is truncated to TruncVT. 5585 SDValue SystemZTargetLowering::combineTruncateExtract( 5586 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5587 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5588 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5589 // of type TruncVT. 5590 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5591 TruncVT.getSizeInBits() % 8 == 0) { 5592 SDValue Vec = Op.getOperand(0); 5593 EVT VecVT = Vec.getValueType(); 5594 if (canTreatAsByteVector(VecVT)) { 5595 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5596 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5597 unsigned TruncBytes = TruncVT.getStoreSize(); 5598 if (BytesPerElement % TruncBytes == 0) { 5599 // Calculate the value of Y' in the above description. We are 5600 // splitting the original elements into Scale equal-sized pieces 5601 // and for truncation purposes want the last (least-significant) 5602 // of these pieces for IndexN. This is easiest to do by calculating 5603 // the start index of the following element and then subtracting 1. 5604 unsigned Scale = BytesPerElement / TruncBytes; 5605 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5606 5607 // Defer the creation of the bitcast from X to combineExtract, 5608 // which might be able to optimize the extraction. 5609 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5610 VecVT.getStoreSize() / TruncBytes); 5611 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5612 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5613 } 5614 } 5615 } 5616 } 5617 return SDValue(); 5618 } 5619 5620 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5621 SDNode *N, DAGCombinerInfo &DCI) const { 5622 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5623 SelectionDAG &DAG = DCI.DAG; 5624 SDValue N0 = N->getOperand(0); 5625 EVT VT = N->getValueType(0); 5626 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5627 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5628 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5629 if (TrueOp && FalseOp) { 5630 SDLoc DL(N0); 5631 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5632 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5633 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5634 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5635 // If N0 has multiple uses, change other uses as well. 5636 if (!N0.hasOneUse()) { 5637 SDValue TruncSelect = 5638 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5639 DCI.CombineTo(N0.getNode(), TruncSelect); 5640 } 5641 return NewSelect; 5642 } 5643 } 5644 return SDValue(); 5645 } 5646 5647 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5648 SDNode *N, DAGCombinerInfo &DCI) const { 5649 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5650 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5651 // into (select_cc LHS, RHS, -1, 0, COND) 5652 SelectionDAG &DAG = DCI.DAG; 5653 SDValue N0 = N->getOperand(0); 5654 EVT VT = N->getValueType(0); 5655 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5656 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5657 N0 = N0.getOperand(0); 5658 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5659 SDLoc DL(N0); 5660 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5661 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5662 N0.getOperand(2) }; 5663 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5664 } 5665 return SDValue(); 5666 } 5667 5668 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5669 SDNode *N, DAGCombinerInfo &DCI) const { 5670 // Convert (sext (ashr (shl X, C1), C2)) to 5671 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5672 // cheap as narrower ones. 5673 SelectionDAG &DAG = DCI.DAG; 5674 SDValue N0 = N->getOperand(0); 5675 EVT VT = N->getValueType(0); 5676 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5677 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5678 SDValue Inner = N0.getOperand(0); 5679 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5680 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5681 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5682 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5683 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5684 EVT ShiftVT = N0.getOperand(1).getValueType(); 5685 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5686 Inner.getOperand(0)); 5687 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5688 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5689 ShiftVT)); 5690 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5691 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5692 } 5693 } 5694 } 5695 return SDValue(); 5696 } 5697 5698 SDValue SystemZTargetLowering::combineMERGE( 5699 SDNode *N, DAGCombinerInfo &DCI) const { 5700 SelectionDAG &DAG = DCI.DAG; 5701 unsigned Opcode = N->getOpcode(); 5702 SDValue Op0 = N->getOperand(0); 5703 SDValue Op1 = N->getOperand(1); 5704 if (Op0.getOpcode() == ISD::BITCAST) 5705 Op0 = Op0.getOperand(0); 5706 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5707 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5708 // for v4f32. 5709 if (Op1 == N->getOperand(0)) 5710 return Op1; 5711 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5712 EVT VT = Op1.getValueType(); 5713 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5714 if (ElemBytes <= 4) { 5715 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5716 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5717 EVT InVT = VT.changeVectorElementTypeToInteger(); 5718 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5719 SystemZ::VectorBytes / ElemBytes / 2); 5720 if (VT != InVT) { 5721 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5722 DCI.AddToWorklist(Op1.getNode()); 5723 } 5724 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5725 DCI.AddToWorklist(Op.getNode()); 5726 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5727 } 5728 } 5729 return SDValue(); 5730 } 5731 5732 SDValue SystemZTargetLowering::combineLOAD( 5733 SDNode *N, DAGCombinerInfo &DCI) const { 5734 SelectionDAG &DAG = DCI.DAG; 5735 EVT LdVT = N->getValueType(0); 5736 if (LdVT.isVector() || LdVT.isInteger()) 5737 return SDValue(); 5738 // Transform a scalar load that is REPLICATEd as well as having other 5739 // use(s) to the form where the other use(s) use the first element of the 5740 // REPLICATE instead of the load. Otherwise instruction selection will not 5741 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5742 // point loads. 5743 5744 SDValue Replicate; 5745 SmallVector<SDNode*, 8> OtherUses; 5746 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5747 UI != UE; ++UI) { 5748 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5749 if (Replicate) 5750 return SDValue(); // Should never happen 5751 Replicate = SDValue(*UI, 0); 5752 } 5753 else if (UI.getUse().getResNo() == 0) 5754 OtherUses.push_back(*UI); 5755 } 5756 if (!Replicate || OtherUses.empty()) 5757 return SDValue(); 5758 5759 SDLoc DL(N); 5760 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5761 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5762 // Update uses of the loaded Value while preserving old chains. 5763 for (SDNode *U : OtherUses) { 5764 SmallVector<SDValue, 8> Ops; 5765 for (SDValue Op : U->ops()) 5766 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5767 DAG.UpdateNodeOperands(U, Ops); 5768 } 5769 return SDValue(N, 0); 5770 } 5771 5772 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 5773 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 5774 return true; 5775 if (Subtarget.hasVectorEnhancements2()) 5776 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 5777 return true; 5778 return false; 5779 } 5780 5781 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 5782 if (!VT.isVector() || !VT.isSimple() || 5783 VT.getSizeInBits() != 128 || 5784 VT.getScalarSizeInBits() % 8 != 0) 5785 return false; 5786 5787 unsigned NumElts = VT.getVectorNumElements(); 5788 for (unsigned i = 0; i < NumElts; ++i) { 5789 if (M[i] < 0) continue; // ignore UNDEF indices 5790 if ((unsigned) M[i] != NumElts - 1 - i) 5791 return false; 5792 } 5793 5794 return true; 5795 } 5796 5797 SDValue SystemZTargetLowering::combineSTORE( 5798 SDNode *N, DAGCombinerInfo &DCI) const { 5799 SelectionDAG &DAG = DCI.DAG; 5800 auto *SN = cast<StoreSDNode>(N); 5801 auto &Op1 = N->getOperand(1); 5802 EVT MemVT = SN->getMemoryVT(); 5803 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5804 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5805 // If X has wider elements then convert it to: 5806 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5807 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5808 if (SDValue Value = 5809 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5810 DCI.AddToWorklist(Value.getNode()); 5811 5812 // Rewrite the store with the new form of stored value. 5813 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5814 SN->getBasePtr(), SN->getMemoryVT(), 5815 SN->getMemOperand()); 5816 } 5817 } 5818 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 5819 if (!SN->isTruncatingStore() && 5820 Op1.getOpcode() == ISD::BSWAP && 5821 Op1.getNode()->hasOneUse() && 5822 canLoadStoreByteSwapped(Op1.getValueType())) { 5823 5824 SDValue BSwapOp = Op1.getOperand(0); 5825 5826 if (BSwapOp.getValueType() == MVT::i16) 5827 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5828 5829 SDValue Ops[] = { 5830 N->getOperand(0), BSwapOp, N->getOperand(2) 5831 }; 5832 5833 return 5834 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5835 Ops, MemVT, SN->getMemOperand()); 5836 } 5837 // Combine STORE (element-swap) into VSTER 5838 if (!SN->isTruncatingStore() && 5839 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 5840 Op1.getNode()->hasOneUse() && 5841 Subtarget.hasVectorEnhancements2()) { 5842 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 5843 ArrayRef<int> ShuffleMask = SVN->getMask(); 5844 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 5845 SDValue Ops[] = { 5846 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 5847 }; 5848 5849 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 5850 DAG.getVTList(MVT::Other), 5851 Ops, MemVT, SN->getMemOperand()); 5852 } 5853 } 5854 5855 return SDValue(); 5856 } 5857 5858 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 5859 SDNode *N, DAGCombinerInfo &DCI) const { 5860 SelectionDAG &DAG = DCI.DAG; 5861 // Combine element-swap (LOAD) into VLER 5862 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5863 N->getOperand(0).hasOneUse() && 5864 Subtarget.hasVectorEnhancements2()) { 5865 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 5866 ArrayRef<int> ShuffleMask = SVN->getMask(); 5867 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 5868 SDValue Load = N->getOperand(0); 5869 LoadSDNode *LD = cast<LoadSDNode>(Load); 5870 5871 // Create the element-swapping load. 5872 SDValue Ops[] = { 5873 LD->getChain(), // Chain 5874 LD->getBasePtr() // Ptr 5875 }; 5876 SDValue ESLoad = 5877 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 5878 DAG.getVTList(LD->getValueType(0), MVT::Other), 5879 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5880 5881 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 5882 // by the load dead. 5883 DCI.CombineTo(N, ESLoad); 5884 5885 // Next, combine the load away, we give it a bogus result value but a real 5886 // chain result. The result value is dead because the shuffle is dead. 5887 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 5888 5889 // Return N so it doesn't get rechecked! 5890 return SDValue(N, 0); 5891 } 5892 } 5893 5894 return SDValue(); 5895 } 5896 5897 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5898 SDNode *N, DAGCombinerInfo &DCI) const { 5899 SelectionDAG &DAG = DCI.DAG; 5900 5901 if (!Subtarget.hasVector()) 5902 return SDValue(); 5903 5904 // Look through bitcasts that retain the number of vector elements. 5905 SDValue Op = N->getOperand(0); 5906 if (Op.getOpcode() == ISD::BITCAST && 5907 Op.getValueType().isVector() && 5908 Op.getOperand(0).getValueType().isVector() && 5909 Op.getValueType().getVectorNumElements() == 5910 Op.getOperand(0).getValueType().getVectorNumElements()) 5911 Op = Op.getOperand(0); 5912 5913 // Pull BSWAP out of a vector extraction. 5914 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 5915 EVT VecVT = Op.getValueType(); 5916 EVT EltVT = VecVT.getVectorElementType(); 5917 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 5918 Op.getOperand(0), N->getOperand(1)); 5919 DCI.AddToWorklist(Op.getNode()); 5920 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 5921 if (EltVT != N->getValueType(0)) { 5922 DCI.AddToWorklist(Op.getNode()); 5923 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 5924 } 5925 return Op; 5926 } 5927 5928 // Try to simplify a vector extraction. 5929 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5930 SDValue Op0 = N->getOperand(0); 5931 EVT VecVT = Op0.getValueType(); 5932 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5933 IndexN->getZExtValue(), DCI, false); 5934 } 5935 return SDValue(); 5936 } 5937 5938 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5939 SDNode *N, DAGCombinerInfo &DCI) const { 5940 SelectionDAG &DAG = DCI.DAG; 5941 // (join_dwords X, X) == (replicate X) 5942 if (N->getOperand(0) == N->getOperand(1)) 5943 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5944 N->getOperand(0)); 5945 return SDValue(); 5946 } 5947 5948 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 5949 SDValue Chain1 = N1->getOperand(0); 5950 SDValue Chain2 = N2->getOperand(0); 5951 5952 // Trivial case: both nodes take the same chain. 5953 if (Chain1 == Chain2) 5954 return Chain1; 5955 5956 // FIXME - we could handle more complex cases via TokenFactor, 5957 // assuming we can verify that this would not create a cycle. 5958 return SDValue(); 5959 } 5960 5961 SDValue SystemZTargetLowering::combineFP_ROUND( 5962 SDNode *N, DAGCombinerInfo &DCI) const { 5963 5964 if (!Subtarget.hasVector()) 5965 return SDValue(); 5966 5967 // (fpround (extract_vector_elt X 0)) 5968 // (fpround (extract_vector_elt X 1)) -> 5969 // (extract_vector_elt (VROUND X) 0) 5970 // (extract_vector_elt (VROUND X) 2) 5971 // 5972 // This is a special case since the target doesn't really support v2f32s. 5973 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 5974 SelectionDAG &DAG = DCI.DAG; 5975 SDValue Op0 = N->getOperand(OpNo); 5976 if (N->getValueType(0) == MVT::f32 && 5977 Op0.hasOneUse() && 5978 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5979 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5980 Op0.getOperand(1).getOpcode() == ISD::Constant && 5981 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5982 SDValue Vec = Op0.getOperand(0); 5983 for (auto *U : Vec->uses()) { 5984 if (U != Op0.getNode() && 5985 U->hasOneUse() && 5986 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5987 U->getOperand(0) == Vec && 5988 U->getOperand(1).getOpcode() == ISD::Constant && 5989 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5990 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5991 if (OtherRound.getOpcode() == N->getOpcode() && 5992 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 5993 OtherRound.getValueType() == MVT::f32) { 5994 SDValue VRound, Chain; 5995 if (N->isStrictFPOpcode()) { 5996 Chain = MergeInputChains(N, OtherRound.getNode()); 5997 if (!Chain) 5998 continue; 5999 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 6000 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 6001 Chain = VRound.getValue(1); 6002 } else 6003 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 6004 MVT::v4f32, Vec); 6005 DCI.AddToWorklist(VRound.getNode()); 6006 SDValue Extract1 = 6007 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 6008 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 6009 DCI.AddToWorklist(Extract1.getNode()); 6010 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6011 if (Chain) 6012 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 6013 SDValue Extract0 = 6014 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 6015 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6016 if (Chain) 6017 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6018 N->getVTList(), Extract0, Chain); 6019 return Extract0; 6020 } 6021 } 6022 } 6023 } 6024 return SDValue(); 6025 } 6026 6027 SDValue SystemZTargetLowering::combineFP_EXTEND( 6028 SDNode *N, DAGCombinerInfo &DCI) const { 6029 6030 if (!Subtarget.hasVector()) 6031 return SDValue(); 6032 6033 // (fpextend (extract_vector_elt X 0)) 6034 // (fpextend (extract_vector_elt X 2)) -> 6035 // (extract_vector_elt (VEXTEND X) 0) 6036 // (extract_vector_elt (VEXTEND X) 1) 6037 // 6038 // This is a special case since the target doesn't really support v2f32s. 6039 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6040 SelectionDAG &DAG = DCI.DAG; 6041 SDValue Op0 = N->getOperand(OpNo); 6042 if (N->getValueType(0) == MVT::f64 && 6043 Op0.hasOneUse() && 6044 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6045 Op0.getOperand(0).getValueType() == MVT::v4f32 && 6046 Op0.getOperand(1).getOpcode() == ISD::Constant && 6047 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6048 SDValue Vec = Op0.getOperand(0); 6049 for (auto *U : Vec->uses()) { 6050 if (U != Op0.getNode() && 6051 U->hasOneUse() && 6052 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6053 U->getOperand(0) == Vec && 6054 U->getOperand(1).getOpcode() == ISD::Constant && 6055 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 6056 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6057 if (OtherExtend.getOpcode() == N->getOpcode() && 6058 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 6059 OtherExtend.getValueType() == MVT::f64) { 6060 SDValue VExtend, Chain; 6061 if (N->isStrictFPOpcode()) { 6062 Chain = MergeInputChains(N, OtherExtend.getNode()); 6063 if (!Chain) 6064 continue; 6065 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6066 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6067 Chain = VExtend.getValue(1); 6068 } else 6069 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 6070 MVT::v2f64, Vec); 6071 DCI.AddToWorklist(VExtend.getNode()); 6072 SDValue Extract1 = 6073 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 6074 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 6075 DCI.AddToWorklist(Extract1.getNode()); 6076 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6077 if (Chain) 6078 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 6079 SDValue Extract0 = 6080 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 6081 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6082 if (Chain) 6083 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6084 N->getVTList(), Extract0, Chain); 6085 return Extract0; 6086 } 6087 } 6088 } 6089 } 6090 return SDValue(); 6091 } 6092 6093 SDValue SystemZTargetLowering::combineBSWAP( 6094 SDNode *N, DAGCombinerInfo &DCI) const { 6095 SelectionDAG &DAG = DCI.DAG; 6096 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6097 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6098 N->getOperand(0).hasOneUse() && 6099 canLoadStoreByteSwapped(N->getValueType(0))) { 6100 SDValue Load = N->getOperand(0); 6101 LoadSDNode *LD = cast<LoadSDNode>(Load); 6102 6103 // Create the byte-swapping load. 6104 SDValue Ops[] = { 6105 LD->getChain(), // Chain 6106 LD->getBasePtr() // Ptr 6107 }; 6108 EVT LoadVT = N->getValueType(0); 6109 if (LoadVT == MVT::i16) 6110 LoadVT = MVT::i32; 6111 SDValue BSLoad = 6112 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6113 DAG.getVTList(LoadVT, MVT::Other), 6114 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6115 6116 // If this is an i16 load, insert the truncate. 6117 SDValue ResVal = BSLoad; 6118 if (N->getValueType(0) == MVT::i16) 6119 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6120 6121 // First, combine the bswap away. This makes the value produced by the 6122 // load dead. 6123 DCI.CombineTo(N, ResVal); 6124 6125 // Next, combine the load away, we give it a bogus result value but a real 6126 // chain result. The result value is dead because the bswap is dead. 6127 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6128 6129 // Return N so it doesn't get rechecked! 6130 return SDValue(N, 0); 6131 } 6132 6133 // Look through bitcasts that retain the number of vector elements. 6134 SDValue Op = N->getOperand(0); 6135 if (Op.getOpcode() == ISD::BITCAST && 6136 Op.getValueType().isVector() && 6137 Op.getOperand(0).getValueType().isVector() && 6138 Op.getValueType().getVectorNumElements() == 6139 Op.getOperand(0).getValueType().getVectorNumElements()) 6140 Op = Op.getOperand(0); 6141 6142 // Push BSWAP into a vector insertion if at least one side then simplifies. 6143 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6144 SDValue Vec = Op.getOperand(0); 6145 SDValue Elt = Op.getOperand(1); 6146 SDValue Idx = Op.getOperand(2); 6147 6148 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6149 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6150 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6151 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6152 (canLoadStoreByteSwapped(N->getValueType(0)) && 6153 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6154 EVT VecVT = N->getValueType(0); 6155 EVT EltVT = N->getValueType(0).getVectorElementType(); 6156 if (VecVT != Vec.getValueType()) { 6157 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6158 DCI.AddToWorklist(Vec.getNode()); 6159 } 6160 if (EltVT != Elt.getValueType()) { 6161 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6162 DCI.AddToWorklist(Elt.getNode()); 6163 } 6164 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6165 DCI.AddToWorklist(Vec.getNode()); 6166 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6167 DCI.AddToWorklist(Elt.getNode()); 6168 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6169 Vec, Elt, Idx); 6170 } 6171 } 6172 6173 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6174 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6175 if (SV && Op.hasOneUse()) { 6176 SDValue Op0 = Op.getOperand(0); 6177 SDValue Op1 = Op.getOperand(1); 6178 6179 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6180 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6181 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6182 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6183 EVT VecVT = N->getValueType(0); 6184 if (VecVT != Op0.getValueType()) { 6185 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6186 DCI.AddToWorklist(Op0.getNode()); 6187 } 6188 if (VecVT != Op1.getValueType()) { 6189 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6190 DCI.AddToWorklist(Op1.getNode()); 6191 } 6192 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6193 DCI.AddToWorklist(Op0.getNode()); 6194 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6195 DCI.AddToWorklist(Op1.getNode()); 6196 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6197 } 6198 } 6199 6200 return SDValue(); 6201 } 6202 6203 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6204 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6205 // set by the CCReg instruction using the CCValid / CCMask masks, 6206 // If the CCReg instruction is itself a ICMP testing the condition 6207 // code set by some other instruction, see whether we can directly 6208 // use that condition code. 6209 6210 // Verify that we have an ICMP against some constant. 6211 if (CCValid != SystemZ::CCMASK_ICMP) 6212 return false; 6213 auto *ICmp = CCReg.getNode(); 6214 if (ICmp->getOpcode() != SystemZISD::ICMP) 6215 return false; 6216 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6217 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6218 if (!CompareRHS) 6219 return false; 6220 6221 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6222 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6223 // Verify that we have an appropriate mask for a EQ or NE comparison. 6224 bool Invert = false; 6225 if (CCMask == SystemZ::CCMASK_CMP_NE) 6226 Invert = !Invert; 6227 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6228 return false; 6229 6230 // Verify that the ICMP compares against one of select values. 6231 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6232 if (!TrueVal) 6233 return false; 6234 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6235 if (!FalseVal) 6236 return false; 6237 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6238 Invert = !Invert; 6239 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6240 return false; 6241 6242 // Compute the effective CC mask for the new branch or select. 6243 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6244 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6245 if (!NewCCValid || !NewCCMask) 6246 return false; 6247 CCValid = NewCCValid->getZExtValue(); 6248 CCMask = NewCCMask->getZExtValue(); 6249 if (Invert) 6250 CCMask ^= CCValid; 6251 6252 // Return the updated CCReg link. 6253 CCReg = CompareLHS->getOperand(4); 6254 return true; 6255 } 6256 6257 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6258 if (CompareLHS->getOpcode() == ISD::SRA) { 6259 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6260 if (!SRACount || SRACount->getZExtValue() != 30) 6261 return false; 6262 auto *SHL = CompareLHS->getOperand(0).getNode(); 6263 if (SHL->getOpcode() != ISD::SHL) 6264 return false; 6265 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6266 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6267 return false; 6268 auto *IPM = SHL->getOperand(0).getNode(); 6269 if (IPM->getOpcode() != SystemZISD::IPM) 6270 return false; 6271 6272 // Avoid introducing CC spills (because SRA would clobber CC). 6273 if (!CompareLHS->hasOneUse()) 6274 return false; 6275 // Verify that the ICMP compares against zero. 6276 if (CompareRHS->getZExtValue() != 0) 6277 return false; 6278 6279 // Compute the effective CC mask for the new branch or select. 6280 switch (CCMask) { 6281 case SystemZ::CCMASK_CMP_EQ: break; 6282 case SystemZ::CCMASK_CMP_NE: break; 6283 case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break; 6284 case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break; 6285 case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break; 6286 case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break; 6287 default: return false; 6288 } 6289 6290 // Return the updated CCReg link. 6291 CCReg = IPM->getOperand(0); 6292 return true; 6293 } 6294 6295 return false; 6296 } 6297 6298 SDValue SystemZTargetLowering::combineBR_CCMASK( 6299 SDNode *N, DAGCombinerInfo &DCI) const { 6300 SelectionDAG &DAG = DCI.DAG; 6301 6302 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6303 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6304 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6305 if (!CCValid || !CCMask) 6306 return SDValue(); 6307 6308 int CCValidVal = CCValid->getZExtValue(); 6309 int CCMaskVal = CCMask->getZExtValue(); 6310 SDValue Chain = N->getOperand(0); 6311 SDValue CCReg = N->getOperand(4); 6312 6313 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6314 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6315 Chain, 6316 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6317 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6318 N->getOperand(3), CCReg); 6319 return SDValue(); 6320 } 6321 6322 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6323 SDNode *N, DAGCombinerInfo &DCI) const { 6324 SelectionDAG &DAG = DCI.DAG; 6325 6326 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6327 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6328 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6329 if (!CCValid || !CCMask) 6330 return SDValue(); 6331 6332 int CCValidVal = CCValid->getZExtValue(); 6333 int CCMaskVal = CCMask->getZExtValue(); 6334 SDValue CCReg = N->getOperand(4); 6335 6336 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6337 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6338 N->getOperand(0), N->getOperand(1), 6339 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6340 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6341 CCReg); 6342 return SDValue(); 6343 } 6344 6345 6346 SDValue SystemZTargetLowering::combineGET_CCMASK( 6347 SDNode *N, DAGCombinerInfo &DCI) const { 6348 6349 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6350 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6351 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6352 if (!CCValid || !CCMask) 6353 return SDValue(); 6354 int CCValidVal = CCValid->getZExtValue(); 6355 int CCMaskVal = CCMask->getZExtValue(); 6356 6357 SDValue Select = N->getOperand(0); 6358 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6359 return SDValue(); 6360 6361 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6362 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6363 if (!SelectCCValid || !SelectCCMask) 6364 return SDValue(); 6365 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6366 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6367 6368 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6369 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6370 if (!TrueVal || !FalseVal) 6371 return SDValue(); 6372 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6373 ; 6374 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6375 SelectCCMaskVal ^= SelectCCValidVal; 6376 else 6377 return SDValue(); 6378 6379 if (SelectCCValidVal & ~CCValidVal) 6380 return SDValue(); 6381 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6382 return SDValue(); 6383 6384 return Select->getOperand(4); 6385 } 6386 6387 SDValue SystemZTargetLowering::combineIntDIVREM( 6388 SDNode *N, DAGCombinerInfo &DCI) const { 6389 SelectionDAG &DAG = DCI.DAG; 6390 EVT VT = N->getValueType(0); 6391 // In the case where the divisor is a vector of constants a cheaper 6392 // sequence of instructions can replace the divide. BuildSDIV is called to 6393 // do this during DAG combining, but it only succeeds when it can build a 6394 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6395 // since it is not Legal but Custom it can only happen before 6396 // legalization. Therefore we must scalarize this early before Combine 6397 // 1. For widened vectors, this is already the result of type legalization. 6398 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6399 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6400 return DAG.UnrollVectorOp(N); 6401 return SDValue(); 6402 } 6403 6404 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6405 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6406 return N->getOperand(0); 6407 return N; 6408 } 6409 6410 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6411 DAGCombinerInfo &DCI) const { 6412 switch(N->getOpcode()) { 6413 default: break; 6414 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6415 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6416 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6417 case SystemZISD::MERGE_HIGH: 6418 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6419 case ISD::LOAD: return combineLOAD(N, DCI); 6420 case ISD::STORE: return combineSTORE(N, DCI); 6421 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6422 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6423 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6424 case ISD::STRICT_FP_ROUND: 6425 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6426 case ISD::STRICT_FP_EXTEND: 6427 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6428 case ISD::BSWAP: return combineBSWAP(N, DCI); 6429 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6430 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6431 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6432 case ISD::SDIV: 6433 case ISD::UDIV: 6434 case ISD::SREM: 6435 case ISD::UREM: return combineIntDIVREM(N, DCI); 6436 } 6437 6438 return SDValue(); 6439 } 6440 6441 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6442 // are for Op. 6443 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6444 unsigned OpNo) { 6445 EVT VT = Op.getValueType(); 6446 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6447 APInt SrcDemE; 6448 unsigned Opcode = Op.getOpcode(); 6449 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6450 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6451 switch (Id) { 6452 case Intrinsic::s390_vpksh: // PACKS 6453 case Intrinsic::s390_vpksf: 6454 case Intrinsic::s390_vpksg: 6455 case Intrinsic::s390_vpkshs: // PACKS_CC 6456 case Intrinsic::s390_vpksfs: 6457 case Intrinsic::s390_vpksgs: 6458 case Intrinsic::s390_vpklsh: // PACKLS 6459 case Intrinsic::s390_vpklsf: 6460 case Intrinsic::s390_vpklsg: 6461 case Intrinsic::s390_vpklshs: // PACKLS_CC 6462 case Intrinsic::s390_vpklsfs: 6463 case Intrinsic::s390_vpklsgs: 6464 // VECTOR PACK truncates the elements of two source vectors into one. 6465 SrcDemE = DemandedElts; 6466 if (OpNo == 2) 6467 SrcDemE.lshrInPlace(NumElts / 2); 6468 SrcDemE = SrcDemE.trunc(NumElts / 2); 6469 break; 6470 // VECTOR UNPACK extends half the elements of the source vector. 6471 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6472 case Intrinsic::s390_vuphh: 6473 case Intrinsic::s390_vuphf: 6474 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6475 case Intrinsic::s390_vuplhh: 6476 case Intrinsic::s390_vuplhf: 6477 SrcDemE = APInt(NumElts * 2, 0); 6478 SrcDemE.insertBits(DemandedElts, 0); 6479 break; 6480 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6481 case Intrinsic::s390_vuplhw: 6482 case Intrinsic::s390_vuplf: 6483 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6484 case Intrinsic::s390_vupllh: 6485 case Intrinsic::s390_vupllf: 6486 SrcDemE = APInt(NumElts * 2, 0); 6487 SrcDemE.insertBits(DemandedElts, NumElts); 6488 break; 6489 case Intrinsic::s390_vpdi: { 6490 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6491 SrcDemE = APInt(NumElts, 0); 6492 if (!DemandedElts[OpNo - 1]) 6493 break; 6494 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6495 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6496 // Demand input element 0 or 1, given by the mask bit value. 6497 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6498 break; 6499 } 6500 case Intrinsic::s390_vsldb: { 6501 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6502 assert(VT == MVT::v16i8 && "Unexpected type."); 6503 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6504 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6505 unsigned NumSrc0Els = 16 - FirstIdx; 6506 SrcDemE = APInt(NumElts, 0); 6507 if (OpNo == 1) { 6508 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6509 SrcDemE.insertBits(DemEls, FirstIdx); 6510 } else { 6511 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6512 SrcDemE.insertBits(DemEls, 0); 6513 } 6514 break; 6515 } 6516 case Intrinsic::s390_vperm: 6517 SrcDemE = APInt(NumElts, 1); 6518 break; 6519 default: 6520 llvm_unreachable("Unhandled intrinsic."); 6521 break; 6522 } 6523 } else { 6524 switch (Opcode) { 6525 case SystemZISD::JOIN_DWORDS: 6526 // Scalar operand. 6527 SrcDemE = APInt(1, 1); 6528 break; 6529 case SystemZISD::SELECT_CCMASK: 6530 SrcDemE = DemandedElts; 6531 break; 6532 default: 6533 llvm_unreachable("Unhandled opcode."); 6534 break; 6535 } 6536 } 6537 return SrcDemE; 6538 } 6539 6540 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6541 const APInt &DemandedElts, 6542 const SelectionDAG &DAG, unsigned Depth, 6543 unsigned OpNo) { 6544 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6545 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6546 KnownBits LHSKnown = 6547 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6548 KnownBits RHSKnown = 6549 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6550 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 6551 Known.One = LHSKnown.One & RHSKnown.One; 6552 } 6553 6554 void 6555 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6556 KnownBits &Known, 6557 const APInt &DemandedElts, 6558 const SelectionDAG &DAG, 6559 unsigned Depth) const { 6560 Known.resetAll(); 6561 6562 // Intrinsic CC result is returned in the two low bits. 6563 unsigned tmp0, tmp1; // not used 6564 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6565 Known.Zero.setBitsFrom(2); 6566 return; 6567 } 6568 EVT VT = Op.getValueType(); 6569 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6570 return; 6571 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6572 "KnownBits does not match VT in bitwidth"); 6573 assert ((!VT.isVector() || 6574 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6575 "DemandedElts does not match VT number of elements"); 6576 unsigned BitWidth = Known.getBitWidth(); 6577 unsigned Opcode = Op.getOpcode(); 6578 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6579 bool IsLogical = false; 6580 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6581 switch (Id) { 6582 case Intrinsic::s390_vpksh: // PACKS 6583 case Intrinsic::s390_vpksf: 6584 case Intrinsic::s390_vpksg: 6585 case Intrinsic::s390_vpkshs: // PACKS_CC 6586 case Intrinsic::s390_vpksfs: 6587 case Intrinsic::s390_vpksgs: 6588 case Intrinsic::s390_vpklsh: // PACKLS 6589 case Intrinsic::s390_vpklsf: 6590 case Intrinsic::s390_vpklsg: 6591 case Intrinsic::s390_vpklshs: // PACKLS_CC 6592 case Intrinsic::s390_vpklsfs: 6593 case Intrinsic::s390_vpklsgs: 6594 case Intrinsic::s390_vpdi: 6595 case Intrinsic::s390_vsldb: 6596 case Intrinsic::s390_vperm: 6597 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6598 break; 6599 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6600 case Intrinsic::s390_vuplhh: 6601 case Intrinsic::s390_vuplhf: 6602 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6603 case Intrinsic::s390_vupllh: 6604 case Intrinsic::s390_vupllf: 6605 IsLogical = true; 6606 LLVM_FALLTHROUGH; 6607 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6608 case Intrinsic::s390_vuphh: 6609 case Intrinsic::s390_vuphf: 6610 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6611 case Intrinsic::s390_vuplhw: 6612 case Intrinsic::s390_vuplf: { 6613 SDValue SrcOp = Op.getOperand(1); 6614 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6615 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6616 if (IsLogical) { 6617 Known = Known.zext(BitWidth); 6618 } else 6619 Known = Known.sext(BitWidth); 6620 break; 6621 } 6622 default: 6623 break; 6624 } 6625 } else { 6626 switch (Opcode) { 6627 case SystemZISD::JOIN_DWORDS: 6628 case SystemZISD::SELECT_CCMASK: 6629 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6630 break; 6631 case SystemZISD::REPLICATE: { 6632 SDValue SrcOp = Op.getOperand(0); 6633 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6634 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6635 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6636 break; 6637 } 6638 default: 6639 break; 6640 } 6641 } 6642 6643 // Known has the width of the source operand(s). Adjust if needed to match 6644 // the passed bitwidth. 6645 if (Known.getBitWidth() != BitWidth) 6646 Known = Known.anyextOrTrunc(BitWidth); 6647 } 6648 6649 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6650 const SelectionDAG &DAG, unsigned Depth, 6651 unsigned OpNo) { 6652 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6653 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6654 if (LHS == 1) return 1; // Early out. 6655 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6656 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6657 if (RHS == 1) return 1; // Early out. 6658 unsigned Common = std::min(LHS, RHS); 6659 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6660 EVT VT = Op.getValueType(); 6661 unsigned VTBits = VT.getScalarSizeInBits(); 6662 if (SrcBitWidth > VTBits) { // PACK 6663 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6664 if (Common > SrcExtraBits) 6665 return (Common - SrcExtraBits); 6666 return 1; 6667 } 6668 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6669 return Common; 6670 } 6671 6672 unsigned 6673 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6674 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6675 unsigned Depth) const { 6676 if (Op.getResNo() != 0) 6677 return 1; 6678 unsigned Opcode = Op.getOpcode(); 6679 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6680 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6681 switch (Id) { 6682 case Intrinsic::s390_vpksh: // PACKS 6683 case Intrinsic::s390_vpksf: 6684 case Intrinsic::s390_vpksg: 6685 case Intrinsic::s390_vpkshs: // PACKS_CC 6686 case Intrinsic::s390_vpksfs: 6687 case Intrinsic::s390_vpksgs: 6688 case Intrinsic::s390_vpklsh: // PACKLS 6689 case Intrinsic::s390_vpklsf: 6690 case Intrinsic::s390_vpklsg: 6691 case Intrinsic::s390_vpklshs: // PACKLS_CC 6692 case Intrinsic::s390_vpklsfs: 6693 case Intrinsic::s390_vpklsgs: 6694 case Intrinsic::s390_vpdi: 6695 case Intrinsic::s390_vsldb: 6696 case Intrinsic::s390_vperm: 6697 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6698 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6699 case Intrinsic::s390_vuphh: 6700 case Intrinsic::s390_vuphf: 6701 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6702 case Intrinsic::s390_vuplhw: 6703 case Intrinsic::s390_vuplf: { 6704 SDValue PackedOp = Op.getOperand(1); 6705 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6706 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6707 EVT VT = Op.getValueType(); 6708 unsigned VTBits = VT.getScalarSizeInBits(); 6709 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6710 return Tmp; 6711 } 6712 default: 6713 break; 6714 } 6715 } else { 6716 switch (Opcode) { 6717 case SystemZISD::SELECT_CCMASK: 6718 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6719 default: 6720 break; 6721 } 6722 } 6723 6724 return 1; 6725 } 6726 6727 //===----------------------------------------------------------------------===// 6728 // Custom insertion 6729 //===----------------------------------------------------------------------===// 6730 6731 // Create a new basic block after MBB. 6732 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 6733 MachineFunction &MF = *MBB->getParent(); 6734 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 6735 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 6736 return NewMBB; 6737 } 6738 6739 // Split MBB after MI and return the new block (the one that contains 6740 // instructions after MI). 6741 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 6742 MachineBasicBlock *MBB) { 6743 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6744 NewMBB->splice(NewMBB->begin(), MBB, 6745 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6746 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6747 return NewMBB; 6748 } 6749 6750 // Split MBB before MI and return the new block (the one that contains MI). 6751 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6752 MachineBasicBlock *MBB) { 6753 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6754 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6755 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6756 return NewMBB; 6757 } 6758 6759 // Force base value Base into a register before MI. Return the register. 6760 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 6761 const SystemZInstrInfo *TII) { 6762 if (Base.isReg()) 6763 return Base.getReg(); 6764 6765 MachineBasicBlock *MBB = MI.getParent(); 6766 MachineFunction &MF = *MBB->getParent(); 6767 MachineRegisterInfo &MRI = MF.getRegInfo(); 6768 6769 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6770 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6771 .add(Base) 6772 .addImm(0) 6773 .addReg(0); 6774 return Reg; 6775 } 6776 6777 // The CC operand of MI might be missing a kill marker because there 6778 // were multiple uses of CC, and ISel didn't know which to mark. 6779 // Figure out whether MI should have had a kill marker. 6780 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6781 // Scan forward through BB for a use/def of CC. 6782 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6783 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6784 const MachineInstr& mi = *miI; 6785 if (mi.readsRegister(SystemZ::CC)) 6786 return false; 6787 if (mi.definesRegister(SystemZ::CC)) 6788 break; // Should have kill-flag - update below. 6789 } 6790 6791 // If we hit the end of the block, check whether CC is live into a 6792 // successor. 6793 if (miI == MBB->end()) { 6794 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6795 if ((*SI)->isLiveIn(SystemZ::CC)) 6796 return false; 6797 } 6798 6799 return true; 6800 } 6801 6802 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6803 // together with other Select pseudo-opcodes into a single basic-block with 6804 // a conditional jump around it. 6805 static bool isSelectPseudo(MachineInstr &MI) { 6806 switch (MI.getOpcode()) { 6807 case SystemZ::Select32: 6808 case SystemZ::Select64: 6809 case SystemZ::SelectF32: 6810 case SystemZ::SelectF64: 6811 case SystemZ::SelectF128: 6812 case SystemZ::SelectVR32: 6813 case SystemZ::SelectVR64: 6814 case SystemZ::SelectVR128: 6815 return true; 6816 6817 default: 6818 return false; 6819 } 6820 } 6821 6822 // Helper function, which inserts PHI functions into SinkMBB: 6823 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6824 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 6825 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 6826 MachineBasicBlock *TrueMBB, 6827 MachineBasicBlock *FalseMBB, 6828 MachineBasicBlock *SinkMBB) { 6829 MachineFunction *MF = TrueMBB->getParent(); 6830 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6831 6832 MachineInstr *FirstMI = Selects.front(); 6833 unsigned CCValid = FirstMI->getOperand(3).getImm(); 6834 unsigned CCMask = FirstMI->getOperand(4).getImm(); 6835 6836 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6837 6838 // As we are creating the PHIs, we have to be careful if there is more than 6839 // one. Later Selects may reference the results of earlier Selects, but later 6840 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6841 // That also means that PHI construction must work forward from earlier to 6842 // later, and that the code must maintain a mapping from earlier PHI's 6843 // destination registers, and the registers that went into the PHI. 6844 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6845 6846 for (auto MI : Selects) { 6847 Register DestReg = MI->getOperand(0).getReg(); 6848 Register TrueReg = MI->getOperand(1).getReg(); 6849 Register FalseReg = MI->getOperand(2).getReg(); 6850 6851 // If this Select we are generating is the opposite condition from 6852 // the jump we generated, then we have to swap the operands for the 6853 // PHI that is going to be generated. 6854 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 6855 std::swap(TrueReg, FalseReg); 6856 6857 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6858 TrueReg = RegRewriteTable[TrueReg].first; 6859 6860 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6861 FalseReg = RegRewriteTable[FalseReg].second; 6862 6863 DebugLoc DL = MI->getDebugLoc(); 6864 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6865 .addReg(TrueReg).addMBB(TrueMBB) 6866 .addReg(FalseReg).addMBB(FalseMBB); 6867 6868 // Add this PHI to the rewrite table. 6869 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6870 } 6871 6872 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6873 } 6874 6875 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6876 MachineBasicBlock * 6877 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6878 MachineBasicBlock *MBB) const { 6879 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 6880 const SystemZInstrInfo *TII = 6881 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6882 6883 unsigned CCValid = MI.getOperand(3).getImm(); 6884 unsigned CCMask = MI.getOperand(4).getImm(); 6885 6886 // If we have a sequence of Select* pseudo instructions using the 6887 // same condition code value, we want to expand all of them into 6888 // a single pair of basic blocks using the same condition. 6889 SmallVector<MachineInstr*, 8> Selects; 6890 SmallVector<MachineInstr*, 8> DbgValues; 6891 Selects.push_back(&MI); 6892 unsigned Count = 0; 6893 for (MachineBasicBlock::iterator NextMIIt = 6894 std::next(MachineBasicBlock::iterator(MI)); 6895 NextMIIt != MBB->end(); ++NextMIIt) { 6896 if (isSelectPseudo(*NextMIIt)) { 6897 assert(NextMIIt->getOperand(3).getImm() == CCValid && 6898 "Bad CCValid operands since CC was not redefined."); 6899 if (NextMIIt->getOperand(4).getImm() == CCMask || 6900 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 6901 Selects.push_back(&*NextMIIt); 6902 continue; 6903 } 6904 break; 6905 } 6906 if (NextMIIt->definesRegister(SystemZ::CC) || 6907 NextMIIt->usesCustomInsertionHook()) 6908 break; 6909 bool User = false; 6910 for (auto SelMI : Selects) 6911 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 6912 User = true; 6913 break; 6914 } 6915 if (NextMIIt->isDebugInstr()) { 6916 if (User) { 6917 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 6918 DbgValues.push_back(&*NextMIIt); 6919 } 6920 } 6921 else if (User || ++Count > 20) 6922 break; 6923 } 6924 6925 MachineInstr *LastMI = Selects.back(); 6926 bool CCKilled = 6927 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 6928 MachineBasicBlock *StartMBB = MBB; 6929 MachineBasicBlock *JoinMBB = splitBlockAfter(LastMI, MBB); 6930 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6931 6932 // Unless CC was killed in the last Select instruction, mark it as 6933 // live-in to both FalseMBB and JoinMBB. 6934 if (!CCKilled) { 6935 FalseMBB->addLiveIn(SystemZ::CC); 6936 JoinMBB->addLiveIn(SystemZ::CC); 6937 } 6938 6939 // StartMBB: 6940 // BRC CCMask, JoinMBB 6941 // # fallthrough to FalseMBB 6942 MBB = StartMBB; 6943 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 6944 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6945 MBB->addSuccessor(JoinMBB); 6946 MBB->addSuccessor(FalseMBB); 6947 6948 // FalseMBB: 6949 // # fallthrough to JoinMBB 6950 MBB = FalseMBB; 6951 MBB->addSuccessor(JoinMBB); 6952 6953 // JoinMBB: 6954 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 6955 // ... 6956 MBB = JoinMBB; 6957 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 6958 for (auto SelMI : Selects) 6959 SelMI->eraseFromParent(); 6960 6961 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 6962 for (auto DbgMI : DbgValues) 6963 MBB->splice(InsertPos, StartMBB, DbgMI); 6964 6965 return JoinMBB; 6966 } 6967 6968 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 6969 // StoreOpcode is the store to use and Invert says whether the store should 6970 // happen when the condition is false rather than true. If a STORE ON 6971 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 6972 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 6973 MachineBasicBlock *MBB, 6974 unsigned StoreOpcode, 6975 unsigned STOCOpcode, 6976 bool Invert) const { 6977 const SystemZInstrInfo *TII = 6978 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6979 6980 Register SrcReg = MI.getOperand(0).getReg(); 6981 MachineOperand Base = MI.getOperand(1); 6982 int64_t Disp = MI.getOperand(2).getImm(); 6983 Register IndexReg = MI.getOperand(3).getReg(); 6984 unsigned CCValid = MI.getOperand(4).getImm(); 6985 unsigned CCMask = MI.getOperand(5).getImm(); 6986 DebugLoc DL = MI.getDebugLoc(); 6987 6988 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 6989 6990 // Use STOCOpcode if possible. We could use different store patterns in 6991 // order to avoid matching the index register, but the performance trade-offs 6992 // might be more complicated in that case. 6993 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 6994 if (Invert) 6995 CCMask ^= CCValid; 6996 6997 // ISel pattern matching also adds a load memory operand of the same 6998 // address, so take special care to find the storing memory operand. 6999 MachineMemOperand *MMO = nullptr; 7000 for (auto *I : MI.memoperands()) 7001 if (I->isStore()) { 7002 MMO = I; 7003 break; 7004 } 7005 7006 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 7007 .addReg(SrcReg) 7008 .add(Base) 7009 .addImm(Disp) 7010 .addImm(CCValid) 7011 .addImm(CCMask) 7012 .addMemOperand(MMO); 7013 7014 MI.eraseFromParent(); 7015 return MBB; 7016 } 7017 7018 // Get the condition needed to branch around the store. 7019 if (!Invert) 7020 CCMask ^= CCValid; 7021 7022 MachineBasicBlock *StartMBB = MBB; 7023 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 7024 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 7025 7026 // Unless CC was killed in the CondStore instruction, mark it as 7027 // live-in to both FalseMBB and JoinMBB. 7028 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 7029 FalseMBB->addLiveIn(SystemZ::CC); 7030 JoinMBB->addLiveIn(SystemZ::CC); 7031 } 7032 7033 // StartMBB: 7034 // BRC CCMask, JoinMBB 7035 // # fallthrough to FalseMBB 7036 MBB = StartMBB; 7037 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7038 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7039 MBB->addSuccessor(JoinMBB); 7040 MBB->addSuccessor(FalseMBB); 7041 7042 // FalseMBB: 7043 // store %SrcReg, %Disp(%Index,%Base) 7044 // # fallthrough to JoinMBB 7045 MBB = FalseMBB; 7046 BuildMI(MBB, DL, TII->get(StoreOpcode)) 7047 .addReg(SrcReg) 7048 .add(Base) 7049 .addImm(Disp) 7050 .addReg(IndexReg); 7051 MBB->addSuccessor(JoinMBB); 7052 7053 MI.eraseFromParent(); 7054 return JoinMBB; 7055 } 7056 7057 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 7058 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 7059 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 7060 // BitSize is the width of the field in bits, or 0 if this is a partword 7061 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 7062 // is one of the operands. Invert says whether the field should be 7063 // inverted after performing BinOpcode (e.g. for NAND). 7064 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 7065 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 7066 unsigned BitSize, bool Invert) const { 7067 MachineFunction &MF = *MBB->getParent(); 7068 const SystemZInstrInfo *TII = 7069 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7070 MachineRegisterInfo &MRI = MF.getRegInfo(); 7071 bool IsSubWord = (BitSize < 32); 7072 7073 // Extract the operands. Base can be a register or a frame index. 7074 // Src2 can be a register or immediate. 7075 Register Dest = MI.getOperand(0).getReg(); 7076 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7077 int64_t Disp = MI.getOperand(2).getImm(); 7078 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 7079 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 7080 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 7081 DebugLoc DL = MI.getDebugLoc(); 7082 if (IsSubWord) 7083 BitSize = MI.getOperand(6).getImm(); 7084 7085 // Subword operations use 32-bit registers. 7086 const TargetRegisterClass *RC = (BitSize <= 32 ? 7087 &SystemZ::GR32BitRegClass : 7088 &SystemZ::GR64BitRegClass); 7089 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7090 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7091 7092 // Get the right opcodes for the displacement. 7093 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7094 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7095 assert(LOpcode && CSOpcode && "Displacement out of range"); 7096 7097 // Create virtual registers for temporary results. 7098 Register OrigVal = MRI.createVirtualRegister(RC); 7099 Register OldVal = MRI.createVirtualRegister(RC); 7100 Register NewVal = (BinOpcode || IsSubWord ? 7101 MRI.createVirtualRegister(RC) : Src2.getReg()); 7102 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7103 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7104 7105 // Insert a basic block for the main loop. 7106 MachineBasicBlock *StartMBB = MBB; 7107 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7108 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7109 7110 // StartMBB: 7111 // ... 7112 // %OrigVal = L Disp(%Base) 7113 // # fall through to LoopMMB 7114 MBB = StartMBB; 7115 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7116 MBB->addSuccessor(LoopMBB); 7117 7118 // LoopMBB: 7119 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7120 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7121 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7122 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7123 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7124 // JNE LoopMBB 7125 // # fall through to DoneMMB 7126 MBB = LoopMBB; 7127 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7128 .addReg(OrigVal).addMBB(StartMBB) 7129 .addReg(Dest).addMBB(LoopMBB); 7130 if (IsSubWord) 7131 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7132 .addReg(OldVal).addReg(BitShift).addImm(0); 7133 if (Invert) { 7134 // Perform the operation normally and then invert every bit of the field. 7135 Register Tmp = MRI.createVirtualRegister(RC); 7136 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7137 if (BitSize <= 32) 7138 // XILF with the upper BitSize bits set. 7139 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7140 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7141 else { 7142 // Use LCGR and add -1 to the result, which is more compact than 7143 // an XILF, XILH pair. 7144 Register Tmp2 = MRI.createVirtualRegister(RC); 7145 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7146 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7147 .addReg(Tmp2).addImm(-1); 7148 } 7149 } else if (BinOpcode) 7150 // A simply binary operation. 7151 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7152 .addReg(RotatedOldVal) 7153 .add(Src2); 7154 else if (IsSubWord) 7155 // Use RISBG to rotate Src2 into position and use it to replace the 7156 // field in RotatedOldVal. 7157 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7158 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7159 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7160 if (IsSubWord) 7161 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7162 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7163 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7164 .addReg(OldVal) 7165 .addReg(NewVal) 7166 .add(Base) 7167 .addImm(Disp); 7168 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7169 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7170 MBB->addSuccessor(LoopMBB); 7171 MBB->addSuccessor(DoneMBB); 7172 7173 MI.eraseFromParent(); 7174 return DoneMBB; 7175 } 7176 7177 // Implement EmitInstrWithCustomInserter for pseudo 7178 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7179 // instruction that should be used to compare the current field with the 7180 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7181 // for when the current field should be kept. BitSize is the width of 7182 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7183 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7184 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7185 unsigned KeepOldMask, unsigned BitSize) const { 7186 MachineFunction &MF = *MBB->getParent(); 7187 const SystemZInstrInfo *TII = 7188 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7189 MachineRegisterInfo &MRI = MF.getRegInfo(); 7190 bool IsSubWord = (BitSize < 32); 7191 7192 // Extract the operands. Base can be a register or a frame index. 7193 Register Dest = MI.getOperand(0).getReg(); 7194 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7195 int64_t Disp = MI.getOperand(2).getImm(); 7196 Register Src2 = MI.getOperand(3).getReg(); 7197 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7198 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7199 DebugLoc DL = MI.getDebugLoc(); 7200 if (IsSubWord) 7201 BitSize = MI.getOperand(6).getImm(); 7202 7203 // Subword operations use 32-bit registers. 7204 const TargetRegisterClass *RC = (BitSize <= 32 ? 7205 &SystemZ::GR32BitRegClass : 7206 &SystemZ::GR64BitRegClass); 7207 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7208 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7209 7210 // Get the right opcodes for the displacement. 7211 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7212 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7213 assert(LOpcode && CSOpcode && "Displacement out of range"); 7214 7215 // Create virtual registers for temporary results. 7216 Register OrigVal = MRI.createVirtualRegister(RC); 7217 Register OldVal = MRI.createVirtualRegister(RC); 7218 Register NewVal = MRI.createVirtualRegister(RC); 7219 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7220 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7221 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7222 7223 // Insert 3 basic blocks for the loop. 7224 MachineBasicBlock *StartMBB = MBB; 7225 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7226 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7227 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 7228 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 7229 7230 // StartMBB: 7231 // ... 7232 // %OrigVal = L Disp(%Base) 7233 // # fall through to LoopMMB 7234 MBB = StartMBB; 7235 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7236 MBB->addSuccessor(LoopMBB); 7237 7238 // LoopMBB: 7239 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7240 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7241 // CompareOpcode %RotatedOldVal, %Src2 7242 // BRC KeepOldMask, UpdateMBB 7243 MBB = LoopMBB; 7244 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7245 .addReg(OrigVal).addMBB(StartMBB) 7246 .addReg(Dest).addMBB(UpdateMBB); 7247 if (IsSubWord) 7248 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7249 .addReg(OldVal).addReg(BitShift).addImm(0); 7250 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7251 .addReg(RotatedOldVal).addReg(Src2); 7252 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7253 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7254 MBB->addSuccessor(UpdateMBB); 7255 MBB->addSuccessor(UseAltMBB); 7256 7257 // UseAltMBB: 7258 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7259 // # fall through to UpdateMMB 7260 MBB = UseAltMBB; 7261 if (IsSubWord) 7262 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7263 .addReg(RotatedOldVal).addReg(Src2) 7264 .addImm(32).addImm(31 + BitSize).addImm(0); 7265 MBB->addSuccessor(UpdateMBB); 7266 7267 // UpdateMBB: 7268 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7269 // [ %RotatedAltVal, UseAltMBB ] 7270 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7271 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7272 // JNE LoopMBB 7273 // # fall through to DoneMMB 7274 MBB = UpdateMBB; 7275 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7276 .addReg(RotatedOldVal).addMBB(LoopMBB) 7277 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7278 if (IsSubWord) 7279 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7280 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7281 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7282 .addReg(OldVal) 7283 .addReg(NewVal) 7284 .add(Base) 7285 .addImm(Disp); 7286 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7287 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7288 MBB->addSuccessor(LoopMBB); 7289 MBB->addSuccessor(DoneMBB); 7290 7291 MI.eraseFromParent(); 7292 return DoneMBB; 7293 } 7294 7295 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7296 // instruction MI. 7297 MachineBasicBlock * 7298 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7299 MachineBasicBlock *MBB) const { 7300 7301 MachineFunction &MF = *MBB->getParent(); 7302 const SystemZInstrInfo *TII = 7303 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7304 MachineRegisterInfo &MRI = MF.getRegInfo(); 7305 7306 // Extract the operands. Base can be a register or a frame index. 7307 Register Dest = MI.getOperand(0).getReg(); 7308 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7309 int64_t Disp = MI.getOperand(2).getImm(); 7310 Register OrigCmpVal = MI.getOperand(3).getReg(); 7311 Register OrigSwapVal = MI.getOperand(4).getReg(); 7312 Register BitShift = MI.getOperand(5).getReg(); 7313 Register NegBitShift = MI.getOperand(6).getReg(); 7314 int64_t BitSize = MI.getOperand(7).getImm(); 7315 DebugLoc DL = MI.getDebugLoc(); 7316 7317 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7318 7319 // Get the right opcodes for the displacement. 7320 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7321 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7322 assert(LOpcode && CSOpcode && "Displacement out of range"); 7323 7324 // Create virtual registers for temporary results. 7325 Register OrigOldVal = MRI.createVirtualRegister(RC); 7326 Register OldVal = MRI.createVirtualRegister(RC); 7327 Register CmpVal = MRI.createVirtualRegister(RC); 7328 Register SwapVal = MRI.createVirtualRegister(RC); 7329 Register StoreVal = MRI.createVirtualRegister(RC); 7330 Register RetryOldVal = MRI.createVirtualRegister(RC); 7331 Register RetryCmpVal = MRI.createVirtualRegister(RC); 7332 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7333 7334 // Insert 2 basic blocks for the loop. 7335 MachineBasicBlock *StartMBB = MBB; 7336 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7337 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7338 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 7339 7340 // StartMBB: 7341 // ... 7342 // %OrigOldVal = L Disp(%Base) 7343 // # fall through to LoopMMB 7344 MBB = StartMBB; 7345 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7346 .add(Base) 7347 .addImm(Disp) 7348 .addReg(0); 7349 MBB->addSuccessor(LoopMBB); 7350 7351 // LoopMBB: 7352 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7353 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 7354 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7355 // %Dest = RLL %OldVal, BitSize(%BitShift) 7356 // ^^ The low BitSize bits contain the field 7357 // of interest. 7358 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 7359 // ^^ Replace the upper 32-BitSize bits of the 7360 // comparison value with those that we loaded, 7361 // so that we can use a full word comparison. 7362 // CR %Dest, %RetryCmpVal 7363 // JNE DoneMBB 7364 // # Fall through to SetMBB 7365 MBB = LoopMBB; 7366 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7367 .addReg(OrigOldVal).addMBB(StartMBB) 7368 .addReg(RetryOldVal).addMBB(SetMBB); 7369 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 7370 .addReg(OrigCmpVal).addMBB(StartMBB) 7371 .addReg(RetryCmpVal).addMBB(SetMBB); 7372 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7373 .addReg(OrigSwapVal).addMBB(StartMBB) 7374 .addReg(RetrySwapVal).addMBB(SetMBB); 7375 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 7376 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7377 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 7378 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7379 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7380 .addReg(Dest).addReg(RetryCmpVal); 7381 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7382 .addImm(SystemZ::CCMASK_ICMP) 7383 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7384 MBB->addSuccessor(DoneMBB); 7385 MBB->addSuccessor(SetMBB); 7386 7387 // SetMBB: 7388 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 7389 // ^^ Replace the upper 32-BitSize bits of the new 7390 // value with those that we loaded. 7391 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7392 // ^^ Rotate the new field to its proper position. 7393 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 7394 // JNE LoopMBB 7395 // # fall through to ExitMMB 7396 MBB = SetMBB; 7397 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7398 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7399 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7400 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7401 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7402 .addReg(OldVal) 7403 .addReg(StoreVal) 7404 .add(Base) 7405 .addImm(Disp); 7406 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7407 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7408 MBB->addSuccessor(LoopMBB); 7409 MBB->addSuccessor(DoneMBB); 7410 7411 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7412 // to the block after the loop. At this point, CC may have been defined 7413 // either by the CR in LoopMBB or by the CS in SetMBB. 7414 if (!MI.registerDefIsDead(SystemZ::CC)) 7415 DoneMBB->addLiveIn(SystemZ::CC); 7416 7417 MI.eraseFromParent(); 7418 return DoneMBB; 7419 } 7420 7421 // Emit a move from two GR64s to a GR128. 7422 MachineBasicBlock * 7423 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7424 MachineBasicBlock *MBB) const { 7425 MachineFunction &MF = *MBB->getParent(); 7426 const SystemZInstrInfo *TII = 7427 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7428 MachineRegisterInfo &MRI = MF.getRegInfo(); 7429 DebugLoc DL = MI.getDebugLoc(); 7430 7431 Register Dest = MI.getOperand(0).getReg(); 7432 Register Hi = MI.getOperand(1).getReg(); 7433 Register Lo = MI.getOperand(2).getReg(); 7434 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7435 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7436 7437 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7438 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7439 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7440 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7441 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7442 7443 MI.eraseFromParent(); 7444 return MBB; 7445 } 7446 7447 // Emit an extension from a GR64 to a GR128. ClearEven is true 7448 // if the high register of the GR128 value must be cleared or false if 7449 // it's "don't care". 7450 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7451 MachineBasicBlock *MBB, 7452 bool ClearEven) const { 7453 MachineFunction &MF = *MBB->getParent(); 7454 const SystemZInstrInfo *TII = 7455 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7456 MachineRegisterInfo &MRI = MF.getRegInfo(); 7457 DebugLoc DL = MI.getDebugLoc(); 7458 7459 Register Dest = MI.getOperand(0).getReg(); 7460 Register Src = MI.getOperand(1).getReg(); 7461 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7462 7463 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7464 if (ClearEven) { 7465 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7466 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7467 7468 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7469 .addImm(0); 7470 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7471 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7472 In128 = NewIn128; 7473 } 7474 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7475 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7476 7477 MI.eraseFromParent(); 7478 return MBB; 7479 } 7480 7481 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 7482 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7483 MachineFunction &MF = *MBB->getParent(); 7484 const SystemZInstrInfo *TII = 7485 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7486 MachineRegisterInfo &MRI = MF.getRegInfo(); 7487 DebugLoc DL = MI.getDebugLoc(); 7488 7489 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7490 uint64_t DestDisp = MI.getOperand(1).getImm(); 7491 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 7492 uint64_t SrcDisp = MI.getOperand(3).getImm(); 7493 uint64_t Length = MI.getOperand(4).getImm(); 7494 7495 // When generating more than one CLC, all but the last will need to 7496 // branch to the end when a difference is found. 7497 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 7498 splitBlockAfter(MI, MBB) : nullptr); 7499 7500 // Check for the loop form, in which operand 5 is the trip count. 7501 if (MI.getNumExplicitOperands() > 5) { 7502 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7503 7504 Register StartCountReg = MI.getOperand(5).getReg(); 7505 Register StartSrcReg = forceReg(MI, SrcBase, TII); 7506 Register StartDestReg = (HaveSingleBase ? StartSrcReg : 7507 forceReg(MI, DestBase, TII)); 7508 7509 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 7510 Register ThisSrcReg = MRI.createVirtualRegister(RC); 7511 Register ThisDestReg = (HaveSingleBase ? ThisSrcReg : 7512 MRI.createVirtualRegister(RC)); 7513 Register NextSrcReg = MRI.createVirtualRegister(RC); 7514 Register NextDestReg = (HaveSingleBase ? NextSrcReg : 7515 MRI.createVirtualRegister(RC)); 7516 7517 RC = &SystemZ::GR64BitRegClass; 7518 Register ThisCountReg = MRI.createVirtualRegister(RC); 7519 Register NextCountReg = MRI.createVirtualRegister(RC); 7520 7521 MachineBasicBlock *StartMBB = MBB; 7522 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7523 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7524 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 7525 7526 // StartMBB: 7527 // # fall through to LoopMMB 7528 MBB->addSuccessor(LoopMBB); 7529 7530 // LoopMBB: 7531 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 7532 // [ %NextDestReg, NextMBB ] 7533 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 7534 // [ %NextSrcReg, NextMBB ] 7535 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 7536 // [ %NextCountReg, NextMBB ] 7537 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 7538 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 7539 // ( JLH EndMBB ) 7540 // 7541 // The prefetch is used only for MVC. The JLH is used only for CLC. 7542 MBB = LoopMBB; 7543 7544 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 7545 .addReg(StartDestReg).addMBB(StartMBB) 7546 .addReg(NextDestReg).addMBB(NextMBB); 7547 if (!HaveSingleBase) 7548 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 7549 .addReg(StartSrcReg).addMBB(StartMBB) 7550 .addReg(NextSrcReg).addMBB(NextMBB); 7551 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 7552 .addReg(StartCountReg).addMBB(StartMBB) 7553 .addReg(NextCountReg).addMBB(NextMBB); 7554 if (Opcode == SystemZ::MVC) 7555 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 7556 .addImm(SystemZ::PFD_WRITE) 7557 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 7558 BuildMI(MBB, DL, TII->get(Opcode)) 7559 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 7560 .addReg(ThisSrcReg).addImm(SrcDisp); 7561 if (EndMBB) { 7562 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7563 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7564 .addMBB(EndMBB); 7565 MBB->addSuccessor(EndMBB); 7566 MBB->addSuccessor(NextMBB); 7567 } 7568 7569 // NextMBB: 7570 // %NextDestReg = LA 256(%ThisDestReg) 7571 // %NextSrcReg = LA 256(%ThisSrcReg) 7572 // %NextCountReg = AGHI %ThisCountReg, -1 7573 // CGHI %NextCountReg, 0 7574 // JLH LoopMBB 7575 // # fall through to DoneMMB 7576 // 7577 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 7578 MBB = NextMBB; 7579 7580 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 7581 .addReg(ThisDestReg).addImm(256).addReg(0); 7582 if (!HaveSingleBase) 7583 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 7584 .addReg(ThisSrcReg).addImm(256).addReg(0); 7585 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7586 .addReg(ThisCountReg).addImm(-1); 7587 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7588 .addReg(NextCountReg).addImm(0); 7589 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7590 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7591 .addMBB(LoopMBB); 7592 MBB->addSuccessor(LoopMBB); 7593 MBB->addSuccessor(DoneMBB); 7594 7595 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7596 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7597 Length &= 255; 7598 if (EndMBB && !Length) 7599 // If the loop handled the whole CLC range, DoneMBB will be empty with 7600 // CC live-through into EndMBB, so add it as live-in. 7601 DoneMBB->addLiveIn(SystemZ::CC); 7602 MBB = DoneMBB; 7603 } 7604 // Handle any remaining bytes with straight-line code. 7605 while (Length > 0) { 7606 uint64_t ThisLength = std::min(Length, uint64_t(256)); 7607 // The previous iteration might have created out-of-range displacements. 7608 // Apply them using LAY if so. 7609 if (!isUInt<12>(DestDisp)) { 7610 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7611 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7612 .add(DestBase) 7613 .addImm(DestDisp) 7614 .addReg(0); 7615 DestBase = MachineOperand::CreateReg(Reg, false); 7616 DestDisp = 0; 7617 } 7618 if (!isUInt<12>(SrcDisp)) { 7619 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7620 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7621 .add(SrcBase) 7622 .addImm(SrcDisp) 7623 .addReg(0); 7624 SrcBase = MachineOperand::CreateReg(Reg, false); 7625 SrcDisp = 0; 7626 } 7627 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 7628 .add(DestBase) 7629 .addImm(DestDisp) 7630 .addImm(ThisLength) 7631 .add(SrcBase) 7632 .addImm(SrcDisp) 7633 .setMemRefs(MI.memoperands()); 7634 DestDisp += ThisLength; 7635 SrcDisp += ThisLength; 7636 Length -= ThisLength; 7637 // If there's another CLC to go, branch to the end if a difference 7638 // was found. 7639 if (EndMBB && Length > 0) { 7640 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 7641 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7642 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7643 .addMBB(EndMBB); 7644 MBB->addSuccessor(EndMBB); 7645 MBB->addSuccessor(NextMBB); 7646 MBB = NextMBB; 7647 } 7648 } 7649 if (EndMBB) { 7650 MBB->addSuccessor(EndMBB); 7651 MBB = EndMBB; 7652 MBB->addLiveIn(SystemZ::CC); 7653 } 7654 7655 MI.eraseFromParent(); 7656 return MBB; 7657 } 7658 7659 // Decompose string pseudo-instruction MI into a loop that continually performs 7660 // Opcode until CC != 3. 7661 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7662 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7663 MachineFunction &MF = *MBB->getParent(); 7664 const SystemZInstrInfo *TII = 7665 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7666 MachineRegisterInfo &MRI = MF.getRegInfo(); 7667 DebugLoc DL = MI.getDebugLoc(); 7668 7669 uint64_t End1Reg = MI.getOperand(0).getReg(); 7670 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7671 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7672 uint64_t CharReg = MI.getOperand(3).getReg(); 7673 7674 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7675 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7676 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7677 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7678 7679 MachineBasicBlock *StartMBB = MBB; 7680 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7681 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7682 7683 // StartMBB: 7684 // # fall through to LoopMMB 7685 MBB->addSuccessor(LoopMBB); 7686 7687 // LoopMBB: 7688 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7689 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7690 // R0L = %CharReg 7691 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7692 // JO LoopMBB 7693 // # fall through to DoneMMB 7694 // 7695 // The load of R0L can be hoisted by post-RA LICM. 7696 MBB = LoopMBB; 7697 7698 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7699 .addReg(Start1Reg).addMBB(StartMBB) 7700 .addReg(End1Reg).addMBB(LoopMBB); 7701 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7702 .addReg(Start2Reg).addMBB(StartMBB) 7703 .addReg(End2Reg).addMBB(LoopMBB); 7704 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7705 BuildMI(MBB, DL, TII->get(Opcode)) 7706 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7707 .addReg(This1Reg).addReg(This2Reg); 7708 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7709 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7710 MBB->addSuccessor(LoopMBB); 7711 MBB->addSuccessor(DoneMBB); 7712 7713 DoneMBB->addLiveIn(SystemZ::CC); 7714 7715 MI.eraseFromParent(); 7716 return DoneMBB; 7717 } 7718 7719 // Update TBEGIN instruction with final opcode and register clobbers. 7720 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7721 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7722 bool NoFloat) const { 7723 MachineFunction &MF = *MBB->getParent(); 7724 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7725 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7726 7727 // Update opcode. 7728 MI.setDesc(TII->get(Opcode)); 7729 7730 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7731 // Make sure to add the corresponding GRSM bits if they are missing. 7732 uint64_t Control = MI.getOperand(2).getImm(); 7733 static const unsigned GPRControlBit[16] = { 7734 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7735 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7736 }; 7737 Control |= GPRControlBit[15]; 7738 if (TFI->hasFP(MF)) 7739 Control |= GPRControlBit[11]; 7740 MI.getOperand(2).setImm(Control); 7741 7742 // Add GPR clobbers. 7743 for (int I = 0; I < 16; I++) { 7744 if ((Control & GPRControlBit[I]) == 0) { 7745 unsigned Reg = SystemZMC::GR64Regs[I]; 7746 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7747 } 7748 } 7749 7750 // Add FPR/VR clobbers. 7751 if (!NoFloat && (Control & 4) != 0) { 7752 if (Subtarget.hasVector()) { 7753 for (int I = 0; I < 32; I++) { 7754 unsigned Reg = SystemZMC::VR128Regs[I]; 7755 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7756 } 7757 } else { 7758 for (int I = 0; I < 16; I++) { 7759 unsigned Reg = SystemZMC::FP64Regs[I]; 7760 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7761 } 7762 } 7763 } 7764 7765 return MBB; 7766 } 7767 7768 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 7769 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7770 MachineFunction &MF = *MBB->getParent(); 7771 MachineRegisterInfo *MRI = &MF.getRegInfo(); 7772 const SystemZInstrInfo *TII = 7773 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7774 DebugLoc DL = MI.getDebugLoc(); 7775 7776 Register SrcReg = MI.getOperand(0).getReg(); 7777 7778 // Create new virtual register of the same class as source. 7779 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7780 Register DstReg = MRI->createVirtualRegister(RC); 7781 7782 // Replace pseudo with a normal load-and-test that models the def as 7783 // well. 7784 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7785 .addReg(SrcReg) 7786 .setMIFlags(MI.getFlags()); 7787 MI.eraseFromParent(); 7788 7789 return MBB; 7790 } 7791 7792 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7793 MachineInstr &MI, MachineBasicBlock *MBB) const { 7794 switch (MI.getOpcode()) { 7795 case SystemZ::Select32: 7796 case SystemZ::Select64: 7797 case SystemZ::SelectF32: 7798 case SystemZ::SelectF64: 7799 case SystemZ::SelectF128: 7800 case SystemZ::SelectVR32: 7801 case SystemZ::SelectVR64: 7802 case SystemZ::SelectVR128: 7803 return emitSelect(MI, MBB); 7804 7805 case SystemZ::CondStore8Mux: 7806 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7807 case SystemZ::CondStore8MuxInv: 7808 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7809 case SystemZ::CondStore16Mux: 7810 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7811 case SystemZ::CondStore16MuxInv: 7812 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7813 case SystemZ::CondStore32Mux: 7814 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7815 case SystemZ::CondStore32MuxInv: 7816 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7817 case SystemZ::CondStore8: 7818 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7819 case SystemZ::CondStore8Inv: 7820 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7821 case SystemZ::CondStore16: 7822 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7823 case SystemZ::CondStore16Inv: 7824 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7825 case SystemZ::CondStore32: 7826 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7827 case SystemZ::CondStore32Inv: 7828 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7829 case SystemZ::CondStore64: 7830 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7831 case SystemZ::CondStore64Inv: 7832 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7833 case SystemZ::CondStoreF32: 7834 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7835 case SystemZ::CondStoreF32Inv: 7836 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7837 case SystemZ::CondStoreF64: 7838 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7839 case SystemZ::CondStoreF64Inv: 7840 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7841 7842 case SystemZ::PAIR128: 7843 return emitPair128(MI, MBB); 7844 case SystemZ::AEXT128: 7845 return emitExt128(MI, MBB, false); 7846 case SystemZ::ZEXT128: 7847 return emitExt128(MI, MBB, true); 7848 7849 case SystemZ::ATOMIC_SWAPW: 7850 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7851 case SystemZ::ATOMIC_SWAP_32: 7852 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7853 case SystemZ::ATOMIC_SWAP_64: 7854 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7855 7856 case SystemZ::ATOMIC_LOADW_AR: 7857 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7858 case SystemZ::ATOMIC_LOADW_AFI: 7859 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7860 case SystemZ::ATOMIC_LOAD_AR: 7861 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7862 case SystemZ::ATOMIC_LOAD_AHI: 7863 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7864 case SystemZ::ATOMIC_LOAD_AFI: 7865 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7866 case SystemZ::ATOMIC_LOAD_AGR: 7867 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7868 case SystemZ::ATOMIC_LOAD_AGHI: 7869 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7870 case SystemZ::ATOMIC_LOAD_AGFI: 7871 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7872 7873 case SystemZ::ATOMIC_LOADW_SR: 7874 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7875 case SystemZ::ATOMIC_LOAD_SR: 7876 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7877 case SystemZ::ATOMIC_LOAD_SGR: 7878 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7879 7880 case SystemZ::ATOMIC_LOADW_NR: 7881 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7882 case SystemZ::ATOMIC_LOADW_NILH: 7883 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7884 case SystemZ::ATOMIC_LOAD_NR: 7885 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7886 case SystemZ::ATOMIC_LOAD_NILL: 7887 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7888 case SystemZ::ATOMIC_LOAD_NILH: 7889 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7890 case SystemZ::ATOMIC_LOAD_NILF: 7891 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7892 case SystemZ::ATOMIC_LOAD_NGR: 7893 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7894 case SystemZ::ATOMIC_LOAD_NILL64: 7895 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7896 case SystemZ::ATOMIC_LOAD_NILH64: 7897 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7898 case SystemZ::ATOMIC_LOAD_NIHL64: 7899 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 7900 case SystemZ::ATOMIC_LOAD_NIHH64: 7901 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 7902 case SystemZ::ATOMIC_LOAD_NILF64: 7903 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 7904 case SystemZ::ATOMIC_LOAD_NIHF64: 7905 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 7906 7907 case SystemZ::ATOMIC_LOADW_OR: 7908 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 7909 case SystemZ::ATOMIC_LOADW_OILH: 7910 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 7911 case SystemZ::ATOMIC_LOAD_OR: 7912 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 7913 case SystemZ::ATOMIC_LOAD_OILL: 7914 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 7915 case SystemZ::ATOMIC_LOAD_OILH: 7916 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 7917 case SystemZ::ATOMIC_LOAD_OILF: 7918 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 7919 case SystemZ::ATOMIC_LOAD_OGR: 7920 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 7921 case SystemZ::ATOMIC_LOAD_OILL64: 7922 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 7923 case SystemZ::ATOMIC_LOAD_OILH64: 7924 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 7925 case SystemZ::ATOMIC_LOAD_OIHL64: 7926 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 7927 case SystemZ::ATOMIC_LOAD_OIHH64: 7928 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 7929 case SystemZ::ATOMIC_LOAD_OILF64: 7930 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 7931 case SystemZ::ATOMIC_LOAD_OIHF64: 7932 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 7933 7934 case SystemZ::ATOMIC_LOADW_XR: 7935 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 7936 case SystemZ::ATOMIC_LOADW_XILF: 7937 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 7938 case SystemZ::ATOMIC_LOAD_XR: 7939 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 7940 case SystemZ::ATOMIC_LOAD_XILF: 7941 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 7942 case SystemZ::ATOMIC_LOAD_XGR: 7943 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 7944 case SystemZ::ATOMIC_LOAD_XILF64: 7945 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 7946 case SystemZ::ATOMIC_LOAD_XIHF64: 7947 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 7948 7949 case SystemZ::ATOMIC_LOADW_NRi: 7950 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 7951 case SystemZ::ATOMIC_LOADW_NILHi: 7952 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 7953 case SystemZ::ATOMIC_LOAD_NRi: 7954 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 7955 case SystemZ::ATOMIC_LOAD_NILLi: 7956 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 7957 case SystemZ::ATOMIC_LOAD_NILHi: 7958 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 7959 case SystemZ::ATOMIC_LOAD_NILFi: 7960 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 7961 case SystemZ::ATOMIC_LOAD_NGRi: 7962 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 7963 case SystemZ::ATOMIC_LOAD_NILL64i: 7964 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 7965 case SystemZ::ATOMIC_LOAD_NILH64i: 7966 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 7967 case SystemZ::ATOMIC_LOAD_NIHL64i: 7968 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 7969 case SystemZ::ATOMIC_LOAD_NIHH64i: 7970 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 7971 case SystemZ::ATOMIC_LOAD_NILF64i: 7972 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 7973 case SystemZ::ATOMIC_LOAD_NIHF64i: 7974 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 7975 7976 case SystemZ::ATOMIC_LOADW_MIN: 7977 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7978 SystemZ::CCMASK_CMP_LE, 0); 7979 case SystemZ::ATOMIC_LOAD_MIN_32: 7980 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7981 SystemZ::CCMASK_CMP_LE, 32); 7982 case SystemZ::ATOMIC_LOAD_MIN_64: 7983 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7984 SystemZ::CCMASK_CMP_LE, 64); 7985 7986 case SystemZ::ATOMIC_LOADW_MAX: 7987 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7988 SystemZ::CCMASK_CMP_GE, 0); 7989 case SystemZ::ATOMIC_LOAD_MAX_32: 7990 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7991 SystemZ::CCMASK_CMP_GE, 32); 7992 case SystemZ::ATOMIC_LOAD_MAX_64: 7993 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7994 SystemZ::CCMASK_CMP_GE, 64); 7995 7996 case SystemZ::ATOMIC_LOADW_UMIN: 7997 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7998 SystemZ::CCMASK_CMP_LE, 0); 7999 case SystemZ::ATOMIC_LOAD_UMIN_32: 8000 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8001 SystemZ::CCMASK_CMP_LE, 32); 8002 case SystemZ::ATOMIC_LOAD_UMIN_64: 8003 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8004 SystemZ::CCMASK_CMP_LE, 64); 8005 8006 case SystemZ::ATOMIC_LOADW_UMAX: 8007 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8008 SystemZ::CCMASK_CMP_GE, 0); 8009 case SystemZ::ATOMIC_LOAD_UMAX_32: 8010 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8011 SystemZ::CCMASK_CMP_GE, 32); 8012 case SystemZ::ATOMIC_LOAD_UMAX_64: 8013 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8014 SystemZ::CCMASK_CMP_GE, 64); 8015 8016 case SystemZ::ATOMIC_CMP_SWAPW: 8017 return emitAtomicCmpSwapW(MI, MBB); 8018 case SystemZ::MVCSequence: 8019 case SystemZ::MVCLoop: 8020 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 8021 case SystemZ::NCSequence: 8022 case SystemZ::NCLoop: 8023 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 8024 case SystemZ::OCSequence: 8025 case SystemZ::OCLoop: 8026 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 8027 case SystemZ::XCSequence: 8028 case SystemZ::XCLoop: 8029 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 8030 case SystemZ::CLCSequence: 8031 case SystemZ::CLCLoop: 8032 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 8033 case SystemZ::CLSTLoop: 8034 return emitStringWrapper(MI, MBB, SystemZ::CLST); 8035 case SystemZ::MVSTLoop: 8036 return emitStringWrapper(MI, MBB, SystemZ::MVST); 8037 case SystemZ::SRSTLoop: 8038 return emitStringWrapper(MI, MBB, SystemZ::SRST); 8039 case SystemZ::TBEGIN: 8040 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 8041 case SystemZ::TBEGIN_nofloat: 8042 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 8043 case SystemZ::TBEGINC: 8044 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 8045 case SystemZ::LTEBRCompare_VecPseudo: 8046 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 8047 case SystemZ::LTDBRCompare_VecPseudo: 8048 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 8049 case SystemZ::LTXBRCompare_VecPseudo: 8050 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 8051 8052 case TargetOpcode::STACKMAP: 8053 case TargetOpcode::PATCHPOINT: 8054 return emitPatchPoint(MI, MBB); 8055 8056 default: 8057 llvm_unreachable("Unexpected instr type to insert"); 8058 } 8059 } 8060 8061 // This is only used by the isel schedulers, and is needed only to prevent 8062 // compiler from crashing when list-ilp is used. 8063 const TargetRegisterClass * 8064 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 8065 if (VT == MVT::Untyped) 8066 return &SystemZ::ADDR128BitRegClass; 8067 return TargetLowering::getRepRegClassFor(VT); 8068 } 8069