1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   // Set up the register classes.
86   if (Subtarget.hasHighWord())
87     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88   else
89     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91   if (!useSoftFloat()) {
92     if (Subtarget.hasVector()) {
93       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
94       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
95     } else {
96       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
98     }
99     if (Subtarget.hasVectorEnhancements1())
100       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
101     else
102       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103 
104     if (Subtarget.hasVector()) {
105       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111     }
112   }
113 
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116 
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119 
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125 
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(Align(2));
131   // For performance reasons we prefer 16-byte alignment.
132   setPrefFunctionAlignment(Align(16));
133 
134   // Handle operations that are handled in a similar way for all types.
135   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
136        I <= MVT::LAST_FP_VALUETYPE;
137        ++I) {
138     MVT VT = MVT::SimpleValueType(I);
139     if (isTypeLegal(VT)) {
140       // Lower SET_CC into an IPM-based sequence.
141       setOperationAction(ISD::SETCC, VT, Custom);
142       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
144 
145       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
146       setOperationAction(ISD::SELECT, VT, Expand);
147 
148       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
149       setOperationAction(ISD::SELECT_CC, VT, Custom);
150       setOperationAction(ISD::BR_CC,     VT, Custom);
151     }
152   }
153 
154   // Expand jump table branches as address arithmetic followed by an
155   // indirect jump.
156   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
157 
158   // Expand BRCOND into a BR_CC (see above).
159   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
160 
161   // Handle integer types.
162   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
163        I <= MVT::LAST_INTEGER_VALUETYPE;
164        ++I) {
165     MVT VT = MVT::SimpleValueType(I);
166     if (isTypeLegal(VT)) {
167       // Expand individual DIV and REMs into DIVREMs.
168       setOperationAction(ISD::SDIV, VT, Expand);
169       setOperationAction(ISD::UDIV, VT, Expand);
170       setOperationAction(ISD::SREM, VT, Expand);
171       setOperationAction(ISD::UREM, VT, Expand);
172       setOperationAction(ISD::SDIVREM, VT, Custom);
173       setOperationAction(ISD::UDIVREM, VT, Custom);
174 
175       // Support addition/subtraction with overflow.
176       setOperationAction(ISD::SADDO, VT, Custom);
177       setOperationAction(ISD::SSUBO, VT, Custom);
178 
179       // Support addition/subtraction with carry.
180       setOperationAction(ISD::UADDO, VT, Custom);
181       setOperationAction(ISD::USUBO, VT, Custom);
182 
183       // Support carry in as value rather than glue.
184       setOperationAction(ISD::ADDCARRY, VT, Custom);
185       setOperationAction(ISD::SUBCARRY, VT, Custom);
186 
187       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
188       // stores, putting a serialization instruction after the stores.
189       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
190       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
191 
192       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
193       // available, or if the operand is constant.
194       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
195 
196       // Use POPCNT on z196 and above.
197       if (Subtarget.hasPopulationCount())
198         setOperationAction(ISD::CTPOP, VT, Custom);
199       else
200         setOperationAction(ISD::CTPOP, VT, Expand);
201 
202       // No special instructions for these.
203       setOperationAction(ISD::CTTZ,            VT, Expand);
204       setOperationAction(ISD::ROTR,            VT, Expand);
205 
206       // Use *MUL_LOHI where possible instead of MULH*.
207       setOperationAction(ISD::MULHS, VT, Expand);
208       setOperationAction(ISD::MULHU, VT, Expand);
209       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
210       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
211 
212       // Only z196 and above have native support for conversions to unsigned.
213       // On z10, promoting to i64 doesn't generate an inexact condition for
214       // values that are outside the i32 range but in the i64 range, so use
215       // the default expansion.
216       if (!Subtarget.hasFPExtension())
217         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
218 
219       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
220       // default to Expand, so need to be modified to Legal where appropriate.
221       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
222       if (Subtarget.hasFPExtension())
223         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
224 
225       // And similarly for STRICT_[SU]INT_TO_FP.
226       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
227       if (Subtarget.hasFPExtension())
228         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
229     }
230   }
231 
232   // Type legalization will convert 8- and 16-bit atomic operations into
233   // forms that operate on i32s (but still keeping the original memory VT).
234   // Lower them into full i32 operations.
235   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
236   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
237   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
239   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
246 
247   // Even though i128 is not a legal type, we still need to custom lower
248   // the atomic operations in order to exploit SystemZ instructions.
249   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
250   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
251 
252   // We can use the CC result of compare-and-swap to implement
253   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
254   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
255   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
256   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
257 
258   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
259 
260   // Traps are legal, as we will convert them to "j .+2".
261   setOperationAction(ISD::TRAP, MVT::Other, Legal);
262 
263   // z10 has instructions for signed but not unsigned FP conversion.
264   // Handle unsigned 32-bit types as signed 64-bit types.
265   if (!Subtarget.hasFPExtension()) {
266     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
267     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
268     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
269     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
270   }
271 
272   // We have native support for a 64-bit CTLZ, via FLOGR.
273   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
274   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
275   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
276 
277   // On z15 we have native support for a 64-bit CTPOP.
278   if (Subtarget.hasMiscellaneousExtensions3()) {
279     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
280     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
281   }
282 
283   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
284   setOperationAction(ISD::OR, MVT::i64, Custom);
285 
286   // FIXME: Can we support these natively?
287   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
288   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
289   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
290 
291   // We have native instructions for i8, i16 and i32 extensions, but not i1.
292   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
293   for (MVT VT : MVT::integer_valuetypes()) {
294     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
295     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
296     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
297   }
298 
299   // Handle the various types of symbolic address.
300   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
301   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
302   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
303   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
304   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
305 
306   // We need to handle dynamic allocations specially because of the
307   // 160-byte area at the bottom of the stack.
308   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
309   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
310 
311   // Use custom expanders so that we can force the function to use
312   // a frame pointer.
313   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
314   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
315 
316   // Handle prefetches with PFD or PFDRL.
317   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
318 
319   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
320     // Assume by default that all vector operations need to be expanded.
321     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
322       if (getOperationAction(Opcode, VT) == Legal)
323         setOperationAction(Opcode, VT, Expand);
324 
325     // Likewise all truncating stores and extending loads.
326     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
327       setTruncStoreAction(VT, InnerVT, Expand);
328       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
329       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
330       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
331     }
332 
333     if (isTypeLegal(VT)) {
334       // These operations are legal for anything that can be stored in a
335       // vector register, even if there is no native support for the format
336       // as such.  In particular, we can do these for v4f32 even though there
337       // are no specific instructions for that format.
338       setOperationAction(ISD::LOAD, VT, Legal);
339       setOperationAction(ISD::STORE, VT, Legal);
340       setOperationAction(ISD::VSELECT, VT, Legal);
341       setOperationAction(ISD::BITCAST, VT, Legal);
342       setOperationAction(ISD::UNDEF, VT, Legal);
343 
344       // Likewise, except that we need to replace the nodes with something
345       // more specific.
346       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
347       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
348     }
349   }
350 
351   // Handle integer vector types.
352   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
353     if (isTypeLegal(VT)) {
354       // These operations have direct equivalents.
355       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
356       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
357       setOperationAction(ISD::ADD, VT, Legal);
358       setOperationAction(ISD::SUB, VT, Legal);
359       if (VT != MVT::v2i64)
360         setOperationAction(ISD::MUL, VT, Legal);
361       setOperationAction(ISD::AND, VT, Legal);
362       setOperationAction(ISD::OR, VT, Legal);
363       setOperationAction(ISD::XOR, VT, Legal);
364       if (Subtarget.hasVectorEnhancements1())
365         setOperationAction(ISD::CTPOP, VT, Legal);
366       else
367         setOperationAction(ISD::CTPOP, VT, Custom);
368       setOperationAction(ISD::CTTZ, VT, Legal);
369       setOperationAction(ISD::CTLZ, VT, Legal);
370 
371       // Convert a GPR scalar to a vector by inserting it into element 0.
372       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
373 
374       // Use a series of unpacks for extensions.
375       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
376       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
377 
378       // Detect shifts by a scalar amount and convert them into
379       // V*_BY_SCALAR.
380       setOperationAction(ISD::SHL, VT, Custom);
381       setOperationAction(ISD::SRA, VT, Custom);
382       setOperationAction(ISD::SRL, VT, Custom);
383 
384       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
385       // converted into ROTL.
386       setOperationAction(ISD::ROTL, VT, Expand);
387       setOperationAction(ISD::ROTR, VT, Expand);
388 
389       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
390       // and inverting the result as necessary.
391       setOperationAction(ISD::SETCC, VT, Custom);
392       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
393       if (Subtarget.hasVectorEnhancements1())
394         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
395     }
396   }
397 
398   if (Subtarget.hasVector()) {
399     // There should be no need to check for float types other than v2f64
400     // since <2 x f32> isn't a legal type.
401     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
402     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
403     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
404     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
405     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
406     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
407     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
408     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
409 
410     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
418   }
419 
420   if (Subtarget.hasVectorEnhancements2()) {
421     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
422     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
423     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
424     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
425     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
426     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
427     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
428     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
429 
430     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
438   }
439 
440   // Handle floating-point types.
441   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
442        I <= MVT::LAST_FP_VALUETYPE;
443        ++I) {
444     MVT VT = MVT::SimpleValueType(I);
445     if (isTypeLegal(VT)) {
446       // We can use FI for FRINT.
447       setOperationAction(ISD::FRINT, VT, Legal);
448 
449       // We can use the extended form of FI for other rounding operations.
450       if (Subtarget.hasFPExtension()) {
451         setOperationAction(ISD::FNEARBYINT, VT, Legal);
452         setOperationAction(ISD::FFLOOR, VT, Legal);
453         setOperationAction(ISD::FCEIL, VT, Legal);
454         setOperationAction(ISD::FTRUNC, VT, Legal);
455         setOperationAction(ISD::FROUND, VT, Legal);
456       }
457 
458       // No special instructions for these.
459       setOperationAction(ISD::FSIN, VT, Expand);
460       setOperationAction(ISD::FCOS, VT, Expand);
461       setOperationAction(ISD::FSINCOS, VT, Expand);
462       setOperationAction(ISD::FREM, VT, Expand);
463       setOperationAction(ISD::FPOW, VT, Expand);
464 
465       // Handle constrained floating-point operations.
466       setOperationAction(ISD::STRICT_FADD, VT, Legal);
467       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
468       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
469       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
470       setOperationAction(ISD::STRICT_FMA, VT, Legal);
471       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
472       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
473       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
474       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
475       if (Subtarget.hasFPExtension()) {
476         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
477         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
478         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
479         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
480         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
481       }
482     }
483   }
484 
485   // Handle floating-point vector types.
486   if (Subtarget.hasVector()) {
487     // Scalar-to-vector conversion is just a subreg.
488     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
489     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
490 
491     // Some insertions and extractions can be done directly but others
492     // need to go via integers.
493     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
494     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
495     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
496     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
497 
498     // These operations have direct equivalents.
499     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
500     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
501     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
502     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
503     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
504     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
505     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
506     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
507     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
508     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
509     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
510     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
511     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
512     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
513 
514     // Handle constrained floating-point operations.
515     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
516     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
517     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
518     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
519     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
520     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
521     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
522     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
523     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
524     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
527   }
528 
529   // The vector enhancements facility 1 has instructions for these.
530   if (Subtarget.hasVectorEnhancements1()) {
531     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
532     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
533     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
534     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
535     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
536     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
537     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
538     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
539     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
540     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
541     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
542     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
543     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
544     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
545 
546     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
547     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
548     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
549     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
550 
551     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
552     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
553     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
554     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
555 
556     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
557     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
558     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
559     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
560 
561     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
562     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
563     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
564     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
565 
566     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
567     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
568     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
569     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
570 
571     // Handle constrained floating-point operations.
572     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
573     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
574     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
575     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
576     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
577     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
578     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
579     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
580     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
581     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
584     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
585                      MVT::v4f32, MVT::v2f64 }) {
586       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
587       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
588       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
589       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
590     }
591   }
592 
593   // We only have fused f128 multiply-addition on vector registers.
594   if (!Subtarget.hasVectorEnhancements1()) {
595     setOperationAction(ISD::FMA, MVT::f128, Expand);
596     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
597   }
598 
599   // We don't have a copysign instruction on vector registers.
600   if (Subtarget.hasVectorEnhancements1())
601     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
602 
603   // Needed so that we don't try to implement f128 constant loads using
604   // a load-and-extend of a f80 constant (in cases where the constant
605   // would fit in an f80).
606   for (MVT VT : MVT::fp_valuetypes())
607     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
608 
609   // We don't have extending load instruction on vector registers.
610   if (Subtarget.hasVectorEnhancements1()) {
611     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
612     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
613   }
614 
615   // Floating-point truncation and stores need to be done separately.
616   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
617   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
618   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
619 
620   // We have 64-bit FPR<->GPR moves, but need special handling for
621   // 32-bit forms.
622   if (!Subtarget.hasVector()) {
623     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
624     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
625   }
626 
627   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
628   // structure, but VAEND is a no-op.
629   setOperationAction(ISD::VASTART, MVT::Other, Custom);
630   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
631   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
632 
633   // Codes for which we want to perform some z-specific combinations.
634   setTargetDAGCombine(ISD::ZERO_EXTEND);
635   setTargetDAGCombine(ISD::SIGN_EXTEND);
636   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
637   setTargetDAGCombine(ISD::LOAD);
638   setTargetDAGCombine(ISD::STORE);
639   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
640   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
641   setTargetDAGCombine(ISD::FP_ROUND);
642   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
643   setTargetDAGCombine(ISD::FP_EXTEND);
644   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
645   setTargetDAGCombine(ISD::BSWAP);
646   setTargetDAGCombine(ISD::SDIV);
647   setTargetDAGCombine(ISD::UDIV);
648   setTargetDAGCombine(ISD::SREM);
649   setTargetDAGCombine(ISD::UREM);
650 
651   // Handle intrinsics.
652   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
653   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
654 
655   // We want to use MVC in preference to even a single load/store pair.
656   MaxStoresPerMemcpy = 0;
657   MaxStoresPerMemcpyOptSize = 0;
658 
659   // The main memset sequence is a byte store followed by an MVC.
660   // Two STC or MV..I stores win over that, but the kind of fused stores
661   // generated by target-independent code don't when the byte value is
662   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
663   // than "STC;MVC".  Handle the choice in target-specific code instead.
664   MaxStoresPerMemset = 0;
665   MaxStoresPerMemsetOptSize = 0;
666 
667   // Default to having -disable-strictnode-mutation on
668   IsStrictFPEnabled = true;
669 }
670 
671 bool SystemZTargetLowering::useSoftFloat() const {
672   return Subtarget.hasSoftFloat();
673 }
674 
675 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
676                                               LLVMContext &, EVT VT) const {
677   if (!VT.isVector())
678     return MVT::i32;
679   return VT.changeVectorElementTypeToInteger();
680 }
681 
682 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
683     const MachineFunction &MF, EVT VT) const {
684   VT = VT.getScalarType();
685 
686   if (!VT.isSimple())
687     return false;
688 
689   switch (VT.getSimpleVT().SimpleTy) {
690   case MVT::f32:
691   case MVT::f64:
692     return true;
693   case MVT::f128:
694     return Subtarget.hasVectorEnhancements1();
695   default:
696     break;
697   }
698 
699   return false;
700 }
701 
702 // Return true if the constant can be generated with a vector instruction,
703 // such as VGM, VGMB or VREPI.
704 bool SystemZVectorConstantInfo::isVectorConstantLegal(
705     const SystemZSubtarget &Subtarget) {
706   const SystemZInstrInfo *TII =
707       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
708   if (!Subtarget.hasVector() ||
709       (isFP128 && !Subtarget.hasVectorEnhancements1()))
710     return false;
711 
712   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
713   // preferred way of creating all-zero and all-one vectors so give it
714   // priority over other methods below.
715   unsigned Mask = 0;
716   unsigned I = 0;
717   for (; I < SystemZ::VectorBytes; ++I) {
718     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
719     if (Byte == 0xff)
720       Mask |= 1ULL << I;
721     else if (Byte != 0)
722       break;
723   }
724   if (I == SystemZ::VectorBytes) {
725     Opcode = SystemZISD::BYTE_MASK;
726     OpVals.push_back(Mask);
727     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
728     return true;
729   }
730 
731   if (SplatBitSize > 64)
732     return false;
733 
734   auto tryValue = [&](uint64_t Value) -> bool {
735     // Try VECTOR REPLICATE IMMEDIATE
736     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
737     if (isInt<16>(SignedValue)) {
738       OpVals.push_back(((unsigned) SignedValue));
739       Opcode = SystemZISD::REPLICATE;
740       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
741                                SystemZ::VectorBits / SplatBitSize);
742       return true;
743     }
744     // Try VECTOR GENERATE MASK
745     unsigned Start, End;
746     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
747       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
748       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
749       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
750       OpVals.push_back(Start - (64 - SplatBitSize));
751       OpVals.push_back(End - (64 - SplatBitSize));
752       Opcode = SystemZISD::ROTATE_MASK;
753       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
754                                SystemZ::VectorBits / SplatBitSize);
755       return true;
756     }
757     return false;
758   };
759 
760   // First try assuming that any undefined bits above the highest set bit
761   // and below the lowest set bit are 1s.  This increases the likelihood of
762   // being able to use a sign-extended element value in VECTOR REPLICATE
763   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
764   uint64_t SplatBitsZ = SplatBits.getZExtValue();
765   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
766   uint64_t Lower =
767       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
768   uint64_t Upper =
769       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
770   if (tryValue(SplatBitsZ | Upper | Lower))
771     return true;
772 
773   // Now try assuming that any undefined bits between the first and
774   // last defined set bits are set.  This increases the chances of
775   // using a non-wraparound mask.
776   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
777   return tryValue(SplatBitsZ | Middle);
778 }
779 
780 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
781   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
782   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
783 
784   // Find the smallest splat.
785   SplatBits = FPImm.bitcastToAPInt();
786   unsigned Width = SplatBits.getBitWidth();
787   while (Width > 8) {
788     unsigned HalfSize = Width / 2;
789     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
790     APInt LowValue = SplatBits.trunc(HalfSize);
791 
792     // If the two halves do not match, stop here.
793     if (HighValue != LowValue || 8 > HalfSize)
794       break;
795 
796     SplatBits = HighValue;
797     Width = HalfSize;
798   }
799   SplatUndef = 0;
800   SplatBitSize = Width;
801 }
802 
803 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
804   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
805   bool HasAnyUndefs;
806 
807   // Get IntBits by finding the 128 bit splat.
808   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
809                        true);
810 
811   // Get SplatBits by finding the 8 bit or greater splat.
812   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
813                        true);
814 }
815 
816 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
817                                          bool ForCodeSize) const {
818   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
819   if (Imm.isZero() || Imm.isNegZero())
820     return true;
821 
822   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
823 }
824 
825 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
826   // We can use CGFI or CLGFI.
827   return isInt<32>(Imm) || isUInt<32>(Imm);
828 }
829 
830 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
831   // We can use ALGFI or SLGFI.
832   return isUInt<32>(Imm) || isUInt<32>(-Imm);
833 }
834 
835 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
836     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
837   // Unaligned accesses should never be slower than the expanded version.
838   // We check specifically for aligned accesses in the few cases where
839   // they are required.
840   if (Fast)
841     *Fast = true;
842   return true;
843 }
844 
845 // Information about the addressing mode for a memory access.
846 struct AddressingMode {
847   // True if a long displacement is supported.
848   bool LongDisplacement;
849 
850   // True if use of index register is supported.
851   bool IndexReg;
852 
853   AddressingMode(bool LongDispl, bool IdxReg) :
854     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
855 };
856 
857 // Return the desired addressing mode for a Load which has only one use (in
858 // the same block) which is a Store.
859 static AddressingMode getLoadStoreAddrMode(bool HasVector,
860                                           Type *Ty) {
861   // With vector support a Load->Store combination may be combined to either
862   // an MVC or vector operations and it seems to work best to allow the
863   // vector addressing mode.
864   if (HasVector)
865     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
866 
867   // Otherwise only the MVC case is special.
868   bool MVC = Ty->isIntegerTy(8);
869   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
870 }
871 
872 // Return the addressing mode which seems most desirable given an LLVM
873 // Instruction pointer.
874 static AddressingMode
875 supportedAddressingMode(Instruction *I, bool HasVector) {
876   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
877     switch (II->getIntrinsicID()) {
878     default: break;
879     case Intrinsic::memset:
880     case Intrinsic::memmove:
881     case Intrinsic::memcpy:
882       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
883     }
884   }
885 
886   if (isa<LoadInst>(I) && I->hasOneUse()) {
887     auto *SingleUser = cast<Instruction>(*I->user_begin());
888     if (SingleUser->getParent() == I->getParent()) {
889       if (isa<ICmpInst>(SingleUser)) {
890         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
891           if (C->getBitWidth() <= 64 &&
892               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
893             // Comparison of memory with 16 bit signed / unsigned immediate
894             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
895       } else if (isa<StoreInst>(SingleUser))
896         // Load->Store
897         return getLoadStoreAddrMode(HasVector, I->getType());
898     }
899   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
900     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
901       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
902         // Load->Store
903         return getLoadStoreAddrMode(HasVector, LoadI->getType());
904   }
905 
906   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
907 
908     // * Use LDE instead of LE/LEY for z13 to avoid partial register
909     //   dependencies (LDE only supports small offsets).
910     // * Utilize the vector registers to hold floating point
911     //   values (vector load / store instructions only support small
912     //   offsets).
913 
914     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
915                          I->getOperand(0)->getType());
916     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
917     bool IsVectorAccess = MemAccessTy->isVectorTy();
918 
919     // A store of an extracted vector element will be combined into a VSTE type
920     // instruction.
921     if (!IsVectorAccess && isa<StoreInst>(I)) {
922       Value *DataOp = I->getOperand(0);
923       if (isa<ExtractElementInst>(DataOp))
924         IsVectorAccess = true;
925     }
926 
927     // A load which gets inserted into a vector element will be combined into a
928     // VLE type instruction.
929     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
930       User *LoadUser = *I->user_begin();
931       if (isa<InsertElementInst>(LoadUser))
932         IsVectorAccess = true;
933     }
934 
935     if (IsFPAccess || IsVectorAccess)
936       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
937   }
938 
939   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
940 }
941 
942 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
943        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
944   // Punt on globals for now, although they can be used in limited
945   // RELATIVE LONG cases.
946   if (AM.BaseGV)
947     return false;
948 
949   // Require a 20-bit signed offset.
950   if (!isInt<20>(AM.BaseOffs))
951     return false;
952 
953   AddressingMode SupportedAM(true, true);
954   if (I != nullptr)
955     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
956 
957   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
958     return false;
959 
960   if (!SupportedAM.IndexReg)
961     // No indexing allowed.
962     return AM.Scale == 0;
963   else
964     // Indexing is OK but no scale factor can be applied.
965     return AM.Scale == 0 || AM.Scale == 1;
966 }
967 
968 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
969   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
970     return false;
971   unsigned FromBits = FromType->getPrimitiveSizeInBits();
972   unsigned ToBits = ToType->getPrimitiveSizeInBits();
973   return FromBits > ToBits;
974 }
975 
976 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
977   if (!FromVT.isInteger() || !ToVT.isInteger())
978     return false;
979   unsigned FromBits = FromVT.getSizeInBits();
980   unsigned ToBits = ToVT.getSizeInBits();
981   return FromBits > ToBits;
982 }
983 
984 //===----------------------------------------------------------------------===//
985 // Inline asm support
986 //===----------------------------------------------------------------------===//
987 
988 TargetLowering::ConstraintType
989 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
990   if (Constraint.size() == 1) {
991     switch (Constraint[0]) {
992     case 'a': // Address register
993     case 'd': // Data register (equivalent to 'r')
994     case 'f': // Floating-point register
995     case 'h': // High-part register
996     case 'r': // General-purpose register
997     case 'v': // Vector register
998       return C_RegisterClass;
999 
1000     case 'Q': // Memory with base and unsigned 12-bit displacement
1001     case 'R': // Likewise, plus an index
1002     case 'S': // Memory with base and signed 20-bit displacement
1003     case 'T': // Likewise, plus an index
1004     case 'm': // Equivalent to 'T'.
1005       return C_Memory;
1006 
1007     case 'I': // Unsigned 8-bit constant
1008     case 'J': // Unsigned 12-bit constant
1009     case 'K': // Signed 16-bit constant
1010     case 'L': // Signed 20-bit displacement (on all targets we support)
1011     case 'M': // 0x7fffffff
1012       return C_Immediate;
1013 
1014     default:
1015       break;
1016     }
1017   }
1018   return TargetLowering::getConstraintType(Constraint);
1019 }
1020 
1021 TargetLowering::ConstraintWeight SystemZTargetLowering::
1022 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1023                                const char *constraint) const {
1024   ConstraintWeight weight = CW_Invalid;
1025   Value *CallOperandVal = info.CallOperandVal;
1026   // If we don't have a value, we can't do a match,
1027   // but allow it at the lowest weight.
1028   if (!CallOperandVal)
1029     return CW_Default;
1030   Type *type = CallOperandVal->getType();
1031   // Look at the constraint type.
1032   switch (*constraint) {
1033   default:
1034     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1035     break;
1036 
1037   case 'a': // Address register
1038   case 'd': // Data register (equivalent to 'r')
1039   case 'h': // High-part register
1040   case 'r': // General-purpose register
1041     if (CallOperandVal->getType()->isIntegerTy())
1042       weight = CW_Register;
1043     break;
1044 
1045   case 'f': // Floating-point register
1046     if (type->isFloatingPointTy())
1047       weight = CW_Register;
1048     break;
1049 
1050   case 'v': // Vector register
1051     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1052         Subtarget.hasVector())
1053       weight = CW_Register;
1054     break;
1055 
1056   case 'I': // Unsigned 8-bit constant
1057     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1058       if (isUInt<8>(C->getZExtValue()))
1059         weight = CW_Constant;
1060     break;
1061 
1062   case 'J': // Unsigned 12-bit constant
1063     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1064       if (isUInt<12>(C->getZExtValue()))
1065         weight = CW_Constant;
1066     break;
1067 
1068   case 'K': // Signed 16-bit constant
1069     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1070       if (isInt<16>(C->getSExtValue()))
1071         weight = CW_Constant;
1072     break;
1073 
1074   case 'L': // Signed 20-bit displacement (on all targets we support)
1075     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1076       if (isInt<20>(C->getSExtValue()))
1077         weight = CW_Constant;
1078     break;
1079 
1080   case 'M': // 0x7fffffff
1081     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1082       if (C->getZExtValue() == 0x7fffffff)
1083         weight = CW_Constant;
1084     break;
1085   }
1086   return weight;
1087 }
1088 
1089 // Parse a "{tNNN}" register constraint for which the register type "t"
1090 // has already been verified.  MC is the class associated with "t" and
1091 // Map maps 0-based register numbers to LLVM register numbers.
1092 static std::pair<unsigned, const TargetRegisterClass *>
1093 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1094                     const unsigned *Map, unsigned Size) {
1095   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1096   if (isdigit(Constraint[2])) {
1097     unsigned Index;
1098     bool Failed =
1099         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1100     if (!Failed && Index < Size && Map[Index])
1101       return std::make_pair(Map[Index], RC);
1102   }
1103   return std::make_pair(0U, nullptr);
1104 }
1105 
1106 std::pair<unsigned, const TargetRegisterClass *>
1107 SystemZTargetLowering::getRegForInlineAsmConstraint(
1108     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1109   if (Constraint.size() == 1) {
1110     // GCC Constraint Letters
1111     switch (Constraint[0]) {
1112     default: break;
1113     case 'd': // Data register (equivalent to 'r')
1114     case 'r': // General-purpose register
1115       if (VT == MVT::i64)
1116         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1117       else if (VT == MVT::i128)
1118         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1119       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1120 
1121     case 'a': // Address register
1122       if (VT == MVT::i64)
1123         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1124       else if (VT == MVT::i128)
1125         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1126       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1127 
1128     case 'h': // High-part register (an LLVM extension)
1129       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1130 
1131     case 'f': // Floating-point register
1132       if (!useSoftFloat()) {
1133         if (VT == MVT::f64)
1134           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1135         else if (VT == MVT::f128)
1136           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1137         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1138       }
1139       break;
1140     case 'v': // Vector register
1141       if (Subtarget.hasVector()) {
1142         if (VT == MVT::f32)
1143           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1144         if (VT == MVT::f64)
1145           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1146         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1147       }
1148       break;
1149     }
1150   }
1151   if (Constraint.size() > 0 && Constraint[0] == '{') {
1152     // We need to override the default register parsing for GPRs and FPRs
1153     // because the interpretation depends on VT.  The internal names of
1154     // the registers are also different from the external names
1155     // (F0D and F0S instead of F0, etc.).
1156     if (Constraint[1] == 'r') {
1157       if (VT == MVT::i32)
1158         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1159                                    SystemZMC::GR32Regs, 16);
1160       if (VT == MVT::i128)
1161         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1162                                    SystemZMC::GR128Regs, 16);
1163       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1164                                  SystemZMC::GR64Regs, 16);
1165     }
1166     if (Constraint[1] == 'f') {
1167       if (useSoftFloat())
1168         return std::make_pair(
1169             0u, static_cast<const TargetRegisterClass *>(nullptr));
1170       if (VT == MVT::f32)
1171         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1172                                    SystemZMC::FP32Regs, 16);
1173       if (VT == MVT::f128)
1174         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1175                                    SystemZMC::FP128Regs, 16);
1176       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1177                                  SystemZMC::FP64Regs, 16);
1178     }
1179     if (Constraint[1] == 'v') {
1180       if (!Subtarget.hasVector())
1181         return std::make_pair(
1182             0u, static_cast<const TargetRegisterClass *>(nullptr));
1183       if (VT == MVT::f32)
1184         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1185                                    SystemZMC::VR32Regs, 32);
1186       if (VT == MVT::f64)
1187         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1188                                    SystemZMC::VR64Regs, 32);
1189       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1190                                  SystemZMC::VR128Regs, 32);
1191     }
1192   }
1193   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1194 }
1195 
1196 // FIXME? Maybe this could be a TableGen attribute on some registers and
1197 // this table could be generated automatically from RegInfo.
1198 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1199                                                   const MachineFunction &MF) const {
1200 
1201   Register Reg = StringSwitch<Register>(RegName)
1202                    .Case("r15", SystemZ::R15D)
1203                    .Default(0);
1204   if (Reg)
1205     return Reg;
1206   report_fatal_error("Invalid register name global variable");
1207 }
1208 
1209 void SystemZTargetLowering::
1210 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1211                              std::vector<SDValue> &Ops,
1212                              SelectionDAG &DAG) const {
1213   // Only support length 1 constraints for now.
1214   if (Constraint.length() == 1) {
1215     switch (Constraint[0]) {
1216     case 'I': // Unsigned 8-bit constant
1217       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1218         if (isUInt<8>(C->getZExtValue()))
1219           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1220                                               Op.getValueType()));
1221       return;
1222 
1223     case 'J': // Unsigned 12-bit constant
1224       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1225         if (isUInt<12>(C->getZExtValue()))
1226           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1227                                               Op.getValueType()));
1228       return;
1229 
1230     case 'K': // Signed 16-bit constant
1231       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1232         if (isInt<16>(C->getSExtValue()))
1233           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1234                                               Op.getValueType()));
1235       return;
1236 
1237     case 'L': // Signed 20-bit displacement (on all targets we support)
1238       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1239         if (isInt<20>(C->getSExtValue()))
1240           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1241                                               Op.getValueType()));
1242       return;
1243 
1244     case 'M': // 0x7fffffff
1245       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1246         if (C->getZExtValue() == 0x7fffffff)
1247           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1248                                               Op.getValueType()));
1249       return;
1250     }
1251   }
1252   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1253 }
1254 
1255 //===----------------------------------------------------------------------===//
1256 // Calling conventions
1257 //===----------------------------------------------------------------------===//
1258 
1259 #include "SystemZGenCallingConv.inc"
1260 
1261 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1262   CallingConv::ID) const {
1263   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1264                                            SystemZ::R14D, 0 };
1265   return ScratchRegs;
1266 }
1267 
1268 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1269                                                      Type *ToType) const {
1270   return isTruncateFree(FromType, ToType);
1271 }
1272 
1273 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1274   return CI->isTailCall();
1275 }
1276 
1277 // We do not yet support 128-bit single-element vector types.  If the user
1278 // attempts to use such types as function argument or return type, prefer
1279 // to error out instead of emitting code violating the ABI.
1280 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1281   if (ArgVT.isVector() && !VT.isVector())
1282     report_fatal_error("Unsupported vector argument or return type");
1283 }
1284 
1285 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1286   for (unsigned i = 0; i < Ins.size(); ++i)
1287     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1288 }
1289 
1290 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1291   for (unsigned i = 0; i < Outs.size(); ++i)
1292     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1293 }
1294 
1295 // Value is a value that has been passed to us in the location described by VA
1296 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1297 // any loads onto Chain.
1298 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1299                                    CCValAssign &VA, SDValue Chain,
1300                                    SDValue Value) {
1301   // If the argument has been promoted from a smaller type, insert an
1302   // assertion to capture this.
1303   if (VA.getLocInfo() == CCValAssign::SExt)
1304     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1305                         DAG.getValueType(VA.getValVT()));
1306   else if (VA.getLocInfo() == CCValAssign::ZExt)
1307     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1308                         DAG.getValueType(VA.getValVT()));
1309 
1310   if (VA.isExtInLoc())
1311     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1312   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1313     // If this is a short vector argument loaded from the stack,
1314     // extend from i64 to full vector size and then bitcast.
1315     assert(VA.getLocVT() == MVT::i64);
1316     assert(VA.getValVT().isVector());
1317     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1318     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1319   } else
1320     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1321   return Value;
1322 }
1323 
1324 // Value is a value of type VA.getValVT() that we need to copy into
1325 // the location described by VA.  Return a copy of Value converted to
1326 // VA.getValVT().  The caller is responsible for handling indirect values.
1327 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1328                                    CCValAssign &VA, SDValue Value) {
1329   switch (VA.getLocInfo()) {
1330   case CCValAssign::SExt:
1331     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1332   case CCValAssign::ZExt:
1333     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1334   case CCValAssign::AExt:
1335     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1336   case CCValAssign::BCvt:
1337     // If this is a short vector argument to be stored to the stack,
1338     // bitcast to v2i64 and then extract first element.
1339     assert(VA.getLocVT() == MVT::i64);
1340     assert(VA.getValVT().isVector());
1341     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1342     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1343                        DAG.getConstant(0, DL, MVT::i32));
1344   case CCValAssign::Full:
1345     return Value;
1346   default:
1347     llvm_unreachable("Unhandled getLocInfo()");
1348   }
1349 }
1350 
1351 SDValue SystemZTargetLowering::LowerFormalArguments(
1352     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1353     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1354     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1355   MachineFunction &MF = DAG.getMachineFunction();
1356   MachineFrameInfo &MFI = MF.getFrameInfo();
1357   MachineRegisterInfo &MRI = MF.getRegInfo();
1358   SystemZMachineFunctionInfo *FuncInfo =
1359       MF.getInfo<SystemZMachineFunctionInfo>();
1360   auto *TFL =
1361       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1362   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1363 
1364   // Detect unsupported vector argument types.
1365   if (Subtarget.hasVector())
1366     VerifyVectorTypes(Ins);
1367 
1368   // Assign locations to all of the incoming arguments.
1369   SmallVector<CCValAssign, 16> ArgLocs;
1370   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1371   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1372 
1373   unsigned NumFixedGPRs = 0;
1374   unsigned NumFixedFPRs = 0;
1375   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1376     SDValue ArgValue;
1377     CCValAssign &VA = ArgLocs[I];
1378     EVT LocVT = VA.getLocVT();
1379     if (VA.isRegLoc()) {
1380       // Arguments passed in registers
1381       const TargetRegisterClass *RC;
1382       switch (LocVT.getSimpleVT().SimpleTy) {
1383       default:
1384         // Integers smaller than i64 should be promoted to i64.
1385         llvm_unreachable("Unexpected argument type");
1386       case MVT::i32:
1387         NumFixedGPRs += 1;
1388         RC = &SystemZ::GR32BitRegClass;
1389         break;
1390       case MVT::i64:
1391         NumFixedGPRs += 1;
1392         RC = &SystemZ::GR64BitRegClass;
1393         break;
1394       case MVT::f32:
1395         NumFixedFPRs += 1;
1396         RC = &SystemZ::FP32BitRegClass;
1397         break;
1398       case MVT::f64:
1399         NumFixedFPRs += 1;
1400         RC = &SystemZ::FP64BitRegClass;
1401         break;
1402       case MVT::v16i8:
1403       case MVT::v8i16:
1404       case MVT::v4i32:
1405       case MVT::v2i64:
1406       case MVT::v4f32:
1407       case MVT::v2f64:
1408         RC = &SystemZ::VR128BitRegClass;
1409         break;
1410       }
1411 
1412       Register VReg = MRI.createVirtualRegister(RC);
1413       MRI.addLiveIn(VA.getLocReg(), VReg);
1414       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1415     } else {
1416       assert(VA.isMemLoc() && "Argument not register or memory");
1417 
1418       // Create the frame index object for this incoming parameter.
1419       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1420                                      VA.getLocMemOffset(), true);
1421 
1422       // Create the SelectionDAG nodes corresponding to a load
1423       // from this parameter.  Unpromoted ints and floats are
1424       // passed as right-justified 8-byte values.
1425       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1426       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1427         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1428                           DAG.getIntPtrConstant(4, DL));
1429       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1430                              MachinePointerInfo::getFixedStack(MF, FI));
1431     }
1432 
1433     // Convert the value of the argument register into the value that's
1434     // being passed.
1435     if (VA.getLocInfo() == CCValAssign::Indirect) {
1436       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1437                                    MachinePointerInfo()));
1438       // If the original argument was split (e.g. i128), we need
1439       // to load all parts of it here (using the same address).
1440       unsigned ArgIndex = Ins[I].OrigArgIndex;
1441       assert (Ins[I].PartOffset == 0);
1442       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1443         CCValAssign &PartVA = ArgLocs[I + 1];
1444         unsigned PartOffset = Ins[I + 1].PartOffset;
1445         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1446                                       DAG.getIntPtrConstant(PartOffset, DL));
1447         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1448                                      MachinePointerInfo()));
1449         ++I;
1450       }
1451     } else
1452       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1453   }
1454 
1455   if (IsVarArg) {
1456     // Save the number of non-varargs registers for later use by va_start, etc.
1457     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1458     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1459 
1460     // Likewise the address (in the form of a frame index) of where the
1461     // first stack vararg would be.  The 1-byte size here is arbitrary.
1462     int64_t StackSize = CCInfo.getNextStackOffset();
1463     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1464 
1465     // ...and a similar frame index for the caller-allocated save area
1466     // that will be used to store the incoming registers.
1467     int64_t RegSaveOffset =
1468       -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1469     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1470     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1471 
1472     // Store the FPR varargs in the reserved frame slots.  (We store the
1473     // GPRs as part of the prologue.)
1474     if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) {
1475       SDValue MemOps[SystemZ::NumArgFPRs];
1476       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1477         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]);
1478         int FI =
1479           MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true);
1480         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1481         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1482                                      &SystemZ::FP64BitRegClass);
1483         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1484         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1485                                  MachinePointerInfo::getFixedStack(MF, FI));
1486       }
1487       // Join the stores, which are independent of one another.
1488       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1489                           makeArrayRef(&MemOps[NumFixedFPRs],
1490                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1491     }
1492   }
1493 
1494   return Chain;
1495 }
1496 
1497 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1498                               SmallVectorImpl<CCValAssign> &ArgLocs,
1499                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1500   // Punt if there are any indirect or stack arguments, or if the call
1501   // needs the callee-saved argument register R6, or if the call uses
1502   // the callee-saved register arguments SwiftSelf and SwiftError.
1503   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1504     CCValAssign &VA = ArgLocs[I];
1505     if (VA.getLocInfo() == CCValAssign::Indirect)
1506       return false;
1507     if (!VA.isRegLoc())
1508       return false;
1509     Register Reg = VA.getLocReg();
1510     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1511       return false;
1512     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1513       return false;
1514   }
1515   return true;
1516 }
1517 
1518 SDValue
1519 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1520                                  SmallVectorImpl<SDValue> &InVals) const {
1521   SelectionDAG &DAG = CLI.DAG;
1522   SDLoc &DL = CLI.DL;
1523   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1524   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1525   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1526   SDValue Chain = CLI.Chain;
1527   SDValue Callee = CLI.Callee;
1528   bool &IsTailCall = CLI.IsTailCall;
1529   CallingConv::ID CallConv = CLI.CallConv;
1530   bool IsVarArg = CLI.IsVarArg;
1531   MachineFunction &MF = DAG.getMachineFunction();
1532   EVT PtrVT = getPointerTy(MF.getDataLayout());
1533 
1534   // Detect unsupported vector argument and return types.
1535   if (Subtarget.hasVector()) {
1536     VerifyVectorTypes(Outs);
1537     VerifyVectorTypes(Ins);
1538   }
1539 
1540   // Analyze the operands of the call, assigning locations to each operand.
1541   SmallVector<CCValAssign, 16> ArgLocs;
1542   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1543   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1544 
1545   // We don't support GuaranteedTailCallOpt, only automatically-detected
1546   // sibling calls.
1547   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1548     IsTailCall = false;
1549 
1550   // Get a count of how many bytes are to be pushed on the stack.
1551   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1552 
1553   // Mark the start of the call.
1554   if (!IsTailCall)
1555     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1556 
1557   // Copy argument values to their designated locations.
1558   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1559   SmallVector<SDValue, 8> MemOpChains;
1560   SDValue StackPtr;
1561   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1562     CCValAssign &VA = ArgLocs[I];
1563     SDValue ArgValue = OutVals[I];
1564 
1565     if (VA.getLocInfo() == CCValAssign::Indirect) {
1566       // Store the argument in a stack slot and pass its address.
1567       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1568       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1569       MemOpChains.push_back(
1570           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1571                        MachinePointerInfo::getFixedStack(MF, FI)));
1572       // If the original argument was split (e.g. i128), we need
1573       // to store all parts of it here (and pass just one address).
1574       unsigned ArgIndex = Outs[I].OrigArgIndex;
1575       assert (Outs[I].PartOffset == 0);
1576       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1577         SDValue PartValue = OutVals[I + 1];
1578         unsigned PartOffset = Outs[I + 1].PartOffset;
1579         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1580                                       DAG.getIntPtrConstant(PartOffset, DL));
1581         MemOpChains.push_back(
1582             DAG.getStore(Chain, DL, PartValue, Address,
1583                          MachinePointerInfo::getFixedStack(MF, FI)));
1584         ++I;
1585       }
1586       ArgValue = SpillSlot;
1587     } else
1588       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1589 
1590     if (VA.isRegLoc())
1591       // Queue up the argument copies and emit them at the end.
1592       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1593     else {
1594       assert(VA.isMemLoc() && "Argument not register or memory");
1595 
1596       // Work out the address of the stack slot.  Unpromoted ints and
1597       // floats are passed as right-justified 8-byte values.
1598       if (!StackPtr.getNode())
1599         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1600       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1601       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1602         Offset += 4;
1603       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1604                                     DAG.getIntPtrConstant(Offset, DL));
1605 
1606       // Emit the store.
1607       MemOpChains.push_back(
1608           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1609     }
1610   }
1611 
1612   // Join the stores, which are independent of one another.
1613   if (!MemOpChains.empty())
1614     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1615 
1616   // Accept direct calls by converting symbolic call addresses to the
1617   // associated Target* opcodes.  Force %r1 to be used for indirect
1618   // tail calls.
1619   SDValue Glue;
1620   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1621     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1622     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1623   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1624     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1625     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1626   } else if (IsTailCall) {
1627     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1628     Glue = Chain.getValue(1);
1629     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1630   }
1631 
1632   // Build a sequence of copy-to-reg nodes, chained and glued together.
1633   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1634     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1635                              RegsToPass[I].second, Glue);
1636     Glue = Chain.getValue(1);
1637   }
1638 
1639   // The first call operand is the chain and the second is the target address.
1640   SmallVector<SDValue, 8> Ops;
1641   Ops.push_back(Chain);
1642   Ops.push_back(Callee);
1643 
1644   // Add argument registers to the end of the list so that they are
1645   // known live into the call.
1646   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1647     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1648                                   RegsToPass[I].second.getValueType()));
1649 
1650   // Add a register mask operand representing the call-preserved registers.
1651   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1652   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1653   assert(Mask && "Missing call preserved mask for calling convention");
1654   Ops.push_back(DAG.getRegisterMask(Mask));
1655 
1656   // Glue the call to the argument copies, if any.
1657   if (Glue.getNode())
1658     Ops.push_back(Glue);
1659 
1660   // Emit the call.
1661   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1662   if (IsTailCall)
1663     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1664   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1665   Glue = Chain.getValue(1);
1666 
1667   // Mark the end of the call, which is glued to the call itself.
1668   Chain = DAG.getCALLSEQ_END(Chain,
1669                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1670                              DAG.getConstant(0, DL, PtrVT, true),
1671                              Glue, DL);
1672   Glue = Chain.getValue(1);
1673 
1674   // Assign locations to each value returned by this call.
1675   SmallVector<CCValAssign, 16> RetLocs;
1676   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1677   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1678 
1679   // Copy all of the result registers out of their specified physreg.
1680   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1681     CCValAssign &VA = RetLocs[I];
1682 
1683     // Copy the value out, gluing the copy to the end of the call sequence.
1684     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1685                                           VA.getLocVT(), Glue);
1686     Chain = RetValue.getValue(1);
1687     Glue = RetValue.getValue(2);
1688 
1689     // Convert the value of the return register into the value that's
1690     // being returned.
1691     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1692   }
1693 
1694   return Chain;
1695 }
1696 
1697 bool SystemZTargetLowering::
1698 CanLowerReturn(CallingConv::ID CallConv,
1699                MachineFunction &MF, bool isVarArg,
1700                const SmallVectorImpl<ISD::OutputArg> &Outs,
1701                LLVMContext &Context) const {
1702   // Detect unsupported vector return types.
1703   if (Subtarget.hasVector())
1704     VerifyVectorTypes(Outs);
1705 
1706   // Special case that we cannot easily detect in RetCC_SystemZ since
1707   // i128 is not a legal type.
1708   for (auto &Out : Outs)
1709     if (Out.ArgVT == MVT::i128)
1710       return false;
1711 
1712   SmallVector<CCValAssign, 16> RetLocs;
1713   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1714   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1715 }
1716 
1717 SDValue
1718 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1719                                    bool IsVarArg,
1720                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1721                                    const SmallVectorImpl<SDValue> &OutVals,
1722                                    const SDLoc &DL, SelectionDAG &DAG) const {
1723   MachineFunction &MF = DAG.getMachineFunction();
1724 
1725   // Detect unsupported vector return types.
1726   if (Subtarget.hasVector())
1727     VerifyVectorTypes(Outs);
1728 
1729   // Assign locations to each returned value.
1730   SmallVector<CCValAssign, 16> RetLocs;
1731   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1732   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1733 
1734   // Quick exit for void returns
1735   if (RetLocs.empty())
1736     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1737 
1738   if (CallConv == CallingConv::GHC)
1739     report_fatal_error("GHC functions return void only");
1740 
1741   // Copy the result values into the output registers.
1742   SDValue Glue;
1743   SmallVector<SDValue, 4> RetOps;
1744   RetOps.push_back(Chain);
1745   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1746     CCValAssign &VA = RetLocs[I];
1747     SDValue RetValue = OutVals[I];
1748 
1749     // Make the return register live on exit.
1750     assert(VA.isRegLoc() && "Can only return in registers!");
1751 
1752     // Promote the value as required.
1753     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1754 
1755     // Chain and glue the copies together.
1756     Register Reg = VA.getLocReg();
1757     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1758     Glue = Chain.getValue(1);
1759     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1760   }
1761 
1762   // Update chain and glue.
1763   RetOps[0] = Chain;
1764   if (Glue.getNode())
1765     RetOps.push_back(Glue);
1766 
1767   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1768 }
1769 
1770 // Return true if Op is an intrinsic node with chain that returns the CC value
1771 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1772 // the mask of valid CC values if so.
1773 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1774                                       unsigned &CCValid) {
1775   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1776   switch (Id) {
1777   case Intrinsic::s390_tbegin:
1778     Opcode = SystemZISD::TBEGIN;
1779     CCValid = SystemZ::CCMASK_TBEGIN;
1780     return true;
1781 
1782   case Intrinsic::s390_tbegin_nofloat:
1783     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1784     CCValid = SystemZ::CCMASK_TBEGIN;
1785     return true;
1786 
1787   case Intrinsic::s390_tend:
1788     Opcode = SystemZISD::TEND;
1789     CCValid = SystemZ::CCMASK_TEND;
1790     return true;
1791 
1792   default:
1793     return false;
1794   }
1795 }
1796 
1797 // Return true if Op is an intrinsic node without chain that returns the
1798 // CC value as its final argument.  Provide the associated SystemZISD
1799 // opcode and the mask of valid CC values if so.
1800 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1801   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1802   switch (Id) {
1803   case Intrinsic::s390_vpkshs:
1804   case Intrinsic::s390_vpksfs:
1805   case Intrinsic::s390_vpksgs:
1806     Opcode = SystemZISD::PACKS_CC;
1807     CCValid = SystemZ::CCMASK_VCMP;
1808     return true;
1809 
1810   case Intrinsic::s390_vpklshs:
1811   case Intrinsic::s390_vpklsfs:
1812   case Intrinsic::s390_vpklsgs:
1813     Opcode = SystemZISD::PACKLS_CC;
1814     CCValid = SystemZ::CCMASK_VCMP;
1815     return true;
1816 
1817   case Intrinsic::s390_vceqbs:
1818   case Intrinsic::s390_vceqhs:
1819   case Intrinsic::s390_vceqfs:
1820   case Intrinsic::s390_vceqgs:
1821     Opcode = SystemZISD::VICMPES;
1822     CCValid = SystemZ::CCMASK_VCMP;
1823     return true;
1824 
1825   case Intrinsic::s390_vchbs:
1826   case Intrinsic::s390_vchhs:
1827   case Intrinsic::s390_vchfs:
1828   case Intrinsic::s390_vchgs:
1829     Opcode = SystemZISD::VICMPHS;
1830     CCValid = SystemZ::CCMASK_VCMP;
1831     return true;
1832 
1833   case Intrinsic::s390_vchlbs:
1834   case Intrinsic::s390_vchlhs:
1835   case Intrinsic::s390_vchlfs:
1836   case Intrinsic::s390_vchlgs:
1837     Opcode = SystemZISD::VICMPHLS;
1838     CCValid = SystemZ::CCMASK_VCMP;
1839     return true;
1840 
1841   case Intrinsic::s390_vtm:
1842     Opcode = SystemZISD::VTM;
1843     CCValid = SystemZ::CCMASK_VCMP;
1844     return true;
1845 
1846   case Intrinsic::s390_vfaebs:
1847   case Intrinsic::s390_vfaehs:
1848   case Intrinsic::s390_vfaefs:
1849     Opcode = SystemZISD::VFAE_CC;
1850     CCValid = SystemZ::CCMASK_ANY;
1851     return true;
1852 
1853   case Intrinsic::s390_vfaezbs:
1854   case Intrinsic::s390_vfaezhs:
1855   case Intrinsic::s390_vfaezfs:
1856     Opcode = SystemZISD::VFAEZ_CC;
1857     CCValid = SystemZ::CCMASK_ANY;
1858     return true;
1859 
1860   case Intrinsic::s390_vfeebs:
1861   case Intrinsic::s390_vfeehs:
1862   case Intrinsic::s390_vfeefs:
1863     Opcode = SystemZISD::VFEE_CC;
1864     CCValid = SystemZ::CCMASK_ANY;
1865     return true;
1866 
1867   case Intrinsic::s390_vfeezbs:
1868   case Intrinsic::s390_vfeezhs:
1869   case Intrinsic::s390_vfeezfs:
1870     Opcode = SystemZISD::VFEEZ_CC;
1871     CCValid = SystemZ::CCMASK_ANY;
1872     return true;
1873 
1874   case Intrinsic::s390_vfenebs:
1875   case Intrinsic::s390_vfenehs:
1876   case Intrinsic::s390_vfenefs:
1877     Opcode = SystemZISD::VFENE_CC;
1878     CCValid = SystemZ::CCMASK_ANY;
1879     return true;
1880 
1881   case Intrinsic::s390_vfenezbs:
1882   case Intrinsic::s390_vfenezhs:
1883   case Intrinsic::s390_vfenezfs:
1884     Opcode = SystemZISD::VFENEZ_CC;
1885     CCValid = SystemZ::CCMASK_ANY;
1886     return true;
1887 
1888   case Intrinsic::s390_vistrbs:
1889   case Intrinsic::s390_vistrhs:
1890   case Intrinsic::s390_vistrfs:
1891     Opcode = SystemZISD::VISTR_CC;
1892     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1893     return true;
1894 
1895   case Intrinsic::s390_vstrcbs:
1896   case Intrinsic::s390_vstrchs:
1897   case Intrinsic::s390_vstrcfs:
1898     Opcode = SystemZISD::VSTRC_CC;
1899     CCValid = SystemZ::CCMASK_ANY;
1900     return true;
1901 
1902   case Intrinsic::s390_vstrczbs:
1903   case Intrinsic::s390_vstrczhs:
1904   case Intrinsic::s390_vstrczfs:
1905     Opcode = SystemZISD::VSTRCZ_CC;
1906     CCValid = SystemZ::CCMASK_ANY;
1907     return true;
1908 
1909   case Intrinsic::s390_vstrsb:
1910   case Intrinsic::s390_vstrsh:
1911   case Intrinsic::s390_vstrsf:
1912     Opcode = SystemZISD::VSTRS_CC;
1913     CCValid = SystemZ::CCMASK_ANY;
1914     return true;
1915 
1916   case Intrinsic::s390_vstrszb:
1917   case Intrinsic::s390_vstrszh:
1918   case Intrinsic::s390_vstrszf:
1919     Opcode = SystemZISD::VSTRSZ_CC;
1920     CCValid = SystemZ::CCMASK_ANY;
1921     return true;
1922 
1923   case Intrinsic::s390_vfcedbs:
1924   case Intrinsic::s390_vfcesbs:
1925     Opcode = SystemZISD::VFCMPES;
1926     CCValid = SystemZ::CCMASK_VCMP;
1927     return true;
1928 
1929   case Intrinsic::s390_vfchdbs:
1930   case Intrinsic::s390_vfchsbs:
1931     Opcode = SystemZISD::VFCMPHS;
1932     CCValid = SystemZ::CCMASK_VCMP;
1933     return true;
1934 
1935   case Intrinsic::s390_vfchedbs:
1936   case Intrinsic::s390_vfchesbs:
1937     Opcode = SystemZISD::VFCMPHES;
1938     CCValid = SystemZ::CCMASK_VCMP;
1939     return true;
1940 
1941   case Intrinsic::s390_vftcidb:
1942   case Intrinsic::s390_vftcisb:
1943     Opcode = SystemZISD::VFTCI;
1944     CCValid = SystemZ::CCMASK_VCMP;
1945     return true;
1946 
1947   case Intrinsic::s390_tdc:
1948     Opcode = SystemZISD::TDC;
1949     CCValid = SystemZ::CCMASK_TDC;
1950     return true;
1951 
1952   default:
1953     return false;
1954   }
1955 }
1956 
1957 // Emit an intrinsic with chain and an explicit CC register result.
1958 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1959                                            unsigned Opcode) {
1960   // Copy all operands except the intrinsic ID.
1961   unsigned NumOps = Op.getNumOperands();
1962   SmallVector<SDValue, 6> Ops;
1963   Ops.reserve(NumOps - 1);
1964   Ops.push_back(Op.getOperand(0));
1965   for (unsigned I = 2; I < NumOps; ++I)
1966     Ops.push_back(Op.getOperand(I));
1967 
1968   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1969   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1970   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1971   SDValue OldChain = SDValue(Op.getNode(), 1);
1972   SDValue NewChain = SDValue(Intr.getNode(), 1);
1973   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1974   return Intr.getNode();
1975 }
1976 
1977 // Emit an intrinsic with an explicit CC register result.
1978 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1979                                    unsigned Opcode) {
1980   // Copy all operands except the intrinsic ID.
1981   unsigned NumOps = Op.getNumOperands();
1982   SmallVector<SDValue, 6> Ops;
1983   Ops.reserve(NumOps - 1);
1984   for (unsigned I = 1; I < NumOps; ++I)
1985     Ops.push_back(Op.getOperand(I));
1986 
1987   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
1988   return Intr.getNode();
1989 }
1990 
1991 // CC is a comparison that will be implemented using an integer or
1992 // floating-point comparison.  Return the condition code mask for
1993 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1994 // unsigned comparisons and clear for signed ones.  In the floating-point
1995 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1996 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1997 #define CONV(X) \
1998   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1999   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2000   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2001 
2002   switch (CC) {
2003   default:
2004     llvm_unreachable("Invalid integer condition!");
2005 
2006   CONV(EQ);
2007   CONV(NE);
2008   CONV(GT);
2009   CONV(GE);
2010   CONV(LT);
2011   CONV(LE);
2012 
2013   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2014   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2015   }
2016 #undef CONV
2017 }
2018 
2019 // If C can be converted to a comparison against zero, adjust the operands
2020 // as necessary.
2021 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2022   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2023     return;
2024 
2025   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2026   if (!ConstOp1)
2027     return;
2028 
2029   int64_t Value = ConstOp1->getSExtValue();
2030   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2031       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2032       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2033       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2034     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2035     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2036   }
2037 }
2038 
2039 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2040 // adjust the operands as necessary.
2041 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2042                              Comparison &C) {
2043   // For us to make any changes, it must a comparison between a single-use
2044   // load and a constant.
2045   if (!C.Op0.hasOneUse() ||
2046       C.Op0.getOpcode() != ISD::LOAD ||
2047       C.Op1.getOpcode() != ISD::Constant)
2048     return;
2049 
2050   // We must have an 8- or 16-bit load.
2051   auto *Load = cast<LoadSDNode>(C.Op0);
2052   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
2053   if (NumBits != 8 && NumBits != 16)
2054     return;
2055 
2056   // The load must be an extending one and the constant must be within the
2057   // range of the unextended value.
2058   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2059   uint64_t Value = ConstOp1->getZExtValue();
2060   uint64_t Mask = (1 << NumBits) - 1;
2061   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2062     // Make sure that ConstOp1 is in range of C.Op0.
2063     int64_t SignedValue = ConstOp1->getSExtValue();
2064     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2065       return;
2066     if (C.ICmpType != SystemZICMP::SignedOnly) {
2067       // Unsigned comparison between two sign-extended values is equivalent
2068       // to unsigned comparison between two zero-extended values.
2069       Value &= Mask;
2070     } else if (NumBits == 8) {
2071       // Try to treat the comparison as unsigned, so that we can use CLI.
2072       // Adjust CCMask and Value as necessary.
2073       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2074         // Test whether the high bit of the byte is set.
2075         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2076       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2077         // Test whether the high bit of the byte is clear.
2078         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2079       else
2080         // No instruction exists for this combination.
2081         return;
2082       C.ICmpType = SystemZICMP::UnsignedOnly;
2083     }
2084   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2085     if (Value > Mask)
2086       return;
2087     // If the constant is in range, we can use any comparison.
2088     C.ICmpType = SystemZICMP::Any;
2089   } else
2090     return;
2091 
2092   // Make sure that the first operand is an i32 of the right extension type.
2093   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2094                               ISD::SEXTLOAD :
2095                               ISD::ZEXTLOAD);
2096   if (C.Op0.getValueType() != MVT::i32 ||
2097       Load->getExtensionType() != ExtType) {
2098     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2099                            Load->getBasePtr(), Load->getPointerInfo(),
2100                            Load->getMemoryVT(), Load->getAlignment(),
2101                            Load->getMemOperand()->getFlags());
2102     // Update the chain uses.
2103     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2104   }
2105 
2106   // Make sure that the second operand is an i32 with the right value.
2107   if (C.Op1.getValueType() != MVT::i32 ||
2108       Value != ConstOp1->getZExtValue())
2109     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2110 }
2111 
2112 // Return true if Op is either an unextended load, or a load suitable
2113 // for integer register-memory comparisons of type ICmpType.
2114 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2115   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2116   if (Load) {
2117     // There are no instructions to compare a register with a memory byte.
2118     if (Load->getMemoryVT() == MVT::i8)
2119       return false;
2120     // Otherwise decide on extension type.
2121     switch (Load->getExtensionType()) {
2122     case ISD::NON_EXTLOAD:
2123       return true;
2124     case ISD::SEXTLOAD:
2125       return ICmpType != SystemZICMP::UnsignedOnly;
2126     case ISD::ZEXTLOAD:
2127       return ICmpType != SystemZICMP::SignedOnly;
2128     default:
2129       break;
2130     }
2131   }
2132   return false;
2133 }
2134 
2135 // Return true if it is better to swap the operands of C.
2136 static bool shouldSwapCmpOperands(const Comparison &C) {
2137   // Leave f128 comparisons alone, since they have no memory forms.
2138   if (C.Op0.getValueType() == MVT::f128)
2139     return false;
2140 
2141   // Always keep a floating-point constant second, since comparisons with
2142   // zero can use LOAD TEST and comparisons with other constants make a
2143   // natural memory operand.
2144   if (isa<ConstantFPSDNode>(C.Op1))
2145     return false;
2146 
2147   // Never swap comparisons with zero since there are many ways to optimize
2148   // those later.
2149   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2150   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2151     return false;
2152 
2153   // Also keep natural memory operands second if the loaded value is
2154   // only used here.  Several comparisons have memory forms.
2155   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2156     return false;
2157 
2158   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2159   // In that case we generally prefer the memory to be second.
2160   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2161     // The only exceptions are when the second operand is a constant and
2162     // we can use things like CHHSI.
2163     if (!ConstOp1)
2164       return true;
2165     // The unsigned memory-immediate instructions can handle 16-bit
2166     // unsigned integers.
2167     if (C.ICmpType != SystemZICMP::SignedOnly &&
2168         isUInt<16>(ConstOp1->getZExtValue()))
2169       return false;
2170     // The signed memory-immediate instructions can handle 16-bit
2171     // signed integers.
2172     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2173         isInt<16>(ConstOp1->getSExtValue()))
2174       return false;
2175     return true;
2176   }
2177 
2178   // Try to promote the use of CGFR and CLGFR.
2179   unsigned Opcode0 = C.Op0.getOpcode();
2180   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2181     return true;
2182   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2183     return true;
2184   if (C.ICmpType != SystemZICMP::SignedOnly &&
2185       Opcode0 == ISD::AND &&
2186       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2187       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2188     return true;
2189 
2190   return false;
2191 }
2192 
2193 // Return a version of comparison CC mask CCMask in which the LT and GT
2194 // actions are swapped.
2195 static unsigned reverseCCMask(unsigned CCMask) {
2196   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
2197           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
2198           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
2199           (CCMask & SystemZ::CCMASK_CMP_UO));
2200 }
2201 
2202 // Check whether C tests for equality between X and Y and whether X - Y
2203 // or Y - X is also computed.  In that case it's better to compare the
2204 // result of the subtraction against zero.
2205 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2206                                  Comparison &C) {
2207   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2208       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2209     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2210       SDNode *N = *I;
2211       if (N->getOpcode() == ISD::SUB &&
2212           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2213            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2214         C.Op0 = SDValue(N, 0);
2215         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2216         return;
2217       }
2218     }
2219   }
2220 }
2221 
2222 // Check whether C compares a floating-point value with zero and if that
2223 // floating-point value is also negated.  In this case we can use the
2224 // negation to set CC, so avoiding separate LOAD AND TEST and
2225 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2226 static void adjustForFNeg(Comparison &C) {
2227   // This optimization is invalid for strict comparisons, since FNEG
2228   // does not raise any exceptions.
2229   if (C.Chain)
2230     return;
2231   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2232   if (C1 && C1->isZero()) {
2233     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2234       SDNode *N = *I;
2235       if (N->getOpcode() == ISD::FNEG) {
2236         C.Op0 = SDValue(N, 0);
2237         C.CCMask = reverseCCMask(C.CCMask);
2238         return;
2239       }
2240     }
2241   }
2242 }
2243 
2244 // Check whether C compares (shl X, 32) with 0 and whether X is
2245 // also sign-extended.  In that case it is better to test the result
2246 // of the sign extension using LTGFR.
2247 //
2248 // This case is important because InstCombine transforms a comparison
2249 // with (sext (trunc X)) into a comparison with (shl X, 32).
2250 static void adjustForLTGFR(Comparison &C) {
2251   // Check for a comparison between (shl X, 32) and 0.
2252   if (C.Op0.getOpcode() == ISD::SHL &&
2253       C.Op0.getValueType() == MVT::i64 &&
2254       C.Op1.getOpcode() == ISD::Constant &&
2255       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2256     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2257     if (C1 && C1->getZExtValue() == 32) {
2258       SDValue ShlOp0 = C.Op0.getOperand(0);
2259       // See whether X has any SIGN_EXTEND_INREG uses.
2260       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2261         SDNode *N = *I;
2262         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2263             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2264           C.Op0 = SDValue(N, 0);
2265           return;
2266         }
2267       }
2268     }
2269   }
2270 }
2271 
2272 // If C compares the truncation of an extending load, try to compare
2273 // the untruncated value instead.  This exposes more opportunities to
2274 // reuse CC.
2275 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2276                                Comparison &C) {
2277   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2278       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2279       C.Op1.getOpcode() == ISD::Constant &&
2280       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2281     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2282     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2283       unsigned Type = L->getExtensionType();
2284       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2285           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2286         C.Op0 = C.Op0.getOperand(0);
2287         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2288       }
2289     }
2290   }
2291 }
2292 
2293 // Return true if shift operation N has an in-range constant shift value.
2294 // Store it in ShiftVal if so.
2295 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2296   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2297   if (!Shift)
2298     return false;
2299 
2300   uint64_t Amount = Shift->getZExtValue();
2301   if (Amount >= N.getValueSizeInBits())
2302     return false;
2303 
2304   ShiftVal = Amount;
2305   return true;
2306 }
2307 
2308 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2309 // instruction and whether the CC value is descriptive enough to handle
2310 // a comparison of type Opcode between the AND result and CmpVal.
2311 // CCMask says which comparison result is being tested and BitSize is
2312 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2313 // return the corresponding CC mask, otherwise return 0.
2314 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2315                                      uint64_t Mask, uint64_t CmpVal,
2316                                      unsigned ICmpType) {
2317   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2318 
2319   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2320   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2321       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2322     return 0;
2323 
2324   // Work out the masks for the lowest and highest bits.
2325   unsigned HighShift = 63 - countLeadingZeros(Mask);
2326   uint64_t High = uint64_t(1) << HighShift;
2327   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2328 
2329   // Signed ordered comparisons are effectively unsigned if the sign
2330   // bit is dropped.
2331   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2332 
2333   // Check for equality comparisons with 0, or the equivalent.
2334   if (CmpVal == 0) {
2335     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2336       return SystemZ::CCMASK_TM_ALL_0;
2337     if (CCMask == SystemZ::CCMASK_CMP_NE)
2338       return SystemZ::CCMASK_TM_SOME_1;
2339   }
2340   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2341     if (CCMask == SystemZ::CCMASK_CMP_LT)
2342       return SystemZ::CCMASK_TM_ALL_0;
2343     if (CCMask == SystemZ::CCMASK_CMP_GE)
2344       return SystemZ::CCMASK_TM_SOME_1;
2345   }
2346   if (EffectivelyUnsigned && CmpVal < Low) {
2347     if (CCMask == SystemZ::CCMASK_CMP_LE)
2348       return SystemZ::CCMASK_TM_ALL_0;
2349     if (CCMask == SystemZ::CCMASK_CMP_GT)
2350       return SystemZ::CCMASK_TM_SOME_1;
2351   }
2352 
2353   // Check for equality comparisons with the mask, or the equivalent.
2354   if (CmpVal == Mask) {
2355     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2356       return SystemZ::CCMASK_TM_ALL_1;
2357     if (CCMask == SystemZ::CCMASK_CMP_NE)
2358       return SystemZ::CCMASK_TM_SOME_0;
2359   }
2360   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2361     if (CCMask == SystemZ::CCMASK_CMP_GT)
2362       return SystemZ::CCMASK_TM_ALL_1;
2363     if (CCMask == SystemZ::CCMASK_CMP_LE)
2364       return SystemZ::CCMASK_TM_SOME_0;
2365   }
2366   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2367     if (CCMask == SystemZ::CCMASK_CMP_GE)
2368       return SystemZ::CCMASK_TM_ALL_1;
2369     if (CCMask == SystemZ::CCMASK_CMP_LT)
2370       return SystemZ::CCMASK_TM_SOME_0;
2371   }
2372 
2373   // Check for ordered comparisons with the top bit.
2374   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2375     if (CCMask == SystemZ::CCMASK_CMP_LE)
2376       return SystemZ::CCMASK_TM_MSB_0;
2377     if (CCMask == SystemZ::CCMASK_CMP_GT)
2378       return SystemZ::CCMASK_TM_MSB_1;
2379   }
2380   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2381     if (CCMask == SystemZ::CCMASK_CMP_LT)
2382       return SystemZ::CCMASK_TM_MSB_0;
2383     if (CCMask == SystemZ::CCMASK_CMP_GE)
2384       return SystemZ::CCMASK_TM_MSB_1;
2385   }
2386 
2387   // If there are just two bits, we can do equality checks for Low and High
2388   // as well.
2389   if (Mask == Low + High) {
2390     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2391       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2392     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2393       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2394     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2395       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2396     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2397       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2398   }
2399 
2400   // Looks like we've exhausted our options.
2401   return 0;
2402 }
2403 
2404 // See whether C can be implemented as a TEST UNDER MASK instruction.
2405 // Update the arguments with the TM version if so.
2406 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2407                                    Comparison &C) {
2408   // Check that we have a comparison with a constant.
2409   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2410   if (!ConstOp1)
2411     return;
2412   uint64_t CmpVal = ConstOp1->getZExtValue();
2413 
2414   // Check whether the nonconstant input is an AND with a constant mask.
2415   Comparison NewC(C);
2416   uint64_t MaskVal;
2417   ConstantSDNode *Mask = nullptr;
2418   if (C.Op0.getOpcode() == ISD::AND) {
2419     NewC.Op0 = C.Op0.getOperand(0);
2420     NewC.Op1 = C.Op0.getOperand(1);
2421     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2422     if (!Mask)
2423       return;
2424     MaskVal = Mask->getZExtValue();
2425   } else {
2426     // There is no instruction to compare with a 64-bit immediate
2427     // so use TMHH instead if possible.  We need an unsigned ordered
2428     // comparison with an i64 immediate.
2429     if (NewC.Op0.getValueType() != MVT::i64 ||
2430         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2431         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2432         NewC.ICmpType == SystemZICMP::SignedOnly)
2433       return;
2434     // Convert LE and GT comparisons into LT and GE.
2435     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2436         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2437       if (CmpVal == uint64_t(-1))
2438         return;
2439       CmpVal += 1;
2440       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2441     }
2442     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2443     // be masked off without changing the result.
2444     MaskVal = -(CmpVal & -CmpVal);
2445     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2446   }
2447   if (!MaskVal)
2448     return;
2449 
2450   // Check whether the combination of mask, comparison value and comparison
2451   // type are suitable.
2452   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2453   unsigned NewCCMask, ShiftVal;
2454   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2455       NewC.Op0.getOpcode() == ISD::SHL &&
2456       isSimpleShift(NewC.Op0, ShiftVal) &&
2457       (MaskVal >> ShiftVal != 0) &&
2458       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2459       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2460                                         MaskVal >> ShiftVal,
2461                                         CmpVal >> ShiftVal,
2462                                         SystemZICMP::Any))) {
2463     NewC.Op0 = NewC.Op0.getOperand(0);
2464     MaskVal >>= ShiftVal;
2465   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2466              NewC.Op0.getOpcode() == ISD::SRL &&
2467              isSimpleShift(NewC.Op0, ShiftVal) &&
2468              (MaskVal << ShiftVal != 0) &&
2469              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2470              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2471                                                MaskVal << ShiftVal,
2472                                                CmpVal << ShiftVal,
2473                                                SystemZICMP::UnsignedOnly))) {
2474     NewC.Op0 = NewC.Op0.getOperand(0);
2475     MaskVal <<= ShiftVal;
2476   } else {
2477     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2478                                      NewC.ICmpType);
2479     if (!NewCCMask)
2480       return;
2481   }
2482 
2483   // Go ahead and make the change.
2484   C.Opcode = SystemZISD::TM;
2485   C.Op0 = NewC.Op0;
2486   if (Mask && Mask->getZExtValue() == MaskVal)
2487     C.Op1 = SDValue(Mask, 0);
2488   else
2489     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2490   C.CCValid = SystemZ::CCMASK_TM;
2491   C.CCMask = NewCCMask;
2492 }
2493 
2494 // See whether the comparison argument contains a redundant AND
2495 // and remove it if so.  This sometimes happens due to the generic
2496 // BRCOND expansion.
2497 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2498                                   Comparison &C) {
2499   if (C.Op0.getOpcode() != ISD::AND)
2500     return;
2501   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2502   if (!Mask)
2503     return;
2504   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2505   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2506     return;
2507 
2508   C.Op0 = C.Op0.getOperand(0);
2509 }
2510 
2511 // Return a Comparison that tests the condition-code result of intrinsic
2512 // node Call against constant integer CC using comparison code Cond.
2513 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2514 // and CCValid is the set of possible condition-code results.
2515 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2516                                   SDValue Call, unsigned CCValid, uint64_t CC,
2517                                   ISD::CondCode Cond) {
2518   Comparison C(Call, SDValue(), SDValue());
2519   C.Opcode = Opcode;
2520   C.CCValid = CCValid;
2521   if (Cond == ISD::SETEQ)
2522     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2523     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2524   else if (Cond == ISD::SETNE)
2525     // ...and the inverse of that.
2526     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2527   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2528     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2529     // always true for CC>3.
2530     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2531   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2532     // ...and the inverse of that.
2533     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2534   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2535     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2536     // always true for CC>3.
2537     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2538   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2539     // ...and the inverse of that.
2540     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2541   else
2542     llvm_unreachable("Unexpected integer comparison type");
2543   C.CCMask &= CCValid;
2544   return C;
2545 }
2546 
2547 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2548 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2549                          ISD::CondCode Cond, const SDLoc &DL,
2550                          SDValue Chain = SDValue(),
2551                          bool IsSignaling = false) {
2552   if (CmpOp1.getOpcode() == ISD::Constant) {
2553     assert(!Chain);
2554     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2555     unsigned Opcode, CCValid;
2556     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2557         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2558         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2559       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2560     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2561         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2562         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2563       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2564   }
2565   Comparison C(CmpOp0, CmpOp1, Chain);
2566   C.CCMask = CCMaskForCondCode(Cond);
2567   if (C.Op0.getValueType().isFloatingPoint()) {
2568     C.CCValid = SystemZ::CCMASK_FCMP;
2569     if (!C.Chain)
2570       C.Opcode = SystemZISD::FCMP;
2571     else if (!IsSignaling)
2572       C.Opcode = SystemZISD::STRICT_FCMP;
2573     else
2574       C.Opcode = SystemZISD::STRICT_FCMPS;
2575     adjustForFNeg(C);
2576   } else {
2577     assert(!C.Chain);
2578     C.CCValid = SystemZ::CCMASK_ICMP;
2579     C.Opcode = SystemZISD::ICMP;
2580     // Choose the type of comparison.  Equality and inequality tests can
2581     // use either signed or unsigned comparisons.  The choice also doesn't
2582     // matter if both sign bits are known to be clear.  In those cases we
2583     // want to give the main isel code the freedom to choose whichever
2584     // form fits best.
2585     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2586         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2587         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2588       C.ICmpType = SystemZICMP::Any;
2589     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2590       C.ICmpType = SystemZICMP::UnsignedOnly;
2591     else
2592       C.ICmpType = SystemZICMP::SignedOnly;
2593     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2594     adjustForRedundantAnd(DAG, DL, C);
2595     adjustZeroCmp(DAG, DL, C);
2596     adjustSubwordCmp(DAG, DL, C);
2597     adjustForSubtraction(DAG, DL, C);
2598     adjustForLTGFR(C);
2599     adjustICmpTruncate(DAG, DL, C);
2600   }
2601 
2602   if (shouldSwapCmpOperands(C)) {
2603     std::swap(C.Op0, C.Op1);
2604     C.CCMask = reverseCCMask(C.CCMask);
2605   }
2606 
2607   adjustForTestUnderMask(DAG, DL, C);
2608   return C;
2609 }
2610 
2611 // Emit the comparison instruction described by C.
2612 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2613   if (!C.Op1.getNode()) {
2614     SDNode *Node;
2615     switch (C.Op0.getOpcode()) {
2616     case ISD::INTRINSIC_W_CHAIN:
2617       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2618       return SDValue(Node, 0);
2619     case ISD::INTRINSIC_WO_CHAIN:
2620       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2621       return SDValue(Node, Node->getNumValues() - 1);
2622     default:
2623       llvm_unreachable("Invalid comparison operands");
2624     }
2625   }
2626   if (C.Opcode == SystemZISD::ICMP)
2627     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2628                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2629   if (C.Opcode == SystemZISD::TM) {
2630     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2631                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2632     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2633                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2634   }
2635   if (C.Chain) {
2636     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2637     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2638   }
2639   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2640 }
2641 
2642 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2643 // 64 bits.  Extend is the extension type to use.  Store the high part
2644 // in Hi and the low part in Lo.
2645 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2646                             SDValue Op0, SDValue Op1, SDValue &Hi,
2647                             SDValue &Lo) {
2648   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2649   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2650   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2651   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2652                    DAG.getConstant(32, DL, MVT::i64));
2653   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2654   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2655 }
2656 
2657 // Lower a binary operation that produces two VT results, one in each
2658 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2659 // and Opcode performs the GR128 operation.  Store the even register result
2660 // in Even and the odd register result in Odd.
2661 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2662                              unsigned Opcode, SDValue Op0, SDValue Op1,
2663                              SDValue &Even, SDValue &Odd) {
2664   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2665   bool Is32Bit = is32Bit(VT);
2666   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2667   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2668 }
2669 
2670 // Return an i32 value that is 1 if the CC value produced by CCReg is
2671 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2672 // in CCValid, so other values can be ignored.
2673 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2674                          unsigned CCValid, unsigned CCMask) {
2675   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2676                    DAG.getConstant(0, DL, MVT::i32),
2677                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2678                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2679   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2680 }
2681 
2682 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2683 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2684 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2685 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2686 // floating-point comparisons.
2687 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2688 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2689   switch (CC) {
2690   case ISD::SETOEQ:
2691   case ISD::SETEQ:
2692     switch (Mode) {
2693     case CmpMode::Int:         return SystemZISD::VICMPE;
2694     case CmpMode::FP:          return SystemZISD::VFCMPE;
2695     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2696     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2697     }
2698     llvm_unreachable("Bad mode");
2699 
2700   case ISD::SETOGE:
2701   case ISD::SETGE:
2702     switch (Mode) {
2703     case CmpMode::Int:         return 0;
2704     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2705     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2706     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2707     }
2708     llvm_unreachable("Bad mode");
2709 
2710   case ISD::SETOGT:
2711   case ISD::SETGT:
2712     switch (Mode) {
2713     case CmpMode::Int:         return SystemZISD::VICMPH;
2714     case CmpMode::FP:          return SystemZISD::VFCMPH;
2715     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2716     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2717     }
2718     llvm_unreachable("Bad mode");
2719 
2720   case ISD::SETUGT:
2721     switch (Mode) {
2722     case CmpMode::Int:         return SystemZISD::VICMPHL;
2723     case CmpMode::FP:          return 0;
2724     case CmpMode::StrictFP:    return 0;
2725     case CmpMode::SignalingFP: return 0;
2726     }
2727     llvm_unreachable("Bad mode");
2728 
2729   default:
2730     return 0;
2731   }
2732 }
2733 
2734 // Return the SystemZISD vector comparison operation for CC or its inverse,
2735 // or 0 if neither can be done directly.  Indicate in Invert whether the
2736 // result is for the inverse of CC.  Mode is as above.
2737 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2738                                             bool &Invert) {
2739   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2740     Invert = false;
2741     return Opcode;
2742   }
2743 
2744   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2745   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2746     Invert = true;
2747     return Opcode;
2748   }
2749 
2750   return 0;
2751 }
2752 
2753 // Return a v2f64 that contains the extended form of elements Start and Start+1
2754 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2755 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2756                                   SDValue Op, SDValue Chain) {
2757   int Mask[] = { Start, -1, Start + 1, -1 };
2758   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2759   if (Chain) {
2760     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2761     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2762   }
2763   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2764 }
2765 
2766 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2767 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2768 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2769                                             const SDLoc &DL, EVT VT,
2770                                             SDValue CmpOp0,
2771                                             SDValue CmpOp1,
2772                                             SDValue Chain) const {
2773   // There is no hardware support for v4f32 (unless we have the vector
2774   // enhancements facility 1), so extend the vector into two v2f64s
2775   // and compare those.
2776   if (CmpOp0.getValueType() == MVT::v4f32 &&
2777       !Subtarget.hasVectorEnhancements1()) {
2778     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2779     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2780     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2781     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2782     if (Chain) {
2783       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2784       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2785       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2786       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2787       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2788                             H1.getValue(1), L1.getValue(1),
2789                             HRes.getValue(1), LRes.getValue(1) };
2790       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2791       SDValue Ops[2] = { Res, NewChain };
2792       return DAG.getMergeValues(Ops, DL);
2793     }
2794     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2795     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2796     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2797   }
2798   if (Chain) {
2799     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2800     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2801   }
2802   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2803 }
2804 
2805 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2806 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2807 // floating-point comparison.  If in addition IsSignaling is true, we have
2808 // a strict signaling floating-point comparison.
2809 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2810                                                 const SDLoc &DL, EVT VT,
2811                                                 ISD::CondCode CC,
2812                                                 SDValue CmpOp0,
2813                                                 SDValue CmpOp1,
2814                                                 SDValue Chain,
2815                                                 bool IsSignaling) const {
2816   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2817   assert (!Chain || IsFP);
2818   assert (!IsSignaling || Chain);
2819   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2820                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2821   bool Invert = false;
2822   SDValue Cmp;
2823   switch (CC) {
2824     // Handle tests for order using (or (ogt y x) (oge x y)).
2825   case ISD::SETUO:
2826     Invert = true;
2827     LLVM_FALLTHROUGH;
2828   case ISD::SETO: {
2829     assert(IsFP && "Unexpected integer comparison");
2830     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2831                               DL, VT, CmpOp1, CmpOp0, Chain);
2832     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2833                               DL, VT, CmpOp0, CmpOp1, Chain);
2834     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2835     if (Chain)
2836       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2837                           LT.getValue(1), GE.getValue(1));
2838     break;
2839   }
2840 
2841     // Handle <> tests using (or (ogt y x) (ogt x y)).
2842   case ISD::SETUEQ:
2843     Invert = true;
2844     LLVM_FALLTHROUGH;
2845   case ISD::SETONE: {
2846     assert(IsFP && "Unexpected integer comparison");
2847     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2848                               DL, VT, CmpOp1, CmpOp0, Chain);
2849     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2850                               DL, VT, CmpOp0, CmpOp1, Chain);
2851     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2852     if (Chain)
2853       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2854                           LT.getValue(1), GT.getValue(1));
2855     break;
2856   }
2857 
2858     // Otherwise a single comparison is enough.  It doesn't really
2859     // matter whether we try the inversion or the swap first, since
2860     // there are no cases where both work.
2861   default:
2862     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2863       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2864     else {
2865       CC = ISD::getSetCCSwappedOperands(CC);
2866       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2867         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2868       else
2869         llvm_unreachable("Unhandled comparison");
2870     }
2871     if (Chain)
2872       Chain = Cmp.getValue(1);
2873     break;
2874   }
2875   if (Invert) {
2876     SDValue Mask =
2877       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2878     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2879   }
2880   if (Chain && Chain.getNode() != Cmp.getNode()) {
2881     SDValue Ops[2] = { Cmp, Chain };
2882     Cmp = DAG.getMergeValues(Ops, DL);
2883   }
2884   return Cmp;
2885 }
2886 
2887 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2888                                           SelectionDAG &DAG) const {
2889   SDValue CmpOp0   = Op.getOperand(0);
2890   SDValue CmpOp1   = Op.getOperand(1);
2891   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2892   SDLoc DL(Op);
2893   EVT VT = Op.getValueType();
2894   if (VT.isVector())
2895     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2896 
2897   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2898   SDValue CCReg = emitCmp(DAG, DL, C);
2899   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2900 }
2901 
2902 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2903                                                   SelectionDAG &DAG,
2904                                                   bool IsSignaling) const {
2905   SDValue Chain    = Op.getOperand(0);
2906   SDValue CmpOp0   = Op.getOperand(1);
2907   SDValue CmpOp1   = Op.getOperand(2);
2908   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2909   SDLoc DL(Op);
2910   EVT VT = Op.getNode()->getValueType(0);
2911   if (VT.isVector()) {
2912     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2913                                    Chain, IsSignaling);
2914     return Res.getValue(Op.getResNo());
2915   }
2916 
2917   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2918   SDValue CCReg = emitCmp(DAG, DL, C);
2919   CCReg->setFlags(Op->getFlags());
2920   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2921   SDValue Ops[2] = { Result, CCReg.getValue(1) };
2922   return DAG.getMergeValues(Ops, DL);
2923 }
2924 
2925 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2926   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2927   SDValue CmpOp0   = Op.getOperand(2);
2928   SDValue CmpOp1   = Op.getOperand(3);
2929   SDValue Dest     = Op.getOperand(4);
2930   SDLoc DL(Op);
2931 
2932   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2933   SDValue CCReg = emitCmp(DAG, DL, C);
2934   return DAG.getNode(
2935       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2936       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2937       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2938 }
2939 
2940 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2941 // allowing Pos and Neg to be wider than CmpOp.
2942 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2943   return (Neg.getOpcode() == ISD::SUB &&
2944           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2945           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2946           Neg.getOperand(1) == Pos &&
2947           (Pos == CmpOp ||
2948            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2949             Pos.getOperand(0) == CmpOp)));
2950 }
2951 
2952 // Return the absolute or negative absolute of Op; IsNegative decides which.
2953 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2954                            bool IsNegative) {
2955   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2956   if (IsNegative)
2957     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2958                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2959   return Op;
2960 }
2961 
2962 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2963                                               SelectionDAG &DAG) const {
2964   SDValue CmpOp0   = Op.getOperand(0);
2965   SDValue CmpOp1   = Op.getOperand(1);
2966   SDValue TrueOp   = Op.getOperand(2);
2967   SDValue FalseOp  = Op.getOperand(3);
2968   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2969   SDLoc DL(Op);
2970 
2971   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2972 
2973   // Check for absolute and negative-absolute selections, including those
2974   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2975   // This check supplements the one in DAGCombiner.
2976   if (C.Opcode == SystemZISD::ICMP &&
2977       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2978       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2979       C.Op1.getOpcode() == ISD::Constant &&
2980       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2981     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2982       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2983     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2984       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2985   }
2986 
2987   SDValue CCReg = emitCmp(DAG, DL, C);
2988   SDValue Ops[] = {TrueOp, FalseOp,
2989                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2990                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
2991 
2992   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2993 }
2994 
2995 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2996                                                   SelectionDAG &DAG) const {
2997   SDLoc DL(Node);
2998   const GlobalValue *GV = Node->getGlobal();
2999   int64_t Offset = Node->getOffset();
3000   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3001   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3002 
3003   SDValue Result;
3004   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3005     if (isInt<32>(Offset)) {
3006       // Assign anchors at 1<<12 byte boundaries.
3007       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3008       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3009       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3010 
3011       // The offset can be folded into the address if it is aligned to a
3012       // halfword.
3013       Offset -= Anchor;
3014       if (Offset != 0 && (Offset & 1) == 0) {
3015         SDValue Full =
3016           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3017         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3018         Offset = 0;
3019       }
3020     } else {
3021       // Conservatively load a constant offset greater than 32 bits into a
3022       // register below.
3023       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3024       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3025     }
3026   } else {
3027     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3028     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3029     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3030                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3031   }
3032 
3033   // If there was a non-zero offset that we didn't fold, create an explicit
3034   // addition for it.
3035   if (Offset != 0)
3036     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3037                          DAG.getConstant(Offset, DL, PtrVT));
3038 
3039   return Result;
3040 }
3041 
3042 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3043                                                  SelectionDAG &DAG,
3044                                                  unsigned Opcode,
3045                                                  SDValue GOTOffset) const {
3046   SDLoc DL(Node);
3047   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3048   SDValue Chain = DAG.getEntryNode();
3049   SDValue Glue;
3050 
3051   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3052       CallingConv::GHC)
3053     report_fatal_error("In GHC calling convention TLS is not supported");
3054 
3055   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3056   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3057   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3058   Glue = Chain.getValue(1);
3059   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3060   Glue = Chain.getValue(1);
3061 
3062   // The first call operand is the chain and the second is the TLS symbol.
3063   SmallVector<SDValue, 8> Ops;
3064   Ops.push_back(Chain);
3065   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3066                                            Node->getValueType(0),
3067                                            0, 0));
3068 
3069   // Add argument registers to the end of the list so that they are
3070   // known live into the call.
3071   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3072   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3073 
3074   // Add a register mask operand representing the call-preserved registers.
3075   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3076   const uint32_t *Mask =
3077       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3078   assert(Mask && "Missing call preserved mask for calling convention");
3079   Ops.push_back(DAG.getRegisterMask(Mask));
3080 
3081   // Glue the call to the argument copies.
3082   Ops.push_back(Glue);
3083 
3084   // Emit the call.
3085   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3086   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3087   Glue = Chain.getValue(1);
3088 
3089   // Copy the return value from %r2.
3090   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3091 }
3092 
3093 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3094                                                   SelectionDAG &DAG) const {
3095   SDValue Chain = DAG.getEntryNode();
3096   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3097 
3098   // The high part of the thread pointer is in access register 0.
3099   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3100   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3101 
3102   // The low part of the thread pointer is in access register 1.
3103   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3104   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3105 
3106   // Merge them into a single 64-bit address.
3107   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3108                                     DAG.getConstant(32, DL, PtrVT));
3109   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3110 }
3111 
3112 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3113                                                      SelectionDAG &DAG) const {
3114   if (DAG.getTarget().useEmulatedTLS())
3115     return LowerToTLSEmulatedModel(Node, DAG);
3116   SDLoc DL(Node);
3117   const GlobalValue *GV = Node->getGlobal();
3118   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3119   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3120 
3121   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3122       CallingConv::GHC)
3123     report_fatal_error("In GHC calling convention TLS is not supported");
3124 
3125   SDValue TP = lowerThreadPointer(DL, DAG);
3126 
3127   // Get the offset of GA from the thread pointer, based on the TLS model.
3128   SDValue Offset;
3129   switch (model) {
3130     case TLSModel::GeneralDynamic: {
3131       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3132       SystemZConstantPoolValue *CPV =
3133         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3134 
3135       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3136       Offset = DAG.getLoad(
3137           PtrVT, DL, DAG.getEntryNode(), Offset,
3138           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3139 
3140       // Call __tls_get_offset to retrieve the offset.
3141       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3142       break;
3143     }
3144 
3145     case TLSModel::LocalDynamic: {
3146       // Load the GOT offset of the module ID.
3147       SystemZConstantPoolValue *CPV =
3148         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3149 
3150       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3151       Offset = DAG.getLoad(
3152           PtrVT, DL, DAG.getEntryNode(), Offset,
3153           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3154 
3155       // Call __tls_get_offset to retrieve the module base offset.
3156       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3157 
3158       // Note: The SystemZLDCleanupPass will remove redundant computations
3159       // of the module base offset.  Count total number of local-dynamic
3160       // accesses to trigger execution of that pass.
3161       SystemZMachineFunctionInfo* MFI =
3162         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3163       MFI->incNumLocalDynamicTLSAccesses();
3164 
3165       // Add the per-symbol offset.
3166       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3167 
3168       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
3169       DTPOffset = DAG.getLoad(
3170           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3171           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3172 
3173       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3174       break;
3175     }
3176 
3177     case TLSModel::InitialExec: {
3178       // Load the offset from the GOT.
3179       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3180                                           SystemZII::MO_INDNTPOFF);
3181       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3182       Offset =
3183           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3184                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3185       break;
3186     }
3187 
3188     case TLSModel::LocalExec: {
3189       // Force the offset into the constant pool and load it from there.
3190       SystemZConstantPoolValue *CPV =
3191         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3192 
3193       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
3194       Offset = DAG.getLoad(
3195           PtrVT, DL, DAG.getEntryNode(), Offset,
3196           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3197       break;
3198     }
3199   }
3200 
3201   // Add the base and offset together.
3202   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3203 }
3204 
3205 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3206                                                  SelectionDAG &DAG) const {
3207   SDLoc DL(Node);
3208   const BlockAddress *BA = Node->getBlockAddress();
3209   int64_t Offset = Node->getOffset();
3210   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3211 
3212   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3213   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3214   return Result;
3215 }
3216 
3217 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3218                                               SelectionDAG &DAG) const {
3219   SDLoc DL(JT);
3220   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3221   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3222 
3223   // Use LARL to load the address of the table.
3224   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3225 }
3226 
3227 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3228                                                  SelectionDAG &DAG) const {
3229   SDLoc DL(CP);
3230   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3231 
3232   SDValue Result;
3233   if (CP->isMachineConstantPoolEntry())
3234     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
3235                                        CP->getAlignment());
3236   else
3237     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
3238                                        CP->getAlignment(), CP->getOffset());
3239 
3240   // Use LARL to load the address of the constant pool entry.
3241   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3242 }
3243 
3244 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3245                                               SelectionDAG &DAG) const {
3246   auto *TFL =
3247       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3248   MachineFunction &MF = DAG.getMachineFunction();
3249   MachineFrameInfo &MFI = MF.getFrameInfo();
3250   MFI.setFrameAddressIsTaken(true);
3251 
3252   SDLoc DL(Op);
3253   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3254   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3255 
3256   // Return null if the back chain is not present.
3257   bool HasBackChain = MF.getFunction().hasFnAttribute("backchain");
3258   if (TFL->usePackedStack(MF) && !HasBackChain)
3259     return DAG.getConstant(0, DL, PtrVT);
3260 
3261   // By definition, the frame address is the address of the back chain.
3262   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3263   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3264 
3265   // FIXME The frontend should detect this case.
3266   if (Depth > 0) {
3267     report_fatal_error("Unsupported stack frame traversal count");
3268   }
3269 
3270   return BackChain;
3271 }
3272 
3273 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3274                                                SelectionDAG &DAG) const {
3275   MachineFunction &MF = DAG.getMachineFunction();
3276   MachineFrameInfo &MFI = MF.getFrameInfo();
3277   MFI.setReturnAddressIsTaken(true);
3278 
3279   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3280     return SDValue();
3281 
3282   SDLoc DL(Op);
3283   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3284   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3285 
3286   // FIXME The frontend should detect this case.
3287   if (Depth > 0) {
3288     report_fatal_error("Unsupported stack frame traversal count");
3289   }
3290 
3291   // Return R14D, which has the return address. Mark it an implicit live-in.
3292   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3293   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3294 }
3295 
3296 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3297                                             SelectionDAG &DAG) const {
3298   SDLoc DL(Op);
3299   SDValue In = Op.getOperand(0);
3300   EVT InVT = In.getValueType();
3301   EVT ResVT = Op.getValueType();
3302 
3303   // Convert loads directly.  This is normally done by DAGCombiner,
3304   // but we need this case for bitcasts that are created during lowering
3305   // and which are then lowered themselves.
3306   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3307     if (ISD::isNormalLoad(LoadN)) {
3308       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3309                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3310       // Update the chain uses.
3311       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3312       return NewLoad;
3313     }
3314 
3315   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3316     SDValue In64;
3317     if (Subtarget.hasHighWord()) {
3318       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3319                                        MVT::i64);
3320       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3321                                        MVT::i64, SDValue(U64, 0), In);
3322     } else {
3323       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3324       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3325                          DAG.getConstant(32, DL, MVT::i64));
3326     }
3327     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3328     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3329                                       DL, MVT::f32, Out64);
3330   }
3331   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3332     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3333     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3334                                              MVT::f64, SDValue(U64, 0), In);
3335     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3336     if (Subtarget.hasHighWord())
3337       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3338                                         MVT::i32, Out64);
3339     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3340                                 DAG.getConstant(32, DL, MVT::i64));
3341     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3342   }
3343   llvm_unreachable("Unexpected bitcast combination");
3344 }
3345 
3346 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3347                                             SelectionDAG &DAG) const {
3348   MachineFunction &MF = DAG.getMachineFunction();
3349   SystemZMachineFunctionInfo *FuncInfo =
3350     MF.getInfo<SystemZMachineFunctionInfo>();
3351   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3352 
3353   SDValue Chain   = Op.getOperand(0);
3354   SDValue Addr    = Op.getOperand(1);
3355   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3356   SDLoc DL(Op);
3357 
3358   // The initial values of each field.
3359   const unsigned NumFields = 4;
3360   SDValue Fields[NumFields] = {
3361     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3362     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3363     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3364     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3365   };
3366 
3367   // Store each field into its respective slot.
3368   SDValue MemOps[NumFields];
3369   unsigned Offset = 0;
3370   for (unsigned I = 0; I < NumFields; ++I) {
3371     SDValue FieldAddr = Addr;
3372     if (Offset != 0)
3373       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3374                               DAG.getIntPtrConstant(Offset, DL));
3375     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3376                              MachinePointerInfo(SV, Offset));
3377     Offset += 8;
3378   }
3379   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3380 }
3381 
3382 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3383                                            SelectionDAG &DAG) const {
3384   SDValue Chain      = Op.getOperand(0);
3385   SDValue DstPtr     = Op.getOperand(1);
3386   SDValue SrcPtr     = Op.getOperand(2);
3387   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3388   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3389   SDLoc DL(Op);
3390 
3391   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3392                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3393                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3394                        MachinePointerInfo(SrcSV));
3395 }
3396 
3397 SDValue SystemZTargetLowering::
3398 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3399   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3400   MachineFunction &MF = DAG.getMachineFunction();
3401   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3402   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3403 
3404   SDValue Chain = Op.getOperand(0);
3405   SDValue Size  = Op.getOperand(1);
3406   SDValue Align = Op.getOperand(2);
3407   SDLoc DL(Op);
3408 
3409   // If user has set the no alignment function attribute, ignore
3410   // alloca alignments.
3411   uint64_t AlignVal = (RealignOpt ?
3412                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3413 
3414   uint64_t StackAlign = TFI->getStackAlignment();
3415   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3416   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3417 
3418   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3419   SDValue NeededSpace = Size;
3420 
3421   // Get a reference to the stack pointer.
3422   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3423 
3424   // If we need a backchain, save it now.
3425   SDValue Backchain;
3426   if (StoreBackchain)
3427     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3428 
3429   // Add extra space for alignment if needed.
3430   if (ExtraAlignSpace)
3431     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3432                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3433 
3434   // Get the new stack pointer value.
3435   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3436 
3437   // Copy the new stack pointer back.
3438   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3439 
3440   // The allocated data lives above the 160 bytes allocated for the standard
3441   // frame, plus any outgoing stack arguments.  We don't know how much that
3442   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3443   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3444   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3445 
3446   // Dynamically realign if needed.
3447   if (RequiredAlign > StackAlign) {
3448     Result =
3449       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3450                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3451     Result =
3452       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3453                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3454   }
3455 
3456   if (StoreBackchain)
3457     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3458 
3459   SDValue Ops[2] = { Result, Chain };
3460   return DAG.getMergeValues(Ops, DL);
3461 }
3462 
3463 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3464     SDValue Op, SelectionDAG &DAG) const {
3465   SDLoc DL(Op);
3466 
3467   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3468 }
3469 
3470 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3471                                               SelectionDAG &DAG) const {
3472   EVT VT = Op.getValueType();
3473   SDLoc DL(Op);
3474   SDValue Ops[2];
3475   if (is32Bit(VT))
3476     // Just do a normal 64-bit multiplication and extract the results.
3477     // We define this so that it can be used for constant division.
3478     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3479                     Op.getOperand(1), Ops[1], Ops[0]);
3480   else if (Subtarget.hasMiscellaneousExtensions2())
3481     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3482     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3483     // return the low half first, so the results are in reverse order.
3484     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3485                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3486   else {
3487     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3488     //
3489     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3490     //
3491     // but using the fact that the upper halves are either all zeros
3492     // or all ones:
3493     //
3494     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3495     //
3496     // and grouping the right terms together since they are quicker than the
3497     // multiplication:
3498     //
3499     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3500     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3501     SDValue LL = Op.getOperand(0);
3502     SDValue RL = Op.getOperand(1);
3503     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3504     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3505     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3506     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3507     // return the low half first, so the results are in reverse order.
3508     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3509                      LL, RL, Ops[1], Ops[0]);
3510     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3511     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3512     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3513     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3514   }
3515   return DAG.getMergeValues(Ops, DL);
3516 }
3517 
3518 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3519                                               SelectionDAG &DAG) const {
3520   EVT VT = Op.getValueType();
3521   SDLoc DL(Op);
3522   SDValue Ops[2];
3523   if (is32Bit(VT))
3524     // Just do a normal 64-bit multiplication and extract the results.
3525     // We define this so that it can be used for constant division.
3526     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3527                     Op.getOperand(1), Ops[1], Ops[0]);
3528   else
3529     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3530     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3531     // return the low half first, so the results are in reverse order.
3532     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3533                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3534   return DAG.getMergeValues(Ops, DL);
3535 }
3536 
3537 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3538                                             SelectionDAG &DAG) const {
3539   SDValue Op0 = Op.getOperand(0);
3540   SDValue Op1 = Op.getOperand(1);
3541   EVT VT = Op.getValueType();
3542   SDLoc DL(Op);
3543 
3544   // We use DSGF for 32-bit division.  This means the first operand must
3545   // always be 64-bit, and the second operand should be 32-bit whenever
3546   // that is possible, to improve performance.
3547   if (is32Bit(VT))
3548     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3549   else if (DAG.ComputeNumSignBits(Op1) > 32)
3550     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3551 
3552   // DSG(F) returns the remainder in the even register and the
3553   // quotient in the odd register.
3554   SDValue Ops[2];
3555   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3556   return DAG.getMergeValues(Ops, DL);
3557 }
3558 
3559 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3560                                             SelectionDAG &DAG) const {
3561   EVT VT = Op.getValueType();
3562   SDLoc DL(Op);
3563 
3564   // DL(G) returns the remainder in the even register and the
3565   // quotient in the odd register.
3566   SDValue Ops[2];
3567   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3568                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3569   return DAG.getMergeValues(Ops, DL);
3570 }
3571 
3572 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3573   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3574 
3575   // Get the known-zero masks for each operand.
3576   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3577   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3578                         DAG.computeKnownBits(Ops[1])};
3579 
3580   // See if the upper 32 bits of one operand and the lower 32 bits of the
3581   // other are known zero.  They are the low and high operands respectively.
3582   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3583                        Known[1].Zero.getZExtValue() };
3584   unsigned High, Low;
3585   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3586     High = 1, Low = 0;
3587   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3588     High = 0, Low = 1;
3589   else
3590     return Op;
3591 
3592   SDValue LowOp = Ops[Low];
3593   SDValue HighOp = Ops[High];
3594 
3595   // If the high part is a constant, we're better off using IILH.
3596   if (HighOp.getOpcode() == ISD::Constant)
3597     return Op;
3598 
3599   // If the low part is a constant that is outside the range of LHI,
3600   // then we're better off using IILF.
3601   if (LowOp.getOpcode() == ISD::Constant) {
3602     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3603     if (!isInt<16>(Value))
3604       return Op;
3605   }
3606 
3607   // Check whether the high part is an AND that doesn't change the
3608   // high 32 bits and just masks out low bits.  We can skip it if so.
3609   if (HighOp.getOpcode() == ISD::AND &&
3610       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3611     SDValue HighOp0 = HighOp.getOperand(0);
3612     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3613     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3614       HighOp = HighOp0;
3615   }
3616 
3617   // Take advantage of the fact that all GR32 operations only change the
3618   // low 32 bits by truncating Low to an i32 and inserting it directly
3619   // using a subreg.  The interesting cases are those where the truncation
3620   // can be folded.
3621   SDLoc DL(Op);
3622   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3623   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3624                                    MVT::i64, HighOp, Low32);
3625 }
3626 
3627 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3628 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3629                                           SelectionDAG &DAG) const {
3630   SDNode *N = Op.getNode();
3631   SDValue LHS = N->getOperand(0);
3632   SDValue RHS = N->getOperand(1);
3633   SDLoc DL(N);
3634   unsigned BaseOp = 0;
3635   unsigned CCValid = 0;
3636   unsigned CCMask = 0;
3637 
3638   switch (Op.getOpcode()) {
3639   default: llvm_unreachable("Unknown instruction!");
3640   case ISD::SADDO:
3641     BaseOp = SystemZISD::SADDO;
3642     CCValid = SystemZ::CCMASK_ARITH;
3643     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3644     break;
3645   case ISD::SSUBO:
3646     BaseOp = SystemZISD::SSUBO;
3647     CCValid = SystemZ::CCMASK_ARITH;
3648     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3649     break;
3650   case ISD::UADDO:
3651     BaseOp = SystemZISD::UADDO;
3652     CCValid = SystemZ::CCMASK_LOGICAL;
3653     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3654     break;
3655   case ISD::USUBO:
3656     BaseOp = SystemZISD::USUBO;
3657     CCValid = SystemZ::CCMASK_LOGICAL;
3658     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3659     break;
3660   }
3661 
3662   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3663   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3664 
3665   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3666   if (N->getValueType(1) == MVT::i1)
3667     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3668 
3669   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3670 }
3671 
3672 static bool isAddCarryChain(SDValue Carry) {
3673   while (Carry.getOpcode() == ISD::ADDCARRY)
3674     Carry = Carry.getOperand(2);
3675   return Carry.getOpcode() == ISD::UADDO;
3676 }
3677 
3678 static bool isSubBorrowChain(SDValue Carry) {
3679   while (Carry.getOpcode() == ISD::SUBCARRY)
3680     Carry = Carry.getOperand(2);
3681   return Carry.getOpcode() == ISD::USUBO;
3682 }
3683 
3684 // Lower ADDCARRY/SUBCARRY nodes.
3685 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3686                                                 SelectionDAG &DAG) const {
3687 
3688   SDNode *N = Op.getNode();
3689   MVT VT = N->getSimpleValueType(0);
3690 
3691   // Let legalize expand this if it isn't a legal type yet.
3692   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3693     return SDValue();
3694 
3695   SDValue LHS = N->getOperand(0);
3696   SDValue RHS = N->getOperand(1);
3697   SDValue Carry = Op.getOperand(2);
3698   SDLoc DL(N);
3699   unsigned BaseOp = 0;
3700   unsigned CCValid = 0;
3701   unsigned CCMask = 0;
3702 
3703   switch (Op.getOpcode()) {
3704   default: llvm_unreachable("Unknown instruction!");
3705   case ISD::ADDCARRY:
3706     if (!isAddCarryChain(Carry))
3707       return SDValue();
3708 
3709     BaseOp = SystemZISD::ADDCARRY;
3710     CCValid = SystemZ::CCMASK_LOGICAL;
3711     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3712     break;
3713   case ISD::SUBCARRY:
3714     if (!isSubBorrowChain(Carry))
3715       return SDValue();
3716 
3717     BaseOp = SystemZISD::SUBCARRY;
3718     CCValid = SystemZ::CCMASK_LOGICAL;
3719     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3720     break;
3721   }
3722 
3723   // Set the condition code from the carry flag.
3724   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3725                       DAG.getConstant(CCValid, DL, MVT::i32),
3726                       DAG.getConstant(CCMask, DL, MVT::i32));
3727 
3728   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3729   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3730 
3731   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3732   if (N->getValueType(1) == MVT::i1)
3733     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3734 
3735   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3736 }
3737 
3738 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3739                                           SelectionDAG &DAG) const {
3740   EVT VT = Op.getValueType();
3741   SDLoc DL(Op);
3742   Op = Op.getOperand(0);
3743 
3744   // Handle vector types via VPOPCT.
3745   if (VT.isVector()) {
3746     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3747     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3748     switch (VT.getScalarSizeInBits()) {
3749     case 8:
3750       break;
3751     case 16: {
3752       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3753       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3754       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3755       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3756       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3757       break;
3758     }
3759     case 32: {
3760       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3761                                             DAG.getConstant(0, DL, MVT::i32));
3762       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3763       break;
3764     }
3765     case 64: {
3766       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3767                                             DAG.getConstant(0, DL, MVT::i32));
3768       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3769       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3770       break;
3771     }
3772     default:
3773       llvm_unreachable("Unexpected type");
3774     }
3775     return Op;
3776   }
3777 
3778   // Get the known-zero mask for the operand.
3779   KnownBits Known = DAG.computeKnownBits(Op);
3780   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3781   if (NumSignificantBits == 0)
3782     return DAG.getConstant(0, DL, VT);
3783 
3784   // Skip known-zero high parts of the operand.
3785   int64_t OrigBitSize = VT.getSizeInBits();
3786   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3787   BitSize = std::min(BitSize, OrigBitSize);
3788 
3789   // The POPCNT instruction counts the number of bits in each byte.
3790   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3791   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3792   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3793 
3794   // Add up per-byte counts in a binary tree.  All bits of Op at
3795   // position larger than BitSize remain zero throughout.
3796   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3797     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3798     if (BitSize != OrigBitSize)
3799       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3800                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3801     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3802   }
3803 
3804   // Extract overall result from high byte.
3805   if (BitSize > 8)
3806     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3807                      DAG.getConstant(BitSize - 8, DL, VT));
3808 
3809   return Op;
3810 }
3811 
3812 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3813                                                  SelectionDAG &DAG) const {
3814   SDLoc DL(Op);
3815   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3816     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3817   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3818     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3819 
3820   // The only fence that needs an instruction is a sequentially-consistent
3821   // cross-thread fence.
3822   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3823       FenceSSID == SyncScope::System) {
3824     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3825                                       Op.getOperand(0)),
3826                    0);
3827   }
3828 
3829   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3830   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3831 }
3832 
3833 // Op is an atomic load.  Lower it into a normal volatile load.
3834 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3835                                                 SelectionDAG &DAG) const {
3836   auto *Node = cast<AtomicSDNode>(Op.getNode());
3837   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3838                         Node->getChain(), Node->getBasePtr(),
3839                         Node->getMemoryVT(), Node->getMemOperand());
3840 }
3841 
3842 // Op is an atomic store.  Lower it into a normal volatile store.
3843 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3844                                                  SelectionDAG &DAG) const {
3845   auto *Node = cast<AtomicSDNode>(Op.getNode());
3846   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3847                                     Node->getBasePtr(), Node->getMemoryVT(),
3848                                     Node->getMemOperand());
3849   // We have to enforce sequential consistency by performing a
3850   // serialization operation after the store.
3851   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3852     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3853                                        MVT::Other, Chain), 0);
3854   return Chain;
3855 }
3856 
3857 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3858 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3859 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3860                                                    SelectionDAG &DAG,
3861                                                    unsigned Opcode) const {
3862   auto *Node = cast<AtomicSDNode>(Op.getNode());
3863 
3864   // 32-bit operations need no code outside the main loop.
3865   EVT NarrowVT = Node->getMemoryVT();
3866   EVT WideVT = MVT::i32;
3867   if (NarrowVT == WideVT)
3868     return Op;
3869 
3870   int64_t BitSize = NarrowVT.getSizeInBits();
3871   SDValue ChainIn = Node->getChain();
3872   SDValue Addr = Node->getBasePtr();
3873   SDValue Src2 = Node->getVal();
3874   MachineMemOperand *MMO = Node->getMemOperand();
3875   SDLoc DL(Node);
3876   EVT PtrVT = Addr.getValueType();
3877 
3878   // Convert atomic subtracts of constants into additions.
3879   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3880     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3881       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3882       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3883     }
3884 
3885   // Get the address of the containing word.
3886   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3887                                     DAG.getConstant(-4, DL, PtrVT));
3888 
3889   // Get the number of bits that the word must be rotated left in order
3890   // to bring the field to the top bits of a GR32.
3891   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3892                                  DAG.getConstant(3, DL, PtrVT));
3893   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3894 
3895   // Get the complementing shift amount, for rotating a field in the top
3896   // bits back to its proper position.
3897   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3898                                     DAG.getConstant(0, DL, WideVT), BitShift);
3899 
3900   // Extend the source operand to 32 bits and prepare it for the inner loop.
3901   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3902   // operations require the source to be shifted in advance.  (This shift
3903   // can be folded if the source is constant.)  For AND and NAND, the lower
3904   // bits must be set, while for other opcodes they should be left clear.
3905   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3906     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3907                        DAG.getConstant(32 - BitSize, DL, WideVT));
3908   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3909       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3910     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3911                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3912 
3913   // Construct the ATOMIC_LOADW_* node.
3914   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3915   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3916                     DAG.getConstant(BitSize, DL, WideVT) };
3917   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3918                                              NarrowVT, MMO);
3919 
3920   // Rotate the result of the final CS so that the field is in the lower
3921   // bits of a GR32, then truncate it.
3922   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3923                                     DAG.getConstant(BitSize, DL, WideVT));
3924   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3925 
3926   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3927   return DAG.getMergeValues(RetOps, DL);
3928 }
3929 
3930 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3931 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3932 // operations into additions.
3933 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3934                                                     SelectionDAG &DAG) const {
3935   auto *Node = cast<AtomicSDNode>(Op.getNode());
3936   EVT MemVT = Node->getMemoryVT();
3937   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3938     // A full-width operation.
3939     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3940     SDValue Src2 = Node->getVal();
3941     SDValue NegSrc2;
3942     SDLoc DL(Src2);
3943 
3944     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3945       // Use an addition if the operand is constant and either LAA(G) is
3946       // available or the negative value is in the range of A(G)FHI.
3947       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3948       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3949         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3950     } else if (Subtarget.hasInterlockedAccess1())
3951       // Use LAA(G) if available.
3952       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3953                             Src2);
3954 
3955     if (NegSrc2.getNode())
3956       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3957                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3958                            Node->getMemOperand());
3959 
3960     // Use the node as-is.
3961     return Op;
3962   }
3963 
3964   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3965 }
3966 
3967 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3968 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3969                                                     SelectionDAG &DAG) const {
3970   auto *Node = cast<AtomicSDNode>(Op.getNode());
3971   SDValue ChainIn = Node->getOperand(0);
3972   SDValue Addr = Node->getOperand(1);
3973   SDValue CmpVal = Node->getOperand(2);
3974   SDValue SwapVal = Node->getOperand(3);
3975   MachineMemOperand *MMO = Node->getMemOperand();
3976   SDLoc DL(Node);
3977 
3978   // We have native support for 32-bit and 64-bit compare and swap, but we
3979   // still need to expand extracting the "success" result from the CC.
3980   EVT NarrowVT = Node->getMemoryVT();
3981   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3982   if (NarrowVT == WideVT) {
3983     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3984     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3985     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3986                                                DL, Tys, Ops, NarrowVT, MMO);
3987     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3988                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3989 
3990     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3991     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3992     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3993     return SDValue();
3994   }
3995 
3996   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3997   // via a fullword ATOMIC_CMP_SWAPW operation.
3998   int64_t BitSize = NarrowVT.getSizeInBits();
3999   EVT PtrVT = Addr.getValueType();
4000 
4001   // Get the address of the containing word.
4002   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4003                                     DAG.getConstant(-4, DL, PtrVT));
4004 
4005   // Get the number of bits that the word must be rotated left in order
4006   // to bring the field to the top bits of a GR32.
4007   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4008                                  DAG.getConstant(3, DL, PtrVT));
4009   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4010 
4011   // Get the complementing shift amount, for rotating a field in the top
4012   // bits back to its proper position.
4013   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4014                                     DAG.getConstant(0, DL, WideVT), BitShift);
4015 
4016   // Construct the ATOMIC_CMP_SWAPW node.
4017   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4018   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4019                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4020   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4021                                              VTList, Ops, NarrowVT, MMO);
4022   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4023                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4024 
4025   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4026   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4027   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4028   return SDValue();
4029 }
4030 
4031 MachineMemOperand::Flags
4032 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4033   // Because of how we convert atomic_load and atomic_store to normal loads and
4034   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4035   // since DAGCombine hasn't been updated to account for atomic, but non
4036   // volatile loads.  (See D57601)
4037   if (auto *SI = dyn_cast<StoreInst>(&I))
4038     if (SI->isAtomic())
4039       return MachineMemOperand::MOVolatile;
4040   if (auto *LI = dyn_cast<LoadInst>(&I))
4041     if (LI->isAtomic())
4042       return MachineMemOperand::MOVolatile;
4043   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4044     if (AI->isAtomic())
4045       return MachineMemOperand::MOVolatile;
4046   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4047     if (AI->isAtomic())
4048       return MachineMemOperand::MOVolatile;
4049   return MachineMemOperand::MONone;
4050 }
4051 
4052 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4053                                               SelectionDAG &DAG) const {
4054   MachineFunction &MF = DAG.getMachineFunction();
4055   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4056   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4057     report_fatal_error("Variable-sized stack allocations are not supported "
4058                        "in GHC calling convention");
4059   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4060                             SystemZ::R15D, Op.getValueType());
4061 }
4062 
4063 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4064                                                  SelectionDAG &DAG) const {
4065   MachineFunction &MF = DAG.getMachineFunction();
4066   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4067   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4068 
4069   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4070     report_fatal_error("Variable-sized stack allocations are not supported "
4071                        "in GHC calling convention");
4072 
4073   SDValue Chain = Op.getOperand(0);
4074   SDValue NewSP = Op.getOperand(1);
4075   SDValue Backchain;
4076   SDLoc DL(Op);
4077 
4078   if (StoreBackchain) {
4079     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4080     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
4081   }
4082 
4083   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4084 
4085   if (StoreBackchain)
4086     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
4087 
4088   return Chain;
4089 }
4090 
4091 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4092                                              SelectionDAG &DAG) const {
4093   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4094   if (!IsData)
4095     // Just preserve the chain.
4096     return Op.getOperand(0);
4097 
4098   SDLoc DL(Op);
4099   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4100   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4101   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4102   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4103                    Op.getOperand(1)};
4104   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4105                                  Node->getVTList(), Ops,
4106                                  Node->getMemoryVT(), Node->getMemOperand());
4107 }
4108 
4109 // Convert condition code in CCReg to an i32 value.
4110 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4111   SDLoc DL(CCReg);
4112   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4113   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4114                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4115 }
4116 
4117 SDValue
4118 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4119                                               SelectionDAG &DAG) const {
4120   unsigned Opcode, CCValid;
4121   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4122     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4123     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4124     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4125     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4126     return SDValue();
4127   }
4128 
4129   return SDValue();
4130 }
4131 
4132 SDValue
4133 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4134                                                SelectionDAG &DAG) const {
4135   unsigned Opcode, CCValid;
4136   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4137     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4138     if (Op->getNumValues() == 1)
4139       return getCCResult(DAG, SDValue(Node, 0));
4140     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4141     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4142                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4143   }
4144 
4145   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4146   switch (Id) {
4147   case Intrinsic::thread_pointer:
4148     return lowerThreadPointer(SDLoc(Op), DAG);
4149 
4150   case Intrinsic::s390_vpdi:
4151     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4152                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4153 
4154   case Intrinsic::s390_vperm:
4155     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4156                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4157 
4158   case Intrinsic::s390_vuphb:
4159   case Intrinsic::s390_vuphh:
4160   case Intrinsic::s390_vuphf:
4161     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4162                        Op.getOperand(1));
4163 
4164   case Intrinsic::s390_vuplhb:
4165   case Intrinsic::s390_vuplhh:
4166   case Intrinsic::s390_vuplhf:
4167     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4168                        Op.getOperand(1));
4169 
4170   case Intrinsic::s390_vuplb:
4171   case Intrinsic::s390_vuplhw:
4172   case Intrinsic::s390_vuplf:
4173     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4174                        Op.getOperand(1));
4175 
4176   case Intrinsic::s390_vupllb:
4177   case Intrinsic::s390_vupllh:
4178   case Intrinsic::s390_vupllf:
4179     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4180                        Op.getOperand(1));
4181 
4182   case Intrinsic::s390_vsumb:
4183   case Intrinsic::s390_vsumh:
4184   case Intrinsic::s390_vsumgh:
4185   case Intrinsic::s390_vsumgf:
4186   case Intrinsic::s390_vsumqf:
4187   case Intrinsic::s390_vsumqg:
4188     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4189                        Op.getOperand(1), Op.getOperand(2));
4190   }
4191 
4192   return SDValue();
4193 }
4194 
4195 namespace {
4196 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4197 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4198 // Operand is the constant third operand, otherwise it is the number of
4199 // bytes in each element of the result.
4200 struct Permute {
4201   unsigned Opcode;
4202   unsigned Operand;
4203   unsigned char Bytes[SystemZ::VectorBytes];
4204 };
4205 }
4206 
4207 static const Permute PermuteForms[] = {
4208   // VMRHG
4209   { SystemZISD::MERGE_HIGH, 8,
4210     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4211   // VMRHF
4212   { SystemZISD::MERGE_HIGH, 4,
4213     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4214   // VMRHH
4215   { SystemZISD::MERGE_HIGH, 2,
4216     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4217   // VMRHB
4218   { SystemZISD::MERGE_HIGH, 1,
4219     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4220   // VMRLG
4221   { SystemZISD::MERGE_LOW, 8,
4222     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4223   // VMRLF
4224   { SystemZISD::MERGE_LOW, 4,
4225     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4226   // VMRLH
4227   { SystemZISD::MERGE_LOW, 2,
4228     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4229   // VMRLB
4230   { SystemZISD::MERGE_LOW, 1,
4231     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4232   // VPKG
4233   { SystemZISD::PACK, 4,
4234     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4235   // VPKF
4236   { SystemZISD::PACK, 2,
4237     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4238   // VPKH
4239   { SystemZISD::PACK, 1,
4240     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4241   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4242   { SystemZISD::PERMUTE_DWORDS, 4,
4243     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4244   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4245   { SystemZISD::PERMUTE_DWORDS, 1,
4246     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4247 };
4248 
4249 // Called after matching a vector shuffle against a particular pattern.
4250 // Both the original shuffle and the pattern have two vector operands.
4251 // OpNos[0] is the operand of the original shuffle that should be used for
4252 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4253 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4254 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4255 // for operands 0 and 1 of the pattern.
4256 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4257   if (OpNos[0] < 0) {
4258     if (OpNos[1] < 0)
4259       return false;
4260     OpNo0 = OpNo1 = OpNos[1];
4261   } else if (OpNos[1] < 0) {
4262     OpNo0 = OpNo1 = OpNos[0];
4263   } else {
4264     OpNo0 = OpNos[0];
4265     OpNo1 = OpNos[1];
4266   }
4267   return true;
4268 }
4269 
4270 // Bytes is a VPERM-like permute vector, except that -1 is used for
4271 // undefined bytes.  Return true if the VPERM can be implemented using P.
4272 // When returning true set OpNo0 to the VPERM operand that should be
4273 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4274 //
4275 // For example, if swapping the VPERM operands allows P to match, OpNo0
4276 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4277 // operand, but rewriting it to use two duplicated operands allows it to
4278 // match P, then OpNo0 and OpNo1 will be the same.
4279 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4280                          unsigned &OpNo0, unsigned &OpNo1) {
4281   int OpNos[] = { -1, -1 };
4282   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4283     int Elt = Bytes[I];
4284     if (Elt >= 0) {
4285       // Make sure that the two permute vectors use the same suboperand
4286       // byte number.  Only the operand numbers (the high bits) are
4287       // allowed to differ.
4288       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4289         return false;
4290       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4291       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4292       // Make sure that the operand mappings are consistent with previous
4293       // elements.
4294       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4295         return false;
4296       OpNos[ModelOpNo] = RealOpNo;
4297     }
4298   }
4299   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4300 }
4301 
4302 // As above, but search for a matching permute.
4303 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4304                                    unsigned &OpNo0, unsigned &OpNo1) {
4305   for (auto &P : PermuteForms)
4306     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4307       return &P;
4308   return nullptr;
4309 }
4310 
4311 // Bytes is a VPERM-like permute vector, except that -1 is used for
4312 // undefined bytes.  This permute is an operand of an outer permute.
4313 // See whether redistributing the -1 bytes gives a shuffle that can be
4314 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4315 // that, when applied to the result of P, gives the original permute in Bytes.
4316 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4317                                const Permute &P,
4318                                SmallVectorImpl<int> &Transform) {
4319   unsigned To = 0;
4320   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4321     int Elt = Bytes[From];
4322     if (Elt < 0)
4323       // Byte number From of the result is undefined.
4324       Transform[From] = -1;
4325     else {
4326       while (P.Bytes[To] != Elt) {
4327         To += 1;
4328         if (To == SystemZ::VectorBytes)
4329           return false;
4330       }
4331       Transform[From] = To;
4332     }
4333   }
4334   return true;
4335 }
4336 
4337 // As above, but search for a matching permute.
4338 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4339                                          SmallVectorImpl<int> &Transform) {
4340   for (auto &P : PermuteForms)
4341     if (matchDoublePermute(Bytes, P, Transform))
4342       return &P;
4343   return nullptr;
4344 }
4345 
4346 // Convert the mask of the given shuffle op into a byte-level mask,
4347 // as if it had type vNi8.
4348 static bool getVPermMask(SDValue ShuffleOp,
4349                          SmallVectorImpl<int> &Bytes) {
4350   EVT VT = ShuffleOp.getValueType();
4351   unsigned NumElements = VT.getVectorNumElements();
4352   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4353 
4354   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4355     Bytes.resize(NumElements * BytesPerElement, -1);
4356     for (unsigned I = 0; I < NumElements; ++I) {
4357       int Index = VSN->getMaskElt(I);
4358       if (Index >= 0)
4359         for (unsigned J = 0; J < BytesPerElement; ++J)
4360           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4361     }
4362     return true;
4363   }
4364   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4365       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4366     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4367     Bytes.resize(NumElements * BytesPerElement, -1);
4368     for (unsigned I = 0; I < NumElements; ++I)
4369       for (unsigned J = 0; J < BytesPerElement; ++J)
4370         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4371     return true;
4372   }
4373   return false;
4374 }
4375 
4376 // Bytes is a VPERM-like permute vector, except that -1 is used for
4377 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4378 // the result come from a contiguous sequence of bytes from one input.
4379 // Set Base to the selector for the first byte if so.
4380 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4381                             unsigned BytesPerElement, int &Base) {
4382   Base = -1;
4383   for (unsigned I = 0; I < BytesPerElement; ++I) {
4384     if (Bytes[Start + I] >= 0) {
4385       unsigned Elem = Bytes[Start + I];
4386       if (Base < 0) {
4387         Base = Elem - I;
4388         // Make sure the bytes would come from one input operand.
4389         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4390           return false;
4391       } else if (unsigned(Base) != Elem - I)
4392         return false;
4393     }
4394   }
4395   return true;
4396 }
4397 
4398 // Bytes is a VPERM-like permute vector, except that -1 is used for
4399 // undefined bytes.  Return true if it can be performed using VSLDI.
4400 // When returning true, set StartIndex to the shift amount and OpNo0
4401 // and OpNo1 to the VPERM operands that should be used as the first
4402 // and second shift operand respectively.
4403 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4404                                unsigned &StartIndex, unsigned &OpNo0,
4405                                unsigned &OpNo1) {
4406   int OpNos[] = { -1, -1 };
4407   int Shift = -1;
4408   for (unsigned I = 0; I < 16; ++I) {
4409     int Index = Bytes[I];
4410     if (Index >= 0) {
4411       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4412       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4413       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4414       if (Shift < 0)
4415         Shift = ExpectedShift;
4416       else if (Shift != ExpectedShift)
4417         return false;
4418       // Make sure that the operand mappings are consistent with previous
4419       // elements.
4420       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4421         return false;
4422       OpNos[ModelOpNo] = RealOpNo;
4423     }
4424   }
4425   StartIndex = Shift;
4426   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4427 }
4428 
4429 // Create a node that performs P on operands Op0 and Op1, casting the
4430 // operands to the appropriate type.  The type of the result is determined by P.
4431 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4432                               const Permute &P, SDValue Op0, SDValue Op1) {
4433   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4434   // elements of a PACK are twice as wide as the outputs.
4435   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4436                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4437                       P.Operand);
4438   // Cast both operands to the appropriate type.
4439   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4440                               SystemZ::VectorBytes / InBytes);
4441   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4442   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4443   SDValue Op;
4444   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4445     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4446     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4447   } else if (P.Opcode == SystemZISD::PACK) {
4448     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4449                                  SystemZ::VectorBytes / P.Operand);
4450     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4451   } else {
4452     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4453   }
4454   return Op;
4455 }
4456 
4457 // Bytes is a VPERM-like permute vector, except that -1 is used for
4458 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4459 // VSLDI or VPERM.
4460 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4461                                      SDValue *Ops,
4462                                      const SmallVectorImpl<int> &Bytes) {
4463   for (unsigned I = 0; I < 2; ++I)
4464     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4465 
4466   // First see whether VSLDI can be used.
4467   unsigned StartIndex, OpNo0, OpNo1;
4468   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4469     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4470                        Ops[OpNo1],
4471                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4472 
4473   // Fall back on VPERM.  Construct an SDNode for the permute vector.
4474   SDValue IndexNodes[SystemZ::VectorBytes];
4475   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4476     if (Bytes[I] >= 0)
4477       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4478     else
4479       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4480   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4481   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
4482 }
4483 
4484 namespace {
4485 // Describes a general N-operand vector shuffle.
4486 struct GeneralShuffle {
4487   GeneralShuffle(EVT vt) : VT(vt) {}
4488   void addUndef();
4489   bool add(SDValue, unsigned);
4490   SDValue getNode(SelectionDAG &, const SDLoc &);
4491 
4492   // The operands of the shuffle.
4493   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4494 
4495   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4496   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4497   // Bytes[I] / SystemZ::VectorBytes.
4498   SmallVector<int, SystemZ::VectorBytes> Bytes;
4499 
4500   // The type of the shuffle result.
4501   EVT VT;
4502 };
4503 }
4504 
4505 // Add an extra undefined element to the shuffle.
4506 void GeneralShuffle::addUndef() {
4507   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4508   for (unsigned I = 0; I < BytesPerElement; ++I)
4509     Bytes.push_back(-1);
4510 }
4511 
4512 // Add an extra element to the shuffle, taking it from element Elem of Op.
4513 // A null Op indicates a vector input whose value will be calculated later;
4514 // there is at most one such input per shuffle and it always has the same
4515 // type as the result. Aborts and returns false if the source vector elements
4516 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4517 // LLVM they become implicitly extended, but this is rare and not optimized.
4518 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4519   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4520 
4521   // The source vector can have wider elements than the result,
4522   // either through an explicit TRUNCATE or because of type legalization.
4523   // We want the least significant part.
4524   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4525   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4526 
4527   // Return false if the source elements are smaller than their destination
4528   // elements.
4529   if (FromBytesPerElement < BytesPerElement)
4530     return false;
4531 
4532   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4533                    (FromBytesPerElement - BytesPerElement));
4534 
4535   // Look through things like shuffles and bitcasts.
4536   while (Op.getNode()) {
4537     if (Op.getOpcode() == ISD::BITCAST)
4538       Op = Op.getOperand(0);
4539     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4540       // See whether the bytes we need come from a contiguous part of one
4541       // operand.
4542       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4543       if (!getVPermMask(Op, OpBytes))
4544         break;
4545       int NewByte;
4546       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4547         break;
4548       if (NewByte < 0) {
4549         addUndef();
4550         return true;
4551       }
4552       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4553       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4554     } else if (Op.isUndef()) {
4555       addUndef();
4556       return true;
4557     } else
4558       break;
4559   }
4560 
4561   // Make sure that the source of the extraction is in Ops.
4562   unsigned OpNo = 0;
4563   for (; OpNo < Ops.size(); ++OpNo)
4564     if (Ops[OpNo] == Op)
4565       break;
4566   if (OpNo == Ops.size())
4567     Ops.push_back(Op);
4568 
4569   // Add the element to Bytes.
4570   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4571   for (unsigned I = 0; I < BytesPerElement; ++I)
4572     Bytes.push_back(Base + I);
4573 
4574   return true;
4575 }
4576 
4577 // Return SDNodes for the completed shuffle.
4578 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4579   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4580 
4581   if (Ops.size() == 0)
4582     return DAG.getUNDEF(VT);
4583 
4584   // Make sure that there are at least two shuffle operands.
4585   if (Ops.size() == 1)
4586     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4587 
4588   // Create a tree of shuffles, deferring root node until after the loop.
4589   // Try to redistribute the undefined elements of non-root nodes so that
4590   // the non-root shuffles match something like a pack or merge, then adjust
4591   // the parent node's permute vector to compensate for the new order.
4592   // Among other things, this copes with vectors like <2 x i16> that were
4593   // padded with undefined elements during type legalization.
4594   //
4595   // In the best case this redistribution will lead to the whole tree
4596   // using packs and merges.  It should rarely be a loss in other cases.
4597   unsigned Stride = 1;
4598   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4599     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4600       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4601 
4602       // Create a mask for just these two operands.
4603       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4604       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4605         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4606         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4607         if (OpNo == I)
4608           NewBytes[J] = Byte;
4609         else if (OpNo == I + Stride)
4610           NewBytes[J] = SystemZ::VectorBytes + Byte;
4611         else
4612           NewBytes[J] = -1;
4613       }
4614       // See if it would be better to reorganize NewMask to avoid using VPERM.
4615       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4616       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4617         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4618         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4619         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4620           if (NewBytes[J] >= 0) {
4621             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4622                    "Invalid double permute");
4623             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4624           } else
4625             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4626         }
4627       } else {
4628         // Just use NewBytes on the operands.
4629         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4630         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4631           if (NewBytes[J] >= 0)
4632             Bytes[J] = I * SystemZ::VectorBytes + J;
4633       }
4634     }
4635   }
4636 
4637   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4638   if (Stride > 1) {
4639     Ops[1] = Ops[Stride];
4640     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4641       if (Bytes[I] >= int(SystemZ::VectorBytes))
4642         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4643   }
4644 
4645   // Look for an instruction that can do the permute without resorting
4646   // to VPERM.
4647   unsigned OpNo0, OpNo1;
4648   SDValue Op;
4649   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4650     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4651   else
4652     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4653   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4654 }
4655 
4656 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4657 static bool isScalarToVector(SDValue Op) {
4658   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4659     if (!Op.getOperand(I).isUndef())
4660       return false;
4661   return true;
4662 }
4663 
4664 // Return a vector of type VT that contains Value in the first element.
4665 // The other elements don't matter.
4666 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4667                                    SDValue Value) {
4668   // If we have a constant, replicate it to all elements and let the
4669   // BUILD_VECTOR lowering take care of it.
4670   if (Value.getOpcode() == ISD::Constant ||
4671       Value.getOpcode() == ISD::ConstantFP) {
4672     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4673     return DAG.getBuildVector(VT, DL, Ops);
4674   }
4675   if (Value.isUndef())
4676     return DAG.getUNDEF(VT);
4677   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4678 }
4679 
4680 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4681 // element 1.  Used for cases in which replication is cheap.
4682 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4683                                  SDValue Op0, SDValue Op1) {
4684   if (Op0.isUndef()) {
4685     if (Op1.isUndef())
4686       return DAG.getUNDEF(VT);
4687     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4688   }
4689   if (Op1.isUndef())
4690     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4691   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4692                      buildScalarToVector(DAG, DL, VT, Op0),
4693                      buildScalarToVector(DAG, DL, VT, Op1));
4694 }
4695 
4696 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4697 // vector for them.
4698 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4699                           SDValue Op1) {
4700   if (Op0.isUndef() && Op1.isUndef())
4701     return DAG.getUNDEF(MVT::v2i64);
4702   // If one of the two inputs is undefined then replicate the other one,
4703   // in order to avoid using another register unnecessarily.
4704   if (Op0.isUndef())
4705     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4706   else if (Op1.isUndef())
4707     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4708   else {
4709     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4710     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4711   }
4712   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4713 }
4714 
4715 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4716 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4717 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4718 // would benefit from this representation and return it if so.
4719 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4720                                      BuildVectorSDNode *BVN) {
4721   EVT VT = BVN->getValueType(0);
4722   unsigned NumElements = VT.getVectorNumElements();
4723 
4724   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4725   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4726   // need a BUILD_VECTOR, add an additional placeholder operand for that
4727   // BUILD_VECTOR and store its operands in ResidueOps.
4728   GeneralShuffle GS(VT);
4729   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4730   bool FoundOne = false;
4731   for (unsigned I = 0; I < NumElements; ++I) {
4732     SDValue Op = BVN->getOperand(I);
4733     if (Op.getOpcode() == ISD::TRUNCATE)
4734       Op = Op.getOperand(0);
4735     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4736         Op.getOperand(1).getOpcode() == ISD::Constant) {
4737       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4738       if (!GS.add(Op.getOperand(0), Elem))
4739         return SDValue();
4740       FoundOne = true;
4741     } else if (Op.isUndef()) {
4742       GS.addUndef();
4743     } else {
4744       if (!GS.add(SDValue(), ResidueOps.size()))
4745         return SDValue();
4746       ResidueOps.push_back(BVN->getOperand(I));
4747     }
4748   }
4749 
4750   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4751   if (!FoundOne)
4752     return SDValue();
4753 
4754   // Create the BUILD_VECTOR for the remaining elements, if any.
4755   if (!ResidueOps.empty()) {
4756     while (ResidueOps.size() < NumElements)
4757       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4758     for (auto &Op : GS.Ops) {
4759       if (!Op.getNode()) {
4760         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4761         break;
4762       }
4763     }
4764   }
4765   return GS.getNode(DAG, SDLoc(BVN));
4766 }
4767 
4768 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4769   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4770     return true;
4771   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4772     return true;
4773   return false;
4774 }
4775 
4776 // Combine GPR scalar values Elems into a vector of type VT.
4777 SDValue
4778 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4779                                    SmallVectorImpl<SDValue> &Elems) const {
4780   // See whether there is a single replicated value.
4781   SDValue Single;
4782   unsigned int NumElements = Elems.size();
4783   unsigned int Count = 0;
4784   for (auto Elem : Elems) {
4785     if (!Elem.isUndef()) {
4786       if (!Single.getNode())
4787         Single = Elem;
4788       else if (Elem != Single) {
4789         Single = SDValue();
4790         break;
4791       }
4792       Count += 1;
4793     }
4794   }
4795   // There are three cases here:
4796   //
4797   // - if the only defined element is a loaded one, the best sequence
4798   //   is a replicating load.
4799   //
4800   // - otherwise, if the only defined element is an i64 value, we will
4801   //   end up with the same VLVGP sequence regardless of whether we short-cut
4802   //   for replication or fall through to the later code.
4803   //
4804   // - otherwise, if the only defined element is an i32 or smaller value,
4805   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4806   //   This is only a win if the single defined element is used more than once.
4807   //   In other cases we're better off using a single VLVGx.
4808   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
4809     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4810 
4811   // If all elements are loads, use VLREP/VLEs (below).
4812   bool AllLoads = true;
4813   for (auto Elem : Elems)
4814     if (!isVectorElementLoad(Elem)) {
4815       AllLoads = false;
4816       break;
4817     }
4818 
4819   // The best way of building a v2i64 from two i64s is to use VLVGP.
4820   if (VT == MVT::v2i64 && !AllLoads)
4821     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4822 
4823   // Use a 64-bit merge high to combine two doubles.
4824   if (VT == MVT::v2f64 && !AllLoads)
4825     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4826 
4827   // Build v4f32 values directly from the FPRs:
4828   //
4829   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4830   //         V              V         VMRHF
4831   //      <ABxx>         <CDxx>
4832   //                V                 VMRHG
4833   //              <ABCD>
4834   if (VT == MVT::v4f32 && !AllLoads) {
4835     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4836     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4837     // Avoid unnecessary undefs by reusing the other operand.
4838     if (Op01.isUndef())
4839       Op01 = Op23;
4840     else if (Op23.isUndef())
4841       Op23 = Op01;
4842     // Merging identical replications is a no-op.
4843     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4844       return Op01;
4845     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4846     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4847     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4848                              DL, MVT::v2i64, Op01, Op23);
4849     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4850   }
4851 
4852   // Collect the constant terms.
4853   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4854   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4855 
4856   unsigned NumConstants = 0;
4857   for (unsigned I = 0; I < NumElements; ++I) {
4858     SDValue Elem = Elems[I];
4859     if (Elem.getOpcode() == ISD::Constant ||
4860         Elem.getOpcode() == ISD::ConstantFP) {
4861       NumConstants += 1;
4862       Constants[I] = Elem;
4863       Done[I] = true;
4864     }
4865   }
4866   // If there was at least one constant, fill in the other elements of
4867   // Constants with undefs to get a full vector constant and use that
4868   // as the starting point.
4869   SDValue Result;
4870   SDValue ReplicatedVal;
4871   if (NumConstants > 0) {
4872     for (unsigned I = 0; I < NumElements; ++I)
4873       if (!Constants[I].getNode())
4874         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4875     Result = DAG.getBuildVector(VT, DL, Constants);
4876   } else {
4877     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4878     // avoid a false dependency on any previous contents of the vector
4879     // register.
4880 
4881     // Use a VLREP if at least one element is a load. Make sure to replicate
4882     // the load with the most elements having its value.
4883     std::map<const SDNode*, unsigned> UseCounts;
4884     SDNode *LoadMaxUses = nullptr;
4885     for (unsigned I = 0; I < NumElements; ++I)
4886       if (isVectorElementLoad(Elems[I])) {
4887         SDNode *Ld = Elems[I].getNode();
4888         UseCounts[Ld]++;
4889         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
4890           LoadMaxUses = Ld;
4891       }
4892     if (LoadMaxUses != nullptr) {
4893       ReplicatedVal = SDValue(LoadMaxUses, 0);
4894       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
4895     } else {
4896       // Try to use VLVGP.
4897       unsigned I1 = NumElements / 2 - 1;
4898       unsigned I2 = NumElements - 1;
4899       bool Def1 = !Elems[I1].isUndef();
4900       bool Def2 = !Elems[I2].isUndef();
4901       if (Def1 || Def2) {
4902         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4903         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4904         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4905                              joinDwords(DAG, DL, Elem1, Elem2));
4906         Done[I1] = true;
4907         Done[I2] = true;
4908       } else
4909         Result = DAG.getUNDEF(VT);
4910     }
4911   }
4912 
4913   // Use VLVGx to insert the other elements.
4914   for (unsigned I = 0; I < NumElements; ++I)
4915     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
4916       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4917                            DAG.getConstant(I, DL, MVT::i32));
4918   return Result;
4919 }
4920 
4921 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4922                                                  SelectionDAG &DAG) const {
4923   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4924   SDLoc DL(Op);
4925   EVT VT = Op.getValueType();
4926 
4927   if (BVN->isConstant()) {
4928     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
4929       return Op;
4930 
4931     // Fall back to loading it from memory.
4932     return SDValue();
4933   }
4934 
4935   // See if we should use shuffles to construct the vector from other vectors.
4936   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4937     return Res;
4938 
4939   // Detect SCALAR_TO_VECTOR conversions.
4940   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4941     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4942 
4943   // Otherwise use buildVector to build the vector up from GPRs.
4944   unsigned NumElements = Op.getNumOperands();
4945   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4946   for (unsigned I = 0; I < NumElements; ++I)
4947     Ops[I] = Op.getOperand(I);
4948   return buildVector(DAG, DL, VT, Ops);
4949 }
4950 
4951 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4952                                                    SelectionDAG &DAG) const {
4953   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4954   SDLoc DL(Op);
4955   EVT VT = Op.getValueType();
4956   unsigned NumElements = VT.getVectorNumElements();
4957 
4958   if (VSN->isSplat()) {
4959     SDValue Op0 = Op.getOperand(0);
4960     unsigned Index = VSN->getSplatIndex();
4961     assert(Index < VT.getVectorNumElements() &&
4962            "Splat index should be defined and in first operand");
4963     // See whether the value we're splatting is directly available as a scalar.
4964     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4965         Op0.getOpcode() == ISD::BUILD_VECTOR)
4966       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4967     // Otherwise keep it as a vector-to-vector operation.
4968     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4969                        DAG.getTargetConstant(Index, DL, MVT::i32));
4970   }
4971 
4972   GeneralShuffle GS(VT);
4973   for (unsigned I = 0; I < NumElements; ++I) {
4974     int Elt = VSN->getMaskElt(I);
4975     if (Elt < 0)
4976       GS.addUndef();
4977     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4978                      unsigned(Elt) % NumElements))
4979       return SDValue();
4980   }
4981   return GS.getNode(DAG, SDLoc(VSN));
4982 }
4983 
4984 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4985                                                      SelectionDAG &DAG) const {
4986   SDLoc DL(Op);
4987   // Just insert the scalar into element 0 of an undefined vector.
4988   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4989                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4990                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4991 }
4992 
4993 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4994                                                       SelectionDAG &DAG) const {
4995   // Handle insertions of floating-point values.
4996   SDLoc DL(Op);
4997   SDValue Op0 = Op.getOperand(0);
4998   SDValue Op1 = Op.getOperand(1);
4999   SDValue Op2 = Op.getOperand(2);
5000   EVT VT = Op.getValueType();
5001 
5002   // Insertions into constant indices of a v2f64 can be done using VPDI.
5003   // However, if the inserted value is a bitcast or a constant then it's
5004   // better to use GPRs, as below.
5005   if (VT == MVT::v2f64 &&
5006       Op1.getOpcode() != ISD::BITCAST &&
5007       Op1.getOpcode() != ISD::ConstantFP &&
5008       Op2.getOpcode() == ISD::Constant) {
5009     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5010     unsigned Mask = VT.getVectorNumElements() - 1;
5011     if (Index <= Mask)
5012       return Op;
5013   }
5014 
5015   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5016   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5017   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5018   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5019                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5020                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5021   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5022 }
5023 
5024 SDValue
5025 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5026                                                SelectionDAG &DAG) const {
5027   // Handle extractions of floating-point values.
5028   SDLoc DL(Op);
5029   SDValue Op0 = Op.getOperand(0);
5030   SDValue Op1 = Op.getOperand(1);
5031   EVT VT = Op.getValueType();
5032   EVT VecVT = Op0.getValueType();
5033 
5034   // Extractions of constant indices can be done directly.
5035   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5036     uint64_t Index = CIndexN->getZExtValue();
5037     unsigned Mask = VecVT.getVectorNumElements() - 1;
5038     if (Index <= Mask)
5039       return Op;
5040   }
5041 
5042   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5043   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5044   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5045   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5046                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5047   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5048 }
5049 
5050 SDValue
5051 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
5052                                               unsigned UnpackHigh) const {
5053   SDValue PackedOp = Op.getOperand(0);
5054   EVT OutVT = Op.getValueType();
5055   EVT InVT = PackedOp.getValueType();
5056   unsigned ToBits = OutVT.getScalarSizeInBits();
5057   unsigned FromBits = InVT.getScalarSizeInBits();
5058   do {
5059     FromBits *= 2;
5060     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5061                                  SystemZ::VectorBits / FromBits);
5062     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
5063   } while (FromBits != ToBits);
5064   return PackedOp;
5065 }
5066 
5067 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5068                                           unsigned ByScalar) const {
5069   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5070   SDValue Op0 = Op.getOperand(0);
5071   SDValue Op1 = Op.getOperand(1);
5072   SDLoc DL(Op);
5073   EVT VT = Op.getValueType();
5074   unsigned ElemBitSize = VT.getScalarSizeInBits();
5075 
5076   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5077   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5078     APInt SplatBits, SplatUndef;
5079     unsigned SplatBitSize;
5080     bool HasAnyUndefs;
5081     // Check for constant splats.  Use ElemBitSize as the minimum element
5082     // width and reject splats that need wider elements.
5083     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5084                              ElemBitSize, true) &&
5085         SplatBitSize == ElemBitSize) {
5086       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5087                                       DL, MVT::i32);
5088       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5089     }
5090     // Check for variable splats.
5091     BitVector UndefElements;
5092     SDValue Splat = BVN->getSplatValue(&UndefElements);
5093     if (Splat) {
5094       // Since i32 is the smallest legal type, we either need a no-op
5095       // or a truncation.
5096       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5097       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5098     }
5099   }
5100 
5101   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5102   // and the shift amount is directly available in a GPR.
5103   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5104     if (VSN->isSplat()) {
5105       SDValue VSNOp0 = VSN->getOperand(0);
5106       unsigned Index = VSN->getSplatIndex();
5107       assert(Index < VT.getVectorNumElements() &&
5108              "Splat index should be defined and in first operand");
5109       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5110           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5111         // Since i32 is the smallest legal type, we either need a no-op
5112         // or a truncation.
5113         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5114                                     VSNOp0.getOperand(Index));
5115         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5116       }
5117     }
5118   }
5119 
5120   // Otherwise just treat the current form as legal.
5121   return Op;
5122 }
5123 
5124 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5125                                               SelectionDAG &DAG) const {
5126   switch (Op.getOpcode()) {
5127   case ISD::FRAMEADDR:
5128     return lowerFRAMEADDR(Op, DAG);
5129   case ISD::RETURNADDR:
5130     return lowerRETURNADDR(Op, DAG);
5131   case ISD::BR_CC:
5132     return lowerBR_CC(Op, DAG);
5133   case ISD::SELECT_CC:
5134     return lowerSELECT_CC(Op, DAG);
5135   case ISD::SETCC:
5136     return lowerSETCC(Op, DAG);
5137   case ISD::STRICT_FSETCC:
5138     return lowerSTRICT_FSETCC(Op, DAG, false);
5139   case ISD::STRICT_FSETCCS:
5140     return lowerSTRICT_FSETCC(Op, DAG, true);
5141   case ISD::GlobalAddress:
5142     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5143   case ISD::GlobalTLSAddress:
5144     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5145   case ISD::BlockAddress:
5146     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5147   case ISD::JumpTable:
5148     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5149   case ISD::ConstantPool:
5150     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5151   case ISD::BITCAST:
5152     return lowerBITCAST(Op, DAG);
5153   case ISD::VASTART:
5154     return lowerVASTART(Op, DAG);
5155   case ISD::VACOPY:
5156     return lowerVACOPY(Op, DAG);
5157   case ISD::DYNAMIC_STACKALLOC:
5158     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5159   case ISD::GET_DYNAMIC_AREA_OFFSET:
5160     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5161   case ISD::SMUL_LOHI:
5162     return lowerSMUL_LOHI(Op, DAG);
5163   case ISD::UMUL_LOHI:
5164     return lowerUMUL_LOHI(Op, DAG);
5165   case ISD::SDIVREM:
5166     return lowerSDIVREM(Op, DAG);
5167   case ISD::UDIVREM:
5168     return lowerUDIVREM(Op, DAG);
5169   case ISD::SADDO:
5170   case ISD::SSUBO:
5171   case ISD::UADDO:
5172   case ISD::USUBO:
5173     return lowerXALUO(Op, DAG);
5174   case ISD::ADDCARRY:
5175   case ISD::SUBCARRY:
5176     return lowerADDSUBCARRY(Op, DAG);
5177   case ISD::OR:
5178     return lowerOR(Op, DAG);
5179   case ISD::CTPOP:
5180     return lowerCTPOP(Op, DAG);
5181   case ISD::ATOMIC_FENCE:
5182     return lowerATOMIC_FENCE(Op, DAG);
5183   case ISD::ATOMIC_SWAP:
5184     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5185   case ISD::ATOMIC_STORE:
5186     return lowerATOMIC_STORE(Op, DAG);
5187   case ISD::ATOMIC_LOAD:
5188     return lowerATOMIC_LOAD(Op, DAG);
5189   case ISD::ATOMIC_LOAD_ADD:
5190     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5191   case ISD::ATOMIC_LOAD_SUB:
5192     return lowerATOMIC_LOAD_SUB(Op, DAG);
5193   case ISD::ATOMIC_LOAD_AND:
5194     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5195   case ISD::ATOMIC_LOAD_OR:
5196     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5197   case ISD::ATOMIC_LOAD_XOR:
5198     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5199   case ISD::ATOMIC_LOAD_NAND:
5200     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5201   case ISD::ATOMIC_LOAD_MIN:
5202     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5203   case ISD::ATOMIC_LOAD_MAX:
5204     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5205   case ISD::ATOMIC_LOAD_UMIN:
5206     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5207   case ISD::ATOMIC_LOAD_UMAX:
5208     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5209   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5210     return lowerATOMIC_CMP_SWAP(Op, DAG);
5211   case ISD::STACKSAVE:
5212     return lowerSTACKSAVE(Op, DAG);
5213   case ISD::STACKRESTORE:
5214     return lowerSTACKRESTORE(Op, DAG);
5215   case ISD::PREFETCH:
5216     return lowerPREFETCH(Op, DAG);
5217   case ISD::INTRINSIC_W_CHAIN:
5218     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5219   case ISD::INTRINSIC_WO_CHAIN:
5220     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5221   case ISD::BUILD_VECTOR:
5222     return lowerBUILD_VECTOR(Op, DAG);
5223   case ISD::VECTOR_SHUFFLE:
5224     return lowerVECTOR_SHUFFLE(Op, DAG);
5225   case ISD::SCALAR_TO_VECTOR:
5226     return lowerSCALAR_TO_VECTOR(Op, DAG);
5227   case ISD::INSERT_VECTOR_ELT:
5228     return lowerINSERT_VECTOR_ELT(Op, DAG);
5229   case ISD::EXTRACT_VECTOR_ELT:
5230     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5231   case ISD::SIGN_EXTEND_VECTOR_INREG:
5232     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
5233   case ISD::ZERO_EXTEND_VECTOR_INREG:
5234     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
5235   case ISD::SHL:
5236     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5237   case ISD::SRL:
5238     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5239   case ISD::SRA:
5240     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5241   default:
5242     llvm_unreachable("Unexpected node to lower");
5243   }
5244 }
5245 
5246 // Lower operations with invalid operand or result types (currently used
5247 // only for 128-bit integer types).
5248 
5249 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5250   SDLoc DL(In);
5251   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5252                            DAG.getIntPtrConstant(0, DL));
5253   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5254                            DAG.getIntPtrConstant(1, DL));
5255   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5256                                     MVT::Untyped, Hi, Lo);
5257   return SDValue(Pair, 0);
5258 }
5259 
5260 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5261   SDLoc DL(In);
5262   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5263                                           DL, MVT::i64, In);
5264   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5265                                           DL, MVT::i64, In);
5266   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5267 }
5268 
5269 void
5270 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5271                                              SmallVectorImpl<SDValue> &Results,
5272                                              SelectionDAG &DAG) const {
5273   switch (N->getOpcode()) {
5274   case ISD::ATOMIC_LOAD: {
5275     SDLoc DL(N);
5276     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5277     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5278     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5279     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5280                                           DL, Tys, Ops, MVT::i128, MMO);
5281     Results.push_back(lowerGR128ToI128(DAG, Res));
5282     Results.push_back(Res.getValue(1));
5283     break;
5284   }
5285   case ISD::ATOMIC_STORE: {
5286     SDLoc DL(N);
5287     SDVTList Tys = DAG.getVTList(MVT::Other);
5288     SDValue Ops[] = { N->getOperand(0),
5289                       lowerI128ToGR128(DAG, N->getOperand(2)),
5290                       N->getOperand(1) };
5291     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5292     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5293                                           DL, Tys, Ops, MVT::i128, MMO);
5294     // We have to enforce sequential consistency by performing a
5295     // serialization operation after the store.
5296     if (cast<AtomicSDNode>(N)->getOrdering() ==
5297         AtomicOrdering::SequentiallyConsistent)
5298       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5299                                        MVT::Other, Res), 0);
5300     Results.push_back(Res);
5301     break;
5302   }
5303   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5304     SDLoc DL(N);
5305     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5306     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5307                       lowerI128ToGR128(DAG, N->getOperand(2)),
5308                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5309     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5310     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5311                                           DL, Tys, Ops, MVT::i128, MMO);
5312     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5313                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5314     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5315     Results.push_back(lowerGR128ToI128(DAG, Res));
5316     Results.push_back(Success);
5317     Results.push_back(Res.getValue(2));
5318     break;
5319   }
5320   default:
5321     llvm_unreachable("Unexpected node to lower");
5322   }
5323 }
5324 
5325 void
5326 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5327                                           SmallVectorImpl<SDValue> &Results,
5328                                           SelectionDAG &DAG) const {
5329   return LowerOperationWrapper(N, Results, DAG);
5330 }
5331 
5332 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5333 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5334   switch ((SystemZISD::NodeType)Opcode) {
5335     case SystemZISD::FIRST_NUMBER: break;
5336     OPCODE(RET_FLAG);
5337     OPCODE(CALL);
5338     OPCODE(SIBCALL);
5339     OPCODE(TLS_GDCALL);
5340     OPCODE(TLS_LDCALL);
5341     OPCODE(PCREL_WRAPPER);
5342     OPCODE(PCREL_OFFSET);
5343     OPCODE(IABS);
5344     OPCODE(ICMP);
5345     OPCODE(FCMP);
5346     OPCODE(STRICT_FCMP);
5347     OPCODE(STRICT_FCMPS);
5348     OPCODE(TM);
5349     OPCODE(BR_CCMASK);
5350     OPCODE(SELECT_CCMASK);
5351     OPCODE(ADJDYNALLOC);
5352     OPCODE(POPCNT);
5353     OPCODE(SMUL_LOHI);
5354     OPCODE(UMUL_LOHI);
5355     OPCODE(SDIVREM);
5356     OPCODE(UDIVREM);
5357     OPCODE(SADDO);
5358     OPCODE(SSUBO);
5359     OPCODE(UADDO);
5360     OPCODE(USUBO);
5361     OPCODE(ADDCARRY);
5362     OPCODE(SUBCARRY);
5363     OPCODE(GET_CCMASK);
5364     OPCODE(MVC);
5365     OPCODE(MVC_LOOP);
5366     OPCODE(NC);
5367     OPCODE(NC_LOOP);
5368     OPCODE(OC);
5369     OPCODE(OC_LOOP);
5370     OPCODE(XC);
5371     OPCODE(XC_LOOP);
5372     OPCODE(CLC);
5373     OPCODE(CLC_LOOP);
5374     OPCODE(STPCPY);
5375     OPCODE(STRCMP);
5376     OPCODE(SEARCH_STRING);
5377     OPCODE(IPM);
5378     OPCODE(MEMBARRIER);
5379     OPCODE(TBEGIN);
5380     OPCODE(TBEGIN_NOFLOAT);
5381     OPCODE(TEND);
5382     OPCODE(BYTE_MASK);
5383     OPCODE(ROTATE_MASK);
5384     OPCODE(REPLICATE);
5385     OPCODE(JOIN_DWORDS);
5386     OPCODE(SPLAT);
5387     OPCODE(MERGE_HIGH);
5388     OPCODE(MERGE_LOW);
5389     OPCODE(SHL_DOUBLE);
5390     OPCODE(PERMUTE_DWORDS);
5391     OPCODE(PERMUTE);
5392     OPCODE(PACK);
5393     OPCODE(PACKS_CC);
5394     OPCODE(PACKLS_CC);
5395     OPCODE(UNPACK_HIGH);
5396     OPCODE(UNPACKL_HIGH);
5397     OPCODE(UNPACK_LOW);
5398     OPCODE(UNPACKL_LOW);
5399     OPCODE(VSHL_BY_SCALAR);
5400     OPCODE(VSRL_BY_SCALAR);
5401     OPCODE(VSRA_BY_SCALAR);
5402     OPCODE(VSUM);
5403     OPCODE(VICMPE);
5404     OPCODE(VICMPH);
5405     OPCODE(VICMPHL);
5406     OPCODE(VICMPES);
5407     OPCODE(VICMPHS);
5408     OPCODE(VICMPHLS);
5409     OPCODE(VFCMPE);
5410     OPCODE(STRICT_VFCMPE);
5411     OPCODE(STRICT_VFCMPES);
5412     OPCODE(VFCMPH);
5413     OPCODE(STRICT_VFCMPH);
5414     OPCODE(STRICT_VFCMPHS);
5415     OPCODE(VFCMPHE);
5416     OPCODE(STRICT_VFCMPHE);
5417     OPCODE(STRICT_VFCMPHES);
5418     OPCODE(VFCMPES);
5419     OPCODE(VFCMPHS);
5420     OPCODE(VFCMPHES);
5421     OPCODE(VFTCI);
5422     OPCODE(VEXTEND);
5423     OPCODE(STRICT_VEXTEND);
5424     OPCODE(VROUND);
5425     OPCODE(STRICT_VROUND);
5426     OPCODE(VTM);
5427     OPCODE(VFAE_CC);
5428     OPCODE(VFAEZ_CC);
5429     OPCODE(VFEE_CC);
5430     OPCODE(VFEEZ_CC);
5431     OPCODE(VFENE_CC);
5432     OPCODE(VFENEZ_CC);
5433     OPCODE(VISTR_CC);
5434     OPCODE(VSTRC_CC);
5435     OPCODE(VSTRCZ_CC);
5436     OPCODE(VSTRS_CC);
5437     OPCODE(VSTRSZ_CC);
5438     OPCODE(TDC);
5439     OPCODE(ATOMIC_SWAPW);
5440     OPCODE(ATOMIC_LOADW_ADD);
5441     OPCODE(ATOMIC_LOADW_SUB);
5442     OPCODE(ATOMIC_LOADW_AND);
5443     OPCODE(ATOMIC_LOADW_OR);
5444     OPCODE(ATOMIC_LOADW_XOR);
5445     OPCODE(ATOMIC_LOADW_NAND);
5446     OPCODE(ATOMIC_LOADW_MIN);
5447     OPCODE(ATOMIC_LOADW_MAX);
5448     OPCODE(ATOMIC_LOADW_UMIN);
5449     OPCODE(ATOMIC_LOADW_UMAX);
5450     OPCODE(ATOMIC_CMP_SWAPW);
5451     OPCODE(ATOMIC_CMP_SWAP);
5452     OPCODE(ATOMIC_LOAD_128);
5453     OPCODE(ATOMIC_STORE_128);
5454     OPCODE(ATOMIC_CMP_SWAP_128);
5455     OPCODE(LRV);
5456     OPCODE(STRV);
5457     OPCODE(VLER);
5458     OPCODE(VSTER);
5459     OPCODE(PREFETCH);
5460   }
5461   return nullptr;
5462 #undef OPCODE
5463 }
5464 
5465 // Return true if VT is a vector whose elements are a whole number of bytes
5466 // in width. Also check for presence of vector support.
5467 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5468   if (!Subtarget.hasVector())
5469     return false;
5470 
5471   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5472 }
5473 
5474 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5475 // producing a result of type ResVT.  Op is a possibly bitcast version
5476 // of the input vector and Index is the index (based on type VecVT) that
5477 // should be extracted.  Return the new extraction if a simplification
5478 // was possible or if Force is true.
5479 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5480                                               EVT VecVT, SDValue Op,
5481                                               unsigned Index,
5482                                               DAGCombinerInfo &DCI,
5483                                               bool Force) const {
5484   SelectionDAG &DAG = DCI.DAG;
5485 
5486   // The number of bytes being extracted.
5487   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5488 
5489   for (;;) {
5490     unsigned Opcode = Op.getOpcode();
5491     if (Opcode == ISD::BITCAST)
5492       // Look through bitcasts.
5493       Op = Op.getOperand(0);
5494     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5495              canTreatAsByteVector(Op.getValueType())) {
5496       // Get a VPERM-like permute mask and see whether the bytes covered
5497       // by the extracted element are a contiguous sequence from one
5498       // source operand.
5499       SmallVector<int, SystemZ::VectorBytes> Bytes;
5500       if (!getVPermMask(Op, Bytes))
5501         break;
5502       int First;
5503       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5504                            BytesPerElement, First))
5505         break;
5506       if (First < 0)
5507         return DAG.getUNDEF(ResVT);
5508       // Make sure the contiguous sequence starts at a multiple of the
5509       // original element size.
5510       unsigned Byte = unsigned(First) % Bytes.size();
5511       if (Byte % BytesPerElement != 0)
5512         break;
5513       // We can get the extracted value directly from an input.
5514       Index = Byte / BytesPerElement;
5515       Op = Op.getOperand(unsigned(First) / Bytes.size());
5516       Force = true;
5517     } else if (Opcode == ISD::BUILD_VECTOR &&
5518                canTreatAsByteVector(Op.getValueType())) {
5519       // We can only optimize this case if the BUILD_VECTOR elements are
5520       // at least as wide as the extracted value.
5521       EVT OpVT = Op.getValueType();
5522       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5523       if (OpBytesPerElement < BytesPerElement)
5524         break;
5525       // Make sure that the least-significant bit of the extracted value
5526       // is the least significant bit of an input.
5527       unsigned End = (Index + 1) * BytesPerElement;
5528       if (End % OpBytesPerElement != 0)
5529         break;
5530       // We're extracting the low part of one operand of the BUILD_VECTOR.
5531       Op = Op.getOperand(End / OpBytesPerElement - 1);
5532       if (!Op.getValueType().isInteger()) {
5533         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5534         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5535         DCI.AddToWorklist(Op.getNode());
5536       }
5537       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5538       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5539       if (VT != ResVT) {
5540         DCI.AddToWorklist(Op.getNode());
5541         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5542       }
5543       return Op;
5544     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5545                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5546                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5547                canTreatAsByteVector(Op.getValueType()) &&
5548                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5549       // Make sure that only the unextended bits are significant.
5550       EVT ExtVT = Op.getValueType();
5551       EVT OpVT = Op.getOperand(0).getValueType();
5552       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5553       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5554       unsigned Byte = Index * BytesPerElement;
5555       unsigned SubByte = Byte % ExtBytesPerElement;
5556       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5557       if (SubByte < MinSubByte ||
5558           SubByte + BytesPerElement > ExtBytesPerElement)
5559         break;
5560       // Get the byte offset of the unextended element
5561       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5562       // ...then add the byte offset relative to that element.
5563       Byte += SubByte - MinSubByte;
5564       if (Byte % BytesPerElement != 0)
5565         break;
5566       Op = Op.getOperand(0);
5567       Index = Byte / BytesPerElement;
5568       Force = true;
5569     } else
5570       break;
5571   }
5572   if (Force) {
5573     if (Op.getValueType() != VecVT) {
5574       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5575       DCI.AddToWorklist(Op.getNode());
5576     }
5577     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5578                        DAG.getConstant(Index, DL, MVT::i32));
5579   }
5580   return SDValue();
5581 }
5582 
5583 // Optimize vector operations in scalar value Op on the basis that Op
5584 // is truncated to TruncVT.
5585 SDValue SystemZTargetLowering::combineTruncateExtract(
5586     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5587   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5588   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5589   // of type TruncVT.
5590   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5591       TruncVT.getSizeInBits() % 8 == 0) {
5592     SDValue Vec = Op.getOperand(0);
5593     EVT VecVT = Vec.getValueType();
5594     if (canTreatAsByteVector(VecVT)) {
5595       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5596         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5597         unsigned TruncBytes = TruncVT.getStoreSize();
5598         if (BytesPerElement % TruncBytes == 0) {
5599           // Calculate the value of Y' in the above description.  We are
5600           // splitting the original elements into Scale equal-sized pieces
5601           // and for truncation purposes want the last (least-significant)
5602           // of these pieces for IndexN.  This is easiest to do by calculating
5603           // the start index of the following element and then subtracting 1.
5604           unsigned Scale = BytesPerElement / TruncBytes;
5605           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5606 
5607           // Defer the creation of the bitcast from X to combineExtract,
5608           // which might be able to optimize the extraction.
5609           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5610                                    VecVT.getStoreSize() / TruncBytes);
5611           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5612           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5613         }
5614       }
5615     }
5616   }
5617   return SDValue();
5618 }
5619 
5620 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5621     SDNode *N, DAGCombinerInfo &DCI) const {
5622   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5623   SelectionDAG &DAG = DCI.DAG;
5624   SDValue N0 = N->getOperand(0);
5625   EVT VT = N->getValueType(0);
5626   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5627     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5628     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5629     if (TrueOp && FalseOp) {
5630       SDLoc DL(N0);
5631       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5632                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5633                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5634       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5635       // If N0 has multiple uses, change other uses as well.
5636       if (!N0.hasOneUse()) {
5637         SDValue TruncSelect =
5638           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5639         DCI.CombineTo(N0.getNode(), TruncSelect);
5640       }
5641       return NewSelect;
5642     }
5643   }
5644   return SDValue();
5645 }
5646 
5647 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5648     SDNode *N, DAGCombinerInfo &DCI) const {
5649   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5650   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5651   // into (select_cc LHS, RHS, -1, 0, COND)
5652   SelectionDAG &DAG = DCI.DAG;
5653   SDValue N0 = N->getOperand(0);
5654   EVT VT = N->getValueType(0);
5655   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5656   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5657     N0 = N0.getOperand(0);
5658   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5659     SDLoc DL(N0);
5660     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5661                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5662                       N0.getOperand(2) };
5663     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5664   }
5665   return SDValue();
5666 }
5667 
5668 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5669     SDNode *N, DAGCombinerInfo &DCI) const {
5670   // Convert (sext (ashr (shl X, C1), C2)) to
5671   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5672   // cheap as narrower ones.
5673   SelectionDAG &DAG = DCI.DAG;
5674   SDValue N0 = N->getOperand(0);
5675   EVT VT = N->getValueType(0);
5676   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5677     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5678     SDValue Inner = N0.getOperand(0);
5679     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5680       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5681         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5682         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5683         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5684         EVT ShiftVT = N0.getOperand(1).getValueType();
5685         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5686                                   Inner.getOperand(0));
5687         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5688                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5689                                                   ShiftVT));
5690         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5691                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5692       }
5693     }
5694   }
5695   return SDValue();
5696 }
5697 
5698 SDValue SystemZTargetLowering::combineMERGE(
5699     SDNode *N, DAGCombinerInfo &DCI) const {
5700   SelectionDAG &DAG = DCI.DAG;
5701   unsigned Opcode = N->getOpcode();
5702   SDValue Op0 = N->getOperand(0);
5703   SDValue Op1 = N->getOperand(1);
5704   if (Op0.getOpcode() == ISD::BITCAST)
5705     Op0 = Op0.getOperand(0);
5706   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5707     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5708     // for v4f32.
5709     if (Op1 == N->getOperand(0))
5710       return Op1;
5711     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5712     EVT VT = Op1.getValueType();
5713     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5714     if (ElemBytes <= 4) {
5715       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5716                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5717       EVT InVT = VT.changeVectorElementTypeToInteger();
5718       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5719                                    SystemZ::VectorBytes / ElemBytes / 2);
5720       if (VT != InVT) {
5721         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5722         DCI.AddToWorklist(Op1.getNode());
5723       }
5724       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5725       DCI.AddToWorklist(Op.getNode());
5726       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5727     }
5728   }
5729   return SDValue();
5730 }
5731 
5732 SDValue SystemZTargetLowering::combineLOAD(
5733     SDNode *N, DAGCombinerInfo &DCI) const {
5734   SelectionDAG &DAG = DCI.DAG;
5735   EVT LdVT = N->getValueType(0);
5736   if (LdVT.isVector() || LdVT.isInteger())
5737     return SDValue();
5738   // Transform a scalar load that is REPLICATEd as well as having other
5739   // use(s) to the form where the other use(s) use the first element of the
5740   // REPLICATE instead of the load. Otherwise instruction selection will not
5741   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5742   // point loads.
5743 
5744   SDValue Replicate;
5745   SmallVector<SDNode*, 8> OtherUses;
5746   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5747        UI != UE; ++UI) {
5748     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5749       if (Replicate)
5750         return SDValue(); // Should never happen
5751       Replicate = SDValue(*UI, 0);
5752     }
5753     else if (UI.getUse().getResNo() == 0)
5754       OtherUses.push_back(*UI);
5755   }
5756   if (!Replicate || OtherUses.empty())
5757     return SDValue();
5758 
5759   SDLoc DL(N);
5760   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5761                               Replicate, DAG.getConstant(0, DL, MVT::i32));
5762   // Update uses of the loaded Value while preserving old chains.
5763   for (SDNode *U : OtherUses) {
5764     SmallVector<SDValue, 8> Ops;
5765     for (SDValue Op : U->ops())
5766       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5767     DAG.UpdateNodeOperands(U, Ops);
5768   }
5769   return SDValue(N, 0);
5770 }
5771 
5772 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
5773   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
5774     return true;
5775   if (Subtarget.hasVectorEnhancements2())
5776     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
5777       return true;
5778   return false;
5779 }
5780 
5781 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
5782   if (!VT.isVector() || !VT.isSimple() ||
5783       VT.getSizeInBits() != 128 ||
5784       VT.getScalarSizeInBits() % 8 != 0)
5785     return false;
5786 
5787   unsigned NumElts = VT.getVectorNumElements();
5788   for (unsigned i = 0; i < NumElts; ++i) {
5789     if (M[i] < 0) continue; // ignore UNDEF indices
5790     if ((unsigned) M[i] != NumElts - 1 - i)
5791       return false;
5792   }
5793 
5794   return true;
5795 }
5796 
5797 SDValue SystemZTargetLowering::combineSTORE(
5798     SDNode *N, DAGCombinerInfo &DCI) const {
5799   SelectionDAG &DAG = DCI.DAG;
5800   auto *SN = cast<StoreSDNode>(N);
5801   auto &Op1 = N->getOperand(1);
5802   EVT MemVT = SN->getMemoryVT();
5803   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5804   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5805   // If X has wider elements then convert it to:
5806   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5807   if (MemVT.isInteger() && SN->isTruncatingStore()) {
5808     if (SDValue Value =
5809             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5810       DCI.AddToWorklist(Value.getNode());
5811 
5812       // Rewrite the store with the new form of stored value.
5813       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5814                                SN->getBasePtr(), SN->getMemoryVT(),
5815                                SN->getMemOperand());
5816     }
5817   }
5818   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
5819   if (!SN->isTruncatingStore() &&
5820       Op1.getOpcode() == ISD::BSWAP &&
5821       Op1.getNode()->hasOneUse() &&
5822       canLoadStoreByteSwapped(Op1.getValueType())) {
5823 
5824       SDValue BSwapOp = Op1.getOperand(0);
5825 
5826       if (BSwapOp.getValueType() == MVT::i16)
5827         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5828 
5829       SDValue Ops[] = {
5830         N->getOperand(0), BSwapOp, N->getOperand(2)
5831       };
5832 
5833       return
5834         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5835                                 Ops, MemVT, SN->getMemOperand());
5836     }
5837   // Combine STORE (element-swap) into VSTER
5838   if (!SN->isTruncatingStore() &&
5839       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
5840       Op1.getNode()->hasOneUse() &&
5841       Subtarget.hasVectorEnhancements2()) {
5842     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
5843     ArrayRef<int> ShuffleMask = SVN->getMask();
5844     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
5845       SDValue Ops[] = {
5846         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
5847       };
5848 
5849       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
5850                                      DAG.getVTList(MVT::Other),
5851                                      Ops, MemVT, SN->getMemOperand());
5852     }
5853   }
5854 
5855   return SDValue();
5856 }
5857 
5858 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
5859     SDNode *N, DAGCombinerInfo &DCI) const {
5860   SelectionDAG &DAG = DCI.DAG;
5861   // Combine element-swap (LOAD) into VLER
5862   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5863       N->getOperand(0).hasOneUse() &&
5864       Subtarget.hasVectorEnhancements2()) {
5865     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5866     ArrayRef<int> ShuffleMask = SVN->getMask();
5867     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
5868       SDValue Load = N->getOperand(0);
5869       LoadSDNode *LD = cast<LoadSDNode>(Load);
5870 
5871       // Create the element-swapping load.
5872       SDValue Ops[] = {
5873         LD->getChain(),    // Chain
5874         LD->getBasePtr()   // Ptr
5875       };
5876       SDValue ESLoad =
5877         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
5878                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
5879                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5880 
5881       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
5882       // by the load dead.
5883       DCI.CombineTo(N, ESLoad);
5884 
5885       // Next, combine the load away, we give it a bogus result value but a real
5886       // chain result.  The result value is dead because the shuffle is dead.
5887       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
5888 
5889       // Return N so it doesn't get rechecked!
5890       return SDValue(N, 0);
5891     }
5892   }
5893 
5894   return SDValue();
5895 }
5896 
5897 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5898     SDNode *N, DAGCombinerInfo &DCI) const {
5899   SelectionDAG &DAG = DCI.DAG;
5900 
5901   if (!Subtarget.hasVector())
5902     return SDValue();
5903 
5904   // Look through bitcasts that retain the number of vector elements.
5905   SDValue Op = N->getOperand(0);
5906   if (Op.getOpcode() == ISD::BITCAST &&
5907       Op.getValueType().isVector() &&
5908       Op.getOperand(0).getValueType().isVector() &&
5909       Op.getValueType().getVectorNumElements() ==
5910       Op.getOperand(0).getValueType().getVectorNumElements())
5911     Op = Op.getOperand(0);
5912 
5913   // Pull BSWAP out of a vector extraction.
5914   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
5915     EVT VecVT = Op.getValueType();
5916     EVT EltVT = VecVT.getVectorElementType();
5917     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
5918                      Op.getOperand(0), N->getOperand(1));
5919     DCI.AddToWorklist(Op.getNode());
5920     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
5921     if (EltVT != N->getValueType(0)) {
5922       DCI.AddToWorklist(Op.getNode());
5923       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
5924     }
5925     return Op;
5926   }
5927 
5928   // Try to simplify a vector extraction.
5929   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5930     SDValue Op0 = N->getOperand(0);
5931     EVT VecVT = Op0.getValueType();
5932     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5933                           IndexN->getZExtValue(), DCI, false);
5934   }
5935   return SDValue();
5936 }
5937 
5938 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5939     SDNode *N, DAGCombinerInfo &DCI) const {
5940   SelectionDAG &DAG = DCI.DAG;
5941   // (join_dwords X, X) == (replicate X)
5942   if (N->getOperand(0) == N->getOperand(1))
5943     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5944                        N->getOperand(0));
5945   return SDValue();
5946 }
5947 
5948 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
5949   SDValue Chain1 = N1->getOperand(0);
5950   SDValue Chain2 = N2->getOperand(0);
5951 
5952   // Trivial case: both nodes take the same chain.
5953   if (Chain1 == Chain2)
5954     return Chain1;
5955 
5956   // FIXME - we could handle more complex cases via TokenFactor,
5957   // assuming we can verify that this would not create a cycle.
5958   return SDValue();
5959 }
5960 
5961 SDValue SystemZTargetLowering::combineFP_ROUND(
5962     SDNode *N, DAGCombinerInfo &DCI) const {
5963 
5964   if (!Subtarget.hasVector())
5965     return SDValue();
5966 
5967   // (fpround (extract_vector_elt X 0))
5968   // (fpround (extract_vector_elt X 1)) ->
5969   // (extract_vector_elt (VROUND X) 0)
5970   // (extract_vector_elt (VROUND X) 2)
5971   //
5972   // This is a special case since the target doesn't really support v2f32s.
5973   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
5974   SelectionDAG &DAG = DCI.DAG;
5975   SDValue Op0 = N->getOperand(OpNo);
5976   if (N->getValueType(0) == MVT::f32 &&
5977       Op0.hasOneUse() &&
5978       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5979       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5980       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5981       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5982     SDValue Vec = Op0.getOperand(0);
5983     for (auto *U : Vec->uses()) {
5984       if (U != Op0.getNode() &&
5985           U->hasOneUse() &&
5986           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5987           U->getOperand(0) == Vec &&
5988           U->getOperand(1).getOpcode() == ISD::Constant &&
5989           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5990         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5991         if (OtherRound.getOpcode() == N->getOpcode() &&
5992             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
5993             OtherRound.getValueType() == MVT::f32) {
5994           SDValue VRound, Chain;
5995           if (N->isStrictFPOpcode()) {
5996             Chain = MergeInputChains(N, OtherRound.getNode());
5997             if (!Chain)
5998               continue;
5999             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6000                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6001             Chain = VRound.getValue(1);
6002           } else
6003             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6004                                  MVT::v4f32, Vec);
6005           DCI.AddToWorklist(VRound.getNode());
6006           SDValue Extract1 =
6007             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6008                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6009           DCI.AddToWorklist(Extract1.getNode());
6010           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6011           if (Chain)
6012             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6013           SDValue Extract0 =
6014             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6015                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6016           if (Chain)
6017             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6018                                N->getVTList(), Extract0, Chain);
6019           return Extract0;
6020         }
6021       }
6022     }
6023   }
6024   return SDValue();
6025 }
6026 
6027 SDValue SystemZTargetLowering::combineFP_EXTEND(
6028     SDNode *N, DAGCombinerInfo &DCI) const {
6029 
6030   if (!Subtarget.hasVector())
6031     return SDValue();
6032 
6033   // (fpextend (extract_vector_elt X 0))
6034   // (fpextend (extract_vector_elt X 2)) ->
6035   // (extract_vector_elt (VEXTEND X) 0)
6036   // (extract_vector_elt (VEXTEND X) 1)
6037   //
6038   // This is a special case since the target doesn't really support v2f32s.
6039   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6040   SelectionDAG &DAG = DCI.DAG;
6041   SDValue Op0 = N->getOperand(OpNo);
6042   if (N->getValueType(0) == MVT::f64 &&
6043       Op0.hasOneUse() &&
6044       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6045       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6046       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6047       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6048     SDValue Vec = Op0.getOperand(0);
6049     for (auto *U : Vec->uses()) {
6050       if (U != Op0.getNode() &&
6051           U->hasOneUse() &&
6052           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6053           U->getOperand(0) == Vec &&
6054           U->getOperand(1).getOpcode() == ISD::Constant &&
6055           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6056         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6057         if (OtherExtend.getOpcode() == N->getOpcode() &&
6058             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6059             OtherExtend.getValueType() == MVT::f64) {
6060           SDValue VExtend, Chain;
6061           if (N->isStrictFPOpcode()) {
6062             Chain = MergeInputChains(N, OtherExtend.getNode());
6063             if (!Chain)
6064               continue;
6065             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6066                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6067             Chain = VExtend.getValue(1);
6068           } else
6069             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6070                                   MVT::v2f64, Vec);
6071           DCI.AddToWorklist(VExtend.getNode());
6072           SDValue Extract1 =
6073             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6074                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6075           DCI.AddToWorklist(Extract1.getNode());
6076           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6077           if (Chain)
6078             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6079           SDValue Extract0 =
6080             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6081                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6082           if (Chain)
6083             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6084                                N->getVTList(), Extract0, Chain);
6085           return Extract0;
6086         }
6087       }
6088     }
6089   }
6090   return SDValue();
6091 }
6092 
6093 SDValue SystemZTargetLowering::combineBSWAP(
6094     SDNode *N, DAGCombinerInfo &DCI) const {
6095   SelectionDAG &DAG = DCI.DAG;
6096   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6097   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6098       N->getOperand(0).hasOneUse() &&
6099       canLoadStoreByteSwapped(N->getValueType(0))) {
6100       SDValue Load = N->getOperand(0);
6101       LoadSDNode *LD = cast<LoadSDNode>(Load);
6102 
6103       // Create the byte-swapping load.
6104       SDValue Ops[] = {
6105         LD->getChain(),    // Chain
6106         LD->getBasePtr()   // Ptr
6107       };
6108       EVT LoadVT = N->getValueType(0);
6109       if (LoadVT == MVT::i16)
6110         LoadVT = MVT::i32;
6111       SDValue BSLoad =
6112         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6113                                 DAG.getVTList(LoadVT, MVT::Other),
6114                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6115 
6116       // If this is an i16 load, insert the truncate.
6117       SDValue ResVal = BSLoad;
6118       if (N->getValueType(0) == MVT::i16)
6119         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6120 
6121       // First, combine the bswap away.  This makes the value produced by the
6122       // load dead.
6123       DCI.CombineTo(N, ResVal);
6124 
6125       // Next, combine the load away, we give it a bogus result value but a real
6126       // chain result.  The result value is dead because the bswap is dead.
6127       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6128 
6129       // Return N so it doesn't get rechecked!
6130       return SDValue(N, 0);
6131     }
6132 
6133   // Look through bitcasts that retain the number of vector elements.
6134   SDValue Op = N->getOperand(0);
6135   if (Op.getOpcode() == ISD::BITCAST &&
6136       Op.getValueType().isVector() &&
6137       Op.getOperand(0).getValueType().isVector() &&
6138       Op.getValueType().getVectorNumElements() ==
6139       Op.getOperand(0).getValueType().getVectorNumElements())
6140     Op = Op.getOperand(0);
6141 
6142   // Push BSWAP into a vector insertion if at least one side then simplifies.
6143   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6144     SDValue Vec = Op.getOperand(0);
6145     SDValue Elt = Op.getOperand(1);
6146     SDValue Idx = Op.getOperand(2);
6147 
6148     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6149         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6150         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6151         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6152         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6153          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6154       EVT VecVT = N->getValueType(0);
6155       EVT EltVT = N->getValueType(0).getVectorElementType();
6156       if (VecVT != Vec.getValueType()) {
6157         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6158         DCI.AddToWorklist(Vec.getNode());
6159       }
6160       if (EltVT != Elt.getValueType()) {
6161         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6162         DCI.AddToWorklist(Elt.getNode());
6163       }
6164       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6165       DCI.AddToWorklist(Vec.getNode());
6166       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6167       DCI.AddToWorklist(Elt.getNode());
6168       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6169                          Vec, Elt, Idx);
6170     }
6171   }
6172 
6173   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6174   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6175   if (SV && Op.hasOneUse()) {
6176     SDValue Op0 = Op.getOperand(0);
6177     SDValue Op1 = Op.getOperand(1);
6178 
6179     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6180         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6181         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6182         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6183       EVT VecVT = N->getValueType(0);
6184       if (VecVT != Op0.getValueType()) {
6185         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6186         DCI.AddToWorklist(Op0.getNode());
6187       }
6188       if (VecVT != Op1.getValueType()) {
6189         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6190         DCI.AddToWorklist(Op1.getNode());
6191       }
6192       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6193       DCI.AddToWorklist(Op0.getNode());
6194       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6195       DCI.AddToWorklist(Op1.getNode());
6196       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6197     }
6198   }
6199 
6200   return SDValue();
6201 }
6202 
6203 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6204   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6205   // set by the CCReg instruction using the CCValid / CCMask masks,
6206   // If the CCReg instruction is itself a ICMP testing the condition
6207   // code set by some other instruction, see whether we can directly
6208   // use that condition code.
6209 
6210   // Verify that we have an ICMP against some constant.
6211   if (CCValid != SystemZ::CCMASK_ICMP)
6212     return false;
6213   auto *ICmp = CCReg.getNode();
6214   if (ICmp->getOpcode() != SystemZISD::ICMP)
6215     return false;
6216   auto *CompareLHS = ICmp->getOperand(0).getNode();
6217   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6218   if (!CompareRHS)
6219     return false;
6220 
6221   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6222   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6223     // Verify that we have an appropriate mask for a EQ or NE comparison.
6224     bool Invert = false;
6225     if (CCMask == SystemZ::CCMASK_CMP_NE)
6226       Invert = !Invert;
6227     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6228       return false;
6229 
6230     // Verify that the ICMP compares against one of select values.
6231     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6232     if (!TrueVal)
6233       return false;
6234     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6235     if (!FalseVal)
6236       return false;
6237     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6238       Invert = !Invert;
6239     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6240       return false;
6241 
6242     // Compute the effective CC mask for the new branch or select.
6243     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6244     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6245     if (!NewCCValid || !NewCCMask)
6246       return false;
6247     CCValid = NewCCValid->getZExtValue();
6248     CCMask = NewCCMask->getZExtValue();
6249     if (Invert)
6250       CCMask ^= CCValid;
6251 
6252     // Return the updated CCReg link.
6253     CCReg = CompareLHS->getOperand(4);
6254     return true;
6255   }
6256 
6257   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6258   if (CompareLHS->getOpcode() == ISD::SRA) {
6259     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6260     if (!SRACount || SRACount->getZExtValue() != 30)
6261       return false;
6262     auto *SHL = CompareLHS->getOperand(0).getNode();
6263     if (SHL->getOpcode() != ISD::SHL)
6264       return false;
6265     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6266     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6267       return false;
6268     auto *IPM = SHL->getOperand(0).getNode();
6269     if (IPM->getOpcode() != SystemZISD::IPM)
6270       return false;
6271 
6272     // Avoid introducing CC spills (because SRA would clobber CC).
6273     if (!CompareLHS->hasOneUse())
6274       return false;
6275     // Verify that the ICMP compares against zero.
6276     if (CompareRHS->getZExtValue() != 0)
6277       return false;
6278 
6279     // Compute the effective CC mask for the new branch or select.
6280     switch (CCMask) {
6281     case SystemZ::CCMASK_CMP_EQ: break;
6282     case SystemZ::CCMASK_CMP_NE: break;
6283     case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break;
6284     case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break;
6285     case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break;
6286     case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break;
6287     default: return false;
6288     }
6289 
6290     // Return the updated CCReg link.
6291     CCReg = IPM->getOperand(0);
6292     return true;
6293   }
6294 
6295   return false;
6296 }
6297 
6298 SDValue SystemZTargetLowering::combineBR_CCMASK(
6299     SDNode *N, DAGCombinerInfo &DCI) const {
6300   SelectionDAG &DAG = DCI.DAG;
6301 
6302   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6303   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6304   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6305   if (!CCValid || !CCMask)
6306     return SDValue();
6307 
6308   int CCValidVal = CCValid->getZExtValue();
6309   int CCMaskVal = CCMask->getZExtValue();
6310   SDValue Chain = N->getOperand(0);
6311   SDValue CCReg = N->getOperand(4);
6312 
6313   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6314     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6315                        Chain,
6316                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6317                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6318                        N->getOperand(3), CCReg);
6319   return SDValue();
6320 }
6321 
6322 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6323     SDNode *N, DAGCombinerInfo &DCI) const {
6324   SelectionDAG &DAG = DCI.DAG;
6325 
6326   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6327   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6328   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6329   if (!CCValid || !CCMask)
6330     return SDValue();
6331 
6332   int CCValidVal = CCValid->getZExtValue();
6333   int CCMaskVal = CCMask->getZExtValue();
6334   SDValue CCReg = N->getOperand(4);
6335 
6336   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6337     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6338                        N->getOperand(0), N->getOperand(1),
6339                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6340                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6341                        CCReg);
6342   return SDValue();
6343 }
6344 
6345 
6346 SDValue SystemZTargetLowering::combineGET_CCMASK(
6347     SDNode *N, DAGCombinerInfo &DCI) const {
6348 
6349   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6350   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6351   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6352   if (!CCValid || !CCMask)
6353     return SDValue();
6354   int CCValidVal = CCValid->getZExtValue();
6355   int CCMaskVal = CCMask->getZExtValue();
6356 
6357   SDValue Select = N->getOperand(0);
6358   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6359     return SDValue();
6360 
6361   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6362   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6363   if (!SelectCCValid || !SelectCCMask)
6364     return SDValue();
6365   int SelectCCValidVal = SelectCCValid->getZExtValue();
6366   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6367 
6368   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6369   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6370   if (!TrueVal || !FalseVal)
6371     return SDValue();
6372   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6373     ;
6374   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6375     SelectCCMaskVal ^= SelectCCValidVal;
6376   else
6377     return SDValue();
6378 
6379   if (SelectCCValidVal & ~CCValidVal)
6380     return SDValue();
6381   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6382     return SDValue();
6383 
6384   return Select->getOperand(4);
6385 }
6386 
6387 SDValue SystemZTargetLowering::combineIntDIVREM(
6388     SDNode *N, DAGCombinerInfo &DCI) const {
6389   SelectionDAG &DAG = DCI.DAG;
6390   EVT VT = N->getValueType(0);
6391   // In the case where the divisor is a vector of constants a cheaper
6392   // sequence of instructions can replace the divide. BuildSDIV is called to
6393   // do this during DAG combining, but it only succeeds when it can build a
6394   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6395   // since it is not Legal but Custom it can only happen before
6396   // legalization. Therefore we must scalarize this early before Combine
6397   // 1. For widened vectors, this is already the result of type legalization.
6398   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6399       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6400     return DAG.UnrollVectorOp(N);
6401   return SDValue();
6402 }
6403 
6404 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6405   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6406     return N->getOperand(0);
6407   return N;
6408 }
6409 
6410 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6411                                                  DAGCombinerInfo &DCI) const {
6412   switch(N->getOpcode()) {
6413   default: break;
6414   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6415   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6416   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6417   case SystemZISD::MERGE_HIGH:
6418   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6419   case ISD::LOAD:               return combineLOAD(N, DCI);
6420   case ISD::STORE:              return combineSTORE(N, DCI);
6421   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6422   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6423   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6424   case ISD::STRICT_FP_ROUND:
6425   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6426   case ISD::STRICT_FP_EXTEND:
6427   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6428   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6429   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6430   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6431   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6432   case ISD::SDIV:
6433   case ISD::UDIV:
6434   case ISD::SREM:
6435   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6436   }
6437 
6438   return SDValue();
6439 }
6440 
6441 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6442 // are for Op.
6443 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6444                                     unsigned OpNo) {
6445   EVT VT = Op.getValueType();
6446   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6447   APInt SrcDemE;
6448   unsigned Opcode = Op.getOpcode();
6449   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6450     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6451     switch (Id) {
6452     case Intrinsic::s390_vpksh:   // PACKS
6453     case Intrinsic::s390_vpksf:
6454     case Intrinsic::s390_vpksg:
6455     case Intrinsic::s390_vpkshs:  // PACKS_CC
6456     case Intrinsic::s390_vpksfs:
6457     case Intrinsic::s390_vpksgs:
6458     case Intrinsic::s390_vpklsh:  // PACKLS
6459     case Intrinsic::s390_vpklsf:
6460     case Intrinsic::s390_vpklsg:
6461     case Intrinsic::s390_vpklshs: // PACKLS_CC
6462     case Intrinsic::s390_vpklsfs:
6463     case Intrinsic::s390_vpklsgs:
6464       // VECTOR PACK truncates the elements of two source vectors into one.
6465       SrcDemE = DemandedElts;
6466       if (OpNo == 2)
6467         SrcDemE.lshrInPlace(NumElts / 2);
6468       SrcDemE = SrcDemE.trunc(NumElts / 2);
6469       break;
6470       // VECTOR UNPACK extends half the elements of the source vector.
6471     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6472     case Intrinsic::s390_vuphh:
6473     case Intrinsic::s390_vuphf:
6474     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6475     case Intrinsic::s390_vuplhh:
6476     case Intrinsic::s390_vuplhf:
6477       SrcDemE = APInt(NumElts * 2, 0);
6478       SrcDemE.insertBits(DemandedElts, 0);
6479       break;
6480     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6481     case Intrinsic::s390_vuplhw:
6482     case Intrinsic::s390_vuplf:
6483     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6484     case Intrinsic::s390_vupllh:
6485     case Intrinsic::s390_vupllf:
6486       SrcDemE = APInt(NumElts * 2, 0);
6487       SrcDemE.insertBits(DemandedElts, NumElts);
6488       break;
6489     case Intrinsic::s390_vpdi: {
6490       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6491       SrcDemE = APInt(NumElts, 0);
6492       if (!DemandedElts[OpNo - 1])
6493         break;
6494       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6495       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6496       // Demand input element 0 or 1, given by the mask bit value.
6497       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6498       break;
6499     }
6500     case Intrinsic::s390_vsldb: {
6501       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6502       assert(VT == MVT::v16i8 && "Unexpected type.");
6503       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6504       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6505       unsigned NumSrc0Els = 16 - FirstIdx;
6506       SrcDemE = APInt(NumElts, 0);
6507       if (OpNo == 1) {
6508         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6509         SrcDemE.insertBits(DemEls, FirstIdx);
6510       } else {
6511         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6512         SrcDemE.insertBits(DemEls, 0);
6513       }
6514       break;
6515     }
6516     case Intrinsic::s390_vperm:
6517       SrcDemE = APInt(NumElts, 1);
6518       break;
6519     default:
6520       llvm_unreachable("Unhandled intrinsic.");
6521       break;
6522     }
6523   } else {
6524     switch (Opcode) {
6525     case SystemZISD::JOIN_DWORDS:
6526       // Scalar operand.
6527       SrcDemE = APInt(1, 1);
6528       break;
6529     case SystemZISD::SELECT_CCMASK:
6530       SrcDemE = DemandedElts;
6531       break;
6532     default:
6533       llvm_unreachable("Unhandled opcode.");
6534       break;
6535     }
6536   }
6537   return SrcDemE;
6538 }
6539 
6540 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6541                                   const APInt &DemandedElts,
6542                                   const SelectionDAG &DAG, unsigned Depth,
6543                                   unsigned OpNo) {
6544   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6545   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6546   KnownBits LHSKnown =
6547       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6548   KnownBits RHSKnown =
6549       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6550   Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
6551   Known.One = LHSKnown.One & RHSKnown.One;
6552 }
6553 
6554 void
6555 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6556                                                      KnownBits &Known,
6557                                                      const APInt &DemandedElts,
6558                                                      const SelectionDAG &DAG,
6559                                                      unsigned Depth) const {
6560   Known.resetAll();
6561 
6562   // Intrinsic CC result is returned in the two low bits.
6563   unsigned tmp0, tmp1; // not used
6564   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6565     Known.Zero.setBitsFrom(2);
6566     return;
6567   }
6568   EVT VT = Op.getValueType();
6569   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6570     return;
6571   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6572           "KnownBits does not match VT in bitwidth");
6573   assert ((!VT.isVector() ||
6574            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6575           "DemandedElts does not match VT number of elements");
6576   unsigned BitWidth = Known.getBitWidth();
6577   unsigned Opcode = Op.getOpcode();
6578   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6579     bool IsLogical = false;
6580     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6581     switch (Id) {
6582     case Intrinsic::s390_vpksh:   // PACKS
6583     case Intrinsic::s390_vpksf:
6584     case Intrinsic::s390_vpksg:
6585     case Intrinsic::s390_vpkshs:  // PACKS_CC
6586     case Intrinsic::s390_vpksfs:
6587     case Intrinsic::s390_vpksgs:
6588     case Intrinsic::s390_vpklsh:  // PACKLS
6589     case Intrinsic::s390_vpklsf:
6590     case Intrinsic::s390_vpklsg:
6591     case Intrinsic::s390_vpklshs: // PACKLS_CC
6592     case Intrinsic::s390_vpklsfs:
6593     case Intrinsic::s390_vpklsgs:
6594     case Intrinsic::s390_vpdi:
6595     case Intrinsic::s390_vsldb:
6596     case Intrinsic::s390_vperm:
6597       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6598       break;
6599     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6600     case Intrinsic::s390_vuplhh:
6601     case Intrinsic::s390_vuplhf:
6602     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6603     case Intrinsic::s390_vupllh:
6604     case Intrinsic::s390_vupllf:
6605       IsLogical = true;
6606       LLVM_FALLTHROUGH;
6607     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6608     case Intrinsic::s390_vuphh:
6609     case Intrinsic::s390_vuphf:
6610     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6611     case Intrinsic::s390_vuplhw:
6612     case Intrinsic::s390_vuplf: {
6613       SDValue SrcOp = Op.getOperand(1);
6614       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6615       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6616       if (IsLogical) {
6617         Known = Known.zext(BitWidth);
6618       } else
6619         Known = Known.sext(BitWidth);
6620       break;
6621     }
6622     default:
6623       break;
6624     }
6625   } else {
6626     switch (Opcode) {
6627     case SystemZISD::JOIN_DWORDS:
6628     case SystemZISD::SELECT_CCMASK:
6629       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6630       break;
6631     case SystemZISD::REPLICATE: {
6632       SDValue SrcOp = Op.getOperand(0);
6633       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6634       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6635         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6636       break;
6637     }
6638     default:
6639       break;
6640     }
6641   }
6642 
6643   // Known has the width of the source operand(s). Adjust if needed to match
6644   // the passed bitwidth.
6645   if (Known.getBitWidth() != BitWidth)
6646     Known = Known.anyextOrTrunc(BitWidth);
6647 }
6648 
6649 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6650                                         const SelectionDAG &DAG, unsigned Depth,
6651                                         unsigned OpNo) {
6652   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6653   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6654   if (LHS == 1) return 1; // Early out.
6655   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6656   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6657   if (RHS == 1) return 1; // Early out.
6658   unsigned Common = std::min(LHS, RHS);
6659   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6660   EVT VT = Op.getValueType();
6661   unsigned VTBits = VT.getScalarSizeInBits();
6662   if (SrcBitWidth > VTBits) { // PACK
6663     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6664     if (Common > SrcExtraBits)
6665       return (Common - SrcExtraBits);
6666     return 1;
6667   }
6668   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6669   return Common;
6670 }
6671 
6672 unsigned
6673 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6674     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6675     unsigned Depth) const {
6676   if (Op.getResNo() != 0)
6677     return 1;
6678   unsigned Opcode = Op.getOpcode();
6679   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6680     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6681     switch (Id) {
6682     case Intrinsic::s390_vpksh:   // PACKS
6683     case Intrinsic::s390_vpksf:
6684     case Intrinsic::s390_vpksg:
6685     case Intrinsic::s390_vpkshs:  // PACKS_CC
6686     case Intrinsic::s390_vpksfs:
6687     case Intrinsic::s390_vpksgs:
6688     case Intrinsic::s390_vpklsh:  // PACKLS
6689     case Intrinsic::s390_vpklsf:
6690     case Intrinsic::s390_vpklsg:
6691     case Intrinsic::s390_vpklshs: // PACKLS_CC
6692     case Intrinsic::s390_vpklsfs:
6693     case Intrinsic::s390_vpklsgs:
6694     case Intrinsic::s390_vpdi:
6695     case Intrinsic::s390_vsldb:
6696     case Intrinsic::s390_vperm:
6697       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6698     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6699     case Intrinsic::s390_vuphh:
6700     case Intrinsic::s390_vuphf:
6701     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6702     case Intrinsic::s390_vuplhw:
6703     case Intrinsic::s390_vuplf: {
6704       SDValue PackedOp = Op.getOperand(1);
6705       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6706       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6707       EVT VT = Op.getValueType();
6708       unsigned VTBits = VT.getScalarSizeInBits();
6709       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6710       return Tmp;
6711     }
6712     default:
6713       break;
6714     }
6715   } else {
6716     switch (Opcode) {
6717     case SystemZISD::SELECT_CCMASK:
6718       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6719     default:
6720       break;
6721     }
6722   }
6723 
6724   return 1;
6725 }
6726 
6727 //===----------------------------------------------------------------------===//
6728 // Custom insertion
6729 //===----------------------------------------------------------------------===//
6730 
6731 // Create a new basic block after MBB.
6732 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
6733   MachineFunction &MF = *MBB->getParent();
6734   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
6735   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
6736   return NewMBB;
6737 }
6738 
6739 // Split MBB after MI and return the new block (the one that contains
6740 // instructions after MI).
6741 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
6742                                           MachineBasicBlock *MBB) {
6743   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6744   NewMBB->splice(NewMBB->begin(), MBB,
6745                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6746   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6747   return NewMBB;
6748 }
6749 
6750 // Split MBB before MI and return the new block (the one that contains MI).
6751 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
6752                                            MachineBasicBlock *MBB) {
6753   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6754   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
6755   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6756   return NewMBB;
6757 }
6758 
6759 // Force base value Base into a register before MI.  Return the register.
6760 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
6761                          const SystemZInstrInfo *TII) {
6762   if (Base.isReg())
6763     return Base.getReg();
6764 
6765   MachineBasicBlock *MBB = MI.getParent();
6766   MachineFunction &MF = *MBB->getParent();
6767   MachineRegisterInfo &MRI = MF.getRegInfo();
6768 
6769   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6770   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6771       .add(Base)
6772       .addImm(0)
6773       .addReg(0);
6774   return Reg;
6775 }
6776 
6777 // The CC operand of MI might be missing a kill marker because there
6778 // were multiple uses of CC, and ISel didn't know which to mark.
6779 // Figure out whether MI should have had a kill marker.
6780 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6781   // Scan forward through BB for a use/def of CC.
6782   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6783   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6784     const MachineInstr& mi = *miI;
6785     if (mi.readsRegister(SystemZ::CC))
6786       return false;
6787     if (mi.definesRegister(SystemZ::CC))
6788       break; // Should have kill-flag - update below.
6789   }
6790 
6791   // If we hit the end of the block, check whether CC is live into a
6792   // successor.
6793   if (miI == MBB->end()) {
6794     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6795       if ((*SI)->isLiveIn(SystemZ::CC))
6796         return false;
6797   }
6798 
6799   return true;
6800 }
6801 
6802 // Return true if it is OK for this Select pseudo-opcode to be cascaded
6803 // together with other Select pseudo-opcodes into a single basic-block with
6804 // a conditional jump around it.
6805 static bool isSelectPseudo(MachineInstr &MI) {
6806   switch (MI.getOpcode()) {
6807   case SystemZ::Select32:
6808   case SystemZ::Select64:
6809   case SystemZ::SelectF32:
6810   case SystemZ::SelectF64:
6811   case SystemZ::SelectF128:
6812   case SystemZ::SelectVR32:
6813   case SystemZ::SelectVR64:
6814   case SystemZ::SelectVR128:
6815     return true;
6816 
6817   default:
6818     return false;
6819   }
6820 }
6821 
6822 // Helper function, which inserts PHI functions into SinkMBB:
6823 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6824 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
6825 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
6826                                  MachineBasicBlock *TrueMBB,
6827                                  MachineBasicBlock *FalseMBB,
6828                                  MachineBasicBlock *SinkMBB) {
6829   MachineFunction *MF = TrueMBB->getParent();
6830   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6831 
6832   MachineInstr *FirstMI = Selects.front();
6833   unsigned CCValid = FirstMI->getOperand(3).getImm();
6834   unsigned CCMask = FirstMI->getOperand(4).getImm();
6835 
6836   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6837 
6838   // As we are creating the PHIs, we have to be careful if there is more than
6839   // one.  Later Selects may reference the results of earlier Selects, but later
6840   // PHIs have to reference the individual true/false inputs from earlier PHIs.
6841   // That also means that PHI construction must work forward from earlier to
6842   // later, and that the code must maintain a mapping from earlier PHI's
6843   // destination registers, and the registers that went into the PHI.
6844   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6845 
6846   for (auto MI : Selects) {
6847     Register DestReg = MI->getOperand(0).getReg();
6848     Register TrueReg = MI->getOperand(1).getReg();
6849     Register FalseReg = MI->getOperand(2).getReg();
6850 
6851     // If this Select we are generating is the opposite condition from
6852     // the jump we generated, then we have to swap the operands for the
6853     // PHI that is going to be generated.
6854     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
6855       std::swap(TrueReg, FalseReg);
6856 
6857     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6858       TrueReg = RegRewriteTable[TrueReg].first;
6859 
6860     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6861       FalseReg = RegRewriteTable[FalseReg].second;
6862 
6863     DebugLoc DL = MI->getDebugLoc();
6864     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6865       .addReg(TrueReg).addMBB(TrueMBB)
6866       .addReg(FalseReg).addMBB(FalseMBB);
6867 
6868     // Add this PHI to the rewrite table.
6869     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6870   }
6871 
6872   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6873 }
6874 
6875 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6876 MachineBasicBlock *
6877 SystemZTargetLowering::emitSelect(MachineInstr &MI,
6878                                   MachineBasicBlock *MBB) const {
6879   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
6880   const SystemZInstrInfo *TII =
6881       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6882 
6883   unsigned CCValid = MI.getOperand(3).getImm();
6884   unsigned CCMask = MI.getOperand(4).getImm();
6885 
6886   // If we have a sequence of Select* pseudo instructions using the
6887   // same condition code value, we want to expand all of them into
6888   // a single pair of basic blocks using the same condition.
6889   SmallVector<MachineInstr*, 8> Selects;
6890   SmallVector<MachineInstr*, 8> DbgValues;
6891   Selects.push_back(&MI);
6892   unsigned Count = 0;
6893   for (MachineBasicBlock::iterator NextMIIt =
6894          std::next(MachineBasicBlock::iterator(MI));
6895        NextMIIt != MBB->end(); ++NextMIIt) {
6896     if (isSelectPseudo(*NextMIIt)) {
6897       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
6898              "Bad CCValid operands since CC was not redefined.");
6899       if (NextMIIt->getOperand(4).getImm() == CCMask ||
6900           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
6901         Selects.push_back(&*NextMIIt);
6902         continue;
6903       }
6904       break;
6905     }
6906     if (NextMIIt->definesRegister(SystemZ::CC) ||
6907         NextMIIt->usesCustomInsertionHook())
6908       break;
6909     bool User = false;
6910     for (auto SelMI : Selects)
6911       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
6912         User = true;
6913         break;
6914       }
6915     if (NextMIIt->isDebugInstr()) {
6916       if (User) {
6917         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
6918         DbgValues.push_back(&*NextMIIt);
6919       }
6920     }
6921     else if (User || ++Count > 20)
6922       break;
6923   }
6924 
6925   MachineInstr *LastMI = Selects.back();
6926   bool CCKilled =
6927       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
6928   MachineBasicBlock *StartMBB = MBB;
6929   MachineBasicBlock *JoinMBB  = splitBlockAfter(LastMI, MBB);
6930   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6931 
6932   // Unless CC was killed in the last Select instruction, mark it as
6933   // live-in to both FalseMBB and JoinMBB.
6934   if (!CCKilled) {
6935     FalseMBB->addLiveIn(SystemZ::CC);
6936     JoinMBB->addLiveIn(SystemZ::CC);
6937   }
6938 
6939   //  StartMBB:
6940   //   BRC CCMask, JoinMBB
6941   //   # fallthrough to FalseMBB
6942   MBB = StartMBB;
6943   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
6944     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6945   MBB->addSuccessor(JoinMBB);
6946   MBB->addSuccessor(FalseMBB);
6947 
6948   //  FalseMBB:
6949   //   # fallthrough to JoinMBB
6950   MBB = FalseMBB;
6951   MBB->addSuccessor(JoinMBB);
6952 
6953   //  JoinMBB:
6954   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
6955   //  ...
6956   MBB = JoinMBB;
6957   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
6958   for (auto SelMI : Selects)
6959     SelMI->eraseFromParent();
6960 
6961   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
6962   for (auto DbgMI : DbgValues)
6963     MBB->splice(InsertPos, StartMBB, DbgMI);
6964 
6965   return JoinMBB;
6966 }
6967 
6968 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6969 // StoreOpcode is the store to use and Invert says whether the store should
6970 // happen when the condition is false rather than true.  If a STORE ON
6971 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
6972 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6973                                                         MachineBasicBlock *MBB,
6974                                                         unsigned StoreOpcode,
6975                                                         unsigned STOCOpcode,
6976                                                         bool Invert) const {
6977   const SystemZInstrInfo *TII =
6978       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6979 
6980   Register SrcReg = MI.getOperand(0).getReg();
6981   MachineOperand Base = MI.getOperand(1);
6982   int64_t Disp = MI.getOperand(2).getImm();
6983   Register IndexReg = MI.getOperand(3).getReg();
6984   unsigned CCValid = MI.getOperand(4).getImm();
6985   unsigned CCMask = MI.getOperand(5).getImm();
6986   DebugLoc DL = MI.getDebugLoc();
6987 
6988   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6989 
6990   // Use STOCOpcode if possible.  We could use different store patterns in
6991   // order to avoid matching the index register, but the performance trade-offs
6992   // might be more complicated in that case.
6993   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6994     if (Invert)
6995       CCMask ^= CCValid;
6996 
6997     // ISel pattern matching also adds a load memory operand of the same
6998     // address, so take special care to find the storing memory operand.
6999     MachineMemOperand *MMO = nullptr;
7000     for (auto *I : MI.memoperands())
7001       if (I->isStore()) {
7002           MMO = I;
7003           break;
7004         }
7005 
7006     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7007       .addReg(SrcReg)
7008       .add(Base)
7009       .addImm(Disp)
7010       .addImm(CCValid)
7011       .addImm(CCMask)
7012       .addMemOperand(MMO);
7013 
7014     MI.eraseFromParent();
7015     return MBB;
7016   }
7017 
7018   // Get the condition needed to branch around the store.
7019   if (!Invert)
7020     CCMask ^= CCValid;
7021 
7022   MachineBasicBlock *StartMBB = MBB;
7023   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
7024   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
7025 
7026   // Unless CC was killed in the CondStore instruction, mark it as
7027   // live-in to both FalseMBB and JoinMBB.
7028   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7029     FalseMBB->addLiveIn(SystemZ::CC);
7030     JoinMBB->addLiveIn(SystemZ::CC);
7031   }
7032 
7033   //  StartMBB:
7034   //   BRC CCMask, JoinMBB
7035   //   # fallthrough to FalseMBB
7036   MBB = StartMBB;
7037   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7038     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7039   MBB->addSuccessor(JoinMBB);
7040   MBB->addSuccessor(FalseMBB);
7041 
7042   //  FalseMBB:
7043   //   store %SrcReg, %Disp(%Index,%Base)
7044   //   # fallthrough to JoinMBB
7045   MBB = FalseMBB;
7046   BuildMI(MBB, DL, TII->get(StoreOpcode))
7047       .addReg(SrcReg)
7048       .add(Base)
7049       .addImm(Disp)
7050       .addReg(IndexReg);
7051   MBB->addSuccessor(JoinMBB);
7052 
7053   MI.eraseFromParent();
7054   return JoinMBB;
7055 }
7056 
7057 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7058 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7059 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7060 // BitSize is the width of the field in bits, or 0 if this is a partword
7061 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7062 // is one of the operands.  Invert says whether the field should be
7063 // inverted after performing BinOpcode (e.g. for NAND).
7064 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7065     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7066     unsigned BitSize, bool Invert) const {
7067   MachineFunction &MF = *MBB->getParent();
7068   const SystemZInstrInfo *TII =
7069       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7070   MachineRegisterInfo &MRI = MF.getRegInfo();
7071   bool IsSubWord = (BitSize < 32);
7072 
7073   // Extract the operands.  Base can be a register or a frame index.
7074   // Src2 can be a register or immediate.
7075   Register Dest = MI.getOperand(0).getReg();
7076   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7077   int64_t Disp = MI.getOperand(2).getImm();
7078   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7079   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7080   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7081   DebugLoc DL = MI.getDebugLoc();
7082   if (IsSubWord)
7083     BitSize = MI.getOperand(6).getImm();
7084 
7085   // Subword operations use 32-bit registers.
7086   const TargetRegisterClass *RC = (BitSize <= 32 ?
7087                                    &SystemZ::GR32BitRegClass :
7088                                    &SystemZ::GR64BitRegClass);
7089   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7090   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7091 
7092   // Get the right opcodes for the displacement.
7093   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7094   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7095   assert(LOpcode && CSOpcode && "Displacement out of range");
7096 
7097   // Create virtual registers for temporary results.
7098   Register OrigVal       = MRI.createVirtualRegister(RC);
7099   Register OldVal        = MRI.createVirtualRegister(RC);
7100   Register NewVal        = (BinOpcode || IsSubWord ?
7101                             MRI.createVirtualRegister(RC) : Src2.getReg());
7102   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7103   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7104 
7105   // Insert a basic block for the main loop.
7106   MachineBasicBlock *StartMBB = MBB;
7107   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
7108   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
7109 
7110   //  StartMBB:
7111   //   ...
7112   //   %OrigVal = L Disp(%Base)
7113   //   # fall through to LoopMMB
7114   MBB = StartMBB;
7115   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7116   MBB->addSuccessor(LoopMBB);
7117 
7118   //  LoopMBB:
7119   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7120   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7121   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7122   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7123   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7124   //   JNE LoopMBB
7125   //   # fall through to DoneMMB
7126   MBB = LoopMBB;
7127   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7128     .addReg(OrigVal).addMBB(StartMBB)
7129     .addReg(Dest).addMBB(LoopMBB);
7130   if (IsSubWord)
7131     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7132       .addReg(OldVal).addReg(BitShift).addImm(0);
7133   if (Invert) {
7134     // Perform the operation normally and then invert every bit of the field.
7135     Register Tmp = MRI.createVirtualRegister(RC);
7136     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7137     if (BitSize <= 32)
7138       // XILF with the upper BitSize bits set.
7139       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7140         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7141     else {
7142       // Use LCGR and add -1 to the result, which is more compact than
7143       // an XILF, XILH pair.
7144       Register Tmp2 = MRI.createVirtualRegister(RC);
7145       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7146       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7147         .addReg(Tmp2).addImm(-1);
7148     }
7149   } else if (BinOpcode)
7150     // A simply binary operation.
7151     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7152         .addReg(RotatedOldVal)
7153         .add(Src2);
7154   else if (IsSubWord)
7155     // Use RISBG to rotate Src2 into position and use it to replace the
7156     // field in RotatedOldVal.
7157     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7158       .addReg(RotatedOldVal).addReg(Src2.getReg())
7159       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7160   if (IsSubWord)
7161     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7162       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7163   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7164       .addReg(OldVal)
7165       .addReg(NewVal)
7166       .add(Base)
7167       .addImm(Disp);
7168   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7169     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7170   MBB->addSuccessor(LoopMBB);
7171   MBB->addSuccessor(DoneMBB);
7172 
7173   MI.eraseFromParent();
7174   return DoneMBB;
7175 }
7176 
7177 // Implement EmitInstrWithCustomInserter for pseudo
7178 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7179 // instruction that should be used to compare the current field with the
7180 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7181 // for when the current field should be kept.  BitSize is the width of
7182 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7183 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7184     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7185     unsigned KeepOldMask, unsigned BitSize) const {
7186   MachineFunction &MF = *MBB->getParent();
7187   const SystemZInstrInfo *TII =
7188       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7189   MachineRegisterInfo &MRI = MF.getRegInfo();
7190   bool IsSubWord = (BitSize < 32);
7191 
7192   // Extract the operands.  Base can be a register or a frame index.
7193   Register Dest = MI.getOperand(0).getReg();
7194   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7195   int64_t Disp = MI.getOperand(2).getImm();
7196   Register Src2 = MI.getOperand(3).getReg();
7197   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7198   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7199   DebugLoc DL = MI.getDebugLoc();
7200   if (IsSubWord)
7201     BitSize = MI.getOperand(6).getImm();
7202 
7203   // Subword operations use 32-bit registers.
7204   const TargetRegisterClass *RC = (BitSize <= 32 ?
7205                                    &SystemZ::GR32BitRegClass :
7206                                    &SystemZ::GR64BitRegClass);
7207   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7208   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7209 
7210   // Get the right opcodes for the displacement.
7211   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7212   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7213   assert(LOpcode && CSOpcode && "Displacement out of range");
7214 
7215   // Create virtual registers for temporary results.
7216   Register OrigVal       = MRI.createVirtualRegister(RC);
7217   Register OldVal        = MRI.createVirtualRegister(RC);
7218   Register NewVal        = MRI.createVirtualRegister(RC);
7219   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7220   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7221   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7222 
7223   // Insert 3 basic blocks for the loop.
7224   MachineBasicBlock *StartMBB  = MBB;
7225   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
7226   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
7227   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
7228   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
7229 
7230   //  StartMBB:
7231   //   ...
7232   //   %OrigVal     = L Disp(%Base)
7233   //   # fall through to LoopMMB
7234   MBB = StartMBB;
7235   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7236   MBB->addSuccessor(LoopMBB);
7237 
7238   //  LoopMBB:
7239   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7240   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7241   //   CompareOpcode %RotatedOldVal, %Src2
7242   //   BRC KeepOldMask, UpdateMBB
7243   MBB = LoopMBB;
7244   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7245     .addReg(OrigVal).addMBB(StartMBB)
7246     .addReg(Dest).addMBB(UpdateMBB);
7247   if (IsSubWord)
7248     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7249       .addReg(OldVal).addReg(BitShift).addImm(0);
7250   BuildMI(MBB, DL, TII->get(CompareOpcode))
7251     .addReg(RotatedOldVal).addReg(Src2);
7252   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7253     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7254   MBB->addSuccessor(UpdateMBB);
7255   MBB->addSuccessor(UseAltMBB);
7256 
7257   //  UseAltMBB:
7258   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7259   //   # fall through to UpdateMMB
7260   MBB = UseAltMBB;
7261   if (IsSubWord)
7262     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7263       .addReg(RotatedOldVal).addReg(Src2)
7264       .addImm(32).addImm(31 + BitSize).addImm(0);
7265   MBB->addSuccessor(UpdateMBB);
7266 
7267   //  UpdateMBB:
7268   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7269   //                        [ %RotatedAltVal, UseAltMBB ]
7270   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7271   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7272   //   JNE LoopMBB
7273   //   # fall through to DoneMMB
7274   MBB = UpdateMBB;
7275   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7276     .addReg(RotatedOldVal).addMBB(LoopMBB)
7277     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7278   if (IsSubWord)
7279     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7280       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7281   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7282       .addReg(OldVal)
7283       .addReg(NewVal)
7284       .add(Base)
7285       .addImm(Disp);
7286   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7287     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7288   MBB->addSuccessor(LoopMBB);
7289   MBB->addSuccessor(DoneMBB);
7290 
7291   MI.eraseFromParent();
7292   return DoneMBB;
7293 }
7294 
7295 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7296 // instruction MI.
7297 MachineBasicBlock *
7298 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7299                                           MachineBasicBlock *MBB) const {
7300 
7301   MachineFunction &MF = *MBB->getParent();
7302   const SystemZInstrInfo *TII =
7303       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7304   MachineRegisterInfo &MRI = MF.getRegInfo();
7305 
7306   // Extract the operands.  Base can be a register or a frame index.
7307   Register Dest = MI.getOperand(0).getReg();
7308   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7309   int64_t Disp = MI.getOperand(2).getImm();
7310   Register OrigCmpVal = MI.getOperand(3).getReg();
7311   Register OrigSwapVal = MI.getOperand(4).getReg();
7312   Register BitShift = MI.getOperand(5).getReg();
7313   Register NegBitShift = MI.getOperand(6).getReg();
7314   int64_t BitSize = MI.getOperand(7).getImm();
7315   DebugLoc DL = MI.getDebugLoc();
7316 
7317   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7318 
7319   // Get the right opcodes for the displacement.
7320   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7321   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7322   assert(LOpcode && CSOpcode && "Displacement out of range");
7323 
7324   // Create virtual registers for temporary results.
7325   Register OrigOldVal = MRI.createVirtualRegister(RC);
7326   Register OldVal = MRI.createVirtualRegister(RC);
7327   Register CmpVal = MRI.createVirtualRegister(RC);
7328   Register SwapVal = MRI.createVirtualRegister(RC);
7329   Register StoreVal = MRI.createVirtualRegister(RC);
7330   Register RetryOldVal = MRI.createVirtualRegister(RC);
7331   Register RetryCmpVal = MRI.createVirtualRegister(RC);
7332   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7333 
7334   // Insert 2 basic blocks for the loop.
7335   MachineBasicBlock *StartMBB = MBB;
7336   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
7337   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
7338   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
7339 
7340   //  StartMBB:
7341   //   ...
7342   //   %OrigOldVal     = L Disp(%Base)
7343   //   # fall through to LoopMMB
7344   MBB = StartMBB;
7345   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7346       .add(Base)
7347       .addImm(Disp)
7348       .addReg(0);
7349   MBB->addSuccessor(LoopMBB);
7350 
7351   //  LoopMBB:
7352   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7353   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7354   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7355   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7356   //                      ^^ The low BitSize bits contain the field
7357   //                         of interest.
7358   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7359   //                      ^^ Replace the upper 32-BitSize bits of the
7360   //                         comparison value with those that we loaded,
7361   //                         so that we can use a full word comparison.
7362   //   CR %Dest, %RetryCmpVal
7363   //   JNE DoneMBB
7364   //   # Fall through to SetMBB
7365   MBB = LoopMBB;
7366   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7367     .addReg(OrigOldVal).addMBB(StartMBB)
7368     .addReg(RetryOldVal).addMBB(SetMBB);
7369   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7370     .addReg(OrigCmpVal).addMBB(StartMBB)
7371     .addReg(RetryCmpVal).addMBB(SetMBB);
7372   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7373     .addReg(OrigSwapVal).addMBB(StartMBB)
7374     .addReg(RetrySwapVal).addMBB(SetMBB);
7375   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7376     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7377   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7378     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7379   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7380     .addReg(Dest).addReg(RetryCmpVal);
7381   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7382     .addImm(SystemZ::CCMASK_ICMP)
7383     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7384   MBB->addSuccessor(DoneMBB);
7385   MBB->addSuccessor(SetMBB);
7386 
7387   //  SetMBB:
7388   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7389   //                      ^^ Replace the upper 32-BitSize bits of the new
7390   //                         value with those that we loaded.
7391   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7392   //                      ^^ Rotate the new field to its proper position.
7393   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7394   //   JNE LoopMBB
7395   //   # fall through to ExitMMB
7396   MBB = SetMBB;
7397   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7398     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7399   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7400     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7401   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7402       .addReg(OldVal)
7403       .addReg(StoreVal)
7404       .add(Base)
7405       .addImm(Disp);
7406   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7407     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7408   MBB->addSuccessor(LoopMBB);
7409   MBB->addSuccessor(DoneMBB);
7410 
7411   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7412   // to the block after the loop.  At this point, CC may have been defined
7413   // either by the CR in LoopMBB or by the CS in SetMBB.
7414   if (!MI.registerDefIsDead(SystemZ::CC))
7415     DoneMBB->addLiveIn(SystemZ::CC);
7416 
7417   MI.eraseFromParent();
7418   return DoneMBB;
7419 }
7420 
7421 // Emit a move from two GR64s to a GR128.
7422 MachineBasicBlock *
7423 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7424                                    MachineBasicBlock *MBB) const {
7425   MachineFunction &MF = *MBB->getParent();
7426   const SystemZInstrInfo *TII =
7427       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7428   MachineRegisterInfo &MRI = MF.getRegInfo();
7429   DebugLoc DL = MI.getDebugLoc();
7430 
7431   Register Dest = MI.getOperand(0).getReg();
7432   Register Hi = MI.getOperand(1).getReg();
7433   Register Lo = MI.getOperand(2).getReg();
7434   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7435   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7436 
7437   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7438   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7439     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7440   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7441     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7442 
7443   MI.eraseFromParent();
7444   return MBB;
7445 }
7446 
7447 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7448 // if the high register of the GR128 value must be cleared or false if
7449 // it's "don't care".
7450 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7451                                                      MachineBasicBlock *MBB,
7452                                                      bool ClearEven) const {
7453   MachineFunction &MF = *MBB->getParent();
7454   const SystemZInstrInfo *TII =
7455       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7456   MachineRegisterInfo &MRI = MF.getRegInfo();
7457   DebugLoc DL = MI.getDebugLoc();
7458 
7459   Register Dest = MI.getOperand(0).getReg();
7460   Register Src = MI.getOperand(1).getReg();
7461   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7462 
7463   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7464   if (ClearEven) {
7465     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7466     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7467 
7468     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7469       .addImm(0);
7470     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7471       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7472     In128 = NewIn128;
7473   }
7474   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7475     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7476 
7477   MI.eraseFromParent();
7478   return MBB;
7479 }
7480 
7481 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7482     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7483   MachineFunction &MF = *MBB->getParent();
7484   const SystemZInstrInfo *TII =
7485       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7486   MachineRegisterInfo &MRI = MF.getRegInfo();
7487   DebugLoc DL = MI.getDebugLoc();
7488 
7489   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7490   uint64_t DestDisp = MI.getOperand(1).getImm();
7491   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7492   uint64_t SrcDisp = MI.getOperand(3).getImm();
7493   uint64_t Length = MI.getOperand(4).getImm();
7494 
7495   // When generating more than one CLC, all but the last will need to
7496   // branch to the end when a difference is found.
7497   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7498                                splitBlockAfter(MI, MBB) : nullptr);
7499 
7500   // Check for the loop form, in which operand 5 is the trip count.
7501   if (MI.getNumExplicitOperands() > 5) {
7502     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7503 
7504     Register StartCountReg = MI.getOperand(5).getReg();
7505     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7506     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7507                               forceReg(MI, DestBase, TII));
7508 
7509     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7510     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7511     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7512                             MRI.createVirtualRegister(RC));
7513     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7514     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7515                             MRI.createVirtualRegister(RC));
7516 
7517     RC = &SystemZ::GR64BitRegClass;
7518     Register ThisCountReg = MRI.createVirtualRegister(RC);
7519     Register NextCountReg = MRI.createVirtualRegister(RC);
7520 
7521     MachineBasicBlock *StartMBB = MBB;
7522     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7523     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7524     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
7525 
7526     //  StartMBB:
7527     //   # fall through to LoopMMB
7528     MBB->addSuccessor(LoopMBB);
7529 
7530     //  LoopMBB:
7531     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7532     //                      [ %NextDestReg, NextMBB ]
7533     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7534     //                     [ %NextSrcReg, NextMBB ]
7535     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7536     //                       [ %NextCountReg, NextMBB ]
7537     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7538     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7539     //   ( JLH EndMBB )
7540     //
7541     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7542     MBB = LoopMBB;
7543 
7544     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7545       .addReg(StartDestReg).addMBB(StartMBB)
7546       .addReg(NextDestReg).addMBB(NextMBB);
7547     if (!HaveSingleBase)
7548       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7549         .addReg(StartSrcReg).addMBB(StartMBB)
7550         .addReg(NextSrcReg).addMBB(NextMBB);
7551     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7552       .addReg(StartCountReg).addMBB(StartMBB)
7553       .addReg(NextCountReg).addMBB(NextMBB);
7554     if (Opcode == SystemZ::MVC)
7555       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7556         .addImm(SystemZ::PFD_WRITE)
7557         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7558     BuildMI(MBB, DL, TII->get(Opcode))
7559       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7560       .addReg(ThisSrcReg).addImm(SrcDisp);
7561     if (EndMBB) {
7562       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7563         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7564         .addMBB(EndMBB);
7565       MBB->addSuccessor(EndMBB);
7566       MBB->addSuccessor(NextMBB);
7567     }
7568 
7569     // NextMBB:
7570     //   %NextDestReg = LA 256(%ThisDestReg)
7571     //   %NextSrcReg = LA 256(%ThisSrcReg)
7572     //   %NextCountReg = AGHI %ThisCountReg, -1
7573     //   CGHI %NextCountReg, 0
7574     //   JLH LoopMBB
7575     //   # fall through to DoneMMB
7576     //
7577     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7578     MBB = NextMBB;
7579 
7580     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7581       .addReg(ThisDestReg).addImm(256).addReg(0);
7582     if (!HaveSingleBase)
7583       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7584         .addReg(ThisSrcReg).addImm(256).addReg(0);
7585     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7586       .addReg(ThisCountReg).addImm(-1);
7587     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7588       .addReg(NextCountReg).addImm(0);
7589     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7590       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7591       .addMBB(LoopMBB);
7592     MBB->addSuccessor(LoopMBB);
7593     MBB->addSuccessor(DoneMBB);
7594 
7595     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7596     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7597     Length &= 255;
7598     if (EndMBB && !Length)
7599       // If the loop handled the whole CLC range, DoneMBB will be empty with
7600       // CC live-through into EndMBB, so add it as live-in.
7601       DoneMBB->addLiveIn(SystemZ::CC);
7602     MBB = DoneMBB;
7603   }
7604   // Handle any remaining bytes with straight-line code.
7605   while (Length > 0) {
7606     uint64_t ThisLength = std::min(Length, uint64_t(256));
7607     // The previous iteration might have created out-of-range displacements.
7608     // Apply them using LAY if so.
7609     if (!isUInt<12>(DestDisp)) {
7610       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7611       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7612           .add(DestBase)
7613           .addImm(DestDisp)
7614           .addReg(0);
7615       DestBase = MachineOperand::CreateReg(Reg, false);
7616       DestDisp = 0;
7617     }
7618     if (!isUInt<12>(SrcDisp)) {
7619       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7620       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7621           .add(SrcBase)
7622           .addImm(SrcDisp)
7623           .addReg(0);
7624       SrcBase = MachineOperand::CreateReg(Reg, false);
7625       SrcDisp = 0;
7626     }
7627     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7628         .add(DestBase)
7629         .addImm(DestDisp)
7630         .addImm(ThisLength)
7631         .add(SrcBase)
7632         .addImm(SrcDisp)
7633         .setMemRefs(MI.memoperands());
7634     DestDisp += ThisLength;
7635     SrcDisp += ThisLength;
7636     Length -= ThisLength;
7637     // If there's another CLC to go, branch to the end if a difference
7638     // was found.
7639     if (EndMBB && Length > 0) {
7640       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
7641       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7642         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7643         .addMBB(EndMBB);
7644       MBB->addSuccessor(EndMBB);
7645       MBB->addSuccessor(NextMBB);
7646       MBB = NextMBB;
7647     }
7648   }
7649   if (EndMBB) {
7650     MBB->addSuccessor(EndMBB);
7651     MBB = EndMBB;
7652     MBB->addLiveIn(SystemZ::CC);
7653   }
7654 
7655   MI.eraseFromParent();
7656   return MBB;
7657 }
7658 
7659 // Decompose string pseudo-instruction MI into a loop that continually performs
7660 // Opcode until CC != 3.
7661 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7662     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7663   MachineFunction &MF = *MBB->getParent();
7664   const SystemZInstrInfo *TII =
7665       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7666   MachineRegisterInfo &MRI = MF.getRegInfo();
7667   DebugLoc DL = MI.getDebugLoc();
7668 
7669   uint64_t End1Reg = MI.getOperand(0).getReg();
7670   uint64_t Start1Reg = MI.getOperand(1).getReg();
7671   uint64_t Start2Reg = MI.getOperand(2).getReg();
7672   uint64_t CharReg = MI.getOperand(3).getReg();
7673 
7674   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7675   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7676   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7677   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7678 
7679   MachineBasicBlock *StartMBB = MBB;
7680   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7681   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7682 
7683   //  StartMBB:
7684   //   # fall through to LoopMMB
7685   MBB->addSuccessor(LoopMBB);
7686 
7687   //  LoopMBB:
7688   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7689   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7690   //   R0L = %CharReg
7691   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7692   //   JO LoopMBB
7693   //   # fall through to DoneMMB
7694   //
7695   // The load of R0L can be hoisted by post-RA LICM.
7696   MBB = LoopMBB;
7697 
7698   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7699     .addReg(Start1Reg).addMBB(StartMBB)
7700     .addReg(End1Reg).addMBB(LoopMBB);
7701   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7702     .addReg(Start2Reg).addMBB(StartMBB)
7703     .addReg(End2Reg).addMBB(LoopMBB);
7704   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7705   BuildMI(MBB, DL, TII->get(Opcode))
7706     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7707     .addReg(This1Reg).addReg(This2Reg);
7708   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7709     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7710   MBB->addSuccessor(LoopMBB);
7711   MBB->addSuccessor(DoneMBB);
7712 
7713   DoneMBB->addLiveIn(SystemZ::CC);
7714 
7715   MI.eraseFromParent();
7716   return DoneMBB;
7717 }
7718 
7719 // Update TBEGIN instruction with final opcode and register clobbers.
7720 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7721     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7722     bool NoFloat) const {
7723   MachineFunction &MF = *MBB->getParent();
7724   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7725   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7726 
7727   // Update opcode.
7728   MI.setDesc(TII->get(Opcode));
7729 
7730   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7731   // Make sure to add the corresponding GRSM bits if they are missing.
7732   uint64_t Control = MI.getOperand(2).getImm();
7733   static const unsigned GPRControlBit[16] = {
7734     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7735     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7736   };
7737   Control |= GPRControlBit[15];
7738   if (TFI->hasFP(MF))
7739     Control |= GPRControlBit[11];
7740   MI.getOperand(2).setImm(Control);
7741 
7742   // Add GPR clobbers.
7743   for (int I = 0; I < 16; I++) {
7744     if ((Control & GPRControlBit[I]) == 0) {
7745       unsigned Reg = SystemZMC::GR64Regs[I];
7746       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7747     }
7748   }
7749 
7750   // Add FPR/VR clobbers.
7751   if (!NoFloat && (Control & 4) != 0) {
7752     if (Subtarget.hasVector()) {
7753       for (int I = 0; I < 32; I++) {
7754         unsigned Reg = SystemZMC::VR128Regs[I];
7755         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7756       }
7757     } else {
7758       for (int I = 0; I < 16; I++) {
7759         unsigned Reg = SystemZMC::FP64Regs[I];
7760         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7761       }
7762     }
7763   }
7764 
7765   return MBB;
7766 }
7767 
7768 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
7769     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7770   MachineFunction &MF = *MBB->getParent();
7771   MachineRegisterInfo *MRI = &MF.getRegInfo();
7772   const SystemZInstrInfo *TII =
7773       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7774   DebugLoc DL = MI.getDebugLoc();
7775 
7776   Register SrcReg = MI.getOperand(0).getReg();
7777 
7778   // Create new virtual register of the same class as source.
7779   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7780   Register DstReg = MRI->createVirtualRegister(RC);
7781 
7782   // Replace pseudo with a normal load-and-test that models the def as
7783   // well.
7784   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7785     .addReg(SrcReg)
7786     .setMIFlags(MI.getFlags());
7787   MI.eraseFromParent();
7788 
7789   return MBB;
7790 }
7791 
7792 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7793     MachineInstr &MI, MachineBasicBlock *MBB) const {
7794   switch (MI.getOpcode()) {
7795   case SystemZ::Select32:
7796   case SystemZ::Select64:
7797   case SystemZ::SelectF32:
7798   case SystemZ::SelectF64:
7799   case SystemZ::SelectF128:
7800   case SystemZ::SelectVR32:
7801   case SystemZ::SelectVR64:
7802   case SystemZ::SelectVR128:
7803     return emitSelect(MI, MBB);
7804 
7805   case SystemZ::CondStore8Mux:
7806     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
7807   case SystemZ::CondStore8MuxInv:
7808     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
7809   case SystemZ::CondStore16Mux:
7810     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
7811   case SystemZ::CondStore16MuxInv:
7812     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
7813   case SystemZ::CondStore32Mux:
7814     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
7815   case SystemZ::CondStore32MuxInv:
7816     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
7817   case SystemZ::CondStore8:
7818     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
7819   case SystemZ::CondStore8Inv:
7820     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
7821   case SystemZ::CondStore16:
7822     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
7823   case SystemZ::CondStore16Inv:
7824     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
7825   case SystemZ::CondStore32:
7826     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
7827   case SystemZ::CondStore32Inv:
7828     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
7829   case SystemZ::CondStore64:
7830     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
7831   case SystemZ::CondStore64Inv:
7832     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
7833   case SystemZ::CondStoreF32:
7834     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
7835   case SystemZ::CondStoreF32Inv:
7836     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
7837   case SystemZ::CondStoreF64:
7838     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
7839   case SystemZ::CondStoreF64Inv:
7840     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
7841 
7842   case SystemZ::PAIR128:
7843     return emitPair128(MI, MBB);
7844   case SystemZ::AEXT128:
7845     return emitExt128(MI, MBB, false);
7846   case SystemZ::ZEXT128:
7847     return emitExt128(MI, MBB, true);
7848 
7849   case SystemZ::ATOMIC_SWAPW:
7850     return emitAtomicLoadBinary(MI, MBB, 0, 0);
7851   case SystemZ::ATOMIC_SWAP_32:
7852     return emitAtomicLoadBinary(MI, MBB, 0, 32);
7853   case SystemZ::ATOMIC_SWAP_64:
7854     return emitAtomicLoadBinary(MI, MBB, 0, 64);
7855 
7856   case SystemZ::ATOMIC_LOADW_AR:
7857     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
7858   case SystemZ::ATOMIC_LOADW_AFI:
7859     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
7860   case SystemZ::ATOMIC_LOAD_AR:
7861     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
7862   case SystemZ::ATOMIC_LOAD_AHI:
7863     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
7864   case SystemZ::ATOMIC_LOAD_AFI:
7865     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
7866   case SystemZ::ATOMIC_LOAD_AGR:
7867     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
7868   case SystemZ::ATOMIC_LOAD_AGHI:
7869     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
7870   case SystemZ::ATOMIC_LOAD_AGFI:
7871     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
7872 
7873   case SystemZ::ATOMIC_LOADW_SR:
7874     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
7875   case SystemZ::ATOMIC_LOAD_SR:
7876     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
7877   case SystemZ::ATOMIC_LOAD_SGR:
7878     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
7879 
7880   case SystemZ::ATOMIC_LOADW_NR:
7881     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
7882   case SystemZ::ATOMIC_LOADW_NILH:
7883     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
7884   case SystemZ::ATOMIC_LOAD_NR:
7885     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
7886   case SystemZ::ATOMIC_LOAD_NILL:
7887     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
7888   case SystemZ::ATOMIC_LOAD_NILH:
7889     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
7890   case SystemZ::ATOMIC_LOAD_NILF:
7891     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
7892   case SystemZ::ATOMIC_LOAD_NGR:
7893     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
7894   case SystemZ::ATOMIC_LOAD_NILL64:
7895     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
7896   case SystemZ::ATOMIC_LOAD_NILH64:
7897     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
7898   case SystemZ::ATOMIC_LOAD_NIHL64:
7899     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
7900   case SystemZ::ATOMIC_LOAD_NIHH64:
7901     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
7902   case SystemZ::ATOMIC_LOAD_NILF64:
7903     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
7904   case SystemZ::ATOMIC_LOAD_NIHF64:
7905     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
7906 
7907   case SystemZ::ATOMIC_LOADW_OR:
7908     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
7909   case SystemZ::ATOMIC_LOADW_OILH:
7910     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
7911   case SystemZ::ATOMIC_LOAD_OR:
7912     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
7913   case SystemZ::ATOMIC_LOAD_OILL:
7914     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
7915   case SystemZ::ATOMIC_LOAD_OILH:
7916     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
7917   case SystemZ::ATOMIC_LOAD_OILF:
7918     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
7919   case SystemZ::ATOMIC_LOAD_OGR:
7920     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
7921   case SystemZ::ATOMIC_LOAD_OILL64:
7922     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
7923   case SystemZ::ATOMIC_LOAD_OILH64:
7924     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
7925   case SystemZ::ATOMIC_LOAD_OIHL64:
7926     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
7927   case SystemZ::ATOMIC_LOAD_OIHH64:
7928     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
7929   case SystemZ::ATOMIC_LOAD_OILF64:
7930     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
7931   case SystemZ::ATOMIC_LOAD_OIHF64:
7932     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
7933 
7934   case SystemZ::ATOMIC_LOADW_XR:
7935     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
7936   case SystemZ::ATOMIC_LOADW_XILF:
7937     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
7938   case SystemZ::ATOMIC_LOAD_XR:
7939     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
7940   case SystemZ::ATOMIC_LOAD_XILF:
7941     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
7942   case SystemZ::ATOMIC_LOAD_XGR:
7943     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
7944   case SystemZ::ATOMIC_LOAD_XILF64:
7945     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
7946   case SystemZ::ATOMIC_LOAD_XIHF64:
7947     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
7948 
7949   case SystemZ::ATOMIC_LOADW_NRi:
7950     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
7951   case SystemZ::ATOMIC_LOADW_NILHi:
7952     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
7953   case SystemZ::ATOMIC_LOAD_NRi:
7954     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
7955   case SystemZ::ATOMIC_LOAD_NILLi:
7956     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
7957   case SystemZ::ATOMIC_LOAD_NILHi:
7958     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
7959   case SystemZ::ATOMIC_LOAD_NILFi:
7960     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
7961   case SystemZ::ATOMIC_LOAD_NGRi:
7962     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
7963   case SystemZ::ATOMIC_LOAD_NILL64i:
7964     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
7965   case SystemZ::ATOMIC_LOAD_NILH64i:
7966     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7967   case SystemZ::ATOMIC_LOAD_NIHL64i:
7968     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7969   case SystemZ::ATOMIC_LOAD_NIHH64i:
7970     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7971   case SystemZ::ATOMIC_LOAD_NILF64i:
7972     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7973   case SystemZ::ATOMIC_LOAD_NIHF64i:
7974     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7975 
7976   case SystemZ::ATOMIC_LOADW_MIN:
7977     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7978                                 SystemZ::CCMASK_CMP_LE, 0);
7979   case SystemZ::ATOMIC_LOAD_MIN_32:
7980     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7981                                 SystemZ::CCMASK_CMP_LE, 32);
7982   case SystemZ::ATOMIC_LOAD_MIN_64:
7983     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7984                                 SystemZ::CCMASK_CMP_LE, 64);
7985 
7986   case SystemZ::ATOMIC_LOADW_MAX:
7987     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7988                                 SystemZ::CCMASK_CMP_GE, 0);
7989   case SystemZ::ATOMIC_LOAD_MAX_32:
7990     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7991                                 SystemZ::CCMASK_CMP_GE, 32);
7992   case SystemZ::ATOMIC_LOAD_MAX_64:
7993     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7994                                 SystemZ::CCMASK_CMP_GE, 64);
7995 
7996   case SystemZ::ATOMIC_LOADW_UMIN:
7997     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7998                                 SystemZ::CCMASK_CMP_LE, 0);
7999   case SystemZ::ATOMIC_LOAD_UMIN_32:
8000     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8001                                 SystemZ::CCMASK_CMP_LE, 32);
8002   case SystemZ::ATOMIC_LOAD_UMIN_64:
8003     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8004                                 SystemZ::CCMASK_CMP_LE, 64);
8005 
8006   case SystemZ::ATOMIC_LOADW_UMAX:
8007     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8008                                 SystemZ::CCMASK_CMP_GE, 0);
8009   case SystemZ::ATOMIC_LOAD_UMAX_32:
8010     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8011                                 SystemZ::CCMASK_CMP_GE, 32);
8012   case SystemZ::ATOMIC_LOAD_UMAX_64:
8013     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8014                                 SystemZ::CCMASK_CMP_GE, 64);
8015 
8016   case SystemZ::ATOMIC_CMP_SWAPW:
8017     return emitAtomicCmpSwapW(MI, MBB);
8018   case SystemZ::MVCSequence:
8019   case SystemZ::MVCLoop:
8020     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8021   case SystemZ::NCSequence:
8022   case SystemZ::NCLoop:
8023     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8024   case SystemZ::OCSequence:
8025   case SystemZ::OCLoop:
8026     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8027   case SystemZ::XCSequence:
8028   case SystemZ::XCLoop:
8029     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8030   case SystemZ::CLCSequence:
8031   case SystemZ::CLCLoop:
8032     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8033   case SystemZ::CLSTLoop:
8034     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8035   case SystemZ::MVSTLoop:
8036     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8037   case SystemZ::SRSTLoop:
8038     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8039   case SystemZ::TBEGIN:
8040     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8041   case SystemZ::TBEGIN_nofloat:
8042     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8043   case SystemZ::TBEGINC:
8044     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8045   case SystemZ::LTEBRCompare_VecPseudo:
8046     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8047   case SystemZ::LTDBRCompare_VecPseudo:
8048     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8049   case SystemZ::LTXBRCompare_VecPseudo:
8050     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8051 
8052   case TargetOpcode::STACKMAP:
8053   case TargetOpcode::PATCHPOINT:
8054     return emitPatchPoint(MI, MBB);
8055 
8056   default:
8057     llvm_unreachable("Unexpected instr type to insert");
8058   }
8059 }
8060 
8061 // This is only used by the isel schedulers, and is needed only to prevent
8062 // compiler from crashing when list-ilp is used.
8063 const TargetRegisterClass *
8064 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8065   if (VT == MVT::Untyped)
8066     return &SystemZ::ADDR128BitRegClass;
8067   return TargetLowering::getRepRegClassFor(VT);
8068 }
8069