1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include <cctype> 24 25 using namespace llvm; 26 27 #define DEBUG_TYPE "systemz-lower" 28 29 namespace { 30 // Represents a sequence for extracting a 0/1 value from an IPM result: 31 // (((X ^ XORValue) + AddValue) >> Bit) 32 struct IPMConversion { 33 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 34 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 35 36 int64_t XORValue; 37 int64_t AddValue; 38 unsigned Bit; 39 }; 40 41 // Represents information about a comparison. 42 struct Comparison { 43 Comparison(SDValue Op0In, SDValue Op1In) 44 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 45 46 // The operands to the comparison. 47 SDValue Op0, Op1; 48 49 // The opcode that should be used to compare Op0 and Op1. 50 unsigned Opcode; 51 52 // A SystemZICMP value. Only used for integer comparisons. 53 unsigned ICmpType; 54 55 // The mask of CC values that Opcode can produce. 56 unsigned CCValid; 57 58 // The mask of CC values for which the original condition is true. 59 unsigned CCMask; 60 }; 61 } // end anonymous namespace 62 63 // Classify VT as either 32 or 64 bit. 64 static bool is32Bit(EVT VT) { 65 switch (VT.getSimpleVT().SimpleTy) { 66 case MVT::i32: 67 return true; 68 case MVT::i64: 69 return false; 70 default: 71 llvm_unreachable("Unsupported type"); 72 } 73 } 74 75 // Return a version of MachineOperand that can be safely used before the 76 // final use. 77 static MachineOperand earlyUseOperand(MachineOperand Op) { 78 if (Op.isReg()) 79 Op.setIsKill(false); 80 return Op; 81 } 82 83 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &tm) 84 : TargetLowering(tm, new TargetLoweringObjectFileELF()), 85 Subtarget(tm.getSubtarget<SystemZSubtarget>()) { 86 MVT PtrVT = getPointerTy(); 87 88 // Set up the register classes. 89 if (Subtarget.hasHighWord()) 90 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 91 else 92 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 93 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 94 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 95 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 96 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 97 98 // Compute derived properties from the register classes 99 computeRegisterProperties(); 100 101 // Set up special registers. 102 setExceptionPointerRegister(SystemZ::R6D); 103 setExceptionSelectorRegister(SystemZ::R7D); 104 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 105 106 // TODO: It may be better to default to latency-oriented scheduling, however 107 // LLVM's current latency-oriented scheduler can't handle physreg definitions 108 // such as SystemZ has with CC, so set this to the register-pressure 109 // scheduler, because it can. 110 setSchedulingPreference(Sched::RegPressure); 111 112 setBooleanContents(ZeroOrOneBooleanContent); 113 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 114 115 // Instructions are strings of 2-byte aligned 2-byte values. 116 setMinFunctionAlignment(2); 117 118 // Handle operations that are handled in a similar way for all types. 119 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 120 I <= MVT::LAST_FP_VALUETYPE; 121 ++I) { 122 MVT VT = MVT::SimpleValueType(I); 123 if (isTypeLegal(VT)) { 124 // Lower SET_CC into an IPM-based sequence. 125 setOperationAction(ISD::SETCC, VT, Custom); 126 127 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 128 setOperationAction(ISD::SELECT, VT, Expand); 129 130 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 131 setOperationAction(ISD::SELECT_CC, VT, Custom); 132 setOperationAction(ISD::BR_CC, VT, Custom); 133 } 134 } 135 136 // Expand jump table branches as address arithmetic followed by an 137 // indirect jump. 138 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 139 140 // Expand BRCOND into a BR_CC (see above). 141 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 142 143 // Handle integer types. 144 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 145 I <= MVT::LAST_INTEGER_VALUETYPE; 146 ++I) { 147 MVT VT = MVT::SimpleValueType(I); 148 if (isTypeLegal(VT)) { 149 // Expand individual DIV and REMs into DIVREMs. 150 setOperationAction(ISD::SDIV, VT, Expand); 151 setOperationAction(ISD::UDIV, VT, Expand); 152 setOperationAction(ISD::SREM, VT, Expand); 153 setOperationAction(ISD::UREM, VT, Expand); 154 setOperationAction(ISD::SDIVREM, VT, Custom); 155 setOperationAction(ISD::UDIVREM, VT, Custom); 156 157 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 158 // stores, putting a serialization instruction after the stores. 159 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 160 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 161 162 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 163 // available, or if the operand is constant. 164 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 165 166 // No special instructions for these. 167 setOperationAction(ISD::CTPOP, VT, Expand); 168 setOperationAction(ISD::CTTZ, VT, Expand); 169 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 170 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 171 setOperationAction(ISD::ROTR, VT, Expand); 172 173 // Use *MUL_LOHI where possible instead of MULH*. 174 setOperationAction(ISD::MULHS, VT, Expand); 175 setOperationAction(ISD::MULHU, VT, Expand); 176 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 177 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 178 179 // Only z196 and above have native support for conversions to unsigned. 180 if (!Subtarget.hasFPExtension()) 181 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 182 } 183 } 184 185 // Type legalization will convert 8- and 16-bit atomic operations into 186 // forms that operate on i32s (but still keeping the original memory VT). 187 // Lower them into full i32 operations. 188 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 189 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 190 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 191 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 192 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 193 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 194 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 195 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 196 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 197 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 198 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 199 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 200 201 // z10 has instructions for signed but not unsigned FP conversion. 202 // Handle unsigned 32-bit types as signed 64-bit types. 203 if (!Subtarget.hasFPExtension()) { 204 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 205 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 206 } 207 208 // We have native support for a 64-bit CTLZ, via FLOGR. 209 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 210 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 211 212 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 213 setOperationAction(ISD::OR, MVT::i64, Custom); 214 215 // FIXME: Can we support these natively? 216 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 217 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 218 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 219 220 // We have native instructions for i8, i16 and i32 extensions, but not i1. 221 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 222 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); 223 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); 224 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 225 226 // Handle the various types of symbolic address. 227 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 228 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 229 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 230 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 231 setOperationAction(ISD::JumpTable, PtrVT, Custom); 232 233 // We need to handle dynamic allocations specially because of the 234 // 160-byte area at the bottom of the stack. 235 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 236 237 // Use custom expanders so that we can force the function to use 238 // a frame pointer. 239 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 240 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 241 242 // Handle prefetches with PFD or PFDRL. 243 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 244 245 // Handle floating-point types. 246 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 247 I <= MVT::LAST_FP_VALUETYPE; 248 ++I) { 249 MVT VT = MVT::SimpleValueType(I); 250 if (isTypeLegal(VT)) { 251 // We can use FI for FRINT. 252 setOperationAction(ISD::FRINT, VT, Legal); 253 254 // We can use the extended form of FI for other rounding operations. 255 if (Subtarget.hasFPExtension()) { 256 setOperationAction(ISD::FNEARBYINT, VT, Legal); 257 setOperationAction(ISD::FFLOOR, VT, Legal); 258 setOperationAction(ISD::FCEIL, VT, Legal); 259 setOperationAction(ISD::FTRUNC, VT, Legal); 260 setOperationAction(ISD::FROUND, VT, Legal); 261 } 262 263 // No special instructions for these. 264 setOperationAction(ISD::FSIN, VT, Expand); 265 setOperationAction(ISD::FCOS, VT, Expand); 266 setOperationAction(ISD::FREM, VT, Expand); 267 } 268 } 269 270 // We have fused multiply-addition for f32 and f64 but not f128. 271 setOperationAction(ISD::FMA, MVT::f32, Legal); 272 setOperationAction(ISD::FMA, MVT::f64, Legal); 273 setOperationAction(ISD::FMA, MVT::f128, Expand); 274 275 // Needed so that we don't try to implement f128 constant loads using 276 // a load-and-extend of a f80 constant (in cases where the constant 277 // would fit in an f80). 278 setLoadExtAction(ISD::EXTLOAD, MVT::f80, Expand); 279 280 // Floating-point truncation and stores need to be done separately. 281 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 282 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 283 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 284 285 // We have 64-bit FPR<->GPR moves, but need special handling for 286 // 32-bit forms. 287 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 288 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 289 290 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 291 // structure, but VAEND is a no-op. 292 setOperationAction(ISD::VASTART, MVT::Other, Custom); 293 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 294 setOperationAction(ISD::VAEND, MVT::Other, Expand); 295 296 // Codes for which we want to perform some z-specific combinations. 297 setTargetDAGCombine(ISD::SIGN_EXTEND); 298 299 // We want to use MVC in preference to even a single load/store pair. 300 MaxStoresPerMemcpy = 0; 301 MaxStoresPerMemcpyOptSize = 0; 302 303 // The main memset sequence is a byte store followed by an MVC. 304 // Two STC or MV..I stores win over that, but the kind of fused stores 305 // generated by target-independent code don't when the byte value is 306 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 307 // than "STC;MVC". Handle the choice in target-specific code instead. 308 MaxStoresPerMemset = 0; 309 MaxStoresPerMemsetOptSize = 0; 310 } 311 312 EVT SystemZTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const { 313 if (!VT.isVector()) 314 return MVT::i32; 315 return VT.changeVectorElementTypeToInteger(); 316 } 317 318 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 319 VT = VT.getScalarType(); 320 321 if (!VT.isSimple()) 322 return false; 323 324 switch (VT.getSimpleVT().SimpleTy) { 325 case MVT::f32: 326 case MVT::f64: 327 return true; 328 case MVT::f128: 329 return false; 330 default: 331 break; 332 } 333 334 return false; 335 } 336 337 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 338 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 339 return Imm.isZero() || Imm.isNegZero(); 340 } 341 342 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 343 unsigned, 344 unsigned, 345 bool *Fast) const { 346 // Unaligned accesses should never be slower than the expanded version. 347 // We check specifically for aligned accesses in the few cases where 348 // they are required. 349 if (Fast) 350 *Fast = true; 351 return true; 352 } 353 354 bool SystemZTargetLowering::isLegalAddressingMode(const AddrMode &AM, 355 Type *Ty) const { 356 // Punt on globals for now, although they can be used in limited 357 // RELATIVE LONG cases. 358 if (AM.BaseGV) 359 return false; 360 361 // Require a 20-bit signed offset. 362 if (!isInt<20>(AM.BaseOffs)) 363 return false; 364 365 // Indexing is OK but no scale factor can be applied. 366 return AM.Scale == 0 || AM.Scale == 1; 367 } 368 369 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 370 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 371 return false; 372 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 373 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 374 return FromBits > ToBits; 375 } 376 377 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 378 if (!FromVT.isInteger() || !ToVT.isInteger()) 379 return false; 380 unsigned FromBits = FromVT.getSizeInBits(); 381 unsigned ToBits = ToVT.getSizeInBits(); 382 return FromBits > ToBits; 383 } 384 385 //===----------------------------------------------------------------------===// 386 // Inline asm support 387 //===----------------------------------------------------------------------===// 388 389 TargetLowering::ConstraintType 390 SystemZTargetLowering::getConstraintType(const std::string &Constraint) const { 391 if (Constraint.size() == 1) { 392 switch (Constraint[0]) { 393 case 'a': // Address register 394 case 'd': // Data register (equivalent to 'r') 395 case 'f': // Floating-point register 396 case 'h': // High-part register 397 case 'r': // General-purpose register 398 return C_RegisterClass; 399 400 case 'Q': // Memory with base and unsigned 12-bit displacement 401 case 'R': // Likewise, plus an index 402 case 'S': // Memory with base and signed 20-bit displacement 403 case 'T': // Likewise, plus an index 404 case 'm': // Equivalent to 'T'. 405 return C_Memory; 406 407 case 'I': // Unsigned 8-bit constant 408 case 'J': // Unsigned 12-bit constant 409 case 'K': // Signed 16-bit constant 410 case 'L': // Signed 20-bit displacement (on all targets we support) 411 case 'M': // 0x7fffffff 412 return C_Other; 413 414 default: 415 break; 416 } 417 } 418 return TargetLowering::getConstraintType(Constraint); 419 } 420 421 TargetLowering::ConstraintWeight SystemZTargetLowering:: 422 getSingleConstraintMatchWeight(AsmOperandInfo &info, 423 const char *constraint) const { 424 ConstraintWeight weight = CW_Invalid; 425 Value *CallOperandVal = info.CallOperandVal; 426 // If we don't have a value, we can't do a match, 427 // but allow it at the lowest weight. 428 if (!CallOperandVal) 429 return CW_Default; 430 Type *type = CallOperandVal->getType(); 431 // Look at the constraint type. 432 switch (*constraint) { 433 default: 434 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 435 break; 436 437 case 'a': // Address register 438 case 'd': // Data register (equivalent to 'r') 439 case 'h': // High-part register 440 case 'r': // General-purpose register 441 if (CallOperandVal->getType()->isIntegerTy()) 442 weight = CW_Register; 443 break; 444 445 case 'f': // Floating-point register 446 if (type->isFloatingPointTy()) 447 weight = CW_Register; 448 break; 449 450 case 'I': // Unsigned 8-bit constant 451 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 452 if (isUInt<8>(C->getZExtValue())) 453 weight = CW_Constant; 454 break; 455 456 case 'J': // Unsigned 12-bit constant 457 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 458 if (isUInt<12>(C->getZExtValue())) 459 weight = CW_Constant; 460 break; 461 462 case 'K': // Signed 16-bit constant 463 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 464 if (isInt<16>(C->getSExtValue())) 465 weight = CW_Constant; 466 break; 467 468 case 'L': // Signed 20-bit displacement (on all targets we support) 469 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 470 if (isInt<20>(C->getSExtValue())) 471 weight = CW_Constant; 472 break; 473 474 case 'M': // 0x7fffffff 475 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 476 if (C->getZExtValue() == 0x7fffffff) 477 weight = CW_Constant; 478 break; 479 } 480 return weight; 481 } 482 483 // Parse a "{tNNN}" register constraint for which the register type "t" 484 // has already been verified. MC is the class associated with "t" and 485 // Map maps 0-based register numbers to LLVM register numbers. 486 static std::pair<unsigned, const TargetRegisterClass *> 487 parseRegisterNumber(const std::string &Constraint, 488 const TargetRegisterClass *RC, const unsigned *Map) { 489 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 490 if (isdigit(Constraint[2])) { 491 std::string Suffix(Constraint.data() + 2, Constraint.size() - 2); 492 unsigned Index = atoi(Suffix.c_str()); 493 if (Index < 16 && Map[Index]) 494 return std::make_pair(Map[Index], RC); 495 } 496 return std::make_pair(0U, nullptr); 497 } 498 499 std::pair<unsigned, const TargetRegisterClass *> SystemZTargetLowering:: 500 getRegForInlineAsmConstraint(const std::string &Constraint, MVT VT) const { 501 if (Constraint.size() == 1) { 502 // GCC Constraint Letters 503 switch (Constraint[0]) { 504 default: break; 505 case 'd': // Data register (equivalent to 'r') 506 case 'r': // General-purpose register 507 if (VT == MVT::i64) 508 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 509 else if (VT == MVT::i128) 510 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 511 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 512 513 case 'a': // Address register 514 if (VT == MVT::i64) 515 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 516 else if (VT == MVT::i128) 517 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 518 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 519 520 case 'h': // High-part register (an LLVM extension) 521 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 522 523 case 'f': // Floating-point register 524 if (VT == MVT::f64) 525 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 526 else if (VT == MVT::f128) 527 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 528 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 529 } 530 } 531 if (Constraint[0] == '{') { 532 // We need to override the default register parsing for GPRs and FPRs 533 // because the interpretation depends on VT. The internal names of 534 // the registers are also different from the external names 535 // (F0D and F0S instead of F0, etc.). 536 if (Constraint[1] == 'r') { 537 if (VT == MVT::i32) 538 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 539 SystemZMC::GR32Regs); 540 if (VT == MVT::i128) 541 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 542 SystemZMC::GR128Regs); 543 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 544 SystemZMC::GR64Regs); 545 } 546 if (Constraint[1] == 'f') { 547 if (VT == MVT::f32) 548 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 549 SystemZMC::FP32Regs); 550 if (VT == MVT::f128) 551 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 552 SystemZMC::FP128Regs); 553 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 554 SystemZMC::FP64Regs); 555 } 556 } 557 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 558 } 559 560 void SystemZTargetLowering:: 561 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 562 std::vector<SDValue> &Ops, 563 SelectionDAG &DAG) const { 564 // Only support length 1 constraints for now. 565 if (Constraint.length() == 1) { 566 switch (Constraint[0]) { 567 case 'I': // Unsigned 8-bit constant 568 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 569 if (isUInt<8>(C->getZExtValue())) 570 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), 571 Op.getValueType())); 572 return; 573 574 case 'J': // Unsigned 12-bit constant 575 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 576 if (isUInt<12>(C->getZExtValue())) 577 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), 578 Op.getValueType())); 579 return; 580 581 case 'K': // Signed 16-bit constant 582 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 583 if (isInt<16>(C->getSExtValue())) 584 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 585 Op.getValueType())); 586 return; 587 588 case 'L': // Signed 20-bit displacement (on all targets we support) 589 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 590 if (isInt<20>(C->getSExtValue())) 591 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 592 Op.getValueType())); 593 return; 594 595 case 'M': // 0x7fffffff 596 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 597 if (C->getZExtValue() == 0x7fffffff) 598 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), 599 Op.getValueType())); 600 return; 601 } 602 } 603 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 604 } 605 606 //===----------------------------------------------------------------------===// 607 // Calling conventions 608 //===----------------------------------------------------------------------===// 609 610 #include "SystemZGenCallingConv.inc" 611 612 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 613 Type *ToType) const { 614 return isTruncateFree(FromType, ToType); 615 } 616 617 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 618 if (!CI->isTailCall()) 619 return false; 620 return true; 621 } 622 623 // Value is a value that has been passed to us in the location described by VA 624 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 625 // any loads onto Chain. 626 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, 627 CCValAssign &VA, SDValue Chain, 628 SDValue Value) { 629 // If the argument has been promoted from a smaller type, insert an 630 // assertion to capture this. 631 if (VA.getLocInfo() == CCValAssign::SExt) 632 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 633 DAG.getValueType(VA.getValVT())); 634 else if (VA.getLocInfo() == CCValAssign::ZExt) 635 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 636 DAG.getValueType(VA.getValVT())); 637 638 if (VA.isExtInLoc()) 639 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 640 else if (VA.getLocInfo() == CCValAssign::Indirect) 641 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value, 642 MachinePointerInfo(), false, false, false, 0); 643 else 644 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 645 return Value; 646 } 647 648 // Value is a value of type VA.getValVT() that we need to copy into 649 // the location described by VA. Return a copy of Value converted to 650 // VA.getValVT(). The caller is responsible for handling indirect values. 651 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, 652 CCValAssign &VA, SDValue Value) { 653 switch (VA.getLocInfo()) { 654 case CCValAssign::SExt: 655 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 656 case CCValAssign::ZExt: 657 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 658 case CCValAssign::AExt: 659 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 660 case CCValAssign::Full: 661 return Value; 662 default: 663 llvm_unreachable("Unhandled getLocInfo()"); 664 } 665 } 666 667 SDValue SystemZTargetLowering:: 668 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 669 const SmallVectorImpl<ISD::InputArg> &Ins, 670 SDLoc DL, SelectionDAG &DAG, 671 SmallVectorImpl<SDValue> &InVals) const { 672 MachineFunction &MF = DAG.getMachineFunction(); 673 MachineFrameInfo *MFI = MF.getFrameInfo(); 674 MachineRegisterInfo &MRI = MF.getRegInfo(); 675 SystemZMachineFunctionInfo *FuncInfo = 676 MF.getInfo<SystemZMachineFunctionInfo>(); 677 auto *TFL = static_cast<const SystemZFrameLowering *>( 678 DAG.getSubtarget().getFrameLowering()); 679 680 // Assign locations to all of the incoming arguments. 681 SmallVector<CCValAssign, 16> ArgLocs; 682 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 683 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 684 685 unsigned NumFixedGPRs = 0; 686 unsigned NumFixedFPRs = 0; 687 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 688 SDValue ArgValue; 689 CCValAssign &VA = ArgLocs[I]; 690 EVT LocVT = VA.getLocVT(); 691 if (VA.isRegLoc()) { 692 // Arguments passed in registers 693 const TargetRegisterClass *RC; 694 switch (LocVT.getSimpleVT().SimpleTy) { 695 default: 696 // Integers smaller than i64 should be promoted to i64. 697 llvm_unreachable("Unexpected argument type"); 698 case MVT::i32: 699 NumFixedGPRs += 1; 700 RC = &SystemZ::GR32BitRegClass; 701 break; 702 case MVT::i64: 703 NumFixedGPRs += 1; 704 RC = &SystemZ::GR64BitRegClass; 705 break; 706 case MVT::f32: 707 NumFixedFPRs += 1; 708 RC = &SystemZ::FP32BitRegClass; 709 break; 710 case MVT::f64: 711 NumFixedFPRs += 1; 712 RC = &SystemZ::FP64BitRegClass; 713 break; 714 } 715 716 unsigned VReg = MRI.createVirtualRegister(RC); 717 MRI.addLiveIn(VA.getLocReg(), VReg); 718 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 719 } else { 720 assert(VA.isMemLoc() && "Argument not register or memory"); 721 722 // Create the frame index object for this incoming parameter. 723 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 724 VA.getLocMemOffset(), true); 725 726 // Create the SelectionDAG nodes corresponding to a load 727 // from this parameter. Unpromoted ints and floats are 728 // passed as right-justified 8-byte values. 729 EVT PtrVT = getPointerTy(); 730 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 731 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 732 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4)); 733 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 734 MachinePointerInfo::getFixedStack(FI), 735 false, false, false, 0); 736 } 737 738 // Convert the value of the argument register into the value that's 739 // being passed. 740 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 741 } 742 743 if (IsVarArg) { 744 // Save the number of non-varargs registers for later use by va_start, etc. 745 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 746 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 747 748 // Likewise the address (in the form of a frame index) of where the 749 // first stack vararg would be. The 1-byte size here is arbitrary. 750 int64_t StackSize = CCInfo.getNextStackOffset(); 751 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 752 753 // ...and a similar frame index for the caller-allocated save area 754 // that will be used to store the incoming registers. 755 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 756 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 757 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 758 759 // Store the FPR varargs in the reserved frame slots. (We store the 760 // GPRs as part of the prologue.) 761 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 762 SDValue MemOps[SystemZ::NumArgFPRs]; 763 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 764 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 765 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 766 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); 767 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 768 &SystemZ::FP64BitRegClass); 769 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 770 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 771 MachinePointerInfo::getFixedStack(FI), 772 false, false, 0); 773 774 } 775 // Join the stores, which are independent of one another. 776 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 777 makeArrayRef(&MemOps[NumFixedFPRs], 778 SystemZ::NumArgFPRs-NumFixedFPRs)); 779 } 780 } 781 782 return Chain; 783 } 784 785 static bool canUseSiblingCall(const CCState &ArgCCInfo, 786 SmallVectorImpl<CCValAssign> &ArgLocs) { 787 // Punt if there are any indirect or stack arguments, or if the call 788 // needs the call-saved argument register R6. 789 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 790 CCValAssign &VA = ArgLocs[I]; 791 if (VA.getLocInfo() == CCValAssign::Indirect) 792 return false; 793 if (!VA.isRegLoc()) 794 return false; 795 unsigned Reg = VA.getLocReg(); 796 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 797 return false; 798 } 799 return true; 800 } 801 802 SDValue 803 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 804 SmallVectorImpl<SDValue> &InVals) const { 805 SelectionDAG &DAG = CLI.DAG; 806 SDLoc &DL = CLI.DL; 807 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 808 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 809 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 810 SDValue Chain = CLI.Chain; 811 SDValue Callee = CLI.Callee; 812 bool &IsTailCall = CLI.IsTailCall; 813 CallingConv::ID CallConv = CLI.CallConv; 814 bool IsVarArg = CLI.IsVarArg; 815 MachineFunction &MF = DAG.getMachineFunction(); 816 EVT PtrVT = getPointerTy(); 817 818 // Analyze the operands of the call, assigning locations to each operand. 819 SmallVector<CCValAssign, 16> ArgLocs; 820 CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 821 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 822 823 // We don't support GuaranteedTailCallOpt, only automatically-detected 824 // sibling calls. 825 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) 826 IsTailCall = false; 827 828 // Get a count of how many bytes are to be pushed on the stack. 829 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 830 831 // Mark the start of the call. 832 if (!IsTailCall) 833 Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, PtrVT, true), 834 DL); 835 836 // Copy argument values to their designated locations. 837 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 838 SmallVector<SDValue, 8> MemOpChains; 839 SDValue StackPtr; 840 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 841 CCValAssign &VA = ArgLocs[I]; 842 SDValue ArgValue = OutVals[I]; 843 844 if (VA.getLocInfo() == CCValAssign::Indirect) { 845 // Store the argument in a stack slot and pass its address. 846 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); 847 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 848 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, SpillSlot, 849 MachinePointerInfo::getFixedStack(FI), 850 false, false, 0)); 851 ArgValue = SpillSlot; 852 } else 853 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 854 855 if (VA.isRegLoc()) 856 // Queue up the argument copies and emit them at the end. 857 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 858 else { 859 assert(VA.isMemLoc() && "Argument not register or memory"); 860 861 // Work out the address of the stack slot. Unpromoted ints and 862 // floats are passed as right-justified 8-byte values. 863 if (!StackPtr.getNode()) 864 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 865 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 866 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 867 Offset += 4; 868 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 869 DAG.getIntPtrConstant(Offset)); 870 871 // Emit the store. 872 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, 873 MachinePointerInfo(), 874 false, false, 0)); 875 } 876 } 877 878 // Join the stores, which are independent of one another. 879 if (!MemOpChains.empty()) 880 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 881 882 // Accept direct calls by converting symbolic call addresses to the 883 // associated Target* opcodes. Force %r1 to be used for indirect 884 // tail calls. 885 SDValue Glue; 886 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 887 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 888 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 889 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 890 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 891 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 892 } else if (IsTailCall) { 893 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 894 Glue = Chain.getValue(1); 895 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 896 } 897 898 // Build a sequence of copy-to-reg nodes, chained and glued together. 899 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 900 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 901 RegsToPass[I].second, Glue); 902 Glue = Chain.getValue(1); 903 } 904 905 // The first call operand is the chain and the second is the target address. 906 SmallVector<SDValue, 8> Ops; 907 Ops.push_back(Chain); 908 Ops.push_back(Callee); 909 910 // Add argument registers to the end of the list so that they are 911 // known live into the call. 912 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 913 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 914 RegsToPass[I].second.getValueType())); 915 916 // Add a register mask operand representing the call-preserved registers. 917 const TargetRegisterInfo *TRI = 918 getTargetMachine().getSubtargetImpl()->getRegisterInfo(); 919 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); 920 assert(Mask && "Missing call preserved mask for calling convention"); 921 Ops.push_back(DAG.getRegisterMask(Mask)); 922 923 // Glue the call to the argument copies, if any. 924 if (Glue.getNode()) 925 Ops.push_back(Glue); 926 927 // Emit the call. 928 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 929 if (IsTailCall) 930 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 931 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 932 Glue = Chain.getValue(1); 933 934 // Mark the end of the call, which is glued to the call itself. 935 Chain = DAG.getCALLSEQ_END(Chain, 936 DAG.getConstant(NumBytes, PtrVT, true), 937 DAG.getConstant(0, PtrVT, true), 938 Glue, DL); 939 Glue = Chain.getValue(1); 940 941 // Assign locations to each value returned by this call. 942 SmallVector<CCValAssign, 16> RetLocs; 943 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 944 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 945 946 // Copy all of the result registers out of their specified physreg. 947 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 948 CCValAssign &VA = RetLocs[I]; 949 950 // Copy the value out, gluing the copy to the end of the call sequence. 951 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 952 VA.getLocVT(), Glue); 953 Chain = RetValue.getValue(1); 954 Glue = RetValue.getValue(2); 955 956 // Convert the value of the return register into the value that's 957 // being returned. 958 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 959 } 960 961 return Chain; 962 } 963 964 SDValue 965 SystemZTargetLowering::LowerReturn(SDValue Chain, 966 CallingConv::ID CallConv, bool IsVarArg, 967 const SmallVectorImpl<ISD::OutputArg> &Outs, 968 const SmallVectorImpl<SDValue> &OutVals, 969 SDLoc DL, SelectionDAG &DAG) const { 970 MachineFunction &MF = DAG.getMachineFunction(); 971 972 // Assign locations to each returned value. 973 SmallVector<CCValAssign, 16> RetLocs; 974 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 975 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 976 977 // Quick exit for void returns 978 if (RetLocs.empty()) 979 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 980 981 // Copy the result values into the output registers. 982 SDValue Glue; 983 SmallVector<SDValue, 4> RetOps; 984 RetOps.push_back(Chain); 985 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 986 CCValAssign &VA = RetLocs[I]; 987 SDValue RetValue = OutVals[I]; 988 989 // Make the return register live on exit. 990 assert(VA.isRegLoc() && "Can only return in registers!"); 991 992 // Promote the value as required. 993 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 994 995 // Chain and glue the copies together. 996 unsigned Reg = VA.getLocReg(); 997 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 998 Glue = Chain.getValue(1); 999 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1000 } 1001 1002 // Update chain and glue. 1003 RetOps[0] = Chain; 1004 if (Glue.getNode()) 1005 RetOps.push_back(Glue); 1006 1007 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1008 } 1009 1010 SDValue SystemZTargetLowering:: 1011 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { 1012 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1013 } 1014 1015 // CC is a comparison that will be implemented using an integer or 1016 // floating-point comparison. Return the condition code mask for 1017 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1018 // unsigned comparisons and clear for signed ones. In the floating-point 1019 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1020 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1021 #define CONV(X) \ 1022 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1023 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1024 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1025 1026 switch (CC) { 1027 default: 1028 llvm_unreachable("Invalid integer condition!"); 1029 1030 CONV(EQ); 1031 CONV(NE); 1032 CONV(GT); 1033 CONV(GE); 1034 CONV(LT); 1035 CONV(LE); 1036 1037 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1038 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1039 } 1040 #undef CONV 1041 } 1042 1043 // Return a sequence for getting a 1 from an IPM result when CC has a 1044 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1045 // The handling of CC values outside CCValid doesn't matter. 1046 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1047 // Deal with cases where the result can be taken directly from a bit 1048 // of the IPM result. 1049 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1050 return IPMConversion(0, 0, SystemZ::IPM_CC); 1051 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1052 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1053 1054 // Deal with cases where we can add a value to force the sign bit 1055 // to contain the right value. Putting the bit in 31 means we can 1056 // use SRL rather than RISBG(L), and also makes it easier to get a 1057 // 0/-1 value, so it has priority over the other tests below. 1058 // 1059 // These sequences rely on the fact that the upper two bits of the 1060 // IPM result are zero. 1061 uint64_t TopBit = uint64_t(1) << 31; 1062 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1063 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1064 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1065 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1066 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1067 | SystemZ::CCMASK_1 1068 | SystemZ::CCMASK_2))) 1069 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1070 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1071 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1072 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1073 | SystemZ::CCMASK_2 1074 | SystemZ::CCMASK_3))) 1075 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1076 1077 // Next try inverting the value and testing a bit. 0/1 could be 1078 // handled this way too, but we dealt with that case above. 1079 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1080 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1081 1082 // Handle cases where adding a value forces a non-sign bit to contain 1083 // the right value. 1084 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1085 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1086 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1087 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1088 1089 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1090 // can be done by inverting the low CC bit and applying one of the 1091 // sign-based extractions above. 1092 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1093 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1094 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1095 return IPMConversion(1 << SystemZ::IPM_CC, 1096 TopBit - (3 << SystemZ::IPM_CC), 31); 1097 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1098 | SystemZ::CCMASK_1 1099 | SystemZ::CCMASK_3))) 1100 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1101 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1102 | SystemZ::CCMASK_2 1103 | SystemZ::CCMASK_3))) 1104 return IPMConversion(1 << SystemZ::IPM_CC, 1105 TopBit - (1 << SystemZ::IPM_CC), 31); 1106 1107 llvm_unreachable("Unexpected CC combination"); 1108 } 1109 1110 // If C can be converted to a comparison against zero, adjust the operands 1111 // as necessary. 1112 static void adjustZeroCmp(SelectionDAG &DAG, Comparison &C) { 1113 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1114 return; 1115 1116 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1117 if (!ConstOp1) 1118 return; 1119 1120 int64_t Value = ConstOp1->getSExtValue(); 1121 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1122 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1123 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1124 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1125 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1126 C.Op1 = DAG.getConstant(0, C.Op1.getValueType()); 1127 } 1128 } 1129 1130 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1131 // adjust the operands as necessary. 1132 static void adjustSubwordCmp(SelectionDAG &DAG, Comparison &C) { 1133 // For us to make any changes, it must a comparison between a single-use 1134 // load and a constant. 1135 if (!C.Op0.hasOneUse() || 1136 C.Op0.getOpcode() != ISD::LOAD || 1137 C.Op1.getOpcode() != ISD::Constant) 1138 return; 1139 1140 // We must have an 8- or 16-bit load. 1141 auto *Load = cast<LoadSDNode>(C.Op0); 1142 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1143 if (NumBits != 8 && NumBits != 16) 1144 return; 1145 1146 // The load must be an extending one and the constant must be within the 1147 // range of the unextended value. 1148 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1149 uint64_t Value = ConstOp1->getZExtValue(); 1150 uint64_t Mask = (1 << NumBits) - 1; 1151 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1152 // Make sure that ConstOp1 is in range of C.Op0. 1153 int64_t SignedValue = ConstOp1->getSExtValue(); 1154 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1155 return; 1156 if (C.ICmpType != SystemZICMP::SignedOnly) { 1157 // Unsigned comparison between two sign-extended values is equivalent 1158 // to unsigned comparison between two zero-extended values. 1159 Value &= Mask; 1160 } else if (NumBits == 8) { 1161 // Try to treat the comparison as unsigned, so that we can use CLI. 1162 // Adjust CCMask and Value as necessary. 1163 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1164 // Test whether the high bit of the byte is set. 1165 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1166 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1167 // Test whether the high bit of the byte is clear. 1168 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1169 else 1170 // No instruction exists for this combination. 1171 return; 1172 C.ICmpType = SystemZICMP::UnsignedOnly; 1173 } 1174 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1175 if (Value > Mask) 1176 return; 1177 assert(C.ICmpType == SystemZICMP::Any && 1178 "Signedness shouldn't matter here."); 1179 } else 1180 return; 1181 1182 // Make sure that the first operand is an i32 of the right extension type. 1183 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1184 ISD::SEXTLOAD : 1185 ISD::ZEXTLOAD); 1186 if (C.Op0.getValueType() != MVT::i32 || 1187 Load->getExtensionType() != ExtType) 1188 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, 1189 Load->getChain(), Load->getBasePtr(), 1190 Load->getPointerInfo(), Load->getMemoryVT(), 1191 Load->isVolatile(), Load->isNonTemporal(), 1192 Load->isInvariant(), Load->getAlignment()); 1193 1194 // Make sure that the second operand is an i32 with the right value. 1195 if (C.Op1.getValueType() != MVT::i32 || 1196 Value != ConstOp1->getZExtValue()) 1197 C.Op1 = DAG.getConstant(Value, MVT::i32); 1198 } 1199 1200 // Return true if Op is either an unextended load, or a load suitable 1201 // for integer register-memory comparisons of type ICmpType. 1202 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1203 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1204 if (Load) { 1205 // There are no instructions to compare a register with a memory byte. 1206 if (Load->getMemoryVT() == MVT::i8) 1207 return false; 1208 // Otherwise decide on extension type. 1209 switch (Load->getExtensionType()) { 1210 case ISD::NON_EXTLOAD: 1211 return true; 1212 case ISD::SEXTLOAD: 1213 return ICmpType != SystemZICMP::UnsignedOnly; 1214 case ISD::ZEXTLOAD: 1215 return ICmpType != SystemZICMP::SignedOnly; 1216 default: 1217 break; 1218 } 1219 } 1220 return false; 1221 } 1222 1223 // Return true if it is better to swap the operands of C. 1224 static bool shouldSwapCmpOperands(const Comparison &C) { 1225 // Leave f128 comparisons alone, since they have no memory forms. 1226 if (C.Op0.getValueType() == MVT::f128) 1227 return false; 1228 1229 // Always keep a floating-point constant second, since comparisons with 1230 // zero can use LOAD TEST and comparisons with other constants make a 1231 // natural memory operand. 1232 if (isa<ConstantFPSDNode>(C.Op1)) 1233 return false; 1234 1235 // Never swap comparisons with zero since there are many ways to optimize 1236 // those later. 1237 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1238 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1239 return false; 1240 1241 // Also keep natural memory operands second if the loaded value is 1242 // only used here. Several comparisons have memory forms. 1243 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1244 return false; 1245 1246 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1247 // In that case we generally prefer the memory to be second. 1248 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1249 // The only exceptions are when the second operand is a constant and 1250 // we can use things like CHHSI. 1251 if (!ConstOp1) 1252 return true; 1253 // The unsigned memory-immediate instructions can handle 16-bit 1254 // unsigned integers. 1255 if (C.ICmpType != SystemZICMP::SignedOnly && 1256 isUInt<16>(ConstOp1->getZExtValue())) 1257 return false; 1258 // The signed memory-immediate instructions can handle 16-bit 1259 // signed integers. 1260 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1261 isInt<16>(ConstOp1->getSExtValue())) 1262 return false; 1263 return true; 1264 } 1265 1266 // Try to promote the use of CGFR and CLGFR. 1267 unsigned Opcode0 = C.Op0.getOpcode(); 1268 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1269 return true; 1270 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1271 return true; 1272 if (C.ICmpType != SystemZICMP::SignedOnly && 1273 Opcode0 == ISD::AND && 1274 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1275 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1276 return true; 1277 1278 return false; 1279 } 1280 1281 // Return a version of comparison CC mask CCMask in which the LT and GT 1282 // actions are swapped. 1283 static unsigned reverseCCMask(unsigned CCMask) { 1284 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1285 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1286 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1287 (CCMask & SystemZ::CCMASK_CMP_UO)); 1288 } 1289 1290 // Check whether C tests for equality between X and Y and whether X - Y 1291 // or Y - X is also computed. In that case it's better to compare the 1292 // result of the subtraction against zero. 1293 static void adjustForSubtraction(SelectionDAG &DAG, Comparison &C) { 1294 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1295 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1296 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1297 SDNode *N = *I; 1298 if (N->getOpcode() == ISD::SUB && 1299 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1300 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1301 C.Op0 = SDValue(N, 0); 1302 C.Op1 = DAG.getConstant(0, N->getValueType(0)); 1303 return; 1304 } 1305 } 1306 } 1307 } 1308 1309 // Check whether C compares a floating-point value with zero and if that 1310 // floating-point value is also negated. In this case we can use the 1311 // negation to set CC, so avoiding separate LOAD AND TEST and 1312 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1313 static void adjustForFNeg(Comparison &C) { 1314 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1315 if (C1 && C1->isZero()) { 1316 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1317 SDNode *N = *I; 1318 if (N->getOpcode() == ISD::FNEG) { 1319 C.Op0 = SDValue(N, 0); 1320 C.CCMask = reverseCCMask(C.CCMask); 1321 return; 1322 } 1323 } 1324 } 1325 } 1326 1327 // Check whether C compares (shl X, 32) with 0 and whether X is 1328 // also sign-extended. In that case it is better to test the result 1329 // of the sign extension using LTGFR. 1330 // 1331 // This case is important because InstCombine transforms a comparison 1332 // with (sext (trunc X)) into a comparison with (shl X, 32). 1333 static void adjustForLTGFR(Comparison &C) { 1334 // Check for a comparison between (shl X, 32) and 0. 1335 if (C.Op0.getOpcode() == ISD::SHL && 1336 C.Op0.getValueType() == MVT::i64 && 1337 C.Op1.getOpcode() == ISD::Constant && 1338 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1339 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1340 if (C1 && C1->getZExtValue() == 32) { 1341 SDValue ShlOp0 = C.Op0.getOperand(0); 1342 // See whether X has any SIGN_EXTEND_INREG uses. 1343 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1344 SDNode *N = *I; 1345 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1346 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1347 C.Op0 = SDValue(N, 0); 1348 return; 1349 } 1350 } 1351 } 1352 } 1353 } 1354 1355 // If C compares the truncation of an extending load, try to compare 1356 // the untruncated value instead. This exposes more opportunities to 1357 // reuse CC. 1358 static void adjustICmpTruncate(SelectionDAG &DAG, Comparison &C) { 1359 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1360 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1361 C.Op1.getOpcode() == ISD::Constant && 1362 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1363 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1364 if (L->getMemoryVT().getStoreSizeInBits() 1365 <= C.Op0.getValueType().getSizeInBits()) { 1366 unsigned Type = L->getExtensionType(); 1367 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1368 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1369 C.Op0 = C.Op0.getOperand(0); 1370 C.Op1 = DAG.getConstant(0, C.Op0.getValueType()); 1371 } 1372 } 1373 } 1374 } 1375 1376 // Return true if shift operation N has an in-range constant shift value. 1377 // Store it in ShiftVal if so. 1378 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1379 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1380 if (!Shift) 1381 return false; 1382 1383 uint64_t Amount = Shift->getZExtValue(); 1384 if (Amount >= N.getValueType().getSizeInBits()) 1385 return false; 1386 1387 ShiftVal = Amount; 1388 return true; 1389 } 1390 1391 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1392 // instruction and whether the CC value is descriptive enough to handle 1393 // a comparison of type Opcode between the AND result and CmpVal. 1394 // CCMask says which comparison result is being tested and BitSize is 1395 // the number of bits in the operands. If TEST UNDER MASK can be used, 1396 // return the corresponding CC mask, otherwise return 0. 1397 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1398 uint64_t Mask, uint64_t CmpVal, 1399 unsigned ICmpType) { 1400 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1401 1402 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1403 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1404 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1405 return 0; 1406 1407 // Work out the masks for the lowest and highest bits. 1408 unsigned HighShift = 63 - countLeadingZeros(Mask); 1409 uint64_t High = uint64_t(1) << HighShift; 1410 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1411 1412 // Signed ordered comparisons are effectively unsigned if the sign 1413 // bit is dropped. 1414 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1415 1416 // Check for equality comparisons with 0, or the equivalent. 1417 if (CmpVal == 0) { 1418 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1419 return SystemZ::CCMASK_TM_ALL_0; 1420 if (CCMask == SystemZ::CCMASK_CMP_NE) 1421 return SystemZ::CCMASK_TM_SOME_1; 1422 } 1423 if (EffectivelyUnsigned && CmpVal <= Low) { 1424 if (CCMask == SystemZ::CCMASK_CMP_LT) 1425 return SystemZ::CCMASK_TM_ALL_0; 1426 if (CCMask == SystemZ::CCMASK_CMP_GE) 1427 return SystemZ::CCMASK_TM_SOME_1; 1428 } 1429 if (EffectivelyUnsigned && CmpVal < Low) { 1430 if (CCMask == SystemZ::CCMASK_CMP_LE) 1431 return SystemZ::CCMASK_TM_ALL_0; 1432 if (CCMask == SystemZ::CCMASK_CMP_GT) 1433 return SystemZ::CCMASK_TM_SOME_1; 1434 } 1435 1436 // Check for equality comparisons with the mask, or the equivalent. 1437 if (CmpVal == Mask) { 1438 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1439 return SystemZ::CCMASK_TM_ALL_1; 1440 if (CCMask == SystemZ::CCMASK_CMP_NE) 1441 return SystemZ::CCMASK_TM_SOME_0; 1442 } 1443 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1444 if (CCMask == SystemZ::CCMASK_CMP_GT) 1445 return SystemZ::CCMASK_TM_ALL_1; 1446 if (CCMask == SystemZ::CCMASK_CMP_LE) 1447 return SystemZ::CCMASK_TM_SOME_0; 1448 } 1449 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1450 if (CCMask == SystemZ::CCMASK_CMP_GE) 1451 return SystemZ::CCMASK_TM_ALL_1; 1452 if (CCMask == SystemZ::CCMASK_CMP_LT) 1453 return SystemZ::CCMASK_TM_SOME_0; 1454 } 1455 1456 // Check for ordered comparisons with the top bit. 1457 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1458 if (CCMask == SystemZ::CCMASK_CMP_LE) 1459 return SystemZ::CCMASK_TM_MSB_0; 1460 if (CCMask == SystemZ::CCMASK_CMP_GT) 1461 return SystemZ::CCMASK_TM_MSB_1; 1462 } 1463 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1464 if (CCMask == SystemZ::CCMASK_CMP_LT) 1465 return SystemZ::CCMASK_TM_MSB_0; 1466 if (CCMask == SystemZ::CCMASK_CMP_GE) 1467 return SystemZ::CCMASK_TM_MSB_1; 1468 } 1469 1470 // If there are just two bits, we can do equality checks for Low and High 1471 // as well. 1472 if (Mask == Low + High) { 1473 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1474 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1475 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1476 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1477 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1478 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1479 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1480 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1481 } 1482 1483 // Looks like we've exhausted our options. 1484 return 0; 1485 } 1486 1487 // See whether C can be implemented as a TEST UNDER MASK instruction. 1488 // Update the arguments with the TM version if so. 1489 static void adjustForTestUnderMask(SelectionDAG &DAG, Comparison &C) { 1490 // Check that we have a comparison with a constant. 1491 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1492 if (!ConstOp1) 1493 return; 1494 uint64_t CmpVal = ConstOp1->getZExtValue(); 1495 1496 // Check whether the nonconstant input is an AND with a constant mask. 1497 Comparison NewC(C); 1498 uint64_t MaskVal; 1499 ConstantSDNode *Mask = nullptr; 1500 if (C.Op0.getOpcode() == ISD::AND) { 1501 NewC.Op0 = C.Op0.getOperand(0); 1502 NewC.Op1 = C.Op0.getOperand(1); 1503 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 1504 if (!Mask) 1505 return; 1506 MaskVal = Mask->getZExtValue(); 1507 } else { 1508 // There is no instruction to compare with a 64-bit immediate 1509 // so use TMHH instead if possible. We need an unsigned ordered 1510 // comparison with an i64 immediate. 1511 if (NewC.Op0.getValueType() != MVT::i64 || 1512 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 1513 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 1514 NewC.ICmpType == SystemZICMP::SignedOnly) 1515 return; 1516 // Convert LE and GT comparisons into LT and GE. 1517 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 1518 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 1519 if (CmpVal == uint64_t(-1)) 1520 return; 1521 CmpVal += 1; 1522 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1523 } 1524 // If the low N bits of Op1 are zero than the low N bits of Op0 can 1525 // be masked off without changing the result. 1526 MaskVal = -(CmpVal & -CmpVal); 1527 NewC.ICmpType = SystemZICMP::UnsignedOnly; 1528 } 1529 1530 // Check whether the combination of mask, comparison value and comparison 1531 // type are suitable. 1532 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); 1533 unsigned NewCCMask, ShiftVal; 1534 if (NewC.ICmpType != SystemZICMP::SignedOnly && 1535 NewC.Op0.getOpcode() == ISD::SHL && 1536 isSimpleShift(NewC.Op0, ShiftVal) && 1537 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1538 MaskVal >> ShiftVal, 1539 CmpVal >> ShiftVal, 1540 SystemZICMP::Any))) { 1541 NewC.Op0 = NewC.Op0.getOperand(0); 1542 MaskVal >>= ShiftVal; 1543 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 1544 NewC.Op0.getOpcode() == ISD::SRL && 1545 isSimpleShift(NewC.Op0, ShiftVal) && 1546 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1547 MaskVal << ShiftVal, 1548 CmpVal << ShiftVal, 1549 SystemZICMP::UnsignedOnly))) { 1550 NewC.Op0 = NewC.Op0.getOperand(0); 1551 MaskVal <<= ShiftVal; 1552 } else { 1553 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 1554 NewC.ICmpType); 1555 if (!NewCCMask) 1556 return; 1557 } 1558 1559 // Go ahead and make the change. 1560 C.Opcode = SystemZISD::TM; 1561 C.Op0 = NewC.Op0; 1562 if (Mask && Mask->getZExtValue() == MaskVal) 1563 C.Op1 = SDValue(Mask, 0); 1564 else 1565 C.Op1 = DAG.getConstant(MaskVal, C.Op0.getValueType()); 1566 C.CCValid = SystemZ::CCMASK_TM; 1567 C.CCMask = NewCCMask; 1568 } 1569 1570 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 1571 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 1572 ISD::CondCode Cond) { 1573 Comparison C(CmpOp0, CmpOp1); 1574 C.CCMask = CCMaskForCondCode(Cond); 1575 if (C.Op0.getValueType().isFloatingPoint()) { 1576 C.CCValid = SystemZ::CCMASK_FCMP; 1577 C.Opcode = SystemZISD::FCMP; 1578 adjustForFNeg(C); 1579 } else { 1580 C.CCValid = SystemZ::CCMASK_ICMP; 1581 C.Opcode = SystemZISD::ICMP; 1582 // Choose the type of comparison. Equality and inequality tests can 1583 // use either signed or unsigned comparisons. The choice also doesn't 1584 // matter if both sign bits are known to be clear. In those cases we 1585 // want to give the main isel code the freedom to choose whichever 1586 // form fits best. 1587 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1588 C.CCMask == SystemZ::CCMASK_CMP_NE || 1589 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 1590 C.ICmpType = SystemZICMP::Any; 1591 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 1592 C.ICmpType = SystemZICMP::UnsignedOnly; 1593 else 1594 C.ICmpType = SystemZICMP::SignedOnly; 1595 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 1596 adjustZeroCmp(DAG, C); 1597 adjustSubwordCmp(DAG, C); 1598 adjustForSubtraction(DAG, C); 1599 adjustForLTGFR(C); 1600 adjustICmpTruncate(DAG, C); 1601 } 1602 1603 if (shouldSwapCmpOperands(C)) { 1604 std::swap(C.Op0, C.Op1); 1605 C.CCMask = reverseCCMask(C.CCMask); 1606 } 1607 1608 adjustForTestUnderMask(DAG, C); 1609 return C; 1610 } 1611 1612 // Emit the comparison instruction described by C. 1613 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1614 if (C.Opcode == SystemZISD::ICMP) 1615 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 1616 DAG.getConstant(C.ICmpType, MVT::i32)); 1617 if (C.Opcode == SystemZISD::TM) { 1618 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 1619 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 1620 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 1621 DAG.getConstant(RegisterOnly, MVT::i32)); 1622 } 1623 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 1624 } 1625 1626 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 1627 // 64 bits. Extend is the extension type to use. Store the high part 1628 // in Hi and the low part in Lo. 1629 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, 1630 unsigned Extend, SDValue Op0, SDValue Op1, 1631 SDValue &Hi, SDValue &Lo) { 1632 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 1633 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 1634 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 1635 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, DAG.getConstant(32, MVT::i64)); 1636 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 1637 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 1638 } 1639 1640 // Lower a binary operation that produces two VT results, one in each 1641 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 1642 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 1643 // on the extended Op0 and (unextended) Op1. Store the even register result 1644 // in Even and the odd register result in Odd. 1645 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, 1646 unsigned Extend, unsigned Opcode, 1647 SDValue Op0, SDValue Op1, 1648 SDValue &Even, SDValue &Odd) { 1649 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 1650 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 1651 SDValue(In128, 0), Op1); 1652 bool Is32Bit = is32Bit(VT); 1653 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 1654 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 1655 } 1656 1657 // Return an i32 value that is 1 if the CC value produced by Glue is 1658 // in the mask CCMask and 0 otherwise. CC is known to have a value 1659 // in CCValid, so other values can be ignored. 1660 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue, 1661 unsigned CCValid, unsigned CCMask) { 1662 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 1663 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 1664 1665 if (Conversion.XORValue) 1666 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 1667 DAG.getConstant(Conversion.XORValue, MVT::i32)); 1668 1669 if (Conversion.AddValue) 1670 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 1671 DAG.getConstant(Conversion.AddValue, MVT::i32)); 1672 1673 // The SHR/AND sequence should get optimized to an RISBG. 1674 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 1675 DAG.getConstant(Conversion.Bit, MVT::i32)); 1676 if (Conversion.Bit != 31) 1677 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 1678 DAG.getConstant(1, MVT::i32)); 1679 return Result; 1680 } 1681 1682 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 1683 SelectionDAG &DAG) const { 1684 SDValue CmpOp0 = Op.getOperand(0); 1685 SDValue CmpOp1 = Op.getOperand(1); 1686 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1687 SDLoc DL(Op); 1688 1689 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC)); 1690 SDValue Glue = emitCmp(DAG, DL, C); 1691 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 1692 } 1693 1694 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 1695 SDValue Chain = Op.getOperand(0); 1696 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 1697 SDValue CmpOp0 = Op.getOperand(2); 1698 SDValue CmpOp1 = Op.getOperand(3); 1699 SDValue Dest = Op.getOperand(4); 1700 SDLoc DL(Op); 1701 1702 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC)); 1703 SDValue Glue = emitCmp(DAG, DL, C); 1704 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 1705 Chain, DAG.getConstant(C.CCValid, MVT::i32), 1706 DAG.getConstant(C.CCMask, MVT::i32), Dest, Glue); 1707 } 1708 1709 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 1710 // allowing Pos and Neg to be wider than CmpOp. 1711 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 1712 return (Neg.getOpcode() == ISD::SUB && 1713 Neg.getOperand(0).getOpcode() == ISD::Constant && 1714 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 1715 Neg.getOperand(1) == Pos && 1716 (Pos == CmpOp || 1717 (Pos.getOpcode() == ISD::SIGN_EXTEND && 1718 Pos.getOperand(0) == CmpOp))); 1719 } 1720 1721 // Return the absolute or negative absolute of Op; IsNegative decides which. 1722 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op, 1723 bool IsNegative) { 1724 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 1725 if (IsNegative) 1726 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 1727 DAG.getConstant(0, Op.getValueType()), Op); 1728 return Op; 1729 } 1730 1731 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 1732 SelectionDAG &DAG) const { 1733 SDValue CmpOp0 = Op.getOperand(0); 1734 SDValue CmpOp1 = Op.getOperand(1); 1735 SDValue TrueOp = Op.getOperand(2); 1736 SDValue FalseOp = Op.getOperand(3); 1737 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 1738 SDLoc DL(Op); 1739 1740 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC)); 1741 1742 // Check for absolute and negative-absolute selections, including those 1743 // where the comparison value is sign-extended (for LPGFR and LNGFR). 1744 // This check supplements the one in DAGCombiner. 1745 if (C.Opcode == SystemZISD::ICMP && 1746 C.CCMask != SystemZ::CCMASK_CMP_EQ && 1747 C.CCMask != SystemZ::CCMASK_CMP_NE && 1748 C.Op1.getOpcode() == ISD::Constant && 1749 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1750 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 1751 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 1752 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 1753 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 1754 } 1755 1756 SDValue Glue = emitCmp(DAG, DL, C); 1757 1758 // Special case for handling -1/0 results. The shifts we use here 1759 // should get optimized with the IPM conversion sequence. 1760 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 1761 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 1762 if (TrueC && FalseC) { 1763 int64_t TrueVal = TrueC->getSExtValue(); 1764 int64_t FalseVal = FalseC->getSExtValue(); 1765 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 1766 // Invert the condition if we want -1 on false. 1767 if (TrueVal == 0) 1768 C.CCMask ^= C.CCValid; 1769 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 1770 EVT VT = Op.getValueType(); 1771 // Extend the result to VT. Upper bits are ignored. 1772 if (!is32Bit(VT)) 1773 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 1774 // Sign-extend from the low bit. 1775 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, MVT::i32); 1776 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 1777 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 1778 } 1779 } 1780 1781 SmallVector<SDValue, 5> Ops; 1782 Ops.push_back(TrueOp); 1783 Ops.push_back(FalseOp); 1784 Ops.push_back(DAG.getConstant(C.CCValid, MVT::i32)); 1785 Ops.push_back(DAG.getConstant(C.CCMask, MVT::i32)); 1786 Ops.push_back(Glue); 1787 1788 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 1789 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 1790 } 1791 1792 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 1793 SelectionDAG &DAG) const { 1794 SDLoc DL(Node); 1795 const GlobalValue *GV = Node->getGlobal(); 1796 int64_t Offset = Node->getOffset(); 1797 EVT PtrVT = getPointerTy(); 1798 Reloc::Model RM = DAG.getTarget().getRelocationModel(); 1799 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 1800 1801 SDValue Result; 1802 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { 1803 // Assign anchors at 1<<12 byte boundaries. 1804 uint64_t Anchor = Offset & ~uint64_t(0xfff); 1805 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 1806 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1807 1808 // The offset can be folded into the address if it is aligned to a halfword. 1809 Offset -= Anchor; 1810 if (Offset != 0 && (Offset & 1) == 0) { 1811 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 1812 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 1813 Offset = 0; 1814 } 1815 } else { 1816 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 1817 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1818 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 1819 MachinePointerInfo::getGOT(), false, false, false, 0); 1820 } 1821 1822 // If there was a non-zero offset that we didn't fold, create an explicit 1823 // addition for it. 1824 if (Offset != 0) 1825 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 1826 DAG.getConstant(Offset, PtrVT)); 1827 1828 return Result; 1829 } 1830 1831 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 1832 SelectionDAG &DAG) const { 1833 SDLoc DL(Node); 1834 const GlobalValue *GV = Node->getGlobal(); 1835 EVT PtrVT = getPointerTy(); 1836 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 1837 1838 if (model != TLSModel::LocalExec) 1839 llvm_unreachable("only local-exec TLS mode supported"); 1840 1841 // The high part of the thread pointer is in access register 0. 1842 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 1843 DAG.getConstant(0, MVT::i32)); 1844 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 1845 1846 // The low part of the thread pointer is in access register 1. 1847 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 1848 DAG.getConstant(1, MVT::i32)); 1849 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 1850 1851 // Merge them into a single 64-bit address. 1852 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 1853 DAG.getConstant(32, PtrVT)); 1854 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 1855 1856 // Get the offset of GA from the thread pointer. 1857 SystemZConstantPoolValue *CPV = 1858 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 1859 1860 // Force the offset into the constant pool and load it from there. 1861 SDValue CPAddr = DAG.getConstantPool(CPV, PtrVT, 8); 1862 SDValue Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), 1863 CPAddr, MachinePointerInfo::getConstantPool(), 1864 false, false, false, 0); 1865 1866 // Add the base and offset together. 1867 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 1868 } 1869 1870 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 1871 SelectionDAG &DAG) const { 1872 SDLoc DL(Node); 1873 const BlockAddress *BA = Node->getBlockAddress(); 1874 int64_t Offset = Node->getOffset(); 1875 EVT PtrVT = getPointerTy(); 1876 1877 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 1878 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1879 return Result; 1880 } 1881 1882 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 1883 SelectionDAG &DAG) const { 1884 SDLoc DL(JT); 1885 EVT PtrVT = getPointerTy(); 1886 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 1887 1888 // Use LARL to load the address of the table. 1889 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1890 } 1891 1892 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 1893 SelectionDAG &DAG) const { 1894 SDLoc DL(CP); 1895 EVT PtrVT = getPointerTy(); 1896 1897 SDValue Result; 1898 if (CP->isMachineConstantPoolEntry()) 1899 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 1900 CP->getAlignment()); 1901 else 1902 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 1903 CP->getAlignment(), CP->getOffset()); 1904 1905 // Use LARL to load the address of the constant pool entry. 1906 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 1907 } 1908 1909 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 1910 SelectionDAG &DAG) const { 1911 SDLoc DL(Op); 1912 SDValue In = Op.getOperand(0); 1913 EVT InVT = In.getValueType(); 1914 EVT ResVT = Op.getValueType(); 1915 1916 if (InVT == MVT::i32 && ResVT == MVT::f32) { 1917 SDValue In64; 1918 if (Subtarget.hasHighWord()) { 1919 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 1920 MVT::i64); 1921 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 1922 MVT::i64, SDValue(U64, 0), In); 1923 } else { 1924 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 1925 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 1926 DAG.getConstant(32, MVT::i64)); 1927 } 1928 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 1929 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 1930 DL, MVT::f32, Out64); 1931 } 1932 if (InVT == MVT::f32 && ResVT == MVT::i32) { 1933 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 1934 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 1935 MVT::f64, SDValue(U64, 0), In); 1936 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 1937 if (Subtarget.hasHighWord()) 1938 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 1939 MVT::i32, Out64); 1940 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 1941 DAG.getConstant(32, MVT::i64)); 1942 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 1943 } 1944 llvm_unreachable("Unexpected bitcast combination"); 1945 } 1946 1947 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 1948 SelectionDAG &DAG) const { 1949 MachineFunction &MF = DAG.getMachineFunction(); 1950 SystemZMachineFunctionInfo *FuncInfo = 1951 MF.getInfo<SystemZMachineFunctionInfo>(); 1952 EVT PtrVT = getPointerTy(); 1953 1954 SDValue Chain = Op.getOperand(0); 1955 SDValue Addr = Op.getOperand(1); 1956 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 1957 SDLoc DL(Op); 1958 1959 // The initial values of each field. 1960 const unsigned NumFields = 4; 1961 SDValue Fields[NumFields] = { 1962 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), PtrVT), 1963 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), PtrVT), 1964 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 1965 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 1966 }; 1967 1968 // Store each field into its respective slot. 1969 SDValue MemOps[NumFields]; 1970 unsigned Offset = 0; 1971 for (unsigned I = 0; I < NumFields; ++I) { 1972 SDValue FieldAddr = Addr; 1973 if (Offset != 0) 1974 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 1975 DAG.getIntPtrConstant(Offset)); 1976 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 1977 MachinePointerInfo(SV, Offset), 1978 false, false, 0); 1979 Offset += 8; 1980 } 1981 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 1982 } 1983 1984 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 1985 SelectionDAG &DAG) const { 1986 SDValue Chain = Op.getOperand(0); 1987 SDValue DstPtr = Op.getOperand(1); 1988 SDValue SrcPtr = Op.getOperand(2); 1989 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 1990 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 1991 SDLoc DL(Op); 1992 1993 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32), 1994 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 1995 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 1996 } 1997 1998 SDValue SystemZTargetLowering:: 1999 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2000 SDValue Chain = Op.getOperand(0); 2001 SDValue Size = Op.getOperand(1); 2002 SDLoc DL(Op); 2003 2004 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2005 2006 // Get a reference to the stack pointer. 2007 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2008 2009 // Get the new stack pointer value. 2010 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size); 2011 2012 // Copy the new stack pointer back. 2013 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2014 2015 // The allocated data lives above the 160 bytes allocated for the standard 2016 // frame, plus any outgoing stack arguments. We don't know how much that 2017 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2018 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2019 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2020 2021 SDValue Ops[2] = { Result, Chain }; 2022 return DAG.getMergeValues(Ops, DL); 2023 } 2024 2025 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2026 SelectionDAG &DAG) const { 2027 EVT VT = Op.getValueType(); 2028 SDLoc DL(Op); 2029 SDValue Ops[2]; 2030 if (is32Bit(VT)) 2031 // Just do a normal 64-bit multiplication and extract the results. 2032 // We define this so that it can be used for constant division. 2033 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2034 Op.getOperand(1), Ops[1], Ops[0]); 2035 else { 2036 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2037 // 2038 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2039 // 2040 // but using the fact that the upper halves are either all zeros 2041 // or all ones: 2042 // 2043 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2044 // 2045 // and grouping the right terms together since they are quicker than the 2046 // multiplication: 2047 // 2048 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2049 SDValue C63 = DAG.getConstant(63, MVT::i64); 2050 SDValue LL = Op.getOperand(0); 2051 SDValue RL = Op.getOperand(1); 2052 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2053 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2054 // UMUL_LOHI64 returns the low result in the odd register and the high 2055 // result in the even register. SMUL_LOHI is defined to return the 2056 // low half first, so the results are in reverse order. 2057 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2058 LL, RL, Ops[1], Ops[0]); 2059 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2060 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2061 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2062 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2063 } 2064 return DAG.getMergeValues(Ops, DL); 2065 } 2066 2067 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2068 SelectionDAG &DAG) const { 2069 EVT VT = Op.getValueType(); 2070 SDLoc DL(Op); 2071 SDValue Ops[2]; 2072 if (is32Bit(VT)) 2073 // Just do a normal 64-bit multiplication and extract the results. 2074 // We define this so that it can be used for constant division. 2075 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 2076 Op.getOperand(1), Ops[1], Ops[0]); 2077 else 2078 // UMUL_LOHI64 returns the low result in the odd register and the high 2079 // result in the even register. UMUL_LOHI is defined to return the 2080 // low half first, so the results are in reverse order. 2081 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2082 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2083 return DAG.getMergeValues(Ops, DL); 2084 } 2085 2086 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 2087 SelectionDAG &DAG) const { 2088 SDValue Op0 = Op.getOperand(0); 2089 SDValue Op1 = Op.getOperand(1); 2090 EVT VT = Op.getValueType(); 2091 SDLoc DL(Op); 2092 unsigned Opcode; 2093 2094 // We use DSGF for 32-bit division. 2095 if (is32Bit(VT)) { 2096 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 2097 Opcode = SystemZISD::SDIVREM32; 2098 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 2099 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 2100 Opcode = SystemZISD::SDIVREM32; 2101 } else 2102 Opcode = SystemZISD::SDIVREM64; 2103 2104 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 2105 // input is "don't care". The instruction returns the remainder in 2106 // the even register and the quotient in the odd register. 2107 SDValue Ops[2]; 2108 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 2109 Op0, Op1, Ops[1], Ops[0]); 2110 return DAG.getMergeValues(Ops, DL); 2111 } 2112 2113 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 2114 SelectionDAG &DAG) const { 2115 EVT VT = Op.getValueType(); 2116 SDLoc DL(Op); 2117 2118 // DL(G) uses a double-width dividend, so we need to clear the even 2119 // register in the GR128 input. The instruction returns the remainder 2120 // in the even register and the quotient in the odd register. 2121 SDValue Ops[2]; 2122 if (is32Bit(VT)) 2123 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 2124 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2125 else 2126 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 2127 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2128 return DAG.getMergeValues(Ops, DL); 2129 } 2130 2131 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 2132 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 2133 2134 // Get the known-zero masks for each operand. 2135 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 2136 APInt KnownZero[2], KnownOne[2]; 2137 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 2138 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 2139 2140 // See if the upper 32 bits of one operand and the lower 32 bits of the 2141 // other are known zero. They are the low and high operands respectively. 2142 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 2143 KnownZero[1].getZExtValue() }; 2144 unsigned High, Low; 2145 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 2146 High = 1, Low = 0; 2147 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 2148 High = 0, Low = 1; 2149 else 2150 return Op; 2151 2152 SDValue LowOp = Ops[Low]; 2153 SDValue HighOp = Ops[High]; 2154 2155 // If the high part is a constant, we're better off using IILH. 2156 if (HighOp.getOpcode() == ISD::Constant) 2157 return Op; 2158 2159 // If the low part is a constant that is outside the range of LHI, 2160 // then we're better off using IILF. 2161 if (LowOp.getOpcode() == ISD::Constant) { 2162 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 2163 if (!isInt<16>(Value)) 2164 return Op; 2165 } 2166 2167 // Check whether the high part is an AND that doesn't change the 2168 // high 32 bits and just masks out low bits. We can skip it if so. 2169 if (HighOp.getOpcode() == ISD::AND && 2170 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 2171 SDValue HighOp0 = HighOp.getOperand(0); 2172 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 2173 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 2174 HighOp = HighOp0; 2175 } 2176 2177 // Take advantage of the fact that all GR32 operations only change the 2178 // low 32 bits by truncating Low to an i32 and inserting it directly 2179 // using a subreg. The interesting cases are those where the truncation 2180 // can be folded. 2181 SDLoc DL(Op); 2182 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 2183 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 2184 MVT::i64, HighOp, Low32); 2185 } 2186 2187 // Op is an atomic load. Lower it into a normal volatile load. 2188 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 2189 SelectionDAG &DAG) const { 2190 auto *Node = cast<AtomicSDNode>(Op.getNode()); 2191 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 2192 Node->getChain(), Node->getBasePtr(), 2193 Node->getMemoryVT(), Node->getMemOperand()); 2194 } 2195 2196 // Op is an atomic store. Lower it into a normal volatile store followed 2197 // by a serialization. 2198 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 2199 SelectionDAG &DAG) const { 2200 auto *Node = cast<AtomicSDNode>(Op.getNode()); 2201 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 2202 Node->getBasePtr(), Node->getMemoryVT(), 2203 Node->getMemOperand()); 2204 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 2205 Chain), 0); 2206 } 2207 2208 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 2209 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 2210 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 2211 SelectionDAG &DAG, 2212 unsigned Opcode) const { 2213 auto *Node = cast<AtomicSDNode>(Op.getNode()); 2214 2215 // 32-bit operations need no code outside the main loop. 2216 EVT NarrowVT = Node->getMemoryVT(); 2217 EVT WideVT = MVT::i32; 2218 if (NarrowVT == WideVT) 2219 return Op; 2220 2221 int64_t BitSize = NarrowVT.getSizeInBits(); 2222 SDValue ChainIn = Node->getChain(); 2223 SDValue Addr = Node->getBasePtr(); 2224 SDValue Src2 = Node->getVal(); 2225 MachineMemOperand *MMO = Node->getMemOperand(); 2226 SDLoc DL(Node); 2227 EVT PtrVT = Addr.getValueType(); 2228 2229 // Convert atomic subtracts of constants into additions. 2230 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 2231 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 2232 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 2233 Src2 = DAG.getConstant(-Const->getSExtValue(), Src2.getValueType()); 2234 } 2235 2236 // Get the address of the containing word. 2237 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 2238 DAG.getConstant(-4, PtrVT)); 2239 2240 // Get the number of bits that the word must be rotated left in order 2241 // to bring the field to the top bits of a GR32. 2242 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 2243 DAG.getConstant(3, PtrVT)); 2244 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 2245 2246 // Get the complementing shift amount, for rotating a field in the top 2247 // bits back to its proper position. 2248 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 2249 DAG.getConstant(0, WideVT), BitShift); 2250 2251 // Extend the source operand to 32 bits and prepare it for the inner loop. 2252 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 2253 // operations require the source to be shifted in advance. (This shift 2254 // can be folded if the source is constant.) For AND and NAND, the lower 2255 // bits must be set, while for other opcodes they should be left clear. 2256 if (Opcode != SystemZISD::ATOMIC_SWAPW) 2257 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 2258 DAG.getConstant(32 - BitSize, WideVT)); 2259 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 2260 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 2261 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 2262 DAG.getConstant(uint32_t(-1) >> BitSize, WideVT)); 2263 2264 // Construct the ATOMIC_LOADW_* node. 2265 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 2266 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 2267 DAG.getConstant(BitSize, WideVT) }; 2268 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 2269 NarrowVT, MMO); 2270 2271 // Rotate the result of the final CS so that the field is in the lower 2272 // bits of a GR32, then truncate it. 2273 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 2274 DAG.getConstant(BitSize, WideVT)); 2275 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 2276 2277 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 2278 return DAG.getMergeValues(RetOps, DL); 2279 } 2280 2281 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 2282 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 2283 // operations into additions. 2284 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 2285 SelectionDAG &DAG) const { 2286 auto *Node = cast<AtomicSDNode>(Op.getNode()); 2287 EVT MemVT = Node->getMemoryVT(); 2288 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 2289 // A full-width operation. 2290 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 2291 SDValue Src2 = Node->getVal(); 2292 SDValue NegSrc2; 2293 SDLoc DL(Src2); 2294 2295 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 2296 // Use an addition if the operand is constant and either LAA(G) is 2297 // available or the negative value is in the range of A(G)FHI. 2298 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 2299 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 2300 NegSrc2 = DAG.getConstant(Value, MemVT); 2301 } else if (Subtarget.hasInterlockedAccess1()) 2302 // Use LAA(G) if available. 2303 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, MemVT), 2304 Src2); 2305 2306 if (NegSrc2.getNode()) 2307 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 2308 Node->getChain(), Node->getBasePtr(), NegSrc2, 2309 Node->getMemOperand(), Node->getOrdering(), 2310 Node->getSynchScope()); 2311 2312 // Use the node as-is. 2313 return Op; 2314 } 2315 2316 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 2317 } 2318 2319 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 2320 // into a fullword ATOMIC_CMP_SWAPW operation. 2321 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 2322 SelectionDAG &DAG) const { 2323 auto *Node = cast<AtomicSDNode>(Op.getNode()); 2324 2325 // We have native support for 32-bit compare and swap. 2326 EVT NarrowVT = Node->getMemoryVT(); 2327 EVT WideVT = MVT::i32; 2328 if (NarrowVT == WideVT) 2329 return Op; 2330 2331 int64_t BitSize = NarrowVT.getSizeInBits(); 2332 SDValue ChainIn = Node->getOperand(0); 2333 SDValue Addr = Node->getOperand(1); 2334 SDValue CmpVal = Node->getOperand(2); 2335 SDValue SwapVal = Node->getOperand(3); 2336 MachineMemOperand *MMO = Node->getMemOperand(); 2337 SDLoc DL(Node); 2338 EVT PtrVT = Addr.getValueType(); 2339 2340 // Get the address of the containing word. 2341 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 2342 DAG.getConstant(-4, PtrVT)); 2343 2344 // Get the number of bits that the word must be rotated left in order 2345 // to bring the field to the top bits of a GR32. 2346 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 2347 DAG.getConstant(3, PtrVT)); 2348 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 2349 2350 // Get the complementing shift amount, for rotating a field in the top 2351 // bits back to its proper position. 2352 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 2353 DAG.getConstant(0, WideVT), BitShift); 2354 2355 // Construct the ATOMIC_CMP_SWAPW node. 2356 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 2357 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 2358 NegBitShift, DAG.getConstant(BitSize, WideVT) }; 2359 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 2360 VTList, Ops, NarrowVT, MMO); 2361 return AtomicOp; 2362 } 2363 2364 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 2365 SelectionDAG &DAG) const { 2366 MachineFunction &MF = DAG.getMachineFunction(); 2367 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 2368 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 2369 SystemZ::R15D, Op.getValueType()); 2370 } 2371 2372 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 2373 SelectionDAG &DAG) const { 2374 MachineFunction &MF = DAG.getMachineFunction(); 2375 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 2376 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), 2377 SystemZ::R15D, Op.getOperand(1)); 2378 } 2379 2380 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 2381 SelectionDAG &DAG) const { 2382 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 2383 if (!IsData) 2384 // Just preserve the chain. 2385 return Op.getOperand(0); 2386 2387 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 2388 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 2389 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 2390 SDValue Ops[] = { 2391 Op.getOperand(0), 2392 DAG.getConstant(Code, MVT::i32), 2393 Op.getOperand(1) 2394 }; 2395 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, SDLoc(Op), 2396 Node->getVTList(), Ops, 2397 Node->getMemoryVT(), Node->getMemOperand()); 2398 } 2399 2400 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 2401 SelectionDAG &DAG) const { 2402 switch (Op.getOpcode()) { 2403 case ISD::BR_CC: 2404 return lowerBR_CC(Op, DAG); 2405 case ISD::SELECT_CC: 2406 return lowerSELECT_CC(Op, DAG); 2407 case ISD::SETCC: 2408 return lowerSETCC(Op, DAG); 2409 case ISD::GlobalAddress: 2410 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 2411 case ISD::GlobalTLSAddress: 2412 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 2413 case ISD::BlockAddress: 2414 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 2415 case ISD::JumpTable: 2416 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 2417 case ISD::ConstantPool: 2418 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 2419 case ISD::BITCAST: 2420 return lowerBITCAST(Op, DAG); 2421 case ISD::VASTART: 2422 return lowerVASTART(Op, DAG); 2423 case ISD::VACOPY: 2424 return lowerVACOPY(Op, DAG); 2425 case ISD::DYNAMIC_STACKALLOC: 2426 return lowerDYNAMIC_STACKALLOC(Op, DAG); 2427 case ISD::SMUL_LOHI: 2428 return lowerSMUL_LOHI(Op, DAG); 2429 case ISD::UMUL_LOHI: 2430 return lowerUMUL_LOHI(Op, DAG); 2431 case ISD::SDIVREM: 2432 return lowerSDIVREM(Op, DAG); 2433 case ISD::UDIVREM: 2434 return lowerUDIVREM(Op, DAG); 2435 case ISD::OR: 2436 return lowerOR(Op, DAG); 2437 case ISD::ATOMIC_SWAP: 2438 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 2439 case ISD::ATOMIC_STORE: 2440 return lowerATOMIC_STORE(Op, DAG); 2441 case ISD::ATOMIC_LOAD: 2442 return lowerATOMIC_LOAD(Op, DAG); 2443 case ISD::ATOMIC_LOAD_ADD: 2444 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 2445 case ISD::ATOMIC_LOAD_SUB: 2446 return lowerATOMIC_LOAD_SUB(Op, DAG); 2447 case ISD::ATOMIC_LOAD_AND: 2448 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 2449 case ISD::ATOMIC_LOAD_OR: 2450 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 2451 case ISD::ATOMIC_LOAD_XOR: 2452 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 2453 case ISD::ATOMIC_LOAD_NAND: 2454 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 2455 case ISD::ATOMIC_LOAD_MIN: 2456 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 2457 case ISD::ATOMIC_LOAD_MAX: 2458 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 2459 case ISD::ATOMIC_LOAD_UMIN: 2460 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 2461 case ISD::ATOMIC_LOAD_UMAX: 2462 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 2463 case ISD::ATOMIC_CMP_SWAP: 2464 return lowerATOMIC_CMP_SWAP(Op, DAG); 2465 case ISD::STACKSAVE: 2466 return lowerSTACKSAVE(Op, DAG); 2467 case ISD::STACKRESTORE: 2468 return lowerSTACKRESTORE(Op, DAG); 2469 case ISD::PREFETCH: 2470 return lowerPREFETCH(Op, DAG); 2471 default: 2472 llvm_unreachable("Unexpected node to lower"); 2473 } 2474 } 2475 2476 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 2477 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 2478 switch (Opcode) { 2479 OPCODE(RET_FLAG); 2480 OPCODE(CALL); 2481 OPCODE(SIBCALL); 2482 OPCODE(PCREL_WRAPPER); 2483 OPCODE(PCREL_OFFSET); 2484 OPCODE(IABS); 2485 OPCODE(ICMP); 2486 OPCODE(FCMP); 2487 OPCODE(TM); 2488 OPCODE(BR_CCMASK); 2489 OPCODE(SELECT_CCMASK); 2490 OPCODE(ADJDYNALLOC); 2491 OPCODE(EXTRACT_ACCESS); 2492 OPCODE(UMUL_LOHI64); 2493 OPCODE(SDIVREM64); 2494 OPCODE(UDIVREM32); 2495 OPCODE(UDIVREM64); 2496 OPCODE(MVC); 2497 OPCODE(MVC_LOOP); 2498 OPCODE(NC); 2499 OPCODE(NC_LOOP); 2500 OPCODE(OC); 2501 OPCODE(OC_LOOP); 2502 OPCODE(XC); 2503 OPCODE(XC_LOOP); 2504 OPCODE(CLC); 2505 OPCODE(CLC_LOOP); 2506 OPCODE(STRCMP); 2507 OPCODE(STPCPY); 2508 OPCODE(SEARCH_STRING); 2509 OPCODE(IPM); 2510 OPCODE(SERIALIZE); 2511 OPCODE(ATOMIC_SWAPW); 2512 OPCODE(ATOMIC_LOADW_ADD); 2513 OPCODE(ATOMIC_LOADW_SUB); 2514 OPCODE(ATOMIC_LOADW_AND); 2515 OPCODE(ATOMIC_LOADW_OR); 2516 OPCODE(ATOMIC_LOADW_XOR); 2517 OPCODE(ATOMIC_LOADW_NAND); 2518 OPCODE(ATOMIC_LOADW_MIN); 2519 OPCODE(ATOMIC_LOADW_MAX); 2520 OPCODE(ATOMIC_LOADW_UMIN); 2521 OPCODE(ATOMIC_LOADW_UMAX); 2522 OPCODE(ATOMIC_CMP_SWAPW); 2523 OPCODE(PREFETCH); 2524 } 2525 return nullptr; 2526 #undef OPCODE 2527 } 2528 2529 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 2530 DAGCombinerInfo &DCI) const { 2531 SelectionDAG &DAG = DCI.DAG; 2532 unsigned Opcode = N->getOpcode(); 2533 if (Opcode == ISD::SIGN_EXTEND) { 2534 // Convert (sext (ashr (shl X, C1), C2)) to 2535 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 2536 // cheap as narrower ones. 2537 SDValue N0 = N->getOperand(0); 2538 EVT VT = N->getValueType(0); 2539 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 2540 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 2541 SDValue Inner = N0.getOperand(0); 2542 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 2543 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 2544 unsigned Extra = (VT.getSizeInBits() - 2545 N0.getValueType().getSizeInBits()); 2546 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 2547 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 2548 EVT ShiftVT = N0.getOperand(1).getValueType(); 2549 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 2550 Inner.getOperand(0)); 2551 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 2552 DAG.getConstant(NewShlAmt, ShiftVT)); 2553 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 2554 DAG.getConstant(NewSraAmt, ShiftVT)); 2555 } 2556 } 2557 } 2558 } 2559 return SDValue(); 2560 } 2561 2562 //===----------------------------------------------------------------------===// 2563 // Custom insertion 2564 //===----------------------------------------------------------------------===// 2565 2566 // Create a new basic block after MBB. 2567 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 2568 MachineFunction &MF = *MBB->getParent(); 2569 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 2570 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 2571 return NewMBB; 2572 } 2573 2574 // Split MBB after MI and return the new block (the one that contains 2575 // instructions after MI). 2576 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, 2577 MachineBasicBlock *MBB) { 2578 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 2579 NewMBB->splice(NewMBB->begin(), MBB, 2580 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 2581 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 2582 return NewMBB; 2583 } 2584 2585 // Split MBB before MI and return the new block (the one that contains MI). 2586 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, 2587 MachineBasicBlock *MBB) { 2588 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 2589 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 2590 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 2591 return NewMBB; 2592 } 2593 2594 // Force base value Base into a register before MI. Return the register. 2595 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, 2596 const SystemZInstrInfo *TII) { 2597 if (Base.isReg()) 2598 return Base.getReg(); 2599 2600 MachineBasicBlock *MBB = MI->getParent(); 2601 MachineFunction &MF = *MBB->getParent(); 2602 MachineRegisterInfo &MRI = MF.getRegInfo(); 2603 2604 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 2605 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) 2606 .addOperand(Base).addImm(0).addReg(0); 2607 return Reg; 2608 } 2609 2610 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 2611 MachineBasicBlock * 2612 SystemZTargetLowering::emitSelect(MachineInstr *MI, 2613 MachineBasicBlock *MBB) const { 2614 const SystemZInstrInfo *TII = static_cast<const SystemZInstrInfo *>( 2615 MBB->getParent()->getSubtarget().getInstrInfo()); 2616 2617 unsigned DestReg = MI->getOperand(0).getReg(); 2618 unsigned TrueReg = MI->getOperand(1).getReg(); 2619 unsigned FalseReg = MI->getOperand(2).getReg(); 2620 unsigned CCValid = MI->getOperand(3).getImm(); 2621 unsigned CCMask = MI->getOperand(4).getImm(); 2622 DebugLoc DL = MI->getDebugLoc(); 2623 2624 MachineBasicBlock *StartMBB = MBB; 2625 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 2626 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 2627 2628 // StartMBB: 2629 // BRC CCMask, JoinMBB 2630 // # fallthrough to FalseMBB 2631 MBB = StartMBB; 2632 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2633 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 2634 MBB->addSuccessor(JoinMBB); 2635 MBB->addSuccessor(FalseMBB); 2636 2637 // FalseMBB: 2638 // # fallthrough to JoinMBB 2639 MBB = FalseMBB; 2640 MBB->addSuccessor(JoinMBB); 2641 2642 // JoinMBB: 2643 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 2644 // ... 2645 MBB = JoinMBB; 2646 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 2647 .addReg(TrueReg).addMBB(StartMBB) 2648 .addReg(FalseReg).addMBB(FalseMBB); 2649 2650 MI->eraseFromParent(); 2651 return JoinMBB; 2652 } 2653 2654 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 2655 // StoreOpcode is the store to use and Invert says whether the store should 2656 // happen when the condition is false rather than true. If a STORE ON 2657 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 2658 MachineBasicBlock * 2659 SystemZTargetLowering::emitCondStore(MachineInstr *MI, 2660 MachineBasicBlock *MBB, 2661 unsigned StoreOpcode, unsigned STOCOpcode, 2662 bool Invert) const { 2663 const SystemZInstrInfo *TII = static_cast<const SystemZInstrInfo *>( 2664 MBB->getParent()->getSubtarget().getInstrInfo()); 2665 2666 unsigned SrcReg = MI->getOperand(0).getReg(); 2667 MachineOperand Base = MI->getOperand(1); 2668 int64_t Disp = MI->getOperand(2).getImm(); 2669 unsigned IndexReg = MI->getOperand(3).getReg(); 2670 unsigned CCValid = MI->getOperand(4).getImm(); 2671 unsigned CCMask = MI->getOperand(5).getImm(); 2672 DebugLoc DL = MI->getDebugLoc(); 2673 2674 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 2675 2676 // Use STOCOpcode if possible. We could use different store patterns in 2677 // order to avoid matching the index register, but the performance trade-offs 2678 // might be more complicated in that case. 2679 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 2680 if (Invert) 2681 CCMask ^= CCValid; 2682 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 2683 .addReg(SrcReg).addOperand(Base).addImm(Disp) 2684 .addImm(CCValid).addImm(CCMask); 2685 MI->eraseFromParent(); 2686 return MBB; 2687 } 2688 2689 // Get the condition needed to branch around the store. 2690 if (!Invert) 2691 CCMask ^= CCValid; 2692 2693 MachineBasicBlock *StartMBB = MBB; 2694 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 2695 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 2696 2697 // StartMBB: 2698 // BRC CCMask, JoinMBB 2699 // # fallthrough to FalseMBB 2700 MBB = StartMBB; 2701 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2702 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 2703 MBB->addSuccessor(JoinMBB); 2704 MBB->addSuccessor(FalseMBB); 2705 2706 // FalseMBB: 2707 // store %SrcReg, %Disp(%Index,%Base) 2708 // # fallthrough to JoinMBB 2709 MBB = FalseMBB; 2710 BuildMI(MBB, DL, TII->get(StoreOpcode)) 2711 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 2712 MBB->addSuccessor(JoinMBB); 2713 2714 MI->eraseFromParent(); 2715 return JoinMBB; 2716 } 2717 2718 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 2719 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 2720 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 2721 // BitSize is the width of the field in bits, or 0 if this is a partword 2722 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 2723 // is one of the operands. Invert says whether the field should be 2724 // inverted after performing BinOpcode (e.g. for NAND). 2725 MachineBasicBlock * 2726 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, 2727 MachineBasicBlock *MBB, 2728 unsigned BinOpcode, 2729 unsigned BitSize, 2730 bool Invert) const { 2731 MachineFunction &MF = *MBB->getParent(); 2732 const SystemZInstrInfo *TII = 2733 static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2734 MachineRegisterInfo &MRI = MF.getRegInfo(); 2735 bool IsSubWord = (BitSize < 32); 2736 2737 // Extract the operands. Base can be a register or a frame index. 2738 // Src2 can be a register or immediate. 2739 unsigned Dest = MI->getOperand(0).getReg(); 2740 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 2741 int64_t Disp = MI->getOperand(2).getImm(); 2742 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); 2743 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 2744 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 2745 DebugLoc DL = MI->getDebugLoc(); 2746 if (IsSubWord) 2747 BitSize = MI->getOperand(6).getImm(); 2748 2749 // Subword operations use 32-bit registers. 2750 const TargetRegisterClass *RC = (BitSize <= 32 ? 2751 &SystemZ::GR32BitRegClass : 2752 &SystemZ::GR64BitRegClass); 2753 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 2754 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 2755 2756 // Get the right opcodes for the displacement. 2757 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 2758 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 2759 assert(LOpcode && CSOpcode && "Displacement out of range"); 2760 2761 // Create virtual registers for temporary results. 2762 unsigned OrigVal = MRI.createVirtualRegister(RC); 2763 unsigned OldVal = MRI.createVirtualRegister(RC); 2764 unsigned NewVal = (BinOpcode || IsSubWord ? 2765 MRI.createVirtualRegister(RC) : Src2.getReg()); 2766 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 2767 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 2768 2769 // Insert a basic block for the main loop. 2770 MachineBasicBlock *StartMBB = MBB; 2771 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 2772 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 2773 2774 // StartMBB: 2775 // ... 2776 // %OrigVal = L Disp(%Base) 2777 // # fall through to LoopMMB 2778 MBB = StartMBB; 2779 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 2780 .addOperand(Base).addImm(Disp).addReg(0); 2781 MBB->addSuccessor(LoopMBB); 2782 2783 // LoopMBB: 2784 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 2785 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 2786 // %RotatedNewVal = OP %RotatedOldVal, %Src2 2787 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 2788 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 2789 // JNE LoopMBB 2790 // # fall through to DoneMMB 2791 MBB = LoopMBB; 2792 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 2793 .addReg(OrigVal).addMBB(StartMBB) 2794 .addReg(Dest).addMBB(LoopMBB); 2795 if (IsSubWord) 2796 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 2797 .addReg(OldVal).addReg(BitShift).addImm(0); 2798 if (Invert) { 2799 // Perform the operation normally and then invert every bit of the field. 2800 unsigned Tmp = MRI.createVirtualRegister(RC); 2801 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 2802 .addReg(RotatedOldVal).addOperand(Src2); 2803 if (BitSize <= 32) 2804 // XILF with the upper BitSize bits set. 2805 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 2806 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 2807 else { 2808 // Use LCGR and add -1 to the result, which is more compact than 2809 // an XILF, XILH pair. 2810 unsigned Tmp2 = MRI.createVirtualRegister(RC); 2811 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 2812 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 2813 .addReg(Tmp2).addImm(-1); 2814 } 2815 } else if (BinOpcode) 2816 // A simply binary operation. 2817 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 2818 .addReg(RotatedOldVal).addOperand(Src2); 2819 else if (IsSubWord) 2820 // Use RISBG to rotate Src2 into position and use it to replace the 2821 // field in RotatedOldVal. 2822 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 2823 .addReg(RotatedOldVal).addReg(Src2.getReg()) 2824 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 2825 if (IsSubWord) 2826 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 2827 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 2828 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 2829 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 2830 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2831 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 2832 MBB->addSuccessor(LoopMBB); 2833 MBB->addSuccessor(DoneMBB); 2834 2835 MI->eraseFromParent(); 2836 return DoneMBB; 2837 } 2838 2839 // Implement EmitInstrWithCustomInserter for pseudo 2840 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 2841 // instruction that should be used to compare the current field with the 2842 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 2843 // for when the current field should be kept. BitSize is the width of 2844 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 2845 MachineBasicBlock * 2846 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, 2847 MachineBasicBlock *MBB, 2848 unsigned CompareOpcode, 2849 unsigned KeepOldMask, 2850 unsigned BitSize) const { 2851 MachineFunction &MF = *MBB->getParent(); 2852 const SystemZInstrInfo *TII = 2853 static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2854 MachineRegisterInfo &MRI = MF.getRegInfo(); 2855 bool IsSubWord = (BitSize < 32); 2856 2857 // Extract the operands. Base can be a register or a frame index. 2858 unsigned Dest = MI->getOperand(0).getReg(); 2859 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 2860 int64_t Disp = MI->getOperand(2).getImm(); 2861 unsigned Src2 = MI->getOperand(3).getReg(); 2862 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 2863 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 2864 DebugLoc DL = MI->getDebugLoc(); 2865 if (IsSubWord) 2866 BitSize = MI->getOperand(6).getImm(); 2867 2868 // Subword operations use 32-bit registers. 2869 const TargetRegisterClass *RC = (BitSize <= 32 ? 2870 &SystemZ::GR32BitRegClass : 2871 &SystemZ::GR64BitRegClass); 2872 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 2873 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 2874 2875 // Get the right opcodes for the displacement. 2876 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 2877 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 2878 assert(LOpcode && CSOpcode && "Displacement out of range"); 2879 2880 // Create virtual registers for temporary results. 2881 unsigned OrigVal = MRI.createVirtualRegister(RC); 2882 unsigned OldVal = MRI.createVirtualRegister(RC); 2883 unsigned NewVal = MRI.createVirtualRegister(RC); 2884 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 2885 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 2886 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 2887 2888 // Insert 3 basic blocks for the loop. 2889 MachineBasicBlock *StartMBB = MBB; 2890 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 2891 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 2892 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 2893 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 2894 2895 // StartMBB: 2896 // ... 2897 // %OrigVal = L Disp(%Base) 2898 // # fall through to LoopMMB 2899 MBB = StartMBB; 2900 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 2901 .addOperand(Base).addImm(Disp).addReg(0); 2902 MBB->addSuccessor(LoopMBB); 2903 2904 // LoopMBB: 2905 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 2906 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 2907 // CompareOpcode %RotatedOldVal, %Src2 2908 // BRC KeepOldMask, UpdateMBB 2909 MBB = LoopMBB; 2910 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 2911 .addReg(OrigVal).addMBB(StartMBB) 2912 .addReg(Dest).addMBB(UpdateMBB); 2913 if (IsSubWord) 2914 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 2915 .addReg(OldVal).addReg(BitShift).addImm(0); 2916 BuildMI(MBB, DL, TII->get(CompareOpcode)) 2917 .addReg(RotatedOldVal).addReg(Src2); 2918 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2919 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 2920 MBB->addSuccessor(UpdateMBB); 2921 MBB->addSuccessor(UseAltMBB); 2922 2923 // UseAltMBB: 2924 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 2925 // # fall through to UpdateMMB 2926 MBB = UseAltMBB; 2927 if (IsSubWord) 2928 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 2929 .addReg(RotatedOldVal).addReg(Src2) 2930 .addImm(32).addImm(31 + BitSize).addImm(0); 2931 MBB->addSuccessor(UpdateMBB); 2932 2933 // UpdateMBB: 2934 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 2935 // [ %RotatedAltVal, UseAltMBB ] 2936 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 2937 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 2938 // JNE LoopMBB 2939 // # fall through to DoneMMB 2940 MBB = UpdateMBB; 2941 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 2942 .addReg(RotatedOldVal).addMBB(LoopMBB) 2943 .addReg(RotatedAltVal).addMBB(UseAltMBB); 2944 if (IsSubWord) 2945 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 2946 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 2947 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 2948 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 2949 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 2950 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 2951 MBB->addSuccessor(LoopMBB); 2952 MBB->addSuccessor(DoneMBB); 2953 2954 MI->eraseFromParent(); 2955 return DoneMBB; 2956 } 2957 2958 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 2959 // instruction MI. 2960 MachineBasicBlock * 2961 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, 2962 MachineBasicBlock *MBB) const { 2963 MachineFunction &MF = *MBB->getParent(); 2964 const SystemZInstrInfo *TII = 2965 static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo()); 2966 MachineRegisterInfo &MRI = MF.getRegInfo(); 2967 2968 // Extract the operands. Base can be a register or a frame index. 2969 unsigned Dest = MI->getOperand(0).getReg(); 2970 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 2971 int64_t Disp = MI->getOperand(2).getImm(); 2972 unsigned OrigCmpVal = MI->getOperand(3).getReg(); 2973 unsigned OrigSwapVal = MI->getOperand(4).getReg(); 2974 unsigned BitShift = MI->getOperand(5).getReg(); 2975 unsigned NegBitShift = MI->getOperand(6).getReg(); 2976 int64_t BitSize = MI->getOperand(7).getImm(); 2977 DebugLoc DL = MI->getDebugLoc(); 2978 2979 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 2980 2981 // Get the right opcodes for the displacement. 2982 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 2983 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 2984 assert(LOpcode && CSOpcode && "Displacement out of range"); 2985 2986 // Create virtual registers for temporary results. 2987 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 2988 unsigned OldVal = MRI.createVirtualRegister(RC); 2989 unsigned CmpVal = MRI.createVirtualRegister(RC); 2990 unsigned SwapVal = MRI.createVirtualRegister(RC); 2991 unsigned StoreVal = MRI.createVirtualRegister(RC); 2992 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 2993 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 2994 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 2995 2996 // Insert 2 basic blocks for the loop. 2997 MachineBasicBlock *StartMBB = MBB; 2998 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 2999 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 3000 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 3001 3002 // StartMBB: 3003 // ... 3004 // %OrigOldVal = L Disp(%Base) 3005 // # fall through to LoopMMB 3006 MBB = StartMBB; 3007 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 3008 .addOperand(Base).addImm(Disp).addReg(0); 3009 MBB->addSuccessor(LoopMBB); 3010 3011 // LoopMBB: 3012 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 3013 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 3014 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 3015 // %Dest = RLL %OldVal, BitSize(%BitShift) 3016 // ^^ The low BitSize bits contain the field 3017 // of interest. 3018 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 3019 // ^^ Replace the upper 32-BitSize bits of the 3020 // comparison value with those that we loaded, 3021 // so that we can use a full word comparison. 3022 // CR %Dest, %RetryCmpVal 3023 // JNE DoneMBB 3024 // # Fall through to SetMBB 3025 MBB = LoopMBB; 3026 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 3027 .addReg(OrigOldVal).addMBB(StartMBB) 3028 .addReg(RetryOldVal).addMBB(SetMBB); 3029 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 3030 .addReg(OrigCmpVal).addMBB(StartMBB) 3031 .addReg(RetryCmpVal).addMBB(SetMBB); 3032 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 3033 .addReg(OrigSwapVal).addMBB(StartMBB) 3034 .addReg(RetrySwapVal).addMBB(SetMBB); 3035 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 3036 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 3037 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 3038 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 3039 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 3040 .addReg(Dest).addReg(RetryCmpVal); 3041 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 3042 .addImm(SystemZ::CCMASK_ICMP) 3043 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 3044 MBB->addSuccessor(DoneMBB); 3045 MBB->addSuccessor(SetMBB); 3046 3047 // SetMBB: 3048 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 3049 // ^^ Replace the upper 32-BitSize bits of the new 3050 // value with those that we loaded. 3051 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 3052 // ^^ Rotate the new field to its proper position. 3053 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 3054 // JNE LoopMBB 3055 // # fall through to ExitMMB 3056 MBB = SetMBB; 3057 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 3058 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 3059 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 3060 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 3061 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 3062 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 3063 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 3064 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 3065 MBB->addSuccessor(LoopMBB); 3066 MBB->addSuccessor(DoneMBB); 3067 3068 MI->eraseFromParent(); 3069 return DoneMBB; 3070 } 3071 3072 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 3073 // if the high register of the GR128 value must be cleared or false if 3074 // it's "don't care". SubReg is subreg_l32 when extending a GR32 3075 // and subreg_l64 when extending a GR64. 3076 MachineBasicBlock * 3077 SystemZTargetLowering::emitExt128(MachineInstr *MI, 3078 MachineBasicBlock *MBB, 3079 bool ClearEven, unsigned SubReg) const { 3080 MachineFunction &MF = *MBB->getParent(); 3081 const SystemZInstrInfo *TII = 3082 static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo()); 3083 MachineRegisterInfo &MRI = MF.getRegInfo(); 3084 DebugLoc DL = MI->getDebugLoc(); 3085 3086 unsigned Dest = MI->getOperand(0).getReg(); 3087 unsigned Src = MI->getOperand(1).getReg(); 3088 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 3089 3090 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 3091 if (ClearEven) { 3092 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 3093 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 3094 3095 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 3096 .addImm(0); 3097 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 3098 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 3099 In128 = NewIn128; 3100 } 3101 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 3102 .addReg(In128).addReg(Src).addImm(SubReg); 3103 3104 MI->eraseFromParent(); 3105 return MBB; 3106 } 3107 3108 MachineBasicBlock * 3109 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, 3110 MachineBasicBlock *MBB, 3111 unsigned Opcode) const { 3112 MachineFunction &MF = *MBB->getParent(); 3113 const SystemZInstrInfo *TII = 3114 static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo()); 3115 MachineRegisterInfo &MRI = MF.getRegInfo(); 3116 DebugLoc DL = MI->getDebugLoc(); 3117 3118 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); 3119 uint64_t DestDisp = MI->getOperand(1).getImm(); 3120 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); 3121 uint64_t SrcDisp = MI->getOperand(3).getImm(); 3122 uint64_t Length = MI->getOperand(4).getImm(); 3123 3124 // When generating more than one CLC, all but the last will need to 3125 // branch to the end when a difference is found. 3126 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 3127 splitBlockAfter(MI, MBB) : nullptr); 3128 3129 // Check for the loop form, in which operand 5 is the trip count. 3130 if (MI->getNumExplicitOperands() > 5) { 3131 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 3132 3133 uint64_t StartCountReg = MI->getOperand(5).getReg(); 3134 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 3135 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 3136 forceReg(MI, DestBase, TII)); 3137 3138 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 3139 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 3140 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 3141 MRI.createVirtualRegister(RC)); 3142 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 3143 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 3144 MRI.createVirtualRegister(RC)); 3145 3146 RC = &SystemZ::GR64BitRegClass; 3147 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 3148 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 3149 3150 MachineBasicBlock *StartMBB = MBB; 3151 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 3152 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 3153 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 3154 3155 // StartMBB: 3156 // # fall through to LoopMMB 3157 MBB->addSuccessor(LoopMBB); 3158 3159 // LoopMBB: 3160 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 3161 // [ %NextDestReg, NextMBB ] 3162 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 3163 // [ %NextSrcReg, NextMBB ] 3164 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 3165 // [ %NextCountReg, NextMBB ] 3166 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 3167 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 3168 // ( JLH EndMBB ) 3169 // 3170 // The prefetch is used only for MVC. The JLH is used only for CLC. 3171 MBB = LoopMBB; 3172 3173 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 3174 .addReg(StartDestReg).addMBB(StartMBB) 3175 .addReg(NextDestReg).addMBB(NextMBB); 3176 if (!HaveSingleBase) 3177 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 3178 .addReg(StartSrcReg).addMBB(StartMBB) 3179 .addReg(NextSrcReg).addMBB(NextMBB); 3180 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 3181 .addReg(StartCountReg).addMBB(StartMBB) 3182 .addReg(NextCountReg).addMBB(NextMBB); 3183 if (Opcode == SystemZ::MVC) 3184 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 3185 .addImm(SystemZ::PFD_WRITE) 3186 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 3187 BuildMI(MBB, DL, TII->get(Opcode)) 3188 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 3189 .addReg(ThisSrcReg).addImm(SrcDisp); 3190 if (EndMBB) { 3191 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 3192 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 3193 .addMBB(EndMBB); 3194 MBB->addSuccessor(EndMBB); 3195 MBB->addSuccessor(NextMBB); 3196 } 3197 3198 // NextMBB: 3199 // %NextDestReg = LA 256(%ThisDestReg) 3200 // %NextSrcReg = LA 256(%ThisSrcReg) 3201 // %NextCountReg = AGHI %ThisCountReg, -1 3202 // CGHI %NextCountReg, 0 3203 // JLH LoopMBB 3204 // # fall through to DoneMMB 3205 // 3206 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 3207 MBB = NextMBB; 3208 3209 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 3210 .addReg(ThisDestReg).addImm(256).addReg(0); 3211 if (!HaveSingleBase) 3212 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 3213 .addReg(ThisSrcReg).addImm(256).addReg(0); 3214 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 3215 .addReg(ThisCountReg).addImm(-1); 3216 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 3217 .addReg(NextCountReg).addImm(0); 3218 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 3219 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 3220 .addMBB(LoopMBB); 3221 MBB->addSuccessor(LoopMBB); 3222 MBB->addSuccessor(DoneMBB); 3223 3224 DestBase = MachineOperand::CreateReg(NextDestReg, false); 3225 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 3226 Length &= 255; 3227 MBB = DoneMBB; 3228 } 3229 // Handle any remaining bytes with straight-line code. 3230 while (Length > 0) { 3231 uint64_t ThisLength = std::min(Length, uint64_t(256)); 3232 // The previous iteration might have created out-of-range displacements. 3233 // Apply them using LAY if so. 3234 if (!isUInt<12>(DestDisp)) { 3235 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 3236 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 3237 .addOperand(DestBase).addImm(DestDisp).addReg(0); 3238 DestBase = MachineOperand::CreateReg(Reg, false); 3239 DestDisp = 0; 3240 } 3241 if (!isUInt<12>(SrcDisp)) { 3242 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 3243 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 3244 .addOperand(SrcBase).addImm(SrcDisp).addReg(0); 3245 SrcBase = MachineOperand::CreateReg(Reg, false); 3246 SrcDisp = 0; 3247 } 3248 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 3249 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 3250 .addOperand(SrcBase).addImm(SrcDisp); 3251 DestDisp += ThisLength; 3252 SrcDisp += ThisLength; 3253 Length -= ThisLength; 3254 // If there's another CLC to go, branch to the end if a difference 3255 // was found. 3256 if (EndMBB && Length > 0) { 3257 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 3258 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 3259 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 3260 .addMBB(EndMBB); 3261 MBB->addSuccessor(EndMBB); 3262 MBB->addSuccessor(NextMBB); 3263 MBB = NextMBB; 3264 } 3265 } 3266 if (EndMBB) { 3267 MBB->addSuccessor(EndMBB); 3268 MBB = EndMBB; 3269 MBB->addLiveIn(SystemZ::CC); 3270 } 3271 3272 MI->eraseFromParent(); 3273 return MBB; 3274 } 3275 3276 // Decompose string pseudo-instruction MI into a loop that continually performs 3277 // Opcode until CC != 3. 3278 MachineBasicBlock * 3279 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, 3280 MachineBasicBlock *MBB, 3281 unsigned Opcode) const { 3282 MachineFunction &MF = *MBB->getParent(); 3283 const SystemZInstrInfo *TII = 3284 static_cast<const SystemZInstrInfo *>(MF.getSubtarget().getInstrInfo()); 3285 MachineRegisterInfo &MRI = MF.getRegInfo(); 3286 DebugLoc DL = MI->getDebugLoc(); 3287 3288 uint64_t End1Reg = MI->getOperand(0).getReg(); 3289 uint64_t Start1Reg = MI->getOperand(1).getReg(); 3290 uint64_t Start2Reg = MI->getOperand(2).getReg(); 3291 uint64_t CharReg = MI->getOperand(3).getReg(); 3292 3293 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 3294 uint64_t This1Reg = MRI.createVirtualRegister(RC); 3295 uint64_t This2Reg = MRI.createVirtualRegister(RC); 3296 uint64_t End2Reg = MRI.createVirtualRegister(RC); 3297 3298 MachineBasicBlock *StartMBB = MBB; 3299 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 3300 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 3301 3302 // StartMBB: 3303 // # fall through to LoopMMB 3304 MBB->addSuccessor(LoopMBB); 3305 3306 // LoopMBB: 3307 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 3308 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 3309 // R0L = %CharReg 3310 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 3311 // JO LoopMBB 3312 // # fall through to DoneMMB 3313 // 3314 // The load of R0L can be hoisted by post-RA LICM. 3315 MBB = LoopMBB; 3316 3317 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 3318 .addReg(Start1Reg).addMBB(StartMBB) 3319 .addReg(End1Reg).addMBB(LoopMBB); 3320 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 3321 .addReg(Start2Reg).addMBB(StartMBB) 3322 .addReg(End2Reg).addMBB(LoopMBB); 3323 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 3324 BuildMI(MBB, DL, TII->get(Opcode)) 3325 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 3326 .addReg(This1Reg).addReg(This2Reg); 3327 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 3328 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 3329 MBB->addSuccessor(LoopMBB); 3330 MBB->addSuccessor(DoneMBB); 3331 3332 DoneMBB->addLiveIn(SystemZ::CC); 3333 3334 MI->eraseFromParent(); 3335 return DoneMBB; 3336 } 3337 3338 MachineBasicBlock *SystemZTargetLowering:: 3339 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { 3340 switch (MI->getOpcode()) { 3341 case SystemZ::Select32Mux: 3342 case SystemZ::Select32: 3343 case SystemZ::SelectF32: 3344 case SystemZ::Select64: 3345 case SystemZ::SelectF64: 3346 case SystemZ::SelectF128: 3347 return emitSelect(MI, MBB); 3348 3349 case SystemZ::CondStore8Mux: 3350 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 3351 case SystemZ::CondStore8MuxInv: 3352 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 3353 case SystemZ::CondStore16Mux: 3354 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 3355 case SystemZ::CondStore16MuxInv: 3356 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 3357 case SystemZ::CondStore8: 3358 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 3359 case SystemZ::CondStore8Inv: 3360 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 3361 case SystemZ::CondStore16: 3362 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 3363 case SystemZ::CondStore16Inv: 3364 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 3365 case SystemZ::CondStore32: 3366 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 3367 case SystemZ::CondStore32Inv: 3368 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 3369 case SystemZ::CondStore64: 3370 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 3371 case SystemZ::CondStore64Inv: 3372 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 3373 case SystemZ::CondStoreF32: 3374 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 3375 case SystemZ::CondStoreF32Inv: 3376 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 3377 case SystemZ::CondStoreF64: 3378 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 3379 case SystemZ::CondStoreF64Inv: 3380 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 3381 3382 case SystemZ::AEXT128_64: 3383 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 3384 case SystemZ::ZEXT128_32: 3385 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 3386 case SystemZ::ZEXT128_64: 3387 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 3388 3389 case SystemZ::ATOMIC_SWAPW: 3390 return emitAtomicLoadBinary(MI, MBB, 0, 0); 3391 case SystemZ::ATOMIC_SWAP_32: 3392 return emitAtomicLoadBinary(MI, MBB, 0, 32); 3393 case SystemZ::ATOMIC_SWAP_64: 3394 return emitAtomicLoadBinary(MI, MBB, 0, 64); 3395 3396 case SystemZ::ATOMIC_LOADW_AR: 3397 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 3398 case SystemZ::ATOMIC_LOADW_AFI: 3399 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 3400 case SystemZ::ATOMIC_LOAD_AR: 3401 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 3402 case SystemZ::ATOMIC_LOAD_AHI: 3403 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 3404 case SystemZ::ATOMIC_LOAD_AFI: 3405 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 3406 case SystemZ::ATOMIC_LOAD_AGR: 3407 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 3408 case SystemZ::ATOMIC_LOAD_AGHI: 3409 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 3410 case SystemZ::ATOMIC_LOAD_AGFI: 3411 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 3412 3413 case SystemZ::ATOMIC_LOADW_SR: 3414 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 3415 case SystemZ::ATOMIC_LOAD_SR: 3416 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 3417 case SystemZ::ATOMIC_LOAD_SGR: 3418 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 3419 3420 case SystemZ::ATOMIC_LOADW_NR: 3421 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 3422 case SystemZ::ATOMIC_LOADW_NILH: 3423 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 3424 case SystemZ::ATOMIC_LOAD_NR: 3425 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 3426 case SystemZ::ATOMIC_LOAD_NILL: 3427 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 3428 case SystemZ::ATOMIC_LOAD_NILH: 3429 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 3430 case SystemZ::ATOMIC_LOAD_NILF: 3431 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 3432 case SystemZ::ATOMIC_LOAD_NGR: 3433 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 3434 case SystemZ::ATOMIC_LOAD_NILL64: 3435 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 3436 case SystemZ::ATOMIC_LOAD_NILH64: 3437 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 3438 case SystemZ::ATOMIC_LOAD_NIHL64: 3439 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 3440 case SystemZ::ATOMIC_LOAD_NIHH64: 3441 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 3442 case SystemZ::ATOMIC_LOAD_NILF64: 3443 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 3444 case SystemZ::ATOMIC_LOAD_NIHF64: 3445 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 3446 3447 case SystemZ::ATOMIC_LOADW_OR: 3448 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 3449 case SystemZ::ATOMIC_LOADW_OILH: 3450 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 3451 case SystemZ::ATOMIC_LOAD_OR: 3452 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 3453 case SystemZ::ATOMIC_LOAD_OILL: 3454 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 3455 case SystemZ::ATOMIC_LOAD_OILH: 3456 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 3457 case SystemZ::ATOMIC_LOAD_OILF: 3458 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 3459 case SystemZ::ATOMIC_LOAD_OGR: 3460 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 3461 case SystemZ::ATOMIC_LOAD_OILL64: 3462 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 3463 case SystemZ::ATOMIC_LOAD_OILH64: 3464 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 3465 case SystemZ::ATOMIC_LOAD_OIHL64: 3466 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 3467 case SystemZ::ATOMIC_LOAD_OIHH64: 3468 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 3469 case SystemZ::ATOMIC_LOAD_OILF64: 3470 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 3471 case SystemZ::ATOMIC_LOAD_OIHF64: 3472 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 3473 3474 case SystemZ::ATOMIC_LOADW_XR: 3475 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 3476 case SystemZ::ATOMIC_LOADW_XILF: 3477 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 3478 case SystemZ::ATOMIC_LOAD_XR: 3479 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 3480 case SystemZ::ATOMIC_LOAD_XILF: 3481 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 3482 case SystemZ::ATOMIC_LOAD_XGR: 3483 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 3484 case SystemZ::ATOMIC_LOAD_XILF64: 3485 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 3486 case SystemZ::ATOMIC_LOAD_XIHF64: 3487 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 3488 3489 case SystemZ::ATOMIC_LOADW_NRi: 3490 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 3491 case SystemZ::ATOMIC_LOADW_NILHi: 3492 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 3493 case SystemZ::ATOMIC_LOAD_NRi: 3494 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 3495 case SystemZ::ATOMIC_LOAD_NILLi: 3496 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 3497 case SystemZ::ATOMIC_LOAD_NILHi: 3498 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 3499 case SystemZ::ATOMIC_LOAD_NILFi: 3500 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 3501 case SystemZ::ATOMIC_LOAD_NGRi: 3502 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 3503 case SystemZ::ATOMIC_LOAD_NILL64i: 3504 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 3505 case SystemZ::ATOMIC_LOAD_NILH64i: 3506 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 3507 case SystemZ::ATOMIC_LOAD_NIHL64i: 3508 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 3509 case SystemZ::ATOMIC_LOAD_NIHH64i: 3510 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 3511 case SystemZ::ATOMIC_LOAD_NILF64i: 3512 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 3513 case SystemZ::ATOMIC_LOAD_NIHF64i: 3514 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 3515 3516 case SystemZ::ATOMIC_LOADW_MIN: 3517 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 3518 SystemZ::CCMASK_CMP_LE, 0); 3519 case SystemZ::ATOMIC_LOAD_MIN_32: 3520 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 3521 SystemZ::CCMASK_CMP_LE, 32); 3522 case SystemZ::ATOMIC_LOAD_MIN_64: 3523 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 3524 SystemZ::CCMASK_CMP_LE, 64); 3525 3526 case SystemZ::ATOMIC_LOADW_MAX: 3527 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 3528 SystemZ::CCMASK_CMP_GE, 0); 3529 case SystemZ::ATOMIC_LOAD_MAX_32: 3530 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 3531 SystemZ::CCMASK_CMP_GE, 32); 3532 case SystemZ::ATOMIC_LOAD_MAX_64: 3533 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 3534 SystemZ::CCMASK_CMP_GE, 64); 3535 3536 case SystemZ::ATOMIC_LOADW_UMIN: 3537 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 3538 SystemZ::CCMASK_CMP_LE, 0); 3539 case SystemZ::ATOMIC_LOAD_UMIN_32: 3540 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 3541 SystemZ::CCMASK_CMP_LE, 32); 3542 case SystemZ::ATOMIC_LOAD_UMIN_64: 3543 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 3544 SystemZ::CCMASK_CMP_LE, 64); 3545 3546 case SystemZ::ATOMIC_LOADW_UMAX: 3547 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 3548 SystemZ::CCMASK_CMP_GE, 0); 3549 case SystemZ::ATOMIC_LOAD_UMAX_32: 3550 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 3551 SystemZ::CCMASK_CMP_GE, 32); 3552 case SystemZ::ATOMIC_LOAD_UMAX_64: 3553 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 3554 SystemZ::CCMASK_CMP_GE, 64); 3555 3556 case SystemZ::ATOMIC_CMP_SWAPW: 3557 return emitAtomicCmpSwapW(MI, MBB); 3558 case SystemZ::MVCSequence: 3559 case SystemZ::MVCLoop: 3560 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 3561 case SystemZ::NCSequence: 3562 case SystemZ::NCLoop: 3563 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 3564 case SystemZ::OCSequence: 3565 case SystemZ::OCLoop: 3566 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 3567 case SystemZ::XCSequence: 3568 case SystemZ::XCLoop: 3569 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 3570 case SystemZ::CLCSequence: 3571 case SystemZ::CLCLoop: 3572 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 3573 case SystemZ::CLSTLoop: 3574 return emitStringWrapper(MI, MBB, SystemZ::CLST); 3575 case SystemZ::MVSTLoop: 3576 return emitStringWrapper(MI, MBB, SystemZ::MVST); 3577 case SystemZ::SRSTLoop: 3578 return emitStringWrapper(MI, MBB, SystemZ::SRST); 3579 default: 3580 llvm_unreachable("Unexpected instr type to insert"); 3581 } 3582 } 3583