1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 84 85 auto *Regs = STI.getSpecialRegisters(); 86 87 // Set up the register classes. 88 if (Subtarget.hasHighWord()) 89 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 90 else 91 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 92 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 93 if (!useSoftFloat()) { 94 if (Subtarget.hasVector()) { 95 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 96 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 97 } else { 98 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 99 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 100 } 101 if (Subtarget.hasVectorEnhancements1()) 102 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 103 else 104 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 105 106 if (Subtarget.hasVector()) { 107 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 111 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 112 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 113 } 114 } 115 116 // Compute derived properties from the register classes 117 computeRegisterProperties(Subtarget.getRegisterInfo()); 118 119 // Set up special registers. 120 setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister()); 121 122 // TODO: It may be better to default to latency-oriented scheduling, however 123 // LLVM's current latency-oriented scheduler can't handle physreg definitions 124 // such as SystemZ has with CC, so set this to the register-pressure 125 // scheduler, because it can. 126 setSchedulingPreference(Sched::RegPressure); 127 128 setBooleanContents(ZeroOrOneBooleanContent); 129 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 130 131 // Instructions are strings of 2-byte aligned 2-byte values. 132 setMinFunctionAlignment(Align(2)); 133 // For performance reasons we prefer 16-byte alignment. 134 setPrefFunctionAlignment(Align(16)); 135 136 // Handle operations that are handled in a similar way for all types. 137 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 138 I <= MVT::LAST_FP_VALUETYPE; 139 ++I) { 140 MVT VT = MVT::SimpleValueType(I); 141 if (isTypeLegal(VT)) { 142 // Lower SET_CC into an IPM-based sequence. 143 setOperationAction(ISD::SETCC, VT, Custom); 144 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 145 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 146 147 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 148 setOperationAction(ISD::SELECT, VT, Expand); 149 150 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 151 setOperationAction(ISD::SELECT_CC, VT, Custom); 152 setOperationAction(ISD::BR_CC, VT, Custom); 153 } 154 } 155 156 // Expand jump table branches as address arithmetic followed by an 157 // indirect jump. 158 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 159 160 // Expand BRCOND into a BR_CC (see above). 161 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 162 163 // Handle integer types. 164 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 165 I <= MVT::LAST_INTEGER_VALUETYPE; 166 ++I) { 167 MVT VT = MVT::SimpleValueType(I); 168 if (isTypeLegal(VT)) { 169 setOperationAction(ISD::ABS, VT, Legal); 170 171 // Expand individual DIV and REMs into DIVREMs. 172 setOperationAction(ISD::SDIV, VT, Expand); 173 setOperationAction(ISD::UDIV, VT, Expand); 174 setOperationAction(ISD::SREM, VT, Expand); 175 setOperationAction(ISD::UREM, VT, Expand); 176 setOperationAction(ISD::SDIVREM, VT, Custom); 177 setOperationAction(ISD::UDIVREM, VT, Custom); 178 179 // Support addition/subtraction with overflow. 180 setOperationAction(ISD::SADDO, VT, Custom); 181 setOperationAction(ISD::SSUBO, VT, Custom); 182 183 // Support addition/subtraction with carry. 184 setOperationAction(ISD::UADDO, VT, Custom); 185 setOperationAction(ISD::USUBO, VT, Custom); 186 187 // Support carry in as value rather than glue. 188 setOperationAction(ISD::ADDCARRY, VT, Custom); 189 setOperationAction(ISD::SUBCARRY, VT, Custom); 190 191 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 192 // stores, putting a serialization instruction after the stores. 193 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 194 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 195 196 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 197 // available, or if the operand is constant. 198 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 199 200 // Use POPCNT on z196 and above. 201 if (Subtarget.hasPopulationCount()) 202 setOperationAction(ISD::CTPOP, VT, Custom); 203 else 204 setOperationAction(ISD::CTPOP, VT, Expand); 205 206 // No special instructions for these. 207 setOperationAction(ISD::CTTZ, VT, Expand); 208 setOperationAction(ISD::ROTR, VT, Expand); 209 210 // Use *MUL_LOHI where possible instead of MULH*. 211 setOperationAction(ISD::MULHS, VT, Expand); 212 setOperationAction(ISD::MULHU, VT, Expand); 213 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 214 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 215 216 // Only z196 and above have native support for conversions to unsigned. 217 // On z10, promoting to i64 doesn't generate an inexact condition for 218 // values that are outside the i32 range but in the i64 range, so use 219 // the default expansion. 220 if (!Subtarget.hasFPExtension()) 221 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 222 223 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 224 // default to Expand, so need to be modified to Legal where appropriate. 225 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 226 if (Subtarget.hasFPExtension()) 227 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 228 229 // And similarly for STRICT_[SU]INT_TO_FP. 230 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 231 if (Subtarget.hasFPExtension()) 232 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 233 } 234 } 235 236 // Type legalization will convert 8- and 16-bit atomic operations into 237 // forms that operate on i32s (but still keeping the original memory VT). 238 // Lower them into full i32 operations. 239 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 240 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 242 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 243 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 244 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 245 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 246 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 247 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 248 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 249 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 250 251 // Even though i128 is not a legal type, we still need to custom lower 252 // the atomic operations in order to exploit SystemZ instructions. 253 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 254 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 255 256 // We can use the CC result of compare-and-swap to implement 257 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 258 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 259 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 260 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 261 262 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 263 264 // Traps are legal, as we will convert them to "j .+2". 265 setOperationAction(ISD::TRAP, MVT::Other, Legal); 266 267 // z10 has instructions for signed but not unsigned FP conversion. 268 // Handle unsigned 32-bit types as signed 64-bit types. 269 if (!Subtarget.hasFPExtension()) { 270 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 271 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 272 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 273 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 274 } 275 276 // We have native support for a 64-bit CTLZ, via FLOGR. 277 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 278 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 279 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 280 281 // On z15 we have native support for a 64-bit CTPOP. 282 if (Subtarget.hasMiscellaneousExtensions3()) { 283 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 284 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 285 } 286 287 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 288 setOperationAction(ISD::OR, MVT::i64, Custom); 289 290 // Expand 128 bit shifts without using a libcall. 291 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 292 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 293 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 294 setLibcallName(RTLIB::SRL_I128, nullptr); 295 setLibcallName(RTLIB::SHL_I128, nullptr); 296 setLibcallName(RTLIB::SRA_I128, nullptr); 297 298 // Handle bitcast from fp128 to i128. 299 setOperationAction(ISD::BITCAST, MVT::i128, Custom); 300 301 // We have native instructions for i8, i16 and i32 extensions, but not i1. 302 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 303 for (MVT VT : MVT::integer_valuetypes()) { 304 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 305 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 306 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 307 } 308 309 // Handle the various types of symbolic address. 310 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 311 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 312 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 313 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 314 setOperationAction(ISD::JumpTable, PtrVT, Custom); 315 316 // We need to handle dynamic allocations specially because of the 317 // 160-byte area at the bottom of the stack. 318 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 319 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 320 321 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 322 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 323 324 // Handle prefetches with PFD or PFDRL. 325 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 326 327 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 328 // Assume by default that all vector operations need to be expanded. 329 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 330 if (getOperationAction(Opcode, VT) == Legal) 331 setOperationAction(Opcode, VT, Expand); 332 333 // Likewise all truncating stores and extending loads. 334 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 335 setTruncStoreAction(VT, InnerVT, Expand); 336 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 337 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 338 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 339 } 340 341 if (isTypeLegal(VT)) { 342 // These operations are legal for anything that can be stored in a 343 // vector register, even if there is no native support for the format 344 // as such. In particular, we can do these for v4f32 even though there 345 // are no specific instructions for that format. 346 setOperationAction(ISD::LOAD, VT, Legal); 347 setOperationAction(ISD::STORE, VT, Legal); 348 setOperationAction(ISD::VSELECT, VT, Legal); 349 setOperationAction(ISD::BITCAST, VT, Legal); 350 setOperationAction(ISD::UNDEF, VT, Legal); 351 352 // Likewise, except that we need to replace the nodes with something 353 // more specific. 354 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 355 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 356 } 357 } 358 359 // Handle integer vector types. 360 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 361 if (isTypeLegal(VT)) { 362 // These operations have direct equivalents. 363 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 364 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 365 setOperationAction(ISD::ADD, VT, Legal); 366 setOperationAction(ISD::SUB, VT, Legal); 367 if (VT != MVT::v2i64) 368 setOperationAction(ISD::MUL, VT, Legal); 369 setOperationAction(ISD::ABS, VT, Legal); 370 setOperationAction(ISD::AND, VT, Legal); 371 setOperationAction(ISD::OR, VT, Legal); 372 setOperationAction(ISD::XOR, VT, Legal); 373 if (Subtarget.hasVectorEnhancements1()) 374 setOperationAction(ISD::CTPOP, VT, Legal); 375 else 376 setOperationAction(ISD::CTPOP, VT, Custom); 377 setOperationAction(ISD::CTTZ, VT, Legal); 378 setOperationAction(ISD::CTLZ, VT, Legal); 379 380 // Convert a GPR scalar to a vector by inserting it into element 0. 381 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 382 383 // Use a series of unpacks for extensions. 384 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 385 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 386 387 // Detect shifts by a scalar amount and convert them into 388 // V*_BY_SCALAR. 389 setOperationAction(ISD::SHL, VT, Custom); 390 setOperationAction(ISD::SRA, VT, Custom); 391 setOperationAction(ISD::SRL, VT, Custom); 392 393 // At present ROTL isn't matched by DAGCombiner. ROTR should be 394 // converted into ROTL. 395 setOperationAction(ISD::ROTL, VT, Expand); 396 setOperationAction(ISD::ROTR, VT, Expand); 397 398 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 399 // and inverting the result as necessary. 400 setOperationAction(ISD::SETCC, VT, Custom); 401 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 402 if (Subtarget.hasVectorEnhancements1()) 403 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 404 } 405 } 406 407 if (Subtarget.hasVector()) { 408 // There should be no need to check for float types other than v2f64 409 // since <2 x f32> isn't a legal type. 410 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 411 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 412 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 413 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 414 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 415 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 416 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 417 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 418 419 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 420 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 421 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 422 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 423 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 424 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 425 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 426 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 427 } 428 429 if (Subtarget.hasVectorEnhancements2()) { 430 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 431 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 432 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 433 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 434 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 435 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 436 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 437 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 438 439 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 440 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 441 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 442 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 443 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 444 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 445 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 446 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 447 } 448 449 // Handle floating-point types. 450 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 451 I <= MVT::LAST_FP_VALUETYPE; 452 ++I) { 453 MVT VT = MVT::SimpleValueType(I); 454 if (isTypeLegal(VT)) { 455 // We can use FI for FRINT. 456 setOperationAction(ISD::FRINT, VT, Legal); 457 458 // We can use the extended form of FI for other rounding operations. 459 if (Subtarget.hasFPExtension()) { 460 setOperationAction(ISD::FNEARBYINT, VT, Legal); 461 setOperationAction(ISD::FFLOOR, VT, Legal); 462 setOperationAction(ISD::FCEIL, VT, Legal); 463 setOperationAction(ISD::FTRUNC, VT, Legal); 464 setOperationAction(ISD::FROUND, VT, Legal); 465 } 466 467 // No special instructions for these. 468 setOperationAction(ISD::FSIN, VT, Expand); 469 setOperationAction(ISD::FCOS, VT, Expand); 470 setOperationAction(ISD::FSINCOS, VT, Expand); 471 setOperationAction(ISD::FREM, VT, Expand); 472 setOperationAction(ISD::FPOW, VT, Expand); 473 474 // Handle constrained floating-point operations. 475 setOperationAction(ISD::STRICT_FADD, VT, Legal); 476 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 477 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 478 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 479 setOperationAction(ISD::STRICT_FMA, VT, Legal); 480 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 481 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 482 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 483 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 484 if (Subtarget.hasFPExtension()) { 485 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 486 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 487 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 488 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 489 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 490 } 491 } 492 } 493 494 // Handle floating-point vector types. 495 if (Subtarget.hasVector()) { 496 // Scalar-to-vector conversion is just a subreg. 497 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 498 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 499 500 // Some insertions and extractions can be done directly but others 501 // need to go via integers. 502 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 503 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 504 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 505 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 506 507 // These operations have direct equivalents. 508 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 509 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 510 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 511 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 512 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 513 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 514 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 515 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 516 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 517 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 518 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 519 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 520 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 521 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 522 523 // Handle constrained floating-point operations. 524 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 525 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 526 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 527 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 528 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 529 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 530 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 531 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 532 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 533 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 534 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 535 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 536 } 537 538 // The vector enhancements facility 1 has instructions for these. 539 if (Subtarget.hasVectorEnhancements1()) { 540 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 541 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 542 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 543 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 544 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 545 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 546 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 547 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 548 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 549 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 550 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 551 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 552 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 553 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 554 555 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 556 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 557 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 558 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 559 560 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 561 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 562 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 563 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 564 565 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 566 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 567 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 568 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 569 570 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 571 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 572 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 573 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 574 575 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 576 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 577 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 578 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 579 580 // Handle constrained floating-point operations. 581 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 582 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 583 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 584 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 585 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 586 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 587 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 588 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 589 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 590 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 591 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 592 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 593 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 594 MVT::v4f32, MVT::v2f64 }) { 595 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 596 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 597 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 598 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 599 } 600 } 601 602 // We only have fused f128 multiply-addition on vector registers. 603 if (!Subtarget.hasVectorEnhancements1()) { 604 setOperationAction(ISD::FMA, MVT::f128, Expand); 605 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 606 } 607 608 // We don't have a copysign instruction on vector registers. 609 if (Subtarget.hasVectorEnhancements1()) 610 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 611 612 // Needed so that we don't try to implement f128 constant loads using 613 // a load-and-extend of a f80 constant (in cases where the constant 614 // would fit in an f80). 615 for (MVT VT : MVT::fp_valuetypes()) 616 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 617 618 // We don't have extending load instruction on vector registers. 619 if (Subtarget.hasVectorEnhancements1()) { 620 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 621 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 622 } 623 624 // Floating-point truncation and stores need to be done separately. 625 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 626 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 627 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 628 629 // We have 64-bit FPR<->GPR moves, but need special handling for 630 // 32-bit forms. 631 if (!Subtarget.hasVector()) { 632 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 633 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 634 } 635 636 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 637 // structure, but VAEND is a no-op. 638 setOperationAction(ISD::VASTART, MVT::Other, Custom); 639 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 640 setOperationAction(ISD::VAEND, MVT::Other, Expand); 641 642 // Codes for which we want to perform some z-specific combinations. 643 setTargetDAGCombine(ISD::ZERO_EXTEND); 644 setTargetDAGCombine(ISD::SIGN_EXTEND); 645 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 646 setTargetDAGCombine(ISD::LOAD); 647 setTargetDAGCombine(ISD::STORE); 648 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 649 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 650 setTargetDAGCombine(ISD::FP_ROUND); 651 setTargetDAGCombine(ISD::STRICT_FP_ROUND); 652 setTargetDAGCombine(ISD::FP_EXTEND); 653 setTargetDAGCombine(ISD::SINT_TO_FP); 654 setTargetDAGCombine(ISD::UINT_TO_FP); 655 setTargetDAGCombine(ISD::STRICT_FP_EXTEND); 656 setTargetDAGCombine(ISD::BSWAP); 657 setTargetDAGCombine(ISD::SDIV); 658 setTargetDAGCombine(ISD::UDIV); 659 setTargetDAGCombine(ISD::SREM); 660 setTargetDAGCombine(ISD::UREM); 661 setTargetDAGCombine(ISD::INTRINSIC_VOID); 662 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 663 664 // Handle intrinsics. 665 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 666 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 667 668 // We want to use MVC in preference to even a single load/store pair. 669 MaxStoresPerMemcpy = 0; 670 MaxStoresPerMemcpyOptSize = 0; 671 672 // The main memset sequence is a byte store followed by an MVC. 673 // Two STC or MV..I stores win over that, but the kind of fused stores 674 // generated by target-independent code don't when the byte value is 675 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 676 // than "STC;MVC". Handle the choice in target-specific code instead. 677 MaxStoresPerMemset = 0; 678 MaxStoresPerMemsetOptSize = 0; 679 680 // Default to having -disable-strictnode-mutation on 681 IsStrictFPEnabled = true; 682 } 683 684 bool SystemZTargetLowering::useSoftFloat() const { 685 return Subtarget.hasSoftFloat(); 686 } 687 688 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 689 LLVMContext &, EVT VT) const { 690 if (!VT.isVector()) 691 return MVT::i32; 692 return VT.changeVectorElementTypeToInteger(); 693 } 694 695 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 696 const MachineFunction &MF, EVT VT) const { 697 VT = VT.getScalarType(); 698 699 if (!VT.isSimple()) 700 return false; 701 702 switch (VT.getSimpleVT().SimpleTy) { 703 case MVT::f32: 704 case MVT::f64: 705 return true; 706 case MVT::f128: 707 return Subtarget.hasVectorEnhancements1(); 708 default: 709 break; 710 } 711 712 return false; 713 } 714 715 // Return true if the constant can be generated with a vector instruction, 716 // such as VGM, VGMB or VREPI. 717 bool SystemZVectorConstantInfo::isVectorConstantLegal( 718 const SystemZSubtarget &Subtarget) { 719 const SystemZInstrInfo *TII = 720 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 721 if (!Subtarget.hasVector() || 722 (isFP128 && !Subtarget.hasVectorEnhancements1())) 723 return false; 724 725 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 726 // preferred way of creating all-zero and all-one vectors so give it 727 // priority over other methods below. 728 unsigned Mask = 0; 729 unsigned I = 0; 730 for (; I < SystemZ::VectorBytes; ++I) { 731 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 732 if (Byte == 0xff) 733 Mask |= 1ULL << I; 734 else if (Byte != 0) 735 break; 736 } 737 if (I == SystemZ::VectorBytes) { 738 Opcode = SystemZISD::BYTE_MASK; 739 OpVals.push_back(Mask); 740 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 741 return true; 742 } 743 744 if (SplatBitSize > 64) 745 return false; 746 747 auto tryValue = [&](uint64_t Value) -> bool { 748 // Try VECTOR REPLICATE IMMEDIATE 749 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 750 if (isInt<16>(SignedValue)) { 751 OpVals.push_back(((unsigned) SignedValue)); 752 Opcode = SystemZISD::REPLICATE; 753 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 754 SystemZ::VectorBits / SplatBitSize); 755 return true; 756 } 757 // Try VECTOR GENERATE MASK 758 unsigned Start, End; 759 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 760 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 761 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 762 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 763 OpVals.push_back(Start - (64 - SplatBitSize)); 764 OpVals.push_back(End - (64 - SplatBitSize)); 765 Opcode = SystemZISD::ROTATE_MASK; 766 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 767 SystemZ::VectorBits / SplatBitSize); 768 return true; 769 } 770 return false; 771 }; 772 773 // First try assuming that any undefined bits above the highest set bit 774 // and below the lowest set bit are 1s. This increases the likelihood of 775 // being able to use a sign-extended element value in VECTOR REPLICATE 776 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 777 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 778 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 779 uint64_t Lower = 780 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 781 uint64_t Upper = 782 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 783 if (tryValue(SplatBitsZ | Upper | Lower)) 784 return true; 785 786 // Now try assuming that any undefined bits between the first and 787 // last defined set bits are set. This increases the chances of 788 // using a non-wraparound mask. 789 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 790 return tryValue(SplatBitsZ | Middle); 791 } 792 793 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 794 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 795 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 796 SplatBits = FPImm.bitcastToAPInt(); 797 unsigned Width = SplatBits.getBitWidth(); 798 IntBits <<= (SystemZ::VectorBits - Width); 799 800 // Find the smallest splat. 801 while (Width > 8) { 802 unsigned HalfSize = Width / 2; 803 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 804 APInt LowValue = SplatBits.trunc(HalfSize); 805 806 // If the two halves do not match, stop here. 807 if (HighValue != LowValue || 8 > HalfSize) 808 break; 809 810 SplatBits = HighValue; 811 Width = HalfSize; 812 } 813 SplatUndef = 0; 814 SplatBitSize = Width; 815 } 816 817 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 818 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 819 bool HasAnyUndefs; 820 821 // Get IntBits by finding the 128 bit splat. 822 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 823 true); 824 825 // Get SplatBits by finding the 8 bit or greater splat. 826 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 827 true); 828 } 829 830 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 831 bool ForCodeSize) const { 832 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 833 if (Imm.isZero() || Imm.isNegZero()) 834 return true; 835 836 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 837 } 838 839 /// Returns true if stack probing through inline assembly is requested. 840 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 841 // If the function specifically requests inline stack probes, emit them. 842 if (MF.getFunction().hasFnAttribute("probe-stack")) 843 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 844 "inline-asm"; 845 return false; 846 } 847 848 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 849 // We can use CGFI or CLGFI. 850 return isInt<32>(Imm) || isUInt<32>(Imm); 851 } 852 853 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 854 // We can use ALGFI or SLGFI. 855 return isUInt<32>(Imm) || isUInt<32>(-Imm); 856 } 857 858 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 859 EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const { 860 // Unaligned accesses should never be slower than the expanded version. 861 // We check specifically for aligned accesses in the few cases where 862 // they are required. 863 if (Fast) 864 *Fast = true; 865 return true; 866 } 867 868 // Information about the addressing mode for a memory access. 869 struct AddressingMode { 870 // True if a long displacement is supported. 871 bool LongDisplacement; 872 873 // True if use of index register is supported. 874 bool IndexReg; 875 876 AddressingMode(bool LongDispl, bool IdxReg) : 877 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 878 }; 879 880 // Return the desired addressing mode for a Load which has only one use (in 881 // the same block) which is a Store. 882 static AddressingMode getLoadStoreAddrMode(bool HasVector, 883 Type *Ty) { 884 // With vector support a Load->Store combination may be combined to either 885 // an MVC or vector operations and it seems to work best to allow the 886 // vector addressing mode. 887 if (HasVector) 888 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 889 890 // Otherwise only the MVC case is special. 891 bool MVC = Ty->isIntegerTy(8); 892 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 893 } 894 895 // Return the addressing mode which seems most desirable given an LLVM 896 // Instruction pointer. 897 static AddressingMode 898 supportedAddressingMode(Instruction *I, bool HasVector) { 899 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 900 switch (II->getIntrinsicID()) { 901 default: break; 902 case Intrinsic::memset: 903 case Intrinsic::memmove: 904 case Intrinsic::memcpy: 905 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 906 } 907 } 908 909 if (isa<LoadInst>(I) && I->hasOneUse()) { 910 auto *SingleUser = cast<Instruction>(*I->user_begin()); 911 if (SingleUser->getParent() == I->getParent()) { 912 if (isa<ICmpInst>(SingleUser)) { 913 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 914 if (C->getBitWidth() <= 64 && 915 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 916 // Comparison of memory with 16 bit signed / unsigned immediate 917 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 918 } else if (isa<StoreInst>(SingleUser)) 919 // Load->Store 920 return getLoadStoreAddrMode(HasVector, I->getType()); 921 } 922 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 923 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 924 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 925 // Load->Store 926 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 927 } 928 929 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 930 931 // * Use LDE instead of LE/LEY for z13 to avoid partial register 932 // dependencies (LDE only supports small offsets). 933 // * Utilize the vector registers to hold floating point 934 // values (vector load / store instructions only support small 935 // offsets). 936 937 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 938 I->getOperand(0)->getType()); 939 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 940 bool IsVectorAccess = MemAccessTy->isVectorTy(); 941 942 // A store of an extracted vector element will be combined into a VSTE type 943 // instruction. 944 if (!IsVectorAccess && isa<StoreInst>(I)) { 945 Value *DataOp = I->getOperand(0); 946 if (isa<ExtractElementInst>(DataOp)) 947 IsVectorAccess = true; 948 } 949 950 // A load which gets inserted into a vector element will be combined into a 951 // VLE type instruction. 952 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 953 User *LoadUser = *I->user_begin(); 954 if (isa<InsertElementInst>(LoadUser)) 955 IsVectorAccess = true; 956 } 957 958 if (IsFPAccess || IsVectorAccess) 959 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 960 } 961 962 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 963 } 964 965 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 966 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 967 // Punt on globals for now, although they can be used in limited 968 // RELATIVE LONG cases. 969 if (AM.BaseGV) 970 return false; 971 972 // Require a 20-bit signed offset. 973 if (!isInt<20>(AM.BaseOffs)) 974 return false; 975 976 AddressingMode SupportedAM(true, true); 977 if (I != nullptr) 978 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 979 980 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 981 return false; 982 983 if (!SupportedAM.IndexReg) 984 // No indexing allowed. 985 return AM.Scale == 0; 986 else 987 // Indexing is OK but no scale factor can be applied. 988 return AM.Scale == 0 || AM.Scale == 1; 989 } 990 991 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 992 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 993 return false; 994 unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize(); 995 unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize(); 996 return FromBits > ToBits; 997 } 998 999 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 1000 if (!FromVT.isInteger() || !ToVT.isInteger()) 1001 return false; 1002 unsigned FromBits = FromVT.getFixedSizeInBits(); 1003 unsigned ToBits = ToVT.getFixedSizeInBits(); 1004 return FromBits > ToBits; 1005 } 1006 1007 //===----------------------------------------------------------------------===// 1008 // Inline asm support 1009 //===----------------------------------------------------------------------===// 1010 1011 TargetLowering::ConstraintType 1012 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 1013 if (Constraint.size() == 1) { 1014 switch (Constraint[0]) { 1015 case 'a': // Address register 1016 case 'd': // Data register (equivalent to 'r') 1017 case 'f': // Floating-point register 1018 case 'h': // High-part register 1019 case 'r': // General-purpose register 1020 case 'v': // Vector register 1021 return C_RegisterClass; 1022 1023 case 'Q': // Memory with base and unsigned 12-bit displacement 1024 case 'R': // Likewise, plus an index 1025 case 'S': // Memory with base and signed 20-bit displacement 1026 case 'T': // Likewise, plus an index 1027 case 'm': // Equivalent to 'T'. 1028 return C_Memory; 1029 1030 case 'I': // Unsigned 8-bit constant 1031 case 'J': // Unsigned 12-bit constant 1032 case 'K': // Signed 16-bit constant 1033 case 'L': // Signed 20-bit displacement (on all targets we support) 1034 case 'M': // 0x7fffffff 1035 return C_Immediate; 1036 1037 default: 1038 break; 1039 } 1040 } 1041 return TargetLowering::getConstraintType(Constraint); 1042 } 1043 1044 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1045 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1046 const char *constraint) const { 1047 ConstraintWeight weight = CW_Invalid; 1048 Value *CallOperandVal = info.CallOperandVal; 1049 // If we don't have a value, we can't do a match, 1050 // but allow it at the lowest weight. 1051 if (!CallOperandVal) 1052 return CW_Default; 1053 Type *type = CallOperandVal->getType(); 1054 // Look at the constraint type. 1055 switch (*constraint) { 1056 default: 1057 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1058 break; 1059 1060 case 'a': // Address register 1061 case 'd': // Data register (equivalent to 'r') 1062 case 'h': // High-part register 1063 case 'r': // General-purpose register 1064 if (CallOperandVal->getType()->isIntegerTy()) 1065 weight = CW_Register; 1066 break; 1067 1068 case 'f': // Floating-point register 1069 if (type->isFloatingPointTy()) 1070 weight = CW_Register; 1071 break; 1072 1073 case 'v': // Vector register 1074 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1075 Subtarget.hasVector()) 1076 weight = CW_Register; 1077 break; 1078 1079 case 'I': // Unsigned 8-bit constant 1080 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1081 if (isUInt<8>(C->getZExtValue())) 1082 weight = CW_Constant; 1083 break; 1084 1085 case 'J': // Unsigned 12-bit constant 1086 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1087 if (isUInt<12>(C->getZExtValue())) 1088 weight = CW_Constant; 1089 break; 1090 1091 case 'K': // Signed 16-bit constant 1092 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1093 if (isInt<16>(C->getSExtValue())) 1094 weight = CW_Constant; 1095 break; 1096 1097 case 'L': // Signed 20-bit displacement (on all targets we support) 1098 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1099 if (isInt<20>(C->getSExtValue())) 1100 weight = CW_Constant; 1101 break; 1102 1103 case 'M': // 0x7fffffff 1104 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1105 if (C->getZExtValue() == 0x7fffffff) 1106 weight = CW_Constant; 1107 break; 1108 } 1109 return weight; 1110 } 1111 1112 // Parse a "{tNNN}" register constraint for which the register type "t" 1113 // has already been verified. MC is the class associated with "t" and 1114 // Map maps 0-based register numbers to LLVM register numbers. 1115 static std::pair<unsigned, const TargetRegisterClass *> 1116 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1117 const unsigned *Map, unsigned Size) { 1118 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1119 if (isdigit(Constraint[2])) { 1120 unsigned Index; 1121 bool Failed = 1122 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1123 if (!Failed && Index < Size && Map[Index]) 1124 return std::make_pair(Map[Index], RC); 1125 } 1126 return std::make_pair(0U, nullptr); 1127 } 1128 1129 std::pair<unsigned, const TargetRegisterClass *> 1130 SystemZTargetLowering::getRegForInlineAsmConstraint( 1131 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1132 if (Constraint.size() == 1) { 1133 // GCC Constraint Letters 1134 switch (Constraint[0]) { 1135 default: break; 1136 case 'd': // Data register (equivalent to 'r') 1137 case 'r': // General-purpose register 1138 if (VT == MVT::i64) 1139 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1140 else if (VT == MVT::i128) 1141 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1142 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1143 1144 case 'a': // Address register 1145 if (VT == MVT::i64) 1146 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1147 else if (VT == MVT::i128) 1148 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1149 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1150 1151 case 'h': // High-part register (an LLVM extension) 1152 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1153 1154 case 'f': // Floating-point register 1155 if (!useSoftFloat()) { 1156 if (VT == MVT::f64) 1157 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1158 else if (VT == MVT::f128) 1159 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1160 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1161 } 1162 break; 1163 case 'v': // Vector register 1164 if (Subtarget.hasVector()) { 1165 if (VT == MVT::f32) 1166 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1167 if (VT == MVT::f64) 1168 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1169 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1170 } 1171 break; 1172 } 1173 } 1174 if (Constraint.size() > 0 && Constraint[0] == '{') { 1175 // We need to override the default register parsing for GPRs and FPRs 1176 // because the interpretation depends on VT. The internal names of 1177 // the registers are also different from the external names 1178 // (F0D and F0S instead of F0, etc.). 1179 if (Constraint[1] == 'r') { 1180 if (VT == MVT::i32) 1181 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1182 SystemZMC::GR32Regs, 16); 1183 if (VT == MVT::i128) 1184 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1185 SystemZMC::GR128Regs, 16); 1186 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1187 SystemZMC::GR64Regs, 16); 1188 } 1189 if (Constraint[1] == 'f') { 1190 if (useSoftFloat()) 1191 return std::make_pair( 1192 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1193 if (VT == MVT::f32) 1194 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1195 SystemZMC::FP32Regs, 16); 1196 if (VT == MVT::f128) 1197 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1198 SystemZMC::FP128Regs, 16); 1199 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1200 SystemZMC::FP64Regs, 16); 1201 } 1202 if (Constraint[1] == 'v') { 1203 if (!Subtarget.hasVector()) 1204 return std::make_pair( 1205 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1206 if (VT == MVT::f32) 1207 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1208 SystemZMC::VR32Regs, 32); 1209 if (VT == MVT::f64) 1210 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1211 SystemZMC::VR64Regs, 32); 1212 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1213 SystemZMC::VR128Regs, 32); 1214 } 1215 } 1216 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1217 } 1218 1219 // FIXME? Maybe this could be a TableGen attribute on some registers and 1220 // this table could be generated automatically from RegInfo. 1221 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1222 const MachineFunction &MF) const { 1223 1224 Register Reg = StringSwitch<Register>(RegName) 1225 .Case("r15", SystemZ::R15D) 1226 .Default(0); 1227 if (Reg) 1228 return Reg; 1229 report_fatal_error("Invalid register name global variable"); 1230 } 1231 1232 void SystemZTargetLowering:: 1233 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1234 std::vector<SDValue> &Ops, 1235 SelectionDAG &DAG) const { 1236 // Only support length 1 constraints for now. 1237 if (Constraint.length() == 1) { 1238 switch (Constraint[0]) { 1239 case 'I': // Unsigned 8-bit constant 1240 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1241 if (isUInt<8>(C->getZExtValue())) 1242 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1243 Op.getValueType())); 1244 return; 1245 1246 case 'J': // Unsigned 12-bit constant 1247 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1248 if (isUInt<12>(C->getZExtValue())) 1249 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1250 Op.getValueType())); 1251 return; 1252 1253 case 'K': // Signed 16-bit constant 1254 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1255 if (isInt<16>(C->getSExtValue())) 1256 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1257 Op.getValueType())); 1258 return; 1259 1260 case 'L': // Signed 20-bit displacement (on all targets we support) 1261 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1262 if (isInt<20>(C->getSExtValue())) 1263 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1264 Op.getValueType())); 1265 return; 1266 1267 case 'M': // 0x7fffffff 1268 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1269 if (C->getZExtValue() == 0x7fffffff) 1270 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1271 Op.getValueType())); 1272 return; 1273 } 1274 } 1275 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1276 } 1277 1278 //===----------------------------------------------------------------------===// 1279 // Calling conventions 1280 //===----------------------------------------------------------------------===// 1281 1282 #include "SystemZGenCallingConv.inc" 1283 1284 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1285 CallingConv::ID) const { 1286 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1287 SystemZ::R14D, 0 }; 1288 return ScratchRegs; 1289 } 1290 1291 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1292 Type *ToType) const { 1293 return isTruncateFree(FromType, ToType); 1294 } 1295 1296 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1297 return CI->isTailCall(); 1298 } 1299 1300 // We do not yet support 128-bit single-element vector types. If the user 1301 // attempts to use such types as function argument or return type, prefer 1302 // to error out instead of emitting code violating the ABI. 1303 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1304 if (ArgVT.isVector() && !VT.isVector()) 1305 report_fatal_error("Unsupported vector argument or return type"); 1306 } 1307 1308 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1309 for (unsigned i = 0; i < Ins.size(); ++i) 1310 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1311 } 1312 1313 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1314 for (unsigned i = 0; i < Outs.size(); ++i) 1315 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1316 } 1317 1318 // Value is a value that has been passed to us in the location described by VA 1319 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1320 // any loads onto Chain. 1321 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1322 CCValAssign &VA, SDValue Chain, 1323 SDValue Value) { 1324 // If the argument has been promoted from a smaller type, insert an 1325 // assertion to capture this. 1326 if (VA.getLocInfo() == CCValAssign::SExt) 1327 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1328 DAG.getValueType(VA.getValVT())); 1329 else if (VA.getLocInfo() == CCValAssign::ZExt) 1330 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1331 DAG.getValueType(VA.getValVT())); 1332 1333 if (VA.isExtInLoc()) 1334 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1335 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1336 // If this is a short vector argument loaded from the stack, 1337 // extend from i64 to full vector size and then bitcast. 1338 assert(VA.getLocVT() == MVT::i64); 1339 assert(VA.getValVT().isVector()); 1340 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1341 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1342 } else 1343 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1344 return Value; 1345 } 1346 1347 // Value is a value of type VA.getValVT() that we need to copy into 1348 // the location described by VA. Return a copy of Value converted to 1349 // VA.getValVT(). The caller is responsible for handling indirect values. 1350 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1351 CCValAssign &VA, SDValue Value) { 1352 switch (VA.getLocInfo()) { 1353 case CCValAssign::SExt: 1354 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1355 case CCValAssign::ZExt: 1356 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1357 case CCValAssign::AExt: 1358 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1359 case CCValAssign::BCvt: { 1360 assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128); 1361 assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f32 || 1362 VA.getValVT() == MVT::f64 || VA.getValVT() == MVT::f128); 1363 // For an f32 vararg we need to first promote it to an f64 and then 1364 // bitcast it to an i64. 1365 if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i64) 1366 Value = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f64, Value); 1367 MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64 1368 ? MVT::v2i64 1369 : VA.getLocVT(); 1370 Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value); 1371 // For ELF, this is a short vector argument to be stored to the stack, 1372 // bitcast to v2i64 and then extract first element. 1373 if (BitCastToType == MVT::v2i64) 1374 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1375 DAG.getConstant(0, DL, MVT::i32)); 1376 return Value; 1377 } 1378 case CCValAssign::Full: 1379 return Value; 1380 default: 1381 llvm_unreachable("Unhandled getLocInfo()"); 1382 } 1383 } 1384 1385 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 1386 SDLoc DL(In); 1387 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1388 DAG.getIntPtrConstant(0, DL)); 1389 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 1390 DAG.getIntPtrConstant(1, DL)); 1391 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 1392 MVT::Untyped, Hi, Lo); 1393 return SDValue(Pair, 0); 1394 } 1395 1396 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 1397 SDLoc DL(In); 1398 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 1399 DL, MVT::i64, In); 1400 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 1401 DL, MVT::i64, In); 1402 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 1403 } 1404 1405 bool SystemZTargetLowering::splitValueIntoRegisterParts( 1406 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 1407 unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const { 1408 EVT ValueVT = Val.getValueType(); 1409 assert((ValueVT != MVT::i128 || 1410 ((NumParts == 1 && PartVT == MVT::Untyped) || 1411 (NumParts == 2 && PartVT == MVT::i64))) && 1412 "Unknown handling of i128 value."); 1413 if (ValueVT == MVT::i128 && NumParts == 1) { 1414 // Inline assembly operand. 1415 Parts[0] = lowerI128ToGR128(DAG, Val); 1416 return true; 1417 } 1418 return false; 1419 } 1420 1421 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue( 1422 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, 1423 MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const { 1424 assert((ValueVT != MVT::i128 || 1425 ((NumParts == 1 && PartVT == MVT::Untyped) || 1426 (NumParts == 2 && PartVT == MVT::i64))) && 1427 "Unknown handling of i128 value."); 1428 if (ValueVT == MVT::i128 && NumParts == 1) 1429 // Inline assembly operand. 1430 return lowerGR128ToI128(DAG, Parts[0]); 1431 return SDValue(); 1432 } 1433 1434 SDValue SystemZTargetLowering::LowerFormalArguments( 1435 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1436 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1437 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1438 MachineFunction &MF = DAG.getMachineFunction(); 1439 MachineFrameInfo &MFI = MF.getFrameInfo(); 1440 MachineRegisterInfo &MRI = MF.getRegInfo(); 1441 SystemZMachineFunctionInfo *FuncInfo = 1442 MF.getInfo<SystemZMachineFunctionInfo>(); 1443 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 1444 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1445 1446 // Detect unsupported vector argument types. 1447 if (Subtarget.hasVector()) 1448 VerifyVectorTypes(Ins); 1449 1450 // Assign locations to all of the incoming arguments. 1451 SmallVector<CCValAssign, 16> ArgLocs; 1452 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1453 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1454 1455 unsigned NumFixedGPRs = 0; 1456 unsigned NumFixedFPRs = 0; 1457 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1458 SDValue ArgValue; 1459 CCValAssign &VA = ArgLocs[I]; 1460 EVT LocVT = VA.getLocVT(); 1461 if (VA.isRegLoc()) { 1462 // Arguments passed in registers 1463 const TargetRegisterClass *RC; 1464 switch (LocVT.getSimpleVT().SimpleTy) { 1465 default: 1466 // Integers smaller than i64 should be promoted to i64. 1467 llvm_unreachable("Unexpected argument type"); 1468 case MVT::i32: 1469 NumFixedGPRs += 1; 1470 RC = &SystemZ::GR32BitRegClass; 1471 break; 1472 case MVT::i64: 1473 NumFixedGPRs += 1; 1474 RC = &SystemZ::GR64BitRegClass; 1475 break; 1476 case MVT::f32: 1477 NumFixedFPRs += 1; 1478 RC = &SystemZ::FP32BitRegClass; 1479 break; 1480 case MVT::f64: 1481 NumFixedFPRs += 1; 1482 RC = &SystemZ::FP64BitRegClass; 1483 break; 1484 case MVT::f128: 1485 NumFixedFPRs += 2; 1486 RC = &SystemZ::FP128BitRegClass; 1487 break; 1488 case MVT::v16i8: 1489 case MVT::v8i16: 1490 case MVT::v4i32: 1491 case MVT::v2i64: 1492 case MVT::v4f32: 1493 case MVT::v2f64: 1494 RC = &SystemZ::VR128BitRegClass; 1495 break; 1496 } 1497 1498 Register VReg = MRI.createVirtualRegister(RC); 1499 MRI.addLiveIn(VA.getLocReg(), VReg); 1500 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1501 } else { 1502 assert(VA.isMemLoc() && "Argument not register or memory"); 1503 1504 // Create the frame index object for this incoming parameter. 1505 // FIXME: Pre-include call frame size in the offset, should not 1506 // need to manually add it here. 1507 int64_t ArgSPOffset = VA.getLocMemOffset(); 1508 if (Subtarget.isTargetXPLINK64()) { 1509 auto &XPRegs = 1510 Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 1511 ArgSPOffset += XPRegs.getCallFrameSize(); 1512 } 1513 int FI = 1514 MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true); 1515 1516 // Create the SelectionDAG nodes corresponding to a load 1517 // from this parameter. Unpromoted ints and floats are 1518 // passed as right-justified 8-byte values. 1519 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1520 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1521 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1522 DAG.getIntPtrConstant(4, DL)); 1523 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1524 MachinePointerInfo::getFixedStack(MF, FI)); 1525 } 1526 1527 // Convert the value of the argument register into the value that's 1528 // being passed. 1529 if (VA.getLocInfo() == CCValAssign::Indirect) { 1530 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1531 MachinePointerInfo())); 1532 // If the original argument was split (e.g. i128), we need 1533 // to load all parts of it here (using the same address). 1534 unsigned ArgIndex = Ins[I].OrigArgIndex; 1535 assert (Ins[I].PartOffset == 0); 1536 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1537 CCValAssign &PartVA = ArgLocs[I + 1]; 1538 unsigned PartOffset = Ins[I + 1].PartOffset; 1539 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1540 DAG.getIntPtrConstant(PartOffset, DL)); 1541 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1542 MachinePointerInfo())); 1543 ++I; 1544 } 1545 } else 1546 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1547 } 1548 1549 // FIXME: Add support for lowering varargs for XPLINK64 in a later patch. 1550 if (IsVarArg && Subtarget.isTargetELF()) { 1551 // Save the number of non-varargs registers for later use by va_start, etc. 1552 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1553 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1554 1555 // Likewise the address (in the form of a frame index) of where the 1556 // first stack vararg would be. The 1-byte size here is arbitrary. 1557 int64_t StackSize = CCInfo.getNextStackOffset(); 1558 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1559 1560 // ...and a similar frame index for the caller-allocated save area 1561 // that will be used to store the incoming registers. 1562 int64_t RegSaveOffset = 1563 -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1564 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1565 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1566 1567 // Store the FPR varargs in the reserved frame slots. (We store the 1568 // GPRs as part of the prologue.) 1569 if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) { 1570 SDValue MemOps[SystemZ::ELFNumArgFPRs]; 1571 for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) { 1572 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]); 1573 int FI = 1574 MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true); 1575 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1576 Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I], 1577 &SystemZ::FP64BitRegClass); 1578 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1579 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1580 MachinePointerInfo::getFixedStack(MF, FI)); 1581 } 1582 // Join the stores, which are independent of one another. 1583 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1584 makeArrayRef(&MemOps[NumFixedFPRs], 1585 SystemZ::ELFNumArgFPRs-NumFixedFPRs)); 1586 } 1587 } 1588 1589 // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special 1590 // register (R5) 1591 return Chain; 1592 } 1593 1594 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1595 SmallVectorImpl<CCValAssign> &ArgLocs, 1596 SmallVectorImpl<ISD::OutputArg> &Outs) { 1597 // Punt if there are any indirect or stack arguments, or if the call 1598 // needs the callee-saved argument register R6, or if the call uses 1599 // the callee-saved register arguments SwiftSelf and SwiftError. 1600 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1601 CCValAssign &VA = ArgLocs[I]; 1602 if (VA.getLocInfo() == CCValAssign::Indirect) 1603 return false; 1604 if (!VA.isRegLoc()) 1605 return false; 1606 Register Reg = VA.getLocReg(); 1607 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1608 return false; 1609 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1610 return false; 1611 } 1612 return true; 1613 } 1614 1615 SDValue 1616 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1617 SmallVectorImpl<SDValue> &InVals) const { 1618 SelectionDAG &DAG = CLI.DAG; 1619 SDLoc &DL = CLI.DL; 1620 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1621 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1622 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1623 SDValue Chain = CLI.Chain; 1624 SDValue Callee = CLI.Callee; 1625 bool &IsTailCall = CLI.IsTailCall; 1626 CallingConv::ID CallConv = CLI.CallConv; 1627 bool IsVarArg = CLI.IsVarArg; 1628 MachineFunction &MF = DAG.getMachineFunction(); 1629 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1630 LLVMContext &Ctx = *DAG.getContext(); 1631 SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters(); 1632 1633 // FIXME: z/OS support to be added in later. 1634 if (Subtarget.isTargetXPLINK64()) 1635 IsTailCall = false; 1636 1637 // Detect unsupported vector argument and return types. 1638 if (Subtarget.hasVector()) { 1639 VerifyVectorTypes(Outs); 1640 VerifyVectorTypes(Ins); 1641 } 1642 1643 // Analyze the operands of the call, assigning locations to each operand. 1644 SmallVector<CCValAssign, 16> ArgLocs; 1645 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx); 1646 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1647 1648 // We don't support GuaranteedTailCallOpt, only automatically-detected 1649 // sibling calls. 1650 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1651 IsTailCall = false; 1652 1653 // Get a count of how many bytes are to be pushed on the stack. 1654 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1655 1656 if (Subtarget.isTargetXPLINK64()) 1657 // Although the XPLINK specifications for AMODE64 state that minimum size 1658 // of the param area is minimum 32 bytes and no rounding is otherwise 1659 // specified, we round this area in 64 bytes increments to be compatible 1660 // with existing compilers. 1661 NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64)); 1662 1663 // Mark the start of the call. 1664 if (!IsTailCall) 1665 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1666 1667 // Copy argument values to their designated locations. 1668 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1669 SmallVector<SDValue, 8> MemOpChains; 1670 SDValue StackPtr; 1671 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1672 CCValAssign &VA = ArgLocs[I]; 1673 SDValue ArgValue = OutVals[I]; 1674 1675 if (VA.getLocInfo() == CCValAssign::Indirect) { 1676 // Store the argument in a stack slot and pass its address. 1677 unsigned ArgIndex = Outs[I].OrigArgIndex; 1678 EVT SlotVT; 1679 if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1680 // Allocate the full stack space for a promoted (and split) argument. 1681 Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty; 1682 EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType); 1683 MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1684 unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT); 1685 SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N); 1686 } else { 1687 SlotVT = Outs[I].ArgVT; 1688 } 1689 SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT); 1690 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1691 MemOpChains.push_back( 1692 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1693 MachinePointerInfo::getFixedStack(MF, FI))); 1694 // If the original argument was split (e.g. i128), we need 1695 // to store all parts of it here (and pass just one address). 1696 assert (Outs[I].PartOffset == 0); 1697 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1698 SDValue PartValue = OutVals[I + 1]; 1699 unsigned PartOffset = Outs[I + 1].PartOffset; 1700 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1701 DAG.getIntPtrConstant(PartOffset, DL)); 1702 MemOpChains.push_back( 1703 DAG.getStore(Chain, DL, PartValue, Address, 1704 MachinePointerInfo::getFixedStack(MF, FI))); 1705 assert((PartOffset + PartValue.getValueType().getStoreSize() <= 1706 SlotVT.getStoreSize()) && "Not enough space for argument part!"); 1707 ++I; 1708 } 1709 ArgValue = SpillSlot; 1710 } else 1711 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1712 1713 if (VA.isRegLoc()) { 1714 // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a 1715 // MVT::i128 type. We decompose the 128-bit type to a pair of its high 1716 // and low values. 1717 if (VA.getLocVT() == MVT::i128) 1718 ArgValue = lowerI128ToGR128(DAG, ArgValue); 1719 // Queue up the argument copies and emit them at the end. 1720 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1721 } else { 1722 assert(VA.isMemLoc() && "Argument not register or memory"); 1723 1724 // Work out the address of the stack slot. Unpromoted ints and 1725 // floats are passed as right-justified 8-byte values. 1726 if (!StackPtr.getNode()) 1727 StackPtr = DAG.getCopyFromReg(Chain, DL, 1728 Regs->getStackPointerRegister(), PtrVT); 1729 unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() + 1730 VA.getLocMemOffset(); 1731 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1732 Offset += 4; 1733 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1734 DAG.getIntPtrConstant(Offset, DL)); 1735 1736 // Emit the store. 1737 MemOpChains.push_back( 1738 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1739 1740 // Although long doubles or vectors are passed through the stack when 1741 // they are vararg (non-fixed arguments), if a long double or vector 1742 // occupies the third and fourth slot of the argument list GPR3 should 1743 // still shadow the third slot of the argument list. 1744 if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) { 1745 SDValue ShadowArgValue = 1746 DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue, 1747 DAG.getIntPtrConstant(1, DL)); 1748 RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue)); 1749 } 1750 } 1751 } 1752 1753 // Join the stores, which are independent of one another. 1754 if (!MemOpChains.empty()) 1755 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1756 1757 // Accept direct calls by converting symbolic call addresses to the 1758 // associated Target* opcodes. Force %r1 to be used for indirect 1759 // tail calls. 1760 SDValue Glue; 1761 // FIXME: Add support for XPLINK using the ADA register. 1762 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1763 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1764 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1765 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1766 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1767 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1768 } else if (IsTailCall) { 1769 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1770 Glue = Chain.getValue(1); 1771 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1772 } 1773 1774 // Build a sequence of copy-to-reg nodes, chained and glued together. 1775 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1776 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1777 RegsToPass[I].second, Glue); 1778 Glue = Chain.getValue(1); 1779 } 1780 1781 // The first call operand is the chain and the second is the target address. 1782 SmallVector<SDValue, 8> Ops; 1783 Ops.push_back(Chain); 1784 Ops.push_back(Callee); 1785 1786 // Add argument registers to the end of the list so that they are 1787 // known live into the call. 1788 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1789 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1790 RegsToPass[I].second.getValueType())); 1791 1792 // Add a register mask operand representing the call-preserved registers. 1793 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1794 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1795 assert(Mask && "Missing call preserved mask for calling convention"); 1796 Ops.push_back(DAG.getRegisterMask(Mask)); 1797 1798 // Glue the call to the argument copies, if any. 1799 if (Glue.getNode()) 1800 Ops.push_back(Glue); 1801 1802 // Emit the call. 1803 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1804 if (IsTailCall) 1805 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1806 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1807 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 1808 Glue = Chain.getValue(1); 1809 1810 // Mark the end of the call, which is glued to the call itself. 1811 Chain = DAG.getCALLSEQ_END(Chain, 1812 DAG.getConstant(NumBytes, DL, PtrVT, true), 1813 DAG.getConstant(0, DL, PtrVT, true), 1814 Glue, DL); 1815 Glue = Chain.getValue(1); 1816 1817 // Assign locations to each value returned by this call. 1818 SmallVector<CCValAssign, 16> RetLocs; 1819 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx); 1820 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1821 1822 // Copy all of the result registers out of their specified physreg. 1823 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1824 CCValAssign &VA = RetLocs[I]; 1825 1826 // Copy the value out, gluing the copy to the end of the call sequence. 1827 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1828 VA.getLocVT(), Glue); 1829 Chain = RetValue.getValue(1); 1830 Glue = RetValue.getValue(2); 1831 1832 // Convert the value of the return register into the value that's 1833 // being returned. 1834 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1835 } 1836 1837 return Chain; 1838 } 1839 1840 // Generate a call taking the given operands as arguments and returning a 1841 // result of type RetVT. 1842 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall( 1843 SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT, 1844 ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL, 1845 bool DoesNotReturn, bool IsReturnValueUsed) const { 1846 TargetLowering::ArgListTy Args; 1847 Args.reserve(Ops.size()); 1848 1849 TargetLowering::ArgListEntry Entry; 1850 for (SDValue Op : Ops) { 1851 Entry.Node = Op; 1852 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 1853 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 1854 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned); 1855 Args.push_back(Entry); 1856 } 1857 1858 SDValue Callee = 1859 DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout())); 1860 1861 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 1862 TargetLowering::CallLoweringInfo CLI(DAG); 1863 bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned); 1864 CLI.setDebugLoc(DL) 1865 .setChain(Chain) 1866 .setCallee(CallConv, RetTy, Callee, std::move(Args)) 1867 .setNoReturn(DoesNotReturn) 1868 .setDiscardResult(!IsReturnValueUsed) 1869 .setSExtResult(SignExtend) 1870 .setZExtResult(!SignExtend); 1871 return LowerCallTo(CLI); 1872 } 1873 1874 bool SystemZTargetLowering:: 1875 CanLowerReturn(CallingConv::ID CallConv, 1876 MachineFunction &MF, bool isVarArg, 1877 const SmallVectorImpl<ISD::OutputArg> &Outs, 1878 LLVMContext &Context) const { 1879 // Detect unsupported vector return types. 1880 if (Subtarget.hasVector()) 1881 VerifyVectorTypes(Outs); 1882 1883 // Special case that we cannot easily detect in RetCC_SystemZ since 1884 // i128 is not a legal type. 1885 for (auto &Out : Outs) 1886 if (Out.ArgVT == MVT::i128) 1887 return false; 1888 1889 SmallVector<CCValAssign, 16> RetLocs; 1890 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1891 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1892 } 1893 1894 SDValue 1895 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1896 bool IsVarArg, 1897 const SmallVectorImpl<ISD::OutputArg> &Outs, 1898 const SmallVectorImpl<SDValue> &OutVals, 1899 const SDLoc &DL, SelectionDAG &DAG) const { 1900 MachineFunction &MF = DAG.getMachineFunction(); 1901 1902 // Detect unsupported vector return types. 1903 if (Subtarget.hasVector()) 1904 VerifyVectorTypes(Outs); 1905 1906 // Assign locations to each returned value. 1907 SmallVector<CCValAssign, 16> RetLocs; 1908 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1909 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1910 1911 // Quick exit for void returns 1912 if (RetLocs.empty()) 1913 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1914 1915 if (CallConv == CallingConv::GHC) 1916 report_fatal_error("GHC functions return void only"); 1917 1918 // Copy the result values into the output registers. 1919 SDValue Glue; 1920 SmallVector<SDValue, 4> RetOps; 1921 RetOps.push_back(Chain); 1922 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1923 CCValAssign &VA = RetLocs[I]; 1924 SDValue RetValue = OutVals[I]; 1925 1926 // Make the return register live on exit. 1927 assert(VA.isRegLoc() && "Can only return in registers!"); 1928 1929 // Promote the value as required. 1930 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1931 1932 // Chain and glue the copies together. 1933 Register Reg = VA.getLocReg(); 1934 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1935 Glue = Chain.getValue(1); 1936 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1937 } 1938 1939 // Update chain and glue. 1940 RetOps[0] = Chain; 1941 if (Glue.getNode()) 1942 RetOps.push_back(Glue); 1943 1944 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1945 } 1946 1947 // Return true if Op is an intrinsic node with chain that returns the CC value 1948 // as its only (other) argument. Provide the associated SystemZISD opcode and 1949 // the mask of valid CC values if so. 1950 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1951 unsigned &CCValid) { 1952 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1953 switch (Id) { 1954 case Intrinsic::s390_tbegin: 1955 Opcode = SystemZISD::TBEGIN; 1956 CCValid = SystemZ::CCMASK_TBEGIN; 1957 return true; 1958 1959 case Intrinsic::s390_tbegin_nofloat: 1960 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1961 CCValid = SystemZ::CCMASK_TBEGIN; 1962 return true; 1963 1964 case Intrinsic::s390_tend: 1965 Opcode = SystemZISD::TEND; 1966 CCValid = SystemZ::CCMASK_TEND; 1967 return true; 1968 1969 default: 1970 return false; 1971 } 1972 } 1973 1974 // Return true if Op is an intrinsic node without chain that returns the 1975 // CC value as its final argument. Provide the associated SystemZISD 1976 // opcode and the mask of valid CC values if so. 1977 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1978 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1979 switch (Id) { 1980 case Intrinsic::s390_vpkshs: 1981 case Intrinsic::s390_vpksfs: 1982 case Intrinsic::s390_vpksgs: 1983 Opcode = SystemZISD::PACKS_CC; 1984 CCValid = SystemZ::CCMASK_VCMP; 1985 return true; 1986 1987 case Intrinsic::s390_vpklshs: 1988 case Intrinsic::s390_vpklsfs: 1989 case Intrinsic::s390_vpklsgs: 1990 Opcode = SystemZISD::PACKLS_CC; 1991 CCValid = SystemZ::CCMASK_VCMP; 1992 return true; 1993 1994 case Intrinsic::s390_vceqbs: 1995 case Intrinsic::s390_vceqhs: 1996 case Intrinsic::s390_vceqfs: 1997 case Intrinsic::s390_vceqgs: 1998 Opcode = SystemZISD::VICMPES; 1999 CCValid = SystemZ::CCMASK_VCMP; 2000 return true; 2001 2002 case Intrinsic::s390_vchbs: 2003 case Intrinsic::s390_vchhs: 2004 case Intrinsic::s390_vchfs: 2005 case Intrinsic::s390_vchgs: 2006 Opcode = SystemZISD::VICMPHS; 2007 CCValid = SystemZ::CCMASK_VCMP; 2008 return true; 2009 2010 case Intrinsic::s390_vchlbs: 2011 case Intrinsic::s390_vchlhs: 2012 case Intrinsic::s390_vchlfs: 2013 case Intrinsic::s390_vchlgs: 2014 Opcode = SystemZISD::VICMPHLS; 2015 CCValid = SystemZ::CCMASK_VCMP; 2016 return true; 2017 2018 case Intrinsic::s390_vtm: 2019 Opcode = SystemZISD::VTM; 2020 CCValid = SystemZ::CCMASK_VCMP; 2021 return true; 2022 2023 case Intrinsic::s390_vfaebs: 2024 case Intrinsic::s390_vfaehs: 2025 case Intrinsic::s390_vfaefs: 2026 Opcode = SystemZISD::VFAE_CC; 2027 CCValid = SystemZ::CCMASK_ANY; 2028 return true; 2029 2030 case Intrinsic::s390_vfaezbs: 2031 case Intrinsic::s390_vfaezhs: 2032 case Intrinsic::s390_vfaezfs: 2033 Opcode = SystemZISD::VFAEZ_CC; 2034 CCValid = SystemZ::CCMASK_ANY; 2035 return true; 2036 2037 case Intrinsic::s390_vfeebs: 2038 case Intrinsic::s390_vfeehs: 2039 case Intrinsic::s390_vfeefs: 2040 Opcode = SystemZISD::VFEE_CC; 2041 CCValid = SystemZ::CCMASK_ANY; 2042 return true; 2043 2044 case Intrinsic::s390_vfeezbs: 2045 case Intrinsic::s390_vfeezhs: 2046 case Intrinsic::s390_vfeezfs: 2047 Opcode = SystemZISD::VFEEZ_CC; 2048 CCValid = SystemZ::CCMASK_ANY; 2049 return true; 2050 2051 case Intrinsic::s390_vfenebs: 2052 case Intrinsic::s390_vfenehs: 2053 case Intrinsic::s390_vfenefs: 2054 Opcode = SystemZISD::VFENE_CC; 2055 CCValid = SystemZ::CCMASK_ANY; 2056 return true; 2057 2058 case Intrinsic::s390_vfenezbs: 2059 case Intrinsic::s390_vfenezhs: 2060 case Intrinsic::s390_vfenezfs: 2061 Opcode = SystemZISD::VFENEZ_CC; 2062 CCValid = SystemZ::CCMASK_ANY; 2063 return true; 2064 2065 case Intrinsic::s390_vistrbs: 2066 case Intrinsic::s390_vistrhs: 2067 case Intrinsic::s390_vistrfs: 2068 Opcode = SystemZISD::VISTR_CC; 2069 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 2070 return true; 2071 2072 case Intrinsic::s390_vstrcbs: 2073 case Intrinsic::s390_vstrchs: 2074 case Intrinsic::s390_vstrcfs: 2075 Opcode = SystemZISD::VSTRC_CC; 2076 CCValid = SystemZ::CCMASK_ANY; 2077 return true; 2078 2079 case Intrinsic::s390_vstrczbs: 2080 case Intrinsic::s390_vstrczhs: 2081 case Intrinsic::s390_vstrczfs: 2082 Opcode = SystemZISD::VSTRCZ_CC; 2083 CCValid = SystemZ::CCMASK_ANY; 2084 return true; 2085 2086 case Intrinsic::s390_vstrsb: 2087 case Intrinsic::s390_vstrsh: 2088 case Intrinsic::s390_vstrsf: 2089 Opcode = SystemZISD::VSTRS_CC; 2090 CCValid = SystemZ::CCMASK_ANY; 2091 return true; 2092 2093 case Intrinsic::s390_vstrszb: 2094 case Intrinsic::s390_vstrszh: 2095 case Intrinsic::s390_vstrszf: 2096 Opcode = SystemZISD::VSTRSZ_CC; 2097 CCValid = SystemZ::CCMASK_ANY; 2098 return true; 2099 2100 case Intrinsic::s390_vfcedbs: 2101 case Intrinsic::s390_vfcesbs: 2102 Opcode = SystemZISD::VFCMPES; 2103 CCValid = SystemZ::CCMASK_VCMP; 2104 return true; 2105 2106 case Intrinsic::s390_vfchdbs: 2107 case Intrinsic::s390_vfchsbs: 2108 Opcode = SystemZISD::VFCMPHS; 2109 CCValid = SystemZ::CCMASK_VCMP; 2110 return true; 2111 2112 case Intrinsic::s390_vfchedbs: 2113 case Intrinsic::s390_vfchesbs: 2114 Opcode = SystemZISD::VFCMPHES; 2115 CCValid = SystemZ::CCMASK_VCMP; 2116 return true; 2117 2118 case Intrinsic::s390_vftcidb: 2119 case Intrinsic::s390_vftcisb: 2120 Opcode = SystemZISD::VFTCI; 2121 CCValid = SystemZ::CCMASK_VCMP; 2122 return true; 2123 2124 case Intrinsic::s390_tdc: 2125 Opcode = SystemZISD::TDC; 2126 CCValid = SystemZ::CCMASK_TDC; 2127 return true; 2128 2129 default: 2130 return false; 2131 } 2132 } 2133 2134 // Emit an intrinsic with chain and an explicit CC register result. 2135 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 2136 unsigned Opcode) { 2137 // Copy all operands except the intrinsic ID. 2138 unsigned NumOps = Op.getNumOperands(); 2139 SmallVector<SDValue, 6> Ops; 2140 Ops.reserve(NumOps - 1); 2141 Ops.push_back(Op.getOperand(0)); 2142 for (unsigned I = 2; I < NumOps; ++I) 2143 Ops.push_back(Op.getOperand(I)); 2144 2145 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 2146 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 2147 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 2148 SDValue OldChain = SDValue(Op.getNode(), 1); 2149 SDValue NewChain = SDValue(Intr.getNode(), 1); 2150 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 2151 return Intr.getNode(); 2152 } 2153 2154 // Emit an intrinsic with an explicit CC register result. 2155 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 2156 unsigned Opcode) { 2157 // Copy all operands except the intrinsic ID. 2158 unsigned NumOps = Op.getNumOperands(); 2159 SmallVector<SDValue, 6> Ops; 2160 Ops.reserve(NumOps - 1); 2161 for (unsigned I = 1; I < NumOps; ++I) 2162 Ops.push_back(Op.getOperand(I)); 2163 2164 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 2165 return Intr.getNode(); 2166 } 2167 2168 // CC is a comparison that will be implemented using an integer or 2169 // floating-point comparison. Return the condition code mask for 2170 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 2171 // unsigned comparisons and clear for signed ones. In the floating-point 2172 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 2173 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 2174 #define CONV(X) \ 2175 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2176 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2177 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2178 2179 switch (CC) { 2180 default: 2181 llvm_unreachable("Invalid integer condition!"); 2182 2183 CONV(EQ); 2184 CONV(NE); 2185 CONV(GT); 2186 CONV(GE); 2187 CONV(LT); 2188 CONV(LE); 2189 2190 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2191 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2192 } 2193 #undef CONV 2194 } 2195 2196 // If C can be converted to a comparison against zero, adjust the operands 2197 // as necessary. 2198 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2199 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2200 return; 2201 2202 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2203 if (!ConstOp1) 2204 return; 2205 2206 int64_t Value = ConstOp1->getSExtValue(); 2207 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2208 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2209 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2210 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2211 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2212 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2213 } 2214 } 2215 2216 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2217 // adjust the operands as necessary. 2218 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2219 Comparison &C) { 2220 // For us to make any changes, it must a comparison between a single-use 2221 // load and a constant. 2222 if (!C.Op0.hasOneUse() || 2223 C.Op0.getOpcode() != ISD::LOAD || 2224 C.Op1.getOpcode() != ISD::Constant) 2225 return; 2226 2227 // We must have an 8- or 16-bit load. 2228 auto *Load = cast<LoadSDNode>(C.Op0); 2229 unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 2230 if ((NumBits != 8 && NumBits != 16) || 2231 NumBits != Load->getMemoryVT().getStoreSizeInBits()) 2232 return; 2233 2234 // The load must be an extending one and the constant must be within the 2235 // range of the unextended value. 2236 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2237 uint64_t Value = ConstOp1->getZExtValue(); 2238 uint64_t Mask = (1 << NumBits) - 1; 2239 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2240 // Make sure that ConstOp1 is in range of C.Op0. 2241 int64_t SignedValue = ConstOp1->getSExtValue(); 2242 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2243 return; 2244 if (C.ICmpType != SystemZICMP::SignedOnly) { 2245 // Unsigned comparison between two sign-extended values is equivalent 2246 // to unsigned comparison between two zero-extended values. 2247 Value &= Mask; 2248 } else if (NumBits == 8) { 2249 // Try to treat the comparison as unsigned, so that we can use CLI. 2250 // Adjust CCMask and Value as necessary. 2251 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2252 // Test whether the high bit of the byte is set. 2253 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2254 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2255 // Test whether the high bit of the byte is clear. 2256 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2257 else 2258 // No instruction exists for this combination. 2259 return; 2260 C.ICmpType = SystemZICMP::UnsignedOnly; 2261 } 2262 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2263 if (Value > Mask) 2264 return; 2265 // If the constant is in range, we can use any comparison. 2266 C.ICmpType = SystemZICMP::Any; 2267 } else 2268 return; 2269 2270 // Make sure that the first operand is an i32 of the right extension type. 2271 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2272 ISD::SEXTLOAD : 2273 ISD::ZEXTLOAD); 2274 if (C.Op0.getValueType() != MVT::i32 || 2275 Load->getExtensionType() != ExtType) { 2276 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2277 Load->getBasePtr(), Load->getPointerInfo(), 2278 Load->getMemoryVT(), Load->getAlignment(), 2279 Load->getMemOperand()->getFlags()); 2280 // Update the chain uses. 2281 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2282 } 2283 2284 // Make sure that the second operand is an i32 with the right value. 2285 if (C.Op1.getValueType() != MVT::i32 || 2286 Value != ConstOp1->getZExtValue()) 2287 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2288 } 2289 2290 // Return true if Op is either an unextended load, or a load suitable 2291 // for integer register-memory comparisons of type ICmpType. 2292 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2293 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2294 if (Load) { 2295 // There are no instructions to compare a register with a memory byte. 2296 if (Load->getMemoryVT() == MVT::i8) 2297 return false; 2298 // Otherwise decide on extension type. 2299 switch (Load->getExtensionType()) { 2300 case ISD::NON_EXTLOAD: 2301 return true; 2302 case ISD::SEXTLOAD: 2303 return ICmpType != SystemZICMP::UnsignedOnly; 2304 case ISD::ZEXTLOAD: 2305 return ICmpType != SystemZICMP::SignedOnly; 2306 default: 2307 break; 2308 } 2309 } 2310 return false; 2311 } 2312 2313 // Return true if it is better to swap the operands of C. 2314 static bool shouldSwapCmpOperands(const Comparison &C) { 2315 // Leave f128 comparisons alone, since they have no memory forms. 2316 if (C.Op0.getValueType() == MVT::f128) 2317 return false; 2318 2319 // Always keep a floating-point constant second, since comparisons with 2320 // zero can use LOAD TEST and comparisons with other constants make a 2321 // natural memory operand. 2322 if (isa<ConstantFPSDNode>(C.Op1)) 2323 return false; 2324 2325 // Never swap comparisons with zero since there are many ways to optimize 2326 // those later. 2327 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2328 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2329 return false; 2330 2331 // Also keep natural memory operands second if the loaded value is 2332 // only used here. Several comparisons have memory forms. 2333 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2334 return false; 2335 2336 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2337 // In that case we generally prefer the memory to be second. 2338 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2339 // The only exceptions are when the second operand is a constant and 2340 // we can use things like CHHSI. 2341 if (!ConstOp1) 2342 return true; 2343 // The unsigned memory-immediate instructions can handle 16-bit 2344 // unsigned integers. 2345 if (C.ICmpType != SystemZICMP::SignedOnly && 2346 isUInt<16>(ConstOp1->getZExtValue())) 2347 return false; 2348 // The signed memory-immediate instructions can handle 16-bit 2349 // signed integers. 2350 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2351 isInt<16>(ConstOp1->getSExtValue())) 2352 return false; 2353 return true; 2354 } 2355 2356 // Try to promote the use of CGFR and CLGFR. 2357 unsigned Opcode0 = C.Op0.getOpcode(); 2358 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2359 return true; 2360 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2361 return true; 2362 if (C.ICmpType != SystemZICMP::SignedOnly && 2363 Opcode0 == ISD::AND && 2364 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2365 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2366 return true; 2367 2368 return false; 2369 } 2370 2371 // Check whether C tests for equality between X and Y and whether X - Y 2372 // or Y - X is also computed. In that case it's better to compare the 2373 // result of the subtraction against zero. 2374 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2375 Comparison &C) { 2376 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2377 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2378 for (SDNode *N : C.Op0->uses()) { 2379 if (N->getOpcode() == ISD::SUB && 2380 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2381 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2382 C.Op0 = SDValue(N, 0); 2383 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2384 return; 2385 } 2386 } 2387 } 2388 } 2389 2390 // Check whether C compares a floating-point value with zero and if that 2391 // floating-point value is also negated. In this case we can use the 2392 // negation to set CC, so avoiding separate LOAD AND TEST and 2393 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2394 static void adjustForFNeg(Comparison &C) { 2395 // This optimization is invalid for strict comparisons, since FNEG 2396 // does not raise any exceptions. 2397 if (C.Chain) 2398 return; 2399 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2400 if (C1 && C1->isZero()) { 2401 for (SDNode *N : C.Op0->uses()) { 2402 if (N->getOpcode() == ISD::FNEG) { 2403 C.Op0 = SDValue(N, 0); 2404 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2405 return; 2406 } 2407 } 2408 } 2409 } 2410 2411 // Check whether C compares (shl X, 32) with 0 and whether X is 2412 // also sign-extended. In that case it is better to test the result 2413 // of the sign extension using LTGFR. 2414 // 2415 // This case is important because InstCombine transforms a comparison 2416 // with (sext (trunc X)) into a comparison with (shl X, 32). 2417 static void adjustForLTGFR(Comparison &C) { 2418 // Check for a comparison between (shl X, 32) and 0. 2419 if (C.Op0.getOpcode() == ISD::SHL && 2420 C.Op0.getValueType() == MVT::i64 && 2421 C.Op1.getOpcode() == ISD::Constant && 2422 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2423 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2424 if (C1 && C1->getZExtValue() == 32) { 2425 SDValue ShlOp0 = C.Op0.getOperand(0); 2426 // See whether X has any SIGN_EXTEND_INREG uses. 2427 for (SDNode *N : ShlOp0->uses()) { 2428 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2429 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2430 C.Op0 = SDValue(N, 0); 2431 return; 2432 } 2433 } 2434 } 2435 } 2436 } 2437 2438 // If C compares the truncation of an extending load, try to compare 2439 // the untruncated value instead. This exposes more opportunities to 2440 // reuse CC. 2441 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2442 Comparison &C) { 2443 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2444 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2445 C.Op1.getOpcode() == ISD::Constant && 2446 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2447 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2448 if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <= 2449 C.Op0.getValueSizeInBits().getFixedSize()) { 2450 unsigned Type = L->getExtensionType(); 2451 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2452 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2453 C.Op0 = C.Op0.getOperand(0); 2454 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2455 } 2456 } 2457 } 2458 } 2459 2460 // Return true if shift operation N has an in-range constant shift value. 2461 // Store it in ShiftVal if so. 2462 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2463 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2464 if (!Shift) 2465 return false; 2466 2467 uint64_t Amount = Shift->getZExtValue(); 2468 if (Amount >= N.getValueSizeInBits()) 2469 return false; 2470 2471 ShiftVal = Amount; 2472 return true; 2473 } 2474 2475 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2476 // instruction and whether the CC value is descriptive enough to handle 2477 // a comparison of type Opcode between the AND result and CmpVal. 2478 // CCMask says which comparison result is being tested and BitSize is 2479 // the number of bits in the operands. If TEST UNDER MASK can be used, 2480 // return the corresponding CC mask, otherwise return 0. 2481 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2482 uint64_t Mask, uint64_t CmpVal, 2483 unsigned ICmpType) { 2484 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2485 2486 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2487 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2488 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2489 return 0; 2490 2491 // Work out the masks for the lowest and highest bits. 2492 unsigned HighShift = 63 - countLeadingZeros(Mask); 2493 uint64_t High = uint64_t(1) << HighShift; 2494 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2495 2496 // Signed ordered comparisons are effectively unsigned if the sign 2497 // bit is dropped. 2498 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2499 2500 // Check for equality comparisons with 0, or the equivalent. 2501 if (CmpVal == 0) { 2502 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2503 return SystemZ::CCMASK_TM_ALL_0; 2504 if (CCMask == SystemZ::CCMASK_CMP_NE) 2505 return SystemZ::CCMASK_TM_SOME_1; 2506 } 2507 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2508 if (CCMask == SystemZ::CCMASK_CMP_LT) 2509 return SystemZ::CCMASK_TM_ALL_0; 2510 if (CCMask == SystemZ::CCMASK_CMP_GE) 2511 return SystemZ::CCMASK_TM_SOME_1; 2512 } 2513 if (EffectivelyUnsigned && CmpVal < Low) { 2514 if (CCMask == SystemZ::CCMASK_CMP_LE) 2515 return SystemZ::CCMASK_TM_ALL_0; 2516 if (CCMask == SystemZ::CCMASK_CMP_GT) 2517 return SystemZ::CCMASK_TM_SOME_1; 2518 } 2519 2520 // Check for equality comparisons with the mask, or the equivalent. 2521 if (CmpVal == Mask) { 2522 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2523 return SystemZ::CCMASK_TM_ALL_1; 2524 if (CCMask == SystemZ::CCMASK_CMP_NE) 2525 return SystemZ::CCMASK_TM_SOME_0; 2526 } 2527 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2528 if (CCMask == SystemZ::CCMASK_CMP_GT) 2529 return SystemZ::CCMASK_TM_ALL_1; 2530 if (CCMask == SystemZ::CCMASK_CMP_LE) 2531 return SystemZ::CCMASK_TM_SOME_0; 2532 } 2533 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2534 if (CCMask == SystemZ::CCMASK_CMP_GE) 2535 return SystemZ::CCMASK_TM_ALL_1; 2536 if (CCMask == SystemZ::CCMASK_CMP_LT) 2537 return SystemZ::CCMASK_TM_SOME_0; 2538 } 2539 2540 // Check for ordered comparisons with the top bit. 2541 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2542 if (CCMask == SystemZ::CCMASK_CMP_LE) 2543 return SystemZ::CCMASK_TM_MSB_0; 2544 if (CCMask == SystemZ::CCMASK_CMP_GT) 2545 return SystemZ::CCMASK_TM_MSB_1; 2546 } 2547 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2548 if (CCMask == SystemZ::CCMASK_CMP_LT) 2549 return SystemZ::CCMASK_TM_MSB_0; 2550 if (CCMask == SystemZ::CCMASK_CMP_GE) 2551 return SystemZ::CCMASK_TM_MSB_1; 2552 } 2553 2554 // If there are just two bits, we can do equality checks for Low and High 2555 // as well. 2556 if (Mask == Low + High) { 2557 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2558 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2559 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2560 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2561 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2562 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2563 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2564 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2565 } 2566 2567 // Looks like we've exhausted our options. 2568 return 0; 2569 } 2570 2571 // See whether C can be implemented as a TEST UNDER MASK instruction. 2572 // Update the arguments with the TM version if so. 2573 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2574 Comparison &C) { 2575 // Check that we have a comparison with a constant. 2576 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2577 if (!ConstOp1) 2578 return; 2579 uint64_t CmpVal = ConstOp1->getZExtValue(); 2580 2581 // Check whether the nonconstant input is an AND with a constant mask. 2582 Comparison NewC(C); 2583 uint64_t MaskVal; 2584 ConstantSDNode *Mask = nullptr; 2585 if (C.Op0.getOpcode() == ISD::AND) { 2586 NewC.Op0 = C.Op0.getOperand(0); 2587 NewC.Op1 = C.Op0.getOperand(1); 2588 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2589 if (!Mask) 2590 return; 2591 MaskVal = Mask->getZExtValue(); 2592 } else { 2593 // There is no instruction to compare with a 64-bit immediate 2594 // so use TMHH instead if possible. We need an unsigned ordered 2595 // comparison with an i64 immediate. 2596 if (NewC.Op0.getValueType() != MVT::i64 || 2597 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2598 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2599 NewC.ICmpType == SystemZICMP::SignedOnly) 2600 return; 2601 // Convert LE and GT comparisons into LT and GE. 2602 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2603 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2604 if (CmpVal == uint64_t(-1)) 2605 return; 2606 CmpVal += 1; 2607 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2608 } 2609 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2610 // be masked off without changing the result. 2611 MaskVal = -(CmpVal & -CmpVal); 2612 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2613 } 2614 if (!MaskVal) 2615 return; 2616 2617 // Check whether the combination of mask, comparison value and comparison 2618 // type are suitable. 2619 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2620 unsigned NewCCMask, ShiftVal; 2621 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2622 NewC.Op0.getOpcode() == ISD::SHL && 2623 isSimpleShift(NewC.Op0, ShiftVal) && 2624 (MaskVal >> ShiftVal != 0) && 2625 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2626 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2627 MaskVal >> ShiftVal, 2628 CmpVal >> ShiftVal, 2629 SystemZICMP::Any))) { 2630 NewC.Op0 = NewC.Op0.getOperand(0); 2631 MaskVal >>= ShiftVal; 2632 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2633 NewC.Op0.getOpcode() == ISD::SRL && 2634 isSimpleShift(NewC.Op0, ShiftVal) && 2635 (MaskVal << ShiftVal != 0) && 2636 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2637 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2638 MaskVal << ShiftVal, 2639 CmpVal << ShiftVal, 2640 SystemZICMP::UnsignedOnly))) { 2641 NewC.Op0 = NewC.Op0.getOperand(0); 2642 MaskVal <<= ShiftVal; 2643 } else { 2644 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2645 NewC.ICmpType); 2646 if (!NewCCMask) 2647 return; 2648 } 2649 2650 // Go ahead and make the change. 2651 C.Opcode = SystemZISD::TM; 2652 C.Op0 = NewC.Op0; 2653 if (Mask && Mask->getZExtValue() == MaskVal) 2654 C.Op1 = SDValue(Mask, 0); 2655 else 2656 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2657 C.CCValid = SystemZ::CCMASK_TM; 2658 C.CCMask = NewCCMask; 2659 } 2660 2661 // See whether the comparison argument contains a redundant AND 2662 // and remove it if so. This sometimes happens due to the generic 2663 // BRCOND expansion. 2664 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2665 Comparison &C) { 2666 if (C.Op0.getOpcode() != ISD::AND) 2667 return; 2668 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2669 if (!Mask) 2670 return; 2671 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2672 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2673 return; 2674 2675 C.Op0 = C.Op0.getOperand(0); 2676 } 2677 2678 // Return a Comparison that tests the condition-code result of intrinsic 2679 // node Call against constant integer CC using comparison code Cond. 2680 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2681 // and CCValid is the set of possible condition-code results. 2682 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2683 SDValue Call, unsigned CCValid, uint64_t CC, 2684 ISD::CondCode Cond) { 2685 Comparison C(Call, SDValue(), SDValue()); 2686 C.Opcode = Opcode; 2687 C.CCValid = CCValid; 2688 if (Cond == ISD::SETEQ) 2689 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2690 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2691 else if (Cond == ISD::SETNE) 2692 // ...and the inverse of that. 2693 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2694 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2695 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2696 // always true for CC>3. 2697 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2698 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2699 // ...and the inverse of that. 2700 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2701 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2702 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2703 // always true for CC>3. 2704 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2705 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2706 // ...and the inverse of that. 2707 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2708 else 2709 llvm_unreachable("Unexpected integer comparison type"); 2710 C.CCMask &= CCValid; 2711 return C; 2712 } 2713 2714 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2715 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2716 ISD::CondCode Cond, const SDLoc &DL, 2717 SDValue Chain = SDValue(), 2718 bool IsSignaling = false) { 2719 if (CmpOp1.getOpcode() == ISD::Constant) { 2720 assert(!Chain); 2721 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2722 unsigned Opcode, CCValid; 2723 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2724 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2725 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2726 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2727 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2728 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2729 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2730 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2731 } 2732 Comparison C(CmpOp0, CmpOp1, Chain); 2733 C.CCMask = CCMaskForCondCode(Cond); 2734 if (C.Op0.getValueType().isFloatingPoint()) { 2735 C.CCValid = SystemZ::CCMASK_FCMP; 2736 if (!C.Chain) 2737 C.Opcode = SystemZISD::FCMP; 2738 else if (!IsSignaling) 2739 C.Opcode = SystemZISD::STRICT_FCMP; 2740 else 2741 C.Opcode = SystemZISD::STRICT_FCMPS; 2742 adjustForFNeg(C); 2743 } else { 2744 assert(!C.Chain); 2745 C.CCValid = SystemZ::CCMASK_ICMP; 2746 C.Opcode = SystemZISD::ICMP; 2747 // Choose the type of comparison. Equality and inequality tests can 2748 // use either signed or unsigned comparisons. The choice also doesn't 2749 // matter if both sign bits are known to be clear. In those cases we 2750 // want to give the main isel code the freedom to choose whichever 2751 // form fits best. 2752 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2753 C.CCMask == SystemZ::CCMASK_CMP_NE || 2754 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2755 C.ICmpType = SystemZICMP::Any; 2756 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2757 C.ICmpType = SystemZICMP::UnsignedOnly; 2758 else 2759 C.ICmpType = SystemZICMP::SignedOnly; 2760 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2761 adjustForRedundantAnd(DAG, DL, C); 2762 adjustZeroCmp(DAG, DL, C); 2763 adjustSubwordCmp(DAG, DL, C); 2764 adjustForSubtraction(DAG, DL, C); 2765 adjustForLTGFR(C); 2766 adjustICmpTruncate(DAG, DL, C); 2767 } 2768 2769 if (shouldSwapCmpOperands(C)) { 2770 std::swap(C.Op0, C.Op1); 2771 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2772 } 2773 2774 adjustForTestUnderMask(DAG, DL, C); 2775 return C; 2776 } 2777 2778 // Emit the comparison instruction described by C. 2779 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2780 if (!C.Op1.getNode()) { 2781 SDNode *Node; 2782 switch (C.Op0.getOpcode()) { 2783 case ISD::INTRINSIC_W_CHAIN: 2784 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2785 return SDValue(Node, 0); 2786 case ISD::INTRINSIC_WO_CHAIN: 2787 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2788 return SDValue(Node, Node->getNumValues() - 1); 2789 default: 2790 llvm_unreachable("Invalid comparison operands"); 2791 } 2792 } 2793 if (C.Opcode == SystemZISD::ICMP) 2794 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2795 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2796 if (C.Opcode == SystemZISD::TM) { 2797 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2798 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2799 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2800 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2801 } 2802 if (C.Chain) { 2803 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2804 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2805 } 2806 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2807 } 2808 2809 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2810 // 64 bits. Extend is the extension type to use. Store the high part 2811 // in Hi and the low part in Lo. 2812 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2813 SDValue Op0, SDValue Op1, SDValue &Hi, 2814 SDValue &Lo) { 2815 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2816 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2817 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2818 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2819 DAG.getConstant(32, DL, MVT::i64)); 2820 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2821 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2822 } 2823 2824 // Lower a binary operation that produces two VT results, one in each 2825 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2826 // and Opcode performs the GR128 operation. Store the even register result 2827 // in Even and the odd register result in Odd. 2828 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2829 unsigned Opcode, SDValue Op0, SDValue Op1, 2830 SDValue &Even, SDValue &Odd) { 2831 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2832 bool Is32Bit = is32Bit(VT); 2833 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2834 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2835 } 2836 2837 // Return an i32 value that is 1 if the CC value produced by CCReg is 2838 // in the mask CCMask and 0 otherwise. CC is known to have a value 2839 // in CCValid, so other values can be ignored. 2840 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2841 unsigned CCValid, unsigned CCMask) { 2842 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2843 DAG.getConstant(0, DL, MVT::i32), 2844 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2845 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2846 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2847 } 2848 2849 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2850 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2851 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2852 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2853 // floating-point comparisons. 2854 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2855 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2856 switch (CC) { 2857 case ISD::SETOEQ: 2858 case ISD::SETEQ: 2859 switch (Mode) { 2860 case CmpMode::Int: return SystemZISD::VICMPE; 2861 case CmpMode::FP: return SystemZISD::VFCMPE; 2862 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2863 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2864 } 2865 llvm_unreachable("Bad mode"); 2866 2867 case ISD::SETOGE: 2868 case ISD::SETGE: 2869 switch (Mode) { 2870 case CmpMode::Int: return 0; 2871 case CmpMode::FP: return SystemZISD::VFCMPHE; 2872 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2873 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2874 } 2875 llvm_unreachable("Bad mode"); 2876 2877 case ISD::SETOGT: 2878 case ISD::SETGT: 2879 switch (Mode) { 2880 case CmpMode::Int: return SystemZISD::VICMPH; 2881 case CmpMode::FP: return SystemZISD::VFCMPH; 2882 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2883 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2884 } 2885 llvm_unreachable("Bad mode"); 2886 2887 case ISD::SETUGT: 2888 switch (Mode) { 2889 case CmpMode::Int: return SystemZISD::VICMPHL; 2890 case CmpMode::FP: return 0; 2891 case CmpMode::StrictFP: return 0; 2892 case CmpMode::SignalingFP: return 0; 2893 } 2894 llvm_unreachable("Bad mode"); 2895 2896 default: 2897 return 0; 2898 } 2899 } 2900 2901 // Return the SystemZISD vector comparison operation for CC or its inverse, 2902 // or 0 if neither can be done directly. Indicate in Invert whether the 2903 // result is for the inverse of CC. Mode is as above. 2904 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2905 bool &Invert) { 2906 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2907 Invert = false; 2908 return Opcode; 2909 } 2910 2911 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2912 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2913 Invert = true; 2914 return Opcode; 2915 } 2916 2917 return 0; 2918 } 2919 2920 // Return a v2f64 that contains the extended form of elements Start and Start+1 2921 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2922 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2923 SDValue Op, SDValue Chain) { 2924 int Mask[] = { Start, -1, Start + 1, -1 }; 2925 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2926 if (Chain) { 2927 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2928 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2929 } 2930 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2931 } 2932 2933 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2934 // producing a result of type VT. If Chain is nonnull, return the strict form. 2935 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2936 const SDLoc &DL, EVT VT, 2937 SDValue CmpOp0, 2938 SDValue CmpOp1, 2939 SDValue Chain) const { 2940 // There is no hardware support for v4f32 (unless we have the vector 2941 // enhancements facility 1), so extend the vector into two v2f64s 2942 // and compare those. 2943 if (CmpOp0.getValueType() == MVT::v4f32 && 2944 !Subtarget.hasVectorEnhancements1()) { 2945 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2946 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2947 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2948 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2949 if (Chain) { 2950 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2951 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2952 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2953 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2954 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2955 H1.getValue(1), L1.getValue(1), 2956 HRes.getValue(1), LRes.getValue(1) }; 2957 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2958 SDValue Ops[2] = { Res, NewChain }; 2959 return DAG.getMergeValues(Ops, DL); 2960 } 2961 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2962 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2963 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2964 } 2965 if (Chain) { 2966 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2967 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2968 } 2969 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2970 } 2971 2972 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2973 // an integer mask of type VT. If Chain is nonnull, we have a strict 2974 // floating-point comparison. If in addition IsSignaling is true, we have 2975 // a strict signaling floating-point comparison. 2976 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2977 const SDLoc &DL, EVT VT, 2978 ISD::CondCode CC, 2979 SDValue CmpOp0, 2980 SDValue CmpOp1, 2981 SDValue Chain, 2982 bool IsSignaling) const { 2983 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2984 assert (!Chain || IsFP); 2985 assert (!IsSignaling || Chain); 2986 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2987 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2988 bool Invert = false; 2989 SDValue Cmp; 2990 switch (CC) { 2991 // Handle tests for order using (or (ogt y x) (oge x y)). 2992 case ISD::SETUO: 2993 Invert = true; 2994 LLVM_FALLTHROUGH; 2995 case ISD::SETO: { 2996 assert(IsFP && "Unexpected integer comparison"); 2997 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2998 DL, VT, CmpOp1, CmpOp0, Chain); 2999 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 3000 DL, VT, CmpOp0, CmpOp1, Chain); 3001 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 3002 if (Chain) 3003 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3004 LT.getValue(1), GE.getValue(1)); 3005 break; 3006 } 3007 3008 // Handle <> tests using (or (ogt y x) (ogt x y)). 3009 case ISD::SETUEQ: 3010 Invert = true; 3011 LLVM_FALLTHROUGH; 3012 case ISD::SETONE: { 3013 assert(IsFP && "Unexpected integer comparison"); 3014 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3015 DL, VT, CmpOp1, CmpOp0, Chain); 3016 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 3017 DL, VT, CmpOp0, CmpOp1, Chain); 3018 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 3019 if (Chain) 3020 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 3021 LT.getValue(1), GT.getValue(1)); 3022 break; 3023 } 3024 3025 // Otherwise a single comparison is enough. It doesn't really 3026 // matter whether we try the inversion or the swap first, since 3027 // there are no cases where both work. 3028 default: 3029 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3030 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 3031 else { 3032 CC = ISD::getSetCCSwappedOperands(CC); 3033 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 3034 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 3035 else 3036 llvm_unreachable("Unhandled comparison"); 3037 } 3038 if (Chain) 3039 Chain = Cmp.getValue(1); 3040 break; 3041 } 3042 if (Invert) { 3043 SDValue Mask = 3044 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 3045 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 3046 } 3047 if (Chain && Chain.getNode() != Cmp.getNode()) { 3048 SDValue Ops[2] = { Cmp, Chain }; 3049 Cmp = DAG.getMergeValues(Ops, DL); 3050 } 3051 return Cmp; 3052 } 3053 3054 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 3055 SelectionDAG &DAG) const { 3056 SDValue CmpOp0 = Op.getOperand(0); 3057 SDValue CmpOp1 = Op.getOperand(1); 3058 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3059 SDLoc DL(Op); 3060 EVT VT = Op.getValueType(); 3061 if (VT.isVector()) 3062 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 3063 3064 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3065 SDValue CCReg = emitCmp(DAG, DL, C); 3066 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3067 } 3068 3069 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 3070 SelectionDAG &DAG, 3071 bool IsSignaling) const { 3072 SDValue Chain = Op.getOperand(0); 3073 SDValue CmpOp0 = Op.getOperand(1); 3074 SDValue CmpOp1 = Op.getOperand(2); 3075 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 3076 SDLoc DL(Op); 3077 EVT VT = Op.getNode()->getValueType(0); 3078 if (VT.isVector()) { 3079 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 3080 Chain, IsSignaling); 3081 return Res.getValue(Op.getResNo()); 3082 } 3083 3084 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 3085 SDValue CCReg = emitCmp(DAG, DL, C); 3086 CCReg->setFlags(Op->getFlags()); 3087 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 3088 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 3089 return DAG.getMergeValues(Ops, DL); 3090 } 3091 3092 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 3093 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 3094 SDValue CmpOp0 = Op.getOperand(2); 3095 SDValue CmpOp1 = Op.getOperand(3); 3096 SDValue Dest = Op.getOperand(4); 3097 SDLoc DL(Op); 3098 3099 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3100 SDValue CCReg = emitCmp(DAG, DL, C); 3101 return DAG.getNode( 3102 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 3103 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3104 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 3105 } 3106 3107 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 3108 // allowing Pos and Neg to be wider than CmpOp. 3109 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 3110 return (Neg.getOpcode() == ISD::SUB && 3111 Neg.getOperand(0).getOpcode() == ISD::Constant && 3112 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 3113 Neg.getOperand(1) == Pos && 3114 (Pos == CmpOp || 3115 (Pos.getOpcode() == ISD::SIGN_EXTEND && 3116 Pos.getOperand(0) == CmpOp))); 3117 } 3118 3119 // Return the absolute or negative absolute of Op; IsNegative decides which. 3120 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 3121 bool IsNegative) { 3122 Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op); 3123 if (IsNegative) 3124 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 3125 DAG.getConstant(0, DL, Op.getValueType()), Op); 3126 return Op; 3127 } 3128 3129 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 3130 SelectionDAG &DAG) const { 3131 SDValue CmpOp0 = Op.getOperand(0); 3132 SDValue CmpOp1 = Op.getOperand(1); 3133 SDValue TrueOp = Op.getOperand(2); 3134 SDValue FalseOp = Op.getOperand(3); 3135 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3136 SDLoc DL(Op); 3137 3138 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 3139 3140 // Check for absolute and negative-absolute selections, including those 3141 // where the comparison value is sign-extended (for LPGFR and LNGFR). 3142 // This check supplements the one in DAGCombiner. 3143 if (C.Opcode == SystemZISD::ICMP && 3144 C.CCMask != SystemZ::CCMASK_CMP_EQ && 3145 C.CCMask != SystemZ::CCMASK_CMP_NE && 3146 C.Op1.getOpcode() == ISD::Constant && 3147 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 3148 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 3149 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 3150 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 3151 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 3152 } 3153 3154 SDValue CCReg = emitCmp(DAG, DL, C); 3155 SDValue Ops[] = {TrueOp, FalseOp, 3156 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 3157 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 3158 3159 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 3160 } 3161 3162 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 3163 SelectionDAG &DAG) const { 3164 SDLoc DL(Node); 3165 const GlobalValue *GV = Node->getGlobal(); 3166 int64_t Offset = Node->getOffset(); 3167 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3168 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 3169 3170 SDValue Result; 3171 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3172 if (isInt<32>(Offset)) { 3173 // Assign anchors at 1<<12 byte boundaries. 3174 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3175 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3176 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3177 3178 // The offset can be folded into the address if it is aligned to a 3179 // halfword. 3180 Offset -= Anchor; 3181 if (Offset != 0 && (Offset & 1) == 0) { 3182 SDValue Full = 3183 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3184 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3185 Offset = 0; 3186 } 3187 } else { 3188 // Conservatively load a constant offset greater than 32 bits into a 3189 // register below. 3190 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3191 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3192 } 3193 } else { 3194 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3195 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3196 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3197 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3198 } 3199 3200 // If there was a non-zero offset that we didn't fold, create an explicit 3201 // addition for it. 3202 if (Offset != 0) 3203 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3204 DAG.getConstant(Offset, DL, PtrVT)); 3205 3206 return Result; 3207 } 3208 3209 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3210 SelectionDAG &DAG, 3211 unsigned Opcode, 3212 SDValue GOTOffset) const { 3213 SDLoc DL(Node); 3214 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3215 SDValue Chain = DAG.getEntryNode(); 3216 SDValue Glue; 3217 3218 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3219 CallingConv::GHC) 3220 report_fatal_error("In GHC calling convention TLS is not supported"); 3221 3222 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3223 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3224 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3225 Glue = Chain.getValue(1); 3226 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3227 Glue = Chain.getValue(1); 3228 3229 // The first call operand is the chain and the second is the TLS symbol. 3230 SmallVector<SDValue, 8> Ops; 3231 Ops.push_back(Chain); 3232 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3233 Node->getValueType(0), 3234 0, 0)); 3235 3236 // Add argument registers to the end of the list so that they are 3237 // known live into the call. 3238 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3239 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3240 3241 // Add a register mask operand representing the call-preserved registers. 3242 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3243 const uint32_t *Mask = 3244 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3245 assert(Mask && "Missing call preserved mask for calling convention"); 3246 Ops.push_back(DAG.getRegisterMask(Mask)); 3247 3248 // Glue the call to the argument copies. 3249 Ops.push_back(Glue); 3250 3251 // Emit the call. 3252 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3253 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3254 Glue = Chain.getValue(1); 3255 3256 // Copy the return value from %r2. 3257 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3258 } 3259 3260 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3261 SelectionDAG &DAG) const { 3262 SDValue Chain = DAG.getEntryNode(); 3263 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3264 3265 // The high part of the thread pointer is in access register 0. 3266 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3267 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3268 3269 // The low part of the thread pointer is in access register 1. 3270 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3271 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3272 3273 // Merge them into a single 64-bit address. 3274 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3275 DAG.getConstant(32, DL, PtrVT)); 3276 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3277 } 3278 3279 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3280 SelectionDAG &DAG) const { 3281 if (DAG.getTarget().useEmulatedTLS()) 3282 return LowerToTLSEmulatedModel(Node, DAG); 3283 SDLoc DL(Node); 3284 const GlobalValue *GV = Node->getGlobal(); 3285 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3286 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3287 3288 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3289 CallingConv::GHC) 3290 report_fatal_error("In GHC calling convention TLS is not supported"); 3291 3292 SDValue TP = lowerThreadPointer(DL, DAG); 3293 3294 // Get the offset of GA from the thread pointer, based on the TLS model. 3295 SDValue Offset; 3296 switch (model) { 3297 case TLSModel::GeneralDynamic: { 3298 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3299 SystemZConstantPoolValue *CPV = 3300 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3301 3302 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3303 Offset = DAG.getLoad( 3304 PtrVT, DL, DAG.getEntryNode(), Offset, 3305 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3306 3307 // Call __tls_get_offset to retrieve the offset. 3308 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3309 break; 3310 } 3311 3312 case TLSModel::LocalDynamic: { 3313 // Load the GOT offset of the module ID. 3314 SystemZConstantPoolValue *CPV = 3315 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3316 3317 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3318 Offset = DAG.getLoad( 3319 PtrVT, DL, DAG.getEntryNode(), Offset, 3320 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3321 3322 // Call __tls_get_offset to retrieve the module base offset. 3323 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3324 3325 // Note: The SystemZLDCleanupPass will remove redundant computations 3326 // of the module base offset. Count total number of local-dynamic 3327 // accesses to trigger execution of that pass. 3328 SystemZMachineFunctionInfo* MFI = 3329 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3330 MFI->incNumLocalDynamicTLSAccesses(); 3331 3332 // Add the per-symbol offset. 3333 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3334 3335 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3336 DTPOffset = DAG.getLoad( 3337 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3338 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3339 3340 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3341 break; 3342 } 3343 3344 case TLSModel::InitialExec: { 3345 // Load the offset from the GOT. 3346 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3347 SystemZII::MO_INDNTPOFF); 3348 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3349 Offset = 3350 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3351 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3352 break; 3353 } 3354 3355 case TLSModel::LocalExec: { 3356 // Force the offset into the constant pool and load it from there. 3357 SystemZConstantPoolValue *CPV = 3358 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3359 3360 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3361 Offset = DAG.getLoad( 3362 PtrVT, DL, DAG.getEntryNode(), Offset, 3363 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3364 break; 3365 } 3366 } 3367 3368 // Add the base and offset together. 3369 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3370 } 3371 3372 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3373 SelectionDAG &DAG) const { 3374 SDLoc DL(Node); 3375 const BlockAddress *BA = Node->getBlockAddress(); 3376 int64_t Offset = Node->getOffset(); 3377 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3378 3379 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3380 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3381 return Result; 3382 } 3383 3384 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3385 SelectionDAG &DAG) const { 3386 SDLoc DL(JT); 3387 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3388 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3389 3390 // Use LARL to load the address of the table. 3391 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3392 } 3393 3394 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3395 SelectionDAG &DAG) const { 3396 SDLoc DL(CP); 3397 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3398 3399 SDValue Result; 3400 if (CP->isMachineConstantPoolEntry()) 3401 Result = 3402 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 3403 else 3404 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 3405 CP->getOffset()); 3406 3407 // Use LARL to load the address of the constant pool entry. 3408 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3409 } 3410 3411 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3412 SelectionDAG &DAG) const { 3413 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 3414 MachineFunction &MF = DAG.getMachineFunction(); 3415 MachineFrameInfo &MFI = MF.getFrameInfo(); 3416 MFI.setFrameAddressIsTaken(true); 3417 3418 SDLoc DL(Op); 3419 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3420 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3421 3422 // By definition, the frame address is the address of the back chain. (In 3423 // the case of packed stack without backchain, return the address where the 3424 // backchain would have been stored. This will either be an unused space or 3425 // contain a saved register). 3426 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3427 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3428 3429 // FIXME The frontend should detect this case. 3430 if (Depth > 0) { 3431 report_fatal_error("Unsupported stack frame traversal count"); 3432 } 3433 3434 return BackChain; 3435 } 3436 3437 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3438 SelectionDAG &DAG) const { 3439 MachineFunction &MF = DAG.getMachineFunction(); 3440 MachineFrameInfo &MFI = MF.getFrameInfo(); 3441 MFI.setReturnAddressIsTaken(true); 3442 3443 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3444 return SDValue(); 3445 3446 SDLoc DL(Op); 3447 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3448 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3449 3450 // FIXME The frontend should detect this case. 3451 if (Depth > 0) { 3452 report_fatal_error("Unsupported stack frame traversal count"); 3453 } 3454 3455 // Return R14D, which has the return address. Mark it an implicit live-in. 3456 Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3457 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3458 } 3459 3460 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3461 SelectionDAG &DAG) const { 3462 SDLoc DL(Op); 3463 SDValue In = Op.getOperand(0); 3464 EVT InVT = In.getValueType(); 3465 EVT ResVT = Op.getValueType(); 3466 3467 // Convert loads directly. This is normally done by DAGCombiner, 3468 // but we need this case for bitcasts that are created during lowering 3469 // and which are then lowered themselves. 3470 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3471 if (ISD::isNormalLoad(LoadN)) { 3472 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3473 LoadN->getBasePtr(), LoadN->getMemOperand()); 3474 // Update the chain uses. 3475 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3476 return NewLoad; 3477 } 3478 3479 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3480 SDValue In64; 3481 if (Subtarget.hasHighWord()) { 3482 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3483 MVT::i64); 3484 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3485 MVT::i64, SDValue(U64, 0), In); 3486 } else { 3487 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3488 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3489 DAG.getConstant(32, DL, MVT::i64)); 3490 } 3491 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3492 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3493 DL, MVT::f32, Out64); 3494 } 3495 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3496 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3497 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3498 MVT::f64, SDValue(U64, 0), In); 3499 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3500 if (Subtarget.hasHighWord()) 3501 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3502 MVT::i32, Out64); 3503 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3504 DAG.getConstant(32, DL, MVT::i64)); 3505 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3506 } 3507 llvm_unreachable("Unexpected bitcast combination"); 3508 } 3509 3510 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3511 SelectionDAG &DAG) const { 3512 MachineFunction &MF = DAG.getMachineFunction(); 3513 SystemZMachineFunctionInfo *FuncInfo = 3514 MF.getInfo<SystemZMachineFunctionInfo>(); 3515 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3516 3517 SDValue Chain = Op.getOperand(0); 3518 SDValue Addr = Op.getOperand(1); 3519 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3520 SDLoc DL(Op); 3521 3522 // The initial values of each field. 3523 const unsigned NumFields = 4; 3524 SDValue Fields[NumFields] = { 3525 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3526 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3527 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3528 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3529 }; 3530 3531 // Store each field into its respective slot. 3532 SDValue MemOps[NumFields]; 3533 unsigned Offset = 0; 3534 for (unsigned I = 0; I < NumFields; ++I) { 3535 SDValue FieldAddr = Addr; 3536 if (Offset != 0) 3537 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3538 DAG.getIntPtrConstant(Offset, DL)); 3539 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3540 MachinePointerInfo(SV, Offset)); 3541 Offset += 8; 3542 } 3543 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3544 } 3545 3546 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3547 SelectionDAG &DAG) const { 3548 SDValue Chain = Op.getOperand(0); 3549 SDValue DstPtr = Op.getOperand(1); 3550 SDValue SrcPtr = Op.getOperand(2); 3551 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3552 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3553 SDLoc DL(Op); 3554 3555 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3556 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3557 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3558 MachinePointerInfo(SrcSV)); 3559 } 3560 3561 SDValue 3562 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op, 3563 SelectionDAG &DAG) const { 3564 if (Subtarget.isTargetXPLINK64()) 3565 return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG); 3566 else 3567 return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG); 3568 } 3569 3570 SDValue 3571 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op, 3572 SelectionDAG &DAG) const { 3573 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3574 MachineFunction &MF = DAG.getMachineFunction(); 3575 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3576 SDValue Chain = Op.getOperand(0); 3577 SDValue Size = Op.getOperand(1); 3578 SDValue Align = Op.getOperand(2); 3579 SDLoc DL(Op); 3580 3581 // If user has set the no alignment function attribute, ignore 3582 // alloca alignments. 3583 uint64_t AlignVal = 3584 (RealignOpt ? dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3585 3586 uint64_t StackAlign = TFI->getStackAlignment(); 3587 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3588 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3589 3590 SDValue NeededSpace = Size; 3591 3592 // Add extra space for alignment if needed. 3593 EVT PtrVT = getPointerTy(MF.getDataLayout()); 3594 if (ExtraAlignSpace) 3595 NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace, 3596 DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 3597 3598 bool IsSigned = false; 3599 bool DoesNotReturn = false; 3600 bool IsReturnValueUsed = false; 3601 EVT VT = Op.getValueType(); 3602 SDValue AllocaCall = 3603 makeExternalCall(Chain, DAG, "@@ALCAXP", VT, makeArrayRef(NeededSpace), 3604 CallingConv::C, IsSigned, DL, DoesNotReturn, 3605 IsReturnValueUsed) 3606 .first; 3607 3608 // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue 3609 // to end of call in order to ensure it isn't broken up from the call 3610 // sequence. 3611 auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>(); 3612 Register SPReg = Regs.getStackPointerRegister(); 3613 Chain = AllocaCall.getValue(1); 3614 SDValue Glue = AllocaCall.getValue(2); 3615 SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue); 3616 Chain = NewSPRegNode.getValue(1); 3617 3618 MVT PtrMVT = getPointerMemTy(MF.getDataLayout()); 3619 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT); 3620 SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust); 3621 3622 // Dynamically realign if needed. 3623 if (ExtraAlignSpace) { 3624 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3625 DAG.getConstant(ExtraAlignSpace, DL, PtrVT)); 3626 Result = DAG.getNode(ISD::AND, DL, PtrVT, Result, 3627 DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT)); 3628 } 3629 3630 SDValue Ops[2] = {Result, Chain}; 3631 return DAG.getMergeValues(Ops, DL); 3632 } 3633 3634 SDValue 3635 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op, 3636 SelectionDAG &DAG) const { 3637 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3638 MachineFunction &MF = DAG.getMachineFunction(); 3639 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3640 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3641 3642 SDValue Chain = Op.getOperand(0); 3643 SDValue Size = Op.getOperand(1); 3644 SDValue Align = Op.getOperand(2); 3645 SDLoc DL(Op); 3646 3647 // If user has set the no alignment function attribute, ignore 3648 // alloca alignments. 3649 uint64_t AlignVal = 3650 (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3651 3652 uint64_t StackAlign = TFI->getStackAlignment(); 3653 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3654 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3655 3656 Register SPReg = getStackPointerRegisterToSaveRestore(); 3657 SDValue NeededSpace = Size; 3658 3659 // Get a reference to the stack pointer. 3660 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3661 3662 // If we need a backchain, save it now. 3663 SDValue Backchain; 3664 if (StoreBackchain) 3665 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 3666 MachinePointerInfo()); 3667 3668 // Add extra space for alignment if needed. 3669 if (ExtraAlignSpace) 3670 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3671 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3672 3673 // Get the new stack pointer value. 3674 SDValue NewSP; 3675 if (hasInlineStackProbe(MF)) { 3676 NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, 3677 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); 3678 Chain = NewSP.getValue(1); 3679 } 3680 else { 3681 NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3682 // Copy the new stack pointer back. 3683 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3684 } 3685 3686 // The allocated data lives above the 160 bytes allocated for the standard 3687 // frame, plus any outgoing stack arguments. We don't know how much that 3688 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3689 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3690 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3691 3692 // Dynamically realign if needed. 3693 if (RequiredAlign > StackAlign) { 3694 Result = 3695 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3696 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3697 Result = 3698 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3699 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3700 } 3701 3702 if (StoreBackchain) 3703 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 3704 MachinePointerInfo()); 3705 3706 SDValue Ops[2] = { Result, Chain }; 3707 return DAG.getMergeValues(Ops, DL); 3708 } 3709 3710 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3711 SDValue Op, SelectionDAG &DAG) const { 3712 SDLoc DL(Op); 3713 3714 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3715 } 3716 3717 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3718 SelectionDAG &DAG) const { 3719 EVT VT = Op.getValueType(); 3720 SDLoc DL(Op); 3721 SDValue Ops[2]; 3722 if (is32Bit(VT)) 3723 // Just do a normal 64-bit multiplication and extract the results. 3724 // We define this so that it can be used for constant division. 3725 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3726 Op.getOperand(1), Ops[1], Ops[0]); 3727 else if (Subtarget.hasMiscellaneousExtensions2()) 3728 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3729 // the high result in the even register. ISD::SMUL_LOHI is defined to 3730 // return the low half first, so the results are in reverse order. 3731 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3732 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3733 else { 3734 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3735 // 3736 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3737 // 3738 // but using the fact that the upper halves are either all zeros 3739 // or all ones: 3740 // 3741 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3742 // 3743 // and grouping the right terms together since they are quicker than the 3744 // multiplication: 3745 // 3746 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3747 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3748 SDValue LL = Op.getOperand(0); 3749 SDValue RL = Op.getOperand(1); 3750 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3751 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3752 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3753 // the high result in the even register. ISD::SMUL_LOHI is defined to 3754 // return the low half first, so the results are in reverse order. 3755 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3756 LL, RL, Ops[1], Ops[0]); 3757 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3758 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3759 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3760 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3761 } 3762 return DAG.getMergeValues(Ops, DL); 3763 } 3764 3765 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3766 SelectionDAG &DAG) const { 3767 EVT VT = Op.getValueType(); 3768 SDLoc DL(Op); 3769 SDValue Ops[2]; 3770 if (is32Bit(VT)) 3771 // Just do a normal 64-bit multiplication and extract the results. 3772 // We define this so that it can be used for constant division. 3773 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3774 Op.getOperand(1), Ops[1], Ops[0]); 3775 else 3776 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3777 // the high result in the even register. ISD::UMUL_LOHI is defined to 3778 // return the low half first, so the results are in reverse order. 3779 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3780 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3781 return DAG.getMergeValues(Ops, DL); 3782 } 3783 3784 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3785 SelectionDAG &DAG) const { 3786 SDValue Op0 = Op.getOperand(0); 3787 SDValue Op1 = Op.getOperand(1); 3788 EVT VT = Op.getValueType(); 3789 SDLoc DL(Op); 3790 3791 // We use DSGF for 32-bit division. This means the first operand must 3792 // always be 64-bit, and the second operand should be 32-bit whenever 3793 // that is possible, to improve performance. 3794 if (is32Bit(VT)) 3795 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3796 else if (DAG.ComputeNumSignBits(Op1) > 32) 3797 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3798 3799 // DSG(F) returns the remainder in the even register and the 3800 // quotient in the odd register. 3801 SDValue Ops[2]; 3802 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3803 return DAG.getMergeValues(Ops, DL); 3804 } 3805 3806 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3807 SelectionDAG &DAG) const { 3808 EVT VT = Op.getValueType(); 3809 SDLoc DL(Op); 3810 3811 // DL(G) returns the remainder in the even register and the 3812 // quotient in the odd register. 3813 SDValue Ops[2]; 3814 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3815 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3816 return DAG.getMergeValues(Ops, DL); 3817 } 3818 3819 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3820 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3821 3822 // Get the known-zero masks for each operand. 3823 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3824 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3825 DAG.computeKnownBits(Ops[1])}; 3826 3827 // See if the upper 32 bits of one operand and the lower 32 bits of the 3828 // other are known zero. They are the low and high operands respectively. 3829 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3830 Known[1].Zero.getZExtValue() }; 3831 unsigned High, Low; 3832 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3833 High = 1, Low = 0; 3834 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3835 High = 0, Low = 1; 3836 else 3837 return Op; 3838 3839 SDValue LowOp = Ops[Low]; 3840 SDValue HighOp = Ops[High]; 3841 3842 // If the high part is a constant, we're better off using IILH. 3843 if (HighOp.getOpcode() == ISD::Constant) 3844 return Op; 3845 3846 // If the low part is a constant that is outside the range of LHI, 3847 // then we're better off using IILF. 3848 if (LowOp.getOpcode() == ISD::Constant) { 3849 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3850 if (!isInt<16>(Value)) 3851 return Op; 3852 } 3853 3854 // Check whether the high part is an AND that doesn't change the 3855 // high 32 bits and just masks out low bits. We can skip it if so. 3856 if (HighOp.getOpcode() == ISD::AND && 3857 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3858 SDValue HighOp0 = HighOp.getOperand(0); 3859 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3860 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3861 HighOp = HighOp0; 3862 } 3863 3864 // Take advantage of the fact that all GR32 operations only change the 3865 // low 32 bits by truncating Low to an i32 and inserting it directly 3866 // using a subreg. The interesting cases are those where the truncation 3867 // can be folded. 3868 SDLoc DL(Op); 3869 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3870 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3871 MVT::i64, HighOp, Low32); 3872 } 3873 3874 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3875 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3876 SelectionDAG &DAG) const { 3877 SDNode *N = Op.getNode(); 3878 SDValue LHS = N->getOperand(0); 3879 SDValue RHS = N->getOperand(1); 3880 SDLoc DL(N); 3881 unsigned BaseOp = 0; 3882 unsigned CCValid = 0; 3883 unsigned CCMask = 0; 3884 3885 switch (Op.getOpcode()) { 3886 default: llvm_unreachable("Unknown instruction!"); 3887 case ISD::SADDO: 3888 BaseOp = SystemZISD::SADDO; 3889 CCValid = SystemZ::CCMASK_ARITH; 3890 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3891 break; 3892 case ISD::SSUBO: 3893 BaseOp = SystemZISD::SSUBO; 3894 CCValid = SystemZ::CCMASK_ARITH; 3895 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3896 break; 3897 case ISD::UADDO: 3898 BaseOp = SystemZISD::UADDO; 3899 CCValid = SystemZ::CCMASK_LOGICAL; 3900 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3901 break; 3902 case ISD::USUBO: 3903 BaseOp = SystemZISD::USUBO; 3904 CCValid = SystemZ::CCMASK_LOGICAL; 3905 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3906 break; 3907 } 3908 3909 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3910 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3911 3912 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3913 if (N->getValueType(1) == MVT::i1) 3914 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3915 3916 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3917 } 3918 3919 static bool isAddCarryChain(SDValue Carry) { 3920 while (Carry.getOpcode() == ISD::ADDCARRY) 3921 Carry = Carry.getOperand(2); 3922 return Carry.getOpcode() == ISD::UADDO; 3923 } 3924 3925 static bool isSubBorrowChain(SDValue Carry) { 3926 while (Carry.getOpcode() == ISD::SUBCARRY) 3927 Carry = Carry.getOperand(2); 3928 return Carry.getOpcode() == ISD::USUBO; 3929 } 3930 3931 // Lower ADDCARRY/SUBCARRY nodes. 3932 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3933 SelectionDAG &DAG) const { 3934 3935 SDNode *N = Op.getNode(); 3936 MVT VT = N->getSimpleValueType(0); 3937 3938 // Let legalize expand this if it isn't a legal type yet. 3939 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3940 return SDValue(); 3941 3942 SDValue LHS = N->getOperand(0); 3943 SDValue RHS = N->getOperand(1); 3944 SDValue Carry = Op.getOperand(2); 3945 SDLoc DL(N); 3946 unsigned BaseOp = 0; 3947 unsigned CCValid = 0; 3948 unsigned CCMask = 0; 3949 3950 switch (Op.getOpcode()) { 3951 default: llvm_unreachable("Unknown instruction!"); 3952 case ISD::ADDCARRY: 3953 if (!isAddCarryChain(Carry)) 3954 return SDValue(); 3955 3956 BaseOp = SystemZISD::ADDCARRY; 3957 CCValid = SystemZ::CCMASK_LOGICAL; 3958 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3959 break; 3960 case ISD::SUBCARRY: 3961 if (!isSubBorrowChain(Carry)) 3962 return SDValue(); 3963 3964 BaseOp = SystemZISD::SUBCARRY; 3965 CCValid = SystemZ::CCMASK_LOGICAL; 3966 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3967 break; 3968 } 3969 3970 // Set the condition code from the carry flag. 3971 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3972 DAG.getConstant(CCValid, DL, MVT::i32), 3973 DAG.getConstant(CCMask, DL, MVT::i32)); 3974 3975 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3976 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3977 3978 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3979 if (N->getValueType(1) == MVT::i1) 3980 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3981 3982 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3983 } 3984 3985 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3986 SelectionDAG &DAG) const { 3987 EVT VT = Op.getValueType(); 3988 SDLoc DL(Op); 3989 Op = Op.getOperand(0); 3990 3991 // Handle vector types via VPOPCT. 3992 if (VT.isVector()) { 3993 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3994 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3995 switch (VT.getScalarSizeInBits()) { 3996 case 8: 3997 break; 3998 case 16: { 3999 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4000 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 4001 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 4002 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 4003 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 4004 break; 4005 } 4006 case 32: { 4007 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 4008 DAG.getConstant(0, DL, MVT::i32)); 4009 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4010 break; 4011 } 4012 case 64: { 4013 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 4014 DAG.getConstant(0, DL, MVT::i32)); 4015 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 4016 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 4017 break; 4018 } 4019 default: 4020 llvm_unreachable("Unexpected type"); 4021 } 4022 return Op; 4023 } 4024 4025 // Get the known-zero mask for the operand. 4026 KnownBits Known = DAG.computeKnownBits(Op); 4027 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 4028 if (NumSignificantBits == 0) 4029 return DAG.getConstant(0, DL, VT); 4030 4031 // Skip known-zero high parts of the operand. 4032 int64_t OrigBitSize = VT.getSizeInBits(); 4033 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 4034 BitSize = std::min(BitSize, OrigBitSize); 4035 4036 // The POPCNT instruction counts the number of bits in each byte. 4037 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 4038 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 4039 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4040 4041 // Add up per-byte counts in a binary tree. All bits of Op at 4042 // position larger than BitSize remain zero throughout. 4043 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 4044 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 4045 if (BitSize != OrigBitSize) 4046 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 4047 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 4048 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 4049 } 4050 4051 // Extract overall result from high byte. 4052 if (BitSize > 8) 4053 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 4054 DAG.getConstant(BitSize - 8, DL, VT)); 4055 4056 return Op; 4057 } 4058 4059 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 4060 SelectionDAG &DAG) const { 4061 SDLoc DL(Op); 4062 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 4063 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 4064 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 4065 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 4066 4067 // The only fence that needs an instruction is a sequentially-consistent 4068 // cross-thread fence. 4069 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 4070 FenceSSID == SyncScope::System) { 4071 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 4072 Op.getOperand(0)), 4073 0); 4074 } 4075 4076 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 4077 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 4078 } 4079 4080 // Op is an atomic load. Lower it into a normal volatile load. 4081 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 4082 SelectionDAG &DAG) const { 4083 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4084 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 4085 Node->getChain(), Node->getBasePtr(), 4086 Node->getMemoryVT(), Node->getMemOperand()); 4087 } 4088 4089 // Op is an atomic store. Lower it into a normal volatile store. 4090 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 4091 SelectionDAG &DAG) const { 4092 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4093 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 4094 Node->getBasePtr(), Node->getMemoryVT(), 4095 Node->getMemOperand()); 4096 // We have to enforce sequential consistency by performing a 4097 // serialization operation after the store. 4098 if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent) 4099 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 4100 MVT::Other, Chain), 0); 4101 return Chain; 4102 } 4103 4104 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 4105 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 4106 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 4107 SelectionDAG &DAG, 4108 unsigned Opcode) const { 4109 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4110 4111 // 32-bit operations need no code outside the main loop. 4112 EVT NarrowVT = Node->getMemoryVT(); 4113 EVT WideVT = MVT::i32; 4114 if (NarrowVT == WideVT) 4115 return Op; 4116 4117 int64_t BitSize = NarrowVT.getSizeInBits(); 4118 SDValue ChainIn = Node->getChain(); 4119 SDValue Addr = Node->getBasePtr(); 4120 SDValue Src2 = Node->getVal(); 4121 MachineMemOperand *MMO = Node->getMemOperand(); 4122 SDLoc DL(Node); 4123 EVT PtrVT = Addr.getValueType(); 4124 4125 // Convert atomic subtracts of constants into additions. 4126 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 4127 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 4128 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 4129 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 4130 } 4131 4132 // Get the address of the containing word. 4133 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4134 DAG.getConstant(-4, DL, PtrVT)); 4135 4136 // Get the number of bits that the word must be rotated left in order 4137 // to bring the field to the top bits of a GR32. 4138 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4139 DAG.getConstant(3, DL, PtrVT)); 4140 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4141 4142 // Get the complementing shift amount, for rotating a field in the top 4143 // bits back to its proper position. 4144 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4145 DAG.getConstant(0, DL, WideVT), BitShift); 4146 4147 // Extend the source operand to 32 bits and prepare it for the inner loop. 4148 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 4149 // operations require the source to be shifted in advance. (This shift 4150 // can be folded if the source is constant.) For AND and NAND, the lower 4151 // bits must be set, while for other opcodes they should be left clear. 4152 if (Opcode != SystemZISD::ATOMIC_SWAPW) 4153 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 4154 DAG.getConstant(32 - BitSize, DL, WideVT)); 4155 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 4156 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 4157 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 4158 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 4159 4160 // Construct the ATOMIC_LOADW_* node. 4161 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 4162 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 4163 DAG.getConstant(BitSize, DL, WideVT) }; 4164 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 4165 NarrowVT, MMO); 4166 4167 // Rotate the result of the final CS so that the field is in the lower 4168 // bits of a GR32, then truncate it. 4169 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 4170 DAG.getConstant(BitSize, DL, WideVT)); 4171 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 4172 4173 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 4174 return DAG.getMergeValues(RetOps, DL); 4175 } 4176 4177 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 4178 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 4179 // operations into additions. 4180 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 4181 SelectionDAG &DAG) const { 4182 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4183 EVT MemVT = Node->getMemoryVT(); 4184 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 4185 // A full-width operation. 4186 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 4187 SDValue Src2 = Node->getVal(); 4188 SDValue NegSrc2; 4189 SDLoc DL(Src2); 4190 4191 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 4192 // Use an addition if the operand is constant and either LAA(G) is 4193 // available or the negative value is in the range of A(G)FHI. 4194 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 4195 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 4196 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 4197 } else if (Subtarget.hasInterlockedAccess1()) 4198 // Use LAA(G) if available. 4199 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 4200 Src2); 4201 4202 if (NegSrc2.getNode()) 4203 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 4204 Node->getChain(), Node->getBasePtr(), NegSrc2, 4205 Node->getMemOperand()); 4206 4207 // Use the node as-is. 4208 return Op; 4209 } 4210 4211 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 4212 } 4213 4214 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 4215 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 4216 SelectionDAG &DAG) const { 4217 auto *Node = cast<AtomicSDNode>(Op.getNode()); 4218 SDValue ChainIn = Node->getOperand(0); 4219 SDValue Addr = Node->getOperand(1); 4220 SDValue CmpVal = Node->getOperand(2); 4221 SDValue SwapVal = Node->getOperand(3); 4222 MachineMemOperand *MMO = Node->getMemOperand(); 4223 SDLoc DL(Node); 4224 4225 // We have native support for 32-bit and 64-bit compare and swap, but we 4226 // still need to expand extracting the "success" result from the CC. 4227 EVT NarrowVT = Node->getMemoryVT(); 4228 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 4229 if (NarrowVT == WideVT) { 4230 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4231 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 4232 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 4233 DL, Tys, Ops, NarrowVT, MMO); 4234 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4235 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4236 4237 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4238 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4239 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4240 return SDValue(); 4241 } 4242 4243 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 4244 // via a fullword ATOMIC_CMP_SWAPW operation. 4245 int64_t BitSize = NarrowVT.getSizeInBits(); 4246 EVT PtrVT = Addr.getValueType(); 4247 4248 // Get the address of the containing word. 4249 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4250 DAG.getConstant(-4, DL, PtrVT)); 4251 4252 // Get the number of bits that the word must be rotated left in order 4253 // to bring the field to the top bits of a GR32. 4254 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4255 DAG.getConstant(3, DL, PtrVT)); 4256 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4257 4258 // Get the complementing shift amount, for rotating a field in the top 4259 // bits back to its proper position. 4260 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4261 DAG.getConstant(0, DL, WideVT), BitShift); 4262 4263 // Construct the ATOMIC_CMP_SWAPW node. 4264 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4265 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4266 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4267 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4268 VTList, Ops, NarrowVT, MMO); 4269 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4270 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4271 4272 // emitAtomicCmpSwapW() will zero extend the result (original value). 4273 SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0), 4274 DAG.getValueType(NarrowVT)); 4275 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal); 4276 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4277 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4278 return SDValue(); 4279 } 4280 4281 MachineMemOperand::Flags 4282 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4283 // Because of how we convert atomic_load and atomic_store to normal loads and 4284 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4285 // since DAGCombine hasn't been updated to account for atomic, but non 4286 // volatile loads. (See D57601) 4287 if (auto *SI = dyn_cast<StoreInst>(&I)) 4288 if (SI->isAtomic()) 4289 return MachineMemOperand::MOVolatile; 4290 if (auto *LI = dyn_cast<LoadInst>(&I)) 4291 if (LI->isAtomic()) 4292 return MachineMemOperand::MOVolatile; 4293 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4294 if (AI->isAtomic()) 4295 return MachineMemOperand::MOVolatile; 4296 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4297 if (AI->isAtomic()) 4298 return MachineMemOperand::MOVolatile; 4299 return MachineMemOperand::MONone; 4300 } 4301 4302 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4303 SelectionDAG &DAG) const { 4304 MachineFunction &MF = DAG.getMachineFunction(); 4305 const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 4306 auto *Regs = Subtarget->getSpecialRegisters(); 4307 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4308 report_fatal_error("Variable-sized stack allocations are not supported " 4309 "in GHC calling convention"); 4310 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4311 Regs->getStackPointerRegister(), Op.getValueType()); 4312 } 4313 4314 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4315 SelectionDAG &DAG) const { 4316 MachineFunction &MF = DAG.getMachineFunction(); 4317 const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>(); 4318 auto *Regs = Subtarget->getSpecialRegisters(); 4319 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4320 4321 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4322 report_fatal_error("Variable-sized stack allocations are not supported " 4323 "in GHC calling convention"); 4324 4325 SDValue Chain = Op.getOperand(0); 4326 SDValue NewSP = Op.getOperand(1); 4327 SDValue Backchain; 4328 SDLoc DL(Op); 4329 4330 if (StoreBackchain) { 4331 SDValue OldSP = DAG.getCopyFromReg( 4332 Chain, DL, Regs->getStackPointerRegister(), MVT::i64); 4333 Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG), 4334 MachinePointerInfo()); 4335 } 4336 4337 Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP); 4338 4339 if (StoreBackchain) 4340 Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG), 4341 MachinePointerInfo()); 4342 4343 return Chain; 4344 } 4345 4346 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4347 SelectionDAG &DAG) const { 4348 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4349 if (!IsData) 4350 // Just preserve the chain. 4351 return Op.getOperand(0); 4352 4353 SDLoc DL(Op); 4354 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4355 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4356 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4357 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4358 Op.getOperand(1)}; 4359 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4360 Node->getVTList(), Ops, 4361 Node->getMemoryVT(), Node->getMemOperand()); 4362 } 4363 4364 // Convert condition code in CCReg to an i32 value. 4365 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4366 SDLoc DL(CCReg); 4367 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4368 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4369 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4370 } 4371 4372 SDValue 4373 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4374 SelectionDAG &DAG) const { 4375 unsigned Opcode, CCValid; 4376 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4377 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4378 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4379 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4380 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4381 return SDValue(); 4382 } 4383 4384 return SDValue(); 4385 } 4386 4387 SDValue 4388 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4389 SelectionDAG &DAG) const { 4390 unsigned Opcode, CCValid; 4391 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4392 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4393 if (Op->getNumValues() == 1) 4394 return getCCResult(DAG, SDValue(Node, 0)); 4395 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4396 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4397 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4398 } 4399 4400 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4401 switch (Id) { 4402 case Intrinsic::thread_pointer: 4403 return lowerThreadPointer(SDLoc(Op), DAG); 4404 4405 case Intrinsic::s390_vpdi: 4406 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4407 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4408 4409 case Intrinsic::s390_vperm: 4410 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4411 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4412 4413 case Intrinsic::s390_vuphb: 4414 case Intrinsic::s390_vuphh: 4415 case Intrinsic::s390_vuphf: 4416 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4417 Op.getOperand(1)); 4418 4419 case Intrinsic::s390_vuplhb: 4420 case Intrinsic::s390_vuplhh: 4421 case Intrinsic::s390_vuplhf: 4422 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4423 Op.getOperand(1)); 4424 4425 case Intrinsic::s390_vuplb: 4426 case Intrinsic::s390_vuplhw: 4427 case Intrinsic::s390_vuplf: 4428 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4429 Op.getOperand(1)); 4430 4431 case Intrinsic::s390_vupllb: 4432 case Intrinsic::s390_vupllh: 4433 case Intrinsic::s390_vupllf: 4434 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4435 Op.getOperand(1)); 4436 4437 case Intrinsic::s390_vsumb: 4438 case Intrinsic::s390_vsumh: 4439 case Intrinsic::s390_vsumgh: 4440 case Intrinsic::s390_vsumgf: 4441 case Intrinsic::s390_vsumqf: 4442 case Intrinsic::s390_vsumqg: 4443 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4444 Op.getOperand(1), Op.getOperand(2)); 4445 } 4446 4447 return SDValue(); 4448 } 4449 4450 namespace { 4451 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4452 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4453 // Operand is the constant third operand, otherwise it is the number of 4454 // bytes in each element of the result. 4455 struct Permute { 4456 unsigned Opcode; 4457 unsigned Operand; 4458 unsigned char Bytes[SystemZ::VectorBytes]; 4459 }; 4460 } 4461 4462 static const Permute PermuteForms[] = { 4463 // VMRHG 4464 { SystemZISD::MERGE_HIGH, 8, 4465 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4466 // VMRHF 4467 { SystemZISD::MERGE_HIGH, 4, 4468 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4469 // VMRHH 4470 { SystemZISD::MERGE_HIGH, 2, 4471 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4472 // VMRHB 4473 { SystemZISD::MERGE_HIGH, 1, 4474 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4475 // VMRLG 4476 { SystemZISD::MERGE_LOW, 8, 4477 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4478 // VMRLF 4479 { SystemZISD::MERGE_LOW, 4, 4480 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4481 // VMRLH 4482 { SystemZISD::MERGE_LOW, 2, 4483 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4484 // VMRLB 4485 { SystemZISD::MERGE_LOW, 1, 4486 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4487 // VPKG 4488 { SystemZISD::PACK, 4, 4489 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4490 // VPKF 4491 { SystemZISD::PACK, 2, 4492 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4493 // VPKH 4494 { SystemZISD::PACK, 1, 4495 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4496 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4497 { SystemZISD::PERMUTE_DWORDS, 4, 4498 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4499 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4500 { SystemZISD::PERMUTE_DWORDS, 1, 4501 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4502 }; 4503 4504 // Called after matching a vector shuffle against a particular pattern. 4505 // Both the original shuffle and the pattern have two vector operands. 4506 // OpNos[0] is the operand of the original shuffle that should be used for 4507 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4508 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4509 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4510 // for operands 0 and 1 of the pattern. 4511 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4512 if (OpNos[0] < 0) { 4513 if (OpNos[1] < 0) 4514 return false; 4515 OpNo0 = OpNo1 = OpNos[1]; 4516 } else if (OpNos[1] < 0) { 4517 OpNo0 = OpNo1 = OpNos[0]; 4518 } else { 4519 OpNo0 = OpNos[0]; 4520 OpNo1 = OpNos[1]; 4521 } 4522 return true; 4523 } 4524 4525 // Bytes is a VPERM-like permute vector, except that -1 is used for 4526 // undefined bytes. Return true if the VPERM can be implemented using P. 4527 // When returning true set OpNo0 to the VPERM operand that should be 4528 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4529 // 4530 // For example, if swapping the VPERM operands allows P to match, OpNo0 4531 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4532 // operand, but rewriting it to use two duplicated operands allows it to 4533 // match P, then OpNo0 and OpNo1 will be the same. 4534 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4535 unsigned &OpNo0, unsigned &OpNo1) { 4536 int OpNos[] = { -1, -1 }; 4537 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4538 int Elt = Bytes[I]; 4539 if (Elt >= 0) { 4540 // Make sure that the two permute vectors use the same suboperand 4541 // byte number. Only the operand numbers (the high bits) are 4542 // allowed to differ. 4543 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4544 return false; 4545 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4546 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4547 // Make sure that the operand mappings are consistent with previous 4548 // elements. 4549 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4550 return false; 4551 OpNos[ModelOpNo] = RealOpNo; 4552 } 4553 } 4554 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4555 } 4556 4557 // As above, but search for a matching permute. 4558 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4559 unsigned &OpNo0, unsigned &OpNo1) { 4560 for (auto &P : PermuteForms) 4561 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4562 return &P; 4563 return nullptr; 4564 } 4565 4566 // Bytes is a VPERM-like permute vector, except that -1 is used for 4567 // undefined bytes. This permute is an operand of an outer permute. 4568 // See whether redistributing the -1 bytes gives a shuffle that can be 4569 // implemented using P. If so, set Transform to a VPERM-like permute vector 4570 // that, when applied to the result of P, gives the original permute in Bytes. 4571 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4572 const Permute &P, 4573 SmallVectorImpl<int> &Transform) { 4574 unsigned To = 0; 4575 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4576 int Elt = Bytes[From]; 4577 if (Elt < 0) 4578 // Byte number From of the result is undefined. 4579 Transform[From] = -1; 4580 else { 4581 while (P.Bytes[To] != Elt) { 4582 To += 1; 4583 if (To == SystemZ::VectorBytes) 4584 return false; 4585 } 4586 Transform[From] = To; 4587 } 4588 } 4589 return true; 4590 } 4591 4592 // As above, but search for a matching permute. 4593 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4594 SmallVectorImpl<int> &Transform) { 4595 for (auto &P : PermuteForms) 4596 if (matchDoublePermute(Bytes, P, Transform)) 4597 return &P; 4598 return nullptr; 4599 } 4600 4601 // Convert the mask of the given shuffle op into a byte-level mask, 4602 // as if it had type vNi8. 4603 static bool getVPermMask(SDValue ShuffleOp, 4604 SmallVectorImpl<int> &Bytes) { 4605 EVT VT = ShuffleOp.getValueType(); 4606 unsigned NumElements = VT.getVectorNumElements(); 4607 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4608 4609 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4610 Bytes.resize(NumElements * BytesPerElement, -1); 4611 for (unsigned I = 0; I < NumElements; ++I) { 4612 int Index = VSN->getMaskElt(I); 4613 if (Index >= 0) 4614 for (unsigned J = 0; J < BytesPerElement; ++J) 4615 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4616 } 4617 return true; 4618 } 4619 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4620 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4621 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4622 Bytes.resize(NumElements * BytesPerElement, -1); 4623 for (unsigned I = 0; I < NumElements; ++I) 4624 for (unsigned J = 0; J < BytesPerElement; ++J) 4625 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4626 return true; 4627 } 4628 return false; 4629 } 4630 4631 // Bytes is a VPERM-like permute vector, except that -1 is used for 4632 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4633 // the result come from a contiguous sequence of bytes from one input. 4634 // Set Base to the selector for the first byte if so. 4635 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4636 unsigned BytesPerElement, int &Base) { 4637 Base = -1; 4638 for (unsigned I = 0; I < BytesPerElement; ++I) { 4639 if (Bytes[Start + I] >= 0) { 4640 unsigned Elem = Bytes[Start + I]; 4641 if (Base < 0) { 4642 Base = Elem - I; 4643 // Make sure the bytes would come from one input operand. 4644 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4645 return false; 4646 } else if (unsigned(Base) != Elem - I) 4647 return false; 4648 } 4649 } 4650 return true; 4651 } 4652 4653 // Bytes is a VPERM-like permute vector, except that -1 is used for 4654 // undefined bytes. Return true if it can be performed using VSLDB. 4655 // When returning true, set StartIndex to the shift amount and OpNo0 4656 // and OpNo1 to the VPERM operands that should be used as the first 4657 // and second shift operand respectively. 4658 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4659 unsigned &StartIndex, unsigned &OpNo0, 4660 unsigned &OpNo1) { 4661 int OpNos[] = { -1, -1 }; 4662 int Shift = -1; 4663 for (unsigned I = 0; I < 16; ++I) { 4664 int Index = Bytes[I]; 4665 if (Index >= 0) { 4666 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4667 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4668 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4669 if (Shift < 0) 4670 Shift = ExpectedShift; 4671 else if (Shift != ExpectedShift) 4672 return false; 4673 // Make sure that the operand mappings are consistent with previous 4674 // elements. 4675 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4676 return false; 4677 OpNos[ModelOpNo] = RealOpNo; 4678 } 4679 } 4680 StartIndex = Shift; 4681 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4682 } 4683 4684 // Create a node that performs P on operands Op0 and Op1, casting the 4685 // operands to the appropriate type. The type of the result is determined by P. 4686 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4687 const Permute &P, SDValue Op0, SDValue Op1) { 4688 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4689 // elements of a PACK are twice as wide as the outputs. 4690 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4691 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4692 P.Operand); 4693 // Cast both operands to the appropriate type. 4694 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4695 SystemZ::VectorBytes / InBytes); 4696 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4697 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4698 SDValue Op; 4699 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4700 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4701 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4702 } else if (P.Opcode == SystemZISD::PACK) { 4703 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4704 SystemZ::VectorBytes / P.Operand); 4705 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4706 } else { 4707 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4708 } 4709 return Op; 4710 } 4711 4712 static bool isZeroVector(SDValue N) { 4713 if (N->getOpcode() == ISD::BITCAST) 4714 N = N->getOperand(0); 4715 if (N->getOpcode() == ISD::SPLAT_VECTOR) 4716 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 4717 return Op->getZExtValue() == 0; 4718 return ISD::isBuildVectorAllZeros(N.getNode()); 4719 } 4720 4721 // Return the index of the zero/undef vector, or UINT32_MAX if not found. 4722 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { 4723 for (unsigned I = 0; I < Num ; I++) 4724 if (isZeroVector(Ops[I])) 4725 return I; 4726 return UINT32_MAX; 4727 } 4728 4729 // Bytes is a VPERM-like permute vector, except that -1 is used for 4730 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4731 // VSLDB or VPERM. 4732 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4733 SDValue *Ops, 4734 const SmallVectorImpl<int> &Bytes) { 4735 for (unsigned I = 0; I < 2; ++I) 4736 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4737 4738 // First see whether VSLDB can be used. 4739 unsigned StartIndex, OpNo0, OpNo1; 4740 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4741 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4742 Ops[OpNo1], 4743 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4744 4745 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 4746 // eliminate a zero vector by reusing any zero index in the permute vector. 4747 unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); 4748 if (ZeroVecIdx != UINT32_MAX) { 4749 bool MaskFirst = true; 4750 int ZeroIdx = -1; 4751 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4752 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4753 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4754 if (OpNo == ZeroVecIdx && I == 0) { 4755 // If the first byte is zero, use mask as first operand. 4756 ZeroIdx = 0; 4757 break; 4758 } 4759 if (OpNo != ZeroVecIdx && Byte == 0) { 4760 // If mask contains a zero, use it by placing that vector first. 4761 ZeroIdx = I + SystemZ::VectorBytes; 4762 MaskFirst = false; 4763 break; 4764 } 4765 } 4766 if (ZeroIdx != -1) { 4767 SDValue IndexNodes[SystemZ::VectorBytes]; 4768 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4769 if (Bytes[I] >= 0) { 4770 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4771 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4772 if (OpNo == ZeroVecIdx) 4773 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 4774 else { 4775 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 4776 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 4777 } 4778 } else 4779 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4780 } 4781 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4782 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 4783 if (MaskFirst) 4784 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 4785 Mask); 4786 else 4787 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 4788 Mask); 4789 } 4790 } 4791 4792 SDValue IndexNodes[SystemZ::VectorBytes]; 4793 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4794 if (Bytes[I] >= 0) 4795 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4796 else 4797 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4798 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4799 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 4800 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 4801 } 4802 4803 namespace { 4804 // Describes a general N-operand vector shuffle. 4805 struct GeneralShuffle { 4806 GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} 4807 void addUndef(); 4808 bool add(SDValue, unsigned); 4809 SDValue getNode(SelectionDAG &, const SDLoc &); 4810 void tryPrepareForUnpack(); 4811 bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } 4812 SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); 4813 4814 // The operands of the shuffle. 4815 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4816 4817 // Index I is -1 if byte I of the result is undefined. Otherwise the 4818 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4819 // Bytes[I] / SystemZ::VectorBytes. 4820 SmallVector<int, SystemZ::VectorBytes> Bytes; 4821 4822 // The type of the shuffle result. 4823 EVT VT; 4824 4825 // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. 4826 unsigned UnpackFromEltSize; 4827 }; 4828 } 4829 4830 // Add an extra undefined element to the shuffle. 4831 void GeneralShuffle::addUndef() { 4832 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4833 for (unsigned I = 0; I < BytesPerElement; ++I) 4834 Bytes.push_back(-1); 4835 } 4836 4837 // Add an extra element to the shuffle, taking it from element Elem of Op. 4838 // A null Op indicates a vector input whose value will be calculated later; 4839 // there is at most one such input per shuffle and it always has the same 4840 // type as the result. Aborts and returns false if the source vector elements 4841 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4842 // LLVM they become implicitly extended, but this is rare and not optimized. 4843 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4844 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4845 4846 // The source vector can have wider elements than the result, 4847 // either through an explicit TRUNCATE or because of type legalization. 4848 // We want the least significant part. 4849 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4850 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4851 4852 // Return false if the source elements are smaller than their destination 4853 // elements. 4854 if (FromBytesPerElement < BytesPerElement) 4855 return false; 4856 4857 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4858 (FromBytesPerElement - BytesPerElement)); 4859 4860 // Look through things like shuffles and bitcasts. 4861 while (Op.getNode()) { 4862 if (Op.getOpcode() == ISD::BITCAST) 4863 Op = Op.getOperand(0); 4864 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4865 // See whether the bytes we need come from a contiguous part of one 4866 // operand. 4867 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4868 if (!getVPermMask(Op, OpBytes)) 4869 break; 4870 int NewByte; 4871 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4872 break; 4873 if (NewByte < 0) { 4874 addUndef(); 4875 return true; 4876 } 4877 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4878 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4879 } else if (Op.isUndef()) { 4880 addUndef(); 4881 return true; 4882 } else 4883 break; 4884 } 4885 4886 // Make sure that the source of the extraction is in Ops. 4887 unsigned OpNo = 0; 4888 for (; OpNo < Ops.size(); ++OpNo) 4889 if (Ops[OpNo] == Op) 4890 break; 4891 if (OpNo == Ops.size()) 4892 Ops.push_back(Op); 4893 4894 // Add the element to Bytes. 4895 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4896 for (unsigned I = 0; I < BytesPerElement; ++I) 4897 Bytes.push_back(Base + I); 4898 4899 return true; 4900 } 4901 4902 // Return SDNodes for the completed shuffle. 4903 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4904 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4905 4906 if (Ops.size() == 0) 4907 return DAG.getUNDEF(VT); 4908 4909 // Use a single unpack if possible as the last operation. 4910 tryPrepareForUnpack(); 4911 4912 // Make sure that there are at least two shuffle operands. 4913 if (Ops.size() == 1) 4914 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4915 4916 // Create a tree of shuffles, deferring root node until after the loop. 4917 // Try to redistribute the undefined elements of non-root nodes so that 4918 // the non-root shuffles match something like a pack or merge, then adjust 4919 // the parent node's permute vector to compensate for the new order. 4920 // Among other things, this copes with vectors like <2 x i16> that were 4921 // padded with undefined elements during type legalization. 4922 // 4923 // In the best case this redistribution will lead to the whole tree 4924 // using packs and merges. It should rarely be a loss in other cases. 4925 unsigned Stride = 1; 4926 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4927 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4928 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4929 4930 // Create a mask for just these two operands. 4931 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4932 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4933 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4934 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4935 if (OpNo == I) 4936 NewBytes[J] = Byte; 4937 else if (OpNo == I + Stride) 4938 NewBytes[J] = SystemZ::VectorBytes + Byte; 4939 else 4940 NewBytes[J] = -1; 4941 } 4942 // See if it would be better to reorganize NewMask to avoid using VPERM. 4943 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4944 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4945 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4946 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4947 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4948 if (NewBytes[J] >= 0) { 4949 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4950 "Invalid double permute"); 4951 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4952 } else 4953 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4954 } 4955 } else { 4956 // Just use NewBytes on the operands. 4957 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4958 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4959 if (NewBytes[J] >= 0) 4960 Bytes[J] = I * SystemZ::VectorBytes + J; 4961 } 4962 } 4963 } 4964 4965 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4966 if (Stride > 1) { 4967 Ops[1] = Ops[Stride]; 4968 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4969 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4970 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4971 } 4972 4973 // Look for an instruction that can do the permute without resorting 4974 // to VPERM. 4975 unsigned OpNo0, OpNo1; 4976 SDValue Op; 4977 if (unpackWasPrepared() && Ops[1].isUndef()) 4978 Op = Ops[0]; 4979 else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4980 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4981 else 4982 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4983 4984 Op = insertUnpackIfPrepared(DAG, DL, Op); 4985 4986 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4987 } 4988 4989 #ifndef NDEBUG 4990 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { 4991 dbgs() << Msg.c_str() << " { "; 4992 for (unsigned i = 0; i < Bytes.size(); i++) 4993 dbgs() << Bytes[i] << " "; 4994 dbgs() << "}\n"; 4995 } 4996 #endif 4997 4998 // If the Bytes vector matches an unpack operation, prepare to do the unpack 4999 // after all else by removing the zero vector and the effect of the unpack on 5000 // Bytes. 5001 void GeneralShuffle::tryPrepareForUnpack() { 5002 uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); 5003 if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) 5004 return; 5005 5006 // Only do this if removing the zero vector reduces the depth, otherwise 5007 // the critical path will increase with the final unpack. 5008 if (Ops.size() > 2 && 5009 Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) 5010 return; 5011 5012 // Find an unpack that would allow removing the zero vector from Ops. 5013 UnpackFromEltSize = 1; 5014 for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { 5015 bool MatchUnpack = true; 5016 SmallVector<int, SystemZ::VectorBytes> SrcBytes; 5017 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { 5018 unsigned ToEltSize = UnpackFromEltSize * 2; 5019 bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; 5020 if (!IsZextByte) 5021 SrcBytes.push_back(Bytes[Elt]); 5022 if (Bytes[Elt] != -1) { 5023 unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; 5024 if (IsZextByte != (OpNo == ZeroVecOpNo)) { 5025 MatchUnpack = false; 5026 break; 5027 } 5028 } 5029 } 5030 if (MatchUnpack) { 5031 if (Ops.size() == 2) { 5032 // Don't use unpack if a single source operand needs rearrangement. 5033 for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) 5034 if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { 5035 UnpackFromEltSize = UINT_MAX; 5036 return; 5037 } 5038 } 5039 break; 5040 } 5041 } 5042 if (UnpackFromEltSize > 4) 5043 return; 5044 5045 LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " 5046 << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo 5047 << ".\n"; 5048 dumpBytes(Bytes, "Original Bytes vector:");); 5049 5050 // Apply the unpack in reverse to the Bytes array. 5051 unsigned B = 0; 5052 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { 5053 Elt += UnpackFromEltSize; 5054 for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) 5055 Bytes[B] = Bytes[Elt]; 5056 } 5057 while (B < SystemZ::VectorBytes) 5058 Bytes[B++] = -1; 5059 5060 // Remove the zero vector from Ops 5061 Ops.erase(&Ops[ZeroVecOpNo]); 5062 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 5063 if (Bytes[I] >= 0) { 5064 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 5065 if (OpNo > ZeroVecOpNo) 5066 Bytes[I] -= SystemZ::VectorBytes; 5067 } 5068 5069 LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); 5070 dbgs() << "\n";); 5071 } 5072 5073 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, 5074 const SDLoc &DL, 5075 SDValue Op) { 5076 if (!unpackWasPrepared()) 5077 return Op; 5078 unsigned InBits = UnpackFromEltSize * 8; 5079 EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), 5080 SystemZ::VectorBits / InBits); 5081 SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); 5082 unsigned OutBits = InBits * 2; 5083 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), 5084 SystemZ::VectorBits / OutBits); 5085 return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); 5086 } 5087 5088 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 5089 static bool isScalarToVector(SDValue Op) { 5090 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 5091 if (!Op.getOperand(I).isUndef()) 5092 return false; 5093 return true; 5094 } 5095 5096 // Return a vector of type VT that contains Value in the first element. 5097 // The other elements don't matter. 5098 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5099 SDValue Value) { 5100 // If we have a constant, replicate it to all elements and let the 5101 // BUILD_VECTOR lowering take care of it. 5102 if (Value.getOpcode() == ISD::Constant || 5103 Value.getOpcode() == ISD::ConstantFP) { 5104 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 5105 return DAG.getBuildVector(VT, DL, Ops); 5106 } 5107 if (Value.isUndef()) 5108 return DAG.getUNDEF(VT); 5109 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 5110 } 5111 5112 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 5113 // element 1. Used for cases in which replication is cheap. 5114 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5115 SDValue Op0, SDValue Op1) { 5116 if (Op0.isUndef()) { 5117 if (Op1.isUndef()) 5118 return DAG.getUNDEF(VT); 5119 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 5120 } 5121 if (Op1.isUndef()) 5122 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 5123 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 5124 buildScalarToVector(DAG, DL, VT, Op0), 5125 buildScalarToVector(DAG, DL, VT, Op1)); 5126 } 5127 5128 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 5129 // vector for them. 5130 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 5131 SDValue Op1) { 5132 if (Op0.isUndef() && Op1.isUndef()) 5133 return DAG.getUNDEF(MVT::v2i64); 5134 // If one of the two inputs is undefined then replicate the other one, 5135 // in order to avoid using another register unnecessarily. 5136 if (Op0.isUndef()) 5137 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5138 else if (Op1.isUndef()) 5139 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5140 else { 5141 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 5142 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 5143 } 5144 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 5145 } 5146 5147 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 5148 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 5149 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 5150 // would benefit from this representation and return it if so. 5151 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 5152 BuildVectorSDNode *BVN) { 5153 EVT VT = BVN->getValueType(0); 5154 unsigned NumElements = VT.getVectorNumElements(); 5155 5156 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 5157 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 5158 // need a BUILD_VECTOR, add an additional placeholder operand for that 5159 // BUILD_VECTOR and store its operands in ResidueOps. 5160 GeneralShuffle GS(VT); 5161 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 5162 bool FoundOne = false; 5163 for (unsigned I = 0; I < NumElements; ++I) { 5164 SDValue Op = BVN->getOperand(I); 5165 if (Op.getOpcode() == ISD::TRUNCATE) 5166 Op = Op.getOperand(0); 5167 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5168 Op.getOperand(1).getOpcode() == ISD::Constant) { 5169 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 5170 if (!GS.add(Op.getOperand(0), Elem)) 5171 return SDValue(); 5172 FoundOne = true; 5173 } else if (Op.isUndef()) { 5174 GS.addUndef(); 5175 } else { 5176 if (!GS.add(SDValue(), ResidueOps.size())) 5177 return SDValue(); 5178 ResidueOps.push_back(BVN->getOperand(I)); 5179 } 5180 } 5181 5182 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 5183 if (!FoundOne) 5184 return SDValue(); 5185 5186 // Create the BUILD_VECTOR for the remaining elements, if any. 5187 if (!ResidueOps.empty()) { 5188 while (ResidueOps.size() < NumElements) 5189 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 5190 for (auto &Op : GS.Ops) { 5191 if (!Op.getNode()) { 5192 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 5193 break; 5194 } 5195 } 5196 } 5197 return GS.getNode(DAG, SDLoc(BVN)); 5198 } 5199 5200 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 5201 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 5202 return true; 5203 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 5204 return true; 5205 return false; 5206 } 5207 5208 // Combine GPR scalar values Elems into a vector of type VT. 5209 SDValue 5210 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 5211 SmallVectorImpl<SDValue> &Elems) const { 5212 // See whether there is a single replicated value. 5213 SDValue Single; 5214 unsigned int NumElements = Elems.size(); 5215 unsigned int Count = 0; 5216 for (auto Elem : Elems) { 5217 if (!Elem.isUndef()) { 5218 if (!Single.getNode()) 5219 Single = Elem; 5220 else if (Elem != Single) { 5221 Single = SDValue(); 5222 break; 5223 } 5224 Count += 1; 5225 } 5226 } 5227 // There are three cases here: 5228 // 5229 // - if the only defined element is a loaded one, the best sequence 5230 // is a replicating load. 5231 // 5232 // - otherwise, if the only defined element is an i64 value, we will 5233 // end up with the same VLVGP sequence regardless of whether we short-cut 5234 // for replication or fall through to the later code. 5235 // 5236 // - otherwise, if the only defined element is an i32 or smaller value, 5237 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 5238 // This is only a win if the single defined element is used more than once. 5239 // In other cases we're better off using a single VLVGx. 5240 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 5241 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 5242 5243 // If all elements are loads, use VLREP/VLEs (below). 5244 bool AllLoads = true; 5245 for (auto Elem : Elems) 5246 if (!isVectorElementLoad(Elem)) { 5247 AllLoads = false; 5248 break; 5249 } 5250 5251 // The best way of building a v2i64 from two i64s is to use VLVGP. 5252 if (VT == MVT::v2i64 && !AllLoads) 5253 return joinDwords(DAG, DL, Elems[0], Elems[1]); 5254 5255 // Use a 64-bit merge high to combine two doubles. 5256 if (VT == MVT::v2f64 && !AllLoads) 5257 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5258 5259 // Build v4f32 values directly from the FPRs: 5260 // 5261 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 5262 // V V VMRHF 5263 // <ABxx> <CDxx> 5264 // V VMRHG 5265 // <ABCD> 5266 if (VT == MVT::v4f32 && !AllLoads) { 5267 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5268 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 5269 // Avoid unnecessary undefs by reusing the other operand. 5270 if (Op01.isUndef()) 5271 Op01 = Op23; 5272 else if (Op23.isUndef()) 5273 Op23 = Op01; 5274 // Merging identical replications is a no-op. 5275 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 5276 return Op01; 5277 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 5278 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 5279 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 5280 DL, MVT::v2i64, Op01, Op23); 5281 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5282 } 5283 5284 // Collect the constant terms. 5285 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 5286 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 5287 5288 unsigned NumConstants = 0; 5289 for (unsigned I = 0; I < NumElements; ++I) { 5290 SDValue Elem = Elems[I]; 5291 if (Elem.getOpcode() == ISD::Constant || 5292 Elem.getOpcode() == ISD::ConstantFP) { 5293 NumConstants += 1; 5294 Constants[I] = Elem; 5295 Done[I] = true; 5296 } 5297 } 5298 // If there was at least one constant, fill in the other elements of 5299 // Constants with undefs to get a full vector constant and use that 5300 // as the starting point. 5301 SDValue Result; 5302 SDValue ReplicatedVal; 5303 if (NumConstants > 0) { 5304 for (unsigned I = 0; I < NumElements; ++I) 5305 if (!Constants[I].getNode()) 5306 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 5307 Result = DAG.getBuildVector(VT, DL, Constants); 5308 } else { 5309 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 5310 // avoid a false dependency on any previous contents of the vector 5311 // register. 5312 5313 // Use a VLREP if at least one element is a load. Make sure to replicate 5314 // the load with the most elements having its value. 5315 std::map<const SDNode*, unsigned> UseCounts; 5316 SDNode *LoadMaxUses = nullptr; 5317 for (unsigned I = 0; I < NumElements; ++I) 5318 if (isVectorElementLoad(Elems[I])) { 5319 SDNode *Ld = Elems[I].getNode(); 5320 UseCounts[Ld]++; 5321 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 5322 LoadMaxUses = Ld; 5323 } 5324 if (LoadMaxUses != nullptr) { 5325 ReplicatedVal = SDValue(LoadMaxUses, 0); 5326 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 5327 } else { 5328 // Try to use VLVGP. 5329 unsigned I1 = NumElements / 2 - 1; 5330 unsigned I2 = NumElements - 1; 5331 bool Def1 = !Elems[I1].isUndef(); 5332 bool Def2 = !Elems[I2].isUndef(); 5333 if (Def1 || Def2) { 5334 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 5335 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 5336 Result = DAG.getNode(ISD::BITCAST, DL, VT, 5337 joinDwords(DAG, DL, Elem1, Elem2)); 5338 Done[I1] = true; 5339 Done[I2] = true; 5340 } else 5341 Result = DAG.getUNDEF(VT); 5342 } 5343 } 5344 5345 // Use VLVGx to insert the other elements. 5346 for (unsigned I = 0; I < NumElements; ++I) 5347 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 5348 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 5349 DAG.getConstant(I, DL, MVT::i32)); 5350 return Result; 5351 } 5352 5353 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 5354 SelectionDAG &DAG) const { 5355 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 5356 SDLoc DL(Op); 5357 EVT VT = Op.getValueType(); 5358 5359 if (BVN->isConstant()) { 5360 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 5361 return Op; 5362 5363 // Fall back to loading it from memory. 5364 return SDValue(); 5365 } 5366 5367 // See if we should use shuffles to construct the vector from other vectors. 5368 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 5369 return Res; 5370 5371 // Detect SCALAR_TO_VECTOR conversions. 5372 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 5373 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 5374 5375 // Otherwise use buildVector to build the vector up from GPRs. 5376 unsigned NumElements = Op.getNumOperands(); 5377 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 5378 for (unsigned I = 0; I < NumElements; ++I) 5379 Ops[I] = Op.getOperand(I); 5380 return buildVector(DAG, DL, VT, Ops); 5381 } 5382 5383 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5384 SelectionDAG &DAG) const { 5385 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 5386 SDLoc DL(Op); 5387 EVT VT = Op.getValueType(); 5388 unsigned NumElements = VT.getVectorNumElements(); 5389 5390 if (VSN->isSplat()) { 5391 SDValue Op0 = Op.getOperand(0); 5392 unsigned Index = VSN->getSplatIndex(); 5393 assert(Index < VT.getVectorNumElements() && 5394 "Splat index should be defined and in first operand"); 5395 // See whether the value we're splatting is directly available as a scalar. 5396 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5397 Op0.getOpcode() == ISD::BUILD_VECTOR) 5398 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 5399 // Otherwise keep it as a vector-to-vector operation. 5400 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 5401 DAG.getTargetConstant(Index, DL, MVT::i32)); 5402 } 5403 5404 GeneralShuffle GS(VT); 5405 for (unsigned I = 0; I < NumElements; ++I) { 5406 int Elt = VSN->getMaskElt(I); 5407 if (Elt < 0) 5408 GS.addUndef(); 5409 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 5410 unsigned(Elt) % NumElements)) 5411 return SDValue(); 5412 } 5413 return GS.getNode(DAG, SDLoc(VSN)); 5414 } 5415 5416 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5417 SelectionDAG &DAG) const { 5418 SDLoc DL(Op); 5419 // Just insert the scalar into element 0 of an undefined vector. 5420 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 5421 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 5422 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 5423 } 5424 5425 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5426 SelectionDAG &DAG) const { 5427 // Handle insertions of floating-point values. 5428 SDLoc DL(Op); 5429 SDValue Op0 = Op.getOperand(0); 5430 SDValue Op1 = Op.getOperand(1); 5431 SDValue Op2 = Op.getOperand(2); 5432 EVT VT = Op.getValueType(); 5433 5434 // Insertions into constant indices of a v2f64 can be done using VPDI. 5435 // However, if the inserted value is a bitcast or a constant then it's 5436 // better to use GPRs, as below. 5437 if (VT == MVT::v2f64 && 5438 Op1.getOpcode() != ISD::BITCAST && 5439 Op1.getOpcode() != ISD::ConstantFP && 5440 Op2.getOpcode() == ISD::Constant) { 5441 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 5442 unsigned Mask = VT.getVectorNumElements() - 1; 5443 if (Index <= Mask) 5444 return Op; 5445 } 5446 5447 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5448 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5449 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5450 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5451 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5452 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5453 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5454 } 5455 5456 SDValue 5457 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5458 SelectionDAG &DAG) const { 5459 // Handle extractions of floating-point values. 5460 SDLoc DL(Op); 5461 SDValue Op0 = Op.getOperand(0); 5462 SDValue Op1 = Op.getOperand(1); 5463 EVT VT = Op.getValueType(); 5464 EVT VecVT = Op0.getValueType(); 5465 5466 // Extractions of constant indices can be done directly. 5467 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5468 uint64_t Index = CIndexN->getZExtValue(); 5469 unsigned Mask = VecVT.getVectorNumElements() - 1; 5470 if (Index <= Mask) 5471 return Op; 5472 } 5473 5474 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5475 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5476 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5477 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5478 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5479 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5480 } 5481 5482 SDValue SystemZTargetLowering:: 5483 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5484 SDValue PackedOp = Op.getOperand(0); 5485 EVT OutVT = Op.getValueType(); 5486 EVT InVT = PackedOp.getValueType(); 5487 unsigned ToBits = OutVT.getScalarSizeInBits(); 5488 unsigned FromBits = InVT.getScalarSizeInBits(); 5489 do { 5490 FromBits *= 2; 5491 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5492 SystemZ::VectorBits / FromBits); 5493 PackedOp = 5494 DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); 5495 } while (FromBits != ToBits); 5496 return PackedOp; 5497 } 5498 5499 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. 5500 SDValue SystemZTargetLowering:: 5501 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5502 SDValue PackedOp = Op.getOperand(0); 5503 SDLoc DL(Op); 5504 EVT OutVT = Op.getValueType(); 5505 EVT InVT = PackedOp.getValueType(); 5506 unsigned InNumElts = InVT.getVectorNumElements(); 5507 unsigned OutNumElts = OutVT.getVectorNumElements(); 5508 unsigned NumInPerOut = InNumElts / OutNumElts; 5509 5510 SDValue ZeroVec = 5511 DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); 5512 5513 SmallVector<int, 16> Mask(InNumElts); 5514 unsigned ZeroVecElt = InNumElts; 5515 for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { 5516 unsigned MaskElt = PackedElt * NumInPerOut; 5517 unsigned End = MaskElt + NumInPerOut - 1; 5518 for (; MaskElt < End; MaskElt++) 5519 Mask[MaskElt] = ZeroVecElt++; 5520 Mask[MaskElt] = PackedElt; 5521 } 5522 SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); 5523 return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); 5524 } 5525 5526 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5527 unsigned ByScalar) const { 5528 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5529 SDValue Op0 = Op.getOperand(0); 5530 SDValue Op1 = Op.getOperand(1); 5531 SDLoc DL(Op); 5532 EVT VT = Op.getValueType(); 5533 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5534 5535 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5536 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5537 APInt SplatBits, SplatUndef; 5538 unsigned SplatBitSize; 5539 bool HasAnyUndefs; 5540 // Check for constant splats. Use ElemBitSize as the minimum element 5541 // width and reject splats that need wider elements. 5542 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5543 ElemBitSize, true) && 5544 SplatBitSize == ElemBitSize) { 5545 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5546 DL, MVT::i32); 5547 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5548 } 5549 // Check for variable splats. 5550 BitVector UndefElements; 5551 SDValue Splat = BVN->getSplatValue(&UndefElements); 5552 if (Splat) { 5553 // Since i32 is the smallest legal type, we either need a no-op 5554 // or a truncation. 5555 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5556 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5557 } 5558 } 5559 5560 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5561 // and the shift amount is directly available in a GPR. 5562 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5563 if (VSN->isSplat()) { 5564 SDValue VSNOp0 = VSN->getOperand(0); 5565 unsigned Index = VSN->getSplatIndex(); 5566 assert(Index < VT.getVectorNumElements() && 5567 "Splat index should be defined and in first operand"); 5568 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5569 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5570 // Since i32 is the smallest legal type, we either need a no-op 5571 // or a truncation. 5572 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5573 VSNOp0.getOperand(Index)); 5574 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5575 } 5576 } 5577 } 5578 5579 // Otherwise just treat the current form as legal. 5580 return Op; 5581 } 5582 5583 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5584 SelectionDAG &DAG) const { 5585 switch (Op.getOpcode()) { 5586 case ISD::FRAMEADDR: 5587 return lowerFRAMEADDR(Op, DAG); 5588 case ISD::RETURNADDR: 5589 return lowerRETURNADDR(Op, DAG); 5590 case ISD::BR_CC: 5591 return lowerBR_CC(Op, DAG); 5592 case ISD::SELECT_CC: 5593 return lowerSELECT_CC(Op, DAG); 5594 case ISD::SETCC: 5595 return lowerSETCC(Op, DAG); 5596 case ISD::STRICT_FSETCC: 5597 return lowerSTRICT_FSETCC(Op, DAG, false); 5598 case ISD::STRICT_FSETCCS: 5599 return lowerSTRICT_FSETCC(Op, DAG, true); 5600 case ISD::GlobalAddress: 5601 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5602 case ISD::GlobalTLSAddress: 5603 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5604 case ISD::BlockAddress: 5605 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5606 case ISD::JumpTable: 5607 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5608 case ISD::ConstantPool: 5609 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5610 case ISD::BITCAST: 5611 return lowerBITCAST(Op, DAG); 5612 case ISD::VASTART: 5613 return lowerVASTART(Op, DAG); 5614 case ISD::VACOPY: 5615 return lowerVACOPY(Op, DAG); 5616 case ISD::DYNAMIC_STACKALLOC: 5617 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5618 case ISD::GET_DYNAMIC_AREA_OFFSET: 5619 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5620 case ISD::SMUL_LOHI: 5621 return lowerSMUL_LOHI(Op, DAG); 5622 case ISD::UMUL_LOHI: 5623 return lowerUMUL_LOHI(Op, DAG); 5624 case ISD::SDIVREM: 5625 return lowerSDIVREM(Op, DAG); 5626 case ISD::UDIVREM: 5627 return lowerUDIVREM(Op, DAG); 5628 case ISD::SADDO: 5629 case ISD::SSUBO: 5630 case ISD::UADDO: 5631 case ISD::USUBO: 5632 return lowerXALUO(Op, DAG); 5633 case ISD::ADDCARRY: 5634 case ISD::SUBCARRY: 5635 return lowerADDSUBCARRY(Op, DAG); 5636 case ISD::OR: 5637 return lowerOR(Op, DAG); 5638 case ISD::CTPOP: 5639 return lowerCTPOP(Op, DAG); 5640 case ISD::ATOMIC_FENCE: 5641 return lowerATOMIC_FENCE(Op, DAG); 5642 case ISD::ATOMIC_SWAP: 5643 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5644 case ISD::ATOMIC_STORE: 5645 return lowerATOMIC_STORE(Op, DAG); 5646 case ISD::ATOMIC_LOAD: 5647 return lowerATOMIC_LOAD(Op, DAG); 5648 case ISD::ATOMIC_LOAD_ADD: 5649 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5650 case ISD::ATOMIC_LOAD_SUB: 5651 return lowerATOMIC_LOAD_SUB(Op, DAG); 5652 case ISD::ATOMIC_LOAD_AND: 5653 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5654 case ISD::ATOMIC_LOAD_OR: 5655 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5656 case ISD::ATOMIC_LOAD_XOR: 5657 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5658 case ISD::ATOMIC_LOAD_NAND: 5659 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5660 case ISD::ATOMIC_LOAD_MIN: 5661 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5662 case ISD::ATOMIC_LOAD_MAX: 5663 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5664 case ISD::ATOMIC_LOAD_UMIN: 5665 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5666 case ISD::ATOMIC_LOAD_UMAX: 5667 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5668 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5669 return lowerATOMIC_CMP_SWAP(Op, DAG); 5670 case ISD::STACKSAVE: 5671 return lowerSTACKSAVE(Op, DAG); 5672 case ISD::STACKRESTORE: 5673 return lowerSTACKRESTORE(Op, DAG); 5674 case ISD::PREFETCH: 5675 return lowerPREFETCH(Op, DAG); 5676 case ISD::INTRINSIC_W_CHAIN: 5677 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5678 case ISD::INTRINSIC_WO_CHAIN: 5679 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5680 case ISD::BUILD_VECTOR: 5681 return lowerBUILD_VECTOR(Op, DAG); 5682 case ISD::VECTOR_SHUFFLE: 5683 return lowerVECTOR_SHUFFLE(Op, DAG); 5684 case ISD::SCALAR_TO_VECTOR: 5685 return lowerSCALAR_TO_VECTOR(Op, DAG); 5686 case ISD::INSERT_VECTOR_ELT: 5687 return lowerINSERT_VECTOR_ELT(Op, DAG); 5688 case ISD::EXTRACT_VECTOR_ELT: 5689 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5690 case ISD::SIGN_EXTEND_VECTOR_INREG: 5691 return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); 5692 case ISD::ZERO_EXTEND_VECTOR_INREG: 5693 return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); 5694 case ISD::SHL: 5695 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5696 case ISD::SRL: 5697 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5698 case ISD::SRA: 5699 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5700 default: 5701 llvm_unreachable("Unexpected node to lower"); 5702 } 5703 } 5704 5705 // Lower operations with invalid operand or result types (currently used 5706 // only for 128-bit integer types). 5707 void 5708 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5709 SmallVectorImpl<SDValue> &Results, 5710 SelectionDAG &DAG) const { 5711 switch (N->getOpcode()) { 5712 case ISD::ATOMIC_LOAD: { 5713 SDLoc DL(N); 5714 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5715 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5716 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5717 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5718 DL, Tys, Ops, MVT::i128, MMO); 5719 Results.push_back(lowerGR128ToI128(DAG, Res)); 5720 Results.push_back(Res.getValue(1)); 5721 break; 5722 } 5723 case ISD::ATOMIC_STORE: { 5724 SDLoc DL(N); 5725 SDVTList Tys = DAG.getVTList(MVT::Other); 5726 SDValue Ops[] = { N->getOperand(0), 5727 lowerI128ToGR128(DAG, N->getOperand(2)), 5728 N->getOperand(1) }; 5729 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5730 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5731 DL, Tys, Ops, MVT::i128, MMO); 5732 // We have to enforce sequential consistency by performing a 5733 // serialization operation after the store. 5734 if (cast<AtomicSDNode>(N)->getSuccessOrdering() == 5735 AtomicOrdering::SequentiallyConsistent) 5736 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5737 MVT::Other, Res), 0); 5738 Results.push_back(Res); 5739 break; 5740 } 5741 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5742 SDLoc DL(N); 5743 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5744 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5745 lowerI128ToGR128(DAG, N->getOperand(2)), 5746 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5747 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5748 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5749 DL, Tys, Ops, MVT::i128, MMO); 5750 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5751 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5752 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5753 Results.push_back(lowerGR128ToI128(DAG, Res)); 5754 Results.push_back(Success); 5755 Results.push_back(Res.getValue(2)); 5756 break; 5757 } 5758 case ISD::BITCAST: { 5759 SDValue Src = N->getOperand(0); 5760 if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 && 5761 !useSoftFloat()) { 5762 SDLoc DL(N); 5763 SDValue Lo, Hi; 5764 if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) { 5765 SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src); 5766 Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 5767 DAG.getConstant(1, DL, MVT::i32)); 5768 Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC, 5769 DAG.getConstant(0, DL, MVT::i32)); 5770 } else { 5771 assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass && 5772 "Unrecognized register class for f128."); 5773 SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5774 DL, MVT::f64, Src); 5775 SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5776 DL, MVT::f64, Src); 5777 Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP); 5778 Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP); 5779 } 5780 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi)); 5781 } 5782 break; 5783 } 5784 default: 5785 llvm_unreachable("Unexpected node to lower"); 5786 } 5787 } 5788 5789 void 5790 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5791 SmallVectorImpl<SDValue> &Results, 5792 SelectionDAG &DAG) const { 5793 return LowerOperationWrapper(N, Results, DAG); 5794 } 5795 5796 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5797 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5798 switch ((SystemZISD::NodeType)Opcode) { 5799 case SystemZISD::FIRST_NUMBER: break; 5800 OPCODE(RET_FLAG); 5801 OPCODE(CALL); 5802 OPCODE(SIBCALL); 5803 OPCODE(TLS_GDCALL); 5804 OPCODE(TLS_LDCALL); 5805 OPCODE(PCREL_WRAPPER); 5806 OPCODE(PCREL_OFFSET); 5807 OPCODE(ICMP); 5808 OPCODE(FCMP); 5809 OPCODE(STRICT_FCMP); 5810 OPCODE(STRICT_FCMPS); 5811 OPCODE(TM); 5812 OPCODE(BR_CCMASK); 5813 OPCODE(SELECT_CCMASK); 5814 OPCODE(ADJDYNALLOC); 5815 OPCODE(PROBED_ALLOCA); 5816 OPCODE(POPCNT); 5817 OPCODE(SMUL_LOHI); 5818 OPCODE(UMUL_LOHI); 5819 OPCODE(SDIVREM); 5820 OPCODE(UDIVREM); 5821 OPCODE(SADDO); 5822 OPCODE(SSUBO); 5823 OPCODE(UADDO); 5824 OPCODE(USUBO); 5825 OPCODE(ADDCARRY); 5826 OPCODE(SUBCARRY); 5827 OPCODE(GET_CCMASK); 5828 OPCODE(MVC); 5829 OPCODE(NC); 5830 OPCODE(OC); 5831 OPCODE(XC); 5832 OPCODE(CLC); 5833 OPCODE(MEMSET_MVC); 5834 OPCODE(STPCPY); 5835 OPCODE(STRCMP); 5836 OPCODE(SEARCH_STRING); 5837 OPCODE(IPM); 5838 OPCODE(MEMBARRIER); 5839 OPCODE(TBEGIN); 5840 OPCODE(TBEGIN_NOFLOAT); 5841 OPCODE(TEND); 5842 OPCODE(BYTE_MASK); 5843 OPCODE(ROTATE_MASK); 5844 OPCODE(REPLICATE); 5845 OPCODE(JOIN_DWORDS); 5846 OPCODE(SPLAT); 5847 OPCODE(MERGE_HIGH); 5848 OPCODE(MERGE_LOW); 5849 OPCODE(SHL_DOUBLE); 5850 OPCODE(PERMUTE_DWORDS); 5851 OPCODE(PERMUTE); 5852 OPCODE(PACK); 5853 OPCODE(PACKS_CC); 5854 OPCODE(PACKLS_CC); 5855 OPCODE(UNPACK_HIGH); 5856 OPCODE(UNPACKL_HIGH); 5857 OPCODE(UNPACK_LOW); 5858 OPCODE(UNPACKL_LOW); 5859 OPCODE(VSHL_BY_SCALAR); 5860 OPCODE(VSRL_BY_SCALAR); 5861 OPCODE(VSRA_BY_SCALAR); 5862 OPCODE(VSUM); 5863 OPCODE(VICMPE); 5864 OPCODE(VICMPH); 5865 OPCODE(VICMPHL); 5866 OPCODE(VICMPES); 5867 OPCODE(VICMPHS); 5868 OPCODE(VICMPHLS); 5869 OPCODE(VFCMPE); 5870 OPCODE(STRICT_VFCMPE); 5871 OPCODE(STRICT_VFCMPES); 5872 OPCODE(VFCMPH); 5873 OPCODE(STRICT_VFCMPH); 5874 OPCODE(STRICT_VFCMPHS); 5875 OPCODE(VFCMPHE); 5876 OPCODE(STRICT_VFCMPHE); 5877 OPCODE(STRICT_VFCMPHES); 5878 OPCODE(VFCMPES); 5879 OPCODE(VFCMPHS); 5880 OPCODE(VFCMPHES); 5881 OPCODE(VFTCI); 5882 OPCODE(VEXTEND); 5883 OPCODE(STRICT_VEXTEND); 5884 OPCODE(VROUND); 5885 OPCODE(STRICT_VROUND); 5886 OPCODE(VTM); 5887 OPCODE(VFAE_CC); 5888 OPCODE(VFAEZ_CC); 5889 OPCODE(VFEE_CC); 5890 OPCODE(VFEEZ_CC); 5891 OPCODE(VFENE_CC); 5892 OPCODE(VFENEZ_CC); 5893 OPCODE(VISTR_CC); 5894 OPCODE(VSTRC_CC); 5895 OPCODE(VSTRCZ_CC); 5896 OPCODE(VSTRS_CC); 5897 OPCODE(VSTRSZ_CC); 5898 OPCODE(TDC); 5899 OPCODE(ATOMIC_SWAPW); 5900 OPCODE(ATOMIC_LOADW_ADD); 5901 OPCODE(ATOMIC_LOADW_SUB); 5902 OPCODE(ATOMIC_LOADW_AND); 5903 OPCODE(ATOMIC_LOADW_OR); 5904 OPCODE(ATOMIC_LOADW_XOR); 5905 OPCODE(ATOMIC_LOADW_NAND); 5906 OPCODE(ATOMIC_LOADW_MIN); 5907 OPCODE(ATOMIC_LOADW_MAX); 5908 OPCODE(ATOMIC_LOADW_UMIN); 5909 OPCODE(ATOMIC_LOADW_UMAX); 5910 OPCODE(ATOMIC_CMP_SWAPW); 5911 OPCODE(ATOMIC_CMP_SWAP); 5912 OPCODE(ATOMIC_LOAD_128); 5913 OPCODE(ATOMIC_STORE_128); 5914 OPCODE(ATOMIC_CMP_SWAP_128); 5915 OPCODE(LRV); 5916 OPCODE(STRV); 5917 OPCODE(VLER); 5918 OPCODE(VSTER); 5919 OPCODE(PREFETCH); 5920 } 5921 return nullptr; 5922 #undef OPCODE 5923 } 5924 5925 // Return true if VT is a vector whose elements are a whole number of bytes 5926 // in width. Also check for presence of vector support. 5927 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5928 if (!Subtarget.hasVector()) 5929 return false; 5930 5931 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5932 } 5933 5934 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5935 // producing a result of type ResVT. Op is a possibly bitcast version 5936 // of the input vector and Index is the index (based on type VecVT) that 5937 // should be extracted. Return the new extraction if a simplification 5938 // was possible or if Force is true. 5939 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5940 EVT VecVT, SDValue Op, 5941 unsigned Index, 5942 DAGCombinerInfo &DCI, 5943 bool Force) const { 5944 SelectionDAG &DAG = DCI.DAG; 5945 5946 // The number of bytes being extracted. 5947 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5948 5949 for (;;) { 5950 unsigned Opcode = Op.getOpcode(); 5951 if (Opcode == ISD::BITCAST) 5952 // Look through bitcasts. 5953 Op = Op.getOperand(0); 5954 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5955 canTreatAsByteVector(Op.getValueType())) { 5956 // Get a VPERM-like permute mask and see whether the bytes covered 5957 // by the extracted element are a contiguous sequence from one 5958 // source operand. 5959 SmallVector<int, SystemZ::VectorBytes> Bytes; 5960 if (!getVPermMask(Op, Bytes)) 5961 break; 5962 int First; 5963 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5964 BytesPerElement, First)) 5965 break; 5966 if (First < 0) 5967 return DAG.getUNDEF(ResVT); 5968 // Make sure the contiguous sequence starts at a multiple of the 5969 // original element size. 5970 unsigned Byte = unsigned(First) % Bytes.size(); 5971 if (Byte % BytesPerElement != 0) 5972 break; 5973 // We can get the extracted value directly from an input. 5974 Index = Byte / BytesPerElement; 5975 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5976 Force = true; 5977 } else if (Opcode == ISD::BUILD_VECTOR && 5978 canTreatAsByteVector(Op.getValueType())) { 5979 // We can only optimize this case if the BUILD_VECTOR elements are 5980 // at least as wide as the extracted value. 5981 EVT OpVT = Op.getValueType(); 5982 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5983 if (OpBytesPerElement < BytesPerElement) 5984 break; 5985 // Make sure that the least-significant bit of the extracted value 5986 // is the least significant bit of an input. 5987 unsigned End = (Index + 1) * BytesPerElement; 5988 if (End % OpBytesPerElement != 0) 5989 break; 5990 // We're extracting the low part of one operand of the BUILD_VECTOR. 5991 Op = Op.getOperand(End / OpBytesPerElement - 1); 5992 if (!Op.getValueType().isInteger()) { 5993 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5994 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5995 DCI.AddToWorklist(Op.getNode()); 5996 } 5997 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5998 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5999 if (VT != ResVT) { 6000 DCI.AddToWorklist(Op.getNode()); 6001 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 6002 } 6003 return Op; 6004 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 6005 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 6006 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 6007 canTreatAsByteVector(Op.getValueType()) && 6008 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 6009 // Make sure that only the unextended bits are significant. 6010 EVT ExtVT = Op.getValueType(); 6011 EVT OpVT = Op.getOperand(0).getValueType(); 6012 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 6013 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 6014 unsigned Byte = Index * BytesPerElement; 6015 unsigned SubByte = Byte % ExtBytesPerElement; 6016 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 6017 if (SubByte < MinSubByte || 6018 SubByte + BytesPerElement > ExtBytesPerElement) 6019 break; 6020 // Get the byte offset of the unextended element 6021 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 6022 // ...then add the byte offset relative to that element. 6023 Byte += SubByte - MinSubByte; 6024 if (Byte % BytesPerElement != 0) 6025 break; 6026 Op = Op.getOperand(0); 6027 Index = Byte / BytesPerElement; 6028 Force = true; 6029 } else 6030 break; 6031 } 6032 if (Force) { 6033 if (Op.getValueType() != VecVT) { 6034 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 6035 DCI.AddToWorklist(Op.getNode()); 6036 } 6037 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 6038 DAG.getConstant(Index, DL, MVT::i32)); 6039 } 6040 return SDValue(); 6041 } 6042 6043 // Optimize vector operations in scalar value Op on the basis that Op 6044 // is truncated to TruncVT. 6045 SDValue SystemZTargetLowering::combineTruncateExtract( 6046 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 6047 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 6048 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 6049 // of type TruncVT. 6050 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6051 TruncVT.getSizeInBits() % 8 == 0) { 6052 SDValue Vec = Op.getOperand(0); 6053 EVT VecVT = Vec.getValueType(); 6054 if (canTreatAsByteVector(VecVT)) { 6055 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6056 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 6057 unsigned TruncBytes = TruncVT.getStoreSize(); 6058 if (BytesPerElement % TruncBytes == 0) { 6059 // Calculate the value of Y' in the above description. We are 6060 // splitting the original elements into Scale equal-sized pieces 6061 // and for truncation purposes want the last (least-significant) 6062 // of these pieces for IndexN. This is easiest to do by calculating 6063 // the start index of the following element and then subtracting 1. 6064 unsigned Scale = BytesPerElement / TruncBytes; 6065 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 6066 6067 // Defer the creation of the bitcast from X to combineExtract, 6068 // which might be able to optimize the extraction. 6069 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 6070 VecVT.getStoreSize() / TruncBytes); 6071 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 6072 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 6073 } 6074 } 6075 } 6076 } 6077 return SDValue(); 6078 } 6079 6080 SDValue SystemZTargetLowering::combineZERO_EXTEND( 6081 SDNode *N, DAGCombinerInfo &DCI) const { 6082 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 6083 SelectionDAG &DAG = DCI.DAG; 6084 SDValue N0 = N->getOperand(0); 6085 EVT VT = N->getValueType(0); 6086 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 6087 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 6088 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6089 if (TrueOp && FalseOp) { 6090 SDLoc DL(N0); 6091 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 6092 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 6093 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 6094 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 6095 // If N0 has multiple uses, change other uses as well. 6096 if (!N0.hasOneUse()) { 6097 SDValue TruncSelect = 6098 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 6099 DCI.CombineTo(N0.getNode(), TruncSelect); 6100 } 6101 return NewSelect; 6102 } 6103 } 6104 return SDValue(); 6105 } 6106 6107 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 6108 SDNode *N, DAGCombinerInfo &DCI) const { 6109 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 6110 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 6111 // into (select_cc LHS, RHS, -1, 0, COND) 6112 SelectionDAG &DAG = DCI.DAG; 6113 SDValue N0 = N->getOperand(0); 6114 EVT VT = N->getValueType(0); 6115 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 6116 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 6117 N0 = N0.getOperand(0); 6118 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 6119 SDLoc DL(N0); 6120 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 6121 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 6122 N0.getOperand(2) }; 6123 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 6124 } 6125 return SDValue(); 6126 } 6127 6128 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 6129 SDNode *N, DAGCombinerInfo &DCI) const { 6130 // Convert (sext (ashr (shl X, C1), C2)) to 6131 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 6132 // cheap as narrower ones. 6133 SelectionDAG &DAG = DCI.DAG; 6134 SDValue N0 = N->getOperand(0); 6135 EVT VT = N->getValueType(0); 6136 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 6137 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 6138 SDValue Inner = N0.getOperand(0); 6139 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 6140 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 6141 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 6142 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 6143 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 6144 EVT ShiftVT = N0.getOperand(1).getValueType(); 6145 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 6146 Inner.getOperand(0)); 6147 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 6148 DAG.getConstant(NewShlAmt, SDLoc(Inner), 6149 ShiftVT)); 6150 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 6151 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 6152 } 6153 } 6154 } 6155 return SDValue(); 6156 } 6157 6158 SDValue SystemZTargetLowering::combineMERGE( 6159 SDNode *N, DAGCombinerInfo &DCI) const { 6160 SelectionDAG &DAG = DCI.DAG; 6161 unsigned Opcode = N->getOpcode(); 6162 SDValue Op0 = N->getOperand(0); 6163 SDValue Op1 = N->getOperand(1); 6164 if (Op0.getOpcode() == ISD::BITCAST) 6165 Op0 = Op0.getOperand(0); 6166 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 6167 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 6168 // for v4f32. 6169 if (Op1 == N->getOperand(0)) 6170 return Op1; 6171 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 6172 EVT VT = Op1.getValueType(); 6173 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 6174 if (ElemBytes <= 4) { 6175 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 6176 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 6177 EVT InVT = VT.changeVectorElementTypeToInteger(); 6178 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 6179 SystemZ::VectorBytes / ElemBytes / 2); 6180 if (VT != InVT) { 6181 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 6182 DCI.AddToWorklist(Op1.getNode()); 6183 } 6184 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 6185 DCI.AddToWorklist(Op.getNode()); 6186 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 6187 } 6188 } 6189 return SDValue(); 6190 } 6191 6192 SDValue SystemZTargetLowering::combineLOAD( 6193 SDNode *N, DAGCombinerInfo &DCI) const { 6194 SelectionDAG &DAG = DCI.DAG; 6195 EVT LdVT = N->getValueType(0); 6196 if (LdVT.isVector() || LdVT.isInteger()) 6197 return SDValue(); 6198 // Transform a scalar load that is REPLICATEd as well as having other 6199 // use(s) to the form where the other use(s) use the first element of the 6200 // REPLICATE instead of the load. Otherwise instruction selection will not 6201 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 6202 // point loads. 6203 6204 SDValue Replicate; 6205 SmallVector<SDNode*, 8> OtherUses; 6206 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 6207 UI != UE; ++UI) { 6208 if (UI->getOpcode() == SystemZISD::REPLICATE) { 6209 if (Replicate) 6210 return SDValue(); // Should never happen 6211 Replicate = SDValue(*UI, 0); 6212 } 6213 else if (UI.getUse().getResNo() == 0) 6214 OtherUses.push_back(*UI); 6215 } 6216 if (!Replicate || OtherUses.empty()) 6217 return SDValue(); 6218 6219 SDLoc DL(N); 6220 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 6221 Replicate, DAG.getConstant(0, DL, MVT::i32)); 6222 // Update uses of the loaded Value while preserving old chains. 6223 for (SDNode *U : OtherUses) { 6224 SmallVector<SDValue, 8> Ops; 6225 for (SDValue Op : U->ops()) 6226 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 6227 DAG.UpdateNodeOperands(U, Ops); 6228 } 6229 return SDValue(N, 0); 6230 } 6231 6232 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 6233 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 6234 return true; 6235 if (Subtarget.hasVectorEnhancements2()) 6236 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 6237 return true; 6238 return false; 6239 } 6240 6241 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 6242 if (!VT.isVector() || !VT.isSimple() || 6243 VT.getSizeInBits() != 128 || 6244 VT.getScalarSizeInBits() % 8 != 0) 6245 return false; 6246 6247 unsigned NumElts = VT.getVectorNumElements(); 6248 for (unsigned i = 0; i < NumElts; ++i) { 6249 if (M[i] < 0) continue; // ignore UNDEF indices 6250 if ((unsigned) M[i] != NumElts - 1 - i) 6251 return false; 6252 } 6253 6254 return true; 6255 } 6256 6257 SDValue SystemZTargetLowering::combineSTORE( 6258 SDNode *N, DAGCombinerInfo &DCI) const { 6259 SelectionDAG &DAG = DCI.DAG; 6260 auto *SN = cast<StoreSDNode>(N); 6261 auto &Op1 = N->getOperand(1); 6262 EVT MemVT = SN->getMemoryVT(); 6263 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 6264 // for the extraction to be done on a vMiN value, so that we can use VSTE. 6265 // If X has wider elements then convert it to: 6266 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 6267 if (MemVT.isInteger() && SN->isTruncatingStore()) { 6268 if (SDValue Value = 6269 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 6270 DCI.AddToWorklist(Value.getNode()); 6271 6272 // Rewrite the store with the new form of stored value. 6273 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 6274 SN->getBasePtr(), SN->getMemoryVT(), 6275 SN->getMemOperand()); 6276 } 6277 } 6278 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 6279 if (!SN->isTruncatingStore() && 6280 Op1.getOpcode() == ISD::BSWAP && 6281 Op1.getNode()->hasOneUse() && 6282 canLoadStoreByteSwapped(Op1.getValueType())) { 6283 6284 SDValue BSwapOp = Op1.getOperand(0); 6285 6286 if (BSwapOp.getValueType() == MVT::i16) 6287 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 6288 6289 SDValue Ops[] = { 6290 N->getOperand(0), BSwapOp, N->getOperand(2) 6291 }; 6292 6293 return 6294 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 6295 Ops, MemVT, SN->getMemOperand()); 6296 } 6297 // Combine STORE (element-swap) into VSTER 6298 if (!SN->isTruncatingStore() && 6299 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 6300 Op1.getNode()->hasOneUse() && 6301 Subtarget.hasVectorEnhancements2()) { 6302 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 6303 ArrayRef<int> ShuffleMask = SVN->getMask(); 6304 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 6305 SDValue Ops[] = { 6306 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 6307 }; 6308 6309 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 6310 DAG.getVTList(MVT::Other), 6311 Ops, MemVT, SN->getMemOperand()); 6312 } 6313 } 6314 6315 return SDValue(); 6316 } 6317 6318 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 6319 SDNode *N, DAGCombinerInfo &DCI) const { 6320 SelectionDAG &DAG = DCI.DAG; 6321 // Combine element-swap (LOAD) into VLER 6322 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6323 N->getOperand(0).hasOneUse() && 6324 Subtarget.hasVectorEnhancements2()) { 6325 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 6326 ArrayRef<int> ShuffleMask = SVN->getMask(); 6327 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 6328 SDValue Load = N->getOperand(0); 6329 LoadSDNode *LD = cast<LoadSDNode>(Load); 6330 6331 // Create the element-swapping load. 6332 SDValue Ops[] = { 6333 LD->getChain(), // Chain 6334 LD->getBasePtr() // Ptr 6335 }; 6336 SDValue ESLoad = 6337 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 6338 DAG.getVTList(LD->getValueType(0), MVT::Other), 6339 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6340 6341 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 6342 // by the load dead. 6343 DCI.CombineTo(N, ESLoad); 6344 6345 // Next, combine the load away, we give it a bogus result value but a real 6346 // chain result. The result value is dead because the shuffle is dead. 6347 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 6348 6349 // Return N so it doesn't get rechecked! 6350 return SDValue(N, 0); 6351 } 6352 } 6353 6354 return SDValue(); 6355 } 6356 6357 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 6358 SDNode *N, DAGCombinerInfo &DCI) const { 6359 SelectionDAG &DAG = DCI.DAG; 6360 6361 if (!Subtarget.hasVector()) 6362 return SDValue(); 6363 6364 // Look through bitcasts that retain the number of vector elements. 6365 SDValue Op = N->getOperand(0); 6366 if (Op.getOpcode() == ISD::BITCAST && 6367 Op.getValueType().isVector() && 6368 Op.getOperand(0).getValueType().isVector() && 6369 Op.getValueType().getVectorNumElements() == 6370 Op.getOperand(0).getValueType().getVectorNumElements()) 6371 Op = Op.getOperand(0); 6372 6373 // Pull BSWAP out of a vector extraction. 6374 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 6375 EVT VecVT = Op.getValueType(); 6376 EVT EltVT = VecVT.getVectorElementType(); 6377 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 6378 Op.getOperand(0), N->getOperand(1)); 6379 DCI.AddToWorklist(Op.getNode()); 6380 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 6381 if (EltVT != N->getValueType(0)) { 6382 DCI.AddToWorklist(Op.getNode()); 6383 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 6384 } 6385 return Op; 6386 } 6387 6388 // Try to simplify a vector extraction. 6389 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 6390 SDValue Op0 = N->getOperand(0); 6391 EVT VecVT = Op0.getValueType(); 6392 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 6393 IndexN->getZExtValue(), DCI, false); 6394 } 6395 return SDValue(); 6396 } 6397 6398 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 6399 SDNode *N, DAGCombinerInfo &DCI) const { 6400 SelectionDAG &DAG = DCI.DAG; 6401 // (join_dwords X, X) == (replicate X) 6402 if (N->getOperand(0) == N->getOperand(1)) 6403 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 6404 N->getOperand(0)); 6405 return SDValue(); 6406 } 6407 6408 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 6409 SDValue Chain1 = N1->getOperand(0); 6410 SDValue Chain2 = N2->getOperand(0); 6411 6412 // Trivial case: both nodes take the same chain. 6413 if (Chain1 == Chain2) 6414 return Chain1; 6415 6416 // FIXME - we could handle more complex cases via TokenFactor, 6417 // assuming we can verify that this would not create a cycle. 6418 return SDValue(); 6419 } 6420 6421 SDValue SystemZTargetLowering::combineFP_ROUND( 6422 SDNode *N, DAGCombinerInfo &DCI) const { 6423 6424 if (!Subtarget.hasVector()) 6425 return SDValue(); 6426 6427 // (fpround (extract_vector_elt X 0)) 6428 // (fpround (extract_vector_elt X 1)) -> 6429 // (extract_vector_elt (VROUND X) 0) 6430 // (extract_vector_elt (VROUND X) 2) 6431 // 6432 // This is a special case since the target doesn't really support v2f32s. 6433 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6434 SelectionDAG &DAG = DCI.DAG; 6435 SDValue Op0 = N->getOperand(OpNo); 6436 if (N->getValueType(0) == MVT::f32 && 6437 Op0.hasOneUse() && 6438 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6439 Op0.getOperand(0).getValueType() == MVT::v2f64 && 6440 Op0.getOperand(1).getOpcode() == ISD::Constant && 6441 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6442 SDValue Vec = Op0.getOperand(0); 6443 for (auto *U : Vec->uses()) { 6444 if (U != Op0.getNode() && 6445 U->hasOneUse() && 6446 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6447 U->getOperand(0) == Vec && 6448 U->getOperand(1).getOpcode() == ISD::Constant && 6449 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 6450 SDValue OtherRound = SDValue(*U->use_begin(), 0); 6451 if (OtherRound.getOpcode() == N->getOpcode() && 6452 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 6453 OtherRound.getValueType() == MVT::f32) { 6454 SDValue VRound, Chain; 6455 if (N->isStrictFPOpcode()) { 6456 Chain = MergeInputChains(N, OtherRound.getNode()); 6457 if (!Chain) 6458 continue; 6459 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 6460 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 6461 Chain = VRound.getValue(1); 6462 } else 6463 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 6464 MVT::v4f32, Vec); 6465 DCI.AddToWorklist(VRound.getNode()); 6466 SDValue Extract1 = 6467 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 6468 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 6469 DCI.AddToWorklist(Extract1.getNode()); 6470 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6471 if (Chain) 6472 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 6473 SDValue Extract0 = 6474 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 6475 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6476 if (Chain) 6477 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6478 N->getVTList(), Extract0, Chain); 6479 return Extract0; 6480 } 6481 } 6482 } 6483 } 6484 return SDValue(); 6485 } 6486 6487 SDValue SystemZTargetLowering::combineFP_EXTEND( 6488 SDNode *N, DAGCombinerInfo &DCI) const { 6489 6490 if (!Subtarget.hasVector()) 6491 return SDValue(); 6492 6493 // (fpextend (extract_vector_elt X 0)) 6494 // (fpextend (extract_vector_elt X 2)) -> 6495 // (extract_vector_elt (VEXTEND X) 0) 6496 // (extract_vector_elt (VEXTEND X) 1) 6497 // 6498 // This is a special case since the target doesn't really support v2f32s. 6499 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6500 SelectionDAG &DAG = DCI.DAG; 6501 SDValue Op0 = N->getOperand(OpNo); 6502 if (N->getValueType(0) == MVT::f64 && 6503 Op0.hasOneUse() && 6504 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6505 Op0.getOperand(0).getValueType() == MVT::v4f32 && 6506 Op0.getOperand(1).getOpcode() == ISD::Constant && 6507 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6508 SDValue Vec = Op0.getOperand(0); 6509 for (auto *U : Vec->uses()) { 6510 if (U != Op0.getNode() && 6511 U->hasOneUse() && 6512 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6513 U->getOperand(0) == Vec && 6514 U->getOperand(1).getOpcode() == ISD::Constant && 6515 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 6516 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6517 if (OtherExtend.getOpcode() == N->getOpcode() && 6518 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 6519 OtherExtend.getValueType() == MVT::f64) { 6520 SDValue VExtend, Chain; 6521 if (N->isStrictFPOpcode()) { 6522 Chain = MergeInputChains(N, OtherExtend.getNode()); 6523 if (!Chain) 6524 continue; 6525 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6526 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6527 Chain = VExtend.getValue(1); 6528 } else 6529 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 6530 MVT::v2f64, Vec); 6531 DCI.AddToWorklist(VExtend.getNode()); 6532 SDValue Extract1 = 6533 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 6534 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 6535 DCI.AddToWorklist(Extract1.getNode()); 6536 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6537 if (Chain) 6538 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 6539 SDValue Extract0 = 6540 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 6541 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6542 if (Chain) 6543 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6544 N->getVTList(), Extract0, Chain); 6545 return Extract0; 6546 } 6547 } 6548 } 6549 } 6550 return SDValue(); 6551 } 6552 6553 SDValue SystemZTargetLowering::combineINT_TO_FP( 6554 SDNode *N, DAGCombinerInfo &DCI) const { 6555 if (DCI.Level != BeforeLegalizeTypes) 6556 return SDValue(); 6557 unsigned Opcode = N->getOpcode(); 6558 EVT OutVT = N->getValueType(0); 6559 SelectionDAG &DAG = DCI.DAG; 6560 SDValue Op = N->getOperand(0); 6561 unsigned OutScalarBits = OutVT.getScalarSizeInBits(); 6562 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 6563 6564 // Insert an extension before type-legalization to avoid scalarization, e.g.: 6565 // v2f64 = uint_to_fp v2i16 6566 // => 6567 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 6568 if (OutVT.isVector() && OutScalarBits > InScalarBits) { 6569 MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()), 6570 OutVT.getVectorNumElements()); 6571 unsigned ExtOpcode = 6572 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 6573 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 6574 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 6575 } 6576 return SDValue(); 6577 } 6578 6579 SDValue SystemZTargetLowering::combineBSWAP( 6580 SDNode *N, DAGCombinerInfo &DCI) const { 6581 SelectionDAG &DAG = DCI.DAG; 6582 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6583 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6584 N->getOperand(0).hasOneUse() && 6585 canLoadStoreByteSwapped(N->getValueType(0))) { 6586 SDValue Load = N->getOperand(0); 6587 LoadSDNode *LD = cast<LoadSDNode>(Load); 6588 6589 // Create the byte-swapping load. 6590 SDValue Ops[] = { 6591 LD->getChain(), // Chain 6592 LD->getBasePtr() // Ptr 6593 }; 6594 EVT LoadVT = N->getValueType(0); 6595 if (LoadVT == MVT::i16) 6596 LoadVT = MVT::i32; 6597 SDValue BSLoad = 6598 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6599 DAG.getVTList(LoadVT, MVT::Other), 6600 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6601 6602 // If this is an i16 load, insert the truncate. 6603 SDValue ResVal = BSLoad; 6604 if (N->getValueType(0) == MVT::i16) 6605 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6606 6607 // First, combine the bswap away. This makes the value produced by the 6608 // load dead. 6609 DCI.CombineTo(N, ResVal); 6610 6611 // Next, combine the load away, we give it a bogus result value but a real 6612 // chain result. The result value is dead because the bswap is dead. 6613 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6614 6615 // Return N so it doesn't get rechecked! 6616 return SDValue(N, 0); 6617 } 6618 6619 // Look through bitcasts that retain the number of vector elements. 6620 SDValue Op = N->getOperand(0); 6621 if (Op.getOpcode() == ISD::BITCAST && 6622 Op.getValueType().isVector() && 6623 Op.getOperand(0).getValueType().isVector() && 6624 Op.getValueType().getVectorNumElements() == 6625 Op.getOperand(0).getValueType().getVectorNumElements()) 6626 Op = Op.getOperand(0); 6627 6628 // Push BSWAP into a vector insertion if at least one side then simplifies. 6629 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6630 SDValue Vec = Op.getOperand(0); 6631 SDValue Elt = Op.getOperand(1); 6632 SDValue Idx = Op.getOperand(2); 6633 6634 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6635 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6636 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6637 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6638 (canLoadStoreByteSwapped(N->getValueType(0)) && 6639 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6640 EVT VecVT = N->getValueType(0); 6641 EVT EltVT = N->getValueType(0).getVectorElementType(); 6642 if (VecVT != Vec.getValueType()) { 6643 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6644 DCI.AddToWorklist(Vec.getNode()); 6645 } 6646 if (EltVT != Elt.getValueType()) { 6647 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6648 DCI.AddToWorklist(Elt.getNode()); 6649 } 6650 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6651 DCI.AddToWorklist(Vec.getNode()); 6652 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6653 DCI.AddToWorklist(Elt.getNode()); 6654 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6655 Vec, Elt, Idx); 6656 } 6657 } 6658 6659 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6660 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6661 if (SV && Op.hasOneUse()) { 6662 SDValue Op0 = Op.getOperand(0); 6663 SDValue Op1 = Op.getOperand(1); 6664 6665 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6666 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6667 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6668 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6669 EVT VecVT = N->getValueType(0); 6670 if (VecVT != Op0.getValueType()) { 6671 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6672 DCI.AddToWorklist(Op0.getNode()); 6673 } 6674 if (VecVT != Op1.getValueType()) { 6675 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6676 DCI.AddToWorklist(Op1.getNode()); 6677 } 6678 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6679 DCI.AddToWorklist(Op0.getNode()); 6680 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6681 DCI.AddToWorklist(Op1.getNode()); 6682 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6683 } 6684 } 6685 6686 return SDValue(); 6687 } 6688 6689 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6690 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6691 // set by the CCReg instruction using the CCValid / CCMask masks, 6692 // If the CCReg instruction is itself a ICMP testing the condition 6693 // code set by some other instruction, see whether we can directly 6694 // use that condition code. 6695 6696 // Verify that we have an ICMP against some constant. 6697 if (CCValid != SystemZ::CCMASK_ICMP) 6698 return false; 6699 auto *ICmp = CCReg.getNode(); 6700 if (ICmp->getOpcode() != SystemZISD::ICMP) 6701 return false; 6702 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6703 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6704 if (!CompareRHS) 6705 return false; 6706 6707 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6708 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6709 // Verify that we have an appropriate mask for a EQ or NE comparison. 6710 bool Invert = false; 6711 if (CCMask == SystemZ::CCMASK_CMP_NE) 6712 Invert = !Invert; 6713 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6714 return false; 6715 6716 // Verify that the ICMP compares against one of select values. 6717 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6718 if (!TrueVal) 6719 return false; 6720 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6721 if (!FalseVal) 6722 return false; 6723 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6724 Invert = !Invert; 6725 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6726 return false; 6727 6728 // Compute the effective CC mask for the new branch or select. 6729 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6730 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6731 if (!NewCCValid || !NewCCMask) 6732 return false; 6733 CCValid = NewCCValid->getZExtValue(); 6734 CCMask = NewCCMask->getZExtValue(); 6735 if (Invert) 6736 CCMask ^= CCValid; 6737 6738 // Return the updated CCReg link. 6739 CCReg = CompareLHS->getOperand(4); 6740 return true; 6741 } 6742 6743 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6744 if (CompareLHS->getOpcode() == ISD::SRA) { 6745 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6746 if (!SRACount || SRACount->getZExtValue() != 30) 6747 return false; 6748 auto *SHL = CompareLHS->getOperand(0).getNode(); 6749 if (SHL->getOpcode() != ISD::SHL) 6750 return false; 6751 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6752 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6753 return false; 6754 auto *IPM = SHL->getOperand(0).getNode(); 6755 if (IPM->getOpcode() != SystemZISD::IPM) 6756 return false; 6757 6758 // Avoid introducing CC spills (because SRA would clobber CC). 6759 if (!CompareLHS->hasOneUse()) 6760 return false; 6761 // Verify that the ICMP compares against zero. 6762 if (CompareRHS->getZExtValue() != 0) 6763 return false; 6764 6765 // Compute the effective CC mask for the new branch or select. 6766 CCMask = SystemZ::reverseCCMask(CCMask); 6767 6768 // Return the updated CCReg link. 6769 CCReg = IPM->getOperand(0); 6770 return true; 6771 } 6772 6773 return false; 6774 } 6775 6776 SDValue SystemZTargetLowering::combineBR_CCMASK( 6777 SDNode *N, DAGCombinerInfo &DCI) const { 6778 SelectionDAG &DAG = DCI.DAG; 6779 6780 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6781 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6782 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6783 if (!CCValid || !CCMask) 6784 return SDValue(); 6785 6786 int CCValidVal = CCValid->getZExtValue(); 6787 int CCMaskVal = CCMask->getZExtValue(); 6788 SDValue Chain = N->getOperand(0); 6789 SDValue CCReg = N->getOperand(4); 6790 6791 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6792 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6793 Chain, 6794 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6795 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6796 N->getOperand(3), CCReg); 6797 return SDValue(); 6798 } 6799 6800 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6801 SDNode *N, DAGCombinerInfo &DCI) const { 6802 SelectionDAG &DAG = DCI.DAG; 6803 6804 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6805 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6806 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6807 if (!CCValid || !CCMask) 6808 return SDValue(); 6809 6810 int CCValidVal = CCValid->getZExtValue(); 6811 int CCMaskVal = CCMask->getZExtValue(); 6812 SDValue CCReg = N->getOperand(4); 6813 6814 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6815 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6816 N->getOperand(0), N->getOperand(1), 6817 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6818 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6819 CCReg); 6820 return SDValue(); 6821 } 6822 6823 6824 SDValue SystemZTargetLowering::combineGET_CCMASK( 6825 SDNode *N, DAGCombinerInfo &DCI) const { 6826 6827 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6828 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6829 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6830 if (!CCValid || !CCMask) 6831 return SDValue(); 6832 int CCValidVal = CCValid->getZExtValue(); 6833 int CCMaskVal = CCMask->getZExtValue(); 6834 6835 SDValue Select = N->getOperand(0); 6836 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6837 return SDValue(); 6838 6839 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6840 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6841 if (!SelectCCValid || !SelectCCMask) 6842 return SDValue(); 6843 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6844 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6845 6846 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6847 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6848 if (!TrueVal || !FalseVal) 6849 return SDValue(); 6850 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6851 ; 6852 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6853 SelectCCMaskVal ^= SelectCCValidVal; 6854 else 6855 return SDValue(); 6856 6857 if (SelectCCValidVal & ~CCValidVal) 6858 return SDValue(); 6859 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6860 return SDValue(); 6861 6862 return Select->getOperand(4); 6863 } 6864 6865 SDValue SystemZTargetLowering::combineIntDIVREM( 6866 SDNode *N, DAGCombinerInfo &DCI) const { 6867 SelectionDAG &DAG = DCI.DAG; 6868 EVT VT = N->getValueType(0); 6869 // In the case where the divisor is a vector of constants a cheaper 6870 // sequence of instructions can replace the divide. BuildSDIV is called to 6871 // do this during DAG combining, but it only succeeds when it can build a 6872 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6873 // since it is not Legal but Custom it can only happen before 6874 // legalization. Therefore we must scalarize this early before Combine 6875 // 1. For widened vectors, this is already the result of type legalization. 6876 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6877 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6878 return DAG.UnrollVectorOp(N); 6879 return SDValue(); 6880 } 6881 6882 SDValue SystemZTargetLowering::combineINTRINSIC( 6883 SDNode *N, DAGCombinerInfo &DCI) const { 6884 SelectionDAG &DAG = DCI.DAG; 6885 6886 unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 6887 switch (Id) { 6888 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 6889 // or larger is simply a vector load. 6890 case Intrinsic::s390_vll: 6891 case Intrinsic::s390_vlrl: 6892 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 6893 if (C->getZExtValue() >= 15) 6894 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 6895 N->getOperand(3), MachinePointerInfo()); 6896 break; 6897 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 6898 case Intrinsic::s390_vstl: 6899 case Intrinsic::s390_vstrl: 6900 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 6901 if (C->getZExtValue() >= 15) 6902 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 6903 N->getOperand(4), MachinePointerInfo()); 6904 break; 6905 } 6906 6907 return SDValue(); 6908 } 6909 6910 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6911 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6912 return N->getOperand(0); 6913 return N; 6914 } 6915 6916 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6917 DAGCombinerInfo &DCI) const { 6918 switch(N->getOpcode()) { 6919 default: break; 6920 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6921 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6922 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6923 case SystemZISD::MERGE_HIGH: 6924 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6925 case ISD::LOAD: return combineLOAD(N, DCI); 6926 case ISD::STORE: return combineSTORE(N, DCI); 6927 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6928 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6929 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6930 case ISD::STRICT_FP_ROUND: 6931 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6932 case ISD::STRICT_FP_EXTEND: 6933 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6934 case ISD::SINT_TO_FP: 6935 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 6936 case ISD::BSWAP: return combineBSWAP(N, DCI); 6937 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6938 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6939 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6940 case ISD::SDIV: 6941 case ISD::UDIV: 6942 case ISD::SREM: 6943 case ISD::UREM: return combineIntDIVREM(N, DCI); 6944 case ISD::INTRINSIC_W_CHAIN: 6945 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 6946 } 6947 6948 return SDValue(); 6949 } 6950 6951 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6952 // are for Op. 6953 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6954 unsigned OpNo) { 6955 EVT VT = Op.getValueType(); 6956 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6957 APInt SrcDemE; 6958 unsigned Opcode = Op.getOpcode(); 6959 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6960 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6961 switch (Id) { 6962 case Intrinsic::s390_vpksh: // PACKS 6963 case Intrinsic::s390_vpksf: 6964 case Intrinsic::s390_vpksg: 6965 case Intrinsic::s390_vpkshs: // PACKS_CC 6966 case Intrinsic::s390_vpksfs: 6967 case Intrinsic::s390_vpksgs: 6968 case Intrinsic::s390_vpklsh: // PACKLS 6969 case Intrinsic::s390_vpklsf: 6970 case Intrinsic::s390_vpklsg: 6971 case Intrinsic::s390_vpklshs: // PACKLS_CC 6972 case Intrinsic::s390_vpklsfs: 6973 case Intrinsic::s390_vpklsgs: 6974 // VECTOR PACK truncates the elements of two source vectors into one. 6975 SrcDemE = DemandedElts; 6976 if (OpNo == 2) 6977 SrcDemE.lshrInPlace(NumElts / 2); 6978 SrcDemE = SrcDemE.trunc(NumElts / 2); 6979 break; 6980 // VECTOR UNPACK extends half the elements of the source vector. 6981 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6982 case Intrinsic::s390_vuphh: 6983 case Intrinsic::s390_vuphf: 6984 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6985 case Intrinsic::s390_vuplhh: 6986 case Intrinsic::s390_vuplhf: 6987 SrcDemE = APInt(NumElts * 2, 0); 6988 SrcDemE.insertBits(DemandedElts, 0); 6989 break; 6990 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6991 case Intrinsic::s390_vuplhw: 6992 case Intrinsic::s390_vuplf: 6993 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6994 case Intrinsic::s390_vupllh: 6995 case Intrinsic::s390_vupllf: 6996 SrcDemE = APInt(NumElts * 2, 0); 6997 SrcDemE.insertBits(DemandedElts, NumElts); 6998 break; 6999 case Intrinsic::s390_vpdi: { 7000 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 7001 SrcDemE = APInt(NumElts, 0); 7002 if (!DemandedElts[OpNo - 1]) 7003 break; 7004 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 7005 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 7006 // Demand input element 0 or 1, given by the mask bit value. 7007 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 7008 break; 7009 } 7010 case Intrinsic::s390_vsldb: { 7011 // VECTOR SHIFT LEFT DOUBLE BY BYTE 7012 assert(VT == MVT::v16i8 && "Unexpected type."); 7013 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 7014 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 7015 unsigned NumSrc0Els = 16 - FirstIdx; 7016 SrcDemE = APInt(NumElts, 0); 7017 if (OpNo == 1) { 7018 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 7019 SrcDemE.insertBits(DemEls, FirstIdx); 7020 } else { 7021 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 7022 SrcDemE.insertBits(DemEls, 0); 7023 } 7024 break; 7025 } 7026 case Intrinsic::s390_vperm: 7027 SrcDemE = APInt(NumElts, 1); 7028 break; 7029 default: 7030 llvm_unreachable("Unhandled intrinsic."); 7031 break; 7032 } 7033 } else { 7034 switch (Opcode) { 7035 case SystemZISD::JOIN_DWORDS: 7036 // Scalar operand. 7037 SrcDemE = APInt(1, 1); 7038 break; 7039 case SystemZISD::SELECT_CCMASK: 7040 SrcDemE = DemandedElts; 7041 break; 7042 default: 7043 llvm_unreachable("Unhandled opcode."); 7044 break; 7045 } 7046 } 7047 return SrcDemE; 7048 } 7049 7050 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 7051 const APInt &DemandedElts, 7052 const SelectionDAG &DAG, unsigned Depth, 7053 unsigned OpNo) { 7054 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7055 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7056 KnownBits LHSKnown = 7057 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7058 KnownBits RHSKnown = 7059 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7060 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 7061 } 7062 7063 void 7064 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 7065 KnownBits &Known, 7066 const APInt &DemandedElts, 7067 const SelectionDAG &DAG, 7068 unsigned Depth) const { 7069 Known.resetAll(); 7070 7071 // Intrinsic CC result is returned in the two low bits. 7072 unsigned tmp0, tmp1; // not used 7073 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 7074 Known.Zero.setBitsFrom(2); 7075 return; 7076 } 7077 EVT VT = Op.getValueType(); 7078 if (Op.getResNo() != 0 || VT == MVT::Untyped) 7079 return; 7080 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 7081 "KnownBits does not match VT in bitwidth"); 7082 assert ((!VT.isVector() || 7083 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 7084 "DemandedElts does not match VT number of elements"); 7085 unsigned BitWidth = Known.getBitWidth(); 7086 unsigned Opcode = Op.getOpcode(); 7087 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7088 bool IsLogical = false; 7089 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7090 switch (Id) { 7091 case Intrinsic::s390_vpksh: // PACKS 7092 case Intrinsic::s390_vpksf: 7093 case Intrinsic::s390_vpksg: 7094 case Intrinsic::s390_vpkshs: // PACKS_CC 7095 case Intrinsic::s390_vpksfs: 7096 case Intrinsic::s390_vpksgs: 7097 case Intrinsic::s390_vpklsh: // PACKLS 7098 case Intrinsic::s390_vpklsf: 7099 case Intrinsic::s390_vpklsg: 7100 case Intrinsic::s390_vpklshs: // PACKLS_CC 7101 case Intrinsic::s390_vpklsfs: 7102 case Intrinsic::s390_vpklsgs: 7103 case Intrinsic::s390_vpdi: 7104 case Intrinsic::s390_vsldb: 7105 case Intrinsic::s390_vperm: 7106 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 7107 break; 7108 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 7109 case Intrinsic::s390_vuplhh: 7110 case Intrinsic::s390_vuplhf: 7111 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 7112 case Intrinsic::s390_vupllh: 7113 case Intrinsic::s390_vupllf: 7114 IsLogical = true; 7115 LLVM_FALLTHROUGH; 7116 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7117 case Intrinsic::s390_vuphh: 7118 case Intrinsic::s390_vuphf: 7119 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7120 case Intrinsic::s390_vuplhw: 7121 case Intrinsic::s390_vuplf: { 7122 SDValue SrcOp = Op.getOperand(1); 7123 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 7124 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 7125 if (IsLogical) { 7126 Known = Known.zext(BitWidth); 7127 } else 7128 Known = Known.sext(BitWidth); 7129 break; 7130 } 7131 default: 7132 break; 7133 } 7134 } else { 7135 switch (Opcode) { 7136 case SystemZISD::JOIN_DWORDS: 7137 case SystemZISD::SELECT_CCMASK: 7138 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 7139 break; 7140 case SystemZISD::REPLICATE: { 7141 SDValue SrcOp = Op.getOperand(0); 7142 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 7143 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 7144 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 7145 break; 7146 } 7147 default: 7148 break; 7149 } 7150 } 7151 7152 // Known has the width of the source operand(s). Adjust if needed to match 7153 // the passed bitwidth. 7154 if (Known.getBitWidth() != BitWidth) 7155 Known = Known.anyextOrTrunc(BitWidth); 7156 } 7157 7158 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 7159 const SelectionDAG &DAG, unsigned Depth, 7160 unsigned OpNo) { 7161 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 7162 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 7163 if (LHS == 1) return 1; // Early out. 7164 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 7165 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 7166 if (RHS == 1) return 1; // Early out. 7167 unsigned Common = std::min(LHS, RHS); 7168 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 7169 EVT VT = Op.getValueType(); 7170 unsigned VTBits = VT.getScalarSizeInBits(); 7171 if (SrcBitWidth > VTBits) { // PACK 7172 unsigned SrcExtraBits = SrcBitWidth - VTBits; 7173 if (Common > SrcExtraBits) 7174 return (Common - SrcExtraBits); 7175 return 1; 7176 } 7177 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 7178 return Common; 7179 } 7180 7181 unsigned 7182 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 7183 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 7184 unsigned Depth) const { 7185 if (Op.getResNo() != 0) 7186 return 1; 7187 unsigned Opcode = Op.getOpcode(); 7188 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 7189 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 7190 switch (Id) { 7191 case Intrinsic::s390_vpksh: // PACKS 7192 case Intrinsic::s390_vpksf: 7193 case Intrinsic::s390_vpksg: 7194 case Intrinsic::s390_vpkshs: // PACKS_CC 7195 case Intrinsic::s390_vpksfs: 7196 case Intrinsic::s390_vpksgs: 7197 case Intrinsic::s390_vpklsh: // PACKLS 7198 case Intrinsic::s390_vpklsf: 7199 case Intrinsic::s390_vpklsg: 7200 case Intrinsic::s390_vpklshs: // PACKLS_CC 7201 case Intrinsic::s390_vpklsfs: 7202 case Intrinsic::s390_vpklsgs: 7203 case Intrinsic::s390_vpdi: 7204 case Intrinsic::s390_vsldb: 7205 case Intrinsic::s390_vperm: 7206 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 7207 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 7208 case Intrinsic::s390_vuphh: 7209 case Intrinsic::s390_vuphf: 7210 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 7211 case Intrinsic::s390_vuplhw: 7212 case Intrinsic::s390_vuplf: { 7213 SDValue PackedOp = Op.getOperand(1); 7214 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 7215 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 7216 EVT VT = Op.getValueType(); 7217 unsigned VTBits = VT.getScalarSizeInBits(); 7218 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 7219 return Tmp; 7220 } 7221 default: 7222 break; 7223 } 7224 } else { 7225 switch (Opcode) { 7226 case SystemZISD::SELECT_CCMASK: 7227 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 7228 default: 7229 break; 7230 } 7231 } 7232 7233 return 1; 7234 } 7235 7236 unsigned 7237 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const { 7238 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7239 unsigned StackAlign = TFI->getStackAlignment(); 7240 assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && 7241 "Unexpected stack alignment"); 7242 // The default stack probe size is 4096 if the function has no 7243 // stack-probe-size attribute. 7244 unsigned StackProbeSize = 4096; 7245 const Function &Fn = MF.getFunction(); 7246 if (Fn.hasFnAttribute("stack-probe-size")) 7247 Fn.getFnAttribute("stack-probe-size") 7248 .getValueAsString() 7249 .getAsInteger(0, StackProbeSize); 7250 // Round down to the stack alignment. 7251 StackProbeSize &= ~(StackAlign - 1); 7252 return StackProbeSize ? StackProbeSize : StackAlign; 7253 } 7254 7255 //===----------------------------------------------------------------------===// 7256 // Custom insertion 7257 //===----------------------------------------------------------------------===// 7258 7259 // Force base value Base into a register before MI. Return the register. 7260 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 7261 const SystemZInstrInfo *TII) { 7262 MachineBasicBlock *MBB = MI.getParent(); 7263 MachineFunction &MF = *MBB->getParent(); 7264 MachineRegisterInfo &MRI = MF.getRegInfo(); 7265 7266 if (Base.isReg()) { 7267 // Copy Base into a new virtual register to help register coalescing in 7268 // cases with multiple uses. 7269 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7270 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg) 7271 .add(Base); 7272 return Reg; 7273 } 7274 7275 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7276 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 7277 .add(Base) 7278 .addImm(0) 7279 .addReg(0); 7280 return Reg; 7281 } 7282 7283 // The CC operand of MI might be missing a kill marker because there 7284 // were multiple uses of CC, and ISel didn't know which to mark. 7285 // Figure out whether MI should have had a kill marker. 7286 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 7287 // Scan forward through BB for a use/def of CC. 7288 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 7289 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 7290 const MachineInstr& mi = *miI; 7291 if (mi.readsRegister(SystemZ::CC)) 7292 return false; 7293 if (mi.definesRegister(SystemZ::CC)) 7294 break; // Should have kill-flag - update below. 7295 } 7296 7297 // If we hit the end of the block, check whether CC is live into a 7298 // successor. 7299 if (miI == MBB->end()) { 7300 for (const MachineBasicBlock *Succ : MBB->successors()) 7301 if (Succ->isLiveIn(SystemZ::CC)) 7302 return false; 7303 } 7304 7305 return true; 7306 } 7307 7308 // Return true if it is OK for this Select pseudo-opcode to be cascaded 7309 // together with other Select pseudo-opcodes into a single basic-block with 7310 // a conditional jump around it. 7311 static bool isSelectPseudo(MachineInstr &MI) { 7312 switch (MI.getOpcode()) { 7313 case SystemZ::Select32: 7314 case SystemZ::Select64: 7315 case SystemZ::SelectF32: 7316 case SystemZ::SelectF64: 7317 case SystemZ::SelectF128: 7318 case SystemZ::SelectVR32: 7319 case SystemZ::SelectVR64: 7320 case SystemZ::SelectVR128: 7321 return true; 7322 7323 default: 7324 return false; 7325 } 7326 } 7327 7328 // Helper function, which inserts PHI functions into SinkMBB: 7329 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 7330 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 7331 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 7332 MachineBasicBlock *TrueMBB, 7333 MachineBasicBlock *FalseMBB, 7334 MachineBasicBlock *SinkMBB) { 7335 MachineFunction *MF = TrueMBB->getParent(); 7336 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 7337 7338 MachineInstr *FirstMI = Selects.front(); 7339 unsigned CCValid = FirstMI->getOperand(3).getImm(); 7340 unsigned CCMask = FirstMI->getOperand(4).getImm(); 7341 7342 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 7343 7344 // As we are creating the PHIs, we have to be careful if there is more than 7345 // one. Later Selects may reference the results of earlier Selects, but later 7346 // PHIs have to reference the individual true/false inputs from earlier PHIs. 7347 // That also means that PHI construction must work forward from earlier to 7348 // later, and that the code must maintain a mapping from earlier PHI's 7349 // destination registers, and the registers that went into the PHI. 7350 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 7351 7352 for (auto MI : Selects) { 7353 Register DestReg = MI->getOperand(0).getReg(); 7354 Register TrueReg = MI->getOperand(1).getReg(); 7355 Register FalseReg = MI->getOperand(2).getReg(); 7356 7357 // If this Select we are generating is the opposite condition from 7358 // the jump we generated, then we have to swap the operands for the 7359 // PHI that is going to be generated. 7360 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 7361 std::swap(TrueReg, FalseReg); 7362 7363 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 7364 TrueReg = RegRewriteTable[TrueReg].first; 7365 7366 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 7367 FalseReg = RegRewriteTable[FalseReg].second; 7368 7369 DebugLoc DL = MI->getDebugLoc(); 7370 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 7371 .addReg(TrueReg).addMBB(TrueMBB) 7372 .addReg(FalseReg).addMBB(FalseMBB); 7373 7374 // Add this PHI to the rewrite table. 7375 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 7376 } 7377 7378 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7379 } 7380 7381 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 7382 MachineBasicBlock * 7383 SystemZTargetLowering::emitSelect(MachineInstr &MI, 7384 MachineBasicBlock *MBB) const { 7385 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 7386 const SystemZInstrInfo *TII = 7387 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7388 7389 unsigned CCValid = MI.getOperand(3).getImm(); 7390 unsigned CCMask = MI.getOperand(4).getImm(); 7391 7392 // If we have a sequence of Select* pseudo instructions using the 7393 // same condition code value, we want to expand all of them into 7394 // a single pair of basic blocks using the same condition. 7395 SmallVector<MachineInstr*, 8> Selects; 7396 SmallVector<MachineInstr*, 8> DbgValues; 7397 Selects.push_back(&MI); 7398 unsigned Count = 0; 7399 for (MachineBasicBlock::iterator NextMIIt = 7400 std::next(MachineBasicBlock::iterator(MI)); 7401 NextMIIt != MBB->end(); ++NextMIIt) { 7402 if (isSelectPseudo(*NextMIIt)) { 7403 assert(NextMIIt->getOperand(3).getImm() == CCValid && 7404 "Bad CCValid operands since CC was not redefined."); 7405 if (NextMIIt->getOperand(4).getImm() == CCMask || 7406 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 7407 Selects.push_back(&*NextMIIt); 7408 continue; 7409 } 7410 break; 7411 } 7412 if (NextMIIt->definesRegister(SystemZ::CC) || 7413 NextMIIt->usesCustomInsertionHook()) 7414 break; 7415 bool User = false; 7416 for (auto SelMI : Selects) 7417 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 7418 User = true; 7419 break; 7420 } 7421 if (NextMIIt->isDebugInstr()) { 7422 if (User) { 7423 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 7424 DbgValues.push_back(&*NextMIIt); 7425 } 7426 } 7427 else if (User || ++Count > 20) 7428 break; 7429 } 7430 7431 MachineInstr *LastMI = Selects.back(); 7432 bool CCKilled = 7433 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 7434 MachineBasicBlock *StartMBB = MBB; 7435 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); 7436 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7437 7438 // Unless CC was killed in the last Select instruction, mark it as 7439 // live-in to both FalseMBB and JoinMBB. 7440 if (!CCKilled) { 7441 FalseMBB->addLiveIn(SystemZ::CC); 7442 JoinMBB->addLiveIn(SystemZ::CC); 7443 } 7444 7445 // StartMBB: 7446 // BRC CCMask, JoinMBB 7447 // # fallthrough to FalseMBB 7448 MBB = StartMBB; 7449 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 7450 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7451 MBB->addSuccessor(JoinMBB); 7452 MBB->addSuccessor(FalseMBB); 7453 7454 // FalseMBB: 7455 // # fallthrough to JoinMBB 7456 MBB = FalseMBB; 7457 MBB->addSuccessor(JoinMBB); 7458 7459 // JoinMBB: 7460 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 7461 // ... 7462 MBB = JoinMBB; 7463 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 7464 for (auto SelMI : Selects) 7465 SelMI->eraseFromParent(); 7466 7467 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 7468 for (auto DbgMI : DbgValues) 7469 MBB->splice(InsertPos, StartMBB, DbgMI); 7470 7471 return JoinMBB; 7472 } 7473 7474 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 7475 // StoreOpcode is the store to use and Invert says whether the store should 7476 // happen when the condition is false rather than true. If a STORE ON 7477 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 7478 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 7479 MachineBasicBlock *MBB, 7480 unsigned StoreOpcode, 7481 unsigned STOCOpcode, 7482 bool Invert) const { 7483 const SystemZInstrInfo *TII = 7484 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7485 7486 Register SrcReg = MI.getOperand(0).getReg(); 7487 MachineOperand Base = MI.getOperand(1); 7488 int64_t Disp = MI.getOperand(2).getImm(); 7489 Register IndexReg = MI.getOperand(3).getReg(); 7490 unsigned CCValid = MI.getOperand(4).getImm(); 7491 unsigned CCMask = MI.getOperand(5).getImm(); 7492 DebugLoc DL = MI.getDebugLoc(); 7493 7494 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 7495 7496 // ISel pattern matching also adds a load memory operand of the same 7497 // address, so take special care to find the storing memory operand. 7498 MachineMemOperand *MMO = nullptr; 7499 for (auto *I : MI.memoperands()) 7500 if (I->isStore()) { 7501 MMO = I; 7502 break; 7503 } 7504 7505 // Use STOCOpcode if possible. We could use different store patterns in 7506 // order to avoid matching the index register, but the performance trade-offs 7507 // might be more complicated in that case. 7508 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 7509 if (Invert) 7510 CCMask ^= CCValid; 7511 7512 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 7513 .addReg(SrcReg) 7514 .add(Base) 7515 .addImm(Disp) 7516 .addImm(CCValid) 7517 .addImm(CCMask) 7518 .addMemOperand(MMO); 7519 7520 MI.eraseFromParent(); 7521 return MBB; 7522 } 7523 7524 // Get the condition needed to branch around the store. 7525 if (!Invert) 7526 CCMask ^= CCValid; 7527 7528 MachineBasicBlock *StartMBB = MBB; 7529 MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); 7530 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7531 7532 // Unless CC was killed in the CondStore instruction, mark it as 7533 // live-in to both FalseMBB and JoinMBB. 7534 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 7535 FalseMBB->addLiveIn(SystemZ::CC); 7536 JoinMBB->addLiveIn(SystemZ::CC); 7537 } 7538 7539 // StartMBB: 7540 // BRC CCMask, JoinMBB 7541 // # fallthrough to FalseMBB 7542 MBB = StartMBB; 7543 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7544 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7545 MBB->addSuccessor(JoinMBB); 7546 MBB->addSuccessor(FalseMBB); 7547 7548 // FalseMBB: 7549 // store %SrcReg, %Disp(%Index,%Base) 7550 // # fallthrough to JoinMBB 7551 MBB = FalseMBB; 7552 BuildMI(MBB, DL, TII->get(StoreOpcode)) 7553 .addReg(SrcReg) 7554 .add(Base) 7555 .addImm(Disp) 7556 .addReg(IndexReg) 7557 .addMemOperand(MMO); 7558 MBB->addSuccessor(JoinMBB); 7559 7560 MI.eraseFromParent(); 7561 return JoinMBB; 7562 } 7563 7564 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 7565 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 7566 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 7567 // BitSize is the width of the field in bits, or 0 if this is a partword 7568 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 7569 // is one of the operands. Invert says whether the field should be 7570 // inverted after performing BinOpcode (e.g. for NAND). 7571 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 7572 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 7573 unsigned BitSize, bool Invert) const { 7574 MachineFunction &MF = *MBB->getParent(); 7575 const SystemZInstrInfo *TII = 7576 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7577 MachineRegisterInfo &MRI = MF.getRegInfo(); 7578 bool IsSubWord = (BitSize < 32); 7579 7580 // Extract the operands. Base can be a register or a frame index. 7581 // Src2 can be a register or immediate. 7582 Register Dest = MI.getOperand(0).getReg(); 7583 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7584 int64_t Disp = MI.getOperand(2).getImm(); 7585 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 7586 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 7587 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 7588 DebugLoc DL = MI.getDebugLoc(); 7589 if (IsSubWord) 7590 BitSize = MI.getOperand(6).getImm(); 7591 7592 // Subword operations use 32-bit registers. 7593 const TargetRegisterClass *RC = (BitSize <= 32 ? 7594 &SystemZ::GR32BitRegClass : 7595 &SystemZ::GR64BitRegClass); 7596 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7597 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7598 7599 // Get the right opcodes for the displacement. 7600 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7601 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7602 assert(LOpcode && CSOpcode && "Displacement out of range"); 7603 7604 // Create virtual registers for temporary results. 7605 Register OrigVal = MRI.createVirtualRegister(RC); 7606 Register OldVal = MRI.createVirtualRegister(RC); 7607 Register NewVal = (BinOpcode || IsSubWord ? 7608 MRI.createVirtualRegister(RC) : Src2.getReg()); 7609 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7610 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7611 7612 // Insert a basic block for the main loop. 7613 MachineBasicBlock *StartMBB = MBB; 7614 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7615 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7616 7617 // StartMBB: 7618 // ... 7619 // %OrigVal = L Disp(%Base) 7620 // # fall through to LoopMBB 7621 MBB = StartMBB; 7622 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7623 MBB->addSuccessor(LoopMBB); 7624 7625 // LoopMBB: 7626 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7627 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7628 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7629 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7630 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7631 // JNE LoopMBB 7632 // # fall through to DoneMBB 7633 MBB = LoopMBB; 7634 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7635 .addReg(OrigVal).addMBB(StartMBB) 7636 .addReg(Dest).addMBB(LoopMBB); 7637 if (IsSubWord) 7638 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7639 .addReg(OldVal).addReg(BitShift).addImm(0); 7640 if (Invert) { 7641 // Perform the operation normally and then invert every bit of the field. 7642 Register Tmp = MRI.createVirtualRegister(RC); 7643 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7644 if (BitSize <= 32) 7645 // XILF with the upper BitSize bits set. 7646 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7647 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7648 else { 7649 // Use LCGR and add -1 to the result, which is more compact than 7650 // an XILF, XILH pair. 7651 Register Tmp2 = MRI.createVirtualRegister(RC); 7652 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7653 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7654 .addReg(Tmp2).addImm(-1); 7655 } 7656 } else if (BinOpcode) 7657 // A simply binary operation. 7658 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7659 .addReg(RotatedOldVal) 7660 .add(Src2); 7661 else if (IsSubWord) 7662 // Use RISBG to rotate Src2 into position and use it to replace the 7663 // field in RotatedOldVal. 7664 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7665 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7666 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7667 if (IsSubWord) 7668 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7669 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7670 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7671 .addReg(OldVal) 7672 .addReg(NewVal) 7673 .add(Base) 7674 .addImm(Disp); 7675 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7676 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7677 MBB->addSuccessor(LoopMBB); 7678 MBB->addSuccessor(DoneMBB); 7679 7680 MI.eraseFromParent(); 7681 return DoneMBB; 7682 } 7683 7684 // Implement EmitInstrWithCustomInserter for pseudo 7685 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7686 // instruction that should be used to compare the current field with the 7687 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7688 // for when the current field should be kept. BitSize is the width of 7689 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7690 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7691 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7692 unsigned KeepOldMask, unsigned BitSize) const { 7693 MachineFunction &MF = *MBB->getParent(); 7694 const SystemZInstrInfo *TII = 7695 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7696 MachineRegisterInfo &MRI = MF.getRegInfo(); 7697 bool IsSubWord = (BitSize < 32); 7698 7699 // Extract the operands. Base can be a register or a frame index. 7700 Register Dest = MI.getOperand(0).getReg(); 7701 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7702 int64_t Disp = MI.getOperand(2).getImm(); 7703 Register Src2 = MI.getOperand(3).getReg(); 7704 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7705 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7706 DebugLoc DL = MI.getDebugLoc(); 7707 if (IsSubWord) 7708 BitSize = MI.getOperand(6).getImm(); 7709 7710 // Subword operations use 32-bit registers. 7711 const TargetRegisterClass *RC = (BitSize <= 32 ? 7712 &SystemZ::GR32BitRegClass : 7713 &SystemZ::GR64BitRegClass); 7714 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7715 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7716 7717 // Get the right opcodes for the displacement. 7718 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7719 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7720 assert(LOpcode && CSOpcode && "Displacement out of range"); 7721 7722 // Create virtual registers for temporary results. 7723 Register OrigVal = MRI.createVirtualRegister(RC); 7724 Register OldVal = MRI.createVirtualRegister(RC); 7725 Register NewVal = MRI.createVirtualRegister(RC); 7726 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7727 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7728 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7729 7730 // Insert 3 basic blocks for the loop. 7731 MachineBasicBlock *StartMBB = MBB; 7732 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7733 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7734 MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); 7735 MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); 7736 7737 // StartMBB: 7738 // ... 7739 // %OrigVal = L Disp(%Base) 7740 // # fall through to LoopMBB 7741 MBB = StartMBB; 7742 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7743 MBB->addSuccessor(LoopMBB); 7744 7745 // LoopMBB: 7746 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7747 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7748 // CompareOpcode %RotatedOldVal, %Src2 7749 // BRC KeepOldMask, UpdateMBB 7750 MBB = LoopMBB; 7751 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7752 .addReg(OrigVal).addMBB(StartMBB) 7753 .addReg(Dest).addMBB(UpdateMBB); 7754 if (IsSubWord) 7755 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7756 .addReg(OldVal).addReg(BitShift).addImm(0); 7757 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7758 .addReg(RotatedOldVal).addReg(Src2); 7759 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7760 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7761 MBB->addSuccessor(UpdateMBB); 7762 MBB->addSuccessor(UseAltMBB); 7763 7764 // UseAltMBB: 7765 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7766 // # fall through to UpdateMBB 7767 MBB = UseAltMBB; 7768 if (IsSubWord) 7769 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7770 .addReg(RotatedOldVal).addReg(Src2) 7771 .addImm(32).addImm(31 + BitSize).addImm(0); 7772 MBB->addSuccessor(UpdateMBB); 7773 7774 // UpdateMBB: 7775 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7776 // [ %RotatedAltVal, UseAltMBB ] 7777 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7778 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7779 // JNE LoopMBB 7780 // # fall through to DoneMBB 7781 MBB = UpdateMBB; 7782 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7783 .addReg(RotatedOldVal).addMBB(LoopMBB) 7784 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7785 if (IsSubWord) 7786 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7787 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7788 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7789 .addReg(OldVal) 7790 .addReg(NewVal) 7791 .add(Base) 7792 .addImm(Disp); 7793 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7794 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7795 MBB->addSuccessor(LoopMBB); 7796 MBB->addSuccessor(DoneMBB); 7797 7798 MI.eraseFromParent(); 7799 return DoneMBB; 7800 } 7801 7802 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7803 // instruction MI. 7804 MachineBasicBlock * 7805 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7806 MachineBasicBlock *MBB) const { 7807 MachineFunction &MF = *MBB->getParent(); 7808 const SystemZInstrInfo *TII = 7809 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7810 MachineRegisterInfo &MRI = MF.getRegInfo(); 7811 7812 // Extract the operands. Base can be a register or a frame index. 7813 Register Dest = MI.getOperand(0).getReg(); 7814 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7815 int64_t Disp = MI.getOperand(2).getImm(); 7816 Register CmpVal = MI.getOperand(3).getReg(); 7817 Register OrigSwapVal = MI.getOperand(4).getReg(); 7818 Register BitShift = MI.getOperand(5).getReg(); 7819 Register NegBitShift = MI.getOperand(6).getReg(); 7820 int64_t BitSize = MI.getOperand(7).getImm(); 7821 DebugLoc DL = MI.getDebugLoc(); 7822 7823 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7824 7825 // Get the right opcodes for the displacement and zero-extension. 7826 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7827 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7828 unsigned ZExtOpcode = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR; 7829 assert(LOpcode && CSOpcode && "Displacement out of range"); 7830 7831 // Create virtual registers for temporary results. 7832 Register OrigOldVal = MRI.createVirtualRegister(RC); 7833 Register OldVal = MRI.createVirtualRegister(RC); 7834 Register SwapVal = MRI.createVirtualRegister(RC); 7835 Register StoreVal = MRI.createVirtualRegister(RC); 7836 Register OldValRot = MRI.createVirtualRegister(RC); 7837 Register RetryOldVal = MRI.createVirtualRegister(RC); 7838 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7839 7840 // Insert 2 basic blocks for the loop. 7841 MachineBasicBlock *StartMBB = MBB; 7842 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7843 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7844 MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); 7845 7846 // StartMBB: 7847 // ... 7848 // %OrigOldVal = L Disp(%Base) 7849 // # fall through to LoopMBB 7850 MBB = StartMBB; 7851 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7852 .add(Base) 7853 .addImm(Disp) 7854 .addReg(0); 7855 MBB->addSuccessor(LoopMBB); 7856 7857 // LoopMBB: 7858 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7859 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7860 // %OldValRot = RLL %OldVal, BitSize(%BitShift) 7861 // ^^ The low BitSize bits contain the field 7862 // of interest. 7863 // %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0 7864 // ^^ Replace the upper 32-BitSize bits of the 7865 // swap value with those that we loaded and rotated. 7866 // %Dest = LL[CH] %OldValRot 7867 // CR %Dest, %CmpVal 7868 // JNE DoneMBB 7869 // # Fall through to SetMBB 7870 MBB = LoopMBB; 7871 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7872 .addReg(OrigOldVal).addMBB(StartMBB) 7873 .addReg(RetryOldVal).addMBB(SetMBB); 7874 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7875 .addReg(OrigSwapVal).addMBB(StartMBB) 7876 .addReg(RetrySwapVal).addMBB(SetMBB); 7877 BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot) 7878 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7879 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7880 .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0); 7881 BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest) 7882 .addReg(OldValRot); 7883 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7884 .addReg(Dest).addReg(CmpVal); 7885 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7886 .addImm(SystemZ::CCMASK_ICMP) 7887 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7888 MBB->addSuccessor(DoneMBB); 7889 MBB->addSuccessor(SetMBB); 7890 7891 // SetMBB: 7892 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7893 // ^^ Rotate the new field to its proper position. 7894 // %RetryOldVal = CS %OldVal, %StoreVal, Disp(%Base) 7895 // JNE LoopMBB 7896 // # fall through to ExitMBB 7897 MBB = SetMBB; 7898 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7899 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7900 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7901 .addReg(OldVal) 7902 .addReg(StoreVal) 7903 .add(Base) 7904 .addImm(Disp); 7905 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7906 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7907 MBB->addSuccessor(LoopMBB); 7908 MBB->addSuccessor(DoneMBB); 7909 7910 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7911 // to the block after the loop. At this point, CC may have been defined 7912 // either by the CR in LoopMBB or by the CS in SetMBB. 7913 if (!MI.registerDefIsDead(SystemZ::CC)) 7914 DoneMBB->addLiveIn(SystemZ::CC); 7915 7916 MI.eraseFromParent(); 7917 return DoneMBB; 7918 } 7919 7920 // Emit a move from two GR64s to a GR128. 7921 MachineBasicBlock * 7922 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7923 MachineBasicBlock *MBB) const { 7924 MachineFunction &MF = *MBB->getParent(); 7925 const SystemZInstrInfo *TII = 7926 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7927 MachineRegisterInfo &MRI = MF.getRegInfo(); 7928 DebugLoc DL = MI.getDebugLoc(); 7929 7930 Register Dest = MI.getOperand(0).getReg(); 7931 Register Hi = MI.getOperand(1).getReg(); 7932 Register Lo = MI.getOperand(2).getReg(); 7933 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7934 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7935 7936 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7937 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7938 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7939 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7940 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7941 7942 MI.eraseFromParent(); 7943 return MBB; 7944 } 7945 7946 // Emit an extension from a GR64 to a GR128. ClearEven is true 7947 // if the high register of the GR128 value must be cleared or false if 7948 // it's "don't care". 7949 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7950 MachineBasicBlock *MBB, 7951 bool ClearEven) const { 7952 MachineFunction &MF = *MBB->getParent(); 7953 const SystemZInstrInfo *TII = 7954 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7955 MachineRegisterInfo &MRI = MF.getRegInfo(); 7956 DebugLoc DL = MI.getDebugLoc(); 7957 7958 Register Dest = MI.getOperand(0).getReg(); 7959 Register Src = MI.getOperand(1).getReg(); 7960 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7961 7962 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7963 if (ClearEven) { 7964 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7965 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7966 7967 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7968 .addImm(0); 7969 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7970 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7971 In128 = NewIn128; 7972 } 7973 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7974 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7975 7976 MI.eraseFromParent(); 7977 return MBB; 7978 } 7979 7980 MachineBasicBlock * 7981 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI, 7982 MachineBasicBlock *MBB, 7983 unsigned Opcode, bool IsMemset) const { 7984 MachineFunction &MF = *MBB->getParent(); 7985 const SystemZInstrInfo *TII = 7986 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7987 MachineRegisterInfo &MRI = MF.getRegInfo(); 7988 DebugLoc DL = MI.getDebugLoc(); 7989 7990 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7991 uint64_t DestDisp = MI.getOperand(1).getImm(); 7992 MachineOperand SrcBase = MachineOperand::CreateReg(0U, false); 7993 uint64_t SrcDisp; 7994 7995 // Fold the displacement Disp if it is out of range. 7996 auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void { 7997 if (!isUInt<12>(Disp)) { 7998 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7999 unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp); 8000 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg) 8001 .add(Base).addImm(Disp).addReg(0); 8002 Base = MachineOperand::CreateReg(Reg, false); 8003 Disp = 0; 8004 } 8005 }; 8006 8007 if (!IsMemset) { 8008 SrcBase = earlyUseOperand(MI.getOperand(2)); 8009 SrcDisp = MI.getOperand(3).getImm(); 8010 } else { 8011 SrcBase = DestBase; 8012 SrcDisp = DestDisp++; 8013 foldDisplIfNeeded(DestBase, DestDisp); 8014 } 8015 8016 MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4); 8017 bool IsImmForm = LengthMO.isImm(); 8018 bool IsRegForm = !IsImmForm; 8019 8020 // Build and insert one Opcode of Length, with special treatment for memset. 8021 auto insertMemMemOp = [&](MachineBasicBlock *InsMBB, 8022 MachineBasicBlock::iterator InsPos, 8023 MachineOperand DBase, uint64_t DDisp, 8024 MachineOperand SBase, uint64_t SDisp, 8025 unsigned Length) -> void { 8026 assert(Length > 0 && Length <= 256 && "Building memory op with bad length."); 8027 if (IsMemset) { 8028 MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3)); 8029 if (ByteMO.isImm()) 8030 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI)) 8031 .add(SBase).addImm(SDisp).add(ByteMO); 8032 else 8033 BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC)) 8034 .add(ByteMO).add(SBase).addImm(SDisp).addReg(0); 8035 if (--Length == 0) 8036 return; 8037 } 8038 BuildMI(*MBB, InsPos, DL, TII->get(Opcode)) 8039 .add(DBase).addImm(DDisp).addImm(Length) 8040 .add(SBase).addImm(SDisp) 8041 .setMemRefs(MI.memoperands()); 8042 }; 8043 8044 bool NeedsLoop = false; 8045 uint64_t ImmLength = 0; 8046 Register LenAdjReg = SystemZ::NoRegister; 8047 if (IsImmForm) { 8048 ImmLength = LengthMO.getImm(); 8049 ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment. 8050 if (ImmLength == 0) { 8051 MI.eraseFromParent(); 8052 return MBB; 8053 } 8054 if (Opcode == SystemZ::CLC) { 8055 if (ImmLength > 3 * 256) 8056 // A two-CLC sequence is a clear win over a loop, not least because 8057 // it needs only one branch. A three-CLC sequence needs the same 8058 // number of branches as a loop (i.e. 2), but is shorter. That 8059 // brings us to lengths greater than 768 bytes. It seems relatively 8060 // likely that a difference will be found within the first 768 bytes, 8061 // so we just optimize for the smallest number of branch 8062 // instructions, in order to avoid polluting the prediction buffer 8063 // too much. 8064 NeedsLoop = true; 8065 } else if (ImmLength > 6 * 256) 8066 // The heuristic we use is to prefer loops for anything that would 8067 // require 7 or more MVCs. With these kinds of sizes there isn't much 8068 // to choose between straight-line code and looping code, since the 8069 // time will be dominated by the MVCs themselves. 8070 NeedsLoop = true; 8071 } else { 8072 NeedsLoop = true; 8073 LenAdjReg = LengthMO.getReg(); 8074 } 8075 8076 // When generating more than one CLC, all but the last will need to 8077 // branch to the end when a difference is found. 8078 MachineBasicBlock *EndMBB = 8079 (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop) 8080 ? SystemZ::splitBlockAfter(MI, MBB) 8081 : nullptr); 8082 8083 if (NeedsLoop) { 8084 Register StartCountReg = 8085 MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 8086 if (IsImmForm) { 8087 TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256); 8088 ImmLength &= 255; 8089 } else { 8090 BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg) 8091 .addReg(LenAdjReg) 8092 .addReg(0) 8093 .addImm(8); 8094 } 8095 8096 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 8097 auto loadZeroAddress = [&]() -> MachineOperand { 8098 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8099 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0); 8100 return MachineOperand::CreateReg(Reg, false); 8101 }; 8102 if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister) 8103 DestBase = loadZeroAddress(); 8104 if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister) 8105 SrcBase = HaveSingleBase ? DestBase : loadZeroAddress(); 8106 8107 MachineBasicBlock *StartMBB = nullptr; 8108 MachineBasicBlock *LoopMBB = nullptr; 8109 MachineBasicBlock *NextMBB = nullptr; 8110 MachineBasicBlock *DoneMBB = nullptr; 8111 MachineBasicBlock *AllDoneMBB = nullptr; 8112 8113 Register StartSrcReg = forceReg(MI, SrcBase, TII); 8114 Register StartDestReg = 8115 (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII)); 8116 8117 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 8118 Register ThisSrcReg = MRI.createVirtualRegister(RC); 8119 Register ThisDestReg = 8120 (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC)); 8121 Register NextSrcReg = MRI.createVirtualRegister(RC); 8122 Register NextDestReg = 8123 (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC)); 8124 RC = &SystemZ::GR64BitRegClass; 8125 Register ThisCountReg = MRI.createVirtualRegister(RC); 8126 Register NextCountReg = MRI.createVirtualRegister(RC); 8127 8128 if (IsRegForm) { 8129 AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8130 StartMBB = SystemZ::emitBlockAfter(MBB); 8131 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8132 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8133 DoneMBB = SystemZ::emitBlockAfter(NextMBB); 8134 8135 // MBB: 8136 // # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB. 8137 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8138 .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1); 8139 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8140 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8141 .addMBB(AllDoneMBB); 8142 MBB->addSuccessor(AllDoneMBB); 8143 if (!IsMemset) 8144 MBB->addSuccessor(StartMBB); 8145 else { 8146 // MemsetOneCheckMBB: 8147 // # Jump to MemsetOneMBB for a memset of length 1, or 8148 // # fall thru to StartMBB. 8149 MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB); 8150 MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin()); 8151 MBB->addSuccessor(MemsetOneCheckMBB); 8152 MBB = MemsetOneCheckMBB; 8153 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8154 .addReg(LenAdjReg).addImm(-1); 8155 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8156 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8157 .addMBB(MemsetOneMBB); 8158 MBB->addSuccessor(MemsetOneMBB, {10, 100}); 8159 MBB->addSuccessor(StartMBB, {90, 100}); 8160 8161 // MemsetOneMBB: 8162 // # Jump back to AllDoneMBB after a single MVI or STC. 8163 MBB = MemsetOneMBB; 8164 insertMemMemOp(MBB, MBB->end(), 8165 MachineOperand::CreateReg(StartDestReg, false), DestDisp, 8166 MachineOperand::CreateReg(StartSrcReg, false), SrcDisp, 8167 1); 8168 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB); 8169 MBB->addSuccessor(AllDoneMBB); 8170 } 8171 8172 // StartMBB: 8173 // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB. 8174 MBB = StartMBB; 8175 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8176 .addReg(StartCountReg).addImm(0); 8177 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8178 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8179 .addMBB(DoneMBB); 8180 MBB->addSuccessor(DoneMBB); 8181 MBB->addSuccessor(LoopMBB); 8182 } 8183 else { 8184 StartMBB = MBB; 8185 DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8186 LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8187 NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 8188 8189 // StartMBB: 8190 // # fall through to LoopMBB 8191 MBB->addSuccessor(LoopMBB); 8192 8193 DestBase = MachineOperand::CreateReg(NextDestReg, false); 8194 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 8195 if (EndMBB && !ImmLength) 8196 // If the loop handled the whole CLC range, DoneMBB will be empty with 8197 // CC live-through into EndMBB, so add it as live-in. 8198 DoneMBB->addLiveIn(SystemZ::CC); 8199 } 8200 8201 // LoopMBB: 8202 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 8203 // [ %NextDestReg, NextMBB ] 8204 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 8205 // [ %NextSrcReg, NextMBB ] 8206 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 8207 // [ %NextCountReg, NextMBB ] 8208 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 8209 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 8210 // ( JLH EndMBB ) 8211 // 8212 // The prefetch is used only for MVC. The JLH is used only for CLC. 8213 MBB = LoopMBB; 8214 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 8215 .addReg(StartDestReg).addMBB(StartMBB) 8216 .addReg(NextDestReg).addMBB(NextMBB); 8217 if (!HaveSingleBase) 8218 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 8219 .addReg(StartSrcReg).addMBB(StartMBB) 8220 .addReg(NextSrcReg).addMBB(NextMBB); 8221 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 8222 .addReg(StartCountReg).addMBB(StartMBB) 8223 .addReg(NextCountReg).addMBB(NextMBB); 8224 if (Opcode == SystemZ::MVC) 8225 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 8226 .addImm(SystemZ::PFD_WRITE) 8227 .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0); 8228 insertMemMemOp(MBB, MBB->end(), 8229 MachineOperand::CreateReg(ThisDestReg, false), DestDisp, 8230 MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256); 8231 if (EndMBB) { 8232 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8233 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8234 .addMBB(EndMBB); 8235 MBB->addSuccessor(EndMBB); 8236 MBB->addSuccessor(NextMBB); 8237 } 8238 8239 // NextMBB: 8240 // %NextDestReg = LA 256(%ThisDestReg) 8241 // %NextSrcReg = LA 256(%ThisSrcReg) 8242 // %NextCountReg = AGHI %ThisCountReg, -1 8243 // CGHI %NextCountReg, 0 8244 // JLH LoopMBB 8245 // # fall through to DoneMBB 8246 // 8247 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 8248 MBB = NextMBB; 8249 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 8250 .addReg(ThisDestReg).addImm(256).addReg(0); 8251 if (!HaveSingleBase) 8252 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 8253 .addReg(ThisSrcReg).addImm(256).addReg(0); 8254 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 8255 .addReg(ThisCountReg).addImm(-1); 8256 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8257 .addReg(NextCountReg).addImm(0); 8258 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8259 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8260 .addMBB(LoopMBB); 8261 MBB->addSuccessor(LoopMBB); 8262 MBB->addSuccessor(DoneMBB); 8263 8264 MBB = DoneMBB; 8265 if (IsRegForm) { 8266 // DoneMBB: 8267 // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run. 8268 // # Use EXecute Relative Long for the remainder of the bytes. The target 8269 // instruction of the EXRL will have a length field of 1 since 0 is an 8270 // illegal value. The number of bytes processed becomes (%LenAdjReg & 8271 // 0xff) + 1. 8272 // # Fall through to AllDoneMBB. 8273 Register RemSrcReg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8274 Register RemDestReg = HaveSingleBase ? RemSrcReg 8275 : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8276 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg) 8277 .addReg(StartDestReg).addMBB(StartMBB) 8278 .addReg(NextDestReg).addMBB(NextMBB); 8279 if (!HaveSingleBase) 8280 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg) 8281 .addReg(StartSrcReg).addMBB(StartMBB) 8282 .addReg(NextSrcReg).addMBB(NextMBB); 8283 if (IsMemset) 8284 insertMemMemOp(MBB, MBB->end(), 8285 MachineOperand::CreateReg(RemDestReg, false), DestDisp, 8286 MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1); 8287 MachineInstrBuilder EXRL_MIB = 8288 BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo)) 8289 .addImm(Opcode) 8290 .addReg(LenAdjReg) 8291 .addReg(RemDestReg).addImm(DestDisp) 8292 .addReg(RemSrcReg).addImm(SrcDisp); 8293 MBB->addSuccessor(AllDoneMBB); 8294 MBB = AllDoneMBB; 8295 if (EndMBB) { 8296 EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine); 8297 MBB->addLiveIn(SystemZ::CC); 8298 } 8299 } 8300 } 8301 8302 // Handle any remaining bytes with straight-line code. 8303 while (ImmLength > 0) { 8304 uint64_t ThisLength = std::min(ImmLength, uint64_t(256)); 8305 // The previous iteration might have created out-of-range displacements. 8306 // Apply them using LA/LAY if so. 8307 foldDisplIfNeeded(DestBase, DestDisp); 8308 foldDisplIfNeeded(SrcBase, SrcDisp); 8309 insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength); 8310 DestDisp += ThisLength; 8311 SrcDisp += ThisLength; 8312 ImmLength -= ThisLength; 8313 // If there's another CLC to go, branch to the end if a difference 8314 // was found. 8315 if (EndMBB && ImmLength > 0) { 8316 MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); 8317 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8318 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 8319 .addMBB(EndMBB); 8320 MBB->addSuccessor(EndMBB); 8321 MBB->addSuccessor(NextMBB); 8322 MBB = NextMBB; 8323 } 8324 } 8325 if (EndMBB) { 8326 MBB->addSuccessor(EndMBB); 8327 MBB = EndMBB; 8328 MBB->addLiveIn(SystemZ::CC); 8329 } 8330 8331 MI.eraseFromParent(); 8332 return MBB; 8333 } 8334 8335 // Decompose string pseudo-instruction MI into a loop that continually performs 8336 // Opcode until CC != 3. 8337 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 8338 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8339 MachineFunction &MF = *MBB->getParent(); 8340 const SystemZInstrInfo *TII = 8341 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8342 MachineRegisterInfo &MRI = MF.getRegInfo(); 8343 DebugLoc DL = MI.getDebugLoc(); 8344 8345 uint64_t End1Reg = MI.getOperand(0).getReg(); 8346 uint64_t Start1Reg = MI.getOperand(1).getReg(); 8347 uint64_t Start2Reg = MI.getOperand(2).getReg(); 8348 uint64_t CharReg = MI.getOperand(3).getReg(); 8349 8350 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 8351 uint64_t This1Reg = MRI.createVirtualRegister(RC); 8352 uint64_t This2Reg = MRI.createVirtualRegister(RC); 8353 uint64_t End2Reg = MRI.createVirtualRegister(RC); 8354 8355 MachineBasicBlock *StartMBB = MBB; 8356 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 8357 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 8358 8359 // StartMBB: 8360 // # fall through to LoopMBB 8361 MBB->addSuccessor(LoopMBB); 8362 8363 // LoopMBB: 8364 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 8365 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 8366 // R0L = %CharReg 8367 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 8368 // JO LoopMBB 8369 // # fall through to DoneMBB 8370 // 8371 // The load of R0L can be hoisted by post-RA LICM. 8372 MBB = LoopMBB; 8373 8374 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 8375 .addReg(Start1Reg).addMBB(StartMBB) 8376 .addReg(End1Reg).addMBB(LoopMBB); 8377 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 8378 .addReg(Start2Reg).addMBB(StartMBB) 8379 .addReg(End2Reg).addMBB(LoopMBB); 8380 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 8381 BuildMI(MBB, DL, TII->get(Opcode)) 8382 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 8383 .addReg(This1Reg).addReg(This2Reg); 8384 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8385 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 8386 MBB->addSuccessor(LoopMBB); 8387 MBB->addSuccessor(DoneMBB); 8388 8389 DoneMBB->addLiveIn(SystemZ::CC); 8390 8391 MI.eraseFromParent(); 8392 return DoneMBB; 8393 } 8394 8395 // Update TBEGIN instruction with final opcode and register clobbers. 8396 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 8397 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 8398 bool NoFloat) const { 8399 MachineFunction &MF = *MBB->getParent(); 8400 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 8401 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 8402 8403 // Update opcode. 8404 MI.setDesc(TII->get(Opcode)); 8405 8406 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 8407 // Make sure to add the corresponding GRSM bits if they are missing. 8408 uint64_t Control = MI.getOperand(2).getImm(); 8409 static const unsigned GPRControlBit[16] = { 8410 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 8411 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 8412 }; 8413 Control |= GPRControlBit[15]; 8414 if (TFI->hasFP(MF)) 8415 Control |= GPRControlBit[11]; 8416 MI.getOperand(2).setImm(Control); 8417 8418 // Add GPR clobbers. 8419 for (int I = 0; I < 16; I++) { 8420 if ((Control & GPRControlBit[I]) == 0) { 8421 unsigned Reg = SystemZMC::GR64Regs[I]; 8422 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8423 } 8424 } 8425 8426 // Add FPR/VR clobbers. 8427 if (!NoFloat && (Control & 4) != 0) { 8428 if (Subtarget.hasVector()) { 8429 for (unsigned Reg : SystemZMC::VR128Regs) { 8430 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8431 } 8432 } else { 8433 for (unsigned Reg : SystemZMC::FP64Regs) { 8434 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8435 } 8436 } 8437 } 8438 8439 return MBB; 8440 } 8441 8442 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 8443 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8444 MachineFunction &MF = *MBB->getParent(); 8445 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8446 const SystemZInstrInfo *TII = 8447 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8448 DebugLoc DL = MI.getDebugLoc(); 8449 8450 Register SrcReg = MI.getOperand(0).getReg(); 8451 8452 // Create new virtual register of the same class as source. 8453 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 8454 Register DstReg = MRI->createVirtualRegister(RC); 8455 8456 // Replace pseudo with a normal load-and-test that models the def as 8457 // well. 8458 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 8459 .addReg(SrcReg) 8460 .setMIFlags(MI.getFlags()); 8461 MI.eraseFromParent(); 8462 8463 return MBB; 8464 } 8465 8466 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( 8467 MachineInstr &MI, MachineBasicBlock *MBB) const { 8468 MachineFunction &MF = *MBB->getParent(); 8469 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8470 const SystemZInstrInfo *TII = 8471 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8472 DebugLoc DL = MI.getDebugLoc(); 8473 const unsigned ProbeSize = getStackProbeSize(MF); 8474 Register DstReg = MI.getOperand(0).getReg(); 8475 Register SizeReg = MI.getOperand(2).getReg(); 8476 8477 MachineBasicBlock *StartMBB = MBB; 8478 MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); 8479 MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); 8480 MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); 8481 MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); 8482 MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); 8483 8484 MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), 8485 MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); 8486 8487 Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8488 Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8489 8490 // LoopTestMBB 8491 // BRC TailTestMBB 8492 // # fallthrough to LoopBodyMBB 8493 StartMBB->addSuccessor(LoopTestMBB); 8494 MBB = LoopTestMBB; 8495 BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) 8496 .addReg(SizeReg) 8497 .addMBB(StartMBB) 8498 .addReg(IncReg) 8499 .addMBB(LoopBodyMBB); 8500 BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) 8501 .addReg(PHIReg) 8502 .addImm(ProbeSize); 8503 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8504 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) 8505 .addMBB(TailTestMBB); 8506 MBB->addSuccessor(LoopBodyMBB); 8507 MBB->addSuccessor(TailTestMBB); 8508 8509 // LoopBodyMBB: Allocate and probe by means of a volatile compare. 8510 // J LoopTestMBB 8511 MBB = LoopBodyMBB; 8512 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) 8513 .addReg(PHIReg) 8514 .addImm(ProbeSize); 8515 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) 8516 .addReg(SystemZ::R15D) 8517 .addImm(ProbeSize); 8518 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8519 .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) 8520 .setMemRefs(VolLdMMO); 8521 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); 8522 MBB->addSuccessor(LoopTestMBB); 8523 8524 // TailTestMBB 8525 // BRC DoneMBB 8526 // # fallthrough to TailMBB 8527 MBB = TailTestMBB; 8528 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8529 .addReg(PHIReg) 8530 .addImm(0); 8531 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8532 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8533 .addMBB(DoneMBB); 8534 MBB->addSuccessor(TailMBB); 8535 MBB->addSuccessor(DoneMBB); 8536 8537 // TailMBB 8538 // # fallthrough to DoneMBB 8539 MBB = TailMBB; 8540 BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) 8541 .addReg(SystemZ::R15D) 8542 .addReg(PHIReg); 8543 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8544 .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) 8545 .setMemRefs(VolLdMMO); 8546 MBB->addSuccessor(DoneMBB); 8547 8548 // DoneMBB 8549 MBB = DoneMBB; 8550 BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) 8551 .addReg(SystemZ::R15D); 8552 8553 MI.eraseFromParent(); 8554 return DoneMBB; 8555 } 8556 8557 SDValue SystemZTargetLowering:: 8558 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const { 8559 MachineFunction &MF = DAG.getMachineFunction(); 8560 auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>(); 8561 SDLoc DL(SP); 8562 return DAG.getNode(ISD::ADD, DL, MVT::i64, SP, 8563 DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL)); 8564 } 8565 8566 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 8567 MachineInstr &MI, MachineBasicBlock *MBB) const { 8568 switch (MI.getOpcode()) { 8569 case SystemZ::Select32: 8570 case SystemZ::Select64: 8571 case SystemZ::SelectF32: 8572 case SystemZ::SelectF64: 8573 case SystemZ::SelectF128: 8574 case SystemZ::SelectVR32: 8575 case SystemZ::SelectVR64: 8576 case SystemZ::SelectVR128: 8577 return emitSelect(MI, MBB); 8578 8579 case SystemZ::CondStore8Mux: 8580 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 8581 case SystemZ::CondStore8MuxInv: 8582 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 8583 case SystemZ::CondStore16Mux: 8584 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 8585 case SystemZ::CondStore16MuxInv: 8586 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 8587 case SystemZ::CondStore32Mux: 8588 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 8589 case SystemZ::CondStore32MuxInv: 8590 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 8591 case SystemZ::CondStore8: 8592 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 8593 case SystemZ::CondStore8Inv: 8594 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 8595 case SystemZ::CondStore16: 8596 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 8597 case SystemZ::CondStore16Inv: 8598 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 8599 case SystemZ::CondStore32: 8600 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 8601 case SystemZ::CondStore32Inv: 8602 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 8603 case SystemZ::CondStore64: 8604 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 8605 case SystemZ::CondStore64Inv: 8606 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 8607 case SystemZ::CondStoreF32: 8608 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 8609 case SystemZ::CondStoreF32Inv: 8610 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 8611 case SystemZ::CondStoreF64: 8612 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 8613 case SystemZ::CondStoreF64Inv: 8614 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 8615 8616 case SystemZ::PAIR128: 8617 return emitPair128(MI, MBB); 8618 case SystemZ::AEXT128: 8619 return emitExt128(MI, MBB, false); 8620 case SystemZ::ZEXT128: 8621 return emitExt128(MI, MBB, true); 8622 8623 case SystemZ::ATOMIC_SWAPW: 8624 return emitAtomicLoadBinary(MI, MBB, 0, 0); 8625 case SystemZ::ATOMIC_SWAP_32: 8626 return emitAtomicLoadBinary(MI, MBB, 0, 32); 8627 case SystemZ::ATOMIC_SWAP_64: 8628 return emitAtomicLoadBinary(MI, MBB, 0, 64); 8629 8630 case SystemZ::ATOMIC_LOADW_AR: 8631 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 8632 case SystemZ::ATOMIC_LOADW_AFI: 8633 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 8634 case SystemZ::ATOMIC_LOAD_AR: 8635 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 8636 case SystemZ::ATOMIC_LOAD_AHI: 8637 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 8638 case SystemZ::ATOMIC_LOAD_AFI: 8639 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 8640 case SystemZ::ATOMIC_LOAD_AGR: 8641 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 8642 case SystemZ::ATOMIC_LOAD_AGHI: 8643 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 8644 case SystemZ::ATOMIC_LOAD_AGFI: 8645 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 8646 8647 case SystemZ::ATOMIC_LOADW_SR: 8648 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 8649 case SystemZ::ATOMIC_LOAD_SR: 8650 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 8651 case SystemZ::ATOMIC_LOAD_SGR: 8652 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 8653 8654 case SystemZ::ATOMIC_LOADW_NR: 8655 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 8656 case SystemZ::ATOMIC_LOADW_NILH: 8657 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 8658 case SystemZ::ATOMIC_LOAD_NR: 8659 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 8660 case SystemZ::ATOMIC_LOAD_NILL: 8661 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 8662 case SystemZ::ATOMIC_LOAD_NILH: 8663 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 8664 case SystemZ::ATOMIC_LOAD_NILF: 8665 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 8666 case SystemZ::ATOMIC_LOAD_NGR: 8667 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 8668 case SystemZ::ATOMIC_LOAD_NILL64: 8669 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 8670 case SystemZ::ATOMIC_LOAD_NILH64: 8671 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 8672 case SystemZ::ATOMIC_LOAD_NIHL64: 8673 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 8674 case SystemZ::ATOMIC_LOAD_NIHH64: 8675 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 8676 case SystemZ::ATOMIC_LOAD_NILF64: 8677 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 8678 case SystemZ::ATOMIC_LOAD_NIHF64: 8679 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 8680 8681 case SystemZ::ATOMIC_LOADW_OR: 8682 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 8683 case SystemZ::ATOMIC_LOADW_OILH: 8684 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 8685 case SystemZ::ATOMIC_LOAD_OR: 8686 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 8687 case SystemZ::ATOMIC_LOAD_OILL: 8688 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 8689 case SystemZ::ATOMIC_LOAD_OILH: 8690 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 8691 case SystemZ::ATOMIC_LOAD_OILF: 8692 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 8693 case SystemZ::ATOMIC_LOAD_OGR: 8694 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 8695 case SystemZ::ATOMIC_LOAD_OILL64: 8696 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 8697 case SystemZ::ATOMIC_LOAD_OILH64: 8698 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 8699 case SystemZ::ATOMIC_LOAD_OIHL64: 8700 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 8701 case SystemZ::ATOMIC_LOAD_OIHH64: 8702 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 8703 case SystemZ::ATOMIC_LOAD_OILF64: 8704 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 8705 case SystemZ::ATOMIC_LOAD_OIHF64: 8706 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 8707 8708 case SystemZ::ATOMIC_LOADW_XR: 8709 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 8710 case SystemZ::ATOMIC_LOADW_XILF: 8711 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 8712 case SystemZ::ATOMIC_LOAD_XR: 8713 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 8714 case SystemZ::ATOMIC_LOAD_XILF: 8715 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 8716 case SystemZ::ATOMIC_LOAD_XGR: 8717 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 8718 case SystemZ::ATOMIC_LOAD_XILF64: 8719 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 8720 case SystemZ::ATOMIC_LOAD_XIHF64: 8721 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 8722 8723 case SystemZ::ATOMIC_LOADW_NRi: 8724 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 8725 case SystemZ::ATOMIC_LOADW_NILHi: 8726 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 8727 case SystemZ::ATOMIC_LOAD_NRi: 8728 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 8729 case SystemZ::ATOMIC_LOAD_NILLi: 8730 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 8731 case SystemZ::ATOMIC_LOAD_NILHi: 8732 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 8733 case SystemZ::ATOMIC_LOAD_NILFi: 8734 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 8735 case SystemZ::ATOMIC_LOAD_NGRi: 8736 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 8737 case SystemZ::ATOMIC_LOAD_NILL64i: 8738 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 8739 case SystemZ::ATOMIC_LOAD_NILH64i: 8740 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 8741 case SystemZ::ATOMIC_LOAD_NIHL64i: 8742 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 8743 case SystemZ::ATOMIC_LOAD_NIHH64i: 8744 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 8745 case SystemZ::ATOMIC_LOAD_NILF64i: 8746 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 8747 case SystemZ::ATOMIC_LOAD_NIHF64i: 8748 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 8749 8750 case SystemZ::ATOMIC_LOADW_MIN: 8751 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8752 SystemZ::CCMASK_CMP_LE, 0); 8753 case SystemZ::ATOMIC_LOAD_MIN_32: 8754 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8755 SystemZ::CCMASK_CMP_LE, 32); 8756 case SystemZ::ATOMIC_LOAD_MIN_64: 8757 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8758 SystemZ::CCMASK_CMP_LE, 64); 8759 8760 case SystemZ::ATOMIC_LOADW_MAX: 8761 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8762 SystemZ::CCMASK_CMP_GE, 0); 8763 case SystemZ::ATOMIC_LOAD_MAX_32: 8764 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8765 SystemZ::CCMASK_CMP_GE, 32); 8766 case SystemZ::ATOMIC_LOAD_MAX_64: 8767 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8768 SystemZ::CCMASK_CMP_GE, 64); 8769 8770 case SystemZ::ATOMIC_LOADW_UMIN: 8771 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8772 SystemZ::CCMASK_CMP_LE, 0); 8773 case SystemZ::ATOMIC_LOAD_UMIN_32: 8774 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8775 SystemZ::CCMASK_CMP_LE, 32); 8776 case SystemZ::ATOMIC_LOAD_UMIN_64: 8777 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8778 SystemZ::CCMASK_CMP_LE, 64); 8779 8780 case SystemZ::ATOMIC_LOADW_UMAX: 8781 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8782 SystemZ::CCMASK_CMP_GE, 0); 8783 case SystemZ::ATOMIC_LOAD_UMAX_32: 8784 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8785 SystemZ::CCMASK_CMP_GE, 32); 8786 case SystemZ::ATOMIC_LOAD_UMAX_64: 8787 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8788 SystemZ::CCMASK_CMP_GE, 64); 8789 8790 case SystemZ::ATOMIC_CMP_SWAPW: 8791 return emitAtomicCmpSwapW(MI, MBB); 8792 case SystemZ::MVCImm: 8793 case SystemZ::MVCReg: 8794 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 8795 case SystemZ::NCImm: 8796 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 8797 case SystemZ::OCImm: 8798 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 8799 case SystemZ::XCImm: 8800 case SystemZ::XCReg: 8801 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 8802 case SystemZ::CLCImm: 8803 case SystemZ::CLCReg: 8804 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 8805 case SystemZ::MemsetImmImm: 8806 case SystemZ::MemsetImmReg: 8807 case SystemZ::MemsetRegImm: 8808 case SystemZ::MemsetRegReg: 8809 return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/); 8810 case SystemZ::CLSTLoop: 8811 return emitStringWrapper(MI, MBB, SystemZ::CLST); 8812 case SystemZ::MVSTLoop: 8813 return emitStringWrapper(MI, MBB, SystemZ::MVST); 8814 case SystemZ::SRSTLoop: 8815 return emitStringWrapper(MI, MBB, SystemZ::SRST); 8816 case SystemZ::TBEGIN: 8817 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 8818 case SystemZ::TBEGIN_nofloat: 8819 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 8820 case SystemZ::TBEGINC: 8821 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 8822 case SystemZ::LTEBRCompare_VecPseudo: 8823 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 8824 case SystemZ::LTDBRCompare_VecPseudo: 8825 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 8826 case SystemZ::LTXBRCompare_VecPseudo: 8827 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 8828 8829 case SystemZ::PROBED_ALLOCA: 8830 return emitProbedAlloca(MI, MBB); 8831 8832 case TargetOpcode::STACKMAP: 8833 case TargetOpcode::PATCHPOINT: 8834 return emitPatchPoint(MI, MBB); 8835 8836 default: 8837 llvm_unreachable("Unexpected instr type to insert"); 8838 } 8839 } 8840 8841 // This is only used by the isel schedulers, and is needed only to prevent 8842 // compiler from crashing when list-ilp is used. 8843 const TargetRegisterClass * 8844 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 8845 if (VT == MVT::Untyped) 8846 return &SystemZ::ADDR128BitRegClass; 8847 return TargetLowering::getRepRegClassFor(VT); 8848 } 8849