1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/KnownBits.h" 26 #include <cctype> 27 28 using namespace llvm; 29 30 #define DEBUG_TYPE "systemz-lower" 31 32 namespace { 33 // Represents a sequence for extracting a 0/1 value from an IPM result: 34 // (((X ^ XORValue) + AddValue) >> Bit) 35 struct IPMConversion { 36 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 37 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 38 39 int64_t XORValue; 40 int64_t AddValue; 41 unsigned Bit; 42 }; 43 44 // Represents information about a comparison. 45 struct Comparison { 46 Comparison(SDValue Op0In, SDValue Op1In) 47 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 48 49 // The operands to the comparison. 50 SDValue Op0, Op1; 51 52 // The opcode that should be used to compare Op0 and Op1. 53 unsigned Opcode; 54 55 // A SystemZICMP value. Only used for integer comparisons. 56 unsigned ICmpType; 57 58 // The mask of CC values that Opcode can produce. 59 unsigned CCValid; 60 61 // The mask of CC values for which the original condition is true. 62 unsigned CCMask; 63 }; 64 } // end anonymous namespace 65 66 // Classify VT as either 32 or 64 bit. 67 static bool is32Bit(EVT VT) { 68 switch (VT.getSimpleVT().SimpleTy) { 69 case MVT::i32: 70 return true; 71 case MVT::i64: 72 return false; 73 default: 74 llvm_unreachable("Unsupported type"); 75 } 76 } 77 78 // Return a version of MachineOperand that can be safely used before the 79 // final use. 80 static MachineOperand earlyUseOperand(MachineOperand Op) { 81 if (Op.isReg()) 82 Op.setIsKill(false); 83 return Op; 84 } 85 86 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 87 const SystemZSubtarget &STI) 88 : TargetLowering(TM), Subtarget(STI) { 89 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 90 91 // Set up the register classes. 92 if (Subtarget.hasHighWord()) 93 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 94 else 95 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 96 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 97 if (Subtarget.hasVector()) { 98 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 99 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 100 } else { 101 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 102 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 103 } 104 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 105 106 if (Subtarget.hasVector()) { 107 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 111 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 112 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 113 } 114 115 // Compute derived properties from the register classes 116 computeRegisterProperties(Subtarget.getRegisterInfo()); 117 118 // Set up special registers. 119 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 120 121 // TODO: It may be better to default to latency-oriented scheduling, however 122 // LLVM's current latency-oriented scheduler can't handle physreg definitions 123 // such as SystemZ has with CC, so set this to the register-pressure 124 // scheduler, because it can. 125 setSchedulingPreference(Sched::RegPressure); 126 127 setBooleanContents(ZeroOrOneBooleanContent); 128 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 129 130 // Instructions are strings of 2-byte aligned 2-byte values. 131 setMinFunctionAlignment(2); 132 133 // Handle operations that are handled in a similar way for all types. 134 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 135 I <= MVT::LAST_FP_VALUETYPE; 136 ++I) { 137 MVT VT = MVT::SimpleValueType(I); 138 if (isTypeLegal(VT)) { 139 // Lower SET_CC into an IPM-based sequence. 140 setOperationAction(ISD::SETCC, VT, Custom); 141 142 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 143 setOperationAction(ISD::SELECT, VT, Expand); 144 145 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 146 setOperationAction(ISD::SELECT_CC, VT, Custom); 147 setOperationAction(ISD::BR_CC, VT, Custom); 148 } 149 } 150 151 // Expand jump table branches as address arithmetic followed by an 152 // indirect jump. 153 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 154 155 // Expand BRCOND into a BR_CC (see above). 156 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 157 158 // Handle integer types. 159 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 160 I <= MVT::LAST_INTEGER_VALUETYPE; 161 ++I) { 162 MVT VT = MVT::SimpleValueType(I); 163 if (isTypeLegal(VT)) { 164 // Expand individual DIV and REMs into DIVREMs. 165 setOperationAction(ISD::SDIV, VT, Expand); 166 setOperationAction(ISD::UDIV, VT, Expand); 167 setOperationAction(ISD::SREM, VT, Expand); 168 setOperationAction(ISD::UREM, VT, Expand); 169 setOperationAction(ISD::SDIVREM, VT, Custom); 170 setOperationAction(ISD::UDIVREM, VT, Custom); 171 172 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 173 // stores, putting a serialization instruction after the stores. 174 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 175 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 176 177 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 178 // available, or if the operand is constant. 179 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 180 181 // Use POPCNT on z196 and above. 182 if (Subtarget.hasPopulationCount()) 183 setOperationAction(ISD::CTPOP, VT, Custom); 184 else 185 setOperationAction(ISD::CTPOP, VT, Expand); 186 187 // No special instructions for these. 188 setOperationAction(ISD::CTTZ, VT, Expand); 189 setOperationAction(ISD::ROTR, VT, Expand); 190 191 // Use *MUL_LOHI where possible instead of MULH*. 192 setOperationAction(ISD::MULHS, VT, Expand); 193 setOperationAction(ISD::MULHU, VT, Expand); 194 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 195 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 196 197 // Only z196 and above have native support for conversions to unsigned. 198 // On z10, promoting to i64 doesn't generate an inexact condition for 199 // values that are outside the i32 range but in the i64 range, so use 200 // the default expansion. 201 if (!Subtarget.hasFPExtension()) 202 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 203 } 204 } 205 206 // Type legalization will convert 8- and 16-bit atomic operations into 207 // forms that operate on i32s (but still keeping the original memory VT). 208 // Lower them into full i32 operations. 209 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 220 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 221 222 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 223 224 // Traps are legal, as we will convert them to "j .+2". 225 setOperationAction(ISD::TRAP, MVT::Other, Legal); 226 227 // z10 has instructions for signed but not unsigned FP conversion. 228 // Handle unsigned 32-bit types as signed 64-bit types. 229 if (!Subtarget.hasFPExtension()) { 230 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 231 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 232 } 233 234 // We have native support for a 64-bit CTLZ, via FLOGR. 235 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 236 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 237 238 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 239 setOperationAction(ISD::OR, MVT::i64, Custom); 240 241 // FIXME: Can we support these natively? 242 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 243 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 244 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 245 246 // We have native instructions for i8, i16 and i32 extensions, but not i1. 247 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 248 for (MVT VT : MVT::integer_valuetypes()) { 249 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 250 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 251 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 252 } 253 254 // Handle the various types of symbolic address. 255 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 256 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 257 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 258 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 259 setOperationAction(ISD::JumpTable, PtrVT, Custom); 260 261 // We need to handle dynamic allocations specially because of the 262 // 160-byte area at the bottom of the stack. 263 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 264 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 265 266 // Use custom expanders so that we can force the function to use 267 // a frame pointer. 268 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 269 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 270 271 // Handle prefetches with PFD or PFDRL. 272 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 273 274 for (MVT VT : MVT::vector_valuetypes()) { 275 // Assume by default that all vector operations need to be expanded. 276 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 277 if (getOperationAction(Opcode, VT) == Legal) 278 setOperationAction(Opcode, VT, Expand); 279 280 // Likewise all truncating stores and extending loads. 281 for (MVT InnerVT : MVT::vector_valuetypes()) { 282 setTruncStoreAction(VT, InnerVT, Expand); 283 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 284 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 285 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 286 } 287 288 if (isTypeLegal(VT)) { 289 // These operations are legal for anything that can be stored in a 290 // vector register, even if there is no native support for the format 291 // as such. In particular, we can do these for v4f32 even though there 292 // are no specific instructions for that format. 293 setOperationAction(ISD::LOAD, VT, Legal); 294 setOperationAction(ISD::STORE, VT, Legal); 295 setOperationAction(ISD::VSELECT, VT, Legal); 296 setOperationAction(ISD::BITCAST, VT, Legal); 297 setOperationAction(ISD::UNDEF, VT, Legal); 298 299 // Likewise, except that we need to replace the nodes with something 300 // more specific. 301 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 302 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 303 } 304 } 305 306 // Handle integer vector types. 307 for (MVT VT : MVT::integer_vector_valuetypes()) { 308 if (isTypeLegal(VT)) { 309 // These operations have direct equivalents. 310 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 311 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 312 setOperationAction(ISD::ADD, VT, Legal); 313 setOperationAction(ISD::SUB, VT, Legal); 314 if (VT != MVT::v2i64) 315 setOperationAction(ISD::MUL, VT, Legal); 316 setOperationAction(ISD::AND, VT, Legal); 317 setOperationAction(ISD::OR, VT, Legal); 318 setOperationAction(ISD::XOR, VT, Legal); 319 setOperationAction(ISD::CTPOP, VT, Custom); 320 setOperationAction(ISD::CTTZ, VT, Legal); 321 setOperationAction(ISD::CTLZ, VT, Legal); 322 323 // Convert a GPR scalar to a vector by inserting it into element 0. 324 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 325 326 // Use a series of unpacks for extensions. 327 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 328 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 329 330 // Detect shifts by a scalar amount and convert them into 331 // V*_BY_SCALAR. 332 setOperationAction(ISD::SHL, VT, Custom); 333 setOperationAction(ISD::SRA, VT, Custom); 334 setOperationAction(ISD::SRL, VT, Custom); 335 336 // At present ROTL isn't matched by DAGCombiner. ROTR should be 337 // converted into ROTL. 338 setOperationAction(ISD::ROTL, VT, Expand); 339 setOperationAction(ISD::ROTR, VT, Expand); 340 341 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 342 // and inverting the result as necessary. 343 setOperationAction(ISD::SETCC, VT, Custom); 344 } 345 } 346 347 if (Subtarget.hasVector()) { 348 // There should be no need to check for float types other than v2f64 349 // since <2 x f32> isn't a legal type. 350 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 351 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 352 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 353 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 354 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 355 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 356 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 357 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 358 } 359 360 // Handle floating-point types. 361 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 362 I <= MVT::LAST_FP_VALUETYPE; 363 ++I) { 364 MVT VT = MVT::SimpleValueType(I); 365 if (isTypeLegal(VT)) { 366 // We can use FI for FRINT. 367 setOperationAction(ISD::FRINT, VT, Legal); 368 369 // We can use the extended form of FI for other rounding operations. 370 if (Subtarget.hasFPExtension()) { 371 setOperationAction(ISD::FNEARBYINT, VT, Legal); 372 setOperationAction(ISD::FFLOOR, VT, Legal); 373 setOperationAction(ISD::FCEIL, VT, Legal); 374 setOperationAction(ISD::FTRUNC, VT, Legal); 375 setOperationAction(ISD::FROUND, VT, Legal); 376 } 377 378 // No special instructions for these. 379 setOperationAction(ISD::FSIN, VT, Expand); 380 setOperationAction(ISD::FCOS, VT, Expand); 381 setOperationAction(ISD::FSINCOS, VT, Expand); 382 setOperationAction(ISD::FREM, VT, Expand); 383 setOperationAction(ISD::FPOW, VT, Expand); 384 } 385 } 386 387 // Handle floating-point vector types. 388 if (Subtarget.hasVector()) { 389 // Scalar-to-vector conversion is just a subreg. 390 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 391 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 392 393 // Some insertions and extractions can be done directly but others 394 // need to go via integers. 395 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 396 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 397 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 398 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 399 400 // These operations have direct equivalents. 401 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 402 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 403 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 404 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 405 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 406 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 407 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 408 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 409 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 410 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 411 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 412 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 413 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 414 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 415 } 416 417 // We have fused multiply-addition for f32 and f64 but not f128. 418 setOperationAction(ISD::FMA, MVT::f32, Legal); 419 setOperationAction(ISD::FMA, MVT::f64, Legal); 420 setOperationAction(ISD::FMA, MVT::f128, Expand); 421 422 // Needed so that we don't try to implement f128 constant loads using 423 // a load-and-extend of a f80 constant (in cases where the constant 424 // would fit in an f80). 425 for (MVT VT : MVT::fp_valuetypes()) 426 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 427 428 // Floating-point truncation and stores need to be done separately. 429 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 430 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 431 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 432 433 // We have 64-bit FPR<->GPR moves, but need special handling for 434 // 32-bit forms. 435 if (!Subtarget.hasVector()) { 436 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 437 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 438 } 439 440 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 441 // structure, but VAEND is a no-op. 442 setOperationAction(ISD::VASTART, MVT::Other, Custom); 443 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 444 setOperationAction(ISD::VAEND, MVT::Other, Expand); 445 446 // Codes for which we want to perform some z-specific combinations. 447 setTargetDAGCombine(ISD::SIGN_EXTEND); 448 setTargetDAGCombine(ISD::STORE); 449 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 450 setTargetDAGCombine(ISD::FP_ROUND); 451 setTargetDAGCombine(ISD::BSWAP); 452 setTargetDAGCombine(ISD::SHL); 453 setTargetDAGCombine(ISD::SRA); 454 setTargetDAGCombine(ISD::SRL); 455 setTargetDAGCombine(ISD::ROTL); 456 457 // Handle intrinsics. 458 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 459 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 460 461 // We want to use MVC in preference to even a single load/store pair. 462 MaxStoresPerMemcpy = 0; 463 MaxStoresPerMemcpyOptSize = 0; 464 465 // The main memset sequence is a byte store followed by an MVC. 466 // Two STC or MV..I stores win over that, but the kind of fused stores 467 // generated by target-independent code don't when the byte value is 468 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 469 // than "STC;MVC". Handle the choice in target-specific code instead. 470 MaxStoresPerMemset = 0; 471 MaxStoresPerMemsetOptSize = 0; 472 } 473 474 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 475 LLVMContext &, EVT VT) const { 476 if (!VT.isVector()) 477 return MVT::i32; 478 return VT.changeVectorElementTypeToInteger(); 479 } 480 481 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 482 VT = VT.getScalarType(); 483 484 if (!VT.isSimple()) 485 return false; 486 487 switch (VT.getSimpleVT().SimpleTy) { 488 case MVT::f32: 489 case MVT::f64: 490 return true; 491 case MVT::f128: 492 return false; 493 default: 494 break; 495 } 496 497 return false; 498 } 499 500 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 501 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 502 return Imm.isZero() || Imm.isNegZero(); 503 } 504 505 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 506 // We can use CGFI or CLGFI. 507 return isInt<32>(Imm) || isUInt<32>(Imm); 508 } 509 510 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 511 // We can use ALGFI or SLGFI. 512 return isUInt<32>(Imm) || isUInt<32>(-Imm); 513 } 514 515 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 516 unsigned, 517 unsigned, 518 bool *Fast) const { 519 // Unaligned accesses should never be slower than the expanded version. 520 // We check specifically for aligned accesses in the few cases where 521 // they are required. 522 if (Fast) 523 *Fast = true; 524 return true; 525 } 526 527 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 528 const AddrMode &AM, Type *Ty, 529 unsigned AS) const { 530 // Punt on globals for now, although they can be used in limited 531 // RELATIVE LONG cases. 532 if (AM.BaseGV) 533 return false; 534 535 // Require a 20-bit signed offset. 536 if (!isInt<20>(AM.BaseOffs)) 537 return false; 538 539 // Indexing is OK but no scale factor can be applied. 540 return AM.Scale == 0 || AM.Scale == 1; 541 } 542 543 bool SystemZTargetLowering::isFoldableMemAccessOffset(Instruction *I, 544 int64_t Offset) const { 545 // This only applies to z13. 546 if (!Subtarget.hasVector()) 547 return true; 548 549 // * Use LDE instead of LE/LEY to avoid partial register 550 // dependencies (LDE only supports small offsets). 551 // * Utilize the vector registers to hold floating point 552 // values (vector load / store instructions only support small 553 // offsets). 554 555 assert (isa<LoadInst>(I) || isa<StoreInst>(I)); 556 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 557 I->getOperand(0)->getType()); 558 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 559 bool IsVectorAccess = MemAccessTy->isVectorTy(); 560 561 // A store of an extracted vector element will be combined into a VSTE type 562 // instruction. 563 if (!IsVectorAccess && isa<StoreInst>(I)) { 564 Value *DataOp = I->getOperand(0); 565 if (isa<ExtractElementInst>(DataOp)) 566 IsVectorAccess = true; 567 } 568 569 // A load which gets inserted into a vector element will be combined into a 570 // VLE type instruction. 571 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 572 User *LoadUser = *I->user_begin(); 573 if (isa<InsertElementInst>(LoadUser)) 574 IsVectorAccess = true; 575 } 576 577 if (!isUInt<12>(Offset) && (IsFPAccess || IsVectorAccess)) 578 return false; 579 580 return true; 581 } 582 583 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 584 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 585 return false; 586 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 587 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 588 return FromBits > ToBits; 589 } 590 591 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 592 if (!FromVT.isInteger() || !ToVT.isInteger()) 593 return false; 594 unsigned FromBits = FromVT.getSizeInBits(); 595 unsigned ToBits = ToVT.getSizeInBits(); 596 return FromBits > ToBits; 597 } 598 599 //===----------------------------------------------------------------------===// 600 // Inline asm support 601 //===----------------------------------------------------------------------===// 602 603 TargetLowering::ConstraintType 604 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 605 if (Constraint.size() == 1) { 606 switch (Constraint[0]) { 607 case 'a': // Address register 608 case 'd': // Data register (equivalent to 'r') 609 case 'f': // Floating-point register 610 case 'h': // High-part register 611 case 'r': // General-purpose register 612 return C_RegisterClass; 613 614 case 'Q': // Memory with base and unsigned 12-bit displacement 615 case 'R': // Likewise, plus an index 616 case 'S': // Memory with base and signed 20-bit displacement 617 case 'T': // Likewise, plus an index 618 case 'm': // Equivalent to 'T'. 619 return C_Memory; 620 621 case 'I': // Unsigned 8-bit constant 622 case 'J': // Unsigned 12-bit constant 623 case 'K': // Signed 16-bit constant 624 case 'L': // Signed 20-bit displacement (on all targets we support) 625 case 'M': // 0x7fffffff 626 return C_Other; 627 628 default: 629 break; 630 } 631 } 632 return TargetLowering::getConstraintType(Constraint); 633 } 634 635 TargetLowering::ConstraintWeight SystemZTargetLowering:: 636 getSingleConstraintMatchWeight(AsmOperandInfo &info, 637 const char *constraint) const { 638 ConstraintWeight weight = CW_Invalid; 639 Value *CallOperandVal = info.CallOperandVal; 640 // If we don't have a value, we can't do a match, 641 // but allow it at the lowest weight. 642 if (!CallOperandVal) 643 return CW_Default; 644 Type *type = CallOperandVal->getType(); 645 // Look at the constraint type. 646 switch (*constraint) { 647 default: 648 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 649 break; 650 651 case 'a': // Address register 652 case 'd': // Data register (equivalent to 'r') 653 case 'h': // High-part register 654 case 'r': // General-purpose register 655 if (CallOperandVal->getType()->isIntegerTy()) 656 weight = CW_Register; 657 break; 658 659 case 'f': // Floating-point register 660 if (type->isFloatingPointTy()) 661 weight = CW_Register; 662 break; 663 664 case 'I': // Unsigned 8-bit constant 665 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 666 if (isUInt<8>(C->getZExtValue())) 667 weight = CW_Constant; 668 break; 669 670 case 'J': // Unsigned 12-bit constant 671 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 672 if (isUInt<12>(C->getZExtValue())) 673 weight = CW_Constant; 674 break; 675 676 case 'K': // Signed 16-bit constant 677 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 678 if (isInt<16>(C->getSExtValue())) 679 weight = CW_Constant; 680 break; 681 682 case 'L': // Signed 20-bit displacement (on all targets we support) 683 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 684 if (isInt<20>(C->getSExtValue())) 685 weight = CW_Constant; 686 break; 687 688 case 'M': // 0x7fffffff 689 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 690 if (C->getZExtValue() == 0x7fffffff) 691 weight = CW_Constant; 692 break; 693 } 694 return weight; 695 } 696 697 // Parse a "{tNNN}" register constraint for which the register type "t" 698 // has already been verified. MC is the class associated with "t" and 699 // Map maps 0-based register numbers to LLVM register numbers. 700 static std::pair<unsigned, const TargetRegisterClass *> 701 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 702 const unsigned *Map) { 703 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 704 if (isdigit(Constraint[2])) { 705 unsigned Index; 706 bool Failed = 707 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 708 if (!Failed && Index < 16 && Map[Index]) 709 return std::make_pair(Map[Index], RC); 710 } 711 return std::make_pair(0U, nullptr); 712 } 713 714 std::pair<unsigned, const TargetRegisterClass *> 715 SystemZTargetLowering::getRegForInlineAsmConstraint( 716 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 717 if (Constraint.size() == 1) { 718 // GCC Constraint Letters 719 switch (Constraint[0]) { 720 default: break; 721 case 'd': // Data register (equivalent to 'r') 722 case 'r': // General-purpose register 723 if (VT == MVT::i64) 724 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 725 else if (VT == MVT::i128) 726 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 727 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 728 729 case 'a': // Address register 730 if (VT == MVT::i64) 731 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 732 else if (VT == MVT::i128) 733 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 734 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 735 736 case 'h': // High-part register (an LLVM extension) 737 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 738 739 case 'f': // Floating-point register 740 if (VT == MVT::f64) 741 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 742 else if (VT == MVT::f128) 743 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 744 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 745 } 746 } 747 if (Constraint.size() > 0 && Constraint[0] == '{') { 748 // We need to override the default register parsing for GPRs and FPRs 749 // because the interpretation depends on VT. The internal names of 750 // the registers are also different from the external names 751 // (F0D and F0S instead of F0, etc.). 752 if (Constraint[1] == 'r') { 753 if (VT == MVT::i32) 754 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 755 SystemZMC::GR32Regs); 756 if (VT == MVT::i128) 757 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 758 SystemZMC::GR128Regs); 759 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 760 SystemZMC::GR64Regs); 761 } 762 if (Constraint[1] == 'f') { 763 if (VT == MVT::f32) 764 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 765 SystemZMC::FP32Regs); 766 if (VT == MVT::f128) 767 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 768 SystemZMC::FP128Regs); 769 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 770 SystemZMC::FP64Regs); 771 } 772 } 773 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 774 } 775 776 void SystemZTargetLowering:: 777 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 778 std::vector<SDValue> &Ops, 779 SelectionDAG &DAG) const { 780 // Only support length 1 constraints for now. 781 if (Constraint.length() == 1) { 782 switch (Constraint[0]) { 783 case 'I': // Unsigned 8-bit constant 784 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 785 if (isUInt<8>(C->getZExtValue())) 786 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 787 Op.getValueType())); 788 return; 789 790 case 'J': // Unsigned 12-bit constant 791 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 792 if (isUInt<12>(C->getZExtValue())) 793 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 794 Op.getValueType())); 795 return; 796 797 case 'K': // Signed 16-bit constant 798 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 799 if (isInt<16>(C->getSExtValue())) 800 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 801 Op.getValueType())); 802 return; 803 804 case 'L': // Signed 20-bit displacement (on all targets we support) 805 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 806 if (isInt<20>(C->getSExtValue())) 807 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 808 Op.getValueType())); 809 return; 810 811 case 'M': // 0x7fffffff 812 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 813 if (C->getZExtValue() == 0x7fffffff) 814 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 815 Op.getValueType())); 816 return; 817 } 818 } 819 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 820 } 821 822 //===----------------------------------------------------------------------===// 823 // Calling conventions 824 //===----------------------------------------------------------------------===// 825 826 #include "SystemZGenCallingConv.inc" 827 828 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 829 Type *ToType) const { 830 return isTruncateFree(FromType, ToType); 831 } 832 833 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 834 return CI->isTailCall(); 835 } 836 837 // We do not yet support 128-bit single-element vector types. If the user 838 // attempts to use such types as function argument or return type, prefer 839 // to error out instead of emitting code violating the ABI. 840 static void VerifyVectorType(MVT VT, EVT ArgVT) { 841 if (ArgVT.isVector() && !VT.isVector()) 842 report_fatal_error("Unsupported vector argument or return type"); 843 } 844 845 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 846 for (unsigned i = 0; i < Ins.size(); ++i) 847 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 848 } 849 850 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 851 for (unsigned i = 0; i < Outs.size(); ++i) 852 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 853 } 854 855 // Value is a value that has been passed to us in the location described by VA 856 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 857 // any loads onto Chain. 858 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 859 CCValAssign &VA, SDValue Chain, 860 SDValue Value) { 861 // If the argument has been promoted from a smaller type, insert an 862 // assertion to capture this. 863 if (VA.getLocInfo() == CCValAssign::SExt) 864 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 865 DAG.getValueType(VA.getValVT())); 866 else if (VA.getLocInfo() == CCValAssign::ZExt) 867 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 868 DAG.getValueType(VA.getValVT())); 869 870 if (VA.isExtInLoc()) 871 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 872 else if (VA.getLocInfo() == CCValAssign::BCvt) { 873 // If this is a short vector argument loaded from the stack, 874 // extend from i64 to full vector size and then bitcast. 875 assert(VA.getLocVT() == MVT::i64); 876 assert(VA.getValVT().isVector()); 877 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 878 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 879 } else 880 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 881 return Value; 882 } 883 884 // Value is a value of type VA.getValVT() that we need to copy into 885 // the location described by VA. Return a copy of Value converted to 886 // VA.getValVT(). The caller is responsible for handling indirect values. 887 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 888 CCValAssign &VA, SDValue Value) { 889 switch (VA.getLocInfo()) { 890 case CCValAssign::SExt: 891 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 892 case CCValAssign::ZExt: 893 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 894 case CCValAssign::AExt: 895 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 896 case CCValAssign::BCvt: 897 // If this is a short vector argument to be stored to the stack, 898 // bitcast to v2i64 and then extract first element. 899 assert(VA.getLocVT() == MVT::i64); 900 assert(VA.getValVT().isVector()); 901 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 902 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 903 DAG.getConstant(0, DL, MVT::i32)); 904 case CCValAssign::Full: 905 return Value; 906 default: 907 llvm_unreachable("Unhandled getLocInfo()"); 908 } 909 } 910 911 SDValue SystemZTargetLowering::LowerFormalArguments( 912 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 913 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 914 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 915 MachineFunction &MF = DAG.getMachineFunction(); 916 MachineFrameInfo &MFI = MF.getFrameInfo(); 917 MachineRegisterInfo &MRI = MF.getRegInfo(); 918 SystemZMachineFunctionInfo *FuncInfo = 919 MF.getInfo<SystemZMachineFunctionInfo>(); 920 auto *TFL = 921 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 922 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 923 924 // Detect unsupported vector argument types. 925 if (Subtarget.hasVector()) 926 VerifyVectorTypes(Ins); 927 928 // Assign locations to all of the incoming arguments. 929 SmallVector<CCValAssign, 16> ArgLocs; 930 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 931 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 932 933 unsigned NumFixedGPRs = 0; 934 unsigned NumFixedFPRs = 0; 935 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 936 SDValue ArgValue; 937 CCValAssign &VA = ArgLocs[I]; 938 EVT LocVT = VA.getLocVT(); 939 if (VA.isRegLoc()) { 940 // Arguments passed in registers 941 const TargetRegisterClass *RC; 942 switch (LocVT.getSimpleVT().SimpleTy) { 943 default: 944 // Integers smaller than i64 should be promoted to i64. 945 llvm_unreachable("Unexpected argument type"); 946 case MVT::i32: 947 NumFixedGPRs += 1; 948 RC = &SystemZ::GR32BitRegClass; 949 break; 950 case MVT::i64: 951 NumFixedGPRs += 1; 952 RC = &SystemZ::GR64BitRegClass; 953 break; 954 case MVT::f32: 955 NumFixedFPRs += 1; 956 RC = &SystemZ::FP32BitRegClass; 957 break; 958 case MVT::f64: 959 NumFixedFPRs += 1; 960 RC = &SystemZ::FP64BitRegClass; 961 break; 962 case MVT::v16i8: 963 case MVT::v8i16: 964 case MVT::v4i32: 965 case MVT::v2i64: 966 case MVT::v4f32: 967 case MVT::v2f64: 968 RC = &SystemZ::VR128BitRegClass; 969 break; 970 } 971 972 unsigned VReg = MRI.createVirtualRegister(RC); 973 MRI.addLiveIn(VA.getLocReg(), VReg); 974 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 975 } else { 976 assert(VA.isMemLoc() && "Argument not register or memory"); 977 978 // Create the frame index object for this incoming parameter. 979 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 980 VA.getLocMemOffset(), true); 981 982 // Create the SelectionDAG nodes corresponding to a load 983 // from this parameter. Unpromoted ints and floats are 984 // passed as right-justified 8-byte values. 985 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 986 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 987 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 988 DAG.getIntPtrConstant(4, DL)); 989 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 990 MachinePointerInfo::getFixedStack(MF, FI)); 991 } 992 993 // Convert the value of the argument register into the value that's 994 // being passed. 995 if (VA.getLocInfo() == CCValAssign::Indirect) { 996 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 997 MachinePointerInfo())); 998 // If the original argument was split (e.g. i128), we need 999 // to load all parts of it here (using the same address). 1000 unsigned ArgIndex = Ins[I].OrigArgIndex; 1001 assert (Ins[I].PartOffset == 0); 1002 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1003 CCValAssign &PartVA = ArgLocs[I + 1]; 1004 unsigned PartOffset = Ins[I + 1].PartOffset; 1005 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1006 DAG.getIntPtrConstant(PartOffset, DL)); 1007 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1008 MachinePointerInfo())); 1009 ++I; 1010 } 1011 } else 1012 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1013 } 1014 1015 if (IsVarArg) { 1016 // Save the number of non-varargs registers for later use by va_start, etc. 1017 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1018 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1019 1020 // Likewise the address (in the form of a frame index) of where the 1021 // first stack vararg would be. The 1-byte size here is arbitrary. 1022 int64_t StackSize = CCInfo.getNextStackOffset(); 1023 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1024 1025 // ...and a similar frame index for the caller-allocated save area 1026 // that will be used to store the incoming registers. 1027 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1028 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1029 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1030 1031 // Store the FPR varargs in the reserved frame slots. (We store the 1032 // GPRs as part of the prologue.) 1033 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1034 SDValue MemOps[SystemZ::NumArgFPRs]; 1035 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1036 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1037 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1038 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1039 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1040 &SystemZ::FP64BitRegClass); 1041 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1042 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1043 MachinePointerInfo::getFixedStack(MF, FI)); 1044 } 1045 // Join the stores, which are independent of one another. 1046 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1047 makeArrayRef(&MemOps[NumFixedFPRs], 1048 SystemZ::NumArgFPRs-NumFixedFPRs)); 1049 } 1050 } 1051 1052 return Chain; 1053 } 1054 1055 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1056 SmallVectorImpl<CCValAssign> &ArgLocs, 1057 SmallVectorImpl<ISD::OutputArg> &Outs) { 1058 // Punt if there are any indirect or stack arguments, or if the call 1059 // needs the callee-saved argument register R6, or if the call uses 1060 // the callee-saved register arguments SwiftSelf and SwiftError. 1061 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1062 CCValAssign &VA = ArgLocs[I]; 1063 if (VA.getLocInfo() == CCValAssign::Indirect) 1064 return false; 1065 if (!VA.isRegLoc()) 1066 return false; 1067 unsigned Reg = VA.getLocReg(); 1068 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1069 return false; 1070 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1071 return false; 1072 } 1073 return true; 1074 } 1075 1076 SDValue 1077 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1078 SmallVectorImpl<SDValue> &InVals) const { 1079 SelectionDAG &DAG = CLI.DAG; 1080 SDLoc &DL = CLI.DL; 1081 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1082 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1083 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1084 SDValue Chain = CLI.Chain; 1085 SDValue Callee = CLI.Callee; 1086 bool &IsTailCall = CLI.IsTailCall; 1087 CallingConv::ID CallConv = CLI.CallConv; 1088 bool IsVarArg = CLI.IsVarArg; 1089 MachineFunction &MF = DAG.getMachineFunction(); 1090 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1091 1092 // Detect unsupported vector argument and return types. 1093 if (Subtarget.hasVector()) { 1094 VerifyVectorTypes(Outs); 1095 VerifyVectorTypes(Ins); 1096 } 1097 1098 // Analyze the operands of the call, assigning locations to each operand. 1099 SmallVector<CCValAssign, 16> ArgLocs; 1100 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1101 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1102 1103 // We don't support GuaranteedTailCallOpt, only automatically-detected 1104 // sibling calls. 1105 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1106 IsTailCall = false; 1107 1108 // Get a count of how many bytes are to be pushed on the stack. 1109 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1110 1111 // Mark the start of the call. 1112 if (!IsTailCall) 1113 Chain = DAG.getCALLSEQ_START(Chain, 1114 DAG.getConstant(NumBytes, DL, PtrVT, true), 1115 DL); 1116 1117 // Copy argument values to their designated locations. 1118 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1119 SmallVector<SDValue, 8> MemOpChains; 1120 SDValue StackPtr; 1121 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1122 CCValAssign &VA = ArgLocs[I]; 1123 SDValue ArgValue = OutVals[I]; 1124 1125 if (VA.getLocInfo() == CCValAssign::Indirect) { 1126 // Store the argument in a stack slot and pass its address. 1127 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1128 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1129 MemOpChains.push_back( 1130 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1131 MachinePointerInfo::getFixedStack(MF, FI))); 1132 // If the original argument was split (e.g. i128), we need 1133 // to store all parts of it here (and pass just one address). 1134 unsigned ArgIndex = Outs[I].OrigArgIndex; 1135 assert (Outs[I].PartOffset == 0); 1136 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1137 SDValue PartValue = OutVals[I + 1]; 1138 unsigned PartOffset = Outs[I + 1].PartOffset; 1139 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1140 DAG.getIntPtrConstant(PartOffset, DL)); 1141 MemOpChains.push_back( 1142 DAG.getStore(Chain, DL, PartValue, Address, 1143 MachinePointerInfo::getFixedStack(MF, FI))); 1144 ++I; 1145 } 1146 ArgValue = SpillSlot; 1147 } else 1148 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1149 1150 if (VA.isRegLoc()) 1151 // Queue up the argument copies and emit them at the end. 1152 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1153 else { 1154 assert(VA.isMemLoc() && "Argument not register or memory"); 1155 1156 // Work out the address of the stack slot. Unpromoted ints and 1157 // floats are passed as right-justified 8-byte values. 1158 if (!StackPtr.getNode()) 1159 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1160 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1161 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1162 Offset += 4; 1163 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1164 DAG.getIntPtrConstant(Offset, DL)); 1165 1166 // Emit the store. 1167 MemOpChains.push_back( 1168 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1169 } 1170 } 1171 1172 // Join the stores, which are independent of one another. 1173 if (!MemOpChains.empty()) 1174 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1175 1176 // Accept direct calls by converting symbolic call addresses to the 1177 // associated Target* opcodes. Force %r1 to be used for indirect 1178 // tail calls. 1179 SDValue Glue; 1180 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1181 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1182 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1183 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1184 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1185 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1186 } else if (IsTailCall) { 1187 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1188 Glue = Chain.getValue(1); 1189 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1190 } 1191 1192 // Build a sequence of copy-to-reg nodes, chained and glued together. 1193 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1194 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1195 RegsToPass[I].second, Glue); 1196 Glue = Chain.getValue(1); 1197 } 1198 1199 // The first call operand is the chain and the second is the target address. 1200 SmallVector<SDValue, 8> Ops; 1201 Ops.push_back(Chain); 1202 Ops.push_back(Callee); 1203 1204 // Add argument registers to the end of the list so that they are 1205 // known live into the call. 1206 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1207 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1208 RegsToPass[I].second.getValueType())); 1209 1210 // Add a register mask operand representing the call-preserved registers. 1211 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1212 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1213 assert(Mask && "Missing call preserved mask for calling convention"); 1214 Ops.push_back(DAG.getRegisterMask(Mask)); 1215 1216 // Glue the call to the argument copies, if any. 1217 if (Glue.getNode()) 1218 Ops.push_back(Glue); 1219 1220 // Emit the call. 1221 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1222 if (IsTailCall) 1223 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1224 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1225 Glue = Chain.getValue(1); 1226 1227 // Mark the end of the call, which is glued to the call itself. 1228 Chain = DAG.getCALLSEQ_END(Chain, 1229 DAG.getConstant(NumBytes, DL, PtrVT, true), 1230 DAG.getConstant(0, DL, PtrVT, true), 1231 Glue, DL); 1232 Glue = Chain.getValue(1); 1233 1234 // Assign locations to each value returned by this call. 1235 SmallVector<CCValAssign, 16> RetLocs; 1236 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1237 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1238 1239 // Copy all of the result registers out of their specified physreg. 1240 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1241 CCValAssign &VA = RetLocs[I]; 1242 1243 // Copy the value out, gluing the copy to the end of the call sequence. 1244 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1245 VA.getLocVT(), Glue); 1246 Chain = RetValue.getValue(1); 1247 Glue = RetValue.getValue(2); 1248 1249 // Convert the value of the return register into the value that's 1250 // being returned. 1251 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1252 } 1253 1254 return Chain; 1255 } 1256 1257 bool SystemZTargetLowering:: 1258 CanLowerReturn(CallingConv::ID CallConv, 1259 MachineFunction &MF, bool isVarArg, 1260 const SmallVectorImpl<ISD::OutputArg> &Outs, 1261 LLVMContext &Context) const { 1262 // Detect unsupported vector return types. 1263 if (Subtarget.hasVector()) 1264 VerifyVectorTypes(Outs); 1265 1266 // Special case that we cannot easily detect in RetCC_SystemZ since 1267 // i128 is not a legal type. 1268 for (auto &Out : Outs) 1269 if (Out.ArgVT == MVT::i128) 1270 return false; 1271 1272 SmallVector<CCValAssign, 16> RetLocs; 1273 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1274 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1275 } 1276 1277 SDValue 1278 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1279 bool IsVarArg, 1280 const SmallVectorImpl<ISD::OutputArg> &Outs, 1281 const SmallVectorImpl<SDValue> &OutVals, 1282 const SDLoc &DL, SelectionDAG &DAG) const { 1283 MachineFunction &MF = DAG.getMachineFunction(); 1284 1285 // Detect unsupported vector return types. 1286 if (Subtarget.hasVector()) 1287 VerifyVectorTypes(Outs); 1288 1289 // Assign locations to each returned value. 1290 SmallVector<CCValAssign, 16> RetLocs; 1291 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1292 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1293 1294 // Quick exit for void returns 1295 if (RetLocs.empty()) 1296 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1297 1298 // Copy the result values into the output registers. 1299 SDValue Glue; 1300 SmallVector<SDValue, 4> RetOps; 1301 RetOps.push_back(Chain); 1302 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1303 CCValAssign &VA = RetLocs[I]; 1304 SDValue RetValue = OutVals[I]; 1305 1306 // Make the return register live on exit. 1307 assert(VA.isRegLoc() && "Can only return in registers!"); 1308 1309 // Promote the value as required. 1310 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1311 1312 // Chain and glue the copies together. 1313 unsigned Reg = VA.getLocReg(); 1314 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1315 Glue = Chain.getValue(1); 1316 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1317 } 1318 1319 // Update chain and glue. 1320 RetOps[0] = Chain; 1321 if (Glue.getNode()) 1322 RetOps.push_back(Glue); 1323 1324 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1325 } 1326 1327 SDValue SystemZTargetLowering::prepareVolatileOrAtomicLoad( 1328 SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const { 1329 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1330 } 1331 1332 // Return true if Op is an intrinsic node with chain that returns the CC value 1333 // as its only (other) argument. Provide the associated SystemZISD opcode and 1334 // the mask of valid CC values if so. 1335 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1336 unsigned &CCValid) { 1337 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1338 switch (Id) { 1339 case Intrinsic::s390_tbegin: 1340 Opcode = SystemZISD::TBEGIN; 1341 CCValid = SystemZ::CCMASK_TBEGIN; 1342 return true; 1343 1344 case Intrinsic::s390_tbegin_nofloat: 1345 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1346 CCValid = SystemZ::CCMASK_TBEGIN; 1347 return true; 1348 1349 case Intrinsic::s390_tend: 1350 Opcode = SystemZISD::TEND; 1351 CCValid = SystemZ::CCMASK_TEND; 1352 return true; 1353 1354 default: 1355 return false; 1356 } 1357 } 1358 1359 // Return true if Op is an intrinsic node without chain that returns the 1360 // CC value as its final argument. Provide the associated SystemZISD 1361 // opcode and the mask of valid CC values if so. 1362 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1363 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1364 switch (Id) { 1365 case Intrinsic::s390_vpkshs: 1366 case Intrinsic::s390_vpksfs: 1367 case Intrinsic::s390_vpksgs: 1368 Opcode = SystemZISD::PACKS_CC; 1369 CCValid = SystemZ::CCMASK_VCMP; 1370 return true; 1371 1372 case Intrinsic::s390_vpklshs: 1373 case Intrinsic::s390_vpklsfs: 1374 case Intrinsic::s390_vpklsgs: 1375 Opcode = SystemZISD::PACKLS_CC; 1376 CCValid = SystemZ::CCMASK_VCMP; 1377 return true; 1378 1379 case Intrinsic::s390_vceqbs: 1380 case Intrinsic::s390_vceqhs: 1381 case Intrinsic::s390_vceqfs: 1382 case Intrinsic::s390_vceqgs: 1383 Opcode = SystemZISD::VICMPES; 1384 CCValid = SystemZ::CCMASK_VCMP; 1385 return true; 1386 1387 case Intrinsic::s390_vchbs: 1388 case Intrinsic::s390_vchhs: 1389 case Intrinsic::s390_vchfs: 1390 case Intrinsic::s390_vchgs: 1391 Opcode = SystemZISD::VICMPHS; 1392 CCValid = SystemZ::CCMASK_VCMP; 1393 return true; 1394 1395 case Intrinsic::s390_vchlbs: 1396 case Intrinsic::s390_vchlhs: 1397 case Intrinsic::s390_vchlfs: 1398 case Intrinsic::s390_vchlgs: 1399 Opcode = SystemZISD::VICMPHLS; 1400 CCValid = SystemZ::CCMASK_VCMP; 1401 return true; 1402 1403 case Intrinsic::s390_vtm: 1404 Opcode = SystemZISD::VTM; 1405 CCValid = SystemZ::CCMASK_VCMP; 1406 return true; 1407 1408 case Intrinsic::s390_vfaebs: 1409 case Intrinsic::s390_vfaehs: 1410 case Intrinsic::s390_vfaefs: 1411 Opcode = SystemZISD::VFAE_CC; 1412 CCValid = SystemZ::CCMASK_ANY; 1413 return true; 1414 1415 case Intrinsic::s390_vfaezbs: 1416 case Intrinsic::s390_vfaezhs: 1417 case Intrinsic::s390_vfaezfs: 1418 Opcode = SystemZISD::VFAEZ_CC; 1419 CCValid = SystemZ::CCMASK_ANY; 1420 return true; 1421 1422 case Intrinsic::s390_vfeebs: 1423 case Intrinsic::s390_vfeehs: 1424 case Intrinsic::s390_vfeefs: 1425 Opcode = SystemZISD::VFEE_CC; 1426 CCValid = SystemZ::CCMASK_ANY; 1427 return true; 1428 1429 case Intrinsic::s390_vfeezbs: 1430 case Intrinsic::s390_vfeezhs: 1431 case Intrinsic::s390_vfeezfs: 1432 Opcode = SystemZISD::VFEEZ_CC; 1433 CCValid = SystemZ::CCMASK_ANY; 1434 return true; 1435 1436 case Intrinsic::s390_vfenebs: 1437 case Intrinsic::s390_vfenehs: 1438 case Intrinsic::s390_vfenefs: 1439 Opcode = SystemZISD::VFENE_CC; 1440 CCValid = SystemZ::CCMASK_ANY; 1441 return true; 1442 1443 case Intrinsic::s390_vfenezbs: 1444 case Intrinsic::s390_vfenezhs: 1445 case Intrinsic::s390_vfenezfs: 1446 Opcode = SystemZISD::VFENEZ_CC; 1447 CCValid = SystemZ::CCMASK_ANY; 1448 return true; 1449 1450 case Intrinsic::s390_vistrbs: 1451 case Intrinsic::s390_vistrhs: 1452 case Intrinsic::s390_vistrfs: 1453 Opcode = SystemZISD::VISTR_CC; 1454 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1455 return true; 1456 1457 case Intrinsic::s390_vstrcbs: 1458 case Intrinsic::s390_vstrchs: 1459 case Intrinsic::s390_vstrcfs: 1460 Opcode = SystemZISD::VSTRC_CC; 1461 CCValid = SystemZ::CCMASK_ANY; 1462 return true; 1463 1464 case Intrinsic::s390_vstrczbs: 1465 case Intrinsic::s390_vstrczhs: 1466 case Intrinsic::s390_vstrczfs: 1467 Opcode = SystemZISD::VSTRCZ_CC; 1468 CCValid = SystemZ::CCMASK_ANY; 1469 return true; 1470 1471 case Intrinsic::s390_vfcedbs: 1472 Opcode = SystemZISD::VFCMPES; 1473 CCValid = SystemZ::CCMASK_VCMP; 1474 return true; 1475 1476 case Intrinsic::s390_vfchdbs: 1477 Opcode = SystemZISD::VFCMPHS; 1478 CCValid = SystemZ::CCMASK_VCMP; 1479 return true; 1480 1481 case Intrinsic::s390_vfchedbs: 1482 Opcode = SystemZISD::VFCMPHES; 1483 CCValid = SystemZ::CCMASK_VCMP; 1484 return true; 1485 1486 case Intrinsic::s390_vftcidb: 1487 Opcode = SystemZISD::VFTCI; 1488 CCValid = SystemZ::CCMASK_VCMP; 1489 return true; 1490 1491 case Intrinsic::s390_tdc: 1492 Opcode = SystemZISD::TDC; 1493 CCValid = SystemZ::CCMASK_TDC; 1494 return true; 1495 1496 default: 1497 return false; 1498 } 1499 } 1500 1501 // Emit an intrinsic with chain with a glued value instead of its CC result. 1502 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1503 unsigned Opcode) { 1504 // Copy all operands except the intrinsic ID. 1505 unsigned NumOps = Op.getNumOperands(); 1506 SmallVector<SDValue, 6> Ops; 1507 Ops.reserve(NumOps - 1); 1508 Ops.push_back(Op.getOperand(0)); 1509 for (unsigned I = 2; I < NumOps; ++I) 1510 Ops.push_back(Op.getOperand(I)); 1511 1512 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1513 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1514 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1515 SDValue OldChain = SDValue(Op.getNode(), 1); 1516 SDValue NewChain = SDValue(Intr.getNode(), 0); 1517 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1518 return Intr; 1519 } 1520 1521 // Emit an intrinsic with a glued value instead of its CC result. 1522 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1523 unsigned Opcode) { 1524 // Copy all operands except the intrinsic ID. 1525 unsigned NumOps = Op.getNumOperands(); 1526 SmallVector<SDValue, 6> Ops; 1527 Ops.reserve(NumOps - 1); 1528 for (unsigned I = 1; I < NumOps; ++I) 1529 Ops.push_back(Op.getOperand(I)); 1530 1531 if (Op->getNumValues() == 1) 1532 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1533 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1534 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1535 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1536 } 1537 1538 // CC is a comparison that will be implemented using an integer or 1539 // floating-point comparison. Return the condition code mask for 1540 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1541 // unsigned comparisons and clear for signed ones. In the floating-point 1542 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1543 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1544 #define CONV(X) \ 1545 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1546 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1547 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1548 1549 switch (CC) { 1550 default: 1551 llvm_unreachable("Invalid integer condition!"); 1552 1553 CONV(EQ); 1554 CONV(NE); 1555 CONV(GT); 1556 CONV(GE); 1557 CONV(LT); 1558 CONV(LE); 1559 1560 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1561 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1562 } 1563 #undef CONV 1564 } 1565 1566 // Return a sequence for getting a 1 from an IPM result when CC has a 1567 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1568 // The handling of CC values outside CCValid doesn't matter. 1569 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1570 // Deal with cases where the result can be taken directly from a bit 1571 // of the IPM result. 1572 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1573 return IPMConversion(0, 0, SystemZ::IPM_CC); 1574 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1575 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1576 1577 // Deal with cases where we can add a value to force the sign bit 1578 // to contain the right value. Putting the bit in 31 means we can 1579 // use SRL rather than RISBG(L), and also makes it easier to get a 1580 // 0/-1 value, so it has priority over the other tests below. 1581 // 1582 // These sequences rely on the fact that the upper two bits of the 1583 // IPM result are zero. 1584 uint64_t TopBit = uint64_t(1) << 31; 1585 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1586 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1587 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1588 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1589 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1590 | SystemZ::CCMASK_1 1591 | SystemZ::CCMASK_2))) 1592 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1593 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1594 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1595 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1596 | SystemZ::CCMASK_2 1597 | SystemZ::CCMASK_3))) 1598 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1599 1600 // Next try inverting the value and testing a bit. 0/1 could be 1601 // handled this way too, but we dealt with that case above. 1602 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1603 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1604 1605 // Handle cases where adding a value forces a non-sign bit to contain 1606 // the right value. 1607 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1608 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1609 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1610 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1611 1612 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1613 // can be done by inverting the low CC bit and applying one of the 1614 // sign-based extractions above. 1615 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1616 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1617 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1618 return IPMConversion(1 << SystemZ::IPM_CC, 1619 TopBit - (3 << SystemZ::IPM_CC), 31); 1620 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1621 | SystemZ::CCMASK_1 1622 | SystemZ::CCMASK_3))) 1623 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1624 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1625 | SystemZ::CCMASK_2 1626 | SystemZ::CCMASK_3))) 1627 return IPMConversion(1 << SystemZ::IPM_CC, 1628 TopBit - (1 << SystemZ::IPM_CC), 31); 1629 1630 llvm_unreachable("Unexpected CC combination"); 1631 } 1632 1633 // If C can be converted to a comparison against zero, adjust the operands 1634 // as necessary. 1635 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1636 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1637 return; 1638 1639 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1640 if (!ConstOp1) 1641 return; 1642 1643 int64_t Value = ConstOp1->getSExtValue(); 1644 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1645 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1646 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1647 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1648 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1649 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1650 } 1651 } 1652 1653 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1654 // adjust the operands as necessary. 1655 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1656 Comparison &C) { 1657 // For us to make any changes, it must a comparison between a single-use 1658 // load and a constant. 1659 if (!C.Op0.hasOneUse() || 1660 C.Op0.getOpcode() != ISD::LOAD || 1661 C.Op1.getOpcode() != ISD::Constant) 1662 return; 1663 1664 // We must have an 8- or 16-bit load. 1665 auto *Load = cast<LoadSDNode>(C.Op0); 1666 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1667 if (NumBits != 8 && NumBits != 16) 1668 return; 1669 1670 // The load must be an extending one and the constant must be within the 1671 // range of the unextended value. 1672 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1673 uint64_t Value = ConstOp1->getZExtValue(); 1674 uint64_t Mask = (1 << NumBits) - 1; 1675 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1676 // Make sure that ConstOp1 is in range of C.Op0. 1677 int64_t SignedValue = ConstOp1->getSExtValue(); 1678 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1679 return; 1680 if (C.ICmpType != SystemZICMP::SignedOnly) { 1681 // Unsigned comparison between two sign-extended values is equivalent 1682 // to unsigned comparison between two zero-extended values. 1683 Value &= Mask; 1684 } else if (NumBits == 8) { 1685 // Try to treat the comparison as unsigned, so that we can use CLI. 1686 // Adjust CCMask and Value as necessary. 1687 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1688 // Test whether the high bit of the byte is set. 1689 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1690 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1691 // Test whether the high bit of the byte is clear. 1692 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1693 else 1694 // No instruction exists for this combination. 1695 return; 1696 C.ICmpType = SystemZICMP::UnsignedOnly; 1697 } 1698 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1699 if (Value > Mask) 1700 return; 1701 // If the constant is in range, we can use any comparison. 1702 C.ICmpType = SystemZICMP::Any; 1703 } else 1704 return; 1705 1706 // Make sure that the first operand is an i32 of the right extension type. 1707 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1708 ISD::SEXTLOAD : 1709 ISD::ZEXTLOAD); 1710 if (C.Op0.getValueType() != MVT::i32 || 1711 Load->getExtensionType() != ExtType) 1712 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 1713 Load->getBasePtr(), Load->getPointerInfo(), 1714 Load->getMemoryVT(), Load->getAlignment(), 1715 Load->getMemOperand()->getFlags()); 1716 1717 // Make sure that the second operand is an i32 with the right value. 1718 if (C.Op1.getValueType() != MVT::i32 || 1719 Value != ConstOp1->getZExtValue()) 1720 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1721 } 1722 1723 // Return true if Op is either an unextended load, or a load suitable 1724 // for integer register-memory comparisons of type ICmpType. 1725 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1726 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1727 if (Load) { 1728 // There are no instructions to compare a register with a memory byte. 1729 if (Load->getMemoryVT() == MVT::i8) 1730 return false; 1731 // Otherwise decide on extension type. 1732 switch (Load->getExtensionType()) { 1733 case ISD::NON_EXTLOAD: 1734 return true; 1735 case ISD::SEXTLOAD: 1736 return ICmpType != SystemZICMP::UnsignedOnly; 1737 case ISD::ZEXTLOAD: 1738 return ICmpType != SystemZICMP::SignedOnly; 1739 default: 1740 break; 1741 } 1742 } 1743 return false; 1744 } 1745 1746 // Return true if it is better to swap the operands of C. 1747 static bool shouldSwapCmpOperands(const Comparison &C) { 1748 // Leave f128 comparisons alone, since they have no memory forms. 1749 if (C.Op0.getValueType() == MVT::f128) 1750 return false; 1751 1752 // Always keep a floating-point constant second, since comparisons with 1753 // zero can use LOAD TEST and comparisons with other constants make a 1754 // natural memory operand. 1755 if (isa<ConstantFPSDNode>(C.Op1)) 1756 return false; 1757 1758 // Never swap comparisons with zero since there are many ways to optimize 1759 // those later. 1760 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1761 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1762 return false; 1763 1764 // Also keep natural memory operands second if the loaded value is 1765 // only used here. Several comparisons have memory forms. 1766 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1767 return false; 1768 1769 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1770 // In that case we generally prefer the memory to be second. 1771 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1772 // The only exceptions are when the second operand is a constant and 1773 // we can use things like CHHSI. 1774 if (!ConstOp1) 1775 return true; 1776 // The unsigned memory-immediate instructions can handle 16-bit 1777 // unsigned integers. 1778 if (C.ICmpType != SystemZICMP::SignedOnly && 1779 isUInt<16>(ConstOp1->getZExtValue())) 1780 return false; 1781 // The signed memory-immediate instructions can handle 16-bit 1782 // signed integers. 1783 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1784 isInt<16>(ConstOp1->getSExtValue())) 1785 return false; 1786 return true; 1787 } 1788 1789 // Try to promote the use of CGFR and CLGFR. 1790 unsigned Opcode0 = C.Op0.getOpcode(); 1791 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1792 return true; 1793 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1794 return true; 1795 if (C.ICmpType != SystemZICMP::SignedOnly && 1796 Opcode0 == ISD::AND && 1797 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1798 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1799 return true; 1800 1801 return false; 1802 } 1803 1804 // Return a version of comparison CC mask CCMask in which the LT and GT 1805 // actions are swapped. 1806 static unsigned reverseCCMask(unsigned CCMask) { 1807 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1808 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1809 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1810 (CCMask & SystemZ::CCMASK_CMP_UO)); 1811 } 1812 1813 // Check whether C tests for equality between X and Y and whether X - Y 1814 // or Y - X is also computed. In that case it's better to compare the 1815 // result of the subtraction against zero. 1816 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 1817 Comparison &C) { 1818 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1819 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1820 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1821 SDNode *N = *I; 1822 if (N->getOpcode() == ISD::SUB && 1823 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1824 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1825 C.Op0 = SDValue(N, 0); 1826 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1827 return; 1828 } 1829 } 1830 } 1831 } 1832 1833 // Check whether C compares a floating-point value with zero and if that 1834 // floating-point value is also negated. In this case we can use the 1835 // negation to set CC, so avoiding separate LOAD AND TEST and 1836 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1837 static void adjustForFNeg(Comparison &C) { 1838 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1839 if (C1 && C1->isZero()) { 1840 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1841 SDNode *N = *I; 1842 if (N->getOpcode() == ISD::FNEG) { 1843 C.Op0 = SDValue(N, 0); 1844 C.CCMask = reverseCCMask(C.CCMask); 1845 return; 1846 } 1847 } 1848 } 1849 } 1850 1851 // Check whether C compares (shl X, 32) with 0 and whether X is 1852 // also sign-extended. In that case it is better to test the result 1853 // of the sign extension using LTGFR. 1854 // 1855 // This case is important because InstCombine transforms a comparison 1856 // with (sext (trunc X)) into a comparison with (shl X, 32). 1857 static void adjustForLTGFR(Comparison &C) { 1858 // Check for a comparison between (shl X, 32) and 0. 1859 if (C.Op0.getOpcode() == ISD::SHL && 1860 C.Op0.getValueType() == MVT::i64 && 1861 C.Op1.getOpcode() == ISD::Constant && 1862 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1863 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1864 if (C1 && C1->getZExtValue() == 32) { 1865 SDValue ShlOp0 = C.Op0.getOperand(0); 1866 // See whether X has any SIGN_EXTEND_INREG uses. 1867 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1868 SDNode *N = *I; 1869 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1870 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1871 C.Op0 = SDValue(N, 0); 1872 return; 1873 } 1874 } 1875 } 1876 } 1877 } 1878 1879 // If C compares the truncation of an extending load, try to compare 1880 // the untruncated value instead. This exposes more opportunities to 1881 // reuse CC. 1882 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 1883 Comparison &C) { 1884 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1885 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1886 C.Op1.getOpcode() == ISD::Constant && 1887 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1888 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1889 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 1890 unsigned Type = L->getExtensionType(); 1891 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1892 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1893 C.Op0 = C.Op0.getOperand(0); 1894 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1895 } 1896 } 1897 } 1898 } 1899 1900 // Return true if shift operation N has an in-range constant shift value. 1901 // Store it in ShiftVal if so. 1902 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1903 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1904 if (!Shift) 1905 return false; 1906 1907 uint64_t Amount = Shift->getZExtValue(); 1908 if (Amount >= N.getValueSizeInBits()) 1909 return false; 1910 1911 ShiftVal = Amount; 1912 return true; 1913 } 1914 1915 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1916 // instruction and whether the CC value is descriptive enough to handle 1917 // a comparison of type Opcode between the AND result and CmpVal. 1918 // CCMask says which comparison result is being tested and BitSize is 1919 // the number of bits in the operands. If TEST UNDER MASK can be used, 1920 // return the corresponding CC mask, otherwise return 0. 1921 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1922 uint64_t Mask, uint64_t CmpVal, 1923 unsigned ICmpType) { 1924 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1925 1926 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1927 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1928 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1929 return 0; 1930 1931 // Work out the masks for the lowest and highest bits. 1932 unsigned HighShift = 63 - countLeadingZeros(Mask); 1933 uint64_t High = uint64_t(1) << HighShift; 1934 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1935 1936 // Signed ordered comparisons are effectively unsigned if the sign 1937 // bit is dropped. 1938 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1939 1940 // Check for equality comparisons with 0, or the equivalent. 1941 if (CmpVal == 0) { 1942 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1943 return SystemZ::CCMASK_TM_ALL_0; 1944 if (CCMask == SystemZ::CCMASK_CMP_NE) 1945 return SystemZ::CCMASK_TM_SOME_1; 1946 } 1947 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 1948 if (CCMask == SystemZ::CCMASK_CMP_LT) 1949 return SystemZ::CCMASK_TM_ALL_0; 1950 if (CCMask == SystemZ::CCMASK_CMP_GE) 1951 return SystemZ::CCMASK_TM_SOME_1; 1952 } 1953 if (EffectivelyUnsigned && CmpVal < Low) { 1954 if (CCMask == SystemZ::CCMASK_CMP_LE) 1955 return SystemZ::CCMASK_TM_ALL_0; 1956 if (CCMask == SystemZ::CCMASK_CMP_GT) 1957 return SystemZ::CCMASK_TM_SOME_1; 1958 } 1959 1960 // Check for equality comparisons with the mask, or the equivalent. 1961 if (CmpVal == Mask) { 1962 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1963 return SystemZ::CCMASK_TM_ALL_1; 1964 if (CCMask == SystemZ::CCMASK_CMP_NE) 1965 return SystemZ::CCMASK_TM_SOME_0; 1966 } 1967 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1968 if (CCMask == SystemZ::CCMASK_CMP_GT) 1969 return SystemZ::CCMASK_TM_ALL_1; 1970 if (CCMask == SystemZ::CCMASK_CMP_LE) 1971 return SystemZ::CCMASK_TM_SOME_0; 1972 } 1973 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1974 if (CCMask == SystemZ::CCMASK_CMP_GE) 1975 return SystemZ::CCMASK_TM_ALL_1; 1976 if (CCMask == SystemZ::CCMASK_CMP_LT) 1977 return SystemZ::CCMASK_TM_SOME_0; 1978 } 1979 1980 // Check for ordered comparisons with the top bit. 1981 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1982 if (CCMask == SystemZ::CCMASK_CMP_LE) 1983 return SystemZ::CCMASK_TM_MSB_0; 1984 if (CCMask == SystemZ::CCMASK_CMP_GT) 1985 return SystemZ::CCMASK_TM_MSB_1; 1986 } 1987 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1988 if (CCMask == SystemZ::CCMASK_CMP_LT) 1989 return SystemZ::CCMASK_TM_MSB_0; 1990 if (CCMask == SystemZ::CCMASK_CMP_GE) 1991 return SystemZ::CCMASK_TM_MSB_1; 1992 } 1993 1994 // If there are just two bits, we can do equality checks for Low and High 1995 // as well. 1996 if (Mask == Low + High) { 1997 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1998 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1999 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2000 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2001 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2002 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2003 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2004 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2005 } 2006 2007 // Looks like we've exhausted our options. 2008 return 0; 2009 } 2010 2011 // See whether C can be implemented as a TEST UNDER MASK instruction. 2012 // Update the arguments with the TM version if so. 2013 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2014 Comparison &C) { 2015 // Check that we have a comparison with a constant. 2016 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2017 if (!ConstOp1) 2018 return; 2019 uint64_t CmpVal = ConstOp1->getZExtValue(); 2020 2021 // Check whether the nonconstant input is an AND with a constant mask. 2022 Comparison NewC(C); 2023 uint64_t MaskVal; 2024 ConstantSDNode *Mask = nullptr; 2025 if (C.Op0.getOpcode() == ISD::AND) { 2026 NewC.Op0 = C.Op0.getOperand(0); 2027 NewC.Op1 = C.Op0.getOperand(1); 2028 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2029 if (!Mask) 2030 return; 2031 MaskVal = Mask->getZExtValue(); 2032 } else { 2033 // There is no instruction to compare with a 64-bit immediate 2034 // so use TMHH instead if possible. We need an unsigned ordered 2035 // comparison with an i64 immediate. 2036 if (NewC.Op0.getValueType() != MVT::i64 || 2037 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2038 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2039 NewC.ICmpType == SystemZICMP::SignedOnly) 2040 return; 2041 // Convert LE and GT comparisons into LT and GE. 2042 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2043 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2044 if (CmpVal == uint64_t(-1)) 2045 return; 2046 CmpVal += 1; 2047 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2048 } 2049 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2050 // be masked off without changing the result. 2051 MaskVal = -(CmpVal & -CmpVal); 2052 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2053 } 2054 if (!MaskVal) 2055 return; 2056 2057 // Check whether the combination of mask, comparison value and comparison 2058 // type are suitable. 2059 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2060 unsigned NewCCMask, ShiftVal; 2061 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2062 NewC.Op0.getOpcode() == ISD::SHL && 2063 isSimpleShift(NewC.Op0, ShiftVal) && 2064 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2065 MaskVal >> ShiftVal, 2066 CmpVal >> ShiftVal, 2067 SystemZICMP::Any))) { 2068 NewC.Op0 = NewC.Op0.getOperand(0); 2069 MaskVal >>= ShiftVal; 2070 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2071 NewC.Op0.getOpcode() == ISD::SRL && 2072 isSimpleShift(NewC.Op0, ShiftVal) && 2073 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2074 MaskVal << ShiftVal, 2075 CmpVal << ShiftVal, 2076 SystemZICMP::UnsignedOnly))) { 2077 NewC.Op0 = NewC.Op0.getOperand(0); 2078 MaskVal <<= ShiftVal; 2079 } else { 2080 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2081 NewC.ICmpType); 2082 if (!NewCCMask) 2083 return; 2084 } 2085 2086 // Go ahead and make the change. 2087 C.Opcode = SystemZISD::TM; 2088 C.Op0 = NewC.Op0; 2089 if (Mask && Mask->getZExtValue() == MaskVal) 2090 C.Op1 = SDValue(Mask, 0); 2091 else 2092 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2093 C.CCValid = SystemZ::CCMASK_TM; 2094 C.CCMask = NewCCMask; 2095 } 2096 2097 // Return a Comparison that tests the condition-code result of intrinsic 2098 // node Call against constant integer CC using comparison code Cond. 2099 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2100 // and CCValid is the set of possible condition-code results. 2101 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2102 SDValue Call, unsigned CCValid, uint64_t CC, 2103 ISD::CondCode Cond) { 2104 Comparison C(Call, SDValue()); 2105 C.Opcode = Opcode; 2106 C.CCValid = CCValid; 2107 if (Cond == ISD::SETEQ) 2108 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2109 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2110 else if (Cond == ISD::SETNE) 2111 // ...and the inverse of that. 2112 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2113 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2114 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2115 // always true for CC>3. 2116 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2117 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2118 // ...and the inverse of that. 2119 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2120 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2121 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2122 // always true for CC>3. 2123 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2124 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2125 // ...and the inverse of that. 2126 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2127 else 2128 llvm_unreachable("Unexpected integer comparison type"); 2129 C.CCMask &= CCValid; 2130 return C; 2131 } 2132 2133 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2134 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2135 ISD::CondCode Cond, const SDLoc &DL) { 2136 if (CmpOp1.getOpcode() == ISD::Constant) { 2137 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2138 unsigned Opcode, CCValid; 2139 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2140 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2141 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2142 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2143 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2144 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2145 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2146 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2147 } 2148 Comparison C(CmpOp0, CmpOp1); 2149 C.CCMask = CCMaskForCondCode(Cond); 2150 if (C.Op0.getValueType().isFloatingPoint()) { 2151 C.CCValid = SystemZ::CCMASK_FCMP; 2152 C.Opcode = SystemZISD::FCMP; 2153 adjustForFNeg(C); 2154 } else { 2155 C.CCValid = SystemZ::CCMASK_ICMP; 2156 C.Opcode = SystemZISD::ICMP; 2157 // Choose the type of comparison. Equality and inequality tests can 2158 // use either signed or unsigned comparisons. The choice also doesn't 2159 // matter if both sign bits are known to be clear. In those cases we 2160 // want to give the main isel code the freedom to choose whichever 2161 // form fits best. 2162 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2163 C.CCMask == SystemZ::CCMASK_CMP_NE || 2164 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2165 C.ICmpType = SystemZICMP::Any; 2166 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2167 C.ICmpType = SystemZICMP::UnsignedOnly; 2168 else 2169 C.ICmpType = SystemZICMP::SignedOnly; 2170 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2171 adjustZeroCmp(DAG, DL, C); 2172 adjustSubwordCmp(DAG, DL, C); 2173 adjustForSubtraction(DAG, DL, C); 2174 adjustForLTGFR(C); 2175 adjustICmpTruncate(DAG, DL, C); 2176 } 2177 2178 if (shouldSwapCmpOperands(C)) { 2179 std::swap(C.Op0, C.Op1); 2180 C.CCMask = reverseCCMask(C.CCMask); 2181 } 2182 2183 adjustForTestUnderMask(DAG, DL, C); 2184 return C; 2185 } 2186 2187 // Emit the comparison instruction described by C. 2188 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2189 if (!C.Op1.getNode()) { 2190 SDValue Op; 2191 switch (C.Op0.getOpcode()) { 2192 case ISD::INTRINSIC_W_CHAIN: 2193 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2194 break; 2195 case ISD::INTRINSIC_WO_CHAIN: 2196 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2197 break; 2198 default: 2199 llvm_unreachable("Invalid comparison operands"); 2200 } 2201 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2202 } 2203 if (C.Opcode == SystemZISD::ICMP) 2204 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2205 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2206 if (C.Opcode == SystemZISD::TM) { 2207 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2208 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2209 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2210 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2211 } 2212 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2213 } 2214 2215 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2216 // 64 bits. Extend is the extension type to use. Store the high part 2217 // in Hi and the low part in Lo. 2218 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2219 SDValue Op0, SDValue Op1, SDValue &Hi, 2220 SDValue &Lo) { 2221 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2222 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2223 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2224 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2225 DAG.getConstant(32, DL, MVT::i64)); 2226 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2227 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2228 } 2229 2230 // Lower a binary operation that produces two VT results, one in each 2231 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2232 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2233 // on the extended Op0 and (unextended) Op1. Store the even register result 2234 // in Even and the odd register result in Odd. 2235 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2236 unsigned Extend, unsigned Opcode, SDValue Op0, 2237 SDValue Op1, SDValue &Even, SDValue &Odd) { 2238 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2239 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2240 SDValue(In128, 0), Op1); 2241 bool Is32Bit = is32Bit(VT); 2242 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2243 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2244 } 2245 2246 // Return an i32 value that is 1 if the CC value produced by Glue is 2247 // in the mask CCMask and 0 otherwise. CC is known to have a value 2248 // in CCValid, so other values can be ignored. 2249 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue, 2250 unsigned CCValid, unsigned CCMask) { 2251 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2252 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2253 2254 if (Conversion.XORValue) 2255 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2256 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2257 2258 if (Conversion.AddValue) 2259 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2260 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2261 2262 // The SHR/AND sequence should get optimized to an RISBG. 2263 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2264 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2265 if (Conversion.Bit != 31) 2266 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2267 DAG.getConstant(1, DL, MVT::i32)); 2268 return Result; 2269 } 2270 2271 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2272 // be done directly. IsFP is true if CC is for a floating-point rather than 2273 // integer comparison. 2274 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2275 switch (CC) { 2276 case ISD::SETOEQ: 2277 case ISD::SETEQ: 2278 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2279 2280 case ISD::SETOGE: 2281 case ISD::SETGE: 2282 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2283 2284 case ISD::SETOGT: 2285 case ISD::SETGT: 2286 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2287 2288 case ISD::SETUGT: 2289 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2290 2291 default: 2292 return 0; 2293 } 2294 } 2295 2296 // Return the SystemZISD vector comparison operation for CC or its inverse, 2297 // or 0 if neither can be done directly. Indicate in Invert whether the 2298 // result is for the inverse of CC. IsFP is true if CC is for a 2299 // floating-point rather than integer comparison. 2300 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2301 bool &Invert) { 2302 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2303 Invert = false; 2304 return Opcode; 2305 } 2306 2307 CC = ISD::getSetCCInverse(CC, !IsFP); 2308 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2309 Invert = true; 2310 return Opcode; 2311 } 2312 2313 return 0; 2314 } 2315 2316 // Return a v2f64 that contains the extended form of elements Start and Start+1 2317 // of v4f32 value Op. 2318 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2319 SDValue Op) { 2320 int Mask[] = { Start, -1, Start + 1, -1 }; 2321 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2322 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2323 } 2324 2325 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2326 // producing a result of type VT. 2327 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &DL, 2328 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2329 // There is no hardware support for v4f32, so extend the vector into 2330 // two v2f64s and compare those. 2331 if (CmpOp0.getValueType() == MVT::v4f32) { 2332 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2333 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2334 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2335 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2336 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2337 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2338 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2339 } 2340 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2341 } 2342 2343 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2344 // an integer mask of type VT. 2345 static SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2346 ISD::CondCode CC, SDValue CmpOp0, 2347 SDValue CmpOp1) { 2348 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2349 bool Invert = false; 2350 SDValue Cmp; 2351 switch (CC) { 2352 // Handle tests for order using (or (ogt y x) (oge x y)). 2353 case ISD::SETUO: 2354 Invert = true; 2355 case ISD::SETO: { 2356 assert(IsFP && "Unexpected integer comparison"); 2357 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2358 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2359 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2360 break; 2361 } 2362 2363 // Handle <> tests using (or (ogt y x) (ogt x y)). 2364 case ISD::SETUEQ: 2365 Invert = true; 2366 case ISD::SETONE: { 2367 assert(IsFP && "Unexpected integer comparison"); 2368 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2369 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2370 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2371 break; 2372 } 2373 2374 // Otherwise a single comparison is enough. It doesn't really 2375 // matter whether we try the inversion or the swap first, since 2376 // there are no cases where both work. 2377 default: 2378 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2379 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2380 else { 2381 CC = ISD::getSetCCSwappedOperands(CC); 2382 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2383 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2384 else 2385 llvm_unreachable("Unhandled comparison"); 2386 } 2387 break; 2388 } 2389 if (Invert) { 2390 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2391 DAG.getConstant(65535, DL, MVT::i32)); 2392 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2393 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2394 } 2395 return Cmp; 2396 } 2397 2398 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2399 SelectionDAG &DAG) const { 2400 SDValue CmpOp0 = Op.getOperand(0); 2401 SDValue CmpOp1 = Op.getOperand(1); 2402 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2403 SDLoc DL(Op); 2404 EVT VT = Op.getValueType(); 2405 if (VT.isVector()) 2406 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2407 2408 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2409 SDValue Glue = emitCmp(DAG, DL, C); 2410 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2411 } 2412 2413 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2414 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2415 SDValue CmpOp0 = Op.getOperand(2); 2416 SDValue CmpOp1 = Op.getOperand(3); 2417 SDValue Dest = Op.getOperand(4); 2418 SDLoc DL(Op); 2419 2420 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2421 SDValue Glue = emitCmp(DAG, DL, C); 2422 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2423 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2424 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2425 } 2426 2427 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2428 // allowing Pos and Neg to be wider than CmpOp. 2429 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2430 return (Neg.getOpcode() == ISD::SUB && 2431 Neg.getOperand(0).getOpcode() == ISD::Constant && 2432 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2433 Neg.getOperand(1) == Pos && 2434 (Pos == CmpOp || 2435 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2436 Pos.getOperand(0) == CmpOp))); 2437 } 2438 2439 // Return the absolute or negative absolute of Op; IsNegative decides which. 2440 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2441 bool IsNegative) { 2442 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2443 if (IsNegative) 2444 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2445 DAG.getConstant(0, DL, Op.getValueType()), Op); 2446 return Op; 2447 } 2448 2449 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2450 SelectionDAG &DAG) const { 2451 SDValue CmpOp0 = Op.getOperand(0); 2452 SDValue CmpOp1 = Op.getOperand(1); 2453 SDValue TrueOp = Op.getOperand(2); 2454 SDValue FalseOp = Op.getOperand(3); 2455 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2456 SDLoc DL(Op); 2457 2458 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2459 2460 // Check for absolute and negative-absolute selections, including those 2461 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2462 // This check supplements the one in DAGCombiner. 2463 if (C.Opcode == SystemZISD::ICMP && 2464 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2465 C.CCMask != SystemZ::CCMASK_CMP_NE && 2466 C.Op1.getOpcode() == ISD::Constant && 2467 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2468 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2469 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2470 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2471 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2472 } 2473 2474 SDValue Glue = emitCmp(DAG, DL, C); 2475 2476 // Special case for handling -1/0 results. The shifts we use here 2477 // should get optimized with the IPM conversion sequence. 2478 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2479 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2480 if (TrueC && FalseC) { 2481 int64_t TrueVal = TrueC->getSExtValue(); 2482 int64_t FalseVal = FalseC->getSExtValue(); 2483 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2484 // Invert the condition if we want -1 on false. 2485 if (TrueVal == 0) 2486 C.CCMask ^= C.CCValid; 2487 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2488 EVT VT = Op.getValueType(); 2489 // Extend the result to VT. Upper bits are ignored. 2490 if (!is32Bit(VT)) 2491 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2492 // Sign-extend from the low bit. 2493 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2494 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2495 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2496 } 2497 } 2498 2499 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2500 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2501 2502 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2503 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2504 } 2505 2506 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2507 SelectionDAG &DAG) const { 2508 SDLoc DL(Node); 2509 const GlobalValue *GV = Node->getGlobal(); 2510 int64_t Offset = Node->getOffset(); 2511 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2512 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2513 2514 SDValue Result; 2515 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2516 // Assign anchors at 1<<12 byte boundaries. 2517 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2518 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2519 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2520 2521 // The offset can be folded into the address if it is aligned to a halfword. 2522 Offset -= Anchor; 2523 if (Offset != 0 && (Offset & 1) == 0) { 2524 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2525 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2526 Offset = 0; 2527 } 2528 } else { 2529 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2530 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2531 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2532 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2533 } 2534 2535 // If there was a non-zero offset that we didn't fold, create an explicit 2536 // addition for it. 2537 if (Offset != 0) 2538 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2539 DAG.getConstant(Offset, DL, PtrVT)); 2540 2541 return Result; 2542 } 2543 2544 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2545 SelectionDAG &DAG, 2546 unsigned Opcode, 2547 SDValue GOTOffset) const { 2548 SDLoc DL(Node); 2549 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2550 SDValue Chain = DAG.getEntryNode(); 2551 SDValue Glue; 2552 2553 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2554 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2555 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2556 Glue = Chain.getValue(1); 2557 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2558 Glue = Chain.getValue(1); 2559 2560 // The first call operand is the chain and the second is the TLS symbol. 2561 SmallVector<SDValue, 8> Ops; 2562 Ops.push_back(Chain); 2563 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2564 Node->getValueType(0), 2565 0, 0)); 2566 2567 // Add argument registers to the end of the list so that they are 2568 // known live into the call. 2569 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2570 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2571 2572 // Add a register mask operand representing the call-preserved registers. 2573 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2574 const uint32_t *Mask = 2575 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2576 assert(Mask && "Missing call preserved mask for calling convention"); 2577 Ops.push_back(DAG.getRegisterMask(Mask)); 2578 2579 // Glue the call to the argument copies. 2580 Ops.push_back(Glue); 2581 2582 // Emit the call. 2583 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2584 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2585 Glue = Chain.getValue(1); 2586 2587 // Copy the return value from %r2. 2588 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2589 } 2590 2591 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2592 SelectionDAG &DAG) const { 2593 SDValue Chain = DAG.getEntryNode(); 2594 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2595 2596 // The high part of the thread pointer is in access register 0. 2597 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 2598 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2599 2600 // The low part of the thread pointer is in access register 1. 2601 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 2602 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2603 2604 // Merge them into a single 64-bit address. 2605 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2606 DAG.getConstant(32, DL, PtrVT)); 2607 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2608 } 2609 2610 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2611 SelectionDAG &DAG) const { 2612 if (DAG.getTarget().Options.EmulatedTLS) 2613 return LowerToTLSEmulatedModel(Node, DAG); 2614 SDLoc DL(Node); 2615 const GlobalValue *GV = Node->getGlobal(); 2616 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2617 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2618 2619 SDValue TP = lowerThreadPointer(DL, DAG); 2620 2621 // Get the offset of GA from the thread pointer, based on the TLS model. 2622 SDValue Offset; 2623 switch (model) { 2624 case TLSModel::GeneralDynamic: { 2625 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2626 SystemZConstantPoolValue *CPV = 2627 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2628 2629 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2630 Offset = DAG.getLoad( 2631 PtrVT, DL, DAG.getEntryNode(), Offset, 2632 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2633 2634 // Call __tls_get_offset to retrieve the offset. 2635 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2636 break; 2637 } 2638 2639 case TLSModel::LocalDynamic: { 2640 // Load the GOT offset of the module ID. 2641 SystemZConstantPoolValue *CPV = 2642 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2643 2644 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2645 Offset = DAG.getLoad( 2646 PtrVT, DL, DAG.getEntryNode(), Offset, 2647 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2648 2649 // Call __tls_get_offset to retrieve the module base offset. 2650 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2651 2652 // Note: The SystemZLDCleanupPass will remove redundant computations 2653 // of the module base offset. Count total number of local-dynamic 2654 // accesses to trigger execution of that pass. 2655 SystemZMachineFunctionInfo* MFI = 2656 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2657 MFI->incNumLocalDynamicTLSAccesses(); 2658 2659 // Add the per-symbol offset. 2660 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2661 2662 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2663 DTPOffset = DAG.getLoad( 2664 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2665 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2666 2667 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2668 break; 2669 } 2670 2671 case TLSModel::InitialExec: { 2672 // Load the offset from the GOT. 2673 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2674 SystemZII::MO_INDNTPOFF); 2675 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2676 Offset = 2677 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2678 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2679 break; 2680 } 2681 2682 case TLSModel::LocalExec: { 2683 // Force the offset into the constant pool and load it from there. 2684 SystemZConstantPoolValue *CPV = 2685 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2686 2687 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2688 Offset = DAG.getLoad( 2689 PtrVT, DL, DAG.getEntryNode(), Offset, 2690 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2691 break; 2692 } 2693 } 2694 2695 // Add the base and offset together. 2696 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2697 } 2698 2699 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2700 SelectionDAG &DAG) const { 2701 SDLoc DL(Node); 2702 const BlockAddress *BA = Node->getBlockAddress(); 2703 int64_t Offset = Node->getOffset(); 2704 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2705 2706 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2707 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2708 return Result; 2709 } 2710 2711 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2712 SelectionDAG &DAG) const { 2713 SDLoc DL(JT); 2714 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2715 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2716 2717 // Use LARL to load the address of the table. 2718 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2719 } 2720 2721 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2722 SelectionDAG &DAG) const { 2723 SDLoc DL(CP); 2724 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2725 2726 SDValue Result; 2727 if (CP->isMachineConstantPoolEntry()) 2728 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2729 CP->getAlignment()); 2730 else 2731 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2732 CP->getAlignment(), CP->getOffset()); 2733 2734 // Use LARL to load the address of the constant pool entry. 2735 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2736 } 2737 2738 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 2739 SelectionDAG &DAG) const { 2740 MachineFunction &MF = DAG.getMachineFunction(); 2741 MachineFrameInfo &MFI = MF.getFrameInfo(); 2742 MFI.setFrameAddressIsTaken(true); 2743 2744 SDLoc DL(Op); 2745 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2746 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2747 2748 // If the back chain frame index has not been allocated yet, do so. 2749 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 2750 int BackChainIdx = FI->getFramePointerSaveIndex(); 2751 if (!BackChainIdx) { 2752 // By definition, the frame address is the address of the back chain. 2753 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 2754 FI->setFramePointerSaveIndex(BackChainIdx); 2755 } 2756 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 2757 2758 // FIXME The frontend should detect this case. 2759 if (Depth > 0) { 2760 report_fatal_error("Unsupported stack frame traversal count"); 2761 } 2762 2763 return BackChain; 2764 } 2765 2766 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 2767 SelectionDAG &DAG) const { 2768 MachineFunction &MF = DAG.getMachineFunction(); 2769 MachineFrameInfo &MFI = MF.getFrameInfo(); 2770 MFI.setReturnAddressIsTaken(true); 2771 2772 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2773 return SDValue(); 2774 2775 SDLoc DL(Op); 2776 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2777 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2778 2779 // FIXME The frontend should detect this case. 2780 if (Depth > 0) { 2781 report_fatal_error("Unsupported stack frame traversal count"); 2782 } 2783 2784 // Return R14D, which has the return address. Mark it an implicit live-in. 2785 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 2786 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 2787 } 2788 2789 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2790 SelectionDAG &DAG) const { 2791 SDLoc DL(Op); 2792 SDValue In = Op.getOperand(0); 2793 EVT InVT = In.getValueType(); 2794 EVT ResVT = Op.getValueType(); 2795 2796 // Convert loads directly. This is normally done by DAGCombiner, 2797 // but we need this case for bitcasts that are created during lowering 2798 // and which are then lowered themselves. 2799 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2800 if (ISD::isNormalLoad(LoadN)) 2801 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2802 LoadN->getMemOperand()); 2803 2804 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2805 SDValue In64; 2806 if (Subtarget.hasHighWord()) { 2807 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2808 MVT::i64); 2809 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2810 MVT::i64, SDValue(U64, 0), In); 2811 } else { 2812 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2813 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2814 DAG.getConstant(32, DL, MVT::i64)); 2815 } 2816 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2817 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2818 DL, MVT::f32, Out64); 2819 } 2820 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2821 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2822 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2823 MVT::f64, SDValue(U64, 0), In); 2824 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2825 if (Subtarget.hasHighWord()) 2826 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2827 MVT::i32, Out64); 2828 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2829 DAG.getConstant(32, DL, MVT::i64)); 2830 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2831 } 2832 llvm_unreachable("Unexpected bitcast combination"); 2833 } 2834 2835 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2836 SelectionDAG &DAG) const { 2837 MachineFunction &MF = DAG.getMachineFunction(); 2838 SystemZMachineFunctionInfo *FuncInfo = 2839 MF.getInfo<SystemZMachineFunctionInfo>(); 2840 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2841 2842 SDValue Chain = Op.getOperand(0); 2843 SDValue Addr = Op.getOperand(1); 2844 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2845 SDLoc DL(Op); 2846 2847 // The initial values of each field. 2848 const unsigned NumFields = 4; 2849 SDValue Fields[NumFields] = { 2850 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2851 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2852 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2853 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2854 }; 2855 2856 // Store each field into its respective slot. 2857 SDValue MemOps[NumFields]; 2858 unsigned Offset = 0; 2859 for (unsigned I = 0; I < NumFields; ++I) { 2860 SDValue FieldAddr = Addr; 2861 if (Offset != 0) 2862 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2863 DAG.getIntPtrConstant(Offset, DL)); 2864 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2865 MachinePointerInfo(SV, Offset)); 2866 Offset += 8; 2867 } 2868 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2869 } 2870 2871 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2872 SelectionDAG &DAG) const { 2873 SDValue Chain = Op.getOperand(0); 2874 SDValue DstPtr = Op.getOperand(1); 2875 SDValue SrcPtr = Op.getOperand(2); 2876 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2877 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2878 SDLoc DL(Op); 2879 2880 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2881 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2882 /*isTailCall*/false, 2883 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2884 } 2885 2886 SDValue SystemZTargetLowering:: 2887 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2888 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 2889 MachineFunction &MF = DAG.getMachineFunction(); 2890 bool RealignOpt = !MF.getFunction()-> hasFnAttribute("no-realign-stack"); 2891 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain"); 2892 2893 SDValue Chain = Op.getOperand(0); 2894 SDValue Size = Op.getOperand(1); 2895 SDValue Align = Op.getOperand(2); 2896 SDLoc DL(Op); 2897 2898 // If user has set the no alignment function attribute, ignore 2899 // alloca alignments. 2900 uint64_t AlignVal = (RealignOpt ? 2901 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 2902 2903 uint64_t StackAlign = TFI->getStackAlignment(); 2904 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 2905 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 2906 2907 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2908 SDValue NeededSpace = Size; 2909 2910 // Get a reference to the stack pointer. 2911 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2912 2913 // If we need a backchain, save it now. 2914 SDValue Backchain; 2915 if (StoreBackchain) 2916 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 2917 2918 // Add extra space for alignment if needed. 2919 if (ExtraAlignSpace) 2920 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 2921 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2922 2923 // Get the new stack pointer value. 2924 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 2925 2926 // Copy the new stack pointer back. 2927 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2928 2929 // The allocated data lives above the 160 bytes allocated for the standard 2930 // frame, plus any outgoing stack arguments. We don't know how much that 2931 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2932 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2933 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2934 2935 // Dynamically realign if needed. 2936 if (RequiredAlign > StackAlign) { 2937 Result = 2938 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 2939 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2940 Result = 2941 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 2942 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 2943 } 2944 2945 if (StoreBackchain) 2946 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 2947 2948 SDValue Ops[2] = { Result, Chain }; 2949 return DAG.getMergeValues(Ops, DL); 2950 } 2951 2952 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 2953 SDValue Op, SelectionDAG &DAG) const { 2954 SDLoc DL(Op); 2955 2956 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2957 } 2958 2959 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2960 SelectionDAG &DAG) const { 2961 EVT VT = Op.getValueType(); 2962 SDLoc DL(Op); 2963 SDValue Ops[2]; 2964 if (is32Bit(VT)) 2965 // Just do a normal 64-bit multiplication and extract the results. 2966 // We define this so that it can be used for constant division. 2967 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2968 Op.getOperand(1), Ops[1], Ops[0]); 2969 else { 2970 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2971 // 2972 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2973 // 2974 // but using the fact that the upper halves are either all zeros 2975 // or all ones: 2976 // 2977 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2978 // 2979 // and grouping the right terms together since they are quicker than the 2980 // multiplication: 2981 // 2982 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2983 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2984 SDValue LL = Op.getOperand(0); 2985 SDValue RL = Op.getOperand(1); 2986 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2987 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2988 // UMUL_LOHI64 returns the low result in the odd register and the high 2989 // result in the even register. SMUL_LOHI is defined to return the 2990 // low half first, so the results are in reverse order. 2991 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2992 LL, RL, Ops[1], Ops[0]); 2993 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2994 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2995 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2996 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2997 } 2998 return DAG.getMergeValues(Ops, DL); 2999 } 3000 3001 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3002 SelectionDAG &DAG) const { 3003 EVT VT = Op.getValueType(); 3004 SDLoc DL(Op); 3005 SDValue Ops[2]; 3006 if (is32Bit(VT)) 3007 // Just do a normal 64-bit multiplication and extract the results. 3008 // We define this so that it can be used for constant division. 3009 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3010 Op.getOperand(1), Ops[1], Ops[0]); 3011 else 3012 // UMUL_LOHI64 returns the low result in the odd register and the high 3013 // result in the even register. UMUL_LOHI is defined to return the 3014 // low half first, so the results are in reverse order. 3015 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 3016 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3017 return DAG.getMergeValues(Ops, DL); 3018 } 3019 3020 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3021 SelectionDAG &DAG) const { 3022 SDValue Op0 = Op.getOperand(0); 3023 SDValue Op1 = Op.getOperand(1); 3024 EVT VT = Op.getValueType(); 3025 SDLoc DL(Op); 3026 unsigned Opcode; 3027 3028 // We use DSGF for 32-bit division. 3029 if (is32Bit(VT)) { 3030 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3031 Opcode = SystemZISD::SDIVREM32; 3032 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 3033 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3034 Opcode = SystemZISD::SDIVREM32; 3035 } else 3036 Opcode = SystemZISD::SDIVREM64; 3037 3038 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 3039 // input is "don't care". The instruction returns the remainder in 3040 // the even register and the quotient in the odd register. 3041 SDValue Ops[2]; 3042 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 3043 Op0, Op1, Ops[1], Ops[0]); 3044 return DAG.getMergeValues(Ops, DL); 3045 } 3046 3047 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3048 SelectionDAG &DAG) const { 3049 EVT VT = Op.getValueType(); 3050 SDLoc DL(Op); 3051 3052 // DL(G) uses a double-width dividend, so we need to clear the even 3053 // register in the GR128 input. The instruction returns the remainder 3054 // in the even register and the quotient in the odd register. 3055 SDValue Ops[2]; 3056 if (is32Bit(VT)) 3057 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 3058 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3059 else 3060 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 3061 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3062 return DAG.getMergeValues(Ops, DL); 3063 } 3064 3065 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3066 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3067 3068 // Get the known-zero masks for each operand. 3069 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 3070 KnownBits Known[2]; 3071 DAG.computeKnownBits(Ops[0], Known[0]); 3072 DAG.computeKnownBits(Ops[1], Known[1]); 3073 3074 // See if the upper 32 bits of one operand and the lower 32 bits of the 3075 // other are known zero. They are the low and high operands respectively. 3076 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3077 Known[1].Zero.getZExtValue() }; 3078 unsigned High, Low; 3079 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3080 High = 1, Low = 0; 3081 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3082 High = 0, Low = 1; 3083 else 3084 return Op; 3085 3086 SDValue LowOp = Ops[Low]; 3087 SDValue HighOp = Ops[High]; 3088 3089 // If the high part is a constant, we're better off using IILH. 3090 if (HighOp.getOpcode() == ISD::Constant) 3091 return Op; 3092 3093 // If the low part is a constant that is outside the range of LHI, 3094 // then we're better off using IILF. 3095 if (LowOp.getOpcode() == ISD::Constant) { 3096 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3097 if (!isInt<16>(Value)) 3098 return Op; 3099 } 3100 3101 // Check whether the high part is an AND that doesn't change the 3102 // high 32 bits and just masks out low bits. We can skip it if so. 3103 if (HighOp.getOpcode() == ISD::AND && 3104 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3105 SDValue HighOp0 = HighOp.getOperand(0); 3106 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3107 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3108 HighOp = HighOp0; 3109 } 3110 3111 // Take advantage of the fact that all GR32 operations only change the 3112 // low 32 bits by truncating Low to an i32 and inserting it directly 3113 // using a subreg. The interesting cases are those where the truncation 3114 // can be folded. 3115 SDLoc DL(Op); 3116 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3117 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3118 MVT::i64, HighOp, Low32); 3119 } 3120 3121 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3122 SelectionDAG &DAG) const { 3123 EVT VT = Op.getValueType(); 3124 SDLoc DL(Op); 3125 Op = Op.getOperand(0); 3126 3127 // Handle vector types via VPOPCT. 3128 if (VT.isVector()) { 3129 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3130 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3131 switch (VT.getScalarSizeInBits()) { 3132 case 8: 3133 break; 3134 case 16: { 3135 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3136 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3137 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3138 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3139 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3140 break; 3141 } 3142 case 32: { 3143 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3144 DAG.getConstant(0, DL, MVT::i32)); 3145 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3146 break; 3147 } 3148 case 64: { 3149 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3150 DAG.getConstant(0, DL, MVT::i32)); 3151 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3152 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3153 break; 3154 } 3155 default: 3156 llvm_unreachable("Unexpected type"); 3157 } 3158 return Op; 3159 } 3160 3161 // Get the known-zero mask for the operand. 3162 KnownBits Known; 3163 DAG.computeKnownBits(Op, Known); 3164 unsigned NumSignificantBits = (~Known.Zero).getActiveBits(); 3165 if (NumSignificantBits == 0) 3166 return DAG.getConstant(0, DL, VT); 3167 3168 // Skip known-zero high parts of the operand. 3169 int64_t OrigBitSize = VT.getSizeInBits(); 3170 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3171 BitSize = std::min(BitSize, OrigBitSize); 3172 3173 // The POPCNT instruction counts the number of bits in each byte. 3174 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3175 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3176 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3177 3178 // Add up per-byte counts in a binary tree. All bits of Op at 3179 // position larger than BitSize remain zero throughout. 3180 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3181 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3182 if (BitSize != OrigBitSize) 3183 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3184 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3185 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3186 } 3187 3188 // Extract overall result from high byte. 3189 if (BitSize > 8) 3190 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3191 DAG.getConstant(BitSize - 8, DL, VT)); 3192 3193 return Op; 3194 } 3195 3196 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3197 SelectionDAG &DAG) const { 3198 SDLoc DL(Op); 3199 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3200 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3201 SynchronizationScope FenceScope = static_cast<SynchronizationScope>( 3202 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3203 3204 // The only fence that needs an instruction is a sequentially-consistent 3205 // cross-thread fence. 3206 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3207 FenceScope == CrossThread) { 3208 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3209 Op.getOperand(0)), 3210 0); 3211 } 3212 3213 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3214 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3215 } 3216 3217 // Op is an atomic load. Lower it into a normal volatile load. 3218 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3219 SelectionDAG &DAG) const { 3220 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3221 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3222 Node->getChain(), Node->getBasePtr(), 3223 Node->getMemoryVT(), Node->getMemOperand()); 3224 } 3225 3226 // Op is an atomic store. Lower it into a normal volatile store followed 3227 // by a serialization. 3228 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3229 SelectionDAG &DAG) const { 3230 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3231 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3232 Node->getBasePtr(), Node->getMemoryVT(), 3233 Node->getMemOperand()); 3234 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3235 Chain), 0); 3236 } 3237 3238 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3239 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3240 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3241 SelectionDAG &DAG, 3242 unsigned Opcode) const { 3243 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3244 3245 // 32-bit operations need no code outside the main loop. 3246 EVT NarrowVT = Node->getMemoryVT(); 3247 EVT WideVT = MVT::i32; 3248 if (NarrowVT == WideVT) 3249 return Op; 3250 3251 int64_t BitSize = NarrowVT.getSizeInBits(); 3252 SDValue ChainIn = Node->getChain(); 3253 SDValue Addr = Node->getBasePtr(); 3254 SDValue Src2 = Node->getVal(); 3255 MachineMemOperand *MMO = Node->getMemOperand(); 3256 SDLoc DL(Node); 3257 EVT PtrVT = Addr.getValueType(); 3258 3259 // Convert atomic subtracts of constants into additions. 3260 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3261 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3262 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3263 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3264 } 3265 3266 // Get the address of the containing word. 3267 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3268 DAG.getConstant(-4, DL, PtrVT)); 3269 3270 // Get the number of bits that the word must be rotated left in order 3271 // to bring the field to the top bits of a GR32. 3272 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3273 DAG.getConstant(3, DL, PtrVT)); 3274 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3275 3276 // Get the complementing shift amount, for rotating a field in the top 3277 // bits back to its proper position. 3278 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3279 DAG.getConstant(0, DL, WideVT), BitShift); 3280 3281 // Extend the source operand to 32 bits and prepare it for the inner loop. 3282 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3283 // operations require the source to be shifted in advance. (This shift 3284 // can be folded if the source is constant.) For AND and NAND, the lower 3285 // bits must be set, while for other opcodes they should be left clear. 3286 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3287 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3288 DAG.getConstant(32 - BitSize, DL, WideVT)); 3289 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3290 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3291 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3292 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3293 3294 // Construct the ATOMIC_LOADW_* node. 3295 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3296 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3297 DAG.getConstant(BitSize, DL, WideVT) }; 3298 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3299 NarrowVT, MMO); 3300 3301 // Rotate the result of the final CS so that the field is in the lower 3302 // bits of a GR32, then truncate it. 3303 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3304 DAG.getConstant(BitSize, DL, WideVT)); 3305 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3306 3307 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3308 return DAG.getMergeValues(RetOps, DL); 3309 } 3310 3311 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3312 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3313 // operations into additions. 3314 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3315 SelectionDAG &DAG) const { 3316 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3317 EVT MemVT = Node->getMemoryVT(); 3318 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3319 // A full-width operation. 3320 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3321 SDValue Src2 = Node->getVal(); 3322 SDValue NegSrc2; 3323 SDLoc DL(Src2); 3324 3325 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3326 // Use an addition if the operand is constant and either LAA(G) is 3327 // available or the negative value is in the range of A(G)FHI. 3328 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3329 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3330 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3331 } else if (Subtarget.hasInterlockedAccess1()) 3332 // Use LAA(G) if available. 3333 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3334 Src2); 3335 3336 if (NegSrc2.getNode()) 3337 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3338 Node->getChain(), Node->getBasePtr(), NegSrc2, 3339 Node->getMemOperand()); 3340 3341 // Use the node as-is. 3342 return Op; 3343 } 3344 3345 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3346 } 3347 3348 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3349 // into a fullword ATOMIC_CMP_SWAPW operation. 3350 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3351 SelectionDAG &DAG) const { 3352 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3353 3354 // We have native support for 32-bit compare and swap. 3355 EVT NarrowVT = Node->getMemoryVT(); 3356 EVT WideVT = MVT::i32; 3357 if (NarrowVT == WideVT) 3358 return Op; 3359 3360 int64_t BitSize = NarrowVT.getSizeInBits(); 3361 SDValue ChainIn = Node->getOperand(0); 3362 SDValue Addr = Node->getOperand(1); 3363 SDValue CmpVal = Node->getOperand(2); 3364 SDValue SwapVal = Node->getOperand(3); 3365 MachineMemOperand *MMO = Node->getMemOperand(); 3366 SDLoc DL(Node); 3367 EVT PtrVT = Addr.getValueType(); 3368 3369 // Get the address of the containing word. 3370 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3371 DAG.getConstant(-4, DL, PtrVT)); 3372 3373 // Get the number of bits that the word must be rotated left in order 3374 // to bring the field to the top bits of a GR32. 3375 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3376 DAG.getConstant(3, DL, PtrVT)); 3377 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3378 3379 // Get the complementing shift amount, for rotating a field in the top 3380 // bits back to its proper position. 3381 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3382 DAG.getConstant(0, DL, WideVT), BitShift); 3383 3384 // Construct the ATOMIC_CMP_SWAPW node. 3385 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3386 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3387 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3388 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3389 VTList, Ops, NarrowVT, MMO); 3390 return AtomicOp; 3391 } 3392 3393 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3394 SelectionDAG &DAG) const { 3395 MachineFunction &MF = DAG.getMachineFunction(); 3396 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3397 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3398 SystemZ::R15D, Op.getValueType()); 3399 } 3400 3401 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3402 SelectionDAG &DAG) const { 3403 MachineFunction &MF = DAG.getMachineFunction(); 3404 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3405 bool StoreBackchain = MF.getFunction()->hasFnAttribute("backchain"); 3406 3407 SDValue Chain = Op.getOperand(0); 3408 SDValue NewSP = Op.getOperand(1); 3409 SDValue Backchain; 3410 SDLoc DL(Op); 3411 3412 if (StoreBackchain) { 3413 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3414 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3415 } 3416 3417 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3418 3419 if (StoreBackchain) 3420 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3421 3422 return Chain; 3423 } 3424 3425 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3426 SelectionDAG &DAG) const { 3427 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3428 if (!IsData) 3429 // Just preserve the chain. 3430 return Op.getOperand(0); 3431 3432 SDLoc DL(Op); 3433 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3434 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3435 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3436 SDValue Ops[] = { 3437 Op.getOperand(0), 3438 DAG.getConstant(Code, DL, MVT::i32), 3439 Op.getOperand(1) 3440 }; 3441 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3442 Node->getVTList(), Ops, 3443 Node->getMemoryVT(), Node->getMemOperand()); 3444 } 3445 3446 // Return an i32 that contains the value of CC immediately after After, 3447 // whose final operand must be MVT::Glue. 3448 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3449 SDLoc DL(After); 3450 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3451 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3452 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3453 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3454 } 3455 3456 SDValue 3457 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3458 SelectionDAG &DAG) const { 3459 unsigned Opcode, CCValid; 3460 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3461 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3462 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3463 SDValue CC = getCCResult(DAG, Glued.getNode()); 3464 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3465 return SDValue(); 3466 } 3467 3468 return SDValue(); 3469 } 3470 3471 SDValue 3472 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3473 SelectionDAG &DAG) const { 3474 unsigned Opcode, CCValid; 3475 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3476 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3477 SDValue CC = getCCResult(DAG, Glued.getNode()); 3478 if (Op->getNumValues() == 1) 3479 return CC; 3480 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3481 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued, 3482 CC); 3483 } 3484 3485 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3486 switch (Id) { 3487 case Intrinsic::thread_pointer: 3488 return lowerThreadPointer(SDLoc(Op), DAG); 3489 3490 case Intrinsic::s390_vpdi: 3491 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3492 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3493 3494 case Intrinsic::s390_vperm: 3495 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3496 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3497 3498 case Intrinsic::s390_vuphb: 3499 case Intrinsic::s390_vuphh: 3500 case Intrinsic::s390_vuphf: 3501 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3502 Op.getOperand(1)); 3503 3504 case Intrinsic::s390_vuplhb: 3505 case Intrinsic::s390_vuplhh: 3506 case Intrinsic::s390_vuplhf: 3507 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3508 Op.getOperand(1)); 3509 3510 case Intrinsic::s390_vuplb: 3511 case Intrinsic::s390_vuplhw: 3512 case Intrinsic::s390_vuplf: 3513 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3514 Op.getOperand(1)); 3515 3516 case Intrinsic::s390_vupllb: 3517 case Intrinsic::s390_vupllh: 3518 case Intrinsic::s390_vupllf: 3519 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3520 Op.getOperand(1)); 3521 3522 case Intrinsic::s390_vsumb: 3523 case Intrinsic::s390_vsumh: 3524 case Intrinsic::s390_vsumgh: 3525 case Intrinsic::s390_vsumgf: 3526 case Intrinsic::s390_vsumqf: 3527 case Intrinsic::s390_vsumqg: 3528 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3529 Op.getOperand(1), Op.getOperand(2)); 3530 } 3531 3532 return SDValue(); 3533 } 3534 3535 namespace { 3536 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3537 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3538 // Operand is the constant third operand, otherwise it is the number of 3539 // bytes in each element of the result. 3540 struct Permute { 3541 unsigned Opcode; 3542 unsigned Operand; 3543 unsigned char Bytes[SystemZ::VectorBytes]; 3544 }; 3545 } 3546 3547 static const Permute PermuteForms[] = { 3548 // VMRHG 3549 { SystemZISD::MERGE_HIGH, 8, 3550 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3551 // VMRHF 3552 { SystemZISD::MERGE_HIGH, 4, 3553 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3554 // VMRHH 3555 { SystemZISD::MERGE_HIGH, 2, 3556 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3557 // VMRHB 3558 { SystemZISD::MERGE_HIGH, 1, 3559 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3560 // VMRLG 3561 { SystemZISD::MERGE_LOW, 8, 3562 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3563 // VMRLF 3564 { SystemZISD::MERGE_LOW, 4, 3565 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3566 // VMRLH 3567 { SystemZISD::MERGE_LOW, 2, 3568 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3569 // VMRLB 3570 { SystemZISD::MERGE_LOW, 1, 3571 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3572 // VPKG 3573 { SystemZISD::PACK, 4, 3574 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3575 // VPKF 3576 { SystemZISD::PACK, 2, 3577 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3578 // VPKH 3579 { SystemZISD::PACK, 1, 3580 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3581 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3582 { SystemZISD::PERMUTE_DWORDS, 4, 3583 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3584 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3585 { SystemZISD::PERMUTE_DWORDS, 1, 3586 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3587 }; 3588 3589 // Called after matching a vector shuffle against a particular pattern. 3590 // Both the original shuffle and the pattern have two vector operands. 3591 // OpNos[0] is the operand of the original shuffle that should be used for 3592 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3593 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3594 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3595 // for operands 0 and 1 of the pattern. 3596 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3597 if (OpNos[0] < 0) { 3598 if (OpNos[1] < 0) 3599 return false; 3600 OpNo0 = OpNo1 = OpNos[1]; 3601 } else if (OpNos[1] < 0) { 3602 OpNo0 = OpNo1 = OpNos[0]; 3603 } else { 3604 OpNo0 = OpNos[0]; 3605 OpNo1 = OpNos[1]; 3606 } 3607 return true; 3608 } 3609 3610 // Bytes is a VPERM-like permute vector, except that -1 is used for 3611 // undefined bytes. Return true if the VPERM can be implemented using P. 3612 // When returning true set OpNo0 to the VPERM operand that should be 3613 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3614 // 3615 // For example, if swapping the VPERM operands allows P to match, OpNo0 3616 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3617 // operand, but rewriting it to use two duplicated operands allows it to 3618 // match P, then OpNo0 and OpNo1 will be the same. 3619 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3620 unsigned &OpNo0, unsigned &OpNo1) { 3621 int OpNos[] = { -1, -1 }; 3622 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3623 int Elt = Bytes[I]; 3624 if (Elt >= 0) { 3625 // Make sure that the two permute vectors use the same suboperand 3626 // byte number. Only the operand numbers (the high bits) are 3627 // allowed to differ. 3628 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3629 return false; 3630 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3631 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3632 // Make sure that the operand mappings are consistent with previous 3633 // elements. 3634 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3635 return false; 3636 OpNos[ModelOpNo] = RealOpNo; 3637 } 3638 } 3639 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3640 } 3641 3642 // As above, but search for a matching permute. 3643 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3644 unsigned &OpNo0, unsigned &OpNo1) { 3645 for (auto &P : PermuteForms) 3646 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3647 return &P; 3648 return nullptr; 3649 } 3650 3651 // Bytes is a VPERM-like permute vector, except that -1 is used for 3652 // undefined bytes. This permute is an operand of an outer permute. 3653 // See whether redistributing the -1 bytes gives a shuffle that can be 3654 // implemented using P. If so, set Transform to a VPERM-like permute vector 3655 // that, when applied to the result of P, gives the original permute in Bytes. 3656 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3657 const Permute &P, 3658 SmallVectorImpl<int> &Transform) { 3659 unsigned To = 0; 3660 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3661 int Elt = Bytes[From]; 3662 if (Elt < 0) 3663 // Byte number From of the result is undefined. 3664 Transform[From] = -1; 3665 else { 3666 while (P.Bytes[To] != Elt) { 3667 To += 1; 3668 if (To == SystemZ::VectorBytes) 3669 return false; 3670 } 3671 Transform[From] = To; 3672 } 3673 } 3674 return true; 3675 } 3676 3677 // As above, but search for a matching permute. 3678 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3679 SmallVectorImpl<int> &Transform) { 3680 for (auto &P : PermuteForms) 3681 if (matchDoublePermute(Bytes, P, Transform)) 3682 return &P; 3683 return nullptr; 3684 } 3685 3686 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3687 // as if it had type vNi8. 3688 static void getVPermMask(ShuffleVectorSDNode *VSN, 3689 SmallVectorImpl<int> &Bytes) { 3690 EVT VT = VSN->getValueType(0); 3691 unsigned NumElements = VT.getVectorNumElements(); 3692 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3693 Bytes.resize(NumElements * BytesPerElement, -1); 3694 for (unsigned I = 0; I < NumElements; ++I) { 3695 int Index = VSN->getMaskElt(I); 3696 if (Index >= 0) 3697 for (unsigned J = 0; J < BytesPerElement; ++J) 3698 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3699 } 3700 } 3701 3702 // Bytes is a VPERM-like permute vector, except that -1 is used for 3703 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3704 // the result come from a contiguous sequence of bytes from one input. 3705 // Set Base to the selector for the first byte if so. 3706 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3707 unsigned BytesPerElement, int &Base) { 3708 Base = -1; 3709 for (unsigned I = 0; I < BytesPerElement; ++I) { 3710 if (Bytes[Start + I] >= 0) { 3711 unsigned Elem = Bytes[Start + I]; 3712 if (Base < 0) { 3713 Base = Elem - I; 3714 // Make sure the bytes would come from one input operand. 3715 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3716 return false; 3717 } else if (unsigned(Base) != Elem - I) 3718 return false; 3719 } 3720 } 3721 return true; 3722 } 3723 3724 // Bytes is a VPERM-like permute vector, except that -1 is used for 3725 // undefined bytes. Return true if it can be performed using VSLDI. 3726 // When returning true, set StartIndex to the shift amount and OpNo0 3727 // and OpNo1 to the VPERM operands that should be used as the first 3728 // and second shift operand respectively. 3729 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3730 unsigned &StartIndex, unsigned &OpNo0, 3731 unsigned &OpNo1) { 3732 int OpNos[] = { -1, -1 }; 3733 int Shift = -1; 3734 for (unsigned I = 0; I < 16; ++I) { 3735 int Index = Bytes[I]; 3736 if (Index >= 0) { 3737 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3738 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3739 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3740 if (Shift < 0) 3741 Shift = ExpectedShift; 3742 else if (Shift != ExpectedShift) 3743 return false; 3744 // Make sure that the operand mappings are consistent with previous 3745 // elements. 3746 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3747 return false; 3748 OpNos[ModelOpNo] = RealOpNo; 3749 } 3750 } 3751 StartIndex = Shift; 3752 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3753 } 3754 3755 // Create a node that performs P on operands Op0 and Op1, casting the 3756 // operands to the appropriate type. The type of the result is determined by P. 3757 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3758 const Permute &P, SDValue Op0, SDValue Op1) { 3759 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3760 // elements of a PACK are twice as wide as the outputs. 3761 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3762 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3763 P.Operand); 3764 // Cast both operands to the appropriate type. 3765 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3766 SystemZ::VectorBytes / InBytes); 3767 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3768 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3769 SDValue Op; 3770 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3771 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3772 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3773 } else if (P.Opcode == SystemZISD::PACK) { 3774 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3775 SystemZ::VectorBytes / P.Operand); 3776 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3777 } else { 3778 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3779 } 3780 return Op; 3781 } 3782 3783 // Bytes is a VPERM-like permute vector, except that -1 is used for 3784 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3785 // VSLDI or VPERM. 3786 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3787 SDValue *Ops, 3788 const SmallVectorImpl<int> &Bytes) { 3789 for (unsigned I = 0; I < 2; ++I) 3790 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3791 3792 // First see whether VSLDI can be used. 3793 unsigned StartIndex, OpNo0, OpNo1; 3794 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3795 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3796 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3797 3798 // Fall back on VPERM. Construct an SDNode for the permute vector. 3799 SDValue IndexNodes[SystemZ::VectorBytes]; 3800 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3801 if (Bytes[I] >= 0) 3802 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3803 else 3804 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3805 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 3806 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3807 } 3808 3809 namespace { 3810 // Describes a general N-operand vector shuffle. 3811 struct GeneralShuffle { 3812 GeneralShuffle(EVT vt) : VT(vt) {} 3813 void addUndef(); 3814 bool add(SDValue, unsigned); 3815 SDValue getNode(SelectionDAG &, const SDLoc &); 3816 3817 // The operands of the shuffle. 3818 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3819 3820 // Index I is -1 if byte I of the result is undefined. Otherwise the 3821 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3822 // Bytes[I] / SystemZ::VectorBytes. 3823 SmallVector<int, SystemZ::VectorBytes> Bytes; 3824 3825 // The type of the shuffle result. 3826 EVT VT; 3827 }; 3828 } 3829 3830 // Add an extra undefined element to the shuffle. 3831 void GeneralShuffle::addUndef() { 3832 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3833 for (unsigned I = 0; I < BytesPerElement; ++I) 3834 Bytes.push_back(-1); 3835 } 3836 3837 // Add an extra element to the shuffle, taking it from element Elem of Op. 3838 // A null Op indicates a vector input whose value will be calculated later; 3839 // there is at most one such input per shuffle and it always has the same 3840 // type as the result. Aborts and returns false if the source vector elements 3841 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 3842 // LLVM they become implicitly extended, but this is rare and not optimized. 3843 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 3844 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3845 3846 // The source vector can have wider elements than the result, 3847 // either through an explicit TRUNCATE or because of type legalization. 3848 // We want the least significant part. 3849 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3850 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3851 3852 // Return false if the source elements are smaller than their destination 3853 // elements. 3854 if (FromBytesPerElement < BytesPerElement) 3855 return false; 3856 3857 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3858 (FromBytesPerElement - BytesPerElement)); 3859 3860 // Look through things like shuffles and bitcasts. 3861 while (Op.getNode()) { 3862 if (Op.getOpcode() == ISD::BITCAST) 3863 Op = Op.getOperand(0); 3864 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3865 // See whether the bytes we need come from a contiguous part of one 3866 // operand. 3867 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3868 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3869 int NewByte; 3870 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3871 break; 3872 if (NewByte < 0) { 3873 addUndef(); 3874 return true; 3875 } 3876 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3877 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3878 } else if (Op.isUndef()) { 3879 addUndef(); 3880 return true; 3881 } else 3882 break; 3883 } 3884 3885 // Make sure that the source of the extraction is in Ops. 3886 unsigned OpNo = 0; 3887 for (; OpNo < Ops.size(); ++OpNo) 3888 if (Ops[OpNo] == Op) 3889 break; 3890 if (OpNo == Ops.size()) 3891 Ops.push_back(Op); 3892 3893 // Add the element to Bytes. 3894 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3895 for (unsigned I = 0; I < BytesPerElement; ++I) 3896 Bytes.push_back(Base + I); 3897 3898 return true; 3899 } 3900 3901 // Return SDNodes for the completed shuffle. 3902 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 3903 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3904 3905 if (Ops.size() == 0) 3906 return DAG.getUNDEF(VT); 3907 3908 // Make sure that there are at least two shuffle operands. 3909 if (Ops.size() == 1) 3910 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3911 3912 // Create a tree of shuffles, deferring root node until after the loop. 3913 // Try to redistribute the undefined elements of non-root nodes so that 3914 // the non-root shuffles match something like a pack or merge, then adjust 3915 // the parent node's permute vector to compensate for the new order. 3916 // Among other things, this copes with vectors like <2 x i16> that were 3917 // padded with undefined elements during type legalization. 3918 // 3919 // In the best case this redistribution will lead to the whole tree 3920 // using packs and merges. It should rarely be a loss in other cases. 3921 unsigned Stride = 1; 3922 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3923 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3924 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3925 3926 // Create a mask for just these two operands. 3927 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3928 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3929 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3930 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3931 if (OpNo == I) 3932 NewBytes[J] = Byte; 3933 else if (OpNo == I + Stride) 3934 NewBytes[J] = SystemZ::VectorBytes + Byte; 3935 else 3936 NewBytes[J] = -1; 3937 } 3938 // See if it would be better to reorganize NewMask to avoid using VPERM. 3939 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3940 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3941 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3942 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3943 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3944 if (NewBytes[J] >= 0) { 3945 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3946 "Invalid double permute"); 3947 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3948 } else 3949 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3950 } 3951 } else { 3952 // Just use NewBytes on the operands. 3953 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3954 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3955 if (NewBytes[J] >= 0) 3956 Bytes[J] = I * SystemZ::VectorBytes + J; 3957 } 3958 } 3959 } 3960 3961 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3962 if (Stride > 1) { 3963 Ops[1] = Ops[Stride]; 3964 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3965 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3966 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3967 } 3968 3969 // Look for an instruction that can do the permute without resorting 3970 // to VPERM. 3971 unsigned OpNo0, OpNo1; 3972 SDValue Op; 3973 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3974 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3975 else 3976 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3977 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3978 } 3979 3980 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3981 static bool isScalarToVector(SDValue Op) { 3982 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3983 if (!Op.getOperand(I).isUndef()) 3984 return false; 3985 return true; 3986 } 3987 3988 // Return a vector of type VT that contains Value in the first element. 3989 // The other elements don't matter. 3990 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 3991 SDValue Value) { 3992 // If we have a constant, replicate it to all elements and let the 3993 // BUILD_VECTOR lowering take care of it. 3994 if (Value.getOpcode() == ISD::Constant || 3995 Value.getOpcode() == ISD::ConstantFP) { 3996 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3997 return DAG.getBuildVector(VT, DL, Ops); 3998 } 3999 if (Value.isUndef()) 4000 return DAG.getUNDEF(VT); 4001 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4002 } 4003 4004 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4005 // element 1. Used for cases in which replication is cheap. 4006 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4007 SDValue Op0, SDValue Op1) { 4008 if (Op0.isUndef()) { 4009 if (Op1.isUndef()) 4010 return DAG.getUNDEF(VT); 4011 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4012 } 4013 if (Op1.isUndef()) 4014 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4015 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4016 buildScalarToVector(DAG, DL, VT, Op0), 4017 buildScalarToVector(DAG, DL, VT, Op1)); 4018 } 4019 4020 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4021 // vector for them. 4022 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4023 SDValue Op1) { 4024 if (Op0.isUndef() && Op1.isUndef()) 4025 return DAG.getUNDEF(MVT::v2i64); 4026 // If one of the two inputs is undefined then replicate the other one, 4027 // in order to avoid using another register unnecessarily. 4028 if (Op0.isUndef()) 4029 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4030 else if (Op1.isUndef()) 4031 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4032 else { 4033 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4034 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4035 } 4036 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4037 } 4038 4039 // Try to represent constant BUILD_VECTOR node BVN using a 4040 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 4041 // on success. 4042 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 4043 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 4044 unsigned BytesPerElement = ElemVT.getStoreSize(); 4045 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 4046 SDValue Op = BVN->getOperand(I); 4047 if (!Op.isUndef()) { 4048 uint64_t Value; 4049 if (Op.getOpcode() == ISD::Constant) 4050 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 4051 else if (Op.getOpcode() == ISD::ConstantFP) 4052 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 4053 .getZExtValue()); 4054 else 4055 return false; 4056 for (unsigned J = 0; J < BytesPerElement; ++J) { 4057 uint64_t Byte = (Value >> (J * 8)) & 0xff; 4058 if (Byte == 0xff) 4059 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 4060 else if (Byte != 0) 4061 return false; 4062 } 4063 } 4064 } 4065 return true; 4066 } 4067 4068 // Try to load a vector constant in which BitsPerElement-bit value Value 4069 // is replicated to fill the vector. VT is the type of the resulting 4070 // constant, which may have elements of a different size from BitsPerElement. 4071 // Return the SDValue of the constant on success, otherwise return 4072 // an empty value. 4073 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 4074 const SystemZInstrInfo *TII, 4075 const SDLoc &DL, EVT VT, uint64_t Value, 4076 unsigned BitsPerElement) { 4077 // Signed 16-bit values can be replicated using VREPI. 4078 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 4079 if (isInt<16>(SignedValue)) { 4080 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4081 SystemZ::VectorBits / BitsPerElement); 4082 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 4083 DAG.getConstant(SignedValue, DL, MVT::i32)); 4084 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4085 } 4086 // See whether rotating the constant left some N places gives a value that 4087 // is one less than a power of 2 (i.e. all zeros followed by all ones). 4088 // If so we can use VGM. 4089 unsigned Start, End; 4090 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 4091 // isRxSBGMask returns the bit numbers for a full 64-bit value, 4092 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 4093 // bit numbers for an BitsPerElement value, so that 0 denotes 4094 // 1 << (BitsPerElement-1). 4095 Start -= 64 - BitsPerElement; 4096 End -= 64 - BitsPerElement; 4097 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4098 SystemZ::VectorBits / BitsPerElement); 4099 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 4100 DAG.getConstant(Start, DL, MVT::i32), 4101 DAG.getConstant(End, DL, MVT::i32)); 4102 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4103 } 4104 return SDValue(); 4105 } 4106 4107 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4108 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4109 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4110 // would benefit from this representation and return it if so. 4111 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4112 BuildVectorSDNode *BVN) { 4113 EVT VT = BVN->getValueType(0); 4114 unsigned NumElements = VT.getVectorNumElements(); 4115 4116 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4117 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4118 // need a BUILD_VECTOR, add an additional placeholder operand for that 4119 // BUILD_VECTOR and store its operands in ResidueOps. 4120 GeneralShuffle GS(VT); 4121 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4122 bool FoundOne = false; 4123 for (unsigned I = 0; I < NumElements; ++I) { 4124 SDValue Op = BVN->getOperand(I); 4125 if (Op.getOpcode() == ISD::TRUNCATE) 4126 Op = Op.getOperand(0); 4127 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4128 Op.getOperand(1).getOpcode() == ISD::Constant) { 4129 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4130 if (!GS.add(Op.getOperand(0), Elem)) 4131 return SDValue(); 4132 FoundOne = true; 4133 } else if (Op.isUndef()) { 4134 GS.addUndef(); 4135 } else { 4136 if (!GS.add(SDValue(), ResidueOps.size())) 4137 return SDValue(); 4138 ResidueOps.push_back(BVN->getOperand(I)); 4139 } 4140 } 4141 4142 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4143 if (!FoundOne) 4144 return SDValue(); 4145 4146 // Create the BUILD_VECTOR for the remaining elements, if any. 4147 if (!ResidueOps.empty()) { 4148 while (ResidueOps.size() < NumElements) 4149 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4150 for (auto &Op : GS.Ops) { 4151 if (!Op.getNode()) { 4152 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4153 break; 4154 } 4155 } 4156 } 4157 return GS.getNode(DAG, SDLoc(BVN)); 4158 } 4159 4160 // Combine GPR scalar values Elems into a vector of type VT. 4161 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4162 SmallVectorImpl<SDValue> &Elems) { 4163 // See whether there is a single replicated value. 4164 SDValue Single; 4165 unsigned int NumElements = Elems.size(); 4166 unsigned int Count = 0; 4167 for (auto Elem : Elems) { 4168 if (!Elem.isUndef()) { 4169 if (!Single.getNode()) 4170 Single = Elem; 4171 else if (Elem != Single) { 4172 Single = SDValue(); 4173 break; 4174 } 4175 Count += 1; 4176 } 4177 } 4178 // There are three cases here: 4179 // 4180 // - if the only defined element is a loaded one, the best sequence 4181 // is a replicating load. 4182 // 4183 // - otherwise, if the only defined element is an i64 value, we will 4184 // end up with the same VLVGP sequence regardless of whether we short-cut 4185 // for replication or fall through to the later code. 4186 // 4187 // - otherwise, if the only defined element is an i32 or smaller value, 4188 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4189 // This is only a win if the single defined element is used more than once. 4190 // In other cases we're better off using a single VLVGx. 4191 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4192 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4193 4194 // The best way of building a v2i64 from two i64s is to use VLVGP. 4195 if (VT == MVT::v2i64) 4196 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4197 4198 // Use a 64-bit merge high to combine two doubles. 4199 if (VT == MVT::v2f64) 4200 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4201 4202 // Build v4f32 values directly from the FPRs: 4203 // 4204 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4205 // V V VMRHF 4206 // <ABxx> <CDxx> 4207 // V VMRHG 4208 // <ABCD> 4209 if (VT == MVT::v4f32) { 4210 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4211 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4212 // Avoid unnecessary undefs by reusing the other operand. 4213 if (Op01.isUndef()) 4214 Op01 = Op23; 4215 else if (Op23.isUndef()) 4216 Op23 = Op01; 4217 // Merging identical replications is a no-op. 4218 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4219 return Op01; 4220 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4221 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4222 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4223 DL, MVT::v2i64, Op01, Op23); 4224 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4225 } 4226 4227 // Collect the constant terms. 4228 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4229 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4230 4231 unsigned NumConstants = 0; 4232 for (unsigned I = 0; I < NumElements; ++I) { 4233 SDValue Elem = Elems[I]; 4234 if (Elem.getOpcode() == ISD::Constant || 4235 Elem.getOpcode() == ISD::ConstantFP) { 4236 NumConstants += 1; 4237 Constants[I] = Elem; 4238 Done[I] = true; 4239 } 4240 } 4241 // If there was at least one constant, fill in the other elements of 4242 // Constants with undefs to get a full vector constant and use that 4243 // as the starting point. 4244 SDValue Result; 4245 if (NumConstants > 0) { 4246 for (unsigned I = 0; I < NumElements; ++I) 4247 if (!Constants[I].getNode()) 4248 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4249 Result = DAG.getBuildVector(VT, DL, Constants); 4250 } else { 4251 // Otherwise try to use VLVGP to start the sequence in order to 4252 // avoid a false dependency on any previous contents of the vector 4253 // register. This only makes sense if one of the associated elements 4254 // is defined. 4255 unsigned I1 = NumElements / 2 - 1; 4256 unsigned I2 = NumElements - 1; 4257 bool Def1 = !Elems[I1].isUndef(); 4258 bool Def2 = !Elems[I2].isUndef(); 4259 if (Def1 || Def2) { 4260 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4261 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4262 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4263 joinDwords(DAG, DL, Elem1, Elem2)); 4264 Done[I1] = true; 4265 Done[I2] = true; 4266 } else 4267 Result = DAG.getUNDEF(VT); 4268 } 4269 4270 // Use VLVGx to insert the other elements. 4271 for (unsigned I = 0; I < NumElements; ++I) 4272 if (!Done[I] && !Elems[I].isUndef()) 4273 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4274 DAG.getConstant(I, DL, MVT::i32)); 4275 return Result; 4276 } 4277 4278 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4279 SelectionDAG &DAG) const { 4280 const SystemZInstrInfo *TII = 4281 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4282 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4283 SDLoc DL(Op); 4284 EVT VT = Op.getValueType(); 4285 4286 if (BVN->isConstant()) { 4287 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4288 // preferred way of creating all-zero and all-one vectors so give it 4289 // priority over other methods below. 4290 uint64_t Mask = 0; 4291 if (tryBuildVectorByteMask(BVN, Mask)) { 4292 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4293 DAG.getConstant(Mask, DL, MVT::i32)); 4294 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4295 } 4296 4297 // Try using some form of replication. 4298 APInt SplatBits, SplatUndef; 4299 unsigned SplatBitSize; 4300 bool HasAnyUndefs; 4301 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4302 8, true) && 4303 SplatBitSize <= 64) { 4304 // First try assuming that any undefined bits above the highest set bit 4305 // and below the lowest set bit are 1s. This increases the likelihood of 4306 // being able to use a sign-extended element value in VECTOR REPLICATE 4307 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4308 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4309 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4310 uint64_t Lower = (SplatUndefZ 4311 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4312 uint64_t Upper = (SplatUndefZ 4313 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4314 uint64_t Value = SplatBitsZ | Upper | Lower; 4315 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4316 SplatBitSize); 4317 if (Op.getNode()) 4318 return Op; 4319 4320 // Now try assuming that any undefined bits between the first and 4321 // last defined set bits are set. This increases the chances of 4322 // using a non-wraparound mask. 4323 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4324 Value = SplatBitsZ | Middle; 4325 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4326 if (Op.getNode()) 4327 return Op; 4328 } 4329 4330 // Fall back to loading it from memory. 4331 return SDValue(); 4332 } 4333 4334 // See if we should use shuffles to construct the vector from other vectors. 4335 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4336 return Res; 4337 4338 // Detect SCALAR_TO_VECTOR conversions. 4339 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4340 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4341 4342 // Otherwise use buildVector to build the vector up from GPRs. 4343 unsigned NumElements = Op.getNumOperands(); 4344 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4345 for (unsigned I = 0; I < NumElements; ++I) 4346 Ops[I] = Op.getOperand(I); 4347 return buildVector(DAG, DL, VT, Ops); 4348 } 4349 4350 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4351 SelectionDAG &DAG) const { 4352 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4353 SDLoc DL(Op); 4354 EVT VT = Op.getValueType(); 4355 unsigned NumElements = VT.getVectorNumElements(); 4356 4357 if (VSN->isSplat()) { 4358 SDValue Op0 = Op.getOperand(0); 4359 unsigned Index = VSN->getSplatIndex(); 4360 assert(Index < VT.getVectorNumElements() && 4361 "Splat index should be defined and in first operand"); 4362 // See whether the value we're splatting is directly available as a scalar. 4363 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4364 Op0.getOpcode() == ISD::BUILD_VECTOR) 4365 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4366 // Otherwise keep it as a vector-to-vector operation. 4367 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4368 DAG.getConstant(Index, DL, MVT::i32)); 4369 } 4370 4371 GeneralShuffle GS(VT); 4372 for (unsigned I = 0; I < NumElements; ++I) { 4373 int Elt = VSN->getMaskElt(I); 4374 if (Elt < 0) 4375 GS.addUndef(); 4376 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4377 unsigned(Elt) % NumElements)) 4378 return SDValue(); 4379 } 4380 return GS.getNode(DAG, SDLoc(VSN)); 4381 } 4382 4383 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4384 SelectionDAG &DAG) const { 4385 SDLoc DL(Op); 4386 // Just insert the scalar into element 0 of an undefined vector. 4387 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4388 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4389 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4390 } 4391 4392 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4393 SelectionDAG &DAG) const { 4394 // Handle insertions of floating-point values. 4395 SDLoc DL(Op); 4396 SDValue Op0 = Op.getOperand(0); 4397 SDValue Op1 = Op.getOperand(1); 4398 SDValue Op2 = Op.getOperand(2); 4399 EVT VT = Op.getValueType(); 4400 4401 // Insertions into constant indices of a v2f64 can be done using VPDI. 4402 // However, if the inserted value is a bitcast or a constant then it's 4403 // better to use GPRs, as below. 4404 if (VT == MVT::v2f64 && 4405 Op1.getOpcode() != ISD::BITCAST && 4406 Op1.getOpcode() != ISD::ConstantFP && 4407 Op2.getOpcode() == ISD::Constant) { 4408 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4409 unsigned Mask = VT.getVectorNumElements() - 1; 4410 if (Index <= Mask) 4411 return Op; 4412 } 4413 4414 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4415 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4416 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4417 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4418 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4419 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4420 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4421 } 4422 4423 SDValue 4424 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4425 SelectionDAG &DAG) const { 4426 // Handle extractions of floating-point values. 4427 SDLoc DL(Op); 4428 SDValue Op0 = Op.getOperand(0); 4429 SDValue Op1 = Op.getOperand(1); 4430 EVT VT = Op.getValueType(); 4431 EVT VecVT = Op0.getValueType(); 4432 4433 // Extractions of constant indices can be done directly. 4434 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4435 uint64_t Index = CIndexN->getZExtValue(); 4436 unsigned Mask = VecVT.getVectorNumElements() - 1; 4437 if (Index <= Mask) 4438 return Op; 4439 } 4440 4441 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4442 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4443 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4444 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4445 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4446 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4447 } 4448 4449 SDValue 4450 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4451 unsigned UnpackHigh) const { 4452 SDValue PackedOp = Op.getOperand(0); 4453 EVT OutVT = Op.getValueType(); 4454 EVT InVT = PackedOp.getValueType(); 4455 unsigned ToBits = OutVT.getScalarSizeInBits(); 4456 unsigned FromBits = InVT.getScalarSizeInBits(); 4457 do { 4458 FromBits *= 2; 4459 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4460 SystemZ::VectorBits / FromBits); 4461 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4462 } while (FromBits != ToBits); 4463 return PackedOp; 4464 } 4465 4466 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4467 unsigned ByScalar) const { 4468 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4469 SDValue Op0 = Op.getOperand(0); 4470 SDValue Op1 = Op.getOperand(1); 4471 SDLoc DL(Op); 4472 EVT VT = Op.getValueType(); 4473 unsigned ElemBitSize = VT.getScalarSizeInBits(); 4474 4475 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4476 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4477 APInt SplatBits, SplatUndef; 4478 unsigned SplatBitSize; 4479 bool HasAnyUndefs; 4480 // Check for constant splats. Use ElemBitSize as the minimum element 4481 // width and reject splats that need wider elements. 4482 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4483 ElemBitSize, true) && 4484 SplatBitSize == ElemBitSize) { 4485 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4486 DL, MVT::i32); 4487 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4488 } 4489 // Check for variable splats. 4490 BitVector UndefElements; 4491 SDValue Splat = BVN->getSplatValue(&UndefElements); 4492 if (Splat) { 4493 // Since i32 is the smallest legal type, we either need a no-op 4494 // or a truncation. 4495 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4496 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4497 } 4498 } 4499 4500 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4501 // and the shift amount is directly available in a GPR. 4502 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4503 if (VSN->isSplat()) { 4504 SDValue VSNOp0 = VSN->getOperand(0); 4505 unsigned Index = VSN->getSplatIndex(); 4506 assert(Index < VT.getVectorNumElements() && 4507 "Splat index should be defined and in first operand"); 4508 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4509 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4510 // Since i32 is the smallest legal type, we either need a no-op 4511 // or a truncation. 4512 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4513 VSNOp0.getOperand(Index)); 4514 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4515 } 4516 } 4517 } 4518 4519 // Otherwise just treat the current form as legal. 4520 return Op; 4521 } 4522 4523 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4524 SelectionDAG &DAG) const { 4525 switch (Op.getOpcode()) { 4526 case ISD::FRAMEADDR: 4527 return lowerFRAMEADDR(Op, DAG); 4528 case ISD::RETURNADDR: 4529 return lowerRETURNADDR(Op, DAG); 4530 case ISD::BR_CC: 4531 return lowerBR_CC(Op, DAG); 4532 case ISD::SELECT_CC: 4533 return lowerSELECT_CC(Op, DAG); 4534 case ISD::SETCC: 4535 return lowerSETCC(Op, DAG); 4536 case ISD::GlobalAddress: 4537 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4538 case ISD::GlobalTLSAddress: 4539 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4540 case ISD::BlockAddress: 4541 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4542 case ISD::JumpTable: 4543 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4544 case ISD::ConstantPool: 4545 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4546 case ISD::BITCAST: 4547 return lowerBITCAST(Op, DAG); 4548 case ISD::VASTART: 4549 return lowerVASTART(Op, DAG); 4550 case ISD::VACOPY: 4551 return lowerVACOPY(Op, DAG); 4552 case ISD::DYNAMIC_STACKALLOC: 4553 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4554 case ISD::GET_DYNAMIC_AREA_OFFSET: 4555 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4556 case ISD::SMUL_LOHI: 4557 return lowerSMUL_LOHI(Op, DAG); 4558 case ISD::UMUL_LOHI: 4559 return lowerUMUL_LOHI(Op, DAG); 4560 case ISD::SDIVREM: 4561 return lowerSDIVREM(Op, DAG); 4562 case ISD::UDIVREM: 4563 return lowerUDIVREM(Op, DAG); 4564 case ISD::OR: 4565 return lowerOR(Op, DAG); 4566 case ISD::CTPOP: 4567 return lowerCTPOP(Op, DAG); 4568 case ISD::ATOMIC_FENCE: 4569 return lowerATOMIC_FENCE(Op, DAG); 4570 case ISD::ATOMIC_SWAP: 4571 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4572 case ISD::ATOMIC_STORE: 4573 return lowerATOMIC_STORE(Op, DAG); 4574 case ISD::ATOMIC_LOAD: 4575 return lowerATOMIC_LOAD(Op, DAG); 4576 case ISD::ATOMIC_LOAD_ADD: 4577 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4578 case ISD::ATOMIC_LOAD_SUB: 4579 return lowerATOMIC_LOAD_SUB(Op, DAG); 4580 case ISD::ATOMIC_LOAD_AND: 4581 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4582 case ISD::ATOMIC_LOAD_OR: 4583 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4584 case ISD::ATOMIC_LOAD_XOR: 4585 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4586 case ISD::ATOMIC_LOAD_NAND: 4587 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4588 case ISD::ATOMIC_LOAD_MIN: 4589 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4590 case ISD::ATOMIC_LOAD_MAX: 4591 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4592 case ISD::ATOMIC_LOAD_UMIN: 4593 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4594 case ISD::ATOMIC_LOAD_UMAX: 4595 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4596 case ISD::ATOMIC_CMP_SWAP: 4597 return lowerATOMIC_CMP_SWAP(Op, DAG); 4598 case ISD::STACKSAVE: 4599 return lowerSTACKSAVE(Op, DAG); 4600 case ISD::STACKRESTORE: 4601 return lowerSTACKRESTORE(Op, DAG); 4602 case ISD::PREFETCH: 4603 return lowerPREFETCH(Op, DAG); 4604 case ISD::INTRINSIC_W_CHAIN: 4605 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4606 case ISD::INTRINSIC_WO_CHAIN: 4607 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4608 case ISD::BUILD_VECTOR: 4609 return lowerBUILD_VECTOR(Op, DAG); 4610 case ISD::VECTOR_SHUFFLE: 4611 return lowerVECTOR_SHUFFLE(Op, DAG); 4612 case ISD::SCALAR_TO_VECTOR: 4613 return lowerSCALAR_TO_VECTOR(Op, DAG); 4614 case ISD::INSERT_VECTOR_ELT: 4615 return lowerINSERT_VECTOR_ELT(Op, DAG); 4616 case ISD::EXTRACT_VECTOR_ELT: 4617 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4618 case ISD::SIGN_EXTEND_VECTOR_INREG: 4619 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4620 case ISD::ZERO_EXTEND_VECTOR_INREG: 4621 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4622 case ISD::SHL: 4623 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4624 case ISD::SRL: 4625 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4626 case ISD::SRA: 4627 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4628 default: 4629 llvm_unreachable("Unexpected node to lower"); 4630 } 4631 } 4632 4633 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4634 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4635 switch ((SystemZISD::NodeType)Opcode) { 4636 case SystemZISD::FIRST_NUMBER: break; 4637 OPCODE(RET_FLAG); 4638 OPCODE(CALL); 4639 OPCODE(SIBCALL); 4640 OPCODE(TLS_GDCALL); 4641 OPCODE(TLS_LDCALL); 4642 OPCODE(PCREL_WRAPPER); 4643 OPCODE(PCREL_OFFSET); 4644 OPCODE(IABS); 4645 OPCODE(ICMP); 4646 OPCODE(FCMP); 4647 OPCODE(TM); 4648 OPCODE(BR_CCMASK); 4649 OPCODE(SELECT_CCMASK); 4650 OPCODE(ADJDYNALLOC); 4651 OPCODE(POPCNT); 4652 OPCODE(UMUL_LOHI64); 4653 OPCODE(SDIVREM32); 4654 OPCODE(SDIVREM64); 4655 OPCODE(UDIVREM32); 4656 OPCODE(UDIVREM64); 4657 OPCODE(MVC); 4658 OPCODE(MVC_LOOP); 4659 OPCODE(NC); 4660 OPCODE(NC_LOOP); 4661 OPCODE(OC); 4662 OPCODE(OC_LOOP); 4663 OPCODE(XC); 4664 OPCODE(XC_LOOP); 4665 OPCODE(CLC); 4666 OPCODE(CLC_LOOP); 4667 OPCODE(STPCPY); 4668 OPCODE(STRCMP); 4669 OPCODE(SEARCH_STRING); 4670 OPCODE(IPM); 4671 OPCODE(SERIALIZE); 4672 OPCODE(MEMBARRIER); 4673 OPCODE(TBEGIN); 4674 OPCODE(TBEGIN_NOFLOAT); 4675 OPCODE(TEND); 4676 OPCODE(BYTE_MASK); 4677 OPCODE(ROTATE_MASK); 4678 OPCODE(REPLICATE); 4679 OPCODE(JOIN_DWORDS); 4680 OPCODE(SPLAT); 4681 OPCODE(MERGE_HIGH); 4682 OPCODE(MERGE_LOW); 4683 OPCODE(SHL_DOUBLE); 4684 OPCODE(PERMUTE_DWORDS); 4685 OPCODE(PERMUTE); 4686 OPCODE(PACK); 4687 OPCODE(PACKS_CC); 4688 OPCODE(PACKLS_CC); 4689 OPCODE(UNPACK_HIGH); 4690 OPCODE(UNPACKL_HIGH); 4691 OPCODE(UNPACK_LOW); 4692 OPCODE(UNPACKL_LOW); 4693 OPCODE(VSHL_BY_SCALAR); 4694 OPCODE(VSRL_BY_SCALAR); 4695 OPCODE(VSRA_BY_SCALAR); 4696 OPCODE(VSUM); 4697 OPCODE(VICMPE); 4698 OPCODE(VICMPH); 4699 OPCODE(VICMPHL); 4700 OPCODE(VICMPES); 4701 OPCODE(VICMPHS); 4702 OPCODE(VICMPHLS); 4703 OPCODE(VFCMPE); 4704 OPCODE(VFCMPH); 4705 OPCODE(VFCMPHE); 4706 OPCODE(VFCMPES); 4707 OPCODE(VFCMPHS); 4708 OPCODE(VFCMPHES); 4709 OPCODE(VFTCI); 4710 OPCODE(VEXTEND); 4711 OPCODE(VROUND); 4712 OPCODE(VTM); 4713 OPCODE(VFAE_CC); 4714 OPCODE(VFAEZ_CC); 4715 OPCODE(VFEE_CC); 4716 OPCODE(VFEEZ_CC); 4717 OPCODE(VFENE_CC); 4718 OPCODE(VFENEZ_CC); 4719 OPCODE(VISTR_CC); 4720 OPCODE(VSTRC_CC); 4721 OPCODE(VSTRCZ_CC); 4722 OPCODE(TDC); 4723 OPCODE(ATOMIC_SWAPW); 4724 OPCODE(ATOMIC_LOADW_ADD); 4725 OPCODE(ATOMIC_LOADW_SUB); 4726 OPCODE(ATOMIC_LOADW_AND); 4727 OPCODE(ATOMIC_LOADW_OR); 4728 OPCODE(ATOMIC_LOADW_XOR); 4729 OPCODE(ATOMIC_LOADW_NAND); 4730 OPCODE(ATOMIC_LOADW_MIN); 4731 OPCODE(ATOMIC_LOADW_MAX); 4732 OPCODE(ATOMIC_LOADW_UMIN); 4733 OPCODE(ATOMIC_LOADW_UMAX); 4734 OPCODE(ATOMIC_CMP_SWAPW); 4735 OPCODE(LRV); 4736 OPCODE(STRV); 4737 OPCODE(PREFETCH); 4738 } 4739 return nullptr; 4740 #undef OPCODE 4741 } 4742 4743 // Return true if VT is a vector whose elements are a whole number of bytes 4744 // in width. Also check for presence of vector support. 4745 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 4746 if (!Subtarget.hasVector()) 4747 return false; 4748 4749 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 4750 } 4751 4752 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4753 // producing a result of type ResVT. Op is a possibly bitcast version 4754 // of the input vector and Index is the index (based on type VecVT) that 4755 // should be extracted. Return the new extraction if a simplification 4756 // was possible or if Force is true. 4757 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 4758 EVT VecVT, SDValue Op, 4759 unsigned Index, 4760 DAGCombinerInfo &DCI, 4761 bool Force) const { 4762 SelectionDAG &DAG = DCI.DAG; 4763 4764 // The number of bytes being extracted. 4765 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4766 4767 for (;;) { 4768 unsigned Opcode = Op.getOpcode(); 4769 if (Opcode == ISD::BITCAST) 4770 // Look through bitcasts. 4771 Op = Op.getOperand(0); 4772 else if (Opcode == ISD::VECTOR_SHUFFLE && 4773 canTreatAsByteVector(Op.getValueType())) { 4774 // Get a VPERM-like permute mask and see whether the bytes covered 4775 // by the extracted element are a contiguous sequence from one 4776 // source operand. 4777 SmallVector<int, SystemZ::VectorBytes> Bytes; 4778 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4779 int First; 4780 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4781 BytesPerElement, First)) 4782 break; 4783 if (First < 0) 4784 return DAG.getUNDEF(ResVT); 4785 // Make sure the contiguous sequence starts at a multiple of the 4786 // original element size. 4787 unsigned Byte = unsigned(First) % Bytes.size(); 4788 if (Byte % BytesPerElement != 0) 4789 break; 4790 // We can get the extracted value directly from an input. 4791 Index = Byte / BytesPerElement; 4792 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4793 Force = true; 4794 } else if (Opcode == ISD::BUILD_VECTOR && 4795 canTreatAsByteVector(Op.getValueType())) { 4796 // We can only optimize this case if the BUILD_VECTOR elements are 4797 // at least as wide as the extracted value. 4798 EVT OpVT = Op.getValueType(); 4799 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4800 if (OpBytesPerElement < BytesPerElement) 4801 break; 4802 // Make sure that the least-significant bit of the extracted value 4803 // is the least significant bit of an input. 4804 unsigned End = (Index + 1) * BytesPerElement; 4805 if (End % OpBytesPerElement != 0) 4806 break; 4807 // We're extracting the low part of one operand of the BUILD_VECTOR. 4808 Op = Op.getOperand(End / OpBytesPerElement - 1); 4809 if (!Op.getValueType().isInteger()) { 4810 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 4811 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4812 DCI.AddToWorklist(Op.getNode()); 4813 } 4814 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4815 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4816 if (VT != ResVT) { 4817 DCI.AddToWorklist(Op.getNode()); 4818 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4819 } 4820 return Op; 4821 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4822 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4823 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4824 canTreatAsByteVector(Op.getValueType()) && 4825 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4826 // Make sure that only the unextended bits are significant. 4827 EVT ExtVT = Op.getValueType(); 4828 EVT OpVT = Op.getOperand(0).getValueType(); 4829 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4830 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4831 unsigned Byte = Index * BytesPerElement; 4832 unsigned SubByte = Byte % ExtBytesPerElement; 4833 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4834 if (SubByte < MinSubByte || 4835 SubByte + BytesPerElement > ExtBytesPerElement) 4836 break; 4837 // Get the byte offset of the unextended element 4838 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4839 // ...then add the byte offset relative to that element. 4840 Byte += SubByte - MinSubByte; 4841 if (Byte % BytesPerElement != 0) 4842 break; 4843 Op = Op.getOperand(0); 4844 Index = Byte / BytesPerElement; 4845 Force = true; 4846 } else 4847 break; 4848 } 4849 if (Force) { 4850 if (Op.getValueType() != VecVT) { 4851 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4852 DCI.AddToWorklist(Op.getNode()); 4853 } 4854 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4855 DAG.getConstant(Index, DL, MVT::i32)); 4856 } 4857 return SDValue(); 4858 } 4859 4860 // Optimize vector operations in scalar value Op on the basis that Op 4861 // is truncated to TruncVT. 4862 SDValue SystemZTargetLowering::combineTruncateExtract( 4863 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 4864 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4865 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4866 // of type TruncVT. 4867 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4868 TruncVT.getSizeInBits() % 8 == 0) { 4869 SDValue Vec = Op.getOperand(0); 4870 EVT VecVT = Vec.getValueType(); 4871 if (canTreatAsByteVector(VecVT)) { 4872 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4873 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4874 unsigned TruncBytes = TruncVT.getStoreSize(); 4875 if (BytesPerElement % TruncBytes == 0) { 4876 // Calculate the value of Y' in the above description. We are 4877 // splitting the original elements into Scale equal-sized pieces 4878 // and for truncation purposes want the last (least-significant) 4879 // of these pieces for IndexN. This is easiest to do by calculating 4880 // the start index of the following element and then subtracting 1. 4881 unsigned Scale = BytesPerElement / TruncBytes; 4882 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4883 4884 // Defer the creation of the bitcast from X to combineExtract, 4885 // which might be able to optimize the extraction. 4886 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4887 VecVT.getStoreSize() / TruncBytes); 4888 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4889 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4890 } 4891 } 4892 } 4893 } 4894 return SDValue(); 4895 } 4896 4897 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 4898 SDNode *N, DAGCombinerInfo &DCI) const { 4899 // Convert (sext (ashr (shl X, C1), C2)) to 4900 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4901 // cheap as narrower ones. 4902 SelectionDAG &DAG = DCI.DAG; 4903 SDValue N0 = N->getOperand(0); 4904 EVT VT = N->getValueType(0); 4905 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4906 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4907 SDValue Inner = N0.getOperand(0); 4908 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4909 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4910 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 4911 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4912 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4913 EVT ShiftVT = N0.getOperand(1).getValueType(); 4914 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4915 Inner.getOperand(0)); 4916 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4917 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4918 ShiftVT)); 4919 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4920 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4921 } 4922 } 4923 } 4924 return SDValue(); 4925 } 4926 4927 SDValue SystemZTargetLowering::combineMERGE( 4928 SDNode *N, DAGCombinerInfo &DCI) const { 4929 SelectionDAG &DAG = DCI.DAG; 4930 unsigned Opcode = N->getOpcode(); 4931 SDValue Op0 = N->getOperand(0); 4932 SDValue Op1 = N->getOperand(1); 4933 if (Op0.getOpcode() == ISD::BITCAST) 4934 Op0 = Op0.getOperand(0); 4935 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4936 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4937 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4938 // for v4f32. 4939 if (Op1 == N->getOperand(0)) 4940 return Op1; 4941 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4942 EVT VT = Op1.getValueType(); 4943 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4944 if (ElemBytes <= 4) { 4945 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4946 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4947 EVT InVT = VT.changeVectorElementTypeToInteger(); 4948 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4949 SystemZ::VectorBytes / ElemBytes / 2); 4950 if (VT != InVT) { 4951 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4952 DCI.AddToWorklist(Op1.getNode()); 4953 } 4954 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4955 DCI.AddToWorklist(Op.getNode()); 4956 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4957 } 4958 } 4959 return SDValue(); 4960 } 4961 4962 SDValue SystemZTargetLowering::combineSTORE( 4963 SDNode *N, DAGCombinerInfo &DCI) const { 4964 SelectionDAG &DAG = DCI.DAG; 4965 auto *SN = cast<StoreSDNode>(N); 4966 auto &Op1 = N->getOperand(1); 4967 EVT MemVT = SN->getMemoryVT(); 4968 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4969 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4970 // If X has wider elements then convert it to: 4971 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4972 if (MemVT.isInteger()) { 4973 if (SDValue Value = 4974 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 4975 DCI.AddToWorklist(Value.getNode()); 4976 4977 // Rewrite the store with the new form of stored value. 4978 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4979 SN->getBasePtr(), SN->getMemoryVT(), 4980 SN->getMemOperand()); 4981 } 4982 } 4983 // Combine STORE (BSWAP) into STRVH/STRV/STRVG 4984 // See comment in combineBSWAP about volatile accesses. 4985 if (!SN->isVolatile() && 4986 Op1.getOpcode() == ISD::BSWAP && 4987 Op1.getNode()->hasOneUse() && 4988 (Op1.getValueType() == MVT::i16 || 4989 Op1.getValueType() == MVT::i32 || 4990 Op1.getValueType() == MVT::i64)) { 4991 4992 SDValue BSwapOp = Op1.getOperand(0); 4993 4994 if (BSwapOp.getValueType() == MVT::i16) 4995 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 4996 4997 SDValue Ops[] = { 4998 N->getOperand(0), BSwapOp, N->getOperand(2), 4999 DAG.getValueType(Op1.getValueType()) 5000 }; 5001 5002 return 5003 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5004 Ops, MemVT, SN->getMemOperand()); 5005 } 5006 return SDValue(); 5007 } 5008 5009 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5010 SDNode *N, DAGCombinerInfo &DCI) const { 5011 5012 if (!Subtarget.hasVector()) 5013 return SDValue(); 5014 5015 // Try to simplify a vector extraction. 5016 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5017 SDValue Op0 = N->getOperand(0); 5018 EVT VecVT = Op0.getValueType(); 5019 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5020 IndexN->getZExtValue(), DCI, false); 5021 } 5022 return SDValue(); 5023 } 5024 5025 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5026 SDNode *N, DAGCombinerInfo &DCI) const { 5027 SelectionDAG &DAG = DCI.DAG; 5028 // (join_dwords X, X) == (replicate X) 5029 if (N->getOperand(0) == N->getOperand(1)) 5030 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5031 N->getOperand(0)); 5032 return SDValue(); 5033 } 5034 5035 SDValue SystemZTargetLowering::combineFP_ROUND( 5036 SDNode *N, DAGCombinerInfo &DCI) const { 5037 // (fpround (extract_vector_elt X 0)) 5038 // (fpround (extract_vector_elt X 1)) -> 5039 // (extract_vector_elt (VROUND X) 0) 5040 // (extract_vector_elt (VROUND X) 1) 5041 // 5042 // This is a special case since the target doesn't really support v2f32s. 5043 SelectionDAG &DAG = DCI.DAG; 5044 SDValue Op0 = N->getOperand(0); 5045 if (N->getValueType(0) == MVT::f32 && 5046 Op0.hasOneUse() && 5047 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5048 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5049 Op0.getOperand(1).getOpcode() == ISD::Constant && 5050 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5051 SDValue Vec = Op0.getOperand(0); 5052 for (auto *U : Vec->uses()) { 5053 if (U != Op0.getNode() && 5054 U->hasOneUse() && 5055 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5056 U->getOperand(0) == Vec && 5057 U->getOperand(1).getOpcode() == ISD::Constant && 5058 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5059 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5060 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5061 OtherRound.getOperand(0) == SDValue(U, 0) && 5062 OtherRound.getValueType() == MVT::f32) { 5063 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5064 MVT::v4f32, Vec); 5065 DCI.AddToWorklist(VRound.getNode()); 5066 SDValue Extract1 = 5067 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5068 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5069 DCI.AddToWorklist(Extract1.getNode()); 5070 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5071 SDValue Extract0 = 5072 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5073 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5074 return Extract0; 5075 } 5076 } 5077 } 5078 } 5079 return SDValue(); 5080 } 5081 5082 SDValue SystemZTargetLowering::combineBSWAP( 5083 SDNode *N, DAGCombinerInfo &DCI) const { 5084 SelectionDAG &DAG = DCI.DAG; 5085 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG 5086 // These loads are allowed to access memory multiple times, and so we must check 5087 // that the loads are not volatile before performing the combine. 5088 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5089 N->getOperand(0).hasOneUse() && 5090 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 || 5091 N->getValueType(0) == MVT::i64) && 5092 !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) { 5093 SDValue Load = N->getOperand(0); 5094 LoadSDNode *LD = cast<LoadSDNode>(Load); 5095 5096 // Create the byte-swapping load. 5097 SDValue Ops[] = { 5098 LD->getChain(), // Chain 5099 LD->getBasePtr(), // Ptr 5100 DAG.getValueType(N->getValueType(0)) // VT 5101 }; 5102 SDValue BSLoad = 5103 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 5104 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 5105 MVT::i64 : MVT::i32, MVT::Other), 5106 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5107 5108 // If this is an i16 load, insert the truncate. 5109 SDValue ResVal = BSLoad; 5110 if (N->getValueType(0) == MVT::i16) 5111 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5112 5113 // First, combine the bswap away. This makes the value produced by the 5114 // load dead. 5115 DCI.CombineTo(N, ResVal); 5116 5117 // Next, combine the load away, we give it a bogus result value but a real 5118 // chain result. The result value is dead because the bswap is dead. 5119 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5120 5121 // Return N so it doesn't get rechecked! 5122 return SDValue(N, 0); 5123 } 5124 return SDValue(); 5125 } 5126 5127 SDValue SystemZTargetLowering::combineSHIFTROT( 5128 SDNode *N, DAGCombinerInfo &DCI) const { 5129 5130 SelectionDAG &DAG = DCI.DAG; 5131 5132 // Shift/rotate instructions only use the last 6 bits of the second operand 5133 // register. If the second operand is the result of an AND with an immediate 5134 // value that has its last 6 bits set, we can safely remove the AND operation. 5135 // 5136 // If the AND operation doesn't have the last 6 bits set, we can't remove it 5137 // entirely, but we can still truncate it to a 16-bit value. This prevents 5138 // us from ending up with a NILL with a signed operand, which will cause the 5139 // instruction printer to abort. 5140 SDValue N1 = N->getOperand(1); 5141 if (N1.getOpcode() == ISD::AND) { 5142 SDValue AndMaskOp = N1->getOperand(1); 5143 auto *AndMask = dyn_cast<ConstantSDNode>(AndMaskOp); 5144 5145 // The AND mask is constant 5146 if (AndMask) { 5147 auto AmtVal = AndMask->getZExtValue(); 5148 5149 // Bottom 6 bits are set 5150 if ((AmtVal & 0x3f) == 0x3f) { 5151 SDValue AndOp = N1->getOperand(0); 5152 5153 // This is the only use, so remove the node 5154 if (N1.hasOneUse()) { 5155 // Combine the AND away 5156 DCI.CombineTo(N1.getNode(), AndOp); 5157 5158 // Return N so it isn't rechecked 5159 return SDValue(N, 0); 5160 5161 // The node will be reused, so create a new node for this one use 5162 } else { 5163 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), 5164 N->getValueType(0), N->getOperand(0), 5165 AndOp); 5166 DCI.AddToWorklist(Replace.getNode()); 5167 5168 return Replace; 5169 } 5170 5171 // We can't remove the AND, but we can use NILL here (normally we would 5172 // use NILF). Only keep the last 16 bits of the mask. The actual 5173 // transformation will be handled by .td definitions. 5174 } else if (AmtVal >> 16 != 0) { 5175 SDValue AndOp = N1->getOperand(0); 5176 5177 auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff, 5178 SDLoc(AndMaskOp), 5179 AndMaskOp.getValueType()); 5180 5181 auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(), 5182 AndOp, NewMask); 5183 5184 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), 5185 N->getValueType(0), N->getOperand(0), 5186 NewAnd); 5187 DCI.AddToWorklist(Replace.getNode()); 5188 5189 return Replace; 5190 } 5191 } 5192 } 5193 5194 return SDValue(); 5195 } 5196 5197 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 5198 DAGCombinerInfo &DCI) const { 5199 switch(N->getOpcode()) { 5200 default: break; 5201 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 5202 case SystemZISD::MERGE_HIGH: 5203 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 5204 case ISD::STORE: return combineSTORE(N, DCI); 5205 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 5206 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 5207 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 5208 case ISD::BSWAP: return combineBSWAP(N, DCI); 5209 case ISD::SHL: 5210 case ISD::SRA: 5211 case ISD::SRL: 5212 case ISD::ROTL: return combineSHIFTROT(N, DCI); 5213 } 5214 5215 return SDValue(); 5216 } 5217 5218 //===----------------------------------------------------------------------===// 5219 // Custom insertion 5220 //===----------------------------------------------------------------------===// 5221 5222 // Create a new basic block after MBB. 5223 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 5224 MachineFunction &MF = *MBB->getParent(); 5225 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 5226 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 5227 return NewMBB; 5228 } 5229 5230 // Split MBB after MI and return the new block (the one that contains 5231 // instructions after MI). 5232 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 5233 MachineBasicBlock *MBB) { 5234 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5235 NewMBB->splice(NewMBB->begin(), MBB, 5236 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 5237 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5238 return NewMBB; 5239 } 5240 5241 // Split MBB before MI and return the new block (the one that contains MI). 5242 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 5243 MachineBasicBlock *MBB) { 5244 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5245 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 5246 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5247 return NewMBB; 5248 } 5249 5250 // Force base value Base into a register before MI. Return the register. 5251 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base, 5252 const SystemZInstrInfo *TII) { 5253 if (Base.isReg()) 5254 return Base.getReg(); 5255 5256 MachineBasicBlock *MBB = MI.getParent(); 5257 MachineFunction &MF = *MBB->getParent(); 5258 MachineRegisterInfo &MRI = MF.getRegInfo(); 5259 5260 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5261 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 5262 .add(Base) 5263 .addImm(0) 5264 .addReg(0); 5265 return Reg; 5266 } 5267 5268 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 5269 MachineBasicBlock * 5270 SystemZTargetLowering::emitSelect(MachineInstr &MI, 5271 MachineBasicBlock *MBB, 5272 unsigned LOCROpcode) const { 5273 const SystemZInstrInfo *TII = 5274 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5275 5276 unsigned DestReg = MI.getOperand(0).getReg(); 5277 unsigned TrueReg = MI.getOperand(1).getReg(); 5278 unsigned FalseReg = MI.getOperand(2).getReg(); 5279 unsigned CCValid = MI.getOperand(3).getImm(); 5280 unsigned CCMask = MI.getOperand(4).getImm(); 5281 DebugLoc DL = MI.getDebugLoc(); 5282 5283 // Use LOCROpcode if possible. 5284 if (LOCROpcode && Subtarget.hasLoadStoreOnCond()) { 5285 BuildMI(*MBB, MI, DL, TII->get(LOCROpcode), DestReg) 5286 .addReg(FalseReg).addReg(TrueReg) 5287 .addImm(CCValid).addImm(CCMask); 5288 MI.eraseFromParent(); 5289 return MBB; 5290 } 5291 5292 MachineBasicBlock *StartMBB = MBB; 5293 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5294 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5295 5296 // StartMBB: 5297 // BRC CCMask, JoinMBB 5298 // # fallthrough to FalseMBB 5299 MBB = StartMBB; 5300 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5301 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5302 MBB->addSuccessor(JoinMBB); 5303 MBB->addSuccessor(FalseMBB); 5304 5305 // FalseMBB: 5306 // # fallthrough to JoinMBB 5307 MBB = FalseMBB; 5308 MBB->addSuccessor(JoinMBB); 5309 5310 // JoinMBB: 5311 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 5312 // ... 5313 MBB = JoinMBB; 5314 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 5315 .addReg(TrueReg).addMBB(StartMBB) 5316 .addReg(FalseReg).addMBB(FalseMBB); 5317 5318 MI.eraseFromParent(); 5319 return JoinMBB; 5320 } 5321 5322 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 5323 // StoreOpcode is the store to use and Invert says whether the store should 5324 // happen when the condition is false rather than true. If a STORE ON 5325 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 5326 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 5327 MachineBasicBlock *MBB, 5328 unsigned StoreOpcode, 5329 unsigned STOCOpcode, 5330 bool Invert) const { 5331 const SystemZInstrInfo *TII = 5332 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5333 5334 unsigned SrcReg = MI.getOperand(0).getReg(); 5335 MachineOperand Base = MI.getOperand(1); 5336 int64_t Disp = MI.getOperand(2).getImm(); 5337 unsigned IndexReg = MI.getOperand(3).getReg(); 5338 unsigned CCValid = MI.getOperand(4).getImm(); 5339 unsigned CCMask = MI.getOperand(5).getImm(); 5340 DebugLoc DL = MI.getDebugLoc(); 5341 5342 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 5343 5344 // Use STOCOpcode if possible. We could use different store patterns in 5345 // order to avoid matching the index register, but the performance trade-offs 5346 // might be more complicated in that case. 5347 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 5348 if (Invert) 5349 CCMask ^= CCValid; 5350 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 5351 .addReg(SrcReg) 5352 .add(Base) 5353 .addImm(Disp) 5354 .addImm(CCValid) 5355 .addImm(CCMask); 5356 MI.eraseFromParent(); 5357 return MBB; 5358 } 5359 5360 // Get the condition needed to branch around the store. 5361 if (!Invert) 5362 CCMask ^= CCValid; 5363 5364 MachineBasicBlock *StartMBB = MBB; 5365 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5366 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5367 5368 // StartMBB: 5369 // BRC CCMask, JoinMBB 5370 // # fallthrough to FalseMBB 5371 MBB = StartMBB; 5372 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5373 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5374 MBB->addSuccessor(JoinMBB); 5375 MBB->addSuccessor(FalseMBB); 5376 5377 // FalseMBB: 5378 // store %SrcReg, %Disp(%Index,%Base) 5379 // # fallthrough to JoinMBB 5380 MBB = FalseMBB; 5381 BuildMI(MBB, DL, TII->get(StoreOpcode)) 5382 .addReg(SrcReg) 5383 .add(Base) 5384 .addImm(Disp) 5385 .addReg(IndexReg); 5386 MBB->addSuccessor(JoinMBB); 5387 5388 MI.eraseFromParent(); 5389 return JoinMBB; 5390 } 5391 5392 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 5393 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 5394 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 5395 // BitSize is the width of the field in bits, or 0 if this is a partword 5396 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 5397 // is one of the operands. Invert says whether the field should be 5398 // inverted after performing BinOpcode (e.g. for NAND). 5399 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 5400 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 5401 unsigned BitSize, bool Invert) const { 5402 MachineFunction &MF = *MBB->getParent(); 5403 const SystemZInstrInfo *TII = 5404 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5405 MachineRegisterInfo &MRI = MF.getRegInfo(); 5406 bool IsSubWord = (BitSize < 32); 5407 5408 // Extract the operands. Base can be a register or a frame index. 5409 // Src2 can be a register or immediate. 5410 unsigned Dest = MI.getOperand(0).getReg(); 5411 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5412 int64_t Disp = MI.getOperand(2).getImm(); 5413 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 5414 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 5415 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 5416 DebugLoc DL = MI.getDebugLoc(); 5417 if (IsSubWord) 5418 BitSize = MI.getOperand(6).getImm(); 5419 5420 // Subword operations use 32-bit registers. 5421 const TargetRegisterClass *RC = (BitSize <= 32 ? 5422 &SystemZ::GR32BitRegClass : 5423 &SystemZ::GR64BitRegClass); 5424 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5425 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5426 5427 // Get the right opcodes for the displacement. 5428 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5429 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5430 assert(LOpcode && CSOpcode && "Displacement out of range"); 5431 5432 // Create virtual registers for temporary results. 5433 unsigned OrigVal = MRI.createVirtualRegister(RC); 5434 unsigned OldVal = MRI.createVirtualRegister(RC); 5435 unsigned NewVal = (BinOpcode || IsSubWord ? 5436 MRI.createVirtualRegister(RC) : Src2.getReg()); 5437 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5438 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5439 5440 // Insert a basic block for the main loop. 5441 MachineBasicBlock *StartMBB = MBB; 5442 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5443 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5444 5445 // StartMBB: 5446 // ... 5447 // %OrigVal = L Disp(%Base) 5448 // # fall through to LoopMMB 5449 MBB = StartMBB; 5450 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 5451 MBB->addSuccessor(LoopMBB); 5452 5453 // LoopMBB: 5454 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 5455 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5456 // %RotatedNewVal = OP %RotatedOldVal, %Src2 5457 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5458 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5459 // JNE LoopMBB 5460 // # fall through to DoneMMB 5461 MBB = LoopMBB; 5462 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5463 .addReg(OrigVal).addMBB(StartMBB) 5464 .addReg(Dest).addMBB(LoopMBB); 5465 if (IsSubWord) 5466 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5467 .addReg(OldVal).addReg(BitShift).addImm(0); 5468 if (Invert) { 5469 // Perform the operation normally and then invert every bit of the field. 5470 unsigned Tmp = MRI.createVirtualRegister(RC); 5471 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 5472 if (BitSize <= 32) 5473 // XILF with the upper BitSize bits set. 5474 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5475 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5476 else { 5477 // Use LCGR and add -1 to the result, which is more compact than 5478 // an XILF, XILH pair. 5479 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5480 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5481 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5482 .addReg(Tmp2).addImm(-1); 5483 } 5484 } else if (BinOpcode) 5485 // A simply binary operation. 5486 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5487 .addReg(RotatedOldVal) 5488 .add(Src2); 5489 else if (IsSubWord) 5490 // Use RISBG to rotate Src2 into position and use it to replace the 5491 // field in RotatedOldVal. 5492 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5493 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5494 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5495 if (IsSubWord) 5496 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5497 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5498 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5499 .addReg(OldVal) 5500 .addReg(NewVal) 5501 .add(Base) 5502 .addImm(Disp); 5503 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5504 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5505 MBB->addSuccessor(LoopMBB); 5506 MBB->addSuccessor(DoneMBB); 5507 5508 MI.eraseFromParent(); 5509 return DoneMBB; 5510 } 5511 5512 // Implement EmitInstrWithCustomInserter for pseudo 5513 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5514 // instruction that should be used to compare the current field with the 5515 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5516 // for when the current field should be kept. BitSize is the width of 5517 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5518 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 5519 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 5520 unsigned KeepOldMask, unsigned BitSize) const { 5521 MachineFunction &MF = *MBB->getParent(); 5522 const SystemZInstrInfo *TII = 5523 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5524 MachineRegisterInfo &MRI = MF.getRegInfo(); 5525 bool IsSubWord = (BitSize < 32); 5526 5527 // Extract the operands. Base can be a register or a frame index. 5528 unsigned Dest = MI.getOperand(0).getReg(); 5529 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5530 int64_t Disp = MI.getOperand(2).getImm(); 5531 unsigned Src2 = MI.getOperand(3).getReg(); 5532 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 5533 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 5534 DebugLoc DL = MI.getDebugLoc(); 5535 if (IsSubWord) 5536 BitSize = MI.getOperand(6).getImm(); 5537 5538 // Subword operations use 32-bit registers. 5539 const TargetRegisterClass *RC = (BitSize <= 32 ? 5540 &SystemZ::GR32BitRegClass : 5541 &SystemZ::GR64BitRegClass); 5542 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5543 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5544 5545 // Get the right opcodes for the displacement. 5546 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5547 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5548 assert(LOpcode && CSOpcode && "Displacement out of range"); 5549 5550 // Create virtual registers for temporary results. 5551 unsigned OrigVal = MRI.createVirtualRegister(RC); 5552 unsigned OldVal = MRI.createVirtualRegister(RC); 5553 unsigned NewVal = MRI.createVirtualRegister(RC); 5554 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5555 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5556 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5557 5558 // Insert 3 basic blocks for the loop. 5559 MachineBasicBlock *StartMBB = MBB; 5560 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5561 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5562 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5563 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5564 5565 // StartMBB: 5566 // ... 5567 // %OrigVal = L Disp(%Base) 5568 // # fall through to LoopMMB 5569 MBB = StartMBB; 5570 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 5571 MBB->addSuccessor(LoopMBB); 5572 5573 // LoopMBB: 5574 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5575 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5576 // CompareOpcode %RotatedOldVal, %Src2 5577 // BRC KeepOldMask, UpdateMBB 5578 MBB = LoopMBB; 5579 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5580 .addReg(OrigVal).addMBB(StartMBB) 5581 .addReg(Dest).addMBB(UpdateMBB); 5582 if (IsSubWord) 5583 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5584 .addReg(OldVal).addReg(BitShift).addImm(0); 5585 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5586 .addReg(RotatedOldVal).addReg(Src2); 5587 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5588 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5589 MBB->addSuccessor(UpdateMBB); 5590 MBB->addSuccessor(UseAltMBB); 5591 5592 // UseAltMBB: 5593 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5594 // # fall through to UpdateMMB 5595 MBB = UseAltMBB; 5596 if (IsSubWord) 5597 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5598 .addReg(RotatedOldVal).addReg(Src2) 5599 .addImm(32).addImm(31 + BitSize).addImm(0); 5600 MBB->addSuccessor(UpdateMBB); 5601 5602 // UpdateMBB: 5603 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5604 // [ %RotatedAltVal, UseAltMBB ] 5605 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5606 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5607 // JNE LoopMBB 5608 // # fall through to DoneMMB 5609 MBB = UpdateMBB; 5610 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5611 .addReg(RotatedOldVal).addMBB(LoopMBB) 5612 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5613 if (IsSubWord) 5614 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5615 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5616 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5617 .addReg(OldVal) 5618 .addReg(NewVal) 5619 .add(Base) 5620 .addImm(Disp); 5621 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5622 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5623 MBB->addSuccessor(LoopMBB); 5624 MBB->addSuccessor(DoneMBB); 5625 5626 MI.eraseFromParent(); 5627 return DoneMBB; 5628 } 5629 5630 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5631 // instruction MI. 5632 MachineBasicBlock * 5633 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 5634 MachineBasicBlock *MBB) const { 5635 5636 MachineFunction &MF = *MBB->getParent(); 5637 const SystemZInstrInfo *TII = 5638 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5639 MachineRegisterInfo &MRI = MF.getRegInfo(); 5640 5641 // Extract the operands. Base can be a register or a frame index. 5642 unsigned Dest = MI.getOperand(0).getReg(); 5643 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 5644 int64_t Disp = MI.getOperand(2).getImm(); 5645 unsigned OrigCmpVal = MI.getOperand(3).getReg(); 5646 unsigned OrigSwapVal = MI.getOperand(4).getReg(); 5647 unsigned BitShift = MI.getOperand(5).getReg(); 5648 unsigned NegBitShift = MI.getOperand(6).getReg(); 5649 int64_t BitSize = MI.getOperand(7).getImm(); 5650 DebugLoc DL = MI.getDebugLoc(); 5651 5652 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5653 5654 // Get the right opcodes for the displacement. 5655 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5656 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5657 assert(LOpcode && CSOpcode && "Displacement out of range"); 5658 5659 // Create virtual registers for temporary results. 5660 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5661 unsigned OldVal = MRI.createVirtualRegister(RC); 5662 unsigned CmpVal = MRI.createVirtualRegister(RC); 5663 unsigned SwapVal = MRI.createVirtualRegister(RC); 5664 unsigned StoreVal = MRI.createVirtualRegister(RC); 5665 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5666 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5667 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5668 5669 // Insert 2 basic blocks for the loop. 5670 MachineBasicBlock *StartMBB = MBB; 5671 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5672 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5673 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5674 5675 // StartMBB: 5676 // ... 5677 // %OrigOldVal = L Disp(%Base) 5678 // # fall through to LoopMMB 5679 MBB = StartMBB; 5680 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5681 .add(Base) 5682 .addImm(Disp) 5683 .addReg(0); 5684 MBB->addSuccessor(LoopMBB); 5685 5686 // LoopMBB: 5687 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5688 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5689 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5690 // %Dest = RLL %OldVal, BitSize(%BitShift) 5691 // ^^ The low BitSize bits contain the field 5692 // of interest. 5693 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5694 // ^^ Replace the upper 32-BitSize bits of the 5695 // comparison value with those that we loaded, 5696 // so that we can use a full word comparison. 5697 // CR %Dest, %RetryCmpVal 5698 // JNE DoneMBB 5699 // # Fall through to SetMBB 5700 MBB = LoopMBB; 5701 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5702 .addReg(OrigOldVal).addMBB(StartMBB) 5703 .addReg(RetryOldVal).addMBB(SetMBB); 5704 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5705 .addReg(OrigCmpVal).addMBB(StartMBB) 5706 .addReg(RetryCmpVal).addMBB(SetMBB); 5707 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5708 .addReg(OrigSwapVal).addMBB(StartMBB) 5709 .addReg(RetrySwapVal).addMBB(SetMBB); 5710 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5711 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5712 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5713 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5714 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5715 .addReg(Dest).addReg(RetryCmpVal); 5716 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5717 .addImm(SystemZ::CCMASK_ICMP) 5718 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5719 MBB->addSuccessor(DoneMBB); 5720 MBB->addSuccessor(SetMBB); 5721 5722 // SetMBB: 5723 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5724 // ^^ Replace the upper 32-BitSize bits of the new 5725 // value with those that we loaded. 5726 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5727 // ^^ Rotate the new field to its proper position. 5728 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5729 // JNE LoopMBB 5730 // # fall through to ExitMMB 5731 MBB = SetMBB; 5732 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5733 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5734 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5735 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5736 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5737 .addReg(OldVal) 5738 .addReg(StoreVal) 5739 .add(Base) 5740 .addImm(Disp); 5741 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5742 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5743 MBB->addSuccessor(LoopMBB); 5744 MBB->addSuccessor(DoneMBB); 5745 5746 MI.eraseFromParent(); 5747 return DoneMBB; 5748 } 5749 5750 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5751 // if the high register of the GR128 value must be cleared or false if 5752 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5753 // and subreg_l64 when extending a GR64. 5754 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 5755 MachineBasicBlock *MBB, 5756 bool ClearEven, 5757 unsigned SubReg) const { 5758 MachineFunction &MF = *MBB->getParent(); 5759 const SystemZInstrInfo *TII = 5760 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5761 MachineRegisterInfo &MRI = MF.getRegInfo(); 5762 DebugLoc DL = MI.getDebugLoc(); 5763 5764 unsigned Dest = MI.getOperand(0).getReg(); 5765 unsigned Src = MI.getOperand(1).getReg(); 5766 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5767 5768 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5769 if (ClearEven) { 5770 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5771 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5772 5773 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5774 .addImm(0); 5775 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5776 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5777 In128 = NewIn128; 5778 } 5779 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5780 .addReg(In128).addReg(Src).addImm(SubReg); 5781 5782 MI.eraseFromParent(); 5783 return MBB; 5784 } 5785 5786 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 5787 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 5788 MachineFunction &MF = *MBB->getParent(); 5789 const SystemZInstrInfo *TII = 5790 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5791 MachineRegisterInfo &MRI = MF.getRegInfo(); 5792 DebugLoc DL = MI.getDebugLoc(); 5793 5794 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 5795 uint64_t DestDisp = MI.getOperand(1).getImm(); 5796 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 5797 uint64_t SrcDisp = MI.getOperand(3).getImm(); 5798 uint64_t Length = MI.getOperand(4).getImm(); 5799 5800 // When generating more than one CLC, all but the last will need to 5801 // branch to the end when a difference is found. 5802 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5803 splitBlockAfter(MI, MBB) : nullptr); 5804 5805 // Check for the loop form, in which operand 5 is the trip count. 5806 if (MI.getNumExplicitOperands() > 5) { 5807 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5808 5809 uint64_t StartCountReg = MI.getOperand(5).getReg(); 5810 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5811 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5812 forceReg(MI, DestBase, TII)); 5813 5814 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5815 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5816 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5817 MRI.createVirtualRegister(RC)); 5818 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5819 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5820 MRI.createVirtualRegister(RC)); 5821 5822 RC = &SystemZ::GR64BitRegClass; 5823 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5824 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5825 5826 MachineBasicBlock *StartMBB = MBB; 5827 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5828 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5829 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5830 5831 // StartMBB: 5832 // # fall through to LoopMMB 5833 MBB->addSuccessor(LoopMBB); 5834 5835 // LoopMBB: 5836 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5837 // [ %NextDestReg, NextMBB ] 5838 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5839 // [ %NextSrcReg, NextMBB ] 5840 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5841 // [ %NextCountReg, NextMBB ] 5842 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5843 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5844 // ( JLH EndMBB ) 5845 // 5846 // The prefetch is used only for MVC. The JLH is used only for CLC. 5847 MBB = LoopMBB; 5848 5849 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5850 .addReg(StartDestReg).addMBB(StartMBB) 5851 .addReg(NextDestReg).addMBB(NextMBB); 5852 if (!HaveSingleBase) 5853 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5854 .addReg(StartSrcReg).addMBB(StartMBB) 5855 .addReg(NextSrcReg).addMBB(NextMBB); 5856 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5857 .addReg(StartCountReg).addMBB(StartMBB) 5858 .addReg(NextCountReg).addMBB(NextMBB); 5859 if (Opcode == SystemZ::MVC) 5860 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5861 .addImm(SystemZ::PFD_WRITE) 5862 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5863 BuildMI(MBB, DL, TII->get(Opcode)) 5864 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5865 .addReg(ThisSrcReg).addImm(SrcDisp); 5866 if (EndMBB) { 5867 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5868 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5869 .addMBB(EndMBB); 5870 MBB->addSuccessor(EndMBB); 5871 MBB->addSuccessor(NextMBB); 5872 } 5873 5874 // NextMBB: 5875 // %NextDestReg = LA 256(%ThisDestReg) 5876 // %NextSrcReg = LA 256(%ThisSrcReg) 5877 // %NextCountReg = AGHI %ThisCountReg, -1 5878 // CGHI %NextCountReg, 0 5879 // JLH LoopMBB 5880 // # fall through to DoneMMB 5881 // 5882 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5883 MBB = NextMBB; 5884 5885 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5886 .addReg(ThisDestReg).addImm(256).addReg(0); 5887 if (!HaveSingleBase) 5888 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5889 .addReg(ThisSrcReg).addImm(256).addReg(0); 5890 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5891 .addReg(ThisCountReg).addImm(-1); 5892 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5893 .addReg(NextCountReg).addImm(0); 5894 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5895 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5896 .addMBB(LoopMBB); 5897 MBB->addSuccessor(LoopMBB); 5898 MBB->addSuccessor(DoneMBB); 5899 5900 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5901 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5902 Length &= 255; 5903 MBB = DoneMBB; 5904 } 5905 // Handle any remaining bytes with straight-line code. 5906 while (Length > 0) { 5907 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5908 // The previous iteration might have created out-of-range displacements. 5909 // Apply them using LAY if so. 5910 if (!isUInt<12>(DestDisp)) { 5911 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5912 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5913 .add(DestBase) 5914 .addImm(DestDisp) 5915 .addReg(0); 5916 DestBase = MachineOperand::CreateReg(Reg, false); 5917 DestDisp = 0; 5918 } 5919 if (!isUInt<12>(SrcDisp)) { 5920 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5921 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5922 .add(SrcBase) 5923 .addImm(SrcDisp) 5924 .addReg(0); 5925 SrcBase = MachineOperand::CreateReg(Reg, false); 5926 SrcDisp = 0; 5927 } 5928 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5929 .add(DestBase) 5930 .addImm(DestDisp) 5931 .addImm(ThisLength) 5932 .add(SrcBase) 5933 .addImm(SrcDisp); 5934 DestDisp += ThisLength; 5935 SrcDisp += ThisLength; 5936 Length -= ThisLength; 5937 // If there's another CLC to go, branch to the end if a difference 5938 // was found. 5939 if (EndMBB && Length > 0) { 5940 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5941 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5942 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5943 .addMBB(EndMBB); 5944 MBB->addSuccessor(EndMBB); 5945 MBB->addSuccessor(NextMBB); 5946 MBB = NextMBB; 5947 } 5948 } 5949 if (EndMBB) { 5950 MBB->addSuccessor(EndMBB); 5951 MBB = EndMBB; 5952 MBB->addLiveIn(SystemZ::CC); 5953 } 5954 5955 MI.eraseFromParent(); 5956 return MBB; 5957 } 5958 5959 // Decompose string pseudo-instruction MI into a loop that continually performs 5960 // Opcode until CC != 3. 5961 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 5962 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 5963 MachineFunction &MF = *MBB->getParent(); 5964 const SystemZInstrInfo *TII = 5965 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5966 MachineRegisterInfo &MRI = MF.getRegInfo(); 5967 DebugLoc DL = MI.getDebugLoc(); 5968 5969 uint64_t End1Reg = MI.getOperand(0).getReg(); 5970 uint64_t Start1Reg = MI.getOperand(1).getReg(); 5971 uint64_t Start2Reg = MI.getOperand(2).getReg(); 5972 uint64_t CharReg = MI.getOperand(3).getReg(); 5973 5974 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5975 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5976 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5977 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5978 5979 MachineBasicBlock *StartMBB = MBB; 5980 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5981 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5982 5983 // StartMBB: 5984 // # fall through to LoopMMB 5985 MBB->addSuccessor(LoopMBB); 5986 5987 // LoopMBB: 5988 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5989 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5990 // R0L = %CharReg 5991 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5992 // JO LoopMBB 5993 // # fall through to DoneMMB 5994 // 5995 // The load of R0L can be hoisted by post-RA LICM. 5996 MBB = LoopMBB; 5997 5998 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5999 .addReg(Start1Reg).addMBB(StartMBB) 6000 .addReg(End1Reg).addMBB(LoopMBB); 6001 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 6002 .addReg(Start2Reg).addMBB(StartMBB) 6003 .addReg(End2Reg).addMBB(LoopMBB); 6004 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 6005 BuildMI(MBB, DL, TII->get(Opcode)) 6006 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 6007 .addReg(This1Reg).addReg(This2Reg); 6008 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6009 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 6010 MBB->addSuccessor(LoopMBB); 6011 MBB->addSuccessor(DoneMBB); 6012 6013 DoneMBB->addLiveIn(SystemZ::CC); 6014 6015 MI.eraseFromParent(); 6016 return DoneMBB; 6017 } 6018 6019 // Update TBEGIN instruction with final opcode and register clobbers. 6020 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 6021 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 6022 bool NoFloat) const { 6023 MachineFunction &MF = *MBB->getParent(); 6024 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 6025 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 6026 6027 // Update opcode. 6028 MI.setDesc(TII->get(Opcode)); 6029 6030 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 6031 // Make sure to add the corresponding GRSM bits if they are missing. 6032 uint64_t Control = MI.getOperand(2).getImm(); 6033 static const unsigned GPRControlBit[16] = { 6034 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 6035 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 6036 }; 6037 Control |= GPRControlBit[15]; 6038 if (TFI->hasFP(MF)) 6039 Control |= GPRControlBit[11]; 6040 MI.getOperand(2).setImm(Control); 6041 6042 // Add GPR clobbers. 6043 for (int I = 0; I < 16; I++) { 6044 if ((Control & GPRControlBit[I]) == 0) { 6045 unsigned Reg = SystemZMC::GR64Regs[I]; 6046 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6047 } 6048 } 6049 6050 // Add FPR/VR clobbers. 6051 if (!NoFloat && (Control & 4) != 0) { 6052 if (Subtarget.hasVector()) { 6053 for (int I = 0; I < 32; I++) { 6054 unsigned Reg = SystemZMC::VR128Regs[I]; 6055 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6056 } 6057 } else { 6058 for (int I = 0; I < 16; I++) { 6059 unsigned Reg = SystemZMC::FP64Regs[I]; 6060 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6061 } 6062 } 6063 } 6064 6065 return MBB; 6066 } 6067 6068 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 6069 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6070 MachineFunction &MF = *MBB->getParent(); 6071 MachineRegisterInfo *MRI = &MF.getRegInfo(); 6072 const SystemZInstrInfo *TII = 6073 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6074 DebugLoc DL = MI.getDebugLoc(); 6075 6076 unsigned SrcReg = MI.getOperand(0).getReg(); 6077 6078 // Create new virtual register of the same class as source. 6079 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 6080 unsigned DstReg = MRI->createVirtualRegister(RC); 6081 6082 // Replace pseudo with a normal load-and-test that models the def as 6083 // well. 6084 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 6085 .addReg(SrcReg); 6086 MI.eraseFromParent(); 6087 6088 return MBB; 6089 } 6090 6091 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 6092 MachineInstr &MI, MachineBasicBlock *MBB) const { 6093 switch (MI.getOpcode()) { 6094 case SystemZ::Select32Mux: 6095 return emitSelect(MI, MBB, 6096 Subtarget.hasLoadStoreOnCond2()? SystemZ::LOCRMux : 0); 6097 case SystemZ::Select32: 6098 return emitSelect(MI, MBB, SystemZ::LOCR); 6099 case SystemZ::Select64: 6100 return emitSelect(MI, MBB, SystemZ::LOCGR); 6101 case SystemZ::SelectF32: 6102 case SystemZ::SelectF64: 6103 case SystemZ::SelectF128: 6104 return emitSelect(MI, MBB, 0); 6105 6106 case SystemZ::CondStore8Mux: 6107 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 6108 case SystemZ::CondStore8MuxInv: 6109 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 6110 case SystemZ::CondStore16Mux: 6111 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 6112 case SystemZ::CondStore16MuxInv: 6113 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 6114 case SystemZ::CondStore32Mux: 6115 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 6116 case SystemZ::CondStore32MuxInv: 6117 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 6118 case SystemZ::CondStore8: 6119 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 6120 case SystemZ::CondStore8Inv: 6121 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 6122 case SystemZ::CondStore16: 6123 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 6124 case SystemZ::CondStore16Inv: 6125 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 6126 case SystemZ::CondStore32: 6127 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 6128 case SystemZ::CondStore32Inv: 6129 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 6130 case SystemZ::CondStore64: 6131 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 6132 case SystemZ::CondStore64Inv: 6133 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 6134 case SystemZ::CondStoreF32: 6135 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 6136 case SystemZ::CondStoreF32Inv: 6137 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 6138 case SystemZ::CondStoreF64: 6139 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 6140 case SystemZ::CondStoreF64Inv: 6141 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 6142 6143 case SystemZ::AEXT128_64: 6144 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 6145 case SystemZ::ZEXT128_32: 6146 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 6147 case SystemZ::ZEXT128_64: 6148 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 6149 6150 case SystemZ::ATOMIC_SWAPW: 6151 return emitAtomicLoadBinary(MI, MBB, 0, 0); 6152 case SystemZ::ATOMIC_SWAP_32: 6153 return emitAtomicLoadBinary(MI, MBB, 0, 32); 6154 case SystemZ::ATOMIC_SWAP_64: 6155 return emitAtomicLoadBinary(MI, MBB, 0, 64); 6156 6157 case SystemZ::ATOMIC_LOADW_AR: 6158 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 6159 case SystemZ::ATOMIC_LOADW_AFI: 6160 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 6161 case SystemZ::ATOMIC_LOAD_AR: 6162 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 6163 case SystemZ::ATOMIC_LOAD_AHI: 6164 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 6165 case SystemZ::ATOMIC_LOAD_AFI: 6166 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 6167 case SystemZ::ATOMIC_LOAD_AGR: 6168 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 6169 case SystemZ::ATOMIC_LOAD_AGHI: 6170 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 6171 case SystemZ::ATOMIC_LOAD_AGFI: 6172 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 6173 6174 case SystemZ::ATOMIC_LOADW_SR: 6175 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 6176 case SystemZ::ATOMIC_LOAD_SR: 6177 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 6178 case SystemZ::ATOMIC_LOAD_SGR: 6179 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 6180 6181 case SystemZ::ATOMIC_LOADW_NR: 6182 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 6183 case SystemZ::ATOMIC_LOADW_NILH: 6184 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 6185 case SystemZ::ATOMIC_LOAD_NR: 6186 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 6187 case SystemZ::ATOMIC_LOAD_NILL: 6188 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 6189 case SystemZ::ATOMIC_LOAD_NILH: 6190 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 6191 case SystemZ::ATOMIC_LOAD_NILF: 6192 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 6193 case SystemZ::ATOMIC_LOAD_NGR: 6194 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 6195 case SystemZ::ATOMIC_LOAD_NILL64: 6196 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 6197 case SystemZ::ATOMIC_LOAD_NILH64: 6198 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 6199 case SystemZ::ATOMIC_LOAD_NIHL64: 6200 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 6201 case SystemZ::ATOMIC_LOAD_NIHH64: 6202 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 6203 case SystemZ::ATOMIC_LOAD_NILF64: 6204 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 6205 case SystemZ::ATOMIC_LOAD_NIHF64: 6206 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 6207 6208 case SystemZ::ATOMIC_LOADW_OR: 6209 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 6210 case SystemZ::ATOMIC_LOADW_OILH: 6211 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 6212 case SystemZ::ATOMIC_LOAD_OR: 6213 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 6214 case SystemZ::ATOMIC_LOAD_OILL: 6215 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 6216 case SystemZ::ATOMIC_LOAD_OILH: 6217 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 6218 case SystemZ::ATOMIC_LOAD_OILF: 6219 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 6220 case SystemZ::ATOMIC_LOAD_OGR: 6221 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 6222 case SystemZ::ATOMIC_LOAD_OILL64: 6223 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 6224 case SystemZ::ATOMIC_LOAD_OILH64: 6225 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 6226 case SystemZ::ATOMIC_LOAD_OIHL64: 6227 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 6228 case SystemZ::ATOMIC_LOAD_OIHH64: 6229 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 6230 case SystemZ::ATOMIC_LOAD_OILF64: 6231 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 6232 case SystemZ::ATOMIC_LOAD_OIHF64: 6233 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 6234 6235 case SystemZ::ATOMIC_LOADW_XR: 6236 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 6237 case SystemZ::ATOMIC_LOADW_XILF: 6238 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 6239 case SystemZ::ATOMIC_LOAD_XR: 6240 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 6241 case SystemZ::ATOMIC_LOAD_XILF: 6242 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 6243 case SystemZ::ATOMIC_LOAD_XGR: 6244 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 6245 case SystemZ::ATOMIC_LOAD_XILF64: 6246 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 6247 case SystemZ::ATOMIC_LOAD_XIHF64: 6248 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 6249 6250 case SystemZ::ATOMIC_LOADW_NRi: 6251 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 6252 case SystemZ::ATOMIC_LOADW_NILHi: 6253 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 6254 case SystemZ::ATOMIC_LOAD_NRi: 6255 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 6256 case SystemZ::ATOMIC_LOAD_NILLi: 6257 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 6258 case SystemZ::ATOMIC_LOAD_NILHi: 6259 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 6260 case SystemZ::ATOMIC_LOAD_NILFi: 6261 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 6262 case SystemZ::ATOMIC_LOAD_NGRi: 6263 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 6264 case SystemZ::ATOMIC_LOAD_NILL64i: 6265 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 6266 case SystemZ::ATOMIC_LOAD_NILH64i: 6267 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 6268 case SystemZ::ATOMIC_LOAD_NIHL64i: 6269 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 6270 case SystemZ::ATOMIC_LOAD_NIHH64i: 6271 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 6272 case SystemZ::ATOMIC_LOAD_NILF64i: 6273 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 6274 case SystemZ::ATOMIC_LOAD_NIHF64i: 6275 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 6276 6277 case SystemZ::ATOMIC_LOADW_MIN: 6278 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6279 SystemZ::CCMASK_CMP_LE, 0); 6280 case SystemZ::ATOMIC_LOAD_MIN_32: 6281 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6282 SystemZ::CCMASK_CMP_LE, 32); 6283 case SystemZ::ATOMIC_LOAD_MIN_64: 6284 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 6285 SystemZ::CCMASK_CMP_LE, 64); 6286 6287 case SystemZ::ATOMIC_LOADW_MAX: 6288 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6289 SystemZ::CCMASK_CMP_GE, 0); 6290 case SystemZ::ATOMIC_LOAD_MAX_32: 6291 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 6292 SystemZ::CCMASK_CMP_GE, 32); 6293 case SystemZ::ATOMIC_LOAD_MAX_64: 6294 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 6295 SystemZ::CCMASK_CMP_GE, 64); 6296 6297 case SystemZ::ATOMIC_LOADW_UMIN: 6298 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6299 SystemZ::CCMASK_CMP_LE, 0); 6300 case SystemZ::ATOMIC_LOAD_UMIN_32: 6301 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6302 SystemZ::CCMASK_CMP_LE, 32); 6303 case SystemZ::ATOMIC_LOAD_UMIN_64: 6304 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6305 SystemZ::CCMASK_CMP_LE, 64); 6306 6307 case SystemZ::ATOMIC_LOADW_UMAX: 6308 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6309 SystemZ::CCMASK_CMP_GE, 0); 6310 case SystemZ::ATOMIC_LOAD_UMAX_32: 6311 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6312 SystemZ::CCMASK_CMP_GE, 32); 6313 case SystemZ::ATOMIC_LOAD_UMAX_64: 6314 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6315 SystemZ::CCMASK_CMP_GE, 64); 6316 6317 case SystemZ::ATOMIC_CMP_SWAPW: 6318 return emitAtomicCmpSwapW(MI, MBB); 6319 case SystemZ::MVCSequence: 6320 case SystemZ::MVCLoop: 6321 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 6322 case SystemZ::NCSequence: 6323 case SystemZ::NCLoop: 6324 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 6325 case SystemZ::OCSequence: 6326 case SystemZ::OCLoop: 6327 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 6328 case SystemZ::XCSequence: 6329 case SystemZ::XCLoop: 6330 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 6331 case SystemZ::CLCSequence: 6332 case SystemZ::CLCLoop: 6333 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 6334 case SystemZ::CLSTLoop: 6335 return emitStringWrapper(MI, MBB, SystemZ::CLST); 6336 case SystemZ::MVSTLoop: 6337 return emitStringWrapper(MI, MBB, SystemZ::MVST); 6338 case SystemZ::SRSTLoop: 6339 return emitStringWrapper(MI, MBB, SystemZ::SRST); 6340 case SystemZ::TBEGIN: 6341 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 6342 case SystemZ::TBEGIN_nofloat: 6343 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 6344 case SystemZ::TBEGINC: 6345 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 6346 case SystemZ::LTEBRCompare_VecPseudo: 6347 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 6348 case SystemZ::LTDBRCompare_VecPseudo: 6349 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 6350 case SystemZ::LTXBRCompare_VecPseudo: 6351 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 6352 6353 default: 6354 llvm_unreachable("Unexpected instr type to insert"); 6355 } 6356 } 6357