1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SystemZTargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SystemZISelLowering.h"
15 #include "SystemZCallingConv.h"
16 #include "SystemZConstantPoolValue.h"
17 #include "SystemZMachineFunctionInfo.h"
18 #include "SystemZTargetMachine.h"
19 #include "llvm/CodeGen/CallingConvLower.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In)
37     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
38 
39   // The operands to the comparison.
40   SDValue Op0, Op1;
41 
42   // The opcode that should be used to compare Op0 and Op1.
43   unsigned Opcode;
44 
45   // A SystemZICMP value.  Only used for integer comparisons.
46   unsigned ICmpType;
47 
48   // The mask of CC values that Opcode can produce.
49   unsigned CCValid;
50 
51   // The mask of CC values for which the original condition is true.
52   unsigned CCMask;
53 };
54 } // end anonymous namespace
55 
56 // Classify VT as either 32 or 64 bit.
57 static bool is32Bit(EVT VT) {
58   switch (VT.getSimpleVT().SimpleTy) {
59   case MVT::i32:
60     return true;
61   case MVT::i64:
62     return false;
63   default:
64     llvm_unreachable("Unsupported type");
65   }
66 }
67 
68 // Return a version of MachineOperand that can be safely used before the
69 // final use.
70 static MachineOperand earlyUseOperand(MachineOperand Op) {
71   if (Op.isReg())
72     Op.setIsKill(false);
73   return Op;
74 }
75 
76 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
77                                              const SystemZSubtarget &STI)
78     : TargetLowering(TM), Subtarget(STI) {
79   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
80 
81   // Set up the register classes.
82   if (Subtarget.hasHighWord())
83     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
84   else
85     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
86   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
87   if (Subtarget.hasVector()) {
88     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
89     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
90   } else {
91     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
92     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
93   }
94   if (Subtarget.hasVectorEnhancements1())
95     addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
96   else
97     addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
98 
99   if (Subtarget.hasVector()) {
100     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
101     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
102     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
103     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
104     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
105     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
106   }
107 
108   // Compute derived properties from the register classes
109   computeRegisterProperties(Subtarget.getRegisterInfo());
110 
111   // Set up special registers.
112   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
113 
114   // TODO: It may be better to default to latency-oriented scheduling, however
115   // LLVM's current latency-oriented scheduler can't handle physreg definitions
116   // such as SystemZ has with CC, so set this to the register-pressure
117   // scheduler, because it can.
118   setSchedulingPreference(Sched::RegPressure);
119 
120   setBooleanContents(ZeroOrOneBooleanContent);
121   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
122 
123   // Instructions are strings of 2-byte aligned 2-byte values.
124   setMinFunctionAlignment(2);
125 
126   // Handle operations that are handled in a similar way for all types.
127   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
128        I <= MVT::LAST_FP_VALUETYPE;
129        ++I) {
130     MVT VT = MVT::SimpleValueType(I);
131     if (isTypeLegal(VT)) {
132       // Lower SET_CC into an IPM-based sequence.
133       setOperationAction(ISD::SETCC, VT, Custom);
134 
135       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
136       setOperationAction(ISD::SELECT, VT, Expand);
137 
138       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
139       setOperationAction(ISD::SELECT_CC, VT, Custom);
140       setOperationAction(ISD::BR_CC,     VT, Custom);
141     }
142   }
143 
144   // Expand jump table branches as address arithmetic followed by an
145   // indirect jump.
146   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
147 
148   // Expand BRCOND into a BR_CC (see above).
149   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
150 
151   // Handle integer types.
152   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
153        I <= MVT::LAST_INTEGER_VALUETYPE;
154        ++I) {
155     MVT VT = MVT::SimpleValueType(I);
156     if (isTypeLegal(VT)) {
157       // Expand individual DIV and REMs into DIVREMs.
158       setOperationAction(ISD::SDIV, VT, Expand);
159       setOperationAction(ISD::UDIV, VT, Expand);
160       setOperationAction(ISD::SREM, VT, Expand);
161       setOperationAction(ISD::UREM, VT, Expand);
162       setOperationAction(ISD::SDIVREM, VT, Custom);
163       setOperationAction(ISD::UDIVREM, VT, Custom);
164 
165       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
166       // stores, putting a serialization instruction after the stores.
167       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
168       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
169 
170       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
171       // available, or if the operand is constant.
172       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
173 
174       // Use POPCNT on z196 and above.
175       if (Subtarget.hasPopulationCount())
176         setOperationAction(ISD::CTPOP, VT, Custom);
177       else
178         setOperationAction(ISD::CTPOP, VT, Expand);
179 
180       // No special instructions for these.
181       setOperationAction(ISD::CTTZ,            VT, Expand);
182       setOperationAction(ISD::ROTR,            VT, Expand);
183 
184       // Use *MUL_LOHI where possible instead of MULH*.
185       setOperationAction(ISD::MULHS, VT, Expand);
186       setOperationAction(ISD::MULHU, VT, Expand);
187       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
188       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
189 
190       // Only z196 and above have native support for conversions to unsigned.
191       // On z10, promoting to i64 doesn't generate an inexact condition for
192       // values that are outside the i32 range but in the i64 range, so use
193       // the default expansion.
194       if (!Subtarget.hasFPExtension())
195         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
196     }
197   }
198 
199   // Type legalization will convert 8- and 16-bit atomic operations into
200   // forms that operate on i32s (but still keeping the original memory VT).
201   // Lower them into full i32 operations.
202   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
203   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
204   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
205   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
206   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
207   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
208   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
209   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
210   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
211   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
212   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
213 
214   // Even though i128 is not a legal type, we still need to custom lower
215   // the atomic operations in order to exploit SystemZ instructions.
216   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
217   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
218 
219   // We can use the CC result of compare-and-swap to implement
220   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
221   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
222   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
223   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
224 
225   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
226 
227   // Traps are legal, as we will convert them to "j .+2".
228   setOperationAction(ISD::TRAP, MVT::Other, Legal);
229 
230   // z10 has instructions for signed but not unsigned FP conversion.
231   // Handle unsigned 32-bit types as signed 64-bit types.
232   if (!Subtarget.hasFPExtension()) {
233     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
234     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
235   }
236 
237   // We have native support for a 64-bit CTLZ, via FLOGR.
238   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
239   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
240 
241   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
242   setOperationAction(ISD::OR, MVT::i64, Custom);
243 
244   // FIXME: Can we support these natively?
245   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
246   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
247   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
248 
249   // We have native instructions for i8, i16 and i32 extensions, but not i1.
250   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
251   for (MVT VT : MVT::integer_valuetypes()) {
252     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
253     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
254     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
255   }
256 
257   // Handle the various types of symbolic address.
258   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
259   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
260   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
261   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
262   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
263 
264   // We need to handle dynamic allocations specially because of the
265   // 160-byte area at the bottom of the stack.
266   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
267   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
268 
269   // Use custom expanders so that we can force the function to use
270   // a frame pointer.
271   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
272   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
273 
274   // Handle prefetches with PFD or PFDRL.
275   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
276 
277   for (MVT VT : MVT::vector_valuetypes()) {
278     // Assume by default that all vector operations need to be expanded.
279     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
280       if (getOperationAction(Opcode, VT) == Legal)
281         setOperationAction(Opcode, VT, Expand);
282 
283     // Likewise all truncating stores and extending loads.
284     for (MVT InnerVT : MVT::vector_valuetypes()) {
285       setTruncStoreAction(VT, InnerVT, Expand);
286       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
287       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
288       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
289     }
290 
291     if (isTypeLegal(VT)) {
292       // These operations are legal for anything that can be stored in a
293       // vector register, even if there is no native support for the format
294       // as such.  In particular, we can do these for v4f32 even though there
295       // are no specific instructions for that format.
296       setOperationAction(ISD::LOAD, VT, Legal);
297       setOperationAction(ISD::STORE, VT, Legal);
298       setOperationAction(ISD::VSELECT, VT, Legal);
299       setOperationAction(ISD::BITCAST, VT, Legal);
300       setOperationAction(ISD::UNDEF, VT, Legal);
301 
302       // Likewise, except that we need to replace the nodes with something
303       // more specific.
304       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
305       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
306     }
307   }
308 
309   // Handle integer vector types.
310   for (MVT VT : MVT::integer_vector_valuetypes()) {
311     if (isTypeLegal(VT)) {
312       // These operations have direct equivalents.
313       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
314       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
315       setOperationAction(ISD::ADD, VT, Legal);
316       setOperationAction(ISD::SUB, VT, Legal);
317       if (VT != MVT::v2i64)
318         setOperationAction(ISD::MUL, VT, Legal);
319       setOperationAction(ISD::AND, VT, Legal);
320       setOperationAction(ISD::OR, VT, Legal);
321       setOperationAction(ISD::XOR, VT, Legal);
322       if (Subtarget.hasVectorEnhancements1())
323         setOperationAction(ISD::CTPOP, VT, Legal);
324       else
325         setOperationAction(ISD::CTPOP, VT, Custom);
326       setOperationAction(ISD::CTTZ, VT, Legal);
327       setOperationAction(ISD::CTLZ, VT, Legal);
328 
329       // Convert a GPR scalar to a vector by inserting it into element 0.
330       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
331 
332       // Use a series of unpacks for extensions.
333       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
334       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
335 
336       // Detect shifts by a scalar amount and convert them into
337       // V*_BY_SCALAR.
338       setOperationAction(ISD::SHL, VT, Custom);
339       setOperationAction(ISD::SRA, VT, Custom);
340       setOperationAction(ISD::SRL, VT, Custom);
341 
342       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
343       // converted into ROTL.
344       setOperationAction(ISD::ROTL, VT, Expand);
345       setOperationAction(ISD::ROTR, VT, Expand);
346 
347       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
348       // and inverting the result as necessary.
349       setOperationAction(ISD::SETCC, VT, Custom);
350     }
351   }
352 
353   if (Subtarget.hasVector()) {
354     // There should be no need to check for float types other than v2f64
355     // since <2 x f32> isn't a legal type.
356     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
357     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
358     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
359     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
360     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
361     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
362     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
363     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
364   }
365 
366   // Handle floating-point types.
367   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
368        I <= MVT::LAST_FP_VALUETYPE;
369        ++I) {
370     MVT VT = MVT::SimpleValueType(I);
371     if (isTypeLegal(VT)) {
372       // We can use FI for FRINT.
373       setOperationAction(ISD::FRINT, VT, Legal);
374 
375       // We can use the extended form of FI for other rounding operations.
376       if (Subtarget.hasFPExtension()) {
377         setOperationAction(ISD::FNEARBYINT, VT, Legal);
378         setOperationAction(ISD::FFLOOR, VT, Legal);
379         setOperationAction(ISD::FCEIL, VT, Legal);
380         setOperationAction(ISD::FTRUNC, VT, Legal);
381         setOperationAction(ISD::FROUND, VT, Legal);
382       }
383 
384       // No special instructions for these.
385       setOperationAction(ISD::FSIN, VT, Expand);
386       setOperationAction(ISD::FCOS, VT, Expand);
387       setOperationAction(ISD::FSINCOS, VT, Expand);
388       setOperationAction(ISD::FREM, VT, Expand);
389       setOperationAction(ISD::FPOW, VT, Expand);
390     }
391   }
392 
393   // Handle floating-point vector types.
394   if (Subtarget.hasVector()) {
395     // Scalar-to-vector conversion is just a subreg.
396     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
397     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
398 
399     // Some insertions and extractions can be done directly but others
400     // need to go via integers.
401     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
402     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
403     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
404     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
405 
406     // These operations have direct equivalents.
407     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
408     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
409     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
410     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
411     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
412     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
413     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
414     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
415     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
416     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
417     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
418     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
419     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
420     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
421   }
422 
423   // The vector enhancements facility 1 has instructions for these.
424   if (Subtarget.hasVectorEnhancements1()) {
425     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
426     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
427     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
428     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
429     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
430     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
431     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
432     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
433     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
435     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
436     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
437     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
438     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
439 
440     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
441     setOperationAction(ISD::FMAXNAN, MVT::f64, Legal);
442     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
443     setOperationAction(ISD::FMINNAN, MVT::f64, Legal);
444 
445     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
446     setOperationAction(ISD::FMAXNAN, MVT::v2f64, Legal);
447     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
448     setOperationAction(ISD::FMINNAN, MVT::v2f64, Legal);
449 
450     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
451     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
452     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
453     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
454 
455     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
456     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
457     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
458     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
459 
460     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
461     setOperationAction(ISD::FMAXNAN, MVT::f128, Legal);
462     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
463     setOperationAction(ISD::FMINNAN, MVT::f128, Legal);
464   }
465 
466   // We have fused multiply-addition for f32 and f64 but not f128.
467   setOperationAction(ISD::FMA, MVT::f32,  Legal);
468   setOperationAction(ISD::FMA, MVT::f64,  Legal);
469   if (Subtarget.hasVectorEnhancements1())
470     setOperationAction(ISD::FMA, MVT::f128, Legal);
471   else
472     setOperationAction(ISD::FMA, MVT::f128, Expand);
473 
474   // We don't have a copysign instruction on vector registers.
475   if (Subtarget.hasVectorEnhancements1())
476     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
477 
478   // Needed so that we don't try to implement f128 constant loads using
479   // a load-and-extend of a f80 constant (in cases where the constant
480   // would fit in an f80).
481   for (MVT VT : MVT::fp_valuetypes())
482     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
483 
484   // We don't have extending load instruction on vector registers.
485   if (Subtarget.hasVectorEnhancements1()) {
486     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
487     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
488   }
489 
490   // Floating-point truncation and stores need to be done separately.
491   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
492   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
493   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
494 
495   // We have 64-bit FPR<->GPR moves, but need special handling for
496   // 32-bit forms.
497   if (!Subtarget.hasVector()) {
498     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
499     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
500   }
501 
502   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
503   // structure, but VAEND is a no-op.
504   setOperationAction(ISD::VASTART, MVT::Other, Custom);
505   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
506   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
507 
508   // Codes for which we want to perform some z-specific combinations.
509   setTargetDAGCombine(ISD::ZERO_EXTEND);
510   setTargetDAGCombine(ISD::SIGN_EXTEND);
511   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
512   setTargetDAGCombine(ISD::STORE);
513   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
514   setTargetDAGCombine(ISD::FP_ROUND);
515   setTargetDAGCombine(ISD::BSWAP);
516   setTargetDAGCombine(ISD::SHL);
517   setTargetDAGCombine(ISD::SRA);
518   setTargetDAGCombine(ISD::SRL);
519   setTargetDAGCombine(ISD::ROTL);
520 
521   // Handle intrinsics.
522   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
523   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
524 
525   // We want to use MVC in preference to even a single load/store pair.
526   MaxStoresPerMemcpy = 0;
527   MaxStoresPerMemcpyOptSize = 0;
528 
529   // The main memset sequence is a byte store followed by an MVC.
530   // Two STC or MV..I stores win over that, but the kind of fused stores
531   // generated by target-independent code don't when the byte value is
532   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
533   // than "STC;MVC".  Handle the choice in target-specific code instead.
534   MaxStoresPerMemset = 0;
535   MaxStoresPerMemsetOptSize = 0;
536 }
537 
538 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
539                                               LLVMContext &, EVT VT) const {
540   if (!VT.isVector())
541     return MVT::i32;
542   return VT.changeVectorElementTypeToInteger();
543 }
544 
545 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
546   VT = VT.getScalarType();
547 
548   if (!VT.isSimple())
549     return false;
550 
551   switch (VT.getSimpleVT().SimpleTy) {
552   case MVT::f32:
553   case MVT::f64:
554     return true;
555   case MVT::f128:
556     return Subtarget.hasVectorEnhancements1();
557   default:
558     break;
559   }
560 
561   return false;
562 }
563 
564 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
565   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
566   return Imm.isZero() || Imm.isNegZero();
567 }
568 
569 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
570   // We can use CGFI or CLGFI.
571   return isInt<32>(Imm) || isUInt<32>(Imm);
572 }
573 
574 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
575   // We can use ALGFI or SLGFI.
576   return isUInt<32>(Imm) || isUInt<32>(-Imm);
577 }
578 
579 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
580                                                            unsigned,
581                                                            unsigned,
582                                                            bool *Fast) const {
583   // Unaligned accesses should never be slower than the expanded version.
584   // We check specifically for aligned accesses in the few cases where
585   // they are required.
586   if (Fast)
587     *Fast = true;
588   return true;
589 }
590 
591 // Information about the addressing mode for a memory access.
592 struct AddressingMode {
593   // True if a long displacement is supported.
594   bool LongDisplacement;
595 
596   // True if use of index register is supported.
597   bool IndexReg;
598 
599   AddressingMode(bool LongDispl, bool IdxReg) :
600     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
601 };
602 
603 // Return the desired addressing mode for a Load which has only one use (in
604 // the same block) which is a Store.
605 static AddressingMode getLoadStoreAddrMode(bool HasVector,
606                                           Type *Ty) {
607   // With vector support a Load->Store combination may be combined to either
608   // an MVC or vector operations and it seems to work best to allow the
609   // vector addressing mode.
610   if (HasVector)
611     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
612 
613   // Otherwise only the MVC case is special.
614   bool MVC = Ty->isIntegerTy(8);
615   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
616 }
617 
618 // Return the addressing mode which seems most desirable given an LLVM
619 // Instruction pointer.
620 static AddressingMode
621 supportedAddressingMode(Instruction *I, bool HasVector) {
622   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
623     switch (II->getIntrinsicID()) {
624     default: break;
625     case Intrinsic::memset:
626     case Intrinsic::memmove:
627     case Intrinsic::memcpy:
628       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
629     }
630   }
631 
632   if (isa<LoadInst>(I) && I->hasOneUse()) {
633     auto *SingleUser = dyn_cast<Instruction>(*I->user_begin());
634     if (SingleUser->getParent() == I->getParent()) {
635       if (isa<ICmpInst>(SingleUser)) {
636         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
637           if (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))
638             // Comparison of memory with 16 bit signed / unsigned immediate
639             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
640       } else if (isa<StoreInst>(SingleUser))
641         // Load->Store
642         return getLoadStoreAddrMode(HasVector, I->getType());
643     }
644   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
645     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
646       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
647         // Load->Store
648         return getLoadStoreAddrMode(HasVector, LoadI->getType());
649   }
650 
651   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
652 
653     // * Use LDE instead of LE/LEY for z13 to avoid partial register
654     //   dependencies (LDE only supports small offsets).
655     // * Utilize the vector registers to hold floating point
656     //   values (vector load / store instructions only support small
657     //   offsets).
658 
659     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
660                          I->getOperand(0)->getType());
661     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
662     bool IsVectorAccess = MemAccessTy->isVectorTy();
663 
664     // A store of an extracted vector element will be combined into a VSTE type
665     // instruction.
666     if (!IsVectorAccess && isa<StoreInst>(I)) {
667       Value *DataOp = I->getOperand(0);
668       if (isa<ExtractElementInst>(DataOp))
669         IsVectorAccess = true;
670     }
671 
672     // A load which gets inserted into a vector element will be combined into a
673     // VLE type instruction.
674     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
675       User *LoadUser = *I->user_begin();
676       if (isa<InsertElementInst>(LoadUser))
677         IsVectorAccess = true;
678     }
679 
680     if (IsFPAccess || IsVectorAccess)
681       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
682   }
683 
684   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
685 }
686 
687 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
688        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
689   // Punt on globals for now, although they can be used in limited
690   // RELATIVE LONG cases.
691   if (AM.BaseGV)
692     return false;
693 
694   // Require a 20-bit signed offset.
695   if (!isInt<20>(AM.BaseOffs))
696     return false;
697 
698   AddressingMode SupportedAM(true, true);
699   if (I != nullptr)
700     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
701 
702   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
703     return false;
704 
705   if (!SupportedAM.IndexReg)
706     // No indexing allowed.
707     return AM.Scale == 0;
708   else
709     // Indexing is OK but no scale factor can be applied.
710     return AM.Scale == 0 || AM.Scale == 1;
711 }
712 
713 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
714   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
715     return false;
716   unsigned FromBits = FromType->getPrimitiveSizeInBits();
717   unsigned ToBits = ToType->getPrimitiveSizeInBits();
718   return FromBits > ToBits;
719 }
720 
721 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
722   if (!FromVT.isInteger() || !ToVT.isInteger())
723     return false;
724   unsigned FromBits = FromVT.getSizeInBits();
725   unsigned ToBits = ToVT.getSizeInBits();
726   return FromBits > ToBits;
727 }
728 
729 //===----------------------------------------------------------------------===//
730 // Inline asm support
731 //===----------------------------------------------------------------------===//
732 
733 TargetLowering::ConstraintType
734 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
735   if (Constraint.size() == 1) {
736     switch (Constraint[0]) {
737     case 'a': // Address register
738     case 'd': // Data register (equivalent to 'r')
739     case 'f': // Floating-point register
740     case 'h': // High-part register
741     case 'r': // General-purpose register
742       return C_RegisterClass;
743 
744     case 'Q': // Memory with base and unsigned 12-bit displacement
745     case 'R': // Likewise, plus an index
746     case 'S': // Memory with base and signed 20-bit displacement
747     case 'T': // Likewise, plus an index
748     case 'm': // Equivalent to 'T'.
749       return C_Memory;
750 
751     case 'I': // Unsigned 8-bit constant
752     case 'J': // Unsigned 12-bit constant
753     case 'K': // Signed 16-bit constant
754     case 'L': // Signed 20-bit displacement (on all targets we support)
755     case 'M': // 0x7fffffff
756       return C_Other;
757 
758     default:
759       break;
760     }
761   }
762   return TargetLowering::getConstraintType(Constraint);
763 }
764 
765 TargetLowering::ConstraintWeight SystemZTargetLowering::
766 getSingleConstraintMatchWeight(AsmOperandInfo &info,
767                                const char *constraint) const {
768   ConstraintWeight weight = CW_Invalid;
769   Value *CallOperandVal = info.CallOperandVal;
770   // If we don't have a value, we can't do a match,
771   // but allow it at the lowest weight.
772   if (!CallOperandVal)
773     return CW_Default;
774   Type *type = CallOperandVal->getType();
775   // Look at the constraint type.
776   switch (*constraint) {
777   default:
778     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
779     break;
780 
781   case 'a': // Address register
782   case 'd': // Data register (equivalent to 'r')
783   case 'h': // High-part register
784   case 'r': // General-purpose register
785     if (CallOperandVal->getType()->isIntegerTy())
786       weight = CW_Register;
787     break;
788 
789   case 'f': // Floating-point register
790     if (type->isFloatingPointTy())
791       weight = CW_Register;
792     break;
793 
794   case 'I': // Unsigned 8-bit constant
795     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
796       if (isUInt<8>(C->getZExtValue()))
797         weight = CW_Constant;
798     break;
799 
800   case 'J': // Unsigned 12-bit constant
801     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
802       if (isUInt<12>(C->getZExtValue()))
803         weight = CW_Constant;
804     break;
805 
806   case 'K': // Signed 16-bit constant
807     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
808       if (isInt<16>(C->getSExtValue()))
809         weight = CW_Constant;
810     break;
811 
812   case 'L': // Signed 20-bit displacement (on all targets we support)
813     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
814       if (isInt<20>(C->getSExtValue()))
815         weight = CW_Constant;
816     break;
817 
818   case 'M': // 0x7fffffff
819     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
820       if (C->getZExtValue() == 0x7fffffff)
821         weight = CW_Constant;
822     break;
823   }
824   return weight;
825 }
826 
827 // Parse a "{tNNN}" register constraint for which the register type "t"
828 // has already been verified.  MC is the class associated with "t" and
829 // Map maps 0-based register numbers to LLVM register numbers.
830 static std::pair<unsigned, const TargetRegisterClass *>
831 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
832                     const unsigned *Map) {
833   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
834   if (isdigit(Constraint[2])) {
835     unsigned Index;
836     bool Failed =
837         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
838     if (!Failed && Index < 16 && Map[Index])
839       return std::make_pair(Map[Index], RC);
840   }
841   return std::make_pair(0U, nullptr);
842 }
843 
844 std::pair<unsigned, const TargetRegisterClass *>
845 SystemZTargetLowering::getRegForInlineAsmConstraint(
846     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
847   if (Constraint.size() == 1) {
848     // GCC Constraint Letters
849     switch (Constraint[0]) {
850     default: break;
851     case 'd': // Data register (equivalent to 'r')
852     case 'r': // General-purpose register
853       if (VT == MVT::i64)
854         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
855       else if (VT == MVT::i128)
856         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
857       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
858 
859     case 'a': // Address register
860       if (VT == MVT::i64)
861         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
862       else if (VT == MVT::i128)
863         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
864       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
865 
866     case 'h': // High-part register (an LLVM extension)
867       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
868 
869     case 'f': // Floating-point register
870       if (VT == MVT::f64)
871         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
872       else if (VT == MVT::f128)
873         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
874       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
875     }
876   }
877   if (Constraint.size() > 0 && Constraint[0] == '{') {
878     // We need to override the default register parsing for GPRs and FPRs
879     // because the interpretation depends on VT.  The internal names of
880     // the registers are also different from the external names
881     // (F0D and F0S instead of F0, etc.).
882     if (Constraint[1] == 'r') {
883       if (VT == MVT::i32)
884         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
885                                    SystemZMC::GR32Regs);
886       if (VT == MVT::i128)
887         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
888                                    SystemZMC::GR128Regs);
889       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
890                                  SystemZMC::GR64Regs);
891     }
892     if (Constraint[1] == 'f') {
893       if (VT == MVT::f32)
894         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
895                                    SystemZMC::FP32Regs);
896       if (VT == MVT::f128)
897         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
898                                    SystemZMC::FP128Regs);
899       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
900                                  SystemZMC::FP64Regs);
901     }
902   }
903   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
904 }
905 
906 void SystemZTargetLowering::
907 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
908                              std::vector<SDValue> &Ops,
909                              SelectionDAG &DAG) const {
910   // Only support length 1 constraints for now.
911   if (Constraint.length() == 1) {
912     switch (Constraint[0]) {
913     case 'I': // Unsigned 8-bit constant
914       if (auto *C = dyn_cast<ConstantSDNode>(Op))
915         if (isUInt<8>(C->getZExtValue()))
916           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
917                                               Op.getValueType()));
918       return;
919 
920     case 'J': // Unsigned 12-bit constant
921       if (auto *C = dyn_cast<ConstantSDNode>(Op))
922         if (isUInt<12>(C->getZExtValue()))
923           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
924                                               Op.getValueType()));
925       return;
926 
927     case 'K': // Signed 16-bit constant
928       if (auto *C = dyn_cast<ConstantSDNode>(Op))
929         if (isInt<16>(C->getSExtValue()))
930           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
931                                               Op.getValueType()));
932       return;
933 
934     case 'L': // Signed 20-bit displacement (on all targets we support)
935       if (auto *C = dyn_cast<ConstantSDNode>(Op))
936         if (isInt<20>(C->getSExtValue()))
937           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
938                                               Op.getValueType()));
939       return;
940 
941     case 'M': // 0x7fffffff
942       if (auto *C = dyn_cast<ConstantSDNode>(Op))
943         if (C->getZExtValue() == 0x7fffffff)
944           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
945                                               Op.getValueType()));
946       return;
947     }
948   }
949   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
950 }
951 
952 //===----------------------------------------------------------------------===//
953 // Calling conventions
954 //===----------------------------------------------------------------------===//
955 
956 #include "SystemZGenCallingConv.inc"
957 
958 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
959                                                      Type *ToType) const {
960   return isTruncateFree(FromType, ToType);
961 }
962 
963 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
964   return CI->isTailCall();
965 }
966 
967 // We do not yet support 128-bit single-element vector types.  If the user
968 // attempts to use such types as function argument or return type, prefer
969 // to error out instead of emitting code violating the ABI.
970 static void VerifyVectorType(MVT VT, EVT ArgVT) {
971   if (ArgVT.isVector() && !VT.isVector())
972     report_fatal_error("Unsupported vector argument or return type");
973 }
974 
975 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
976   for (unsigned i = 0; i < Ins.size(); ++i)
977     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
978 }
979 
980 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
981   for (unsigned i = 0; i < Outs.size(); ++i)
982     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
983 }
984 
985 // Value is a value that has been passed to us in the location described by VA
986 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
987 // any loads onto Chain.
988 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
989                                    CCValAssign &VA, SDValue Chain,
990                                    SDValue Value) {
991   // If the argument has been promoted from a smaller type, insert an
992   // assertion to capture this.
993   if (VA.getLocInfo() == CCValAssign::SExt)
994     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
995                         DAG.getValueType(VA.getValVT()));
996   else if (VA.getLocInfo() == CCValAssign::ZExt)
997     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
998                         DAG.getValueType(VA.getValVT()));
999 
1000   if (VA.isExtInLoc())
1001     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1002   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1003     // If this is a short vector argument loaded from the stack,
1004     // extend from i64 to full vector size and then bitcast.
1005     assert(VA.getLocVT() == MVT::i64);
1006     assert(VA.getValVT().isVector());
1007     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1008     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1009   } else
1010     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1011   return Value;
1012 }
1013 
1014 // Value is a value of type VA.getValVT() that we need to copy into
1015 // the location described by VA.  Return a copy of Value converted to
1016 // VA.getValVT().  The caller is responsible for handling indirect values.
1017 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1018                                    CCValAssign &VA, SDValue Value) {
1019   switch (VA.getLocInfo()) {
1020   case CCValAssign::SExt:
1021     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1022   case CCValAssign::ZExt:
1023     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1024   case CCValAssign::AExt:
1025     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1026   case CCValAssign::BCvt:
1027     // If this is a short vector argument to be stored to the stack,
1028     // bitcast to v2i64 and then extract first element.
1029     assert(VA.getLocVT() == MVT::i64);
1030     assert(VA.getValVT().isVector());
1031     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1032     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1033                        DAG.getConstant(0, DL, MVT::i32));
1034   case CCValAssign::Full:
1035     return Value;
1036   default:
1037     llvm_unreachable("Unhandled getLocInfo()");
1038   }
1039 }
1040 
1041 SDValue SystemZTargetLowering::LowerFormalArguments(
1042     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1043     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1044     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1045   MachineFunction &MF = DAG.getMachineFunction();
1046   MachineFrameInfo &MFI = MF.getFrameInfo();
1047   MachineRegisterInfo &MRI = MF.getRegInfo();
1048   SystemZMachineFunctionInfo *FuncInfo =
1049       MF.getInfo<SystemZMachineFunctionInfo>();
1050   auto *TFL =
1051       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1052   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1053 
1054   // Detect unsupported vector argument types.
1055   if (Subtarget.hasVector())
1056     VerifyVectorTypes(Ins);
1057 
1058   // Assign locations to all of the incoming arguments.
1059   SmallVector<CCValAssign, 16> ArgLocs;
1060   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1061   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1062 
1063   unsigned NumFixedGPRs = 0;
1064   unsigned NumFixedFPRs = 0;
1065   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1066     SDValue ArgValue;
1067     CCValAssign &VA = ArgLocs[I];
1068     EVT LocVT = VA.getLocVT();
1069     if (VA.isRegLoc()) {
1070       // Arguments passed in registers
1071       const TargetRegisterClass *RC;
1072       switch (LocVT.getSimpleVT().SimpleTy) {
1073       default:
1074         // Integers smaller than i64 should be promoted to i64.
1075         llvm_unreachable("Unexpected argument type");
1076       case MVT::i32:
1077         NumFixedGPRs += 1;
1078         RC = &SystemZ::GR32BitRegClass;
1079         break;
1080       case MVT::i64:
1081         NumFixedGPRs += 1;
1082         RC = &SystemZ::GR64BitRegClass;
1083         break;
1084       case MVT::f32:
1085         NumFixedFPRs += 1;
1086         RC = &SystemZ::FP32BitRegClass;
1087         break;
1088       case MVT::f64:
1089         NumFixedFPRs += 1;
1090         RC = &SystemZ::FP64BitRegClass;
1091         break;
1092       case MVT::v16i8:
1093       case MVT::v8i16:
1094       case MVT::v4i32:
1095       case MVT::v2i64:
1096       case MVT::v4f32:
1097       case MVT::v2f64:
1098         RC = &SystemZ::VR128BitRegClass;
1099         break;
1100       }
1101 
1102       unsigned VReg = MRI.createVirtualRegister(RC);
1103       MRI.addLiveIn(VA.getLocReg(), VReg);
1104       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1105     } else {
1106       assert(VA.isMemLoc() && "Argument not register or memory");
1107 
1108       // Create the frame index object for this incoming parameter.
1109       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1110                                      VA.getLocMemOffset(), true);
1111 
1112       // Create the SelectionDAG nodes corresponding to a load
1113       // from this parameter.  Unpromoted ints and floats are
1114       // passed as right-justified 8-byte values.
1115       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1116       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1117         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1118                           DAG.getIntPtrConstant(4, DL));
1119       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1120                              MachinePointerInfo::getFixedStack(MF, FI));
1121     }
1122 
1123     // Convert the value of the argument register into the value that's
1124     // being passed.
1125     if (VA.getLocInfo() == CCValAssign::Indirect) {
1126       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1127                                    MachinePointerInfo()));
1128       // If the original argument was split (e.g. i128), we need
1129       // to load all parts of it here (using the same address).
1130       unsigned ArgIndex = Ins[I].OrigArgIndex;
1131       assert (Ins[I].PartOffset == 0);
1132       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1133         CCValAssign &PartVA = ArgLocs[I + 1];
1134         unsigned PartOffset = Ins[I + 1].PartOffset;
1135         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1136                                       DAG.getIntPtrConstant(PartOffset, DL));
1137         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1138                                      MachinePointerInfo()));
1139         ++I;
1140       }
1141     } else
1142       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1143   }
1144 
1145   if (IsVarArg) {
1146     // Save the number of non-varargs registers for later use by va_start, etc.
1147     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1148     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1149 
1150     // Likewise the address (in the form of a frame index) of where the
1151     // first stack vararg would be.  The 1-byte size here is arbitrary.
1152     int64_t StackSize = CCInfo.getNextStackOffset();
1153     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1154 
1155     // ...and a similar frame index for the caller-allocated save area
1156     // that will be used to store the incoming registers.
1157     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1158     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1159     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1160 
1161     // Store the FPR varargs in the reserved frame slots.  (We store the
1162     // GPRs as part of the prologue.)
1163     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1164       SDValue MemOps[SystemZ::NumArgFPRs];
1165       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1166         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1167         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1168         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1169         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1170                                      &SystemZ::FP64BitRegClass);
1171         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1172         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1173                                  MachinePointerInfo::getFixedStack(MF, FI));
1174       }
1175       // Join the stores, which are independent of one another.
1176       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1177                           makeArrayRef(&MemOps[NumFixedFPRs],
1178                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1179     }
1180   }
1181 
1182   return Chain;
1183 }
1184 
1185 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1186                               SmallVectorImpl<CCValAssign> &ArgLocs,
1187                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1188   // Punt if there are any indirect or stack arguments, or if the call
1189   // needs the callee-saved argument register R6, or if the call uses
1190   // the callee-saved register arguments SwiftSelf and SwiftError.
1191   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1192     CCValAssign &VA = ArgLocs[I];
1193     if (VA.getLocInfo() == CCValAssign::Indirect)
1194       return false;
1195     if (!VA.isRegLoc())
1196       return false;
1197     unsigned Reg = VA.getLocReg();
1198     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1199       return false;
1200     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1201       return false;
1202   }
1203   return true;
1204 }
1205 
1206 SDValue
1207 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1208                                  SmallVectorImpl<SDValue> &InVals) const {
1209   SelectionDAG &DAG = CLI.DAG;
1210   SDLoc &DL = CLI.DL;
1211   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1212   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1213   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1214   SDValue Chain = CLI.Chain;
1215   SDValue Callee = CLI.Callee;
1216   bool &IsTailCall = CLI.IsTailCall;
1217   CallingConv::ID CallConv = CLI.CallConv;
1218   bool IsVarArg = CLI.IsVarArg;
1219   MachineFunction &MF = DAG.getMachineFunction();
1220   EVT PtrVT = getPointerTy(MF.getDataLayout());
1221 
1222   // Detect unsupported vector argument and return types.
1223   if (Subtarget.hasVector()) {
1224     VerifyVectorTypes(Outs);
1225     VerifyVectorTypes(Ins);
1226   }
1227 
1228   // Analyze the operands of the call, assigning locations to each operand.
1229   SmallVector<CCValAssign, 16> ArgLocs;
1230   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1231   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1232 
1233   // We don't support GuaranteedTailCallOpt, only automatically-detected
1234   // sibling calls.
1235   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1236     IsTailCall = false;
1237 
1238   // Get a count of how many bytes are to be pushed on the stack.
1239   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1240 
1241   // Mark the start of the call.
1242   if (!IsTailCall)
1243     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1244 
1245   // Copy argument values to their designated locations.
1246   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1247   SmallVector<SDValue, 8> MemOpChains;
1248   SDValue StackPtr;
1249   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1250     CCValAssign &VA = ArgLocs[I];
1251     SDValue ArgValue = OutVals[I];
1252 
1253     if (VA.getLocInfo() == CCValAssign::Indirect) {
1254       // Store the argument in a stack slot and pass its address.
1255       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1256       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1257       MemOpChains.push_back(
1258           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1259                        MachinePointerInfo::getFixedStack(MF, FI)));
1260       // If the original argument was split (e.g. i128), we need
1261       // to store all parts of it here (and pass just one address).
1262       unsigned ArgIndex = Outs[I].OrigArgIndex;
1263       assert (Outs[I].PartOffset == 0);
1264       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1265         SDValue PartValue = OutVals[I + 1];
1266         unsigned PartOffset = Outs[I + 1].PartOffset;
1267         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1268                                       DAG.getIntPtrConstant(PartOffset, DL));
1269         MemOpChains.push_back(
1270             DAG.getStore(Chain, DL, PartValue, Address,
1271                          MachinePointerInfo::getFixedStack(MF, FI)));
1272         ++I;
1273       }
1274       ArgValue = SpillSlot;
1275     } else
1276       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1277 
1278     if (VA.isRegLoc())
1279       // Queue up the argument copies and emit them at the end.
1280       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1281     else {
1282       assert(VA.isMemLoc() && "Argument not register or memory");
1283 
1284       // Work out the address of the stack slot.  Unpromoted ints and
1285       // floats are passed as right-justified 8-byte values.
1286       if (!StackPtr.getNode())
1287         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1288       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1289       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1290         Offset += 4;
1291       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1292                                     DAG.getIntPtrConstant(Offset, DL));
1293 
1294       // Emit the store.
1295       MemOpChains.push_back(
1296           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1297     }
1298   }
1299 
1300   // Join the stores, which are independent of one another.
1301   if (!MemOpChains.empty())
1302     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1303 
1304   // Accept direct calls by converting symbolic call addresses to the
1305   // associated Target* opcodes.  Force %r1 to be used for indirect
1306   // tail calls.
1307   SDValue Glue;
1308   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1309     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1310     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1311   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1312     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1313     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1314   } else if (IsTailCall) {
1315     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1316     Glue = Chain.getValue(1);
1317     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1318   }
1319 
1320   // Build a sequence of copy-to-reg nodes, chained and glued together.
1321   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1322     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1323                              RegsToPass[I].second, Glue);
1324     Glue = Chain.getValue(1);
1325   }
1326 
1327   // The first call operand is the chain and the second is the target address.
1328   SmallVector<SDValue, 8> Ops;
1329   Ops.push_back(Chain);
1330   Ops.push_back(Callee);
1331 
1332   // Add argument registers to the end of the list so that they are
1333   // known live into the call.
1334   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1335     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1336                                   RegsToPass[I].second.getValueType()));
1337 
1338   // Add a register mask operand representing the call-preserved registers.
1339   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1340   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1341   assert(Mask && "Missing call preserved mask for calling convention");
1342   Ops.push_back(DAG.getRegisterMask(Mask));
1343 
1344   // Glue the call to the argument copies, if any.
1345   if (Glue.getNode())
1346     Ops.push_back(Glue);
1347 
1348   // Emit the call.
1349   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1350   if (IsTailCall)
1351     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1352   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1353   Glue = Chain.getValue(1);
1354 
1355   // Mark the end of the call, which is glued to the call itself.
1356   Chain = DAG.getCALLSEQ_END(Chain,
1357                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1358                              DAG.getConstant(0, DL, PtrVT, true),
1359                              Glue, DL);
1360   Glue = Chain.getValue(1);
1361 
1362   // Assign locations to each value returned by this call.
1363   SmallVector<CCValAssign, 16> RetLocs;
1364   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1365   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1366 
1367   // Copy all of the result registers out of their specified physreg.
1368   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1369     CCValAssign &VA = RetLocs[I];
1370 
1371     // Copy the value out, gluing the copy to the end of the call sequence.
1372     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1373                                           VA.getLocVT(), Glue);
1374     Chain = RetValue.getValue(1);
1375     Glue = RetValue.getValue(2);
1376 
1377     // Convert the value of the return register into the value that's
1378     // being returned.
1379     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1380   }
1381 
1382   return Chain;
1383 }
1384 
1385 bool SystemZTargetLowering::
1386 CanLowerReturn(CallingConv::ID CallConv,
1387                MachineFunction &MF, bool isVarArg,
1388                const SmallVectorImpl<ISD::OutputArg> &Outs,
1389                LLVMContext &Context) const {
1390   // Detect unsupported vector return types.
1391   if (Subtarget.hasVector())
1392     VerifyVectorTypes(Outs);
1393 
1394   // Special case that we cannot easily detect in RetCC_SystemZ since
1395   // i128 is not a legal type.
1396   for (auto &Out : Outs)
1397     if (Out.ArgVT == MVT::i128)
1398       return false;
1399 
1400   SmallVector<CCValAssign, 16> RetLocs;
1401   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1402   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1403 }
1404 
1405 SDValue
1406 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1407                                    bool IsVarArg,
1408                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1409                                    const SmallVectorImpl<SDValue> &OutVals,
1410                                    const SDLoc &DL, SelectionDAG &DAG) const {
1411   MachineFunction &MF = DAG.getMachineFunction();
1412 
1413   // Detect unsupported vector return types.
1414   if (Subtarget.hasVector())
1415     VerifyVectorTypes(Outs);
1416 
1417   // Assign locations to each returned value.
1418   SmallVector<CCValAssign, 16> RetLocs;
1419   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1420   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1421 
1422   // Quick exit for void returns
1423   if (RetLocs.empty())
1424     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1425 
1426   // Copy the result values into the output registers.
1427   SDValue Glue;
1428   SmallVector<SDValue, 4> RetOps;
1429   RetOps.push_back(Chain);
1430   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1431     CCValAssign &VA = RetLocs[I];
1432     SDValue RetValue = OutVals[I];
1433 
1434     // Make the return register live on exit.
1435     assert(VA.isRegLoc() && "Can only return in registers!");
1436 
1437     // Promote the value as required.
1438     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1439 
1440     // Chain and glue the copies together.
1441     unsigned Reg = VA.getLocReg();
1442     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1443     Glue = Chain.getValue(1);
1444     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1445   }
1446 
1447   // Update chain and glue.
1448   RetOps[0] = Chain;
1449   if (Glue.getNode())
1450     RetOps.push_back(Glue);
1451 
1452   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1453 }
1454 
1455 // Return true if Op is an intrinsic node with chain that returns the CC value
1456 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1457 // the mask of valid CC values if so.
1458 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1459                                       unsigned &CCValid) {
1460   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1461   switch (Id) {
1462   case Intrinsic::s390_tbegin:
1463     Opcode = SystemZISD::TBEGIN;
1464     CCValid = SystemZ::CCMASK_TBEGIN;
1465     return true;
1466 
1467   case Intrinsic::s390_tbegin_nofloat:
1468     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1469     CCValid = SystemZ::CCMASK_TBEGIN;
1470     return true;
1471 
1472   case Intrinsic::s390_tend:
1473     Opcode = SystemZISD::TEND;
1474     CCValid = SystemZ::CCMASK_TEND;
1475     return true;
1476 
1477   default:
1478     return false;
1479   }
1480 }
1481 
1482 // Return true if Op is an intrinsic node without chain that returns the
1483 // CC value as its final argument.  Provide the associated SystemZISD
1484 // opcode and the mask of valid CC values if so.
1485 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1486   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1487   switch (Id) {
1488   case Intrinsic::s390_vpkshs:
1489   case Intrinsic::s390_vpksfs:
1490   case Intrinsic::s390_vpksgs:
1491     Opcode = SystemZISD::PACKS_CC;
1492     CCValid = SystemZ::CCMASK_VCMP;
1493     return true;
1494 
1495   case Intrinsic::s390_vpklshs:
1496   case Intrinsic::s390_vpklsfs:
1497   case Intrinsic::s390_vpklsgs:
1498     Opcode = SystemZISD::PACKLS_CC;
1499     CCValid = SystemZ::CCMASK_VCMP;
1500     return true;
1501 
1502   case Intrinsic::s390_vceqbs:
1503   case Intrinsic::s390_vceqhs:
1504   case Intrinsic::s390_vceqfs:
1505   case Intrinsic::s390_vceqgs:
1506     Opcode = SystemZISD::VICMPES;
1507     CCValid = SystemZ::CCMASK_VCMP;
1508     return true;
1509 
1510   case Intrinsic::s390_vchbs:
1511   case Intrinsic::s390_vchhs:
1512   case Intrinsic::s390_vchfs:
1513   case Intrinsic::s390_vchgs:
1514     Opcode = SystemZISD::VICMPHS;
1515     CCValid = SystemZ::CCMASK_VCMP;
1516     return true;
1517 
1518   case Intrinsic::s390_vchlbs:
1519   case Intrinsic::s390_vchlhs:
1520   case Intrinsic::s390_vchlfs:
1521   case Intrinsic::s390_vchlgs:
1522     Opcode = SystemZISD::VICMPHLS;
1523     CCValid = SystemZ::CCMASK_VCMP;
1524     return true;
1525 
1526   case Intrinsic::s390_vtm:
1527     Opcode = SystemZISD::VTM;
1528     CCValid = SystemZ::CCMASK_VCMP;
1529     return true;
1530 
1531   case Intrinsic::s390_vfaebs:
1532   case Intrinsic::s390_vfaehs:
1533   case Intrinsic::s390_vfaefs:
1534     Opcode = SystemZISD::VFAE_CC;
1535     CCValid = SystemZ::CCMASK_ANY;
1536     return true;
1537 
1538   case Intrinsic::s390_vfaezbs:
1539   case Intrinsic::s390_vfaezhs:
1540   case Intrinsic::s390_vfaezfs:
1541     Opcode = SystemZISD::VFAEZ_CC;
1542     CCValid = SystemZ::CCMASK_ANY;
1543     return true;
1544 
1545   case Intrinsic::s390_vfeebs:
1546   case Intrinsic::s390_vfeehs:
1547   case Intrinsic::s390_vfeefs:
1548     Opcode = SystemZISD::VFEE_CC;
1549     CCValid = SystemZ::CCMASK_ANY;
1550     return true;
1551 
1552   case Intrinsic::s390_vfeezbs:
1553   case Intrinsic::s390_vfeezhs:
1554   case Intrinsic::s390_vfeezfs:
1555     Opcode = SystemZISD::VFEEZ_CC;
1556     CCValid = SystemZ::CCMASK_ANY;
1557     return true;
1558 
1559   case Intrinsic::s390_vfenebs:
1560   case Intrinsic::s390_vfenehs:
1561   case Intrinsic::s390_vfenefs:
1562     Opcode = SystemZISD::VFENE_CC;
1563     CCValid = SystemZ::CCMASK_ANY;
1564     return true;
1565 
1566   case Intrinsic::s390_vfenezbs:
1567   case Intrinsic::s390_vfenezhs:
1568   case Intrinsic::s390_vfenezfs:
1569     Opcode = SystemZISD::VFENEZ_CC;
1570     CCValid = SystemZ::CCMASK_ANY;
1571     return true;
1572 
1573   case Intrinsic::s390_vistrbs:
1574   case Intrinsic::s390_vistrhs:
1575   case Intrinsic::s390_vistrfs:
1576     Opcode = SystemZISD::VISTR_CC;
1577     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1578     return true;
1579 
1580   case Intrinsic::s390_vstrcbs:
1581   case Intrinsic::s390_vstrchs:
1582   case Intrinsic::s390_vstrcfs:
1583     Opcode = SystemZISD::VSTRC_CC;
1584     CCValid = SystemZ::CCMASK_ANY;
1585     return true;
1586 
1587   case Intrinsic::s390_vstrczbs:
1588   case Intrinsic::s390_vstrczhs:
1589   case Intrinsic::s390_vstrczfs:
1590     Opcode = SystemZISD::VSTRCZ_CC;
1591     CCValid = SystemZ::CCMASK_ANY;
1592     return true;
1593 
1594   case Intrinsic::s390_vfcedbs:
1595   case Intrinsic::s390_vfcesbs:
1596     Opcode = SystemZISD::VFCMPES;
1597     CCValid = SystemZ::CCMASK_VCMP;
1598     return true;
1599 
1600   case Intrinsic::s390_vfchdbs:
1601   case Intrinsic::s390_vfchsbs:
1602     Opcode = SystemZISD::VFCMPHS;
1603     CCValid = SystemZ::CCMASK_VCMP;
1604     return true;
1605 
1606   case Intrinsic::s390_vfchedbs:
1607   case Intrinsic::s390_vfchesbs:
1608     Opcode = SystemZISD::VFCMPHES;
1609     CCValid = SystemZ::CCMASK_VCMP;
1610     return true;
1611 
1612   case Intrinsic::s390_vftcidb:
1613   case Intrinsic::s390_vftcisb:
1614     Opcode = SystemZISD::VFTCI;
1615     CCValid = SystemZ::CCMASK_VCMP;
1616     return true;
1617 
1618   case Intrinsic::s390_tdc:
1619     Opcode = SystemZISD::TDC;
1620     CCValid = SystemZ::CCMASK_TDC;
1621     return true;
1622 
1623   default:
1624     return false;
1625   }
1626 }
1627 
1628 // Emit an intrinsic with chain with a glued value instead of its CC result.
1629 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op,
1630                                              unsigned Opcode) {
1631   // Copy all operands except the intrinsic ID.
1632   unsigned NumOps = Op.getNumOperands();
1633   SmallVector<SDValue, 6> Ops;
1634   Ops.reserve(NumOps - 1);
1635   Ops.push_back(Op.getOperand(0));
1636   for (unsigned I = 2; I < NumOps; ++I)
1637     Ops.push_back(Op.getOperand(I));
1638 
1639   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1640   SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1641   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1642   SDValue OldChain = SDValue(Op.getNode(), 1);
1643   SDValue NewChain = SDValue(Intr.getNode(), 0);
1644   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1645   return Intr;
1646 }
1647 
1648 // Emit an intrinsic with a glued value instead of its CC result.
1649 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op,
1650                                      unsigned Opcode) {
1651   // Copy all operands except the intrinsic ID.
1652   unsigned NumOps = Op.getNumOperands();
1653   SmallVector<SDValue, 6> Ops;
1654   Ops.reserve(NumOps - 1);
1655   for (unsigned I = 1; I < NumOps; ++I)
1656     Ops.push_back(Op.getOperand(I));
1657 
1658   if (Op->getNumValues() == 1)
1659     return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops);
1660   assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result");
1661   SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue);
1662   return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1663 }
1664 
1665 // CC is a comparison that will be implemented using an integer or
1666 // floating-point comparison.  Return the condition code mask for
1667 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1668 // unsigned comparisons and clear for signed ones.  In the floating-point
1669 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1670 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1671 #define CONV(X) \
1672   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1673   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1674   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1675 
1676   switch (CC) {
1677   default:
1678     llvm_unreachable("Invalid integer condition!");
1679 
1680   CONV(EQ);
1681   CONV(NE);
1682   CONV(GT);
1683   CONV(GE);
1684   CONV(LT);
1685   CONV(LE);
1686 
1687   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1688   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1689   }
1690 #undef CONV
1691 }
1692 
1693 // If C can be converted to a comparison against zero, adjust the operands
1694 // as necessary.
1695 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1696   if (C.ICmpType == SystemZICMP::UnsignedOnly)
1697     return;
1698 
1699   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1700   if (!ConstOp1)
1701     return;
1702 
1703   int64_t Value = ConstOp1->getSExtValue();
1704   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1705       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1706       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1707       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1708     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1709     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1710   }
1711 }
1712 
1713 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1714 // adjust the operands as necessary.
1715 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1716                              Comparison &C) {
1717   // For us to make any changes, it must a comparison between a single-use
1718   // load and a constant.
1719   if (!C.Op0.hasOneUse() ||
1720       C.Op0.getOpcode() != ISD::LOAD ||
1721       C.Op1.getOpcode() != ISD::Constant)
1722     return;
1723 
1724   // We must have an 8- or 16-bit load.
1725   auto *Load = cast<LoadSDNode>(C.Op0);
1726   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1727   if (NumBits != 8 && NumBits != 16)
1728     return;
1729 
1730   // The load must be an extending one and the constant must be within the
1731   // range of the unextended value.
1732   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1733   uint64_t Value = ConstOp1->getZExtValue();
1734   uint64_t Mask = (1 << NumBits) - 1;
1735   if (Load->getExtensionType() == ISD::SEXTLOAD) {
1736     // Make sure that ConstOp1 is in range of C.Op0.
1737     int64_t SignedValue = ConstOp1->getSExtValue();
1738     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1739       return;
1740     if (C.ICmpType != SystemZICMP::SignedOnly) {
1741       // Unsigned comparison between two sign-extended values is equivalent
1742       // to unsigned comparison between two zero-extended values.
1743       Value &= Mask;
1744     } else if (NumBits == 8) {
1745       // Try to treat the comparison as unsigned, so that we can use CLI.
1746       // Adjust CCMask and Value as necessary.
1747       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1748         // Test whether the high bit of the byte is set.
1749         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1750       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1751         // Test whether the high bit of the byte is clear.
1752         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1753       else
1754         // No instruction exists for this combination.
1755         return;
1756       C.ICmpType = SystemZICMP::UnsignedOnly;
1757     }
1758   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1759     if (Value > Mask)
1760       return;
1761     // If the constant is in range, we can use any comparison.
1762     C.ICmpType = SystemZICMP::Any;
1763   } else
1764     return;
1765 
1766   // Make sure that the first operand is an i32 of the right extension type.
1767   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1768                               ISD::SEXTLOAD :
1769                               ISD::ZEXTLOAD);
1770   if (C.Op0.getValueType() != MVT::i32 ||
1771       Load->getExtensionType() != ExtType) {
1772     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
1773                            Load->getBasePtr(), Load->getPointerInfo(),
1774                            Load->getMemoryVT(), Load->getAlignment(),
1775                            Load->getMemOperand()->getFlags());
1776     // Update the chain uses.
1777     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
1778   }
1779 
1780   // Make sure that the second operand is an i32 with the right value.
1781   if (C.Op1.getValueType() != MVT::i32 ||
1782       Value != ConstOp1->getZExtValue())
1783     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1784 }
1785 
1786 // Return true if Op is either an unextended load, or a load suitable
1787 // for integer register-memory comparisons of type ICmpType.
1788 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1789   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1790   if (Load) {
1791     // There are no instructions to compare a register with a memory byte.
1792     if (Load->getMemoryVT() == MVT::i8)
1793       return false;
1794     // Otherwise decide on extension type.
1795     switch (Load->getExtensionType()) {
1796     case ISD::NON_EXTLOAD:
1797       return true;
1798     case ISD::SEXTLOAD:
1799       return ICmpType != SystemZICMP::UnsignedOnly;
1800     case ISD::ZEXTLOAD:
1801       return ICmpType != SystemZICMP::SignedOnly;
1802     default:
1803       break;
1804     }
1805   }
1806   return false;
1807 }
1808 
1809 // Return true if it is better to swap the operands of C.
1810 static bool shouldSwapCmpOperands(const Comparison &C) {
1811   // Leave f128 comparisons alone, since they have no memory forms.
1812   if (C.Op0.getValueType() == MVT::f128)
1813     return false;
1814 
1815   // Always keep a floating-point constant second, since comparisons with
1816   // zero can use LOAD TEST and comparisons with other constants make a
1817   // natural memory operand.
1818   if (isa<ConstantFPSDNode>(C.Op1))
1819     return false;
1820 
1821   // Never swap comparisons with zero since there are many ways to optimize
1822   // those later.
1823   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1824   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1825     return false;
1826 
1827   // Also keep natural memory operands second if the loaded value is
1828   // only used here.  Several comparisons have memory forms.
1829   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1830     return false;
1831 
1832   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1833   // In that case we generally prefer the memory to be second.
1834   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
1835     // The only exceptions are when the second operand is a constant and
1836     // we can use things like CHHSI.
1837     if (!ConstOp1)
1838       return true;
1839     // The unsigned memory-immediate instructions can handle 16-bit
1840     // unsigned integers.
1841     if (C.ICmpType != SystemZICMP::SignedOnly &&
1842         isUInt<16>(ConstOp1->getZExtValue()))
1843       return false;
1844     // The signed memory-immediate instructions can handle 16-bit
1845     // signed integers.
1846     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
1847         isInt<16>(ConstOp1->getSExtValue()))
1848       return false;
1849     return true;
1850   }
1851 
1852   // Try to promote the use of CGFR and CLGFR.
1853   unsigned Opcode0 = C.Op0.getOpcode();
1854   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
1855     return true;
1856   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
1857     return true;
1858   if (C.ICmpType != SystemZICMP::SignedOnly &&
1859       Opcode0 == ISD::AND &&
1860       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
1861       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
1862     return true;
1863 
1864   return false;
1865 }
1866 
1867 // Return a version of comparison CC mask CCMask in which the LT and GT
1868 // actions are swapped.
1869 static unsigned reverseCCMask(unsigned CCMask) {
1870   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
1871           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
1872           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
1873           (CCMask & SystemZ::CCMASK_CMP_UO));
1874 }
1875 
1876 // Check whether C tests for equality between X and Y and whether X - Y
1877 // or Y - X is also computed.  In that case it's better to compare the
1878 // result of the subtraction against zero.
1879 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
1880                                  Comparison &C) {
1881   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
1882       C.CCMask == SystemZ::CCMASK_CMP_NE) {
1883     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1884       SDNode *N = *I;
1885       if (N->getOpcode() == ISD::SUB &&
1886           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
1887            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
1888         C.Op0 = SDValue(N, 0);
1889         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
1890         return;
1891       }
1892     }
1893   }
1894 }
1895 
1896 // Check whether C compares a floating-point value with zero and if that
1897 // floating-point value is also negated.  In this case we can use the
1898 // negation to set CC, so avoiding separate LOAD AND TEST and
1899 // LOAD (NEGATIVE/COMPLEMENT) instructions.
1900 static void adjustForFNeg(Comparison &C) {
1901   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
1902   if (C1 && C1->isZero()) {
1903     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
1904       SDNode *N = *I;
1905       if (N->getOpcode() == ISD::FNEG) {
1906         C.Op0 = SDValue(N, 0);
1907         C.CCMask = reverseCCMask(C.CCMask);
1908         return;
1909       }
1910     }
1911   }
1912 }
1913 
1914 // Check whether C compares (shl X, 32) with 0 and whether X is
1915 // also sign-extended.  In that case it is better to test the result
1916 // of the sign extension using LTGFR.
1917 //
1918 // This case is important because InstCombine transforms a comparison
1919 // with (sext (trunc X)) into a comparison with (shl X, 32).
1920 static void adjustForLTGFR(Comparison &C) {
1921   // Check for a comparison between (shl X, 32) and 0.
1922   if (C.Op0.getOpcode() == ISD::SHL &&
1923       C.Op0.getValueType() == MVT::i64 &&
1924       C.Op1.getOpcode() == ISD::Constant &&
1925       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1926     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
1927     if (C1 && C1->getZExtValue() == 32) {
1928       SDValue ShlOp0 = C.Op0.getOperand(0);
1929       // See whether X has any SIGN_EXTEND_INREG uses.
1930       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
1931         SDNode *N = *I;
1932         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
1933             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
1934           C.Op0 = SDValue(N, 0);
1935           return;
1936         }
1937       }
1938     }
1939   }
1940 }
1941 
1942 // If C compares the truncation of an extending load, try to compare
1943 // the untruncated value instead.  This exposes more opportunities to
1944 // reuse CC.
1945 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
1946                                Comparison &C) {
1947   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
1948       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
1949       C.Op1.getOpcode() == ISD::Constant &&
1950       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
1951     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
1952     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
1953       unsigned Type = L->getExtensionType();
1954       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
1955           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
1956         C.Op0 = C.Op0.getOperand(0);
1957         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
1958       }
1959     }
1960   }
1961 }
1962 
1963 // Return true if shift operation N has an in-range constant shift value.
1964 // Store it in ShiftVal if so.
1965 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
1966   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
1967   if (!Shift)
1968     return false;
1969 
1970   uint64_t Amount = Shift->getZExtValue();
1971   if (Amount >= N.getValueSizeInBits())
1972     return false;
1973 
1974   ShiftVal = Amount;
1975   return true;
1976 }
1977 
1978 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
1979 // instruction and whether the CC value is descriptive enough to handle
1980 // a comparison of type Opcode between the AND result and CmpVal.
1981 // CCMask says which comparison result is being tested and BitSize is
1982 // the number of bits in the operands.  If TEST UNDER MASK can be used,
1983 // return the corresponding CC mask, otherwise return 0.
1984 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
1985                                      uint64_t Mask, uint64_t CmpVal,
1986                                      unsigned ICmpType) {
1987   assert(Mask != 0 && "ANDs with zero should have been removed by now");
1988 
1989   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
1990   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
1991       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
1992     return 0;
1993 
1994   // Work out the masks for the lowest and highest bits.
1995   unsigned HighShift = 63 - countLeadingZeros(Mask);
1996   uint64_t High = uint64_t(1) << HighShift;
1997   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
1998 
1999   // Signed ordered comparisons are effectively unsigned if the sign
2000   // bit is dropped.
2001   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2002 
2003   // Check for equality comparisons with 0, or the equivalent.
2004   if (CmpVal == 0) {
2005     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2006       return SystemZ::CCMASK_TM_ALL_0;
2007     if (CCMask == SystemZ::CCMASK_CMP_NE)
2008       return SystemZ::CCMASK_TM_SOME_1;
2009   }
2010   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2011     if (CCMask == SystemZ::CCMASK_CMP_LT)
2012       return SystemZ::CCMASK_TM_ALL_0;
2013     if (CCMask == SystemZ::CCMASK_CMP_GE)
2014       return SystemZ::CCMASK_TM_SOME_1;
2015   }
2016   if (EffectivelyUnsigned && CmpVal < Low) {
2017     if (CCMask == SystemZ::CCMASK_CMP_LE)
2018       return SystemZ::CCMASK_TM_ALL_0;
2019     if (CCMask == SystemZ::CCMASK_CMP_GT)
2020       return SystemZ::CCMASK_TM_SOME_1;
2021   }
2022 
2023   // Check for equality comparisons with the mask, or the equivalent.
2024   if (CmpVal == Mask) {
2025     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2026       return SystemZ::CCMASK_TM_ALL_1;
2027     if (CCMask == SystemZ::CCMASK_CMP_NE)
2028       return SystemZ::CCMASK_TM_SOME_0;
2029   }
2030   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2031     if (CCMask == SystemZ::CCMASK_CMP_GT)
2032       return SystemZ::CCMASK_TM_ALL_1;
2033     if (CCMask == SystemZ::CCMASK_CMP_LE)
2034       return SystemZ::CCMASK_TM_SOME_0;
2035   }
2036   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2037     if (CCMask == SystemZ::CCMASK_CMP_GE)
2038       return SystemZ::CCMASK_TM_ALL_1;
2039     if (CCMask == SystemZ::CCMASK_CMP_LT)
2040       return SystemZ::CCMASK_TM_SOME_0;
2041   }
2042 
2043   // Check for ordered comparisons with the top bit.
2044   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2045     if (CCMask == SystemZ::CCMASK_CMP_LE)
2046       return SystemZ::CCMASK_TM_MSB_0;
2047     if (CCMask == SystemZ::CCMASK_CMP_GT)
2048       return SystemZ::CCMASK_TM_MSB_1;
2049   }
2050   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2051     if (CCMask == SystemZ::CCMASK_CMP_LT)
2052       return SystemZ::CCMASK_TM_MSB_0;
2053     if (CCMask == SystemZ::CCMASK_CMP_GE)
2054       return SystemZ::CCMASK_TM_MSB_1;
2055   }
2056 
2057   // If there are just two bits, we can do equality checks for Low and High
2058   // as well.
2059   if (Mask == Low + High) {
2060     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2061       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2062     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2063       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2064     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2065       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2066     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2067       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2068   }
2069 
2070   // Looks like we've exhausted our options.
2071   return 0;
2072 }
2073 
2074 // See whether C can be implemented as a TEST UNDER MASK instruction.
2075 // Update the arguments with the TM version if so.
2076 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2077                                    Comparison &C) {
2078   // Check that we have a comparison with a constant.
2079   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2080   if (!ConstOp1)
2081     return;
2082   uint64_t CmpVal = ConstOp1->getZExtValue();
2083 
2084   // Check whether the nonconstant input is an AND with a constant mask.
2085   Comparison NewC(C);
2086   uint64_t MaskVal;
2087   ConstantSDNode *Mask = nullptr;
2088   if (C.Op0.getOpcode() == ISD::AND) {
2089     NewC.Op0 = C.Op0.getOperand(0);
2090     NewC.Op1 = C.Op0.getOperand(1);
2091     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2092     if (!Mask)
2093       return;
2094     MaskVal = Mask->getZExtValue();
2095   } else {
2096     // There is no instruction to compare with a 64-bit immediate
2097     // so use TMHH instead if possible.  We need an unsigned ordered
2098     // comparison with an i64 immediate.
2099     if (NewC.Op0.getValueType() != MVT::i64 ||
2100         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2101         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2102         NewC.ICmpType == SystemZICMP::SignedOnly)
2103       return;
2104     // Convert LE and GT comparisons into LT and GE.
2105     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2106         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2107       if (CmpVal == uint64_t(-1))
2108         return;
2109       CmpVal += 1;
2110       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2111     }
2112     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2113     // be masked off without changing the result.
2114     MaskVal = -(CmpVal & -CmpVal);
2115     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2116   }
2117   if (!MaskVal)
2118     return;
2119 
2120   // Check whether the combination of mask, comparison value and comparison
2121   // type are suitable.
2122   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2123   unsigned NewCCMask, ShiftVal;
2124   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2125       NewC.Op0.getOpcode() == ISD::SHL &&
2126       isSimpleShift(NewC.Op0, ShiftVal) &&
2127       (MaskVal >> ShiftVal != 0) &&
2128       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2129       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2130                                         MaskVal >> ShiftVal,
2131                                         CmpVal >> ShiftVal,
2132                                         SystemZICMP::Any))) {
2133     NewC.Op0 = NewC.Op0.getOperand(0);
2134     MaskVal >>= ShiftVal;
2135   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2136              NewC.Op0.getOpcode() == ISD::SRL &&
2137              isSimpleShift(NewC.Op0, ShiftVal) &&
2138              (MaskVal << ShiftVal != 0) &&
2139              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2140              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2141                                                MaskVal << ShiftVal,
2142                                                CmpVal << ShiftVal,
2143                                                SystemZICMP::UnsignedOnly))) {
2144     NewC.Op0 = NewC.Op0.getOperand(0);
2145     MaskVal <<= ShiftVal;
2146   } else {
2147     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2148                                      NewC.ICmpType);
2149     if (!NewCCMask)
2150       return;
2151   }
2152 
2153   // Go ahead and make the change.
2154   C.Opcode = SystemZISD::TM;
2155   C.Op0 = NewC.Op0;
2156   if (Mask && Mask->getZExtValue() == MaskVal)
2157     C.Op1 = SDValue(Mask, 0);
2158   else
2159     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2160   C.CCValid = SystemZ::CCMASK_TM;
2161   C.CCMask = NewCCMask;
2162 }
2163 
2164 // See whether the comparison argument contains a redundant AND
2165 // and remove it if so.  This sometimes happens due to the generic
2166 // BRCOND expansion.
2167 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2168                                   Comparison &C) {
2169   if (C.Op0.getOpcode() != ISD::AND)
2170     return;
2171   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2172   if (!Mask)
2173     return;
2174   KnownBits Known;
2175   DAG.computeKnownBits(C.Op0.getOperand(0), Known);
2176   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2177     return;
2178 
2179   C.Op0 = C.Op0.getOperand(0);
2180 }
2181 
2182 // Return a Comparison that tests the condition-code result of intrinsic
2183 // node Call against constant integer CC using comparison code Cond.
2184 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2185 // and CCValid is the set of possible condition-code results.
2186 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2187                                   SDValue Call, unsigned CCValid, uint64_t CC,
2188                                   ISD::CondCode Cond) {
2189   Comparison C(Call, SDValue());
2190   C.Opcode = Opcode;
2191   C.CCValid = CCValid;
2192   if (Cond == ISD::SETEQ)
2193     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2194     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2195   else if (Cond == ISD::SETNE)
2196     // ...and the inverse of that.
2197     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2198   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2199     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2200     // always true for CC>3.
2201     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2202   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2203     // ...and the inverse of that.
2204     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2205   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2206     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2207     // always true for CC>3.
2208     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2209   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2210     // ...and the inverse of that.
2211     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2212   else
2213     llvm_unreachable("Unexpected integer comparison type");
2214   C.CCMask &= CCValid;
2215   return C;
2216 }
2217 
2218 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2219 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2220                          ISD::CondCode Cond, const SDLoc &DL) {
2221   if (CmpOp1.getOpcode() == ISD::Constant) {
2222     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2223     unsigned Opcode, CCValid;
2224     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2225         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2226         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2227       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2228     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2229         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2230         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2231       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2232   }
2233   Comparison C(CmpOp0, CmpOp1);
2234   C.CCMask = CCMaskForCondCode(Cond);
2235   if (C.Op0.getValueType().isFloatingPoint()) {
2236     C.CCValid = SystemZ::CCMASK_FCMP;
2237     C.Opcode = SystemZISD::FCMP;
2238     adjustForFNeg(C);
2239   } else {
2240     C.CCValid = SystemZ::CCMASK_ICMP;
2241     C.Opcode = SystemZISD::ICMP;
2242     // Choose the type of comparison.  Equality and inequality tests can
2243     // use either signed or unsigned comparisons.  The choice also doesn't
2244     // matter if both sign bits are known to be clear.  In those cases we
2245     // want to give the main isel code the freedom to choose whichever
2246     // form fits best.
2247     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2248         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2249         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2250       C.ICmpType = SystemZICMP::Any;
2251     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2252       C.ICmpType = SystemZICMP::UnsignedOnly;
2253     else
2254       C.ICmpType = SystemZICMP::SignedOnly;
2255     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2256     adjustForRedundantAnd(DAG, DL, C);
2257     adjustZeroCmp(DAG, DL, C);
2258     adjustSubwordCmp(DAG, DL, C);
2259     adjustForSubtraction(DAG, DL, C);
2260     adjustForLTGFR(C);
2261     adjustICmpTruncate(DAG, DL, C);
2262   }
2263 
2264   if (shouldSwapCmpOperands(C)) {
2265     std::swap(C.Op0, C.Op1);
2266     C.CCMask = reverseCCMask(C.CCMask);
2267   }
2268 
2269   adjustForTestUnderMask(DAG, DL, C);
2270   return C;
2271 }
2272 
2273 // Emit the comparison instruction described by C.
2274 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2275   if (!C.Op1.getNode()) {
2276     SDValue Op;
2277     switch (C.Op0.getOpcode()) {
2278     case ISD::INTRINSIC_W_CHAIN:
2279       Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode);
2280       break;
2281     case ISD::INTRINSIC_WO_CHAIN:
2282       Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode);
2283       break;
2284     default:
2285       llvm_unreachable("Invalid comparison operands");
2286     }
2287     return SDValue(Op.getNode(), Op->getNumValues() - 1);
2288   }
2289   if (C.Opcode == SystemZISD::ICMP)
2290     return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1,
2291                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
2292   if (C.Opcode == SystemZISD::TM) {
2293     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2294                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2295     return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1,
2296                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
2297   }
2298   return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1);
2299 }
2300 
2301 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2302 // 64 bits.  Extend is the extension type to use.  Store the high part
2303 // in Hi and the low part in Lo.
2304 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2305                             SDValue Op0, SDValue Op1, SDValue &Hi,
2306                             SDValue &Lo) {
2307   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2308   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2309   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2310   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2311                    DAG.getConstant(32, DL, MVT::i64));
2312   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2313   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2314 }
2315 
2316 // Lower a binary operation that produces two VT results, one in each
2317 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2318 // and Opcode performs the GR128 operation.  Store the even register result
2319 // in Even and the odd register result in Odd.
2320 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2321                              unsigned Opcode, SDValue Op0, SDValue Op1,
2322                              SDValue &Even, SDValue &Odd) {
2323   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2324   bool Is32Bit = is32Bit(VT);
2325   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2326   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2327 }
2328 
2329 // Return an i32 value that is 1 if the CC value produced by Glue is
2330 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2331 // in CCValid, so other values can be ignored.
2332 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue Glue,
2333                          unsigned CCValid, unsigned CCMask) {
2334   SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32),
2335                     DAG.getConstant(0, DL, MVT::i32),
2336                     DAG.getConstant(CCValid, DL, MVT::i32),
2337                     DAG.getConstant(CCMask, DL, MVT::i32), Glue };
2338   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2339 }
2340 
2341 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2342 // be done directly.  IsFP is true if CC is for a floating-point rather than
2343 // integer comparison.
2344 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2345   switch (CC) {
2346   case ISD::SETOEQ:
2347   case ISD::SETEQ:
2348     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2349 
2350   case ISD::SETOGE:
2351   case ISD::SETGE:
2352     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2353 
2354   case ISD::SETOGT:
2355   case ISD::SETGT:
2356     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2357 
2358   case ISD::SETUGT:
2359     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2360 
2361   default:
2362     return 0;
2363   }
2364 }
2365 
2366 // Return the SystemZISD vector comparison operation for CC or its inverse,
2367 // or 0 if neither can be done directly.  Indicate in Invert whether the
2368 // result is for the inverse of CC.  IsFP is true if CC is for a
2369 // floating-point rather than integer comparison.
2370 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2371                                             bool &Invert) {
2372   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2373     Invert = false;
2374     return Opcode;
2375   }
2376 
2377   CC = ISD::getSetCCInverse(CC, !IsFP);
2378   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2379     Invert = true;
2380     return Opcode;
2381   }
2382 
2383   return 0;
2384 }
2385 
2386 // Return a v2f64 that contains the extended form of elements Start and Start+1
2387 // of v4f32 value Op.
2388 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2389                                   SDValue Op) {
2390   int Mask[] = { Start, -1, Start + 1, -1 };
2391   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2392   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2393 }
2394 
2395 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2396 // producing a result of type VT.
2397 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2398                                             const SDLoc &DL, EVT VT,
2399                                             SDValue CmpOp0,
2400                                             SDValue CmpOp1) const {
2401   // There is no hardware support for v4f32 (unless we have the vector
2402   // enhancements facility 1), so extend the vector into two v2f64s
2403   // and compare those.
2404   if (CmpOp0.getValueType() == MVT::v4f32 &&
2405       !Subtarget.hasVectorEnhancements1()) {
2406     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2407     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2408     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2409     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2410     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2411     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2412     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2413   }
2414   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2415 }
2416 
2417 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2418 // an integer mask of type VT.
2419 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2420                                                 const SDLoc &DL, EVT VT,
2421                                                 ISD::CondCode CC,
2422                                                 SDValue CmpOp0,
2423                                                 SDValue CmpOp1) const {
2424   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2425   bool Invert = false;
2426   SDValue Cmp;
2427   switch (CC) {
2428     // Handle tests for order using (or (ogt y x) (oge x y)).
2429   case ISD::SETUO:
2430     Invert = true;
2431     LLVM_FALLTHROUGH;
2432   case ISD::SETO: {
2433     assert(IsFP && "Unexpected integer comparison");
2434     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2435     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2436     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2437     break;
2438   }
2439 
2440     // Handle <> tests using (or (ogt y x) (ogt x y)).
2441   case ISD::SETUEQ:
2442     Invert = true;
2443     LLVM_FALLTHROUGH;
2444   case ISD::SETONE: {
2445     assert(IsFP && "Unexpected integer comparison");
2446     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2447     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2448     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2449     break;
2450   }
2451 
2452     // Otherwise a single comparison is enough.  It doesn't really
2453     // matter whether we try the inversion or the swap first, since
2454     // there are no cases where both work.
2455   default:
2456     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2457       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2458     else {
2459       CC = ISD::getSetCCSwappedOperands(CC);
2460       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2461         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2462       else
2463         llvm_unreachable("Unhandled comparison");
2464     }
2465     break;
2466   }
2467   if (Invert) {
2468     SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
2469                                DAG.getConstant(65535, DL, MVT::i32));
2470     Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask);
2471     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2472   }
2473   return Cmp;
2474 }
2475 
2476 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2477                                           SelectionDAG &DAG) const {
2478   SDValue CmpOp0   = Op.getOperand(0);
2479   SDValue CmpOp1   = Op.getOperand(1);
2480   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2481   SDLoc DL(Op);
2482   EVT VT = Op.getValueType();
2483   if (VT.isVector())
2484     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2485 
2486   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2487   SDValue Glue = emitCmp(DAG, DL, C);
2488   return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask);
2489 }
2490 
2491 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2492   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2493   SDValue CmpOp0   = Op.getOperand(2);
2494   SDValue CmpOp1   = Op.getOperand(3);
2495   SDValue Dest     = Op.getOperand(4);
2496   SDLoc DL(Op);
2497 
2498   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2499   SDValue Glue = emitCmp(DAG, DL, C);
2500   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2501                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2502                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue);
2503 }
2504 
2505 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2506 // allowing Pos and Neg to be wider than CmpOp.
2507 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2508   return (Neg.getOpcode() == ISD::SUB &&
2509           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2510           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2511           Neg.getOperand(1) == Pos &&
2512           (Pos == CmpOp ||
2513            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2514             Pos.getOperand(0) == CmpOp)));
2515 }
2516 
2517 // Return the absolute or negative absolute of Op; IsNegative decides which.
2518 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2519                            bool IsNegative) {
2520   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2521   if (IsNegative)
2522     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2523                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2524   return Op;
2525 }
2526 
2527 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2528                                               SelectionDAG &DAG) const {
2529   SDValue CmpOp0   = Op.getOperand(0);
2530   SDValue CmpOp1   = Op.getOperand(1);
2531   SDValue TrueOp   = Op.getOperand(2);
2532   SDValue FalseOp  = Op.getOperand(3);
2533   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2534   SDLoc DL(Op);
2535 
2536   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2537 
2538   // Check for absolute and negative-absolute selections, including those
2539   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2540   // This check supplements the one in DAGCombiner.
2541   if (C.Opcode == SystemZISD::ICMP &&
2542       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2543       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2544       C.Op1.getOpcode() == ISD::Constant &&
2545       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2546     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2547       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2548     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2549       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2550   }
2551 
2552   SDValue Glue = emitCmp(DAG, DL, C);
2553   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2554                    DAG.getConstant(C.CCMask, DL, MVT::i32), Glue};
2555 
2556   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2557 }
2558 
2559 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2560                                                   SelectionDAG &DAG) const {
2561   SDLoc DL(Node);
2562   const GlobalValue *GV = Node->getGlobal();
2563   int64_t Offset = Node->getOffset();
2564   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2565   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2566 
2567   SDValue Result;
2568   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2569     // Assign anchors at 1<<12 byte boundaries.
2570     uint64_t Anchor = Offset & ~uint64_t(0xfff);
2571     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2572     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2573 
2574     // The offset can be folded into the address if it is aligned to a halfword.
2575     Offset -= Anchor;
2576     if (Offset != 0 && (Offset & 1) == 0) {
2577       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2578       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2579       Offset = 0;
2580     }
2581   } else {
2582     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2583     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2584     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2585                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2586   }
2587 
2588   // If there was a non-zero offset that we didn't fold, create an explicit
2589   // addition for it.
2590   if (Offset != 0)
2591     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2592                          DAG.getConstant(Offset, DL, PtrVT));
2593 
2594   return Result;
2595 }
2596 
2597 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2598                                                  SelectionDAG &DAG,
2599                                                  unsigned Opcode,
2600                                                  SDValue GOTOffset) const {
2601   SDLoc DL(Node);
2602   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2603   SDValue Chain = DAG.getEntryNode();
2604   SDValue Glue;
2605 
2606   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2607   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2608   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2609   Glue = Chain.getValue(1);
2610   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2611   Glue = Chain.getValue(1);
2612 
2613   // The first call operand is the chain and the second is the TLS symbol.
2614   SmallVector<SDValue, 8> Ops;
2615   Ops.push_back(Chain);
2616   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2617                                            Node->getValueType(0),
2618                                            0, 0));
2619 
2620   // Add argument registers to the end of the list so that they are
2621   // known live into the call.
2622   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2623   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2624 
2625   // Add a register mask operand representing the call-preserved registers.
2626   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2627   const uint32_t *Mask =
2628       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2629   assert(Mask && "Missing call preserved mask for calling convention");
2630   Ops.push_back(DAG.getRegisterMask(Mask));
2631 
2632   // Glue the call to the argument copies.
2633   Ops.push_back(Glue);
2634 
2635   // Emit the call.
2636   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2637   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2638   Glue = Chain.getValue(1);
2639 
2640   // Copy the return value from %r2.
2641   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2642 }
2643 
2644 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2645                                                   SelectionDAG &DAG) const {
2646   SDValue Chain = DAG.getEntryNode();
2647   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2648 
2649   // The high part of the thread pointer is in access register 0.
2650   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
2651   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2652 
2653   // The low part of the thread pointer is in access register 1.
2654   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
2655   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2656 
2657   // Merge them into a single 64-bit address.
2658   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2659                                     DAG.getConstant(32, DL, PtrVT));
2660   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2661 }
2662 
2663 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2664                                                      SelectionDAG &DAG) const {
2665   if (DAG.getTarget().Options.EmulatedTLS)
2666     return LowerToTLSEmulatedModel(Node, DAG);
2667   SDLoc DL(Node);
2668   const GlobalValue *GV = Node->getGlobal();
2669   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2670   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2671 
2672   SDValue TP = lowerThreadPointer(DL, DAG);
2673 
2674   // Get the offset of GA from the thread pointer, based on the TLS model.
2675   SDValue Offset;
2676   switch (model) {
2677     case TLSModel::GeneralDynamic: {
2678       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2679       SystemZConstantPoolValue *CPV =
2680         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2681 
2682       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2683       Offset = DAG.getLoad(
2684           PtrVT, DL, DAG.getEntryNode(), Offset,
2685           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2686 
2687       // Call __tls_get_offset to retrieve the offset.
2688       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2689       break;
2690     }
2691 
2692     case TLSModel::LocalDynamic: {
2693       // Load the GOT offset of the module ID.
2694       SystemZConstantPoolValue *CPV =
2695         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2696 
2697       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2698       Offset = DAG.getLoad(
2699           PtrVT, DL, DAG.getEntryNode(), Offset,
2700           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2701 
2702       // Call __tls_get_offset to retrieve the module base offset.
2703       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2704 
2705       // Note: The SystemZLDCleanupPass will remove redundant computations
2706       // of the module base offset.  Count total number of local-dynamic
2707       // accesses to trigger execution of that pass.
2708       SystemZMachineFunctionInfo* MFI =
2709         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2710       MFI->incNumLocalDynamicTLSAccesses();
2711 
2712       // Add the per-symbol offset.
2713       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2714 
2715       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2716       DTPOffset = DAG.getLoad(
2717           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2718           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2719 
2720       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2721       break;
2722     }
2723 
2724     case TLSModel::InitialExec: {
2725       // Load the offset from the GOT.
2726       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2727                                           SystemZII::MO_INDNTPOFF);
2728       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2729       Offset =
2730           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2731                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2732       break;
2733     }
2734 
2735     case TLSModel::LocalExec: {
2736       // Force the offset into the constant pool and load it from there.
2737       SystemZConstantPoolValue *CPV =
2738         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2739 
2740       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2741       Offset = DAG.getLoad(
2742           PtrVT, DL, DAG.getEntryNode(), Offset,
2743           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2744       break;
2745     }
2746   }
2747 
2748   // Add the base and offset together.
2749   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2750 }
2751 
2752 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2753                                                  SelectionDAG &DAG) const {
2754   SDLoc DL(Node);
2755   const BlockAddress *BA = Node->getBlockAddress();
2756   int64_t Offset = Node->getOffset();
2757   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2758 
2759   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2760   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2761   return Result;
2762 }
2763 
2764 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2765                                               SelectionDAG &DAG) const {
2766   SDLoc DL(JT);
2767   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2768   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2769 
2770   // Use LARL to load the address of the table.
2771   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2772 }
2773 
2774 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2775                                                  SelectionDAG &DAG) const {
2776   SDLoc DL(CP);
2777   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2778 
2779   SDValue Result;
2780   if (CP->isMachineConstantPoolEntry())
2781     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2782                                        CP->getAlignment());
2783   else
2784     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2785                                        CP->getAlignment(), CP->getOffset());
2786 
2787   // Use LARL to load the address of the constant pool entry.
2788   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2789 }
2790 
2791 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
2792                                               SelectionDAG &DAG) const {
2793   MachineFunction &MF = DAG.getMachineFunction();
2794   MachineFrameInfo &MFI = MF.getFrameInfo();
2795   MFI.setFrameAddressIsTaken(true);
2796 
2797   SDLoc DL(Op);
2798   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2799   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2800 
2801   // If the back chain frame index has not been allocated yet, do so.
2802   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
2803   int BackChainIdx = FI->getFramePointerSaveIndex();
2804   if (!BackChainIdx) {
2805     // By definition, the frame address is the address of the back chain.
2806     BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
2807     FI->setFramePointerSaveIndex(BackChainIdx);
2808   }
2809   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
2810 
2811   // FIXME The frontend should detect this case.
2812   if (Depth > 0) {
2813     report_fatal_error("Unsupported stack frame traversal count");
2814   }
2815 
2816   return BackChain;
2817 }
2818 
2819 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
2820                                                SelectionDAG &DAG) const {
2821   MachineFunction &MF = DAG.getMachineFunction();
2822   MachineFrameInfo &MFI = MF.getFrameInfo();
2823   MFI.setReturnAddressIsTaken(true);
2824 
2825   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2826     return SDValue();
2827 
2828   SDLoc DL(Op);
2829   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2830   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2831 
2832   // FIXME The frontend should detect this case.
2833   if (Depth > 0) {
2834     report_fatal_error("Unsupported stack frame traversal count");
2835   }
2836 
2837   // Return R14D, which has the return address. Mark it an implicit live-in.
2838   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
2839   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
2840 }
2841 
2842 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
2843                                             SelectionDAG &DAG) const {
2844   SDLoc DL(Op);
2845   SDValue In = Op.getOperand(0);
2846   EVT InVT = In.getValueType();
2847   EVT ResVT = Op.getValueType();
2848 
2849   // Convert loads directly.  This is normally done by DAGCombiner,
2850   // but we need this case for bitcasts that are created during lowering
2851   // and which are then lowered themselves.
2852   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
2853     if (ISD::isNormalLoad(LoadN)) {
2854       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
2855                                     LoadN->getBasePtr(), LoadN->getMemOperand());
2856       // Update the chain uses.
2857       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
2858       return NewLoad;
2859     }
2860 
2861   if (InVT == MVT::i32 && ResVT == MVT::f32) {
2862     SDValue In64;
2863     if (Subtarget.hasHighWord()) {
2864       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
2865                                        MVT::i64);
2866       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
2867                                        MVT::i64, SDValue(U64, 0), In);
2868     } else {
2869       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
2870       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
2871                          DAG.getConstant(32, DL, MVT::i64));
2872     }
2873     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
2874     return DAG.getTargetExtractSubreg(SystemZ::subreg_r32,
2875                                       DL, MVT::f32, Out64);
2876   }
2877   if (InVT == MVT::f32 && ResVT == MVT::i32) {
2878     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
2879     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL,
2880                                              MVT::f64, SDValue(U64, 0), In);
2881     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
2882     if (Subtarget.hasHighWord())
2883       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
2884                                         MVT::i32, Out64);
2885     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
2886                                 DAG.getConstant(32, DL, MVT::i64));
2887     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
2888   }
2889   llvm_unreachable("Unexpected bitcast combination");
2890 }
2891 
2892 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
2893                                             SelectionDAG &DAG) const {
2894   MachineFunction &MF = DAG.getMachineFunction();
2895   SystemZMachineFunctionInfo *FuncInfo =
2896     MF.getInfo<SystemZMachineFunctionInfo>();
2897   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2898 
2899   SDValue Chain   = Op.getOperand(0);
2900   SDValue Addr    = Op.getOperand(1);
2901   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
2902   SDLoc DL(Op);
2903 
2904   // The initial values of each field.
2905   const unsigned NumFields = 4;
2906   SDValue Fields[NumFields] = {
2907     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
2908     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
2909     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
2910     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
2911   };
2912 
2913   // Store each field into its respective slot.
2914   SDValue MemOps[NumFields];
2915   unsigned Offset = 0;
2916   for (unsigned I = 0; I < NumFields; ++I) {
2917     SDValue FieldAddr = Addr;
2918     if (Offset != 0)
2919       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
2920                               DAG.getIntPtrConstant(Offset, DL));
2921     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
2922                              MachinePointerInfo(SV, Offset));
2923     Offset += 8;
2924   }
2925   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
2926 }
2927 
2928 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
2929                                            SelectionDAG &DAG) const {
2930   SDValue Chain      = Op.getOperand(0);
2931   SDValue DstPtr     = Op.getOperand(1);
2932   SDValue SrcPtr     = Op.getOperand(2);
2933   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
2934   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
2935   SDLoc DL(Op);
2936 
2937   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
2938                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
2939                        /*isTailCall*/false,
2940                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
2941 }
2942 
2943 SDValue SystemZTargetLowering::
2944 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
2945   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
2946   MachineFunction &MF = DAG.getMachineFunction();
2947   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
2948   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
2949 
2950   SDValue Chain = Op.getOperand(0);
2951   SDValue Size  = Op.getOperand(1);
2952   SDValue Align = Op.getOperand(2);
2953   SDLoc DL(Op);
2954 
2955   // If user has set the no alignment function attribute, ignore
2956   // alloca alignments.
2957   uint64_t AlignVal = (RealignOpt ?
2958                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
2959 
2960   uint64_t StackAlign = TFI->getStackAlignment();
2961   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
2962   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
2963 
2964   unsigned SPReg = getStackPointerRegisterToSaveRestore();
2965   SDValue NeededSpace = Size;
2966 
2967   // Get a reference to the stack pointer.
2968   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
2969 
2970   // If we need a backchain, save it now.
2971   SDValue Backchain;
2972   if (StoreBackchain)
2973     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
2974 
2975   // Add extra space for alignment if needed.
2976   if (ExtraAlignSpace)
2977     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
2978                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
2979 
2980   // Get the new stack pointer value.
2981   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
2982 
2983   // Copy the new stack pointer back.
2984   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
2985 
2986   // The allocated data lives above the 160 bytes allocated for the standard
2987   // frame, plus any outgoing stack arguments.  We don't know how much that
2988   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
2989   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
2990   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
2991 
2992   // Dynamically realign if needed.
2993   if (RequiredAlign > StackAlign) {
2994     Result =
2995       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
2996                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
2997     Result =
2998       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
2999                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3000   }
3001 
3002   if (StoreBackchain)
3003     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3004 
3005   SDValue Ops[2] = { Result, Chain };
3006   return DAG.getMergeValues(Ops, DL);
3007 }
3008 
3009 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3010     SDValue Op, SelectionDAG &DAG) const {
3011   SDLoc DL(Op);
3012 
3013   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3014 }
3015 
3016 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3017                                               SelectionDAG &DAG) const {
3018   EVT VT = Op.getValueType();
3019   SDLoc DL(Op);
3020   SDValue Ops[2];
3021   if (is32Bit(VT))
3022     // Just do a normal 64-bit multiplication and extract the results.
3023     // We define this so that it can be used for constant division.
3024     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3025                     Op.getOperand(1), Ops[1], Ops[0]);
3026   else if (Subtarget.hasMiscellaneousExtensions2())
3027     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3028     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3029     // return the low half first, so the results are in reverse order.
3030     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3031                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3032   else {
3033     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3034     //
3035     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3036     //
3037     // but using the fact that the upper halves are either all zeros
3038     // or all ones:
3039     //
3040     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3041     //
3042     // and grouping the right terms together since they are quicker than the
3043     // multiplication:
3044     //
3045     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3046     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3047     SDValue LL = Op.getOperand(0);
3048     SDValue RL = Op.getOperand(1);
3049     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3050     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3051     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3052     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3053     // return the low half first, so the results are in reverse order.
3054     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3055                      LL, RL, Ops[1], Ops[0]);
3056     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3057     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3058     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3059     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3060   }
3061   return DAG.getMergeValues(Ops, DL);
3062 }
3063 
3064 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3065                                               SelectionDAG &DAG) const {
3066   EVT VT = Op.getValueType();
3067   SDLoc DL(Op);
3068   SDValue Ops[2];
3069   if (is32Bit(VT))
3070     // Just do a normal 64-bit multiplication and extract the results.
3071     // We define this so that it can be used for constant division.
3072     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3073                     Op.getOperand(1), Ops[1], Ops[0]);
3074   else
3075     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3076     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3077     // return the low half first, so the results are in reverse order.
3078     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3079                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3080   return DAG.getMergeValues(Ops, DL);
3081 }
3082 
3083 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3084                                             SelectionDAG &DAG) const {
3085   SDValue Op0 = Op.getOperand(0);
3086   SDValue Op1 = Op.getOperand(1);
3087   EVT VT = Op.getValueType();
3088   SDLoc DL(Op);
3089 
3090   // We use DSGF for 32-bit division.  This means the first operand must
3091   // always be 64-bit, and the second operand should be 32-bit whenever
3092   // that is possible, to improve performance.
3093   if (is32Bit(VT))
3094     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3095   else if (DAG.ComputeNumSignBits(Op1) > 32)
3096     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3097 
3098   // DSG(F) returns the remainder in the even register and the
3099   // quotient in the odd register.
3100   SDValue Ops[2];
3101   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3102   return DAG.getMergeValues(Ops, DL);
3103 }
3104 
3105 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3106                                             SelectionDAG &DAG) const {
3107   EVT VT = Op.getValueType();
3108   SDLoc DL(Op);
3109 
3110   // DL(G) returns the remainder in the even register and the
3111   // quotient in the odd register.
3112   SDValue Ops[2];
3113   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3114                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3115   return DAG.getMergeValues(Ops, DL);
3116 }
3117 
3118 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3119   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3120 
3121   // Get the known-zero masks for each operand.
3122   SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
3123   KnownBits Known[2];
3124   DAG.computeKnownBits(Ops[0], Known[0]);
3125   DAG.computeKnownBits(Ops[1], Known[1]);
3126 
3127   // See if the upper 32 bits of one operand and the lower 32 bits of the
3128   // other are known zero.  They are the low and high operands respectively.
3129   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3130                        Known[1].Zero.getZExtValue() };
3131   unsigned High, Low;
3132   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3133     High = 1, Low = 0;
3134   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3135     High = 0, Low = 1;
3136   else
3137     return Op;
3138 
3139   SDValue LowOp = Ops[Low];
3140   SDValue HighOp = Ops[High];
3141 
3142   // If the high part is a constant, we're better off using IILH.
3143   if (HighOp.getOpcode() == ISD::Constant)
3144     return Op;
3145 
3146   // If the low part is a constant that is outside the range of LHI,
3147   // then we're better off using IILF.
3148   if (LowOp.getOpcode() == ISD::Constant) {
3149     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3150     if (!isInt<16>(Value))
3151       return Op;
3152   }
3153 
3154   // Check whether the high part is an AND that doesn't change the
3155   // high 32 bits and just masks out low bits.  We can skip it if so.
3156   if (HighOp.getOpcode() == ISD::AND &&
3157       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3158     SDValue HighOp0 = HighOp.getOperand(0);
3159     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3160     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3161       HighOp = HighOp0;
3162   }
3163 
3164   // Take advantage of the fact that all GR32 operations only change the
3165   // low 32 bits by truncating Low to an i32 and inserting it directly
3166   // using a subreg.  The interesting cases are those where the truncation
3167   // can be folded.
3168   SDLoc DL(Op);
3169   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3170   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3171                                    MVT::i64, HighOp, Low32);
3172 }
3173 
3174 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3175                                           SelectionDAG &DAG) const {
3176   EVT VT = Op.getValueType();
3177   SDLoc DL(Op);
3178   Op = Op.getOperand(0);
3179 
3180   // Handle vector types via VPOPCT.
3181   if (VT.isVector()) {
3182     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3183     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3184     switch (VT.getScalarSizeInBits()) {
3185     case 8:
3186       break;
3187     case 16: {
3188       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3189       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3190       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3191       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3192       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3193       break;
3194     }
3195     case 32: {
3196       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3197                                 DAG.getConstant(0, DL, MVT::i32));
3198       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3199       break;
3200     }
3201     case 64: {
3202       SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
3203                                 DAG.getConstant(0, DL, MVT::i32));
3204       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3205       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3206       break;
3207     }
3208     default:
3209       llvm_unreachable("Unexpected type");
3210     }
3211     return Op;
3212   }
3213 
3214   // Get the known-zero mask for the operand.
3215   KnownBits Known;
3216   DAG.computeKnownBits(Op, Known);
3217   unsigned NumSignificantBits = (~Known.Zero).getActiveBits();
3218   if (NumSignificantBits == 0)
3219     return DAG.getConstant(0, DL, VT);
3220 
3221   // Skip known-zero high parts of the operand.
3222   int64_t OrigBitSize = VT.getSizeInBits();
3223   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3224   BitSize = std::min(BitSize, OrigBitSize);
3225 
3226   // The POPCNT instruction counts the number of bits in each byte.
3227   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3228   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3229   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3230 
3231   // Add up per-byte counts in a binary tree.  All bits of Op at
3232   // position larger than BitSize remain zero throughout.
3233   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3234     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3235     if (BitSize != OrigBitSize)
3236       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3237                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3238     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3239   }
3240 
3241   // Extract overall result from high byte.
3242   if (BitSize > 8)
3243     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3244                      DAG.getConstant(BitSize - 8, DL, VT));
3245 
3246   return Op;
3247 }
3248 
3249 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3250                                                  SelectionDAG &DAG) const {
3251   SDLoc DL(Op);
3252   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3253     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3254   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3255     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3256 
3257   // The only fence that needs an instruction is a sequentially-consistent
3258   // cross-thread fence.
3259   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3260       FenceSSID == SyncScope::System) {
3261     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3262                                       Op.getOperand(0)),
3263                    0);
3264   }
3265 
3266   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3267   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3268 }
3269 
3270 // Op is an atomic load.  Lower it into a normal volatile load.
3271 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3272                                                 SelectionDAG &DAG) const {
3273   auto *Node = cast<AtomicSDNode>(Op.getNode());
3274   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3275                         Node->getChain(), Node->getBasePtr(),
3276                         Node->getMemoryVT(), Node->getMemOperand());
3277 }
3278 
3279 // Op is an atomic store.  Lower it into a normal volatile store.
3280 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3281                                                  SelectionDAG &DAG) const {
3282   auto *Node = cast<AtomicSDNode>(Op.getNode());
3283   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3284                                     Node->getBasePtr(), Node->getMemoryVT(),
3285                                     Node->getMemOperand());
3286   // We have to enforce sequential consistency by performing a
3287   // serialization operation after the store.
3288   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3289     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3290                                        MVT::Other, Chain), 0);
3291   return Chain;
3292 }
3293 
3294 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3295 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3296 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3297                                                    SelectionDAG &DAG,
3298                                                    unsigned Opcode) const {
3299   auto *Node = cast<AtomicSDNode>(Op.getNode());
3300 
3301   // 32-bit operations need no code outside the main loop.
3302   EVT NarrowVT = Node->getMemoryVT();
3303   EVT WideVT = MVT::i32;
3304   if (NarrowVT == WideVT)
3305     return Op;
3306 
3307   int64_t BitSize = NarrowVT.getSizeInBits();
3308   SDValue ChainIn = Node->getChain();
3309   SDValue Addr = Node->getBasePtr();
3310   SDValue Src2 = Node->getVal();
3311   MachineMemOperand *MMO = Node->getMemOperand();
3312   SDLoc DL(Node);
3313   EVT PtrVT = Addr.getValueType();
3314 
3315   // Convert atomic subtracts of constants into additions.
3316   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3317     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3318       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3319       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3320     }
3321 
3322   // Get the address of the containing word.
3323   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3324                                     DAG.getConstant(-4, DL, PtrVT));
3325 
3326   // Get the number of bits that the word must be rotated left in order
3327   // to bring the field to the top bits of a GR32.
3328   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3329                                  DAG.getConstant(3, DL, PtrVT));
3330   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3331 
3332   // Get the complementing shift amount, for rotating a field in the top
3333   // bits back to its proper position.
3334   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3335                                     DAG.getConstant(0, DL, WideVT), BitShift);
3336 
3337   // Extend the source operand to 32 bits and prepare it for the inner loop.
3338   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3339   // operations require the source to be shifted in advance.  (This shift
3340   // can be folded if the source is constant.)  For AND and NAND, the lower
3341   // bits must be set, while for other opcodes they should be left clear.
3342   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3343     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3344                        DAG.getConstant(32 - BitSize, DL, WideVT));
3345   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3346       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3347     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3348                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3349 
3350   // Construct the ATOMIC_LOADW_* node.
3351   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3352   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3353                     DAG.getConstant(BitSize, DL, WideVT) };
3354   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3355                                              NarrowVT, MMO);
3356 
3357   // Rotate the result of the final CS so that the field is in the lower
3358   // bits of a GR32, then truncate it.
3359   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3360                                     DAG.getConstant(BitSize, DL, WideVT));
3361   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3362 
3363   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3364   return DAG.getMergeValues(RetOps, DL);
3365 }
3366 
3367 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3368 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3369 // operations into additions.
3370 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3371                                                     SelectionDAG &DAG) const {
3372   auto *Node = cast<AtomicSDNode>(Op.getNode());
3373   EVT MemVT = Node->getMemoryVT();
3374   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3375     // A full-width operation.
3376     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3377     SDValue Src2 = Node->getVal();
3378     SDValue NegSrc2;
3379     SDLoc DL(Src2);
3380 
3381     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3382       // Use an addition if the operand is constant and either LAA(G) is
3383       // available or the negative value is in the range of A(G)FHI.
3384       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3385       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3386         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3387     } else if (Subtarget.hasInterlockedAccess1())
3388       // Use LAA(G) if available.
3389       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3390                             Src2);
3391 
3392     if (NegSrc2.getNode())
3393       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3394                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3395                            Node->getMemOperand());
3396 
3397     // Use the node as-is.
3398     return Op;
3399   }
3400 
3401   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3402 }
3403 
3404 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3405 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3406                                                     SelectionDAG &DAG) const {
3407   auto *Node = cast<AtomicSDNode>(Op.getNode());
3408   SDValue ChainIn = Node->getOperand(0);
3409   SDValue Addr = Node->getOperand(1);
3410   SDValue CmpVal = Node->getOperand(2);
3411   SDValue SwapVal = Node->getOperand(3);
3412   MachineMemOperand *MMO = Node->getMemOperand();
3413   SDLoc DL(Node);
3414 
3415   // We have native support for 32-bit and 64-bit compare and swap, but we
3416   // still need to expand extracting the "success" result from the CC.
3417   EVT NarrowVT = Node->getMemoryVT();
3418   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3419   if (NarrowVT == WideVT) {
3420     SDVTList Tys = DAG.getVTList(WideVT, MVT::Other, MVT::Glue);
3421     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3422     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3423                                                DL, Tys, Ops, NarrowVT, MMO);
3424     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(2),
3425                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3426 
3427     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3428     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3429     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(1));
3430     return SDValue();
3431   }
3432 
3433   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3434   // via a fullword ATOMIC_CMP_SWAPW operation.
3435   int64_t BitSize = NarrowVT.getSizeInBits();
3436   EVT PtrVT = Addr.getValueType();
3437 
3438   // Get the address of the containing word.
3439   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3440                                     DAG.getConstant(-4, DL, PtrVT));
3441 
3442   // Get the number of bits that the word must be rotated left in order
3443   // to bring the field to the top bits of a GR32.
3444   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3445                                  DAG.getConstant(3, DL, PtrVT));
3446   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3447 
3448   // Get the complementing shift amount, for rotating a field in the top
3449   // bits back to its proper position.
3450   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3451                                     DAG.getConstant(0, DL, WideVT), BitShift);
3452 
3453   // Construct the ATOMIC_CMP_SWAPW node.
3454   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other, MVT::Glue);
3455   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3456                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3457   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3458                                              VTList, Ops, NarrowVT, MMO);
3459   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(2),
3460                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3461 
3462   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3463   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3464   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(1));
3465   return SDValue();
3466 }
3467 
3468 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3469                                               SelectionDAG &DAG) const {
3470   MachineFunction &MF = DAG.getMachineFunction();
3471   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3472   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3473                             SystemZ::R15D, Op.getValueType());
3474 }
3475 
3476 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3477                                                  SelectionDAG &DAG) const {
3478   MachineFunction &MF = DAG.getMachineFunction();
3479   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3480   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3481 
3482   SDValue Chain = Op.getOperand(0);
3483   SDValue NewSP = Op.getOperand(1);
3484   SDValue Backchain;
3485   SDLoc DL(Op);
3486 
3487   if (StoreBackchain) {
3488     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3489     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3490   }
3491 
3492   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3493 
3494   if (StoreBackchain)
3495     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3496 
3497   return Chain;
3498 }
3499 
3500 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3501                                              SelectionDAG &DAG) const {
3502   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3503   if (!IsData)
3504     // Just preserve the chain.
3505     return Op.getOperand(0);
3506 
3507   SDLoc DL(Op);
3508   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3509   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3510   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3511   SDValue Ops[] = {
3512     Op.getOperand(0),
3513     DAG.getConstant(Code, DL, MVT::i32),
3514     Op.getOperand(1)
3515   };
3516   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3517                                  Node->getVTList(), Ops,
3518                                  Node->getMemoryVT(), Node->getMemOperand());
3519 }
3520 
3521 // Return an i32 that contains the value of CC immediately after After,
3522 // whose final operand must be MVT::Glue.
3523 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) {
3524   SDLoc DL(After);
3525   SDValue Glue = SDValue(After, After->getNumValues() - 1);
3526   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue);
3527   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3528                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3529 }
3530 
3531 SDValue
3532 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3533                                               SelectionDAG &DAG) const {
3534   unsigned Opcode, CCValid;
3535   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3536     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3537     SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode);
3538     SDValue CC = getCCResult(DAG, Glued.getNode());
3539     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3540     return SDValue();
3541   }
3542 
3543   return SDValue();
3544 }
3545 
3546 SDValue
3547 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3548                                                SelectionDAG &DAG) const {
3549   unsigned Opcode, CCValid;
3550   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3551     SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode);
3552     SDValue CC = getCCResult(DAG, Glued.getNode());
3553     if (Op->getNumValues() == 1)
3554       return CC;
3555     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3556     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued,
3557                        CC);
3558   }
3559 
3560   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3561   switch (Id) {
3562   case Intrinsic::thread_pointer:
3563     return lowerThreadPointer(SDLoc(Op), DAG);
3564 
3565   case Intrinsic::s390_vpdi:
3566     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3567                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3568 
3569   case Intrinsic::s390_vperm:
3570     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3571                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3572 
3573   case Intrinsic::s390_vuphb:
3574   case Intrinsic::s390_vuphh:
3575   case Intrinsic::s390_vuphf:
3576     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3577                        Op.getOperand(1));
3578 
3579   case Intrinsic::s390_vuplhb:
3580   case Intrinsic::s390_vuplhh:
3581   case Intrinsic::s390_vuplhf:
3582     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3583                        Op.getOperand(1));
3584 
3585   case Intrinsic::s390_vuplb:
3586   case Intrinsic::s390_vuplhw:
3587   case Intrinsic::s390_vuplf:
3588     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3589                        Op.getOperand(1));
3590 
3591   case Intrinsic::s390_vupllb:
3592   case Intrinsic::s390_vupllh:
3593   case Intrinsic::s390_vupllf:
3594     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3595                        Op.getOperand(1));
3596 
3597   case Intrinsic::s390_vsumb:
3598   case Intrinsic::s390_vsumh:
3599   case Intrinsic::s390_vsumgh:
3600   case Intrinsic::s390_vsumgf:
3601   case Intrinsic::s390_vsumqf:
3602   case Intrinsic::s390_vsumqg:
3603     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3604                        Op.getOperand(1), Op.getOperand(2));
3605   }
3606 
3607   return SDValue();
3608 }
3609 
3610 namespace {
3611 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3612 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
3613 // Operand is the constant third operand, otherwise it is the number of
3614 // bytes in each element of the result.
3615 struct Permute {
3616   unsigned Opcode;
3617   unsigned Operand;
3618   unsigned char Bytes[SystemZ::VectorBytes];
3619 };
3620 }
3621 
3622 static const Permute PermuteForms[] = {
3623   // VMRHG
3624   { SystemZISD::MERGE_HIGH, 8,
3625     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3626   // VMRHF
3627   { SystemZISD::MERGE_HIGH, 4,
3628     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3629   // VMRHH
3630   { SystemZISD::MERGE_HIGH, 2,
3631     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3632   // VMRHB
3633   { SystemZISD::MERGE_HIGH, 1,
3634     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3635   // VMRLG
3636   { SystemZISD::MERGE_LOW, 8,
3637     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3638   // VMRLF
3639   { SystemZISD::MERGE_LOW, 4,
3640     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3641   // VMRLH
3642   { SystemZISD::MERGE_LOW, 2,
3643     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3644   // VMRLB
3645   { SystemZISD::MERGE_LOW, 1,
3646     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3647   // VPKG
3648   { SystemZISD::PACK, 4,
3649     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3650   // VPKF
3651   { SystemZISD::PACK, 2,
3652     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3653   // VPKH
3654   { SystemZISD::PACK, 1,
3655     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3656   // VPDI V1, V2, 4  (low half of V1, high half of V2)
3657   { SystemZISD::PERMUTE_DWORDS, 4,
3658     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3659   // VPDI V1, V2, 1  (high half of V1, low half of V2)
3660   { SystemZISD::PERMUTE_DWORDS, 1,
3661     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3662 };
3663 
3664 // Called after matching a vector shuffle against a particular pattern.
3665 // Both the original shuffle and the pattern have two vector operands.
3666 // OpNos[0] is the operand of the original shuffle that should be used for
3667 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3668 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
3669 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3670 // for operands 0 and 1 of the pattern.
3671 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3672   if (OpNos[0] < 0) {
3673     if (OpNos[1] < 0)
3674       return false;
3675     OpNo0 = OpNo1 = OpNos[1];
3676   } else if (OpNos[1] < 0) {
3677     OpNo0 = OpNo1 = OpNos[0];
3678   } else {
3679     OpNo0 = OpNos[0];
3680     OpNo1 = OpNos[1];
3681   }
3682   return true;
3683 }
3684 
3685 // Bytes is a VPERM-like permute vector, except that -1 is used for
3686 // undefined bytes.  Return true if the VPERM can be implemented using P.
3687 // When returning true set OpNo0 to the VPERM operand that should be
3688 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3689 //
3690 // For example, if swapping the VPERM operands allows P to match, OpNo0
3691 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
3692 // operand, but rewriting it to use two duplicated operands allows it to
3693 // match P, then OpNo0 and OpNo1 will be the same.
3694 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3695                          unsigned &OpNo0, unsigned &OpNo1) {
3696   int OpNos[] = { -1, -1 };
3697   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3698     int Elt = Bytes[I];
3699     if (Elt >= 0) {
3700       // Make sure that the two permute vectors use the same suboperand
3701       // byte number.  Only the operand numbers (the high bits) are
3702       // allowed to differ.
3703       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3704         return false;
3705       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3706       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3707       // Make sure that the operand mappings are consistent with previous
3708       // elements.
3709       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3710         return false;
3711       OpNos[ModelOpNo] = RealOpNo;
3712     }
3713   }
3714   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3715 }
3716 
3717 // As above, but search for a matching permute.
3718 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3719                                    unsigned &OpNo0, unsigned &OpNo1) {
3720   for (auto &P : PermuteForms)
3721     if (matchPermute(Bytes, P, OpNo0, OpNo1))
3722       return &P;
3723   return nullptr;
3724 }
3725 
3726 // Bytes is a VPERM-like permute vector, except that -1 is used for
3727 // undefined bytes.  This permute is an operand of an outer permute.
3728 // See whether redistributing the -1 bytes gives a shuffle that can be
3729 // implemented using P.  If so, set Transform to a VPERM-like permute vector
3730 // that, when applied to the result of P, gives the original permute in Bytes.
3731 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3732                                const Permute &P,
3733                                SmallVectorImpl<int> &Transform) {
3734   unsigned To = 0;
3735   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
3736     int Elt = Bytes[From];
3737     if (Elt < 0)
3738       // Byte number From of the result is undefined.
3739       Transform[From] = -1;
3740     else {
3741       while (P.Bytes[To] != Elt) {
3742         To += 1;
3743         if (To == SystemZ::VectorBytes)
3744           return false;
3745       }
3746       Transform[From] = To;
3747     }
3748   }
3749   return true;
3750 }
3751 
3752 // As above, but search for a matching permute.
3753 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
3754                                          SmallVectorImpl<int> &Transform) {
3755   for (auto &P : PermuteForms)
3756     if (matchDoublePermute(Bytes, P, Transform))
3757       return &P;
3758   return nullptr;
3759 }
3760 
3761 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask,
3762 // as if it had type vNi8.
3763 static void getVPermMask(ShuffleVectorSDNode *VSN,
3764                          SmallVectorImpl<int> &Bytes) {
3765   EVT VT = VSN->getValueType(0);
3766   unsigned NumElements = VT.getVectorNumElements();
3767   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3768   Bytes.resize(NumElements * BytesPerElement, -1);
3769   for (unsigned I = 0; I < NumElements; ++I) {
3770     int Index = VSN->getMaskElt(I);
3771     if (Index >= 0)
3772       for (unsigned J = 0; J < BytesPerElement; ++J)
3773         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
3774   }
3775 }
3776 
3777 // Bytes is a VPERM-like permute vector, except that -1 is used for
3778 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
3779 // the result come from a contiguous sequence of bytes from one input.
3780 // Set Base to the selector for the first byte if so.
3781 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
3782                             unsigned BytesPerElement, int &Base) {
3783   Base = -1;
3784   for (unsigned I = 0; I < BytesPerElement; ++I) {
3785     if (Bytes[Start + I] >= 0) {
3786       unsigned Elem = Bytes[Start + I];
3787       if (Base < 0) {
3788         Base = Elem - I;
3789         // Make sure the bytes would come from one input operand.
3790         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
3791           return false;
3792       } else if (unsigned(Base) != Elem - I)
3793         return false;
3794     }
3795   }
3796   return true;
3797 }
3798 
3799 // Bytes is a VPERM-like permute vector, except that -1 is used for
3800 // undefined bytes.  Return true if it can be performed using VSLDI.
3801 // When returning true, set StartIndex to the shift amount and OpNo0
3802 // and OpNo1 to the VPERM operands that should be used as the first
3803 // and second shift operand respectively.
3804 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
3805                                unsigned &StartIndex, unsigned &OpNo0,
3806                                unsigned &OpNo1) {
3807   int OpNos[] = { -1, -1 };
3808   int Shift = -1;
3809   for (unsigned I = 0; I < 16; ++I) {
3810     int Index = Bytes[I];
3811     if (Index >= 0) {
3812       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
3813       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
3814       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
3815       if (Shift < 0)
3816         Shift = ExpectedShift;
3817       else if (Shift != ExpectedShift)
3818         return false;
3819       // Make sure that the operand mappings are consistent with previous
3820       // elements.
3821       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3822         return false;
3823       OpNos[ModelOpNo] = RealOpNo;
3824     }
3825   }
3826   StartIndex = Shift;
3827   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3828 }
3829 
3830 // Create a node that performs P on operands Op0 and Op1, casting the
3831 // operands to the appropriate type.  The type of the result is determined by P.
3832 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3833                               const Permute &P, SDValue Op0, SDValue Op1) {
3834   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
3835   // elements of a PACK are twice as wide as the outputs.
3836   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
3837                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
3838                       P.Operand);
3839   // Cast both operands to the appropriate type.
3840   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
3841                               SystemZ::VectorBytes / InBytes);
3842   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
3843   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
3844   SDValue Op;
3845   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
3846     SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
3847     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
3848   } else if (P.Opcode == SystemZISD::PACK) {
3849     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
3850                                  SystemZ::VectorBytes / P.Operand);
3851     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
3852   } else {
3853     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
3854   }
3855   return Op;
3856 }
3857 
3858 // Bytes is a VPERM-like permute vector, except that -1 is used for
3859 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
3860 // VSLDI or VPERM.
3861 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
3862                                      SDValue *Ops,
3863                                      const SmallVectorImpl<int> &Bytes) {
3864   for (unsigned I = 0; I < 2; ++I)
3865     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
3866 
3867   // First see whether VSLDI can be used.
3868   unsigned StartIndex, OpNo0, OpNo1;
3869   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
3870     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
3871                        Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
3872 
3873   // Fall back on VPERM.  Construct an SDNode for the permute vector.
3874   SDValue IndexNodes[SystemZ::VectorBytes];
3875   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
3876     if (Bytes[I] >= 0)
3877       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
3878     else
3879       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
3880   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
3881   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
3882 }
3883 
3884 namespace {
3885 // Describes a general N-operand vector shuffle.
3886 struct GeneralShuffle {
3887   GeneralShuffle(EVT vt) : VT(vt) {}
3888   void addUndef();
3889   bool add(SDValue, unsigned);
3890   SDValue getNode(SelectionDAG &, const SDLoc &);
3891 
3892   // The operands of the shuffle.
3893   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
3894 
3895   // Index I is -1 if byte I of the result is undefined.  Otherwise the
3896   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
3897   // Bytes[I] / SystemZ::VectorBytes.
3898   SmallVector<int, SystemZ::VectorBytes> Bytes;
3899 
3900   // The type of the shuffle result.
3901   EVT VT;
3902 };
3903 }
3904 
3905 // Add an extra undefined element to the shuffle.
3906 void GeneralShuffle::addUndef() {
3907   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3908   for (unsigned I = 0; I < BytesPerElement; ++I)
3909     Bytes.push_back(-1);
3910 }
3911 
3912 // Add an extra element to the shuffle, taking it from element Elem of Op.
3913 // A null Op indicates a vector input whose value will be calculated later;
3914 // there is at most one such input per shuffle and it always has the same
3915 // type as the result. Aborts and returns false if the source vector elements
3916 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
3917 // LLVM they become implicitly extended, but this is rare and not optimized.
3918 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
3919   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
3920 
3921   // The source vector can have wider elements than the result,
3922   // either through an explicit TRUNCATE or because of type legalization.
3923   // We want the least significant part.
3924   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
3925   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
3926 
3927   // Return false if the source elements are smaller than their destination
3928   // elements.
3929   if (FromBytesPerElement < BytesPerElement)
3930     return false;
3931 
3932   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
3933                    (FromBytesPerElement - BytesPerElement));
3934 
3935   // Look through things like shuffles and bitcasts.
3936   while (Op.getNode()) {
3937     if (Op.getOpcode() == ISD::BITCAST)
3938       Op = Op.getOperand(0);
3939     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
3940       // See whether the bytes we need come from a contiguous part of one
3941       // operand.
3942       SmallVector<int, SystemZ::VectorBytes> OpBytes;
3943       getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes);
3944       int NewByte;
3945       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
3946         break;
3947       if (NewByte < 0) {
3948         addUndef();
3949         return true;
3950       }
3951       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
3952       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
3953     } else if (Op.isUndef()) {
3954       addUndef();
3955       return true;
3956     } else
3957       break;
3958   }
3959 
3960   // Make sure that the source of the extraction is in Ops.
3961   unsigned OpNo = 0;
3962   for (; OpNo < Ops.size(); ++OpNo)
3963     if (Ops[OpNo] == Op)
3964       break;
3965   if (OpNo == Ops.size())
3966     Ops.push_back(Op);
3967 
3968   // Add the element to Bytes.
3969   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
3970   for (unsigned I = 0; I < BytesPerElement; ++I)
3971     Bytes.push_back(Base + I);
3972 
3973   return true;
3974 }
3975 
3976 // Return SDNodes for the completed shuffle.
3977 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
3978   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
3979 
3980   if (Ops.size() == 0)
3981     return DAG.getUNDEF(VT);
3982 
3983   // Make sure that there are at least two shuffle operands.
3984   if (Ops.size() == 1)
3985     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
3986 
3987   // Create a tree of shuffles, deferring root node until after the loop.
3988   // Try to redistribute the undefined elements of non-root nodes so that
3989   // the non-root shuffles match something like a pack or merge, then adjust
3990   // the parent node's permute vector to compensate for the new order.
3991   // Among other things, this copes with vectors like <2 x i16> that were
3992   // padded with undefined elements during type legalization.
3993   //
3994   // In the best case this redistribution will lead to the whole tree
3995   // using packs and merges.  It should rarely be a loss in other cases.
3996   unsigned Stride = 1;
3997   for (; Stride * 2 < Ops.size(); Stride *= 2) {
3998     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
3999       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4000 
4001       // Create a mask for just these two operands.
4002       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4003       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4004         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4005         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4006         if (OpNo == I)
4007           NewBytes[J] = Byte;
4008         else if (OpNo == I + Stride)
4009           NewBytes[J] = SystemZ::VectorBytes + Byte;
4010         else
4011           NewBytes[J] = -1;
4012       }
4013       // See if it would be better to reorganize NewMask to avoid using VPERM.
4014       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4015       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4016         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4017         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4018         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4019           if (NewBytes[J] >= 0) {
4020             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4021                    "Invalid double permute");
4022             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4023           } else
4024             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4025         }
4026       } else {
4027         // Just use NewBytes on the operands.
4028         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4029         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4030           if (NewBytes[J] >= 0)
4031             Bytes[J] = I * SystemZ::VectorBytes + J;
4032       }
4033     }
4034   }
4035 
4036   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4037   if (Stride > 1) {
4038     Ops[1] = Ops[Stride];
4039     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4040       if (Bytes[I] >= int(SystemZ::VectorBytes))
4041         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4042   }
4043 
4044   // Look for an instruction that can do the permute without resorting
4045   // to VPERM.
4046   unsigned OpNo0, OpNo1;
4047   SDValue Op;
4048   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4049     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4050   else
4051     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4052   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4053 }
4054 
4055 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4056 static bool isScalarToVector(SDValue Op) {
4057   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4058     if (!Op.getOperand(I).isUndef())
4059       return false;
4060   return true;
4061 }
4062 
4063 // Return a vector of type VT that contains Value in the first element.
4064 // The other elements don't matter.
4065 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4066                                    SDValue Value) {
4067   // If we have a constant, replicate it to all elements and let the
4068   // BUILD_VECTOR lowering take care of it.
4069   if (Value.getOpcode() == ISD::Constant ||
4070       Value.getOpcode() == ISD::ConstantFP) {
4071     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4072     return DAG.getBuildVector(VT, DL, Ops);
4073   }
4074   if (Value.isUndef())
4075     return DAG.getUNDEF(VT);
4076   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4077 }
4078 
4079 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4080 // element 1.  Used for cases in which replication is cheap.
4081 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4082                                  SDValue Op0, SDValue Op1) {
4083   if (Op0.isUndef()) {
4084     if (Op1.isUndef())
4085       return DAG.getUNDEF(VT);
4086     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4087   }
4088   if (Op1.isUndef())
4089     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4090   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4091                      buildScalarToVector(DAG, DL, VT, Op0),
4092                      buildScalarToVector(DAG, DL, VT, Op1));
4093 }
4094 
4095 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4096 // vector for them.
4097 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4098                           SDValue Op1) {
4099   if (Op0.isUndef() && Op1.isUndef())
4100     return DAG.getUNDEF(MVT::v2i64);
4101   // If one of the two inputs is undefined then replicate the other one,
4102   // in order to avoid using another register unnecessarily.
4103   if (Op0.isUndef())
4104     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4105   else if (Op1.isUndef())
4106     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4107   else {
4108     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4109     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4110   }
4111   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4112 }
4113 
4114 // Try to represent constant BUILD_VECTOR node BVN using a
4115 // SystemZISD::BYTE_MASK-style mask.  Store the mask value in Mask
4116 // on success.
4117 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) {
4118   EVT ElemVT = BVN->getValueType(0).getVectorElementType();
4119   unsigned BytesPerElement = ElemVT.getStoreSize();
4120   for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) {
4121     SDValue Op = BVN->getOperand(I);
4122     if (!Op.isUndef()) {
4123       uint64_t Value;
4124       if (Op.getOpcode() == ISD::Constant)
4125         Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue();
4126       else if (Op.getOpcode() == ISD::ConstantFP)
4127         Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()
4128                  .getZExtValue());
4129       else
4130         return false;
4131       for (unsigned J = 0; J < BytesPerElement; ++J) {
4132         uint64_t Byte = (Value >> (J * 8)) & 0xff;
4133         if (Byte == 0xff)
4134           Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J);
4135         else if (Byte != 0)
4136           return false;
4137       }
4138     }
4139   }
4140   return true;
4141 }
4142 
4143 // Try to load a vector constant in which BitsPerElement-bit value Value
4144 // is replicated to fill the vector.  VT is the type of the resulting
4145 // constant, which may have elements of a different size from BitsPerElement.
4146 // Return the SDValue of the constant on success, otherwise return
4147 // an empty value.
4148 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG,
4149                                        const SystemZInstrInfo *TII,
4150                                        const SDLoc &DL, EVT VT, uint64_t Value,
4151                                        unsigned BitsPerElement) {
4152   // Signed 16-bit values can be replicated using VREPI.
4153   int64_t SignedValue = SignExtend64(Value, BitsPerElement);
4154   if (isInt<16>(SignedValue)) {
4155     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4156                                  SystemZ::VectorBits / BitsPerElement);
4157     SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT,
4158                              DAG.getConstant(SignedValue, DL, MVT::i32));
4159     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4160   }
4161   // See whether rotating the constant left some N places gives a value that
4162   // is one less than a power of 2 (i.e. all zeros followed by all ones).
4163   // If so we can use VGM.
4164   unsigned Start, End;
4165   if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) {
4166     // isRxSBGMask returns the bit numbers for a full 64-bit value,
4167     // with 0 denoting 1 << 63 and 63 denoting 1.  Convert them to
4168     // bit numbers for an BitsPerElement value, so that 0 denotes
4169     // 1 << (BitsPerElement-1).
4170     Start -= 64 - BitsPerElement;
4171     End -= 64 - BitsPerElement;
4172     MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement),
4173                                  SystemZ::VectorBits / BitsPerElement);
4174     SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT,
4175                              DAG.getConstant(Start, DL, MVT::i32),
4176                              DAG.getConstant(End, DL, MVT::i32));
4177     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4178   }
4179   return SDValue();
4180 }
4181 
4182 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4183 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4184 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4185 // would benefit from this representation and return it if so.
4186 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4187                                      BuildVectorSDNode *BVN) {
4188   EVT VT = BVN->getValueType(0);
4189   unsigned NumElements = VT.getVectorNumElements();
4190 
4191   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4192   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4193   // need a BUILD_VECTOR, add an additional placeholder operand for that
4194   // BUILD_VECTOR and store its operands in ResidueOps.
4195   GeneralShuffle GS(VT);
4196   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4197   bool FoundOne = false;
4198   for (unsigned I = 0; I < NumElements; ++I) {
4199     SDValue Op = BVN->getOperand(I);
4200     if (Op.getOpcode() == ISD::TRUNCATE)
4201       Op = Op.getOperand(0);
4202     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4203         Op.getOperand(1).getOpcode() == ISD::Constant) {
4204       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4205       if (!GS.add(Op.getOperand(0), Elem))
4206         return SDValue();
4207       FoundOne = true;
4208     } else if (Op.isUndef()) {
4209       GS.addUndef();
4210     } else {
4211       if (!GS.add(SDValue(), ResidueOps.size()))
4212         return SDValue();
4213       ResidueOps.push_back(BVN->getOperand(I));
4214     }
4215   }
4216 
4217   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4218   if (!FoundOne)
4219     return SDValue();
4220 
4221   // Create the BUILD_VECTOR for the remaining elements, if any.
4222   if (!ResidueOps.empty()) {
4223     while (ResidueOps.size() < NumElements)
4224       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4225     for (auto &Op : GS.Ops) {
4226       if (!Op.getNode()) {
4227         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4228         break;
4229       }
4230     }
4231   }
4232   return GS.getNode(DAG, SDLoc(BVN));
4233 }
4234 
4235 // Combine GPR scalar values Elems into a vector of type VT.
4236 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4237                            SmallVectorImpl<SDValue> &Elems) {
4238   // See whether there is a single replicated value.
4239   SDValue Single;
4240   unsigned int NumElements = Elems.size();
4241   unsigned int Count = 0;
4242   for (auto Elem : Elems) {
4243     if (!Elem.isUndef()) {
4244       if (!Single.getNode())
4245         Single = Elem;
4246       else if (Elem != Single) {
4247         Single = SDValue();
4248         break;
4249       }
4250       Count += 1;
4251     }
4252   }
4253   // There are three cases here:
4254   //
4255   // - if the only defined element is a loaded one, the best sequence
4256   //   is a replicating load.
4257   //
4258   // - otherwise, if the only defined element is an i64 value, we will
4259   //   end up with the same VLVGP sequence regardless of whether we short-cut
4260   //   for replication or fall through to the later code.
4261   //
4262   // - otherwise, if the only defined element is an i32 or smaller value,
4263   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4264   //   This is only a win if the single defined element is used more than once.
4265   //   In other cases we're better off using a single VLVGx.
4266   if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4267     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4268 
4269   // If all elements are loads, use VLREP/VLEs (below).
4270   bool AllLoads = true;
4271   for (auto Elem : Elems)
4272     if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) {
4273       AllLoads = false;
4274       break;
4275     }
4276 
4277   // The best way of building a v2i64 from two i64s is to use VLVGP.
4278   if (VT == MVT::v2i64 && !AllLoads)
4279     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4280 
4281   // Use a 64-bit merge high to combine two doubles.
4282   if (VT == MVT::v2f64 && !AllLoads)
4283     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4284 
4285   // Build v4f32 values directly from the FPRs:
4286   //
4287   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4288   //         V              V         VMRHF
4289   //      <ABxx>         <CDxx>
4290   //                V                 VMRHG
4291   //              <ABCD>
4292   if (VT == MVT::v4f32 && !AllLoads) {
4293     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4294     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4295     // Avoid unnecessary undefs by reusing the other operand.
4296     if (Op01.isUndef())
4297       Op01 = Op23;
4298     else if (Op23.isUndef())
4299       Op23 = Op01;
4300     // Merging identical replications is a no-op.
4301     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4302       return Op01;
4303     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4304     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4305     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4306                              DL, MVT::v2i64, Op01, Op23);
4307     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4308   }
4309 
4310   // Collect the constant terms.
4311   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4312   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4313 
4314   unsigned NumConstants = 0;
4315   for (unsigned I = 0; I < NumElements; ++I) {
4316     SDValue Elem = Elems[I];
4317     if (Elem.getOpcode() == ISD::Constant ||
4318         Elem.getOpcode() == ISD::ConstantFP) {
4319       NumConstants += 1;
4320       Constants[I] = Elem;
4321       Done[I] = true;
4322     }
4323   }
4324   // If there was at least one constant, fill in the other elements of
4325   // Constants with undefs to get a full vector constant and use that
4326   // as the starting point.
4327   SDValue Result;
4328   if (NumConstants > 0) {
4329     for (unsigned I = 0; I < NumElements; ++I)
4330       if (!Constants[I].getNode())
4331         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4332     Result = DAG.getBuildVector(VT, DL, Constants);
4333   } else {
4334     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4335     // avoid a false dependency on any previous contents of the vector
4336     // register.
4337 
4338     // Use a VLREP if at least one element is a load.
4339     unsigned LoadElIdx = UINT_MAX;
4340     for (unsigned I = 0; I < NumElements; ++I)
4341       if (Elems[I].getOpcode() == ISD::LOAD &&
4342           cast<LoadSDNode>(Elems[I])->isUnindexed()) {
4343         LoadElIdx = I;
4344         break;
4345       }
4346     if (LoadElIdx != UINT_MAX) {
4347       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, Elems[LoadElIdx]);
4348       Done[LoadElIdx] = true;
4349     } else {
4350       // Try to use VLVGP.
4351       unsigned I1 = NumElements / 2 - 1;
4352       unsigned I2 = NumElements - 1;
4353       bool Def1 = !Elems[I1].isUndef();
4354       bool Def2 = !Elems[I2].isUndef();
4355       if (Def1 || Def2) {
4356         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4357         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4358         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4359                              joinDwords(DAG, DL, Elem1, Elem2));
4360         Done[I1] = true;
4361         Done[I2] = true;
4362       } else
4363         Result = DAG.getUNDEF(VT);
4364     }
4365   }
4366 
4367   // Use VLVGx to insert the other elements.
4368   for (unsigned I = 0; I < NumElements; ++I)
4369     if (!Done[I] && !Elems[I].isUndef())
4370       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4371                            DAG.getConstant(I, DL, MVT::i32));
4372   return Result;
4373 }
4374 
4375 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4376                                                  SelectionDAG &DAG) const {
4377   const SystemZInstrInfo *TII =
4378     static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
4379   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4380   SDLoc DL(Op);
4381   EVT VT = Op.getValueType();
4382 
4383   if (BVN->isConstant()) {
4384     // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
4385     // preferred way of creating all-zero and all-one vectors so give it
4386     // priority over other methods below.
4387     uint64_t Mask = 0;
4388     if (tryBuildVectorByteMask(BVN, Mask)) {
4389       SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8,
4390                                DAG.getConstant(Mask, DL, MVT::i32));
4391       return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4392     }
4393 
4394     // Try using some form of replication.
4395     APInt SplatBits, SplatUndef;
4396     unsigned SplatBitSize;
4397     bool HasAnyUndefs;
4398     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4399                              8, true) &&
4400         SplatBitSize <= 64) {
4401       // First try assuming that any undefined bits above the highest set bit
4402       // and below the lowest set bit are 1s.  This increases the likelihood of
4403       // being able to use a sign-extended element value in VECTOR REPLICATE
4404       // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
4405       uint64_t SplatBitsZ = SplatBits.getZExtValue();
4406       uint64_t SplatUndefZ = SplatUndef.getZExtValue();
4407       uint64_t Lower = (SplatUndefZ
4408                         & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
4409       uint64_t Upper = (SplatUndefZ
4410                         & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
4411       uint64_t Value = SplatBitsZ | Upper | Lower;
4412       SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value,
4413                                            SplatBitSize);
4414       if (Op.getNode())
4415         return Op;
4416 
4417       // Now try assuming that any undefined bits between the first and
4418       // last defined set bits are set.  This increases the chances of
4419       // using a non-wraparound mask.
4420       uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
4421       Value = SplatBitsZ | Middle;
4422       Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize);
4423       if (Op.getNode())
4424         return Op;
4425     }
4426 
4427     // Fall back to loading it from memory.
4428     return SDValue();
4429   }
4430 
4431   // See if we should use shuffles to construct the vector from other vectors.
4432   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4433     return Res;
4434 
4435   // Detect SCALAR_TO_VECTOR conversions.
4436   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4437     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4438 
4439   // Otherwise use buildVector to build the vector up from GPRs.
4440   unsigned NumElements = Op.getNumOperands();
4441   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4442   for (unsigned I = 0; I < NumElements; ++I)
4443     Ops[I] = Op.getOperand(I);
4444   return buildVector(DAG, DL, VT, Ops);
4445 }
4446 
4447 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4448                                                    SelectionDAG &DAG) const {
4449   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4450   SDLoc DL(Op);
4451   EVT VT = Op.getValueType();
4452   unsigned NumElements = VT.getVectorNumElements();
4453 
4454   if (VSN->isSplat()) {
4455     SDValue Op0 = Op.getOperand(0);
4456     unsigned Index = VSN->getSplatIndex();
4457     assert(Index < VT.getVectorNumElements() &&
4458            "Splat index should be defined and in first operand");
4459     // See whether the value we're splatting is directly available as a scalar.
4460     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4461         Op0.getOpcode() == ISD::BUILD_VECTOR)
4462       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4463     // Otherwise keep it as a vector-to-vector operation.
4464     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4465                        DAG.getConstant(Index, DL, MVT::i32));
4466   }
4467 
4468   GeneralShuffle GS(VT);
4469   for (unsigned I = 0; I < NumElements; ++I) {
4470     int Elt = VSN->getMaskElt(I);
4471     if (Elt < 0)
4472       GS.addUndef();
4473     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4474                      unsigned(Elt) % NumElements))
4475       return SDValue();
4476   }
4477   return GS.getNode(DAG, SDLoc(VSN));
4478 }
4479 
4480 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4481                                                      SelectionDAG &DAG) const {
4482   SDLoc DL(Op);
4483   // Just insert the scalar into element 0 of an undefined vector.
4484   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4485                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4486                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4487 }
4488 
4489 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4490                                                       SelectionDAG &DAG) const {
4491   // Handle insertions of floating-point values.
4492   SDLoc DL(Op);
4493   SDValue Op0 = Op.getOperand(0);
4494   SDValue Op1 = Op.getOperand(1);
4495   SDValue Op2 = Op.getOperand(2);
4496   EVT VT = Op.getValueType();
4497 
4498   // Insertions into constant indices of a v2f64 can be done using VPDI.
4499   // However, if the inserted value is a bitcast or a constant then it's
4500   // better to use GPRs, as below.
4501   if (VT == MVT::v2f64 &&
4502       Op1.getOpcode() != ISD::BITCAST &&
4503       Op1.getOpcode() != ISD::ConstantFP &&
4504       Op2.getOpcode() == ISD::Constant) {
4505     uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue();
4506     unsigned Mask = VT.getVectorNumElements() - 1;
4507     if (Index <= Mask)
4508       return Op;
4509   }
4510 
4511   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4512   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4513   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4514   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4515                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4516                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4517   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4518 }
4519 
4520 SDValue
4521 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4522                                                SelectionDAG &DAG) const {
4523   // Handle extractions of floating-point values.
4524   SDLoc DL(Op);
4525   SDValue Op0 = Op.getOperand(0);
4526   SDValue Op1 = Op.getOperand(1);
4527   EVT VT = Op.getValueType();
4528   EVT VecVT = Op0.getValueType();
4529 
4530   // Extractions of constant indices can be done directly.
4531   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4532     uint64_t Index = CIndexN->getZExtValue();
4533     unsigned Mask = VecVT.getVectorNumElements() - 1;
4534     if (Index <= Mask)
4535       return Op;
4536   }
4537 
4538   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4539   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4540   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4541   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4542                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4543   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4544 }
4545 
4546 SDValue
4547 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4548                                               unsigned UnpackHigh) const {
4549   SDValue PackedOp = Op.getOperand(0);
4550   EVT OutVT = Op.getValueType();
4551   EVT InVT = PackedOp.getValueType();
4552   unsigned ToBits = OutVT.getScalarSizeInBits();
4553   unsigned FromBits = InVT.getScalarSizeInBits();
4554   do {
4555     FromBits *= 2;
4556     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4557                                  SystemZ::VectorBits / FromBits);
4558     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4559   } while (FromBits != ToBits);
4560   return PackedOp;
4561 }
4562 
4563 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4564                                           unsigned ByScalar) const {
4565   // Look for cases where a vector shift can use the *_BY_SCALAR form.
4566   SDValue Op0 = Op.getOperand(0);
4567   SDValue Op1 = Op.getOperand(1);
4568   SDLoc DL(Op);
4569   EVT VT = Op.getValueType();
4570   unsigned ElemBitSize = VT.getScalarSizeInBits();
4571 
4572   // See whether the shift vector is a splat represented as BUILD_VECTOR.
4573   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4574     APInt SplatBits, SplatUndef;
4575     unsigned SplatBitSize;
4576     bool HasAnyUndefs;
4577     // Check for constant splats.  Use ElemBitSize as the minimum element
4578     // width and reject splats that need wider elements.
4579     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4580                              ElemBitSize, true) &&
4581         SplatBitSize == ElemBitSize) {
4582       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4583                                       DL, MVT::i32);
4584       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4585     }
4586     // Check for variable splats.
4587     BitVector UndefElements;
4588     SDValue Splat = BVN->getSplatValue(&UndefElements);
4589     if (Splat) {
4590       // Since i32 is the smallest legal type, we either need a no-op
4591       // or a truncation.
4592       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4593       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4594     }
4595   }
4596 
4597   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4598   // and the shift amount is directly available in a GPR.
4599   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4600     if (VSN->isSplat()) {
4601       SDValue VSNOp0 = VSN->getOperand(0);
4602       unsigned Index = VSN->getSplatIndex();
4603       assert(Index < VT.getVectorNumElements() &&
4604              "Splat index should be defined and in first operand");
4605       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4606           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4607         // Since i32 is the smallest legal type, we either need a no-op
4608         // or a truncation.
4609         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4610                                     VSNOp0.getOperand(Index));
4611         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4612       }
4613     }
4614   }
4615 
4616   // Otherwise just treat the current form as legal.
4617   return Op;
4618 }
4619 
4620 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4621                                               SelectionDAG &DAG) const {
4622   switch (Op.getOpcode()) {
4623   case ISD::FRAMEADDR:
4624     return lowerFRAMEADDR(Op, DAG);
4625   case ISD::RETURNADDR:
4626     return lowerRETURNADDR(Op, DAG);
4627   case ISD::BR_CC:
4628     return lowerBR_CC(Op, DAG);
4629   case ISD::SELECT_CC:
4630     return lowerSELECT_CC(Op, DAG);
4631   case ISD::SETCC:
4632     return lowerSETCC(Op, DAG);
4633   case ISD::GlobalAddress:
4634     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4635   case ISD::GlobalTLSAddress:
4636     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4637   case ISD::BlockAddress:
4638     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4639   case ISD::JumpTable:
4640     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4641   case ISD::ConstantPool:
4642     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4643   case ISD::BITCAST:
4644     return lowerBITCAST(Op, DAG);
4645   case ISD::VASTART:
4646     return lowerVASTART(Op, DAG);
4647   case ISD::VACOPY:
4648     return lowerVACOPY(Op, DAG);
4649   case ISD::DYNAMIC_STACKALLOC:
4650     return lowerDYNAMIC_STACKALLOC(Op, DAG);
4651   case ISD::GET_DYNAMIC_AREA_OFFSET:
4652     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4653   case ISD::SMUL_LOHI:
4654     return lowerSMUL_LOHI(Op, DAG);
4655   case ISD::UMUL_LOHI:
4656     return lowerUMUL_LOHI(Op, DAG);
4657   case ISD::SDIVREM:
4658     return lowerSDIVREM(Op, DAG);
4659   case ISD::UDIVREM:
4660     return lowerUDIVREM(Op, DAG);
4661   case ISD::OR:
4662     return lowerOR(Op, DAG);
4663   case ISD::CTPOP:
4664     return lowerCTPOP(Op, DAG);
4665   case ISD::ATOMIC_FENCE:
4666     return lowerATOMIC_FENCE(Op, DAG);
4667   case ISD::ATOMIC_SWAP:
4668     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4669   case ISD::ATOMIC_STORE:
4670     return lowerATOMIC_STORE(Op, DAG);
4671   case ISD::ATOMIC_LOAD:
4672     return lowerATOMIC_LOAD(Op, DAG);
4673   case ISD::ATOMIC_LOAD_ADD:
4674     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4675   case ISD::ATOMIC_LOAD_SUB:
4676     return lowerATOMIC_LOAD_SUB(Op, DAG);
4677   case ISD::ATOMIC_LOAD_AND:
4678     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4679   case ISD::ATOMIC_LOAD_OR:
4680     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4681   case ISD::ATOMIC_LOAD_XOR:
4682     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4683   case ISD::ATOMIC_LOAD_NAND:
4684     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4685   case ISD::ATOMIC_LOAD_MIN:
4686     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4687   case ISD::ATOMIC_LOAD_MAX:
4688     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4689   case ISD::ATOMIC_LOAD_UMIN:
4690     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4691   case ISD::ATOMIC_LOAD_UMAX:
4692     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4693   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4694     return lowerATOMIC_CMP_SWAP(Op, DAG);
4695   case ISD::STACKSAVE:
4696     return lowerSTACKSAVE(Op, DAG);
4697   case ISD::STACKRESTORE:
4698     return lowerSTACKRESTORE(Op, DAG);
4699   case ISD::PREFETCH:
4700     return lowerPREFETCH(Op, DAG);
4701   case ISD::INTRINSIC_W_CHAIN:
4702     return lowerINTRINSIC_W_CHAIN(Op, DAG);
4703   case ISD::INTRINSIC_WO_CHAIN:
4704     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4705   case ISD::BUILD_VECTOR:
4706     return lowerBUILD_VECTOR(Op, DAG);
4707   case ISD::VECTOR_SHUFFLE:
4708     return lowerVECTOR_SHUFFLE(Op, DAG);
4709   case ISD::SCALAR_TO_VECTOR:
4710     return lowerSCALAR_TO_VECTOR(Op, DAG);
4711   case ISD::INSERT_VECTOR_ELT:
4712     return lowerINSERT_VECTOR_ELT(Op, DAG);
4713   case ISD::EXTRACT_VECTOR_ELT:
4714     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4715   case ISD::SIGN_EXTEND_VECTOR_INREG:
4716     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4717   case ISD::ZERO_EXTEND_VECTOR_INREG:
4718     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4719   case ISD::SHL:
4720     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4721   case ISD::SRL:
4722     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4723   case ISD::SRA:
4724     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4725   default:
4726     llvm_unreachable("Unexpected node to lower");
4727   }
4728 }
4729 
4730 // Lower operations with invalid operand or result types (currently used
4731 // only for 128-bit integer types).
4732 
4733 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
4734   SDLoc DL(In);
4735   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4736                            DAG.getIntPtrConstant(0, DL));
4737   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4738                            DAG.getIntPtrConstant(1, DL));
4739   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
4740                                     MVT::Untyped, Hi, Lo);
4741   return SDValue(Pair, 0);
4742 }
4743 
4744 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
4745   SDLoc DL(In);
4746   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
4747                                           DL, MVT::i64, In);
4748   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
4749                                           DL, MVT::i64, In);
4750   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
4751 }
4752 
4753 void
4754 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
4755                                              SmallVectorImpl<SDValue> &Results,
4756                                              SelectionDAG &DAG) const {
4757   switch (N->getOpcode()) {
4758   case ISD::ATOMIC_LOAD: {
4759     SDLoc DL(N);
4760     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
4761     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
4762     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4763     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
4764                                           DL, Tys, Ops, MVT::i128, MMO);
4765     Results.push_back(lowerGR128ToI128(DAG, Res));
4766     Results.push_back(Res.getValue(1));
4767     break;
4768   }
4769   case ISD::ATOMIC_STORE: {
4770     SDLoc DL(N);
4771     SDVTList Tys = DAG.getVTList(MVT::Other);
4772     SDValue Ops[] = { N->getOperand(0),
4773                       lowerI128ToGR128(DAG, N->getOperand(2)),
4774                       N->getOperand(1) };
4775     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4776     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
4777                                           DL, Tys, Ops, MVT::i128, MMO);
4778     // We have to enforce sequential consistency by performing a
4779     // serialization operation after the store.
4780     if (cast<AtomicSDNode>(N)->getOrdering() ==
4781         AtomicOrdering::SequentiallyConsistent)
4782       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
4783                                        MVT::Other, Res), 0);
4784     Results.push_back(Res);
4785     break;
4786   }
4787   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
4788     SDLoc DL(N);
4789     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other, MVT::Glue);
4790     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
4791                       lowerI128ToGR128(DAG, N->getOperand(2)),
4792                       lowerI128ToGR128(DAG, N->getOperand(3)) };
4793     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4794     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
4795                                           DL, Tys, Ops, MVT::i128, MMO);
4796     SDValue Success = emitSETCC(DAG, DL, Res.getValue(2),
4797                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4798     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
4799     Results.push_back(lowerGR128ToI128(DAG, Res));
4800     Results.push_back(Success);
4801     Results.push_back(Res.getValue(1));
4802     break;
4803   }
4804   default:
4805     llvm_unreachable("Unexpected node to lower");
4806   }
4807 }
4808 
4809 void
4810 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
4811                                           SmallVectorImpl<SDValue> &Results,
4812                                           SelectionDAG &DAG) const {
4813   return LowerOperationWrapper(N, Results, DAG);
4814 }
4815 
4816 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
4817 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
4818   switch ((SystemZISD::NodeType)Opcode) {
4819     case SystemZISD::FIRST_NUMBER: break;
4820     OPCODE(RET_FLAG);
4821     OPCODE(CALL);
4822     OPCODE(SIBCALL);
4823     OPCODE(TLS_GDCALL);
4824     OPCODE(TLS_LDCALL);
4825     OPCODE(PCREL_WRAPPER);
4826     OPCODE(PCREL_OFFSET);
4827     OPCODE(IABS);
4828     OPCODE(ICMP);
4829     OPCODE(FCMP);
4830     OPCODE(TM);
4831     OPCODE(BR_CCMASK);
4832     OPCODE(SELECT_CCMASK);
4833     OPCODE(ADJDYNALLOC);
4834     OPCODE(POPCNT);
4835     OPCODE(SMUL_LOHI);
4836     OPCODE(UMUL_LOHI);
4837     OPCODE(SDIVREM);
4838     OPCODE(UDIVREM);
4839     OPCODE(MVC);
4840     OPCODE(MVC_LOOP);
4841     OPCODE(NC);
4842     OPCODE(NC_LOOP);
4843     OPCODE(OC);
4844     OPCODE(OC_LOOP);
4845     OPCODE(XC);
4846     OPCODE(XC_LOOP);
4847     OPCODE(CLC);
4848     OPCODE(CLC_LOOP);
4849     OPCODE(STPCPY);
4850     OPCODE(STRCMP);
4851     OPCODE(SEARCH_STRING);
4852     OPCODE(IPM);
4853     OPCODE(MEMBARRIER);
4854     OPCODE(TBEGIN);
4855     OPCODE(TBEGIN_NOFLOAT);
4856     OPCODE(TEND);
4857     OPCODE(BYTE_MASK);
4858     OPCODE(ROTATE_MASK);
4859     OPCODE(REPLICATE);
4860     OPCODE(JOIN_DWORDS);
4861     OPCODE(SPLAT);
4862     OPCODE(MERGE_HIGH);
4863     OPCODE(MERGE_LOW);
4864     OPCODE(SHL_DOUBLE);
4865     OPCODE(PERMUTE_DWORDS);
4866     OPCODE(PERMUTE);
4867     OPCODE(PACK);
4868     OPCODE(PACKS_CC);
4869     OPCODE(PACKLS_CC);
4870     OPCODE(UNPACK_HIGH);
4871     OPCODE(UNPACKL_HIGH);
4872     OPCODE(UNPACK_LOW);
4873     OPCODE(UNPACKL_LOW);
4874     OPCODE(VSHL_BY_SCALAR);
4875     OPCODE(VSRL_BY_SCALAR);
4876     OPCODE(VSRA_BY_SCALAR);
4877     OPCODE(VSUM);
4878     OPCODE(VICMPE);
4879     OPCODE(VICMPH);
4880     OPCODE(VICMPHL);
4881     OPCODE(VICMPES);
4882     OPCODE(VICMPHS);
4883     OPCODE(VICMPHLS);
4884     OPCODE(VFCMPE);
4885     OPCODE(VFCMPH);
4886     OPCODE(VFCMPHE);
4887     OPCODE(VFCMPES);
4888     OPCODE(VFCMPHS);
4889     OPCODE(VFCMPHES);
4890     OPCODE(VFTCI);
4891     OPCODE(VEXTEND);
4892     OPCODE(VROUND);
4893     OPCODE(VTM);
4894     OPCODE(VFAE_CC);
4895     OPCODE(VFAEZ_CC);
4896     OPCODE(VFEE_CC);
4897     OPCODE(VFEEZ_CC);
4898     OPCODE(VFENE_CC);
4899     OPCODE(VFENEZ_CC);
4900     OPCODE(VISTR_CC);
4901     OPCODE(VSTRC_CC);
4902     OPCODE(VSTRCZ_CC);
4903     OPCODE(TDC);
4904     OPCODE(ATOMIC_SWAPW);
4905     OPCODE(ATOMIC_LOADW_ADD);
4906     OPCODE(ATOMIC_LOADW_SUB);
4907     OPCODE(ATOMIC_LOADW_AND);
4908     OPCODE(ATOMIC_LOADW_OR);
4909     OPCODE(ATOMIC_LOADW_XOR);
4910     OPCODE(ATOMIC_LOADW_NAND);
4911     OPCODE(ATOMIC_LOADW_MIN);
4912     OPCODE(ATOMIC_LOADW_MAX);
4913     OPCODE(ATOMIC_LOADW_UMIN);
4914     OPCODE(ATOMIC_LOADW_UMAX);
4915     OPCODE(ATOMIC_CMP_SWAPW);
4916     OPCODE(ATOMIC_CMP_SWAP);
4917     OPCODE(ATOMIC_LOAD_128);
4918     OPCODE(ATOMIC_STORE_128);
4919     OPCODE(ATOMIC_CMP_SWAP_128);
4920     OPCODE(LRV);
4921     OPCODE(STRV);
4922     OPCODE(PREFETCH);
4923   }
4924   return nullptr;
4925 #undef OPCODE
4926 }
4927 
4928 // Return true if VT is a vector whose elements are a whole number of bytes
4929 // in width. Also check for presence of vector support.
4930 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
4931   if (!Subtarget.hasVector())
4932     return false;
4933 
4934   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
4935 }
4936 
4937 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
4938 // producing a result of type ResVT.  Op is a possibly bitcast version
4939 // of the input vector and Index is the index (based on type VecVT) that
4940 // should be extracted.  Return the new extraction if a simplification
4941 // was possible or if Force is true.
4942 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
4943                                               EVT VecVT, SDValue Op,
4944                                               unsigned Index,
4945                                               DAGCombinerInfo &DCI,
4946                                               bool Force) const {
4947   SelectionDAG &DAG = DCI.DAG;
4948 
4949   // The number of bytes being extracted.
4950   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
4951 
4952   for (;;) {
4953     unsigned Opcode = Op.getOpcode();
4954     if (Opcode == ISD::BITCAST)
4955       // Look through bitcasts.
4956       Op = Op.getOperand(0);
4957     else if (Opcode == ISD::VECTOR_SHUFFLE &&
4958              canTreatAsByteVector(Op.getValueType())) {
4959       // Get a VPERM-like permute mask and see whether the bytes covered
4960       // by the extracted element are a contiguous sequence from one
4961       // source operand.
4962       SmallVector<int, SystemZ::VectorBytes> Bytes;
4963       getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes);
4964       int First;
4965       if (!getShuffleInput(Bytes, Index * BytesPerElement,
4966                            BytesPerElement, First))
4967         break;
4968       if (First < 0)
4969         return DAG.getUNDEF(ResVT);
4970       // Make sure the contiguous sequence starts at a multiple of the
4971       // original element size.
4972       unsigned Byte = unsigned(First) % Bytes.size();
4973       if (Byte % BytesPerElement != 0)
4974         break;
4975       // We can get the extracted value directly from an input.
4976       Index = Byte / BytesPerElement;
4977       Op = Op.getOperand(unsigned(First) / Bytes.size());
4978       Force = true;
4979     } else if (Opcode == ISD::BUILD_VECTOR &&
4980                canTreatAsByteVector(Op.getValueType())) {
4981       // We can only optimize this case if the BUILD_VECTOR elements are
4982       // at least as wide as the extracted value.
4983       EVT OpVT = Op.getValueType();
4984       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
4985       if (OpBytesPerElement < BytesPerElement)
4986         break;
4987       // Make sure that the least-significant bit of the extracted value
4988       // is the least significant bit of an input.
4989       unsigned End = (Index + 1) * BytesPerElement;
4990       if (End % OpBytesPerElement != 0)
4991         break;
4992       // We're extracting the low part of one operand of the BUILD_VECTOR.
4993       Op = Op.getOperand(End / OpBytesPerElement - 1);
4994       if (!Op.getValueType().isInteger()) {
4995         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
4996         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4997         DCI.AddToWorklist(Op.getNode());
4998       }
4999       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5000       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5001       if (VT != ResVT) {
5002         DCI.AddToWorklist(Op.getNode());
5003         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5004       }
5005       return Op;
5006     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5007                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5008                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5009                canTreatAsByteVector(Op.getValueType()) &&
5010                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5011       // Make sure that only the unextended bits are significant.
5012       EVT ExtVT = Op.getValueType();
5013       EVT OpVT = Op.getOperand(0).getValueType();
5014       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5015       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5016       unsigned Byte = Index * BytesPerElement;
5017       unsigned SubByte = Byte % ExtBytesPerElement;
5018       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5019       if (SubByte < MinSubByte ||
5020           SubByte + BytesPerElement > ExtBytesPerElement)
5021         break;
5022       // Get the byte offset of the unextended element
5023       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5024       // ...then add the byte offset relative to that element.
5025       Byte += SubByte - MinSubByte;
5026       if (Byte % BytesPerElement != 0)
5027         break;
5028       Op = Op.getOperand(0);
5029       Index = Byte / BytesPerElement;
5030       Force = true;
5031     } else
5032       break;
5033   }
5034   if (Force) {
5035     if (Op.getValueType() != VecVT) {
5036       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5037       DCI.AddToWorklist(Op.getNode());
5038     }
5039     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5040                        DAG.getConstant(Index, DL, MVT::i32));
5041   }
5042   return SDValue();
5043 }
5044 
5045 // Optimize vector operations in scalar value Op on the basis that Op
5046 // is truncated to TruncVT.
5047 SDValue SystemZTargetLowering::combineTruncateExtract(
5048     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5049   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5050   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5051   // of type TruncVT.
5052   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5053       TruncVT.getSizeInBits() % 8 == 0) {
5054     SDValue Vec = Op.getOperand(0);
5055     EVT VecVT = Vec.getValueType();
5056     if (canTreatAsByteVector(VecVT)) {
5057       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5058         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5059         unsigned TruncBytes = TruncVT.getStoreSize();
5060         if (BytesPerElement % TruncBytes == 0) {
5061           // Calculate the value of Y' in the above description.  We are
5062           // splitting the original elements into Scale equal-sized pieces
5063           // and for truncation purposes want the last (least-significant)
5064           // of these pieces for IndexN.  This is easiest to do by calculating
5065           // the start index of the following element and then subtracting 1.
5066           unsigned Scale = BytesPerElement / TruncBytes;
5067           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5068 
5069           // Defer the creation of the bitcast from X to combineExtract,
5070           // which might be able to optimize the extraction.
5071           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5072                                    VecVT.getStoreSize() / TruncBytes);
5073           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5074           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5075         }
5076       }
5077     }
5078   }
5079   return SDValue();
5080 }
5081 
5082 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5083     SDNode *N, DAGCombinerInfo &DCI) const {
5084   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5085   SelectionDAG &DAG = DCI.DAG;
5086   SDValue N0 = N->getOperand(0);
5087   EVT VT = N->getValueType(0);
5088   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5089     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5090     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5091     if (TrueOp && FalseOp) {
5092       SDLoc DL(N0);
5093       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5094                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5095                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5096       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5097       // If N0 has multiple uses, change other uses as well.
5098       if (!N0.hasOneUse()) {
5099         SDValue TruncSelect =
5100           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5101         DCI.CombineTo(N0.getNode(), TruncSelect);
5102       }
5103       return NewSelect;
5104     }
5105   }
5106   return SDValue();
5107 }
5108 
5109 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5110     SDNode *N, DAGCombinerInfo &DCI) const {
5111   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5112   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5113   // into (select_cc LHS, RHS, -1, 0, COND)
5114   SelectionDAG &DAG = DCI.DAG;
5115   SDValue N0 = N->getOperand(0);
5116   EVT VT = N->getValueType(0);
5117   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5118   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5119     N0 = N0.getOperand(0);
5120   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5121     SDLoc DL(N0);
5122     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5123                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5124                       N0.getOperand(2) };
5125     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5126   }
5127   return SDValue();
5128 }
5129 
5130 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5131     SDNode *N, DAGCombinerInfo &DCI) const {
5132   // Convert (sext (ashr (shl X, C1), C2)) to
5133   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5134   // cheap as narrower ones.
5135   SelectionDAG &DAG = DCI.DAG;
5136   SDValue N0 = N->getOperand(0);
5137   EVT VT = N->getValueType(0);
5138   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5139     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5140     SDValue Inner = N0.getOperand(0);
5141     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5142       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5143         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5144         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5145         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5146         EVT ShiftVT = N0.getOperand(1).getValueType();
5147         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5148                                   Inner.getOperand(0));
5149         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5150                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5151                                                   ShiftVT));
5152         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5153                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5154       }
5155     }
5156   }
5157   return SDValue();
5158 }
5159 
5160 SDValue SystemZTargetLowering::combineMERGE(
5161     SDNode *N, DAGCombinerInfo &DCI) const {
5162   SelectionDAG &DAG = DCI.DAG;
5163   unsigned Opcode = N->getOpcode();
5164   SDValue Op0 = N->getOperand(0);
5165   SDValue Op1 = N->getOperand(1);
5166   if (Op0.getOpcode() == ISD::BITCAST)
5167     Op0 = Op0.getOperand(0);
5168   if (Op0.getOpcode() == SystemZISD::BYTE_MASK &&
5169       cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) {
5170     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5171     // for v4f32.
5172     if (Op1 == N->getOperand(0))
5173       return Op1;
5174     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5175     EVT VT = Op1.getValueType();
5176     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5177     if (ElemBytes <= 4) {
5178       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5179                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5180       EVT InVT = VT.changeVectorElementTypeToInteger();
5181       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5182                                    SystemZ::VectorBytes / ElemBytes / 2);
5183       if (VT != InVT) {
5184         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5185         DCI.AddToWorklist(Op1.getNode());
5186       }
5187       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5188       DCI.AddToWorklist(Op.getNode());
5189       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5190     }
5191   }
5192   return SDValue();
5193 }
5194 
5195 SDValue SystemZTargetLowering::combineSTORE(
5196     SDNode *N, DAGCombinerInfo &DCI) const {
5197   SelectionDAG &DAG = DCI.DAG;
5198   auto *SN = cast<StoreSDNode>(N);
5199   auto &Op1 = N->getOperand(1);
5200   EVT MemVT = SN->getMemoryVT();
5201   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5202   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5203   // If X has wider elements then convert it to:
5204   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5205   if (MemVT.isInteger()) {
5206     if (SDValue Value =
5207             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5208       DCI.AddToWorklist(Value.getNode());
5209 
5210       // Rewrite the store with the new form of stored value.
5211       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5212                                SN->getBasePtr(), SN->getMemoryVT(),
5213                                SN->getMemOperand());
5214     }
5215   }
5216   // Combine STORE (BSWAP) into STRVH/STRV/STRVG
5217   // See comment in combineBSWAP about volatile accesses.
5218   if (!SN->isTruncatingStore() &&
5219       !SN->isVolatile() &&
5220       Op1.getOpcode() == ISD::BSWAP &&
5221       Op1.getNode()->hasOneUse() &&
5222       (Op1.getValueType() == MVT::i16 ||
5223        Op1.getValueType() == MVT::i32 ||
5224        Op1.getValueType() == MVT::i64)) {
5225 
5226       SDValue BSwapOp = Op1.getOperand(0);
5227 
5228       if (BSwapOp.getValueType() == MVT::i16)
5229         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5230 
5231       SDValue Ops[] = {
5232         N->getOperand(0), BSwapOp, N->getOperand(2),
5233         DAG.getValueType(Op1.getValueType())
5234       };
5235 
5236       return
5237         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5238                                 Ops, MemVT, SN->getMemOperand());
5239     }
5240   return SDValue();
5241 }
5242 
5243 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5244     SDNode *N, DAGCombinerInfo &DCI) const {
5245 
5246   if (!Subtarget.hasVector())
5247     return SDValue();
5248 
5249   // Try to simplify a vector extraction.
5250   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5251     SDValue Op0 = N->getOperand(0);
5252     EVT VecVT = Op0.getValueType();
5253     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5254                           IndexN->getZExtValue(), DCI, false);
5255   }
5256   return SDValue();
5257 }
5258 
5259 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5260     SDNode *N, DAGCombinerInfo &DCI) const {
5261   SelectionDAG &DAG = DCI.DAG;
5262   // (join_dwords X, X) == (replicate X)
5263   if (N->getOperand(0) == N->getOperand(1))
5264     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5265                        N->getOperand(0));
5266   return SDValue();
5267 }
5268 
5269 SDValue SystemZTargetLowering::combineFP_ROUND(
5270     SDNode *N, DAGCombinerInfo &DCI) const {
5271   // (fpround (extract_vector_elt X 0))
5272   // (fpround (extract_vector_elt X 1)) ->
5273   // (extract_vector_elt (VROUND X) 0)
5274   // (extract_vector_elt (VROUND X) 1)
5275   //
5276   // This is a special case since the target doesn't really support v2f32s.
5277   SelectionDAG &DAG = DCI.DAG;
5278   SDValue Op0 = N->getOperand(0);
5279   if (N->getValueType(0) == MVT::f32 &&
5280       Op0.hasOneUse() &&
5281       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5282       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5283       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5284       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5285     SDValue Vec = Op0.getOperand(0);
5286     for (auto *U : Vec->uses()) {
5287       if (U != Op0.getNode() &&
5288           U->hasOneUse() &&
5289           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5290           U->getOperand(0) == Vec &&
5291           U->getOperand(1).getOpcode() == ISD::Constant &&
5292           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5293         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5294         if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5295             OtherRound.getOperand(0) == SDValue(U, 0) &&
5296             OtherRound.getValueType() == MVT::f32) {
5297           SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5298                                        MVT::v4f32, Vec);
5299           DCI.AddToWorklist(VRound.getNode());
5300           SDValue Extract1 =
5301             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5302                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5303           DCI.AddToWorklist(Extract1.getNode());
5304           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5305           SDValue Extract0 =
5306             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5307                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5308           return Extract0;
5309         }
5310       }
5311     }
5312   }
5313   return SDValue();
5314 }
5315 
5316 SDValue SystemZTargetLowering::combineBSWAP(
5317     SDNode *N, DAGCombinerInfo &DCI) const {
5318   SelectionDAG &DAG = DCI.DAG;
5319   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5320   // These loads are allowed to access memory multiple times, and so we must check
5321   // that the loads are not volatile before performing the combine.
5322   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5323       N->getOperand(0).hasOneUse() &&
5324       (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5325        N->getValueType(0) == MVT::i64) &&
5326        !cast<LoadSDNode>(N->getOperand(0))->isVolatile()) {
5327       SDValue Load = N->getOperand(0);
5328       LoadSDNode *LD = cast<LoadSDNode>(Load);
5329 
5330       // Create the byte-swapping load.
5331       SDValue Ops[] = {
5332         LD->getChain(),    // Chain
5333         LD->getBasePtr(),  // Ptr
5334         DAG.getValueType(N->getValueType(0)) // VT
5335       };
5336       SDValue BSLoad =
5337         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5338                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
5339                                               MVT::i64 : MVT::i32, MVT::Other),
5340                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5341 
5342       // If this is an i16 load, insert the truncate.
5343       SDValue ResVal = BSLoad;
5344       if (N->getValueType(0) == MVT::i16)
5345         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5346 
5347       // First, combine the bswap away.  This makes the value produced by the
5348       // load dead.
5349       DCI.CombineTo(N, ResVal);
5350 
5351       // Next, combine the load away, we give it a bogus result value but a real
5352       // chain result.  The result value is dead because the bswap is dead.
5353       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5354 
5355       // Return N so it doesn't get rechecked!
5356       return SDValue(N, 0);
5357     }
5358   return SDValue();
5359 }
5360 
5361 SDValue SystemZTargetLowering::combineSHIFTROT(
5362     SDNode *N, DAGCombinerInfo &DCI) const {
5363 
5364   SelectionDAG &DAG = DCI.DAG;
5365 
5366   // Shift/rotate instructions only use the last 6 bits of the second operand
5367   // register. If the second operand is the result of an AND with an immediate
5368   // value that has its last 6 bits set, we can safely remove the AND operation.
5369   //
5370   // If the AND operation doesn't have the last 6 bits set, we can't remove it
5371   // entirely, but we can still truncate it to a 16-bit value. This prevents
5372   // us from ending up with a NILL with a signed operand, which will cause the
5373   // instruction printer to abort.
5374   SDValue N1 = N->getOperand(1);
5375   if (N1.getOpcode() == ISD::AND) {
5376     SDValue AndMaskOp = N1->getOperand(1);
5377     auto *AndMask = dyn_cast<ConstantSDNode>(AndMaskOp);
5378 
5379     // The AND mask is constant
5380     if (AndMask) {
5381       auto AmtVal = AndMask->getZExtValue();
5382 
5383       // Bottom 6 bits are set
5384       if ((AmtVal & 0x3f) == 0x3f) {
5385         SDValue AndOp = N1->getOperand(0);
5386 
5387         // This is the only use, so remove the node
5388         if (N1.hasOneUse()) {
5389           // Combine the AND away
5390           DCI.CombineTo(N1.getNode(), AndOp);
5391 
5392           // Return N so it isn't rechecked
5393           return SDValue(N, 0);
5394 
5395         // The node will be reused, so create a new node for this one use
5396         } else {
5397           SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5398                                         N->getValueType(0), N->getOperand(0),
5399                                         AndOp);
5400           DCI.AddToWorklist(Replace.getNode());
5401 
5402           return Replace;
5403         }
5404 
5405       // We can't remove the AND, but we can use NILL here (normally we would
5406       // use NILF). Only keep the last 16 bits of the mask. The actual
5407       // transformation will be handled by .td definitions.
5408       } else if (AmtVal >> 16 != 0) {
5409         SDValue AndOp = N1->getOperand(0);
5410 
5411         auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff,
5412                                        SDLoc(AndMaskOp),
5413                                        AndMaskOp.getValueType());
5414 
5415         auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(),
5416                                   AndOp, NewMask);
5417 
5418         SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N),
5419                                       N->getValueType(0), N->getOperand(0),
5420                                       NewAnd);
5421         DCI.AddToWorklist(Replace.getNode());
5422 
5423         return Replace;
5424       }
5425     }
5426   }
5427 
5428   return SDValue();
5429 }
5430 
5431 static bool combineCCMask(SDValue &Glue, int &CCValid, int &CCMask) {
5432   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
5433   // set by the glued instruction using the CCValid / CCMask masks,
5434   // If the glued instruction is itself a (ICMP (SELECT_CCMASK)) testing
5435   // the condition code set by some other instruction, see whether we
5436   // can directly use that condition code.
5437   bool Invert = false;
5438 
5439   // Verify that we have an appropriate mask for a EQ or NE comparison.
5440   if (CCValid != SystemZ::CCMASK_ICMP)
5441     return false;
5442   if (CCMask == SystemZ::CCMASK_CMP_NE)
5443     Invert = !Invert;
5444   else if (CCMask != SystemZ::CCMASK_CMP_EQ)
5445     return false;
5446 
5447   // Verify that we have an ICMP that is the single user of a SELECT_CCMASK.
5448   SDNode *ICmp = Glue.getNode();
5449   if (ICmp->getOpcode() != SystemZISD::ICMP)
5450     return false;
5451   SDNode *Select = ICmp->getOperand(0).getNode();
5452   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
5453     return false;
5454   if (!Select->hasOneUse())
5455     return false;
5456 
5457   // Verify that the ICMP compares against one of select values.
5458   auto *CompareVal = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
5459   if (!CompareVal)
5460     return false;
5461   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
5462   if (!TrueVal)
5463     return false;
5464   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
5465   if (!FalseVal)
5466     return false;
5467   if (CompareVal->getZExtValue() == FalseVal->getZExtValue())
5468     Invert = !Invert;
5469   else if (CompareVal->getZExtValue() != TrueVal->getZExtValue())
5470     return false;
5471 
5472   // Compute the effective CC mask for the new branch or select.
5473   auto *NewCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
5474   auto *NewCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
5475   if (!NewCCValid || !NewCCMask)
5476     return false;
5477   CCValid = NewCCValid->getZExtValue();
5478   CCMask = NewCCMask->getZExtValue();
5479   if (Invert)
5480     CCMask ^= CCValid;
5481 
5482   // Return the updated Glue link.
5483   Glue = Select->getOperand(4);
5484   return true;
5485 }
5486 
5487 static bool combineMergeChains(SDValue &Chain, SDValue Glue) {
5488   // We are about to glue an instruction with input chain Chain to the
5489   // instruction Glue.  Verify that this would not create an invalid
5490   // topological sort due to intervening chain nodes.
5491 
5492   SDNode *Node = Glue.getNode();
5493   for (int ResNo = Node->getNumValues() - 1; ResNo >= 0; --ResNo)
5494     if (Node->getValueType(ResNo) == MVT::Other) {
5495       SDValue OutChain = SDValue(Node, ResNo);
5496       // FIXME: We should be able to at least handle an intervening
5497       // TokenFactor node by swapping chains around a bit ...
5498       return Chain == OutChain;
5499     }
5500 
5501   return true;
5502 }
5503 
5504 SDValue SystemZTargetLowering::combineBR_CCMASK(
5505     SDNode *N, DAGCombinerInfo &DCI) const {
5506   SelectionDAG &DAG = DCI.DAG;
5507 
5508   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
5509   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5510   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5511   if (!CCValid || !CCMask)
5512     return SDValue();
5513 
5514   int CCValidVal = CCValid->getZExtValue();
5515   int CCMaskVal = CCMask->getZExtValue();
5516   SDValue Chain = N->getOperand(0);
5517   SDValue Glue = N->getOperand(4);
5518 
5519   if (combineCCMask(Glue, CCValidVal, CCMaskVal)
5520       && combineMergeChains(Chain, Glue))
5521     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
5522                        Chain,
5523                        DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5524                        DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5525                        N->getOperand(3), Glue);
5526   return SDValue();
5527 }
5528 
5529 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
5530     SDNode *N, DAGCombinerInfo &DCI) const {
5531   SelectionDAG &DAG = DCI.DAG;
5532 
5533   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
5534   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
5535   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
5536   if (!CCValid || !CCMask)
5537     return SDValue();
5538 
5539   int CCValidVal = CCValid->getZExtValue();
5540   int CCMaskVal = CCMask->getZExtValue();
5541   SDValue Glue = N->getOperand(4);
5542 
5543   if (combineCCMask(Glue, CCValidVal, CCMaskVal))
5544     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
5545                        N->getOperand(0),
5546                        N->getOperand(1),
5547                        DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5548                        DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5549                        Glue);
5550   return SDValue();
5551 }
5552 
5553 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5554                                                  DAGCombinerInfo &DCI) const {
5555   switch(N->getOpcode()) {
5556   default: break;
5557   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
5558   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
5559   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
5560   case SystemZISD::MERGE_HIGH:
5561   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
5562   case ISD::STORE:              return combineSTORE(N, DCI);
5563   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5564   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5565   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
5566   case ISD::BSWAP:              return combineBSWAP(N, DCI);
5567   case ISD::SHL:
5568   case ISD::SRA:
5569   case ISD::SRL:
5570   case ISD::ROTL:               return combineSHIFTROT(N, DCI);
5571   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
5572   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
5573   }
5574 
5575   return SDValue();
5576 }
5577 
5578 void
5579 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
5580                                                      KnownBits &Known,
5581                                                      const APInt &DemandedElts,
5582                                                      const SelectionDAG &DAG,
5583                                                      unsigned Depth) const {
5584   unsigned BitWidth = Known.getBitWidth();
5585 
5586   Known.resetAll();
5587   switch (Op.getOpcode()) {
5588   case SystemZISD::SELECT_CCMASK: {
5589     KnownBits TrueKnown(BitWidth), FalseKnown(BitWidth);
5590     DAG.computeKnownBits(Op.getOperand(0), TrueKnown, Depth + 1);
5591     DAG.computeKnownBits(Op.getOperand(1), FalseKnown, Depth + 1);
5592     Known.Zero = TrueKnown.Zero & FalseKnown.Zero;
5593     Known.One = TrueKnown.One & FalseKnown.One;
5594     break;
5595   }
5596 
5597   default:
5598     break;
5599   }
5600 }
5601 
5602 //===----------------------------------------------------------------------===//
5603 // Custom insertion
5604 //===----------------------------------------------------------------------===//
5605 
5606 // Create a new basic block after MBB.
5607 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
5608   MachineFunction &MF = *MBB->getParent();
5609   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
5610   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
5611   return NewMBB;
5612 }
5613 
5614 // Split MBB after MI and return the new block (the one that contains
5615 // instructions after MI).
5616 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
5617                                           MachineBasicBlock *MBB) {
5618   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5619   NewMBB->splice(NewMBB->begin(), MBB,
5620                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
5621   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5622   return NewMBB;
5623 }
5624 
5625 // Split MBB before MI and return the new block (the one that contains MI).
5626 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
5627                                            MachineBasicBlock *MBB) {
5628   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
5629   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
5630   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
5631   return NewMBB;
5632 }
5633 
5634 // Force base value Base into a register before MI.  Return the register.
5635 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
5636                          const SystemZInstrInfo *TII) {
5637   if (Base.isReg())
5638     return Base.getReg();
5639 
5640   MachineBasicBlock *MBB = MI.getParent();
5641   MachineFunction &MF = *MBB->getParent();
5642   MachineRegisterInfo &MRI = MF.getRegInfo();
5643 
5644   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
5645   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
5646       .add(Base)
5647       .addImm(0)
5648       .addReg(0);
5649   return Reg;
5650 }
5651 
5652 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
5653 MachineBasicBlock *
5654 SystemZTargetLowering::emitSelect(MachineInstr &MI,
5655                                   MachineBasicBlock *MBB,
5656                                   unsigned LOCROpcode) const {
5657   const SystemZInstrInfo *TII =
5658       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5659 
5660   unsigned DestReg = MI.getOperand(0).getReg();
5661   unsigned TrueReg = MI.getOperand(1).getReg();
5662   unsigned FalseReg = MI.getOperand(2).getReg();
5663   unsigned CCValid = MI.getOperand(3).getImm();
5664   unsigned CCMask = MI.getOperand(4).getImm();
5665   DebugLoc DL = MI.getDebugLoc();
5666 
5667   // Use LOCROpcode if possible.
5668   if (LOCROpcode && Subtarget.hasLoadStoreOnCond()) {
5669     BuildMI(*MBB, MI, DL, TII->get(LOCROpcode), DestReg)
5670       .addReg(FalseReg).addReg(TrueReg)
5671       .addImm(CCValid).addImm(CCMask);
5672     MI.eraseFromParent();
5673     return MBB;
5674   }
5675 
5676   MachineBasicBlock *StartMBB = MBB;
5677   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
5678   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5679 
5680   //  StartMBB:
5681   //   BRC CCMask, JoinMBB
5682   //   # fallthrough to FalseMBB
5683   MBB = StartMBB;
5684   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5685     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5686   MBB->addSuccessor(JoinMBB);
5687   MBB->addSuccessor(FalseMBB);
5688 
5689   //  FalseMBB:
5690   //   # fallthrough to JoinMBB
5691   MBB = FalseMBB;
5692   MBB->addSuccessor(JoinMBB);
5693 
5694   //  JoinMBB:
5695   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
5696   //  ...
5697   MBB = JoinMBB;
5698   BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg)
5699     .addReg(TrueReg).addMBB(StartMBB)
5700     .addReg(FalseReg).addMBB(FalseMBB);
5701 
5702   MI.eraseFromParent();
5703   return JoinMBB;
5704 }
5705 
5706 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
5707 // StoreOpcode is the store to use and Invert says whether the store should
5708 // happen when the condition is false rather than true.  If a STORE ON
5709 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
5710 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
5711                                                         MachineBasicBlock *MBB,
5712                                                         unsigned StoreOpcode,
5713                                                         unsigned STOCOpcode,
5714                                                         bool Invert) const {
5715   const SystemZInstrInfo *TII =
5716       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5717 
5718   unsigned SrcReg = MI.getOperand(0).getReg();
5719   MachineOperand Base = MI.getOperand(1);
5720   int64_t Disp = MI.getOperand(2).getImm();
5721   unsigned IndexReg = MI.getOperand(3).getReg();
5722   unsigned CCValid = MI.getOperand(4).getImm();
5723   unsigned CCMask = MI.getOperand(5).getImm();
5724   DebugLoc DL = MI.getDebugLoc();
5725 
5726   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
5727 
5728   // Use STOCOpcode if possible.  We could use different store patterns in
5729   // order to avoid matching the index register, but the performance trade-offs
5730   // might be more complicated in that case.
5731   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
5732     if (Invert)
5733       CCMask ^= CCValid;
5734 
5735     // ISel pattern matching also adds a load memory operand of the same
5736     // address, so take special care to find the storing memory operand.
5737     MachineMemOperand *MMO = nullptr;
5738     for (auto *I : MI.memoperands())
5739       if (I->isStore()) {
5740           MMO = I;
5741           break;
5742         }
5743 
5744     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
5745       .addReg(SrcReg)
5746       .add(Base)
5747       .addImm(Disp)
5748       .addImm(CCValid)
5749       .addImm(CCMask)
5750       .addMemOperand(MMO);
5751 
5752     MI.eraseFromParent();
5753     return MBB;
5754   }
5755 
5756   // Get the condition needed to branch around the store.
5757   if (!Invert)
5758     CCMask ^= CCValid;
5759 
5760   MachineBasicBlock *StartMBB = MBB;
5761   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
5762   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
5763 
5764   //  StartMBB:
5765   //   BRC CCMask, JoinMBB
5766   //   # fallthrough to FalseMBB
5767   MBB = StartMBB;
5768   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5769     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
5770   MBB->addSuccessor(JoinMBB);
5771   MBB->addSuccessor(FalseMBB);
5772 
5773   //  FalseMBB:
5774   //   store %SrcReg, %Disp(%Index,%Base)
5775   //   # fallthrough to JoinMBB
5776   MBB = FalseMBB;
5777   BuildMI(MBB, DL, TII->get(StoreOpcode))
5778       .addReg(SrcReg)
5779       .add(Base)
5780       .addImm(Disp)
5781       .addReg(IndexReg);
5782   MBB->addSuccessor(JoinMBB);
5783 
5784   MI.eraseFromParent();
5785   return JoinMBB;
5786 }
5787 
5788 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
5789 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
5790 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
5791 // BitSize is the width of the field in bits, or 0 if this is a partword
5792 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
5793 // is one of the operands.  Invert says whether the field should be
5794 // inverted after performing BinOpcode (e.g. for NAND).
5795 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
5796     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
5797     unsigned BitSize, bool Invert) const {
5798   MachineFunction &MF = *MBB->getParent();
5799   const SystemZInstrInfo *TII =
5800       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5801   MachineRegisterInfo &MRI = MF.getRegInfo();
5802   bool IsSubWord = (BitSize < 32);
5803 
5804   // Extract the operands.  Base can be a register or a frame index.
5805   // Src2 can be a register or immediate.
5806   unsigned Dest = MI.getOperand(0).getReg();
5807   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5808   int64_t Disp = MI.getOperand(2).getImm();
5809   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
5810   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5811   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5812   DebugLoc DL = MI.getDebugLoc();
5813   if (IsSubWord)
5814     BitSize = MI.getOperand(6).getImm();
5815 
5816   // Subword operations use 32-bit registers.
5817   const TargetRegisterClass *RC = (BitSize <= 32 ?
5818                                    &SystemZ::GR32BitRegClass :
5819                                    &SystemZ::GR64BitRegClass);
5820   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
5821   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5822 
5823   // Get the right opcodes for the displacement.
5824   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
5825   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5826   assert(LOpcode && CSOpcode && "Displacement out of range");
5827 
5828   // Create virtual registers for temporary results.
5829   unsigned OrigVal       = MRI.createVirtualRegister(RC);
5830   unsigned OldVal        = MRI.createVirtualRegister(RC);
5831   unsigned NewVal        = (BinOpcode || IsSubWord ?
5832                             MRI.createVirtualRegister(RC) : Src2.getReg());
5833   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5834   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5835 
5836   // Insert a basic block for the main loop.
5837   MachineBasicBlock *StartMBB = MBB;
5838   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
5839   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
5840 
5841   //  StartMBB:
5842   //   ...
5843   //   %OrigVal = L Disp(%Base)
5844   //   # fall through to LoopMMB
5845   MBB = StartMBB;
5846   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
5847   MBB->addSuccessor(LoopMBB);
5848 
5849   //  LoopMBB:
5850   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
5851   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5852   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
5853   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
5854   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
5855   //   JNE LoopMBB
5856   //   # fall through to DoneMMB
5857   MBB = LoopMBB;
5858   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5859     .addReg(OrigVal).addMBB(StartMBB)
5860     .addReg(Dest).addMBB(LoopMBB);
5861   if (IsSubWord)
5862     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5863       .addReg(OldVal).addReg(BitShift).addImm(0);
5864   if (Invert) {
5865     // Perform the operation normally and then invert every bit of the field.
5866     unsigned Tmp = MRI.createVirtualRegister(RC);
5867     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
5868     if (BitSize <= 32)
5869       // XILF with the upper BitSize bits set.
5870       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
5871         .addReg(Tmp).addImm(-1U << (32 - BitSize));
5872     else {
5873       // Use LCGR and add -1 to the result, which is more compact than
5874       // an XILF, XILH pair.
5875       unsigned Tmp2 = MRI.createVirtualRegister(RC);
5876       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
5877       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
5878         .addReg(Tmp2).addImm(-1);
5879     }
5880   } else if (BinOpcode)
5881     // A simply binary operation.
5882     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
5883         .addReg(RotatedOldVal)
5884         .add(Src2);
5885   else if (IsSubWord)
5886     // Use RISBG to rotate Src2 into position and use it to replace the
5887     // field in RotatedOldVal.
5888     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
5889       .addReg(RotatedOldVal).addReg(Src2.getReg())
5890       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
5891   if (IsSubWord)
5892     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
5893       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
5894   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
5895       .addReg(OldVal)
5896       .addReg(NewVal)
5897       .add(Base)
5898       .addImm(Disp);
5899   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5900     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
5901   MBB->addSuccessor(LoopMBB);
5902   MBB->addSuccessor(DoneMBB);
5903 
5904   MI.eraseFromParent();
5905   return DoneMBB;
5906 }
5907 
5908 // Implement EmitInstrWithCustomInserter for pseudo
5909 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
5910 // instruction that should be used to compare the current field with the
5911 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
5912 // for when the current field should be kept.  BitSize is the width of
5913 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
5914 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
5915     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
5916     unsigned KeepOldMask, unsigned BitSize) const {
5917   MachineFunction &MF = *MBB->getParent();
5918   const SystemZInstrInfo *TII =
5919       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
5920   MachineRegisterInfo &MRI = MF.getRegInfo();
5921   bool IsSubWord = (BitSize < 32);
5922 
5923   // Extract the operands.  Base can be a register or a frame index.
5924   unsigned Dest = MI.getOperand(0).getReg();
5925   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
5926   int64_t Disp = MI.getOperand(2).getImm();
5927   unsigned Src2 = MI.getOperand(3).getReg();
5928   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
5929   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
5930   DebugLoc DL = MI.getDebugLoc();
5931   if (IsSubWord)
5932     BitSize = MI.getOperand(6).getImm();
5933 
5934   // Subword operations use 32-bit registers.
5935   const TargetRegisterClass *RC = (BitSize <= 32 ?
5936                                    &SystemZ::GR32BitRegClass :
5937                                    &SystemZ::GR64BitRegClass);
5938   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
5939   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
5940 
5941   // Get the right opcodes for the displacement.
5942   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
5943   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
5944   assert(LOpcode && CSOpcode && "Displacement out of range");
5945 
5946   // Create virtual registers for temporary results.
5947   unsigned OrigVal       = MRI.createVirtualRegister(RC);
5948   unsigned OldVal        = MRI.createVirtualRegister(RC);
5949   unsigned NewVal        = MRI.createVirtualRegister(RC);
5950   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
5951   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
5952   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
5953 
5954   // Insert 3 basic blocks for the loop.
5955   MachineBasicBlock *StartMBB  = MBB;
5956   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
5957   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
5958   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
5959   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
5960 
5961   //  StartMBB:
5962   //   ...
5963   //   %OrigVal     = L Disp(%Base)
5964   //   # fall through to LoopMMB
5965   MBB = StartMBB;
5966   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
5967   MBB->addSuccessor(LoopMBB);
5968 
5969   //  LoopMBB:
5970   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
5971   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
5972   //   CompareOpcode %RotatedOldVal, %Src2
5973   //   BRC KeepOldMask, UpdateMBB
5974   MBB = LoopMBB;
5975   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
5976     .addReg(OrigVal).addMBB(StartMBB)
5977     .addReg(Dest).addMBB(UpdateMBB);
5978   if (IsSubWord)
5979     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
5980       .addReg(OldVal).addReg(BitShift).addImm(0);
5981   BuildMI(MBB, DL, TII->get(CompareOpcode))
5982     .addReg(RotatedOldVal).addReg(Src2);
5983   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
5984     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
5985   MBB->addSuccessor(UpdateMBB);
5986   MBB->addSuccessor(UseAltMBB);
5987 
5988   //  UseAltMBB:
5989   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
5990   //   # fall through to UpdateMMB
5991   MBB = UseAltMBB;
5992   if (IsSubWord)
5993     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
5994       .addReg(RotatedOldVal).addReg(Src2)
5995       .addImm(32).addImm(31 + BitSize).addImm(0);
5996   MBB->addSuccessor(UpdateMBB);
5997 
5998   //  UpdateMBB:
5999   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
6000   //                        [ %RotatedAltVal, UseAltMBB ]
6001   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
6002   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
6003   //   JNE LoopMBB
6004   //   # fall through to DoneMMB
6005   MBB = UpdateMBB;
6006   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
6007     .addReg(RotatedOldVal).addMBB(LoopMBB)
6008     .addReg(RotatedAltVal).addMBB(UseAltMBB);
6009   if (IsSubWord)
6010     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6011       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6012   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6013       .addReg(OldVal)
6014       .addReg(NewVal)
6015       .add(Base)
6016       .addImm(Disp);
6017   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6018     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6019   MBB->addSuccessor(LoopMBB);
6020   MBB->addSuccessor(DoneMBB);
6021 
6022   MI.eraseFromParent();
6023   return DoneMBB;
6024 }
6025 
6026 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
6027 // instruction MI.
6028 MachineBasicBlock *
6029 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
6030                                           MachineBasicBlock *MBB) const {
6031 
6032   MachineFunction &MF = *MBB->getParent();
6033   const SystemZInstrInfo *TII =
6034       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6035   MachineRegisterInfo &MRI = MF.getRegInfo();
6036 
6037   // Extract the operands.  Base can be a register or a frame index.
6038   unsigned Dest = MI.getOperand(0).getReg();
6039   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6040   int64_t Disp = MI.getOperand(2).getImm();
6041   unsigned OrigCmpVal = MI.getOperand(3).getReg();
6042   unsigned OrigSwapVal = MI.getOperand(4).getReg();
6043   unsigned BitShift = MI.getOperand(5).getReg();
6044   unsigned NegBitShift = MI.getOperand(6).getReg();
6045   int64_t BitSize = MI.getOperand(7).getImm();
6046   DebugLoc DL = MI.getDebugLoc();
6047 
6048   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
6049 
6050   // Get the right opcodes for the displacement.
6051   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
6052   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
6053   assert(LOpcode && CSOpcode && "Displacement out of range");
6054 
6055   // Create virtual registers for temporary results.
6056   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
6057   unsigned OldVal       = MRI.createVirtualRegister(RC);
6058   unsigned CmpVal       = MRI.createVirtualRegister(RC);
6059   unsigned SwapVal      = MRI.createVirtualRegister(RC);
6060   unsigned StoreVal     = MRI.createVirtualRegister(RC);
6061   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
6062   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
6063   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
6064 
6065   // Insert 2 basic blocks for the loop.
6066   MachineBasicBlock *StartMBB = MBB;
6067   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
6068   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
6069   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
6070 
6071   //  StartMBB:
6072   //   ...
6073   //   %OrigOldVal     = L Disp(%Base)
6074   //   # fall through to LoopMMB
6075   MBB = StartMBB;
6076   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
6077       .add(Base)
6078       .addImm(Disp)
6079       .addReg(0);
6080   MBB->addSuccessor(LoopMBB);
6081 
6082   //  LoopMBB:
6083   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
6084   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
6085   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
6086   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
6087   //                      ^^ The low BitSize bits contain the field
6088   //                         of interest.
6089   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
6090   //                      ^^ Replace the upper 32-BitSize bits of the
6091   //                         comparison value with those that we loaded,
6092   //                         so that we can use a full word comparison.
6093   //   CR %Dest, %RetryCmpVal
6094   //   JNE DoneMBB
6095   //   # Fall through to SetMBB
6096   MBB = LoopMBB;
6097   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6098     .addReg(OrigOldVal).addMBB(StartMBB)
6099     .addReg(RetryOldVal).addMBB(SetMBB);
6100   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
6101     .addReg(OrigCmpVal).addMBB(StartMBB)
6102     .addReg(RetryCmpVal).addMBB(SetMBB);
6103   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
6104     .addReg(OrigSwapVal).addMBB(StartMBB)
6105     .addReg(RetrySwapVal).addMBB(SetMBB);
6106   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
6107     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
6108   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
6109     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6110   BuildMI(MBB, DL, TII->get(SystemZ::CR))
6111     .addReg(Dest).addReg(RetryCmpVal);
6112   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6113     .addImm(SystemZ::CCMASK_ICMP)
6114     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
6115   MBB->addSuccessor(DoneMBB);
6116   MBB->addSuccessor(SetMBB);
6117 
6118   //  SetMBB:
6119   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
6120   //                      ^^ Replace the upper 32-BitSize bits of the new
6121   //                         value with those that we loaded.
6122   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
6123   //                      ^^ Rotate the new field to its proper position.
6124   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
6125   //   JNE LoopMBB
6126   //   # fall through to ExitMMB
6127   MBB = SetMBB;
6128   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
6129     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6130   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
6131     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
6132   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
6133       .addReg(OldVal)
6134       .addReg(StoreVal)
6135       .add(Base)
6136       .addImm(Disp);
6137   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6138     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6139   MBB->addSuccessor(LoopMBB);
6140   MBB->addSuccessor(DoneMBB);
6141 
6142   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
6143   // to the block after the loop.  At this point, CC may have been defined
6144   // either by the CR in LoopMBB or by the CS in SetMBB.
6145   if (!MI.registerDefIsDead(SystemZ::CC))
6146     DoneMBB->addLiveIn(SystemZ::CC);
6147 
6148   MI.eraseFromParent();
6149   return DoneMBB;
6150 }
6151 
6152 // Emit a move from two GR64s to a GR128.
6153 MachineBasicBlock *
6154 SystemZTargetLowering::emitPair128(MachineInstr &MI,
6155                                    MachineBasicBlock *MBB) const {
6156   MachineFunction &MF = *MBB->getParent();
6157   const SystemZInstrInfo *TII =
6158       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6159   MachineRegisterInfo &MRI = MF.getRegInfo();
6160   DebugLoc DL = MI.getDebugLoc();
6161 
6162   unsigned Dest = MI.getOperand(0).getReg();
6163   unsigned Hi = MI.getOperand(1).getReg();
6164   unsigned Lo = MI.getOperand(2).getReg();
6165   unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6166   unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6167 
6168   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
6169   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
6170     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
6171   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6172     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
6173 
6174   MI.eraseFromParent();
6175   return MBB;
6176 }
6177 
6178 // Emit an extension from a GR64 to a GR128.  ClearEven is true
6179 // if the high register of the GR128 value must be cleared or false if
6180 // it's "don't care".
6181 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
6182                                                      MachineBasicBlock *MBB,
6183                                                      bool ClearEven) const {
6184   MachineFunction &MF = *MBB->getParent();
6185   const SystemZInstrInfo *TII =
6186       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6187   MachineRegisterInfo &MRI = MF.getRegInfo();
6188   DebugLoc DL = MI.getDebugLoc();
6189 
6190   unsigned Dest = MI.getOperand(0).getReg();
6191   unsigned Src = MI.getOperand(1).getReg();
6192   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6193 
6194   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
6195   if (ClearEven) {
6196     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6197     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
6198 
6199     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
6200       .addImm(0);
6201     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
6202       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
6203     In128 = NewIn128;
6204   }
6205   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6206     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
6207 
6208   MI.eraseFromParent();
6209   return MBB;
6210 }
6211 
6212 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
6213     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6214   MachineFunction &MF = *MBB->getParent();
6215   const SystemZInstrInfo *TII =
6216       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6217   MachineRegisterInfo &MRI = MF.getRegInfo();
6218   DebugLoc DL = MI.getDebugLoc();
6219 
6220   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
6221   uint64_t DestDisp = MI.getOperand(1).getImm();
6222   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
6223   uint64_t SrcDisp = MI.getOperand(3).getImm();
6224   uint64_t Length = MI.getOperand(4).getImm();
6225 
6226   // When generating more than one CLC, all but the last will need to
6227   // branch to the end when a difference is found.
6228   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
6229                                splitBlockAfter(MI, MBB) : nullptr);
6230 
6231   // Check for the loop form, in which operand 5 is the trip count.
6232   if (MI.getNumExplicitOperands() > 5) {
6233     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
6234 
6235     uint64_t StartCountReg = MI.getOperand(5).getReg();
6236     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
6237     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
6238                               forceReg(MI, DestBase, TII));
6239 
6240     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
6241     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
6242     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
6243                             MRI.createVirtualRegister(RC));
6244     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
6245     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
6246                             MRI.createVirtualRegister(RC));
6247 
6248     RC = &SystemZ::GR64BitRegClass;
6249     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
6250     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
6251 
6252     MachineBasicBlock *StartMBB = MBB;
6253     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6254     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6255     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
6256 
6257     //  StartMBB:
6258     //   # fall through to LoopMMB
6259     MBB->addSuccessor(LoopMBB);
6260 
6261     //  LoopMBB:
6262     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
6263     //                      [ %NextDestReg, NextMBB ]
6264     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
6265     //                     [ %NextSrcReg, NextMBB ]
6266     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
6267     //                       [ %NextCountReg, NextMBB ]
6268     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
6269     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
6270     //   ( JLH EndMBB )
6271     //
6272     // The prefetch is used only for MVC.  The JLH is used only for CLC.
6273     MBB = LoopMBB;
6274 
6275     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
6276       .addReg(StartDestReg).addMBB(StartMBB)
6277       .addReg(NextDestReg).addMBB(NextMBB);
6278     if (!HaveSingleBase)
6279       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
6280         .addReg(StartSrcReg).addMBB(StartMBB)
6281         .addReg(NextSrcReg).addMBB(NextMBB);
6282     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
6283       .addReg(StartCountReg).addMBB(StartMBB)
6284       .addReg(NextCountReg).addMBB(NextMBB);
6285     if (Opcode == SystemZ::MVC)
6286       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
6287         .addImm(SystemZ::PFD_WRITE)
6288         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
6289     BuildMI(MBB, DL, TII->get(Opcode))
6290       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
6291       .addReg(ThisSrcReg).addImm(SrcDisp);
6292     if (EndMBB) {
6293       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6294         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6295         .addMBB(EndMBB);
6296       MBB->addSuccessor(EndMBB);
6297       MBB->addSuccessor(NextMBB);
6298     }
6299 
6300     // NextMBB:
6301     //   %NextDestReg = LA 256(%ThisDestReg)
6302     //   %NextSrcReg = LA 256(%ThisSrcReg)
6303     //   %NextCountReg = AGHI %ThisCountReg, -1
6304     //   CGHI %NextCountReg, 0
6305     //   JLH LoopMBB
6306     //   # fall through to DoneMMB
6307     //
6308     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
6309     MBB = NextMBB;
6310 
6311     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
6312       .addReg(ThisDestReg).addImm(256).addReg(0);
6313     if (!HaveSingleBase)
6314       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
6315         .addReg(ThisSrcReg).addImm(256).addReg(0);
6316     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
6317       .addReg(ThisCountReg).addImm(-1);
6318     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
6319       .addReg(NextCountReg).addImm(0);
6320     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6321       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6322       .addMBB(LoopMBB);
6323     MBB->addSuccessor(LoopMBB);
6324     MBB->addSuccessor(DoneMBB);
6325 
6326     DestBase = MachineOperand::CreateReg(NextDestReg, false);
6327     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
6328     Length &= 255;
6329     MBB = DoneMBB;
6330   }
6331   // Handle any remaining bytes with straight-line code.
6332   while (Length > 0) {
6333     uint64_t ThisLength = std::min(Length, uint64_t(256));
6334     // The previous iteration might have created out-of-range displacements.
6335     // Apply them using LAY if so.
6336     if (!isUInt<12>(DestDisp)) {
6337       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6338       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6339           .add(DestBase)
6340           .addImm(DestDisp)
6341           .addReg(0);
6342       DestBase = MachineOperand::CreateReg(Reg, false);
6343       DestDisp = 0;
6344     }
6345     if (!isUInt<12>(SrcDisp)) {
6346       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6347       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
6348           .add(SrcBase)
6349           .addImm(SrcDisp)
6350           .addReg(0);
6351       SrcBase = MachineOperand::CreateReg(Reg, false);
6352       SrcDisp = 0;
6353     }
6354     BuildMI(*MBB, MI, DL, TII->get(Opcode))
6355         .add(DestBase)
6356         .addImm(DestDisp)
6357         .addImm(ThisLength)
6358         .add(SrcBase)
6359         .addImm(SrcDisp)
6360         ->setMemRefs(MI.memoperands_begin(), MI.memoperands_end());
6361     DestDisp += ThisLength;
6362     SrcDisp += ThisLength;
6363     Length -= ThisLength;
6364     // If there's another CLC to go, branch to the end if a difference
6365     // was found.
6366     if (EndMBB && Length > 0) {
6367       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
6368       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6369         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6370         .addMBB(EndMBB);
6371       MBB->addSuccessor(EndMBB);
6372       MBB->addSuccessor(NextMBB);
6373       MBB = NextMBB;
6374     }
6375   }
6376   if (EndMBB) {
6377     MBB->addSuccessor(EndMBB);
6378     MBB = EndMBB;
6379     MBB->addLiveIn(SystemZ::CC);
6380   }
6381 
6382   MI.eraseFromParent();
6383   return MBB;
6384 }
6385 
6386 // Decompose string pseudo-instruction MI into a loop that continually performs
6387 // Opcode until CC != 3.
6388 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
6389     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6390   MachineFunction &MF = *MBB->getParent();
6391   const SystemZInstrInfo *TII =
6392       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6393   MachineRegisterInfo &MRI = MF.getRegInfo();
6394   DebugLoc DL = MI.getDebugLoc();
6395 
6396   uint64_t End1Reg = MI.getOperand(0).getReg();
6397   uint64_t Start1Reg = MI.getOperand(1).getReg();
6398   uint64_t Start2Reg = MI.getOperand(2).getReg();
6399   uint64_t CharReg = MI.getOperand(3).getReg();
6400 
6401   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
6402   uint64_t This1Reg = MRI.createVirtualRegister(RC);
6403   uint64_t This2Reg = MRI.createVirtualRegister(RC);
6404   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
6405 
6406   MachineBasicBlock *StartMBB = MBB;
6407   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6408   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6409 
6410   //  StartMBB:
6411   //   # fall through to LoopMMB
6412   MBB->addSuccessor(LoopMBB);
6413 
6414   //  LoopMBB:
6415   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
6416   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
6417   //   R0L = %CharReg
6418   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
6419   //   JO LoopMBB
6420   //   # fall through to DoneMMB
6421   //
6422   // The load of R0L can be hoisted by post-RA LICM.
6423   MBB = LoopMBB;
6424 
6425   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
6426     .addReg(Start1Reg).addMBB(StartMBB)
6427     .addReg(End1Reg).addMBB(LoopMBB);
6428   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
6429     .addReg(Start2Reg).addMBB(StartMBB)
6430     .addReg(End2Reg).addMBB(LoopMBB);
6431   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
6432   BuildMI(MBB, DL, TII->get(Opcode))
6433     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
6434     .addReg(This1Reg).addReg(This2Reg);
6435   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6436     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
6437   MBB->addSuccessor(LoopMBB);
6438   MBB->addSuccessor(DoneMBB);
6439 
6440   DoneMBB->addLiveIn(SystemZ::CC);
6441 
6442   MI.eraseFromParent();
6443   return DoneMBB;
6444 }
6445 
6446 // Update TBEGIN instruction with final opcode and register clobbers.
6447 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
6448     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
6449     bool NoFloat) const {
6450   MachineFunction &MF = *MBB->getParent();
6451   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
6452   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
6453 
6454   // Update opcode.
6455   MI.setDesc(TII->get(Opcode));
6456 
6457   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
6458   // Make sure to add the corresponding GRSM bits if they are missing.
6459   uint64_t Control = MI.getOperand(2).getImm();
6460   static const unsigned GPRControlBit[16] = {
6461     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
6462     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
6463   };
6464   Control |= GPRControlBit[15];
6465   if (TFI->hasFP(MF))
6466     Control |= GPRControlBit[11];
6467   MI.getOperand(2).setImm(Control);
6468 
6469   // Add GPR clobbers.
6470   for (int I = 0; I < 16; I++) {
6471     if ((Control & GPRControlBit[I]) == 0) {
6472       unsigned Reg = SystemZMC::GR64Regs[I];
6473       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6474     }
6475   }
6476 
6477   // Add FPR/VR clobbers.
6478   if (!NoFloat && (Control & 4) != 0) {
6479     if (Subtarget.hasVector()) {
6480       for (int I = 0; I < 32; I++) {
6481         unsigned Reg = SystemZMC::VR128Regs[I];
6482         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6483       }
6484     } else {
6485       for (int I = 0; I < 16; I++) {
6486         unsigned Reg = SystemZMC::FP64Regs[I];
6487         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
6488       }
6489     }
6490   }
6491 
6492   return MBB;
6493 }
6494 
6495 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
6496     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6497   MachineFunction &MF = *MBB->getParent();
6498   MachineRegisterInfo *MRI = &MF.getRegInfo();
6499   const SystemZInstrInfo *TII =
6500       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6501   DebugLoc DL = MI.getDebugLoc();
6502 
6503   unsigned SrcReg = MI.getOperand(0).getReg();
6504 
6505   // Create new virtual register of the same class as source.
6506   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
6507   unsigned DstReg = MRI->createVirtualRegister(RC);
6508 
6509   // Replace pseudo with a normal load-and-test that models the def as
6510   // well.
6511   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
6512     .addReg(SrcReg);
6513   MI.eraseFromParent();
6514 
6515   return MBB;
6516 }
6517 
6518 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
6519     MachineInstr &MI, MachineBasicBlock *MBB) const {
6520   switch (MI.getOpcode()) {
6521   case SystemZ::Select32Mux:
6522     return emitSelect(MI, MBB,
6523                       Subtarget.hasLoadStoreOnCond2()? SystemZ::LOCRMux : 0);
6524   case SystemZ::Select32:
6525     return emitSelect(MI, MBB, SystemZ::LOCR);
6526   case SystemZ::Select64:
6527     return emitSelect(MI, MBB, SystemZ::LOCGR);
6528   case SystemZ::SelectF32:
6529   case SystemZ::SelectF64:
6530   case SystemZ::SelectF128:
6531   case SystemZ::SelectVR128:
6532     return emitSelect(MI, MBB, 0);
6533 
6534   case SystemZ::CondStore8Mux:
6535     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
6536   case SystemZ::CondStore8MuxInv:
6537     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
6538   case SystemZ::CondStore16Mux:
6539     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
6540   case SystemZ::CondStore16MuxInv:
6541     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
6542   case SystemZ::CondStore32Mux:
6543     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
6544   case SystemZ::CondStore32MuxInv:
6545     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
6546   case SystemZ::CondStore8:
6547     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
6548   case SystemZ::CondStore8Inv:
6549     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
6550   case SystemZ::CondStore16:
6551     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
6552   case SystemZ::CondStore16Inv:
6553     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
6554   case SystemZ::CondStore32:
6555     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
6556   case SystemZ::CondStore32Inv:
6557     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
6558   case SystemZ::CondStore64:
6559     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
6560   case SystemZ::CondStore64Inv:
6561     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
6562   case SystemZ::CondStoreF32:
6563     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
6564   case SystemZ::CondStoreF32Inv:
6565     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
6566   case SystemZ::CondStoreF64:
6567     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
6568   case SystemZ::CondStoreF64Inv:
6569     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
6570 
6571   case SystemZ::PAIR128:
6572     return emitPair128(MI, MBB);
6573   case SystemZ::AEXT128:
6574     return emitExt128(MI, MBB, false);
6575   case SystemZ::ZEXT128:
6576     return emitExt128(MI, MBB, true);
6577 
6578   case SystemZ::ATOMIC_SWAPW:
6579     return emitAtomicLoadBinary(MI, MBB, 0, 0);
6580   case SystemZ::ATOMIC_SWAP_32:
6581     return emitAtomicLoadBinary(MI, MBB, 0, 32);
6582   case SystemZ::ATOMIC_SWAP_64:
6583     return emitAtomicLoadBinary(MI, MBB, 0, 64);
6584 
6585   case SystemZ::ATOMIC_LOADW_AR:
6586     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
6587   case SystemZ::ATOMIC_LOADW_AFI:
6588     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
6589   case SystemZ::ATOMIC_LOAD_AR:
6590     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
6591   case SystemZ::ATOMIC_LOAD_AHI:
6592     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
6593   case SystemZ::ATOMIC_LOAD_AFI:
6594     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
6595   case SystemZ::ATOMIC_LOAD_AGR:
6596     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
6597   case SystemZ::ATOMIC_LOAD_AGHI:
6598     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
6599   case SystemZ::ATOMIC_LOAD_AGFI:
6600     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
6601 
6602   case SystemZ::ATOMIC_LOADW_SR:
6603     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
6604   case SystemZ::ATOMIC_LOAD_SR:
6605     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
6606   case SystemZ::ATOMIC_LOAD_SGR:
6607     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
6608 
6609   case SystemZ::ATOMIC_LOADW_NR:
6610     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
6611   case SystemZ::ATOMIC_LOADW_NILH:
6612     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
6613   case SystemZ::ATOMIC_LOAD_NR:
6614     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
6615   case SystemZ::ATOMIC_LOAD_NILL:
6616     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
6617   case SystemZ::ATOMIC_LOAD_NILH:
6618     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
6619   case SystemZ::ATOMIC_LOAD_NILF:
6620     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
6621   case SystemZ::ATOMIC_LOAD_NGR:
6622     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
6623   case SystemZ::ATOMIC_LOAD_NILL64:
6624     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
6625   case SystemZ::ATOMIC_LOAD_NILH64:
6626     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
6627   case SystemZ::ATOMIC_LOAD_NIHL64:
6628     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
6629   case SystemZ::ATOMIC_LOAD_NIHH64:
6630     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
6631   case SystemZ::ATOMIC_LOAD_NILF64:
6632     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
6633   case SystemZ::ATOMIC_LOAD_NIHF64:
6634     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
6635 
6636   case SystemZ::ATOMIC_LOADW_OR:
6637     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
6638   case SystemZ::ATOMIC_LOADW_OILH:
6639     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
6640   case SystemZ::ATOMIC_LOAD_OR:
6641     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
6642   case SystemZ::ATOMIC_LOAD_OILL:
6643     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
6644   case SystemZ::ATOMIC_LOAD_OILH:
6645     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
6646   case SystemZ::ATOMIC_LOAD_OILF:
6647     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
6648   case SystemZ::ATOMIC_LOAD_OGR:
6649     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
6650   case SystemZ::ATOMIC_LOAD_OILL64:
6651     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
6652   case SystemZ::ATOMIC_LOAD_OILH64:
6653     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
6654   case SystemZ::ATOMIC_LOAD_OIHL64:
6655     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
6656   case SystemZ::ATOMIC_LOAD_OIHH64:
6657     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
6658   case SystemZ::ATOMIC_LOAD_OILF64:
6659     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
6660   case SystemZ::ATOMIC_LOAD_OIHF64:
6661     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
6662 
6663   case SystemZ::ATOMIC_LOADW_XR:
6664     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
6665   case SystemZ::ATOMIC_LOADW_XILF:
6666     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
6667   case SystemZ::ATOMIC_LOAD_XR:
6668     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
6669   case SystemZ::ATOMIC_LOAD_XILF:
6670     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
6671   case SystemZ::ATOMIC_LOAD_XGR:
6672     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
6673   case SystemZ::ATOMIC_LOAD_XILF64:
6674     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
6675   case SystemZ::ATOMIC_LOAD_XIHF64:
6676     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
6677 
6678   case SystemZ::ATOMIC_LOADW_NRi:
6679     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
6680   case SystemZ::ATOMIC_LOADW_NILHi:
6681     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
6682   case SystemZ::ATOMIC_LOAD_NRi:
6683     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
6684   case SystemZ::ATOMIC_LOAD_NILLi:
6685     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
6686   case SystemZ::ATOMIC_LOAD_NILHi:
6687     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
6688   case SystemZ::ATOMIC_LOAD_NILFi:
6689     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
6690   case SystemZ::ATOMIC_LOAD_NGRi:
6691     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
6692   case SystemZ::ATOMIC_LOAD_NILL64i:
6693     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
6694   case SystemZ::ATOMIC_LOAD_NILH64i:
6695     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
6696   case SystemZ::ATOMIC_LOAD_NIHL64i:
6697     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
6698   case SystemZ::ATOMIC_LOAD_NIHH64i:
6699     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
6700   case SystemZ::ATOMIC_LOAD_NILF64i:
6701     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
6702   case SystemZ::ATOMIC_LOAD_NIHF64i:
6703     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
6704 
6705   case SystemZ::ATOMIC_LOADW_MIN:
6706     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6707                                 SystemZ::CCMASK_CMP_LE, 0);
6708   case SystemZ::ATOMIC_LOAD_MIN_32:
6709     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6710                                 SystemZ::CCMASK_CMP_LE, 32);
6711   case SystemZ::ATOMIC_LOAD_MIN_64:
6712     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6713                                 SystemZ::CCMASK_CMP_LE, 64);
6714 
6715   case SystemZ::ATOMIC_LOADW_MAX:
6716     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6717                                 SystemZ::CCMASK_CMP_GE, 0);
6718   case SystemZ::ATOMIC_LOAD_MAX_32:
6719     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
6720                                 SystemZ::CCMASK_CMP_GE, 32);
6721   case SystemZ::ATOMIC_LOAD_MAX_64:
6722     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
6723                                 SystemZ::CCMASK_CMP_GE, 64);
6724 
6725   case SystemZ::ATOMIC_LOADW_UMIN:
6726     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6727                                 SystemZ::CCMASK_CMP_LE, 0);
6728   case SystemZ::ATOMIC_LOAD_UMIN_32:
6729     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6730                                 SystemZ::CCMASK_CMP_LE, 32);
6731   case SystemZ::ATOMIC_LOAD_UMIN_64:
6732     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6733                                 SystemZ::CCMASK_CMP_LE, 64);
6734 
6735   case SystemZ::ATOMIC_LOADW_UMAX:
6736     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6737                                 SystemZ::CCMASK_CMP_GE, 0);
6738   case SystemZ::ATOMIC_LOAD_UMAX_32:
6739     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
6740                                 SystemZ::CCMASK_CMP_GE, 32);
6741   case SystemZ::ATOMIC_LOAD_UMAX_64:
6742     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
6743                                 SystemZ::CCMASK_CMP_GE, 64);
6744 
6745   case SystemZ::ATOMIC_CMP_SWAPW:
6746     return emitAtomicCmpSwapW(MI, MBB);
6747   case SystemZ::MVCSequence:
6748   case SystemZ::MVCLoop:
6749     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
6750   case SystemZ::NCSequence:
6751   case SystemZ::NCLoop:
6752     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
6753   case SystemZ::OCSequence:
6754   case SystemZ::OCLoop:
6755     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
6756   case SystemZ::XCSequence:
6757   case SystemZ::XCLoop:
6758     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
6759   case SystemZ::CLCSequence:
6760   case SystemZ::CLCLoop:
6761     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
6762   case SystemZ::CLSTLoop:
6763     return emitStringWrapper(MI, MBB, SystemZ::CLST);
6764   case SystemZ::MVSTLoop:
6765     return emitStringWrapper(MI, MBB, SystemZ::MVST);
6766   case SystemZ::SRSTLoop:
6767     return emitStringWrapper(MI, MBB, SystemZ::SRST);
6768   case SystemZ::TBEGIN:
6769     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
6770   case SystemZ::TBEGIN_nofloat:
6771     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
6772   case SystemZ::TBEGINC:
6773     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
6774   case SystemZ::LTEBRCompare_VecPseudo:
6775     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
6776   case SystemZ::LTDBRCompare_VecPseudo:
6777     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
6778   case SystemZ::LTXBRCompare_VecPseudo:
6779     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
6780 
6781   default:
6782     llvm_unreachable("Unexpected instr type to insert");
6783   }
6784 }
6785 
6786 // This is only used by the isel schedulers, and is needed only to prevent
6787 // compiler from crashing when list-ilp is used.
6788 const TargetRegisterClass *
6789 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
6790   if (VT == MVT::Untyped)
6791     return &SystemZ::ADDR128BitRegClass;
6792   return TargetLowering::getRepRegClassFor(VT);
6793 }
6794