1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include <cctype> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "systemz-lower" 29 30 namespace { 31 // Represents a sequence for extracting a 0/1 value from an IPM result: 32 // (((X ^ XORValue) + AddValue) >> Bit) 33 struct IPMConversion { 34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 36 37 int64_t XORValue; 38 int64_t AddValue; 39 unsigned Bit; 40 }; 41 42 // Represents information about a comparison. 43 struct Comparison { 44 Comparison(SDValue Op0In, SDValue Op1In) 45 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 46 47 // The operands to the comparison. 48 SDValue Op0, Op1; 49 50 // The opcode that should be used to compare Op0 and Op1. 51 unsigned Opcode; 52 53 // A SystemZICMP value. Only used for integer comparisons. 54 unsigned ICmpType; 55 56 // The mask of CC values that Opcode can produce. 57 unsigned CCValid; 58 59 // The mask of CC values for which the original condition is true. 60 unsigned CCMask; 61 }; 62 } // end anonymous namespace 63 64 // Classify VT as either 32 or 64 bit. 65 static bool is32Bit(EVT VT) { 66 switch (VT.getSimpleVT().SimpleTy) { 67 case MVT::i32: 68 return true; 69 case MVT::i64: 70 return false; 71 default: 72 llvm_unreachable("Unsupported type"); 73 } 74 } 75 76 // Return a version of MachineOperand that can be safely used before the 77 // final use. 78 static MachineOperand earlyUseOperand(MachineOperand Op) { 79 if (Op.isReg()) 80 Op.setIsKill(false); 81 return Op; 82 } 83 84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 85 const SystemZSubtarget &STI) 86 : TargetLowering(TM), Subtarget(STI) { 87 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 88 89 // Set up the register classes. 90 if (Subtarget.hasHighWord()) 91 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 92 else 93 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 94 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 95 if (Subtarget.hasVector()) { 96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 98 } else { 99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 101 } 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 113 // Compute derived properties from the register classes 114 computeRegisterProperties(Subtarget.getRegisterInfo()); 115 116 // Set up special registers. 117 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 118 119 // TODO: It may be better to default to latency-oriented scheduling, however 120 // LLVM's current latency-oriented scheduler can't handle physreg definitions 121 // such as SystemZ has with CC, so set this to the register-pressure 122 // scheduler, because it can. 123 setSchedulingPreference(Sched::RegPressure); 124 125 setBooleanContents(ZeroOrOneBooleanContent); 126 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 127 128 // Instructions are strings of 2-byte aligned 2-byte values. 129 setMinFunctionAlignment(2); 130 131 // Handle operations that are handled in a similar way for all types. 132 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 133 I <= MVT::LAST_FP_VALUETYPE; 134 ++I) { 135 MVT VT = MVT::SimpleValueType(I); 136 if (isTypeLegal(VT)) { 137 // Lower SET_CC into an IPM-based sequence. 138 setOperationAction(ISD::SETCC, VT, Custom); 139 140 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 141 setOperationAction(ISD::SELECT, VT, Expand); 142 143 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 144 setOperationAction(ISD::SELECT_CC, VT, Custom); 145 setOperationAction(ISD::BR_CC, VT, Custom); 146 } 147 } 148 149 // Expand jump table branches as address arithmetic followed by an 150 // indirect jump. 151 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 152 153 // Expand BRCOND into a BR_CC (see above). 154 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 155 156 // Handle integer types. 157 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 158 I <= MVT::LAST_INTEGER_VALUETYPE; 159 ++I) { 160 MVT VT = MVT::SimpleValueType(I); 161 if (isTypeLegal(VT)) { 162 // Expand individual DIV and REMs into DIVREMs. 163 setOperationAction(ISD::SDIV, VT, Expand); 164 setOperationAction(ISD::UDIV, VT, Expand); 165 setOperationAction(ISD::SREM, VT, Expand); 166 setOperationAction(ISD::UREM, VT, Expand); 167 setOperationAction(ISD::SDIVREM, VT, Custom); 168 setOperationAction(ISD::UDIVREM, VT, Custom); 169 170 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 171 // stores, putting a serialization instruction after the stores. 172 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 173 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 174 175 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 176 // available, or if the operand is constant. 177 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 178 179 // Use POPCNT on z196 and above. 180 if (Subtarget.hasPopulationCount()) 181 setOperationAction(ISD::CTPOP, VT, Custom); 182 else 183 setOperationAction(ISD::CTPOP, VT, Expand); 184 185 // No special instructions for these. 186 setOperationAction(ISD::CTTZ, VT, Expand); 187 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 188 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 189 setOperationAction(ISD::ROTR, VT, Expand); 190 191 // Use *MUL_LOHI where possible instead of MULH*. 192 setOperationAction(ISD::MULHS, VT, Expand); 193 setOperationAction(ISD::MULHU, VT, Expand); 194 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 195 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 196 197 // Only z196 and above have native support for conversions to unsigned. 198 if (!Subtarget.hasFPExtension()) 199 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 200 } 201 } 202 203 // Type legalization will convert 8- and 16-bit atomic operations into 204 // forms that operate on i32s (but still keeping the original memory VT). 205 // Lower them into full i32 operations. 206 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 207 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 208 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 209 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 218 219 // z10 has instructions for signed but not unsigned FP conversion. 220 // Handle unsigned 32-bit types as signed 64-bit types. 221 if (!Subtarget.hasFPExtension()) { 222 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 223 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 224 } 225 226 // We have native support for a 64-bit CTLZ, via FLOGR. 227 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 228 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 229 230 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 231 setOperationAction(ISD::OR, MVT::i64, Custom); 232 233 // FIXME: Can we support these natively? 234 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 235 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 236 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 237 238 // We have native instructions for i8, i16 and i32 extensions, but not i1. 239 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 240 for (MVT VT : MVT::integer_valuetypes()) { 241 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 242 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 243 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 244 } 245 246 // Handle the various types of symbolic address. 247 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 248 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 249 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 250 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 251 setOperationAction(ISD::JumpTable, PtrVT, Custom); 252 253 // We need to handle dynamic allocations specially because of the 254 // 160-byte area at the bottom of the stack. 255 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 256 257 // Use custom expanders so that we can force the function to use 258 // a frame pointer. 259 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 260 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 261 262 // Handle prefetches with PFD or PFDRL. 263 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 264 265 for (MVT VT : MVT::vector_valuetypes()) { 266 // Assume by default that all vector operations need to be expanded. 267 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 268 if (getOperationAction(Opcode, VT) == Legal) 269 setOperationAction(Opcode, VT, Expand); 270 271 // Likewise all truncating stores and extending loads. 272 for (MVT InnerVT : MVT::vector_valuetypes()) { 273 setTruncStoreAction(VT, InnerVT, Expand); 274 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 275 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 276 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 277 } 278 279 if (isTypeLegal(VT)) { 280 // These operations are legal for anything that can be stored in a 281 // vector register, even if there is no native support for the format 282 // as such. In particular, we can do these for v4f32 even though there 283 // are no specific instructions for that format. 284 setOperationAction(ISD::LOAD, VT, Legal); 285 setOperationAction(ISD::STORE, VT, Legal); 286 setOperationAction(ISD::VSELECT, VT, Legal); 287 setOperationAction(ISD::BITCAST, VT, Legal); 288 setOperationAction(ISD::UNDEF, VT, Legal); 289 290 // Likewise, except that we need to replace the nodes with something 291 // more specific. 292 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 293 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 294 } 295 } 296 297 // Handle integer vector types. 298 for (MVT VT : MVT::integer_vector_valuetypes()) { 299 if (isTypeLegal(VT)) { 300 // These operations have direct equivalents. 301 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 302 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 303 setOperationAction(ISD::ADD, VT, Legal); 304 setOperationAction(ISD::SUB, VT, Legal); 305 if (VT != MVT::v2i64) 306 setOperationAction(ISD::MUL, VT, Legal); 307 setOperationAction(ISD::AND, VT, Legal); 308 setOperationAction(ISD::OR, VT, Legal); 309 setOperationAction(ISD::XOR, VT, Legal); 310 setOperationAction(ISD::CTPOP, VT, Custom); 311 setOperationAction(ISD::CTTZ, VT, Legal); 312 setOperationAction(ISD::CTLZ, VT, Legal); 313 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 314 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 315 316 // Convert a GPR scalar to a vector by inserting it into element 0. 317 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 318 319 // Use a series of unpacks for extensions. 320 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 321 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 322 323 // Detect shifts by a scalar amount and convert them into 324 // V*_BY_SCALAR. 325 setOperationAction(ISD::SHL, VT, Custom); 326 setOperationAction(ISD::SRA, VT, Custom); 327 setOperationAction(ISD::SRL, VT, Custom); 328 329 // At present ROTL isn't matched by DAGCombiner. ROTR should be 330 // converted into ROTL. 331 setOperationAction(ISD::ROTL, VT, Expand); 332 setOperationAction(ISD::ROTR, VT, Expand); 333 334 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 335 // and inverting the result as necessary. 336 setOperationAction(ISD::SETCC, VT, Custom); 337 } 338 } 339 340 if (Subtarget.hasVector()) { 341 // There should be no need to check for float types other than v2f64 342 // since <2 x f32> isn't a legal type. 343 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 344 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 345 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 346 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 347 } 348 349 // Handle floating-point types. 350 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 351 I <= MVT::LAST_FP_VALUETYPE; 352 ++I) { 353 MVT VT = MVT::SimpleValueType(I); 354 if (isTypeLegal(VT)) { 355 // We can use FI for FRINT. 356 setOperationAction(ISD::FRINT, VT, Legal); 357 358 // We can use the extended form of FI for other rounding operations. 359 if (Subtarget.hasFPExtension()) { 360 setOperationAction(ISD::FNEARBYINT, VT, Legal); 361 setOperationAction(ISD::FFLOOR, VT, Legal); 362 setOperationAction(ISD::FCEIL, VT, Legal); 363 setOperationAction(ISD::FTRUNC, VT, Legal); 364 setOperationAction(ISD::FROUND, VT, Legal); 365 } 366 367 // No special instructions for these. 368 setOperationAction(ISD::FSIN, VT, Expand); 369 setOperationAction(ISD::FCOS, VT, Expand); 370 setOperationAction(ISD::FSINCOS, VT, Expand); 371 setOperationAction(ISD::FREM, VT, Expand); 372 setOperationAction(ISD::FPOW, VT, Expand); 373 } 374 } 375 376 // Handle floating-point vector types. 377 if (Subtarget.hasVector()) { 378 // Scalar-to-vector conversion is just a subreg. 379 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 380 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 381 382 // Some insertions and extractions can be done directly but others 383 // need to go via integers. 384 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 385 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 386 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 387 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 388 389 // These operations have direct equivalents. 390 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 391 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 392 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 393 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 394 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 395 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 396 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 397 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 398 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 399 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 400 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 401 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 402 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 403 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 404 } 405 406 // We have fused multiply-addition for f32 and f64 but not f128. 407 setOperationAction(ISD::FMA, MVT::f32, Legal); 408 setOperationAction(ISD::FMA, MVT::f64, Legal); 409 setOperationAction(ISD::FMA, MVT::f128, Expand); 410 411 // Needed so that we don't try to implement f128 constant loads using 412 // a load-and-extend of a f80 constant (in cases where the constant 413 // would fit in an f80). 414 for (MVT VT : MVT::fp_valuetypes()) 415 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 416 417 // Floating-point truncation and stores need to be done separately. 418 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 419 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 420 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 421 422 // We have 64-bit FPR<->GPR moves, but need special handling for 423 // 32-bit forms. 424 if (!Subtarget.hasVector()) { 425 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 426 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 427 } 428 429 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 430 // structure, but VAEND is a no-op. 431 setOperationAction(ISD::VASTART, MVT::Other, Custom); 432 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 433 setOperationAction(ISD::VAEND, MVT::Other, Expand); 434 435 // Codes for which we want to perform some z-specific combinations. 436 setTargetDAGCombine(ISD::SIGN_EXTEND); 437 setTargetDAGCombine(ISD::STORE); 438 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 439 setTargetDAGCombine(ISD::FP_ROUND); 440 441 // Handle intrinsics. 442 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 443 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 444 445 // We want to use MVC in preference to even a single load/store pair. 446 MaxStoresPerMemcpy = 0; 447 MaxStoresPerMemcpyOptSize = 0; 448 449 // The main memset sequence is a byte store followed by an MVC. 450 // Two STC or MV..I stores win over that, but the kind of fused stores 451 // generated by target-independent code don't when the byte value is 452 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 453 // than "STC;MVC". Handle the choice in target-specific code instead. 454 MaxStoresPerMemset = 0; 455 MaxStoresPerMemsetOptSize = 0; 456 } 457 458 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 459 LLVMContext &, EVT VT) const { 460 if (!VT.isVector()) 461 return MVT::i32; 462 return VT.changeVectorElementTypeToInteger(); 463 } 464 465 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 466 VT = VT.getScalarType(); 467 468 if (!VT.isSimple()) 469 return false; 470 471 switch (VT.getSimpleVT().SimpleTy) { 472 case MVT::f32: 473 case MVT::f64: 474 return true; 475 case MVT::f128: 476 return false; 477 default: 478 break; 479 } 480 481 return false; 482 } 483 484 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 485 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 486 return Imm.isZero() || Imm.isNegZero(); 487 } 488 489 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 490 // We can use CGFI or CLGFI. 491 return isInt<32>(Imm) || isUInt<32>(Imm); 492 } 493 494 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 495 // We can use ALGFI or SLGFI. 496 return isUInt<32>(Imm) || isUInt<32>(-Imm); 497 } 498 499 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 500 unsigned, 501 unsigned, 502 bool *Fast) const { 503 // Unaligned accesses should never be slower than the expanded version. 504 // We check specifically for aligned accesses in the few cases where 505 // they are required. 506 if (Fast) 507 *Fast = true; 508 return true; 509 } 510 511 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 512 const AddrMode &AM, Type *Ty, 513 unsigned AS) const { 514 // Punt on globals for now, although they can be used in limited 515 // RELATIVE LONG cases. 516 if (AM.BaseGV) 517 return false; 518 519 // Require a 20-bit signed offset. 520 if (!isInt<20>(AM.BaseOffs)) 521 return false; 522 523 // Indexing is OK but no scale factor can be applied. 524 return AM.Scale == 0 || AM.Scale == 1; 525 } 526 527 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 528 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 529 return false; 530 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 531 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 532 return FromBits > ToBits; 533 } 534 535 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 536 if (!FromVT.isInteger() || !ToVT.isInteger()) 537 return false; 538 unsigned FromBits = FromVT.getSizeInBits(); 539 unsigned ToBits = ToVT.getSizeInBits(); 540 return FromBits > ToBits; 541 } 542 543 //===----------------------------------------------------------------------===// 544 // Inline asm support 545 //===----------------------------------------------------------------------===// 546 547 TargetLowering::ConstraintType 548 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 549 if (Constraint.size() == 1) { 550 switch (Constraint[0]) { 551 case 'a': // Address register 552 case 'd': // Data register (equivalent to 'r') 553 case 'f': // Floating-point register 554 case 'h': // High-part register 555 case 'r': // General-purpose register 556 return C_RegisterClass; 557 558 case 'Q': // Memory with base and unsigned 12-bit displacement 559 case 'R': // Likewise, plus an index 560 case 'S': // Memory with base and signed 20-bit displacement 561 case 'T': // Likewise, plus an index 562 case 'm': // Equivalent to 'T'. 563 return C_Memory; 564 565 case 'I': // Unsigned 8-bit constant 566 case 'J': // Unsigned 12-bit constant 567 case 'K': // Signed 16-bit constant 568 case 'L': // Signed 20-bit displacement (on all targets we support) 569 case 'M': // 0x7fffffff 570 return C_Other; 571 572 default: 573 break; 574 } 575 } 576 return TargetLowering::getConstraintType(Constraint); 577 } 578 579 TargetLowering::ConstraintWeight SystemZTargetLowering:: 580 getSingleConstraintMatchWeight(AsmOperandInfo &info, 581 const char *constraint) const { 582 ConstraintWeight weight = CW_Invalid; 583 Value *CallOperandVal = info.CallOperandVal; 584 // If we don't have a value, we can't do a match, 585 // but allow it at the lowest weight. 586 if (!CallOperandVal) 587 return CW_Default; 588 Type *type = CallOperandVal->getType(); 589 // Look at the constraint type. 590 switch (*constraint) { 591 default: 592 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 593 break; 594 595 case 'a': // Address register 596 case 'd': // Data register (equivalent to 'r') 597 case 'h': // High-part register 598 case 'r': // General-purpose register 599 if (CallOperandVal->getType()->isIntegerTy()) 600 weight = CW_Register; 601 break; 602 603 case 'f': // Floating-point register 604 if (type->isFloatingPointTy()) 605 weight = CW_Register; 606 break; 607 608 case 'I': // Unsigned 8-bit constant 609 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 610 if (isUInt<8>(C->getZExtValue())) 611 weight = CW_Constant; 612 break; 613 614 case 'J': // Unsigned 12-bit constant 615 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 616 if (isUInt<12>(C->getZExtValue())) 617 weight = CW_Constant; 618 break; 619 620 case 'K': // Signed 16-bit constant 621 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 622 if (isInt<16>(C->getSExtValue())) 623 weight = CW_Constant; 624 break; 625 626 case 'L': // Signed 20-bit displacement (on all targets we support) 627 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 628 if (isInt<20>(C->getSExtValue())) 629 weight = CW_Constant; 630 break; 631 632 case 'M': // 0x7fffffff 633 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 634 if (C->getZExtValue() == 0x7fffffff) 635 weight = CW_Constant; 636 break; 637 } 638 return weight; 639 } 640 641 // Parse a "{tNNN}" register constraint for which the register type "t" 642 // has already been verified. MC is the class associated with "t" and 643 // Map maps 0-based register numbers to LLVM register numbers. 644 static std::pair<unsigned, const TargetRegisterClass *> 645 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 646 const unsigned *Map) { 647 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 648 if (isdigit(Constraint[2])) { 649 unsigned Index; 650 bool Failed = 651 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 652 if (!Failed && Index < 16 && Map[Index]) 653 return std::make_pair(Map[Index], RC); 654 } 655 return std::make_pair(0U, nullptr); 656 } 657 658 std::pair<unsigned, const TargetRegisterClass *> 659 SystemZTargetLowering::getRegForInlineAsmConstraint( 660 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 661 if (Constraint.size() == 1) { 662 // GCC Constraint Letters 663 switch (Constraint[0]) { 664 default: break; 665 case 'd': // Data register (equivalent to 'r') 666 case 'r': // General-purpose register 667 if (VT == MVT::i64) 668 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 669 else if (VT == MVT::i128) 670 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 671 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 672 673 case 'a': // Address register 674 if (VT == MVT::i64) 675 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 676 else if (VT == MVT::i128) 677 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 678 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 679 680 case 'h': // High-part register (an LLVM extension) 681 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 682 683 case 'f': // Floating-point register 684 if (VT == MVT::f64) 685 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 686 else if (VT == MVT::f128) 687 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 688 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 689 } 690 } 691 if (Constraint.size() > 0 && Constraint[0] == '{') { 692 // We need to override the default register parsing for GPRs and FPRs 693 // because the interpretation depends on VT. The internal names of 694 // the registers are also different from the external names 695 // (F0D and F0S instead of F0, etc.). 696 if (Constraint[1] == 'r') { 697 if (VT == MVT::i32) 698 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 699 SystemZMC::GR32Regs); 700 if (VT == MVT::i128) 701 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 702 SystemZMC::GR128Regs); 703 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 704 SystemZMC::GR64Regs); 705 } 706 if (Constraint[1] == 'f') { 707 if (VT == MVT::f32) 708 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 709 SystemZMC::FP32Regs); 710 if (VT == MVT::f128) 711 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 712 SystemZMC::FP128Regs); 713 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 714 SystemZMC::FP64Regs); 715 } 716 } 717 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 718 } 719 720 void SystemZTargetLowering:: 721 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 722 std::vector<SDValue> &Ops, 723 SelectionDAG &DAG) const { 724 // Only support length 1 constraints for now. 725 if (Constraint.length() == 1) { 726 switch (Constraint[0]) { 727 case 'I': // Unsigned 8-bit constant 728 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 729 if (isUInt<8>(C->getZExtValue())) 730 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 731 Op.getValueType())); 732 return; 733 734 case 'J': // Unsigned 12-bit constant 735 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 736 if (isUInt<12>(C->getZExtValue())) 737 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 738 Op.getValueType())); 739 return; 740 741 case 'K': // Signed 16-bit constant 742 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 743 if (isInt<16>(C->getSExtValue())) 744 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 745 Op.getValueType())); 746 return; 747 748 case 'L': // Signed 20-bit displacement (on all targets we support) 749 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 750 if (isInt<20>(C->getSExtValue())) 751 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 752 Op.getValueType())); 753 return; 754 755 case 'M': // 0x7fffffff 756 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 757 if (C->getZExtValue() == 0x7fffffff) 758 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 759 Op.getValueType())); 760 return; 761 } 762 } 763 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 764 } 765 766 //===----------------------------------------------------------------------===// 767 // Calling conventions 768 //===----------------------------------------------------------------------===// 769 770 #include "SystemZGenCallingConv.inc" 771 772 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 773 Type *ToType) const { 774 return isTruncateFree(FromType, ToType); 775 } 776 777 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 778 return CI->isTailCall(); 779 } 780 781 // We do not yet support 128-bit single-element vector types. If the user 782 // attempts to use such types as function argument or return type, prefer 783 // to error out instead of emitting code violating the ABI. 784 static void VerifyVectorType(MVT VT, EVT ArgVT) { 785 if (ArgVT.isVector() && !VT.isVector()) 786 report_fatal_error("Unsupported vector argument or return type"); 787 } 788 789 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 790 for (unsigned i = 0; i < Ins.size(); ++i) 791 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 792 } 793 794 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 795 for (unsigned i = 0; i < Outs.size(); ++i) 796 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 797 } 798 799 // Value is a value that has been passed to us in the location described by VA 800 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 801 // any loads onto Chain. 802 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, 803 CCValAssign &VA, SDValue Chain, 804 SDValue Value) { 805 // If the argument has been promoted from a smaller type, insert an 806 // assertion to capture this. 807 if (VA.getLocInfo() == CCValAssign::SExt) 808 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 809 DAG.getValueType(VA.getValVT())); 810 else if (VA.getLocInfo() == CCValAssign::ZExt) 811 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 812 DAG.getValueType(VA.getValVT())); 813 814 if (VA.isExtInLoc()) 815 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 816 else if (VA.getLocInfo() == CCValAssign::Indirect) 817 Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value, 818 MachinePointerInfo(), false, false, false, 0); 819 else if (VA.getLocInfo() == CCValAssign::BCvt) { 820 // If this is a short vector argument loaded from the stack, 821 // extend from i64 to full vector size and then bitcast. 822 assert(VA.getLocVT() == MVT::i64); 823 assert(VA.getValVT().isVector()); 824 Value = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i64, 825 Value, DAG.getUNDEF(MVT::i64)); 826 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 827 } else 828 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 829 return Value; 830 } 831 832 // Value is a value of type VA.getValVT() that we need to copy into 833 // the location described by VA. Return a copy of Value converted to 834 // VA.getValVT(). The caller is responsible for handling indirect values. 835 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, 836 CCValAssign &VA, SDValue Value) { 837 switch (VA.getLocInfo()) { 838 case CCValAssign::SExt: 839 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 840 case CCValAssign::ZExt: 841 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 842 case CCValAssign::AExt: 843 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 844 case CCValAssign::BCvt: 845 // If this is a short vector argument to be stored to the stack, 846 // bitcast to v2i64 and then extract first element. 847 assert(VA.getLocVT() == MVT::i64); 848 assert(VA.getValVT().isVector()); 849 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 850 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 851 DAG.getConstant(0, DL, MVT::i32)); 852 case CCValAssign::Full: 853 return Value; 854 default: 855 llvm_unreachable("Unhandled getLocInfo()"); 856 } 857 } 858 859 SDValue SystemZTargetLowering:: 860 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 861 const SmallVectorImpl<ISD::InputArg> &Ins, 862 SDLoc DL, SelectionDAG &DAG, 863 SmallVectorImpl<SDValue> &InVals) const { 864 MachineFunction &MF = DAG.getMachineFunction(); 865 MachineFrameInfo *MFI = MF.getFrameInfo(); 866 MachineRegisterInfo &MRI = MF.getRegInfo(); 867 SystemZMachineFunctionInfo *FuncInfo = 868 MF.getInfo<SystemZMachineFunctionInfo>(); 869 auto *TFL = 870 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 871 872 // Detect unsupported vector argument types. 873 if (Subtarget.hasVector()) 874 VerifyVectorTypes(Ins); 875 876 // Assign locations to all of the incoming arguments. 877 SmallVector<CCValAssign, 16> ArgLocs; 878 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 879 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 880 881 unsigned NumFixedGPRs = 0; 882 unsigned NumFixedFPRs = 0; 883 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 884 SDValue ArgValue; 885 CCValAssign &VA = ArgLocs[I]; 886 EVT LocVT = VA.getLocVT(); 887 if (VA.isRegLoc()) { 888 // Arguments passed in registers 889 const TargetRegisterClass *RC; 890 switch (LocVT.getSimpleVT().SimpleTy) { 891 default: 892 // Integers smaller than i64 should be promoted to i64. 893 llvm_unreachable("Unexpected argument type"); 894 case MVT::i32: 895 NumFixedGPRs += 1; 896 RC = &SystemZ::GR32BitRegClass; 897 break; 898 case MVT::i64: 899 NumFixedGPRs += 1; 900 RC = &SystemZ::GR64BitRegClass; 901 break; 902 case MVT::f32: 903 NumFixedFPRs += 1; 904 RC = &SystemZ::FP32BitRegClass; 905 break; 906 case MVT::f64: 907 NumFixedFPRs += 1; 908 RC = &SystemZ::FP64BitRegClass; 909 break; 910 case MVT::v16i8: 911 case MVT::v8i16: 912 case MVT::v4i32: 913 case MVT::v2i64: 914 case MVT::v4f32: 915 case MVT::v2f64: 916 RC = &SystemZ::VR128BitRegClass; 917 break; 918 } 919 920 unsigned VReg = MRI.createVirtualRegister(RC); 921 MRI.addLiveIn(VA.getLocReg(), VReg); 922 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 923 } else { 924 assert(VA.isMemLoc() && "Argument not register or memory"); 925 926 // Create the frame index object for this incoming parameter. 927 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 928 VA.getLocMemOffset(), true); 929 930 // Create the SelectionDAG nodes corresponding to a load 931 // from this parameter. Unpromoted ints and floats are 932 // passed as right-justified 8-byte values. 933 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 934 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 935 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 936 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 937 DAG.getIntPtrConstant(4, DL)); 938 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 939 MachinePointerInfo::getFixedStack(MF, FI), false, 940 false, false, 0); 941 } 942 943 // Convert the value of the argument register into the value that's 944 // being passed. 945 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 946 } 947 948 if (IsVarArg) { 949 // Save the number of non-varargs registers for later use by va_start, etc. 950 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 951 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 952 953 // Likewise the address (in the form of a frame index) of where the 954 // first stack vararg would be. The 1-byte size here is arbitrary. 955 int64_t StackSize = CCInfo.getNextStackOffset(); 956 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 957 958 // ...and a similar frame index for the caller-allocated save area 959 // that will be used to store the incoming registers. 960 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 961 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 962 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 963 964 // Store the FPR varargs in the reserved frame slots. (We store the 965 // GPRs as part of the prologue.) 966 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 967 SDValue MemOps[SystemZ::NumArgFPRs]; 968 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 969 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 970 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 971 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 972 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 973 &SystemZ::FP64BitRegClass); 974 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 975 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 976 MachinePointerInfo::getFixedStack(MF, FI), 977 false, false, 0); 978 } 979 // Join the stores, which are independent of one another. 980 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 981 makeArrayRef(&MemOps[NumFixedFPRs], 982 SystemZ::NumArgFPRs-NumFixedFPRs)); 983 } 984 } 985 986 return Chain; 987 } 988 989 static bool canUseSiblingCall(const CCState &ArgCCInfo, 990 SmallVectorImpl<CCValAssign> &ArgLocs) { 991 // Punt if there are any indirect or stack arguments, or if the call 992 // needs the call-saved argument register R6. 993 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 994 CCValAssign &VA = ArgLocs[I]; 995 if (VA.getLocInfo() == CCValAssign::Indirect) 996 return false; 997 if (!VA.isRegLoc()) 998 return false; 999 unsigned Reg = VA.getLocReg(); 1000 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1001 return false; 1002 } 1003 return true; 1004 } 1005 1006 SDValue 1007 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1008 SmallVectorImpl<SDValue> &InVals) const { 1009 SelectionDAG &DAG = CLI.DAG; 1010 SDLoc &DL = CLI.DL; 1011 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1012 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1013 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1014 SDValue Chain = CLI.Chain; 1015 SDValue Callee = CLI.Callee; 1016 bool &IsTailCall = CLI.IsTailCall; 1017 CallingConv::ID CallConv = CLI.CallConv; 1018 bool IsVarArg = CLI.IsVarArg; 1019 MachineFunction &MF = DAG.getMachineFunction(); 1020 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1021 1022 // Detect unsupported vector argument and return types. 1023 if (Subtarget.hasVector()) { 1024 VerifyVectorTypes(Outs); 1025 VerifyVectorTypes(Ins); 1026 } 1027 1028 // Analyze the operands of the call, assigning locations to each operand. 1029 SmallVector<CCValAssign, 16> ArgLocs; 1030 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1031 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1032 1033 // We don't support GuaranteedTailCallOpt, only automatically-detected 1034 // sibling calls. 1035 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) 1036 IsTailCall = false; 1037 1038 // Get a count of how many bytes are to be pushed on the stack. 1039 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1040 1041 // Mark the start of the call. 1042 if (!IsTailCall) 1043 Chain = DAG.getCALLSEQ_START(Chain, 1044 DAG.getConstant(NumBytes, DL, PtrVT, true), 1045 DL); 1046 1047 // Copy argument values to their designated locations. 1048 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1049 SmallVector<SDValue, 8> MemOpChains; 1050 SDValue StackPtr; 1051 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1052 CCValAssign &VA = ArgLocs[I]; 1053 SDValue ArgValue = OutVals[I]; 1054 1055 if (VA.getLocInfo() == CCValAssign::Indirect) { 1056 // Store the argument in a stack slot and pass its address. 1057 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); 1058 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1059 MemOpChains.push_back(DAG.getStore( 1060 Chain, DL, ArgValue, SpillSlot, 1061 MachinePointerInfo::getFixedStack(MF, FI), false, false, 0)); 1062 ArgValue = SpillSlot; 1063 } else 1064 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1065 1066 if (VA.isRegLoc()) 1067 // Queue up the argument copies and emit them at the end. 1068 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1069 else { 1070 assert(VA.isMemLoc() && "Argument not register or memory"); 1071 1072 // Work out the address of the stack slot. Unpromoted ints and 1073 // floats are passed as right-justified 8-byte values. 1074 if (!StackPtr.getNode()) 1075 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1076 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1077 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1078 Offset += 4; 1079 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1080 DAG.getIntPtrConstant(Offset, DL)); 1081 1082 // Emit the store. 1083 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, 1084 MachinePointerInfo(), 1085 false, false, 0)); 1086 } 1087 } 1088 1089 // Join the stores, which are independent of one another. 1090 if (!MemOpChains.empty()) 1091 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1092 1093 // Accept direct calls by converting symbolic call addresses to the 1094 // associated Target* opcodes. Force %r1 to be used for indirect 1095 // tail calls. 1096 SDValue Glue; 1097 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1098 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1099 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1100 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1101 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1102 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1103 } else if (IsTailCall) { 1104 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1105 Glue = Chain.getValue(1); 1106 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1107 } 1108 1109 // Build a sequence of copy-to-reg nodes, chained and glued together. 1110 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1111 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1112 RegsToPass[I].second, Glue); 1113 Glue = Chain.getValue(1); 1114 } 1115 1116 // The first call operand is the chain and the second is the target address. 1117 SmallVector<SDValue, 8> Ops; 1118 Ops.push_back(Chain); 1119 Ops.push_back(Callee); 1120 1121 // Add argument registers to the end of the list so that they are 1122 // known live into the call. 1123 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1124 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1125 RegsToPass[I].second.getValueType())); 1126 1127 // Add a register mask operand representing the call-preserved registers. 1128 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1129 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1130 assert(Mask && "Missing call preserved mask for calling convention"); 1131 Ops.push_back(DAG.getRegisterMask(Mask)); 1132 1133 // Glue the call to the argument copies, if any. 1134 if (Glue.getNode()) 1135 Ops.push_back(Glue); 1136 1137 // Emit the call. 1138 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1139 if (IsTailCall) 1140 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1141 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1142 Glue = Chain.getValue(1); 1143 1144 // Mark the end of the call, which is glued to the call itself. 1145 Chain = DAG.getCALLSEQ_END(Chain, 1146 DAG.getConstant(NumBytes, DL, PtrVT, true), 1147 DAG.getConstant(0, DL, PtrVT, true), 1148 Glue, DL); 1149 Glue = Chain.getValue(1); 1150 1151 // Assign locations to each value returned by this call. 1152 SmallVector<CCValAssign, 16> RetLocs; 1153 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1154 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1155 1156 // Copy all of the result registers out of their specified physreg. 1157 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1158 CCValAssign &VA = RetLocs[I]; 1159 1160 // Copy the value out, gluing the copy to the end of the call sequence. 1161 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1162 VA.getLocVT(), Glue); 1163 Chain = RetValue.getValue(1); 1164 Glue = RetValue.getValue(2); 1165 1166 // Convert the value of the return register into the value that's 1167 // being returned. 1168 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1169 } 1170 1171 return Chain; 1172 } 1173 1174 bool SystemZTargetLowering:: 1175 CanLowerReturn(CallingConv::ID CallConv, 1176 MachineFunction &MF, bool isVarArg, 1177 const SmallVectorImpl<ISD::OutputArg> &Outs, 1178 LLVMContext &Context) const { 1179 // Detect unsupported vector return types. 1180 if (Subtarget.hasVector()) 1181 VerifyVectorTypes(Outs); 1182 1183 SmallVector<CCValAssign, 16> RetLocs; 1184 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1185 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1186 } 1187 1188 SDValue 1189 SystemZTargetLowering::LowerReturn(SDValue Chain, 1190 CallingConv::ID CallConv, bool IsVarArg, 1191 const SmallVectorImpl<ISD::OutputArg> &Outs, 1192 const SmallVectorImpl<SDValue> &OutVals, 1193 SDLoc DL, SelectionDAG &DAG) const { 1194 MachineFunction &MF = DAG.getMachineFunction(); 1195 1196 // Detect unsupported vector return types. 1197 if (Subtarget.hasVector()) 1198 VerifyVectorTypes(Outs); 1199 1200 // Assign locations to each returned value. 1201 SmallVector<CCValAssign, 16> RetLocs; 1202 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1203 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1204 1205 // Quick exit for void returns 1206 if (RetLocs.empty()) 1207 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1208 1209 // Copy the result values into the output registers. 1210 SDValue Glue; 1211 SmallVector<SDValue, 4> RetOps; 1212 RetOps.push_back(Chain); 1213 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1214 CCValAssign &VA = RetLocs[I]; 1215 SDValue RetValue = OutVals[I]; 1216 1217 // Make the return register live on exit. 1218 assert(VA.isRegLoc() && "Can only return in registers!"); 1219 1220 // Promote the value as required. 1221 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1222 1223 // Chain and glue the copies together. 1224 unsigned Reg = VA.getLocReg(); 1225 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1226 Glue = Chain.getValue(1); 1227 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1228 } 1229 1230 // Update chain and glue. 1231 RetOps[0] = Chain; 1232 if (Glue.getNode()) 1233 RetOps.push_back(Glue); 1234 1235 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1236 } 1237 1238 SDValue SystemZTargetLowering:: 1239 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { 1240 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1241 } 1242 1243 // Return true if Op is an intrinsic node with chain that returns the CC value 1244 // as its only (other) argument. Provide the associated SystemZISD opcode and 1245 // the mask of valid CC values if so. 1246 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1247 unsigned &CCValid) { 1248 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1249 switch (Id) { 1250 case Intrinsic::s390_tbegin: 1251 Opcode = SystemZISD::TBEGIN; 1252 CCValid = SystemZ::CCMASK_TBEGIN; 1253 return true; 1254 1255 case Intrinsic::s390_tbegin_nofloat: 1256 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1257 CCValid = SystemZ::CCMASK_TBEGIN; 1258 return true; 1259 1260 case Intrinsic::s390_tend: 1261 Opcode = SystemZISD::TEND; 1262 CCValid = SystemZ::CCMASK_TEND; 1263 return true; 1264 1265 default: 1266 return false; 1267 } 1268 } 1269 1270 // Return true if Op is an intrinsic node without chain that returns the 1271 // CC value as its final argument. Provide the associated SystemZISD 1272 // opcode and the mask of valid CC values if so. 1273 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1274 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1275 switch (Id) { 1276 case Intrinsic::s390_vpkshs: 1277 case Intrinsic::s390_vpksfs: 1278 case Intrinsic::s390_vpksgs: 1279 Opcode = SystemZISD::PACKS_CC; 1280 CCValid = SystemZ::CCMASK_VCMP; 1281 return true; 1282 1283 case Intrinsic::s390_vpklshs: 1284 case Intrinsic::s390_vpklsfs: 1285 case Intrinsic::s390_vpklsgs: 1286 Opcode = SystemZISD::PACKLS_CC; 1287 CCValid = SystemZ::CCMASK_VCMP; 1288 return true; 1289 1290 case Intrinsic::s390_vceqbs: 1291 case Intrinsic::s390_vceqhs: 1292 case Intrinsic::s390_vceqfs: 1293 case Intrinsic::s390_vceqgs: 1294 Opcode = SystemZISD::VICMPES; 1295 CCValid = SystemZ::CCMASK_VCMP; 1296 return true; 1297 1298 case Intrinsic::s390_vchbs: 1299 case Intrinsic::s390_vchhs: 1300 case Intrinsic::s390_vchfs: 1301 case Intrinsic::s390_vchgs: 1302 Opcode = SystemZISD::VICMPHS; 1303 CCValid = SystemZ::CCMASK_VCMP; 1304 return true; 1305 1306 case Intrinsic::s390_vchlbs: 1307 case Intrinsic::s390_vchlhs: 1308 case Intrinsic::s390_vchlfs: 1309 case Intrinsic::s390_vchlgs: 1310 Opcode = SystemZISD::VICMPHLS; 1311 CCValid = SystemZ::CCMASK_VCMP; 1312 return true; 1313 1314 case Intrinsic::s390_vtm: 1315 Opcode = SystemZISD::VTM; 1316 CCValid = SystemZ::CCMASK_VCMP; 1317 return true; 1318 1319 case Intrinsic::s390_vfaebs: 1320 case Intrinsic::s390_vfaehs: 1321 case Intrinsic::s390_vfaefs: 1322 Opcode = SystemZISD::VFAE_CC; 1323 CCValid = SystemZ::CCMASK_ANY; 1324 return true; 1325 1326 case Intrinsic::s390_vfaezbs: 1327 case Intrinsic::s390_vfaezhs: 1328 case Intrinsic::s390_vfaezfs: 1329 Opcode = SystemZISD::VFAEZ_CC; 1330 CCValid = SystemZ::CCMASK_ANY; 1331 return true; 1332 1333 case Intrinsic::s390_vfeebs: 1334 case Intrinsic::s390_vfeehs: 1335 case Intrinsic::s390_vfeefs: 1336 Opcode = SystemZISD::VFEE_CC; 1337 CCValid = SystemZ::CCMASK_ANY; 1338 return true; 1339 1340 case Intrinsic::s390_vfeezbs: 1341 case Intrinsic::s390_vfeezhs: 1342 case Intrinsic::s390_vfeezfs: 1343 Opcode = SystemZISD::VFEEZ_CC; 1344 CCValid = SystemZ::CCMASK_ANY; 1345 return true; 1346 1347 case Intrinsic::s390_vfenebs: 1348 case Intrinsic::s390_vfenehs: 1349 case Intrinsic::s390_vfenefs: 1350 Opcode = SystemZISD::VFENE_CC; 1351 CCValid = SystemZ::CCMASK_ANY; 1352 return true; 1353 1354 case Intrinsic::s390_vfenezbs: 1355 case Intrinsic::s390_vfenezhs: 1356 case Intrinsic::s390_vfenezfs: 1357 Opcode = SystemZISD::VFENEZ_CC; 1358 CCValid = SystemZ::CCMASK_ANY; 1359 return true; 1360 1361 case Intrinsic::s390_vistrbs: 1362 case Intrinsic::s390_vistrhs: 1363 case Intrinsic::s390_vistrfs: 1364 Opcode = SystemZISD::VISTR_CC; 1365 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1366 return true; 1367 1368 case Intrinsic::s390_vstrcbs: 1369 case Intrinsic::s390_vstrchs: 1370 case Intrinsic::s390_vstrcfs: 1371 Opcode = SystemZISD::VSTRC_CC; 1372 CCValid = SystemZ::CCMASK_ANY; 1373 return true; 1374 1375 case Intrinsic::s390_vstrczbs: 1376 case Intrinsic::s390_vstrczhs: 1377 case Intrinsic::s390_vstrczfs: 1378 Opcode = SystemZISD::VSTRCZ_CC; 1379 CCValid = SystemZ::CCMASK_ANY; 1380 return true; 1381 1382 case Intrinsic::s390_vfcedbs: 1383 Opcode = SystemZISD::VFCMPES; 1384 CCValid = SystemZ::CCMASK_VCMP; 1385 return true; 1386 1387 case Intrinsic::s390_vfchdbs: 1388 Opcode = SystemZISD::VFCMPHS; 1389 CCValid = SystemZ::CCMASK_VCMP; 1390 return true; 1391 1392 case Intrinsic::s390_vfchedbs: 1393 Opcode = SystemZISD::VFCMPHES; 1394 CCValid = SystemZ::CCMASK_VCMP; 1395 return true; 1396 1397 case Intrinsic::s390_vftcidb: 1398 Opcode = SystemZISD::VFTCI; 1399 CCValid = SystemZ::CCMASK_VCMP; 1400 return true; 1401 1402 default: 1403 return false; 1404 } 1405 } 1406 1407 // Emit an intrinsic with chain with a glued value instead of its CC result. 1408 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1409 unsigned Opcode) { 1410 // Copy all operands except the intrinsic ID. 1411 unsigned NumOps = Op.getNumOperands(); 1412 SmallVector<SDValue, 6> Ops; 1413 Ops.reserve(NumOps - 1); 1414 Ops.push_back(Op.getOperand(0)); 1415 for (unsigned I = 2; I < NumOps; ++I) 1416 Ops.push_back(Op.getOperand(I)); 1417 1418 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1419 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1420 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1421 SDValue OldChain = SDValue(Op.getNode(), 1); 1422 SDValue NewChain = SDValue(Intr.getNode(), 0); 1423 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1424 return Intr; 1425 } 1426 1427 // Emit an intrinsic with a glued value instead of its CC result. 1428 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1429 unsigned Opcode) { 1430 // Copy all operands except the intrinsic ID. 1431 unsigned NumOps = Op.getNumOperands(); 1432 SmallVector<SDValue, 6> Ops; 1433 Ops.reserve(NumOps - 1); 1434 for (unsigned I = 1; I < NumOps; ++I) 1435 Ops.push_back(Op.getOperand(I)); 1436 1437 if (Op->getNumValues() == 1) 1438 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1439 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1440 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1441 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1442 } 1443 1444 // CC is a comparison that will be implemented using an integer or 1445 // floating-point comparison. Return the condition code mask for 1446 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1447 // unsigned comparisons and clear for signed ones. In the floating-point 1448 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1449 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1450 #define CONV(X) \ 1451 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1452 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1453 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1454 1455 switch (CC) { 1456 default: 1457 llvm_unreachable("Invalid integer condition!"); 1458 1459 CONV(EQ); 1460 CONV(NE); 1461 CONV(GT); 1462 CONV(GE); 1463 CONV(LT); 1464 CONV(LE); 1465 1466 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1467 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1468 } 1469 #undef CONV 1470 } 1471 1472 // Return a sequence for getting a 1 from an IPM result when CC has a 1473 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1474 // The handling of CC values outside CCValid doesn't matter. 1475 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1476 // Deal with cases where the result can be taken directly from a bit 1477 // of the IPM result. 1478 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1479 return IPMConversion(0, 0, SystemZ::IPM_CC); 1480 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1481 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1482 1483 // Deal with cases where we can add a value to force the sign bit 1484 // to contain the right value. Putting the bit in 31 means we can 1485 // use SRL rather than RISBG(L), and also makes it easier to get a 1486 // 0/-1 value, so it has priority over the other tests below. 1487 // 1488 // These sequences rely on the fact that the upper two bits of the 1489 // IPM result are zero. 1490 uint64_t TopBit = uint64_t(1) << 31; 1491 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1492 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1493 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1494 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1495 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1496 | SystemZ::CCMASK_1 1497 | SystemZ::CCMASK_2))) 1498 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1499 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1500 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1501 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1502 | SystemZ::CCMASK_2 1503 | SystemZ::CCMASK_3))) 1504 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1505 1506 // Next try inverting the value and testing a bit. 0/1 could be 1507 // handled this way too, but we dealt with that case above. 1508 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1509 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1510 1511 // Handle cases where adding a value forces a non-sign bit to contain 1512 // the right value. 1513 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1514 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1515 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1516 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1517 1518 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1519 // can be done by inverting the low CC bit and applying one of the 1520 // sign-based extractions above. 1521 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1522 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1523 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1524 return IPMConversion(1 << SystemZ::IPM_CC, 1525 TopBit - (3 << SystemZ::IPM_CC), 31); 1526 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1527 | SystemZ::CCMASK_1 1528 | SystemZ::CCMASK_3))) 1529 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1530 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1531 | SystemZ::CCMASK_2 1532 | SystemZ::CCMASK_3))) 1533 return IPMConversion(1 << SystemZ::IPM_CC, 1534 TopBit - (1 << SystemZ::IPM_CC), 31); 1535 1536 llvm_unreachable("Unexpected CC combination"); 1537 } 1538 1539 // If C can be converted to a comparison against zero, adjust the operands 1540 // as necessary. 1541 static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1542 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1543 return; 1544 1545 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1546 if (!ConstOp1) 1547 return; 1548 1549 int64_t Value = ConstOp1->getSExtValue(); 1550 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1551 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1552 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1553 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1554 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1555 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1556 } 1557 } 1558 1559 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1560 // adjust the operands as necessary. 1561 static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1562 // For us to make any changes, it must a comparison between a single-use 1563 // load and a constant. 1564 if (!C.Op0.hasOneUse() || 1565 C.Op0.getOpcode() != ISD::LOAD || 1566 C.Op1.getOpcode() != ISD::Constant) 1567 return; 1568 1569 // We must have an 8- or 16-bit load. 1570 auto *Load = cast<LoadSDNode>(C.Op0); 1571 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1572 if (NumBits != 8 && NumBits != 16) 1573 return; 1574 1575 // The load must be an extending one and the constant must be within the 1576 // range of the unextended value. 1577 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1578 uint64_t Value = ConstOp1->getZExtValue(); 1579 uint64_t Mask = (1 << NumBits) - 1; 1580 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1581 // Make sure that ConstOp1 is in range of C.Op0. 1582 int64_t SignedValue = ConstOp1->getSExtValue(); 1583 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1584 return; 1585 if (C.ICmpType != SystemZICMP::SignedOnly) { 1586 // Unsigned comparison between two sign-extended values is equivalent 1587 // to unsigned comparison between two zero-extended values. 1588 Value &= Mask; 1589 } else if (NumBits == 8) { 1590 // Try to treat the comparison as unsigned, so that we can use CLI. 1591 // Adjust CCMask and Value as necessary. 1592 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1593 // Test whether the high bit of the byte is set. 1594 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1595 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1596 // Test whether the high bit of the byte is clear. 1597 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1598 else 1599 // No instruction exists for this combination. 1600 return; 1601 C.ICmpType = SystemZICMP::UnsignedOnly; 1602 } 1603 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1604 if (Value > Mask) 1605 return; 1606 assert(C.ICmpType == SystemZICMP::Any && 1607 "Signedness shouldn't matter here."); 1608 } else 1609 return; 1610 1611 // Make sure that the first operand is an i32 of the right extension type. 1612 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1613 ISD::SEXTLOAD : 1614 ISD::ZEXTLOAD); 1615 if (C.Op0.getValueType() != MVT::i32 || 1616 Load->getExtensionType() != ExtType) 1617 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, 1618 Load->getChain(), Load->getBasePtr(), 1619 Load->getPointerInfo(), Load->getMemoryVT(), 1620 Load->isVolatile(), Load->isNonTemporal(), 1621 Load->isInvariant(), Load->getAlignment()); 1622 1623 // Make sure that the second operand is an i32 with the right value. 1624 if (C.Op1.getValueType() != MVT::i32 || 1625 Value != ConstOp1->getZExtValue()) 1626 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1627 } 1628 1629 // Return true if Op is either an unextended load, or a load suitable 1630 // for integer register-memory comparisons of type ICmpType. 1631 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1632 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1633 if (Load) { 1634 // There are no instructions to compare a register with a memory byte. 1635 if (Load->getMemoryVT() == MVT::i8) 1636 return false; 1637 // Otherwise decide on extension type. 1638 switch (Load->getExtensionType()) { 1639 case ISD::NON_EXTLOAD: 1640 return true; 1641 case ISD::SEXTLOAD: 1642 return ICmpType != SystemZICMP::UnsignedOnly; 1643 case ISD::ZEXTLOAD: 1644 return ICmpType != SystemZICMP::SignedOnly; 1645 default: 1646 break; 1647 } 1648 } 1649 return false; 1650 } 1651 1652 // Return true if it is better to swap the operands of C. 1653 static bool shouldSwapCmpOperands(const Comparison &C) { 1654 // Leave f128 comparisons alone, since they have no memory forms. 1655 if (C.Op0.getValueType() == MVT::f128) 1656 return false; 1657 1658 // Always keep a floating-point constant second, since comparisons with 1659 // zero can use LOAD TEST and comparisons with other constants make a 1660 // natural memory operand. 1661 if (isa<ConstantFPSDNode>(C.Op1)) 1662 return false; 1663 1664 // Never swap comparisons with zero since there are many ways to optimize 1665 // those later. 1666 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1667 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1668 return false; 1669 1670 // Also keep natural memory operands second if the loaded value is 1671 // only used here. Several comparisons have memory forms. 1672 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1673 return false; 1674 1675 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1676 // In that case we generally prefer the memory to be second. 1677 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1678 // The only exceptions are when the second operand is a constant and 1679 // we can use things like CHHSI. 1680 if (!ConstOp1) 1681 return true; 1682 // The unsigned memory-immediate instructions can handle 16-bit 1683 // unsigned integers. 1684 if (C.ICmpType != SystemZICMP::SignedOnly && 1685 isUInt<16>(ConstOp1->getZExtValue())) 1686 return false; 1687 // The signed memory-immediate instructions can handle 16-bit 1688 // signed integers. 1689 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1690 isInt<16>(ConstOp1->getSExtValue())) 1691 return false; 1692 return true; 1693 } 1694 1695 // Try to promote the use of CGFR and CLGFR. 1696 unsigned Opcode0 = C.Op0.getOpcode(); 1697 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1698 return true; 1699 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1700 return true; 1701 if (C.ICmpType != SystemZICMP::SignedOnly && 1702 Opcode0 == ISD::AND && 1703 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1704 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1705 return true; 1706 1707 return false; 1708 } 1709 1710 // Return a version of comparison CC mask CCMask in which the LT and GT 1711 // actions are swapped. 1712 static unsigned reverseCCMask(unsigned CCMask) { 1713 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1714 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1715 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1716 (CCMask & SystemZ::CCMASK_CMP_UO)); 1717 } 1718 1719 // Check whether C tests for equality between X and Y and whether X - Y 1720 // or Y - X is also computed. In that case it's better to compare the 1721 // result of the subtraction against zero. 1722 static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1723 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1724 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1725 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1726 SDNode *N = *I; 1727 if (N->getOpcode() == ISD::SUB && 1728 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1729 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1730 C.Op0 = SDValue(N, 0); 1731 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1732 return; 1733 } 1734 } 1735 } 1736 } 1737 1738 // Check whether C compares a floating-point value with zero and if that 1739 // floating-point value is also negated. In this case we can use the 1740 // negation to set CC, so avoiding separate LOAD AND TEST and 1741 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1742 static void adjustForFNeg(Comparison &C) { 1743 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1744 if (C1 && C1->isZero()) { 1745 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1746 SDNode *N = *I; 1747 if (N->getOpcode() == ISD::FNEG) { 1748 C.Op0 = SDValue(N, 0); 1749 C.CCMask = reverseCCMask(C.CCMask); 1750 return; 1751 } 1752 } 1753 } 1754 } 1755 1756 // Check whether C compares (shl X, 32) with 0 and whether X is 1757 // also sign-extended. In that case it is better to test the result 1758 // of the sign extension using LTGFR. 1759 // 1760 // This case is important because InstCombine transforms a comparison 1761 // with (sext (trunc X)) into a comparison with (shl X, 32). 1762 static void adjustForLTGFR(Comparison &C) { 1763 // Check for a comparison between (shl X, 32) and 0. 1764 if (C.Op0.getOpcode() == ISD::SHL && 1765 C.Op0.getValueType() == MVT::i64 && 1766 C.Op1.getOpcode() == ISD::Constant && 1767 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1768 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1769 if (C1 && C1->getZExtValue() == 32) { 1770 SDValue ShlOp0 = C.Op0.getOperand(0); 1771 // See whether X has any SIGN_EXTEND_INREG uses. 1772 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1773 SDNode *N = *I; 1774 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1775 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1776 C.Op0 = SDValue(N, 0); 1777 return; 1778 } 1779 } 1780 } 1781 } 1782 } 1783 1784 // If C compares the truncation of an extending load, try to compare 1785 // the untruncated value instead. This exposes more opportunities to 1786 // reuse CC. 1787 static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1788 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1789 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1790 C.Op1.getOpcode() == ISD::Constant && 1791 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1792 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1793 if (L->getMemoryVT().getStoreSizeInBits() 1794 <= C.Op0.getValueType().getSizeInBits()) { 1795 unsigned Type = L->getExtensionType(); 1796 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1797 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1798 C.Op0 = C.Op0.getOperand(0); 1799 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1800 } 1801 } 1802 } 1803 } 1804 1805 // Return true if shift operation N has an in-range constant shift value. 1806 // Store it in ShiftVal if so. 1807 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1808 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1809 if (!Shift) 1810 return false; 1811 1812 uint64_t Amount = Shift->getZExtValue(); 1813 if (Amount >= N.getValueType().getSizeInBits()) 1814 return false; 1815 1816 ShiftVal = Amount; 1817 return true; 1818 } 1819 1820 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1821 // instruction and whether the CC value is descriptive enough to handle 1822 // a comparison of type Opcode between the AND result and CmpVal. 1823 // CCMask says which comparison result is being tested and BitSize is 1824 // the number of bits in the operands. If TEST UNDER MASK can be used, 1825 // return the corresponding CC mask, otherwise return 0. 1826 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1827 uint64_t Mask, uint64_t CmpVal, 1828 unsigned ICmpType) { 1829 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1830 1831 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1832 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1833 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1834 return 0; 1835 1836 // Work out the masks for the lowest and highest bits. 1837 unsigned HighShift = 63 - countLeadingZeros(Mask); 1838 uint64_t High = uint64_t(1) << HighShift; 1839 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1840 1841 // Signed ordered comparisons are effectively unsigned if the sign 1842 // bit is dropped. 1843 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1844 1845 // Check for equality comparisons with 0, or the equivalent. 1846 if (CmpVal == 0) { 1847 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1848 return SystemZ::CCMASK_TM_ALL_0; 1849 if (CCMask == SystemZ::CCMASK_CMP_NE) 1850 return SystemZ::CCMASK_TM_SOME_1; 1851 } 1852 if (EffectivelyUnsigned && CmpVal <= Low) { 1853 if (CCMask == SystemZ::CCMASK_CMP_LT) 1854 return SystemZ::CCMASK_TM_ALL_0; 1855 if (CCMask == SystemZ::CCMASK_CMP_GE) 1856 return SystemZ::CCMASK_TM_SOME_1; 1857 } 1858 if (EffectivelyUnsigned && CmpVal < Low) { 1859 if (CCMask == SystemZ::CCMASK_CMP_LE) 1860 return SystemZ::CCMASK_TM_ALL_0; 1861 if (CCMask == SystemZ::CCMASK_CMP_GT) 1862 return SystemZ::CCMASK_TM_SOME_1; 1863 } 1864 1865 // Check for equality comparisons with the mask, or the equivalent. 1866 if (CmpVal == Mask) { 1867 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1868 return SystemZ::CCMASK_TM_ALL_1; 1869 if (CCMask == SystemZ::CCMASK_CMP_NE) 1870 return SystemZ::CCMASK_TM_SOME_0; 1871 } 1872 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1873 if (CCMask == SystemZ::CCMASK_CMP_GT) 1874 return SystemZ::CCMASK_TM_ALL_1; 1875 if (CCMask == SystemZ::CCMASK_CMP_LE) 1876 return SystemZ::CCMASK_TM_SOME_0; 1877 } 1878 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1879 if (CCMask == SystemZ::CCMASK_CMP_GE) 1880 return SystemZ::CCMASK_TM_ALL_1; 1881 if (CCMask == SystemZ::CCMASK_CMP_LT) 1882 return SystemZ::CCMASK_TM_SOME_0; 1883 } 1884 1885 // Check for ordered comparisons with the top bit. 1886 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1887 if (CCMask == SystemZ::CCMASK_CMP_LE) 1888 return SystemZ::CCMASK_TM_MSB_0; 1889 if (CCMask == SystemZ::CCMASK_CMP_GT) 1890 return SystemZ::CCMASK_TM_MSB_1; 1891 } 1892 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1893 if (CCMask == SystemZ::CCMASK_CMP_LT) 1894 return SystemZ::CCMASK_TM_MSB_0; 1895 if (CCMask == SystemZ::CCMASK_CMP_GE) 1896 return SystemZ::CCMASK_TM_MSB_1; 1897 } 1898 1899 // If there are just two bits, we can do equality checks for Low and High 1900 // as well. 1901 if (Mask == Low + High) { 1902 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1903 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1904 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1905 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1906 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1907 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1908 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1909 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1910 } 1911 1912 // Looks like we've exhausted our options. 1913 return 0; 1914 } 1915 1916 // See whether C can be implemented as a TEST UNDER MASK instruction. 1917 // Update the arguments with the TM version if so. 1918 static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1919 // Check that we have a comparison with a constant. 1920 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1921 if (!ConstOp1) 1922 return; 1923 uint64_t CmpVal = ConstOp1->getZExtValue(); 1924 1925 // Check whether the nonconstant input is an AND with a constant mask. 1926 Comparison NewC(C); 1927 uint64_t MaskVal; 1928 ConstantSDNode *Mask = nullptr; 1929 if (C.Op0.getOpcode() == ISD::AND) { 1930 NewC.Op0 = C.Op0.getOperand(0); 1931 NewC.Op1 = C.Op0.getOperand(1); 1932 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 1933 if (!Mask) 1934 return; 1935 MaskVal = Mask->getZExtValue(); 1936 } else { 1937 // There is no instruction to compare with a 64-bit immediate 1938 // so use TMHH instead if possible. We need an unsigned ordered 1939 // comparison with an i64 immediate. 1940 if (NewC.Op0.getValueType() != MVT::i64 || 1941 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 1942 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 1943 NewC.ICmpType == SystemZICMP::SignedOnly) 1944 return; 1945 // Convert LE and GT comparisons into LT and GE. 1946 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 1947 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 1948 if (CmpVal == uint64_t(-1)) 1949 return; 1950 CmpVal += 1; 1951 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1952 } 1953 // If the low N bits of Op1 are zero than the low N bits of Op0 can 1954 // be masked off without changing the result. 1955 MaskVal = -(CmpVal & -CmpVal); 1956 NewC.ICmpType = SystemZICMP::UnsignedOnly; 1957 } 1958 if (!MaskVal) 1959 return; 1960 1961 // Check whether the combination of mask, comparison value and comparison 1962 // type are suitable. 1963 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); 1964 unsigned NewCCMask, ShiftVal; 1965 if (NewC.ICmpType != SystemZICMP::SignedOnly && 1966 NewC.Op0.getOpcode() == ISD::SHL && 1967 isSimpleShift(NewC.Op0, ShiftVal) && 1968 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1969 MaskVal >> ShiftVal, 1970 CmpVal >> ShiftVal, 1971 SystemZICMP::Any))) { 1972 NewC.Op0 = NewC.Op0.getOperand(0); 1973 MaskVal >>= ShiftVal; 1974 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 1975 NewC.Op0.getOpcode() == ISD::SRL && 1976 isSimpleShift(NewC.Op0, ShiftVal) && 1977 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 1978 MaskVal << ShiftVal, 1979 CmpVal << ShiftVal, 1980 SystemZICMP::UnsignedOnly))) { 1981 NewC.Op0 = NewC.Op0.getOperand(0); 1982 MaskVal <<= ShiftVal; 1983 } else { 1984 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 1985 NewC.ICmpType); 1986 if (!NewCCMask) 1987 return; 1988 } 1989 1990 // Go ahead and make the change. 1991 C.Opcode = SystemZISD::TM; 1992 C.Op0 = NewC.Op0; 1993 if (Mask && Mask->getZExtValue() == MaskVal) 1994 C.Op1 = SDValue(Mask, 0); 1995 else 1996 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 1997 C.CCValid = SystemZ::CCMASK_TM; 1998 C.CCMask = NewCCMask; 1999 } 2000 2001 // Return a Comparison that tests the condition-code result of intrinsic 2002 // node Call against constant integer CC using comparison code Cond. 2003 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2004 // and CCValid is the set of possible condition-code results. 2005 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2006 SDValue Call, unsigned CCValid, uint64_t CC, 2007 ISD::CondCode Cond) { 2008 Comparison C(Call, SDValue()); 2009 C.Opcode = Opcode; 2010 C.CCValid = CCValid; 2011 if (Cond == ISD::SETEQ) 2012 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2013 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2014 else if (Cond == ISD::SETNE) 2015 // ...and the inverse of that. 2016 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2017 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2018 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2019 // always true for CC>3. 2020 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2021 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2022 // ...and the inverse of that. 2023 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2024 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2025 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2026 // always true for CC>3. 2027 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2028 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2029 // ...and the inverse of that. 2030 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2031 else 2032 llvm_unreachable("Unexpected integer comparison type"); 2033 C.CCMask &= CCValid; 2034 return C; 2035 } 2036 2037 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2038 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2039 ISD::CondCode Cond, SDLoc DL) { 2040 if (CmpOp1.getOpcode() == ISD::Constant) { 2041 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2042 unsigned Opcode, CCValid; 2043 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2044 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2045 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2046 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2047 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2048 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2049 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2050 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2051 } 2052 Comparison C(CmpOp0, CmpOp1); 2053 C.CCMask = CCMaskForCondCode(Cond); 2054 if (C.Op0.getValueType().isFloatingPoint()) { 2055 C.CCValid = SystemZ::CCMASK_FCMP; 2056 C.Opcode = SystemZISD::FCMP; 2057 adjustForFNeg(C); 2058 } else { 2059 C.CCValid = SystemZ::CCMASK_ICMP; 2060 C.Opcode = SystemZISD::ICMP; 2061 // Choose the type of comparison. Equality and inequality tests can 2062 // use either signed or unsigned comparisons. The choice also doesn't 2063 // matter if both sign bits are known to be clear. In those cases we 2064 // want to give the main isel code the freedom to choose whichever 2065 // form fits best. 2066 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2067 C.CCMask == SystemZ::CCMASK_CMP_NE || 2068 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2069 C.ICmpType = SystemZICMP::Any; 2070 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2071 C.ICmpType = SystemZICMP::UnsignedOnly; 2072 else 2073 C.ICmpType = SystemZICMP::SignedOnly; 2074 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2075 adjustZeroCmp(DAG, DL, C); 2076 adjustSubwordCmp(DAG, DL, C); 2077 adjustForSubtraction(DAG, DL, C); 2078 adjustForLTGFR(C); 2079 adjustICmpTruncate(DAG, DL, C); 2080 } 2081 2082 if (shouldSwapCmpOperands(C)) { 2083 std::swap(C.Op0, C.Op1); 2084 C.CCMask = reverseCCMask(C.CCMask); 2085 } 2086 2087 adjustForTestUnderMask(DAG, DL, C); 2088 return C; 2089 } 2090 2091 // Emit the comparison instruction described by C. 2092 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 2093 if (!C.Op1.getNode()) { 2094 SDValue Op; 2095 switch (C.Op0.getOpcode()) { 2096 case ISD::INTRINSIC_W_CHAIN: 2097 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2098 break; 2099 case ISD::INTRINSIC_WO_CHAIN: 2100 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2101 break; 2102 default: 2103 llvm_unreachable("Invalid comparison operands"); 2104 } 2105 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2106 } 2107 if (C.Opcode == SystemZISD::ICMP) 2108 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2109 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2110 if (C.Opcode == SystemZISD::TM) { 2111 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2112 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2113 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2114 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2115 } 2116 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2117 } 2118 2119 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2120 // 64 bits. Extend is the extension type to use. Store the high part 2121 // in Hi and the low part in Lo. 2122 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, 2123 unsigned Extend, SDValue Op0, SDValue Op1, 2124 SDValue &Hi, SDValue &Lo) { 2125 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2126 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2127 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2128 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2129 DAG.getConstant(32, DL, MVT::i64)); 2130 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2131 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2132 } 2133 2134 // Lower a binary operation that produces two VT results, one in each 2135 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2136 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2137 // on the extended Op0 and (unextended) Op1. Store the even register result 2138 // in Even and the odd register result in Odd. 2139 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, 2140 unsigned Extend, unsigned Opcode, 2141 SDValue Op0, SDValue Op1, 2142 SDValue &Even, SDValue &Odd) { 2143 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2144 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2145 SDValue(In128, 0), Op1); 2146 bool Is32Bit = is32Bit(VT); 2147 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2148 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2149 } 2150 2151 // Return an i32 value that is 1 if the CC value produced by Glue is 2152 // in the mask CCMask and 0 otherwise. CC is known to have a value 2153 // in CCValid, so other values can be ignored. 2154 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue, 2155 unsigned CCValid, unsigned CCMask) { 2156 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2157 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2158 2159 if (Conversion.XORValue) 2160 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2161 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2162 2163 if (Conversion.AddValue) 2164 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2165 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2166 2167 // The SHR/AND sequence should get optimized to an RISBG. 2168 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2169 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2170 if (Conversion.Bit != 31) 2171 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2172 DAG.getConstant(1, DL, MVT::i32)); 2173 return Result; 2174 } 2175 2176 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2177 // be done directly. IsFP is true if CC is for a floating-point rather than 2178 // integer comparison. 2179 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2180 switch (CC) { 2181 case ISD::SETOEQ: 2182 case ISD::SETEQ: 2183 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2184 2185 case ISD::SETOGE: 2186 case ISD::SETGE: 2187 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2188 2189 case ISD::SETOGT: 2190 case ISD::SETGT: 2191 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2192 2193 case ISD::SETUGT: 2194 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2195 2196 default: 2197 return 0; 2198 } 2199 } 2200 2201 // Return the SystemZISD vector comparison operation for CC or its inverse, 2202 // or 0 if neither can be done directly. Indicate in Invert whether the 2203 // result is for the inverse of CC. IsFP is true if CC is for a 2204 // floating-point rather than integer comparison. 2205 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2206 bool &Invert) { 2207 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2208 Invert = false; 2209 return Opcode; 2210 } 2211 2212 CC = ISD::getSetCCInverse(CC, !IsFP); 2213 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2214 Invert = true; 2215 return Opcode; 2216 } 2217 2218 return 0; 2219 } 2220 2221 // Return a v2f64 that contains the extended form of elements Start and Start+1 2222 // of v4f32 value Op. 2223 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL, 2224 SDValue Op) { 2225 int Mask[] = { Start, -1, Start + 1, -1 }; 2226 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2227 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2228 } 2229 2230 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2231 // producing a result of type VT. 2232 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL, 2233 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2234 // There is no hardware support for v4f32, so extend the vector into 2235 // two v2f64s and compare those. 2236 if (CmpOp0.getValueType() == MVT::v4f32) { 2237 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2238 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2239 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2240 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2241 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2242 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2243 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2244 } 2245 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2246 } 2247 2248 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2249 // an integer mask of type VT. 2250 static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, 2251 ISD::CondCode CC, SDValue CmpOp0, 2252 SDValue CmpOp1) { 2253 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2254 bool Invert = false; 2255 SDValue Cmp; 2256 switch (CC) { 2257 // Handle tests for order using (or (ogt y x) (oge x y)). 2258 case ISD::SETUO: 2259 Invert = true; 2260 case ISD::SETO: { 2261 assert(IsFP && "Unexpected integer comparison"); 2262 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2263 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2264 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2265 break; 2266 } 2267 2268 // Handle <> tests using (or (ogt y x) (ogt x y)). 2269 case ISD::SETUEQ: 2270 Invert = true; 2271 case ISD::SETONE: { 2272 assert(IsFP && "Unexpected integer comparison"); 2273 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2274 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2275 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2276 break; 2277 } 2278 2279 // Otherwise a single comparison is enough. It doesn't really 2280 // matter whether we try the inversion or the swap first, since 2281 // there are no cases where both work. 2282 default: 2283 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2284 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2285 else { 2286 CC = ISD::getSetCCSwappedOperands(CC); 2287 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2288 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2289 else 2290 llvm_unreachable("Unhandled comparison"); 2291 } 2292 break; 2293 } 2294 if (Invert) { 2295 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2296 DAG.getConstant(65535, DL, MVT::i32)); 2297 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2298 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2299 } 2300 return Cmp; 2301 } 2302 2303 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2304 SelectionDAG &DAG) const { 2305 SDValue CmpOp0 = Op.getOperand(0); 2306 SDValue CmpOp1 = Op.getOperand(1); 2307 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2308 SDLoc DL(Op); 2309 EVT VT = Op.getValueType(); 2310 if (VT.isVector()) 2311 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2312 2313 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2314 SDValue Glue = emitCmp(DAG, DL, C); 2315 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2316 } 2317 2318 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2319 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2320 SDValue CmpOp0 = Op.getOperand(2); 2321 SDValue CmpOp1 = Op.getOperand(3); 2322 SDValue Dest = Op.getOperand(4); 2323 SDLoc DL(Op); 2324 2325 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2326 SDValue Glue = emitCmp(DAG, DL, C); 2327 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2328 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2329 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2330 } 2331 2332 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2333 // allowing Pos and Neg to be wider than CmpOp. 2334 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2335 return (Neg.getOpcode() == ISD::SUB && 2336 Neg.getOperand(0).getOpcode() == ISD::Constant && 2337 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2338 Neg.getOperand(1) == Pos && 2339 (Pos == CmpOp || 2340 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2341 Pos.getOperand(0) == CmpOp))); 2342 } 2343 2344 // Return the absolute or negative absolute of Op; IsNegative decides which. 2345 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op, 2346 bool IsNegative) { 2347 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2348 if (IsNegative) 2349 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2350 DAG.getConstant(0, DL, Op.getValueType()), Op); 2351 return Op; 2352 } 2353 2354 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2355 SelectionDAG &DAG) const { 2356 SDValue CmpOp0 = Op.getOperand(0); 2357 SDValue CmpOp1 = Op.getOperand(1); 2358 SDValue TrueOp = Op.getOperand(2); 2359 SDValue FalseOp = Op.getOperand(3); 2360 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2361 SDLoc DL(Op); 2362 2363 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2364 2365 // Check for absolute and negative-absolute selections, including those 2366 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2367 // This check supplements the one in DAGCombiner. 2368 if (C.Opcode == SystemZISD::ICMP && 2369 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2370 C.CCMask != SystemZ::CCMASK_CMP_NE && 2371 C.Op1.getOpcode() == ISD::Constant && 2372 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2373 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2374 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2375 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2376 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2377 } 2378 2379 SDValue Glue = emitCmp(DAG, DL, C); 2380 2381 // Special case for handling -1/0 results. The shifts we use here 2382 // should get optimized with the IPM conversion sequence. 2383 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2384 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2385 if (TrueC && FalseC) { 2386 int64_t TrueVal = TrueC->getSExtValue(); 2387 int64_t FalseVal = FalseC->getSExtValue(); 2388 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2389 // Invert the condition if we want -1 on false. 2390 if (TrueVal == 0) 2391 C.CCMask ^= C.CCValid; 2392 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2393 EVT VT = Op.getValueType(); 2394 // Extend the result to VT. Upper bits are ignored. 2395 if (!is32Bit(VT)) 2396 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2397 // Sign-extend from the low bit. 2398 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2399 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2400 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2401 } 2402 } 2403 2404 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2405 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2406 2407 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2408 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2409 } 2410 2411 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2412 SelectionDAG &DAG) const { 2413 SDLoc DL(Node); 2414 const GlobalValue *GV = Node->getGlobal(); 2415 int64_t Offset = Node->getOffset(); 2416 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2417 Reloc::Model RM = DAG.getTarget().getRelocationModel(); 2418 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2419 2420 SDValue Result; 2421 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { 2422 // Assign anchors at 1<<12 byte boundaries. 2423 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2424 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2425 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2426 2427 // The offset can be folded into the address if it is aligned to a halfword. 2428 Offset -= Anchor; 2429 if (Offset != 0 && (Offset & 1) == 0) { 2430 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2431 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2432 Offset = 0; 2433 } 2434 } else { 2435 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2436 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2437 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2438 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2439 false, false, false, 0); 2440 } 2441 2442 // If there was a non-zero offset that we didn't fold, create an explicit 2443 // addition for it. 2444 if (Offset != 0) 2445 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2446 DAG.getConstant(Offset, DL, PtrVT)); 2447 2448 return Result; 2449 } 2450 2451 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2452 SelectionDAG &DAG, 2453 unsigned Opcode, 2454 SDValue GOTOffset) const { 2455 SDLoc DL(Node); 2456 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2457 SDValue Chain = DAG.getEntryNode(); 2458 SDValue Glue; 2459 2460 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2461 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2462 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2463 Glue = Chain.getValue(1); 2464 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2465 Glue = Chain.getValue(1); 2466 2467 // The first call operand is the chain and the second is the TLS symbol. 2468 SmallVector<SDValue, 8> Ops; 2469 Ops.push_back(Chain); 2470 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2471 Node->getValueType(0), 2472 0, 0)); 2473 2474 // Add argument registers to the end of the list so that they are 2475 // known live into the call. 2476 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2477 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2478 2479 // Add a register mask operand representing the call-preserved registers. 2480 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2481 const uint32_t *Mask = 2482 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2483 assert(Mask && "Missing call preserved mask for calling convention"); 2484 Ops.push_back(DAG.getRegisterMask(Mask)); 2485 2486 // Glue the call to the argument copies. 2487 Ops.push_back(Glue); 2488 2489 // Emit the call. 2490 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2491 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2492 Glue = Chain.getValue(1); 2493 2494 // Copy the return value from %r2. 2495 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2496 } 2497 2498 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2499 SelectionDAG &DAG) const { 2500 if (DAG.getTarget().Options.EmulatedTLS) 2501 return LowerToTLSEmulatedModel(Node, DAG); 2502 SDLoc DL(Node); 2503 const GlobalValue *GV = Node->getGlobal(); 2504 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2505 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2506 2507 // The high part of the thread pointer is in access register 0. 2508 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2509 DAG.getConstant(0, DL, MVT::i32)); 2510 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2511 2512 // The low part of the thread pointer is in access register 1. 2513 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2514 DAG.getConstant(1, DL, MVT::i32)); 2515 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2516 2517 // Merge them into a single 64-bit address. 2518 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2519 DAG.getConstant(32, DL, PtrVT)); 2520 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2521 2522 // Get the offset of GA from the thread pointer, based on the TLS model. 2523 SDValue Offset; 2524 switch (model) { 2525 case TLSModel::GeneralDynamic: { 2526 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2527 SystemZConstantPoolValue *CPV = 2528 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2529 2530 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2531 Offset = DAG.getLoad( 2532 PtrVT, DL, DAG.getEntryNode(), Offset, 2533 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2534 false, false, 0); 2535 2536 // Call __tls_get_offset to retrieve the offset. 2537 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2538 break; 2539 } 2540 2541 case TLSModel::LocalDynamic: { 2542 // Load the GOT offset of the module ID. 2543 SystemZConstantPoolValue *CPV = 2544 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2545 2546 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2547 Offset = DAG.getLoad( 2548 PtrVT, DL, DAG.getEntryNode(), Offset, 2549 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2550 false, false, 0); 2551 2552 // Call __tls_get_offset to retrieve the module base offset. 2553 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2554 2555 // Note: The SystemZLDCleanupPass will remove redundant computations 2556 // of the module base offset. Count total number of local-dynamic 2557 // accesses to trigger execution of that pass. 2558 SystemZMachineFunctionInfo* MFI = 2559 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2560 MFI->incNumLocalDynamicTLSAccesses(); 2561 2562 // Add the per-symbol offset. 2563 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2564 2565 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2566 DTPOffset = DAG.getLoad( 2567 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2568 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2569 false, false, 0); 2570 2571 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2572 break; 2573 } 2574 2575 case TLSModel::InitialExec: { 2576 // Load the offset from the GOT. 2577 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2578 SystemZII::MO_INDNTPOFF); 2579 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2580 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2581 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2582 false, false, false, 0); 2583 break; 2584 } 2585 2586 case TLSModel::LocalExec: { 2587 // Force the offset into the constant pool and load it from there. 2588 SystemZConstantPoolValue *CPV = 2589 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2590 2591 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2592 Offset = DAG.getLoad( 2593 PtrVT, DL, DAG.getEntryNode(), Offset, 2594 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2595 false, false, 0); 2596 break; 2597 } 2598 } 2599 2600 // Add the base and offset together. 2601 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2602 } 2603 2604 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2605 SelectionDAG &DAG) const { 2606 SDLoc DL(Node); 2607 const BlockAddress *BA = Node->getBlockAddress(); 2608 int64_t Offset = Node->getOffset(); 2609 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2610 2611 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2612 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2613 return Result; 2614 } 2615 2616 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2617 SelectionDAG &DAG) const { 2618 SDLoc DL(JT); 2619 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2620 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2621 2622 // Use LARL to load the address of the table. 2623 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2624 } 2625 2626 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2627 SelectionDAG &DAG) const { 2628 SDLoc DL(CP); 2629 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2630 2631 SDValue Result; 2632 if (CP->isMachineConstantPoolEntry()) 2633 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2634 CP->getAlignment()); 2635 else 2636 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2637 CP->getAlignment(), CP->getOffset()); 2638 2639 // Use LARL to load the address of the constant pool entry. 2640 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2641 } 2642 2643 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2644 SelectionDAG &DAG) const { 2645 SDLoc DL(Op); 2646 SDValue In = Op.getOperand(0); 2647 EVT InVT = In.getValueType(); 2648 EVT ResVT = Op.getValueType(); 2649 2650 // Convert loads directly. This is normally done by DAGCombiner, 2651 // but we need this case for bitcasts that are created during lowering 2652 // and which are then lowered themselves. 2653 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2654 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2655 LoadN->getMemOperand()); 2656 2657 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2658 SDValue In64; 2659 if (Subtarget.hasHighWord()) { 2660 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2661 MVT::i64); 2662 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2663 MVT::i64, SDValue(U64, 0), In); 2664 } else { 2665 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2666 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2667 DAG.getConstant(32, DL, MVT::i64)); 2668 } 2669 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2670 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2671 DL, MVT::f32, Out64); 2672 } 2673 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2674 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2675 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2676 MVT::f64, SDValue(U64, 0), In); 2677 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2678 if (Subtarget.hasHighWord()) 2679 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2680 MVT::i32, Out64); 2681 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2682 DAG.getConstant(32, DL, MVT::i64)); 2683 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2684 } 2685 llvm_unreachable("Unexpected bitcast combination"); 2686 } 2687 2688 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2689 SelectionDAG &DAG) const { 2690 MachineFunction &MF = DAG.getMachineFunction(); 2691 SystemZMachineFunctionInfo *FuncInfo = 2692 MF.getInfo<SystemZMachineFunctionInfo>(); 2693 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2694 2695 SDValue Chain = Op.getOperand(0); 2696 SDValue Addr = Op.getOperand(1); 2697 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2698 SDLoc DL(Op); 2699 2700 // The initial values of each field. 2701 const unsigned NumFields = 4; 2702 SDValue Fields[NumFields] = { 2703 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2704 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2705 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2706 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2707 }; 2708 2709 // Store each field into its respective slot. 2710 SDValue MemOps[NumFields]; 2711 unsigned Offset = 0; 2712 for (unsigned I = 0; I < NumFields; ++I) { 2713 SDValue FieldAddr = Addr; 2714 if (Offset != 0) 2715 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2716 DAG.getIntPtrConstant(Offset, DL)); 2717 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2718 MachinePointerInfo(SV, Offset), 2719 false, false, 0); 2720 Offset += 8; 2721 } 2722 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2723 } 2724 2725 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2726 SelectionDAG &DAG) const { 2727 SDValue Chain = Op.getOperand(0); 2728 SDValue DstPtr = Op.getOperand(1); 2729 SDValue SrcPtr = Op.getOperand(2); 2730 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2731 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2732 SDLoc DL(Op); 2733 2734 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2735 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2736 /*isTailCall*/false, 2737 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2738 } 2739 2740 SDValue SystemZTargetLowering:: 2741 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2742 SDValue Chain = Op.getOperand(0); 2743 SDValue Size = Op.getOperand(1); 2744 SDLoc DL(Op); 2745 2746 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2747 2748 // Get a reference to the stack pointer. 2749 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2750 2751 // Get the new stack pointer value. 2752 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, Size); 2753 2754 // Copy the new stack pointer back. 2755 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2756 2757 // The allocated data lives above the 160 bytes allocated for the standard 2758 // frame, plus any outgoing stack arguments. We don't know how much that 2759 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2760 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2761 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2762 2763 SDValue Ops[2] = { Result, Chain }; 2764 return DAG.getMergeValues(Ops, DL); 2765 } 2766 2767 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2768 SelectionDAG &DAG) const { 2769 EVT VT = Op.getValueType(); 2770 SDLoc DL(Op); 2771 SDValue Ops[2]; 2772 if (is32Bit(VT)) 2773 // Just do a normal 64-bit multiplication and extract the results. 2774 // We define this so that it can be used for constant division. 2775 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2776 Op.getOperand(1), Ops[1], Ops[0]); 2777 else { 2778 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2779 // 2780 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2781 // 2782 // but using the fact that the upper halves are either all zeros 2783 // or all ones: 2784 // 2785 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2786 // 2787 // and grouping the right terms together since they are quicker than the 2788 // multiplication: 2789 // 2790 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2791 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2792 SDValue LL = Op.getOperand(0); 2793 SDValue RL = Op.getOperand(1); 2794 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2795 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2796 // UMUL_LOHI64 returns the low result in the odd register and the high 2797 // result in the even register. SMUL_LOHI is defined to return the 2798 // low half first, so the results are in reverse order. 2799 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2800 LL, RL, Ops[1], Ops[0]); 2801 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2802 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2803 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2804 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2805 } 2806 return DAG.getMergeValues(Ops, DL); 2807 } 2808 2809 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2810 SelectionDAG &DAG) const { 2811 EVT VT = Op.getValueType(); 2812 SDLoc DL(Op); 2813 SDValue Ops[2]; 2814 if (is32Bit(VT)) 2815 // Just do a normal 64-bit multiplication and extract the results. 2816 // We define this so that it can be used for constant division. 2817 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 2818 Op.getOperand(1), Ops[1], Ops[0]); 2819 else 2820 // UMUL_LOHI64 returns the low result in the odd register and the high 2821 // result in the even register. UMUL_LOHI is defined to return the 2822 // low half first, so the results are in reverse order. 2823 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2824 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2825 return DAG.getMergeValues(Ops, DL); 2826 } 2827 2828 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 2829 SelectionDAG &DAG) const { 2830 SDValue Op0 = Op.getOperand(0); 2831 SDValue Op1 = Op.getOperand(1); 2832 EVT VT = Op.getValueType(); 2833 SDLoc DL(Op); 2834 unsigned Opcode; 2835 2836 // We use DSGF for 32-bit division. 2837 if (is32Bit(VT)) { 2838 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 2839 Opcode = SystemZISD::SDIVREM32; 2840 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 2841 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 2842 Opcode = SystemZISD::SDIVREM32; 2843 } else 2844 Opcode = SystemZISD::SDIVREM64; 2845 2846 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 2847 // input is "don't care". The instruction returns the remainder in 2848 // the even register and the quotient in the odd register. 2849 SDValue Ops[2]; 2850 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 2851 Op0, Op1, Ops[1], Ops[0]); 2852 return DAG.getMergeValues(Ops, DL); 2853 } 2854 2855 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 2856 SelectionDAG &DAG) const { 2857 EVT VT = Op.getValueType(); 2858 SDLoc DL(Op); 2859 2860 // DL(G) uses a double-width dividend, so we need to clear the even 2861 // register in the GR128 input. The instruction returns the remainder 2862 // in the even register and the quotient in the odd register. 2863 SDValue Ops[2]; 2864 if (is32Bit(VT)) 2865 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 2866 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2867 else 2868 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 2869 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2870 return DAG.getMergeValues(Ops, DL); 2871 } 2872 2873 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 2874 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 2875 2876 // Get the known-zero masks for each operand. 2877 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 2878 APInt KnownZero[2], KnownOne[2]; 2879 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 2880 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 2881 2882 // See if the upper 32 bits of one operand and the lower 32 bits of the 2883 // other are known zero. They are the low and high operands respectively. 2884 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 2885 KnownZero[1].getZExtValue() }; 2886 unsigned High, Low; 2887 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 2888 High = 1, Low = 0; 2889 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 2890 High = 0, Low = 1; 2891 else 2892 return Op; 2893 2894 SDValue LowOp = Ops[Low]; 2895 SDValue HighOp = Ops[High]; 2896 2897 // If the high part is a constant, we're better off using IILH. 2898 if (HighOp.getOpcode() == ISD::Constant) 2899 return Op; 2900 2901 // If the low part is a constant that is outside the range of LHI, 2902 // then we're better off using IILF. 2903 if (LowOp.getOpcode() == ISD::Constant) { 2904 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 2905 if (!isInt<16>(Value)) 2906 return Op; 2907 } 2908 2909 // Check whether the high part is an AND that doesn't change the 2910 // high 32 bits and just masks out low bits. We can skip it if so. 2911 if (HighOp.getOpcode() == ISD::AND && 2912 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 2913 SDValue HighOp0 = HighOp.getOperand(0); 2914 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 2915 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 2916 HighOp = HighOp0; 2917 } 2918 2919 // Take advantage of the fact that all GR32 operations only change the 2920 // low 32 bits by truncating Low to an i32 and inserting it directly 2921 // using a subreg. The interesting cases are those where the truncation 2922 // can be folded. 2923 SDLoc DL(Op); 2924 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 2925 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 2926 MVT::i64, HighOp, Low32); 2927 } 2928 2929 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 2930 SelectionDAG &DAG) const { 2931 EVT VT = Op.getValueType(); 2932 SDLoc DL(Op); 2933 Op = Op.getOperand(0); 2934 2935 // Handle vector types via VPOPCT. 2936 if (VT.isVector()) { 2937 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 2938 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 2939 switch (VT.getVectorElementType().getSizeInBits()) { 2940 case 8: 2941 break; 2942 case 16: { 2943 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 2944 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 2945 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 2946 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 2947 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 2948 break; 2949 } 2950 case 32: { 2951 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2952 DAG.getConstant(0, DL, MVT::i32)); 2953 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 2954 break; 2955 } 2956 case 64: { 2957 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2958 DAG.getConstant(0, DL, MVT::i32)); 2959 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 2960 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 2961 break; 2962 } 2963 default: 2964 llvm_unreachable("Unexpected type"); 2965 } 2966 return Op; 2967 } 2968 2969 // Get the known-zero mask for the operand. 2970 APInt KnownZero, KnownOne; 2971 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2972 unsigned NumSignificantBits = (~KnownZero).getActiveBits(); 2973 if (NumSignificantBits == 0) 2974 return DAG.getConstant(0, DL, VT); 2975 2976 // Skip known-zero high parts of the operand. 2977 int64_t OrigBitSize = VT.getSizeInBits(); 2978 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 2979 BitSize = std::min(BitSize, OrigBitSize); 2980 2981 // The POPCNT instruction counts the number of bits in each byte. 2982 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 2983 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 2984 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 2985 2986 // Add up per-byte counts in a binary tree. All bits of Op at 2987 // position larger than BitSize remain zero throughout. 2988 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 2989 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 2990 if (BitSize != OrigBitSize) 2991 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 2992 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 2993 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 2994 } 2995 2996 // Extract overall result from high byte. 2997 if (BitSize > 8) 2998 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 2999 DAG.getConstant(BitSize - 8, DL, VT)); 3000 3001 return Op; 3002 } 3003 3004 // Op is an atomic load. Lower it into a normal volatile load. 3005 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3006 SelectionDAG &DAG) const { 3007 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3008 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3009 Node->getChain(), Node->getBasePtr(), 3010 Node->getMemoryVT(), Node->getMemOperand()); 3011 } 3012 3013 // Op is an atomic store. Lower it into a normal volatile store followed 3014 // by a serialization. 3015 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3016 SelectionDAG &DAG) const { 3017 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3018 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3019 Node->getBasePtr(), Node->getMemoryVT(), 3020 Node->getMemOperand()); 3021 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3022 Chain), 0); 3023 } 3024 3025 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3026 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3027 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3028 SelectionDAG &DAG, 3029 unsigned Opcode) const { 3030 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3031 3032 // 32-bit operations need no code outside the main loop. 3033 EVT NarrowVT = Node->getMemoryVT(); 3034 EVT WideVT = MVT::i32; 3035 if (NarrowVT == WideVT) 3036 return Op; 3037 3038 int64_t BitSize = NarrowVT.getSizeInBits(); 3039 SDValue ChainIn = Node->getChain(); 3040 SDValue Addr = Node->getBasePtr(); 3041 SDValue Src2 = Node->getVal(); 3042 MachineMemOperand *MMO = Node->getMemOperand(); 3043 SDLoc DL(Node); 3044 EVT PtrVT = Addr.getValueType(); 3045 3046 // Convert atomic subtracts of constants into additions. 3047 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3048 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3049 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3050 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3051 } 3052 3053 // Get the address of the containing word. 3054 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3055 DAG.getConstant(-4, DL, PtrVT)); 3056 3057 // Get the number of bits that the word must be rotated left in order 3058 // to bring the field to the top bits of a GR32. 3059 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3060 DAG.getConstant(3, DL, PtrVT)); 3061 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3062 3063 // Get the complementing shift amount, for rotating a field in the top 3064 // bits back to its proper position. 3065 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3066 DAG.getConstant(0, DL, WideVT), BitShift); 3067 3068 // Extend the source operand to 32 bits and prepare it for the inner loop. 3069 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3070 // operations require the source to be shifted in advance. (This shift 3071 // can be folded if the source is constant.) For AND and NAND, the lower 3072 // bits must be set, while for other opcodes they should be left clear. 3073 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3074 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3075 DAG.getConstant(32 - BitSize, DL, WideVT)); 3076 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3077 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3078 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3079 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3080 3081 // Construct the ATOMIC_LOADW_* node. 3082 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3083 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3084 DAG.getConstant(BitSize, DL, WideVT) }; 3085 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3086 NarrowVT, MMO); 3087 3088 // Rotate the result of the final CS so that the field is in the lower 3089 // bits of a GR32, then truncate it. 3090 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3091 DAG.getConstant(BitSize, DL, WideVT)); 3092 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3093 3094 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3095 return DAG.getMergeValues(RetOps, DL); 3096 } 3097 3098 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3099 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3100 // operations into additions. 3101 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3102 SelectionDAG &DAG) const { 3103 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3104 EVT MemVT = Node->getMemoryVT(); 3105 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3106 // A full-width operation. 3107 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3108 SDValue Src2 = Node->getVal(); 3109 SDValue NegSrc2; 3110 SDLoc DL(Src2); 3111 3112 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3113 // Use an addition if the operand is constant and either LAA(G) is 3114 // available or the negative value is in the range of A(G)FHI. 3115 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3116 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3117 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3118 } else if (Subtarget.hasInterlockedAccess1()) 3119 // Use LAA(G) if available. 3120 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3121 Src2); 3122 3123 if (NegSrc2.getNode()) 3124 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3125 Node->getChain(), Node->getBasePtr(), NegSrc2, 3126 Node->getMemOperand(), Node->getOrdering(), 3127 Node->getSynchScope()); 3128 3129 // Use the node as-is. 3130 return Op; 3131 } 3132 3133 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3134 } 3135 3136 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3137 // into a fullword ATOMIC_CMP_SWAPW operation. 3138 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3139 SelectionDAG &DAG) const { 3140 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3141 3142 // We have native support for 32-bit compare and swap. 3143 EVT NarrowVT = Node->getMemoryVT(); 3144 EVT WideVT = MVT::i32; 3145 if (NarrowVT == WideVT) 3146 return Op; 3147 3148 int64_t BitSize = NarrowVT.getSizeInBits(); 3149 SDValue ChainIn = Node->getOperand(0); 3150 SDValue Addr = Node->getOperand(1); 3151 SDValue CmpVal = Node->getOperand(2); 3152 SDValue SwapVal = Node->getOperand(3); 3153 MachineMemOperand *MMO = Node->getMemOperand(); 3154 SDLoc DL(Node); 3155 EVT PtrVT = Addr.getValueType(); 3156 3157 // Get the address of the containing word. 3158 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3159 DAG.getConstant(-4, DL, PtrVT)); 3160 3161 // Get the number of bits that the word must be rotated left in order 3162 // to bring the field to the top bits of a GR32. 3163 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3164 DAG.getConstant(3, DL, PtrVT)); 3165 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3166 3167 // Get the complementing shift amount, for rotating a field in the top 3168 // bits back to its proper position. 3169 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3170 DAG.getConstant(0, DL, WideVT), BitShift); 3171 3172 // Construct the ATOMIC_CMP_SWAPW node. 3173 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3174 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3175 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3176 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3177 VTList, Ops, NarrowVT, MMO); 3178 return AtomicOp; 3179 } 3180 3181 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3182 SelectionDAG &DAG) const { 3183 MachineFunction &MF = DAG.getMachineFunction(); 3184 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3185 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3186 SystemZ::R15D, Op.getValueType()); 3187 } 3188 3189 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3190 SelectionDAG &DAG) const { 3191 MachineFunction &MF = DAG.getMachineFunction(); 3192 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3193 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), 3194 SystemZ::R15D, Op.getOperand(1)); 3195 } 3196 3197 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3198 SelectionDAG &DAG) const { 3199 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3200 if (!IsData) 3201 // Just preserve the chain. 3202 return Op.getOperand(0); 3203 3204 SDLoc DL(Op); 3205 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3206 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3207 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3208 SDValue Ops[] = { 3209 Op.getOperand(0), 3210 DAG.getConstant(Code, DL, MVT::i32), 3211 Op.getOperand(1) 3212 }; 3213 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3214 Node->getVTList(), Ops, 3215 Node->getMemoryVT(), Node->getMemOperand()); 3216 } 3217 3218 // Return an i32 that contains the value of CC immediately after After, 3219 // whose final operand must be MVT::Glue. 3220 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3221 SDLoc DL(After); 3222 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3223 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3224 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3225 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3226 } 3227 3228 SDValue 3229 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3230 SelectionDAG &DAG) const { 3231 unsigned Opcode, CCValid; 3232 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3233 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3234 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3235 SDValue CC = getCCResult(DAG, Glued.getNode()); 3236 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3237 return SDValue(); 3238 } 3239 3240 return SDValue(); 3241 } 3242 3243 SDValue 3244 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3245 SelectionDAG &DAG) const { 3246 unsigned Opcode, CCValid; 3247 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3248 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3249 SDValue CC = getCCResult(DAG, Glued.getNode()); 3250 if (Op->getNumValues() == 1) 3251 return CC; 3252 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3253 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued, 3254 CC); 3255 } 3256 3257 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3258 switch (Id) { 3259 case Intrinsic::s390_vpdi: 3260 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3261 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3262 3263 case Intrinsic::s390_vperm: 3264 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3265 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3266 3267 case Intrinsic::s390_vuphb: 3268 case Intrinsic::s390_vuphh: 3269 case Intrinsic::s390_vuphf: 3270 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3271 Op.getOperand(1)); 3272 3273 case Intrinsic::s390_vuplhb: 3274 case Intrinsic::s390_vuplhh: 3275 case Intrinsic::s390_vuplhf: 3276 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3277 Op.getOperand(1)); 3278 3279 case Intrinsic::s390_vuplb: 3280 case Intrinsic::s390_vuplhw: 3281 case Intrinsic::s390_vuplf: 3282 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3283 Op.getOperand(1)); 3284 3285 case Intrinsic::s390_vupllb: 3286 case Intrinsic::s390_vupllh: 3287 case Intrinsic::s390_vupllf: 3288 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3289 Op.getOperand(1)); 3290 3291 case Intrinsic::s390_vsumb: 3292 case Intrinsic::s390_vsumh: 3293 case Intrinsic::s390_vsumgh: 3294 case Intrinsic::s390_vsumgf: 3295 case Intrinsic::s390_vsumqf: 3296 case Intrinsic::s390_vsumqg: 3297 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3298 Op.getOperand(1), Op.getOperand(2)); 3299 } 3300 3301 return SDValue(); 3302 } 3303 3304 namespace { 3305 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3306 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3307 // Operand is the constant third operand, otherwise it is the number of 3308 // bytes in each element of the result. 3309 struct Permute { 3310 unsigned Opcode; 3311 unsigned Operand; 3312 unsigned char Bytes[SystemZ::VectorBytes]; 3313 }; 3314 } 3315 3316 static const Permute PermuteForms[] = { 3317 // VMRHG 3318 { SystemZISD::MERGE_HIGH, 8, 3319 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3320 // VMRHF 3321 { SystemZISD::MERGE_HIGH, 4, 3322 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3323 // VMRHH 3324 { SystemZISD::MERGE_HIGH, 2, 3325 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3326 // VMRHB 3327 { SystemZISD::MERGE_HIGH, 1, 3328 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3329 // VMRLG 3330 { SystemZISD::MERGE_LOW, 8, 3331 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3332 // VMRLF 3333 { SystemZISD::MERGE_LOW, 4, 3334 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3335 // VMRLH 3336 { SystemZISD::MERGE_LOW, 2, 3337 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3338 // VMRLB 3339 { SystemZISD::MERGE_LOW, 1, 3340 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3341 // VPKG 3342 { SystemZISD::PACK, 4, 3343 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3344 // VPKF 3345 { SystemZISD::PACK, 2, 3346 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3347 // VPKH 3348 { SystemZISD::PACK, 1, 3349 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3350 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3351 { SystemZISD::PERMUTE_DWORDS, 4, 3352 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3353 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3354 { SystemZISD::PERMUTE_DWORDS, 1, 3355 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3356 }; 3357 3358 // Called after matching a vector shuffle against a particular pattern. 3359 // Both the original shuffle and the pattern have two vector operands. 3360 // OpNos[0] is the operand of the original shuffle that should be used for 3361 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3362 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3363 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3364 // for operands 0 and 1 of the pattern. 3365 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3366 if (OpNos[0] < 0) { 3367 if (OpNos[1] < 0) 3368 return false; 3369 OpNo0 = OpNo1 = OpNos[1]; 3370 } else if (OpNos[1] < 0) { 3371 OpNo0 = OpNo1 = OpNos[0]; 3372 } else { 3373 OpNo0 = OpNos[0]; 3374 OpNo1 = OpNos[1]; 3375 } 3376 return true; 3377 } 3378 3379 // Bytes is a VPERM-like permute vector, except that -1 is used for 3380 // undefined bytes. Return true if the VPERM can be implemented using P. 3381 // When returning true set OpNo0 to the VPERM operand that should be 3382 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3383 // 3384 // For example, if swapping the VPERM operands allows P to match, OpNo0 3385 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3386 // operand, but rewriting it to use two duplicated operands allows it to 3387 // match P, then OpNo0 and OpNo1 will be the same. 3388 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3389 unsigned &OpNo0, unsigned &OpNo1) { 3390 int OpNos[] = { -1, -1 }; 3391 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3392 int Elt = Bytes[I]; 3393 if (Elt >= 0) { 3394 // Make sure that the two permute vectors use the same suboperand 3395 // byte number. Only the operand numbers (the high bits) are 3396 // allowed to differ. 3397 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3398 return false; 3399 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3400 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3401 // Make sure that the operand mappings are consistent with previous 3402 // elements. 3403 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3404 return false; 3405 OpNos[ModelOpNo] = RealOpNo; 3406 } 3407 } 3408 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3409 } 3410 3411 // As above, but search for a matching permute. 3412 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3413 unsigned &OpNo0, unsigned &OpNo1) { 3414 for (auto &P : PermuteForms) 3415 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3416 return &P; 3417 return nullptr; 3418 } 3419 3420 // Bytes is a VPERM-like permute vector, except that -1 is used for 3421 // undefined bytes. This permute is an operand of an outer permute. 3422 // See whether redistributing the -1 bytes gives a shuffle that can be 3423 // implemented using P. If so, set Transform to a VPERM-like permute vector 3424 // that, when applied to the result of P, gives the original permute in Bytes. 3425 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3426 const Permute &P, 3427 SmallVectorImpl<int> &Transform) { 3428 unsigned To = 0; 3429 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3430 int Elt = Bytes[From]; 3431 if (Elt < 0) 3432 // Byte number From of the result is undefined. 3433 Transform[From] = -1; 3434 else { 3435 while (P.Bytes[To] != Elt) { 3436 To += 1; 3437 if (To == SystemZ::VectorBytes) 3438 return false; 3439 } 3440 Transform[From] = To; 3441 } 3442 } 3443 return true; 3444 } 3445 3446 // As above, but search for a matching permute. 3447 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3448 SmallVectorImpl<int> &Transform) { 3449 for (auto &P : PermuteForms) 3450 if (matchDoublePermute(Bytes, P, Transform)) 3451 return &P; 3452 return nullptr; 3453 } 3454 3455 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3456 // as if it had type vNi8. 3457 static void getVPermMask(ShuffleVectorSDNode *VSN, 3458 SmallVectorImpl<int> &Bytes) { 3459 EVT VT = VSN->getValueType(0); 3460 unsigned NumElements = VT.getVectorNumElements(); 3461 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3462 Bytes.resize(NumElements * BytesPerElement, -1); 3463 for (unsigned I = 0; I < NumElements; ++I) { 3464 int Index = VSN->getMaskElt(I); 3465 if (Index >= 0) 3466 for (unsigned J = 0; J < BytesPerElement; ++J) 3467 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3468 } 3469 } 3470 3471 // Bytes is a VPERM-like permute vector, except that -1 is used for 3472 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3473 // the result come from a contiguous sequence of bytes from one input. 3474 // Set Base to the selector for the first byte if so. 3475 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3476 unsigned BytesPerElement, int &Base) { 3477 Base = -1; 3478 for (unsigned I = 0; I < BytesPerElement; ++I) { 3479 if (Bytes[Start + I] >= 0) { 3480 unsigned Elem = Bytes[Start + I]; 3481 if (Base < 0) { 3482 Base = Elem - I; 3483 // Make sure the bytes would come from one input operand. 3484 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3485 return false; 3486 } else if (unsigned(Base) != Elem - I) 3487 return false; 3488 } 3489 } 3490 return true; 3491 } 3492 3493 // Bytes is a VPERM-like permute vector, except that -1 is used for 3494 // undefined bytes. Return true if it can be performed using VSLDI. 3495 // When returning true, set StartIndex to the shift amount and OpNo0 3496 // and OpNo1 to the VPERM operands that should be used as the first 3497 // and second shift operand respectively. 3498 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3499 unsigned &StartIndex, unsigned &OpNo0, 3500 unsigned &OpNo1) { 3501 int OpNos[] = { -1, -1 }; 3502 int Shift = -1; 3503 for (unsigned I = 0; I < 16; ++I) { 3504 int Index = Bytes[I]; 3505 if (Index >= 0) { 3506 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3507 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3508 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3509 if (Shift < 0) 3510 Shift = ExpectedShift; 3511 else if (Shift != ExpectedShift) 3512 return false; 3513 // Make sure that the operand mappings are consistent with previous 3514 // elements. 3515 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3516 return false; 3517 OpNos[ModelOpNo] = RealOpNo; 3518 } 3519 } 3520 StartIndex = Shift; 3521 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3522 } 3523 3524 // Create a node that performs P on operands Op0 and Op1, casting the 3525 // operands to the appropriate type. The type of the result is determined by P. 3526 static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL, 3527 const Permute &P, SDValue Op0, SDValue Op1) { 3528 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3529 // elements of a PACK are twice as wide as the outputs. 3530 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3531 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3532 P.Operand); 3533 // Cast both operands to the appropriate type. 3534 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3535 SystemZ::VectorBytes / InBytes); 3536 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3537 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3538 SDValue Op; 3539 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3540 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3541 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3542 } else if (P.Opcode == SystemZISD::PACK) { 3543 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3544 SystemZ::VectorBytes / P.Operand); 3545 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3546 } else { 3547 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3548 } 3549 return Op; 3550 } 3551 3552 // Bytes is a VPERM-like permute vector, except that -1 is used for 3553 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3554 // VSLDI or VPERM. 3555 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops, 3556 const SmallVectorImpl<int> &Bytes) { 3557 for (unsigned I = 0; I < 2; ++I) 3558 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3559 3560 // First see whether VSLDI can be used. 3561 unsigned StartIndex, OpNo0, OpNo1; 3562 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3563 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3564 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3565 3566 // Fall back on VPERM. Construct an SDNode for the permute vector. 3567 SDValue IndexNodes[SystemZ::VectorBytes]; 3568 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3569 if (Bytes[I] >= 0) 3570 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3571 else 3572 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3573 SDValue Op2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, IndexNodes); 3574 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3575 } 3576 3577 namespace { 3578 // Describes a general N-operand vector shuffle. 3579 struct GeneralShuffle { 3580 GeneralShuffle(EVT vt) : VT(vt) {} 3581 void addUndef(); 3582 void add(SDValue, unsigned); 3583 SDValue getNode(SelectionDAG &, SDLoc); 3584 3585 // The operands of the shuffle. 3586 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3587 3588 // Index I is -1 if byte I of the result is undefined. Otherwise the 3589 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3590 // Bytes[I] / SystemZ::VectorBytes. 3591 SmallVector<int, SystemZ::VectorBytes> Bytes; 3592 3593 // The type of the shuffle result. 3594 EVT VT; 3595 }; 3596 } 3597 3598 // Add an extra undefined element to the shuffle. 3599 void GeneralShuffle::addUndef() { 3600 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3601 for (unsigned I = 0; I < BytesPerElement; ++I) 3602 Bytes.push_back(-1); 3603 } 3604 3605 // Add an extra element to the shuffle, taking it from element Elem of Op. 3606 // A null Op indicates a vector input whose value will be calculated later; 3607 // there is at most one such input per shuffle and it always has the same 3608 // type as the result. 3609 void GeneralShuffle::add(SDValue Op, unsigned Elem) { 3610 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3611 3612 // The source vector can have wider elements than the result, 3613 // either through an explicit TRUNCATE or because of type legalization. 3614 // We want the least significant part. 3615 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3616 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3617 assert(FromBytesPerElement >= BytesPerElement && 3618 "Invalid EXTRACT_VECTOR_ELT"); 3619 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3620 (FromBytesPerElement - BytesPerElement)); 3621 3622 // Look through things like shuffles and bitcasts. 3623 while (Op.getNode()) { 3624 if (Op.getOpcode() == ISD::BITCAST) 3625 Op = Op.getOperand(0); 3626 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3627 // See whether the bytes we need come from a contiguous part of one 3628 // operand. 3629 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3630 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3631 int NewByte; 3632 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3633 break; 3634 if (NewByte < 0) { 3635 addUndef(); 3636 return; 3637 } 3638 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3639 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3640 } else if (Op.getOpcode() == ISD::UNDEF) { 3641 addUndef(); 3642 return; 3643 } else 3644 break; 3645 } 3646 3647 // Make sure that the source of the extraction is in Ops. 3648 unsigned OpNo = 0; 3649 for (; OpNo < Ops.size(); ++OpNo) 3650 if (Ops[OpNo] == Op) 3651 break; 3652 if (OpNo == Ops.size()) 3653 Ops.push_back(Op); 3654 3655 // Add the element to Bytes. 3656 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3657 for (unsigned I = 0; I < BytesPerElement; ++I) 3658 Bytes.push_back(Base + I); 3659 } 3660 3661 // Return SDNodes for the completed shuffle. 3662 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) { 3663 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3664 3665 if (Ops.size() == 0) 3666 return DAG.getUNDEF(VT); 3667 3668 // Make sure that there are at least two shuffle operands. 3669 if (Ops.size() == 1) 3670 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3671 3672 // Create a tree of shuffles, deferring root node until after the loop. 3673 // Try to redistribute the undefined elements of non-root nodes so that 3674 // the non-root shuffles match something like a pack or merge, then adjust 3675 // the parent node's permute vector to compensate for the new order. 3676 // Among other things, this copes with vectors like <2 x i16> that were 3677 // padded with undefined elements during type legalization. 3678 // 3679 // In the best case this redistribution will lead to the whole tree 3680 // using packs and merges. It should rarely be a loss in other cases. 3681 unsigned Stride = 1; 3682 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3683 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3684 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3685 3686 // Create a mask for just these two operands. 3687 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3688 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3689 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3690 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3691 if (OpNo == I) 3692 NewBytes[J] = Byte; 3693 else if (OpNo == I + Stride) 3694 NewBytes[J] = SystemZ::VectorBytes + Byte; 3695 else 3696 NewBytes[J] = -1; 3697 } 3698 // See if it would be better to reorganize NewMask to avoid using VPERM. 3699 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3700 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3701 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3702 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3703 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3704 if (NewBytes[J] >= 0) { 3705 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3706 "Invalid double permute"); 3707 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3708 } else 3709 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3710 } 3711 } else { 3712 // Just use NewBytes on the operands. 3713 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3714 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3715 if (NewBytes[J] >= 0) 3716 Bytes[J] = I * SystemZ::VectorBytes + J; 3717 } 3718 } 3719 } 3720 3721 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3722 if (Stride > 1) { 3723 Ops[1] = Ops[Stride]; 3724 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3725 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3726 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3727 } 3728 3729 // Look for an instruction that can do the permute without resorting 3730 // to VPERM. 3731 unsigned OpNo0, OpNo1; 3732 SDValue Op; 3733 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3734 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3735 else 3736 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3737 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3738 } 3739 3740 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3741 static bool isScalarToVector(SDValue Op) { 3742 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3743 if (Op.getOperand(I).getOpcode() != ISD::UNDEF) 3744 return false; 3745 return true; 3746 } 3747 3748 // Return a vector of type VT that contains Value in the first element. 3749 // The other elements don't matter. 3750 static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3751 SDValue Value) { 3752 // If we have a constant, replicate it to all elements and let the 3753 // BUILD_VECTOR lowering take care of it. 3754 if (Value.getOpcode() == ISD::Constant || 3755 Value.getOpcode() == ISD::ConstantFP) { 3756 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3757 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); 3758 } 3759 if (Value.getOpcode() == ISD::UNDEF) 3760 return DAG.getUNDEF(VT); 3761 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 3762 } 3763 3764 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 3765 // element 1. Used for cases in which replication is cheap. 3766 static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT, 3767 SDValue Op0, SDValue Op1) { 3768 if (Op0.getOpcode() == ISD::UNDEF) { 3769 if (Op1.getOpcode() == ISD::UNDEF) 3770 return DAG.getUNDEF(VT); 3771 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 3772 } 3773 if (Op1.getOpcode() == ISD::UNDEF) 3774 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 3775 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 3776 buildScalarToVector(DAG, DL, VT, Op0), 3777 buildScalarToVector(DAG, DL, VT, Op1)); 3778 } 3779 3780 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 3781 // vector for them. 3782 static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0, 3783 SDValue Op1) { 3784 if (Op0.getOpcode() == ISD::UNDEF && Op1.getOpcode() == ISD::UNDEF) 3785 return DAG.getUNDEF(MVT::v2i64); 3786 // If one of the two inputs is undefined then replicate the other one, 3787 // in order to avoid using another register unnecessarily. 3788 if (Op0.getOpcode() == ISD::UNDEF) 3789 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3790 else if (Op1.getOpcode() == ISD::UNDEF) 3791 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3792 else { 3793 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3794 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3795 } 3796 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 3797 } 3798 3799 // Try to represent constant BUILD_VECTOR node BVN using a 3800 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 3801 // on success. 3802 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 3803 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 3804 unsigned BytesPerElement = ElemVT.getStoreSize(); 3805 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 3806 SDValue Op = BVN->getOperand(I); 3807 if (Op.getOpcode() != ISD::UNDEF) { 3808 uint64_t Value; 3809 if (Op.getOpcode() == ISD::Constant) 3810 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 3811 else if (Op.getOpcode() == ISD::ConstantFP) 3812 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 3813 .getZExtValue()); 3814 else 3815 return false; 3816 for (unsigned J = 0; J < BytesPerElement; ++J) { 3817 uint64_t Byte = (Value >> (J * 8)) & 0xff; 3818 if (Byte == 0xff) 3819 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 3820 else if (Byte != 0) 3821 return false; 3822 } 3823 } 3824 } 3825 return true; 3826 } 3827 3828 // Try to load a vector constant in which BitsPerElement-bit value Value 3829 // is replicated to fill the vector. VT is the type of the resulting 3830 // constant, which may have elements of a different size from BitsPerElement. 3831 // Return the SDValue of the constant on success, otherwise return 3832 // an empty value. 3833 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 3834 const SystemZInstrInfo *TII, 3835 SDLoc DL, EVT VT, uint64_t Value, 3836 unsigned BitsPerElement) { 3837 // Signed 16-bit values can be replicated using VREPI. 3838 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 3839 if (isInt<16>(SignedValue)) { 3840 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3841 SystemZ::VectorBits / BitsPerElement); 3842 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 3843 DAG.getConstant(SignedValue, DL, MVT::i32)); 3844 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3845 } 3846 // See whether rotating the constant left some N places gives a value that 3847 // is one less than a power of 2 (i.e. all zeros followed by all ones). 3848 // If so we can use VGM. 3849 unsigned Start, End; 3850 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 3851 // isRxSBGMask returns the bit numbers for a full 64-bit value, 3852 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 3853 // bit numbers for an BitsPerElement value, so that 0 denotes 3854 // 1 << (BitsPerElement-1). 3855 Start -= 64 - BitsPerElement; 3856 End -= 64 - BitsPerElement; 3857 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3858 SystemZ::VectorBits / BitsPerElement); 3859 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 3860 DAG.getConstant(Start, DL, MVT::i32), 3861 DAG.getConstant(End, DL, MVT::i32)); 3862 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3863 } 3864 return SDValue(); 3865 } 3866 3867 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 3868 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 3869 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 3870 // would benefit from this representation and return it if so. 3871 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 3872 BuildVectorSDNode *BVN) { 3873 EVT VT = BVN->getValueType(0); 3874 unsigned NumElements = VT.getVectorNumElements(); 3875 3876 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 3877 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 3878 // need a BUILD_VECTOR, add an additional placeholder operand for that 3879 // BUILD_VECTOR and store its operands in ResidueOps. 3880 GeneralShuffle GS(VT); 3881 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 3882 bool FoundOne = false; 3883 for (unsigned I = 0; I < NumElements; ++I) { 3884 SDValue Op = BVN->getOperand(I); 3885 if (Op.getOpcode() == ISD::TRUNCATE) 3886 Op = Op.getOperand(0); 3887 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3888 Op.getOperand(1).getOpcode() == ISD::Constant) { 3889 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 3890 GS.add(Op.getOperand(0), Elem); 3891 FoundOne = true; 3892 } else if (Op.getOpcode() == ISD::UNDEF) { 3893 GS.addUndef(); 3894 } else { 3895 GS.add(SDValue(), ResidueOps.size()); 3896 ResidueOps.push_back(BVN->getOperand(I)); 3897 } 3898 } 3899 3900 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 3901 if (!FoundOne) 3902 return SDValue(); 3903 3904 // Create the BUILD_VECTOR for the remaining elements, if any. 3905 if (!ResidueOps.empty()) { 3906 while (ResidueOps.size() < NumElements) 3907 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 3908 for (auto &Op : GS.Ops) { 3909 if (!Op.getNode()) { 3910 Op = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BVN), VT, ResidueOps); 3911 break; 3912 } 3913 } 3914 } 3915 return GS.getNode(DAG, SDLoc(BVN)); 3916 } 3917 3918 // Combine GPR scalar values Elems into a vector of type VT. 3919 static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3920 SmallVectorImpl<SDValue> &Elems) { 3921 // See whether there is a single replicated value. 3922 SDValue Single; 3923 unsigned int NumElements = Elems.size(); 3924 unsigned int Count = 0; 3925 for (auto Elem : Elems) { 3926 if (Elem.getOpcode() != ISD::UNDEF) { 3927 if (!Single.getNode()) 3928 Single = Elem; 3929 else if (Elem != Single) { 3930 Single = SDValue(); 3931 break; 3932 } 3933 Count += 1; 3934 } 3935 } 3936 // There are three cases here: 3937 // 3938 // - if the only defined element is a loaded one, the best sequence 3939 // is a replicating load. 3940 // 3941 // - otherwise, if the only defined element is an i64 value, we will 3942 // end up with the same VLVGP sequence regardless of whether we short-cut 3943 // for replication or fall through to the later code. 3944 // 3945 // - otherwise, if the only defined element is an i32 or smaller value, 3946 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 3947 // This is only a win if the single defined element is used more than once. 3948 // In other cases we're better off using a single VLVGx. 3949 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 3950 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 3951 3952 // The best way of building a v2i64 from two i64s is to use VLVGP. 3953 if (VT == MVT::v2i64) 3954 return joinDwords(DAG, DL, Elems[0], Elems[1]); 3955 3956 // Use a 64-bit merge high to combine two doubles. 3957 if (VT == MVT::v2f64) 3958 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 3959 3960 // Build v4f32 values directly from the FPRs: 3961 // 3962 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 3963 // V V VMRHF 3964 // <ABxx> <CDxx> 3965 // V VMRHG 3966 // <ABCD> 3967 if (VT == MVT::v4f32) { 3968 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 3969 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 3970 // Avoid unnecessary undefs by reusing the other operand. 3971 if (Op01.getOpcode() == ISD::UNDEF) 3972 Op01 = Op23; 3973 else if (Op23.getOpcode() == ISD::UNDEF) 3974 Op23 = Op01; 3975 // Merging identical replications is a no-op. 3976 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 3977 return Op01; 3978 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 3979 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 3980 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 3981 DL, MVT::v2i64, Op01, Op23); 3982 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3983 } 3984 3985 // Collect the constant terms. 3986 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 3987 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 3988 3989 unsigned NumConstants = 0; 3990 for (unsigned I = 0; I < NumElements; ++I) { 3991 SDValue Elem = Elems[I]; 3992 if (Elem.getOpcode() == ISD::Constant || 3993 Elem.getOpcode() == ISD::ConstantFP) { 3994 NumConstants += 1; 3995 Constants[I] = Elem; 3996 Done[I] = true; 3997 } 3998 } 3999 // If there was at least one constant, fill in the other elements of 4000 // Constants with undefs to get a full vector constant and use that 4001 // as the starting point. 4002 SDValue Result; 4003 if (NumConstants > 0) { 4004 for (unsigned I = 0; I < NumElements; ++I) 4005 if (!Constants[I].getNode()) 4006 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4007 Result = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Constants); 4008 } else { 4009 // Otherwise try to use VLVGP to start the sequence in order to 4010 // avoid a false dependency on any previous contents of the vector 4011 // register. This only makes sense if one of the associated elements 4012 // is defined. 4013 unsigned I1 = NumElements / 2 - 1; 4014 unsigned I2 = NumElements - 1; 4015 bool Def1 = (Elems[I1].getOpcode() != ISD::UNDEF); 4016 bool Def2 = (Elems[I2].getOpcode() != ISD::UNDEF); 4017 if (Def1 || Def2) { 4018 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4019 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4020 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4021 joinDwords(DAG, DL, Elem1, Elem2)); 4022 Done[I1] = true; 4023 Done[I2] = true; 4024 } else 4025 Result = DAG.getUNDEF(VT); 4026 } 4027 4028 // Use VLVGx to insert the other elements. 4029 for (unsigned I = 0; I < NumElements; ++I) 4030 if (!Done[I] && Elems[I].getOpcode() != ISD::UNDEF) 4031 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4032 DAG.getConstant(I, DL, MVT::i32)); 4033 return Result; 4034 } 4035 4036 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4037 SelectionDAG &DAG) const { 4038 const SystemZInstrInfo *TII = 4039 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4040 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4041 SDLoc DL(Op); 4042 EVT VT = Op.getValueType(); 4043 4044 if (BVN->isConstant()) { 4045 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4046 // preferred way of creating all-zero and all-one vectors so give it 4047 // priority over other methods below. 4048 uint64_t Mask = 0; 4049 if (tryBuildVectorByteMask(BVN, Mask)) { 4050 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4051 DAG.getConstant(Mask, DL, MVT::i32)); 4052 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4053 } 4054 4055 // Try using some form of replication. 4056 APInt SplatBits, SplatUndef; 4057 unsigned SplatBitSize; 4058 bool HasAnyUndefs; 4059 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4060 8, true) && 4061 SplatBitSize <= 64) { 4062 // First try assuming that any undefined bits above the highest set bit 4063 // and below the lowest set bit are 1s. This increases the likelihood of 4064 // being able to use a sign-extended element value in VECTOR REPLICATE 4065 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4066 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4067 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4068 uint64_t Lower = (SplatUndefZ 4069 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4070 uint64_t Upper = (SplatUndefZ 4071 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4072 uint64_t Value = SplatBitsZ | Upper | Lower; 4073 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4074 SplatBitSize); 4075 if (Op.getNode()) 4076 return Op; 4077 4078 // Now try assuming that any undefined bits between the first and 4079 // last defined set bits are set. This increases the chances of 4080 // using a non-wraparound mask. 4081 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4082 Value = SplatBitsZ | Middle; 4083 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4084 if (Op.getNode()) 4085 return Op; 4086 } 4087 4088 // Fall back to loading it from memory. 4089 return SDValue(); 4090 } 4091 4092 // See if we should use shuffles to construct the vector from other vectors. 4093 SDValue Res = tryBuildVectorShuffle(DAG, BVN); 4094 if (Res.getNode()) 4095 return Res; 4096 4097 // Detect SCALAR_TO_VECTOR conversions. 4098 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4099 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4100 4101 // Otherwise use buildVector to build the vector up from GPRs. 4102 unsigned NumElements = Op.getNumOperands(); 4103 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4104 for (unsigned I = 0; I < NumElements; ++I) 4105 Ops[I] = Op.getOperand(I); 4106 return buildVector(DAG, DL, VT, Ops); 4107 } 4108 4109 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4110 SelectionDAG &DAG) const { 4111 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4112 SDLoc DL(Op); 4113 EVT VT = Op.getValueType(); 4114 unsigned NumElements = VT.getVectorNumElements(); 4115 4116 if (VSN->isSplat()) { 4117 SDValue Op0 = Op.getOperand(0); 4118 unsigned Index = VSN->getSplatIndex(); 4119 assert(Index < VT.getVectorNumElements() && 4120 "Splat index should be defined and in first operand"); 4121 // See whether the value we're splatting is directly available as a scalar. 4122 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4123 Op0.getOpcode() == ISD::BUILD_VECTOR) 4124 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4125 // Otherwise keep it as a vector-to-vector operation. 4126 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4127 DAG.getConstant(Index, DL, MVT::i32)); 4128 } 4129 4130 GeneralShuffle GS(VT); 4131 for (unsigned I = 0; I < NumElements; ++I) { 4132 int Elt = VSN->getMaskElt(I); 4133 if (Elt < 0) 4134 GS.addUndef(); 4135 else 4136 GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4137 unsigned(Elt) % NumElements); 4138 } 4139 return GS.getNode(DAG, SDLoc(VSN)); 4140 } 4141 4142 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4143 SelectionDAG &DAG) const { 4144 SDLoc DL(Op); 4145 // Just insert the scalar into element 0 of an undefined vector. 4146 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4147 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4148 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4149 } 4150 4151 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4152 SelectionDAG &DAG) const { 4153 // Handle insertions of floating-point values. 4154 SDLoc DL(Op); 4155 SDValue Op0 = Op.getOperand(0); 4156 SDValue Op1 = Op.getOperand(1); 4157 SDValue Op2 = Op.getOperand(2); 4158 EVT VT = Op.getValueType(); 4159 4160 // Insertions into constant indices of a v2f64 can be done using VPDI. 4161 // However, if the inserted value is a bitcast or a constant then it's 4162 // better to use GPRs, as below. 4163 if (VT == MVT::v2f64 && 4164 Op1.getOpcode() != ISD::BITCAST && 4165 Op1.getOpcode() != ISD::ConstantFP && 4166 Op2.getOpcode() == ISD::Constant) { 4167 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4168 unsigned Mask = VT.getVectorNumElements() - 1; 4169 if (Index <= Mask) 4170 return Op; 4171 } 4172 4173 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4174 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); 4175 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4176 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4177 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4178 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4179 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4180 } 4181 4182 SDValue 4183 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4184 SelectionDAG &DAG) const { 4185 // Handle extractions of floating-point values. 4186 SDLoc DL(Op); 4187 SDValue Op0 = Op.getOperand(0); 4188 SDValue Op1 = Op.getOperand(1); 4189 EVT VT = Op.getValueType(); 4190 EVT VecVT = Op0.getValueType(); 4191 4192 // Extractions of constant indices can be done directly. 4193 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4194 uint64_t Index = CIndexN->getZExtValue(); 4195 unsigned Mask = VecVT.getVectorNumElements() - 1; 4196 if (Index <= Mask) 4197 return Op; 4198 } 4199 4200 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4201 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4202 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4203 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4204 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4205 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4206 } 4207 4208 SDValue 4209 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4210 unsigned UnpackHigh) const { 4211 SDValue PackedOp = Op.getOperand(0); 4212 EVT OutVT = Op.getValueType(); 4213 EVT InVT = PackedOp.getValueType(); 4214 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits(); 4215 unsigned FromBits = InVT.getVectorElementType().getSizeInBits(); 4216 do { 4217 FromBits *= 2; 4218 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4219 SystemZ::VectorBits / FromBits); 4220 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4221 } while (FromBits != ToBits); 4222 return PackedOp; 4223 } 4224 4225 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4226 unsigned ByScalar) const { 4227 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4228 SDValue Op0 = Op.getOperand(0); 4229 SDValue Op1 = Op.getOperand(1); 4230 SDLoc DL(Op); 4231 EVT VT = Op.getValueType(); 4232 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits(); 4233 4234 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4235 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4236 APInt SplatBits, SplatUndef; 4237 unsigned SplatBitSize; 4238 bool HasAnyUndefs; 4239 // Check for constant splats. Use ElemBitSize as the minimum element 4240 // width and reject splats that need wider elements. 4241 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4242 ElemBitSize, true) && 4243 SplatBitSize == ElemBitSize) { 4244 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4245 DL, MVT::i32); 4246 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4247 } 4248 // Check for variable splats. 4249 BitVector UndefElements; 4250 SDValue Splat = BVN->getSplatValue(&UndefElements); 4251 if (Splat) { 4252 // Since i32 is the smallest legal type, we either need a no-op 4253 // or a truncation. 4254 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4255 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4256 } 4257 } 4258 4259 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4260 // and the shift amount is directly available in a GPR. 4261 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4262 if (VSN->isSplat()) { 4263 SDValue VSNOp0 = VSN->getOperand(0); 4264 unsigned Index = VSN->getSplatIndex(); 4265 assert(Index < VT.getVectorNumElements() && 4266 "Splat index should be defined and in first operand"); 4267 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4268 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4269 // Since i32 is the smallest legal type, we either need a no-op 4270 // or a truncation. 4271 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4272 VSNOp0.getOperand(Index)); 4273 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4274 } 4275 } 4276 } 4277 4278 // Otherwise just treat the current form as legal. 4279 return Op; 4280 } 4281 4282 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4283 SelectionDAG &DAG) const { 4284 switch (Op.getOpcode()) { 4285 case ISD::BR_CC: 4286 return lowerBR_CC(Op, DAG); 4287 case ISD::SELECT_CC: 4288 return lowerSELECT_CC(Op, DAG); 4289 case ISD::SETCC: 4290 return lowerSETCC(Op, DAG); 4291 case ISD::GlobalAddress: 4292 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4293 case ISD::GlobalTLSAddress: 4294 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4295 case ISD::BlockAddress: 4296 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4297 case ISD::JumpTable: 4298 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4299 case ISD::ConstantPool: 4300 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4301 case ISD::BITCAST: 4302 return lowerBITCAST(Op, DAG); 4303 case ISD::VASTART: 4304 return lowerVASTART(Op, DAG); 4305 case ISD::VACOPY: 4306 return lowerVACOPY(Op, DAG); 4307 case ISD::DYNAMIC_STACKALLOC: 4308 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4309 case ISD::SMUL_LOHI: 4310 return lowerSMUL_LOHI(Op, DAG); 4311 case ISD::UMUL_LOHI: 4312 return lowerUMUL_LOHI(Op, DAG); 4313 case ISD::SDIVREM: 4314 return lowerSDIVREM(Op, DAG); 4315 case ISD::UDIVREM: 4316 return lowerUDIVREM(Op, DAG); 4317 case ISD::OR: 4318 return lowerOR(Op, DAG); 4319 case ISD::CTPOP: 4320 return lowerCTPOP(Op, DAG); 4321 case ISD::CTLZ_ZERO_UNDEF: 4322 return DAG.getNode(ISD::CTLZ, SDLoc(Op), 4323 Op.getValueType(), Op.getOperand(0)); 4324 case ISD::CTTZ_ZERO_UNDEF: 4325 return DAG.getNode(ISD::CTTZ, SDLoc(Op), 4326 Op.getValueType(), Op.getOperand(0)); 4327 case ISD::ATOMIC_SWAP: 4328 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4329 case ISD::ATOMIC_STORE: 4330 return lowerATOMIC_STORE(Op, DAG); 4331 case ISD::ATOMIC_LOAD: 4332 return lowerATOMIC_LOAD(Op, DAG); 4333 case ISD::ATOMIC_LOAD_ADD: 4334 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4335 case ISD::ATOMIC_LOAD_SUB: 4336 return lowerATOMIC_LOAD_SUB(Op, DAG); 4337 case ISD::ATOMIC_LOAD_AND: 4338 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4339 case ISD::ATOMIC_LOAD_OR: 4340 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4341 case ISD::ATOMIC_LOAD_XOR: 4342 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4343 case ISD::ATOMIC_LOAD_NAND: 4344 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4345 case ISD::ATOMIC_LOAD_MIN: 4346 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4347 case ISD::ATOMIC_LOAD_MAX: 4348 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4349 case ISD::ATOMIC_LOAD_UMIN: 4350 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4351 case ISD::ATOMIC_LOAD_UMAX: 4352 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4353 case ISD::ATOMIC_CMP_SWAP: 4354 return lowerATOMIC_CMP_SWAP(Op, DAG); 4355 case ISD::STACKSAVE: 4356 return lowerSTACKSAVE(Op, DAG); 4357 case ISD::STACKRESTORE: 4358 return lowerSTACKRESTORE(Op, DAG); 4359 case ISD::PREFETCH: 4360 return lowerPREFETCH(Op, DAG); 4361 case ISD::INTRINSIC_W_CHAIN: 4362 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4363 case ISD::INTRINSIC_WO_CHAIN: 4364 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4365 case ISD::BUILD_VECTOR: 4366 return lowerBUILD_VECTOR(Op, DAG); 4367 case ISD::VECTOR_SHUFFLE: 4368 return lowerVECTOR_SHUFFLE(Op, DAG); 4369 case ISD::SCALAR_TO_VECTOR: 4370 return lowerSCALAR_TO_VECTOR(Op, DAG); 4371 case ISD::INSERT_VECTOR_ELT: 4372 return lowerINSERT_VECTOR_ELT(Op, DAG); 4373 case ISD::EXTRACT_VECTOR_ELT: 4374 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4375 case ISD::SIGN_EXTEND_VECTOR_INREG: 4376 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4377 case ISD::ZERO_EXTEND_VECTOR_INREG: 4378 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4379 case ISD::SHL: 4380 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4381 case ISD::SRL: 4382 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4383 case ISD::SRA: 4384 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4385 default: 4386 llvm_unreachable("Unexpected node to lower"); 4387 } 4388 } 4389 4390 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4391 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4392 switch ((SystemZISD::NodeType)Opcode) { 4393 case SystemZISD::FIRST_NUMBER: break; 4394 OPCODE(RET_FLAG); 4395 OPCODE(CALL); 4396 OPCODE(SIBCALL); 4397 OPCODE(TLS_GDCALL); 4398 OPCODE(TLS_LDCALL); 4399 OPCODE(PCREL_WRAPPER); 4400 OPCODE(PCREL_OFFSET); 4401 OPCODE(IABS); 4402 OPCODE(ICMP); 4403 OPCODE(FCMP); 4404 OPCODE(TM); 4405 OPCODE(BR_CCMASK); 4406 OPCODE(SELECT_CCMASK); 4407 OPCODE(ADJDYNALLOC); 4408 OPCODE(EXTRACT_ACCESS); 4409 OPCODE(POPCNT); 4410 OPCODE(UMUL_LOHI64); 4411 OPCODE(SDIVREM32); 4412 OPCODE(SDIVREM64); 4413 OPCODE(UDIVREM32); 4414 OPCODE(UDIVREM64); 4415 OPCODE(MVC); 4416 OPCODE(MVC_LOOP); 4417 OPCODE(NC); 4418 OPCODE(NC_LOOP); 4419 OPCODE(OC); 4420 OPCODE(OC_LOOP); 4421 OPCODE(XC); 4422 OPCODE(XC_LOOP); 4423 OPCODE(CLC); 4424 OPCODE(CLC_LOOP); 4425 OPCODE(STPCPY); 4426 OPCODE(STRCMP); 4427 OPCODE(SEARCH_STRING); 4428 OPCODE(IPM); 4429 OPCODE(SERIALIZE); 4430 OPCODE(TBEGIN); 4431 OPCODE(TBEGIN_NOFLOAT); 4432 OPCODE(TEND); 4433 OPCODE(BYTE_MASK); 4434 OPCODE(ROTATE_MASK); 4435 OPCODE(REPLICATE); 4436 OPCODE(JOIN_DWORDS); 4437 OPCODE(SPLAT); 4438 OPCODE(MERGE_HIGH); 4439 OPCODE(MERGE_LOW); 4440 OPCODE(SHL_DOUBLE); 4441 OPCODE(PERMUTE_DWORDS); 4442 OPCODE(PERMUTE); 4443 OPCODE(PACK); 4444 OPCODE(PACKS_CC); 4445 OPCODE(PACKLS_CC); 4446 OPCODE(UNPACK_HIGH); 4447 OPCODE(UNPACKL_HIGH); 4448 OPCODE(UNPACK_LOW); 4449 OPCODE(UNPACKL_LOW); 4450 OPCODE(VSHL_BY_SCALAR); 4451 OPCODE(VSRL_BY_SCALAR); 4452 OPCODE(VSRA_BY_SCALAR); 4453 OPCODE(VSUM); 4454 OPCODE(VICMPE); 4455 OPCODE(VICMPH); 4456 OPCODE(VICMPHL); 4457 OPCODE(VICMPES); 4458 OPCODE(VICMPHS); 4459 OPCODE(VICMPHLS); 4460 OPCODE(VFCMPE); 4461 OPCODE(VFCMPH); 4462 OPCODE(VFCMPHE); 4463 OPCODE(VFCMPES); 4464 OPCODE(VFCMPHS); 4465 OPCODE(VFCMPHES); 4466 OPCODE(VFTCI); 4467 OPCODE(VEXTEND); 4468 OPCODE(VROUND); 4469 OPCODE(VTM); 4470 OPCODE(VFAE_CC); 4471 OPCODE(VFAEZ_CC); 4472 OPCODE(VFEE_CC); 4473 OPCODE(VFEEZ_CC); 4474 OPCODE(VFENE_CC); 4475 OPCODE(VFENEZ_CC); 4476 OPCODE(VISTR_CC); 4477 OPCODE(VSTRC_CC); 4478 OPCODE(VSTRCZ_CC); 4479 OPCODE(ATOMIC_SWAPW); 4480 OPCODE(ATOMIC_LOADW_ADD); 4481 OPCODE(ATOMIC_LOADW_SUB); 4482 OPCODE(ATOMIC_LOADW_AND); 4483 OPCODE(ATOMIC_LOADW_OR); 4484 OPCODE(ATOMIC_LOADW_XOR); 4485 OPCODE(ATOMIC_LOADW_NAND); 4486 OPCODE(ATOMIC_LOADW_MIN); 4487 OPCODE(ATOMIC_LOADW_MAX); 4488 OPCODE(ATOMIC_LOADW_UMIN); 4489 OPCODE(ATOMIC_LOADW_UMAX); 4490 OPCODE(ATOMIC_CMP_SWAPW); 4491 OPCODE(PREFETCH); 4492 } 4493 return nullptr; 4494 #undef OPCODE 4495 } 4496 4497 // Return true if VT is a vector whose elements are a whole number of bytes 4498 // in width. 4499 static bool canTreatAsByteVector(EVT VT) { 4500 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0; 4501 } 4502 4503 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4504 // producing a result of type ResVT. Op is a possibly bitcast version 4505 // of the input vector and Index is the index (based on type VecVT) that 4506 // should be extracted. Return the new extraction if a simplification 4507 // was possible or if Force is true. 4508 SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT, 4509 SDValue Op, unsigned Index, 4510 DAGCombinerInfo &DCI, 4511 bool Force) const { 4512 SelectionDAG &DAG = DCI.DAG; 4513 4514 // The number of bytes being extracted. 4515 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4516 4517 for (;;) { 4518 unsigned Opcode = Op.getOpcode(); 4519 if (Opcode == ISD::BITCAST) 4520 // Look through bitcasts. 4521 Op = Op.getOperand(0); 4522 else if (Opcode == ISD::VECTOR_SHUFFLE && 4523 canTreatAsByteVector(Op.getValueType())) { 4524 // Get a VPERM-like permute mask and see whether the bytes covered 4525 // by the extracted element are a contiguous sequence from one 4526 // source operand. 4527 SmallVector<int, SystemZ::VectorBytes> Bytes; 4528 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4529 int First; 4530 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4531 BytesPerElement, First)) 4532 break; 4533 if (First < 0) 4534 return DAG.getUNDEF(ResVT); 4535 // Make sure the contiguous sequence starts at a multiple of the 4536 // original element size. 4537 unsigned Byte = unsigned(First) % Bytes.size(); 4538 if (Byte % BytesPerElement != 0) 4539 break; 4540 // We can get the extracted value directly from an input. 4541 Index = Byte / BytesPerElement; 4542 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4543 Force = true; 4544 } else if (Opcode == ISD::BUILD_VECTOR && 4545 canTreatAsByteVector(Op.getValueType())) { 4546 // We can only optimize this case if the BUILD_VECTOR elements are 4547 // at least as wide as the extracted value. 4548 EVT OpVT = Op.getValueType(); 4549 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4550 if (OpBytesPerElement < BytesPerElement) 4551 break; 4552 // Make sure that the least-significant bit of the extracted value 4553 // is the least significant bit of an input. 4554 unsigned End = (Index + 1) * BytesPerElement; 4555 if (End % OpBytesPerElement != 0) 4556 break; 4557 // We're extracting the low part of one operand of the BUILD_VECTOR. 4558 Op = Op.getOperand(End / OpBytesPerElement - 1); 4559 if (!Op.getValueType().isInteger()) { 4560 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()); 4561 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4562 DCI.AddToWorklist(Op.getNode()); 4563 } 4564 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4565 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4566 if (VT != ResVT) { 4567 DCI.AddToWorklist(Op.getNode()); 4568 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4569 } 4570 return Op; 4571 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4572 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4573 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4574 canTreatAsByteVector(Op.getValueType()) && 4575 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4576 // Make sure that only the unextended bits are significant. 4577 EVT ExtVT = Op.getValueType(); 4578 EVT OpVT = Op.getOperand(0).getValueType(); 4579 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4580 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4581 unsigned Byte = Index * BytesPerElement; 4582 unsigned SubByte = Byte % ExtBytesPerElement; 4583 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4584 if (SubByte < MinSubByte || 4585 SubByte + BytesPerElement > ExtBytesPerElement) 4586 break; 4587 // Get the byte offset of the unextended element 4588 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4589 // ...then add the byte offset relative to that element. 4590 Byte += SubByte - MinSubByte; 4591 if (Byte % BytesPerElement != 0) 4592 break; 4593 Op = Op.getOperand(0); 4594 Index = Byte / BytesPerElement; 4595 Force = true; 4596 } else 4597 break; 4598 } 4599 if (Force) { 4600 if (Op.getValueType() != VecVT) { 4601 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4602 DCI.AddToWorklist(Op.getNode()); 4603 } 4604 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4605 DAG.getConstant(Index, DL, MVT::i32)); 4606 } 4607 return SDValue(); 4608 } 4609 4610 // Optimize vector operations in scalar value Op on the basis that Op 4611 // is truncated to TruncVT. 4612 SDValue 4613 SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op, 4614 DAGCombinerInfo &DCI) const { 4615 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4616 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4617 // of type TruncVT. 4618 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4619 TruncVT.getSizeInBits() % 8 == 0) { 4620 SDValue Vec = Op.getOperand(0); 4621 EVT VecVT = Vec.getValueType(); 4622 if (canTreatAsByteVector(VecVT)) { 4623 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4624 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4625 unsigned TruncBytes = TruncVT.getStoreSize(); 4626 if (BytesPerElement % TruncBytes == 0) { 4627 // Calculate the value of Y' in the above description. We are 4628 // splitting the original elements into Scale equal-sized pieces 4629 // and for truncation purposes want the last (least-significant) 4630 // of these pieces for IndexN. This is easiest to do by calculating 4631 // the start index of the following element and then subtracting 1. 4632 unsigned Scale = BytesPerElement / TruncBytes; 4633 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4634 4635 // Defer the creation of the bitcast from X to combineExtract, 4636 // which might be able to optimize the extraction. 4637 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4638 VecVT.getStoreSize() / TruncBytes); 4639 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4640 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4641 } 4642 } 4643 } 4644 } 4645 return SDValue(); 4646 } 4647 4648 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 4649 DAGCombinerInfo &DCI) const { 4650 SelectionDAG &DAG = DCI.DAG; 4651 unsigned Opcode = N->getOpcode(); 4652 if (Opcode == ISD::SIGN_EXTEND) { 4653 // Convert (sext (ashr (shl X, C1), C2)) to 4654 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4655 // cheap as narrower ones. 4656 SDValue N0 = N->getOperand(0); 4657 EVT VT = N->getValueType(0); 4658 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4659 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4660 SDValue Inner = N0.getOperand(0); 4661 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4662 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4663 unsigned Extra = (VT.getSizeInBits() - 4664 N0.getValueType().getSizeInBits()); 4665 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4666 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4667 EVT ShiftVT = N0.getOperand(1).getValueType(); 4668 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4669 Inner.getOperand(0)); 4670 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4671 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4672 ShiftVT)); 4673 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4674 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4675 } 4676 } 4677 } 4678 } 4679 if (Opcode == SystemZISD::MERGE_HIGH || 4680 Opcode == SystemZISD::MERGE_LOW) { 4681 SDValue Op0 = N->getOperand(0); 4682 SDValue Op1 = N->getOperand(1); 4683 if (Op0.getOpcode() == ISD::BITCAST) 4684 Op0 = Op0.getOperand(0); 4685 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4686 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4687 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4688 // for v4f32. 4689 if (Op1 == N->getOperand(0)) 4690 return Op1; 4691 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4692 EVT VT = Op1.getValueType(); 4693 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4694 if (ElemBytes <= 4) { 4695 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4696 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4697 EVT InVT = VT.changeVectorElementTypeToInteger(); 4698 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4699 SystemZ::VectorBytes / ElemBytes / 2); 4700 if (VT != InVT) { 4701 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4702 DCI.AddToWorklist(Op1.getNode()); 4703 } 4704 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4705 DCI.AddToWorklist(Op.getNode()); 4706 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4707 } 4708 } 4709 } 4710 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4711 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4712 // If X has wider elements then convert it to: 4713 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4714 if (Opcode == ISD::STORE) { 4715 auto *SN = cast<StoreSDNode>(N); 4716 EVT MemVT = SN->getMemoryVT(); 4717 if (MemVT.isInteger()) { 4718 SDValue Value = combineTruncateExtract(SDLoc(N), MemVT, 4719 SN->getValue(), DCI); 4720 if (Value.getNode()) { 4721 DCI.AddToWorklist(Value.getNode()); 4722 4723 // Rewrite the store with the new form of stored value. 4724 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4725 SN->getBasePtr(), SN->getMemoryVT(), 4726 SN->getMemOperand()); 4727 } 4728 } 4729 } 4730 // Try to simplify a vector extraction. 4731 if (Opcode == ISD::EXTRACT_VECTOR_ELT) { 4732 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 4733 SDValue Op0 = N->getOperand(0); 4734 EVT VecVT = Op0.getValueType(); 4735 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 4736 IndexN->getZExtValue(), DCI, false); 4737 } 4738 } 4739 // (join_dwords X, X) == (replicate X) 4740 if (Opcode == SystemZISD::JOIN_DWORDS && 4741 N->getOperand(0) == N->getOperand(1)) 4742 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 4743 N->getOperand(0)); 4744 // (fround (extract_vector_elt X 0)) 4745 // (fround (extract_vector_elt X 1)) -> 4746 // (extract_vector_elt (VROUND X) 0) 4747 // (extract_vector_elt (VROUND X) 1) 4748 // 4749 // This is a special case since the target doesn't really support v2f32s. 4750 if (Opcode == ISD::FP_ROUND) { 4751 SDValue Op0 = N->getOperand(0); 4752 if (N->getValueType(0) == MVT::f32 && 4753 Op0.hasOneUse() && 4754 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4755 Op0.getOperand(0).getValueType() == MVT::v2f64 && 4756 Op0.getOperand(1).getOpcode() == ISD::Constant && 4757 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 4758 SDValue Vec = Op0.getOperand(0); 4759 for (auto *U : Vec->uses()) { 4760 if (U != Op0.getNode() && 4761 U->hasOneUse() && 4762 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4763 U->getOperand(0) == Vec && 4764 U->getOperand(1).getOpcode() == ISD::Constant && 4765 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 4766 SDValue OtherRound = SDValue(*U->use_begin(), 0); 4767 if (OtherRound.getOpcode() == ISD::FP_ROUND && 4768 OtherRound.getOperand(0) == SDValue(U, 0) && 4769 OtherRound.getValueType() == MVT::f32) { 4770 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 4771 MVT::v4f32, Vec); 4772 DCI.AddToWorklist(VRound.getNode()); 4773 SDValue Extract1 = 4774 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 4775 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 4776 DCI.AddToWorklist(Extract1.getNode()); 4777 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 4778 SDValue Extract0 = 4779 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 4780 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 4781 return Extract0; 4782 } 4783 } 4784 } 4785 } 4786 } 4787 return SDValue(); 4788 } 4789 4790 //===----------------------------------------------------------------------===// 4791 // Custom insertion 4792 //===----------------------------------------------------------------------===// 4793 4794 // Create a new basic block after MBB. 4795 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 4796 MachineFunction &MF = *MBB->getParent(); 4797 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 4798 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 4799 return NewMBB; 4800 } 4801 4802 // Split MBB after MI and return the new block (the one that contains 4803 // instructions after MI). 4804 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, 4805 MachineBasicBlock *MBB) { 4806 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4807 NewMBB->splice(NewMBB->begin(), MBB, 4808 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 4809 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4810 return NewMBB; 4811 } 4812 4813 // Split MBB before MI and return the new block (the one that contains MI). 4814 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, 4815 MachineBasicBlock *MBB) { 4816 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4817 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 4818 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4819 return NewMBB; 4820 } 4821 4822 // Force base value Base into a register before MI. Return the register. 4823 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, 4824 const SystemZInstrInfo *TII) { 4825 if (Base.isReg()) 4826 return Base.getReg(); 4827 4828 MachineBasicBlock *MBB = MI->getParent(); 4829 MachineFunction &MF = *MBB->getParent(); 4830 MachineRegisterInfo &MRI = MF.getRegInfo(); 4831 4832 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 4833 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) 4834 .addOperand(Base).addImm(0).addReg(0); 4835 return Reg; 4836 } 4837 4838 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 4839 MachineBasicBlock * 4840 SystemZTargetLowering::emitSelect(MachineInstr *MI, 4841 MachineBasicBlock *MBB) const { 4842 const SystemZInstrInfo *TII = 4843 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4844 4845 unsigned DestReg = MI->getOperand(0).getReg(); 4846 unsigned TrueReg = MI->getOperand(1).getReg(); 4847 unsigned FalseReg = MI->getOperand(2).getReg(); 4848 unsigned CCValid = MI->getOperand(3).getImm(); 4849 unsigned CCMask = MI->getOperand(4).getImm(); 4850 DebugLoc DL = MI->getDebugLoc(); 4851 4852 MachineBasicBlock *StartMBB = MBB; 4853 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4854 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4855 4856 // StartMBB: 4857 // BRC CCMask, JoinMBB 4858 // # fallthrough to FalseMBB 4859 MBB = StartMBB; 4860 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4861 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4862 MBB->addSuccessor(JoinMBB); 4863 MBB->addSuccessor(FalseMBB); 4864 4865 // FalseMBB: 4866 // # fallthrough to JoinMBB 4867 MBB = FalseMBB; 4868 MBB->addSuccessor(JoinMBB); 4869 4870 // JoinMBB: 4871 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 4872 // ... 4873 MBB = JoinMBB; 4874 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 4875 .addReg(TrueReg).addMBB(StartMBB) 4876 .addReg(FalseReg).addMBB(FalseMBB); 4877 4878 MI->eraseFromParent(); 4879 return JoinMBB; 4880 } 4881 4882 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 4883 // StoreOpcode is the store to use and Invert says whether the store should 4884 // happen when the condition is false rather than true. If a STORE ON 4885 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 4886 MachineBasicBlock * 4887 SystemZTargetLowering::emitCondStore(MachineInstr *MI, 4888 MachineBasicBlock *MBB, 4889 unsigned StoreOpcode, unsigned STOCOpcode, 4890 bool Invert) const { 4891 const SystemZInstrInfo *TII = 4892 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4893 4894 unsigned SrcReg = MI->getOperand(0).getReg(); 4895 MachineOperand Base = MI->getOperand(1); 4896 int64_t Disp = MI->getOperand(2).getImm(); 4897 unsigned IndexReg = MI->getOperand(3).getReg(); 4898 unsigned CCValid = MI->getOperand(4).getImm(); 4899 unsigned CCMask = MI->getOperand(5).getImm(); 4900 DebugLoc DL = MI->getDebugLoc(); 4901 4902 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 4903 4904 // Use STOCOpcode if possible. We could use different store patterns in 4905 // order to avoid matching the index register, but the performance trade-offs 4906 // might be more complicated in that case. 4907 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 4908 if (Invert) 4909 CCMask ^= CCValid; 4910 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 4911 .addReg(SrcReg).addOperand(Base).addImm(Disp) 4912 .addImm(CCValid).addImm(CCMask); 4913 MI->eraseFromParent(); 4914 return MBB; 4915 } 4916 4917 // Get the condition needed to branch around the store. 4918 if (!Invert) 4919 CCMask ^= CCValid; 4920 4921 MachineBasicBlock *StartMBB = MBB; 4922 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4923 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4924 4925 // StartMBB: 4926 // BRC CCMask, JoinMBB 4927 // # fallthrough to FalseMBB 4928 MBB = StartMBB; 4929 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4930 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4931 MBB->addSuccessor(JoinMBB); 4932 MBB->addSuccessor(FalseMBB); 4933 4934 // FalseMBB: 4935 // store %SrcReg, %Disp(%Index,%Base) 4936 // # fallthrough to JoinMBB 4937 MBB = FalseMBB; 4938 BuildMI(MBB, DL, TII->get(StoreOpcode)) 4939 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 4940 MBB->addSuccessor(JoinMBB); 4941 4942 MI->eraseFromParent(); 4943 return JoinMBB; 4944 } 4945 4946 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 4947 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 4948 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 4949 // BitSize is the width of the field in bits, or 0 if this is a partword 4950 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 4951 // is one of the operands. Invert says whether the field should be 4952 // inverted after performing BinOpcode (e.g. for NAND). 4953 MachineBasicBlock * 4954 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, 4955 MachineBasicBlock *MBB, 4956 unsigned BinOpcode, 4957 unsigned BitSize, 4958 bool Invert) const { 4959 MachineFunction &MF = *MBB->getParent(); 4960 const SystemZInstrInfo *TII = 4961 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4962 MachineRegisterInfo &MRI = MF.getRegInfo(); 4963 bool IsSubWord = (BitSize < 32); 4964 4965 // Extract the operands. Base can be a register or a frame index. 4966 // Src2 can be a register or immediate. 4967 unsigned Dest = MI->getOperand(0).getReg(); 4968 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 4969 int64_t Disp = MI->getOperand(2).getImm(); 4970 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); 4971 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 4972 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 4973 DebugLoc DL = MI->getDebugLoc(); 4974 if (IsSubWord) 4975 BitSize = MI->getOperand(6).getImm(); 4976 4977 // Subword operations use 32-bit registers. 4978 const TargetRegisterClass *RC = (BitSize <= 32 ? 4979 &SystemZ::GR32BitRegClass : 4980 &SystemZ::GR64BitRegClass); 4981 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 4982 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 4983 4984 // Get the right opcodes for the displacement. 4985 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 4986 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 4987 assert(LOpcode && CSOpcode && "Displacement out of range"); 4988 4989 // Create virtual registers for temporary results. 4990 unsigned OrigVal = MRI.createVirtualRegister(RC); 4991 unsigned OldVal = MRI.createVirtualRegister(RC); 4992 unsigned NewVal = (BinOpcode || IsSubWord ? 4993 MRI.createVirtualRegister(RC) : Src2.getReg()); 4994 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 4995 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 4996 4997 // Insert a basic block for the main loop. 4998 MachineBasicBlock *StartMBB = MBB; 4999 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5000 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5001 5002 // StartMBB: 5003 // ... 5004 // %OrigVal = L Disp(%Base) 5005 // # fall through to LoopMMB 5006 MBB = StartMBB; 5007 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5008 .addOperand(Base).addImm(Disp).addReg(0); 5009 MBB->addSuccessor(LoopMBB); 5010 5011 // LoopMBB: 5012 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 5013 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5014 // %RotatedNewVal = OP %RotatedOldVal, %Src2 5015 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5016 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5017 // JNE LoopMBB 5018 // # fall through to DoneMMB 5019 MBB = LoopMBB; 5020 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5021 .addReg(OrigVal).addMBB(StartMBB) 5022 .addReg(Dest).addMBB(LoopMBB); 5023 if (IsSubWord) 5024 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5025 .addReg(OldVal).addReg(BitShift).addImm(0); 5026 if (Invert) { 5027 // Perform the operation normally and then invert every bit of the field. 5028 unsigned Tmp = MRI.createVirtualRegister(RC); 5029 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 5030 .addReg(RotatedOldVal).addOperand(Src2); 5031 if (BitSize <= 32) 5032 // XILF with the upper BitSize bits set. 5033 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5034 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5035 else { 5036 // Use LCGR and add -1 to the result, which is more compact than 5037 // an XILF, XILH pair. 5038 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5039 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5040 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5041 .addReg(Tmp2).addImm(-1); 5042 } 5043 } else if (BinOpcode) 5044 // A simply binary operation. 5045 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5046 .addReg(RotatedOldVal).addOperand(Src2); 5047 else if (IsSubWord) 5048 // Use RISBG to rotate Src2 into position and use it to replace the 5049 // field in RotatedOldVal. 5050 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5051 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5052 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5053 if (IsSubWord) 5054 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5055 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5056 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5057 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5058 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5059 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5060 MBB->addSuccessor(LoopMBB); 5061 MBB->addSuccessor(DoneMBB); 5062 5063 MI->eraseFromParent(); 5064 return DoneMBB; 5065 } 5066 5067 // Implement EmitInstrWithCustomInserter for pseudo 5068 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5069 // instruction that should be used to compare the current field with the 5070 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5071 // for when the current field should be kept. BitSize is the width of 5072 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5073 MachineBasicBlock * 5074 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, 5075 MachineBasicBlock *MBB, 5076 unsigned CompareOpcode, 5077 unsigned KeepOldMask, 5078 unsigned BitSize) const { 5079 MachineFunction &MF = *MBB->getParent(); 5080 const SystemZInstrInfo *TII = 5081 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5082 MachineRegisterInfo &MRI = MF.getRegInfo(); 5083 bool IsSubWord = (BitSize < 32); 5084 5085 // Extract the operands. Base can be a register or a frame index. 5086 unsigned Dest = MI->getOperand(0).getReg(); 5087 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5088 int64_t Disp = MI->getOperand(2).getImm(); 5089 unsigned Src2 = MI->getOperand(3).getReg(); 5090 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5091 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5092 DebugLoc DL = MI->getDebugLoc(); 5093 if (IsSubWord) 5094 BitSize = MI->getOperand(6).getImm(); 5095 5096 // Subword operations use 32-bit registers. 5097 const TargetRegisterClass *RC = (BitSize <= 32 ? 5098 &SystemZ::GR32BitRegClass : 5099 &SystemZ::GR64BitRegClass); 5100 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5101 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5102 5103 // Get the right opcodes for the displacement. 5104 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5105 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5106 assert(LOpcode && CSOpcode && "Displacement out of range"); 5107 5108 // Create virtual registers for temporary results. 5109 unsigned OrigVal = MRI.createVirtualRegister(RC); 5110 unsigned OldVal = MRI.createVirtualRegister(RC); 5111 unsigned NewVal = MRI.createVirtualRegister(RC); 5112 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5113 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5114 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5115 5116 // Insert 3 basic blocks for the loop. 5117 MachineBasicBlock *StartMBB = MBB; 5118 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5119 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5120 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5121 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5122 5123 // StartMBB: 5124 // ... 5125 // %OrigVal = L Disp(%Base) 5126 // # fall through to LoopMMB 5127 MBB = StartMBB; 5128 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5129 .addOperand(Base).addImm(Disp).addReg(0); 5130 MBB->addSuccessor(LoopMBB); 5131 5132 // LoopMBB: 5133 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5134 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5135 // CompareOpcode %RotatedOldVal, %Src2 5136 // BRC KeepOldMask, UpdateMBB 5137 MBB = LoopMBB; 5138 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5139 .addReg(OrigVal).addMBB(StartMBB) 5140 .addReg(Dest).addMBB(UpdateMBB); 5141 if (IsSubWord) 5142 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5143 .addReg(OldVal).addReg(BitShift).addImm(0); 5144 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5145 .addReg(RotatedOldVal).addReg(Src2); 5146 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5147 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5148 MBB->addSuccessor(UpdateMBB); 5149 MBB->addSuccessor(UseAltMBB); 5150 5151 // UseAltMBB: 5152 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5153 // # fall through to UpdateMMB 5154 MBB = UseAltMBB; 5155 if (IsSubWord) 5156 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5157 .addReg(RotatedOldVal).addReg(Src2) 5158 .addImm(32).addImm(31 + BitSize).addImm(0); 5159 MBB->addSuccessor(UpdateMBB); 5160 5161 // UpdateMBB: 5162 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5163 // [ %RotatedAltVal, UseAltMBB ] 5164 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5165 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5166 // JNE LoopMBB 5167 // # fall through to DoneMMB 5168 MBB = UpdateMBB; 5169 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5170 .addReg(RotatedOldVal).addMBB(LoopMBB) 5171 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5172 if (IsSubWord) 5173 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5174 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5175 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5176 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5177 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5178 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5179 MBB->addSuccessor(LoopMBB); 5180 MBB->addSuccessor(DoneMBB); 5181 5182 MI->eraseFromParent(); 5183 return DoneMBB; 5184 } 5185 5186 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5187 // instruction MI. 5188 MachineBasicBlock * 5189 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, 5190 MachineBasicBlock *MBB) const { 5191 MachineFunction &MF = *MBB->getParent(); 5192 const SystemZInstrInfo *TII = 5193 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5194 MachineRegisterInfo &MRI = MF.getRegInfo(); 5195 5196 // Extract the operands. Base can be a register or a frame index. 5197 unsigned Dest = MI->getOperand(0).getReg(); 5198 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5199 int64_t Disp = MI->getOperand(2).getImm(); 5200 unsigned OrigCmpVal = MI->getOperand(3).getReg(); 5201 unsigned OrigSwapVal = MI->getOperand(4).getReg(); 5202 unsigned BitShift = MI->getOperand(5).getReg(); 5203 unsigned NegBitShift = MI->getOperand(6).getReg(); 5204 int64_t BitSize = MI->getOperand(7).getImm(); 5205 DebugLoc DL = MI->getDebugLoc(); 5206 5207 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5208 5209 // Get the right opcodes for the displacement. 5210 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5211 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5212 assert(LOpcode && CSOpcode && "Displacement out of range"); 5213 5214 // Create virtual registers for temporary results. 5215 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5216 unsigned OldVal = MRI.createVirtualRegister(RC); 5217 unsigned CmpVal = MRI.createVirtualRegister(RC); 5218 unsigned SwapVal = MRI.createVirtualRegister(RC); 5219 unsigned StoreVal = MRI.createVirtualRegister(RC); 5220 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5221 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5222 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5223 5224 // Insert 2 basic blocks for the loop. 5225 MachineBasicBlock *StartMBB = MBB; 5226 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5227 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5228 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5229 5230 // StartMBB: 5231 // ... 5232 // %OrigOldVal = L Disp(%Base) 5233 // # fall through to LoopMMB 5234 MBB = StartMBB; 5235 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5236 .addOperand(Base).addImm(Disp).addReg(0); 5237 MBB->addSuccessor(LoopMBB); 5238 5239 // LoopMBB: 5240 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5241 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5242 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5243 // %Dest = RLL %OldVal, BitSize(%BitShift) 5244 // ^^ The low BitSize bits contain the field 5245 // of interest. 5246 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5247 // ^^ Replace the upper 32-BitSize bits of the 5248 // comparison value with those that we loaded, 5249 // so that we can use a full word comparison. 5250 // CR %Dest, %RetryCmpVal 5251 // JNE DoneMBB 5252 // # Fall through to SetMBB 5253 MBB = LoopMBB; 5254 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5255 .addReg(OrigOldVal).addMBB(StartMBB) 5256 .addReg(RetryOldVal).addMBB(SetMBB); 5257 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5258 .addReg(OrigCmpVal).addMBB(StartMBB) 5259 .addReg(RetryCmpVal).addMBB(SetMBB); 5260 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5261 .addReg(OrigSwapVal).addMBB(StartMBB) 5262 .addReg(RetrySwapVal).addMBB(SetMBB); 5263 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5264 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5265 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5266 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5267 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5268 .addReg(Dest).addReg(RetryCmpVal); 5269 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5270 .addImm(SystemZ::CCMASK_ICMP) 5271 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5272 MBB->addSuccessor(DoneMBB); 5273 MBB->addSuccessor(SetMBB); 5274 5275 // SetMBB: 5276 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5277 // ^^ Replace the upper 32-BitSize bits of the new 5278 // value with those that we loaded. 5279 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5280 // ^^ Rotate the new field to its proper position. 5281 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5282 // JNE LoopMBB 5283 // # fall through to ExitMMB 5284 MBB = SetMBB; 5285 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5286 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5287 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5288 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5289 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5290 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 5291 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5292 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5293 MBB->addSuccessor(LoopMBB); 5294 MBB->addSuccessor(DoneMBB); 5295 5296 MI->eraseFromParent(); 5297 return DoneMBB; 5298 } 5299 5300 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5301 // if the high register of the GR128 value must be cleared or false if 5302 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5303 // and subreg_l64 when extending a GR64. 5304 MachineBasicBlock * 5305 SystemZTargetLowering::emitExt128(MachineInstr *MI, 5306 MachineBasicBlock *MBB, 5307 bool ClearEven, unsigned SubReg) const { 5308 MachineFunction &MF = *MBB->getParent(); 5309 const SystemZInstrInfo *TII = 5310 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5311 MachineRegisterInfo &MRI = MF.getRegInfo(); 5312 DebugLoc DL = MI->getDebugLoc(); 5313 5314 unsigned Dest = MI->getOperand(0).getReg(); 5315 unsigned Src = MI->getOperand(1).getReg(); 5316 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5317 5318 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5319 if (ClearEven) { 5320 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5321 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5322 5323 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5324 .addImm(0); 5325 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5326 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5327 In128 = NewIn128; 5328 } 5329 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5330 .addReg(In128).addReg(Src).addImm(SubReg); 5331 5332 MI->eraseFromParent(); 5333 return MBB; 5334 } 5335 5336 MachineBasicBlock * 5337 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, 5338 MachineBasicBlock *MBB, 5339 unsigned Opcode) const { 5340 MachineFunction &MF = *MBB->getParent(); 5341 const SystemZInstrInfo *TII = 5342 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5343 MachineRegisterInfo &MRI = MF.getRegInfo(); 5344 DebugLoc DL = MI->getDebugLoc(); 5345 5346 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); 5347 uint64_t DestDisp = MI->getOperand(1).getImm(); 5348 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); 5349 uint64_t SrcDisp = MI->getOperand(3).getImm(); 5350 uint64_t Length = MI->getOperand(4).getImm(); 5351 5352 // When generating more than one CLC, all but the last will need to 5353 // branch to the end when a difference is found. 5354 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5355 splitBlockAfter(MI, MBB) : nullptr); 5356 5357 // Check for the loop form, in which operand 5 is the trip count. 5358 if (MI->getNumExplicitOperands() > 5) { 5359 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5360 5361 uint64_t StartCountReg = MI->getOperand(5).getReg(); 5362 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5363 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5364 forceReg(MI, DestBase, TII)); 5365 5366 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5367 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5368 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5369 MRI.createVirtualRegister(RC)); 5370 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5371 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5372 MRI.createVirtualRegister(RC)); 5373 5374 RC = &SystemZ::GR64BitRegClass; 5375 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5376 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5377 5378 MachineBasicBlock *StartMBB = MBB; 5379 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5380 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5381 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5382 5383 // StartMBB: 5384 // # fall through to LoopMMB 5385 MBB->addSuccessor(LoopMBB); 5386 5387 // LoopMBB: 5388 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5389 // [ %NextDestReg, NextMBB ] 5390 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5391 // [ %NextSrcReg, NextMBB ] 5392 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5393 // [ %NextCountReg, NextMBB ] 5394 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5395 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5396 // ( JLH EndMBB ) 5397 // 5398 // The prefetch is used only for MVC. The JLH is used only for CLC. 5399 MBB = LoopMBB; 5400 5401 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5402 .addReg(StartDestReg).addMBB(StartMBB) 5403 .addReg(NextDestReg).addMBB(NextMBB); 5404 if (!HaveSingleBase) 5405 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5406 .addReg(StartSrcReg).addMBB(StartMBB) 5407 .addReg(NextSrcReg).addMBB(NextMBB); 5408 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5409 .addReg(StartCountReg).addMBB(StartMBB) 5410 .addReg(NextCountReg).addMBB(NextMBB); 5411 if (Opcode == SystemZ::MVC) 5412 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5413 .addImm(SystemZ::PFD_WRITE) 5414 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5415 BuildMI(MBB, DL, TII->get(Opcode)) 5416 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5417 .addReg(ThisSrcReg).addImm(SrcDisp); 5418 if (EndMBB) { 5419 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5420 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5421 .addMBB(EndMBB); 5422 MBB->addSuccessor(EndMBB); 5423 MBB->addSuccessor(NextMBB); 5424 } 5425 5426 // NextMBB: 5427 // %NextDestReg = LA 256(%ThisDestReg) 5428 // %NextSrcReg = LA 256(%ThisSrcReg) 5429 // %NextCountReg = AGHI %ThisCountReg, -1 5430 // CGHI %NextCountReg, 0 5431 // JLH LoopMBB 5432 // # fall through to DoneMMB 5433 // 5434 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5435 MBB = NextMBB; 5436 5437 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5438 .addReg(ThisDestReg).addImm(256).addReg(0); 5439 if (!HaveSingleBase) 5440 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5441 .addReg(ThisSrcReg).addImm(256).addReg(0); 5442 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5443 .addReg(ThisCountReg).addImm(-1); 5444 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5445 .addReg(NextCountReg).addImm(0); 5446 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5447 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5448 .addMBB(LoopMBB); 5449 MBB->addSuccessor(LoopMBB); 5450 MBB->addSuccessor(DoneMBB); 5451 5452 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5453 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5454 Length &= 255; 5455 MBB = DoneMBB; 5456 } 5457 // Handle any remaining bytes with straight-line code. 5458 while (Length > 0) { 5459 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5460 // The previous iteration might have created out-of-range displacements. 5461 // Apply them using LAY if so. 5462 if (!isUInt<12>(DestDisp)) { 5463 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5464 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5465 .addOperand(DestBase).addImm(DestDisp).addReg(0); 5466 DestBase = MachineOperand::CreateReg(Reg, false); 5467 DestDisp = 0; 5468 } 5469 if (!isUInt<12>(SrcDisp)) { 5470 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5471 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5472 .addOperand(SrcBase).addImm(SrcDisp).addReg(0); 5473 SrcBase = MachineOperand::CreateReg(Reg, false); 5474 SrcDisp = 0; 5475 } 5476 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5477 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 5478 .addOperand(SrcBase).addImm(SrcDisp); 5479 DestDisp += ThisLength; 5480 SrcDisp += ThisLength; 5481 Length -= ThisLength; 5482 // If there's another CLC to go, branch to the end if a difference 5483 // was found. 5484 if (EndMBB && Length > 0) { 5485 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5486 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5487 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5488 .addMBB(EndMBB); 5489 MBB->addSuccessor(EndMBB); 5490 MBB->addSuccessor(NextMBB); 5491 MBB = NextMBB; 5492 } 5493 } 5494 if (EndMBB) { 5495 MBB->addSuccessor(EndMBB); 5496 MBB = EndMBB; 5497 MBB->addLiveIn(SystemZ::CC); 5498 } 5499 5500 MI->eraseFromParent(); 5501 return MBB; 5502 } 5503 5504 // Decompose string pseudo-instruction MI into a loop that continually performs 5505 // Opcode until CC != 3. 5506 MachineBasicBlock * 5507 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, 5508 MachineBasicBlock *MBB, 5509 unsigned Opcode) const { 5510 MachineFunction &MF = *MBB->getParent(); 5511 const SystemZInstrInfo *TII = 5512 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5513 MachineRegisterInfo &MRI = MF.getRegInfo(); 5514 DebugLoc DL = MI->getDebugLoc(); 5515 5516 uint64_t End1Reg = MI->getOperand(0).getReg(); 5517 uint64_t Start1Reg = MI->getOperand(1).getReg(); 5518 uint64_t Start2Reg = MI->getOperand(2).getReg(); 5519 uint64_t CharReg = MI->getOperand(3).getReg(); 5520 5521 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5522 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5523 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5524 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5525 5526 MachineBasicBlock *StartMBB = MBB; 5527 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5528 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5529 5530 // StartMBB: 5531 // # fall through to LoopMMB 5532 MBB->addSuccessor(LoopMBB); 5533 5534 // LoopMBB: 5535 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5536 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5537 // R0L = %CharReg 5538 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5539 // JO LoopMBB 5540 // # fall through to DoneMMB 5541 // 5542 // The load of R0L can be hoisted by post-RA LICM. 5543 MBB = LoopMBB; 5544 5545 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5546 .addReg(Start1Reg).addMBB(StartMBB) 5547 .addReg(End1Reg).addMBB(LoopMBB); 5548 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 5549 .addReg(Start2Reg).addMBB(StartMBB) 5550 .addReg(End2Reg).addMBB(LoopMBB); 5551 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 5552 BuildMI(MBB, DL, TII->get(Opcode)) 5553 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 5554 .addReg(This1Reg).addReg(This2Reg); 5555 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5556 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 5557 MBB->addSuccessor(LoopMBB); 5558 MBB->addSuccessor(DoneMBB); 5559 5560 DoneMBB->addLiveIn(SystemZ::CC); 5561 5562 MI->eraseFromParent(); 5563 return DoneMBB; 5564 } 5565 5566 // Update TBEGIN instruction with final opcode and register clobbers. 5567 MachineBasicBlock * 5568 SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI, 5569 MachineBasicBlock *MBB, 5570 unsigned Opcode, 5571 bool NoFloat) const { 5572 MachineFunction &MF = *MBB->getParent(); 5573 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 5574 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 5575 5576 // Update opcode. 5577 MI->setDesc(TII->get(Opcode)); 5578 5579 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 5580 // Make sure to add the corresponding GRSM bits if they are missing. 5581 uint64_t Control = MI->getOperand(2).getImm(); 5582 static const unsigned GPRControlBit[16] = { 5583 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 5584 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 5585 }; 5586 Control |= GPRControlBit[15]; 5587 if (TFI->hasFP(MF)) 5588 Control |= GPRControlBit[11]; 5589 MI->getOperand(2).setImm(Control); 5590 5591 // Add GPR clobbers. 5592 for (int I = 0; I < 16; I++) { 5593 if ((Control & GPRControlBit[I]) == 0) { 5594 unsigned Reg = SystemZMC::GR64Regs[I]; 5595 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5596 } 5597 } 5598 5599 // Add FPR/VR clobbers. 5600 if (!NoFloat && (Control & 4) != 0) { 5601 if (Subtarget.hasVector()) { 5602 for (int I = 0; I < 32; I++) { 5603 unsigned Reg = SystemZMC::VR128Regs[I]; 5604 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5605 } 5606 } else { 5607 for (int I = 0; I < 16; I++) { 5608 unsigned Reg = SystemZMC::FP64Regs[I]; 5609 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5610 } 5611 } 5612 } 5613 5614 return MBB; 5615 } 5616 5617 MachineBasicBlock * 5618 SystemZTargetLowering::emitLoadAndTestCmp0(MachineInstr *MI, 5619 MachineBasicBlock *MBB, 5620 unsigned Opcode) const { 5621 MachineFunction &MF = *MBB->getParent(); 5622 MachineRegisterInfo *MRI = &MF.getRegInfo(); 5623 const SystemZInstrInfo *TII = 5624 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5625 DebugLoc DL = MI->getDebugLoc(); 5626 5627 unsigned SrcReg = MI->getOperand(0).getReg(); 5628 5629 // Create new virtual register of the same class as source. 5630 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 5631 unsigned DstReg = MRI->createVirtualRegister(RC); 5632 5633 // Replace pseudo with a normal load-and-test that models the def as 5634 // well. 5635 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 5636 .addReg(SrcReg); 5637 MI->eraseFromParent(); 5638 5639 return MBB; 5640 } 5641 5642 MachineBasicBlock *SystemZTargetLowering:: 5643 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { 5644 switch (MI->getOpcode()) { 5645 case SystemZ::Select32Mux: 5646 case SystemZ::Select32: 5647 case SystemZ::SelectF32: 5648 case SystemZ::Select64: 5649 case SystemZ::SelectF64: 5650 case SystemZ::SelectF128: 5651 return emitSelect(MI, MBB); 5652 5653 case SystemZ::CondStore8Mux: 5654 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 5655 case SystemZ::CondStore8MuxInv: 5656 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 5657 case SystemZ::CondStore16Mux: 5658 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 5659 case SystemZ::CondStore16MuxInv: 5660 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 5661 case SystemZ::CondStore8: 5662 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 5663 case SystemZ::CondStore8Inv: 5664 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 5665 case SystemZ::CondStore16: 5666 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 5667 case SystemZ::CondStore16Inv: 5668 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 5669 case SystemZ::CondStore32: 5670 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 5671 case SystemZ::CondStore32Inv: 5672 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 5673 case SystemZ::CondStore64: 5674 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 5675 case SystemZ::CondStore64Inv: 5676 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 5677 case SystemZ::CondStoreF32: 5678 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 5679 case SystemZ::CondStoreF32Inv: 5680 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 5681 case SystemZ::CondStoreF64: 5682 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 5683 case SystemZ::CondStoreF64Inv: 5684 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 5685 5686 case SystemZ::AEXT128_64: 5687 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 5688 case SystemZ::ZEXT128_32: 5689 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 5690 case SystemZ::ZEXT128_64: 5691 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 5692 5693 case SystemZ::ATOMIC_SWAPW: 5694 return emitAtomicLoadBinary(MI, MBB, 0, 0); 5695 case SystemZ::ATOMIC_SWAP_32: 5696 return emitAtomicLoadBinary(MI, MBB, 0, 32); 5697 case SystemZ::ATOMIC_SWAP_64: 5698 return emitAtomicLoadBinary(MI, MBB, 0, 64); 5699 5700 case SystemZ::ATOMIC_LOADW_AR: 5701 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 5702 case SystemZ::ATOMIC_LOADW_AFI: 5703 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 5704 case SystemZ::ATOMIC_LOAD_AR: 5705 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 5706 case SystemZ::ATOMIC_LOAD_AHI: 5707 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 5708 case SystemZ::ATOMIC_LOAD_AFI: 5709 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 5710 case SystemZ::ATOMIC_LOAD_AGR: 5711 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 5712 case SystemZ::ATOMIC_LOAD_AGHI: 5713 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 5714 case SystemZ::ATOMIC_LOAD_AGFI: 5715 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 5716 5717 case SystemZ::ATOMIC_LOADW_SR: 5718 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 5719 case SystemZ::ATOMIC_LOAD_SR: 5720 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 5721 case SystemZ::ATOMIC_LOAD_SGR: 5722 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 5723 5724 case SystemZ::ATOMIC_LOADW_NR: 5725 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 5726 case SystemZ::ATOMIC_LOADW_NILH: 5727 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 5728 case SystemZ::ATOMIC_LOAD_NR: 5729 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 5730 case SystemZ::ATOMIC_LOAD_NILL: 5731 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 5732 case SystemZ::ATOMIC_LOAD_NILH: 5733 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 5734 case SystemZ::ATOMIC_LOAD_NILF: 5735 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 5736 case SystemZ::ATOMIC_LOAD_NGR: 5737 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 5738 case SystemZ::ATOMIC_LOAD_NILL64: 5739 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 5740 case SystemZ::ATOMIC_LOAD_NILH64: 5741 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 5742 case SystemZ::ATOMIC_LOAD_NIHL64: 5743 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 5744 case SystemZ::ATOMIC_LOAD_NIHH64: 5745 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 5746 case SystemZ::ATOMIC_LOAD_NILF64: 5747 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 5748 case SystemZ::ATOMIC_LOAD_NIHF64: 5749 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 5750 5751 case SystemZ::ATOMIC_LOADW_OR: 5752 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 5753 case SystemZ::ATOMIC_LOADW_OILH: 5754 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 5755 case SystemZ::ATOMIC_LOAD_OR: 5756 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 5757 case SystemZ::ATOMIC_LOAD_OILL: 5758 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 5759 case SystemZ::ATOMIC_LOAD_OILH: 5760 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 5761 case SystemZ::ATOMIC_LOAD_OILF: 5762 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 5763 case SystemZ::ATOMIC_LOAD_OGR: 5764 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 5765 case SystemZ::ATOMIC_LOAD_OILL64: 5766 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 5767 case SystemZ::ATOMIC_LOAD_OILH64: 5768 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 5769 case SystemZ::ATOMIC_LOAD_OIHL64: 5770 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 5771 case SystemZ::ATOMIC_LOAD_OIHH64: 5772 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 5773 case SystemZ::ATOMIC_LOAD_OILF64: 5774 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 5775 case SystemZ::ATOMIC_LOAD_OIHF64: 5776 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 5777 5778 case SystemZ::ATOMIC_LOADW_XR: 5779 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 5780 case SystemZ::ATOMIC_LOADW_XILF: 5781 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 5782 case SystemZ::ATOMIC_LOAD_XR: 5783 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 5784 case SystemZ::ATOMIC_LOAD_XILF: 5785 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 5786 case SystemZ::ATOMIC_LOAD_XGR: 5787 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 5788 case SystemZ::ATOMIC_LOAD_XILF64: 5789 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 5790 case SystemZ::ATOMIC_LOAD_XIHF64: 5791 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 5792 5793 case SystemZ::ATOMIC_LOADW_NRi: 5794 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 5795 case SystemZ::ATOMIC_LOADW_NILHi: 5796 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 5797 case SystemZ::ATOMIC_LOAD_NRi: 5798 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 5799 case SystemZ::ATOMIC_LOAD_NILLi: 5800 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 5801 case SystemZ::ATOMIC_LOAD_NILHi: 5802 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 5803 case SystemZ::ATOMIC_LOAD_NILFi: 5804 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 5805 case SystemZ::ATOMIC_LOAD_NGRi: 5806 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 5807 case SystemZ::ATOMIC_LOAD_NILL64i: 5808 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 5809 case SystemZ::ATOMIC_LOAD_NILH64i: 5810 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 5811 case SystemZ::ATOMIC_LOAD_NIHL64i: 5812 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 5813 case SystemZ::ATOMIC_LOAD_NIHH64i: 5814 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 5815 case SystemZ::ATOMIC_LOAD_NILF64i: 5816 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 5817 case SystemZ::ATOMIC_LOAD_NIHF64i: 5818 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 5819 5820 case SystemZ::ATOMIC_LOADW_MIN: 5821 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5822 SystemZ::CCMASK_CMP_LE, 0); 5823 case SystemZ::ATOMIC_LOAD_MIN_32: 5824 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5825 SystemZ::CCMASK_CMP_LE, 32); 5826 case SystemZ::ATOMIC_LOAD_MIN_64: 5827 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5828 SystemZ::CCMASK_CMP_LE, 64); 5829 5830 case SystemZ::ATOMIC_LOADW_MAX: 5831 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5832 SystemZ::CCMASK_CMP_GE, 0); 5833 case SystemZ::ATOMIC_LOAD_MAX_32: 5834 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5835 SystemZ::CCMASK_CMP_GE, 32); 5836 case SystemZ::ATOMIC_LOAD_MAX_64: 5837 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5838 SystemZ::CCMASK_CMP_GE, 64); 5839 5840 case SystemZ::ATOMIC_LOADW_UMIN: 5841 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5842 SystemZ::CCMASK_CMP_LE, 0); 5843 case SystemZ::ATOMIC_LOAD_UMIN_32: 5844 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5845 SystemZ::CCMASK_CMP_LE, 32); 5846 case SystemZ::ATOMIC_LOAD_UMIN_64: 5847 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5848 SystemZ::CCMASK_CMP_LE, 64); 5849 5850 case SystemZ::ATOMIC_LOADW_UMAX: 5851 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5852 SystemZ::CCMASK_CMP_GE, 0); 5853 case SystemZ::ATOMIC_LOAD_UMAX_32: 5854 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5855 SystemZ::CCMASK_CMP_GE, 32); 5856 case SystemZ::ATOMIC_LOAD_UMAX_64: 5857 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5858 SystemZ::CCMASK_CMP_GE, 64); 5859 5860 case SystemZ::ATOMIC_CMP_SWAPW: 5861 return emitAtomicCmpSwapW(MI, MBB); 5862 case SystemZ::MVCSequence: 5863 case SystemZ::MVCLoop: 5864 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 5865 case SystemZ::NCSequence: 5866 case SystemZ::NCLoop: 5867 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 5868 case SystemZ::OCSequence: 5869 case SystemZ::OCLoop: 5870 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 5871 case SystemZ::XCSequence: 5872 case SystemZ::XCLoop: 5873 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 5874 case SystemZ::CLCSequence: 5875 case SystemZ::CLCLoop: 5876 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 5877 case SystemZ::CLSTLoop: 5878 return emitStringWrapper(MI, MBB, SystemZ::CLST); 5879 case SystemZ::MVSTLoop: 5880 return emitStringWrapper(MI, MBB, SystemZ::MVST); 5881 case SystemZ::SRSTLoop: 5882 return emitStringWrapper(MI, MBB, SystemZ::SRST); 5883 case SystemZ::TBEGIN: 5884 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 5885 case SystemZ::TBEGIN_nofloat: 5886 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 5887 case SystemZ::TBEGINC: 5888 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 5889 case SystemZ::LTEBRCompare_VecPseudo: 5890 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 5891 case SystemZ::LTDBRCompare_VecPseudo: 5892 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 5893 case SystemZ::LTXBRCompare_VecPseudo: 5894 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 5895 5896 default: 5897 llvm_unreachable("Unexpected instr type to insert"); 5898 } 5899 } 5900