1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   // Set up the register classes.
86   if (Subtarget.hasHighWord())
87     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88   else
89     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91   if (!useSoftFloat()) {
92     if (Subtarget.hasVector()) {
93       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
94       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
95     } else {
96       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
98     }
99     if (Subtarget.hasVectorEnhancements1())
100       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
101     else
102       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103 
104     if (Subtarget.hasVector()) {
105       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111     }
112   }
113 
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116 
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119 
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125 
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(Align(2));
131   // For performance reasons we prefer 16-byte alignment.
132   setPrefFunctionAlignment(Align(16));
133 
134   // Handle operations that are handled in a similar way for all types.
135   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
136        I <= MVT::LAST_FP_VALUETYPE;
137        ++I) {
138     MVT VT = MVT::SimpleValueType(I);
139     if (isTypeLegal(VT)) {
140       // Lower SET_CC into an IPM-based sequence.
141       setOperationAction(ISD::SETCC, VT, Custom);
142       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
144 
145       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
146       setOperationAction(ISD::SELECT, VT, Expand);
147 
148       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
149       setOperationAction(ISD::SELECT_CC, VT, Custom);
150       setOperationAction(ISD::BR_CC,     VT, Custom);
151     }
152   }
153 
154   // Expand jump table branches as address arithmetic followed by an
155   // indirect jump.
156   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
157 
158   // Expand BRCOND into a BR_CC (see above).
159   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
160 
161   // Handle integer types.
162   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
163        I <= MVT::LAST_INTEGER_VALUETYPE;
164        ++I) {
165     MVT VT = MVT::SimpleValueType(I);
166     if (isTypeLegal(VT)) {
167       setOperationAction(ISD::ABS, VT, Legal);
168 
169       // Expand individual DIV and REMs into DIVREMs.
170       setOperationAction(ISD::SDIV, VT, Expand);
171       setOperationAction(ISD::UDIV, VT, Expand);
172       setOperationAction(ISD::SREM, VT, Expand);
173       setOperationAction(ISD::UREM, VT, Expand);
174       setOperationAction(ISD::SDIVREM, VT, Custom);
175       setOperationAction(ISD::UDIVREM, VT, Custom);
176 
177       // Support addition/subtraction with overflow.
178       setOperationAction(ISD::SADDO, VT, Custom);
179       setOperationAction(ISD::SSUBO, VT, Custom);
180 
181       // Support addition/subtraction with carry.
182       setOperationAction(ISD::UADDO, VT, Custom);
183       setOperationAction(ISD::USUBO, VT, Custom);
184 
185       // Support carry in as value rather than glue.
186       setOperationAction(ISD::ADDCARRY, VT, Custom);
187       setOperationAction(ISD::SUBCARRY, VT, Custom);
188 
189       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
190       // stores, putting a serialization instruction after the stores.
191       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
192       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
193 
194       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
195       // available, or if the operand is constant.
196       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
197 
198       // Use POPCNT on z196 and above.
199       if (Subtarget.hasPopulationCount())
200         setOperationAction(ISD::CTPOP, VT, Custom);
201       else
202         setOperationAction(ISD::CTPOP, VT, Expand);
203 
204       // No special instructions for these.
205       setOperationAction(ISD::CTTZ,            VT, Expand);
206       setOperationAction(ISD::ROTR,            VT, Expand);
207 
208       // Use *MUL_LOHI where possible instead of MULH*.
209       setOperationAction(ISD::MULHS, VT, Expand);
210       setOperationAction(ISD::MULHU, VT, Expand);
211       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
212       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
213 
214       // Only z196 and above have native support for conversions to unsigned.
215       // On z10, promoting to i64 doesn't generate an inexact condition for
216       // values that are outside the i32 range but in the i64 range, so use
217       // the default expansion.
218       if (!Subtarget.hasFPExtension())
219         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
220 
221       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
222       // default to Expand, so need to be modified to Legal where appropriate.
223       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
224       if (Subtarget.hasFPExtension())
225         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
226 
227       // And similarly for STRICT_[SU]INT_TO_FP.
228       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
229       if (Subtarget.hasFPExtension())
230         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
231     }
232   }
233 
234   // Type legalization will convert 8- and 16-bit atomic operations into
235   // forms that operate on i32s (but still keeping the original memory VT).
236   // Lower them into full i32 operations.
237   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
239   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
248 
249   // Even though i128 is not a legal type, we still need to custom lower
250   // the atomic operations in order to exploit SystemZ instructions.
251   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
252   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
253 
254   // We can use the CC result of compare-and-swap to implement
255   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
256   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
257   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
259 
260   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
261 
262   // Traps are legal, as we will convert them to "j .+2".
263   setOperationAction(ISD::TRAP, MVT::Other, Legal);
264 
265   // z10 has instructions for signed but not unsigned FP conversion.
266   // Handle unsigned 32-bit types as signed 64-bit types.
267   if (!Subtarget.hasFPExtension()) {
268     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
269     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
270     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
272   }
273 
274   // We have native support for a 64-bit CTLZ, via FLOGR.
275   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
276   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
277   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
278 
279   // On z15 we have native support for a 64-bit CTPOP.
280   if (Subtarget.hasMiscellaneousExtensions3()) {
281     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
282     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
283   }
284 
285   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
286   setOperationAction(ISD::OR, MVT::i64, Custom);
287 
288   // FIXME: Can we support these natively?
289   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
290   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
291   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
292 
293   // We have native instructions for i8, i16 and i32 extensions, but not i1.
294   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
295   for (MVT VT : MVT::integer_valuetypes()) {
296     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
297     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
298     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
299   }
300 
301   // Handle the various types of symbolic address.
302   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
303   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
304   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
305   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
306   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
307 
308   // We need to handle dynamic allocations specially because of the
309   // 160-byte area at the bottom of the stack.
310   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
311   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
312 
313   // Use custom expanders so that we can force the function to use
314   // a frame pointer.
315   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
316   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
317 
318   // Handle prefetches with PFD or PFDRL.
319   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
320 
321   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
322     // Assume by default that all vector operations need to be expanded.
323     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
324       if (getOperationAction(Opcode, VT) == Legal)
325         setOperationAction(Opcode, VT, Expand);
326 
327     // Likewise all truncating stores and extending loads.
328     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
329       setTruncStoreAction(VT, InnerVT, Expand);
330       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
331       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
332       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
333     }
334 
335     if (isTypeLegal(VT)) {
336       // These operations are legal for anything that can be stored in a
337       // vector register, even if there is no native support for the format
338       // as such.  In particular, we can do these for v4f32 even though there
339       // are no specific instructions for that format.
340       setOperationAction(ISD::LOAD, VT, Legal);
341       setOperationAction(ISD::STORE, VT, Legal);
342       setOperationAction(ISD::VSELECT, VT, Legal);
343       setOperationAction(ISD::BITCAST, VT, Legal);
344       setOperationAction(ISD::UNDEF, VT, Legal);
345 
346       // Likewise, except that we need to replace the nodes with something
347       // more specific.
348       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
349       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
350     }
351   }
352 
353   // Handle integer vector types.
354   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
355     if (isTypeLegal(VT)) {
356       // These operations have direct equivalents.
357       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
358       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
359       setOperationAction(ISD::ADD, VT, Legal);
360       setOperationAction(ISD::SUB, VT, Legal);
361       if (VT != MVT::v2i64)
362         setOperationAction(ISD::MUL, VT, Legal);
363       setOperationAction(ISD::ABS, VT, Legal);
364       setOperationAction(ISD::AND, VT, Legal);
365       setOperationAction(ISD::OR, VT, Legal);
366       setOperationAction(ISD::XOR, VT, Legal);
367       if (Subtarget.hasVectorEnhancements1())
368         setOperationAction(ISD::CTPOP, VT, Legal);
369       else
370         setOperationAction(ISD::CTPOP, VT, Custom);
371       setOperationAction(ISD::CTTZ, VT, Legal);
372       setOperationAction(ISD::CTLZ, VT, Legal);
373 
374       // Convert a GPR scalar to a vector by inserting it into element 0.
375       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
376 
377       // Use a series of unpacks for extensions.
378       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
379       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
380 
381       // Detect shifts by a scalar amount and convert them into
382       // V*_BY_SCALAR.
383       setOperationAction(ISD::SHL, VT, Custom);
384       setOperationAction(ISD::SRA, VT, Custom);
385       setOperationAction(ISD::SRL, VT, Custom);
386 
387       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
388       // converted into ROTL.
389       setOperationAction(ISD::ROTL, VT, Expand);
390       setOperationAction(ISD::ROTR, VT, Expand);
391 
392       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
393       // and inverting the result as necessary.
394       setOperationAction(ISD::SETCC, VT, Custom);
395       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
396       if (Subtarget.hasVectorEnhancements1())
397         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
398     }
399   }
400 
401   if (Subtarget.hasVector()) {
402     // There should be no need to check for float types other than v2f64
403     // since <2 x f32> isn't a legal type.
404     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
405     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
406     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
407     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
408     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
409     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
410     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
411     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
412 
413     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
414     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
415     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
416     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
417     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
418     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
419     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
420     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
421   }
422 
423   if (Subtarget.hasVectorEnhancements2()) {
424     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
425     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
426     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
427     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
428     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
429     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
430     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
431     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
432 
433     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
434     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
435     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
436     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
437     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
438     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
439     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
440     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
441   }
442 
443   // Handle floating-point types.
444   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
445        I <= MVT::LAST_FP_VALUETYPE;
446        ++I) {
447     MVT VT = MVT::SimpleValueType(I);
448     if (isTypeLegal(VT)) {
449       // We can use FI for FRINT.
450       setOperationAction(ISD::FRINT, VT, Legal);
451 
452       // We can use the extended form of FI for other rounding operations.
453       if (Subtarget.hasFPExtension()) {
454         setOperationAction(ISD::FNEARBYINT, VT, Legal);
455         setOperationAction(ISD::FFLOOR, VT, Legal);
456         setOperationAction(ISD::FCEIL, VT, Legal);
457         setOperationAction(ISD::FTRUNC, VT, Legal);
458         setOperationAction(ISD::FROUND, VT, Legal);
459       }
460 
461       // No special instructions for these.
462       setOperationAction(ISD::FSIN, VT, Expand);
463       setOperationAction(ISD::FCOS, VT, Expand);
464       setOperationAction(ISD::FSINCOS, VT, Expand);
465       setOperationAction(ISD::FREM, VT, Expand);
466       setOperationAction(ISD::FPOW, VT, Expand);
467 
468       // Handle constrained floating-point operations.
469       setOperationAction(ISD::STRICT_FADD, VT, Legal);
470       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
471       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
472       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
473       setOperationAction(ISD::STRICT_FMA, VT, Legal);
474       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
475       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
476       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
477       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
478       if (Subtarget.hasFPExtension()) {
479         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
480         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
481         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
482         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
483         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
484       }
485     }
486   }
487 
488   // Handle floating-point vector types.
489   if (Subtarget.hasVector()) {
490     // Scalar-to-vector conversion is just a subreg.
491     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
492     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
493 
494     // Some insertions and extractions can be done directly but others
495     // need to go via integers.
496     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
497     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
498     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
499     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
500 
501     // These operations have direct equivalents.
502     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
503     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
504     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
505     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
506     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
507     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
508     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
509     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
510     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
511     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
512     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
513     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
514     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
515     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
516 
517     // Handle constrained floating-point operations.
518     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
519     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
520     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
521     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
522     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
523     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
524     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
527     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
530   }
531 
532   // The vector enhancements facility 1 has instructions for these.
533   if (Subtarget.hasVectorEnhancements1()) {
534     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
535     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
536     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
537     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
538     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
539     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
540     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
541     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
542     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
543     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
544     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
545     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
546     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
547     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
548 
549     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
550     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
551     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
552     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
553 
554     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
555     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
556     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
557     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
558 
559     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
560     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
561     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
562     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
563 
564     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
565     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
566     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
567     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
568 
569     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
570     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
571     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
572     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
573 
574     // Handle constrained floating-point operations.
575     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
576     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
577     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
578     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
579     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
580     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
581     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
584     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
587     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
588                      MVT::v4f32, MVT::v2f64 }) {
589       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
590       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
591       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
592       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
593     }
594   }
595 
596   // We only have fused f128 multiply-addition on vector registers.
597   if (!Subtarget.hasVectorEnhancements1()) {
598     setOperationAction(ISD::FMA, MVT::f128, Expand);
599     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
600   }
601 
602   // We don't have a copysign instruction on vector registers.
603   if (Subtarget.hasVectorEnhancements1())
604     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
605 
606   // Needed so that we don't try to implement f128 constant loads using
607   // a load-and-extend of a f80 constant (in cases where the constant
608   // would fit in an f80).
609   for (MVT VT : MVT::fp_valuetypes())
610     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
611 
612   // We don't have extending load instruction on vector registers.
613   if (Subtarget.hasVectorEnhancements1()) {
614     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
615     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
616   }
617 
618   // Floating-point truncation and stores need to be done separately.
619   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
620   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
621   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
622 
623   // We have 64-bit FPR<->GPR moves, but need special handling for
624   // 32-bit forms.
625   if (!Subtarget.hasVector()) {
626     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
627     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
628   }
629 
630   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
631   // structure, but VAEND is a no-op.
632   setOperationAction(ISD::VASTART, MVT::Other, Custom);
633   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
634   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
635 
636   // Codes for which we want to perform some z-specific combinations.
637   setTargetDAGCombine(ISD::ZERO_EXTEND);
638   setTargetDAGCombine(ISD::SIGN_EXTEND);
639   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
640   setTargetDAGCombine(ISD::LOAD);
641   setTargetDAGCombine(ISD::STORE);
642   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
643   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
644   setTargetDAGCombine(ISD::FP_ROUND);
645   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
646   setTargetDAGCombine(ISD::FP_EXTEND);
647   setTargetDAGCombine(ISD::SINT_TO_FP);
648   setTargetDAGCombine(ISD::UINT_TO_FP);
649   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
650   setTargetDAGCombine(ISD::BSWAP);
651   setTargetDAGCombine(ISD::SDIV);
652   setTargetDAGCombine(ISD::UDIV);
653   setTargetDAGCombine(ISD::SREM);
654   setTargetDAGCombine(ISD::UREM);
655   setTargetDAGCombine(ISD::INTRINSIC_VOID);
656   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
657 
658   // Handle intrinsics.
659   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
660   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
661 
662   // We want to use MVC in preference to even a single load/store pair.
663   MaxStoresPerMemcpy = 0;
664   MaxStoresPerMemcpyOptSize = 0;
665 
666   // The main memset sequence is a byte store followed by an MVC.
667   // Two STC or MV..I stores win over that, but the kind of fused stores
668   // generated by target-independent code don't when the byte value is
669   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
670   // than "STC;MVC".  Handle the choice in target-specific code instead.
671   MaxStoresPerMemset = 0;
672   MaxStoresPerMemsetOptSize = 0;
673 
674   // Default to having -disable-strictnode-mutation on
675   IsStrictFPEnabled = true;
676 }
677 
678 bool SystemZTargetLowering::useSoftFloat() const {
679   return Subtarget.hasSoftFloat();
680 }
681 
682 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
683                                               LLVMContext &, EVT VT) const {
684   if (!VT.isVector())
685     return MVT::i32;
686   return VT.changeVectorElementTypeToInteger();
687 }
688 
689 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
690     const MachineFunction &MF, EVT VT) const {
691   VT = VT.getScalarType();
692 
693   if (!VT.isSimple())
694     return false;
695 
696   switch (VT.getSimpleVT().SimpleTy) {
697   case MVT::f32:
698   case MVT::f64:
699     return true;
700   case MVT::f128:
701     return Subtarget.hasVectorEnhancements1();
702   default:
703     break;
704   }
705 
706   return false;
707 }
708 
709 // Return true if the constant can be generated with a vector instruction,
710 // such as VGM, VGMB or VREPI.
711 bool SystemZVectorConstantInfo::isVectorConstantLegal(
712     const SystemZSubtarget &Subtarget) {
713   const SystemZInstrInfo *TII =
714       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
715   if (!Subtarget.hasVector() ||
716       (isFP128 && !Subtarget.hasVectorEnhancements1()))
717     return false;
718 
719   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
720   // preferred way of creating all-zero and all-one vectors so give it
721   // priority over other methods below.
722   unsigned Mask = 0;
723   unsigned I = 0;
724   for (; I < SystemZ::VectorBytes; ++I) {
725     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
726     if (Byte == 0xff)
727       Mask |= 1ULL << I;
728     else if (Byte != 0)
729       break;
730   }
731   if (I == SystemZ::VectorBytes) {
732     Opcode = SystemZISD::BYTE_MASK;
733     OpVals.push_back(Mask);
734     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
735     return true;
736   }
737 
738   if (SplatBitSize > 64)
739     return false;
740 
741   auto tryValue = [&](uint64_t Value) -> bool {
742     // Try VECTOR REPLICATE IMMEDIATE
743     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
744     if (isInt<16>(SignedValue)) {
745       OpVals.push_back(((unsigned) SignedValue));
746       Opcode = SystemZISD::REPLICATE;
747       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
748                                SystemZ::VectorBits / SplatBitSize);
749       return true;
750     }
751     // Try VECTOR GENERATE MASK
752     unsigned Start, End;
753     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
754       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
755       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
756       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
757       OpVals.push_back(Start - (64 - SplatBitSize));
758       OpVals.push_back(End - (64 - SplatBitSize));
759       Opcode = SystemZISD::ROTATE_MASK;
760       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
761                                SystemZ::VectorBits / SplatBitSize);
762       return true;
763     }
764     return false;
765   };
766 
767   // First try assuming that any undefined bits above the highest set bit
768   // and below the lowest set bit are 1s.  This increases the likelihood of
769   // being able to use a sign-extended element value in VECTOR REPLICATE
770   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
771   uint64_t SplatBitsZ = SplatBits.getZExtValue();
772   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
773   uint64_t Lower =
774       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
775   uint64_t Upper =
776       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
777   if (tryValue(SplatBitsZ | Upper | Lower))
778     return true;
779 
780   // Now try assuming that any undefined bits between the first and
781   // last defined set bits are set.  This increases the chances of
782   // using a non-wraparound mask.
783   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
784   return tryValue(SplatBitsZ | Middle);
785 }
786 
787 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
788   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
789   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
790   SplatBits = FPImm.bitcastToAPInt();
791   unsigned Width = SplatBits.getBitWidth();
792   IntBits <<= (SystemZ::VectorBits - Width);
793 
794   // Find the smallest splat.
795   while (Width > 8) {
796     unsigned HalfSize = Width / 2;
797     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
798     APInt LowValue = SplatBits.trunc(HalfSize);
799 
800     // If the two halves do not match, stop here.
801     if (HighValue != LowValue || 8 > HalfSize)
802       break;
803 
804     SplatBits = HighValue;
805     Width = HalfSize;
806   }
807   SplatUndef = 0;
808   SplatBitSize = Width;
809 }
810 
811 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
812   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
813   bool HasAnyUndefs;
814 
815   // Get IntBits by finding the 128 bit splat.
816   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
817                        true);
818 
819   // Get SplatBits by finding the 8 bit or greater splat.
820   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
821                        true);
822 }
823 
824 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
825                                          bool ForCodeSize) const {
826   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
827   if (Imm.isZero() || Imm.isNegZero())
828     return true;
829 
830   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
831 }
832 
833 /// Returns true if stack probing through inline assembly is requested.
834 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
835   // If the function specifically requests inline stack probes, emit them.
836   if (MF.getFunction().hasFnAttribute("probe-stack"))
837     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
838            "inline-asm";
839   return false;
840 }
841 
842 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
843   // We can use CGFI or CLGFI.
844   return isInt<32>(Imm) || isUInt<32>(Imm);
845 }
846 
847 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
848   // We can use ALGFI or SLGFI.
849   return isUInt<32>(Imm) || isUInt<32>(-Imm);
850 }
851 
852 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
853     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
854   // Unaligned accesses should never be slower than the expanded version.
855   // We check specifically for aligned accesses in the few cases where
856   // they are required.
857   if (Fast)
858     *Fast = true;
859   return true;
860 }
861 
862 // Information about the addressing mode for a memory access.
863 struct AddressingMode {
864   // True if a long displacement is supported.
865   bool LongDisplacement;
866 
867   // True if use of index register is supported.
868   bool IndexReg;
869 
870   AddressingMode(bool LongDispl, bool IdxReg) :
871     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
872 };
873 
874 // Return the desired addressing mode for a Load which has only one use (in
875 // the same block) which is a Store.
876 static AddressingMode getLoadStoreAddrMode(bool HasVector,
877                                           Type *Ty) {
878   // With vector support a Load->Store combination may be combined to either
879   // an MVC or vector operations and it seems to work best to allow the
880   // vector addressing mode.
881   if (HasVector)
882     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
883 
884   // Otherwise only the MVC case is special.
885   bool MVC = Ty->isIntegerTy(8);
886   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
887 }
888 
889 // Return the addressing mode which seems most desirable given an LLVM
890 // Instruction pointer.
891 static AddressingMode
892 supportedAddressingMode(Instruction *I, bool HasVector) {
893   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
894     switch (II->getIntrinsicID()) {
895     default: break;
896     case Intrinsic::memset:
897     case Intrinsic::memmove:
898     case Intrinsic::memcpy:
899       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
900     }
901   }
902 
903   if (isa<LoadInst>(I) && I->hasOneUse()) {
904     auto *SingleUser = cast<Instruction>(*I->user_begin());
905     if (SingleUser->getParent() == I->getParent()) {
906       if (isa<ICmpInst>(SingleUser)) {
907         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
908           if (C->getBitWidth() <= 64 &&
909               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
910             // Comparison of memory with 16 bit signed / unsigned immediate
911             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
912       } else if (isa<StoreInst>(SingleUser))
913         // Load->Store
914         return getLoadStoreAddrMode(HasVector, I->getType());
915     }
916   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
917     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
918       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
919         // Load->Store
920         return getLoadStoreAddrMode(HasVector, LoadI->getType());
921   }
922 
923   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
924 
925     // * Use LDE instead of LE/LEY for z13 to avoid partial register
926     //   dependencies (LDE only supports small offsets).
927     // * Utilize the vector registers to hold floating point
928     //   values (vector load / store instructions only support small
929     //   offsets).
930 
931     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
932                          I->getOperand(0)->getType());
933     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
934     bool IsVectorAccess = MemAccessTy->isVectorTy();
935 
936     // A store of an extracted vector element will be combined into a VSTE type
937     // instruction.
938     if (!IsVectorAccess && isa<StoreInst>(I)) {
939       Value *DataOp = I->getOperand(0);
940       if (isa<ExtractElementInst>(DataOp))
941         IsVectorAccess = true;
942     }
943 
944     // A load which gets inserted into a vector element will be combined into a
945     // VLE type instruction.
946     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
947       User *LoadUser = *I->user_begin();
948       if (isa<InsertElementInst>(LoadUser))
949         IsVectorAccess = true;
950     }
951 
952     if (IsFPAccess || IsVectorAccess)
953       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
954   }
955 
956   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
957 }
958 
959 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
960        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
961   // Punt on globals for now, although they can be used in limited
962   // RELATIVE LONG cases.
963   if (AM.BaseGV)
964     return false;
965 
966   // Require a 20-bit signed offset.
967   if (!isInt<20>(AM.BaseOffs))
968     return false;
969 
970   AddressingMode SupportedAM(true, true);
971   if (I != nullptr)
972     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
973 
974   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
975     return false;
976 
977   if (!SupportedAM.IndexReg)
978     // No indexing allowed.
979     return AM.Scale == 0;
980   else
981     // Indexing is OK but no scale factor can be applied.
982     return AM.Scale == 0 || AM.Scale == 1;
983 }
984 
985 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
986   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
987     return false;
988   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
989   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
990   return FromBits > ToBits;
991 }
992 
993 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
994   if (!FromVT.isInteger() || !ToVT.isInteger())
995     return false;
996   unsigned FromBits = FromVT.getFixedSizeInBits();
997   unsigned ToBits = ToVT.getFixedSizeInBits();
998   return FromBits > ToBits;
999 }
1000 
1001 //===----------------------------------------------------------------------===//
1002 // Inline asm support
1003 //===----------------------------------------------------------------------===//
1004 
1005 TargetLowering::ConstraintType
1006 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1007   if (Constraint.size() == 1) {
1008     switch (Constraint[0]) {
1009     case 'a': // Address register
1010     case 'd': // Data register (equivalent to 'r')
1011     case 'f': // Floating-point register
1012     case 'h': // High-part register
1013     case 'r': // General-purpose register
1014     case 'v': // Vector register
1015       return C_RegisterClass;
1016 
1017     case 'Q': // Memory with base and unsigned 12-bit displacement
1018     case 'R': // Likewise, plus an index
1019     case 'S': // Memory with base and signed 20-bit displacement
1020     case 'T': // Likewise, plus an index
1021     case 'm': // Equivalent to 'T'.
1022       return C_Memory;
1023 
1024     case 'I': // Unsigned 8-bit constant
1025     case 'J': // Unsigned 12-bit constant
1026     case 'K': // Signed 16-bit constant
1027     case 'L': // Signed 20-bit displacement (on all targets we support)
1028     case 'M': // 0x7fffffff
1029       return C_Immediate;
1030 
1031     default:
1032       break;
1033     }
1034   }
1035   return TargetLowering::getConstraintType(Constraint);
1036 }
1037 
1038 TargetLowering::ConstraintWeight SystemZTargetLowering::
1039 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1040                                const char *constraint) const {
1041   ConstraintWeight weight = CW_Invalid;
1042   Value *CallOperandVal = info.CallOperandVal;
1043   // If we don't have a value, we can't do a match,
1044   // but allow it at the lowest weight.
1045   if (!CallOperandVal)
1046     return CW_Default;
1047   Type *type = CallOperandVal->getType();
1048   // Look at the constraint type.
1049   switch (*constraint) {
1050   default:
1051     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1052     break;
1053 
1054   case 'a': // Address register
1055   case 'd': // Data register (equivalent to 'r')
1056   case 'h': // High-part register
1057   case 'r': // General-purpose register
1058     if (CallOperandVal->getType()->isIntegerTy())
1059       weight = CW_Register;
1060     break;
1061 
1062   case 'f': // Floating-point register
1063     if (type->isFloatingPointTy())
1064       weight = CW_Register;
1065     break;
1066 
1067   case 'v': // Vector register
1068     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1069         Subtarget.hasVector())
1070       weight = CW_Register;
1071     break;
1072 
1073   case 'I': // Unsigned 8-bit constant
1074     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1075       if (isUInt<8>(C->getZExtValue()))
1076         weight = CW_Constant;
1077     break;
1078 
1079   case 'J': // Unsigned 12-bit constant
1080     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1081       if (isUInt<12>(C->getZExtValue()))
1082         weight = CW_Constant;
1083     break;
1084 
1085   case 'K': // Signed 16-bit constant
1086     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1087       if (isInt<16>(C->getSExtValue()))
1088         weight = CW_Constant;
1089     break;
1090 
1091   case 'L': // Signed 20-bit displacement (on all targets we support)
1092     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1093       if (isInt<20>(C->getSExtValue()))
1094         weight = CW_Constant;
1095     break;
1096 
1097   case 'M': // 0x7fffffff
1098     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1099       if (C->getZExtValue() == 0x7fffffff)
1100         weight = CW_Constant;
1101     break;
1102   }
1103   return weight;
1104 }
1105 
1106 // Parse a "{tNNN}" register constraint for which the register type "t"
1107 // has already been verified.  MC is the class associated with "t" and
1108 // Map maps 0-based register numbers to LLVM register numbers.
1109 static std::pair<unsigned, const TargetRegisterClass *>
1110 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1111                     const unsigned *Map, unsigned Size) {
1112   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1113   if (isdigit(Constraint[2])) {
1114     unsigned Index;
1115     bool Failed =
1116         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1117     if (!Failed && Index < Size && Map[Index])
1118       return std::make_pair(Map[Index], RC);
1119   }
1120   return std::make_pair(0U, nullptr);
1121 }
1122 
1123 std::pair<unsigned, const TargetRegisterClass *>
1124 SystemZTargetLowering::getRegForInlineAsmConstraint(
1125     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1126   if (Constraint.size() == 1) {
1127     // GCC Constraint Letters
1128     switch (Constraint[0]) {
1129     default: break;
1130     case 'd': // Data register (equivalent to 'r')
1131     case 'r': // General-purpose register
1132       if (VT == MVT::i64)
1133         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1134       else if (VT == MVT::i128)
1135         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1136       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1137 
1138     case 'a': // Address register
1139       if (VT == MVT::i64)
1140         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1141       else if (VT == MVT::i128)
1142         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1143       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1144 
1145     case 'h': // High-part register (an LLVM extension)
1146       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1147 
1148     case 'f': // Floating-point register
1149       if (!useSoftFloat()) {
1150         if (VT == MVT::f64)
1151           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1152         else if (VT == MVT::f128)
1153           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1154         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1155       }
1156       break;
1157     case 'v': // Vector register
1158       if (Subtarget.hasVector()) {
1159         if (VT == MVT::f32)
1160           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1161         if (VT == MVT::f64)
1162           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1163         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1164       }
1165       break;
1166     }
1167   }
1168   if (Constraint.size() > 0 && Constraint[0] == '{') {
1169     // We need to override the default register parsing for GPRs and FPRs
1170     // because the interpretation depends on VT.  The internal names of
1171     // the registers are also different from the external names
1172     // (F0D and F0S instead of F0, etc.).
1173     if (Constraint[1] == 'r') {
1174       if (VT == MVT::i32)
1175         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1176                                    SystemZMC::GR32Regs, 16);
1177       if (VT == MVT::i128)
1178         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1179                                    SystemZMC::GR128Regs, 16);
1180       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1181                                  SystemZMC::GR64Regs, 16);
1182     }
1183     if (Constraint[1] == 'f') {
1184       if (useSoftFloat())
1185         return std::make_pair(
1186             0u, static_cast<const TargetRegisterClass *>(nullptr));
1187       if (VT == MVT::f32)
1188         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1189                                    SystemZMC::FP32Regs, 16);
1190       if (VT == MVT::f128)
1191         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1192                                    SystemZMC::FP128Regs, 16);
1193       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1194                                  SystemZMC::FP64Regs, 16);
1195     }
1196     if (Constraint[1] == 'v') {
1197       if (!Subtarget.hasVector())
1198         return std::make_pair(
1199             0u, static_cast<const TargetRegisterClass *>(nullptr));
1200       if (VT == MVT::f32)
1201         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1202                                    SystemZMC::VR32Regs, 32);
1203       if (VT == MVT::f64)
1204         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1205                                    SystemZMC::VR64Regs, 32);
1206       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1207                                  SystemZMC::VR128Regs, 32);
1208     }
1209   }
1210   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1211 }
1212 
1213 // FIXME? Maybe this could be a TableGen attribute on some registers and
1214 // this table could be generated automatically from RegInfo.
1215 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1216                                                   const MachineFunction &MF) const {
1217 
1218   Register Reg = StringSwitch<Register>(RegName)
1219                    .Case("r15", SystemZ::R15D)
1220                    .Default(0);
1221   if (Reg)
1222     return Reg;
1223   report_fatal_error("Invalid register name global variable");
1224 }
1225 
1226 void SystemZTargetLowering::
1227 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1228                              std::vector<SDValue> &Ops,
1229                              SelectionDAG &DAG) const {
1230   // Only support length 1 constraints for now.
1231   if (Constraint.length() == 1) {
1232     switch (Constraint[0]) {
1233     case 'I': // Unsigned 8-bit constant
1234       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1235         if (isUInt<8>(C->getZExtValue()))
1236           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1237                                               Op.getValueType()));
1238       return;
1239 
1240     case 'J': // Unsigned 12-bit constant
1241       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1242         if (isUInt<12>(C->getZExtValue()))
1243           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1244                                               Op.getValueType()));
1245       return;
1246 
1247     case 'K': // Signed 16-bit constant
1248       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1249         if (isInt<16>(C->getSExtValue()))
1250           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1251                                               Op.getValueType()));
1252       return;
1253 
1254     case 'L': // Signed 20-bit displacement (on all targets we support)
1255       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1256         if (isInt<20>(C->getSExtValue()))
1257           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1258                                               Op.getValueType()));
1259       return;
1260 
1261     case 'M': // 0x7fffffff
1262       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1263         if (C->getZExtValue() == 0x7fffffff)
1264           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1265                                               Op.getValueType()));
1266       return;
1267     }
1268   }
1269   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1270 }
1271 
1272 //===----------------------------------------------------------------------===//
1273 // Calling conventions
1274 //===----------------------------------------------------------------------===//
1275 
1276 #include "SystemZGenCallingConv.inc"
1277 
1278 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1279   CallingConv::ID) const {
1280   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1281                                            SystemZ::R14D, 0 };
1282   return ScratchRegs;
1283 }
1284 
1285 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1286                                                      Type *ToType) const {
1287   return isTruncateFree(FromType, ToType);
1288 }
1289 
1290 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1291   return CI->isTailCall();
1292 }
1293 
1294 // We do not yet support 128-bit single-element vector types.  If the user
1295 // attempts to use such types as function argument or return type, prefer
1296 // to error out instead of emitting code violating the ABI.
1297 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1298   if (ArgVT.isVector() && !VT.isVector())
1299     report_fatal_error("Unsupported vector argument or return type");
1300 }
1301 
1302 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1303   for (unsigned i = 0; i < Ins.size(); ++i)
1304     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1305 }
1306 
1307 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1308   for (unsigned i = 0; i < Outs.size(); ++i)
1309     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1310 }
1311 
1312 // Value is a value that has been passed to us in the location described by VA
1313 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1314 // any loads onto Chain.
1315 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1316                                    CCValAssign &VA, SDValue Chain,
1317                                    SDValue Value) {
1318   // If the argument has been promoted from a smaller type, insert an
1319   // assertion to capture this.
1320   if (VA.getLocInfo() == CCValAssign::SExt)
1321     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1322                         DAG.getValueType(VA.getValVT()));
1323   else if (VA.getLocInfo() == CCValAssign::ZExt)
1324     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1325                         DAG.getValueType(VA.getValVT()));
1326 
1327   if (VA.isExtInLoc())
1328     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1329   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1330     // If this is a short vector argument loaded from the stack,
1331     // extend from i64 to full vector size and then bitcast.
1332     assert(VA.getLocVT() == MVT::i64);
1333     assert(VA.getValVT().isVector());
1334     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1335     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1336   } else
1337     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1338   return Value;
1339 }
1340 
1341 // Value is a value of type VA.getValVT() that we need to copy into
1342 // the location described by VA.  Return a copy of Value converted to
1343 // VA.getValVT().  The caller is responsible for handling indirect values.
1344 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1345                                    CCValAssign &VA, SDValue Value) {
1346   switch (VA.getLocInfo()) {
1347   case CCValAssign::SExt:
1348     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1349   case CCValAssign::ZExt:
1350     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1351   case CCValAssign::AExt:
1352     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1353   case CCValAssign::BCvt:
1354     // If this is a short vector argument to be stored to the stack,
1355     // bitcast to v2i64 and then extract first element.
1356     assert(VA.getLocVT() == MVT::i64);
1357     assert(VA.getValVT().isVector());
1358     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1359     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1360                        DAG.getConstant(0, DL, MVT::i32));
1361   case CCValAssign::Full:
1362     return Value;
1363   default:
1364     llvm_unreachable("Unhandled getLocInfo()");
1365   }
1366 }
1367 
1368 SDValue SystemZTargetLowering::LowerFormalArguments(
1369     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1370     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1371     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1372   MachineFunction &MF = DAG.getMachineFunction();
1373   MachineFrameInfo &MFI = MF.getFrameInfo();
1374   MachineRegisterInfo &MRI = MF.getRegInfo();
1375   SystemZMachineFunctionInfo *FuncInfo =
1376       MF.getInfo<SystemZMachineFunctionInfo>();
1377   auto *TFL =
1378       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1379   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1380 
1381   // Detect unsupported vector argument types.
1382   if (Subtarget.hasVector())
1383     VerifyVectorTypes(Ins);
1384 
1385   // Assign locations to all of the incoming arguments.
1386   SmallVector<CCValAssign, 16> ArgLocs;
1387   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1388   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1389 
1390   unsigned NumFixedGPRs = 0;
1391   unsigned NumFixedFPRs = 0;
1392   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1393     SDValue ArgValue;
1394     CCValAssign &VA = ArgLocs[I];
1395     EVT LocVT = VA.getLocVT();
1396     if (VA.isRegLoc()) {
1397       // Arguments passed in registers
1398       const TargetRegisterClass *RC;
1399       switch (LocVT.getSimpleVT().SimpleTy) {
1400       default:
1401         // Integers smaller than i64 should be promoted to i64.
1402         llvm_unreachable("Unexpected argument type");
1403       case MVT::i32:
1404         NumFixedGPRs += 1;
1405         RC = &SystemZ::GR32BitRegClass;
1406         break;
1407       case MVT::i64:
1408         NumFixedGPRs += 1;
1409         RC = &SystemZ::GR64BitRegClass;
1410         break;
1411       case MVT::f32:
1412         NumFixedFPRs += 1;
1413         RC = &SystemZ::FP32BitRegClass;
1414         break;
1415       case MVT::f64:
1416         NumFixedFPRs += 1;
1417         RC = &SystemZ::FP64BitRegClass;
1418         break;
1419       case MVT::v16i8:
1420       case MVT::v8i16:
1421       case MVT::v4i32:
1422       case MVT::v2i64:
1423       case MVT::v4f32:
1424       case MVT::v2f64:
1425         RC = &SystemZ::VR128BitRegClass;
1426         break;
1427       }
1428 
1429       Register VReg = MRI.createVirtualRegister(RC);
1430       MRI.addLiveIn(VA.getLocReg(), VReg);
1431       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1432     } else {
1433       assert(VA.isMemLoc() && "Argument not register or memory");
1434 
1435       // Create the frame index object for this incoming parameter.
1436       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1437                                      VA.getLocMemOffset(), true);
1438 
1439       // Create the SelectionDAG nodes corresponding to a load
1440       // from this parameter.  Unpromoted ints and floats are
1441       // passed as right-justified 8-byte values.
1442       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1443       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1444         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1445                           DAG.getIntPtrConstant(4, DL));
1446       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1447                              MachinePointerInfo::getFixedStack(MF, FI));
1448     }
1449 
1450     // Convert the value of the argument register into the value that's
1451     // being passed.
1452     if (VA.getLocInfo() == CCValAssign::Indirect) {
1453       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1454                                    MachinePointerInfo()));
1455       // If the original argument was split (e.g. i128), we need
1456       // to load all parts of it here (using the same address).
1457       unsigned ArgIndex = Ins[I].OrigArgIndex;
1458       assert (Ins[I].PartOffset == 0);
1459       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1460         CCValAssign &PartVA = ArgLocs[I + 1];
1461         unsigned PartOffset = Ins[I + 1].PartOffset;
1462         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1463                                       DAG.getIntPtrConstant(PartOffset, DL));
1464         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1465                                      MachinePointerInfo()));
1466         ++I;
1467       }
1468     } else
1469       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1470   }
1471 
1472   if (IsVarArg) {
1473     // Save the number of non-varargs registers for later use by va_start, etc.
1474     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1475     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1476 
1477     // Likewise the address (in the form of a frame index) of where the
1478     // first stack vararg would be.  The 1-byte size here is arbitrary.
1479     int64_t StackSize = CCInfo.getNextStackOffset();
1480     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1481 
1482     // ...and a similar frame index for the caller-allocated save area
1483     // that will be used to store the incoming registers.
1484     int64_t RegSaveOffset =
1485       -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1486     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1487     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1488 
1489     // Store the FPR varargs in the reserved frame slots.  (We store the
1490     // GPRs as part of the prologue.)
1491     if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) {
1492       SDValue MemOps[SystemZ::NumArgFPRs];
1493       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1494         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]);
1495         int FI =
1496           MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true);
1497         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1498         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1499                                      &SystemZ::FP64BitRegClass);
1500         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1501         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1502                                  MachinePointerInfo::getFixedStack(MF, FI));
1503       }
1504       // Join the stores, which are independent of one another.
1505       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1506                           makeArrayRef(&MemOps[NumFixedFPRs],
1507                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1508     }
1509   }
1510 
1511   return Chain;
1512 }
1513 
1514 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1515                               SmallVectorImpl<CCValAssign> &ArgLocs,
1516                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1517   // Punt if there are any indirect or stack arguments, or if the call
1518   // needs the callee-saved argument register R6, or if the call uses
1519   // the callee-saved register arguments SwiftSelf and SwiftError.
1520   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1521     CCValAssign &VA = ArgLocs[I];
1522     if (VA.getLocInfo() == CCValAssign::Indirect)
1523       return false;
1524     if (!VA.isRegLoc())
1525       return false;
1526     Register Reg = VA.getLocReg();
1527     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1528       return false;
1529     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1530       return false;
1531   }
1532   return true;
1533 }
1534 
1535 SDValue
1536 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1537                                  SmallVectorImpl<SDValue> &InVals) const {
1538   SelectionDAG &DAG = CLI.DAG;
1539   SDLoc &DL = CLI.DL;
1540   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1541   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1542   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1543   SDValue Chain = CLI.Chain;
1544   SDValue Callee = CLI.Callee;
1545   bool &IsTailCall = CLI.IsTailCall;
1546   CallingConv::ID CallConv = CLI.CallConv;
1547   bool IsVarArg = CLI.IsVarArg;
1548   MachineFunction &MF = DAG.getMachineFunction();
1549   EVT PtrVT = getPointerTy(MF.getDataLayout());
1550 
1551   // Detect unsupported vector argument and return types.
1552   if (Subtarget.hasVector()) {
1553     VerifyVectorTypes(Outs);
1554     VerifyVectorTypes(Ins);
1555   }
1556 
1557   // Analyze the operands of the call, assigning locations to each operand.
1558   SmallVector<CCValAssign, 16> ArgLocs;
1559   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1560   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1561 
1562   // We don't support GuaranteedTailCallOpt, only automatically-detected
1563   // sibling calls.
1564   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1565     IsTailCall = false;
1566 
1567   // Get a count of how many bytes are to be pushed on the stack.
1568   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1569 
1570   // Mark the start of the call.
1571   if (!IsTailCall)
1572     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1573 
1574   // Copy argument values to their designated locations.
1575   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1576   SmallVector<SDValue, 8> MemOpChains;
1577   SDValue StackPtr;
1578   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1579     CCValAssign &VA = ArgLocs[I];
1580     SDValue ArgValue = OutVals[I];
1581 
1582     if (VA.getLocInfo() == CCValAssign::Indirect) {
1583       // Store the argument in a stack slot and pass its address.
1584       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1585       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1586       MemOpChains.push_back(
1587           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1588                        MachinePointerInfo::getFixedStack(MF, FI)));
1589       // If the original argument was split (e.g. i128), we need
1590       // to store all parts of it here (and pass just one address).
1591       unsigned ArgIndex = Outs[I].OrigArgIndex;
1592       assert (Outs[I].PartOffset == 0);
1593       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1594         SDValue PartValue = OutVals[I + 1];
1595         unsigned PartOffset = Outs[I + 1].PartOffset;
1596         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1597                                       DAG.getIntPtrConstant(PartOffset, DL));
1598         MemOpChains.push_back(
1599             DAG.getStore(Chain, DL, PartValue, Address,
1600                          MachinePointerInfo::getFixedStack(MF, FI)));
1601         ++I;
1602       }
1603       ArgValue = SpillSlot;
1604     } else
1605       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1606 
1607     if (VA.isRegLoc())
1608       // Queue up the argument copies and emit them at the end.
1609       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1610     else {
1611       assert(VA.isMemLoc() && "Argument not register or memory");
1612 
1613       // Work out the address of the stack slot.  Unpromoted ints and
1614       // floats are passed as right-justified 8-byte values.
1615       if (!StackPtr.getNode())
1616         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1617       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1618       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1619         Offset += 4;
1620       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1621                                     DAG.getIntPtrConstant(Offset, DL));
1622 
1623       // Emit the store.
1624       MemOpChains.push_back(
1625           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1626     }
1627   }
1628 
1629   // Join the stores, which are independent of one another.
1630   if (!MemOpChains.empty())
1631     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1632 
1633   // Accept direct calls by converting symbolic call addresses to the
1634   // associated Target* opcodes.  Force %r1 to be used for indirect
1635   // tail calls.
1636   SDValue Glue;
1637   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1638     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1639     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1640   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1641     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1642     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1643   } else if (IsTailCall) {
1644     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1645     Glue = Chain.getValue(1);
1646     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1647   }
1648 
1649   // Build a sequence of copy-to-reg nodes, chained and glued together.
1650   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1651     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1652                              RegsToPass[I].second, Glue);
1653     Glue = Chain.getValue(1);
1654   }
1655 
1656   // The first call operand is the chain and the second is the target address.
1657   SmallVector<SDValue, 8> Ops;
1658   Ops.push_back(Chain);
1659   Ops.push_back(Callee);
1660 
1661   // Add argument registers to the end of the list so that they are
1662   // known live into the call.
1663   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1664     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1665                                   RegsToPass[I].second.getValueType()));
1666 
1667   // Add a register mask operand representing the call-preserved registers.
1668   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1669   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1670   assert(Mask && "Missing call preserved mask for calling convention");
1671   Ops.push_back(DAG.getRegisterMask(Mask));
1672 
1673   // Glue the call to the argument copies, if any.
1674   if (Glue.getNode())
1675     Ops.push_back(Glue);
1676 
1677   // Emit the call.
1678   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1679   if (IsTailCall)
1680     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1681   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1682   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1683   Glue = Chain.getValue(1);
1684 
1685   // Mark the end of the call, which is glued to the call itself.
1686   Chain = DAG.getCALLSEQ_END(Chain,
1687                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1688                              DAG.getConstant(0, DL, PtrVT, true),
1689                              Glue, DL);
1690   Glue = Chain.getValue(1);
1691 
1692   // Assign locations to each value returned by this call.
1693   SmallVector<CCValAssign, 16> RetLocs;
1694   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1695   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1696 
1697   // Copy all of the result registers out of their specified physreg.
1698   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1699     CCValAssign &VA = RetLocs[I];
1700 
1701     // Copy the value out, gluing the copy to the end of the call sequence.
1702     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1703                                           VA.getLocVT(), Glue);
1704     Chain = RetValue.getValue(1);
1705     Glue = RetValue.getValue(2);
1706 
1707     // Convert the value of the return register into the value that's
1708     // being returned.
1709     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1710   }
1711 
1712   return Chain;
1713 }
1714 
1715 bool SystemZTargetLowering::
1716 CanLowerReturn(CallingConv::ID CallConv,
1717                MachineFunction &MF, bool isVarArg,
1718                const SmallVectorImpl<ISD::OutputArg> &Outs,
1719                LLVMContext &Context) const {
1720   // Detect unsupported vector return types.
1721   if (Subtarget.hasVector())
1722     VerifyVectorTypes(Outs);
1723 
1724   // Special case that we cannot easily detect in RetCC_SystemZ since
1725   // i128 is not a legal type.
1726   for (auto &Out : Outs)
1727     if (Out.ArgVT == MVT::i128)
1728       return false;
1729 
1730   SmallVector<CCValAssign, 16> RetLocs;
1731   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1732   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1733 }
1734 
1735 SDValue
1736 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1737                                    bool IsVarArg,
1738                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1739                                    const SmallVectorImpl<SDValue> &OutVals,
1740                                    const SDLoc &DL, SelectionDAG &DAG) const {
1741   MachineFunction &MF = DAG.getMachineFunction();
1742 
1743   // Detect unsupported vector return types.
1744   if (Subtarget.hasVector())
1745     VerifyVectorTypes(Outs);
1746 
1747   // Assign locations to each returned value.
1748   SmallVector<CCValAssign, 16> RetLocs;
1749   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1750   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1751 
1752   // Quick exit for void returns
1753   if (RetLocs.empty())
1754     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1755 
1756   if (CallConv == CallingConv::GHC)
1757     report_fatal_error("GHC functions return void only");
1758 
1759   // Copy the result values into the output registers.
1760   SDValue Glue;
1761   SmallVector<SDValue, 4> RetOps;
1762   RetOps.push_back(Chain);
1763   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1764     CCValAssign &VA = RetLocs[I];
1765     SDValue RetValue = OutVals[I];
1766 
1767     // Make the return register live on exit.
1768     assert(VA.isRegLoc() && "Can only return in registers!");
1769 
1770     // Promote the value as required.
1771     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1772 
1773     // Chain and glue the copies together.
1774     Register Reg = VA.getLocReg();
1775     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1776     Glue = Chain.getValue(1);
1777     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1778   }
1779 
1780   // Update chain and glue.
1781   RetOps[0] = Chain;
1782   if (Glue.getNode())
1783     RetOps.push_back(Glue);
1784 
1785   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1786 }
1787 
1788 // Return true if Op is an intrinsic node with chain that returns the CC value
1789 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1790 // the mask of valid CC values if so.
1791 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1792                                       unsigned &CCValid) {
1793   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1794   switch (Id) {
1795   case Intrinsic::s390_tbegin:
1796     Opcode = SystemZISD::TBEGIN;
1797     CCValid = SystemZ::CCMASK_TBEGIN;
1798     return true;
1799 
1800   case Intrinsic::s390_tbegin_nofloat:
1801     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1802     CCValid = SystemZ::CCMASK_TBEGIN;
1803     return true;
1804 
1805   case Intrinsic::s390_tend:
1806     Opcode = SystemZISD::TEND;
1807     CCValid = SystemZ::CCMASK_TEND;
1808     return true;
1809 
1810   default:
1811     return false;
1812   }
1813 }
1814 
1815 // Return true if Op is an intrinsic node without chain that returns the
1816 // CC value as its final argument.  Provide the associated SystemZISD
1817 // opcode and the mask of valid CC values if so.
1818 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1819   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1820   switch (Id) {
1821   case Intrinsic::s390_vpkshs:
1822   case Intrinsic::s390_vpksfs:
1823   case Intrinsic::s390_vpksgs:
1824     Opcode = SystemZISD::PACKS_CC;
1825     CCValid = SystemZ::CCMASK_VCMP;
1826     return true;
1827 
1828   case Intrinsic::s390_vpklshs:
1829   case Intrinsic::s390_vpklsfs:
1830   case Intrinsic::s390_vpklsgs:
1831     Opcode = SystemZISD::PACKLS_CC;
1832     CCValid = SystemZ::CCMASK_VCMP;
1833     return true;
1834 
1835   case Intrinsic::s390_vceqbs:
1836   case Intrinsic::s390_vceqhs:
1837   case Intrinsic::s390_vceqfs:
1838   case Intrinsic::s390_vceqgs:
1839     Opcode = SystemZISD::VICMPES;
1840     CCValid = SystemZ::CCMASK_VCMP;
1841     return true;
1842 
1843   case Intrinsic::s390_vchbs:
1844   case Intrinsic::s390_vchhs:
1845   case Intrinsic::s390_vchfs:
1846   case Intrinsic::s390_vchgs:
1847     Opcode = SystemZISD::VICMPHS;
1848     CCValid = SystemZ::CCMASK_VCMP;
1849     return true;
1850 
1851   case Intrinsic::s390_vchlbs:
1852   case Intrinsic::s390_vchlhs:
1853   case Intrinsic::s390_vchlfs:
1854   case Intrinsic::s390_vchlgs:
1855     Opcode = SystemZISD::VICMPHLS;
1856     CCValid = SystemZ::CCMASK_VCMP;
1857     return true;
1858 
1859   case Intrinsic::s390_vtm:
1860     Opcode = SystemZISD::VTM;
1861     CCValid = SystemZ::CCMASK_VCMP;
1862     return true;
1863 
1864   case Intrinsic::s390_vfaebs:
1865   case Intrinsic::s390_vfaehs:
1866   case Intrinsic::s390_vfaefs:
1867     Opcode = SystemZISD::VFAE_CC;
1868     CCValid = SystemZ::CCMASK_ANY;
1869     return true;
1870 
1871   case Intrinsic::s390_vfaezbs:
1872   case Intrinsic::s390_vfaezhs:
1873   case Intrinsic::s390_vfaezfs:
1874     Opcode = SystemZISD::VFAEZ_CC;
1875     CCValid = SystemZ::CCMASK_ANY;
1876     return true;
1877 
1878   case Intrinsic::s390_vfeebs:
1879   case Intrinsic::s390_vfeehs:
1880   case Intrinsic::s390_vfeefs:
1881     Opcode = SystemZISD::VFEE_CC;
1882     CCValid = SystemZ::CCMASK_ANY;
1883     return true;
1884 
1885   case Intrinsic::s390_vfeezbs:
1886   case Intrinsic::s390_vfeezhs:
1887   case Intrinsic::s390_vfeezfs:
1888     Opcode = SystemZISD::VFEEZ_CC;
1889     CCValid = SystemZ::CCMASK_ANY;
1890     return true;
1891 
1892   case Intrinsic::s390_vfenebs:
1893   case Intrinsic::s390_vfenehs:
1894   case Intrinsic::s390_vfenefs:
1895     Opcode = SystemZISD::VFENE_CC;
1896     CCValid = SystemZ::CCMASK_ANY;
1897     return true;
1898 
1899   case Intrinsic::s390_vfenezbs:
1900   case Intrinsic::s390_vfenezhs:
1901   case Intrinsic::s390_vfenezfs:
1902     Opcode = SystemZISD::VFENEZ_CC;
1903     CCValid = SystemZ::CCMASK_ANY;
1904     return true;
1905 
1906   case Intrinsic::s390_vistrbs:
1907   case Intrinsic::s390_vistrhs:
1908   case Intrinsic::s390_vistrfs:
1909     Opcode = SystemZISD::VISTR_CC;
1910     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1911     return true;
1912 
1913   case Intrinsic::s390_vstrcbs:
1914   case Intrinsic::s390_vstrchs:
1915   case Intrinsic::s390_vstrcfs:
1916     Opcode = SystemZISD::VSTRC_CC;
1917     CCValid = SystemZ::CCMASK_ANY;
1918     return true;
1919 
1920   case Intrinsic::s390_vstrczbs:
1921   case Intrinsic::s390_vstrczhs:
1922   case Intrinsic::s390_vstrczfs:
1923     Opcode = SystemZISD::VSTRCZ_CC;
1924     CCValid = SystemZ::CCMASK_ANY;
1925     return true;
1926 
1927   case Intrinsic::s390_vstrsb:
1928   case Intrinsic::s390_vstrsh:
1929   case Intrinsic::s390_vstrsf:
1930     Opcode = SystemZISD::VSTRS_CC;
1931     CCValid = SystemZ::CCMASK_ANY;
1932     return true;
1933 
1934   case Intrinsic::s390_vstrszb:
1935   case Intrinsic::s390_vstrszh:
1936   case Intrinsic::s390_vstrszf:
1937     Opcode = SystemZISD::VSTRSZ_CC;
1938     CCValid = SystemZ::CCMASK_ANY;
1939     return true;
1940 
1941   case Intrinsic::s390_vfcedbs:
1942   case Intrinsic::s390_vfcesbs:
1943     Opcode = SystemZISD::VFCMPES;
1944     CCValid = SystemZ::CCMASK_VCMP;
1945     return true;
1946 
1947   case Intrinsic::s390_vfchdbs:
1948   case Intrinsic::s390_vfchsbs:
1949     Opcode = SystemZISD::VFCMPHS;
1950     CCValid = SystemZ::CCMASK_VCMP;
1951     return true;
1952 
1953   case Intrinsic::s390_vfchedbs:
1954   case Intrinsic::s390_vfchesbs:
1955     Opcode = SystemZISD::VFCMPHES;
1956     CCValid = SystemZ::CCMASK_VCMP;
1957     return true;
1958 
1959   case Intrinsic::s390_vftcidb:
1960   case Intrinsic::s390_vftcisb:
1961     Opcode = SystemZISD::VFTCI;
1962     CCValid = SystemZ::CCMASK_VCMP;
1963     return true;
1964 
1965   case Intrinsic::s390_tdc:
1966     Opcode = SystemZISD::TDC;
1967     CCValid = SystemZ::CCMASK_TDC;
1968     return true;
1969 
1970   default:
1971     return false;
1972   }
1973 }
1974 
1975 // Emit an intrinsic with chain and an explicit CC register result.
1976 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1977                                            unsigned Opcode) {
1978   // Copy all operands except the intrinsic ID.
1979   unsigned NumOps = Op.getNumOperands();
1980   SmallVector<SDValue, 6> Ops;
1981   Ops.reserve(NumOps - 1);
1982   Ops.push_back(Op.getOperand(0));
1983   for (unsigned I = 2; I < NumOps; ++I)
1984     Ops.push_back(Op.getOperand(I));
1985 
1986   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1987   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1988   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1989   SDValue OldChain = SDValue(Op.getNode(), 1);
1990   SDValue NewChain = SDValue(Intr.getNode(), 1);
1991   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1992   return Intr.getNode();
1993 }
1994 
1995 // Emit an intrinsic with an explicit CC register result.
1996 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1997                                    unsigned Opcode) {
1998   // Copy all operands except the intrinsic ID.
1999   unsigned NumOps = Op.getNumOperands();
2000   SmallVector<SDValue, 6> Ops;
2001   Ops.reserve(NumOps - 1);
2002   for (unsigned I = 1; I < NumOps; ++I)
2003     Ops.push_back(Op.getOperand(I));
2004 
2005   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2006   return Intr.getNode();
2007 }
2008 
2009 // CC is a comparison that will be implemented using an integer or
2010 // floating-point comparison.  Return the condition code mask for
2011 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2012 // unsigned comparisons and clear for signed ones.  In the floating-point
2013 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2014 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2015 #define CONV(X) \
2016   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2017   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2018   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2019 
2020   switch (CC) {
2021   default:
2022     llvm_unreachable("Invalid integer condition!");
2023 
2024   CONV(EQ);
2025   CONV(NE);
2026   CONV(GT);
2027   CONV(GE);
2028   CONV(LT);
2029   CONV(LE);
2030 
2031   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2032   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2033   }
2034 #undef CONV
2035 }
2036 
2037 // If C can be converted to a comparison against zero, adjust the operands
2038 // as necessary.
2039 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2040   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2041     return;
2042 
2043   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2044   if (!ConstOp1)
2045     return;
2046 
2047   int64_t Value = ConstOp1->getSExtValue();
2048   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2049       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2050       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2051       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2052     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2053     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2054   }
2055 }
2056 
2057 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2058 // adjust the operands as necessary.
2059 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2060                              Comparison &C) {
2061   // For us to make any changes, it must a comparison between a single-use
2062   // load and a constant.
2063   if (!C.Op0.hasOneUse() ||
2064       C.Op0.getOpcode() != ISD::LOAD ||
2065       C.Op1.getOpcode() != ISD::Constant)
2066     return;
2067 
2068   // We must have an 8- or 16-bit load.
2069   auto *Load = cast<LoadSDNode>(C.Op0);
2070   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2071   if ((NumBits != 8 && NumBits != 16) ||
2072       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2073     return;
2074 
2075   // The load must be an extending one and the constant must be within the
2076   // range of the unextended value.
2077   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2078   uint64_t Value = ConstOp1->getZExtValue();
2079   uint64_t Mask = (1 << NumBits) - 1;
2080   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2081     // Make sure that ConstOp1 is in range of C.Op0.
2082     int64_t SignedValue = ConstOp1->getSExtValue();
2083     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2084       return;
2085     if (C.ICmpType != SystemZICMP::SignedOnly) {
2086       // Unsigned comparison between two sign-extended values is equivalent
2087       // to unsigned comparison between two zero-extended values.
2088       Value &= Mask;
2089     } else if (NumBits == 8) {
2090       // Try to treat the comparison as unsigned, so that we can use CLI.
2091       // Adjust CCMask and Value as necessary.
2092       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2093         // Test whether the high bit of the byte is set.
2094         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2095       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2096         // Test whether the high bit of the byte is clear.
2097         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2098       else
2099         // No instruction exists for this combination.
2100         return;
2101       C.ICmpType = SystemZICMP::UnsignedOnly;
2102     }
2103   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2104     if (Value > Mask)
2105       return;
2106     // If the constant is in range, we can use any comparison.
2107     C.ICmpType = SystemZICMP::Any;
2108   } else
2109     return;
2110 
2111   // Make sure that the first operand is an i32 of the right extension type.
2112   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2113                               ISD::SEXTLOAD :
2114                               ISD::ZEXTLOAD);
2115   if (C.Op0.getValueType() != MVT::i32 ||
2116       Load->getExtensionType() != ExtType) {
2117     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2118                            Load->getBasePtr(), Load->getPointerInfo(),
2119                            Load->getMemoryVT(), Load->getAlignment(),
2120                            Load->getMemOperand()->getFlags());
2121     // Update the chain uses.
2122     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2123   }
2124 
2125   // Make sure that the second operand is an i32 with the right value.
2126   if (C.Op1.getValueType() != MVT::i32 ||
2127       Value != ConstOp1->getZExtValue())
2128     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2129 }
2130 
2131 // Return true if Op is either an unextended load, or a load suitable
2132 // for integer register-memory comparisons of type ICmpType.
2133 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2134   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2135   if (Load) {
2136     // There are no instructions to compare a register with a memory byte.
2137     if (Load->getMemoryVT() == MVT::i8)
2138       return false;
2139     // Otherwise decide on extension type.
2140     switch (Load->getExtensionType()) {
2141     case ISD::NON_EXTLOAD:
2142       return true;
2143     case ISD::SEXTLOAD:
2144       return ICmpType != SystemZICMP::UnsignedOnly;
2145     case ISD::ZEXTLOAD:
2146       return ICmpType != SystemZICMP::SignedOnly;
2147     default:
2148       break;
2149     }
2150   }
2151   return false;
2152 }
2153 
2154 // Return true if it is better to swap the operands of C.
2155 static bool shouldSwapCmpOperands(const Comparison &C) {
2156   // Leave f128 comparisons alone, since they have no memory forms.
2157   if (C.Op0.getValueType() == MVT::f128)
2158     return false;
2159 
2160   // Always keep a floating-point constant second, since comparisons with
2161   // zero can use LOAD TEST and comparisons with other constants make a
2162   // natural memory operand.
2163   if (isa<ConstantFPSDNode>(C.Op1))
2164     return false;
2165 
2166   // Never swap comparisons with zero since there are many ways to optimize
2167   // those later.
2168   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2169   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2170     return false;
2171 
2172   // Also keep natural memory operands second if the loaded value is
2173   // only used here.  Several comparisons have memory forms.
2174   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2175     return false;
2176 
2177   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2178   // In that case we generally prefer the memory to be second.
2179   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2180     // The only exceptions are when the second operand is a constant and
2181     // we can use things like CHHSI.
2182     if (!ConstOp1)
2183       return true;
2184     // The unsigned memory-immediate instructions can handle 16-bit
2185     // unsigned integers.
2186     if (C.ICmpType != SystemZICMP::SignedOnly &&
2187         isUInt<16>(ConstOp1->getZExtValue()))
2188       return false;
2189     // The signed memory-immediate instructions can handle 16-bit
2190     // signed integers.
2191     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2192         isInt<16>(ConstOp1->getSExtValue()))
2193       return false;
2194     return true;
2195   }
2196 
2197   // Try to promote the use of CGFR and CLGFR.
2198   unsigned Opcode0 = C.Op0.getOpcode();
2199   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2200     return true;
2201   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2202     return true;
2203   if (C.ICmpType != SystemZICMP::SignedOnly &&
2204       Opcode0 == ISD::AND &&
2205       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2206       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2207     return true;
2208 
2209   return false;
2210 }
2211 
2212 // Check whether C tests for equality between X and Y and whether X - Y
2213 // or Y - X is also computed.  In that case it's better to compare the
2214 // result of the subtraction against zero.
2215 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2216                                  Comparison &C) {
2217   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2218       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2219     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2220       SDNode *N = *I;
2221       if (N->getOpcode() == ISD::SUB &&
2222           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2223            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2224         C.Op0 = SDValue(N, 0);
2225         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2226         return;
2227       }
2228     }
2229   }
2230 }
2231 
2232 // Check whether C compares a floating-point value with zero and if that
2233 // floating-point value is also negated.  In this case we can use the
2234 // negation to set CC, so avoiding separate LOAD AND TEST and
2235 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2236 static void adjustForFNeg(Comparison &C) {
2237   // This optimization is invalid for strict comparisons, since FNEG
2238   // does not raise any exceptions.
2239   if (C.Chain)
2240     return;
2241   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2242   if (C1 && C1->isZero()) {
2243     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2244       SDNode *N = *I;
2245       if (N->getOpcode() == ISD::FNEG) {
2246         C.Op0 = SDValue(N, 0);
2247         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2248         return;
2249       }
2250     }
2251   }
2252 }
2253 
2254 // Check whether C compares (shl X, 32) with 0 and whether X is
2255 // also sign-extended.  In that case it is better to test the result
2256 // of the sign extension using LTGFR.
2257 //
2258 // This case is important because InstCombine transforms a comparison
2259 // with (sext (trunc X)) into a comparison with (shl X, 32).
2260 static void adjustForLTGFR(Comparison &C) {
2261   // Check for a comparison between (shl X, 32) and 0.
2262   if (C.Op0.getOpcode() == ISD::SHL &&
2263       C.Op0.getValueType() == MVT::i64 &&
2264       C.Op1.getOpcode() == ISD::Constant &&
2265       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2266     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2267     if (C1 && C1->getZExtValue() == 32) {
2268       SDValue ShlOp0 = C.Op0.getOperand(0);
2269       // See whether X has any SIGN_EXTEND_INREG uses.
2270       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2271         SDNode *N = *I;
2272         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2273             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2274           C.Op0 = SDValue(N, 0);
2275           return;
2276         }
2277       }
2278     }
2279   }
2280 }
2281 
2282 // If C compares the truncation of an extending load, try to compare
2283 // the untruncated value instead.  This exposes more opportunities to
2284 // reuse CC.
2285 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2286                                Comparison &C) {
2287   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2288       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2289       C.Op1.getOpcode() == ISD::Constant &&
2290       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2291     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2292     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2293         C.Op0.getValueSizeInBits().getFixedSize()) {
2294       unsigned Type = L->getExtensionType();
2295       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2296           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2297         C.Op0 = C.Op0.getOperand(0);
2298         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2299       }
2300     }
2301   }
2302 }
2303 
2304 // Return true if shift operation N has an in-range constant shift value.
2305 // Store it in ShiftVal if so.
2306 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2307   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2308   if (!Shift)
2309     return false;
2310 
2311   uint64_t Amount = Shift->getZExtValue();
2312   if (Amount >= N.getValueSizeInBits())
2313     return false;
2314 
2315   ShiftVal = Amount;
2316   return true;
2317 }
2318 
2319 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2320 // instruction and whether the CC value is descriptive enough to handle
2321 // a comparison of type Opcode between the AND result and CmpVal.
2322 // CCMask says which comparison result is being tested and BitSize is
2323 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2324 // return the corresponding CC mask, otherwise return 0.
2325 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2326                                      uint64_t Mask, uint64_t CmpVal,
2327                                      unsigned ICmpType) {
2328   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2329 
2330   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2331   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2332       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2333     return 0;
2334 
2335   // Work out the masks for the lowest and highest bits.
2336   unsigned HighShift = 63 - countLeadingZeros(Mask);
2337   uint64_t High = uint64_t(1) << HighShift;
2338   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2339 
2340   // Signed ordered comparisons are effectively unsigned if the sign
2341   // bit is dropped.
2342   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2343 
2344   // Check for equality comparisons with 0, or the equivalent.
2345   if (CmpVal == 0) {
2346     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2347       return SystemZ::CCMASK_TM_ALL_0;
2348     if (CCMask == SystemZ::CCMASK_CMP_NE)
2349       return SystemZ::CCMASK_TM_SOME_1;
2350   }
2351   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2352     if (CCMask == SystemZ::CCMASK_CMP_LT)
2353       return SystemZ::CCMASK_TM_ALL_0;
2354     if (CCMask == SystemZ::CCMASK_CMP_GE)
2355       return SystemZ::CCMASK_TM_SOME_1;
2356   }
2357   if (EffectivelyUnsigned && CmpVal < Low) {
2358     if (CCMask == SystemZ::CCMASK_CMP_LE)
2359       return SystemZ::CCMASK_TM_ALL_0;
2360     if (CCMask == SystemZ::CCMASK_CMP_GT)
2361       return SystemZ::CCMASK_TM_SOME_1;
2362   }
2363 
2364   // Check for equality comparisons with the mask, or the equivalent.
2365   if (CmpVal == Mask) {
2366     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2367       return SystemZ::CCMASK_TM_ALL_1;
2368     if (CCMask == SystemZ::CCMASK_CMP_NE)
2369       return SystemZ::CCMASK_TM_SOME_0;
2370   }
2371   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2372     if (CCMask == SystemZ::CCMASK_CMP_GT)
2373       return SystemZ::CCMASK_TM_ALL_1;
2374     if (CCMask == SystemZ::CCMASK_CMP_LE)
2375       return SystemZ::CCMASK_TM_SOME_0;
2376   }
2377   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2378     if (CCMask == SystemZ::CCMASK_CMP_GE)
2379       return SystemZ::CCMASK_TM_ALL_1;
2380     if (CCMask == SystemZ::CCMASK_CMP_LT)
2381       return SystemZ::CCMASK_TM_SOME_0;
2382   }
2383 
2384   // Check for ordered comparisons with the top bit.
2385   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2386     if (CCMask == SystemZ::CCMASK_CMP_LE)
2387       return SystemZ::CCMASK_TM_MSB_0;
2388     if (CCMask == SystemZ::CCMASK_CMP_GT)
2389       return SystemZ::CCMASK_TM_MSB_1;
2390   }
2391   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2392     if (CCMask == SystemZ::CCMASK_CMP_LT)
2393       return SystemZ::CCMASK_TM_MSB_0;
2394     if (CCMask == SystemZ::CCMASK_CMP_GE)
2395       return SystemZ::CCMASK_TM_MSB_1;
2396   }
2397 
2398   // If there are just two bits, we can do equality checks for Low and High
2399   // as well.
2400   if (Mask == Low + High) {
2401     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2402       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2403     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2404       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2405     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2406       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2407     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2408       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2409   }
2410 
2411   // Looks like we've exhausted our options.
2412   return 0;
2413 }
2414 
2415 // See whether C can be implemented as a TEST UNDER MASK instruction.
2416 // Update the arguments with the TM version if so.
2417 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2418                                    Comparison &C) {
2419   // Check that we have a comparison with a constant.
2420   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2421   if (!ConstOp1)
2422     return;
2423   uint64_t CmpVal = ConstOp1->getZExtValue();
2424 
2425   // Check whether the nonconstant input is an AND with a constant mask.
2426   Comparison NewC(C);
2427   uint64_t MaskVal;
2428   ConstantSDNode *Mask = nullptr;
2429   if (C.Op0.getOpcode() == ISD::AND) {
2430     NewC.Op0 = C.Op0.getOperand(0);
2431     NewC.Op1 = C.Op0.getOperand(1);
2432     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2433     if (!Mask)
2434       return;
2435     MaskVal = Mask->getZExtValue();
2436   } else {
2437     // There is no instruction to compare with a 64-bit immediate
2438     // so use TMHH instead if possible.  We need an unsigned ordered
2439     // comparison with an i64 immediate.
2440     if (NewC.Op0.getValueType() != MVT::i64 ||
2441         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2442         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2443         NewC.ICmpType == SystemZICMP::SignedOnly)
2444       return;
2445     // Convert LE and GT comparisons into LT and GE.
2446     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2447         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2448       if (CmpVal == uint64_t(-1))
2449         return;
2450       CmpVal += 1;
2451       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2452     }
2453     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2454     // be masked off without changing the result.
2455     MaskVal = -(CmpVal & -CmpVal);
2456     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2457   }
2458   if (!MaskVal)
2459     return;
2460 
2461   // Check whether the combination of mask, comparison value and comparison
2462   // type are suitable.
2463   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2464   unsigned NewCCMask, ShiftVal;
2465   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2466       NewC.Op0.getOpcode() == ISD::SHL &&
2467       isSimpleShift(NewC.Op0, ShiftVal) &&
2468       (MaskVal >> ShiftVal != 0) &&
2469       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2470       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2471                                         MaskVal >> ShiftVal,
2472                                         CmpVal >> ShiftVal,
2473                                         SystemZICMP::Any))) {
2474     NewC.Op0 = NewC.Op0.getOperand(0);
2475     MaskVal >>= ShiftVal;
2476   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2477              NewC.Op0.getOpcode() == ISD::SRL &&
2478              isSimpleShift(NewC.Op0, ShiftVal) &&
2479              (MaskVal << ShiftVal != 0) &&
2480              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2481              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2482                                                MaskVal << ShiftVal,
2483                                                CmpVal << ShiftVal,
2484                                                SystemZICMP::UnsignedOnly))) {
2485     NewC.Op0 = NewC.Op0.getOperand(0);
2486     MaskVal <<= ShiftVal;
2487   } else {
2488     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2489                                      NewC.ICmpType);
2490     if (!NewCCMask)
2491       return;
2492   }
2493 
2494   // Go ahead and make the change.
2495   C.Opcode = SystemZISD::TM;
2496   C.Op0 = NewC.Op0;
2497   if (Mask && Mask->getZExtValue() == MaskVal)
2498     C.Op1 = SDValue(Mask, 0);
2499   else
2500     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2501   C.CCValid = SystemZ::CCMASK_TM;
2502   C.CCMask = NewCCMask;
2503 }
2504 
2505 // See whether the comparison argument contains a redundant AND
2506 // and remove it if so.  This sometimes happens due to the generic
2507 // BRCOND expansion.
2508 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2509                                   Comparison &C) {
2510   if (C.Op0.getOpcode() != ISD::AND)
2511     return;
2512   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2513   if (!Mask)
2514     return;
2515   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2516   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2517     return;
2518 
2519   C.Op0 = C.Op0.getOperand(0);
2520 }
2521 
2522 // Return a Comparison that tests the condition-code result of intrinsic
2523 // node Call against constant integer CC using comparison code Cond.
2524 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2525 // and CCValid is the set of possible condition-code results.
2526 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2527                                   SDValue Call, unsigned CCValid, uint64_t CC,
2528                                   ISD::CondCode Cond) {
2529   Comparison C(Call, SDValue(), SDValue());
2530   C.Opcode = Opcode;
2531   C.CCValid = CCValid;
2532   if (Cond == ISD::SETEQ)
2533     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2534     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2535   else if (Cond == ISD::SETNE)
2536     // ...and the inverse of that.
2537     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2538   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2539     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2540     // always true for CC>3.
2541     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2542   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2543     // ...and the inverse of that.
2544     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2545   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2546     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2547     // always true for CC>3.
2548     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2549   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2550     // ...and the inverse of that.
2551     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2552   else
2553     llvm_unreachable("Unexpected integer comparison type");
2554   C.CCMask &= CCValid;
2555   return C;
2556 }
2557 
2558 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2559 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2560                          ISD::CondCode Cond, const SDLoc &DL,
2561                          SDValue Chain = SDValue(),
2562                          bool IsSignaling = false) {
2563   if (CmpOp1.getOpcode() == ISD::Constant) {
2564     assert(!Chain);
2565     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2566     unsigned Opcode, CCValid;
2567     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2568         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2569         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2570       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2571     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2572         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2573         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2574       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2575   }
2576   Comparison C(CmpOp0, CmpOp1, Chain);
2577   C.CCMask = CCMaskForCondCode(Cond);
2578   if (C.Op0.getValueType().isFloatingPoint()) {
2579     C.CCValid = SystemZ::CCMASK_FCMP;
2580     if (!C.Chain)
2581       C.Opcode = SystemZISD::FCMP;
2582     else if (!IsSignaling)
2583       C.Opcode = SystemZISD::STRICT_FCMP;
2584     else
2585       C.Opcode = SystemZISD::STRICT_FCMPS;
2586     adjustForFNeg(C);
2587   } else {
2588     assert(!C.Chain);
2589     C.CCValid = SystemZ::CCMASK_ICMP;
2590     C.Opcode = SystemZISD::ICMP;
2591     // Choose the type of comparison.  Equality and inequality tests can
2592     // use either signed or unsigned comparisons.  The choice also doesn't
2593     // matter if both sign bits are known to be clear.  In those cases we
2594     // want to give the main isel code the freedom to choose whichever
2595     // form fits best.
2596     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2597         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2598         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2599       C.ICmpType = SystemZICMP::Any;
2600     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2601       C.ICmpType = SystemZICMP::UnsignedOnly;
2602     else
2603       C.ICmpType = SystemZICMP::SignedOnly;
2604     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2605     adjustForRedundantAnd(DAG, DL, C);
2606     adjustZeroCmp(DAG, DL, C);
2607     adjustSubwordCmp(DAG, DL, C);
2608     adjustForSubtraction(DAG, DL, C);
2609     adjustForLTGFR(C);
2610     adjustICmpTruncate(DAG, DL, C);
2611   }
2612 
2613   if (shouldSwapCmpOperands(C)) {
2614     std::swap(C.Op0, C.Op1);
2615     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2616   }
2617 
2618   adjustForTestUnderMask(DAG, DL, C);
2619   return C;
2620 }
2621 
2622 // Emit the comparison instruction described by C.
2623 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2624   if (!C.Op1.getNode()) {
2625     SDNode *Node;
2626     switch (C.Op0.getOpcode()) {
2627     case ISD::INTRINSIC_W_CHAIN:
2628       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2629       return SDValue(Node, 0);
2630     case ISD::INTRINSIC_WO_CHAIN:
2631       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2632       return SDValue(Node, Node->getNumValues() - 1);
2633     default:
2634       llvm_unreachable("Invalid comparison operands");
2635     }
2636   }
2637   if (C.Opcode == SystemZISD::ICMP)
2638     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2639                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2640   if (C.Opcode == SystemZISD::TM) {
2641     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2642                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2643     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2644                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2645   }
2646   if (C.Chain) {
2647     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2648     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2649   }
2650   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2651 }
2652 
2653 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2654 // 64 bits.  Extend is the extension type to use.  Store the high part
2655 // in Hi and the low part in Lo.
2656 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2657                             SDValue Op0, SDValue Op1, SDValue &Hi,
2658                             SDValue &Lo) {
2659   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2660   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2661   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2662   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2663                    DAG.getConstant(32, DL, MVT::i64));
2664   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2665   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2666 }
2667 
2668 // Lower a binary operation that produces two VT results, one in each
2669 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2670 // and Opcode performs the GR128 operation.  Store the even register result
2671 // in Even and the odd register result in Odd.
2672 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2673                              unsigned Opcode, SDValue Op0, SDValue Op1,
2674                              SDValue &Even, SDValue &Odd) {
2675   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2676   bool Is32Bit = is32Bit(VT);
2677   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2678   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2679 }
2680 
2681 // Return an i32 value that is 1 if the CC value produced by CCReg is
2682 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2683 // in CCValid, so other values can be ignored.
2684 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2685                          unsigned CCValid, unsigned CCMask) {
2686   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2687                    DAG.getConstant(0, DL, MVT::i32),
2688                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2689                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2690   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2691 }
2692 
2693 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2694 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2695 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2696 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2697 // floating-point comparisons.
2698 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2699 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2700   switch (CC) {
2701   case ISD::SETOEQ:
2702   case ISD::SETEQ:
2703     switch (Mode) {
2704     case CmpMode::Int:         return SystemZISD::VICMPE;
2705     case CmpMode::FP:          return SystemZISD::VFCMPE;
2706     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2707     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2708     }
2709     llvm_unreachable("Bad mode");
2710 
2711   case ISD::SETOGE:
2712   case ISD::SETGE:
2713     switch (Mode) {
2714     case CmpMode::Int:         return 0;
2715     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2716     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2717     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2718     }
2719     llvm_unreachable("Bad mode");
2720 
2721   case ISD::SETOGT:
2722   case ISD::SETGT:
2723     switch (Mode) {
2724     case CmpMode::Int:         return SystemZISD::VICMPH;
2725     case CmpMode::FP:          return SystemZISD::VFCMPH;
2726     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2727     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2728     }
2729     llvm_unreachable("Bad mode");
2730 
2731   case ISD::SETUGT:
2732     switch (Mode) {
2733     case CmpMode::Int:         return SystemZISD::VICMPHL;
2734     case CmpMode::FP:          return 0;
2735     case CmpMode::StrictFP:    return 0;
2736     case CmpMode::SignalingFP: return 0;
2737     }
2738     llvm_unreachable("Bad mode");
2739 
2740   default:
2741     return 0;
2742   }
2743 }
2744 
2745 // Return the SystemZISD vector comparison operation for CC or its inverse,
2746 // or 0 if neither can be done directly.  Indicate in Invert whether the
2747 // result is for the inverse of CC.  Mode is as above.
2748 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2749                                             bool &Invert) {
2750   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2751     Invert = false;
2752     return Opcode;
2753   }
2754 
2755   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2756   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2757     Invert = true;
2758     return Opcode;
2759   }
2760 
2761   return 0;
2762 }
2763 
2764 // Return a v2f64 that contains the extended form of elements Start and Start+1
2765 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2766 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2767                                   SDValue Op, SDValue Chain) {
2768   int Mask[] = { Start, -1, Start + 1, -1 };
2769   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2770   if (Chain) {
2771     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2772     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2773   }
2774   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2775 }
2776 
2777 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2778 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2779 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2780                                             const SDLoc &DL, EVT VT,
2781                                             SDValue CmpOp0,
2782                                             SDValue CmpOp1,
2783                                             SDValue Chain) const {
2784   // There is no hardware support for v4f32 (unless we have the vector
2785   // enhancements facility 1), so extend the vector into two v2f64s
2786   // and compare those.
2787   if (CmpOp0.getValueType() == MVT::v4f32 &&
2788       !Subtarget.hasVectorEnhancements1()) {
2789     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2790     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2791     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2792     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2793     if (Chain) {
2794       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2795       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2796       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2797       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2798       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2799                             H1.getValue(1), L1.getValue(1),
2800                             HRes.getValue(1), LRes.getValue(1) };
2801       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2802       SDValue Ops[2] = { Res, NewChain };
2803       return DAG.getMergeValues(Ops, DL);
2804     }
2805     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2806     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2807     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2808   }
2809   if (Chain) {
2810     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2811     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2812   }
2813   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2814 }
2815 
2816 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2817 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2818 // floating-point comparison.  If in addition IsSignaling is true, we have
2819 // a strict signaling floating-point comparison.
2820 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2821                                                 const SDLoc &DL, EVT VT,
2822                                                 ISD::CondCode CC,
2823                                                 SDValue CmpOp0,
2824                                                 SDValue CmpOp1,
2825                                                 SDValue Chain,
2826                                                 bool IsSignaling) const {
2827   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2828   assert (!Chain || IsFP);
2829   assert (!IsSignaling || Chain);
2830   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2831                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2832   bool Invert = false;
2833   SDValue Cmp;
2834   switch (CC) {
2835     // Handle tests for order using (or (ogt y x) (oge x y)).
2836   case ISD::SETUO:
2837     Invert = true;
2838     LLVM_FALLTHROUGH;
2839   case ISD::SETO: {
2840     assert(IsFP && "Unexpected integer comparison");
2841     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2842                               DL, VT, CmpOp1, CmpOp0, Chain);
2843     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2844                               DL, VT, CmpOp0, CmpOp1, Chain);
2845     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2846     if (Chain)
2847       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2848                           LT.getValue(1), GE.getValue(1));
2849     break;
2850   }
2851 
2852     // Handle <> tests using (or (ogt y x) (ogt x y)).
2853   case ISD::SETUEQ:
2854     Invert = true;
2855     LLVM_FALLTHROUGH;
2856   case ISD::SETONE: {
2857     assert(IsFP && "Unexpected integer comparison");
2858     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2859                               DL, VT, CmpOp1, CmpOp0, Chain);
2860     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2861                               DL, VT, CmpOp0, CmpOp1, Chain);
2862     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2863     if (Chain)
2864       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2865                           LT.getValue(1), GT.getValue(1));
2866     break;
2867   }
2868 
2869     // Otherwise a single comparison is enough.  It doesn't really
2870     // matter whether we try the inversion or the swap first, since
2871     // there are no cases where both work.
2872   default:
2873     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2874       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2875     else {
2876       CC = ISD::getSetCCSwappedOperands(CC);
2877       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2878         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2879       else
2880         llvm_unreachable("Unhandled comparison");
2881     }
2882     if (Chain)
2883       Chain = Cmp.getValue(1);
2884     break;
2885   }
2886   if (Invert) {
2887     SDValue Mask =
2888       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2889     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2890   }
2891   if (Chain && Chain.getNode() != Cmp.getNode()) {
2892     SDValue Ops[2] = { Cmp, Chain };
2893     Cmp = DAG.getMergeValues(Ops, DL);
2894   }
2895   return Cmp;
2896 }
2897 
2898 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2899                                           SelectionDAG &DAG) const {
2900   SDValue CmpOp0   = Op.getOperand(0);
2901   SDValue CmpOp1   = Op.getOperand(1);
2902   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2903   SDLoc DL(Op);
2904   EVT VT = Op.getValueType();
2905   if (VT.isVector())
2906     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2907 
2908   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2909   SDValue CCReg = emitCmp(DAG, DL, C);
2910   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2911 }
2912 
2913 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2914                                                   SelectionDAG &DAG,
2915                                                   bool IsSignaling) const {
2916   SDValue Chain    = Op.getOperand(0);
2917   SDValue CmpOp0   = Op.getOperand(1);
2918   SDValue CmpOp1   = Op.getOperand(2);
2919   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2920   SDLoc DL(Op);
2921   EVT VT = Op.getNode()->getValueType(0);
2922   if (VT.isVector()) {
2923     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2924                                    Chain, IsSignaling);
2925     return Res.getValue(Op.getResNo());
2926   }
2927 
2928   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2929   SDValue CCReg = emitCmp(DAG, DL, C);
2930   CCReg->setFlags(Op->getFlags());
2931   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2932   SDValue Ops[2] = { Result, CCReg.getValue(1) };
2933   return DAG.getMergeValues(Ops, DL);
2934 }
2935 
2936 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2937   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2938   SDValue CmpOp0   = Op.getOperand(2);
2939   SDValue CmpOp1   = Op.getOperand(3);
2940   SDValue Dest     = Op.getOperand(4);
2941   SDLoc DL(Op);
2942 
2943   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2944   SDValue CCReg = emitCmp(DAG, DL, C);
2945   return DAG.getNode(
2946       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2947       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2948       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2949 }
2950 
2951 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2952 // allowing Pos and Neg to be wider than CmpOp.
2953 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2954   return (Neg.getOpcode() == ISD::SUB &&
2955           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2956           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2957           Neg.getOperand(1) == Pos &&
2958           (Pos == CmpOp ||
2959            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2960             Pos.getOperand(0) == CmpOp)));
2961 }
2962 
2963 // Return the absolute or negative absolute of Op; IsNegative decides which.
2964 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2965                            bool IsNegative) {
2966   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
2967   if (IsNegative)
2968     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2969                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2970   return Op;
2971 }
2972 
2973 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2974                                               SelectionDAG &DAG) const {
2975   SDValue CmpOp0   = Op.getOperand(0);
2976   SDValue CmpOp1   = Op.getOperand(1);
2977   SDValue TrueOp   = Op.getOperand(2);
2978   SDValue FalseOp  = Op.getOperand(3);
2979   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2980   SDLoc DL(Op);
2981 
2982   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2983 
2984   // Check for absolute and negative-absolute selections, including those
2985   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2986   // This check supplements the one in DAGCombiner.
2987   if (C.Opcode == SystemZISD::ICMP &&
2988       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2989       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2990       C.Op1.getOpcode() == ISD::Constant &&
2991       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2992     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2993       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2994     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2995       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2996   }
2997 
2998   SDValue CCReg = emitCmp(DAG, DL, C);
2999   SDValue Ops[] = {TrueOp, FalseOp,
3000                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3001                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3002 
3003   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3004 }
3005 
3006 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3007                                                   SelectionDAG &DAG) const {
3008   SDLoc DL(Node);
3009   const GlobalValue *GV = Node->getGlobal();
3010   int64_t Offset = Node->getOffset();
3011   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3012   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3013 
3014   SDValue Result;
3015   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3016     if (isInt<32>(Offset)) {
3017       // Assign anchors at 1<<12 byte boundaries.
3018       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3019       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3020       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3021 
3022       // The offset can be folded into the address if it is aligned to a
3023       // halfword.
3024       Offset -= Anchor;
3025       if (Offset != 0 && (Offset & 1) == 0) {
3026         SDValue Full =
3027           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3028         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3029         Offset = 0;
3030       }
3031     } else {
3032       // Conservatively load a constant offset greater than 32 bits into a
3033       // register below.
3034       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3035       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3036     }
3037   } else {
3038     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3039     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3040     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3041                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3042   }
3043 
3044   // If there was a non-zero offset that we didn't fold, create an explicit
3045   // addition for it.
3046   if (Offset != 0)
3047     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3048                          DAG.getConstant(Offset, DL, PtrVT));
3049 
3050   return Result;
3051 }
3052 
3053 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3054                                                  SelectionDAG &DAG,
3055                                                  unsigned Opcode,
3056                                                  SDValue GOTOffset) const {
3057   SDLoc DL(Node);
3058   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3059   SDValue Chain = DAG.getEntryNode();
3060   SDValue Glue;
3061 
3062   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3063       CallingConv::GHC)
3064     report_fatal_error("In GHC calling convention TLS is not supported");
3065 
3066   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3067   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3068   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3069   Glue = Chain.getValue(1);
3070   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3071   Glue = Chain.getValue(1);
3072 
3073   // The first call operand is the chain and the second is the TLS symbol.
3074   SmallVector<SDValue, 8> Ops;
3075   Ops.push_back(Chain);
3076   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3077                                            Node->getValueType(0),
3078                                            0, 0));
3079 
3080   // Add argument registers to the end of the list so that they are
3081   // known live into the call.
3082   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3083   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3084 
3085   // Add a register mask operand representing the call-preserved registers.
3086   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3087   const uint32_t *Mask =
3088       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3089   assert(Mask && "Missing call preserved mask for calling convention");
3090   Ops.push_back(DAG.getRegisterMask(Mask));
3091 
3092   // Glue the call to the argument copies.
3093   Ops.push_back(Glue);
3094 
3095   // Emit the call.
3096   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3097   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3098   Glue = Chain.getValue(1);
3099 
3100   // Copy the return value from %r2.
3101   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3102 }
3103 
3104 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3105                                                   SelectionDAG &DAG) const {
3106   SDValue Chain = DAG.getEntryNode();
3107   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3108 
3109   // The high part of the thread pointer is in access register 0.
3110   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3111   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3112 
3113   // The low part of the thread pointer is in access register 1.
3114   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3115   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3116 
3117   // Merge them into a single 64-bit address.
3118   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3119                                     DAG.getConstant(32, DL, PtrVT));
3120   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3121 }
3122 
3123 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3124                                                      SelectionDAG &DAG) const {
3125   if (DAG.getTarget().useEmulatedTLS())
3126     return LowerToTLSEmulatedModel(Node, DAG);
3127   SDLoc DL(Node);
3128   const GlobalValue *GV = Node->getGlobal();
3129   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3130   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3131 
3132   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3133       CallingConv::GHC)
3134     report_fatal_error("In GHC calling convention TLS is not supported");
3135 
3136   SDValue TP = lowerThreadPointer(DL, DAG);
3137 
3138   // Get the offset of GA from the thread pointer, based on the TLS model.
3139   SDValue Offset;
3140   switch (model) {
3141     case TLSModel::GeneralDynamic: {
3142       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3143       SystemZConstantPoolValue *CPV =
3144         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3145 
3146       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3147       Offset = DAG.getLoad(
3148           PtrVT, DL, DAG.getEntryNode(), Offset,
3149           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3150 
3151       // Call __tls_get_offset to retrieve the offset.
3152       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3153       break;
3154     }
3155 
3156     case TLSModel::LocalDynamic: {
3157       // Load the GOT offset of the module ID.
3158       SystemZConstantPoolValue *CPV =
3159         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3160 
3161       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3162       Offset = DAG.getLoad(
3163           PtrVT, DL, DAG.getEntryNode(), Offset,
3164           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3165 
3166       // Call __tls_get_offset to retrieve the module base offset.
3167       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3168 
3169       // Note: The SystemZLDCleanupPass will remove redundant computations
3170       // of the module base offset.  Count total number of local-dynamic
3171       // accesses to trigger execution of that pass.
3172       SystemZMachineFunctionInfo* MFI =
3173         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3174       MFI->incNumLocalDynamicTLSAccesses();
3175 
3176       // Add the per-symbol offset.
3177       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3178 
3179       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3180       DTPOffset = DAG.getLoad(
3181           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3182           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3183 
3184       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3185       break;
3186     }
3187 
3188     case TLSModel::InitialExec: {
3189       // Load the offset from the GOT.
3190       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3191                                           SystemZII::MO_INDNTPOFF);
3192       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3193       Offset =
3194           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3195                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3196       break;
3197     }
3198 
3199     case TLSModel::LocalExec: {
3200       // Force the offset into the constant pool and load it from there.
3201       SystemZConstantPoolValue *CPV =
3202         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3203 
3204       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3205       Offset = DAG.getLoad(
3206           PtrVT, DL, DAG.getEntryNode(), Offset,
3207           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3208       break;
3209     }
3210   }
3211 
3212   // Add the base and offset together.
3213   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3214 }
3215 
3216 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3217                                                  SelectionDAG &DAG) const {
3218   SDLoc DL(Node);
3219   const BlockAddress *BA = Node->getBlockAddress();
3220   int64_t Offset = Node->getOffset();
3221   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3222 
3223   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3224   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3225   return Result;
3226 }
3227 
3228 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3229                                               SelectionDAG &DAG) const {
3230   SDLoc DL(JT);
3231   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3232   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3233 
3234   // Use LARL to load the address of the table.
3235   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3236 }
3237 
3238 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3239                                                  SelectionDAG &DAG) const {
3240   SDLoc DL(CP);
3241   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3242 
3243   SDValue Result;
3244   if (CP->isMachineConstantPoolEntry())
3245     Result =
3246         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3247   else
3248     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3249                                        CP->getOffset());
3250 
3251   // Use LARL to load the address of the constant pool entry.
3252   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3253 }
3254 
3255 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3256                                               SelectionDAG &DAG) const {
3257   auto *TFL =
3258       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3259   MachineFunction &MF = DAG.getMachineFunction();
3260   MachineFrameInfo &MFI = MF.getFrameInfo();
3261   MFI.setFrameAddressIsTaken(true);
3262 
3263   SDLoc DL(Op);
3264   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3265   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3266 
3267   // Return null if the back chain is not present.
3268   bool HasBackChain = MF.getFunction().hasFnAttribute("backchain");
3269   if (TFL->usePackedStack(MF) && !HasBackChain)
3270     return DAG.getConstant(0, DL, PtrVT);
3271 
3272   // By definition, the frame address is the address of the back chain.
3273   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3274   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3275 
3276   // FIXME The frontend should detect this case.
3277   if (Depth > 0) {
3278     report_fatal_error("Unsupported stack frame traversal count");
3279   }
3280 
3281   return BackChain;
3282 }
3283 
3284 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3285                                                SelectionDAG &DAG) const {
3286   MachineFunction &MF = DAG.getMachineFunction();
3287   MachineFrameInfo &MFI = MF.getFrameInfo();
3288   MFI.setReturnAddressIsTaken(true);
3289 
3290   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3291     return SDValue();
3292 
3293   SDLoc DL(Op);
3294   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3295   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3296 
3297   // FIXME The frontend should detect this case.
3298   if (Depth > 0) {
3299     report_fatal_error("Unsupported stack frame traversal count");
3300   }
3301 
3302   // Return R14D, which has the return address. Mark it an implicit live-in.
3303   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3304   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3305 }
3306 
3307 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3308                                             SelectionDAG &DAG) const {
3309   SDLoc DL(Op);
3310   SDValue In = Op.getOperand(0);
3311   EVT InVT = In.getValueType();
3312   EVT ResVT = Op.getValueType();
3313 
3314   // Convert loads directly.  This is normally done by DAGCombiner,
3315   // but we need this case for bitcasts that are created during lowering
3316   // and which are then lowered themselves.
3317   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3318     if (ISD::isNormalLoad(LoadN)) {
3319       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3320                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3321       // Update the chain uses.
3322       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3323       return NewLoad;
3324     }
3325 
3326   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3327     SDValue In64;
3328     if (Subtarget.hasHighWord()) {
3329       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3330                                        MVT::i64);
3331       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3332                                        MVT::i64, SDValue(U64, 0), In);
3333     } else {
3334       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3335       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3336                          DAG.getConstant(32, DL, MVT::i64));
3337     }
3338     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3339     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3340                                       DL, MVT::f32, Out64);
3341   }
3342   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3343     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3344     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3345                                              MVT::f64, SDValue(U64, 0), In);
3346     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3347     if (Subtarget.hasHighWord())
3348       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3349                                         MVT::i32, Out64);
3350     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3351                                 DAG.getConstant(32, DL, MVT::i64));
3352     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3353   }
3354   llvm_unreachable("Unexpected bitcast combination");
3355 }
3356 
3357 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3358                                             SelectionDAG &DAG) const {
3359   MachineFunction &MF = DAG.getMachineFunction();
3360   SystemZMachineFunctionInfo *FuncInfo =
3361     MF.getInfo<SystemZMachineFunctionInfo>();
3362   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3363 
3364   SDValue Chain   = Op.getOperand(0);
3365   SDValue Addr    = Op.getOperand(1);
3366   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3367   SDLoc DL(Op);
3368 
3369   // The initial values of each field.
3370   const unsigned NumFields = 4;
3371   SDValue Fields[NumFields] = {
3372     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3373     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3374     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3375     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3376   };
3377 
3378   // Store each field into its respective slot.
3379   SDValue MemOps[NumFields];
3380   unsigned Offset = 0;
3381   for (unsigned I = 0; I < NumFields; ++I) {
3382     SDValue FieldAddr = Addr;
3383     if (Offset != 0)
3384       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3385                               DAG.getIntPtrConstant(Offset, DL));
3386     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3387                              MachinePointerInfo(SV, Offset));
3388     Offset += 8;
3389   }
3390   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3391 }
3392 
3393 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3394                                            SelectionDAG &DAG) const {
3395   SDValue Chain      = Op.getOperand(0);
3396   SDValue DstPtr     = Op.getOperand(1);
3397   SDValue SrcPtr     = Op.getOperand(2);
3398   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3399   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3400   SDLoc DL(Op);
3401 
3402   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3403                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3404                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3405                        MachinePointerInfo(SrcSV));
3406 }
3407 
3408 SDValue SystemZTargetLowering::
3409 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3410   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3411   MachineFunction &MF = DAG.getMachineFunction();
3412   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3413   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3414 
3415   SDValue Chain = Op.getOperand(0);
3416   SDValue Size  = Op.getOperand(1);
3417   SDValue Align = Op.getOperand(2);
3418   SDLoc DL(Op);
3419 
3420   // If user has set the no alignment function attribute, ignore
3421   // alloca alignments.
3422   uint64_t AlignVal = (RealignOpt ?
3423                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3424 
3425   uint64_t StackAlign = TFI->getStackAlignment();
3426   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3427   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3428 
3429   Register SPReg = getStackPointerRegisterToSaveRestore();
3430   SDValue NeededSpace = Size;
3431 
3432   // Get a reference to the stack pointer.
3433   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3434 
3435   // If we need a backchain, save it now.
3436   SDValue Backchain;
3437   if (StoreBackchain)
3438     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3439 
3440   // Add extra space for alignment if needed.
3441   if (ExtraAlignSpace)
3442     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3443                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3444 
3445   // Get the new stack pointer value.
3446   SDValue NewSP;
3447   if (hasInlineStackProbe(MF)) {
3448     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3449                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3450     Chain = NewSP.getValue(1);
3451   }
3452   else {
3453     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3454     // Copy the new stack pointer back.
3455     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3456   }
3457 
3458   // The allocated data lives above the 160 bytes allocated for the standard
3459   // frame, plus any outgoing stack arguments.  We don't know how much that
3460   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3461   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3462   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3463 
3464   // Dynamically realign if needed.
3465   if (RequiredAlign > StackAlign) {
3466     Result =
3467       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3468                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3469     Result =
3470       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3471                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3472   }
3473 
3474   if (StoreBackchain)
3475     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3476 
3477   SDValue Ops[2] = { Result, Chain };
3478   return DAG.getMergeValues(Ops, DL);
3479 }
3480 
3481 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3482     SDValue Op, SelectionDAG &DAG) const {
3483   SDLoc DL(Op);
3484 
3485   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3486 }
3487 
3488 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3489                                               SelectionDAG &DAG) const {
3490   EVT VT = Op.getValueType();
3491   SDLoc DL(Op);
3492   SDValue Ops[2];
3493   if (is32Bit(VT))
3494     // Just do a normal 64-bit multiplication and extract the results.
3495     // We define this so that it can be used for constant division.
3496     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3497                     Op.getOperand(1), Ops[1], Ops[0]);
3498   else if (Subtarget.hasMiscellaneousExtensions2())
3499     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3500     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3501     // return the low half first, so the results are in reverse order.
3502     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3503                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3504   else {
3505     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3506     //
3507     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3508     //
3509     // but using the fact that the upper halves are either all zeros
3510     // or all ones:
3511     //
3512     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3513     //
3514     // and grouping the right terms together since they are quicker than the
3515     // multiplication:
3516     //
3517     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3518     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3519     SDValue LL = Op.getOperand(0);
3520     SDValue RL = Op.getOperand(1);
3521     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3522     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3523     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3524     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3525     // return the low half first, so the results are in reverse order.
3526     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3527                      LL, RL, Ops[1], Ops[0]);
3528     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3529     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3530     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3531     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3532   }
3533   return DAG.getMergeValues(Ops, DL);
3534 }
3535 
3536 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3537                                               SelectionDAG &DAG) const {
3538   EVT VT = Op.getValueType();
3539   SDLoc DL(Op);
3540   SDValue Ops[2];
3541   if (is32Bit(VT))
3542     // Just do a normal 64-bit multiplication and extract the results.
3543     // We define this so that it can be used for constant division.
3544     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3545                     Op.getOperand(1), Ops[1], Ops[0]);
3546   else
3547     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3548     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3549     // return the low half first, so the results are in reverse order.
3550     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3551                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3552   return DAG.getMergeValues(Ops, DL);
3553 }
3554 
3555 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3556                                             SelectionDAG &DAG) const {
3557   SDValue Op0 = Op.getOperand(0);
3558   SDValue Op1 = Op.getOperand(1);
3559   EVT VT = Op.getValueType();
3560   SDLoc DL(Op);
3561 
3562   // We use DSGF for 32-bit division.  This means the first operand must
3563   // always be 64-bit, and the second operand should be 32-bit whenever
3564   // that is possible, to improve performance.
3565   if (is32Bit(VT))
3566     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3567   else if (DAG.ComputeNumSignBits(Op1) > 32)
3568     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3569 
3570   // DSG(F) returns the remainder in the even register and the
3571   // quotient in the odd register.
3572   SDValue Ops[2];
3573   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3574   return DAG.getMergeValues(Ops, DL);
3575 }
3576 
3577 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3578                                             SelectionDAG &DAG) const {
3579   EVT VT = Op.getValueType();
3580   SDLoc DL(Op);
3581 
3582   // DL(G) returns the remainder in the even register and the
3583   // quotient in the odd register.
3584   SDValue Ops[2];
3585   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3586                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3587   return DAG.getMergeValues(Ops, DL);
3588 }
3589 
3590 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3591   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3592 
3593   // Get the known-zero masks for each operand.
3594   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3595   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3596                         DAG.computeKnownBits(Ops[1])};
3597 
3598   // See if the upper 32 bits of one operand and the lower 32 bits of the
3599   // other are known zero.  They are the low and high operands respectively.
3600   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3601                        Known[1].Zero.getZExtValue() };
3602   unsigned High, Low;
3603   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3604     High = 1, Low = 0;
3605   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3606     High = 0, Low = 1;
3607   else
3608     return Op;
3609 
3610   SDValue LowOp = Ops[Low];
3611   SDValue HighOp = Ops[High];
3612 
3613   // If the high part is a constant, we're better off using IILH.
3614   if (HighOp.getOpcode() == ISD::Constant)
3615     return Op;
3616 
3617   // If the low part is a constant that is outside the range of LHI,
3618   // then we're better off using IILF.
3619   if (LowOp.getOpcode() == ISD::Constant) {
3620     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3621     if (!isInt<16>(Value))
3622       return Op;
3623   }
3624 
3625   // Check whether the high part is an AND that doesn't change the
3626   // high 32 bits and just masks out low bits.  We can skip it if so.
3627   if (HighOp.getOpcode() == ISD::AND &&
3628       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3629     SDValue HighOp0 = HighOp.getOperand(0);
3630     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3631     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3632       HighOp = HighOp0;
3633   }
3634 
3635   // Take advantage of the fact that all GR32 operations only change the
3636   // low 32 bits by truncating Low to an i32 and inserting it directly
3637   // using a subreg.  The interesting cases are those where the truncation
3638   // can be folded.
3639   SDLoc DL(Op);
3640   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3641   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3642                                    MVT::i64, HighOp, Low32);
3643 }
3644 
3645 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3646 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3647                                           SelectionDAG &DAG) const {
3648   SDNode *N = Op.getNode();
3649   SDValue LHS = N->getOperand(0);
3650   SDValue RHS = N->getOperand(1);
3651   SDLoc DL(N);
3652   unsigned BaseOp = 0;
3653   unsigned CCValid = 0;
3654   unsigned CCMask = 0;
3655 
3656   switch (Op.getOpcode()) {
3657   default: llvm_unreachable("Unknown instruction!");
3658   case ISD::SADDO:
3659     BaseOp = SystemZISD::SADDO;
3660     CCValid = SystemZ::CCMASK_ARITH;
3661     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3662     break;
3663   case ISD::SSUBO:
3664     BaseOp = SystemZISD::SSUBO;
3665     CCValid = SystemZ::CCMASK_ARITH;
3666     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3667     break;
3668   case ISD::UADDO:
3669     BaseOp = SystemZISD::UADDO;
3670     CCValid = SystemZ::CCMASK_LOGICAL;
3671     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3672     break;
3673   case ISD::USUBO:
3674     BaseOp = SystemZISD::USUBO;
3675     CCValid = SystemZ::CCMASK_LOGICAL;
3676     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3677     break;
3678   }
3679 
3680   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3681   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3682 
3683   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3684   if (N->getValueType(1) == MVT::i1)
3685     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3686 
3687   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3688 }
3689 
3690 static bool isAddCarryChain(SDValue Carry) {
3691   while (Carry.getOpcode() == ISD::ADDCARRY)
3692     Carry = Carry.getOperand(2);
3693   return Carry.getOpcode() == ISD::UADDO;
3694 }
3695 
3696 static bool isSubBorrowChain(SDValue Carry) {
3697   while (Carry.getOpcode() == ISD::SUBCARRY)
3698     Carry = Carry.getOperand(2);
3699   return Carry.getOpcode() == ISD::USUBO;
3700 }
3701 
3702 // Lower ADDCARRY/SUBCARRY nodes.
3703 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3704                                                 SelectionDAG &DAG) const {
3705 
3706   SDNode *N = Op.getNode();
3707   MVT VT = N->getSimpleValueType(0);
3708 
3709   // Let legalize expand this if it isn't a legal type yet.
3710   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3711     return SDValue();
3712 
3713   SDValue LHS = N->getOperand(0);
3714   SDValue RHS = N->getOperand(1);
3715   SDValue Carry = Op.getOperand(2);
3716   SDLoc DL(N);
3717   unsigned BaseOp = 0;
3718   unsigned CCValid = 0;
3719   unsigned CCMask = 0;
3720 
3721   switch (Op.getOpcode()) {
3722   default: llvm_unreachable("Unknown instruction!");
3723   case ISD::ADDCARRY:
3724     if (!isAddCarryChain(Carry))
3725       return SDValue();
3726 
3727     BaseOp = SystemZISD::ADDCARRY;
3728     CCValid = SystemZ::CCMASK_LOGICAL;
3729     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3730     break;
3731   case ISD::SUBCARRY:
3732     if (!isSubBorrowChain(Carry))
3733       return SDValue();
3734 
3735     BaseOp = SystemZISD::SUBCARRY;
3736     CCValid = SystemZ::CCMASK_LOGICAL;
3737     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3738     break;
3739   }
3740 
3741   // Set the condition code from the carry flag.
3742   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3743                       DAG.getConstant(CCValid, DL, MVT::i32),
3744                       DAG.getConstant(CCMask, DL, MVT::i32));
3745 
3746   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3747   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3748 
3749   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3750   if (N->getValueType(1) == MVT::i1)
3751     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3752 
3753   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3754 }
3755 
3756 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3757                                           SelectionDAG &DAG) const {
3758   EVT VT = Op.getValueType();
3759   SDLoc DL(Op);
3760   Op = Op.getOperand(0);
3761 
3762   // Handle vector types via VPOPCT.
3763   if (VT.isVector()) {
3764     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3765     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3766     switch (VT.getScalarSizeInBits()) {
3767     case 8:
3768       break;
3769     case 16: {
3770       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3771       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3772       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3773       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3774       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3775       break;
3776     }
3777     case 32: {
3778       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3779                                             DAG.getConstant(0, DL, MVT::i32));
3780       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3781       break;
3782     }
3783     case 64: {
3784       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3785                                             DAG.getConstant(0, DL, MVT::i32));
3786       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3787       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3788       break;
3789     }
3790     default:
3791       llvm_unreachable("Unexpected type");
3792     }
3793     return Op;
3794   }
3795 
3796   // Get the known-zero mask for the operand.
3797   KnownBits Known = DAG.computeKnownBits(Op);
3798   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3799   if (NumSignificantBits == 0)
3800     return DAG.getConstant(0, DL, VT);
3801 
3802   // Skip known-zero high parts of the operand.
3803   int64_t OrigBitSize = VT.getSizeInBits();
3804   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3805   BitSize = std::min(BitSize, OrigBitSize);
3806 
3807   // The POPCNT instruction counts the number of bits in each byte.
3808   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3809   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3810   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3811 
3812   // Add up per-byte counts in a binary tree.  All bits of Op at
3813   // position larger than BitSize remain zero throughout.
3814   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3815     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3816     if (BitSize != OrigBitSize)
3817       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3818                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3819     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3820   }
3821 
3822   // Extract overall result from high byte.
3823   if (BitSize > 8)
3824     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3825                      DAG.getConstant(BitSize - 8, DL, VT));
3826 
3827   return Op;
3828 }
3829 
3830 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3831                                                  SelectionDAG &DAG) const {
3832   SDLoc DL(Op);
3833   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3834     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3835   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3836     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3837 
3838   // The only fence that needs an instruction is a sequentially-consistent
3839   // cross-thread fence.
3840   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3841       FenceSSID == SyncScope::System) {
3842     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3843                                       Op.getOperand(0)),
3844                    0);
3845   }
3846 
3847   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3848   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3849 }
3850 
3851 // Op is an atomic load.  Lower it into a normal volatile load.
3852 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3853                                                 SelectionDAG &DAG) const {
3854   auto *Node = cast<AtomicSDNode>(Op.getNode());
3855   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3856                         Node->getChain(), Node->getBasePtr(),
3857                         Node->getMemoryVT(), Node->getMemOperand());
3858 }
3859 
3860 // Op is an atomic store.  Lower it into a normal volatile store.
3861 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3862                                                  SelectionDAG &DAG) const {
3863   auto *Node = cast<AtomicSDNode>(Op.getNode());
3864   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3865                                     Node->getBasePtr(), Node->getMemoryVT(),
3866                                     Node->getMemOperand());
3867   // We have to enforce sequential consistency by performing a
3868   // serialization operation after the store.
3869   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3870     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3871                                        MVT::Other, Chain), 0);
3872   return Chain;
3873 }
3874 
3875 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3876 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3877 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3878                                                    SelectionDAG &DAG,
3879                                                    unsigned Opcode) const {
3880   auto *Node = cast<AtomicSDNode>(Op.getNode());
3881 
3882   // 32-bit operations need no code outside the main loop.
3883   EVT NarrowVT = Node->getMemoryVT();
3884   EVT WideVT = MVT::i32;
3885   if (NarrowVT == WideVT)
3886     return Op;
3887 
3888   int64_t BitSize = NarrowVT.getSizeInBits();
3889   SDValue ChainIn = Node->getChain();
3890   SDValue Addr = Node->getBasePtr();
3891   SDValue Src2 = Node->getVal();
3892   MachineMemOperand *MMO = Node->getMemOperand();
3893   SDLoc DL(Node);
3894   EVT PtrVT = Addr.getValueType();
3895 
3896   // Convert atomic subtracts of constants into additions.
3897   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3898     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3899       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3900       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3901     }
3902 
3903   // Get the address of the containing word.
3904   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3905                                     DAG.getConstant(-4, DL, PtrVT));
3906 
3907   // Get the number of bits that the word must be rotated left in order
3908   // to bring the field to the top bits of a GR32.
3909   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3910                                  DAG.getConstant(3, DL, PtrVT));
3911   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3912 
3913   // Get the complementing shift amount, for rotating a field in the top
3914   // bits back to its proper position.
3915   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3916                                     DAG.getConstant(0, DL, WideVT), BitShift);
3917 
3918   // Extend the source operand to 32 bits and prepare it for the inner loop.
3919   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3920   // operations require the source to be shifted in advance.  (This shift
3921   // can be folded if the source is constant.)  For AND and NAND, the lower
3922   // bits must be set, while for other opcodes they should be left clear.
3923   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3924     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3925                        DAG.getConstant(32 - BitSize, DL, WideVT));
3926   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3927       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3928     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3929                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3930 
3931   // Construct the ATOMIC_LOADW_* node.
3932   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3933   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3934                     DAG.getConstant(BitSize, DL, WideVT) };
3935   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3936                                              NarrowVT, MMO);
3937 
3938   // Rotate the result of the final CS so that the field is in the lower
3939   // bits of a GR32, then truncate it.
3940   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3941                                     DAG.getConstant(BitSize, DL, WideVT));
3942   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3943 
3944   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3945   return DAG.getMergeValues(RetOps, DL);
3946 }
3947 
3948 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3949 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3950 // operations into additions.
3951 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3952                                                     SelectionDAG &DAG) const {
3953   auto *Node = cast<AtomicSDNode>(Op.getNode());
3954   EVT MemVT = Node->getMemoryVT();
3955   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3956     // A full-width operation.
3957     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3958     SDValue Src2 = Node->getVal();
3959     SDValue NegSrc2;
3960     SDLoc DL(Src2);
3961 
3962     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3963       // Use an addition if the operand is constant and either LAA(G) is
3964       // available or the negative value is in the range of A(G)FHI.
3965       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3966       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3967         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3968     } else if (Subtarget.hasInterlockedAccess1())
3969       // Use LAA(G) if available.
3970       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3971                             Src2);
3972 
3973     if (NegSrc2.getNode())
3974       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3975                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3976                            Node->getMemOperand());
3977 
3978     // Use the node as-is.
3979     return Op;
3980   }
3981 
3982   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3983 }
3984 
3985 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3986 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3987                                                     SelectionDAG &DAG) const {
3988   auto *Node = cast<AtomicSDNode>(Op.getNode());
3989   SDValue ChainIn = Node->getOperand(0);
3990   SDValue Addr = Node->getOperand(1);
3991   SDValue CmpVal = Node->getOperand(2);
3992   SDValue SwapVal = Node->getOperand(3);
3993   MachineMemOperand *MMO = Node->getMemOperand();
3994   SDLoc DL(Node);
3995 
3996   // We have native support for 32-bit and 64-bit compare and swap, but we
3997   // still need to expand extracting the "success" result from the CC.
3998   EVT NarrowVT = Node->getMemoryVT();
3999   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4000   if (NarrowVT == WideVT) {
4001     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4002     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4003     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4004                                                DL, Tys, Ops, NarrowVT, MMO);
4005     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4006                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4007 
4008     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4009     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4010     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4011     return SDValue();
4012   }
4013 
4014   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4015   // via a fullword ATOMIC_CMP_SWAPW operation.
4016   int64_t BitSize = NarrowVT.getSizeInBits();
4017   EVT PtrVT = Addr.getValueType();
4018 
4019   // Get the address of the containing word.
4020   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4021                                     DAG.getConstant(-4, DL, PtrVT));
4022 
4023   // Get the number of bits that the word must be rotated left in order
4024   // to bring the field to the top bits of a GR32.
4025   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4026                                  DAG.getConstant(3, DL, PtrVT));
4027   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4028 
4029   // Get the complementing shift amount, for rotating a field in the top
4030   // bits back to its proper position.
4031   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4032                                     DAG.getConstant(0, DL, WideVT), BitShift);
4033 
4034   // Construct the ATOMIC_CMP_SWAPW node.
4035   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4036   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4037                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4038   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4039                                              VTList, Ops, NarrowVT, MMO);
4040   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4041                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4042 
4043   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4044   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4045   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4046   return SDValue();
4047 }
4048 
4049 MachineMemOperand::Flags
4050 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4051   // Because of how we convert atomic_load and atomic_store to normal loads and
4052   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4053   // since DAGCombine hasn't been updated to account for atomic, but non
4054   // volatile loads.  (See D57601)
4055   if (auto *SI = dyn_cast<StoreInst>(&I))
4056     if (SI->isAtomic())
4057       return MachineMemOperand::MOVolatile;
4058   if (auto *LI = dyn_cast<LoadInst>(&I))
4059     if (LI->isAtomic())
4060       return MachineMemOperand::MOVolatile;
4061   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4062     if (AI->isAtomic())
4063       return MachineMemOperand::MOVolatile;
4064   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4065     if (AI->isAtomic())
4066       return MachineMemOperand::MOVolatile;
4067   return MachineMemOperand::MONone;
4068 }
4069 
4070 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4071                                               SelectionDAG &DAG) const {
4072   MachineFunction &MF = DAG.getMachineFunction();
4073   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4074   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4075     report_fatal_error("Variable-sized stack allocations are not supported "
4076                        "in GHC calling convention");
4077   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4078                             SystemZ::R15D, Op.getValueType());
4079 }
4080 
4081 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4082                                                  SelectionDAG &DAG) const {
4083   MachineFunction &MF = DAG.getMachineFunction();
4084   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4085   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4086 
4087   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4088     report_fatal_error("Variable-sized stack allocations are not supported "
4089                        "in GHC calling convention");
4090 
4091   SDValue Chain = Op.getOperand(0);
4092   SDValue NewSP = Op.getOperand(1);
4093   SDValue Backchain;
4094   SDLoc DL(Op);
4095 
4096   if (StoreBackchain) {
4097     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4098     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
4099   }
4100 
4101   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4102 
4103   if (StoreBackchain)
4104     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
4105 
4106   return Chain;
4107 }
4108 
4109 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4110                                              SelectionDAG &DAG) const {
4111   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4112   if (!IsData)
4113     // Just preserve the chain.
4114     return Op.getOperand(0);
4115 
4116   SDLoc DL(Op);
4117   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4118   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4119   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4120   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4121                    Op.getOperand(1)};
4122   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4123                                  Node->getVTList(), Ops,
4124                                  Node->getMemoryVT(), Node->getMemOperand());
4125 }
4126 
4127 // Convert condition code in CCReg to an i32 value.
4128 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4129   SDLoc DL(CCReg);
4130   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4131   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4132                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4133 }
4134 
4135 SDValue
4136 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4137                                               SelectionDAG &DAG) const {
4138   unsigned Opcode, CCValid;
4139   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4140     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4141     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4142     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4143     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4144     return SDValue();
4145   }
4146 
4147   return SDValue();
4148 }
4149 
4150 SDValue
4151 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4152                                                SelectionDAG &DAG) const {
4153   unsigned Opcode, CCValid;
4154   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4155     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4156     if (Op->getNumValues() == 1)
4157       return getCCResult(DAG, SDValue(Node, 0));
4158     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4159     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4160                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4161   }
4162 
4163   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4164   switch (Id) {
4165   case Intrinsic::thread_pointer:
4166     return lowerThreadPointer(SDLoc(Op), DAG);
4167 
4168   case Intrinsic::s390_vpdi:
4169     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4170                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4171 
4172   case Intrinsic::s390_vperm:
4173     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4174                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4175 
4176   case Intrinsic::s390_vuphb:
4177   case Intrinsic::s390_vuphh:
4178   case Intrinsic::s390_vuphf:
4179     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4180                        Op.getOperand(1));
4181 
4182   case Intrinsic::s390_vuplhb:
4183   case Intrinsic::s390_vuplhh:
4184   case Intrinsic::s390_vuplhf:
4185     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4186                        Op.getOperand(1));
4187 
4188   case Intrinsic::s390_vuplb:
4189   case Intrinsic::s390_vuplhw:
4190   case Intrinsic::s390_vuplf:
4191     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4192                        Op.getOperand(1));
4193 
4194   case Intrinsic::s390_vupllb:
4195   case Intrinsic::s390_vupllh:
4196   case Intrinsic::s390_vupllf:
4197     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4198                        Op.getOperand(1));
4199 
4200   case Intrinsic::s390_vsumb:
4201   case Intrinsic::s390_vsumh:
4202   case Intrinsic::s390_vsumgh:
4203   case Intrinsic::s390_vsumgf:
4204   case Intrinsic::s390_vsumqf:
4205   case Intrinsic::s390_vsumqg:
4206     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4207                        Op.getOperand(1), Op.getOperand(2));
4208   }
4209 
4210   return SDValue();
4211 }
4212 
4213 namespace {
4214 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4215 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4216 // Operand is the constant third operand, otherwise it is the number of
4217 // bytes in each element of the result.
4218 struct Permute {
4219   unsigned Opcode;
4220   unsigned Operand;
4221   unsigned char Bytes[SystemZ::VectorBytes];
4222 };
4223 }
4224 
4225 static const Permute PermuteForms[] = {
4226   // VMRHG
4227   { SystemZISD::MERGE_HIGH, 8,
4228     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4229   // VMRHF
4230   { SystemZISD::MERGE_HIGH, 4,
4231     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4232   // VMRHH
4233   { SystemZISD::MERGE_HIGH, 2,
4234     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4235   // VMRHB
4236   { SystemZISD::MERGE_HIGH, 1,
4237     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4238   // VMRLG
4239   { SystemZISD::MERGE_LOW, 8,
4240     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4241   // VMRLF
4242   { SystemZISD::MERGE_LOW, 4,
4243     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4244   // VMRLH
4245   { SystemZISD::MERGE_LOW, 2,
4246     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4247   // VMRLB
4248   { SystemZISD::MERGE_LOW, 1,
4249     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4250   // VPKG
4251   { SystemZISD::PACK, 4,
4252     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4253   // VPKF
4254   { SystemZISD::PACK, 2,
4255     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4256   // VPKH
4257   { SystemZISD::PACK, 1,
4258     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4259   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4260   { SystemZISD::PERMUTE_DWORDS, 4,
4261     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4262   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4263   { SystemZISD::PERMUTE_DWORDS, 1,
4264     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4265 };
4266 
4267 // Called after matching a vector shuffle against a particular pattern.
4268 // Both the original shuffle and the pattern have two vector operands.
4269 // OpNos[0] is the operand of the original shuffle that should be used for
4270 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4271 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4272 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4273 // for operands 0 and 1 of the pattern.
4274 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4275   if (OpNos[0] < 0) {
4276     if (OpNos[1] < 0)
4277       return false;
4278     OpNo0 = OpNo1 = OpNos[1];
4279   } else if (OpNos[1] < 0) {
4280     OpNo0 = OpNo1 = OpNos[0];
4281   } else {
4282     OpNo0 = OpNos[0];
4283     OpNo1 = OpNos[1];
4284   }
4285   return true;
4286 }
4287 
4288 // Bytes is a VPERM-like permute vector, except that -1 is used for
4289 // undefined bytes.  Return true if the VPERM can be implemented using P.
4290 // When returning true set OpNo0 to the VPERM operand that should be
4291 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4292 //
4293 // For example, if swapping the VPERM operands allows P to match, OpNo0
4294 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4295 // operand, but rewriting it to use two duplicated operands allows it to
4296 // match P, then OpNo0 and OpNo1 will be the same.
4297 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4298                          unsigned &OpNo0, unsigned &OpNo1) {
4299   int OpNos[] = { -1, -1 };
4300   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4301     int Elt = Bytes[I];
4302     if (Elt >= 0) {
4303       // Make sure that the two permute vectors use the same suboperand
4304       // byte number.  Only the operand numbers (the high bits) are
4305       // allowed to differ.
4306       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4307         return false;
4308       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4309       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4310       // Make sure that the operand mappings are consistent with previous
4311       // elements.
4312       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4313         return false;
4314       OpNos[ModelOpNo] = RealOpNo;
4315     }
4316   }
4317   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4318 }
4319 
4320 // As above, but search for a matching permute.
4321 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4322                                    unsigned &OpNo0, unsigned &OpNo1) {
4323   for (auto &P : PermuteForms)
4324     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4325       return &P;
4326   return nullptr;
4327 }
4328 
4329 // Bytes is a VPERM-like permute vector, except that -1 is used for
4330 // undefined bytes.  This permute is an operand of an outer permute.
4331 // See whether redistributing the -1 bytes gives a shuffle that can be
4332 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4333 // that, when applied to the result of P, gives the original permute in Bytes.
4334 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4335                                const Permute &P,
4336                                SmallVectorImpl<int> &Transform) {
4337   unsigned To = 0;
4338   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4339     int Elt = Bytes[From];
4340     if (Elt < 0)
4341       // Byte number From of the result is undefined.
4342       Transform[From] = -1;
4343     else {
4344       while (P.Bytes[To] != Elt) {
4345         To += 1;
4346         if (To == SystemZ::VectorBytes)
4347           return false;
4348       }
4349       Transform[From] = To;
4350     }
4351   }
4352   return true;
4353 }
4354 
4355 // As above, but search for a matching permute.
4356 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4357                                          SmallVectorImpl<int> &Transform) {
4358   for (auto &P : PermuteForms)
4359     if (matchDoublePermute(Bytes, P, Transform))
4360       return &P;
4361   return nullptr;
4362 }
4363 
4364 // Convert the mask of the given shuffle op into a byte-level mask,
4365 // as if it had type vNi8.
4366 static bool getVPermMask(SDValue ShuffleOp,
4367                          SmallVectorImpl<int> &Bytes) {
4368   EVT VT = ShuffleOp.getValueType();
4369   unsigned NumElements = VT.getVectorNumElements();
4370   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4371 
4372   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4373     Bytes.resize(NumElements * BytesPerElement, -1);
4374     for (unsigned I = 0; I < NumElements; ++I) {
4375       int Index = VSN->getMaskElt(I);
4376       if (Index >= 0)
4377         for (unsigned J = 0; J < BytesPerElement; ++J)
4378           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4379     }
4380     return true;
4381   }
4382   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4383       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4384     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4385     Bytes.resize(NumElements * BytesPerElement, -1);
4386     for (unsigned I = 0; I < NumElements; ++I)
4387       for (unsigned J = 0; J < BytesPerElement; ++J)
4388         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4389     return true;
4390   }
4391   return false;
4392 }
4393 
4394 // Bytes is a VPERM-like permute vector, except that -1 is used for
4395 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4396 // the result come from a contiguous sequence of bytes from one input.
4397 // Set Base to the selector for the first byte if so.
4398 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4399                             unsigned BytesPerElement, int &Base) {
4400   Base = -1;
4401   for (unsigned I = 0; I < BytesPerElement; ++I) {
4402     if (Bytes[Start + I] >= 0) {
4403       unsigned Elem = Bytes[Start + I];
4404       if (Base < 0) {
4405         Base = Elem - I;
4406         // Make sure the bytes would come from one input operand.
4407         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4408           return false;
4409       } else if (unsigned(Base) != Elem - I)
4410         return false;
4411     }
4412   }
4413   return true;
4414 }
4415 
4416 // Bytes is a VPERM-like permute vector, except that -1 is used for
4417 // undefined bytes.  Return true if it can be performed using VSLDB.
4418 // When returning true, set StartIndex to the shift amount and OpNo0
4419 // and OpNo1 to the VPERM operands that should be used as the first
4420 // and second shift operand respectively.
4421 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4422                                unsigned &StartIndex, unsigned &OpNo0,
4423                                unsigned &OpNo1) {
4424   int OpNos[] = { -1, -1 };
4425   int Shift = -1;
4426   for (unsigned I = 0; I < 16; ++I) {
4427     int Index = Bytes[I];
4428     if (Index >= 0) {
4429       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4430       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4431       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4432       if (Shift < 0)
4433         Shift = ExpectedShift;
4434       else if (Shift != ExpectedShift)
4435         return false;
4436       // Make sure that the operand mappings are consistent with previous
4437       // elements.
4438       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4439         return false;
4440       OpNos[ModelOpNo] = RealOpNo;
4441     }
4442   }
4443   StartIndex = Shift;
4444   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4445 }
4446 
4447 // Create a node that performs P on operands Op0 and Op1, casting the
4448 // operands to the appropriate type.  The type of the result is determined by P.
4449 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4450                               const Permute &P, SDValue Op0, SDValue Op1) {
4451   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4452   // elements of a PACK are twice as wide as the outputs.
4453   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4454                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4455                       P.Operand);
4456   // Cast both operands to the appropriate type.
4457   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4458                               SystemZ::VectorBytes / InBytes);
4459   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4460   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4461   SDValue Op;
4462   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4463     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4464     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4465   } else if (P.Opcode == SystemZISD::PACK) {
4466     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4467                                  SystemZ::VectorBytes / P.Operand);
4468     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4469   } else {
4470     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4471   }
4472   return Op;
4473 }
4474 
4475 static bool isZeroVector(SDValue N) {
4476   if (N->getOpcode() == ISD::BITCAST)
4477     N = N->getOperand(0);
4478   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4479     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4480       return Op->getZExtValue() == 0;
4481   return ISD::isBuildVectorAllZeros(N.getNode());
4482 }
4483 
4484 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4485 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4486   for (unsigned I = 0; I < Num ; I++)
4487     if (isZeroVector(Ops[I]))
4488       return I;
4489   return UINT32_MAX;
4490 }
4491 
4492 // Bytes is a VPERM-like permute vector, except that -1 is used for
4493 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4494 // VSLDB or VPERM.
4495 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4496                                      SDValue *Ops,
4497                                      const SmallVectorImpl<int> &Bytes) {
4498   for (unsigned I = 0; I < 2; ++I)
4499     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4500 
4501   // First see whether VSLDB can be used.
4502   unsigned StartIndex, OpNo0, OpNo1;
4503   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4504     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4505                        Ops[OpNo1],
4506                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4507 
4508   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4509   // eliminate a zero vector by reusing any zero index in the permute vector.
4510   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4511   if (ZeroVecIdx != UINT32_MAX) {
4512     bool MaskFirst = true;
4513     int ZeroIdx = -1;
4514     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4515       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4516       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4517       if (OpNo == ZeroVecIdx && I == 0) {
4518         // If the first byte is zero, use mask as first operand.
4519         ZeroIdx = 0;
4520         break;
4521       }
4522       if (OpNo != ZeroVecIdx && Byte == 0) {
4523         // If mask contains a zero, use it by placing that vector first.
4524         ZeroIdx = I + SystemZ::VectorBytes;
4525         MaskFirst = false;
4526         break;
4527       }
4528     }
4529     if (ZeroIdx != -1) {
4530       SDValue IndexNodes[SystemZ::VectorBytes];
4531       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4532         if (Bytes[I] >= 0) {
4533           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4534           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4535           if (OpNo == ZeroVecIdx)
4536             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4537           else {
4538             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4539             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4540           }
4541         } else
4542           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4543       }
4544       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4545       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4546       if (MaskFirst)
4547         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4548                            Mask);
4549       else
4550         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4551                            Mask);
4552     }
4553   }
4554 
4555   SDValue IndexNodes[SystemZ::VectorBytes];
4556   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4557     if (Bytes[I] >= 0)
4558       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4559     else
4560       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4561   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4562   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4563                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4564 }
4565 
4566 namespace {
4567 // Describes a general N-operand vector shuffle.
4568 struct GeneralShuffle {
4569   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4570   void addUndef();
4571   bool add(SDValue, unsigned);
4572   SDValue getNode(SelectionDAG &, const SDLoc &);
4573   void tryPrepareForUnpack();
4574   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4575   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4576 
4577   // The operands of the shuffle.
4578   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4579 
4580   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4581   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4582   // Bytes[I] / SystemZ::VectorBytes.
4583   SmallVector<int, SystemZ::VectorBytes> Bytes;
4584 
4585   // The type of the shuffle result.
4586   EVT VT;
4587 
4588   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4589   unsigned UnpackFromEltSize;
4590 };
4591 }
4592 
4593 // Add an extra undefined element to the shuffle.
4594 void GeneralShuffle::addUndef() {
4595   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4596   for (unsigned I = 0; I < BytesPerElement; ++I)
4597     Bytes.push_back(-1);
4598 }
4599 
4600 // Add an extra element to the shuffle, taking it from element Elem of Op.
4601 // A null Op indicates a vector input whose value will be calculated later;
4602 // there is at most one such input per shuffle and it always has the same
4603 // type as the result. Aborts and returns false if the source vector elements
4604 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4605 // LLVM they become implicitly extended, but this is rare and not optimized.
4606 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4607   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4608 
4609   // The source vector can have wider elements than the result,
4610   // either through an explicit TRUNCATE or because of type legalization.
4611   // We want the least significant part.
4612   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4613   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4614 
4615   // Return false if the source elements are smaller than their destination
4616   // elements.
4617   if (FromBytesPerElement < BytesPerElement)
4618     return false;
4619 
4620   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4621                    (FromBytesPerElement - BytesPerElement));
4622 
4623   // Look through things like shuffles and bitcasts.
4624   while (Op.getNode()) {
4625     if (Op.getOpcode() == ISD::BITCAST)
4626       Op = Op.getOperand(0);
4627     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4628       // See whether the bytes we need come from a contiguous part of one
4629       // operand.
4630       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4631       if (!getVPermMask(Op, OpBytes))
4632         break;
4633       int NewByte;
4634       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4635         break;
4636       if (NewByte < 0) {
4637         addUndef();
4638         return true;
4639       }
4640       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4641       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4642     } else if (Op.isUndef()) {
4643       addUndef();
4644       return true;
4645     } else
4646       break;
4647   }
4648 
4649   // Make sure that the source of the extraction is in Ops.
4650   unsigned OpNo = 0;
4651   for (; OpNo < Ops.size(); ++OpNo)
4652     if (Ops[OpNo] == Op)
4653       break;
4654   if (OpNo == Ops.size())
4655     Ops.push_back(Op);
4656 
4657   // Add the element to Bytes.
4658   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4659   for (unsigned I = 0; I < BytesPerElement; ++I)
4660     Bytes.push_back(Base + I);
4661 
4662   return true;
4663 }
4664 
4665 // Return SDNodes for the completed shuffle.
4666 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4667   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4668 
4669   if (Ops.size() == 0)
4670     return DAG.getUNDEF(VT);
4671 
4672   // Use a single unpack if possible as the last operation.
4673   tryPrepareForUnpack();
4674 
4675   // Make sure that there are at least two shuffle operands.
4676   if (Ops.size() == 1)
4677     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4678 
4679   // Create a tree of shuffles, deferring root node until after the loop.
4680   // Try to redistribute the undefined elements of non-root nodes so that
4681   // the non-root shuffles match something like a pack or merge, then adjust
4682   // the parent node's permute vector to compensate for the new order.
4683   // Among other things, this copes with vectors like <2 x i16> that were
4684   // padded with undefined elements during type legalization.
4685   //
4686   // In the best case this redistribution will lead to the whole tree
4687   // using packs and merges.  It should rarely be a loss in other cases.
4688   unsigned Stride = 1;
4689   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4690     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4691       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4692 
4693       // Create a mask for just these two operands.
4694       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4695       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4696         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4697         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4698         if (OpNo == I)
4699           NewBytes[J] = Byte;
4700         else if (OpNo == I + Stride)
4701           NewBytes[J] = SystemZ::VectorBytes + Byte;
4702         else
4703           NewBytes[J] = -1;
4704       }
4705       // See if it would be better to reorganize NewMask to avoid using VPERM.
4706       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4707       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4708         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4709         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4710         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4711           if (NewBytes[J] >= 0) {
4712             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4713                    "Invalid double permute");
4714             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4715           } else
4716             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4717         }
4718       } else {
4719         // Just use NewBytes on the operands.
4720         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4721         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4722           if (NewBytes[J] >= 0)
4723             Bytes[J] = I * SystemZ::VectorBytes + J;
4724       }
4725     }
4726   }
4727 
4728   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4729   if (Stride > 1) {
4730     Ops[1] = Ops[Stride];
4731     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4732       if (Bytes[I] >= int(SystemZ::VectorBytes))
4733         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4734   }
4735 
4736   // Look for an instruction that can do the permute without resorting
4737   // to VPERM.
4738   unsigned OpNo0, OpNo1;
4739   SDValue Op;
4740   if (unpackWasPrepared() && Ops[1].isUndef())
4741     Op = Ops[0];
4742   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4743     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4744   else
4745     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4746 
4747   Op = insertUnpackIfPrepared(DAG, DL, Op);
4748 
4749   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4750 }
4751 
4752 #ifndef NDEBUG
4753 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
4754   dbgs() << Msg.c_str() << " { ";
4755   for (unsigned i = 0; i < Bytes.size(); i++)
4756     dbgs() << Bytes[i] << " ";
4757   dbgs() << "}\n";
4758 }
4759 #endif
4760 
4761 // If the Bytes vector matches an unpack operation, prepare to do the unpack
4762 // after all else by removing the zero vector and the effect of the unpack on
4763 // Bytes.
4764 void GeneralShuffle::tryPrepareForUnpack() {
4765   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
4766   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
4767     return;
4768 
4769   // Only do this if removing the zero vector reduces the depth, otherwise
4770   // the critical path will increase with the final unpack.
4771   if (Ops.size() > 2 &&
4772       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
4773     return;
4774 
4775   // Find an unpack that would allow removing the zero vector from Ops.
4776   UnpackFromEltSize = 1;
4777   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
4778     bool MatchUnpack = true;
4779     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
4780     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
4781       unsigned ToEltSize = UnpackFromEltSize * 2;
4782       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
4783       if (!IsZextByte)
4784         SrcBytes.push_back(Bytes[Elt]);
4785       if (Bytes[Elt] != -1) {
4786         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
4787         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
4788           MatchUnpack = false;
4789           break;
4790         }
4791       }
4792     }
4793     if (MatchUnpack) {
4794       if (Ops.size() == 2) {
4795         // Don't use unpack if a single source operand needs rearrangement.
4796         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
4797           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
4798             UnpackFromEltSize = UINT_MAX;
4799             return;
4800           }
4801       }
4802       break;
4803     }
4804   }
4805   if (UnpackFromEltSize > 4)
4806     return;
4807 
4808   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
4809              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
4810              << ".\n";
4811              dumpBytes(Bytes, "Original Bytes vector:"););
4812 
4813   // Apply the unpack in reverse to the Bytes array.
4814   unsigned B = 0;
4815   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
4816     Elt += UnpackFromEltSize;
4817     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
4818       Bytes[B] = Bytes[Elt];
4819   }
4820   while (B < SystemZ::VectorBytes)
4821     Bytes[B++] = -1;
4822 
4823   // Remove the zero vector from Ops
4824   Ops.erase(&Ops[ZeroVecOpNo]);
4825   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4826     if (Bytes[I] >= 0) {
4827       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4828       if (OpNo > ZeroVecOpNo)
4829         Bytes[I] -= SystemZ::VectorBytes;
4830     }
4831 
4832   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
4833              dbgs() << "\n";);
4834 }
4835 
4836 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
4837                                                const SDLoc &DL,
4838                                                SDValue Op) {
4839   if (!unpackWasPrepared())
4840     return Op;
4841   unsigned InBits = UnpackFromEltSize * 8;
4842   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
4843                                 SystemZ::VectorBits / InBits);
4844   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
4845   unsigned OutBits = InBits * 2;
4846   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
4847                                SystemZ::VectorBits / OutBits);
4848   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
4849 }
4850 
4851 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4852 static bool isScalarToVector(SDValue Op) {
4853   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4854     if (!Op.getOperand(I).isUndef())
4855       return false;
4856   return true;
4857 }
4858 
4859 // Return a vector of type VT that contains Value in the first element.
4860 // The other elements don't matter.
4861 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4862                                    SDValue Value) {
4863   // If we have a constant, replicate it to all elements and let the
4864   // BUILD_VECTOR lowering take care of it.
4865   if (Value.getOpcode() == ISD::Constant ||
4866       Value.getOpcode() == ISD::ConstantFP) {
4867     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4868     return DAG.getBuildVector(VT, DL, Ops);
4869   }
4870   if (Value.isUndef())
4871     return DAG.getUNDEF(VT);
4872   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4873 }
4874 
4875 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4876 // element 1.  Used for cases in which replication is cheap.
4877 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4878                                  SDValue Op0, SDValue Op1) {
4879   if (Op0.isUndef()) {
4880     if (Op1.isUndef())
4881       return DAG.getUNDEF(VT);
4882     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4883   }
4884   if (Op1.isUndef())
4885     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4886   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4887                      buildScalarToVector(DAG, DL, VT, Op0),
4888                      buildScalarToVector(DAG, DL, VT, Op1));
4889 }
4890 
4891 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4892 // vector for them.
4893 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4894                           SDValue Op1) {
4895   if (Op0.isUndef() && Op1.isUndef())
4896     return DAG.getUNDEF(MVT::v2i64);
4897   // If one of the two inputs is undefined then replicate the other one,
4898   // in order to avoid using another register unnecessarily.
4899   if (Op0.isUndef())
4900     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4901   else if (Op1.isUndef())
4902     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4903   else {
4904     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4905     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4906   }
4907   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4908 }
4909 
4910 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4911 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4912 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4913 // would benefit from this representation and return it if so.
4914 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4915                                      BuildVectorSDNode *BVN) {
4916   EVT VT = BVN->getValueType(0);
4917   unsigned NumElements = VT.getVectorNumElements();
4918 
4919   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4920   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4921   // need a BUILD_VECTOR, add an additional placeholder operand for that
4922   // BUILD_VECTOR and store its operands in ResidueOps.
4923   GeneralShuffle GS(VT);
4924   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4925   bool FoundOne = false;
4926   for (unsigned I = 0; I < NumElements; ++I) {
4927     SDValue Op = BVN->getOperand(I);
4928     if (Op.getOpcode() == ISD::TRUNCATE)
4929       Op = Op.getOperand(0);
4930     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4931         Op.getOperand(1).getOpcode() == ISD::Constant) {
4932       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4933       if (!GS.add(Op.getOperand(0), Elem))
4934         return SDValue();
4935       FoundOne = true;
4936     } else if (Op.isUndef()) {
4937       GS.addUndef();
4938     } else {
4939       if (!GS.add(SDValue(), ResidueOps.size()))
4940         return SDValue();
4941       ResidueOps.push_back(BVN->getOperand(I));
4942     }
4943   }
4944 
4945   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4946   if (!FoundOne)
4947     return SDValue();
4948 
4949   // Create the BUILD_VECTOR for the remaining elements, if any.
4950   if (!ResidueOps.empty()) {
4951     while (ResidueOps.size() < NumElements)
4952       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4953     for (auto &Op : GS.Ops) {
4954       if (!Op.getNode()) {
4955         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4956         break;
4957       }
4958     }
4959   }
4960   return GS.getNode(DAG, SDLoc(BVN));
4961 }
4962 
4963 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4964   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4965     return true;
4966   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4967     return true;
4968   return false;
4969 }
4970 
4971 // Combine GPR scalar values Elems into a vector of type VT.
4972 SDValue
4973 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4974                                    SmallVectorImpl<SDValue> &Elems) const {
4975   // See whether there is a single replicated value.
4976   SDValue Single;
4977   unsigned int NumElements = Elems.size();
4978   unsigned int Count = 0;
4979   for (auto Elem : Elems) {
4980     if (!Elem.isUndef()) {
4981       if (!Single.getNode())
4982         Single = Elem;
4983       else if (Elem != Single) {
4984         Single = SDValue();
4985         break;
4986       }
4987       Count += 1;
4988     }
4989   }
4990   // There are three cases here:
4991   //
4992   // - if the only defined element is a loaded one, the best sequence
4993   //   is a replicating load.
4994   //
4995   // - otherwise, if the only defined element is an i64 value, we will
4996   //   end up with the same VLVGP sequence regardless of whether we short-cut
4997   //   for replication or fall through to the later code.
4998   //
4999   // - otherwise, if the only defined element is an i32 or smaller value,
5000   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5001   //   This is only a win if the single defined element is used more than once.
5002   //   In other cases we're better off using a single VLVGx.
5003   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5004     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5005 
5006   // If all elements are loads, use VLREP/VLEs (below).
5007   bool AllLoads = true;
5008   for (auto Elem : Elems)
5009     if (!isVectorElementLoad(Elem)) {
5010       AllLoads = false;
5011       break;
5012     }
5013 
5014   // The best way of building a v2i64 from two i64s is to use VLVGP.
5015   if (VT == MVT::v2i64 && !AllLoads)
5016     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5017 
5018   // Use a 64-bit merge high to combine two doubles.
5019   if (VT == MVT::v2f64 && !AllLoads)
5020     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5021 
5022   // Build v4f32 values directly from the FPRs:
5023   //
5024   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5025   //         V              V         VMRHF
5026   //      <ABxx>         <CDxx>
5027   //                V                 VMRHG
5028   //              <ABCD>
5029   if (VT == MVT::v4f32 && !AllLoads) {
5030     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5031     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5032     // Avoid unnecessary undefs by reusing the other operand.
5033     if (Op01.isUndef())
5034       Op01 = Op23;
5035     else if (Op23.isUndef())
5036       Op23 = Op01;
5037     // Merging identical replications is a no-op.
5038     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5039       return Op01;
5040     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5041     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5042     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5043                              DL, MVT::v2i64, Op01, Op23);
5044     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5045   }
5046 
5047   // Collect the constant terms.
5048   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5049   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5050 
5051   unsigned NumConstants = 0;
5052   for (unsigned I = 0; I < NumElements; ++I) {
5053     SDValue Elem = Elems[I];
5054     if (Elem.getOpcode() == ISD::Constant ||
5055         Elem.getOpcode() == ISD::ConstantFP) {
5056       NumConstants += 1;
5057       Constants[I] = Elem;
5058       Done[I] = true;
5059     }
5060   }
5061   // If there was at least one constant, fill in the other elements of
5062   // Constants with undefs to get a full vector constant and use that
5063   // as the starting point.
5064   SDValue Result;
5065   SDValue ReplicatedVal;
5066   if (NumConstants > 0) {
5067     for (unsigned I = 0; I < NumElements; ++I)
5068       if (!Constants[I].getNode())
5069         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5070     Result = DAG.getBuildVector(VT, DL, Constants);
5071   } else {
5072     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5073     // avoid a false dependency on any previous contents of the vector
5074     // register.
5075 
5076     // Use a VLREP if at least one element is a load. Make sure to replicate
5077     // the load with the most elements having its value.
5078     std::map<const SDNode*, unsigned> UseCounts;
5079     SDNode *LoadMaxUses = nullptr;
5080     for (unsigned I = 0; I < NumElements; ++I)
5081       if (isVectorElementLoad(Elems[I])) {
5082         SDNode *Ld = Elems[I].getNode();
5083         UseCounts[Ld]++;
5084         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5085           LoadMaxUses = Ld;
5086       }
5087     if (LoadMaxUses != nullptr) {
5088       ReplicatedVal = SDValue(LoadMaxUses, 0);
5089       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5090     } else {
5091       // Try to use VLVGP.
5092       unsigned I1 = NumElements / 2 - 1;
5093       unsigned I2 = NumElements - 1;
5094       bool Def1 = !Elems[I1].isUndef();
5095       bool Def2 = !Elems[I2].isUndef();
5096       if (Def1 || Def2) {
5097         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5098         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5099         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5100                              joinDwords(DAG, DL, Elem1, Elem2));
5101         Done[I1] = true;
5102         Done[I2] = true;
5103       } else
5104         Result = DAG.getUNDEF(VT);
5105     }
5106   }
5107 
5108   // Use VLVGx to insert the other elements.
5109   for (unsigned I = 0; I < NumElements; ++I)
5110     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5111       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5112                            DAG.getConstant(I, DL, MVT::i32));
5113   return Result;
5114 }
5115 
5116 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5117                                                  SelectionDAG &DAG) const {
5118   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5119   SDLoc DL(Op);
5120   EVT VT = Op.getValueType();
5121 
5122   if (BVN->isConstant()) {
5123     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5124       return Op;
5125 
5126     // Fall back to loading it from memory.
5127     return SDValue();
5128   }
5129 
5130   // See if we should use shuffles to construct the vector from other vectors.
5131   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5132     return Res;
5133 
5134   // Detect SCALAR_TO_VECTOR conversions.
5135   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5136     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5137 
5138   // Otherwise use buildVector to build the vector up from GPRs.
5139   unsigned NumElements = Op.getNumOperands();
5140   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5141   for (unsigned I = 0; I < NumElements; ++I)
5142     Ops[I] = Op.getOperand(I);
5143   return buildVector(DAG, DL, VT, Ops);
5144 }
5145 
5146 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5147                                                    SelectionDAG &DAG) const {
5148   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5149   SDLoc DL(Op);
5150   EVT VT = Op.getValueType();
5151   unsigned NumElements = VT.getVectorNumElements();
5152 
5153   if (VSN->isSplat()) {
5154     SDValue Op0 = Op.getOperand(0);
5155     unsigned Index = VSN->getSplatIndex();
5156     assert(Index < VT.getVectorNumElements() &&
5157            "Splat index should be defined and in first operand");
5158     // See whether the value we're splatting is directly available as a scalar.
5159     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5160         Op0.getOpcode() == ISD::BUILD_VECTOR)
5161       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5162     // Otherwise keep it as a vector-to-vector operation.
5163     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5164                        DAG.getTargetConstant(Index, DL, MVT::i32));
5165   }
5166 
5167   GeneralShuffle GS(VT);
5168   for (unsigned I = 0; I < NumElements; ++I) {
5169     int Elt = VSN->getMaskElt(I);
5170     if (Elt < 0)
5171       GS.addUndef();
5172     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5173                      unsigned(Elt) % NumElements))
5174       return SDValue();
5175   }
5176   return GS.getNode(DAG, SDLoc(VSN));
5177 }
5178 
5179 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5180                                                      SelectionDAG &DAG) const {
5181   SDLoc DL(Op);
5182   // Just insert the scalar into element 0 of an undefined vector.
5183   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5184                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5185                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5186 }
5187 
5188 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5189                                                       SelectionDAG &DAG) const {
5190   // Handle insertions of floating-point values.
5191   SDLoc DL(Op);
5192   SDValue Op0 = Op.getOperand(0);
5193   SDValue Op1 = Op.getOperand(1);
5194   SDValue Op2 = Op.getOperand(2);
5195   EVT VT = Op.getValueType();
5196 
5197   // Insertions into constant indices of a v2f64 can be done using VPDI.
5198   // However, if the inserted value is a bitcast or a constant then it's
5199   // better to use GPRs, as below.
5200   if (VT == MVT::v2f64 &&
5201       Op1.getOpcode() != ISD::BITCAST &&
5202       Op1.getOpcode() != ISD::ConstantFP &&
5203       Op2.getOpcode() == ISD::Constant) {
5204     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5205     unsigned Mask = VT.getVectorNumElements() - 1;
5206     if (Index <= Mask)
5207       return Op;
5208   }
5209 
5210   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5211   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5212   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5213   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5214                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5215                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5216   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5217 }
5218 
5219 SDValue
5220 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5221                                                SelectionDAG &DAG) const {
5222   // Handle extractions of floating-point values.
5223   SDLoc DL(Op);
5224   SDValue Op0 = Op.getOperand(0);
5225   SDValue Op1 = Op.getOperand(1);
5226   EVT VT = Op.getValueType();
5227   EVT VecVT = Op0.getValueType();
5228 
5229   // Extractions of constant indices can be done directly.
5230   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5231     uint64_t Index = CIndexN->getZExtValue();
5232     unsigned Mask = VecVT.getVectorNumElements() - 1;
5233     if (Index <= Mask)
5234       return Op;
5235   }
5236 
5237   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5238   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5239   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5240   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5241                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5242   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5243 }
5244 
5245 SDValue SystemZTargetLowering::
5246 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5247   SDValue PackedOp = Op.getOperand(0);
5248   EVT OutVT = Op.getValueType();
5249   EVT InVT = PackedOp.getValueType();
5250   unsigned ToBits = OutVT.getScalarSizeInBits();
5251   unsigned FromBits = InVT.getScalarSizeInBits();
5252   do {
5253     FromBits *= 2;
5254     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5255                                  SystemZ::VectorBits / FromBits);
5256     PackedOp =
5257       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5258   } while (FromBits != ToBits);
5259   return PackedOp;
5260 }
5261 
5262 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5263 SDValue SystemZTargetLowering::
5264 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5265   SDValue PackedOp = Op.getOperand(0);
5266   SDLoc DL(Op);
5267   EVT OutVT = Op.getValueType();
5268   EVT InVT = PackedOp.getValueType();
5269   unsigned InNumElts = InVT.getVectorNumElements();
5270   unsigned OutNumElts = OutVT.getVectorNumElements();
5271   unsigned NumInPerOut = InNumElts / OutNumElts;
5272 
5273   SDValue ZeroVec =
5274     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5275 
5276   SmallVector<int, 16> Mask(InNumElts);
5277   unsigned ZeroVecElt = InNumElts;
5278   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5279     unsigned MaskElt = PackedElt * NumInPerOut;
5280     unsigned End = MaskElt + NumInPerOut - 1;
5281     for (; MaskElt < End; MaskElt++)
5282       Mask[MaskElt] = ZeroVecElt++;
5283     Mask[MaskElt] = PackedElt;
5284   }
5285   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5286   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5287 }
5288 
5289 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5290                                           unsigned ByScalar) const {
5291   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5292   SDValue Op0 = Op.getOperand(0);
5293   SDValue Op1 = Op.getOperand(1);
5294   SDLoc DL(Op);
5295   EVT VT = Op.getValueType();
5296   unsigned ElemBitSize = VT.getScalarSizeInBits();
5297 
5298   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5299   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5300     APInt SplatBits, SplatUndef;
5301     unsigned SplatBitSize;
5302     bool HasAnyUndefs;
5303     // Check for constant splats.  Use ElemBitSize as the minimum element
5304     // width and reject splats that need wider elements.
5305     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5306                              ElemBitSize, true) &&
5307         SplatBitSize == ElemBitSize) {
5308       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5309                                       DL, MVT::i32);
5310       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5311     }
5312     // Check for variable splats.
5313     BitVector UndefElements;
5314     SDValue Splat = BVN->getSplatValue(&UndefElements);
5315     if (Splat) {
5316       // Since i32 is the smallest legal type, we either need a no-op
5317       // or a truncation.
5318       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5319       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5320     }
5321   }
5322 
5323   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5324   // and the shift amount is directly available in a GPR.
5325   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5326     if (VSN->isSplat()) {
5327       SDValue VSNOp0 = VSN->getOperand(0);
5328       unsigned Index = VSN->getSplatIndex();
5329       assert(Index < VT.getVectorNumElements() &&
5330              "Splat index should be defined and in first operand");
5331       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5332           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5333         // Since i32 is the smallest legal type, we either need a no-op
5334         // or a truncation.
5335         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5336                                     VSNOp0.getOperand(Index));
5337         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5338       }
5339     }
5340   }
5341 
5342   // Otherwise just treat the current form as legal.
5343   return Op;
5344 }
5345 
5346 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5347                                               SelectionDAG &DAG) const {
5348   switch (Op.getOpcode()) {
5349   case ISD::FRAMEADDR:
5350     return lowerFRAMEADDR(Op, DAG);
5351   case ISD::RETURNADDR:
5352     return lowerRETURNADDR(Op, DAG);
5353   case ISD::BR_CC:
5354     return lowerBR_CC(Op, DAG);
5355   case ISD::SELECT_CC:
5356     return lowerSELECT_CC(Op, DAG);
5357   case ISD::SETCC:
5358     return lowerSETCC(Op, DAG);
5359   case ISD::STRICT_FSETCC:
5360     return lowerSTRICT_FSETCC(Op, DAG, false);
5361   case ISD::STRICT_FSETCCS:
5362     return lowerSTRICT_FSETCC(Op, DAG, true);
5363   case ISD::GlobalAddress:
5364     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5365   case ISD::GlobalTLSAddress:
5366     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5367   case ISD::BlockAddress:
5368     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5369   case ISD::JumpTable:
5370     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5371   case ISD::ConstantPool:
5372     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5373   case ISD::BITCAST:
5374     return lowerBITCAST(Op, DAG);
5375   case ISD::VASTART:
5376     return lowerVASTART(Op, DAG);
5377   case ISD::VACOPY:
5378     return lowerVACOPY(Op, DAG);
5379   case ISD::DYNAMIC_STACKALLOC:
5380     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5381   case ISD::GET_DYNAMIC_AREA_OFFSET:
5382     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5383   case ISD::SMUL_LOHI:
5384     return lowerSMUL_LOHI(Op, DAG);
5385   case ISD::UMUL_LOHI:
5386     return lowerUMUL_LOHI(Op, DAG);
5387   case ISD::SDIVREM:
5388     return lowerSDIVREM(Op, DAG);
5389   case ISD::UDIVREM:
5390     return lowerUDIVREM(Op, DAG);
5391   case ISD::SADDO:
5392   case ISD::SSUBO:
5393   case ISD::UADDO:
5394   case ISD::USUBO:
5395     return lowerXALUO(Op, DAG);
5396   case ISD::ADDCARRY:
5397   case ISD::SUBCARRY:
5398     return lowerADDSUBCARRY(Op, DAG);
5399   case ISD::OR:
5400     return lowerOR(Op, DAG);
5401   case ISD::CTPOP:
5402     return lowerCTPOP(Op, DAG);
5403   case ISD::ATOMIC_FENCE:
5404     return lowerATOMIC_FENCE(Op, DAG);
5405   case ISD::ATOMIC_SWAP:
5406     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5407   case ISD::ATOMIC_STORE:
5408     return lowerATOMIC_STORE(Op, DAG);
5409   case ISD::ATOMIC_LOAD:
5410     return lowerATOMIC_LOAD(Op, DAG);
5411   case ISD::ATOMIC_LOAD_ADD:
5412     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5413   case ISD::ATOMIC_LOAD_SUB:
5414     return lowerATOMIC_LOAD_SUB(Op, DAG);
5415   case ISD::ATOMIC_LOAD_AND:
5416     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5417   case ISD::ATOMIC_LOAD_OR:
5418     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5419   case ISD::ATOMIC_LOAD_XOR:
5420     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5421   case ISD::ATOMIC_LOAD_NAND:
5422     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5423   case ISD::ATOMIC_LOAD_MIN:
5424     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5425   case ISD::ATOMIC_LOAD_MAX:
5426     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5427   case ISD::ATOMIC_LOAD_UMIN:
5428     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5429   case ISD::ATOMIC_LOAD_UMAX:
5430     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5431   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5432     return lowerATOMIC_CMP_SWAP(Op, DAG);
5433   case ISD::STACKSAVE:
5434     return lowerSTACKSAVE(Op, DAG);
5435   case ISD::STACKRESTORE:
5436     return lowerSTACKRESTORE(Op, DAG);
5437   case ISD::PREFETCH:
5438     return lowerPREFETCH(Op, DAG);
5439   case ISD::INTRINSIC_W_CHAIN:
5440     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5441   case ISD::INTRINSIC_WO_CHAIN:
5442     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5443   case ISD::BUILD_VECTOR:
5444     return lowerBUILD_VECTOR(Op, DAG);
5445   case ISD::VECTOR_SHUFFLE:
5446     return lowerVECTOR_SHUFFLE(Op, DAG);
5447   case ISD::SCALAR_TO_VECTOR:
5448     return lowerSCALAR_TO_VECTOR(Op, DAG);
5449   case ISD::INSERT_VECTOR_ELT:
5450     return lowerINSERT_VECTOR_ELT(Op, DAG);
5451   case ISD::EXTRACT_VECTOR_ELT:
5452     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5453   case ISD::SIGN_EXTEND_VECTOR_INREG:
5454     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5455   case ISD::ZERO_EXTEND_VECTOR_INREG:
5456     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5457   case ISD::SHL:
5458     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5459   case ISD::SRL:
5460     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5461   case ISD::SRA:
5462     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5463   default:
5464     llvm_unreachable("Unexpected node to lower");
5465   }
5466 }
5467 
5468 // Lower operations with invalid operand or result types (currently used
5469 // only for 128-bit integer types).
5470 
5471 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5472   SDLoc DL(In);
5473   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5474                            DAG.getIntPtrConstant(0, DL));
5475   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5476                            DAG.getIntPtrConstant(1, DL));
5477   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5478                                     MVT::Untyped, Hi, Lo);
5479   return SDValue(Pair, 0);
5480 }
5481 
5482 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5483   SDLoc DL(In);
5484   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5485                                           DL, MVT::i64, In);
5486   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5487                                           DL, MVT::i64, In);
5488   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5489 }
5490 
5491 void
5492 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5493                                              SmallVectorImpl<SDValue> &Results,
5494                                              SelectionDAG &DAG) const {
5495   switch (N->getOpcode()) {
5496   case ISD::ATOMIC_LOAD: {
5497     SDLoc DL(N);
5498     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5499     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5500     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5501     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5502                                           DL, Tys, Ops, MVT::i128, MMO);
5503     Results.push_back(lowerGR128ToI128(DAG, Res));
5504     Results.push_back(Res.getValue(1));
5505     break;
5506   }
5507   case ISD::ATOMIC_STORE: {
5508     SDLoc DL(N);
5509     SDVTList Tys = DAG.getVTList(MVT::Other);
5510     SDValue Ops[] = { N->getOperand(0),
5511                       lowerI128ToGR128(DAG, N->getOperand(2)),
5512                       N->getOperand(1) };
5513     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5514     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5515                                           DL, Tys, Ops, MVT::i128, MMO);
5516     // We have to enforce sequential consistency by performing a
5517     // serialization operation after the store.
5518     if (cast<AtomicSDNode>(N)->getOrdering() ==
5519         AtomicOrdering::SequentiallyConsistent)
5520       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5521                                        MVT::Other, Res), 0);
5522     Results.push_back(Res);
5523     break;
5524   }
5525   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5526     SDLoc DL(N);
5527     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5528     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5529                       lowerI128ToGR128(DAG, N->getOperand(2)),
5530                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5531     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5532     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5533                                           DL, Tys, Ops, MVT::i128, MMO);
5534     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5535                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5536     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5537     Results.push_back(lowerGR128ToI128(DAG, Res));
5538     Results.push_back(Success);
5539     Results.push_back(Res.getValue(2));
5540     break;
5541   }
5542   default:
5543     llvm_unreachable("Unexpected node to lower");
5544   }
5545 }
5546 
5547 void
5548 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5549                                           SmallVectorImpl<SDValue> &Results,
5550                                           SelectionDAG &DAG) const {
5551   return LowerOperationWrapper(N, Results, DAG);
5552 }
5553 
5554 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5555 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5556   switch ((SystemZISD::NodeType)Opcode) {
5557     case SystemZISD::FIRST_NUMBER: break;
5558     OPCODE(RET_FLAG);
5559     OPCODE(CALL);
5560     OPCODE(SIBCALL);
5561     OPCODE(TLS_GDCALL);
5562     OPCODE(TLS_LDCALL);
5563     OPCODE(PCREL_WRAPPER);
5564     OPCODE(PCREL_OFFSET);
5565     OPCODE(ICMP);
5566     OPCODE(FCMP);
5567     OPCODE(STRICT_FCMP);
5568     OPCODE(STRICT_FCMPS);
5569     OPCODE(TM);
5570     OPCODE(BR_CCMASK);
5571     OPCODE(SELECT_CCMASK);
5572     OPCODE(ADJDYNALLOC);
5573     OPCODE(PROBED_ALLOCA);
5574     OPCODE(POPCNT);
5575     OPCODE(SMUL_LOHI);
5576     OPCODE(UMUL_LOHI);
5577     OPCODE(SDIVREM);
5578     OPCODE(UDIVREM);
5579     OPCODE(SADDO);
5580     OPCODE(SSUBO);
5581     OPCODE(UADDO);
5582     OPCODE(USUBO);
5583     OPCODE(ADDCARRY);
5584     OPCODE(SUBCARRY);
5585     OPCODE(GET_CCMASK);
5586     OPCODE(MVC);
5587     OPCODE(MVC_LOOP);
5588     OPCODE(NC);
5589     OPCODE(NC_LOOP);
5590     OPCODE(OC);
5591     OPCODE(OC_LOOP);
5592     OPCODE(XC);
5593     OPCODE(XC_LOOP);
5594     OPCODE(CLC);
5595     OPCODE(CLC_LOOP);
5596     OPCODE(STPCPY);
5597     OPCODE(STRCMP);
5598     OPCODE(SEARCH_STRING);
5599     OPCODE(IPM);
5600     OPCODE(MEMBARRIER);
5601     OPCODE(TBEGIN);
5602     OPCODE(TBEGIN_NOFLOAT);
5603     OPCODE(TEND);
5604     OPCODE(BYTE_MASK);
5605     OPCODE(ROTATE_MASK);
5606     OPCODE(REPLICATE);
5607     OPCODE(JOIN_DWORDS);
5608     OPCODE(SPLAT);
5609     OPCODE(MERGE_HIGH);
5610     OPCODE(MERGE_LOW);
5611     OPCODE(SHL_DOUBLE);
5612     OPCODE(PERMUTE_DWORDS);
5613     OPCODE(PERMUTE);
5614     OPCODE(PACK);
5615     OPCODE(PACKS_CC);
5616     OPCODE(PACKLS_CC);
5617     OPCODE(UNPACK_HIGH);
5618     OPCODE(UNPACKL_HIGH);
5619     OPCODE(UNPACK_LOW);
5620     OPCODE(UNPACKL_LOW);
5621     OPCODE(VSHL_BY_SCALAR);
5622     OPCODE(VSRL_BY_SCALAR);
5623     OPCODE(VSRA_BY_SCALAR);
5624     OPCODE(VSUM);
5625     OPCODE(VICMPE);
5626     OPCODE(VICMPH);
5627     OPCODE(VICMPHL);
5628     OPCODE(VICMPES);
5629     OPCODE(VICMPHS);
5630     OPCODE(VICMPHLS);
5631     OPCODE(VFCMPE);
5632     OPCODE(STRICT_VFCMPE);
5633     OPCODE(STRICT_VFCMPES);
5634     OPCODE(VFCMPH);
5635     OPCODE(STRICT_VFCMPH);
5636     OPCODE(STRICT_VFCMPHS);
5637     OPCODE(VFCMPHE);
5638     OPCODE(STRICT_VFCMPHE);
5639     OPCODE(STRICT_VFCMPHES);
5640     OPCODE(VFCMPES);
5641     OPCODE(VFCMPHS);
5642     OPCODE(VFCMPHES);
5643     OPCODE(VFTCI);
5644     OPCODE(VEXTEND);
5645     OPCODE(STRICT_VEXTEND);
5646     OPCODE(VROUND);
5647     OPCODE(STRICT_VROUND);
5648     OPCODE(VTM);
5649     OPCODE(VFAE_CC);
5650     OPCODE(VFAEZ_CC);
5651     OPCODE(VFEE_CC);
5652     OPCODE(VFEEZ_CC);
5653     OPCODE(VFENE_CC);
5654     OPCODE(VFENEZ_CC);
5655     OPCODE(VISTR_CC);
5656     OPCODE(VSTRC_CC);
5657     OPCODE(VSTRCZ_CC);
5658     OPCODE(VSTRS_CC);
5659     OPCODE(VSTRSZ_CC);
5660     OPCODE(TDC);
5661     OPCODE(ATOMIC_SWAPW);
5662     OPCODE(ATOMIC_LOADW_ADD);
5663     OPCODE(ATOMIC_LOADW_SUB);
5664     OPCODE(ATOMIC_LOADW_AND);
5665     OPCODE(ATOMIC_LOADW_OR);
5666     OPCODE(ATOMIC_LOADW_XOR);
5667     OPCODE(ATOMIC_LOADW_NAND);
5668     OPCODE(ATOMIC_LOADW_MIN);
5669     OPCODE(ATOMIC_LOADW_MAX);
5670     OPCODE(ATOMIC_LOADW_UMIN);
5671     OPCODE(ATOMIC_LOADW_UMAX);
5672     OPCODE(ATOMIC_CMP_SWAPW);
5673     OPCODE(ATOMIC_CMP_SWAP);
5674     OPCODE(ATOMIC_LOAD_128);
5675     OPCODE(ATOMIC_STORE_128);
5676     OPCODE(ATOMIC_CMP_SWAP_128);
5677     OPCODE(LRV);
5678     OPCODE(STRV);
5679     OPCODE(VLER);
5680     OPCODE(VSTER);
5681     OPCODE(PREFETCH);
5682   }
5683   return nullptr;
5684 #undef OPCODE
5685 }
5686 
5687 // Return true if VT is a vector whose elements are a whole number of bytes
5688 // in width. Also check for presence of vector support.
5689 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5690   if (!Subtarget.hasVector())
5691     return false;
5692 
5693   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5694 }
5695 
5696 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5697 // producing a result of type ResVT.  Op is a possibly bitcast version
5698 // of the input vector and Index is the index (based on type VecVT) that
5699 // should be extracted.  Return the new extraction if a simplification
5700 // was possible or if Force is true.
5701 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5702                                               EVT VecVT, SDValue Op,
5703                                               unsigned Index,
5704                                               DAGCombinerInfo &DCI,
5705                                               bool Force) const {
5706   SelectionDAG &DAG = DCI.DAG;
5707 
5708   // The number of bytes being extracted.
5709   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5710 
5711   for (;;) {
5712     unsigned Opcode = Op.getOpcode();
5713     if (Opcode == ISD::BITCAST)
5714       // Look through bitcasts.
5715       Op = Op.getOperand(0);
5716     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5717              canTreatAsByteVector(Op.getValueType())) {
5718       // Get a VPERM-like permute mask and see whether the bytes covered
5719       // by the extracted element are a contiguous sequence from one
5720       // source operand.
5721       SmallVector<int, SystemZ::VectorBytes> Bytes;
5722       if (!getVPermMask(Op, Bytes))
5723         break;
5724       int First;
5725       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5726                            BytesPerElement, First))
5727         break;
5728       if (First < 0)
5729         return DAG.getUNDEF(ResVT);
5730       // Make sure the contiguous sequence starts at a multiple of the
5731       // original element size.
5732       unsigned Byte = unsigned(First) % Bytes.size();
5733       if (Byte % BytesPerElement != 0)
5734         break;
5735       // We can get the extracted value directly from an input.
5736       Index = Byte / BytesPerElement;
5737       Op = Op.getOperand(unsigned(First) / Bytes.size());
5738       Force = true;
5739     } else if (Opcode == ISD::BUILD_VECTOR &&
5740                canTreatAsByteVector(Op.getValueType())) {
5741       // We can only optimize this case if the BUILD_VECTOR elements are
5742       // at least as wide as the extracted value.
5743       EVT OpVT = Op.getValueType();
5744       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5745       if (OpBytesPerElement < BytesPerElement)
5746         break;
5747       // Make sure that the least-significant bit of the extracted value
5748       // is the least significant bit of an input.
5749       unsigned End = (Index + 1) * BytesPerElement;
5750       if (End % OpBytesPerElement != 0)
5751         break;
5752       // We're extracting the low part of one operand of the BUILD_VECTOR.
5753       Op = Op.getOperand(End / OpBytesPerElement - 1);
5754       if (!Op.getValueType().isInteger()) {
5755         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5756         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5757         DCI.AddToWorklist(Op.getNode());
5758       }
5759       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5760       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5761       if (VT != ResVT) {
5762         DCI.AddToWorklist(Op.getNode());
5763         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5764       }
5765       return Op;
5766     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5767                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5768                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5769                canTreatAsByteVector(Op.getValueType()) &&
5770                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5771       // Make sure that only the unextended bits are significant.
5772       EVT ExtVT = Op.getValueType();
5773       EVT OpVT = Op.getOperand(0).getValueType();
5774       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5775       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5776       unsigned Byte = Index * BytesPerElement;
5777       unsigned SubByte = Byte % ExtBytesPerElement;
5778       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5779       if (SubByte < MinSubByte ||
5780           SubByte + BytesPerElement > ExtBytesPerElement)
5781         break;
5782       // Get the byte offset of the unextended element
5783       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5784       // ...then add the byte offset relative to that element.
5785       Byte += SubByte - MinSubByte;
5786       if (Byte % BytesPerElement != 0)
5787         break;
5788       Op = Op.getOperand(0);
5789       Index = Byte / BytesPerElement;
5790       Force = true;
5791     } else
5792       break;
5793   }
5794   if (Force) {
5795     if (Op.getValueType() != VecVT) {
5796       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5797       DCI.AddToWorklist(Op.getNode());
5798     }
5799     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5800                        DAG.getConstant(Index, DL, MVT::i32));
5801   }
5802   return SDValue();
5803 }
5804 
5805 // Optimize vector operations in scalar value Op on the basis that Op
5806 // is truncated to TruncVT.
5807 SDValue SystemZTargetLowering::combineTruncateExtract(
5808     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5809   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5810   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5811   // of type TruncVT.
5812   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5813       TruncVT.getSizeInBits() % 8 == 0) {
5814     SDValue Vec = Op.getOperand(0);
5815     EVT VecVT = Vec.getValueType();
5816     if (canTreatAsByteVector(VecVT)) {
5817       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5818         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5819         unsigned TruncBytes = TruncVT.getStoreSize();
5820         if (BytesPerElement % TruncBytes == 0) {
5821           // Calculate the value of Y' in the above description.  We are
5822           // splitting the original elements into Scale equal-sized pieces
5823           // and for truncation purposes want the last (least-significant)
5824           // of these pieces for IndexN.  This is easiest to do by calculating
5825           // the start index of the following element and then subtracting 1.
5826           unsigned Scale = BytesPerElement / TruncBytes;
5827           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5828 
5829           // Defer the creation of the bitcast from X to combineExtract,
5830           // which might be able to optimize the extraction.
5831           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5832                                    VecVT.getStoreSize() / TruncBytes);
5833           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5834           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5835         }
5836       }
5837     }
5838   }
5839   return SDValue();
5840 }
5841 
5842 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5843     SDNode *N, DAGCombinerInfo &DCI) const {
5844   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5845   SelectionDAG &DAG = DCI.DAG;
5846   SDValue N0 = N->getOperand(0);
5847   EVT VT = N->getValueType(0);
5848   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5849     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5850     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5851     if (TrueOp && FalseOp) {
5852       SDLoc DL(N0);
5853       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5854                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5855                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5856       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5857       // If N0 has multiple uses, change other uses as well.
5858       if (!N0.hasOneUse()) {
5859         SDValue TruncSelect =
5860           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5861         DCI.CombineTo(N0.getNode(), TruncSelect);
5862       }
5863       return NewSelect;
5864     }
5865   }
5866   return SDValue();
5867 }
5868 
5869 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5870     SDNode *N, DAGCombinerInfo &DCI) const {
5871   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5872   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5873   // into (select_cc LHS, RHS, -1, 0, COND)
5874   SelectionDAG &DAG = DCI.DAG;
5875   SDValue N0 = N->getOperand(0);
5876   EVT VT = N->getValueType(0);
5877   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5878   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5879     N0 = N0.getOperand(0);
5880   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5881     SDLoc DL(N0);
5882     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5883                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5884                       N0.getOperand(2) };
5885     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5886   }
5887   return SDValue();
5888 }
5889 
5890 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5891     SDNode *N, DAGCombinerInfo &DCI) const {
5892   // Convert (sext (ashr (shl X, C1), C2)) to
5893   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5894   // cheap as narrower ones.
5895   SelectionDAG &DAG = DCI.DAG;
5896   SDValue N0 = N->getOperand(0);
5897   EVT VT = N->getValueType(0);
5898   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5899     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5900     SDValue Inner = N0.getOperand(0);
5901     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5902       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5903         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5904         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5905         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5906         EVT ShiftVT = N0.getOperand(1).getValueType();
5907         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5908                                   Inner.getOperand(0));
5909         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5910                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5911                                                   ShiftVT));
5912         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5913                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5914       }
5915     }
5916   }
5917   return SDValue();
5918 }
5919 
5920 SDValue SystemZTargetLowering::combineMERGE(
5921     SDNode *N, DAGCombinerInfo &DCI) const {
5922   SelectionDAG &DAG = DCI.DAG;
5923   unsigned Opcode = N->getOpcode();
5924   SDValue Op0 = N->getOperand(0);
5925   SDValue Op1 = N->getOperand(1);
5926   if (Op0.getOpcode() == ISD::BITCAST)
5927     Op0 = Op0.getOperand(0);
5928   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5929     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5930     // for v4f32.
5931     if (Op1 == N->getOperand(0))
5932       return Op1;
5933     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5934     EVT VT = Op1.getValueType();
5935     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5936     if (ElemBytes <= 4) {
5937       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5938                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5939       EVT InVT = VT.changeVectorElementTypeToInteger();
5940       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5941                                    SystemZ::VectorBytes / ElemBytes / 2);
5942       if (VT != InVT) {
5943         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5944         DCI.AddToWorklist(Op1.getNode());
5945       }
5946       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5947       DCI.AddToWorklist(Op.getNode());
5948       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5949     }
5950   }
5951   return SDValue();
5952 }
5953 
5954 SDValue SystemZTargetLowering::combineLOAD(
5955     SDNode *N, DAGCombinerInfo &DCI) const {
5956   SelectionDAG &DAG = DCI.DAG;
5957   EVT LdVT = N->getValueType(0);
5958   if (LdVT.isVector() || LdVT.isInteger())
5959     return SDValue();
5960   // Transform a scalar load that is REPLICATEd as well as having other
5961   // use(s) to the form where the other use(s) use the first element of the
5962   // REPLICATE instead of the load. Otherwise instruction selection will not
5963   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5964   // point loads.
5965 
5966   SDValue Replicate;
5967   SmallVector<SDNode*, 8> OtherUses;
5968   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5969        UI != UE; ++UI) {
5970     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5971       if (Replicate)
5972         return SDValue(); // Should never happen
5973       Replicate = SDValue(*UI, 0);
5974     }
5975     else if (UI.getUse().getResNo() == 0)
5976       OtherUses.push_back(*UI);
5977   }
5978   if (!Replicate || OtherUses.empty())
5979     return SDValue();
5980 
5981   SDLoc DL(N);
5982   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5983                               Replicate, DAG.getConstant(0, DL, MVT::i32));
5984   // Update uses of the loaded Value while preserving old chains.
5985   for (SDNode *U : OtherUses) {
5986     SmallVector<SDValue, 8> Ops;
5987     for (SDValue Op : U->ops())
5988       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5989     DAG.UpdateNodeOperands(U, Ops);
5990   }
5991   return SDValue(N, 0);
5992 }
5993 
5994 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
5995   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
5996     return true;
5997   if (Subtarget.hasVectorEnhancements2())
5998     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
5999       return true;
6000   return false;
6001 }
6002 
6003 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6004   if (!VT.isVector() || !VT.isSimple() ||
6005       VT.getSizeInBits() != 128 ||
6006       VT.getScalarSizeInBits() % 8 != 0)
6007     return false;
6008 
6009   unsigned NumElts = VT.getVectorNumElements();
6010   for (unsigned i = 0; i < NumElts; ++i) {
6011     if (M[i] < 0) continue; // ignore UNDEF indices
6012     if ((unsigned) M[i] != NumElts - 1 - i)
6013       return false;
6014   }
6015 
6016   return true;
6017 }
6018 
6019 SDValue SystemZTargetLowering::combineSTORE(
6020     SDNode *N, DAGCombinerInfo &DCI) const {
6021   SelectionDAG &DAG = DCI.DAG;
6022   auto *SN = cast<StoreSDNode>(N);
6023   auto &Op1 = N->getOperand(1);
6024   EVT MemVT = SN->getMemoryVT();
6025   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6026   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6027   // If X has wider elements then convert it to:
6028   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6029   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6030     if (SDValue Value =
6031             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6032       DCI.AddToWorklist(Value.getNode());
6033 
6034       // Rewrite the store with the new form of stored value.
6035       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6036                                SN->getBasePtr(), SN->getMemoryVT(),
6037                                SN->getMemOperand());
6038     }
6039   }
6040   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6041   if (!SN->isTruncatingStore() &&
6042       Op1.getOpcode() == ISD::BSWAP &&
6043       Op1.getNode()->hasOneUse() &&
6044       canLoadStoreByteSwapped(Op1.getValueType())) {
6045 
6046       SDValue BSwapOp = Op1.getOperand(0);
6047 
6048       if (BSwapOp.getValueType() == MVT::i16)
6049         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6050 
6051       SDValue Ops[] = {
6052         N->getOperand(0), BSwapOp, N->getOperand(2)
6053       };
6054 
6055       return
6056         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6057                                 Ops, MemVT, SN->getMemOperand());
6058     }
6059   // Combine STORE (element-swap) into VSTER
6060   if (!SN->isTruncatingStore() &&
6061       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6062       Op1.getNode()->hasOneUse() &&
6063       Subtarget.hasVectorEnhancements2()) {
6064     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6065     ArrayRef<int> ShuffleMask = SVN->getMask();
6066     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6067       SDValue Ops[] = {
6068         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6069       };
6070 
6071       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6072                                      DAG.getVTList(MVT::Other),
6073                                      Ops, MemVT, SN->getMemOperand());
6074     }
6075   }
6076 
6077   return SDValue();
6078 }
6079 
6080 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6081     SDNode *N, DAGCombinerInfo &DCI) const {
6082   SelectionDAG &DAG = DCI.DAG;
6083   // Combine element-swap (LOAD) into VLER
6084   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6085       N->getOperand(0).hasOneUse() &&
6086       Subtarget.hasVectorEnhancements2()) {
6087     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6088     ArrayRef<int> ShuffleMask = SVN->getMask();
6089     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6090       SDValue Load = N->getOperand(0);
6091       LoadSDNode *LD = cast<LoadSDNode>(Load);
6092 
6093       // Create the element-swapping load.
6094       SDValue Ops[] = {
6095         LD->getChain(),    // Chain
6096         LD->getBasePtr()   // Ptr
6097       };
6098       SDValue ESLoad =
6099         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6100                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6101                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6102 
6103       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6104       // by the load dead.
6105       DCI.CombineTo(N, ESLoad);
6106 
6107       // Next, combine the load away, we give it a bogus result value but a real
6108       // chain result.  The result value is dead because the shuffle is dead.
6109       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6110 
6111       // Return N so it doesn't get rechecked!
6112       return SDValue(N, 0);
6113     }
6114   }
6115 
6116   return SDValue();
6117 }
6118 
6119 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6120     SDNode *N, DAGCombinerInfo &DCI) const {
6121   SelectionDAG &DAG = DCI.DAG;
6122 
6123   if (!Subtarget.hasVector())
6124     return SDValue();
6125 
6126   // Look through bitcasts that retain the number of vector elements.
6127   SDValue Op = N->getOperand(0);
6128   if (Op.getOpcode() == ISD::BITCAST &&
6129       Op.getValueType().isVector() &&
6130       Op.getOperand(0).getValueType().isVector() &&
6131       Op.getValueType().getVectorNumElements() ==
6132       Op.getOperand(0).getValueType().getVectorNumElements())
6133     Op = Op.getOperand(0);
6134 
6135   // Pull BSWAP out of a vector extraction.
6136   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6137     EVT VecVT = Op.getValueType();
6138     EVT EltVT = VecVT.getVectorElementType();
6139     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6140                      Op.getOperand(0), N->getOperand(1));
6141     DCI.AddToWorklist(Op.getNode());
6142     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6143     if (EltVT != N->getValueType(0)) {
6144       DCI.AddToWorklist(Op.getNode());
6145       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6146     }
6147     return Op;
6148   }
6149 
6150   // Try to simplify a vector extraction.
6151   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6152     SDValue Op0 = N->getOperand(0);
6153     EVT VecVT = Op0.getValueType();
6154     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6155                           IndexN->getZExtValue(), DCI, false);
6156   }
6157   return SDValue();
6158 }
6159 
6160 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6161     SDNode *N, DAGCombinerInfo &DCI) const {
6162   SelectionDAG &DAG = DCI.DAG;
6163   // (join_dwords X, X) == (replicate X)
6164   if (N->getOperand(0) == N->getOperand(1))
6165     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6166                        N->getOperand(0));
6167   return SDValue();
6168 }
6169 
6170 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6171   SDValue Chain1 = N1->getOperand(0);
6172   SDValue Chain2 = N2->getOperand(0);
6173 
6174   // Trivial case: both nodes take the same chain.
6175   if (Chain1 == Chain2)
6176     return Chain1;
6177 
6178   // FIXME - we could handle more complex cases via TokenFactor,
6179   // assuming we can verify that this would not create a cycle.
6180   return SDValue();
6181 }
6182 
6183 SDValue SystemZTargetLowering::combineFP_ROUND(
6184     SDNode *N, DAGCombinerInfo &DCI) const {
6185 
6186   if (!Subtarget.hasVector())
6187     return SDValue();
6188 
6189   // (fpround (extract_vector_elt X 0))
6190   // (fpround (extract_vector_elt X 1)) ->
6191   // (extract_vector_elt (VROUND X) 0)
6192   // (extract_vector_elt (VROUND X) 2)
6193   //
6194   // This is a special case since the target doesn't really support v2f32s.
6195   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6196   SelectionDAG &DAG = DCI.DAG;
6197   SDValue Op0 = N->getOperand(OpNo);
6198   if (N->getValueType(0) == MVT::f32 &&
6199       Op0.hasOneUse() &&
6200       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6201       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6202       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6203       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6204     SDValue Vec = Op0.getOperand(0);
6205     for (auto *U : Vec->uses()) {
6206       if (U != Op0.getNode() &&
6207           U->hasOneUse() &&
6208           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6209           U->getOperand(0) == Vec &&
6210           U->getOperand(1).getOpcode() == ISD::Constant &&
6211           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6212         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6213         if (OtherRound.getOpcode() == N->getOpcode() &&
6214             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6215             OtherRound.getValueType() == MVT::f32) {
6216           SDValue VRound, Chain;
6217           if (N->isStrictFPOpcode()) {
6218             Chain = MergeInputChains(N, OtherRound.getNode());
6219             if (!Chain)
6220               continue;
6221             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6222                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6223             Chain = VRound.getValue(1);
6224           } else
6225             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6226                                  MVT::v4f32, Vec);
6227           DCI.AddToWorklist(VRound.getNode());
6228           SDValue Extract1 =
6229             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6230                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6231           DCI.AddToWorklist(Extract1.getNode());
6232           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6233           if (Chain)
6234             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6235           SDValue Extract0 =
6236             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6237                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6238           if (Chain)
6239             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6240                                N->getVTList(), Extract0, Chain);
6241           return Extract0;
6242         }
6243       }
6244     }
6245   }
6246   return SDValue();
6247 }
6248 
6249 SDValue SystemZTargetLowering::combineFP_EXTEND(
6250     SDNode *N, DAGCombinerInfo &DCI) const {
6251 
6252   if (!Subtarget.hasVector())
6253     return SDValue();
6254 
6255   // (fpextend (extract_vector_elt X 0))
6256   // (fpextend (extract_vector_elt X 2)) ->
6257   // (extract_vector_elt (VEXTEND X) 0)
6258   // (extract_vector_elt (VEXTEND X) 1)
6259   //
6260   // This is a special case since the target doesn't really support v2f32s.
6261   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6262   SelectionDAG &DAG = DCI.DAG;
6263   SDValue Op0 = N->getOperand(OpNo);
6264   if (N->getValueType(0) == MVT::f64 &&
6265       Op0.hasOneUse() &&
6266       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6267       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6268       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6269       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6270     SDValue Vec = Op0.getOperand(0);
6271     for (auto *U : Vec->uses()) {
6272       if (U != Op0.getNode() &&
6273           U->hasOneUse() &&
6274           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6275           U->getOperand(0) == Vec &&
6276           U->getOperand(1).getOpcode() == ISD::Constant &&
6277           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6278         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6279         if (OtherExtend.getOpcode() == N->getOpcode() &&
6280             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6281             OtherExtend.getValueType() == MVT::f64) {
6282           SDValue VExtend, Chain;
6283           if (N->isStrictFPOpcode()) {
6284             Chain = MergeInputChains(N, OtherExtend.getNode());
6285             if (!Chain)
6286               continue;
6287             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6288                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6289             Chain = VExtend.getValue(1);
6290           } else
6291             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6292                                   MVT::v2f64, Vec);
6293           DCI.AddToWorklist(VExtend.getNode());
6294           SDValue Extract1 =
6295             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6296                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6297           DCI.AddToWorklist(Extract1.getNode());
6298           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6299           if (Chain)
6300             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6301           SDValue Extract0 =
6302             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6303                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6304           if (Chain)
6305             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6306                                N->getVTList(), Extract0, Chain);
6307           return Extract0;
6308         }
6309       }
6310     }
6311   }
6312   return SDValue();
6313 }
6314 
6315 SDValue SystemZTargetLowering::combineINT_TO_FP(
6316     SDNode *N, DAGCombinerInfo &DCI) const {
6317   if (DCI.Level != BeforeLegalizeTypes)
6318     return SDValue();
6319   unsigned Opcode = N->getOpcode();
6320   EVT OutVT = N->getValueType(0);
6321   SelectionDAG &DAG = DCI.DAG;
6322   SDValue Op = N->getOperand(0);
6323   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6324   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6325 
6326   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6327   // v2f64 = uint_to_fp v2i16
6328   // =>
6329   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6330   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6331     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6332                                  OutVT.getVectorNumElements());
6333     unsigned ExtOpcode =
6334       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6335     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6336     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6337   }
6338   return SDValue();
6339 }
6340 
6341 SDValue SystemZTargetLowering::combineBSWAP(
6342     SDNode *N, DAGCombinerInfo &DCI) const {
6343   SelectionDAG &DAG = DCI.DAG;
6344   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6345   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6346       N->getOperand(0).hasOneUse() &&
6347       canLoadStoreByteSwapped(N->getValueType(0))) {
6348       SDValue Load = N->getOperand(0);
6349       LoadSDNode *LD = cast<LoadSDNode>(Load);
6350 
6351       // Create the byte-swapping load.
6352       SDValue Ops[] = {
6353         LD->getChain(),    // Chain
6354         LD->getBasePtr()   // Ptr
6355       };
6356       EVT LoadVT = N->getValueType(0);
6357       if (LoadVT == MVT::i16)
6358         LoadVT = MVT::i32;
6359       SDValue BSLoad =
6360         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6361                                 DAG.getVTList(LoadVT, MVT::Other),
6362                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6363 
6364       // If this is an i16 load, insert the truncate.
6365       SDValue ResVal = BSLoad;
6366       if (N->getValueType(0) == MVT::i16)
6367         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6368 
6369       // First, combine the bswap away.  This makes the value produced by the
6370       // load dead.
6371       DCI.CombineTo(N, ResVal);
6372 
6373       // Next, combine the load away, we give it a bogus result value but a real
6374       // chain result.  The result value is dead because the bswap is dead.
6375       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6376 
6377       // Return N so it doesn't get rechecked!
6378       return SDValue(N, 0);
6379     }
6380 
6381   // Look through bitcasts that retain the number of vector elements.
6382   SDValue Op = N->getOperand(0);
6383   if (Op.getOpcode() == ISD::BITCAST &&
6384       Op.getValueType().isVector() &&
6385       Op.getOperand(0).getValueType().isVector() &&
6386       Op.getValueType().getVectorNumElements() ==
6387       Op.getOperand(0).getValueType().getVectorNumElements())
6388     Op = Op.getOperand(0);
6389 
6390   // Push BSWAP into a vector insertion if at least one side then simplifies.
6391   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6392     SDValue Vec = Op.getOperand(0);
6393     SDValue Elt = Op.getOperand(1);
6394     SDValue Idx = Op.getOperand(2);
6395 
6396     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6397         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6398         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6399         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6400         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6401          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6402       EVT VecVT = N->getValueType(0);
6403       EVT EltVT = N->getValueType(0).getVectorElementType();
6404       if (VecVT != Vec.getValueType()) {
6405         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6406         DCI.AddToWorklist(Vec.getNode());
6407       }
6408       if (EltVT != Elt.getValueType()) {
6409         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6410         DCI.AddToWorklist(Elt.getNode());
6411       }
6412       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6413       DCI.AddToWorklist(Vec.getNode());
6414       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6415       DCI.AddToWorklist(Elt.getNode());
6416       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6417                          Vec, Elt, Idx);
6418     }
6419   }
6420 
6421   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6422   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6423   if (SV && Op.hasOneUse()) {
6424     SDValue Op0 = Op.getOperand(0);
6425     SDValue Op1 = Op.getOperand(1);
6426 
6427     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6428         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6429         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6430         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6431       EVT VecVT = N->getValueType(0);
6432       if (VecVT != Op0.getValueType()) {
6433         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6434         DCI.AddToWorklist(Op0.getNode());
6435       }
6436       if (VecVT != Op1.getValueType()) {
6437         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6438         DCI.AddToWorklist(Op1.getNode());
6439       }
6440       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6441       DCI.AddToWorklist(Op0.getNode());
6442       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6443       DCI.AddToWorklist(Op1.getNode());
6444       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6445     }
6446   }
6447 
6448   return SDValue();
6449 }
6450 
6451 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6452   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6453   // set by the CCReg instruction using the CCValid / CCMask masks,
6454   // If the CCReg instruction is itself a ICMP testing the condition
6455   // code set by some other instruction, see whether we can directly
6456   // use that condition code.
6457 
6458   // Verify that we have an ICMP against some constant.
6459   if (CCValid != SystemZ::CCMASK_ICMP)
6460     return false;
6461   auto *ICmp = CCReg.getNode();
6462   if (ICmp->getOpcode() != SystemZISD::ICMP)
6463     return false;
6464   auto *CompareLHS = ICmp->getOperand(0).getNode();
6465   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6466   if (!CompareRHS)
6467     return false;
6468 
6469   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6470   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6471     // Verify that we have an appropriate mask for a EQ or NE comparison.
6472     bool Invert = false;
6473     if (CCMask == SystemZ::CCMASK_CMP_NE)
6474       Invert = !Invert;
6475     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6476       return false;
6477 
6478     // Verify that the ICMP compares against one of select values.
6479     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6480     if (!TrueVal)
6481       return false;
6482     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6483     if (!FalseVal)
6484       return false;
6485     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6486       Invert = !Invert;
6487     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6488       return false;
6489 
6490     // Compute the effective CC mask for the new branch or select.
6491     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6492     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6493     if (!NewCCValid || !NewCCMask)
6494       return false;
6495     CCValid = NewCCValid->getZExtValue();
6496     CCMask = NewCCMask->getZExtValue();
6497     if (Invert)
6498       CCMask ^= CCValid;
6499 
6500     // Return the updated CCReg link.
6501     CCReg = CompareLHS->getOperand(4);
6502     return true;
6503   }
6504 
6505   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6506   if (CompareLHS->getOpcode() == ISD::SRA) {
6507     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6508     if (!SRACount || SRACount->getZExtValue() != 30)
6509       return false;
6510     auto *SHL = CompareLHS->getOperand(0).getNode();
6511     if (SHL->getOpcode() != ISD::SHL)
6512       return false;
6513     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6514     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6515       return false;
6516     auto *IPM = SHL->getOperand(0).getNode();
6517     if (IPM->getOpcode() != SystemZISD::IPM)
6518       return false;
6519 
6520     // Avoid introducing CC spills (because SRA would clobber CC).
6521     if (!CompareLHS->hasOneUse())
6522       return false;
6523     // Verify that the ICMP compares against zero.
6524     if (CompareRHS->getZExtValue() != 0)
6525       return false;
6526 
6527     // Compute the effective CC mask for the new branch or select.
6528     CCMask = SystemZ::reverseCCMask(CCMask);
6529 
6530     // Return the updated CCReg link.
6531     CCReg = IPM->getOperand(0);
6532     return true;
6533   }
6534 
6535   return false;
6536 }
6537 
6538 SDValue SystemZTargetLowering::combineBR_CCMASK(
6539     SDNode *N, DAGCombinerInfo &DCI) const {
6540   SelectionDAG &DAG = DCI.DAG;
6541 
6542   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6543   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6544   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6545   if (!CCValid || !CCMask)
6546     return SDValue();
6547 
6548   int CCValidVal = CCValid->getZExtValue();
6549   int CCMaskVal = CCMask->getZExtValue();
6550   SDValue Chain = N->getOperand(0);
6551   SDValue CCReg = N->getOperand(4);
6552 
6553   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6554     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6555                        Chain,
6556                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6557                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6558                        N->getOperand(3), CCReg);
6559   return SDValue();
6560 }
6561 
6562 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6563     SDNode *N, DAGCombinerInfo &DCI) const {
6564   SelectionDAG &DAG = DCI.DAG;
6565 
6566   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6567   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6568   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6569   if (!CCValid || !CCMask)
6570     return SDValue();
6571 
6572   int CCValidVal = CCValid->getZExtValue();
6573   int CCMaskVal = CCMask->getZExtValue();
6574   SDValue CCReg = N->getOperand(4);
6575 
6576   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6577     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6578                        N->getOperand(0), N->getOperand(1),
6579                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6580                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6581                        CCReg);
6582   return SDValue();
6583 }
6584 
6585 
6586 SDValue SystemZTargetLowering::combineGET_CCMASK(
6587     SDNode *N, DAGCombinerInfo &DCI) const {
6588 
6589   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6590   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6591   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6592   if (!CCValid || !CCMask)
6593     return SDValue();
6594   int CCValidVal = CCValid->getZExtValue();
6595   int CCMaskVal = CCMask->getZExtValue();
6596 
6597   SDValue Select = N->getOperand(0);
6598   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6599     return SDValue();
6600 
6601   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6602   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6603   if (!SelectCCValid || !SelectCCMask)
6604     return SDValue();
6605   int SelectCCValidVal = SelectCCValid->getZExtValue();
6606   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6607 
6608   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6609   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6610   if (!TrueVal || !FalseVal)
6611     return SDValue();
6612   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6613     ;
6614   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6615     SelectCCMaskVal ^= SelectCCValidVal;
6616   else
6617     return SDValue();
6618 
6619   if (SelectCCValidVal & ~CCValidVal)
6620     return SDValue();
6621   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6622     return SDValue();
6623 
6624   return Select->getOperand(4);
6625 }
6626 
6627 SDValue SystemZTargetLowering::combineIntDIVREM(
6628     SDNode *N, DAGCombinerInfo &DCI) const {
6629   SelectionDAG &DAG = DCI.DAG;
6630   EVT VT = N->getValueType(0);
6631   // In the case where the divisor is a vector of constants a cheaper
6632   // sequence of instructions can replace the divide. BuildSDIV is called to
6633   // do this during DAG combining, but it only succeeds when it can build a
6634   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6635   // since it is not Legal but Custom it can only happen before
6636   // legalization. Therefore we must scalarize this early before Combine
6637   // 1. For widened vectors, this is already the result of type legalization.
6638   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6639       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6640     return DAG.UnrollVectorOp(N);
6641   return SDValue();
6642 }
6643 
6644 SDValue SystemZTargetLowering::combineINTRINSIC(
6645     SDNode *N, DAGCombinerInfo &DCI) const {
6646   SelectionDAG &DAG = DCI.DAG;
6647 
6648   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6649   switch (Id) {
6650   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6651   // or larger is simply a vector load.
6652   case Intrinsic::s390_vll:
6653   case Intrinsic::s390_vlrl:
6654     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6655       if (C->getZExtValue() >= 15)
6656         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6657                            N->getOperand(3), MachinePointerInfo());
6658     break;
6659   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6660   case Intrinsic::s390_vstl:
6661   case Intrinsic::s390_vstrl:
6662     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6663       if (C->getZExtValue() >= 15)
6664         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6665                             N->getOperand(4), MachinePointerInfo());
6666     break;
6667   }
6668 
6669   return SDValue();
6670 }
6671 
6672 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6673   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6674     return N->getOperand(0);
6675   return N;
6676 }
6677 
6678 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6679                                                  DAGCombinerInfo &DCI) const {
6680   switch(N->getOpcode()) {
6681   default: break;
6682   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6683   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6684   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6685   case SystemZISD::MERGE_HIGH:
6686   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6687   case ISD::LOAD:               return combineLOAD(N, DCI);
6688   case ISD::STORE:              return combineSTORE(N, DCI);
6689   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6690   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6691   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6692   case ISD::STRICT_FP_ROUND:
6693   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6694   case ISD::STRICT_FP_EXTEND:
6695   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6696   case ISD::SINT_TO_FP:
6697   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
6698   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6699   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6700   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6701   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6702   case ISD::SDIV:
6703   case ISD::UDIV:
6704   case ISD::SREM:
6705   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6706   case ISD::INTRINSIC_W_CHAIN:
6707   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
6708   }
6709 
6710   return SDValue();
6711 }
6712 
6713 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6714 // are for Op.
6715 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6716                                     unsigned OpNo) {
6717   EVT VT = Op.getValueType();
6718   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6719   APInt SrcDemE;
6720   unsigned Opcode = Op.getOpcode();
6721   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6722     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6723     switch (Id) {
6724     case Intrinsic::s390_vpksh:   // PACKS
6725     case Intrinsic::s390_vpksf:
6726     case Intrinsic::s390_vpksg:
6727     case Intrinsic::s390_vpkshs:  // PACKS_CC
6728     case Intrinsic::s390_vpksfs:
6729     case Intrinsic::s390_vpksgs:
6730     case Intrinsic::s390_vpklsh:  // PACKLS
6731     case Intrinsic::s390_vpklsf:
6732     case Intrinsic::s390_vpklsg:
6733     case Intrinsic::s390_vpklshs: // PACKLS_CC
6734     case Intrinsic::s390_vpklsfs:
6735     case Intrinsic::s390_vpklsgs:
6736       // VECTOR PACK truncates the elements of two source vectors into one.
6737       SrcDemE = DemandedElts;
6738       if (OpNo == 2)
6739         SrcDemE.lshrInPlace(NumElts / 2);
6740       SrcDemE = SrcDemE.trunc(NumElts / 2);
6741       break;
6742       // VECTOR UNPACK extends half the elements of the source vector.
6743     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6744     case Intrinsic::s390_vuphh:
6745     case Intrinsic::s390_vuphf:
6746     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6747     case Intrinsic::s390_vuplhh:
6748     case Intrinsic::s390_vuplhf:
6749       SrcDemE = APInt(NumElts * 2, 0);
6750       SrcDemE.insertBits(DemandedElts, 0);
6751       break;
6752     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6753     case Intrinsic::s390_vuplhw:
6754     case Intrinsic::s390_vuplf:
6755     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6756     case Intrinsic::s390_vupllh:
6757     case Intrinsic::s390_vupllf:
6758       SrcDemE = APInt(NumElts * 2, 0);
6759       SrcDemE.insertBits(DemandedElts, NumElts);
6760       break;
6761     case Intrinsic::s390_vpdi: {
6762       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6763       SrcDemE = APInt(NumElts, 0);
6764       if (!DemandedElts[OpNo - 1])
6765         break;
6766       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6767       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6768       // Demand input element 0 or 1, given by the mask bit value.
6769       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6770       break;
6771     }
6772     case Intrinsic::s390_vsldb: {
6773       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6774       assert(VT == MVT::v16i8 && "Unexpected type.");
6775       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6776       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6777       unsigned NumSrc0Els = 16 - FirstIdx;
6778       SrcDemE = APInt(NumElts, 0);
6779       if (OpNo == 1) {
6780         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6781         SrcDemE.insertBits(DemEls, FirstIdx);
6782       } else {
6783         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6784         SrcDemE.insertBits(DemEls, 0);
6785       }
6786       break;
6787     }
6788     case Intrinsic::s390_vperm:
6789       SrcDemE = APInt(NumElts, 1);
6790       break;
6791     default:
6792       llvm_unreachable("Unhandled intrinsic.");
6793       break;
6794     }
6795   } else {
6796     switch (Opcode) {
6797     case SystemZISD::JOIN_DWORDS:
6798       // Scalar operand.
6799       SrcDemE = APInt(1, 1);
6800       break;
6801     case SystemZISD::SELECT_CCMASK:
6802       SrcDemE = DemandedElts;
6803       break;
6804     default:
6805       llvm_unreachable("Unhandled opcode.");
6806       break;
6807     }
6808   }
6809   return SrcDemE;
6810 }
6811 
6812 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6813                                   const APInt &DemandedElts,
6814                                   const SelectionDAG &DAG, unsigned Depth,
6815                                   unsigned OpNo) {
6816   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6817   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6818   KnownBits LHSKnown =
6819       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6820   KnownBits RHSKnown =
6821       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6822   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
6823 }
6824 
6825 void
6826 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6827                                                      KnownBits &Known,
6828                                                      const APInt &DemandedElts,
6829                                                      const SelectionDAG &DAG,
6830                                                      unsigned Depth) const {
6831   Known.resetAll();
6832 
6833   // Intrinsic CC result is returned in the two low bits.
6834   unsigned tmp0, tmp1; // not used
6835   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6836     Known.Zero.setBitsFrom(2);
6837     return;
6838   }
6839   EVT VT = Op.getValueType();
6840   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6841     return;
6842   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6843           "KnownBits does not match VT in bitwidth");
6844   assert ((!VT.isVector() ||
6845            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6846           "DemandedElts does not match VT number of elements");
6847   unsigned BitWidth = Known.getBitWidth();
6848   unsigned Opcode = Op.getOpcode();
6849   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6850     bool IsLogical = false;
6851     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6852     switch (Id) {
6853     case Intrinsic::s390_vpksh:   // PACKS
6854     case Intrinsic::s390_vpksf:
6855     case Intrinsic::s390_vpksg:
6856     case Intrinsic::s390_vpkshs:  // PACKS_CC
6857     case Intrinsic::s390_vpksfs:
6858     case Intrinsic::s390_vpksgs:
6859     case Intrinsic::s390_vpklsh:  // PACKLS
6860     case Intrinsic::s390_vpklsf:
6861     case Intrinsic::s390_vpklsg:
6862     case Intrinsic::s390_vpklshs: // PACKLS_CC
6863     case Intrinsic::s390_vpklsfs:
6864     case Intrinsic::s390_vpklsgs:
6865     case Intrinsic::s390_vpdi:
6866     case Intrinsic::s390_vsldb:
6867     case Intrinsic::s390_vperm:
6868       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6869       break;
6870     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6871     case Intrinsic::s390_vuplhh:
6872     case Intrinsic::s390_vuplhf:
6873     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6874     case Intrinsic::s390_vupllh:
6875     case Intrinsic::s390_vupllf:
6876       IsLogical = true;
6877       LLVM_FALLTHROUGH;
6878     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6879     case Intrinsic::s390_vuphh:
6880     case Intrinsic::s390_vuphf:
6881     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6882     case Intrinsic::s390_vuplhw:
6883     case Intrinsic::s390_vuplf: {
6884       SDValue SrcOp = Op.getOperand(1);
6885       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6886       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6887       if (IsLogical) {
6888         Known = Known.zext(BitWidth);
6889       } else
6890         Known = Known.sext(BitWidth);
6891       break;
6892     }
6893     default:
6894       break;
6895     }
6896   } else {
6897     switch (Opcode) {
6898     case SystemZISD::JOIN_DWORDS:
6899     case SystemZISD::SELECT_CCMASK:
6900       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6901       break;
6902     case SystemZISD::REPLICATE: {
6903       SDValue SrcOp = Op.getOperand(0);
6904       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6905       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6906         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6907       break;
6908     }
6909     default:
6910       break;
6911     }
6912   }
6913 
6914   // Known has the width of the source operand(s). Adjust if needed to match
6915   // the passed bitwidth.
6916   if (Known.getBitWidth() != BitWidth)
6917     Known = Known.anyextOrTrunc(BitWidth);
6918 }
6919 
6920 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6921                                         const SelectionDAG &DAG, unsigned Depth,
6922                                         unsigned OpNo) {
6923   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6924   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6925   if (LHS == 1) return 1; // Early out.
6926   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6927   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6928   if (RHS == 1) return 1; // Early out.
6929   unsigned Common = std::min(LHS, RHS);
6930   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6931   EVT VT = Op.getValueType();
6932   unsigned VTBits = VT.getScalarSizeInBits();
6933   if (SrcBitWidth > VTBits) { // PACK
6934     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6935     if (Common > SrcExtraBits)
6936       return (Common - SrcExtraBits);
6937     return 1;
6938   }
6939   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6940   return Common;
6941 }
6942 
6943 unsigned
6944 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6945     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6946     unsigned Depth) const {
6947   if (Op.getResNo() != 0)
6948     return 1;
6949   unsigned Opcode = Op.getOpcode();
6950   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6951     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6952     switch (Id) {
6953     case Intrinsic::s390_vpksh:   // PACKS
6954     case Intrinsic::s390_vpksf:
6955     case Intrinsic::s390_vpksg:
6956     case Intrinsic::s390_vpkshs:  // PACKS_CC
6957     case Intrinsic::s390_vpksfs:
6958     case Intrinsic::s390_vpksgs:
6959     case Intrinsic::s390_vpklsh:  // PACKLS
6960     case Intrinsic::s390_vpklsf:
6961     case Intrinsic::s390_vpklsg:
6962     case Intrinsic::s390_vpklshs: // PACKLS_CC
6963     case Intrinsic::s390_vpklsfs:
6964     case Intrinsic::s390_vpklsgs:
6965     case Intrinsic::s390_vpdi:
6966     case Intrinsic::s390_vsldb:
6967     case Intrinsic::s390_vperm:
6968       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6969     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6970     case Intrinsic::s390_vuphh:
6971     case Intrinsic::s390_vuphf:
6972     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6973     case Intrinsic::s390_vuplhw:
6974     case Intrinsic::s390_vuplf: {
6975       SDValue PackedOp = Op.getOperand(1);
6976       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6977       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6978       EVT VT = Op.getValueType();
6979       unsigned VTBits = VT.getScalarSizeInBits();
6980       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6981       return Tmp;
6982     }
6983     default:
6984       break;
6985     }
6986   } else {
6987     switch (Opcode) {
6988     case SystemZISD::SELECT_CCMASK:
6989       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6990     default:
6991       break;
6992     }
6993   }
6994 
6995   return 1;
6996 }
6997 
6998 unsigned
6999 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7000   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7001   unsigned StackAlign = TFI->getStackAlignment();
7002   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7003          "Unexpected stack alignment");
7004   // The default stack probe size is 4096 if the function has no
7005   // stack-probe-size attribute.
7006   unsigned StackProbeSize = 4096;
7007   const Function &Fn = MF.getFunction();
7008   if (Fn.hasFnAttribute("stack-probe-size"))
7009     Fn.getFnAttribute("stack-probe-size")
7010         .getValueAsString()
7011         .getAsInteger(0, StackProbeSize);
7012   // Round down to the stack alignment.
7013   StackProbeSize &= ~(StackAlign - 1);
7014   return StackProbeSize ? StackProbeSize : StackAlign;
7015 }
7016 
7017 //===----------------------------------------------------------------------===//
7018 // Custom insertion
7019 //===----------------------------------------------------------------------===//
7020 
7021 // Force base value Base into a register before MI.  Return the register.
7022 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7023                          const SystemZInstrInfo *TII) {
7024   if (Base.isReg())
7025     return Base.getReg();
7026 
7027   MachineBasicBlock *MBB = MI.getParent();
7028   MachineFunction &MF = *MBB->getParent();
7029   MachineRegisterInfo &MRI = MF.getRegInfo();
7030 
7031   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7032   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7033       .add(Base)
7034       .addImm(0)
7035       .addReg(0);
7036   return Reg;
7037 }
7038 
7039 // The CC operand of MI might be missing a kill marker because there
7040 // were multiple uses of CC, and ISel didn't know which to mark.
7041 // Figure out whether MI should have had a kill marker.
7042 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7043   // Scan forward through BB for a use/def of CC.
7044   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7045   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7046     const MachineInstr& mi = *miI;
7047     if (mi.readsRegister(SystemZ::CC))
7048       return false;
7049     if (mi.definesRegister(SystemZ::CC))
7050       break; // Should have kill-flag - update below.
7051   }
7052 
7053   // If we hit the end of the block, check whether CC is live into a
7054   // successor.
7055   if (miI == MBB->end()) {
7056     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
7057       if ((*SI)->isLiveIn(SystemZ::CC))
7058         return false;
7059   }
7060 
7061   return true;
7062 }
7063 
7064 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7065 // together with other Select pseudo-opcodes into a single basic-block with
7066 // a conditional jump around it.
7067 static bool isSelectPseudo(MachineInstr &MI) {
7068   switch (MI.getOpcode()) {
7069   case SystemZ::Select32:
7070   case SystemZ::Select64:
7071   case SystemZ::SelectF32:
7072   case SystemZ::SelectF64:
7073   case SystemZ::SelectF128:
7074   case SystemZ::SelectVR32:
7075   case SystemZ::SelectVR64:
7076   case SystemZ::SelectVR128:
7077     return true;
7078 
7079   default:
7080     return false;
7081   }
7082 }
7083 
7084 // Helper function, which inserts PHI functions into SinkMBB:
7085 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7086 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7087 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7088                                  MachineBasicBlock *TrueMBB,
7089                                  MachineBasicBlock *FalseMBB,
7090                                  MachineBasicBlock *SinkMBB) {
7091   MachineFunction *MF = TrueMBB->getParent();
7092   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7093 
7094   MachineInstr *FirstMI = Selects.front();
7095   unsigned CCValid = FirstMI->getOperand(3).getImm();
7096   unsigned CCMask = FirstMI->getOperand(4).getImm();
7097 
7098   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7099 
7100   // As we are creating the PHIs, we have to be careful if there is more than
7101   // one.  Later Selects may reference the results of earlier Selects, but later
7102   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7103   // That also means that PHI construction must work forward from earlier to
7104   // later, and that the code must maintain a mapping from earlier PHI's
7105   // destination registers, and the registers that went into the PHI.
7106   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7107 
7108   for (auto MI : Selects) {
7109     Register DestReg = MI->getOperand(0).getReg();
7110     Register TrueReg = MI->getOperand(1).getReg();
7111     Register FalseReg = MI->getOperand(2).getReg();
7112 
7113     // If this Select we are generating is the opposite condition from
7114     // the jump we generated, then we have to swap the operands for the
7115     // PHI that is going to be generated.
7116     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7117       std::swap(TrueReg, FalseReg);
7118 
7119     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7120       TrueReg = RegRewriteTable[TrueReg].first;
7121 
7122     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7123       FalseReg = RegRewriteTable[FalseReg].second;
7124 
7125     DebugLoc DL = MI->getDebugLoc();
7126     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7127       .addReg(TrueReg).addMBB(TrueMBB)
7128       .addReg(FalseReg).addMBB(FalseMBB);
7129 
7130     // Add this PHI to the rewrite table.
7131     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7132   }
7133 
7134   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7135 }
7136 
7137 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7138 MachineBasicBlock *
7139 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7140                                   MachineBasicBlock *MBB) const {
7141   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7142   const SystemZInstrInfo *TII =
7143       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7144 
7145   unsigned CCValid = MI.getOperand(3).getImm();
7146   unsigned CCMask = MI.getOperand(4).getImm();
7147 
7148   // If we have a sequence of Select* pseudo instructions using the
7149   // same condition code value, we want to expand all of them into
7150   // a single pair of basic blocks using the same condition.
7151   SmallVector<MachineInstr*, 8> Selects;
7152   SmallVector<MachineInstr*, 8> DbgValues;
7153   Selects.push_back(&MI);
7154   unsigned Count = 0;
7155   for (MachineBasicBlock::iterator NextMIIt =
7156          std::next(MachineBasicBlock::iterator(MI));
7157        NextMIIt != MBB->end(); ++NextMIIt) {
7158     if (isSelectPseudo(*NextMIIt)) {
7159       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7160              "Bad CCValid operands since CC was not redefined.");
7161       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7162           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7163         Selects.push_back(&*NextMIIt);
7164         continue;
7165       }
7166       break;
7167     }
7168     if (NextMIIt->definesRegister(SystemZ::CC) ||
7169         NextMIIt->usesCustomInsertionHook())
7170       break;
7171     bool User = false;
7172     for (auto SelMI : Selects)
7173       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7174         User = true;
7175         break;
7176       }
7177     if (NextMIIt->isDebugInstr()) {
7178       if (User) {
7179         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7180         DbgValues.push_back(&*NextMIIt);
7181       }
7182     }
7183     else if (User || ++Count > 20)
7184       break;
7185   }
7186 
7187   MachineInstr *LastMI = Selects.back();
7188   bool CCKilled =
7189       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7190   MachineBasicBlock *StartMBB = MBB;
7191   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7192   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7193 
7194   // Unless CC was killed in the last Select instruction, mark it as
7195   // live-in to both FalseMBB and JoinMBB.
7196   if (!CCKilled) {
7197     FalseMBB->addLiveIn(SystemZ::CC);
7198     JoinMBB->addLiveIn(SystemZ::CC);
7199   }
7200 
7201   //  StartMBB:
7202   //   BRC CCMask, JoinMBB
7203   //   # fallthrough to FalseMBB
7204   MBB = StartMBB;
7205   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7206     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7207   MBB->addSuccessor(JoinMBB);
7208   MBB->addSuccessor(FalseMBB);
7209 
7210   //  FalseMBB:
7211   //   # fallthrough to JoinMBB
7212   MBB = FalseMBB;
7213   MBB->addSuccessor(JoinMBB);
7214 
7215   //  JoinMBB:
7216   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7217   //  ...
7218   MBB = JoinMBB;
7219   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7220   for (auto SelMI : Selects)
7221     SelMI->eraseFromParent();
7222 
7223   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7224   for (auto DbgMI : DbgValues)
7225     MBB->splice(InsertPos, StartMBB, DbgMI);
7226 
7227   return JoinMBB;
7228 }
7229 
7230 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7231 // StoreOpcode is the store to use and Invert says whether the store should
7232 // happen when the condition is false rather than true.  If a STORE ON
7233 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7234 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7235                                                         MachineBasicBlock *MBB,
7236                                                         unsigned StoreOpcode,
7237                                                         unsigned STOCOpcode,
7238                                                         bool Invert) const {
7239   const SystemZInstrInfo *TII =
7240       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7241 
7242   Register SrcReg = MI.getOperand(0).getReg();
7243   MachineOperand Base = MI.getOperand(1);
7244   int64_t Disp = MI.getOperand(2).getImm();
7245   Register IndexReg = MI.getOperand(3).getReg();
7246   unsigned CCValid = MI.getOperand(4).getImm();
7247   unsigned CCMask = MI.getOperand(5).getImm();
7248   DebugLoc DL = MI.getDebugLoc();
7249 
7250   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7251 
7252   // ISel pattern matching also adds a load memory operand of the same
7253   // address, so take special care to find the storing memory operand.
7254   MachineMemOperand *MMO = nullptr;
7255   for (auto *I : MI.memoperands())
7256     if (I->isStore()) {
7257       MMO = I;
7258       break;
7259     }
7260 
7261   // Use STOCOpcode if possible.  We could use different store patterns in
7262   // order to avoid matching the index register, but the performance trade-offs
7263   // might be more complicated in that case.
7264   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7265     if (Invert)
7266       CCMask ^= CCValid;
7267 
7268     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7269       .addReg(SrcReg)
7270       .add(Base)
7271       .addImm(Disp)
7272       .addImm(CCValid)
7273       .addImm(CCMask)
7274       .addMemOperand(MMO);
7275 
7276     MI.eraseFromParent();
7277     return MBB;
7278   }
7279 
7280   // Get the condition needed to branch around the store.
7281   if (!Invert)
7282     CCMask ^= CCValid;
7283 
7284   MachineBasicBlock *StartMBB = MBB;
7285   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7286   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7287 
7288   // Unless CC was killed in the CondStore instruction, mark it as
7289   // live-in to both FalseMBB and JoinMBB.
7290   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7291     FalseMBB->addLiveIn(SystemZ::CC);
7292     JoinMBB->addLiveIn(SystemZ::CC);
7293   }
7294 
7295   //  StartMBB:
7296   //   BRC CCMask, JoinMBB
7297   //   # fallthrough to FalseMBB
7298   MBB = StartMBB;
7299   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7300     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7301   MBB->addSuccessor(JoinMBB);
7302   MBB->addSuccessor(FalseMBB);
7303 
7304   //  FalseMBB:
7305   //   store %SrcReg, %Disp(%Index,%Base)
7306   //   # fallthrough to JoinMBB
7307   MBB = FalseMBB;
7308   BuildMI(MBB, DL, TII->get(StoreOpcode))
7309       .addReg(SrcReg)
7310       .add(Base)
7311       .addImm(Disp)
7312       .addReg(IndexReg)
7313       .addMemOperand(MMO);
7314   MBB->addSuccessor(JoinMBB);
7315 
7316   MI.eraseFromParent();
7317   return JoinMBB;
7318 }
7319 
7320 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7321 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7322 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7323 // BitSize is the width of the field in bits, or 0 if this is a partword
7324 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7325 // is one of the operands.  Invert says whether the field should be
7326 // inverted after performing BinOpcode (e.g. for NAND).
7327 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7328     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7329     unsigned BitSize, bool Invert) const {
7330   MachineFunction &MF = *MBB->getParent();
7331   const SystemZInstrInfo *TII =
7332       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7333   MachineRegisterInfo &MRI = MF.getRegInfo();
7334   bool IsSubWord = (BitSize < 32);
7335 
7336   // Extract the operands.  Base can be a register or a frame index.
7337   // Src2 can be a register or immediate.
7338   Register Dest = MI.getOperand(0).getReg();
7339   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7340   int64_t Disp = MI.getOperand(2).getImm();
7341   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7342   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7343   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7344   DebugLoc DL = MI.getDebugLoc();
7345   if (IsSubWord)
7346     BitSize = MI.getOperand(6).getImm();
7347 
7348   // Subword operations use 32-bit registers.
7349   const TargetRegisterClass *RC = (BitSize <= 32 ?
7350                                    &SystemZ::GR32BitRegClass :
7351                                    &SystemZ::GR64BitRegClass);
7352   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7353   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7354 
7355   // Get the right opcodes for the displacement.
7356   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7357   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7358   assert(LOpcode && CSOpcode && "Displacement out of range");
7359 
7360   // Create virtual registers for temporary results.
7361   Register OrigVal       = MRI.createVirtualRegister(RC);
7362   Register OldVal        = MRI.createVirtualRegister(RC);
7363   Register NewVal        = (BinOpcode || IsSubWord ?
7364                             MRI.createVirtualRegister(RC) : Src2.getReg());
7365   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7366   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7367 
7368   // Insert a basic block for the main loop.
7369   MachineBasicBlock *StartMBB = MBB;
7370   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7371   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7372 
7373   //  StartMBB:
7374   //   ...
7375   //   %OrigVal = L Disp(%Base)
7376   //   # fall through to LoopMMB
7377   MBB = StartMBB;
7378   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7379   MBB->addSuccessor(LoopMBB);
7380 
7381   //  LoopMBB:
7382   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7383   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7384   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7385   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7386   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7387   //   JNE LoopMBB
7388   //   # fall through to DoneMMB
7389   MBB = LoopMBB;
7390   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7391     .addReg(OrigVal).addMBB(StartMBB)
7392     .addReg(Dest).addMBB(LoopMBB);
7393   if (IsSubWord)
7394     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7395       .addReg(OldVal).addReg(BitShift).addImm(0);
7396   if (Invert) {
7397     // Perform the operation normally and then invert every bit of the field.
7398     Register Tmp = MRI.createVirtualRegister(RC);
7399     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7400     if (BitSize <= 32)
7401       // XILF with the upper BitSize bits set.
7402       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7403         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7404     else {
7405       // Use LCGR and add -1 to the result, which is more compact than
7406       // an XILF, XILH pair.
7407       Register Tmp2 = MRI.createVirtualRegister(RC);
7408       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7409       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7410         .addReg(Tmp2).addImm(-1);
7411     }
7412   } else if (BinOpcode)
7413     // A simply binary operation.
7414     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7415         .addReg(RotatedOldVal)
7416         .add(Src2);
7417   else if (IsSubWord)
7418     // Use RISBG to rotate Src2 into position and use it to replace the
7419     // field in RotatedOldVal.
7420     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7421       .addReg(RotatedOldVal).addReg(Src2.getReg())
7422       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7423   if (IsSubWord)
7424     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7425       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7426   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7427       .addReg(OldVal)
7428       .addReg(NewVal)
7429       .add(Base)
7430       .addImm(Disp);
7431   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7432     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7433   MBB->addSuccessor(LoopMBB);
7434   MBB->addSuccessor(DoneMBB);
7435 
7436   MI.eraseFromParent();
7437   return DoneMBB;
7438 }
7439 
7440 // Implement EmitInstrWithCustomInserter for pseudo
7441 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7442 // instruction that should be used to compare the current field with the
7443 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7444 // for when the current field should be kept.  BitSize is the width of
7445 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7446 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7447     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7448     unsigned KeepOldMask, unsigned BitSize) const {
7449   MachineFunction &MF = *MBB->getParent();
7450   const SystemZInstrInfo *TII =
7451       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7452   MachineRegisterInfo &MRI = MF.getRegInfo();
7453   bool IsSubWord = (BitSize < 32);
7454 
7455   // Extract the operands.  Base can be a register or a frame index.
7456   Register Dest = MI.getOperand(0).getReg();
7457   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7458   int64_t Disp = MI.getOperand(2).getImm();
7459   Register Src2 = MI.getOperand(3).getReg();
7460   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7461   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7462   DebugLoc DL = MI.getDebugLoc();
7463   if (IsSubWord)
7464     BitSize = MI.getOperand(6).getImm();
7465 
7466   // Subword operations use 32-bit registers.
7467   const TargetRegisterClass *RC = (BitSize <= 32 ?
7468                                    &SystemZ::GR32BitRegClass :
7469                                    &SystemZ::GR64BitRegClass);
7470   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7471   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7472 
7473   // Get the right opcodes for the displacement.
7474   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7475   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7476   assert(LOpcode && CSOpcode && "Displacement out of range");
7477 
7478   // Create virtual registers for temporary results.
7479   Register OrigVal       = MRI.createVirtualRegister(RC);
7480   Register OldVal        = MRI.createVirtualRegister(RC);
7481   Register NewVal        = MRI.createVirtualRegister(RC);
7482   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7483   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7484   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7485 
7486   // Insert 3 basic blocks for the loop.
7487   MachineBasicBlock *StartMBB  = MBB;
7488   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7489   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7490   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7491   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7492 
7493   //  StartMBB:
7494   //   ...
7495   //   %OrigVal     = L Disp(%Base)
7496   //   # fall through to LoopMMB
7497   MBB = StartMBB;
7498   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7499   MBB->addSuccessor(LoopMBB);
7500 
7501   //  LoopMBB:
7502   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7503   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7504   //   CompareOpcode %RotatedOldVal, %Src2
7505   //   BRC KeepOldMask, UpdateMBB
7506   MBB = LoopMBB;
7507   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7508     .addReg(OrigVal).addMBB(StartMBB)
7509     .addReg(Dest).addMBB(UpdateMBB);
7510   if (IsSubWord)
7511     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7512       .addReg(OldVal).addReg(BitShift).addImm(0);
7513   BuildMI(MBB, DL, TII->get(CompareOpcode))
7514     .addReg(RotatedOldVal).addReg(Src2);
7515   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7516     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7517   MBB->addSuccessor(UpdateMBB);
7518   MBB->addSuccessor(UseAltMBB);
7519 
7520   //  UseAltMBB:
7521   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7522   //   # fall through to UpdateMMB
7523   MBB = UseAltMBB;
7524   if (IsSubWord)
7525     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7526       .addReg(RotatedOldVal).addReg(Src2)
7527       .addImm(32).addImm(31 + BitSize).addImm(0);
7528   MBB->addSuccessor(UpdateMBB);
7529 
7530   //  UpdateMBB:
7531   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7532   //                        [ %RotatedAltVal, UseAltMBB ]
7533   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7534   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7535   //   JNE LoopMBB
7536   //   # fall through to DoneMMB
7537   MBB = UpdateMBB;
7538   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7539     .addReg(RotatedOldVal).addMBB(LoopMBB)
7540     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7541   if (IsSubWord)
7542     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7543       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7544   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7545       .addReg(OldVal)
7546       .addReg(NewVal)
7547       .add(Base)
7548       .addImm(Disp);
7549   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7550     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7551   MBB->addSuccessor(LoopMBB);
7552   MBB->addSuccessor(DoneMBB);
7553 
7554   MI.eraseFromParent();
7555   return DoneMBB;
7556 }
7557 
7558 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7559 // instruction MI.
7560 MachineBasicBlock *
7561 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7562                                           MachineBasicBlock *MBB) const {
7563 
7564   MachineFunction &MF = *MBB->getParent();
7565   const SystemZInstrInfo *TII =
7566       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7567   MachineRegisterInfo &MRI = MF.getRegInfo();
7568 
7569   // Extract the operands.  Base can be a register or a frame index.
7570   Register Dest = MI.getOperand(0).getReg();
7571   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7572   int64_t Disp = MI.getOperand(2).getImm();
7573   Register OrigCmpVal = MI.getOperand(3).getReg();
7574   Register OrigSwapVal = MI.getOperand(4).getReg();
7575   Register BitShift = MI.getOperand(5).getReg();
7576   Register NegBitShift = MI.getOperand(6).getReg();
7577   int64_t BitSize = MI.getOperand(7).getImm();
7578   DebugLoc DL = MI.getDebugLoc();
7579 
7580   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7581 
7582   // Get the right opcodes for the displacement.
7583   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7584   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7585   assert(LOpcode && CSOpcode && "Displacement out of range");
7586 
7587   // Create virtual registers for temporary results.
7588   Register OrigOldVal = MRI.createVirtualRegister(RC);
7589   Register OldVal = MRI.createVirtualRegister(RC);
7590   Register CmpVal = MRI.createVirtualRegister(RC);
7591   Register SwapVal = MRI.createVirtualRegister(RC);
7592   Register StoreVal = MRI.createVirtualRegister(RC);
7593   Register RetryOldVal = MRI.createVirtualRegister(RC);
7594   Register RetryCmpVal = MRI.createVirtualRegister(RC);
7595   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7596 
7597   // Insert 2 basic blocks for the loop.
7598   MachineBasicBlock *StartMBB = MBB;
7599   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7600   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7601   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7602 
7603   //  StartMBB:
7604   //   ...
7605   //   %OrigOldVal     = L Disp(%Base)
7606   //   # fall through to LoopMMB
7607   MBB = StartMBB;
7608   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7609       .add(Base)
7610       .addImm(Disp)
7611       .addReg(0);
7612   MBB->addSuccessor(LoopMBB);
7613 
7614   //  LoopMBB:
7615   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7616   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7617   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7618   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7619   //                      ^^ The low BitSize bits contain the field
7620   //                         of interest.
7621   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7622   //                      ^^ Replace the upper 32-BitSize bits of the
7623   //                         comparison value with those that we loaded,
7624   //                         so that we can use a full word comparison.
7625   //   CR %Dest, %RetryCmpVal
7626   //   JNE DoneMBB
7627   //   # Fall through to SetMBB
7628   MBB = LoopMBB;
7629   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7630     .addReg(OrigOldVal).addMBB(StartMBB)
7631     .addReg(RetryOldVal).addMBB(SetMBB);
7632   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7633     .addReg(OrigCmpVal).addMBB(StartMBB)
7634     .addReg(RetryCmpVal).addMBB(SetMBB);
7635   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7636     .addReg(OrigSwapVal).addMBB(StartMBB)
7637     .addReg(RetrySwapVal).addMBB(SetMBB);
7638   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7639     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7640   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7641     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7642   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7643     .addReg(Dest).addReg(RetryCmpVal);
7644   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7645     .addImm(SystemZ::CCMASK_ICMP)
7646     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7647   MBB->addSuccessor(DoneMBB);
7648   MBB->addSuccessor(SetMBB);
7649 
7650   //  SetMBB:
7651   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7652   //                      ^^ Replace the upper 32-BitSize bits of the new
7653   //                         value with those that we loaded.
7654   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7655   //                      ^^ Rotate the new field to its proper position.
7656   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7657   //   JNE LoopMBB
7658   //   # fall through to ExitMMB
7659   MBB = SetMBB;
7660   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7661     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7662   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7663     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7664   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7665       .addReg(OldVal)
7666       .addReg(StoreVal)
7667       .add(Base)
7668       .addImm(Disp);
7669   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7670     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7671   MBB->addSuccessor(LoopMBB);
7672   MBB->addSuccessor(DoneMBB);
7673 
7674   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7675   // to the block after the loop.  At this point, CC may have been defined
7676   // either by the CR in LoopMBB or by the CS in SetMBB.
7677   if (!MI.registerDefIsDead(SystemZ::CC))
7678     DoneMBB->addLiveIn(SystemZ::CC);
7679 
7680   MI.eraseFromParent();
7681   return DoneMBB;
7682 }
7683 
7684 // Emit a move from two GR64s to a GR128.
7685 MachineBasicBlock *
7686 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7687                                    MachineBasicBlock *MBB) const {
7688   MachineFunction &MF = *MBB->getParent();
7689   const SystemZInstrInfo *TII =
7690       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7691   MachineRegisterInfo &MRI = MF.getRegInfo();
7692   DebugLoc DL = MI.getDebugLoc();
7693 
7694   Register Dest = MI.getOperand(0).getReg();
7695   Register Hi = MI.getOperand(1).getReg();
7696   Register Lo = MI.getOperand(2).getReg();
7697   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7698   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7699 
7700   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7701   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7702     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7703   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7704     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7705 
7706   MI.eraseFromParent();
7707   return MBB;
7708 }
7709 
7710 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7711 // if the high register of the GR128 value must be cleared or false if
7712 // it's "don't care".
7713 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7714                                                      MachineBasicBlock *MBB,
7715                                                      bool ClearEven) const {
7716   MachineFunction &MF = *MBB->getParent();
7717   const SystemZInstrInfo *TII =
7718       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7719   MachineRegisterInfo &MRI = MF.getRegInfo();
7720   DebugLoc DL = MI.getDebugLoc();
7721 
7722   Register Dest = MI.getOperand(0).getReg();
7723   Register Src = MI.getOperand(1).getReg();
7724   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7725 
7726   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7727   if (ClearEven) {
7728     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7729     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7730 
7731     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7732       .addImm(0);
7733     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7734       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7735     In128 = NewIn128;
7736   }
7737   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7738     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7739 
7740   MI.eraseFromParent();
7741   return MBB;
7742 }
7743 
7744 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7745     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7746   MachineFunction &MF = *MBB->getParent();
7747   const SystemZInstrInfo *TII =
7748       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7749   MachineRegisterInfo &MRI = MF.getRegInfo();
7750   DebugLoc DL = MI.getDebugLoc();
7751 
7752   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7753   uint64_t DestDisp = MI.getOperand(1).getImm();
7754   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7755   uint64_t SrcDisp = MI.getOperand(3).getImm();
7756   uint64_t Length = MI.getOperand(4).getImm();
7757 
7758   // When generating more than one CLC, all but the last will need to
7759   // branch to the end when a difference is found.
7760   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7761                                SystemZ::splitBlockAfter(MI, MBB) : nullptr);
7762 
7763   // Check for the loop form, in which operand 5 is the trip count.
7764   if (MI.getNumExplicitOperands() > 5) {
7765     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7766 
7767     Register StartCountReg = MI.getOperand(5).getReg();
7768     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7769     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7770                               forceReg(MI, DestBase, TII));
7771 
7772     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7773     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7774     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7775                             MRI.createVirtualRegister(RC));
7776     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7777     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7778                             MRI.createVirtualRegister(RC));
7779 
7780     RC = &SystemZ::GR64BitRegClass;
7781     Register ThisCountReg = MRI.createVirtualRegister(RC);
7782     Register NextCountReg = MRI.createVirtualRegister(RC);
7783 
7784     MachineBasicBlock *StartMBB = MBB;
7785     MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7786     MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7787     MachineBasicBlock *NextMBB =
7788         (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7789 
7790     //  StartMBB:
7791     //   # fall through to LoopMMB
7792     MBB->addSuccessor(LoopMBB);
7793 
7794     //  LoopMBB:
7795     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7796     //                      [ %NextDestReg, NextMBB ]
7797     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7798     //                     [ %NextSrcReg, NextMBB ]
7799     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7800     //                       [ %NextCountReg, NextMBB ]
7801     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7802     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7803     //   ( JLH EndMBB )
7804     //
7805     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7806     MBB = LoopMBB;
7807 
7808     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7809       .addReg(StartDestReg).addMBB(StartMBB)
7810       .addReg(NextDestReg).addMBB(NextMBB);
7811     if (!HaveSingleBase)
7812       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7813         .addReg(StartSrcReg).addMBB(StartMBB)
7814         .addReg(NextSrcReg).addMBB(NextMBB);
7815     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7816       .addReg(StartCountReg).addMBB(StartMBB)
7817       .addReg(NextCountReg).addMBB(NextMBB);
7818     if (Opcode == SystemZ::MVC)
7819       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7820         .addImm(SystemZ::PFD_WRITE)
7821         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7822     BuildMI(MBB, DL, TII->get(Opcode))
7823       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7824       .addReg(ThisSrcReg).addImm(SrcDisp);
7825     if (EndMBB) {
7826       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7827         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7828         .addMBB(EndMBB);
7829       MBB->addSuccessor(EndMBB);
7830       MBB->addSuccessor(NextMBB);
7831     }
7832 
7833     // NextMBB:
7834     //   %NextDestReg = LA 256(%ThisDestReg)
7835     //   %NextSrcReg = LA 256(%ThisSrcReg)
7836     //   %NextCountReg = AGHI %ThisCountReg, -1
7837     //   CGHI %NextCountReg, 0
7838     //   JLH LoopMBB
7839     //   # fall through to DoneMMB
7840     //
7841     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7842     MBB = NextMBB;
7843 
7844     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7845       .addReg(ThisDestReg).addImm(256).addReg(0);
7846     if (!HaveSingleBase)
7847       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7848         .addReg(ThisSrcReg).addImm(256).addReg(0);
7849     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7850       .addReg(ThisCountReg).addImm(-1);
7851     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7852       .addReg(NextCountReg).addImm(0);
7853     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7854       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7855       .addMBB(LoopMBB);
7856     MBB->addSuccessor(LoopMBB);
7857     MBB->addSuccessor(DoneMBB);
7858 
7859     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7860     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7861     Length &= 255;
7862     if (EndMBB && !Length)
7863       // If the loop handled the whole CLC range, DoneMBB will be empty with
7864       // CC live-through into EndMBB, so add it as live-in.
7865       DoneMBB->addLiveIn(SystemZ::CC);
7866     MBB = DoneMBB;
7867   }
7868   // Handle any remaining bytes with straight-line code.
7869   while (Length > 0) {
7870     uint64_t ThisLength = std::min(Length, uint64_t(256));
7871     // The previous iteration might have created out-of-range displacements.
7872     // Apply them using LAY if so.
7873     if (!isUInt<12>(DestDisp)) {
7874       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7875       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7876           .add(DestBase)
7877           .addImm(DestDisp)
7878           .addReg(0);
7879       DestBase = MachineOperand::CreateReg(Reg, false);
7880       DestDisp = 0;
7881     }
7882     if (!isUInt<12>(SrcDisp)) {
7883       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7884       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7885           .add(SrcBase)
7886           .addImm(SrcDisp)
7887           .addReg(0);
7888       SrcBase = MachineOperand::CreateReg(Reg, false);
7889       SrcDisp = 0;
7890     }
7891     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7892         .add(DestBase)
7893         .addImm(DestDisp)
7894         .addImm(ThisLength)
7895         .add(SrcBase)
7896         .addImm(SrcDisp)
7897         .setMemRefs(MI.memoperands());
7898     DestDisp += ThisLength;
7899     SrcDisp += ThisLength;
7900     Length -= ThisLength;
7901     // If there's another CLC to go, branch to the end if a difference
7902     // was found.
7903     if (EndMBB && Length > 0) {
7904       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
7905       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7906         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7907         .addMBB(EndMBB);
7908       MBB->addSuccessor(EndMBB);
7909       MBB->addSuccessor(NextMBB);
7910       MBB = NextMBB;
7911     }
7912   }
7913   if (EndMBB) {
7914     MBB->addSuccessor(EndMBB);
7915     MBB = EndMBB;
7916     MBB->addLiveIn(SystemZ::CC);
7917   }
7918 
7919   MI.eraseFromParent();
7920   return MBB;
7921 }
7922 
7923 // Decompose string pseudo-instruction MI into a loop that continually performs
7924 // Opcode until CC != 3.
7925 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7926     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7927   MachineFunction &MF = *MBB->getParent();
7928   const SystemZInstrInfo *TII =
7929       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7930   MachineRegisterInfo &MRI = MF.getRegInfo();
7931   DebugLoc DL = MI.getDebugLoc();
7932 
7933   uint64_t End1Reg = MI.getOperand(0).getReg();
7934   uint64_t Start1Reg = MI.getOperand(1).getReg();
7935   uint64_t Start2Reg = MI.getOperand(2).getReg();
7936   uint64_t CharReg = MI.getOperand(3).getReg();
7937 
7938   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7939   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7940   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7941   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7942 
7943   MachineBasicBlock *StartMBB = MBB;
7944   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7945   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7946 
7947   //  StartMBB:
7948   //   # fall through to LoopMMB
7949   MBB->addSuccessor(LoopMBB);
7950 
7951   //  LoopMBB:
7952   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7953   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7954   //   R0L = %CharReg
7955   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7956   //   JO LoopMBB
7957   //   # fall through to DoneMMB
7958   //
7959   // The load of R0L can be hoisted by post-RA LICM.
7960   MBB = LoopMBB;
7961 
7962   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7963     .addReg(Start1Reg).addMBB(StartMBB)
7964     .addReg(End1Reg).addMBB(LoopMBB);
7965   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7966     .addReg(Start2Reg).addMBB(StartMBB)
7967     .addReg(End2Reg).addMBB(LoopMBB);
7968   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7969   BuildMI(MBB, DL, TII->get(Opcode))
7970     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7971     .addReg(This1Reg).addReg(This2Reg);
7972   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7973     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7974   MBB->addSuccessor(LoopMBB);
7975   MBB->addSuccessor(DoneMBB);
7976 
7977   DoneMBB->addLiveIn(SystemZ::CC);
7978 
7979   MI.eraseFromParent();
7980   return DoneMBB;
7981 }
7982 
7983 // Update TBEGIN instruction with final opcode and register clobbers.
7984 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7985     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7986     bool NoFloat) const {
7987   MachineFunction &MF = *MBB->getParent();
7988   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7989   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7990 
7991   // Update opcode.
7992   MI.setDesc(TII->get(Opcode));
7993 
7994   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7995   // Make sure to add the corresponding GRSM bits if they are missing.
7996   uint64_t Control = MI.getOperand(2).getImm();
7997   static const unsigned GPRControlBit[16] = {
7998     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7999     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8000   };
8001   Control |= GPRControlBit[15];
8002   if (TFI->hasFP(MF))
8003     Control |= GPRControlBit[11];
8004   MI.getOperand(2).setImm(Control);
8005 
8006   // Add GPR clobbers.
8007   for (int I = 0; I < 16; I++) {
8008     if ((Control & GPRControlBit[I]) == 0) {
8009       unsigned Reg = SystemZMC::GR64Regs[I];
8010       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8011     }
8012   }
8013 
8014   // Add FPR/VR clobbers.
8015   if (!NoFloat && (Control & 4) != 0) {
8016     if (Subtarget.hasVector()) {
8017       for (int I = 0; I < 32; I++) {
8018         unsigned Reg = SystemZMC::VR128Regs[I];
8019         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8020       }
8021     } else {
8022       for (int I = 0; I < 16; I++) {
8023         unsigned Reg = SystemZMC::FP64Regs[I];
8024         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8025       }
8026     }
8027   }
8028 
8029   return MBB;
8030 }
8031 
8032 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8033     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8034   MachineFunction &MF = *MBB->getParent();
8035   MachineRegisterInfo *MRI = &MF.getRegInfo();
8036   const SystemZInstrInfo *TII =
8037       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8038   DebugLoc DL = MI.getDebugLoc();
8039 
8040   Register SrcReg = MI.getOperand(0).getReg();
8041 
8042   // Create new virtual register of the same class as source.
8043   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8044   Register DstReg = MRI->createVirtualRegister(RC);
8045 
8046   // Replace pseudo with a normal load-and-test that models the def as
8047   // well.
8048   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8049     .addReg(SrcReg)
8050     .setMIFlags(MI.getFlags());
8051   MI.eraseFromParent();
8052 
8053   return MBB;
8054 }
8055 
8056 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8057     MachineInstr &MI, MachineBasicBlock *MBB) const {
8058   MachineFunction &MF = *MBB->getParent();
8059   MachineRegisterInfo *MRI = &MF.getRegInfo();
8060   const SystemZInstrInfo *TII =
8061       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8062   DebugLoc DL = MI.getDebugLoc();
8063   const unsigned ProbeSize = getStackProbeSize(MF);
8064   Register DstReg = MI.getOperand(0).getReg();
8065   Register SizeReg = MI.getOperand(2).getReg();
8066 
8067   MachineBasicBlock *StartMBB = MBB;
8068   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8069   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8070   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8071   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8072   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8073 
8074   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8075     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8076 
8077   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8078   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8079 
8080   //  LoopTestMBB
8081   //  BRC TailTestMBB
8082   //  # fallthrough to LoopBodyMBB
8083   StartMBB->addSuccessor(LoopTestMBB);
8084   MBB = LoopTestMBB;
8085   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8086     .addReg(SizeReg)
8087     .addMBB(StartMBB)
8088     .addReg(IncReg)
8089     .addMBB(LoopBodyMBB);
8090   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8091     .addReg(PHIReg)
8092     .addImm(ProbeSize);
8093   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8094     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8095     .addMBB(TailTestMBB);
8096   MBB->addSuccessor(LoopBodyMBB);
8097   MBB->addSuccessor(TailTestMBB);
8098 
8099   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8100   //  J LoopTestMBB
8101   MBB = LoopBodyMBB;
8102   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8103     .addReg(PHIReg)
8104     .addImm(ProbeSize);
8105   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8106     .addReg(SystemZ::R15D)
8107     .addImm(ProbeSize);
8108   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8109     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8110     .setMemRefs(VolLdMMO);
8111   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8112   MBB->addSuccessor(LoopTestMBB);
8113 
8114   //  TailTestMBB
8115   //  BRC DoneMBB
8116   //  # fallthrough to TailMBB
8117   MBB = TailTestMBB;
8118   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8119     .addReg(PHIReg)
8120     .addImm(0);
8121   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8122     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8123     .addMBB(DoneMBB);
8124   MBB->addSuccessor(TailMBB);
8125   MBB->addSuccessor(DoneMBB);
8126 
8127   //  TailMBB
8128   //  # fallthrough to DoneMBB
8129   MBB = TailMBB;
8130   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8131     .addReg(SystemZ::R15D)
8132     .addReg(PHIReg);
8133   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8134     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8135     .setMemRefs(VolLdMMO);
8136   MBB->addSuccessor(DoneMBB);
8137 
8138   //  DoneMBB
8139   MBB = DoneMBB;
8140   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8141     .addReg(SystemZ::R15D);
8142 
8143   MI.eraseFromParent();
8144   return DoneMBB;
8145 }
8146 
8147 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8148     MachineInstr &MI, MachineBasicBlock *MBB) const {
8149   switch (MI.getOpcode()) {
8150   case SystemZ::Select32:
8151   case SystemZ::Select64:
8152   case SystemZ::SelectF32:
8153   case SystemZ::SelectF64:
8154   case SystemZ::SelectF128:
8155   case SystemZ::SelectVR32:
8156   case SystemZ::SelectVR64:
8157   case SystemZ::SelectVR128:
8158     return emitSelect(MI, MBB);
8159 
8160   case SystemZ::CondStore8Mux:
8161     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8162   case SystemZ::CondStore8MuxInv:
8163     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8164   case SystemZ::CondStore16Mux:
8165     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8166   case SystemZ::CondStore16MuxInv:
8167     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8168   case SystemZ::CondStore32Mux:
8169     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8170   case SystemZ::CondStore32MuxInv:
8171     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8172   case SystemZ::CondStore8:
8173     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8174   case SystemZ::CondStore8Inv:
8175     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8176   case SystemZ::CondStore16:
8177     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8178   case SystemZ::CondStore16Inv:
8179     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8180   case SystemZ::CondStore32:
8181     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8182   case SystemZ::CondStore32Inv:
8183     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8184   case SystemZ::CondStore64:
8185     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8186   case SystemZ::CondStore64Inv:
8187     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8188   case SystemZ::CondStoreF32:
8189     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8190   case SystemZ::CondStoreF32Inv:
8191     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8192   case SystemZ::CondStoreF64:
8193     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8194   case SystemZ::CondStoreF64Inv:
8195     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8196 
8197   case SystemZ::PAIR128:
8198     return emitPair128(MI, MBB);
8199   case SystemZ::AEXT128:
8200     return emitExt128(MI, MBB, false);
8201   case SystemZ::ZEXT128:
8202     return emitExt128(MI, MBB, true);
8203 
8204   case SystemZ::ATOMIC_SWAPW:
8205     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8206   case SystemZ::ATOMIC_SWAP_32:
8207     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8208   case SystemZ::ATOMIC_SWAP_64:
8209     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8210 
8211   case SystemZ::ATOMIC_LOADW_AR:
8212     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8213   case SystemZ::ATOMIC_LOADW_AFI:
8214     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8215   case SystemZ::ATOMIC_LOAD_AR:
8216     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8217   case SystemZ::ATOMIC_LOAD_AHI:
8218     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8219   case SystemZ::ATOMIC_LOAD_AFI:
8220     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8221   case SystemZ::ATOMIC_LOAD_AGR:
8222     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8223   case SystemZ::ATOMIC_LOAD_AGHI:
8224     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8225   case SystemZ::ATOMIC_LOAD_AGFI:
8226     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8227 
8228   case SystemZ::ATOMIC_LOADW_SR:
8229     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8230   case SystemZ::ATOMIC_LOAD_SR:
8231     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8232   case SystemZ::ATOMIC_LOAD_SGR:
8233     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8234 
8235   case SystemZ::ATOMIC_LOADW_NR:
8236     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8237   case SystemZ::ATOMIC_LOADW_NILH:
8238     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8239   case SystemZ::ATOMIC_LOAD_NR:
8240     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8241   case SystemZ::ATOMIC_LOAD_NILL:
8242     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8243   case SystemZ::ATOMIC_LOAD_NILH:
8244     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8245   case SystemZ::ATOMIC_LOAD_NILF:
8246     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8247   case SystemZ::ATOMIC_LOAD_NGR:
8248     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8249   case SystemZ::ATOMIC_LOAD_NILL64:
8250     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8251   case SystemZ::ATOMIC_LOAD_NILH64:
8252     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8253   case SystemZ::ATOMIC_LOAD_NIHL64:
8254     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8255   case SystemZ::ATOMIC_LOAD_NIHH64:
8256     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8257   case SystemZ::ATOMIC_LOAD_NILF64:
8258     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8259   case SystemZ::ATOMIC_LOAD_NIHF64:
8260     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8261 
8262   case SystemZ::ATOMIC_LOADW_OR:
8263     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8264   case SystemZ::ATOMIC_LOADW_OILH:
8265     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8266   case SystemZ::ATOMIC_LOAD_OR:
8267     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8268   case SystemZ::ATOMIC_LOAD_OILL:
8269     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8270   case SystemZ::ATOMIC_LOAD_OILH:
8271     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8272   case SystemZ::ATOMIC_LOAD_OILF:
8273     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8274   case SystemZ::ATOMIC_LOAD_OGR:
8275     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8276   case SystemZ::ATOMIC_LOAD_OILL64:
8277     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8278   case SystemZ::ATOMIC_LOAD_OILH64:
8279     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8280   case SystemZ::ATOMIC_LOAD_OIHL64:
8281     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8282   case SystemZ::ATOMIC_LOAD_OIHH64:
8283     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8284   case SystemZ::ATOMIC_LOAD_OILF64:
8285     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8286   case SystemZ::ATOMIC_LOAD_OIHF64:
8287     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8288 
8289   case SystemZ::ATOMIC_LOADW_XR:
8290     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8291   case SystemZ::ATOMIC_LOADW_XILF:
8292     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8293   case SystemZ::ATOMIC_LOAD_XR:
8294     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8295   case SystemZ::ATOMIC_LOAD_XILF:
8296     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8297   case SystemZ::ATOMIC_LOAD_XGR:
8298     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8299   case SystemZ::ATOMIC_LOAD_XILF64:
8300     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8301   case SystemZ::ATOMIC_LOAD_XIHF64:
8302     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8303 
8304   case SystemZ::ATOMIC_LOADW_NRi:
8305     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8306   case SystemZ::ATOMIC_LOADW_NILHi:
8307     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8308   case SystemZ::ATOMIC_LOAD_NRi:
8309     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8310   case SystemZ::ATOMIC_LOAD_NILLi:
8311     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8312   case SystemZ::ATOMIC_LOAD_NILHi:
8313     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8314   case SystemZ::ATOMIC_LOAD_NILFi:
8315     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8316   case SystemZ::ATOMIC_LOAD_NGRi:
8317     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8318   case SystemZ::ATOMIC_LOAD_NILL64i:
8319     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8320   case SystemZ::ATOMIC_LOAD_NILH64i:
8321     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8322   case SystemZ::ATOMIC_LOAD_NIHL64i:
8323     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8324   case SystemZ::ATOMIC_LOAD_NIHH64i:
8325     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8326   case SystemZ::ATOMIC_LOAD_NILF64i:
8327     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8328   case SystemZ::ATOMIC_LOAD_NIHF64i:
8329     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8330 
8331   case SystemZ::ATOMIC_LOADW_MIN:
8332     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8333                                 SystemZ::CCMASK_CMP_LE, 0);
8334   case SystemZ::ATOMIC_LOAD_MIN_32:
8335     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8336                                 SystemZ::CCMASK_CMP_LE, 32);
8337   case SystemZ::ATOMIC_LOAD_MIN_64:
8338     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8339                                 SystemZ::CCMASK_CMP_LE, 64);
8340 
8341   case SystemZ::ATOMIC_LOADW_MAX:
8342     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8343                                 SystemZ::CCMASK_CMP_GE, 0);
8344   case SystemZ::ATOMIC_LOAD_MAX_32:
8345     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8346                                 SystemZ::CCMASK_CMP_GE, 32);
8347   case SystemZ::ATOMIC_LOAD_MAX_64:
8348     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8349                                 SystemZ::CCMASK_CMP_GE, 64);
8350 
8351   case SystemZ::ATOMIC_LOADW_UMIN:
8352     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8353                                 SystemZ::CCMASK_CMP_LE, 0);
8354   case SystemZ::ATOMIC_LOAD_UMIN_32:
8355     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8356                                 SystemZ::CCMASK_CMP_LE, 32);
8357   case SystemZ::ATOMIC_LOAD_UMIN_64:
8358     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8359                                 SystemZ::CCMASK_CMP_LE, 64);
8360 
8361   case SystemZ::ATOMIC_LOADW_UMAX:
8362     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8363                                 SystemZ::CCMASK_CMP_GE, 0);
8364   case SystemZ::ATOMIC_LOAD_UMAX_32:
8365     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8366                                 SystemZ::CCMASK_CMP_GE, 32);
8367   case SystemZ::ATOMIC_LOAD_UMAX_64:
8368     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8369                                 SystemZ::CCMASK_CMP_GE, 64);
8370 
8371   case SystemZ::ATOMIC_CMP_SWAPW:
8372     return emitAtomicCmpSwapW(MI, MBB);
8373   case SystemZ::MVCSequence:
8374   case SystemZ::MVCLoop:
8375     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8376   case SystemZ::NCSequence:
8377   case SystemZ::NCLoop:
8378     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8379   case SystemZ::OCSequence:
8380   case SystemZ::OCLoop:
8381     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8382   case SystemZ::XCSequence:
8383   case SystemZ::XCLoop:
8384     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8385   case SystemZ::CLCSequence:
8386   case SystemZ::CLCLoop:
8387     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8388   case SystemZ::CLSTLoop:
8389     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8390   case SystemZ::MVSTLoop:
8391     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8392   case SystemZ::SRSTLoop:
8393     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8394   case SystemZ::TBEGIN:
8395     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8396   case SystemZ::TBEGIN_nofloat:
8397     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8398   case SystemZ::TBEGINC:
8399     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8400   case SystemZ::LTEBRCompare_VecPseudo:
8401     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8402   case SystemZ::LTDBRCompare_VecPseudo:
8403     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8404   case SystemZ::LTXBRCompare_VecPseudo:
8405     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8406 
8407   case SystemZ::PROBED_ALLOCA:
8408     return emitProbedAlloca(MI, MBB);
8409 
8410   case TargetOpcode::STACKMAP:
8411   case TargetOpcode::PATCHPOINT:
8412     return emitPatchPoint(MI, MBB);
8413 
8414   default:
8415     llvm_unreachable("Unexpected instr type to insert");
8416   }
8417 }
8418 
8419 // This is only used by the isel schedulers, and is needed only to prevent
8420 // compiler from crashing when list-ilp is used.
8421 const TargetRegisterClass *
8422 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8423   if (VT == MVT::Untyped)
8424     return &SystemZ::ADDR128BitRegClass;
8425   return TargetLowering::getRepRegClassFor(VT);
8426 }
8427