1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/Intrinsics.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/KnownBits.h"
26 #include <cctype>
27 
28 using namespace llvm;
29 
30 #define DEBUG_TYPE "systemz-lower"
31 
32 namespace {
33 // Represents information about a comparison.
34 struct Comparison {
35   Comparison(SDValue Op0In, SDValue Op1In)
36     : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
37 
38   // The operands to the comparison.
39   SDValue Op0, Op1;
40 
41   // The opcode that should be used to compare Op0 and Op1.
42   unsigned Opcode;
43 
44   // A SystemZICMP value.  Only used for integer comparisons.
45   unsigned ICmpType;
46 
47   // The mask of CC values that Opcode can produce.
48   unsigned CCValid;
49 
50   // The mask of CC values for which the original condition is true.
51   unsigned CCMask;
52 };
53 } // end anonymous namespace
54 
55 // Classify VT as either 32 or 64 bit.
56 static bool is32Bit(EVT VT) {
57   switch (VT.getSimpleVT().SimpleTy) {
58   case MVT::i32:
59     return true;
60   case MVT::i64:
61     return false;
62   default:
63     llvm_unreachable("Unsupported type");
64   }
65 }
66 
67 // Return a version of MachineOperand that can be safely used before the
68 // final use.
69 static MachineOperand earlyUseOperand(MachineOperand Op) {
70   if (Op.isReg())
71     Op.setIsKill(false);
72   return Op;
73 }
74 
75 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
76                                              const SystemZSubtarget &STI)
77     : TargetLowering(TM), Subtarget(STI) {
78   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
79 
80   // Set up the register classes.
81   if (Subtarget.hasHighWord())
82     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
83   else
84     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
85   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
86   if (Subtarget.hasVector()) {
87     addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
88     addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
89   } else {
90     addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
91     addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
92   }
93   if (Subtarget.hasVectorEnhancements1())
94     addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
95   else
96     addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
97 
98   if (Subtarget.hasVector()) {
99     addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
100     addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
101     addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
102     addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
103     addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
104     addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
105   }
106 
107   // Compute derived properties from the register classes
108   computeRegisterProperties(Subtarget.getRegisterInfo());
109 
110   // Set up special registers.
111   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
112 
113   // TODO: It may be better to default to latency-oriented scheduling, however
114   // LLVM's current latency-oriented scheduler can't handle physreg definitions
115   // such as SystemZ has with CC, so set this to the register-pressure
116   // scheduler, because it can.
117   setSchedulingPreference(Sched::RegPressure);
118 
119   setBooleanContents(ZeroOrOneBooleanContent);
120   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
121 
122   // Instructions are strings of 2-byte aligned 2-byte values.
123   setMinFunctionAlignment(2);
124   // For performance reasons we prefer 16-byte alignment.
125   setPrefFunctionAlignment(4);
126 
127   // Handle operations that are handled in a similar way for all types.
128   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
129        I <= MVT::LAST_FP_VALUETYPE;
130        ++I) {
131     MVT VT = MVT::SimpleValueType(I);
132     if (isTypeLegal(VT)) {
133       // Lower SET_CC into an IPM-based sequence.
134       setOperationAction(ISD::SETCC, VT, Custom);
135 
136       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
137       setOperationAction(ISD::SELECT, VT, Expand);
138 
139       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
140       setOperationAction(ISD::SELECT_CC, VT, Custom);
141       setOperationAction(ISD::BR_CC,     VT, Custom);
142     }
143   }
144 
145   // Expand jump table branches as address arithmetic followed by an
146   // indirect jump.
147   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
148 
149   // Expand BRCOND into a BR_CC (see above).
150   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
151 
152   // Handle integer types.
153   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
154        I <= MVT::LAST_INTEGER_VALUETYPE;
155        ++I) {
156     MVT VT = MVT::SimpleValueType(I);
157     if (isTypeLegal(VT)) {
158       // Expand individual DIV and REMs into DIVREMs.
159       setOperationAction(ISD::SDIV, VT, Expand);
160       setOperationAction(ISD::UDIV, VT, Expand);
161       setOperationAction(ISD::SREM, VT, Expand);
162       setOperationAction(ISD::UREM, VT, Expand);
163       setOperationAction(ISD::SDIVREM, VT, Custom);
164       setOperationAction(ISD::UDIVREM, VT, Custom);
165 
166       // Support addition/subtraction with overflow.
167       setOperationAction(ISD::SADDO, VT, Custom);
168       setOperationAction(ISD::SSUBO, VT, Custom);
169 
170       // Support addition/subtraction with carry.
171       setOperationAction(ISD::UADDO, VT, Custom);
172       setOperationAction(ISD::USUBO, VT, Custom);
173 
174       // Support carry in as value rather than glue.
175       setOperationAction(ISD::ADDCARRY, VT, Custom);
176       setOperationAction(ISD::SUBCARRY, VT, Custom);
177 
178       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
179       // stores, putting a serialization instruction after the stores.
180       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
181       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
182 
183       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
184       // available, or if the operand is constant.
185       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
186 
187       // Use POPCNT on z196 and above.
188       if (Subtarget.hasPopulationCount())
189         setOperationAction(ISD::CTPOP, VT, Custom);
190       else
191         setOperationAction(ISD::CTPOP, VT, Expand);
192 
193       // No special instructions for these.
194       setOperationAction(ISD::CTTZ,            VT, Expand);
195       setOperationAction(ISD::ROTR,            VT, Expand);
196 
197       // Use *MUL_LOHI where possible instead of MULH*.
198       setOperationAction(ISD::MULHS, VT, Expand);
199       setOperationAction(ISD::MULHU, VT, Expand);
200       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
201       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
202 
203       // Only z196 and above have native support for conversions to unsigned.
204       // On z10, promoting to i64 doesn't generate an inexact condition for
205       // values that are outside the i32 range but in the i64 range, so use
206       // the default expansion.
207       if (!Subtarget.hasFPExtension())
208         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
209     }
210   }
211 
212   // Type legalization will convert 8- and 16-bit atomic operations into
213   // forms that operate on i32s (but still keeping the original memory VT).
214   // Lower them into full i32 operations.
215   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
216   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
217   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
218   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
219   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
220   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
221   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
222   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
223   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
224   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
225   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
226 
227   // Even though i128 is not a legal type, we still need to custom lower
228   // the atomic operations in order to exploit SystemZ instructions.
229   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
230   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
231 
232   // We can use the CC result of compare-and-swap to implement
233   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
234   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
235   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
236   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
237 
238   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
239 
240   // Traps are legal, as we will convert them to "j .+2".
241   setOperationAction(ISD::TRAP, MVT::Other, Legal);
242 
243   // z10 has instructions for signed but not unsigned FP conversion.
244   // Handle unsigned 32-bit types as signed 64-bit types.
245   if (!Subtarget.hasFPExtension()) {
246     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
247     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
248   }
249 
250   // We have native support for a 64-bit CTLZ, via FLOGR.
251   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
252   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
253   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
254 
255   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
256   setOperationAction(ISD::OR, MVT::i64, Custom);
257 
258   // FIXME: Can we support these natively?
259   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
260   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
261   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
262 
263   // We have native instructions for i8, i16 and i32 extensions, but not i1.
264   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
265   for (MVT VT : MVT::integer_valuetypes()) {
266     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
267     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
268     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
269   }
270 
271   // Handle the various types of symbolic address.
272   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
273   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
274   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
275   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
276   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
277 
278   // We need to handle dynamic allocations specially because of the
279   // 160-byte area at the bottom of the stack.
280   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
281   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
282 
283   // Use custom expanders so that we can force the function to use
284   // a frame pointer.
285   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
286   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
287 
288   // Handle prefetches with PFD or PFDRL.
289   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
290 
291   for (MVT VT : MVT::vector_valuetypes()) {
292     // Assume by default that all vector operations need to be expanded.
293     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
294       if (getOperationAction(Opcode, VT) == Legal)
295         setOperationAction(Opcode, VT, Expand);
296 
297     // Likewise all truncating stores and extending loads.
298     for (MVT InnerVT : MVT::vector_valuetypes()) {
299       setTruncStoreAction(VT, InnerVT, Expand);
300       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
301       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
302       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
303     }
304 
305     if (isTypeLegal(VT)) {
306       // These operations are legal for anything that can be stored in a
307       // vector register, even if there is no native support for the format
308       // as such.  In particular, we can do these for v4f32 even though there
309       // are no specific instructions for that format.
310       setOperationAction(ISD::LOAD, VT, Legal);
311       setOperationAction(ISD::STORE, VT, Legal);
312       setOperationAction(ISD::VSELECT, VT, Legal);
313       setOperationAction(ISD::BITCAST, VT, Legal);
314       setOperationAction(ISD::UNDEF, VT, Legal);
315 
316       // Likewise, except that we need to replace the nodes with something
317       // more specific.
318       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
319       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
320     }
321   }
322 
323   // Handle integer vector types.
324   for (MVT VT : MVT::integer_vector_valuetypes()) {
325     if (isTypeLegal(VT)) {
326       // These operations have direct equivalents.
327       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
328       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
329       setOperationAction(ISD::ADD, VT, Legal);
330       setOperationAction(ISD::SUB, VT, Legal);
331       if (VT != MVT::v2i64)
332         setOperationAction(ISD::MUL, VT, Legal);
333       setOperationAction(ISD::AND, VT, Legal);
334       setOperationAction(ISD::OR, VT, Legal);
335       setOperationAction(ISD::XOR, VT, Legal);
336       if (Subtarget.hasVectorEnhancements1())
337         setOperationAction(ISD::CTPOP, VT, Legal);
338       else
339         setOperationAction(ISD::CTPOP, VT, Custom);
340       setOperationAction(ISD::CTTZ, VT, Legal);
341       setOperationAction(ISD::CTLZ, VT, Legal);
342 
343       // Convert a GPR scalar to a vector by inserting it into element 0.
344       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
345 
346       // Use a series of unpacks for extensions.
347       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
348       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
349 
350       // Detect shifts by a scalar amount and convert them into
351       // V*_BY_SCALAR.
352       setOperationAction(ISD::SHL, VT, Custom);
353       setOperationAction(ISD::SRA, VT, Custom);
354       setOperationAction(ISD::SRL, VT, Custom);
355 
356       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
357       // converted into ROTL.
358       setOperationAction(ISD::ROTL, VT, Expand);
359       setOperationAction(ISD::ROTR, VT, Expand);
360 
361       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
362       // and inverting the result as necessary.
363       setOperationAction(ISD::SETCC, VT, Custom);
364     }
365   }
366 
367   if (Subtarget.hasVector()) {
368     // There should be no need to check for float types other than v2f64
369     // since <2 x f32> isn't a legal type.
370     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
371     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
372     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
373     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
374     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
375     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
376     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
377     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
378   }
379 
380   // Handle floating-point types.
381   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
382        I <= MVT::LAST_FP_VALUETYPE;
383        ++I) {
384     MVT VT = MVT::SimpleValueType(I);
385     if (isTypeLegal(VT)) {
386       // We can use FI for FRINT.
387       setOperationAction(ISD::FRINT, VT, Legal);
388 
389       // We can use the extended form of FI for other rounding operations.
390       if (Subtarget.hasFPExtension()) {
391         setOperationAction(ISD::FNEARBYINT, VT, Legal);
392         setOperationAction(ISD::FFLOOR, VT, Legal);
393         setOperationAction(ISD::FCEIL, VT, Legal);
394         setOperationAction(ISD::FTRUNC, VT, Legal);
395         setOperationAction(ISD::FROUND, VT, Legal);
396       }
397 
398       // No special instructions for these.
399       setOperationAction(ISD::FSIN, VT, Expand);
400       setOperationAction(ISD::FCOS, VT, Expand);
401       setOperationAction(ISD::FSINCOS, VT, Expand);
402       setOperationAction(ISD::FREM, VT, Expand);
403       setOperationAction(ISD::FPOW, VT, Expand);
404     }
405   }
406 
407   // Handle floating-point vector types.
408   if (Subtarget.hasVector()) {
409     // Scalar-to-vector conversion is just a subreg.
410     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
411     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
412 
413     // Some insertions and extractions can be done directly but others
414     // need to go via integers.
415     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
416     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
417     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
418     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
419 
420     // These operations have direct equivalents.
421     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
422     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
423     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
424     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
425     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
426     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
427     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
428     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
429     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
430     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
431     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
432     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
433     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
434     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
435   }
436 
437   // The vector enhancements facility 1 has instructions for these.
438   if (Subtarget.hasVectorEnhancements1()) {
439     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
440     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
441     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
442     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
443     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
444     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
445     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
446     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
447     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
448     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
449     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
450     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
451     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
452     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
453 
454     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
455     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
456     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
457     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
458 
459     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
460     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
461     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
462     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
463 
464     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
465     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
466     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
467     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
468 
469     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
470     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
471     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
472     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
473 
474     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
475     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
476     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
477     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
478   }
479 
480   // We have fused multiply-addition for f32 and f64 but not f128.
481   setOperationAction(ISD::FMA, MVT::f32,  Legal);
482   setOperationAction(ISD::FMA, MVT::f64,  Legal);
483   if (Subtarget.hasVectorEnhancements1())
484     setOperationAction(ISD::FMA, MVT::f128, Legal);
485   else
486     setOperationAction(ISD::FMA, MVT::f128, Expand);
487 
488   // We don't have a copysign instruction on vector registers.
489   if (Subtarget.hasVectorEnhancements1())
490     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
491 
492   // Needed so that we don't try to implement f128 constant loads using
493   // a load-and-extend of a f80 constant (in cases where the constant
494   // would fit in an f80).
495   for (MVT VT : MVT::fp_valuetypes())
496     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
497 
498   // We don't have extending load instruction on vector registers.
499   if (Subtarget.hasVectorEnhancements1()) {
500     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
501     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
502   }
503 
504   // Floating-point truncation and stores need to be done separately.
505   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
506   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
507   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
508 
509   // We have 64-bit FPR<->GPR moves, but need special handling for
510   // 32-bit forms.
511   if (!Subtarget.hasVector()) {
512     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
513     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
514   }
515 
516   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
517   // structure, but VAEND is a no-op.
518   setOperationAction(ISD::VASTART, MVT::Other, Custom);
519   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
520   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
521 
522   // Codes for which we want to perform some z-specific combinations.
523   setTargetDAGCombine(ISD::ZERO_EXTEND);
524   setTargetDAGCombine(ISD::SIGN_EXTEND);
525   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
526   setTargetDAGCombine(ISD::LOAD);
527   setTargetDAGCombine(ISD::STORE);
528   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
529   setTargetDAGCombine(ISD::FP_ROUND);
530   setTargetDAGCombine(ISD::FP_EXTEND);
531   setTargetDAGCombine(ISD::BSWAP);
532   setTargetDAGCombine(ISD::SDIV);
533   setTargetDAGCombine(ISD::UDIV);
534   setTargetDAGCombine(ISD::SREM);
535   setTargetDAGCombine(ISD::UREM);
536 
537   // Handle intrinsics.
538   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
539   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
540 
541   // We want to use MVC in preference to even a single load/store pair.
542   MaxStoresPerMemcpy = 0;
543   MaxStoresPerMemcpyOptSize = 0;
544 
545   // The main memset sequence is a byte store followed by an MVC.
546   // Two STC or MV..I stores win over that, but the kind of fused stores
547   // generated by target-independent code don't when the byte value is
548   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
549   // than "STC;MVC".  Handle the choice in target-specific code instead.
550   MaxStoresPerMemset = 0;
551   MaxStoresPerMemsetOptSize = 0;
552 }
553 
554 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
555                                               LLVMContext &, EVT VT) const {
556   if (!VT.isVector())
557     return MVT::i32;
558   return VT.changeVectorElementTypeToInteger();
559 }
560 
561 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
562   VT = VT.getScalarType();
563 
564   if (!VT.isSimple())
565     return false;
566 
567   switch (VT.getSimpleVT().SimpleTy) {
568   case MVT::f32:
569   case MVT::f64:
570     return true;
571   case MVT::f128:
572     return Subtarget.hasVectorEnhancements1();
573   default:
574     break;
575   }
576 
577   return false;
578 }
579 
580 // Return true if the constant can be generated with a vector instruction,
581 // such as VGM, VGMB or VREPI.
582 bool SystemZVectorConstantInfo::isVectorConstantLegal(
583     const SystemZSubtarget &Subtarget) {
584   const SystemZInstrInfo *TII =
585       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
586   if (!Subtarget.hasVector() ||
587       (isFP128 && !Subtarget.hasVectorEnhancements1()))
588     return false;
589 
590   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
591   // preferred way of creating all-zero and all-one vectors so give it
592   // priority over other methods below.
593   unsigned Mask = 0;
594   unsigned I = 0;
595   for (; I < SystemZ::VectorBytes; ++I) {
596     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
597     if (Byte == 0xff)
598       Mask |= 1ULL << I;
599     else if (Byte != 0)
600       break;
601   }
602   if (I == SystemZ::VectorBytes) {
603     Opcode = SystemZISD::BYTE_MASK;
604     OpVals.push_back(Mask);
605     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
606     return true;
607   }
608 
609   if (SplatBitSize > 64)
610     return false;
611 
612   auto tryValue = [&](uint64_t Value) -> bool {
613     // Try VECTOR REPLICATE IMMEDIATE
614     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
615     if (isInt<16>(SignedValue)) {
616       OpVals.push_back(((unsigned) SignedValue));
617       Opcode = SystemZISD::REPLICATE;
618       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
619                                SystemZ::VectorBits / SplatBitSize);
620       return true;
621     }
622     // Try VECTOR GENERATE MASK
623     unsigned Start, End;
624     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
625       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
626       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
627       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
628       OpVals.push_back(Start - (64 - SplatBitSize));
629       OpVals.push_back(End - (64 - SplatBitSize));
630       Opcode = SystemZISD::ROTATE_MASK;
631       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
632                                SystemZ::VectorBits / SplatBitSize);
633       return true;
634     }
635     return false;
636   };
637 
638   // First try assuming that any undefined bits above the highest set bit
639   // and below the lowest set bit are 1s.  This increases the likelihood of
640   // being able to use a sign-extended element value in VECTOR REPLICATE
641   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
642   uint64_t SplatBitsZ = SplatBits.getZExtValue();
643   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
644   uint64_t Lower =
645       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
646   uint64_t Upper =
647       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
648   if (tryValue(SplatBitsZ | Upper | Lower))
649     return true;
650 
651   // Now try assuming that any undefined bits between the first and
652   // last defined set bits are set.  This increases the chances of
653   // using a non-wraparound mask.
654   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
655   return tryValue(SplatBitsZ | Middle);
656 }
657 
658 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
659   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
660   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
661 
662   // Find the smallest splat.
663   SplatBits = FPImm.bitcastToAPInt();
664   unsigned Width = SplatBits.getBitWidth();
665   while (Width > 8) {
666     unsigned HalfSize = Width / 2;
667     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
668     APInt LowValue = SplatBits.trunc(HalfSize);
669 
670     // If the two halves do not match, stop here.
671     if (HighValue != LowValue || 8 > HalfSize)
672       break;
673 
674     SplatBits = HighValue;
675     Width = HalfSize;
676   }
677   SplatUndef = 0;
678   SplatBitSize = Width;
679 }
680 
681 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
682   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
683   bool HasAnyUndefs;
684 
685   // Get IntBits by finding the 128 bit splat.
686   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
687                        true);
688 
689   // Get SplatBits by finding the 8 bit or greater splat.
690   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
691                        true);
692 }
693 
694 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
695                                          bool ForCodeSize) const {
696   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
697   if (Imm.isZero() || Imm.isNegZero())
698     return true;
699 
700   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
701 }
702 
703 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
704   // We can use CGFI or CLGFI.
705   return isInt<32>(Imm) || isUInt<32>(Imm);
706 }
707 
708 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
709   // We can use ALGFI or SLGFI.
710   return isUInt<32>(Imm) || isUInt<32>(-Imm);
711 }
712 
713 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
714                                                            unsigned,
715                                                            unsigned,
716                                                            bool *Fast) const {
717   // Unaligned accesses should never be slower than the expanded version.
718   // We check specifically for aligned accesses in the few cases where
719   // they are required.
720   if (Fast)
721     *Fast = true;
722   return true;
723 }
724 
725 // Information about the addressing mode for a memory access.
726 struct AddressingMode {
727   // True if a long displacement is supported.
728   bool LongDisplacement;
729 
730   // True if use of index register is supported.
731   bool IndexReg;
732 
733   AddressingMode(bool LongDispl, bool IdxReg) :
734     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
735 };
736 
737 // Return the desired addressing mode for a Load which has only one use (in
738 // the same block) which is a Store.
739 static AddressingMode getLoadStoreAddrMode(bool HasVector,
740                                           Type *Ty) {
741   // With vector support a Load->Store combination may be combined to either
742   // an MVC or vector operations and it seems to work best to allow the
743   // vector addressing mode.
744   if (HasVector)
745     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
746 
747   // Otherwise only the MVC case is special.
748   bool MVC = Ty->isIntegerTy(8);
749   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
750 }
751 
752 // Return the addressing mode which seems most desirable given an LLVM
753 // Instruction pointer.
754 static AddressingMode
755 supportedAddressingMode(Instruction *I, bool HasVector) {
756   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
757     switch (II->getIntrinsicID()) {
758     default: break;
759     case Intrinsic::memset:
760     case Intrinsic::memmove:
761     case Intrinsic::memcpy:
762       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
763     }
764   }
765 
766   if (isa<LoadInst>(I) && I->hasOneUse()) {
767     auto *SingleUser = dyn_cast<Instruction>(*I->user_begin());
768     if (SingleUser->getParent() == I->getParent()) {
769       if (isa<ICmpInst>(SingleUser)) {
770         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
771           if (C->getBitWidth() <= 64 &&
772               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
773             // Comparison of memory with 16 bit signed / unsigned immediate
774             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
775       } else if (isa<StoreInst>(SingleUser))
776         // Load->Store
777         return getLoadStoreAddrMode(HasVector, I->getType());
778     }
779   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
780     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
781       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
782         // Load->Store
783         return getLoadStoreAddrMode(HasVector, LoadI->getType());
784   }
785 
786   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
787 
788     // * Use LDE instead of LE/LEY for z13 to avoid partial register
789     //   dependencies (LDE only supports small offsets).
790     // * Utilize the vector registers to hold floating point
791     //   values (vector load / store instructions only support small
792     //   offsets).
793 
794     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
795                          I->getOperand(0)->getType());
796     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
797     bool IsVectorAccess = MemAccessTy->isVectorTy();
798 
799     // A store of an extracted vector element will be combined into a VSTE type
800     // instruction.
801     if (!IsVectorAccess && isa<StoreInst>(I)) {
802       Value *DataOp = I->getOperand(0);
803       if (isa<ExtractElementInst>(DataOp))
804         IsVectorAccess = true;
805     }
806 
807     // A load which gets inserted into a vector element will be combined into a
808     // VLE type instruction.
809     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
810       User *LoadUser = *I->user_begin();
811       if (isa<InsertElementInst>(LoadUser))
812         IsVectorAccess = true;
813     }
814 
815     if (IsFPAccess || IsVectorAccess)
816       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
817   }
818 
819   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
820 }
821 
822 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
823        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
824   // Punt on globals for now, although they can be used in limited
825   // RELATIVE LONG cases.
826   if (AM.BaseGV)
827     return false;
828 
829   // Require a 20-bit signed offset.
830   if (!isInt<20>(AM.BaseOffs))
831     return false;
832 
833   AddressingMode SupportedAM(true, true);
834   if (I != nullptr)
835     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
836 
837   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
838     return false;
839 
840   if (!SupportedAM.IndexReg)
841     // No indexing allowed.
842     return AM.Scale == 0;
843   else
844     // Indexing is OK but no scale factor can be applied.
845     return AM.Scale == 0 || AM.Scale == 1;
846 }
847 
848 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
849   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
850     return false;
851   unsigned FromBits = FromType->getPrimitiveSizeInBits();
852   unsigned ToBits = ToType->getPrimitiveSizeInBits();
853   return FromBits > ToBits;
854 }
855 
856 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
857   if (!FromVT.isInteger() || !ToVT.isInteger())
858     return false;
859   unsigned FromBits = FromVT.getSizeInBits();
860   unsigned ToBits = ToVT.getSizeInBits();
861   return FromBits > ToBits;
862 }
863 
864 //===----------------------------------------------------------------------===//
865 // Inline asm support
866 //===----------------------------------------------------------------------===//
867 
868 TargetLowering::ConstraintType
869 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
870   if (Constraint.size() == 1) {
871     switch (Constraint[0]) {
872     case 'a': // Address register
873     case 'd': // Data register (equivalent to 'r')
874     case 'f': // Floating-point register
875     case 'h': // High-part register
876     case 'r': // General-purpose register
877     case 'v': // Vector register
878       return C_RegisterClass;
879 
880     case 'Q': // Memory with base and unsigned 12-bit displacement
881     case 'R': // Likewise, plus an index
882     case 'S': // Memory with base and signed 20-bit displacement
883     case 'T': // Likewise, plus an index
884     case 'm': // Equivalent to 'T'.
885       return C_Memory;
886 
887     case 'I': // Unsigned 8-bit constant
888     case 'J': // Unsigned 12-bit constant
889     case 'K': // Signed 16-bit constant
890     case 'L': // Signed 20-bit displacement (on all targets we support)
891     case 'M': // 0x7fffffff
892       return C_Other;
893 
894     default:
895       break;
896     }
897   }
898   return TargetLowering::getConstraintType(Constraint);
899 }
900 
901 TargetLowering::ConstraintWeight SystemZTargetLowering::
902 getSingleConstraintMatchWeight(AsmOperandInfo &info,
903                                const char *constraint) const {
904   ConstraintWeight weight = CW_Invalid;
905   Value *CallOperandVal = info.CallOperandVal;
906   // If we don't have a value, we can't do a match,
907   // but allow it at the lowest weight.
908   if (!CallOperandVal)
909     return CW_Default;
910   Type *type = CallOperandVal->getType();
911   // Look at the constraint type.
912   switch (*constraint) {
913   default:
914     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
915     break;
916 
917   case 'a': // Address register
918   case 'd': // Data register (equivalent to 'r')
919   case 'h': // High-part register
920   case 'r': // General-purpose register
921     if (CallOperandVal->getType()->isIntegerTy())
922       weight = CW_Register;
923     break;
924 
925   case 'f': // Floating-point register
926     if (type->isFloatingPointTy())
927       weight = CW_Register;
928     break;
929 
930   case 'v': // Vector register
931     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
932         Subtarget.hasVector())
933       weight = CW_Register;
934     break;
935 
936   case 'I': // Unsigned 8-bit constant
937     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
938       if (isUInt<8>(C->getZExtValue()))
939         weight = CW_Constant;
940     break;
941 
942   case 'J': // Unsigned 12-bit constant
943     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
944       if (isUInt<12>(C->getZExtValue()))
945         weight = CW_Constant;
946     break;
947 
948   case 'K': // Signed 16-bit constant
949     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
950       if (isInt<16>(C->getSExtValue()))
951         weight = CW_Constant;
952     break;
953 
954   case 'L': // Signed 20-bit displacement (on all targets we support)
955     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
956       if (isInt<20>(C->getSExtValue()))
957         weight = CW_Constant;
958     break;
959 
960   case 'M': // 0x7fffffff
961     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
962       if (C->getZExtValue() == 0x7fffffff)
963         weight = CW_Constant;
964     break;
965   }
966   return weight;
967 }
968 
969 // Parse a "{tNNN}" register constraint for which the register type "t"
970 // has already been verified.  MC is the class associated with "t" and
971 // Map maps 0-based register numbers to LLVM register numbers.
972 static std::pair<unsigned, const TargetRegisterClass *>
973 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
974                     const unsigned *Map, unsigned Size) {
975   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
976   if (isdigit(Constraint[2])) {
977     unsigned Index;
978     bool Failed =
979         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
980     if (!Failed && Index < Size && Map[Index])
981       return std::make_pair(Map[Index], RC);
982   }
983   return std::make_pair(0U, nullptr);
984 }
985 
986 std::pair<unsigned, const TargetRegisterClass *>
987 SystemZTargetLowering::getRegForInlineAsmConstraint(
988     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
989   if (Constraint.size() == 1) {
990     // GCC Constraint Letters
991     switch (Constraint[0]) {
992     default: break;
993     case 'd': // Data register (equivalent to 'r')
994     case 'r': // General-purpose register
995       if (VT == MVT::i64)
996         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
997       else if (VT == MVT::i128)
998         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
999       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1000 
1001     case 'a': // Address register
1002       if (VT == MVT::i64)
1003         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1004       else if (VT == MVT::i128)
1005         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1006       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1007 
1008     case 'h': // High-part register (an LLVM extension)
1009       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1010 
1011     case 'f': // Floating-point register
1012       if (VT == MVT::f64)
1013         return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1014       else if (VT == MVT::f128)
1015         return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1016       return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1017 
1018     case 'v': // Vector register
1019       if (Subtarget.hasVector()) {
1020         if (VT == MVT::f32)
1021           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1022         if (VT == MVT::f64)
1023           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1024         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1025       }
1026       break;
1027     }
1028   }
1029   if (Constraint.size() > 0 && Constraint[0] == '{') {
1030     // We need to override the default register parsing for GPRs and FPRs
1031     // because the interpretation depends on VT.  The internal names of
1032     // the registers are also different from the external names
1033     // (F0D and F0S instead of F0, etc.).
1034     if (Constraint[1] == 'r') {
1035       if (VT == MVT::i32)
1036         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1037                                    SystemZMC::GR32Regs, 16);
1038       if (VT == MVT::i128)
1039         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1040                                    SystemZMC::GR128Regs, 16);
1041       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1042                                  SystemZMC::GR64Regs, 16);
1043     }
1044     if (Constraint[1] == 'f') {
1045       if (VT == MVT::f32)
1046         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1047                                    SystemZMC::FP32Regs, 16);
1048       if (VT == MVT::f128)
1049         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1050                                    SystemZMC::FP128Regs, 16);
1051       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1052                                  SystemZMC::FP64Regs, 16);
1053     }
1054     if (Constraint[1] == 'v') {
1055       if (VT == MVT::f32)
1056         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1057                                    SystemZMC::VR32Regs, 32);
1058       if (VT == MVT::f64)
1059         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1060                                    SystemZMC::VR64Regs, 32);
1061       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1062                                  SystemZMC::VR128Regs, 32);
1063     }
1064   }
1065   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1066 }
1067 
1068 void SystemZTargetLowering::
1069 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1070                              std::vector<SDValue> &Ops,
1071                              SelectionDAG &DAG) const {
1072   // Only support length 1 constraints for now.
1073   if (Constraint.length() == 1) {
1074     switch (Constraint[0]) {
1075     case 'I': // Unsigned 8-bit constant
1076       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1077         if (isUInt<8>(C->getZExtValue()))
1078           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1079                                               Op.getValueType()));
1080       return;
1081 
1082     case 'J': // Unsigned 12-bit constant
1083       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1084         if (isUInt<12>(C->getZExtValue()))
1085           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1086                                               Op.getValueType()));
1087       return;
1088 
1089     case 'K': // Signed 16-bit constant
1090       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1091         if (isInt<16>(C->getSExtValue()))
1092           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1093                                               Op.getValueType()));
1094       return;
1095 
1096     case 'L': // Signed 20-bit displacement (on all targets we support)
1097       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1098         if (isInt<20>(C->getSExtValue()))
1099           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1100                                               Op.getValueType()));
1101       return;
1102 
1103     case 'M': // 0x7fffffff
1104       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1105         if (C->getZExtValue() == 0x7fffffff)
1106           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1107                                               Op.getValueType()));
1108       return;
1109     }
1110   }
1111   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1112 }
1113 
1114 //===----------------------------------------------------------------------===//
1115 // Calling conventions
1116 //===----------------------------------------------------------------------===//
1117 
1118 #include "SystemZGenCallingConv.inc"
1119 
1120 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1121   CallingConv::ID) const {
1122   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1123                                            SystemZ::R14D, 0 };
1124   return ScratchRegs;
1125 }
1126 
1127 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1128                                                      Type *ToType) const {
1129   return isTruncateFree(FromType, ToType);
1130 }
1131 
1132 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1133   return CI->isTailCall();
1134 }
1135 
1136 // We do not yet support 128-bit single-element vector types.  If the user
1137 // attempts to use such types as function argument or return type, prefer
1138 // to error out instead of emitting code violating the ABI.
1139 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1140   if (ArgVT.isVector() && !VT.isVector())
1141     report_fatal_error("Unsupported vector argument or return type");
1142 }
1143 
1144 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1145   for (unsigned i = 0; i < Ins.size(); ++i)
1146     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1147 }
1148 
1149 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1150   for (unsigned i = 0; i < Outs.size(); ++i)
1151     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1152 }
1153 
1154 // Value is a value that has been passed to us in the location described by VA
1155 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1156 // any loads onto Chain.
1157 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1158                                    CCValAssign &VA, SDValue Chain,
1159                                    SDValue Value) {
1160   // If the argument has been promoted from a smaller type, insert an
1161   // assertion to capture this.
1162   if (VA.getLocInfo() == CCValAssign::SExt)
1163     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1164                         DAG.getValueType(VA.getValVT()));
1165   else if (VA.getLocInfo() == CCValAssign::ZExt)
1166     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1167                         DAG.getValueType(VA.getValVT()));
1168 
1169   if (VA.isExtInLoc())
1170     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1171   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1172     // If this is a short vector argument loaded from the stack,
1173     // extend from i64 to full vector size and then bitcast.
1174     assert(VA.getLocVT() == MVT::i64);
1175     assert(VA.getValVT().isVector());
1176     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1177     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1178   } else
1179     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1180   return Value;
1181 }
1182 
1183 // Value is a value of type VA.getValVT() that we need to copy into
1184 // the location described by VA.  Return a copy of Value converted to
1185 // VA.getValVT().  The caller is responsible for handling indirect values.
1186 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1187                                    CCValAssign &VA, SDValue Value) {
1188   switch (VA.getLocInfo()) {
1189   case CCValAssign::SExt:
1190     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1191   case CCValAssign::ZExt:
1192     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1193   case CCValAssign::AExt:
1194     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1195   case CCValAssign::BCvt:
1196     // If this is a short vector argument to be stored to the stack,
1197     // bitcast to v2i64 and then extract first element.
1198     assert(VA.getLocVT() == MVT::i64);
1199     assert(VA.getValVT().isVector());
1200     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1201     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1202                        DAG.getConstant(0, DL, MVT::i32));
1203   case CCValAssign::Full:
1204     return Value;
1205   default:
1206     llvm_unreachable("Unhandled getLocInfo()");
1207   }
1208 }
1209 
1210 SDValue SystemZTargetLowering::LowerFormalArguments(
1211     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1212     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1213     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1214   MachineFunction &MF = DAG.getMachineFunction();
1215   MachineFrameInfo &MFI = MF.getFrameInfo();
1216   MachineRegisterInfo &MRI = MF.getRegInfo();
1217   SystemZMachineFunctionInfo *FuncInfo =
1218       MF.getInfo<SystemZMachineFunctionInfo>();
1219   auto *TFL =
1220       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1221   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1222 
1223   // Detect unsupported vector argument types.
1224   if (Subtarget.hasVector())
1225     VerifyVectorTypes(Ins);
1226 
1227   // Assign locations to all of the incoming arguments.
1228   SmallVector<CCValAssign, 16> ArgLocs;
1229   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1230   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1231 
1232   unsigned NumFixedGPRs = 0;
1233   unsigned NumFixedFPRs = 0;
1234   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1235     SDValue ArgValue;
1236     CCValAssign &VA = ArgLocs[I];
1237     EVT LocVT = VA.getLocVT();
1238     if (VA.isRegLoc()) {
1239       // Arguments passed in registers
1240       const TargetRegisterClass *RC;
1241       switch (LocVT.getSimpleVT().SimpleTy) {
1242       default:
1243         // Integers smaller than i64 should be promoted to i64.
1244         llvm_unreachable("Unexpected argument type");
1245       case MVT::i32:
1246         NumFixedGPRs += 1;
1247         RC = &SystemZ::GR32BitRegClass;
1248         break;
1249       case MVT::i64:
1250         NumFixedGPRs += 1;
1251         RC = &SystemZ::GR64BitRegClass;
1252         break;
1253       case MVT::f32:
1254         NumFixedFPRs += 1;
1255         RC = &SystemZ::FP32BitRegClass;
1256         break;
1257       case MVT::f64:
1258         NumFixedFPRs += 1;
1259         RC = &SystemZ::FP64BitRegClass;
1260         break;
1261       case MVT::v16i8:
1262       case MVT::v8i16:
1263       case MVT::v4i32:
1264       case MVT::v2i64:
1265       case MVT::v4f32:
1266       case MVT::v2f64:
1267         RC = &SystemZ::VR128BitRegClass;
1268         break;
1269       }
1270 
1271       unsigned VReg = MRI.createVirtualRegister(RC);
1272       MRI.addLiveIn(VA.getLocReg(), VReg);
1273       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1274     } else {
1275       assert(VA.isMemLoc() && "Argument not register or memory");
1276 
1277       // Create the frame index object for this incoming parameter.
1278       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1279                                      VA.getLocMemOffset(), true);
1280 
1281       // Create the SelectionDAG nodes corresponding to a load
1282       // from this parameter.  Unpromoted ints and floats are
1283       // passed as right-justified 8-byte values.
1284       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1285       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1286         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1287                           DAG.getIntPtrConstant(4, DL));
1288       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1289                              MachinePointerInfo::getFixedStack(MF, FI));
1290     }
1291 
1292     // Convert the value of the argument register into the value that's
1293     // being passed.
1294     if (VA.getLocInfo() == CCValAssign::Indirect) {
1295       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1296                                    MachinePointerInfo()));
1297       // If the original argument was split (e.g. i128), we need
1298       // to load all parts of it here (using the same address).
1299       unsigned ArgIndex = Ins[I].OrigArgIndex;
1300       assert (Ins[I].PartOffset == 0);
1301       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1302         CCValAssign &PartVA = ArgLocs[I + 1];
1303         unsigned PartOffset = Ins[I + 1].PartOffset;
1304         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1305                                       DAG.getIntPtrConstant(PartOffset, DL));
1306         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1307                                      MachinePointerInfo()));
1308         ++I;
1309       }
1310     } else
1311       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1312   }
1313 
1314   if (IsVarArg) {
1315     // Save the number of non-varargs registers for later use by va_start, etc.
1316     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1317     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1318 
1319     // Likewise the address (in the form of a frame index) of where the
1320     // first stack vararg would be.  The 1-byte size here is arbitrary.
1321     int64_t StackSize = CCInfo.getNextStackOffset();
1322     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1323 
1324     // ...and a similar frame index for the caller-allocated save area
1325     // that will be used to store the incoming registers.
1326     int64_t RegSaveOffset = TFL->getOffsetOfLocalArea();
1327     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1328     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1329 
1330     // Store the FPR varargs in the reserved frame slots.  (We store the
1331     // GPRs as part of the prologue.)
1332     if (NumFixedFPRs < SystemZ::NumArgFPRs) {
1333       SDValue MemOps[SystemZ::NumArgFPRs];
1334       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1335         unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]);
1336         int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true);
1337         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1338         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1339                                      &SystemZ::FP64BitRegClass);
1340         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1341         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1342                                  MachinePointerInfo::getFixedStack(MF, FI));
1343       }
1344       // Join the stores, which are independent of one another.
1345       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1346                           makeArrayRef(&MemOps[NumFixedFPRs],
1347                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1348     }
1349   }
1350 
1351   return Chain;
1352 }
1353 
1354 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1355                               SmallVectorImpl<CCValAssign> &ArgLocs,
1356                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1357   // Punt if there are any indirect or stack arguments, or if the call
1358   // needs the callee-saved argument register R6, or if the call uses
1359   // the callee-saved register arguments SwiftSelf and SwiftError.
1360   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1361     CCValAssign &VA = ArgLocs[I];
1362     if (VA.getLocInfo() == CCValAssign::Indirect)
1363       return false;
1364     if (!VA.isRegLoc())
1365       return false;
1366     unsigned Reg = VA.getLocReg();
1367     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1368       return false;
1369     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1370       return false;
1371   }
1372   return true;
1373 }
1374 
1375 SDValue
1376 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1377                                  SmallVectorImpl<SDValue> &InVals) const {
1378   SelectionDAG &DAG = CLI.DAG;
1379   SDLoc &DL = CLI.DL;
1380   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1381   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1382   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1383   SDValue Chain = CLI.Chain;
1384   SDValue Callee = CLI.Callee;
1385   bool &IsTailCall = CLI.IsTailCall;
1386   CallingConv::ID CallConv = CLI.CallConv;
1387   bool IsVarArg = CLI.IsVarArg;
1388   MachineFunction &MF = DAG.getMachineFunction();
1389   EVT PtrVT = getPointerTy(MF.getDataLayout());
1390 
1391   // Detect unsupported vector argument and return types.
1392   if (Subtarget.hasVector()) {
1393     VerifyVectorTypes(Outs);
1394     VerifyVectorTypes(Ins);
1395   }
1396 
1397   // Analyze the operands of the call, assigning locations to each operand.
1398   SmallVector<CCValAssign, 16> ArgLocs;
1399   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1400   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1401 
1402   // We don't support GuaranteedTailCallOpt, only automatically-detected
1403   // sibling calls.
1404   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1405     IsTailCall = false;
1406 
1407   // Get a count of how many bytes are to be pushed on the stack.
1408   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1409 
1410   // Mark the start of the call.
1411   if (!IsTailCall)
1412     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1413 
1414   // Copy argument values to their designated locations.
1415   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1416   SmallVector<SDValue, 8> MemOpChains;
1417   SDValue StackPtr;
1418   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1419     CCValAssign &VA = ArgLocs[I];
1420     SDValue ArgValue = OutVals[I];
1421 
1422     if (VA.getLocInfo() == CCValAssign::Indirect) {
1423       // Store the argument in a stack slot and pass its address.
1424       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1425       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1426       MemOpChains.push_back(
1427           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1428                        MachinePointerInfo::getFixedStack(MF, FI)));
1429       // If the original argument was split (e.g. i128), we need
1430       // to store all parts of it here (and pass just one address).
1431       unsigned ArgIndex = Outs[I].OrigArgIndex;
1432       assert (Outs[I].PartOffset == 0);
1433       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1434         SDValue PartValue = OutVals[I + 1];
1435         unsigned PartOffset = Outs[I + 1].PartOffset;
1436         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1437                                       DAG.getIntPtrConstant(PartOffset, DL));
1438         MemOpChains.push_back(
1439             DAG.getStore(Chain, DL, PartValue, Address,
1440                          MachinePointerInfo::getFixedStack(MF, FI)));
1441         ++I;
1442       }
1443       ArgValue = SpillSlot;
1444     } else
1445       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1446 
1447     if (VA.isRegLoc())
1448       // Queue up the argument copies and emit them at the end.
1449       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1450     else {
1451       assert(VA.isMemLoc() && "Argument not register or memory");
1452 
1453       // Work out the address of the stack slot.  Unpromoted ints and
1454       // floats are passed as right-justified 8-byte values.
1455       if (!StackPtr.getNode())
1456         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1457       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1458       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1459         Offset += 4;
1460       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1461                                     DAG.getIntPtrConstant(Offset, DL));
1462 
1463       // Emit the store.
1464       MemOpChains.push_back(
1465           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1466     }
1467   }
1468 
1469   // Join the stores, which are independent of one another.
1470   if (!MemOpChains.empty())
1471     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1472 
1473   // Accept direct calls by converting symbolic call addresses to the
1474   // associated Target* opcodes.  Force %r1 to be used for indirect
1475   // tail calls.
1476   SDValue Glue;
1477   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1478     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1479     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1480   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1481     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1482     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1483   } else if (IsTailCall) {
1484     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1485     Glue = Chain.getValue(1);
1486     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1487   }
1488 
1489   // Build a sequence of copy-to-reg nodes, chained and glued together.
1490   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1491     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1492                              RegsToPass[I].second, Glue);
1493     Glue = Chain.getValue(1);
1494   }
1495 
1496   // The first call operand is the chain and the second is the target address.
1497   SmallVector<SDValue, 8> Ops;
1498   Ops.push_back(Chain);
1499   Ops.push_back(Callee);
1500 
1501   // Add argument registers to the end of the list so that they are
1502   // known live into the call.
1503   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1504     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1505                                   RegsToPass[I].second.getValueType()));
1506 
1507   // Add a register mask operand representing the call-preserved registers.
1508   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1509   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1510   assert(Mask && "Missing call preserved mask for calling convention");
1511   Ops.push_back(DAG.getRegisterMask(Mask));
1512 
1513   // Glue the call to the argument copies, if any.
1514   if (Glue.getNode())
1515     Ops.push_back(Glue);
1516 
1517   // Emit the call.
1518   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1519   if (IsTailCall)
1520     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1521   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1522   Glue = Chain.getValue(1);
1523 
1524   // Mark the end of the call, which is glued to the call itself.
1525   Chain = DAG.getCALLSEQ_END(Chain,
1526                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1527                              DAG.getConstant(0, DL, PtrVT, true),
1528                              Glue, DL);
1529   Glue = Chain.getValue(1);
1530 
1531   // Assign locations to each value returned by this call.
1532   SmallVector<CCValAssign, 16> RetLocs;
1533   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1534   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1535 
1536   // Copy all of the result registers out of their specified physreg.
1537   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1538     CCValAssign &VA = RetLocs[I];
1539 
1540     // Copy the value out, gluing the copy to the end of the call sequence.
1541     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1542                                           VA.getLocVT(), Glue);
1543     Chain = RetValue.getValue(1);
1544     Glue = RetValue.getValue(2);
1545 
1546     // Convert the value of the return register into the value that's
1547     // being returned.
1548     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1549   }
1550 
1551   return Chain;
1552 }
1553 
1554 bool SystemZTargetLowering::
1555 CanLowerReturn(CallingConv::ID CallConv,
1556                MachineFunction &MF, bool isVarArg,
1557                const SmallVectorImpl<ISD::OutputArg> &Outs,
1558                LLVMContext &Context) const {
1559   // Detect unsupported vector return types.
1560   if (Subtarget.hasVector())
1561     VerifyVectorTypes(Outs);
1562 
1563   // Special case that we cannot easily detect in RetCC_SystemZ since
1564   // i128 is not a legal type.
1565   for (auto &Out : Outs)
1566     if (Out.ArgVT == MVT::i128)
1567       return false;
1568 
1569   SmallVector<CCValAssign, 16> RetLocs;
1570   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1571   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1572 }
1573 
1574 SDValue
1575 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1576                                    bool IsVarArg,
1577                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1578                                    const SmallVectorImpl<SDValue> &OutVals,
1579                                    const SDLoc &DL, SelectionDAG &DAG) const {
1580   MachineFunction &MF = DAG.getMachineFunction();
1581 
1582   // Detect unsupported vector return types.
1583   if (Subtarget.hasVector())
1584     VerifyVectorTypes(Outs);
1585 
1586   // Assign locations to each returned value.
1587   SmallVector<CCValAssign, 16> RetLocs;
1588   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1589   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1590 
1591   // Quick exit for void returns
1592   if (RetLocs.empty())
1593     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1594 
1595   // Copy the result values into the output registers.
1596   SDValue Glue;
1597   SmallVector<SDValue, 4> RetOps;
1598   RetOps.push_back(Chain);
1599   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1600     CCValAssign &VA = RetLocs[I];
1601     SDValue RetValue = OutVals[I];
1602 
1603     // Make the return register live on exit.
1604     assert(VA.isRegLoc() && "Can only return in registers!");
1605 
1606     // Promote the value as required.
1607     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1608 
1609     // Chain and glue the copies together.
1610     unsigned Reg = VA.getLocReg();
1611     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1612     Glue = Chain.getValue(1);
1613     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1614   }
1615 
1616   // Update chain and glue.
1617   RetOps[0] = Chain;
1618   if (Glue.getNode())
1619     RetOps.push_back(Glue);
1620 
1621   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1622 }
1623 
1624 // Return true if Op is an intrinsic node with chain that returns the CC value
1625 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1626 // the mask of valid CC values if so.
1627 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1628                                       unsigned &CCValid) {
1629   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1630   switch (Id) {
1631   case Intrinsic::s390_tbegin:
1632     Opcode = SystemZISD::TBEGIN;
1633     CCValid = SystemZ::CCMASK_TBEGIN;
1634     return true;
1635 
1636   case Intrinsic::s390_tbegin_nofloat:
1637     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1638     CCValid = SystemZ::CCMASK_TBEGIN;
1639     return true;
1640 
1641   case Intrinsic::s390_tend:
1642     Opcode = SystemZISD::TEND;
1643     CCValid = SystemZ::CCMASK_TEND;
1644     return true;
1645 
1646   default:
1647     return false;
1648   }
1649 }
1650 
1651 // Return true if Op is an intrinsic node without chain that returns the
1652 // CC value as its final argument.  Provide the associated SystemZISD
1653 // opcode and the mask of valid CC values if so.
1654 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1655   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1656   switch (Id) {
1657   case Intrinsic::s390_vpkshs:
1658   case Intrinsic::s390_vpksfs:
1659   case Intrinsic::s390_vpksgs:
1660     Opcode = SystemZISD::PACKS_CC;
1661     CCValid = SystemZ::CCMASK_VCMP;
1662     return true;
1663 
1664   case Intrinsic::s390_vpklshs:
1665   case Intrinsic::s390_vpklsfs:
1666   case Intrinsic::s390_vpklsgs:
1667     Opcode = SystemZISD::PACKLS_CC;
1668     CCValid = SystemZ::CCMASK_VCMP;
1669     return true;
1670 
1671   case Intrinsic::s390_vceqbs:
1672   case Intrinsic::s390_vceqhs:
1673   case Intrinsic::s390_vceqfs:
1674   case Intrinsic::s390_vceqgs:
1675     Opcode = SystemZISD::VICMPES;
1676     CCValid = SystemZ::CCMASK_VCMP;
1677     return true;
1678 
1679   case Intrinsic::s390_vchbs:
1680   case Intrinsic::s390_vchhs:
1681   case Intrinsic::s390_vchfs:
1682   case Intrinsic::s390_vchgs:
1683     Opcode = SystemZISD::VICMPHS;
1684     CCValid = SystemZ::CCMASK_VCMP;
1685     return true;
1686 
1687   case Intrinsic::s390_vchlbs:
1688   case Intrinsic::s390_vchlhs:
1689   case Intrinsic::s390_vchlfs:
1690   case Intrinsic::s390_vchlgs:
1691     Opcode = SystemZISD::VICMPHLS;
1692     CCValid = SystemZ::CCMASK_VCMP;
1693     return true;
1694 
1695   case Intrinsic::s390_vtm:
1696     Opcode = SystemZISD::VTM;
1697     CCValid = SystemZ::CCMASK_VCMP;
1698     return true;
1699 
1700   case Intrinsic::s390_vfaebs:
1701   case Intrinsic::s390_vfaehs:
1702   case Intrinsic::s390_vfaefs:
1703     Opcode = SystemZISD::VFAE_CC;
1704     CCValid = SystemZ::CCMASK_ANY;
1705     return true;
1706 
1707   case Intrinsic::s390_vfaezbs:
1708   case Intrinsic::s390_vfaezhs:
1709   case Intrinsic::s390_vfaezfs:
1710     Opcode = SystemZISD::VFAEZ_CC;
1711     CCValid = SystemZ::CCMASK_ANY;
1712     return true;
1713 
1714   case Intrinsic::s390_vfeebs:
1715   case Intrinsic::s390_vfeehs:
1716   case Intrinsic::s390_vfeefs:
1717     Opcode = SystemZISD::VFEE_CC;
1718     CCValid = SystemZ::CCMASK_ANY;
1719     return true;
1720 
1721   case Intrinsic::s390_vfeezbs:
1722   case Intrinsic::s390_vfeezhs:
1723   case Intrinsic::s390_vfeezfs:
1724     Opcode = SystemZISD::VFEEZ_CC;
1725     CCValid = SystemZ::CCMASK_ANY;
1726     return true;
1727 
1728   case Intrinsic::s390_vfenebs:
1729   case Intrinsic::s390_vfenehs:
1730   case Intrinsic::s390_vfenefs:
1731     Opcode = SystemZISD::VFENE_CC;
1732     CCValid = SystemZ::CCMASK_ANY;
1733     return true;
1734 
1735   case Intrinsic::s390_vfenezbs:
1736   case Intrinsic::s390_vfenezhs:
1737   case Intrinsic::s390_vfenezfs:
1738     Opcode = SystemZISD::VFENEZ_CC;
1739     CCValid = SystemZ::CCMASK_ANY;
1740     return true;
1741 
1742   case Intrinsic::s390_vistrbs:
1743   case Intrinsic::s390_vistrhs:
1744   case Intrinsic::s390_vistrfs:
1745     Opcode = SystemZISD::VISTR_CC;
1746     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1747     return true;
1748 
1749   case Intrinsic::s390_vstrcbs:
1750   case Intrinsic::s390_vstrchs:
1751   case Intrinsic::s390_vstrcfs:
1752     Opcode = SystemZISD::VSTRC_CC;
1753     CCValid = SystemZ::CCMASK_ANY;
1754     return true;
1755 
1756   case Intrinsic::s390_vstrczbs:
1757   case Intrinsic::s390_vstrczhs:
1758   case Intrinsic::s390_vstrczfs:
1759     Opcode = SystemZISD::VSTRCZ_CC;
1760     CCValid = SystemZ::CCMASK_ANY;
1761     return true;
1762 
1763   case Intrinsic::s390_vfcedbs:
1764   case Intrinsic::s390_vfcesbs:
1765     Opcode = SystemZISD::VFCMPES;
1766     CCValid = SystemZ::CCMASK_VCMP;
1767     return true;
1768 
1769   case Intrinsic::s390_vfchdbs:
1770   case Intrinsic::s390_vfchsbs:
1771     Opcode = SystemZISD::VFCMPHS;
1772     CCValid = SystemZ::CCMASK_VCMP;
1773     return true;
1774 
1775   case Intrinsic::s390_vfchedbs:
1776   case Intrinsic::s390_vfchesbs:
1777     Opcode = SystemZISD::VFCMPHES;
1778     CCValid = SystemZ::CCMASK_VCMP;
1779     return true;
1780 
1781   case Intrinsic::s390_vftcidb:
1782   case Intrinsic::s390_vftcisb:
1783     Opcode = SystemZISD::VFTCI;
1784     CCValid = SystemZ::CCMASK_VCMP;
1785     return true;
1786 
1787   case Intrinsic::s390_tdc:
1788     Opcode = SystemZISD::TDC;
1789     CCValid = SystemZ::CCMASK_TDC;
1790     return true;
1791 
1792   default:
1793     return false;
1794   }
1795 }
1796 
1797 // Emit an intrinsic with chain and an explicit CC register result.
1798 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1799                                            unsigned Opcode) {
1800   // Copy all operands except the intrinsic ID.
1801   unsigned NumOps = Op.getNumOperands();
1802   SmallVector<SDValue, 6> Ops;
1803   Ops.reserve(NumOps - 1);
1804   Ops.push_back(Op.getOperand(0));
1805   for (unsigned I = 2; I < NumOps; ++I)
1806     Ops.push_back(Op.getOperand(I));
1807 
1808   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1809   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1810   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1811   SDValue OldChain = SDValue(Op.getNode(), 1);
1812   SDValue NewChain = SDValue(Intr.getNode(), 1);
1813   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1814   return Intr.getNode();
1815 }
1816 
1817 // Emit an intrinsic with an explicit CC register result.
1818 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1819                                    unsigned Opcode) {
1820   // Copy all operands except the intrinsic ID.
1821   unsigned NumOps = Op.getNumOperands();
1822   SmallVector<SDValue, 6> Ops;
1823   Ops.reserve(NumOps - 1);
1824   for (unsigned I = 1; I < NumOps; ++I)
1825     Ops.push_back(Op.getOperand(I));
1826 
1827   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
1828   return Intr.getNode();
1829 }
1830 
1831 // CC is a comparison that will be implemented using an integer or
1832 // floating-point comparison.  Return the condition code mask for
1833 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
1834 // unsigned comparisons and clear for signed ones.  In the floating-point
1835 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
1836 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
1837 #define CONV(X) \
1838   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
1839   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
1840   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
1841 
1842   switch (CC) {
1843   default:
1844     llvm_unreachable("Invalid integer condition!");
1845 
1846   CONV(EQ);
1847   CONV(NE);
1848   CONV(GT);
1849   CONV(GE);
1850   CONV(LT);
1851   CONV(LE);
1852 
1853   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
1854   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
1855   }
1856 #undef CONV
1857 }
1858 
1859 // If C can be converted to a comparison against zero, adjust the operands
1860 // as necessary.
1861 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
1862   if (C.ICmpType == SystemZICMP::UnsignedOnly)
1863     return;
1864 
1865   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
1866   if (!ConstOp1)
1867     return;
1868 
1869   int64_t Value = ConstOp1->getSExtValue();
1870   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
1871       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
1872       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
1873       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
1874     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
1875     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
1876   }
1877 }
1878 
1879 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
1880 // adjust the operands as necessary.
1881 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
1882                              Comparison &C) {
1883   // For us to make any changes, it must a comparison between a single-use
1884   // load and a constant.
1885   if (!C.Op0.hasOneUse() ||
1886       C.Op0.getOpcode() != ISD::LOAD ||
1887       C.Op1.getOpcode() != ISD::Constant)
1888     return;
1889 
1890   // We must have an 8- or 16-bit load.
1891   auto *Load = cast<LoadSDNode>(C.Op0);
1892   unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits();
1893   if (NumBits != 8 && NumBits != 16)
1894     return;
1895 
1896   // The load must be an extending one and the constant must be within the
1897   // range of the unextended value.
1898   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
1899   uint64_t Value = ConstOp1->getZExtValue();
1900   uint64_t Mask = (1 << NumBits) - 1;
1901   if (Load->getExtensionType() == ISD::SEXTLOAD) {
1902     // Make sure that ConstOp1 is in range of C.Op0.
1903     int64_t SignedValue = ConstOp1->getSExtValue();
1904     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
1905       return;
1906     if (C.ICmpType != SystemZICMP::SignedOnly) {
1907       // Unsigned comparison between two sign-extended values is equivalent
1908       // to unsigned comparison between two zero-extended values.
1909       Value &= Mask;
1910     } else if (NumBits == 8) {
1911       // Try to treat the comparison as unsigned, so that we can use CLI.
1912       // Adjust CCMask and Value as necessary.
1913       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
1914         // Test whether the high bit of the byte is set.
1915         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
1916       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
1917         // Test whether the high bit of the byte is clear.
1918         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
1919       else
1920         // No instruction exists for this combination.
1921         return;
1922       C.ICmpType = SystemZICMP::UnsignedOnly;
1923     }
1924   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
1925     if (Value > Mask)
1926       return;
1927     // If the constant is in range, we can use any comparison.
1928     C.ICmpType = SystemZICMP::Any;
1929   } else
1930     return;
1931 
1932   // Make sure that the first operand is an i32 of the right extension type.
1933   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
1934                               ISD::SEXTLOAD :
1935                               ISD::ZEXTLOAD);
1936   if (C.Op0.getValueType() != MVT::i32 ||
1937       Load->getExtensionType() != ExtType) {
1938     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
1939                            Load->getBasePtr(), Load->getPointerInfo(),
1940                            Load->getMemoryVT(), Load->getAlignment(),
1941                            Load->getMemOperand()->getFlags());
1942     // Update the chain uses.
1943     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
1944   }
1945 
1946   // Make sure that the second operand is an i32 with the right value.
1947   if (C.Op1.getValueType() != MVT::i32 ||
1948       Value != ConstOp1->getZExtValue())
1949     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
1950 }
1951 
1952 // Return true if Op is either an unextended load, or a load suitable
1953 // for integer register-memory comparisons of type ICmpType.
1954 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
1955   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
1956   if (Load) {
1957     // There are no instructions to compare a register with a memory byte.
1958     if (Load->getMemoryVT() == MVT::i8)
1959       return false;
1960     // Otherwise decide on extension type.
1961     switch (Load->getExtensionType()) {
1962     case ISD::NON_EXTLOAD:
1963       return true;
1964     case ISD::SEXTLOAD:
1965       return ICmpType != SystemZICMP::UnsignedOnly;
1966     case ISD::ZEXTLOAD:
1967       return ICmpType != SystemZICMP::SignedOnly;
1968     default:
1969       break;
1970     }
1971   }
1972   return false;
1973 }
1974 
1975 // Return true if it is better to swap the operands of C.
1976 static bool shouldSwapCmpOperands(const Comparison &C) {
1977   // Leave f128 comparisons alone, since they have no memory forms.
1978   if (C.Op0.getValueType() == MVT::f128)
1979     return false;
1980 
1981   // Always keep a floating-point constant second, since comparisons with
1982   // zero can use LOAD TEST and comparisons with other constants make a
1983   // natural memory operand.
1984   if (isa<ConstantFPSDNode>(C.Op1))
1985     return false;
1986 
1987   // Never swap comparisons with zero since there are many ways to optimize
1988   // those later.
1989   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
1990   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
1991     return false;
1992 
1993   // Also keep natural memory operands second if the loaded value is
1994   // only used here.  Several comparisons have memory forms.
1995   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
1996     return false;
1997 
1998   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
1999   // In that case we generally prefer the memory to be second.
2000   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2001     // The only exceptions are when the second operand is a constant and
2002     // we can use things like CHHSI.
2003     if (!ConstOp1)
2004       return true;
2005     // The unsigned memory-immediate instructions can handle 16-bit
2006     // unsigned integers.
2007     if (C.ICmpType != SystemZICMP::SignedOnly &&
2008         isUInt<16>(ConstOp1->getZExtValue()))
2009       return false;
2010     // The signed memory-immediate instructions can handle 16-bit
2011     // signed integers.
2012     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2013         isInt<16>(ConstOp1->getSExtValue()))
2014       return false;
2015     return true;
2016   }
2017 
2018   // Try to promote the use of CGFR and CLGFR.
2019   unsigned Opcode0 = C.Op0.getOpcode();
2020   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2021     return true;
2022   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2023     return true;
2024   if (C.ICmpType != SystemZICMP::SignedOnly &&
2025       Opcode0 == ISD::AND &&
2026       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2027       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2028     return true;
2029 
2030   return false;
2031 }
2032 
2033 // Return a version of comparison CC mask CCMask in which the LT and GT
2034 // actions are swapped.
2035 static unsigned reverseCCMask(unsigned CCMask) {
2036   return ((CCMask & SystemZ::CCMASK_CMP_EQ) |
2037           (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) |
2038           (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) |
2039           (CCMask & SystemZ::CCMASK_CMP_UO));
2040 }
2041 
2042 // Check whether C tests for equality between X and Y and whether X - Y
2043 // or Y - X is also computed.  In that case it's better to compare the
2044 // result of the subtraction against zero.
2045 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2046                                  Comparison &C) {
2047   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2048       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2049     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2050       SDNode *N = *I;
2051       if (N->getOpcode() == ISD::SUB &&
2052           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2053            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2054         C.Op0 = SDValue(N, 0);
2055         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2056         return;
2057       }
2058     }
2059   }
2060 }
2061 
2062 // Check whether C compares a floating-point value with zero and if that
2063 // floating-point value is also negated.  In this case we can use the
2064 // negation to set CC, so avoiding separate LOAD AND TEST and
2065 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2066 static void adjustForFNeg(Comparison &C) {
2067   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2068   if (C1 && C1->isZero()) {
2069     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2070       SDNode *N = *I;
2071       if (N->getOpcode() == ISD::FNEG) {
2072         C.Op0 = SDValue(N, 0);
2073         C.CCMask = reverseCCMask(C.CCMask);
2074         return;
2075       }
2076     }
2077   }
2078 }
2079 
2080 // Check whether C compares (shl X, 32) with 0 and whether X is
2081 // also sign-extended.  In that case it is better to test the result
2082 // of the sign extension using LTGFR.
2083 //
2084 // This case is important because InstCombine transforms a comparison
2085 // with (sext (trunc X)) into a comparison with (shl X, 32).
2086 static void adjustForLTGFR(Comparison &C) {
2087   // Check for a comparison between (shl X, 32) and 0.
2088   if (C.Op0.getOpcode() == ISD::SHL &&
2089       C.Op0.getValueType() == MVT::i64 &&
2090       C.Op1.getOpcode() == ISD::Constant &&
2091       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2092     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2093     if (C1 && C1->getZExtValue() == 32) {
2094       SDValue ShlOp0 = C.Op0.getOperand(0);
2095       // See whether X has any SIGN_EXTEND_INREG uses.
2096       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2097         SDNode *N = *I;
2098         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2099             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2100           C.Op0 = SDValue(N, 0);
2101           return;
2102         }
2103       }
2104     }
2105   }
2106 }
2107 
2108 // If C compares the truncation of an extending load, try to compare
2109 // the untruncated value instead.  This exposes more opportunities to
2110 // reuse CC.
2111 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2112                                Comparison &C) {
2113   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2114       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2115       C.Op1.getOpcode() == ISD::Constant &&
2116       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2117     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2118     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2119       unsigned Type = L->getExtensionType();
2120       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2121           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2122         C.Op0 = C.Op0.getOperand(0);
2123         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2124       }
2125     }
2126   }
2127 }
2128 
2129 // Return true if shift operation N has an in-range constant shift value.
2130 // Store it in ShiftVal if so.
2131 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2132   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2133   if (!Shift)
2134     return false;
2135 
2136   uint64_t Amount = Shift->getZExtValue();
2137   if (Amount >= N.getValueSizeInBits())
2138     return false;
2139 
2140   ShiftVal = Amount;
2141   return true;
2142 }
2143 
2144 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2145 // instruction and whether the CC value is descriptive enough to handle
2146 // a comparison of type Opcode between the AND result and CmpVal.
2147 // CCMask says which comparison result is being tested and BitSize is
2148 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2149 // return the corresponding CC mask, otherwise return 0.
2150 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2151                                      uint64_t Mask, uint64_t CmpVal,
2152                                      unsigned ICmpType) {
2153   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2154 
2155   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2156   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2157       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2158     return 0;
2159 
2160   // Work out the masks for the lowest and highest bits.
2161   unsigned HighShift = 63 - countLeadingZeros(Mask);
2162   uint64_t High = uint64_t(1) << HighShift;
2163   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2164 
2165   // Signed ordered comparisons are effectively unsigned if the sign
2166   // bit is dropped.
2167   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2168 
2169   // Check for equality comparisons with 0, or the equivalent.
2170   if (CmpVal == 0) {
2171     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2172       return SystemZ::CCMASK_TM_ALL_0;
2173     if (CCMask == SystemZ::CCMASK_CMP_NE)
2174       return SystemZ::CCMASK_TM_SOME_1;
2175   }
2176   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2177     if (CCMask == SystemZ::CCMASK_CMP_LT)
2178       return SystemZ::CCMASK_TM_ALL_0;
2179     if (CCMask == SystemZ::CCMASK_CMP_GE)
2180       return SystemZ::CCMASK_TM_SOME_1;
2181   }
2182   if (EffectivelyUnsigned && CmpVal < Low) {
2183     if (CCMask == SystemZ::CCMASK_CMP_LE)
2184       return SystemZ::CCMASK_TM_ALL_0;
2185     if (CCMask == SystemZ::CCMASK_CMP_GT)
2186       return SystemZ::CCMASK_TM_SOME_1;
2187   }
2188 
2189   // Check for equality comparisons with the mask, or the equivalent.
2190   if (CmpVal == Mask) {
2191     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2192       return SystemZ::CCMASK_TM_ALL_1;
2193     if (CCMask == SystemZ::CCMASK_CMP_NE)
2194       return SystemZ::CCMASK_TM_SOME_0;
2195   }
2196   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2197     if (CCMask == SystemZ::CCMASK_CMP_GT)
2198       return SystemZ::CCMASK_TM_ALL_1;
2199     if (CCMask == SystemZ::CCMASK_CMP_LE)
2200       return SystemZ::CCMASK_TM_SOME_0;
2201   }
2202   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2203     if (CCMask == SystemZ::CCMASK_CMP_GE)
2204       return SystemZ::CCMASK_TM_ALL_1;
2205     if (CCMask == SystemZ::CCMASK_CMP_LT)
2206       return SystemZ::CCMASK_TM_SOME_0;
2207   }
2208 
2209   // Check for ordered comparisons with the top bit.
2210   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2211     if (CCMask == SystemZ::CCMASK_CMP_LE)
2212       return SystemZ::CCMASK_TM_MSB_0;
2213     if (CCMask == SystemZ::CCMASK_CMP_GT)
2214       return SystemZ::CCMASK_TM_MSB_1;
2215   }
2216   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2217     if (CCMask == SystemZ::CCMASK_CMP_LT)
2218       return SystemZ::CCMASK_TM_MSB_0;
2219     if (CCMask == SystemZ::CCMASK_CMP_GE)
2220       return SystemZ::CCMASK_TM_MSB_1;
2221   }
2222 
2223   // If there are just two bits, we can do equality checks for Low and High
2224   // as well.
2225   if (Mask == Low + High) {
2226     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2227       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2228     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2229       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2230     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2231       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2232     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2233       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2234   }
2235 
2236   // Looks like we've exhausted our options.
2237   return 0;
2238 }
2239 
2240 // See whether C can be implemented as a TEST UNDER MASK instruction.
2241 // Update the arguments with the TM version if so.
2242 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2243                                    Comparison &C) {
2244   // Check that we have a comparison with a constant.
2245   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2246   if (!ConstOp1)
2247     return;
2248   uint64_t CmpVal = ConstOp1->getZExtValue();
2249 
2250   // Check whether the nonconstant input is an AND with a constant mask.
2251   Comparison NewC(C);
2252   uint64_t MaskVal;
2253   ConstantSDNode *Mask = nullptr;
2254   if (C.Op0.getOpcode() == ISD::AND) {
2255     NewC.Op0 = C.Op0.getOperand(0);
2256     NewC.Op1 = C.Op0.getOperand(1);
2257     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2258     if (!Mask)
2259       return;
2260     MaskVal = Mask->getZExtValue();
2261   } else {
2262     // There is no instruction to compare with a 64-bit immediate
2263     // so use TMHH instead if possible.  We need an unsigned ordered
2264     // comparison with an i64 immediate.
2265     if (NewC.Op0.getValueType() != MVT::i64 ||
2266         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2267         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2268         NewC.ICmpType == SystemZICMP::SignedOnly)
2269       return;
2270     // Convert LE and GT comparisons into LT and GE.
2271     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2272         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2273       if (CmpVal == uint64_t(-1))
2274         return;
2275       CmpVal += 1;
2276       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2277     }
2278     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2279     // be masked off without changing the result.
2280     MaskVal = -(CmpVal & -CmpVal);
2281     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2282   }
2283   if (!MaskVal)
2284     return;
2285 
2286   // Check whether the combination of mask, comparison value and comparison
2287   // type are suitable.
2288   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2289   unsigned NewCCMask, ShiftVal;
2290   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2291       NewC.Op0.getOpcode() == ISD::SHL &&
2292       isSimpleShift(NewC.Op0, ShiftVal) &&
2293       (MaskVal >> ShiftVal != 0) &&
2294       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2295       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2296                                         MaskVal >> ShiftVal,
2297                                         CmpVal >> ShiftVal,
2298                                         SystemZICMP::Any))) {
2299     NewC.Op0 = NewC.Op0.getOperand(0);
2300     MaskVal >>= ShiftVal;
2301   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2302              NewC.Op0.getOpcode() == ISD::SRL &&
2303              isSimpleShift(NewC.Op0, ShiftVal) &&
2304              (MaskVal << ShiftVal != 0) &&
2305              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2306              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2307                                                MaskVal << ShiftVal,
2308                                                CmpVal << ShiftVal,
2309                                                SystemZICMP::UnsignedOnly))) {
2310     NewC.Op0 = NewC.Op0.getOperand(0);
2311     MaskVal <<= ShiftVal;
2312   } else {
2313     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2314                                      NewC.ICmpType);
2315     if (!NewCCMask)
2316       return;
2317   }
2318 
2319   // Go ahead and make the change.
2320   C.Opcode = SystemZISD::TM;
2321   C.Op0 = NewC.Op0;
2322   if (Mask && Mask->getZExtValue() == MaskVal)
2323     C.Op1 = SDValue(Mask, 0);
2324   else
2325     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2326   C.CCValid = SystemZ::CCMASK_TM;
2327   C.CCMask = NewCCMask;
2328 }
2329 
2330 // See whether the comparison argument contains a redundant AND
2331 // and remove it if so.  This sometimes happens due to the generic
2332 // BRCOND expansion.
2333 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2334                                   Comparison &C) {
2335   if (C.Op0.getOpcode() != ISD::AND)
2336     return;
2337   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2338   if (!Mask)
2339     return;
2340   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2341   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2342     return;
2343 
2344   C.Op0 = C.Op0.getOperand(0);
2345 }
2346 
2347 // Return a Comparison that tests the condition-code result of intrinsic
2348 // node Call against constant integer CC using comparison code Cond.
2349 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2350 // and CCValid is the set of possible condition-code results.
2351 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2352                                   SDValue Call, unsigned CCValid, uint64_t CC,
2353                                   ISD::CondCode Cond) {
2354   Comparison C(Call, SDValue());
2355   C.Opcode = Opcode;
2356   C.CCValid = CCValid;
2357   if (Cond == ISD::SETEQ)
2358     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2359     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2360   else if (Cond == ISD::SETNE)
2361     // ...and the inverse of that.
2362     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2363   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2364     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2365     // always true for CC>3.
2366     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2367   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2368     // ...and the inverse of that.
2369     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2370   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2371     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2372     // always true for CC>3.
2373     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2374   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2375     // ...and the inverse of that.
2376     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2377   else
2378     llvm_unreachable("Unexpected integer comparison type");
2379   C.CCMask &= CCValid;
2380   return C;
2381 }
2382 
2383 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2384 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2385                          ISD::CondCode Cond, const SDLoc &DL) {
2386   if (CmpOp1.getOpcode() == ISD::Constant) {
2387     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2388     unsigned Opcode, CCValid;
2389     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2390         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2391         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2392       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2393     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2394         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2395         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2396       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2397   }
2398   Comparison C(CmpOp0, CmpOp1);
2399   C.CCMask = CCMaskForCondCode(Cond);
2400   if (C.Op0.getValueType().isFloatingPoint()) {
2401     C.CCValid = SystemZ::CCMASK_FCMP;
2402     C.Opcode = SystemZISD::FCMP;
2403     adjustForFNeg(C);
2404   } else {
2405     C.CCValid = SystemZ::CCMASK_ICMP;
2406     C.Opcode = SystemZISD::ICMP;
2407     // Choose the type of comparison.  Equality and inequality tests can
2408     // use either signed or unsigned comparisons.  The choice also doesn't
2409     // matter if both sign bits are known to be clear.  In those cases we
2410     // want to give the main isel code the freedom to choose whichever
2411     // form fits best.
2412     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2413         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2414         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2415       C.ICmpType = SystemZICMP::Any;
2416     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2417       C.ICmpType = SystemZICMP::UnsignedOnly;
2418     else
2419       C.ICmpType = SystemZICMP::SignedOnly;
2420     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2421     adjustForRedundantAnd(DAG, DL, C);
2422     adjustZeroCmp(DAG, DL, C);
2423     adjustSubwordCmp(DAG, DL, C);
2424     adjustForSubtraction(DAG, DL, C);
2425     adjustForLTGFR(C);
2426     adjustICmpTruncate(DAG, DL, C);
2427   }
2428 
2429   if (shouldSwapCmpOperands(C)) {
2430     std::swap(C.Op0, C.Op1);
2431     C.CCMask = reverseCCMask(C.CCMask);
2432   }
2433 
2434   adjustForTestUnderMask(DAG, DL, C);
2435   return C;
2436 }
2437 
2438 // Emit the comparison instruction described by C.
2439 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2440   if (!C.Op1.getNode()) {
2441     SDNode *Node;
2442     switch (C.Op0.getOpcode()) {
2443     case ISD::INTRINSIC_W_CHAIN:
2444       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2445       return SDValue(Node, 0);
2446     case ISD::INTRINSIC_WO_CHAIN:
2447       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2448       return SDValue(Node, Node->getNumValues() - 1);
2449     default:
2450       llvm_unreachable("Invalid comparison operands");
2451     }
2452   }
2453   if (C.Opcode == SystemZISD::ICMP)
2454     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2455                        DAG.getConstant(C.ICmpType, DL, MVT::i32));
2456   if (C.Opcode == SystemZISD::TM) {
2457     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2458                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2459     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2460                        DAG.getConstant(RegisterOnly, DL, MVT::i32));
2461   }
2462   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2463 }
2464 
2465 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2466 // 64 bits.  Extend is the extension type to use.  Store the high part
2467 // in Hi and the low part in Lo.
2468 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2469                             SDValue Op0, SDValue Op1, SDValue &Hi,
2470                             SDValue &Lo) {
2471   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2472   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2473   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2474   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2475                    DAG.getConstant(32, DL, MVT::i64));
2476   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2477   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2478 }
2479 
2480 // Lower a binary operation that produces two VT results, one in each
2481 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2482 // and Opcode performs the GR128 operation.  Store the even register result
2483 // in Even and the odd register result in Odd.
2484 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2485                              unsigned Opcode, SDValue Op0, SDValue Op1,
2486                              SDValue &Even, SDValue &Odd) {
2487   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2488   bool Is32Bit = is32Bit(VT);
2489   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2490   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2491 }
2492 
2493 // Return an i32 value that is 1 if the CC value produced by CCReg is
2494 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2495 // in CCValid, so other values can be ignored.
2496 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2497                          unsigned CCValid, unsigned CCMask) {
2498   SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32),
2499                     DAG.getConstant(0, DL, MVT::i32),
2500                     DAG.getConstant(CCValid, DL, MVT::i32),
2501                     DAG.getConstant(CCMask, DL, MVT::i32), CCReg };
2502   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2503 }
2504 
2505 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2506 // be done directly.  IsFP is true if CC is for a floating-point rather than
2507 // integer comparison.
2508 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) {
2509   switch (CC) {
2510   case ISD::SETOEQ:
2511   case ISD::SETEQ:
2512     return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE;
2513 
2514   case ISD::SETOGE:
2515   case ISD::SETGE:
2516     return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0);
2517 
2518   case ISD::SETOGT:
2519   case ISD::SETGT:
2520     return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH;
2521 
2522   case ISD::SETUGT:
2523     return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL;
2524 
2525   default:
2526     return 0;
2527   }
2528 }
2529 
2530 // Return the SystemZISD vector comparison operation for CC or its inverse,
2531 // or 0 if neither can be done directly.  Indicate in Invert whether the
2532 // result is for the inverse of CC.  IsFP is true if CC is for a
2533 // floating-point rather than integer comparison.
2534 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP,
2535                                             bool &Invert) {
2536   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2537     Invert = false;
2538     return Opcode;
2539   }
2540 
2541   CC = ISD::getSetCCInverse(CC, !IsFP);
2542   if (unsigned Opcode = getVectorComparison(CC, IsFP)) {
2543     Invert = true;
2544     return Opcode;
2545   }
2546 
2547   return 0;
2548 }
2549 
2550 // Return a v2f64 that contains the extended form of elements Start and Start+1
2551 // of v4f32 value Op.
2552 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2553                                   SDValue Op) {
2554   int Mask[] = { Start, -1, Start + 1, -1 };
2555   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2556   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2557 }
2558 
2559 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2560 // producing a result of type VT.
2561 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2562                                             const SDLoc &DL, EVT VT,
2563                                             SDValue CmpOp0,
2564                                             SDValue CmpOp1) const {
2565   // There is no hardware support for v4f32 (unless we have the vector
2566   // enhancements facility 1), so extend the vector into two v2f64s
2567   // and compare those.
2568   if (CmpOp0.getValueType() == MVT::v4f32 &&
2569       !Subtarget.hasVectorEnhancements1()) {
2570     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0);
2571     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0);
2572     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1);
2573     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1);
2574     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2575     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2576     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2577   }
2578   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2579 }
2580 
2581 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2582 // an integer mask of type VT.
2583 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2584                                                 const SDLoc &DL, EVT VT,
2585                                                 ISD::CondCode CC,
2586                                                 SDValue CmpOp0,
2587                                                 SDValue CmpOp1) const {
2588   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2589   bool Invert = false;
2590   SDValue Cmp;
2591   switch (CC) {
2592     // Handle tests for order using (or (ogt y x) (oge x y)).
2593   case ISD::SETUO:
2594     Invert = true;
2595     LLVM_FALLTHROUGH;
2596   case ISD::SETO: {
2597     assert(IsFP && "Unexpected integer comparison");
2598     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2599     SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1);
2600     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2601     break;
2602   }
2603 
2604     // Handle <> tests using (or (ogt y x) (ogt x y)).
2605   case ISD::SETUEQ:
2606     Invert = true;
2607     LLVM_FALLTHROUGH;
2608   case ISD::SETONE: {
2609     assert(IsFP && "Unexpected integer comparison");
2610     SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0);
2611     SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1);
2612     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2613     break;
2614   }
2615 
2616     // Otherwise a single comparison is enough.  It doesn't really
2617     // matter whether we try the inversion or the swap first, since
2618     // there are no cases where both work.
2619   default:
2620     if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2621       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1);
2622     else {
2623       CC = ISD::getSetCCSwappedOperands(CC);
2624       if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert))
2625         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0);
2626       else
2627         llvm_unreachable("Unhandled comparison");
2628     }
2629     break;
2630   }
2631   if (Invert) {
2632     SDValue Mask =
2633       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2634     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2635   }
2636   return Cmp;
2637 }
2638 
2639 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2640                                           SelectionDAG &DAG) const {
2641   SDValue CmpOp0   = Op.getOperand(0);
2642   SDValue CmpOp1   = Op.getOperand(1);
2643   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2644   SDLoc DL(Op);
2645   EVT VT = Op.getValueType();
2646   if (VT.isVector())
2647     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2648 
2649   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2650   SDValue CCReg = emitCmp(DAG, DL, C);
2651   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2652 }
2653 
2654 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2655   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2656   SDValue CmpOp0   = Op.getOperand(2);
2657   SDValue CmpOp1   = Op.getOperand(3);
2658   SDValue Dest     = Op.getOperand(4);
2659   SDLoc DL(Op);
2660 
2661   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2662   SDValue CCReg = emitCmp(DAG, DL, C);
2663   return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(),
2664                      Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32),
2665                      DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2666 }
2667 
2668 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2669 // allowing Pos and Neg to be wider than CmpOp.
2670 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2671   return (Neg.getOpcode() == ISD::SUB &&
2672           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2673           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2674           Neg.getOperand(1) == Pos &&
2675           (Pos == CmpOp ||
2676            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2677             Pos.getOperand(0) == CmpOp)));
2678 }
2679 
2680 // Return the absolute or negative absolute of Op; IsNegative decides which.
2681 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2682                            bool IsNegative) {
2683   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2684   if (IsNegative)
2685     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2686                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2687   return Op;
2688 }
2689 
2690 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2691                                               SelectionDAG &DAG) const {
2692   SDValue CmpOp0   = Op.getOperand(0);
2693   SDValue CmpOp1   = Op.getOperand(1);
2694   SDValue TrueOp   = Op.getOperand(2);
2695   SDValue FalseOp  = Op.getOperand(3);
2696   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2697   SDLoc DL(Op);
2698 
2699   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2700 
2701   // Check for absolute and negative-absolute selections, including those
2702   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2703   // This check supplements the one in DAGCombiner.
2704   if (C.Opcode == SystemZISD::ICMP &&
2705       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2706       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2707       C.Op1.getOpcode() == ISD::Constant &&
2708       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2709     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2710       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2711     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2712       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2713   }
2714 
2715   SDValue CCReg = emitCmp(DAG, DL, C);
2716   SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32),
2717                    DAG.getConstant(C.CCMask, DL, MVT::i32), CCReg};
2718 
2719   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2720 }
2721 
2722 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
2723                                                   SelectionDAG &DAG) const {
2724   SDLoc DL(Node);
2725   const GlobalValue *GV = Node->getGlobal();
2726   int64_t Offset = Node->getOffset();
2727   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2728   CodeModel::Model CM = DAG.getTarget().getCodeModel();
2729 
2730   SDValue Result;
2731   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
2732     // Assign anchors at 1<<12 byte boundaries.
2733     uint64_t Anchor = Offset & ~uint64_t(0xfff);
2734     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
2735     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2736 
2737     // The offset can be folded into the address if it is aligned to a halfword.
2738     Offset -= Anchor;
2739     if (Offset != 0 && (Offset & 1) == 0) {
2740       SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
2741       Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
2742       Offset = 0;
2743     }
2744   } else {
2745     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
2746     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2747     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
2748                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2749   }
2750 
2751   // If there was a non-zero offset that we didn't fold, create an explicit
2752   // addition for it.
2753   if (Offset != 0)
2754     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
2755                          DAG.getConstant(Offset, DL, PtrVT));
2756 
2757   return Result;
2758 }
2759 
2760 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
2761                                                  SelectionDAG &DAG,
2762                                                  unsigned Opcode,
2763                                                  SDValue GOTOffset) const {
2764   SDLoc DL(Node);
2765   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2766   SDValue Chain = DAG.getEntryNode();
2767   SDValue Glue;
2768 
2769   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
2770   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
2771   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
2772   Glue = Chain.getValue(1);
2773   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
2774   Glue = Chain.getValue(1);
2775 
2776   // The first call operand is the chain and the second is the TLS symbol.
2777   SmallVector<SDValue, 8> Ops;
2778   Ops.push_back(Chain);
2779   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
2780                                            Node->getValueType(0),
2781                                            0, 0));
2782 
2783   // Add argument registers to the end of the list so that they are
2784   // known live into the call.
2785   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
2786   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
2787 
2788   // Add a register mask operand representing the call-preserved registers.
2789   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
2790   const uint32_t *Mask =
2791       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
2792   assert(Mask && "Missing call preserved mask for calling convention");
2793   Ops.push_back(DAG.getRegisterMask(Mask));
2794 
2795   // Glue the call to the argument copies.
2796   Ops.push_back(Glue);
2797 
2798   // Emit the call.
2799   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2800   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
2801   Glue = Chain.getValue(1);
2802 
2803   // Copy the return value from %r2.
2804   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
2805 }
2806 
2807 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
2808                                                   SelectionDAG &DAG) const {
2809   SDValue Chain = DAG.getEntryNode();
2810   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2811 
2812   // The high part of the thread pointer is in access register 0.
2813   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
2814   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
2815 
2816   // The low part of the thread pointer is in access register 1.
2817   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
2818   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
2819 
2820   // Merge them into a single 64-bit address.
2821   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
2822                                     DAG.getConstant(32, DL, PtrVT));
2823   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
2824 }
2825 
2826 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
2827                                                      SelectionDAG &DAG) const {
2828   if (DAG.getTarget().useEmulatedTLS())
2829     return LowerToTLSEmulatedModel(Node, DAG);
2830   SDLoc DL(Node);
2831   const GlobalValue *GV = Node->getGlobal();
2832   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2833   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
2834 
2835   SDValue TP = lowerThreadPointer(DL, DAG);
2836 
2837   // Get the offset of GA from the thread pointer, based on the TLS model.
2838   SDValue Offset;
2839   switch (model) {
2840     case TLSModel::GeneralDynamic: {
2841       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
2842       SystemZConstantPoolValue *CPV =
2843         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
2844 
2845       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2846       Offset = DAG.getLoad(
2847           PtrVT, DL, DAG.getEntryNode(), Offset,
2848           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2849 
2850       // Call __tls_get_offset to retrieve the offset.
2851       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
2852       break;
2853     }
2854 
2855     case TLSModel::LocalDynamic: {
2856       // Load the GOT offset of the module ID.
2857       SystemZConstantPoolValue *CPV =
2858         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
2859 
2860       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2861       Offset = DAG.getLoad(
2862           PtrVT, DL, DAG.getEntryNode(), Offset,
2863           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2864 
2865       // Call __tls_get_offset to retrieve the module base offset.
2866       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
2867 
2868       // Note: The SystemZLDCleanupPass will remove redundant computations
2869       // of the module base offset.  Count total number of local-dynamic
2870       // accesses to trigger execution of that pass.
2871       SystemZMachineFunctionInfo* MFI =
2872         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
2873       MFI->incNumLocalDynamicTLSAccesses();
2874 
2875       // Add the per-symbol offset.
2876       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
2877 
2878       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8);
2879       DTPOffset = DAG.getLoad(
2880           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
2881           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2882 
2883       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
2884       break;
2885     }
2886 
2887     case TLSModel::InitialExec: {
2888       // Load the offset from the GOT.
2889       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
2890                                           SystemZII::MO_INDNTPOFF);
2891       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
2892       Offset =
2893           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
2894                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2895       break;
2896     }
2897 
2898     case TLSModel::LocalExec: {
2899       // Force the offset into the constant pool and load it from there.
2900       SystemZConstantPoolValue *CPV =
2901         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
2902 
2903       Offset = DAG.getConstantPool(CPV, PtrVT, 8);
2904       Offset = DAG.getLoad(
2905           PtrVT, DL, DAG.getEntryNode(), Offset,
2906           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2907       break;
2908     }
2909   }
2910 
2911   // Add the base and offset together.
2912   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
2913 }
2914 
2915 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
2916                                                  SelectionDAG &DAG) const {
2917   SDLoc DL(Node);
2918   const BlockAddress *BA = Node->getBlockAddress();
2919   int64_t Offset = Node->getOffset();
2920   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2921 
2922   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
2923   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2924   return Result;
2925 }
2926 
2927 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
2928                                               SelectionDAG &DAG) const {
2929   SDLoc DL(JT);
2930   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2931   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2932 
2933   // Use LARL to load the address of the table.
2934   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2935 }
2936 
2937 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
2938                                                  SelectionDAG &DAG) const {
2939   SDLoc DL(CP);
2940   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2941 
2942   SDValue Result;
2943   if (CP->isMachineConstantPoolEntry())
2944     Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
2945                                        CP->getAlignment());
2946   else
2947     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
2948                                        CP->getAlignment(), CP->getOffset());
2949 
2950   // Use LARL to load the address of the constant pool entry.
2951   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
2952 }
2953 
2954 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
2955                                               SelectionDAG &DAG) const {
2956   MachineFunction &MF = DAG.getMachineFunction();
2957   MachineFrameInfo &MFI = MF.getFrameInfo();
2958   MFI.setFrameAddressIsTaken(true);
2959 
2960   SDLoc DL(Op);
2961   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2962   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2963 
2964   // If the back chain frame index has not been allocated yet, do so.
2965   SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>();
2966   int BackChainIdx = FI->getFramePointerSaveIndex();
2967   if (!BackChainIdx) {
2968     // By definition, the frame address is the address of the back chain.
2969     BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false);
2970     FI->setFramePointerSaveIndex(BackChainIdx);
2971   }
2972   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
2973 
2974   // FIXME The frontend should detect this case.
2975   if (Depth > 0) {
2976     report_fatal_error("Unsupported stack frame traversal count");
2977   }
2978 
2979   return BackChain;
2980 }
2981 
2982 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
2983                                                SelectionDAG &DAG) const {
2984   MachineFunction &MF = DAG.getMachineFunction();
2985   MachineFrameInfo &MFI = MF.getFrameInfo();
2986   MFI.setReturnAddressIsTaken(true);
2987 
2988   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
2989     return SDValue();
2990 
2991   SDLoc DL(Op);
2992   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2993   EVT PtrVT = getPointerTy(DAG.getDataLayout());
2994 
2995   // FIXME The frontend should detect this case.
2996   if (Depth > 0) {
2997     report_fatal_error("Unsupported stack frame traversal count");
2998   }
2999 
3000   // Return R14D, which has the return address. Mark it an implicit live-in.
3001   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3002   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3003 }
3004 
3005 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3006                                             SelectionDAG &DAG) const {
3007   SDLoc DL(Op);
3008   SDValue In = Op.getOperand(0);
3009   EVT InVT = In.getValueType();
3010   EVT ResVT = Op.getValueType();
3011 
3012   // Convert loads directly.  This is normally done by DAGCombiner,
3013   // but we need this case for bitcasts that are created during lowering
3014   // and which are then lowered themselves.
3015   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3016     if (ISD::isNormalLoad(LoadN)) {
3017       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3018                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3019       // Update the chain uses.
3020       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3021       return NewLoad;
3022     }
3023 
3024   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3025     SDValue In64;
3026     if (Subtarget.hasHighWord()) {
3027       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3028                                        MVT::i64);
3029       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3030                                        MVT::i64, SDValue(U64, 0), In);
3031     } else {
3032       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3033       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3034                          DAG.getConstant(32, DL, MVT::i64));
3035     }
3036     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3037     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3038                                       DL, MVT::f32, Out64);
3039   }
3040   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3041     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3042     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3043                                              MVT::f64, SDValue(U64, 0), In);
3044     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3045     if (Subtarget.hasHighWord())
3046       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3047                                         MVT::i32, Out64);
3048     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3049                                 DAG.getConstant(32, DL, MVT::i64));
3050     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3051   }
3052   llvm_unreachable("Unexpected bitcast combination");
3053 }
3054 
3055 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3056                                             SelectionDAG &DAG) const {
3057   MachineFunction &MF = DAG.getMachineFunction();
3058   SystemZMachineFunctionInfo *FuncInfo =
3059     MF.getInfo<SystemZMachineFunctionInfo>();
3060   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3061 
3062   SDValue Chain   = Op.getOperand(0);
3063   SDValue Addr    = Op.getOperand(1);
3064   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3065   SDLoc DL(Op);
3066 
3067   // The initial values of each field.
3068   const unsigned NumFields = 4;
3069   SDValue Fields[NumFields] = {
3070     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3071     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3072     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3073     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3074   };
3075 
3076   // Store each field into its respective slot.
3077   SDValue MemOps[NumFields];
3078   unsigned Offset = 0;
3079   for (unsigned I = 0; I < NumFields; ++I) {
3080     SDValue FieldAddr = Addr;
3081     if (Offset != 0)
3082       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3083                               DAG.getIntPtrConstant(Offset, DL));
3084     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3085                              MachinePointerInfo(SV, Offset));
3086     Offset += 8;
3087   }
3088   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3089 }
3090 
3091 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3092                                            SelectionDAG &DAG) const {
3093   SDValue Chain      = Op.getOperand(0);
3094   SDValue DstPtr     = Op.getOperand(1);
3095   SDValue SrcPtr     = Op.getOperand(2);
3096   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3097   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3098   SDLoc DL(Op);
3099 
3100   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3101                        /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false,
3102                        /*isTailCall*/false,
3103                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
3104 }
3105 
3106 SDValue SystemZTargetLowering::
3107 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3108   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3109   MachineFunction &MF = DAG.getMachineFunction();
3110   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3111   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3112 
3113   SDValue Chain = Op.getOperand(0);
3114   SDValue Size  = Op.getOperand(1);
3115   SDValue Align = Op.getOperand(2);
3116   SDLoc DL(Op);
3117 
3118   // If user has set the no alignment function attribute, ignore
3119   // alloca alignments.
3120   uint64_t AlignVal = (RealignOpt ?
3121                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3122 
3123   uint64_t StackAlign = TFI->getStackAlignment();
3124   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3125   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3126 
3127   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3128   SDValue NeededSpace = Size;
3129 
3130   // Get a reference to the stack pointer.
3131   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3132 
3133   // If we need a backchain, save it now.
3134   SDValue Backchain;
3135   if (StoreBackchain)
3136     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3137 
3138   // Add extra space for alignment if needed.
3139   if (ExtraAlignSpace)
3140     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3141                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3142 
3143   // Get the new stack pointer value.
3144   SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3145 
3146   // Copy the new stack pointer back.
3147   Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3148 
3149   // The allocated data lives above the 160 bytes allocated for the standard
3150   // frame, plus any outgoing stack arguments.  We don't know how much that
3151   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3152   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3153   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3154 
3155   // Dynamically realign if needed.
3156   if (RequiredAlign > StackAlign) {
3157     Result =
3158       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3159                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3160     Result =
3161       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3162                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3163   }
3164 
3165   if (StoreBackchain)
3166     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3167 
3168   SDValue Ops[2] = { Result, Chain };
3169   return DAG.getMergeValues(Ops, DL);
3170 }
3171 
3172 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3173     SDValue Op, SelectionDAG &DAG) const {
3174   SDLoc DL(Op);
3175 
3176   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3177 }
3178 
3179 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3180                                               SelectionDAG &DAG) const {
3181   EVT VT = Op.getValueType();
3182   SDLoc DL(Op);
3183   SDValue Ops[2];
3184   if (is32Bit(VT))
3185     // Just do a normal 64-bit multiplication and extract the results.
3186     // We define this so that it can be used for constant division.
3187     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3188                     Op.getOperand(1), Ops[1], Ops[0]);
3189   else if (Subtarget.hasMiscellaneousExtensions2())
3190     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3191     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3192     // return the low half first, so the results are in reverse order.
3193     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3194                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3195   else {
3196     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3197     //
3198     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3199     //
3200     // but using the fact that the upper halves are either all zeros
3201     // or all ones:
3202     //
3203     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3204     //
3205     // and grouping the right terms together since they are quicker than the
3206     // multiplication:
3207     //
3208     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3209     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3210     SDValue LL = Op.getOperand(0);
3211     SDValue RL = Op.getOperand(1);
3212     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3213     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3214     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3215     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3216     // return the low half first, so the results are in reverse order.
3217     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3218                      LL, RL, Ops[1], Ops[0]);
3219     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3220     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3221     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3222     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3223   }
3224   return DAG.getMergeValues(Ops, DL);
3225 }
3226 
3227 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3228                                               SelectionDAG &DAG) const {
3229   EVT VT = Op.getValueType();
3230   SDLoc DL(Op);
3231   SDValue Ops[2];
3232   if (is32Bit(VT))
3233     // Just do a normal 64-bit multiplication and extract the results.
3234     // We define this so that it can be used for constant division.
3235     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3236                     Op.getOperand(1), Ops[1], Ops[0]);
3237   else
3238     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3239     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3240     // return the low half first, so the results are in reverse order.
3241     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3242                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3243   return DAG.getMergeValues(Ops, DL);
3244 }
3245 
3246 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3247                                             SelectionDAG &DAG) const {
3248   SDValue Op0 = Op.getOperand(0);
3249   SDValue Op1 = Op.getOperand(1);
3250   EVT VT = Op.getValueType();
3251   SDLoc DL(Op);
3252 
3253   // We use DSGF for 32-bit division.  This means the first operand must
3254   // always be 64-bit, and the second operand should be 32-bit whenever
3255   // that is possible, to improve performance.
3256   if (is32Bit(VT))
3257     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3258   else if (DAG.ComputeNumSignBits(Op1) > 32)
3259     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3260 
3261   // DSG(F) returns the remainder in the even register and the
3262   // quotient in the odd register.
3263   SDValue Ops[2];
3264   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3265   return DAG.getMergeValues(Ops, DL);
3266 }
3267 
3268 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3269                                             SelectionDAG &DAG) const {
3270   EVT VT = Op.getValueType();
3271   SDLoc DL(Op);
3272 
3273   // DL(G) returns the remainder in the even register and the
3274   // quotient in the odd register.
3275   SDValue Ops[2];
3276   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3277                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3278   return DAG.getMergeValues(Ops, DL);
3279 }
3280 
3281 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3282   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3283 
3284   // Get the known-zero masks for each operand.
3285   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3286   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3287                         DAG.computeKnownBits(Ops[1])};
3288 
3289   // See if the upper 32 bits of one operand and the lower 32 bits of the
3290   // other are known zero.  They are the low and high operands respectively.
3291   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3292                        Known[1].Zero.getZExtValue() };
3293   unsigned High, Low;
3294   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3295     High = 1, Low = 0;
3296   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3297     High = 0, Low = 1;
3298   else
3299     return Op;
3300 
3301   SDValue LowOp = Ops[Low];
3302   SDValue HighOp = Ops[High];
3303 
3304   // If the high part is a constant, we're better off using IILH.
3305   if (HighOp.getOpcode() == ISD::Constant)
3306     return Op;
3307 
3308   // If the low part is a constant that is outside the range of LHI,
3309   // then we're better off using IILF.
3310   if (LowOp.getOpcode() == ISD::Constant) {
3311     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3312     if (!isInt<16>(Value))
3313       return Op;
3314   }
3315 
3316   // Check whether the high part is an AND that doesn't change the
3317   // high 32 bits and just masks out low bits.  We can skip it if so.
3318   if (HighOp.getOpcode() == ISD::AND &&
3319       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3320     SDValue HighOp0 = HighOp.getOperand(0);
3321     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3322     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3323       HighOp = HighOp0;
3324   }
3325 
3326   // Take advantage of the fact that all GR32 operations only change the
3327   // low 32 bits by truncating Low to an i32 and inserting it directly
3328   // using a subreg.  The interesting cases are those where the truncation
3329   // can be folded.
3330   SDLoc DL(Op);
3331   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3332   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3333                                    MVT::i64, HighOp, Low32);
3334 }
3335 
3336 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3337 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3338                                           SelectionDAG &DAG) const {
3339   SDNode *N = Op.getNode();
3340   SDValue LHS = N->getOperand(0);
3341   SDValue RHS = N->getOperand(1);
3342   SDLoc DL(N);
3343   unsigned BaseOp = 0;
3344   unsigned CCValid = 0;
3345   unsigned CCMask = 0;
3346 
3347   switch (Op.getOpcode()) {
3348   default: llvm_unreachable("Unknown instruction!");
3349   case ISD::SADDO:
3350     BaseOp = SystemZISD::SADDO;
3351     CCValid = SystemZ::CCMASK_ARITH;
3352     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3353     break;
3354   case ISD::SSUBO:
3355     BaseOp = SystemZISD::SSUBO;
3356     CCValid = SystemZ::CCMASK_ARITH;
3357     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3358     break;
3359   case ISD::UADDO:
3360     BaseOp = SystemZISD::UADDO;
3361     CCValid = SystemZ::CCMASK_LOGICAL;
3362     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3363     break;
3364   case ISD::USUBO:
3365     BaseOp = SystemZISD::USUBO;
3366     CCValid = SystemZ::CCMASK_LOGICAL;
3367     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3368     break;
3369   }
3370 
3371   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3372   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3373 
3374   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3375   if (N->getValueType(1) == MVT::i1)
3376     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3377 
3378   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3379 }
3380 
3381 // Lower ADDCARRY/SUBCARRY nodes.
3382 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3383                                                 SelectionDAG &DAG) const {
3384 
3385   SDNode *N = Op.getNode();
3386   MVT VT = N->getSimpleValueType(0);
3387 
3388   // Let legalize expand this if it isn't a legal type yet.
3389   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3390     return SDValue();
3391 
3392   SDValue LHS = N->getOperand(0);
3393   SDValue RHS = N->getOperand(1);
3394   SDValue Carry = Op.getOperand(2);
3395   SDLoc DL(N);
3396   unsigned BaseOp = 0;
3397   unsigned CCValid = 0;
3398   unsigned CCMask = 0;
3399 
3400   switch (Op.getOpcode()) {
3401   default: llvm_unreachable("Unknown instruction!");
3402   case ISD::ADDCARRY:
3403     BaseOp = SystemZISD::ADDCARRY;
3404     CCValid = SystemZ::CCMASK_LOGICAL;
3405     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3406     break;
3407   case ISD::SUBCARRY:
3408     BaseOp = SystemZISD::SUBCARRY;
3409     CCValid = SystemZ::CCMASK_LOGICAL;
3410     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3411     break;
3412   }
3413 
3414   // Set the condition code from the carry flag.
3415   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3416                       DAG.getConstant(CCValid, DL, MVT::i32),
3417                       DAG.getConstant(CCMask, DL, MVT::i32));
3418 
3419   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3420   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3421 
3422   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3423   if (N->getValueType(1) == MVT::i1)
3424     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3425 
3426   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3427 }
3428 
3429 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3430                                           SelectionDAG &DAG) const {
3431   EVT VT = Op.getValueType();
3432   SDLoc DL(Op);
3433   Op = Op.getOperand(0);
3434 
3435   // Handle vector types via VPOPCT.
3436   if (VT.isVector()) {
3437     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3438     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3439     switch (VT.getScalarSizeInBits()) {
3440     case 8:
3441       break;
3442     case 16: {
3443       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3444       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3445       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3446       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3447       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3448       break;
3449     }
3450     case 32: {
3451       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3452                                             DAG.getConstant(0, DL, MVT::i32));
3453       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3454       break;
3455     }
3456     case 64: {
3457       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3458                                             DAG.getConstant(0, DL, MVT::i32));
3459       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3460       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3461       break;
3462     }
3463     default:
3464       llvm_unreachable("Unexpected type");
3465     }
3466     return Op;
3467   }
3468 
3469   // Get the known-zero mask for the operand.
3470   KnownBits Known = DAG.computeKnownBits(Op);
3471   unsigned NumSignificantBits = (~Known.Zero).getActiveBits();
3472   if (NumSignificantBits == 0)
3473     return DAG.getConstant(0, DL, VT);
3474 
3475   // Skip known-zero high parts of the operand.
3476   int64_t OrigBitSize = VT.getSizeInBits();
3477   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3478   BitSize = std::min(BitSize, OrigBitSize);
3479 
3480   // The POPCNT instruction counts the number of bits in each byte.
3481   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3482   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3483   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3484 
3485   // Add up per-byte counts in a binary tree.  All bits of Op at
3486   // position larger than BitSize remain zero throughout.
3487   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3488     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3489     if (BitSize != OrigBitSize)
3490       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3491                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3492     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3493   }
3494 
3495   // Extract overall result from high byte.
3496   if (BitSize > 8)
3497     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3498                      DAG.getConstant(BitSize - 8, DL, VT));
3499 
3500   return Op;
3501 }
3502 
3503 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3504                                                  SelectionDAG &DAG) const {
3505   SDLoc DL(Op);
3506   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3507     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3508   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3509     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3510 
3511   // The only fence that needs an instruction is a sequentially-consistent
3512   // cross-thread fence.
3513   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3514       FenceSSID == SyncScope::System) {
3515     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3516                                       Op.getOperand(0)),
3517                    0);
3518   }
3519 
3520   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3521   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3522 }
3523 
3524 // Op is an atomic load.  Lower it into a normal volatile load.
3525 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3526                                                 SelectionDAG &DAG) const {
3527   auto *Node = cast<AtomicSDNode>(Op.getNode());
3528   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3529                         Node->getChain(), Node->getBasePtr(),
3530                         Node->getMemoryVT(), Node->getMemOperand());
3531 }
3532 
3533 // Op is an atomic store.  Lower it into a normal volatile store.
3534 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3535                                                  SelectionDAG &DAG) const {
3536   auto *Node = cast<AtomicSDNode>(Op.getNode());
3537   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3538                                     Node->getBasePtr(), Node->getMemoryVT(),
3539                                     Node->getMemOperand());
3540   // We have to enforce sequential consistency by performing a
3541   // serialization operation after the store.
3542   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3543     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3544                                        MVT::Other, Chain), 0);
3545   return Chain;
3546 }
3547 
3548 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3549 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3550 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3551                                                    SelectionDAG &DAG,
3552                                                    unsigned Opcode) const {
3553   auto *Node = cast<AtomicSDNode>(Op.getNode());
3554 
3555   // 32-bit operations need no code outside the main loop.
3556   EVT NarrowVT = Node->getMemoryVT();
3557   EVT WideVT = MVT::i32;
3558   if (NarrowVT == WideVT)
3559     return Op;
3560 
3561   int64_t BitSize = NarrowVT.getSizeInBits();
3562   SDValue ChainIn = Node->getChain();
3563   SDValue Addr = Node->getBasePtr();
3564   SDValue Src2 = Node->getVal();
3565   MachineMemOperand *MMO = Node->getMemOperand();
3566   SDLoc DL(Node);
3567   EVT PtrVT = Addr.getValueType();
3568 
3569   // Convert atomic subtracts of constants into additions.
3570   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3571     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3572       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3573       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3574     }
3575 
3576   // Get the address of the containing word.
3577   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3578                                     DAG.getConstant(-4, DL, PtrVT));
3579 
3580   // Get the number of bits that the word must be rotated left in order
3581   // to bring the field to the top bits of a GR32.
3582   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3583                                  DAG.getConstant(3, DL, PtrVT));
3584   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3585 
3586   // Get the complementing shift amount, for rotating a field in the top
3587   // bits back to its proper position.
3588   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3589                                     DAG.getConstant(0, DL, WideVT), BitShift);
3590 
3591   // Extend the source operand to 32 bits and prepare it for the inner loop.
3592   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3593   // operations require the source to be shifted in advance.  (This shift
3594   // can be folded if the source is constant.)  For AND and NAND, the lower
3595   // bits must be set, while for other opcodes they should be left clear.
3596   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3597     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3598                        DAG.getConstant(32 - BitSize, DL, WideVT));
3599   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3600       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3601     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3602                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3603 
3604   // Construct the ATOMIC_LOADW_* node.
3605   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3606   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3607                     DAG.getConstant(BitSize, DL, WideVT) };
3608   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3609                                              NarrowVT, MMO);
3610 
3611   // Rotate the result of the final CS so that the field is in the lower
3612   // bits of a GR32, then truncate it.
3613   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3614                                     DAG.getConstant(BitSize, DL, WideVT));
3615   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3616 
3617   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3618   return DAG.getMergeValues(RetOps, DL);
3619 }
3620 
3621 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3622 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3623 // operations into additions.
3624 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3625                                                     SelectionDAG &DAG) const {
3626   auto *Node = cast<AtomicSDNode>(Op.getNode());
3627   EVT MemVT = Node->getMemoryVT();
3628   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3629     // A full-width operation.
3630     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3631     SDValue Src2 = Node->getVal();
3632     SDValue NegSrc2;
3633     SDLoc DL(Src2);
3634 
3635     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3636       // Use an addition if the operand is constant and either LAA(G) is
3637       // available or the negative value is in the range of A(G)FHI.
3638       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3639       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3640         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3641     } else if (Subtarget.hasInterlockedAccess1())
3642       // Use LAA(G) if available.
3643       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3644                             Src2);
3645 
3646     if (NegSrc2.getNode())
3647       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3648                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3649                            Node->getMemOperand());
3650 
3651     // Use the node as-is.
3652     return Op;
3653   }
3654 
3655   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3656 }
3657 
3658 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3659 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3660                                                     SelectionDAG &DAG) const {
3661   auto *Node = cast<AtomicSDNode>(Op.getNode());
3662   SDValue ChainIn = Node->getOperand(0);
3663   SDValue Addr = Node->getOperand(1);
3664   SDValue CmpVal = Node->getOperand(2);
3665   SDValue SwapVal = Node->getOperand(3);
3666   MachineMemOperand *MMO = Node->getMemOperand();
3667   SDLoc DL(Node);
3668 
3669   // We have native support for 32-bit and 64-bit compare and swap, but we
3670   // still need to expand extracting the "success" result from the CC.
3671   EVT NarrowVT = Node->getMemoryVT();
3672   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3673   if (NarrowVT == WideVT) {
3674     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3675     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3676     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3677                                                DL, Tys, Ops, NarrowVT, MMO);
3678     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3679                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
3680 
3681     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3682     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3683     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3684     return SDValue();
3685   }
3686 
3687   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
3688   // via a fullword ATOMIC_CMP_SWAPW operation.
3689   int64_t BitSize = NarrowVT.getSizeInBits();
3690   EVT PtrVT = Addr.getValueType();
3691 
3692   // Get the address of the containing word.
3693   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3694                                     DAG.getConstant(-4, DL, PtrVT));
3695 
3696   // Get the number of bits that the word must be rotated left in order
3697   // to bring the field to the top bits of a GR32.
3698   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3699                                  DAG.getConstant(3, DL, PtrVT));
3700   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3701 
3702   // Get the complementing shift amount, for rotating a field in the top
3703   // bits back to its proper position.
3704   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3705                                     DAG.getConstant(0, DL, WideVT), BitShift);
3706 
3707   // Construct the ATOMIC_CMP_SWAPW node.
3708   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3709   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
3710                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
3711   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
3712                                              VTList, Ops, NarrowVT, MMO);
3713   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
3714                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
3715 
3716   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
3717   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
3718   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
3719   return SDValue();
3720 }
3721 
3722 MachineMemOperand::Flags
3723 SystemZTargetLowering::getMMOFlags(const Instruction &I) const {
3724   // Because of how we convert atomic_load and atomic_store to normal loads and
3725   // stores in the DAG, we need to ensure that the MMOs are marked volatile
3726   // since DAGCombine hasn't been updated to account for atomic, but non
3727   // volatile loads.  (See D57601)
3728   if (auto *SI = dyn_cast<StoreInst>(&I))
3729     if (SI->isAtomic())
3730       return MachineMemOperand::MOVolatile;
3731   if (auto *LI = dyn_cast<LoadInst>(&I))
3732     if (LI->isAtomic())
3733       return MachineMemOperand::MOVolatile;
3734   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
3735     if (AI->isAtomic())
3736       return MachineMemOperand::MOVolatile;
3737   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
3738     if (AI->isAtomic())
3739       return MachineMemOperand::MOVolatile;
3740   return MachineMemOperand::MONone;
3741 }
3742 
3743 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
3744                                               SelectionDAG &DAG) const {
3745   MachineFunction &MF = DAG.getMachineFunction();
3746   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3747   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
3748                             SystemZ::R15D, Op.getValueType());
3749 }
3750 
3751 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
3752                                                  SelectionDAG &DAG) const {
3753   MachineFunction &MF = DAG.getMachineFunction();
3754   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
3755   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3756 
3757   SDValue Chain = Op.getOperand(0);
3758   SDValue NewSP = Op.getOperand(1);
3759   SDValue Backchain;
3760   SDLoc DL(Op);
3761 
3762   if (StoreBackchain) {
3763     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
3764     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3765   }
3766 
3767   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
3768 
3769   if (StoreBackchain)
3770     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3771 
3772   return Chain;
3773 }
3774 
3775 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
3776                                              SelectionDAG &DAG) const {
3777   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3778   if (!IsData)
3779     // Just preserve the chain.
3780     return Op.getOperand(0);
3781 
3782   SDLoc DL(Op);
3783   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
3784   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
3785   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
3786   SDValue Ops[] = {
3787     Op.getOperand(0),
3788     DAG.getConstant(Code, DL, MVT::i32),
3789     Op.getOperand(1)
3790   };
3791   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
3792                                  Node->getVTList(), Ops,
3793                                  Node->getMemoryVT(), Node->getMemOperand());
3794 }
3795 
3796 // Convert condition code in CCReg to an i32 value.
3797 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
3798   SDLoc DL(CCReg);
3799   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
3800   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
3801                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
3802 }
3803 
3804 SDValue
3805 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
3806                                               SelectionDAG &DAG) const {
3807   unsigned Opcode, CCValid;
3808   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
3809     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
3810     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
3811     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
3812     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
3813     return SDValue();
3814   }
3815 
3816   return SDValue();
3817 }
3818 
3819 SDValue
3820 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
3821                                                SelectionDAG &DAG) const {
3822   unsigned Opcode, CCValid;
3823   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
3824     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
3825     if (Op->getNumValues() == 1)
3826       return getCCResult(DAG, SDValue(Node, 0));
3827     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
3828     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
3829                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
3830   }
3831 
3832   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3833   switch (Id) {
3834   case Intrinsic::thread_pointer:
3835     return lowerThreadPointer(SDLoc(Op), DAG);
3836 
3837   case Intrinsic::s390_vpdi:
3838     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
3839                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3840 
3841   case Intrinsic::s390_vperm:
3842     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
3843                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3844 
3845   case Intrinsic::s390_vuphb:
3846   case Intrinsic::s390_vuphh:
3847   case Intrinsic::s390_vuphf:
3848     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
3849                        Op.getOperand(1));
3850 
3851   case Intrinsic::s390_vuplhb:
3852   case Intrinsic::s390_vuplhh:
3853   case Intrinsic::s390_vuplhf:
3854     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
3855                        Op.getOperand(1));
3856 
3857   case Intrinsic::s390_vuplb:
3858   case Intrinsic::s390_vuplhw:
3859   case Intrinsic::s390_vuplf:
3860     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
3861                        Op.getOperand(1));
3862 
3863   case Intrinsic::s390_vupllb:
3864   case Intrinsic::s390_vupllh:
3865   case Intrinsic::s390_vupllf:
3866     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
3867                        Op.getOperand(1));
3868 
3869   case Intrinsic::s390_vsumb:
3870   case Intrinsic::s390_vsumh:
3871   case Intrinsic::s390_vsumgh:
3872   case Intrinsic::s390_vsumgf:
3873   case Intrinsic::s390_vsumqf:
3874   case Intrinsic::s390_vsumqg:
3875     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
3876                        Op.getOperand(1), Op.getOperand(2));
3877   }
3878 
3879   return SDValue();
3880 }
3881 
3882 namespace {
3883 // Says that SystemZISD operation Opcode can be used to perform the equivalent
3884 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
3885 // Operand is the constant third operand, otherwise it is the number of
3886 // bytes in each element of the result.
3887 struct Permute {
3888   unsigned Opcode;
3889   unsigned Operand;
3890   unsigned char Bytes[SystemZ::VectorBytes];
3891 };
3892 }
3893 
3894 static const Permute PermuteForms[] = {
3895   // VMRHG
3896   { SystemZISD::MERGE_HIGH, 8,
3897     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
3898   // VMRHF
3899   { SystemZISD::MERGE_HIGH, 4,
3900     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
3901   // VMRHH
3902   { SystemZISD::MERGE_HIGH, 2,
3903     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
3904   // VMRHB
3905   { SystemZISD::MERGE_HIGH, 1,
3906     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
3907   // VMRLG
3908   { SystemZISD::MERGE_LOW, 8,
3909     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
3910   // VMRLF
3911   { SystemZISD::MERGE_LOW, 4,
3912     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
3913   // VMRLH
3914   { SystemZISD::MERGE_LOW, 2,
3915     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
3916   // VMRLB
3917   { SystemZISD::MERGE_LOW, 1,
3918     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
3919   // VPKG
3920   { SystemZISD::PACK, 4,
3921     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
3922   // VPKF
3923   { SystemZISD::PACK, 2,
3924     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
3925   // VPKH
3926   { SystemZISD::PACK, 1,
3927     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
3928   // VPDI V1, V2, 4  (low half of V1, high half of V2)
3929   { SystemZISD::PERMUTE_DWORDS, 4,
3930     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
3931   // VPDI V1, V2, 1  (high half of V1, low half of V2)
3932   { SystemZISD::PERMUTE_DWORDS, 1,
3933     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
3934 };
3935 
3936 // Called after matching a vector shuffle against a particular pattern.
3937 // Both the original shuffle and the pattern have two vector operands.
3938 // OpNos[0] is the operand of the original shuffle that should be used for
3939 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
3940 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
3941 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
3942 // for operands 0 and 1 of the pattern.
3943 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
3944   if (OpNos[0] < 0) {
3945     if (OpNos[1] < 0)
3946       return false;
3947     OpNo0 = OpNo1 = OpNos[1];
3948   } else if (OpNos[1] < 0) {
3949     OpNo0 = OpNo1 = OpNos[0];
3950   } else {
3951     OpNo0 = OpNos[0];
3952     OpNo1 = OpNos[1];
3953   }
3954   return true;
3955 }
3956 
3957 // Bytes is a VPERM-like permute vector, except that -1 is used for
3958 // undefined bytes.  Return true if the VPERM can be implemented using P.
3959 // When returning true set OpNo0 to the VPERM operand that should be
3960 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
3961 //
3962 // For example, if swapping the VPERM operands allows P to match, OpNo0
3963 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
3964 // operand, but rewriting it to use two duplicated operands allows it to
3965 // match P, then OpNo0 and OpNo1 will be the same.
3966 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
3967                          unsigned &OpNo0, unsigned &OpNo1) {
3968   int OpNos[] = { -1, -1 };
3969   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
3970     int Elt = Bytes[I];
3971     if (Elt >= 0) {
3972       // Make sure that the two permute vectors use the same suboperand
3973       // byte number.  Only the operand numbers (the high bits) are
3974       // allowed to differ.
3975       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
3976         return false;
3977       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
3978       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
3979       // Make sure that the operand mappings are consistent with previous
3980       // elements.
3981       if (OpNos[ModelOpNo] == 1 - RealOpNo)
3982         return false;
3983       OpNos[ModelOpNo] = RealOpNo;
3984     }
3985   }
3986   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
3987 }
3988 
3989 // As above, but search for a matching permute.
3990 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
3991                                    unsigned &OpNo0, unsigned &OpNo1) {
3992   for (auto &P : PermuteForms)
3993     if (matchPermute(Bytes, P, OpNo0, OpNo1))
3994       return &P;
3995   return nullptr;
3996 }
3997 
3998 // Bytes is a VPERM-like permute vector, except that -1 is used for
3999 // undefined bytes.  This permute is an operand of an outer permute.
4000 // See whether redistributing the -1 bytes gives a shuffle that can be
4001 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4002 // that, when applied to the result of P, gives the original permute in Bytes.
4003 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4004                                const Permute &P,
4005                                SmallVectorImpl<int> &Transform) {
4006   unsigned To = 0;
4007   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4008     int Elt = Bytes[From];
4009     if (Elt < 0)
4010       // Byte number From of the result is undefined.
4011       Transform[From] = -1;
4012     else {
4013       while (P.Bytes[To] != Elt) {
4014         To += 1;
4015         if (To == SystemZ::VectorBytes)
4016           return false;
4017       }
4018       Transform[From] = To;
4019     }
4020   }
4021   return true;
4022 }
4023 
4024 // As above, but search for a matching permute.
4025 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4026                                          SmallVectorImpl<int> &Transform) {
4027   for (auto &P : PermuteForms)
4028     if (matchDoublePermute(Bytes, P, Transform))
4029       return &P;
4030   return nullptr;
4031 }
4032 
4033 // Convert the mask of the given shuffle op into a byte-level mask,
4034 // as if it had type vNi8.
4035 static bool getVPermMask(SDValue ShuffleOp,
4036                          SmallVectorImpl<int> &Bytes) {
4037   EVT VT = ShuffleOp.getValueType();
4038   unsigned NumElements = VT.getVectorNumElements();
4039   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4040 
4041   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4042     Bytes.resize(NumElements * BytesPerElement, -1);
4043     for (unsigned I = 0; I < NumElements; ++I) {
4044       int Index = VSN->getMaskElt(I);
4045       if (Index >= 0)
4046         for (unsigned J = 0; J < BytesPerElement; ++J)
4047           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4048     }
4049     return true;
4050   }
4051   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4052       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4053     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4054     Bytes.resize(NumElements * BytesPerElement, -1);
4055     for (unsigned I = 0; I < NumElements; ++I)
4056       for (unsigned J = 0; J < BytesPerElement; ++J)
4057         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4058     return true;
4059   }
4060   return false;
4061 }
4062 
4063 // Bytes is a VPERM-like permute vector, except that -1 is used for
4064 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4065 // the result come from a contiguous sequence of bytes from one input.
4066 // Set Base to the selector for the first byte if so.
4067 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4068                             unsigned BytesPerElement, int &Base) {
4069   Base = -1;
4070   for (unsigned I = 0; I < BytesPerElement; ++I) {
4071     if (Bytes[Start + I] >= 0) {
4072       unsigned Elem = Bytes[Start + I];
4073       if (Base < 0) {
4074         Base = Elem - I;
4075         // Make sure the bytes would come from one input operand.
4076         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4077           return false;
4078       } else if (unsigned(Base) != Elem - I)
4079         return false;
4080     }
4081   }
4082   return true;
4083 }
4084 
4085 // Bytes is a VPERM-like permute vector, except that -1 is used for
4086 // undefined bytes.  Return true if it can be performed using VSLDI.
4087 // When returning true, set StartIndex to the shift amount and OpNo0
4088 // and OpNo1 to the VPERM operands that should be used as the first
4089 // and second shift operand respectively.
4090 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4091                                unsigned &StartIndex, unsigned &OpNo0,
4092                                unsigned &OpNo1) {
4093   int OpNos[] = { -1, -1 };
4094   int Shift = -1;
4095   for (unsigned I = 0; I < 16; ++I) {
4096     int Index = Bytes[I];
4097     if (Index >= 0) {
4098       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4099       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4100       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4101       if (Shift < 0)
4102         Shift = ExpectedShift;
4103       else if (Shift != ExpectedShift)
4104         return false;
4105       // Make sure that the operand mappings are consistent with previous
4106       // elements.
4107       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4108         return false;
4109       OpNos[ModelOpNo] = RealOpNo;
4110     }
4111   }
4112   StartIndex = Shift;
4113   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4114 }
4115 
4116 // Create a node that performs P on operands Op0 and Op1, casting the
4117 // operands to the appropriate type.  The type of the result is determined by P.
4118 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4119                               const Permute &P, SDValue Op0, SDValue Op1) {
4120   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4121   // elements of a PACK are twice as wide as the outputs.
4122   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4123                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4124                       P.Operand);
4125   // Cast both operands to the appropriate type.
4126   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4127                               SystemZ::VectorBytes / InBytes);
4128   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4129   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4130   SDValue Op;
4131   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4132     SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32);
4133     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4134   } else if (P.Opcode == SystemZISD::PACK) {
4135     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4136                                  SystemZ::VectorBytes / P.Operand);
4137     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4138   } else {
4139     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4140   }
4141   return Op;
4142 }
4143 
4144 // Bytes is a VPERM-like permute vector, except that -1 is used for
4145 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4146 // VSLDI or VPERM.
4147 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4148                                      SDValue *Ops,
4149                                      const SmallVectorImpl<int> &Bytes) {
4150   for (unsigned I = 0; I < 2; ++I)
4151     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4152 
4153   // First see whether VSLDI can be used.
4154   unsigned StartIndex, OpNo0, OpNo1;
4155   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4156     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4157                        Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32));
4158 
4159   // Fall back on VPERM.  Construct an SDNode for the permute vector.
4160   SDValue IndexNodes[SystemZ::VectorBytes];
4161   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4162     if (Bytes[I] >= 0)
4163       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4164     else
4165       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4166   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4167   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2);
4168 }
4169 
4170 namespace {
4171 // Describes a general N-operand vector shuffle.
4172 struct GeneralShuffle {
4173   GeneralShuffle(EVT vt) : VT(vt) {}
4174   void addUndef();
4175   bool add(SDValue, unsigned);
4176   SDValue getNode(SelectionDAG &, const SDLoc &);
4177 
4178   // The operands of the shuffle.
4179   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4180 
4181   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4182   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4183   // Bytes[I] / SystemZ::VectorBytes.
4184   SmallVector<int, SystemZ::VectorBytes> Bytes;
4185 
4186   // The type of the shuffle result.
4187   EVT VT;
4188 };
4189 }
4190 
4191 // Add an extra undefined element to the shuffle.
4192 void GeneralShuffle::addUndef() {
4193   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4194   for (unsigned I = 0; I < BytesPerElement; ++I)
4195     Bytes.push_back(-1);
4196 }
4197 
4198 // Add an extra element to the shuffle, taking it from element Elem of Op.
4199 // A null Op indicates a vector input whose value will be calculated later;
4200 // there is at most one such input per shuffle and it always has the same
4201 // type as the result. Aborts and returns false if the source vector elements
4202 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4203 // LLVM they become implicitly extended, but this is rare and not optimized.
4204 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4205   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4206 
4207   // The source vector can have wider elements than the result,
4208   // either through an explicit TRUNCATE or because of type legalization.
4209   // We want the least significant part.
4210   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4211   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4212 
4213   // Return false if the source elements are smaller than their destination
4214   // elements.
4215   if (FromBytesPerElement < BytesPerElement)
4216     return false;
4217 
4218   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4219                    (FromBytesPerElement - BytesPerElement));
4220 
4221   // Look through things like shuffles and bitcasts.
4222   while (Op.getNode()) {
4223     if (Op.getOpcode() == ISD::BITCAST)
4224       Op = Op.getOperand(0);
4225     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4226       // See whether the bytes we need come from a contiguous part of one
4227       // operand.
4228       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4229       if (!getVPermMask(Op, OpBytes))
4230         break;
4231       int NewByte;
4232       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4233         break;
4234       if (NewByte < 0) {
4235         addUndef();
4236         return true;
4237       }
4238       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4239       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4240     } else if (Op.isUndef()) {
4241       addUndef();
4242       return true;
4243     } else
4244       break;
4245   }
4246 
4247   // Make sure that the source of the extraction is in Ops.
4248   unsigned OpNo = 0;
4249   for (; OpNo < Ops.size(); ++OpNo)
4250     if (Ops[OpNo] == Op)
4251       break;
4252   if (OpNo == Ops.size())
4253     Ops.push_back(Op);
4254 
4255   // Add the element to Bytes.
4256   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4257   for (unsigned I = 0; I < BytesPerElement; ++I)
4258     Bytes.push_back(Base + I);
4259 
4260   return true;
4261 }
4262 
4263 // Return SDNodes for the completed shuffle.
4264 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4265   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4266 
4267   if (Ops.size() == 0)
4268     return DAG.getUNDEF(VT);
4269 
4270   // Make sure that there are at least two shuffle operands.
4271   if (Ops.size() == 1)
4272     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4273 
4274   // Create a tree of shuffles, deferring root node until after the loop.
4275   // Try to redistribute the undefined elements of non-root nodes so that
4276   // the non-root shuffles match something like a pack or merge, then adjust
4277   // the parent node's permute vector to compensate for the new order.
4278   // Among other things, this copes with vectors like <2 x i16> that were
4279   // padded with undefined elements during type legalization.
4280   //
4281   // In the best case this redistribution will lead to the whole tree
4282   // using packs and merges.  It should rarely be a loss in other cases.
4283   unsigned Stride = 1;
4284   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4285     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4286       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4287 
4288       // Create a mask for just these two operands.
4289       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4290       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4291         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4292         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4293         if (OpNo == I)
4294           NewBytes[J] = Byte;
4295         else if (OpNo == I + Stride)
4296           NewBytes[J] = SystemZ::VectorBytes + Byte;
4297         else
4298           NewBytes[J] = -1;
4299       }
4300       // See if it would be better to reorganize NewMask to avoid using VPERM.
4301       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4302       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4303         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4304         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4305         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4306           if (NewBytes[J] >= 0) {
4307             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4308                    "Invalid double permute");
4309             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4310           } else
4311             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4312         }
4313       } else {
4314         // Just use NewBytes on the operands.
4315         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4316         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4317           if (NewBytes[J] >= 0)
4318             Bytes[J] = I * SystemZ::VectorBytes + J;
4319       }
4320     }
4321   }
4322 
4323   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4324   if (Stride > 1) {
4325     Ops[1] = Ops[Stride];
4326     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4327       if (Bytes[I] >= int(SystemZ::VectorBytes))
4328         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4329   }
4330 
4331   // Look for an instruction that can do the permute without resorting
4332   // to VPERM.
4333   unsigned OpNo0, OpNo1;
4334   SDValue Op;
4335   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4336     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4337   else
4338     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4339   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4340 }
4341 
4342 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4343 static bool isScalarToVector(SDValue Op) {
4344   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4345     if (!Op.getOperand(I).isUndef())
4346       return false;
4347   return true;
4348 }
4349 
4350 // Return a vector of type VT that contains Value in the first element.
4351 // The other elements don't matter.
4352 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4353                                    SDValue Value) {
4354   // If we have a constant, replicate it to all elements and let the
4355   // BUILD_VECTOR lowering take care of it.
4356   if (Value.getOpcode() == ISD::Constant ||
4357       Value.getOpcode() == ISD::ConstantFP) {
4358     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4359     return DAG.getBuildVector(VT, DL, Ops);
4360   }
4361   if (Value.isUndef())
4362     return DAG.getUNDEF(VT);
4363   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4364 }
4365 
4366 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4367 // element 1.  Used for cases in which replication is cheap.
4368 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4369                                  SDValue Op0, SDValue Op1) {
4370   if (Op0.isUndef()) {
4371     if (Op1.isUndef())
4372       return DAG.getUNDEF(VT);
4373     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4374   }
4375   if (Op1.isUndef())
4376     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4377   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4378                      buildScalarToVector(DAG, DL, VT, Op0),
4379                      buildScalarToVector(DAG, DL, VT, Op1));
4380 }
4381 
4382 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4383 // vector for them.
4384 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4385                           SDValue Op1) {
4386   if (Op0.isUndef() && Op1.isUndef())
4387     return DAG.getUNDEF(MVT::v2i64);
4388   // If one of the two inputs is undefined then replicate the other one,
4389   // in order to avoid using another register unnecessarily.
4390   if (Op0.isUndef())
4391     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4392   else if (Op1.isUndef())
4393     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4394   else {
4395     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4396     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4397   }
4398   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4399 }
4400 
4401 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4402 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4403 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4404 // would benefit from this representation and return it if so.
4405 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4406                                      BuildVectorSDNode *BVN) {
4407   EVT VT = BVN->getValueType(0);
4408   unsigned NumElements = VT.getVectorNumElements();
4409 
4410   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4411   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4412   // need a BUILD_VECTOR, add an additional placeholder operand for that
4413   // BUILD_VECTOR and store its operands in ResidueOps.
4414   GeneralShuffle GS(VT);
4415   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4416   bool FoundOne = false;
4417   for (unsigned I = 0; I < NumElements; ++I) {
4418     SDValue Op = BVN->getOperand(I);
4419     if (Op.getOpcode() == ISD::TRUNCATE)
4420       Op = Op.getOperand(0);
4421     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4422         Op.getOperand(1).getOpcode() == ISD::Constant) {
4423       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4424       if (!GS.add(Op.getOperand(0), Elem))
4425         return SDValue();
4426       FoundOne = true;
4427     } else if (Op.isUndef()) {
4428       GS.addUndef();
4429     } else {
4430       if (!GS.add(SDValue(), ResidueOps.size()))
4431         return SDValue();
4432       ResidueOps.push_back(BVN->getOperand(I));
4433     }
4434   }
4435 
4436   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4437   if (!FoundOne)
4438     return SDValue();
4439 
4440   // Create the BUILD_VECTOR for the remaining elements, if any.
4441   if (!ResidueOps.empty()) {
4442     while (ResidueOps.size() < NumElements)
4443       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4444     for (auto &Op : GS.Ops) {
4445       if (!Op.getNode()) {
4446         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4447         break;
4448       }
4449     }
4450   }
4451   return GS.getNode(DAG, SDLoc(BVN));
4452 }
4453 
4454 // Combine GPR scalar values Elems into a vector of type VT.
4455 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4456                            SmallVectorImpl<SDValue> &Elems) {
4457   // See whether there is a single replicated value.
4458   SDValue Single;
4459   unsigned int NumElements = Elems.size();
4460   unsigned int Count = 0;
4461   for (auto Elem : Elems) {
4462     if (!Elem.isUndef()) {
4463       if (!Single.getNode())
4464         Single = Elem;
4465       else if (Elem != Single) {
4466         Single = SDValue();
4467         break;
4468       }
4469       Count += 1;
4470     }
4471   }
4472   // There are three cases here:
4473   //
4474   // - if the only defined element is a loaded one, the best sequence
4475   //   is a replicating load.
4476   //
4477   // - otherwise, if the only defined element is an i64 value, we will
4478   //   end up with the same VLVGP sequence regardless of whether we short-cut
4479   //   for replication or fall through to the later code.
4480   //
4481   // - otherwise, if the only defined element is an i32 or smaller value,
4482   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4483   //   This is only a win if the single defined element is used more than once.
4484   //   In other cases we're better off using a single VLVGx.
4485   if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD))
4486     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4487 
4488   // If all elements are loads, use VLREP/VLEs (below).
4489   bool AllLoads = true;
4490   for (auto Elem : Elems)
4491     if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) {
4492       AllLoads = false;
4493       break;
4494     }
4495 
4496   // The best way of building a v2i64 from two i64s is to use VLVGP.
4497   if (VT == MVT::v2i64 && !AllLoads)
4498     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4499 
4500   // Use a 64-bit merge high to combine two doubles.
4501   if (VT == MVT::v2f64 && !AllLoads)
4502     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4503 
4504   // Build v4f32 values directly from the FPRs:
4505   //
4506   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4507   //         V              V         VMRHF
4508   //      <ABxx>         <CDxx>
4509   //                V                 VMRHG
4510   //              <ABCD>
4511   if (VT == MVT::v4f32 && !AllLoads) {
4512     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4513     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4514     // Avoid unnecessary undefs by reusing the other operand.
4515     if (Op01.isUndef())
4516       Op01 = Op23;
4517     else if (Op23.isUndef())
4518       Op23 = Op01;
4519     // Merging identical replications is a no-op.
4520     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4521       return Op01;
4522     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4523     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4524     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4525                              DL, MVT::v2i64, Op01, Op23);
4526     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4527   }
4528 
4529   // Collect the constant terms.
4530   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4531   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4532 
4533   unsigned NumConstants = 0;
4534   for (unsigned I = 0; I < NumElements; ++I) {
4535     SDValue Elem = Elems[I];
4536     if (Elem.getOpcode() == ISD::Constant ||
4537         Elem.getOpcode() == ISD::ConstantFP) {
4538       NumConstants += 1;
4539       Constants[I] = Elem;
4540       Done[I] = true;
4541     }
4542   }
4543   // If there was at least one constant, fill in the other elements of
4544   // Constants with undefs to get a full vector constant and use that
4545   // as the starting point.
4546   SDValue Result;
4547   SDValue ReplicatedVal;
4548   if (NumConstants > 0) {
4549     for (unsigned I = 0; I < NumElements; ++I)
4550       if (!Constants[I].getNode())
4551         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4552     Result = DAG.getBuildVector(VT, DL, Constants);
4553   } else {
4554     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4555     // avoid a false dependency on any previous contents of the vector
4556     // register.
4557 
4558     // Use a VLREP if at least one element is a load. Make sure to replicate
4559     // the load with the most elements having its value.
4560     std::map<const SDNode*, unsigned> UseCounts;
4561     SDNode *LoadMaxUses = nullptr;
4562     for (unsigned I = 0; I < NumElements; ++I)
4563       if (Elems[I].getOpcode() == ISD::LOAD &&
4564           cast<LoadSDNode>(Elems[I])->isUnindexed()) {
4565         SDNode *Ld = Elems[I].getNode();
4566         UseCounts[Ld]++;
4567         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
4568           LoadMaxUses = Ld;
4569       }
4570     if (LoadMaxUses != nullptr) {
4571       ReplicatedVal = SDValue(LoadMaxUses, 0);
4572       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
4573     } else {
4574       // Try to use VLVGP.
4575       unsigned I1 = NumElements / 2 - 1;
4576       unsigned I2 = NumElements - 1;
4577       bool Def1 = !Elems[I1].isUndef();
4578       bool Def2 = !Elems[I2].isUndef();
4579       if (Def1 || Def2) {
4580         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4581         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4582         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4583                              joinDwords(DAG, DL, Elem1, Elem2));
4584         Done[I1] = true;
4585         Done[I2] = true;
4586       } else
4587         Result = DAG.getUNDEF(VT);
4588     }
4589   }
4590 
4591   // Use VLVGx to insert the other elements.
4592   for (unsigned I = 0; I < NumElements; ++I)
4593     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
4594       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4595                            DAG.getConstant(I, DL, MVT::i32));
4596   return Result;
4597 }
4598 
4599 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4600                                                  SelectionDAG &DAG) const {
4601   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4602   SDLoc DL(Op);
4603   EVT VT = Op.getValueType();
4604 
4605   if (BVN->isConstant()) {
4606     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
4607       return Op;
4608 
4609     // Fall back to loading it from memory.
4610     return SDValue();
4611   }
4612 
4613   // See if we should use shuffles to construct the vector from other vectors.
4614   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
4615     return Res;
4616 
4617   // Detect SCALAR_TO_VECTOR conversions.
4618   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
4619     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
4620 
4621   // Otherwise use buildVector to build the vector up from GPRs.
4622   unsigned NumElements = Op.getNumOperands();
4623   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
4624   for (unsigned I = 0; I < NumElements; ++I)
4625     Ops[I] = Op.getOperand(I);
4626   return buildVector(DAG, DL, VT, Ops);
4627 }
4628 
4629 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4630                                                    SelectionDAG &DAG) const {
4631   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
4632   SDLoc DL(Op);
4633   EVT VT = Op.getValueType();
4634   unsigned NumElements = VT.getVectorNumElements();
4635 
4636   if (VSN->isSplat()) {
4637     SDValue Op0 = Op.getOperand(0);
4638     unsigned Index = VSN->getSplatIndex();
4639     assert(Index < VT.getVectorNumElements() &&
4640            "Splat index should be defined and in first operand");
4641     // See whether the value we're splatting is directly available as a scalar.
4642     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4643         Op0.getOpcode() == ISD::BUILD_VECTOR)
4644       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
4645     // Otherwise keep it as a vector-to-vector operation.
4646     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
4647                        DAG.getConstant(Index, DL, MVT::i32));
4648   }
4649 
4650   GeneralShuffle GS(VT);
4651   for (unsigned I = 0; I < NumElements; ++I) {
4652     int Elt = VSN->getMaskElt(I);
4653     if (Elt < 0)
4654       GS.addUndef();
4655     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
4656                      unsigned(Elt) % NumElements))
4657       return SDValue();
4658   }
4659   return GS.getNode(DAG, SDLoc(VSN));
4660 }
4661 
4662 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
4663                                                      SelectionDAG &DAG) const {
4664   SDLoc DL(Op);
4665   // Just insert the scalar into element 0 of an undefined vector.
4666   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
4667                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
4668                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
4669 }
4670 
4671 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4672                                                       SelectionDAG &DAG) const {
4673   // Handle insertions of floating-point values.
4674   SDLoc DL(Op);
4675   SDValue Op0 = Op.getOperand(0);
4676   SDValue Op1 = Op.getOperand(1);
4677   SDValue Op2 = Op.getOperand(2);
4678   EVT VT = Op.getValueType();
4679 
4680   // Insertions into constant indices of a v2f64 can be done using VPDI.
4681   // However, if the inserted value is a bitcast or a constant then it's
4682   // better to use GPRs, as below.
4683   if (VT == MVT::v2f64 &&
4684       Op1.getOpcode() != ISD::BITCAST &&
4685       Op1.getOpcode() != ISD::ConstantFP &&
4686       Op2.getOpcode() == ISD::Constant) {
4687     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
4688     unsigned Mask = VT.getVectorNumElements() - 1;
4689     if (Index <= Mask)
4690       return Op;
4691   }
4692 
4693   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
4694   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
4695   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
4696   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
4697                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
4698                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
4699   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4700 }
4701 
4702 SDValue
4703 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4704                                                SelectionDAG &DAG) const {
4705   // Handle extractions of floating-point values.
4706   SDLoc DL(Op);
4707   SDValue Op0 = Op.getOperand(0);
4708   SDValue Op1 = Op.getOperand(1);
4709   EVT VT = Op.getValueType();
4710   EVT VecVT = Op0.getValueType();
4711 
4712   // Extractions of constant indices can be done directly.
4713   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
4714     uint64_t Index = CIndexN->getZExtValue();
4715     unsigned Mask = VecVT.getVectorNumElements() - 1;
4716     if (Index <= Mask)
4717       return Op;
4718   }
4719 
4720   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
4721   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
4722   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
4723   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
4724                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
4725   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
4726 }
4727 
4728 SDValue
4729 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
4730                                               unsigned UnpackHigh) const {
4731   SDValue PackedOp = Op.getOperand(0);
4732   EVT OutVT = Op.getValueType();
4733   EVT InVT = PackedOp.getValueType();
4734   unsigned ToBits = OutVT.getScalarSizeInBits();
4735   unsigned FromBits = InVT.getScalarSizeInBits();
4736   do {
4737     FromBits *= 2;
4738     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
4739                                  SystemZ::VectorBits / FromBits);
4740     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
4741   } while (FromBits != ToBits);
4742   return PackedOp;
4743 }
4744 
4745 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
4746                                           unsigned ByScalar) const {
4747   // Look for cases where a vector shift can use the *_BY_SCALAR form.
4748   SDValue Op0 = Op.getOperand(0);
4749   SDValue Op1 = Op.getOperand(1);
4750   SDLoc DL(Op);
4751   EVT VT = Op.getValueType();
4752   unsigned ElemBitSize = VT.getScalarSizeInBits();
4753 
4754   // See whether the shift vector is a splat represented as BUILD_VECTOR.
4755   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
4756     APInt SplatBits, SplatUndef;
4757     unsigned SplatBitSize;
4758     bool HasAnyUndefs;
4759     // Check for constant splats.  Use ElemBitSize as the minimum element
4760     // width and reject splats that need wider elements.
4761     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
4762                              ElemBitSize, true) &&
4763         SplatBitSize == ElemBitSize) {
4764       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
4765                                       DL, MVT::i32);
4766       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4767     }
4768     // Check for variable splats.
4769     BitVector UndefElements;
4770     SDValue Splat = BVN->getSplatValue(&UndefElements);
4771     if (Splat) {
4772       // Since i32 is the smallest legal type, we either need a no-op
4773       // or a truncation.
4774       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
4775       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4776     }
4777   }
4778 
4779   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
4780   // and the shift amount is directly available in a GPR.
4781   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
4782     if (VSN->isSplat()) {
4783       SDValue VSNOp0 = VSN->getOperand(0);
4784       unsigned Index = VSN->getSplatIndex();
4785       assert(Index < VT.getVectorNumElements() &&
4786              "Splat index should be defined and in first operand");
4787       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
4788           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
4789         // Since i32 is the smallest legal type, we either need a no-op
4790         // or a truncation.
4791         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
4792                                     VSNOp0.getOperand(Index));
4793         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
4794       }
4795     }
4796   }
4797 
4798   // Otherwise just treat the current form as legal.
4799   return Op;
4800 }
4801 
4802 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
4803                                               SelectionDAG &DAG) const {
4804   switch (Op.getOpcode()) {
4805   case ISD::FRAMEADDR:
4806     return lowerFRAMEADDR(Op, DAG);
4807   case ISD::RETURNADDR:
4808     return lowerRETURNADDR(Op, DAG);
4809   case ISD::BR_CC:
4810     return lowerBR_CC(Op, DAG);
4811   case ISD::SELECT_CC:
4812     return lowerSELECT_CC(Op, DAG);
4813   case ISD::SETCC:
4814     return lowerSETCC(Op, DAG);
4815   case ISD::GlobalAddress:
4816     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
4817   case ISD::GlobalTLSAddress:
4818     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
4819   case ISD::BlockAddress:
4820     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
4821   case ISD::JumpTable:
4822     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
4823   case ISD::ConstantPool:
4824     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
4825   case ISD::BITCAST:
4826     return lowerBITCAST(Op, DAG);
4827   case ISD::VASTART:
4828     return lowerVASTART(Op, DAG);
4829   case ISD::VACOPY:
4830     return lowerVACOPY(Op, DAG);
4831   case ISD::DYNAMIC_STACKALLOC:
4832     return lowerDYNAMIC_STACKALLOC(Op, DAG);
4833   case ISD::GET_DYNAMIC_AREA_OFFSET:
4834     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
4835   case ISD::SMUL_LOHI:
4836     return lowerSMUL_LOHI(Op, DAG);
4837   case ISD::UMUL_LOHI:
4838     return lowerUMUL_LOHI(Op, DAG);
4839   case ISD::SDIVREM:
4840     return lowerSDIVREM(Op, DAG);
4841   case ISD::UDIVREM:
4842     return lowerUDIVREM(Op, DAG);
4843   case ISD::SADDO:
4844   case ISD::SSUBO:
4845   case ISD::UADDO:
4846   case ISD::USUBO:
4847     return lowerXALUO(Op, DAG);
4848   case ISD::ADDCARRY:
4849   case ISD::SUBCARRY:
4850     return lowerADDSUBCARRY(Op, DAG);
4851   case ISD::OR:
4852     return lowerOR(Op, DAG);
4853   case ISD::CTPOP:
4854     return lowerCTPOP(Op, DAG);
4855   case ISD::ATOMIC_FENCE:
4856     return lowerATOMIC_FENCE(Op, DAG);
4857   case ISD::ATOMIC_SWAP:
4858     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
4859   case ISD::ATOMIC_STORE:
4860     return lowerATOMIC_STORE(Op, DAG);
4861   case ISD::ATOMIC_LOAD:
4862     return lowerATOMIC_LOAD(Op, DAG);
4863   case ISD::ATOMIC_LOAD_ADD:
4864     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
4865   case ISD::ATOMIC_LOAD_SUB:
4866     return lowerATOMIC_LOAD_SUB(Op, DAG);
4867   case ISD::ATOMIC_LOAD_AND:
4868     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
4869   case ISD::ATOMIC_LOAD_OR:
4870     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
4871   case ISD::ATOMIC_LOAD_XOR:
4872     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
4873   case ISD::ATOMIC_LOAD_NAND:
4874     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
4875   case ISD::ATOMIC_LOAD_MIN:
4876     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
4877   case ISD::ATOMIC_LOAD_MAX:
4878     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
4879   case ISD::ATOMIC_LOAD_UMIN:
4880     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
4881   case ISD::ATOMIC_LOAD_UMAX:
4882     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
4883   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4884     return lowerATOMIC_CMP_SWAP(Op, DAG);
4885   case ISD::STACKSAVE:
4886     return lowerSTACKSAVE(Op, DAG);
4887   case ISD::STACKRESTORE:
4888     return lowerSTACKRESTORE(Op, DAG);
4889   case ISD::PREFETCH:
4890     return lowerPREFETCH(Op, DAG);
4891   case ISD::INTRINSIC_W_CHAIN:
4892     return lowerINTRINSIC_W_CHAIN(Op, DAG);
4893   case ISD::INTRINSIC_WO_CHAIN:
4894     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
4895   case ISD::BUILD_VECTOR:
4896     return lowerBUILD_VECTOR(Op, DAG);
4897   case ISD::VECTOR_SHUFFLE:
4898     return lowerVECTOR_SHUFFLE(Op, DAG);
4899   case ISD::SCALAR_TO_VECTOR:
4900     return lowerSCALAR_TO_VECTOR(Op, DAG);
4901   case ISD::INSERT_VECTOR_ELT:
4902     return lowerINSERT_VECTOR_ELT(Op, DAG);
4903   case ISD::EXTRACT_VECTOR_ELT:
4904     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4905   case ISD::SIGN_EXTEND_VECTOR_INREG:
4906     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
4907   case ISD::ZERO_EXTEND_VECTOR_INREG:
4908     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
4909   case ISD::SHL:
4910     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
4911   case ISD::SRL:
4912     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
4913   case ISD::SRA:
4914     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
4915   default:
4916     llvm_unreachable("Unexpected node to lower");
4917   }
4918 }
4919 
4920 // Lower operations with invalid operand or result types (currently used
4921 // only for 128-bit integer types).
4922 
4923 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
4924   SDLoc DL(In);
4925   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4926                            DAG.getIntPtrConstant(0, DL));
4927   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
4928                            DAG.getIntPtrConstant(1, DL));
4929   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
4930                                     MVT::Untyped, Hi, Lo);
4931   return SDValue(Pair, 0);
4932 }
4933 
4934 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
4935   SDLoc DL(In);
4936   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
4937                                           DL, MVT::i64, In);
4938   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
4939                                           DL, MVT::i64, In);
4940   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
4941 }
4942 
4943 void
4944 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
4945                                              SmallVectorImpl<SDValue> &Results,
4946                                              SelectionDAG &DAG) const {
4947   switch (N->getOpcode()) {
4948   case ISD::ATOMIC_LOAD: {
4949     SDLoc DL(N);
4950     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
4951     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
4952     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4953     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
4954                                           DL, Tys, Ops, MVT::i128, MMO);
4955     Results.push_back(lowerGR128ToI128(DAG, Res));
4956     Results.push_back(Res.getValue(1));
4957     break;
4958   }
4959   case ISD::ATOMIC_STORE: {
4960     SDLoc DL(N);
4961     SDVTList Tys = DAG.getVTList(MVT::Other);
4962     SDValue Ops[] = { N->getOperand(0),
4963                       lowerI128ToGR128(DAG, N->getOperand(2)),
4964                       N->getOperand(1) };
4965     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4966     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
4967                                           DL, Tys, Ops, MVT::i128, MMO);
4968     // We have to enforce sequential consistency by performing a
4969     // serialization operation after the store.
4970     if (cast<AtomicSDNode>(N)->getOrdering() ==
4971         AtomicOrdering::SequentiallyConsistent)
4972       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
4973                                        MVT::Other, Res), 0);
4974     Results.push_back(Res);
4975     break;
4976   }
4977   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
4978     SDLoc DL(N);
4979     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
4980     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
4981                       lowerI128ToGR128(DAG, N->getOperand(2)),
4982                       lowerI128ToGR128(DAG, N->getOperand(3)) };
4983     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
4984     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
4985                                           DL, Tys, Ops, MVT::i128, MMO);
4986     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
4987                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4988     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
4989     Results.push_back(lowerGR128ToI128(DAG, Res));
4990     Results.push_back(Success);
4991     Results.push_back(Res.getValue(2));
4992     break;
4993   }
4994   default:
4995     llvm_unreachable("Unexpected node to lower");
4996   }
4997 }
4998 
4999 void
5000 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5001                                           SmallVectorImpl<SDValue> &Results,
5002                                           SelectionDAG &DAG) const {
5003   return LowerOperationWrapper(N, Results, DAG);
5004 }
5005 
5006 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5007 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5008   switch ((SystemZISD::NodeType)Opcode) {
5009     case SystemZISD::FIRST_NUMBER: break;
5010     OPCODE(RET_FLAG);
5011     OPCODE(CALL);
5012     OPCODE(SIBCALL);
5013     OPCODE(TLS_GDCALL);
5014     OPCODE(TLS_LDCALL);
5015     OPCODE(PCREL_WRAPPER);
5016     OPCODE(PCREL_OFFSET);
5017     OPCODE(IABS);
5018     OPCODE(ICMP);
5019     OPCODE(FCMP);
5020     OPCODE(TM);
5021     OPCODE(BR_CCMASK);
5022     OPCODE(SELECT_CCMASK);
5023     OPCODE(ADJDYNALLOC);
5024     OPCODE(POPCNT);
5025     OPCODE(SMUL_LOHI);
5026     OPCODE(UMUL_LOHI);
5027     OPCODE(SDIVREM);
5028     OPCODE(UDIVREM);
5029     OPCODE(SADDO);
5030     OPCODE(SSUBO);
5031     OPCODE(UADDO);
5032     OPCODE(USUBO);
5033     OPCODE(ADDCARRY);
5034     OPCODE(SUBCARRY);
5035     OPCODE(GET_CCMASK);
5036     OPCODE(MVC);
5037     OPCODE(MVC_LOOP);
5038     OPCODE(NC);
5039     OPCODE(NC_LOOP);
5040     OPCODE(OC);
5041     OPCODE(OC_LOOP);
5042     OPCODE(XC);
5043     OPCODE(XC_LOOP);
5044     OPCODE(CLC);
5045     OPCODE(CLC_LOOP);
5046     OPCODE(STPCPY);
5047     OPCODE(STRCMP);
5048     OPCODE(SEARCH_STRING);
5049     OPCODE(IPM);
5050     OPCODE(MEMBARRIER);
5051     OPCODE(TBEGIN);
5052     OPCODE(TBEGIN_NOFLOAT);
5053     OPCODE(TEND);
5054     OPCODE(BYTE_MASK);
5055     OPCODE(ROTATE_MASK);
5056     OPCODE(REPLICATE);
5057     OPCODE(JOIN_DWORDS);
5058     OPCODE(SPLAT);
5059     OPCODE(MERGE_HIGH);
5060     OPCODE(MERGE_LOW);
5061     OPCODE(SHL_DOUBLE);
5062     OPCODE(PERMUTE_DWORDS);
5063     OPCODE(PERMUTE);
5064     OPCODE(PACK);
5065     OPCODE(PACKS_CC);
5066     OPCODE(PACKLS_CC);
5067     OPCODE(UNPACK_HIGH);
5068     OPCODE(UNPACKL_HIGH);
5069     OPCODE(UNPACK_LOW);
5070     OPCODE(UNPACKL_LOW);
5071     OPCODE(VSHL_BY_SCALAR);
5072     OPCODE(VSRL_BY_SCALAR);
5073     OPCODE(VSRA_BY_SCALAR);
5074     OPCODE(VSUM);
5075     OPCODE(VICMPE);
5076     OPCODE(VICMPH);
5077     OPCODE(VICMPHL);
5078     OPCODE(VICMPES);
5079     OPCODE(VICMPHS);
5080     OPCODE(VICMPHLS);
5081     OPCODE(VFCMPE);
5082     OPCODE(VFCMPH);
5083     OPCODE(VFCMPHE);
5084     OPCODE(VFCMPES);
5085     OPCODE(VFCMPHS);
5086     OPCODE(VFCMPHES);
5087     OPCODE(VFTCI);
5088     OPCODE(VEXTEND);
5089     OPCODE(VROUND);
5090     OPCODE(VTM);
5091     OPCODE(VFAE_CC);
5092     OPCODE(VFAEZ_CC);
5093     OPCODE(VFEE_CC);
5094     OPCODE(VFEEZ_CC);
5095     OPCODE(VFENE_CC);
5096     OPCODE(VFENEZ_CC);
5097     OPCODE(VISTR_CC);
5098     OPCODE(VSTRC_CC);
5099     OPCODE(VSTRCZ_CC);
5100     OPCODE(TDC);
5101     OPCODE(ATOMIC_SWAPW);
5102     OPCODE(ATOMIC_LOADW_ADD);
5103     OPCODE(ATOMIC_LOADW_SUB);
5104     OPCODE(ATOMIC_LOADW_AND);
5105     OPCODE(ATOMIC_LOADW_OR);
5106     OPCODE(ATOMIC_LOADW_XOR);
5107     OPCODE(ATOMIC_LOADW_NAND);
5108     OPCODE(ATOMIC_LOADW_MIN);
5109     OPCODE(ATOMIC_LOADW_MAX);
5110     OPCODE(ATOMIC_LOADW_UMIN);
5111     OPCODE(ATOMIC_LOADW_UMAX);
5112     OPCODE(ATOMIC_CMP_SWAPW);
5113     OPCODE(ATOMIC_CMP_SWAP);
5114     OPCODE(ATOMIC_LOAD_128);
5115     OPCODE(ATOMIC_STORE_128);
5116     OPCODE(ATOMIC_CMP_SWAP_128);
5117     OPCODE(LRV);
5118     OPCODE(STRV);
5119     OPCODE(PREFETCH);
5120   }
5121   return nullptr;
5122 #undef OPCODE
5123 }
5124 
5125 // Return true if VT is a vector whose elements are a whole number of bytes
5126 // in width. Also check for presence of vector support.
5127 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5128   if (!Subtarget.hasVector())
5129     return false;
5130 
5131   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5132 }
5133 
5134 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5135 // producing a result of type ResVT.  Op is a possibly bitcast version
5136 // of the input vector and Index is the index (based on type VecVT) that
5137 // should be extracted.  Return the new extraction if a simplification
5138 // was possible or if Force is true.
5139 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5140                                               EVT VecVT, SDValue Op,
5141                                               unsigned Index,
5142                                               DAGCombinerInfo &DCI,
5143                                               bool Force) const {
5144   SelectionDAG &DAG = DCI.DAG;
5145 
5146   // The number of bytes being extracted.
5147   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5148 
5149   for (;;) {
5150     unsigned Opcode = Op.getOpcode();
5151     if (Opcode == ISD::BITCAST)
5152       // Look through bitcasts.
5153       Op = Op.getOperand(0);
5154     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5155              canTreatAsByteVector(Op.getValueType())) {
5156       // Get a VPERM-like permute mask and see whether the bytes covered
5157       // by the extracted element are a contiguous sequence from one
5158       // source operand.
5159       SmallVector<int, SystemZ::VectorBytes> Bytes;
5160       if (!getVPermMask(Op, Bytes))
5161         break;
5162       int First;
5163       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5164                            BytesPerElement, First))
5165         break;
5166       if (First < 0)
5167         return DAG.getUNDEF(ResVT);
5168       // Make sure the contiguous sequence starts at a multiple of the
5169       // original element size.
5170       unsigned Byte = unsigned(First) % Bytes.size();
5171       if (Byte % BytesPerElement != 0)
5172         break;
5173       // We can get the extracted value directly from an input.
5174       Index = Byte / BytesPerElement;
5175       Op = Op.getOperand(unsigned(First) / Bytes.size());
5176       Force = true;
5177     } else if (Opcode == ISD::BUILD_VECTOR &&
5178                canTreatAsByteVector(Op.getValueType())) {
5179       // We can only optimize this case if the BUILD_VECTOR elements are
5180       // at least as wide as the extracted value.
5181       EVT OpVT = Op.getValueType();
5182       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5183       if (OpBytesPerElement < BytesPerElement)
5184         break;
5185       // Make sure that the least-significant bit of the extracted value
5186       // is the least significant bit of an input.
5187       unsigned End = (Index + 1) * BytesPerElement;
5188       if (End % OpBytesPerElement != 0)
5189         break;
5190       // We're extracting the low part of one operand of the BUILD_VECTOR.
5191       Op = Op.getOperand(End / OpBytesPerElement - 1);
5192       if (!Op.getValueType().isInteger()) {
5193         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5194         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5195         DCI.AddToWorklist(Op.getNode());
5196       }
5197       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5198       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5199       if (VT != ResVT) {
5200         DCI.AddToWorklist(Op.getNode());
5201         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5202       }
5203       return Op;
5204     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5205                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5206                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5207                canTreatAsByteVector(Op.getValueType()) &&
5208                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5209       // Make sure that only the unextended bits are significant.
5210       EVT ExtVT = Op.getValueType();
5211       EVT OpVT = Op.getOperand(0).getValueType();
5212       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5213       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5214       unsigned Byte = Index * BytesPerElement;
5215       unsigned SubByte = Byte % ExtBytesPerElement;
5216       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5217       if (SubByte < MinSubByte ||
5218           SubByte + BytesPerElement > ExtBytesPerElement)
5219         break;
5220       // Get the byte offset of the unextended element
5221       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5222       // ...then add the byte offset relative to that element.
5223       Byte += SubByte - MinSubByte;
5224       if (Byte % BytesPerElement != 0)
5225         break;
5226       Op = Op.getOperand(0);
5227       Index = Byte / BytesPerElement;
5228       Force = true;
5229     } else
5230       break;
5231   }
5232   if (Force) {
5233     if (Op.getValueType() != VecVT) {
5234       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5235       DCI.AddToWorklist(Op.getNode());
5236     }
5237     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5238                        DAG.getConstant(Index, DL, MVT::i32));
5239   }
5240   return SDValue();
5241 }
5242 
5243 // Optimize vector operations in scalar value Op on the basis that Op
5244 // is truncated to TruncVT.
5245 SDValue SystemZTargetLowering::combineTruncateExtract(
5246     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5247   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5248   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5249   // of type TruncVT.
5250   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5251       TruncVT.getSizeInBits() % 8 == 0) {
5252     SDValue Vec = Op.getOperand(0);
5253     EVT VecVT = Vec.getValueType();
5254     if (canTreatAsByteVector(VecVT)) {
5255       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5256         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5257         unsigned TruncBytes = TruncVT.getStoreSize();
5258         if (BytesPerElement % TruncBytes == 0) {
5259           // Calculate the value of Y' in the above description.  We are
5260           // splitting the original elements into Scale equal-sized pieces
5261           // and for truncation purposes want the last (least-significant)
5262           // of these pieces for IndexN.  This is easiest to do by calculating
5263           // the start index of the following element and then subtracting 1.
5264           unsigned Scale = BytesPerElement / TruncBytes;
5265           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5266 
5267           // Defer the creation of the bitcast from X to combineExtract,
5268           // which might be able to optimize the extraction.
5269           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5270                                    VecVT.getStoreSize() / TruncBytes);
5271           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5272           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5273         }
5274       }
5275     }
5276   }
5277   return SDValue();
5278 }
5279 
5280 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5281     SDNode *N, DAGCombinerInfo &DCI) const {
5282   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5283   SelectionDAG &DAG = DCI.DAG;
5284   SDValue N0 = N->getOperand(0);
5285   EVT VT = N->getValueType(0);
5286   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5287     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5288     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5289     if (TrueOp && FalseOp) {
5290       SDLoc DL(N0);
5291       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5292                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5293                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5294       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5295       // If N0 has multiple uses, change other uses as well.
5296       if (!N0.hasOneUse()) {
5297         SDValue TruncSelect =
5298           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5299         DCI.CombineTo(N0.getNode(), TruncSelect);
5300       }
5301       return NewSelect;
5302     }
5303   }
5304   return SDValue();
5305 }
5306 
5307 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5308     SDNode *N, DAGCombinerInfo &DCI) const {
5309   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5310   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5311   // into (select_cc LHS, RHS, -1, 0, COND)
5312   SelectionDAG &DAG = DCI.DAG;
5313   SDValue N0 = N->getOperand(0);
5314   EVT VT = N->getValueType(0);
5315   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5316   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5317     N0 = N0.getOperand(0);
5318   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5319     SDLoc DL(N0);
5320     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5321                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5322                       N0.getOperand(2) };
5323     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5324   }
5325   return SDValue();
5326 }
5327 
5328 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5329     SDNode *N, DAGCombinerInfo &DCI) const {
5330   // Convert (sext (ashr (shl X, C1), C2)) to
5331   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5332   // cheap as narrower ones.
5333   SelectionDAG &DAG = DCI.DAG;
5334   SDValue N0 = N->getOperand(0);
5335   EVT VT = N->getValueType(0);
5336   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5337     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5338     SDValue Inner = N0.getOperand(0);
5339     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5340       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5341         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5342         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5343         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5344         EVT ShiftVT = N0.getOperand(1).getValueType();
5345         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5346                                   Inner.getOperand(0));
5347         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5348                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5349                                                   ShiftVT));
5350         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5351                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5352       }
5353     }
5354   }
5355   return SDValue();
5356 }
5357 
5358 SDValue SystemZTargetLowering::combineMERGE(
5359     SDNode *N, DAGCombinerInfo &DCI) const {
5360   SelectionDAG &DAG = DCI.DAG;
5361   unsigned Opcode = N->getOpcode();
5362   SDValue Op0 = N->getOperand(0);
5363   SDValue Op1 = N->getOperand(1);
5364   if (Op0.getOpcode() == ISD::BITCAST)
5365     Op0 = Op0.getOperand(0);
5366   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5367     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5368     // for v4f32.
5369     if (Op1 == N->getOperand(0))
5370       return Op1;
5371     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5372     EVT VT = Op1.getValueType();
5373     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5374     if (ElemBytes <= 4) {
5375       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5376                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5377       EVT InVT = VT.changeVectorElementTypeToInteger();
5378       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5379                                    SystemZ::VectorBytes / ElemBytes / 2);
5380       if (VT != InVT) {
5381         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5382         DCI.AddToWorklist(Op1.getNode());
5383       }
5384       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5385       DCI.AddToWorklist(Op.getNode());
5386       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5387     }
5388   }
5389   return SDValue();
5390 }
5391 
5392 SDValue SystemZTargetLowering::combineLOAD(
5393     SDNode *N, DAGCombinerInfo &DCI) const {
5394   SelectionDAG &DAG = DCI.DAG;
5395   EVT LdVT = N->getValueType(0);
5396   if (LdVT.isVector() || LdVT.isInteger())
5397     return SDValue();
5398   // Transform a scalar load that is REPLICATEd as well as having other
5399   // use(s) to the form where the other use(s) use the first element of the
5400   // REPLICATE instead of the load. Otherwise instruction selection will not
5401   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5402   // point loads.
5403 
5404   SDValue Replicate;
5405   SmallVector<SDNode*, 8> OtherUses;
5406   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5407        UI != UE; ++UI) {
5408     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5409       if (Replicate)
5410         return SDValue(); // Should never happen
5411       Replicate = SDValue(*UI, 0);
5412     }
5413     else if (UI.getUse().getResNo() == 0)
5414       OtherUses.push_back(*UI);
5415   }
5416   if (!Replicate || OtherUses.empty())
5417     return SDValue();
5418 
5419   SDLoc DL(N);
5420   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5421                               Replicate, DAG.getConstant(0, DL, MVT::i32));
5422   // Update uses of the loaded Value while preserving old chains.
5423   for (SDNode *U : OtherUses) {
5424     SmallVector<SDValue, 8> Ops;
5425     for (SDValue Op : U->ops())
5426       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5427     DAG.UpdateNodeOperands(U, Ops);
5428   }
5429   return SDValue(N, 0);
5430 }
5431 
5432 SDValue SystemZTargetLowering::combineSTORE(
5433     SDNode *N, DAGCombinerInfo &DCI) const {
5434   SelectionDAG &DAG = DCI.DAG;
5435   auto *SN = cast<StoreSDNode>(N);
5436   auto &Op1 = N->getOperand(1);
5437   EVT MemVT = SN->getMemoryVT();
5438   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5439   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5440   // If X has wider elements then convert it to:
5441   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5442   if (MemVT.isInteger() && SN->isTruncatingStore()) {
5443     if (SDValue Value =
5444             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5445       DCI.AddToWorklist(Value.getNode());
5446 
5447       // Rewrite the store with the new form of stored value.
5448       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5449                                SN->getBasePtr(), SN->getMemoryVT(),
5450                                SN->getMemOperand());
5451     }
5452   }
5453   // Combine STORE (BSWAP) into STRVH/STRV/STRVG
5454   if (!SN->isTruncatingStore() &&
5455       Op1.getOpcode() == ISD::BSWAP &&
5456       Op1.getNode()->hasOneUse() &&
5457       (Op1.getValueType() == MVT::i16 ||
5458        Op1.getValueType() == MVT::i32 ||
5459        Op1.getValueType() == MVT::i64)) {
5460 
5461       SDValue BSwapOp = Op1.getOperand(0);
5462 
5463       if (BSwapOp.getValueType() == MVT::i16)
5464         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5465 
5466       SDValue Ops[] = {
5467         N->getOperand(0), BSwapOp, N->getOperand(2)
5468       };
5469 
5470       return
5471         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5472                                 Ops, MemVT, SN->getMemOperand());
5473     }
5474   return SDValue();
5475 }
5476 
5477 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5478     SDNode *N, DAGCombinerInfo &DCI) const {
5479 
5480   if (!Subtarget.hasVector())
5481     return SDValue();
5482 
5483   // Try to simplify a vector extraction.
5484   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5485     SDValue Op0 = N->getOperand(0);
5486     EVT VecVT = Op0.getValueType();
5487     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
5488                           IndexN->getZExtValue(), DCI, false);
5489   }
5490   return SDValue();
5491 }
5492 
5493 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
5494     SDNode *N, DAGCombinerInfo &DCI) const {
5495   SelectionDAG &DAG = DCI.DAG;
5496   // (join_dwords X, X) == (replicate X)
5497   if (N->getOperand(0) == N->getOperand(1))
5498     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
5499                        N->getOperand(0));
5500   return SDValue();
5501 }
5502 
5503 SDValue SystemZTargetLowering::combineFP_ROUND(
5504     SDNode *N, DAGCombinerInfo &DCI) const {
5505 
5506   if (!Subtarget.hasVector())
5507     return SDValue();
5508 
5509   // (fpround (extract_vector_elt X 0))
5510   // (fpround (extract_vector_elt X 1)) ->
5511   // (extract_vector_elt (VROUND X) 0)
5512   // (extract_vector_elt (VROUND X) 2)
5513   //
5514   // This is a special case since the target doesn't really support v2f32s.
5515   SelectionDAG &DAG = DCI.DAG;
5516   SDValue Op0 = N->getOperand(0);
5517   if (N->getValueType(0) == MVT::f32 &&
5518       Op0.hasOneUse() &&
5519       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5520       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
5521       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5522       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5523     SDValue Vec = Op0.getOperand(0);
5524     for (auto *U : Vec->uses()) {
5525       if (U != Op0.getNode() &&
5526           U->hasOneUse() &&
5527           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5528           U->getOperand(0) == Vec &&
5529           U->getOperand(1).getOpcode() == ISD::Constant &&
5530           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
5531         SDValue OtherRound = SDValue(*U->use_begin(), 0);
5532         if (OtherRound.getOpcode() == ISD::FP_ROUND &&
5533             OtherRound.getOperand(0) == SDValue(U, 0) &&
5534             OtherRound.getValueType() == MVT::f32) {
5535           SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
5536                                        MVT::v4f32, Vec);
5537           DCI.AddToWorklist(VRound.getNode());
5538           SDValue Extract1 =
5539             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
5540                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
5541           DCI.AddToWorklist(Extract1.getNode());
5542           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
5543           SDValue Extract0 =
5544             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
5545                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5546           return Extract0;
5547         }
5548       }
5549     }
5550   }
5551   return SDValue();
5552 }
5553 
5554 SDValue SystemZTargetLowering::combineFP_EXTEND(
5555     SDNode *N, DAGCombinerInfo &DCI) const {
5556 
5557   if (!Subtarget.hasVector())
5558     return SDValue();
5559 
5560   // (fpextend (extract_vector_elt X 0))
5561   // (fpextend (extract_vector_elt X 2)) ->
5562   // (extract_vector_elt (VEXTEND X) 0)
5563   // (extract_vector_elt (VEXTEND X) 1)
5564   //
5565   // This is a special case since the target doesn't really support v2f32s.
5566   SelectionDAG &DAG = DCI.DAG;
5567   SDValue Op0 = N->getOperand(0);
5568   if (N->getValueType(0) == MVT::f64 &&
5569       Op0.hasOneUse() &&
5570       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5571       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
5572       Op0.getOperand(1).getOpcode() == ISD::Constant &&
5573       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
5574     SDValue Vec = Op0.getOperand(0);
5575     for (auto *U : Vec->uses()) {
5576       if (U != Op0.getNode() &&
5577           U->hasOneUse() &&
5578           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5579           U->getOperand(0) == Vec &&
5580           U->getOperand(1).getOpcode() == ISD::Constant &&
5581           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
5582         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
5583         if (OtherExtend.getOpcode() == ISD::FP_EXTEND &&
5584             OtherExtend.getOperand(0) == SDValue(U, 0) &&
5585             OtherExtend.getValueType() == MVT::f64) {
5586           SDValue VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
5587                                         MVT::v2f64, Vec);
5588           DCI.AddToWorklist(VExtend.getNode());
5589           SDValue Extract1 =
5590             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
5591                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
5592           DCI.AddToWorklist(Extract1.getNode());
5593           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
5594           SDValue Extract0 =
5595             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
5596                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
5597           return Extract0;
5598         }
5599       }
5600     }
5601   }
5602   return SDValue();
5603 }
5604 
5605 SDValue SystemZTargetLowering::combineBSWAP(
5606     SDNode *N, DAGCombinerInfo &DCI) const {
5607   SelectionDAG &DAG = DCI.DAG;
5608   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG
5609   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5610       N->getOperand(0).hasOneUse() &&
5611       (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 ||
5612        N->getValueType(0) == MVT::i64)) {
5613       SDValue Load = N->getOperand(0);
5614       LoadSDNode *LD = cast<LoadSDNode>(Load);
5615 
5616       // Create the byte-swapping load.
5617       SDValue Ops[] = {
5618         LD->getChain(),    // Chain
5619         LD->getBasePtr()   // Ptr
5620       };
5621       EVT LoadVT = N->getValueType(0);
5622       if (LoadVT == MVT::i16)
5623         LoadVT = MVT::i32;
5624       SDValue BSLoad =
5625         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
5626                                 DAG.getVTList(LoadVT, MVT::Other),
5627                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5628 
5629       // If this is an i16 load, insert the truncate.
5630       SDValue ResVal = BSLoad;
5631       if (N->getValueType(0) == MVT::i16)
5632         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
5633 
5634       // First, combine the bswap away.  This makes the value produced by the
5635       // load dead.
5636       DCI.CombineTo(N, ResVal);
5637 
5638       // Next, combine the load away, we give it a bogus result value but a real
5639       // chain result.  The result value is dead because the bswap is dead.
5640       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5641 
5642       // Return N so it doesn't get rechecked!
5643       return SDValue(N, 0);
5644     }
5645   return SDValue();
5646 }
5647 
5648 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
5649   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
5650   // set by the CCReg instruction using the CCValid / CCMask masks,
5651   // If the CCReg instruction is itself a ICMP testing the condition
5652   // code set by some other instruction, see whether we can directly
5653   // use that condition code.
5654 
5655   // Verify that we have an ICMP against some constant.
5656   if (CCValid != SystemZ::CCMASK_ICMP)
5657     return false;
5658   auto *ICmp = CCReg.getNode();
5659   if (ICmp->getOpcode() != SystemZISD::ICMP)
5660     return false;
5661   auto *CompareLHS = ICmp->getOperand(0).getNode();
5662   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
5663   if (!CompareRHS)
5664     return false;
5665 
5666   // Optimize the case where CompareLHS is a SELECT_CCMASK.
5667   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
5668     // Verify that we have an appropriate mask for a EQ or NE comparison.
5669     bool Invert = false;
5670     if (CCMask == SystemZ::CCMASK_CMP_NE)
5671       Invert = !Invert;
5672     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
5673       return false;
5674 
5675     // Verify that the ICMP compares against one of select values.
5676     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
5677     if (!TrueVal)
5678       return false;
5679     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
5680     if (!FalseVal)
5681       return false;
5682     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
5683       Invert = !Invert;
5684     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
5685       return false;
5686 
5687     // Compute the effective CC mask for the new branch or select.
5688     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
5689     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
5690     if (!NewCCValid || !NewCCMask)
5691       return false;
5692     CCValid = NewCCValid->getZExtValue();
5693     CCMask = NewCCMask->getZExtValue();
5694     if (Invert)
5695       CCMask ^= CCValid;
5696 
5697     // Return the updated CCReg link.
5698     CCReg = CompareLHS->getOperand(4);
5699     return true;
5700   }
5701 
5702   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
5703   if (CompareLHS->getOpcode() == ISD::SRA) {
5704     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
5705     if (!SRACount || SRACount->getZExtValue() != 30)
5706       return false;
5707     auto *SHL = CompareLHS->getOperand(0).getNode();
5708     if (SHL->getOpcode() != ISD::SHL)
5709       return false;
5710     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
5711     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
5712       return false;
5713     auto *IPM = SHL->getOperand(0).getNode();
5714     if (IPM->getOpcode() != SystemZISD::IPM)
5715       return false;
5716 
5717     // Avoid introducing CC spills (because SRA would clobber CC).
5718     if (!CompareLHS->hasOneUse())
5719       return false;
5720     // Verify that the ICMP compares against zero.
5721     if (CompareRHS->getZExtValue() != 0)
5722       return false;
5723 
5724     // Compute the effective CC mask for the new branch or select.
5725     switch (CCMask) {
5726     case SystemZ::CCMASK_CMP_EQ: break;
5727     case SystemZ::CCMASK_CMP_NE: break;
5728     case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break;
5729     case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break;
5730     case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break;
5731     case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break;
5732     default: return false;
5733     }
5734 
5735     // Return the updated CCReg link.
5736     CCReg = IPM->getOperand(0);
5737     return true;
5738   }
5739 
5740   return false;
5741 }
5742 
5743 SDValue SystemZTargetLowering::combineBR_CCMASK(
5744     SDNode *N, DAGCombinerInfo &DCI) const {
5745   SelectionDAG &DAG = DCI.DAG;
5746 
5747   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
5748   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5749   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5750   if (!CCValid || !CCMask)
5751     return SDValue();
5752 
5753   int CCValidVal = CCValid->getZExtValue();
5754   int CCMaskVal = CCMask->getZExtValue();
5755   SDValue Chain = N->getOperand(0);
5756   SDValue CCReg = N->getOperand(4);
5757 
5758   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
5759     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
5760                        Chain,
5761                        DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5762                        DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5763                        N->getOperand(3), CCReg);
5764   return SDValue();
5765 }
5766 
5767 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
5768     SDNode *N, DAGCombinerInfo &DCI) const {
5769   SelectionDAG &DAG = DCI.DAG;
5770 
5771   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
5772   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
5773   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
5774   if (!CCValid || !CCMask)
5775     return SDValue();
5776 
5777   int CCValidVal = CCValid->getZExtValue();
5778   int CCMaskVal = CCMask->getZExtValue();
5779   SDValue CCReg = N->getOperand(4);
5780 
5781   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
5782     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
5783                        N->getOperand(0),
5784                        N->getOperand(1),
5785                        DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32),
5786                        DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32),
5787                        CCReg);
5788   return SDValue();
5789 }
5790 
5791 
5792 SDValue SystemZTargetLowering::combineGET_CCMASK(
5793     SDNode *N, DAGCombinerInfo &DCI) const {
5794 
5795   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
5796   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
5797   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
5798   if (!CCValid || !CCMask)
5799     return SDValue();
5800   int CCValidVal = CCValid->getZExtValue();
5801   int CCMaskVal = CCMask->getZExtValue();
5802 
5803   SDValue Select = N->getOperand(0);
5804   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
5805     return SDValue();
5806 
5807   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
5808   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
5809   if (!SelectCCValid || !SelectCCMask)
5810     return SDValue();
5811   int SelectCCValidVal = SelectCCValid->getZExtValue();
5812   int SelectCCMaskVal = SelectCCMask->getZExtValue();
5813 
5814   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
5815   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
5816   if (!TrueVal || !FalseVal)
5817     return SDValue();
5818   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
5819     ;
5820   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
5821     SelectCCMaskVal ^= SelectCCValidVal;
5822   else
5823     return SDValue();
5824 
5825   if (SelectCCValidVal & ~CCValidVal)
5826     return SDValue();
5827   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
5828     return SDValue();
5829 
5830   return Select->getOperand(4);
5831 }
5832 
5833 SDValue SystemZTargetLowering::combineIntDIVREM(
5834     SDNode *N, DAGCombinerInfo &DCI) const {
5835   SelectionDAG &DAG = DCI.DAG;
5836   EVT VT = N->getValueType(0);
5837   // In the case where the divisor is a vector of constants a cheaper
5838   // sequence of instructions can replace the divide. BuildSDIV is called to
5839   // do this during DAG combining, but it only succeeds when it can build a
5840   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
5841   // since it is not Legal but Custom it can only happen before
5842   // legalization. Therefore we must scalarize this early before Combine
5843   // 1. For widened vectors, this is already the result of type legalization.
5844   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
5845       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
5846     return DAG.UnrollVectorOp(N);
5847   return SDValue();
5848 }
5849 
5850 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
5851   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
5852     return N->getOperand(0);
5853   return N;
5854 }
5855 
5856 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
5857                                                  DAGCombinerInfo &DCI) const {
5858   switch(N->getOpcode()) {
5859   default: break;
5860   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
5861   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
5862   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
5863   case SystemZISD::MERGE_HIGH:
5864   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
5865   case ISD::LOAD:               return combineLOAD(N, DCI);
5866   case ISD::STORE:              return combineSTORE(N, DCI);
5867   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
5868   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
5869   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
5870   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
5871   case ISD::BSWAP:              return combineBSWAP(N, DCI);
5872   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
5873   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
5874   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
5875   case ISD::SDIV:
5876   case ISD::UDIV:
5877   case ISD::SREM:
5878   case ISD::UREM:               return combineIntDIVREM(N, DCI);
5879   }
5880 
5881   return SDValue();
5882 }
5883 
5884 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
5885 // are for Op.
5886 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
5887                                     unsigned OpNo) {
5888   EVT VT = Op.getValueType();
5889   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
5890   APInt SrcDemE;
5891   unsigned Opcode = Op.getOpcode();
5892   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
5893     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5894     switch (Id) {
5895     case Intrinsic::s390_vpksh:   // PACKS
5896     case Intrinsic::s390_vpksf:
5897     case Intrinsic::s390_vpksg:
5898     case Intrinsic::s390_vpkshs:  // PACKS_CC
5899     case Intrinsic::s390_vpksfs:
5900     case Intrinsic::s390_vpksgs:
5901     case Intrinsic::s390_vpklsh:  // PACKLS
5902     case Intrinsic::s390_vpklsf:
5903     case Intrinsic::s390_vpklsg:
5904     case Intrinsic::s390_vpklshs: // PACKLS_CC
5905     case Intrinsic::s390_vpklsfs:
5906     case Intrinsic::s390_vpklsgs:
5907       // VECTOR PACK truncates the elements of two source vectors into one.
5908       SrcDemE = DemandedElts;
5909       if (OpNo == 2)
5910         SrcDemE.lshrInPlace(NumElts / 2);
5911       SrcDemE = SrcDemE.trunc(NumElts / 2);
5912       break;
5913       // VECTOR UNPACK extends half the elements of the source vector.
5914     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
5915     case Intrinsic::s390_vuphh:
5916     case Intrinsic::s390_vuphf:
5917     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
5918     case Intrinsic::s390_vuplhh:
5919     case Intrinsic::s390_vuplhf:
5920       SrcDemE = APInt(NumElts * 2, 0);
5921       SrcDemE.insertBits(DemandedElts, 0);
5922       break;
5923     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
5924     case Intrinsic::s390_vuplhw:
5925     case Intrinsic::s390_vuplf:
5926     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
5927     case Intrinsic::s390_vupllh:
5928     case Intrinsic::s390_vupllf:
5929       SrcDemE = APInt(NumElts * 2, 0);
5930       SrcDemE.insertBits(DemandedElts, NumElts);
5931       break;
5932     case Intrinsic::s390_vpdi: {
5933       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
5934       SrcDemE = APInt(NumElts, 0);
5935       if (!DemandedElts[OpNo - 1])
5936         break;
5937       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5938       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
5939       // Demand input element 0 or 1, given by the mask bit value.
5940       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
5941       break;
5942     }
5943     case Intrinsic::s390_vsldb: {
5944       // VECTOR SHIFT LEFT DOUBLE BY BYTE
5945       assert(VT == MVT::v16i8 && "Unexpected type.");
5946       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
5947       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
5948       unsigned NumSrc0Els = 16 - FirstIdx;
5949       SrcDemE = APInt(NumElts, 0);
5950       if (OpNo == 1) {
5951         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
5952         SrcDemE.insertBits(DemEls, FirstIdx);
5953       } else {
5954         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
5955         SrcDemE.insertBits(DemEls, 0);
5956       }
5957       break;
5958     }
5959     case Intrinsic::s390_vperm:
5960       SrcDemE = APInt(NumElts, 1);
5961       break;
5962     default:
5963       llvm_unreachable("Unhandled intrinsic.");
5964       break;
5965     }
5966   } else {
5967     switch (Opcode) {
5968     case SystemZISD::JOIN_DWORDS:
5969       // Scalar operand.
5970       SrcDemE = APInt(1, 1);
5971       break;
5972     case SystemZISD::SELECT_CCMASK:
5973       SrcDemE = DemandedElts;
5974       break;
5975     default:
5976       llvm_unreachable("Unhandled opcode.");
5977       break;
5978     }
5979   }
5980   return SrcDemE;
5981 }
5982 
5983 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
5984                                   const APInt &DemandedElts,
5985                                   const SelectionDAG &DAG, unsigned Depth,
5986                                   unsigned OpNo) {
5987   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
5988   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
5989   KnownBits LHSKnown =
5990       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
5991   KnownBits RHSKnown =
5992       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
5993   Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
5994   Known.One = LHSKnown.One & RHSKnown.One;
5995 }
5996 
5997 void
5998 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
5999                                                      KnownBits &Known,
6000                                                      const APInt &DemandedElts,
6001                                                      const SelectionDAG &DAG,
6002                                                      unsigned Depth) const {
6003   Known.resetAll();
6004 
6005   // Intrinsic CC result is returned in the two low bits.
6006   unsigned tmp0, tmp1; // not used
6007   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6008     Known.Zero.setBitsFrom(2);
6009     return;
6010   }
6011   EVT VT = Op.getValueType();
6012   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6013     return;
6014   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6015           "KnownBits does not match VT in bitwidth");
6016   assert ((!VT.isVector() ||
6017            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6018           "DemandedElts does not match VT number of elements");
6019   unsigned BitWidth = Known.getBitWidth();
6020   unsigned Opcode = Op.getOpcode();
6021   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6022     bool IsLogical = false;
6023     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6024     switch (Id) {
6025     case Intrinsic::s390_vpksh:   // PACKS
6026     case Intrinsic::s390_vpksf:
6027     case Intrinsic::s390_vpksg:
6028     case Intrinsic::s390_vpkshs:  // PACKS_CC
6029     case Intrinsic::s390_vpksfs:
6030     case Intrinsic::s390_vpksgs:
6031     case Intrinsic::s390_vpklsh:  // PACKLS
6032     case Intrinsic::s390_vpklsf:
6033     case Intrinsic::s390_vpklsg:
6034     case Intrinsic::s390_vpklshs: // PACKLS_CC
6035     case Intrinsic::s390_vpklsfs:
6036     case Intrinsic::s390_vpklsgs:
6037     case Intrinsic::s390_vpdi:
6038     case Intrinsic::s390_vsldb:
6039     case Intrinsic::s390_vperm:
6040       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6041       break;
6042     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6043     case Intrinsic::s390_vuplhh:
6044     case Intrinsic::s390_vuplhf:
6045     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6046     case Intrinsic::s390_vupllh:
6047     case Intrinsic::s390_vupllf:
6048       IsLogical = true;
6049       LLVM_FALLTHROUGH;
6050     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6051     case Intrinsic::s390_vuphh:
6052     case Intrinsic::s390_vuphf:
6053     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6054     case Intrinsic::s390_vuplhw:
6055     case Intrinsic::s390_vuplf: {
6056       SDValue SrcOp = Op.getOperand(1);
6057       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6058       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6059       if (IsLogical) {
6060         Known = Known.zext(BitWidth, true);
6061       } else
6062         Known = Known.sext(BitWidth);
6063       break;
6064     }
6065     default:
6066       break;
6067     }
6068   } else {
6069     switch (Opcode) {
6070     case SystemZISD::JOIN_DWORDS:
6071     case SystemZISD::SELECT_CCMASK:
6072       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6073       break;
6074     case SystemZISD::REPLICATE: {
6075       SDValue SrcOp = Op.getOperand(0);
6076       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6077       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6078         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6079       break;
6080     }
6081     default:
6082       break;
6083     }
6084   }
6085 
6086   // Known has the width of the source operand(s). Adjust if needed to match
6087   // the passed bitwidth.
6088   if (Known.getBitWidth() != BitWidth)
6089     Known = Known.zextOrTrunc(BitWidth, false);
6090 }
6091 
6092 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6093                                         const SelectionDAG &DAG, unsigned Depth,
6094                                         unsigned OpNo) {
6095   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6096   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6097   if (LHS == 1) return 1; // Early out.
6098   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6099   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6100   if (RHS == 1) return 1; // Early out.
6101   unsigned Common = std::min(LHS, RHS);
6102   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6103   EVT VT = Op.getValueType();
6104   unsigned VTBits = VT.getScalarSizeInBits();
6105   if (SrcBitWidth > VTBits) { // PACK
6106     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6107     if (Common > SrcExtraBits)
6108       return (Common - SrcExtraBits);
6109     return 1;
6110   }
6111   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6112   return Common;
6113 }
6114 
6115 unsigned
6116 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6117     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6118     unsigned Depth) const {
6119   if (Op.getResNo() != 0)
6120     return 1;
6121   unsigned Opcode = Op.getOpcode();
6122   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6123     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6124     switch (Id) {
6125     case Intrinsic::s390_vpksh:   // PACKS
6126     case Intrinsic::s390_vpksf:
6127     case Intrinsic::s390_vpksg:
6128     case Intrinsic::s390_vpkshs:  // PACKS_CC
6129     case Intrinsic::s390_vpksfs:
6130     case Intrinsic::s390_vpksgs:
6131     case Intrinsic::s390_vpklsh:  // PACKLS
6132     case Intrinsic::s390_vpklsf:
6133     case Intrinsic::s390_vpklsg:
6134     case Intrinsic::s390_vpklshs: // PACKLS_CC
6135     case Intrinsic::s390_vpklsfs:
6136     case Intrinsic::s390_vpklsgs:
6137     case Intrinsic::s390_vpdi:
6138     case Intrinsic::s390_vsldb:
6139     case Intrinsic::s390_vperm:
6140       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6141     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6142     case Intrinsic::s390_vuphh:
6143     case Intrinsic::s390_vuphf:
6144     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6145     case Intrinsic::s390_vuplhw:
6146     case Intrinsic::s390_vuplf: {
6147       SDValue PackedOp = Op.getOperand(1);
6148       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6149       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6150       EVT VT = Op.getValueType();
6151       unsigned VTBits = VT.getScalarSizeInBits();
6152       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6153       return Tmp;
6154     }
6155     default:
6156       break;
6157     }
6158   } else {
6159     switch (Opcode) {
6160     case SystemZISD::SELECT_CCMASK:
6161       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6162     default:
6163       break;
6164     }
6165   }
6166 
6167   return 1;
6168 }
6169 
6170 //===----------------------------------------------------------------------===//
6171 // Custom insertion
6172 //===----------------------------------------------------------------------===//
6173 
6174 // Create a new basic block after MBB.
6175 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) {
6176   MachineFunction &MF = *MBB->getParent();
6177   MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock());
6178   MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB);
6179   return NewMBB;
6180 }
6181 
6182 // Split MBB after MI and return the new block (the one that contains
6183 // instructions after MI).
6184 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI,
6185                                           MachineBasicBlock *MBB) {
6186   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6187   NewMBB->splice(NewMBB->begin(), MBB,
6188                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6189   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6190   return NewMBB;
6191 }
6192 
6193 // Split MBB before MI and return the new block (the one that contains MI).
6194 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI,
6195                                            MachineBasicBlock *MBB) {
6196   MachineBasicBlock *NewMBB = emitBlockAfter(MBB);
6197   NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end());
6198   NewMBB->transferSuccessorsAndUpdatePHIs(MBB);
6199   return NewMBB;
6200 }
6201 
6202 // Force base value Base into a register before MI.  Return the register.
6203 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base,
6204                          const SystemZInstrInfo *TII) {
6205   if (Base.isReg())
6206     return Base.getReg();
6207 
6208   MachineBasicBlock *MBB = MI.getParent();
6209   MachineFunction &MF = *MBB->getParent();
6210   MachineRegisterInfo &MRI = MF.getRegInfo();
6211 
6212   unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6213   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6214       .add(Base)
6215       .addImm(0)
6216       .addReg(0);
6217   return Reg;
6218 }
6219 
6220 // The CC operand of MI might be missing a kill marker because there
6221 // were multiple uses of CC, and ISel didn't know which to mark.
6222 // Figure out whether MI should have had a kill marker.
6223 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6224   // Scan forward through BB for a use/def of CC.
6225   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6226   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6227     const MachineInstr& mi = *miI;
6228     if (mi.readsRegister(SystemZ::CC))
6229       return false;
6230     if (mi.definesRegister(SystemZ::CC))
6231       break; // Should have kill-flag - update below.
6232   }
6233 
6234   // If we hit the end of the block, check whether CC is live into a
6235   // successor.
6236   if (miI == MBB->end()) {
6237     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6238       if ((*SI)->isLiveIn(SystemZ::CC))
6239         return false;
6240   }
6241 
6242   return true;
6243 }
6244 
6245 // Return true if it is OK for this Select pseudo-opcode to be cascaded
6246 // together with other Select pseudo-opcodes into a single basic-block with
6247 // a conditional jump around it.
6248 static bool isSelectPseudo(MachineInstr &MI) {
6249   switch (MI.getOpcode()) {
6250   case SystemZ::Select32:
6251   case SystemZ::Select64:
6252   case SystemZ::SelectF32:
6253   case SystemZ::SelectF64:
6254   case SystemZ::SelectF128:
6255   case SystemZ::SelectVR32:
6256   case SystemZ::SelectVR64:
6257   case SystemZ::SelectVR128:
6258     return true;
6259 
6260   default:
6261     return false;
6262   }
6263 }
6264 
6265 // Helper function, which inserts PHI functions into SinkMBB:
6266 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6267 // where %FalseValue(i) and %TrueValue(i) are taken from the consequent Selects
6268 // in [MIItBegin, MIItEnd) range.
6269 static void createPHIsForSelects(MachineBasicBlock::iterator MIItBegin,
6270                                  MachineBasicBlock::iterator MIItEnd,
6271                                  MachineBasicBlock *TrueMBB,
6272                                  MachineBasicBlock *FalseMBB,
6273                                  MachineBasicBlock *SinkMBB) {
6274   MachineFunction *MF = TrueMBB->getParent();
6275   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6276 
6277   unsigned CCValid = MIItBegin->getOperand(3).getImm();
6278   unsigned CCMask = MIItBegin->getOperand(4).getImm();
6279   DebugLoc DL = MIItBegin->getDebugLoc();
6280 
6281   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6282 
6283   // As we are creating the PHIs, we have to be careful if there is more than
6284   // one.  Later Selects may reference the results of earlier Selects, but later
6285   // PHIs have to reference the individual true/false inputs from earlier PHIs.
6286   // That also means that PHI construction must work forward from earlier to
6287   // later, and that the code must maintain a mapping from earlier PHI's
6288   // destination registers, and the registers that went into the PHI.
6289   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6290 
6291   for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd;
6292        MIIt = skipDebugInstructionsForward(++MIIt, MIItEnd)) {
6293     unsigned DestReg = MIIt->getOperand(0).getReg();
6294     unsigned TrueReg = MIIt->getOperand(1).getReg();
6295     unsigned FalseReg = MIIt->getOperand(2).getReg();
6296 
6297     // If this Select we are generating is the opposite condition from
6298     // the jump we generated, then we have to swap the operands for the
6299     // PHI that is going to be generated.
6300     if (MIIt->getOperand(4).getImm() == (CCValid ^ CCMask))
6301       std::swap(TrueReg, FalseReg);
6302 
6303     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6304       TrueReg = RegRewriteTable[TrueReg].first;
6305 
6306     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6307       FalseReg = RegRewriteTable[FalseReg].second;
6308 
6309     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6310       .addReg(TrueReg).addMBB(TrueMBB)
6311       .addReg(FalseReg).addMBB(FalseMBB);
6312 
6313     // Add this PHI to the rewrite table.
6314     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6315   }
6316 
6317   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6318 }
6319 
6320 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6321 MachineBasicBlock *
6322 SystemZTargetLowering::emitSelect(MachineInstr &MI,
6323                                   MachineBasicBlock *MBB) const {
6324   const SystemZInstrInfo *TII =
6325       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6326 
6327   unsigned CCValid = MI.getOperand(3).getImm();
6328   unsigned CCMask = MI.getOperand(4).getImm();
6329   DebugLoc DL = MI.getDebugLoc();
6330 
6331   // If we have a sequence of Select* pseudo instructions using the
6332   // same condition code value, we want to expand all of them into
6333   // a single pair of basic blocks using the same condition.
6334   MachineInstr *LastMI = &MI;
6335   MachineBasicBlock::iterator NextMIIt = skipDebugInstructionsForward(
6336       std::next(MachineBasicBlock::iterator(MI)), MBB->end());
6337 
6338   if (isSelectPseudo(MI))
6339     while (NextMIIt != MBB->end() && isSelectPseudo(*NextMIIt) &&
6340            NextMIIt->getOperand(3).getImm() == CCValid &&
6341            (NextMIIt->getOperand(4).getImm() == CCMask ||
6342             NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask))) {
6343       LastMI = &*NextMIIt;
6344       NextMIIt = skipDebugInstructionsForward(++NextMIIt, MBB->end());
6345     }
6346 
6347   MachineBasicBlock *StartMBB = MBB;
6348   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
6349   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6350 
6351   // Unless CC was killed in the last Select instruction, mark it as
6352   // live-in to both FalseMBB and JoinMBB.
6353   if (!LastMI->killsRegister(SystemZ::CC) && !checkCCKill(*LastMI, JoinMBB)) {
6354     FalseMBB->addLiveIn(SystemZ::CC);
6355     JoinMBB->addLiveIn(SystemZ::CC);
6356   }
6357 
6358   //  StartMBB:
6359   //   BRC CCMask, JoinMBB
6360   //   # fallthrough to FalseMBB
6361   MBB = StartMBB;
6362   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6363     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6364   MBB->addSuccessor(JoinMBB);
6365   MBB->addSuccessor(FalseMBB);
6366 
6367   //  FalseMBB:
6368   //   # fallthrough to JoinMBB
6369   MBB = FalseMBB;
6370   MBB->addSuccessor(JoinMBB);
6371 
6372   //  JoinMBB:
6373   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
6374   //  ...
6375   MBB = JoinMBB;
6376   MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
6377   MachineBasicBlock::iterator MIItEnd = skipDebugInstructionsForward(
6378       std::next(MachineBasicBlock::iterator(LastMI)), MBB->end());
6379   createPHIsForSelects(MIItBegin, MIItEnd, StartMBB, FalseMBB, MBB);
6380 
6381   StartMBB->erase(MIItBegin, MIItEnd);
6382   return JoinMBB;
6383 }
6384 
6385 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
6386 // StoreOpcode is the store to use and Invert says whether the store should
6387 // happen when the condition is false rather than true.  If a STORE ON
6388 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
6389 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
6390                                                         MachineBasicBlock *MBB,
6391                                                         unsigned StoreOpcode,
6392                                                         unsigned STOCOpcode,
6393                                                         bool Invert) const {
6394   const SystemZInstrInfo *TII =
6395       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6396 
6397   unsigned SrcReg = MI.getOperand(0).getReg();
6398   MachineOperand Base = MI.getOperand(1);
6399   int64_t Disp = MI.getOperand(2).getImm();
6400   unsigned IndexReg = MI.getOperand(3).getReg();
6401   unsigned CCValid = MI.getOperand(4).getImm();
6402   unsigned CCMask = MI.getOperand(5).getImm();
6403   DebugLoc DL = MI.getDebugLoc();
6404 
6405   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
6406 
6407   // Use STOCOpcode if possible.  We could use different store patterns in
6408   // order to avoid matching the index register, but the performance trade-offs
6409   // might be more complicated in that case.
6410   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
6411     if (Invert)
6412       CCMask ^= CCValid;
6413 
6414     // ISel pattern matching also adds a load memory operand of the same
6415     // address, so take special care to find the storing memory operand.
6416     MachineMemOperand *MMO = nullptr;
6417     for (auto *I : MI.memoperands())
6418       if (I->isStore()) {
6419           MMO = I;
6420           break;
6421         }
6422 
6423     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
6424       .addReg(SrcReg)
6425       .add(Base)
6426       .addImm(Disp)
6427       .addImm(CCValid)
6428       .addImm(CCMask)
6429       .addMemOperand(MMO);
6430 
6431     MI.eraseFromParent();
6432     return MBB;
6433   }
6434 
6435   // Get the condition needed to branch around the store.
6436   if (!Invert)
6437     CCMask ^= CCValid;
6438 
6439   MachineBasicBlock *StartMBB = MBB;
6440   MachineBasicBlock *JoinMBB  = splitBlockBefore(MI, MBB);
6441   MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB);
6442 
6443   // Unless CC was killed in the CondStore instruction, mark it as
6444   // live-in to both FalseMBB and JoinMBB.
6445   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
6446     FalseMBB->addLiveIn(SystemZ::CC);
6447     JoinMBB->addLiveIn(SystemZ::CC);
6448   }
6449 
6450   //  StartMBB:
6451   //   BRC CCMask, JoinMBB
6452   //   # fallthrough to FalseMBB
6453   MBB = StartMBB;
6454   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6455     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
6456   MBB->addSuccessor(JoinMBB);
6457   MBB->addSuccessor(FalseMBB);
6458 
6459   //  FalseMBB:
6460   //   store %SrcReg, %Disp(%Index,%Base)
6461   //   # fallthrough to JoinMBB
6462   MBB = FalseMBB;
6463   BuildMI(MBB, DL, TII->get(StoreOpcode))
6464       .addReg(SrcReg)
6465       .add(Base)
6466       .addImm(Disp)
6467       .addReg(IndexReg);
6468   MBB->addSuccessor(JoinMBB);
6469 
6470   MI.eraseFromParent();
6471   return JoinMBB;
6472 }
6473 
6474 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
6475 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
6476 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
6477 // BitSize is the width of the field in bits, or 0 if this is a partword
6478 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
6479 // is one of the operands.  Invert says whether the field should be
6480 // inverted after performing BinOpcode (e.g. for NAND).
6481 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
6482     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
6483     unsigned BitSize, bool Invert) const {
6484   MachineFunction &MF = *MBB->getParent();
6485   const SystemZInstrInfo *TII =
6486       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6487   MachineRegisterInfo &MRI = MF.getRegInfo();
6488   bool IsSubWord = (BitSize < 32);
6489 
6490   // Extract the operands.  Base can be a register or a frame index.
6491   // Src2 can be a register or immediate.
6492   unsigned Dest = MI.getOperand(0).getReg();
6493   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6494   int64_t Disp = MI.getOperand(2).getImm();
6495   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
6496   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
6497   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
6498   DebugLoc DL = MI.getDebugLoc();
6499   if (IsSubWord)
6500     BitSize = MI.getOperand(6).getImm();
6501 
6502   // Subword operations use 32-bit registers.
6503   const TargetRegisterClass *RC = (BitSize <= 32 ?
6504                                    &SystemZ::GR32BitRegClass :
6505                                    &SystemZ::GR64BitRegClass);
6506   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
6507   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6508 
6509   // Get the right opcodes for the displacement.
6510   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
6511   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6512   assert(LOpcode && CSOpcode && "Displacement out of range");
6513 
6514   // Create virtual registers for temporary results.
6515   unsigned OrigVal       = MRI.createVirtualRegister(RC);
6516   unsigned OldVal        = MRI.createVirtualRegister(RC);
6517   unsigned NewVal        = (BinOpcode || IsSubWord ?
6518                             MRI.createVirtualRegister(RC) : Src2.getReg());
6519   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6520   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6521 
6522   // Insert a basic block for the main loop.
6523   MachineBasicBlock *StartMBB = MBB;
6524   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
6525   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
6526 
6527   //  StartMBB:
6528   //   ...
6529   //   %OrigVal = L Disp(%Base)
6530   //   # fall through to LoopMMB
6531   MBB = StartMBB;
6532   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6533   MBB->addSuccessor(LoopMBB);
6534 
6535   //  LoopMBB:
6536   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
6537   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6538   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
6539   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
6540   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
6541   //   JNE LoopMBB
6542   //   # fall through to DoneMMB
6543   MBB = LoopMBB;
6544   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6545     .addReg(OrigVal).addMBB(StartMBB)
6546     .addReg(Dest).addMBB(LoopMBB);
6547   if (IsSubWord)
6548     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6549       .addReg(OldVal).addReg(BitShift).addImm(0);
6550   if (Invert) {
6551     // Perform the operation normally and then invert every bit of the field.
6552     unsigned Tmp = MRI.createVirtualRegister(RC);
6553     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
6554     if (BitSize <= 32)
6555       // XILF with the upper BitSize bits set.
6556       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
6557         .addReg(Tmp).addImm(-1U << (32 - BitSize));
6558     else {
6559       // Use LCGR and add -1 to the result, which is more compact than
6560       // an XILF, XILH pair.
6561       unsigned Tmp2 = MRI.createVirtualRegister(RC);
6562       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
6563       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
6564         .addReg(Tmp2).addImm(-1);
6565     }
6566   } else if (BinOpcode)
6567     // A simply binary operation.
6568     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
6569         .addReg(RotatedOldVal)
6570         .add(Src2);
6571   else if (IsSubWord)
6572     // Use RISBG to rotate Src2 into position and use it to replace the
6573     // field in RotatedOldVal.
6574     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
6575       .addReg(RotatedOldVal).addReg(Src2.getReg())
6576       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
6577   if (IsSubWord)
6578     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6579       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6580   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6581       .addReg(OldVal)
6582       .addReg(NewVal)
6583       .add(Base)
6584       .addImm(Disp);
6585   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6586     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6587   MBB->addSuccessor(LoopMBB);
6588   MBB->addSuccessor(DoneMBB);
6589 
6590   MI.eraseFromParent();
6591   return DoneMBB;
6592 }
6593 
6594 // Implement EmitInstrWithCustomInserter for pseudo
6595 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
6596 // instruction that should be used to compare the current field with the
6597 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
6598 // for when the current field should be kept.  BitSize is the width of
6599 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
6600 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
6601     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
6602     unsigned KeepOldMask, unsigned BitSize) const {
6603   MachineFunction &MF = *MBB->getParent();
6604   const SystemZInstrInfo *TII =
6605       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6606   MachineRegisterInfo &MRI = MF.getRegInfo();
6607   bool IsSubWord = (BitSize < 32);
6608 
6609   // Extract the operands.  Base can be a register or a frame index.
6610   unsigned Dest = MI.getOperand(0).getReg();
6611   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6612   int64_t Disp = MI.getOperand(2).getImm();
6613   unsigned Src2 = MI.getOperand(3).getReg();
6614   unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0);
6615   unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0);
6616   DebugLoc DL = MI.getDebugLoc();
6617   if (IsSubWord)
6618     BitSize = MI.getOperand(6).getImm();
6619 
6620   // Subword operations use 32-bit registers.
6621   const TargetRegisterClass *RC = (BitSize <= 32 ?
6622                                    &SystemZ::GR32BitRegClass :
6623                                    &SystemZ::GR64BitRegClass);
6624   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
6625   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
6626 
6627   // Get the right opcodes for the displacement.
6628   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
6629   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
6630   assert(LOpcode && CSOpcode && "Displacement out of range");
6631 
6632   // Create virtual registers for temporary results.
6633   unsigned OrigVal       = MRI.createVirtualRegister(RC);
6634   unsigned OldVal        = MRI.createVirtualRegister(RC);
6635   unsigned NewVal        = MRI.createVirtualRegister(RC);
6636   unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
6637   unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
6638   unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
6639 
6640   // Insert 3 basic blocks for the loop.
6641   MachineBasicBlock *StartMBB  = MBB;
6642   MachineBasicBlock *DoneMBB   = splitBlockBefore(MI, MBB);
6643   MachineBasicBlock *LoopMBB   = emitBlockAfter(StartMBB);
6644   MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB);
6645   MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB);
6646 
6647   //  StartMBB:
6648   //   ...
6649   //   %OrigVal     = L Disp(%Base)
6650   //   # fall through to LoopMMB
6651   MBB = StartMBB;
6652   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
6653   MBB->addSuccessor(LoopMBB);
6654 
6655   //  LoopMBB:
6656   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
6657   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
6658   //   CompareOpcode %RotatedOldVal, %Src2
6659   //   BRC KeepOldMask, UpdateMBB
6660   MBB = LoopMBB;
6661   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6662     .addReg(OrigVal).addMBB(StartMBB)
6663     .addReg(Dest).addMBB(UpdateMBB);
6664   if (IsSubWord)
6665     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
6666       .addReg(OldVal).addReg(BitShift).addImm(0);
6667   BuildMI(MBB, DL, TII->get(CompareOpcode))
6668     .addReg(RotatedOldVal).addReg(Src2);
6669   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6670     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
6671   MBB->addSuccessor(UpdateMBB);
6672   MBB->addSuccessor(UseAltMBB);
6673 
6674   //  UseAltMBB:
6675   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
6676   //   # fall through to UpdateMMB
6677   MBB = UseAltMBB;
6678   if (IsSubWord)
6679     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
6680       .addReg(RotatedOldVal).addReg(Src2)
6681       .addImm(32).addImm(31 + BitSize).addImm(0);
6682   MBB->addSuccessor(UpdateMBB);
6683 
6684   //  UpdateMBB:
6685   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
6686   //                        [ %RotatedAltVal, UseAltMBB ]
6687   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
6688   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
6689   //   JNE LoopMBB
6690   //   # fall through to DoneMMB
6691   MBB = UpdateMBB;
6692   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
6693     .addReg(RotatedOldVal).addMBB(LoopMBB)
6694     .addReg(RotatedAltVal).addMBB(UseAltMBB);
6695   if (IsSubWord)
6696     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
6697       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
6698   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
6699       .addReg(OldVal)
6700       .addReg(NewVal)
6701       .add(Base)
6702       .addImm(Disp);
6703   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6704     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6705   MBB->addSuccessor(LoopMBB);
6706   MBB->addSuccessor(DoneMBB);
6707 
6708   MI.eraseFromParent();
6709   return DoneMBB;
6710 }
6711 
6712 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
6713 // instruction MI.
6714 MachineBasicBlock *
6715 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
6716                                           MachineBasicBlock *MBB) const {
6717 
6718   MachineFunction &MF = *MBB->getParent();
6719   const SystemZInstrInfo *TII =
6720       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6721   MachineRegisterInfo &MRI = MF.getRegInfo();
6722 
6723   // Extract the operands.  Base can be a register or a frame index.
6724   unsigned Dest = MI.getOperand(0).getReg();
6725   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
6726   int64_t Disp = MI.getOperand(2).getImm();
6727   unsigned OrigCmpVal = MI.getOperand(3).getReg();
6728   unsigned OrigSwapVal = MI.getOperand(4).getReg();
6729   unsigned BitShift = MI.getOperand(5).getReg();
6730   unsigned NegBitShift = MI.getOperand(6).getReg();
6731   int64_t BitSize = MI.getOperand(7).getImm();
6732   DebugLoc DL = MI.getDebugLoc();
6733 
6734   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
6735 
6736   // Get the right opcodes for the displacement.
6737   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
6738   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
6739   assert(LOpcode && CSOpcode && "Displacement out of range");
6740 
6741   // Create virtual registers for temporary results.
6742   unsigned OrigOldVal   = MRI.createVirtualRegister(RC);
6743   unsigned OldVal       = MRI.createVirtualRegister(RC);
6744   unsigned CmpVal       = MRI.createVirtualRegister(RC);
6745   unsigned SwapVal      = MRI.createVirtualRegister(RC);
6746   unsigned StoreVal     = MRI.createVirtualRegister(RC);
6747   unsigned RetryOldVal  = MRI.createVirtualRegister(RC);
6748   unsigned RetryCmpVal  = MRI.createVirtualRegister(RC);
6749   unsigned RetrySwapVal = MRI.createVirtualRegister(RC);
6750 
6751   // Insert 2 basic blocks for the loop.
6752   MachineBasicBlock *StartMBB = MBB;
6753   MachineBasicBlock *DoneMBB  = splitBlockBefore(MI, MBB);
6754   MachineBasicBlock *LoopMBB  = emitBlockAfter(StartMBB);
6755   MachineBasicBlock *SetMBB   = emitBlockAfter(LoopMBB);
6756 
6757   //  StartMBB:
6758   //   ...
6759   //   %OrigOldVal     = L Disp(%Base)
6760   //   # fall through to LoopMMB
6761   MBB = StartMBB;
6762   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
6763       .add(Base)
6764       .addImm(Disp)
6765       .addReg(0);
6766   MBB->addSuccessor(LoopMBB);
6767 
6768   //  LoopMBB:
6769   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
6770   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
6771   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
6772   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
6773   //                      ^^ The low BitSize bits contain the field
6774   //                         of interest.
6775   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
6776   //                      ^^ Replace the upper 32-BitSize bits of the
6777   //                         comparison value with those that we loaded,
6778   //                         so that we can use a full word comparison.
6779   //   CR %Dest, %RetryCmpVal
6780   //   JNE DoneMBB
6781   //   # Fall through to SetMBB
6782   MBB = LoopMBB;
6783   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
6784     .addReg(OrigOldVal).addMBB(StartMBB)
6785     .addReg(RetryOldVal).addMBB(SetMBB);
6786   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
6787     .addReg(OrigCmpVal).addMBB(StartMBB)
6788     .addReg(RetryCmpVal).addMBB(SetMBB);
6789   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
6790     .addReg(OrigSwapVal).addMBB(StartMBB)
6791     .addReg(RetrySwapVal).addMBB(SetMBB);
6792   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
6793     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
6794   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
6795     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6796   BuildMI(MBB, DL, TII->get(SystemZ::CR))
6797     .addReg(Dest).addReg(RetryCmpVal);
6798   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6799     .addImm(SystemZ::CCMASK_ICMP)
6800     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
6801   MBB->addSuccessor(DoneMBB);
6802   MBB->addSuccessor(SetMBB);
6803 
6804   //  SetMBB:
6805   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
6806   //                      ^^ Replace the upper 32-BitSize bits of the new
6807   //                         value with those that we loaded.
6808   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
6809   //                      ^^ Rotate the new field to its proper position.
6810   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
6811   //   JNE LoopMBB
6812   //   # fall through to ExitMMB
6813   MBB = SetMBB;
6814   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
6815     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
6816   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
6817     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
6818   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
6819       .addReg(OldVal)
6820       .addReg(StoreVal)
6821       .add(Base)
6822       .addImm(Disp);
6823   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6824     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
6825   MBB->addSuccessor(LoopMBB);
6826   MBB->addSuccessor(DoneMBB);
6827 
6828   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
6829   // to the block after the loop.  At this point, CC may have been defined
6830   // either by the CR in LoopMBB or by the CS in SetMBB.
6831   if (!MI.registerDefIsDead(SystemZ::CC))
6832     DoneMBB->addLiveIn(SystemZ::CC);
6833 
6834   MI.eraseFromParent();
6835   return DoneMBB;
6836 }
6837 
6838 // Emit a move from two GR64s to a GR128.
6839 MachineBasicBlock *
6840 SystemZTargetLowering::emitPair128(MachineInstr &MI,
6841                                    MachineBasicBlock *MBB) const {
6842   MachineFunction &MF = *MBB->getParent();
6843   const SystemZInstrInfo *TII =
6844       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6845   MachineRegisterInfo &MRI = MF.getRegInfo();
6846   DebugLoc DL = MI.getDebugLoc();
6847 
6848   unsigned Dest = MI.getOperand(0).getReg();
6849   unsigned Hi = MI.getOperand(1).getReg();
6850   unsigned Lo = MI.getOperand(2).getReg();
6851   unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6852   unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6853 
6854   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
6855   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
6856     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
6857   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6858     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
6859 
6860   MI.eraseFromParent();
6861   return MBB;
6862 }
6863 
6864 // Emit an extension from a GR64 to a GR128.  ClearEven is true
6865 // if the high register of the GR128 value must be cleared or false if
6866 // it's "don't care".
6867 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
6868                                                      MachineBasicBlock *MBB,
6869                                                      bool ClearEven) const {
6870   MachineFunction &MF = *MBB->getParent();
6871   const SystemZInstrInfo *TII =
6872       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6873   MachineRegisterInfo &MRI = MF.getRegInfo();
6874   DebugLoc DL = MI.getDebugLoc();
6875 
6876   unsigned Dest = MI.getOperand(0).getReg();
6877   unsigned Src = MI.getOperand(1).getReg();
6878   unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6879 
6880   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
6881   if (ClearEven) {
6882     unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
6883     unsigned Zero64   = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
6884 
6885     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
6886       .addImm(0);
6887     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
6888       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
6889     In128 = NewIn128;
6890   }
6891   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
6892     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
6893 
6894   MI.eraseFromParent();
6895   return MBB;
6896 }
6897 
6898 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
6899     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
6900   MachineFunction &MF = *MBB->getParent();
6901   const SystemZInstrInfo *TII =
6902       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6903   MachineRegisterInfo &MRI = MF.getRegInfo();
6904   DebugLoc DL = MI.getDebugLoc();
6905 
6906   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
6907   uint64_t DestDisp = MI.getOperand(1).getImm();
6908   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
6909   uint64_t SrcDisp = MI.getOperand(3).getImm();
6910   uint64_t Length = MI.getOperand(4).getImm();
6911 
6912   // When generating more than one CLC, all but the last will need to
6913   // branch to the end when a difference is found.
6914   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
6915                                splitBlockAfter(MI, MBB) : nullptr);
6916 
6917   // Check for the loop form, in which operand 5 is the trip count.
6918   if (MI.getNumExplicitOperands() > 5) {
6919     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
6920 
6921     uint64_t StartCountReg = MI.getOperand(5).getReg();
6922     uint64_t StartSrcReg   = forceReg(MI, SrcBase, TII);
6923     uint64_t StartDestReg  = (HaveSingleBase ? StartSrcReg :
6924                               forceReg(MI, DestBase, TII));
6925 
6926     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
6927     uint64_t ThisSrcReg  = MRI.createVirtualRegister(RC);
6928     uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg :
6929                             MRI.createVirtualRegister(RC));
6930     uint64_t NextSrcReg  = MRI.createVirtualRegister(RC);
6931     uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg :
6932                             MRI.createVirtualRegister(RC));
6933 
6934     RC = &SystemZ::GR64BitRegClass;
6935     uint64_t ThisCountReg = MRI.createVirtualRegister(RC);
6936     uint64_t NextCountReg = MRI.createVirtualRegister(RC);
6937 
6938     MachineBasicBlock *StartMBB = MBB;
6939     MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
6940     MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
6941     MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB);
6942 
6943     //  StartMBB:
6944     //   # fall through to LoopMMB
6945     MBB->addSuccessor(LoopMBB);
6946 
6947     //  LoopMBB:
6948     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
6949     //                      [ %NextDestReg, NextMBB ]
6950     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
6951     //                     [ %NextSrcReg, NextMBB ]
6952     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
6953     //                       [ %NextCountReg, NextMBB ]
6954     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
6955     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
6956     //   ( JLH EndMBB )
6957     //
6958     // The prefetch is used only for MVC.  The JLH is used only for CLC.
6959     MBB = LoopMBB;
6960 
6961     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
6962       .addReg(StartDestReg).addMBB(StartMBB)
6963       .addReg(NextDestReg).addMBB(NextMBB);
6964     if (!HaveSingleBase)
6965       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
6966         .addReg(StartSrcReg).addMBB(StartMBB)
6967         .addReg(NextSrcReg).addMBB(NextMBB);
6968     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
6969       .addReg(StartCountReg).addMBB(StartMBB)
6970       .addReg(NextCountReg).addMBB(NextMBB);
6971     if (Opcode == SystemZ::MVC)
6972       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
6973         .addImm(SystemZ::PFD_WRITE)
6974         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
6975     BuildMI(MBB, DL, TII->get(Opcode))
6976       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
6977       .addReg(ThisSrcReg).addImm(SrcDisp);
6978     if (EndMBB) {
6979       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
6980         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
6981         .addMBB(EndMBB);
6982       MBB->addSuccessor(EndMBB);
6983       MBB->addSuccessor(NextMBB);
6984     }
6985 
6986     // NextMBB:
6987     //   %NextDestReg = LA 256(%ThisDestReg)
6988     //   %NextSrcReg = LA 256(%ThisSrcReg)
6989     //   %NextCountReg = AGHI %ThisCountReg, -1
6990     //   CGHI %NextCountReg, 0
6991     //   JLH LoopMBB
6992     //   # fall through to DoneMMB
6993     //
6994     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
6995     MBB = NextMBB;
6996 
6997     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
6998       .addReg(ThisDestReg).addImm(256).addReg(0);
6999     if (!HaveSingleBase)
7000       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7001         .addReg(ThisSrcReg).addImm(256).addReg(0);
7002     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7003       .addReg(ThisCountReg).addImm(-1);
7004     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7005       .addReg(NextCountReg).addImm(0);
7006     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7007       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7008       .addMBB(LoopMBB);
7009     MBB->addSuccessor(LoopMBB);
7010     MBB->addSuccessor(DoneMBB);
7011 
7012     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7013     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7014     Length &= 255;
7015     if (EndMBB && !Length)
7016       // If the loop handled the whole CLC range, DoneMBB will be empty with
7017       // CC live-through into EndMBB, so add it as live-in.
7018       DoneMBB->addLiveIn(SystemZ::CC);
7019     MBB = DoneMBB;
7020   }
7021   // Handle any remaining bytes with straight-line code.
7022   while (Length > 0) {
7023     uint64_t ThisLength = std::min(Length, uint64_t(256));
7024     // The previous iteration might have created out-of-range displacements.
7025     // Apply them using LAY if so.
7026     if (!isUInt<12>(DestDisp)) {
7027       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7028       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7029           .add(DestBase)
7030           .addImm(DestDisp)
7031           .addReg(0);
7032       DestBase = MachineOperand::CreateReg(Reg, false);
7033       DestDisp = 0;
7034     }
7035     if (!isUInt<12>(SrcDisp)) {
7036       unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7037       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7038           .add(SrcBase)
7039           .addImm(SrcDisp)
7040           .addReg(0);
7041       SrcBase = MachineOperand::CreateReg(Reg, false);
7042       SrcDisp = 0;
7043     }
7044     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7045         .add(DestBase)
7046         .addImm(DestDisp)
7047         .addImm(ThisLength)
7048         .add(SrcBase)
7049         .addImm(SrcDisp)
7050         .setMemRefs(MI.memoperands());
7051     DestDisp += ThisLength;
7052     SrcDisp += ThisLength;
7053     Length -= ThisLength;
7054     // If there's another CLC to go, branch to the end if a difference
7055     // was found.
7056     if (EndMBB && Length > 0) {
7057       MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB);
7058       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7059         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7060         .addMBB(EndMBB);
7061       MBB->addSuccessor(EndMBB);
7062       MBB->addSuccessor(NextMBB);
7063       MBB = NextMBB;
7064     }
7065   }
7066   if (EndMBB) {
7067     MBB->addSuccessor(EndMBB);
7068     MBB = EndMBB;
7069     MBB->addLiveIn(SystemZ::CC);
7070   }
7071 
7072   MI.eraseFromParent();
7073   return MBB;
7074 }
7075 
7076 // Decompose string pseudo-instruction MI into a loop that continually performs
7077 // Opcode until CC != 3.
7078 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7079     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7080   MachineFunction &MF = *MBB->getParent();
7081   const SystemZInstrInfo *TII =
7082       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7083   MachineRegisterInfo &MRI = MF.getRegInfo();
7084   DebugLoc DL = MI.getDebugLoc();
7085 
7086   uint64_t End1Reg = MI.getOperand(0).getReg();
7087   uint64_t Start1Reg = MI.getOperand(1).getReg();
7088   uint64_t Start2Reg = MI.getOperand(2).getReg();
7089   uint64_t CharReg = MI.getOperand(3).getReg();
7090 
7091   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7092   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7093   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7094   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7095 
7096   MachineBasicBlock *StartMBB = MBB;
7097   MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB);
7098   MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB);
7099 
7100   //  StartMBB:
7101   //   # fall through to LoopMMB
7102   MBB->addSuccessor(LoopMBB);
7103 
7104   //  LoopMBB:
7105   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7106   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7107   //   R0L = %CharReg
7108   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7109   //   JO LoopMBB
7110   //   # fall through to DoneMMB
7111   //
7112   // The load of R0L can be hoisted by post-RA LICM.
7113   MBB = LoopMBB;
7114 
7115   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7116     .addReg(Start1Reg).addMBB(StartMBB)
7117     .addReg(End1Reg).addMBB(LoopMBB);
7118   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7119     .addReg(Start2Reg).addMBB(StartMBB)
7120     .addReg(End2Reg).addMBB(LoopMBB);
7121   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7122   BuildMI(MBB, DL, TII->get(Opcode))
7123     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7124     .addReg(This1Reg).addReg(This2Reg);
7125   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7126     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7127   MBB->addSuccessor(LoopMBB);
7128   MBB->addSuccessor(DoneMBB);
7129 
7130   DoneMBB->addLiveIn(SystemZ::CC);
7131 
7132   MI.eraseFromParent();
7133   return DoneMBB;
7134 }
7135 
7136 // Update TBEGIN instruction with final opcode and register clobbers.
7137 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7138     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7139     bool NoFloat) const {
7140   MachineFunction &MF = *MBB->getParent();
7141   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7142   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7143 
7144   // Update opcode.
7145   MI.setDesc(TII->get(Opcode));
7146 
7147   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7148   // Make sure to add the corresponding GRSM bits if they are missing.
7149   uint64_t Control = MI.getOperand(2).getImm();
7150   static const unsigned GPRControlBit[16] = {
7151     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7152     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7153   };
7154   Control |= GPRControlBit[15];
7155   if (TFI->hasFP(MF))
7156     Control |= GPRControlBit[11];
7157   MI.getOperand(2).setImm(Control);
7158 
7159   // Add GPR clobbers.
7160   for (int I = 0; I < 16; I++) {
7161     if ((Control & GPRControlBit[I]) == 0) {
7162       unsigned Reg = SystemZMC::GR64Regs[I];
7163       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7164     }
7165   }
7166 
7167   // Add FPR/VR clobbers.
7168   if (!NoFloat && (Control & 4) != 0) {
7169     if (Subtarget.hasVector()) {
7170       for (int I = 0; I < 32; I++) {
7171         unsigned Reg = SystemZMC::VR128Regs[I];
7172         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7173       }
7174     } else {
7175       for (int I = 0; I < 16; I++) {
7176         unsigned Reg = SystemZMC::FP64Regs[I];
7177         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7178       }
7179     }
7180   }
7181 
7182   return MBB;
7183 }
7184 
7185 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
7186     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7187   MachineFunction &MF = *MBB->getParent();
7188   MachineRegisterInfo *MRI = &MF.getRegInfo();
7189   const SystemZInstrInfo *TII =
7190       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7191   DebugLoc DL = MI.getDebugLoc();
7192 
7193   unsigned SrcReg = MI.getOperand(0).getReg();
7194 
7195   // Create new virtual register of the same class as source.
7196   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7197   unsigned DstReg = MRI->createVirtualRegister(RC);
7198 
7199   // Replace pseudo with a normal load-and-test that models the def as
7200   // well.
7201   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7202     .addReg(SrcReg);
7203   MI.eraseFromParent();
7204 
7205   return MBB;
7206 }
7207 
7208 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7209     MachineInstr &MI, MachineBasicBlock *MBB) const {
7210   switch (MI.getOpcode()) {
7211   case SystemZ::Select32:
7212   case SystemZ::Select64:
7213   case SystemZ::SelectF32:
7214   case SystemZ::SelectF64:
7215   case SystemZ::SelectF128:
7216   case SystemZ::SelectVR32:
7217   case SystemZ::SelectVR64:
7218   case SystemZ::SelectVR128:
7219     return emitSelect(MI, MBB);
7220 
7221   case SystemZ::CondStore8Mux:
7222     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
7223   case SystemZ::CondStore8MuxInv:
7224     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
7225   case SystemZ::CondStore16Mux:
7226     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
7227   case SystemZ::CondStore16MuxInv:
7228     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
7229   case SystemZ::CondStore32Mux:
7230     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
7231   case SystemZ::CondStore32MuxInv:
7232     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
7233   case SystemZ::CondStore8:
7234     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
7235   case SystemZ::CondStore8Inv:
7236     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
7237   case SystemZ::CondStore16:
7238     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
7239   case SystemZ::CondStore16Inv:
7240     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
7241   case SystemZ::CondStore32:
7242     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
7243   case SystemZ::CondStore32Inv:
7244     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
7245   case SystemZ::CondStore64:
7246     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
7247   case SystemZ::CondStore64Inv:
7248     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
7249   case SystemZ::CondStoreF32:
7250     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
7251   case SystemZ::CondStoreF32Inv:
7252     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
7253   case SystemZ::CondStoreF64:
7254     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
7255   case SystemZ::CondStoreF64Inv:
7256     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
7257 
7258   case SystemZ::PAIR128:
7259     return emitPair128(MI, MBB);
7260   case SystemZ::AEXT128:
7261     return emitExt128(MI, MBB, false);
7262   case SystemZ::ZEXT128:
7263     return emitExt128(MI, MBB, true);
7264 
7265   case SystemZ::ATOMIC_SWAPW:
7266     return emitAtomicLoadBinary(MI, MBB, 0, 0);
7267   case SystemZ::ATOMIC_SWAP_32:
7268     return emitAtomicLoadBinary(MI, MBB, 0, 32);
7269   case SystemZ::ATOMIC_SWAP_64:
7270     return emitAtomicLoadBinary(MI, MBB, 0, 64);
7271 
7272   case SystemZ::ATOMIC_LOADW_AR:
7273     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
7274   case SystemZ::ATOMIC_LOADW_AFI:
7275     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
7276   case SystemZ::ATOMIC_LOAD_AR:
7277     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
7278   case SystemZ::ATOMIC_LOAD_AHI:
7279     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
7280   case SystemZ::ATOMIC_LOAD_AFI:
7281     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
7282   case SystemZ::ATOMIC_LOAD_AGR:
7283     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
7284   case SystemZ::ATOMIC_LOAD_AGHI:
7285     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
7286   case SystemZ::ATOMIC_LOAD_AGFI:
7287     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
7288 
7289   case SystemZ::ATOMIC_LOADW_SR:
7290     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
7291   case SystemZ::ATOMIC_LOAD_SR:
7292     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
7293   case SystemZ::ATOMIC_LOAD_SGR:
7294     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
7295 
7296   case SystemZ::ATOMIC_LOADW_NR:
7297     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
7298   case SystemZ::ATOMIC_LOADW_NILH:
7299     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
7300   case SystemZ::ATOMIC_LOAD_NR:
7301     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
7302   case SystemZ::ATOMIC_LOAD_NILL:
7303     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
7304   case SystemZ::ATOMIC_LOAD_NILH:
7305     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
7306   case SystemZ::ATOMIC_LOAD_NILF:
7307     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
7308   case SystemZ::ATOMIC_LOAD_NGR:
7309     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
7310   case SystemZ::ATOMIC_LOAD_NILL64:
7311     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
7312   case SystemZ::ATOMIC_LOAD_NILH64:
7313     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
7314   case SystemZ::ATOMIC_LOAD_NIHL64:
7315     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
7316   case SystemZ::ATOMIC_LOAD_NIHH64:
7317     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
7318   case SystemZ::ATOMIC_LOAD_NILF64:
7319     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
7320   case SystemZ::ATOMIC_LOAD_NIHF64:
7321     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
7322 
7323   case SystemZ::ATOMIC_LOADW_OR:
7324     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
7325   case SystemZ::ATOMIC_LOADW_OILH:
7326     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
7327   case SystemZ::ATOMIC_LOAD_OR:
7328     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
7329   case SystemZ::ATOMIC_LOAD_OILL:
7330     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
7331   case SystemZ::ATOMIC_LOAD_OILH:
7332     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
7333   case SystemZ::ATOMIC_LOAD_OILF:
7334     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
7335   case SystemZ::ATOMIC_LOAD_OGR:
7336     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
7337   case SystemZ::ATOMIC_LOAD_OILL64:
7338     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
7339   case SystemZ::ATOMIC_LOAD_OILH64:
7340     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
7341   case SystemZ::ATOMIC_LOAD_OIHL64:
7342     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
7343   case SystemZ::ATOMIC_LOAD_OIHH64:
7344     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
7345   case SystemZ::ATOMIC_LOAD_OILF64:
7346     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
7347   case SystemZ::ATOMIC_LOAD_OIHF64:
7348     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
7349 
7350   case SystemZ::ATOMIC_LOADW_XR:
7351     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
7352   case SystemZ::ATOMIC_LOADW_XILF:
7353     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
7354   case SystemZ::ATOMIC_LOAD_XR:
7355     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
7356   case SystemZ::ATOMIC_LOAD_XILF:
7357     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
7358   case SystemZ::ATOMIC_LOAD_XGR:
7359     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
7360   case SystemZ::ATOMIC_LOAD_XILF64:
7361     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
7362   case SystemZ::ATOMIC_LOAD_XIHF64:
7363     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
7364 
7365   case SystemZ::ATOMIC_LOADW_NRi:
7366     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
7367   case SystemZ::ATOMIC_LOADW_NILHi:
7368     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
7369   case SystemZ::ATOMIC_LOAD_NRi:
7370     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
7371   case SystemZ::ATOMIC_LOAD_NILLi:
7372     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
7373   case SystemZ::ATOMIC_LOAD_NILHi:
7374     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
7375   case SystemZ::ATOMIC_LOAD_NILFi:
7376     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
7377   case SystemZ::ATOMIC_LOAD_NGRi:
7378     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
7379   case SystemZ::ATOMIC_LOAD_NILL64i:
7380     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
7381   case SystemZ::ATOMIC_LOAD_NILH64i:
7382     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
7383   case SystemZ::ATOMIC_LOAD_NIHL64i:
7384     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
7385   case SystemZ::ATOMIC_LOAD_NIHH64i:
7386     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
7387   case SystemZ::ATOMIC_LOAD_NILF64i:
7388     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
7389   case SystemZ::ATOMIC_LOAD_NIHF64i:
7390     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
7391 
7392   case SystemZ::ATOMIC_LOADW_MIN:
7393     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7394                                 SystemZ::CCMASK_CMP_LE, 0);
7395   case SystemZ::ATOMIC_LOAD_MIN_32:
7396     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7397                                 SystemZ::CCMASK_CMP_LE, 32);
7398   case SystemZ::ATOMIC_LOAD_MIN_64:
7399     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7400                                 SystemZ::CCMASK_CMP_LE, 64);
7401 
7402   case SystemZ::ATOMIC_LOADW_MAX:
7403     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7404                                 SystemZ::CCMASK_CMP_GE, 0);
7405   case SystemZ::ATOMIC_LOAD_MAX_32:
7406     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
7407                                 SystemZ::CCMASK_CMP_GE, 32);
7408   case SystemZ::ATOMIC_LOAD_MAX_64:
7409     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
7410                                 SystemZ::CCMASK_CMP_GE, 64);
7411 
7412   case SystemZ::ATOMIC_LOADW_UMIN:
7413     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7414                                 SystemZ::CCMASK_CMP_LE, 0);
7415   case SystemZ::ATOMIC_LOAD_UMIN_32:
7416     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7417                                 SystemZ::CCMASK_CMP_LE, 32);
7418   case SystemZ::ATOMIC_LOAD_UMIN_64:
7419     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7420                                 SystemZ::CCMASK_CMP_LE, 64);
7421 
7422   case SystemZ::ATOMIC_LOADW_UMAX:
7423     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7424                                 SystemZ::CCMASK_CMP_GE, 0);
7425   case SystemZ::ATOMIC_LOAD_UMAX_32:
7426     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
7427                                 SystemZ::CCMASK_CMP_GE, 32);
7428   case SystemZ::ATOMIC_LOAD_UMAX_64:
7429     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
7430                                 SystemZ::CCMASK_CMP_GE, 64);
7431 
7432   case SystemZ::ATOMIC_CMP_SWAPW:
7433     return emitAtomicCmpSwapW(MI, MBB);
7434   case SystemZ::MVCSequence:
7435   case SystemZ::MVCLoop:
7436     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
7437   case SystemZ::NCSequence:
7438   case SystemZ::NCLoop:
7439     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
7440   case SystemZ::OCSequence:
7441   case SystemZ::OCLoop:
7442     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
7443   case SystemZ::XCSequence:
7444   case SystemZ::XCLoop:
7445     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
7446   case SystemZ::CLCSequence:
7447   case SystemZ::CLCLoop:
7448     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
7449   case SystemZ::CLSTLoop:
7450     return emitStringWrapper(MI, MBB, SystemZ::CLST);
7451   case SystemZ::MVSTLoop:
7452     return emitStringWrapper(MI, MBB, SystemZ::MVST);
7453   case SystemZ::SRSTLoop:
7454     return emitStringWrapper(MI, MBB, SystemZ::SRST);
7455   case SystemZ::TBEGIN:
7456     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
7457   case SystemZ::TBEGIN_nofloat:
7458     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
7459   case SystemZ::TBEGINC:
7460     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
7461   case SystemZ::LTEBRCompare_VecPseudo:
7462     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
7463   case SystemZ::LTDBRCompare_VecPseudo:
7464     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
7465   case SystemZ::LTXBRCompare_VecPseudo:
7466     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
7467 
7468   case TargetOpcode::STACKMAP:
7469   case TargetOpcode::PATCHPOINT:
7470     return emitPatchPoint(MI, MBB);
7471 
7472   default:
7473     llvm_unreachable("Unexpected instr type to insert");
7474   }
7475 }
7476 
7477 // This is only used by the isel schedulers, and is needed only to prevent
7478 // compiler from crashing when list-ilp is used.
7479 const TargetRegisterClass *
7480 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
7481   if (VT == MVT::Untyped)
7482     return &SystemZ::ADDR128BitRegClass;
7483   return TargetLowering::getRepRegClassFor(VT);
7484 }
7485