1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0));
84 
85   // Set up the register classes.
86   if (Subtarget.hasHighWord())
87     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
88   else
89     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
90   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
91   if (!useSoftFloat()) {
92     if (Subtarget.hasVector()) {
93       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
94       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
95     } else {
96       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
97       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
98     }
99     if (Subtarget.hasVectorEnhancements1())
100       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
101     else
102       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
103 
104     if (Subtarget.hasVector()) {
105       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
106       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
107       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
111     }
112   }
113 
114   // Compute derived properties from the register classes
115   computeRegisterProperties(Subtarget.getRegisterInfo());
116 
117   // Set up special registers.
118   setStackPointerRegisterToSaveRestore(SystemZ::R15D);
119 
120   // TODO: It may be better to default to latency-oriented scheduling, however
121   // LLVM's current latency-oriented scheduler can't handle physreg definitions
122   // such as SystemZ has with CC, so set this to the register-pressure
123   // scheduler, because it can.
124   setSchedulingPreference(Sched::RegPressure);
125 
126   setBooleanContents(ZeroOrOneBooleanContent);
127   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
128 
129   // Instructions are strings of 2-byte aligned 2-byte values.
130   setMinFunctionAlignment(Align(2));
131   // For performance reasons we prefer 16-byte alignment.
132   setPrefFunctionAlignment(Align(16));
133 
134   // Handle operations that are handled in a similar way for all types.
135   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
136        I <= MVT::LAST_FP_VALUETYPE;
137        ++I) {
138     MVT VT = MVT::SimpleValueType(I);
139     if (isTypeLegal(VT)) {
140       // Lower SET_CC into an IPM-based sequence.
141       setOperationAction(ISD::SETCC, VT, Custom);
142       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
143       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
144 
145       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
146       setOperationAction(ISD::SELECT, VT, Expand);
147 
148       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
149       setOperationAction(ISD::SELECT_CC, VT, Custom);
150       setOperationAction(ISD::BR_CC,     VT, Custom);
151     }
152   }
153 
154   // Expand jump table branches as address arithmetic followed by an
155   // indirect jump.
156   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
157 
158   // Expand BRCOND into a BR_CC (see above).
159   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
160 
161   // Handle integer types.
162   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
163        I <= MVT::LAST_INTEGER_VALUETYPE;
164        ++I) {
165     MVT VT = MVT::SimpleValueType(I);
166     if (isTypeLegal(VT)) {
167       // Expand individual DIV and REMs into DIVREMs.
168       setOperationAction(ISD::SDIV, VT, Expand);
169       setOperationAction(ISD::UDIV, VT, Expand);
170       setOperationAction(ISD::SREM, VT, Expand);
171       setOperationAction(ISD::UREM, VT, Expand);
172       setOperationAction(ISD::SDIVREM, VT, Custom);
173       setOperationAction(ISD::UDIVREM, VT, Custom);
174 
175       // Support addition/subtraction with overflow.
176       setOperationAction(ISD::SADDO, VT, Custom);
177       setOperationAction(ISD::SSUBO, VT, Custom);
178 
179       // Support addition/subtraction with carry.
180       setOperationAction(ISD::UADDO, VT, Custom);
181       setOperationAction(ISD::USUBO, VT, Custom);
182 
183       // Support carry in as value rather than glue.
184       setOperationAction(ISD::ADDCARRY, VT, Custom);
185       setOperationAction(ISD::SUBCARRY, VT, Custom);
186 
187       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
188       // stores, putting a serialization instruction after the stores.
189       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
190       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
191 
192       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
193       // available, or if the operand is constant.
194       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
195 
196       // Use POPCNT on z196 and above.
197       if (Subtarget.hasPopulationCount())
198         setOperationAction(ISD::CTPOP, VT, Custom);
199       else
200         setOperationAction(ISD::CTPOP, VT, Expand);
201 
202       // No special instructions for these.
203       setOperationAction(ISD::CTTZ,            VT, Expand);
204       setOperationAction(ISD::ROTR,            VT, Expand);
205 
206       // Use *MUL_LOHI where possible instead of MULH*.
207       setOperationAction(ISD::MULHS, VT, Expand);
208       setOperationAction(ISD::MULHU, VT, Expand);
209       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
210       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
211 
212       // Only z196 and above have native support for conversions to unsigned.
213       // On z10, promoting to i64 doesn't generate an inexact condition for
214       // values that are outside the i32 range but in the i64 range, so use
215       // the default expansion.
216       if (!Subtarget.hasFPExtension())
217         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
218 
219       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
220       // default to Expand, so need to be modified to Legal where appropriate.
221       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
222       if (Subtarget.hasFPExtension())
223         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
224 
225       // And similarly for STRICT_[SU]INT_TO_FP.
226       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
227       if (Subtarget.hasFPExtension())
228         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
229     }
230   }
231 
232   // Type legalization will convert 8- and 16-bit atomic operations into
233   // forms that operate on i32s (but still keeping the original memory VT).
234   // Lower them into full i32 operations.
235   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
236   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
237   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
238   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
239   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
246 
247   // Even though i128 is not a legal type, we still need to custom lower
248   // the atomic operations in order to exploit SystemZ instructions.
249   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
250   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
251 
252   // We can use the CC result of compare-and-swap to implement
253   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
254   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
255   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
256   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
257 
258   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
259 
260   // Traps are legal, as we will convert them to "j .+2".
261   setOperationAction(ISD::TRAP, MVT::Other, Legal);
262 
263   // z10 has instructions for signed but not unsigned FP conversion.
264   // Handle unsigned 32-bit types as signed 64-bit types.
265   if (!Subtarget.hasFPExtension()) {
266     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
267     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
268     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
269     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
270   }
271 
272   // We have native support for a 64-bit CTLZ, via FLOGR.
273   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
274   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
275   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
276 
277   // On z15 we have native support for a 64-bit CTPOP.
278   if (Subtarget.hasMiscellaneousExtensions3()) {
279     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
280     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
281   }
282 
283   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
284   setOperationAction(ISD::OR, MVT::i64, Custom);
285 
286   // FIXME: Can we support these natively?
287   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
288   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
289   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
290 
291   // We have native instructions for i8, i16 and i32 extensions, but not i1.
292   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
293   for (MVT VT : MVT::integer_valuetypes()) {
294     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
295     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
296     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
297   }
298 
299   // Handle the various types of symbolic address.
300   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
301   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
302   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
303   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
304   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
305 
306   // We need to handle dynamic allocations specially because of the
307   // 160-byte area at the bottom of the stack.
308   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
309   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
310 
311   // Use custom expanders so that we can force the function to use
312   // a frame pointer.
313   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
314   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
315 
316   // Handle prefetches with PFD or PFDRL.
317   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
318 
319   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
320     // Assume by default that all vector operations need to be expanded.
321     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
322       if (getOperationAction(Opcode, VT) == Legal)
323         setOperationAction(Opcode, VT, Expand);
324 
325     // Likewise all truncating stores and extending loads.
326     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
327       setTruncStoreAction(VT, InnerVT, Expand);
328       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
329       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
330       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
331     }
332 
333     if (isTypeLegal(VT)) {
334       // These operations are legal for anything that can be stored in a
335       // vector register, even if there is no native support for the format
336       // as such.  In particular, we can do these for v4f32 even though there
337       // are no specific instructions for that format.
338       setOperationAction(ISD::LOAD, VT, Legal);
339       setOperationAction(ISD::STORE, VT, Legal);
340       setOperationAction(ISD::VSELECT, VT, Legal);
341       setOperationAction(ISD::BITCAST, VT, Legal);
342       setOperationAction(ISD::UNDEF, VT, Legal);
343 
344       // Likewise, except that we need to replace the nodes with something
345       // more specific.
346       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
347       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
348     }
349   }
350 
351   // Handle integer vector types.
352   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
353     if (isTypeLegal(VT)) {
354       // These operations have direct equivalents.
355       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
356       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
357       setOperationAction(ISD::ADD, VT, Legal);
358       setOperationAction(ISD::SUB, VT, Legal);
359       if (VT != MVT::v2i64)
360         setOperationAction(ISD::MUL, VT, Legal);
361       setOperationAction(ISD::AND, VT, Legal);
362       setOperationAction(ISD::OR, VT, Legal);
363       setOperationAction(ISD::XOR, VT, Legal);
364       if (Subtarget.hasVectorEnhancements1())
365         setOperationAction(ISD::CTPOP, VT, Legal);
366       else
367         setOperationAction(ISD::CTPOP, VT, Custom);
368       setOperationAction(ISD::CTTZ, VT, Legal);
369       setOperationAction(ISD::CTLZ, VT, Legal);
370 
371       // Convert a GPR scalar to a vector by inserting it into element 0.
372       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
373 
374       // Use a series of unpacks for extensions.
375       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
376       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
377 
378       // Detect shifts by a scalar amount and convert them into
379       // V*_BY_SCALAR.
380       setOperationAction(ISD::SHL, VT, Custom);
381       setOperationAction(ISD::SRA, VT, Custom);
382       setOperationAction(ISD::SRL, VT, Custom);
383 
384       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
385       // converted into ROTL.
386       setOperationAction(ISD::ROTL, VT, Expand);
387       setOperationAction(ISD::ROTR, VT, Expand);
388 
389       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
390       // and inverting the result as necessary.
391       setOperationAction(ISD::SETCC, VT, Custom);
392       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
393       if (Subtarget.hasVectorEnhancements1())
394         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
395     }
396   }
397 
398   if (Subtarget.hasVector()) {
399     // There should be no need to check for float types other than v2f64
400     // since <2 x f32> isn't a legal type.
401     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
402     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
403     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
404     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
405     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
406     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
407     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
408     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
409 
410     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
418   }
419 
420   if (Subtarget.hasVectorEnhancements2()) {
421     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
422     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
423     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
424     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
425     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
426     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
427     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
428     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
429 
430     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
438   }
439 
440   // Handle floating-point types.
441   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
442        I <= MVT::LAST_FP_VALUETYPE;
443        ++I) {
444     MVT VT = MVT::SimpleValueType(I);
445     if (isTypeLegal(VT)) {
446       // We can use FI for FRINT.
447       setOperationAction(ISD::FRINT, VT, Legal);
448 
449       // We can use the extended form of FI for other rounding operations.
450       if (Subtarget.hasFPExtension()) {
451         setOperationAction(ISD::FNEARBYINT, VT, Legal);
452         setOperationAction(ISD::FFLOOR, VT, Legal);
453         setOperationAction(ISD::FCEIL, VT, Legal);
454         setOperationAction(ISD::FTRUNC, VT, Legal);
455         setOperationAction(ISD::FROUND, VT, Legal);
456       }
457 
458       // No special instructions for these.
459       setOperationAction(ISD::FSIN, VT, Expand);
460       setOperationAction(ISD::FCOS, VT, Expand);
461       setOperationAction(ISD::FSINCOS, VT, Expand);
462       setOperationAction(ISD::FREM, VT, Expand);
463       setOperationAction(ISD::FPOW, VT, Expand);
464 
465       // Handle constrained floating-point operations.
466       setOperationAction(ISD::STRICT_FADD, VT, Legal);
467       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
468       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
469       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
470       setOperationAction(ISD::STRICT_FMA, VT, Legal);
471       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
472       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
473       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
474       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
475       if (Subtarget.hasFPExtension()) {
476         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
477         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
478         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
479         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
480         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
481       }
482     }
483   }
484 
485   // Handle floating-point vector types.
486   if (Subtarget.hasVector()) {
487     // Scalar-to-vector conversion is just a subreg.
488     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
489     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
490 
491     // Some insertions and extractions can be done directly but others
492     // need to go via integers.
493     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
494     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
495     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
496     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
497 
498     // These operations have direct equivalents.
499     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
500     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
501     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
502     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
503     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
504     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
505     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
506     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
507     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
508     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
509     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
510     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
511     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
512     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
513 
514     // Handle constrained floating-point operations.
515     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
516     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
517     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
518     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
519     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
520     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
521     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
522     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
523     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
524     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
527   }
528 
529   // The vector enhancements facility 1 has instructions for these.
530   if (Subtarget.hasVectorEnhancements1()) {
531     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
532     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
533     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
534     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
535     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
536     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
537     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
538     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
539     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
540     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
541     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
542     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
543     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
544     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
545 
546     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
547     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
548     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
549     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
550 
551     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
552     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
553     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
554     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
555 
556     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
557     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
558     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
559     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
560 
561     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
562     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
563     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
564     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
565 
566     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
567     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
568     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
569     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
570 
571     // Handle constrained floating-point operations.
572     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
573     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
574     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
575     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
576     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
577     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
578     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
579     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
580     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
581     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
584     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
585                      MVT::v4f32, MVT::v2f64 }) {
586       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
587       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
588       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
589       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
590     }
591   }
592 
593   // We only have fused f128 multiply-addition on vector registers.
594   if (!Subtarget.hasVectorEnhancements1()) {
595     setOperationAction(ISD::FMA, MVT::f128, Expand);
596     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
597   }
598 
599   // We don't have a copysign instruction on vector registers.
600   if (Subtarget.hasVectorEnhancements1())
601     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
602 
603   // Needed so that we don't try to implement f128 constant loads using
604   // a load-and-extend of a f80 constant (in cases where the constant
605   // would fit in an f80).
606   for (MVT VT : MVT::fp_valuetypes())
607     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
608 
609   // We don't have extending load instruction on vector registers.
610   if (Subtarget.hasVectorEnhancements1()) {
611     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
612     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
613   }
614 
615   // Floating-point truncation and stores need to be done separately.
616   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
617   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
618   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
619 
620   // We have 64-bit FPR<->GPR moves, but need special handling for
621   // 32-bit forms.
622   if (!Subtarget.hasVector()) {
623     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
624     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
625   }
626 
627   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
628   // structure, but VAEND is a no-op.
629   setOperationAction(ISD::VASTART, MVT::Other, Custom);
630   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
631   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
632 
633   // Codes for which we want to perform some z-specific combinations.
634   setTargetDAGCombine(ISD::ZERO_EXTEND);
635   setTargetDAGCombine(ISD::SIGN_EXTEND);
636   setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
637   setTargetDAGCombine(ISD::LOAD);
638   setTargetDAGCombine(ISD::STORE);
639   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
640   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
641   setTargetDAGCombine(ISD::FP_ROUND);
642   setTargetDAGCombine(ISD::STRICT_FP_ROUND);
643   setTargetDAGCombine(ISD::FP_EXTEND);
644   setTargetDAGCombine(ISD::SINT_TO_FP);
645   setTargetDAGCombine(ISD::UINT_TO_FP);
646   setTargetDAGCombine(ISD::STRICT_FP_EXTEND);
647   setTargetDAGCombine(ISD::BSWAP);
648   setTargetDAGCombine(ISD::SDIV);
649   setTargetDAGCombine(ISD::UDIV);
650   setTargetDAGCombine(ISD::SREM);
651   setTargetDAGCombine(ISD::UREM);
652   setTargetDAGCombine(ISD::INTRINSIC_VOID);
653   setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
654 
655   // Handle intrinsics.
656   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
657   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
658 
659   // We want to use MVC in preference to even a single load/store pair.
660   MaxStoresPerMemcpy = 0;
661   MaxStoresPerMemcpyOptSize = 0;
662 
663   // The main memset sequence is a byte store followed by an MVC.
664   // Two STC or MV..I stores win over that, but the kind of fused stores
665   // generated by target-independent code don't when the byte value is
666   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
667   // than "STC;MVC".  Handle the choice in target-specific code instead.
668   MaxStoresPerMemset = 0;
669   MaxStoresPerMemsetOptSize = 0;
670 
671   // Default to having -disable-strictnode-mutation on
672   IsStrictFPEnabled = true;
673 }
674 
675 bool SystemZTargetLowering::useSoftFloat() const {
676   return Subtarget.hasSoftFloat();
677 }
678 
679 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
680                                               LLVMContext &, EVT VT) const {
681   if (!VT.isVector())
682     return MVT::i32;
683   return VT.changeVectorElementTypeToInteger();
684 }
685 
686 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
687     const MachineFunction &MF, EVT VT) const {
688   VT = VT.getScalarType();
689 
690   if (!VT.isSimple())
691     return false;
692 
693   switch (VT.getSimpleVT().SimpleTy) {
694   case MVT::f32:
695   case MVT::f64:
696     return true;
697   case MVT::f128:
698     return Subtarget.hasVectorEnhancements1();
699   default:
700     break;
701   }
702 
703   return false;
704 }
705 
706 // Return true if the constant can be generated with a vector instruction,
707 // such as VGM, VGMB or VREPI.
708 bool SystemZVectorConstantInfo::isVectorConstantLegal(
709     const SystemZSubtarget &Subtarget) {
710   const SystemZInstrInfo *TII =
711       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
712   if (!Subtarget.hasVector() ||
713       (isFP128 && !Subtarget.hasVectorEnhancements1()))
714     return false;
715 
716   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
717   // preferred way of creating all-zero and all-one vectors so give it
718   // priority over other methods below.
719   unsigned Mask = 0;
720   unsigned I = 0;
721   for (; I < SystemZ::VectorBytes; ++I) {
722     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
723     if (Byte == 0xff)
724       Mask |= 1ULL << I;
725     else if (Byte != 0)
726       break;
727   }
728   if (I == SystemZ::VectorBytes) {
729     Opcode = SystemZISD::BYTE_MASK;
730     OpVals.push_back(Mask);
731     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
732     return true;
733   }
734 
735   if (SplatBitSize > 64)
736     return false;
737 
738   auto tryValue = [&](uint64_t Value) -> bool {
739     // Try VECTOR REPLICATE IMMEDIATE
740     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
741     if (isInt<16>(SignedValue)) {
742       OpVals.push_back(((unsigned) SignedValue));
743       Opcode = SystemZISD::REPLICATE;
744       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
745                                SystemZ::VectorBits / SplatBitSize);
746       return true;
747     }
748     // Try VECTOR GENERATE MASK
749     unsigned Start, End;
750     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
751       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
752       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
753       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
754       OpVals.push_back(Start - (64 - SplatBitSize));
755       OpVals.push_back(End - (64 - SplatBitSize));
756       Opcode = SystemZISD::ROTATE_MASK;
757       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
758                                SystemZ::VectorBits / SplatBitSize);
759       return true;
760     }
761     return false;
762   };
763 
764   // First try assuming that any undefined bits above the highest set bit
765   // and below the lowest set bit are 1s.  This increases the likelihood of
766   // being able to use a sign-extended element value in VECTOR REPLICATE
767   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
768   uint64_t SplatBitsZ = SplatBits.getZExtValue();
769   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
770   uint64_t Lower =
771       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
772   uint64_t Upper =
773       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
774   if (tryValue(SplatBitsZ | Upper | Lower))
775     return true;
776 
777   // Now try assuming that any undefined bits between the first and
778   // last defined set bits are set.  This increases the chances of
779   // using a non-wraparound mask.
780   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
781   return tryValue(SplatBitsZ | Middle);
782 }
783 
784 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
785   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
786   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
787 
788   // Find the smallest splat.
789   SplatBits = FPImm.bitcastToAPInt();
790   unsigned Width = SplatBits.getBitWidth();
791   while (Width > 8) {
792     unsigned HalfSize = Width / 2;
793     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
794     APInt LowValue = SplatBits.trunc(HalfSize);
795 
796     // If the two halves do not match, stop here.
797     if (HighValue != LowValue || 8 > HalfSize)
798       break;
799 
800     SplatBits = HighValue;
801     Width = HalfSize;
802   }
803   SplatUndef = 0;
804   SplatBitSize = Width;
805 }
806 
807 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
808   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
809   bool HasAnyUndefs;
810 
811   // Get IntBits by finding the 128 bit splat.
812   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
813                        true);
814 
815   // Get SplatBits by finding the 8 bit or greater splat.
816   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
817                        true);
818 }
819 
820 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
821                                          bool ForCodeSize) const {
822   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
823   if (Imm.isZero() || Imm.isNegZero())
824     return true;
825 
826   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
827 }
828 
829 /// Returns true if stack probing through inline assembly is requested.
830 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
831   // If the function specifically requests inline stack probes, emit them.
832   if (MF.getFunction().hasFnAttribute("probe-stack"))
833     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
834            "inline-asm";
835   return false;
836 }
837 
838 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
839   // We can use CGFI or CLGFI.
840   return isInt<32>(Imm) || isUInt<32>(Imm);
841 }
842 
843 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
844   // We can use ALGFI or SLGFI.
845   return isUInt<32>(Imm) || isUInt<32>(-Imm);
846 }
847 
848 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
849     EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const {
850   // Unaligned accesses should never be slower than the expanded version.
851   // We check specifically for aligned accesses in the few cases where
852   // they are required.
853   if (Fast)
854     *Fast = true;
855   return true;
856 }
857 
858 // Information about the addressing mode for a memory access.
859 struct AddressingMode {
860   // True if a long displacement is supported.
861   bool LongDisplacement;
862 
863   // True if use of index register is supported.
864   bool IndexReg;
865 
866   AddressingMode(bool LongDispl, bool IdxReg) :
867     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
868 };
869 
870 // Return the desired addressing mode for a Load which has only one use (in
871 // the same block) which is a Store.
872 static AddressingMode getLoadStoreAddrMode(bool HasVector,
873                                           Type *Ty) {
874   // With vector support a Load->Store combination may be combined to either
875   // an MVC or vector operations and it seems to work best to allow the
876   // vector addressing mode.
877   if (HasVector)
878     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
879 
880   // Otherwise only the MVC case is special.
881   bool MVC = Ty->isIntegerTy(8);
882   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
883 }
884 
885 // Return the addressing mode which seems most desirable given an LLVM
886 // Instruction pointer.
887 static AddressingMode
888 supportedAddressingMode(Instruction *I, bool HasVector) {
889   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
890     switch (II->getIntrinsicID()) {
891     default: break;
892     case Intrinsic::memset:
893     case Intrinsic::memmove:
894     case Intrinsic::memcpy:
895       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
896     }
897   }
898 
899   if (isa<LoadInst>(I) && I->hasOneUse()) {
900     auto *SingleUser = cast<Instruction>(*I->user_begin());
901     if (SingleUser->getParent() == I->getParent()) {
902       if (isa<ICmpInst>(SingleUser)) {
903         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
904           if (C->getBitWidth() <= 64 &&
905               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
906             // Comparison of memory with 16 bit signed / unsigned immediate
907             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
908       } else if (isa<StoreInst>(SingleUser))
909         // Load->Store
910         return getLoadStoreAddrMode(HasVector, I->getType());
911     }
912   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
913     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
914       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
915         // Load->Store
916         return getLoadStoreAddrMode(HasVector, LoadI->getType());
917   }
918 
919   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
920 
921     // * Use LDE instead of LE/LEY for z13 to avoid partial register
922     //   dependencies (LDE only supports small offsets).
923     // * Utilize the vector registers to hold floating point
924     //   values (vector load / store instructions only support small
925     //   offsets).
926 
927     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
928                          I->getOperand(0)->getType());
929     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
930     bool IsVectorAccess = MemAccessTy->isVectorTy();
931 
932     // A store of an extracted vector element will be combined into a VSTE type
933     // instruction.
934     if (!IsVectorAccess && isa<StoreInst>(I)) {
935       Value *DataOp = I->getOperand(0);
936       if (isa<ExtractElementInst>(DataOp))
937         IsVectorAccess = true;
938     }
939 
940     // A load which gets inserted into a vector element will be combined into a
941     // VLE type instruction.
942     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
943       User *LoadUser = *I->user_begin();
944       if (isa<InsertElementInst>(LoadUser))
945         IsVectorAccess = true;
946     }
947 
948     if (IsFPAccess || IsVectorAccess)
949       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
950   }
951 
952   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
953 }
954 
955 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
956        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
957   // Punt on globals for now, although they can be used in limited
958   // RELATIVE LONG cases.
959   if (AM.BaseGV)
960     return false;
961 
962   // Require a 20-bit signed offset.
963   if (!isInt<20>(AM.BaseOffs))
964     return false;
965 
966   AddressingMode SupportedAM(true, true);
967   if (I != nullptr)
968     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
969 
970   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
971     return false;
972 
973   if (!SupportedAM.IndexReg)
974     // No indexing allowed.
975     return AM.Scale == 0;
976   else
977     // Indexing is OK but no scale factor can be applied.
978     return AM.Scale == 0 || AM.Scale == 1;
979 }
980 
981 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
982   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
983     return false;
984   unsigned FromBits = FromType->getPrimitiveSizeInBits();
985   unsigned ToBits = ToType->getPrimitiveSizeInBits();
986   return FromBits > ToBits;
987 }
988 
989 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
990   if (!FromVT.isInteger() || !ToVT.isInteger())
991     return false;
992   unsigned FromBits = FromVT.getSizeInBits();
993   unsigned ToBits = ToVT.getSizeInBits();
994   return FromBits > ToBits;
995 }
996 
997 //===----------------------------------------------------------------------===//
998 // Inline asm support
999 //===----------------------------------------------------------------------===//
1000 
1001 TargetLowering::ConstraintType
1002 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1003   if (Constraint.size() == 1) {
1004     switch (Constraint[0]) {
1005     case 'a': // Address register
1006     case 'd': // Data register (equivalent to 'r')
1007     case 'f': // Floating-point register
1008     case 'h': // High-part register
1009     case 'r': // General-purpose register
1010     case 'v': // Vector register
1011       return C_RegisterClass;
1012 
1013     case 'Q': // Memory with base and unsigned 12-bit displacement
1014     case 'R': // Likewise, plus an index
1015     case 'S': // Memory with base and signed 20-bit displacement
1016     case 'T': // Likewise, plus an index
1017     case 'm': // Equivalent to 'T'.
1018       return C_Memory;
1019 
1020     case 'I': // Unsigned 8-bit constant
1021     case 'J': // Unsigned 12-bit constant
1022     case 'K': // Signed 16-bit constant
1023     case 'L': // Signed 20-bit displacement (on all targets we support)
1024     case 'M': // 0x7fffffff
1025       return C_Immediate;
1026 
1027     default:
1028       break;
1029     }
1030   }
1031   return TargetLowering::getConstraintType(Constraint);
1032 }
1033 
1034 TargetLowering::ConstraintWeight SystemZTargetLowering::
1035 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1036                                const char *constraint) const {
1037   ConstraintWeight weight = CW_Invalid;
1038   Value *CallOperandVal = info.CallOperandVal;
1039   // If we don't have a value, we can't do a match,
1040   // but allow it at the lowest weight.
1041   if (!CallOperandVal)
1042     return CW_Default;
1043   Type *type = CallOperandVal->getType();
1044   // Look at the constraint type.
1045   switch (*constraint) {
1046   default:
1047     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1048     break;
1049 
1050   case 'a': // Address register
1051   case 'd': // Data register (equivalent to 'r')
1052   case 'h': // High-part register
1053   case 'r': // General-purpose register
1054     if (CallOperandVal->getType()->isIntegerTy())
1055       weight = CW_Register;
1056     break;
1057 
1058   case 'f': // Floating-point register
1059     if (type->isFloatingPointTy())
1060       weight = CW_Register;
1061     break;
1062 
1063   case 'v': // Vector register
1064     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1065         Subtarget.hasVector())
1066       weight = CW_Register;
1067     break;
1068 
1069   case 'I': // Unsigned 8-bit constant
1070     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1071       if (isUInt<8>(C->getZExtValue()))
1072         weight = CW_Constant;
1073     break;
1074 
1075   case 'J': // Unsigned 12-bit constant
1076     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1077       if (isUInt<12>(C->getZExtValue()))
1078         weight = CW_Constant;
1079     break;
1080 
1081   case 'K': // Signed 16-bit constant
1082     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1083       if (isInt<16>(C->getSExtValue()))
1084         weight = CW_Constant;
1085     break;
1086 
1087   case 'L': // Signed 20-bit displacement (on all targets we support)
1088     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1089       if (isInt<20>(C->getSExtValue()))
1090         weight = CW_Constant;
1091     break;
1092 
1093   case 'M': // 0x7fffffff
1094     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1095       if (C->getZExtValue() == 0x7fffffff)
1096         weight = CW_Constant;
1097     break;
1098   }
1099   return weight;
1100 }
1101 
1102 // Parse a "{tNNN}" register constraint for which the register type "t"
1103 // has already been verified.  MC is the class associated with "t" and
1104 // Map maps 0-based register numbers to LLVM register numbers.
1105 static std::pair<unsigned, const TargetRegisterClass *>
1106 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1107                     const unsigned *Map, unsigned Size) {
1108   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1109   if (isdigit(Constraint[2])) {
1110     unsigned Index;
1111     bool Failed =
1112         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1113     if (!Failed && Index < Size && Map[Index])
1114       return std::make_pair(Map[Index], RC);
1115   }
1116   return std::make_pair(0U, nullptr);
1117 }
1118 
1119 std::pair<unsigned, const TargetRegisterClass *>
1120 SystemZTargetLowering::getRegForInlineAsmConstraint(
1121     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1122   if (Constraint.size() == 1) {
1123     // GCC Constraint Letters
1124     switch (Constraint[0]) {
1125     default: break;
1126     case 'd': // Data register (equivalent to 'r')
1127     case 'r': // General-purpose register
1128       if (VT == MVT::i64)
1129         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1130       else if (VT == MVT::i128)
1131         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1132       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1133 
1134     case 'a': // Address register
1135       if (VT == MVT::i64)
1136         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1137       else if (VT == MVT::i128)
1138         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1139       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1140 
1141     case 'h': // High-part register (an LLVM extension)
1142       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1143 
1144     case 'f': // Floating-point register
1145       if (!useSoftFloat()) {
1146         if (VT == MVT::f64)
1147           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1148         else if (VT == MVT::f128)
1149           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1150         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1151       }
1152       break;
1153     case 'v': // Vector register
1154       if (Subtarget.hasVector()) {
1155         if (VT == MVT::f32)
1156           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1157         if (VT == MVT::f64)
1158           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1159         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1160       }
1161       break;
1162     }
1163   }
1164   if (Constraint.size() > 0 && Constraint[0] == '{') {
1165     // We need to override the default register parsing for GPRs and FPRs
1166     // because the interpretation depends on VT.  The internal names of
1167     // the registers are also different from the external names
1168     // (F0D and F0S instead of F0, etc.).
1169     if (Constraint[1] == 'r') {
1170       if (VT == MVT::i32)
1171         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1172                                    SystemZMC::GR32Regs, 16);
1173       if (VT == MVT::i128)
1174         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1175                                    SystemZMC::GR128Regs, 16);
1176       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1177                                  SystemZMC::GR64Regs, 16);
1178     }
1179     if (Constraint[1] == 'f') {
1180       if (useSoftFloat())
1181         return std::make_pair(
1182             0u, static_cast<const TargetRegisterClass *>(nullptr));
1183       if (VT == MVT::f32)
1184         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1185                                    SystemZMC::FP32Regs, 16);
1186       if (VT == MVT::f128)
1187         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1188                                    SystemZMC::FP128Regs, 16);
1189       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1190                                  SystemZMC::FP64Regs, 16);
1191     }
1192     if (Constraint[1] == 'v') {
1193       if (!Subtarget.hasVector())
1194         return std::make_pair(
1195             0u, static_cast<const TargetRegisterClass *>(nullptr));
1196       if (VT == MVT::f32)
1197         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1198                                    SystemZMC::VR32Regs, 32);
1199       if (VT == MVT::f64)
1200         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1201                                    SystemZMC::VR64Regs, 32);
1202       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1203                                  SystemZMC::VR128Regs, 32);
1204     }
1205   }
1206   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1207 }
1208 
1209 // FIXME? Maybe this could be a TableGen attribute on some registers and
1210 // this table could be generated automatically from RegInfo.
1211 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1212                                                   const MachineFunction &MF) const {
1213 
1214   Register Reg = StringSwitch<Register>(RegName)
1215                    .Case("r15", SystemZ::R15D)
1216                    .Default(0);
1217   if (Reg)
1218     return Reg;
1219   report_fatal_error("Invalid register name global variable");
1220 }
1221 
1222 void SystemZTargetLowering::
1223 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1224                              std::vector<SDValue> &Ops,
1225                              SelectionDAG &DAG) const {
1226   // Only support length 1 constraints for now.
1227   if (Constraint.length() == 1) {
1228     switch (Constraint[0]) {
1229     case 'I': // Unsigned 8-bit constant
1230       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1231         if (isUInt<8>(C->getZExtValue()))
1232           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1233                                               Op.getValueType()));
1234       return;
1235 
1236     case 'J': // Unsigned 12-bit constant
1237       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1238         if (isUInt<12>(C->getZExtValue()))
1239           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1240                                               Op.getValueType()));
1241       return;
1242 
1243     case 'K': // Signed 16-bit constant
1244       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1245         if (isInt<16>(C->getSExtValue()))
1246           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1247                                               Op.getValueType()));
1248       return;
1249 
1250     case 'L': // Signed 20-bit displacement (on all targets we support)
1251       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1252         if (isInt<20>(C->getSExtValue()))
1253           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1254                                               Op.getValueType()));
1255       return;
1256 
1257     case 'M': // 0x7fffffff
1258       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1259         if (C->getZExtValue() == 0x7fffffff)
1260           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1261                                               Op.getValueType()));
1262       return;
1263     }
1264   }
1265   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1266 }
1267 
1268 //===----------------------------------------------------------------------===//
1269 // Calling conventions
1270 //===----------------------------------------------------------------------===//
1271 
1272 #include "SystemZGenCallingConv.inc"
1273 
1274 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1275   CallingConv::ID) const {
1276   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1277                                            SystemZ::R14D, 0 };
1278   return ScratchRegs;
1279 }
1280 
1281 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1282                                                      Type *ToType) const {
1283   return isTruncateFree(FromType, ToType);
1284 }
1285 
1286 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1287   return CI->isTailCall();
1288 }
1289 
1290 // We do not yet support 128-bit single-element vector types.  If the user
1291 // attempts to use such types as function argument or return type, prefer
1292 // to error out instead of emitting code violating the ABI.
1293 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1294   if (ArgVT.isVector() && !VT.isVector())
1295     report_fatal_error("Unsupported vector argument or return type");
1296 }
1297 
1298 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1299   for (unsigned i = 0; i < Ins.size(); ++i)
1300     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1301 }
1302 
1303 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1304   for (unsigned i = 0; i < Outs.size(); ++i)
1305     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1306 }
1307 
1308 // Value is a value that has been passed to us in the location described by VA
1309 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1310 // any loads onto Chain.
1311 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1312                                    CCValAssign &VA, SDValue Chain,
1313                                    SDValue Value) {
1314   // If the argument has been promoted from a smaller type, insert an
1315   // assertion to capture this.
1316   if (VA.getLocInfo() == CCValAssign::SExt)
1317     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1318                         DAG.getValueType(VA.getValVT()));
1319   else if (VA.getLocInfo() == CCValAssign::ZExt)
1320     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1321                         DAG.getValueType(VA.getValVT()));
1322 
1323   if (VA.isExtInLoc())
1324     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1325   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1326     // If this is a short vector argument loaded from the stack,
1327     // extend from i64 to full vector size and then bitcast.
1328     assert(VA.getLocVT() == MVT::i64);
1329     assert(VA.getValVT().isVector());
1330     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1331     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1332   } else
1333     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1334   return Value;
1335 }
1336 
1337 // Value is a value of type VA.getValVT() that we need to copy into
1338 // the location described by VA.  Return a copy of Value converted to
1339 // VA.getValVT().  The caller is responsible for handling indirect values.
1340 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1341                                    CCValAssign &VA, SDValue Value) {
1342   switch (VA.getLocInfo()) {
1343   case CCValAssign::SExt:
1344     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1345   case CCValAssign::ZExt:
1346     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1347   case CCValAssign::AExt:
1348     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1349   case CCValAssign::BCvt:
1350     // If this is a short vector argument to be stored to the stack,
1351     // bitcast to v2i64 and then extract first element.
1352     assert(VA.getLocVT() == MVT::i64);
1353     assert(VA.getValVT().isVector());
1354     Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value);
1355     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1356                        DAG.getConstant(0, DL, MVT::i32));
1357   case CCValAssign::Full:
1358     return Value;
1359   default:
1360     llvm_unreachable("Unhandled getLocInfo()");
1361   }
1362 }
1363 
1364 SDValue SystemZTargetLowering::LowerFormalArguments(
1365     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1366     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1367     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1368   MachineFunction &MF = DAG.getMachineFunction();
1369   MachineFrameInfo &MFI = MF.getFrameInfo();
1370   MachineRegisterInfo &MRI = MF.getRegInfo();
1371   SystemZMachineFunctionInfo *FuncInfo =
1372       MF.getInfo<SystemZMachineFunctionInfo>();
1373   auto *TFL =
1374       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
1375   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1376 
1377   // Detect unsupported vector argument types.
1378   if (Subtarget.hasVector())
1379     VerifyVectorTypes(Ins);
1380 
1381   // Assign locations to all of the incoming arguments.
1382   SmallVector<CCValAssign, 16> ArgLocs;
1383   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1384   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1385 
1386   unsigned NumFixedGPRs = 0;
1387   unsigned NumFixedFPRs = 0;
1388   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1389     SDValue ArgValue;
1390     CCValAssign &VA = ArgLocs[I];
1391     EVT LocVT = VA.getLocVT();
1392     if (VA.isRegLoc()) {
1393       // Arguments passed in registers
1394       const TargetRegisterClass *RC;
1395       switch (LocVT.getSimpleVT().SimpleTy) {
1396       default:
1397         // Integers smaller than i64 should be promoted to i64.
1398         llvm_unreachable("Unexpected argument type");
1399       case MVT::i32:
1400         NumFixedGPRs += 1;
1401         RC = &SystemZ::GR32BitRegClass;
1402         break;
1403       case MVT::i64:
1404         NumFixedGPRs += 1;
1405         RC = &SystemZ::GR64BitRegClass;
1406         break;
1407       case MVT::f32:
1408         NumFixedFPRs += 1;
1409         RC = &SystemZ::FP32BitRegClass;
1410         break;
1411       case MVT::f64:
1412         NumFixedFPRs += 1;
1413         RC = &SystemZ::FP64BitRegClass;
1414         break;
1415       case MVT::v16i8:
1416       case MVT::v8i16:
1417       case MVT::v4i32:
1418       case MVT::v2i64:
1419       case MVT::v4f32:
1420       case MVT::v2f64:
1421         RC = &SystemZ::VR128BitRegClass;
1422         break;
1423       }
1424 
1425       Register VReg = MRI.createVirtualRegister(RC);
1426       MRI.addLiveIn(VA.getLocReg(), VReg);
1427       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1428     } else {
1429       assert(VA.isMemLoc() && "Argument not register or memory");
1430 
1431       // Create the frame index object for this incoming parameter.
1432       int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1433                                      VA.getLocMemOffset(), true);
1434 
1435       // Create the SelectionDAG nodes corresponding to a load
1436       // from this parameter.  Unpromoted ints and floats are
1437       // passed as right-justified 8-byte values.
1438       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1439       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1440         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1441                           DAG.getIntPtrConstant(4, DL));
1442       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1443                              MachinePointerInfo::getFixedStack(MF, FI));
1444     }
1445 
1446     // Convert the value of the argument register into the value that's
1447     // being passed.
1448     if (VA.getLocInfo() == CCValAssign::Indirect) {
1449       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1450                                    MachinePointerInfo()));
1451       // If the original argument was split (e.g. i128), we need
1452       // to load all parts of it here (using the same address).
1453       unsigned ArgIndex = Ins[I].OrigArgIndex;
1454       assert (Ins[I].PartOffset == 0);
1455       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1456         CCValAssign &PartVA = ArgLocs[I + 1];
1457         unsigned PartOffset = Ins[I + 1].PartOffset;
1458         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1459                                       DAG.getIntPtrConstant(PartOffset, DL));
1460         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1461                                      MachinePointerInfo()));
1462         ++I;
1463       }
1464     } else
1465       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1466   }
1467 
1468   if (IsVarArg) {
1469     // Save the number of non-varargs registers for later use by va_start, etc.
1470     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1471     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1472 
1473     // Likewise the address (in the form of a frame index) of where the
1474     // first stack vararg would be.  The 1-byte size here is arbitrary.
1475     int64_t StackSize = CCInfo.getNextStackOffset();
1476     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1477 
1478     // ...and a similar frame index for the caller-allocated save area
1479     // that will be used to store the incoming registers.
1480     int64_t RegSaveOffset =
1481       -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1482     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1483     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1484 
1485     // Store the FPR varargs in the reserved frame slots.  (We store the
1486     // GPRs as part of the prologue.)
1487     if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) {
1488       SDValue MemOps[SystemZ::NumArgFPRs];
1489       for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) {
1490         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]);
1491         int FI =
1492           MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true);
1493         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1494         unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I],
1495                                      &SystemZ::FP64BitRegClass);
1496         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1497         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1498                                  MachinePointerInfo::getFixedStack(MF, FI));
1499       }
1500       // Join the stores, which are independent of one another.
1501       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1502                           makeArrayRef(&MemOps[NumFixedFPRs],
1503                                        SystemZ::NumArgFPRs-NumFixedFPRs));
1504     }
1505   }
1506 
1507   return Chain;
1508 }
1509 
1510 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1511                               SmallVectorImpl<CCValAssign> &ArgLocs,
1512                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1513   // Punt if there are any indirect or stack arguments, or if the call
1514   // needs the callee-saved argument register R6, or if the call uses
1515   // the callee-saved register arguments SwiftSelf and SwiftError.
1516   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1517     CCValAssign &VA = ArgLocs[I];
1518     if (VA.getLocInfo() == CCValAssign::Indirect)
1519       return false;
1520     if (!VA.isRegLoc())
1521       return false;
1522     Register Reg = VA.getLocReg();
1523     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1524       return false;
1525     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1526       return false;
1527   }
1528   return true;
1529 }
1530 
1531 SDValue
1532 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1533                                  SmallVectorImpl<SDValue> &InVals) const {
1534   SelectionDAG &DAG = CLI.DAG;
1535   SDLoc &DL = CLI.DL;
1536   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1537   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1538   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1539   SDValue Chain = CLI.Chain;
1540   SDValue Callee = CLI.Callee;
1541   bool &IsTailCall = CLI.IsTailCall;
1542   CallingConv::ID CallConv = CLI.CallConv;
1543   bool IsVarArg = CLI.IsVarArg;
1544   MachineFunction &MF = DAG.getMachineFunction();
1545   EVT PtrVT = getPointerTy(MF.getDataLayout());
1546 
1547   // Detect unsupported vector argument and return types.
1548   if (Subtarget.hasVector()) {
1549     VerifyVectorTypes(Outs);
1550     VerifyVectorTypes(Ins);
1551   }
1552 
1553   // Analyze the operands of the call, assigning locations to each operand.
1554   SmallVector<CCValAssign, 16> ArgLocs;
1555   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1556   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1557 
1558   // We don't support GuaranteedTailCallOpt, only automatically-detected
1559   // sibling calls.
1560   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1561     IsTailCall = false;
1562 
1563   // Get a count of how many bytes are to be pushed on the stack.
1564   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1565 
1566   // Mark the start of the call.
1567   if (!IsTailCall)
1568     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1569 
1570   // Copy argument values to their designated locations.
1571   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1572   SmallVector<SDValue, 8> MemOpChains;
1573   SDValue StackPtr;
1574   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1575     CCValAssign &VA = ArgLocs[I];
1576     SDValue ArgValue = OutVals[I];
1577 
1578     if (VA.getLocInfo() == CCValAssign::Indirect) {
1579       // Store the argument in a stack slot and pass its address.
1580       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT);
1581       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1582       MemOpChains.push_back(
1583           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1584                        MachinePointerInfo::getFixedStack(MF, FI)));
1585       // If the original argument was split (e.g. i128), we need
1586       // to store all parts of it here (and pass just one address).
1587       unsigned ArgIndex = Outs[I].OrigArgIndex;
1588       assert (Outs[I].PartOffset == 0);
1589       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1590         SDValue PartValue = OutVals[I + 1];
1591         unsigned PartOffset = Outs[I + 1].PartOffset;
1592         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1593                                       DAG.getIntPtrConstant(PartOffset, DL));
1594         MemOpChains.push_back(
1595             DAG.getStore(Chain, DL, PartValue, Address,
1596                          MachinePointerInfo::getFixedStack(MF, FI)));
1597         ++I;
1598       }
1599       ArgValue = SpillSlot;
1600     } else
1601       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1602 
1603     if (VA.isRegLoc())
1604       // Queue up the argument copies and emit them at the end.
1605       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1606     else {
1607       assert(VA.isMemLoc() && "Argument not register or memory");
1608 
1609       // Work out the address of the stack slot.  Unpromoted ints and
1610       // floats are passed as right-justified 8-byte values.
1611       if (!StackPtr.getNode())
1612         StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT);
1613       unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset();
1614       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1615         Offset += 4;
1616       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1617                                     DAG.getIntPtrConstant(Offset, DL));
1618 
1619       // Emit the store.
1620       MemOpChains.push_back(
1621           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1622     }
1623   }
1624 
1625   // Join the stores, which are independent of one another.
1626   if (!MemOpChains.empty())
1627     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1628 
1629   // Accept direct calls by converting symbolic call addresses to the
1630   // associated Target* opcodes.  Force %r1 to be used for indirect
1631   // tail calls.
1632   SDValue Glue;
1633   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1634     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1635     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1636   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1637     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1638     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1639   } else if (IsTailCall) {
1640     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1641     Glue = Chain.getValue(1);
1642     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1643   }
1644 
1645   // Build a sequence of copy-to-reg nodes, chained and glued together.
1646   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1647     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1648                              RegsToPass[I].second, Glue);
1649     Glue = Chain.getValue(1);
1650   }
1651 
1652   // The first call operand is the chain and the second is the target address.
1653   SmallVector<SDValue, 8> Ops;
1654   Ops.push_back(Chain);
1655   Ops.push_back(Callee);
1656 
1657   // Add argument registers to the end of the list so that they are
1658   // known live into the call.
1659   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1660     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1661                                   RegsToPass[I].second.getValueType()));
1662 
1663   // Add a register mask operand representing the call-preserved registers.
1664   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1665   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1666   assert(Mask && "Missing call preserved mask for calling convention");
1667   Ops.push_back(DAG.getRegisterMask(Mask));
1668 
1669   // Glue the call to the argument copies, if any.
1670   if (Glue.getNode())
1671     Ops.push_back(Glue);
1672 
1673   // Emit the call.
1674   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1675   if (IsTailCall)
1676     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1677   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1678   Glue = Chain.getValue(1);
1679 
1680   // Mark the end of the call, which is glued to the call itself.
1681   Chain = DAG.getCALLSEQ_END(Chain,
1682                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1683                              DAG.getConstant(0, DL, PtrVT, true),
1684                              Glue, DL);
1685   Glue = Chain.getValue(1);
1686 
1687   // Assign locations to each value returned by this call.
1688   SmallVector<CCValAssign, 16> RetLocs;
1689   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1690   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1691 
1692   // Copy all of the result registers out of their specified physreg.
1693   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1694     CCValAssign &VA = RetLocs[I];
1695 
1696     // Copy the value out, gluing the copy to the end of the call sequence.
1697     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1698                                           VA.getLocVT(), Glue);
1699     Chain = RetValue.getValue(1);
1700     Glue = RetValue.getValue(2);
1701 
1702     // Convert the value of the return register into the value that's
1703     // being returned.
1704     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1705   }
1706 
1707   return Chain;
1708 }
1709 
1710 bool SystemZTargetLowering::
1711 CanLowerReturn(CallingConv::ID CallConv,
1712                MachineFunction &MF, bool isVarArg,
1713                const SmallVectorImpl<ISD::OutputArg> &Outs,
1714                LLVMContext &Context) const {
1715   // Detect unsupported vector return types.
1716   if (Subtarget.hasVector())
1717     VerifyVectorTypes(Outs);
1718 
1719   // Special case that we cannot easily detect in RetCC_SystemZ since
1720   // i128 is not a legal type.
1721   for (auto &Out : Outs)
1722     if (Out.ArgVT == MVT::i128)
1723       return false;
1724 
1725   SmallVector<CCValAssign, 16> RetLocs;
1726   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1727   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1728 }
1729 
1730 SDValue
1731 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1732                                    bool IsVarArg,
1733                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1734                                    const SmallVectorImpl<SDValue> &OutVals,
1735                                    const SDLoc &DL, SelectionDAG &DAG) const {
1736   MachineFunction &MF = DAG.getMachineFunction();
1737 
1738   // Detect unsupported vector return types.
1739   if (Subtarget.hasVector())
1740     VerifyVectorTypes(Outs);
1741 
1742   // Assign locations to each returned value.
1743   SmallVector<CCValAssign, 16> RetLocs;
1744   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1745   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1746 
1747   // Quick exit for void returns
1748   if (RetLocs.empty())
1749     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1750 
1751   if (CallConv == CallingConv::GHC)
1752     report_fatal_error("GHC functions return void only");
1753 
1754   // Copy the result values into the output registers.
1755   SDValue Glue;
1756   SmallVector<SDValue, 4> RetOps;
1757   RetOps.push_back(Chain);
1758   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1759     CCValAssign &VA = RetLocs[I];
1760     SDValue RetValue = OutVals[I];
1761 
1762     // Make the return register live on exit.
1763     assert(VA.isRegLoc() && "Can only return in registers!");
1764 
1765     // Promote the value as required.
1766     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1767 
1768     // Chain and glue the copies together.
1769     Register Reg = VA.getLocReg();
1770     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1771     Glue = Chain.getValue(1);
1772     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1773   }
1774 
1775   // Update chain and glue.
1776   RetOps[0] = Chain;
1777   if (Glue.getNode())
1778     RetOps.push_back(Glue);
1779 
1780   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1781 }
1782 
1783 // Return true if Op is an intrinsic node with chain that returns the CC value
1784 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1785 // the mask of valid CC values if so.
1786 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1787                                       unsigned &CCValid) {
1788   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1789   switch (Id) {
1790   case Intrinsic::s390_tbegin:
1791     Opcode = SystemZISD::TBEGIN;
1792     CCValid = SystemZ::CCMASK_TBEGIN;
1793     return true;
1794 
1795   case Intrinsic::s390_tbegin_nofloat:
1796     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1797     CCValid = SystemZ::CCMASK_TBEGIN;
1798     return true;
1799 
1800   case Intrinsic::s390_tend:
1801     Opcode = SystemZISD::TEND;
1802     CCValid = SystemZ::CCMASK_TEND;
1803     return true;
1804 
1805   default:
1806     return false;
1807   }
1808 }
1809 
1810 // Return true if Op is an intrinsic node without chain that returns the
1811 // CC value as its final argument.  Provide the associated SystemZISD
1812 // opcode and the mask of valid CC values if so.
1813 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1814   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1815   switch (Id) {
1816   case Intrinsic::s390_vpkshs:
1817   case Intrinsic::s390_vpksfs:
1818   case Intrinsic::s390_vpksgs:
1819     Opcode = SystemZISD::PACKS_CC;
1820     CCValid = SystemZ::CCMASK_VCMP;
1821     return true;
1822 
1823   case Intrinsic::s390_vpklshs:
1824   case Intrinsic::s390_vpklsfs:
1825   case Intrinsic::s390_vpklsgs:
1826     Opcode = SystemZISD::PACKLS_CC;
1827     CCValid = SystemZ::CCMASK_VCMP;
1828     return true;
1829 
1830   case Intrinsic::s390_vceqbs:
1831   case Intrinsic::s390_vceqhs:
1832   case Intrinsic::s390_vceqfs:
1833   case Intrinsic::s390_vceqgs:
1834     Opcode = SystemZISD::VICMPES;
1835     CCValid = SystemZ::CCMASK_VCMP;
1836     return true;
1837 
1838   case Intrinsic::s390_vchbs:
1839   case Intrinsic::s390_vchhs:
1840   case Intrinsic::s390_vchfs:
1841   case Intrinsic::s390_vchgs:
1842     Opcode = SystemZISD::VICMPHS;
1843     CCValid = SystemZ::CCMASK_VCMP;
1844     return true;
1845 
1846   case Intrinsic::s390_vchlbs:
1847   case Intrinsic::s390_vchlhs:
1848   case Intrinsic::s390_vchlfs:
1849   case Intrinsic::s390_vchlgs:
1850     Opcode = SystemZISD::VICMPHLS;
1851     CCValid = SystemZ::CCMASK_VCMP;
1852     return true;
1853 
1854   case Intrinsic::s390_vtm:
1855     Opcode = SystemZISD::VTM;
1856     CCValid = SystemZ::CCMASK_VCMP;
1857     return true;
1858 
1859   case Intrinsic::s390_vfaebs:
1860   case Intrinsic::s390_vfaehs:
1861   case Intrinsic::s390_vfaefs:
1862     Opcode = SystemZISD::VFAE_CC;
1863     CCValid = SystemZ::CCMASK_ANY;
1864     return true;
1865 
1866   case Intrinsic::s390_vfaezbs:
1867   case Intrinsic::s390_vfaezhs:
1868   case Intrinsic::s390_vfaezfs:
1869     Opcode = SystemZISD::VFAEZ_CC;
1870     CCValid = SystemZ::CCMASK_ANY;
1871     return true;
1872 
1873   case Intrinsic::s390_vfeebs:
1874   case Intrinsic::s390_vfeehs:
1875   case Intrinsic::s390_vfeefs:
1876     Opcode = SystemZISD::VFEE_CC;
1877     CCValid = SystemZ::CCMASK_ANY;
1878     return true;
1879 
1880   case Intrinsic::s390_vfeezbs:
1881   case Intrinsic::s390_vfeezhs:
1882   case Intrinsic::s390_vfeezfs:
1883     Opcode = SystemZISD::VFEEZ_CC;
1884     CCValid = SystemZ::CCMASK_ANY;
1885     return true;
1886 
1887   case Intrinsic::s390_vfenebs:
1888   case Intrinsic::s390_vfenehs:
1889   case Intrinsic::s390_vfenefs:
1890     Opcode = SystemZISD::VFENE_CC;
1891     CCValid = SystemZ::CCMASK_ANY;
1892     return true;
1893 
1894   case Intrinsic::s390_vfenezbs:
1895   case Intrinsic::s390_vfenezhs:
1896   case Intrinsic::s390_vfenezfs:
1897     Opcode = SystemZISD::VFENEZ_CC;
1898     CCValid = SystemZ::CCMASK_ANY;
1899     return true;
1900 
1901   case Intrinsic::s390_vistrbs:
1902   case Intrinsic::s390_vistrhs:
1903   case Intrinsic::s390_vistrfs:
1904     Opcode = SystemZISD::VISTR_CC;
1905     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
1906     return true;
1907 
1908   case Intrinsic::s390_vstrcbs:
1909   case Intrinsic::s390_vstrchs:
1910   case Intrinsic::s390_vstrcfs:
1911     Opcode = SystemZISD::VSTRC_CC;
1912     CCValid = SystemZ::CCMASK_ANY;
1913     return true;
1914 
1915   case Intrinsic::s390_vstrczbs:
1916   case Intrinsic::s390_vstrczhs:
1917   case Intrinsic::s390_vstrczfs:
1918     Opcode = SystemZISD::VSTRCZ_CC;
1919     CCValid = SystemZ::CCMASK_ANY;
1920     return true;
1921 
1922   case Intrinsic::s390_vstrsb:
1923   case Intrinsic::s390_vstrsh:
1924   case Intrinsic::s390_vstrsf:
1925     Opcode = SystemZISD::VSTRS_CC;
1926     CCValid = SystemZ::CCMASK_ANY;
1927     return true;
1928 
1929   case Intrinsic::s390_vstrszb:
1930   case Intrinsic::s390_vstrszh:
1931   case Intrinsic::s390_vstrszf:
1932     Opcode = SystemZISD::VSTRSZ_CC;
1933     CCValid = SystemZ::CCMASK_ANY;
1934     return true;
1935 
1936   case Intrinsic::s390_vfcedbs:
1937   case Intrinsic::s390_vfcesbs:
1938     Opcode = SystemZISD::VFCMPES;
1939     CCValid = SystemZ::CCMASK_VCMP;
1940     return true;
1941 
1942   case Intrinsic::s390_vfchdbs:
1943   case Intrinsic::s390_vfchsbs:
1944     Opcode = SystemZISD::VFCMPHS;
1945     CCValid = SystemZ::CCMASK_VCMP;
1946     return true;
1947 
1948   case Intrinsic::s390_vfchedbs:
1949   case Intrinsic::s390_vfchesbs:
1950     Opcode = SystemZISD::VFCMPHES;
1951     CCValid = SystemZ::CCMASK_VCMP;
1952     return true;
1953 
1954   case Intrinsic::s390_vftcidb:
1955   case Intrinsic::s390_vftcisb:
1956     Opcode = SystemZISD::VFTCI;
1957     CCValid = SystemZ::CCMASK_VCMP;
1958     return true;
1959 
1960   case Intrinsic::s390_tdc:
1961     Opcode = SystemZISD::TDC;
1962     CCValid = SystemZ::CCMASK_TDC;
1963     return true;
1964 
1965   default:
1966     return false;
1967   }
1968 }
1969 
1970 // Emit an intrinsic with chain and an explicit CC register result.
1971 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
1972                                            unsigned Opcode) {
1973   // Copy all operands except the intrinsic ID.
1974   unsigned NumOps = Op.getNumOperands();
1975   SmallVector<SDValue, 6> Ops;
1976   Ops.reserve(NumOps - 1);
1977   Ops.push_back(Op.getOperand(0));
1978   for (unsigned I = 2; I < NumOps; ++I)
1979     Ops.push_back(Op.getOperand(I));
1980 
1981   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
1982   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
1983   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
1984   SDValue OldChain = SDValue(Op.getNode(), 1);
1985   SDValue NewChain = SDValue(Intr.getNode(), 1);
1986   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
1987   return Intr.getNode();
1988 }
1989 
1990 // Emit an intrinsic with an explicit CC register result.
1991 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
1992                                    unsigned Opcode) {
1993   // Copy all operands except the intrinsic ID.
1994   unsigned NumOps = Op.getNumOperands();
1995   SmallVector<SDValue, 6> Ops;
1996   Ops.reserve(NumOps - 1);
1997   for (unsigned I = 1; I < NumOps; ++I)
1998     Ops.push_back(Op.getOperand(I));
1999 
2000   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2001   return Intr.getNode();
2002 }
2003 
2004 // CC is a comparison that will be implemented using an integer or
2005 // floating-point comparison.  Return the condition code mask for
2006 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2007 // unsigned comparisons and clear for signed ones.  In the floating-point
2008 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2009 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2010 #define CONV(X) \
2011   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2012   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2013   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2014 
2015   switch (CC) {
2016   default:
2017     llvm_unreachable("Invalid integer condition!");
2018 
2019   CONV(EQ);
2020   CONV(NE);
2021   CONV(GT);
2022   CONV(GE);
2023   CONV(LT);
2024   CONV(LE);
2025 
2026   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2027   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2028   }
2029 #undef CONV
2030 }
2031 
2032 // If C can be converted to a comparison against zero, adjust the operands
2033 // as necessary.
2034 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2035   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2036     return;
2037 
2038   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2039   if (!ConstOp1)
2040     return;
2041 
2042   int64_t Value = ConstOp1->getSExtValue();
2043   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2044       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2045       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2046       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2047     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2048     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2049   }
2050 }
2051 
2052 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2053 // adjust the operands as necessary.
2054 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2055                              Comparison &C) {
2056   // For us to make any changes, it must a comparison between a single-use
2057   // load and a constant.
2058   if (!C.Op0.hasOneUse() ||
2059       C.Op0.getOpcode() != ISD::LOAD ||
2060       C.Op1.getOpcode() != ISD::Constant)
2061     return;
2062 
2063   // We must have an 8- or 16-bit load.
2064   auto *Load = cast<LoadSDNode>(C.Op0);
2065   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2066   if ((NumBits != 8 && NumBits != 16) ||
2067       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2068     return;
2069 
2070   // The load must be an extending one and the constant must be within the
2071   // range of the unextended value.
2072   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2073   uint64_t Value = ConstOp1->getZExtValue();
2074   uint64_t Mask = (1 << NumBits) - 1;
2075   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2076     // Make sure that ConstOp1 is in range of C.Op0.
2077     int64_t SignedValue = ConstOp1->getSExtValue();
2078     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2079       return;
2080     if (C.ICmpType != SystemZICMP::SignedOnly) {
2081       // Unsigned comparison between two sign-extended values is equivalent
2082       // to unsigned comparison between two zero-extended values.
2083       Value &= Mask;
2084     } else if (NumBits == 8) {
2085       // Try to treat the comparison as unsigned, so that we can use CLI.
2086       // Adjust CCMask and Value as necessary.
2087       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2088         // Test whether the high bit of the byte is set.
2089         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2090       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2091         // Test whether the high bit of the byte is clear.
2092         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2093       else
2094         // No instruction exists for this combination.
2095         return;
2096       C.ICmpType = SystemZICMP::UnsignedOnly;
2097     }
2098   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2099     if (Value > Mask)
2100       return;
2101     // If the constant is in range, we can use any comparison.
2102     C.ICmpType = SystemZICMP::Any;
2103   } else
2104     return;
2105 
2106   // Make sure that the first operand is an i32 of the right extension type.
2107   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2108                               ISD::SEXTLOAD :
2109                               ISD::ZEXTLOAD);
2110   if (C.Op0.getValueType() != MVT::i32 ||
2111       Load->getExtensionType() != ExtType) {
2112     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2113                            Load->getBasePtr(), Load->getPointerInfo(),
2114                            Load->getMemoryVT(), Load->getAlignment(),
2115                            Load->getMemOperand()->getFlags());
2116     // Update the chain uses.
2117     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2118   }
2119 
2120   // Make sure that the second operand is an i32 with the right value.
2121   if (C.Op1.getValueType() != MVT::i32 ||
2122       Value != ConstOp1->getZExtValue())
2123     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2124 }
2125 
2126 // Return true if Op is either an unextended load, or a load suitable
2127 // for integer register-memory comparisons of type ICmpType.
2128 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2129   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2130   if (Load) {
2131     // There are no instructions to compare a register with a memory byte.
2132     if (Load->getMemoryVT() == MVT::i8)
2133       return false;
2134     // Otherwise decide on extension type.
2135     switch (Load->getExtensionType()) {
2136     case ISD::NON_EXTLOAD:
2137       return true;
2138     case ISD::SEXTLOAD:
2139       return ICmpType != SystemZICMP::UnsignedOnly;
2140     case ISD::ZEXTLOAD:
2141       return ICmpType != SystemZICMP::SignedOnly;
2142     default:
2143       break;
2144     }
2145   }
2146   return false;
2147 }
2148 
2149 // Return true if it is better to swap the operands of C.
2150 static bool shouldSwapCmpOperands(const Comparison &C) {
2151   // Leave f128 comparisons alone, since they have no memory forms.
2152   if (C.Op0.getValueType() == MVT::f128)
2153     return false;
2154 
2155   // Always keep a floating-point constant second, since comparisons with
2156   // zero can use LOAD TEST and comparisons with other constants make a
2157   // natural memory operand.
2158   if (isa<ConstantFPSDNode>(C.Op1))
2159     return false;
2160 
2161   // Never swap comparisons with zero since there are many ways to optimize
2162   // those later.
2163   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2164   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2165     return false;
2166 
2167   // Also keep natural memory operands second if the loaded value is
2168   // only used here.  Several comparisons have memory forms.
2169   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2170     return false;
2171 
2172   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2173   // In that case we generally prefer the memory to be second.
2174   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2175     // The only exceptions are when the second operand is a constant and
2176     // we can use things like CHHSI.
2177     if (!ConstOp1)
2178       return true;
2179     // The unsigned memory-immediate instructions can handle 16-bit
2180     // unsigned integers.
2181     if (C.ICmpType != SystemZICMP::SignedOnly &&
2182         isUInt<16>(ConstOp1->getZExtValue()))
2183       return false;
2184     // The signed memory-immediate instructions can handle 16-bit
2185     // signed integers.
2186     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2187         isInt<16>(ConstOp1->getSExtValue()))
2188       return false;
2189     return true;
2190   }
2191 
2192   // Try to promote the use of CGFR and CLGFR.
2193   unsigned Opcode0 = C.Op0.getOpcode();
2194   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2195     return true;
2196   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2197     return true;
2198   if (C.ICmpType != SystemZICMP::SignedOnly &&
2199       Opcode0 == ISD::AND &&
2200       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2201       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2202     return true;
2203 
2204   return false;
2205 }
2206 
2207 // Check whether C tests for equality between X and Y and whether X - Y
2208 // or Y - X is also computed.  In that case it's better to compare the
2209 // result of the subtraction against zero.
2210 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2211                                  Comparison &C) {
2212   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2213       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2214     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2215       SDNode *N = *I;
2216       if (N->getOpcode() == ISD::SUB &&
2217           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2218            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2219         C.Op0 = SDValue(N, 0);
2220         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2221         return;
2222       }
2223     }
2224   }
2225 }
2226 
2227 // Check whether C compares a floating-point value with zero and if that
2228 // floating-point value is also negated.  In this case we can use the
2229 // negation to set CC, so avoiding separate LOAD AND TEST and
2230 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2231 static void adjustForFNeg(Comparison &C) {
2232   // This optimization is invalid for strict comparisons, since FNEG
2233   // does not raise any exceptions.
2234   if (C.Chain)
2235     return;
2236   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2237   if (C1 && C1->isZero()) {
2238     for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) {
2239       SDNode *N = *I;
2240       if (N->getOpcode() == ISD::FNEG) {
2241         C.Op0 = SDValue(N, 0);
2242         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2243         return;
2244       }
2245     }
2246   }
2247 }
2248 
2249 // Check whether C compares (shl X, 32) with 0 and whether X is
2250 // also sign-extended.  In that case it is better to test the result
2251 // of the sign extension using LTGFR.
2252 //
2253 // This case is important because InstCombine transforms a comparison
2254 // with (sext (trunc X)) into a comparison with (shl X, 32).
2255 static void adjustForLTGFR(Comparison &C) {
2256   // Check for a comparison between (shl X, 32) and 0.
2257   if (C.Op0.getOpcode() == ISD::SHL &&
2258       C.Op0.getValueType() == MVT::i64 &&
2259       C.Op1.getOpcode() == ISD::Constant &&
2260       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2261     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2262     if (C1 && C1->getZExtValue() == 32) {
2263       SDValue ShlOp0 = C.Op0.getOperand(0);
2264       // See whether X has any SIGN_EXTEND_INREG uses.
2265       for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) {
2266         SDNode *N = *I;
2267         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2268             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2269           C.Op0 = SDValue(N, 0);
2270           return;
2271         }
2272       }
2273     }
2274   }
2275 }
2276 
2277 // If C compares the truncation of an extending load, try to compare
2278 // the untruncated value instead.  This exposes more opportunities to
2279 // reuse CC.
2280 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2281                                Comparison &C) {
2282   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2283       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2284       C.Op1.getOpcode() == ISD::Constant &&
2285       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2286     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2287     if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) {
2288       unsigned Type = L->getExtensionType();
2289       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2290           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2291         C.Op0 = C.Op0.getOperand(0);
2292         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2293       }
2294     }
2295   }
2296 }
2297 
2298 // Return true if shift operation N has an in-range constant shift value.
2299 // Store it in ShiftVal if so.
2300 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2301   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2302   if (!Shift)
2303     return false;
2304 
2305   uint64_t Amount = Shift->getZExtValue();
2306   if (Amount >= N.getValueSizeInBits())
2307     return false;
2308 
2309   ShiftVal = Amount;
2310   return true;
2311 }
2312 
2313 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2314 // instruction and whether the CC value is descriptive enough to handle
2315 // a comparison of type Opcode between the AND result and CmpVal.
2316 // CCMask says which comparison result is being tested and BitSize is
2317 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2318 // return the corresponding CC mask, otherwise return 0.
2319 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2320                                      uint64_t Mask, uint64_t CmpVal,
2321                                      unsigned ICmpType) {
2322   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2323 
2324   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2325   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2326       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2327     return 0;
2328 
2329   // Work out the masks for the lowest and highest bits.
2330   unsigned HighShift = 63 - countLeadingZeros(Mask);
2331   uint64_t High = uint64_t(1) << HighShift;
2332   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2333 
2334   // Signed ordered comparisons are effectively unsigned if the sign
2335   // bit is dropped.
2336   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2337 
2338   // Check for equality comparisons with 0, or the equivalent.
2339   if (CmpVal == 0) {
2340     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2341       return SystemZ::CCMASK_TM_ALL_0;
2342     if (CCMask == SystemZ::CCMASK_CMP_NE)
2343       return SystemZ::CCMASK_TM_SOME_1;
2344   }
2345   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2346     if (CCMask == SystemZ::CCMASK_CMP_LT)
2347       return SystemZ::CCMASK_TM_ALL_0;
2348     if (CCMask == SystemZ::CCMASK_CMP_GE)
2349       return SystemZ::CCMASK_TM_SOME_1;
2350   }
2351   if (EffectivelyUnsigned && CmpVal < Low) {
2352     if (CCMask == SystemZ::CCMASK_CMP_LE)
2353       return SystemZ::CCMASK_TM_ALL_0;
2354     if (CCMask == SystemZ::CCMASK_CMP_GT)
2355       return SystemZ::CCMASK_TM_SOME_1;
2356   }
2357 
2358   // Check for equality comparisons with the mask, or the equivalent.
2359   if (CmpVal == Mask) {
2360     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2361       return SystemZ::CCMASK_TM_ALL_1;
2362     if (CCMask == SystemZ::CCMASK_CMP_NE)
2363       return SystemZ::CCMASK_TM_SOME_0;
2364   }
2365   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2366     if (CCMask == SystemZ::CCMASK_CMP_GT)
2367       return SystemZ::CCMASK_TM_ALL_1;
2368     if (CCMask == SystemZ::CCMASK_CMP_LE)
2369       return SystemZ::CCMASK_TM_SOME_0;
2370   }
2371   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2372     if (CCMask == SystemZ::CCMASK_CMP_GE)
2373       return SystemZ::CCMASK_TM_ALL_1;
2374     if (CCMask == SystemZ::CCMASK_CMP_LT)
2375       return SystemZ::CCMASK_TM_SOME_0;
2376   }
2377 
2378   // Check for ordered comparisons with the top bit.
2379   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2380     if (CCMask == SystemZ::CCMASK_CMP_LE)
2381       return SystemZ::CCMASK_TM_MSB_0;
2382     if (CCMask == SystemZ::CCMASK_CMP_GT)
2383       return SystemZ::CCMASK_TM_MSB_1;
2384   }
2385   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2386     if (CCMask == SystemZ::CCMASK_CMP_LT)
2387       return SystemZ::CCMASK_TM_MSB_0;
2388     if (CCMask == SystemZ::CCMASK_CMP_GE)
2389       return SystemZ::CCMASK_TM_MSB_1;
2390   }
2391 
2392   // If there are just two bits, we can do equality checks for Low and High
2393   // as well.
2394   if (Mask == Low + High) {
2395     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2396       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2397     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2398       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2399     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2400       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2401     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2402       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2403   }
2404 
2405   // Looks like we've exhausted our options.
2406   return 0;
2407 }
2408 
2409 // See whether C can be implemented as a TEST UNDER MASK instruction.
2410 // Update the arguments with the TM version if so.
2411 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2412                                    Comparison &C) {
2413   // Check that we have a comparison with a constant.
2414   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2415   if (!ConstOp1)
2416     return;
2417   uint64_t CmpVal = ConstOp1->getZExtValue();
2418 
2419   // Check whether the nonconstant input is an AND with a constant mask.
2420   Comparison NewC(C);
2421   uint64_t MaskVal;
2422   ConstantSDNode *Mask = nullptr;
2423   if (C.Op0.getOpcode() == ISD::AND) {
2424     NewC.Op0 = C.Op0.getOperand(0);
2425     NewC.Op1 = C.Op0.getOperand(1);
2426     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2427     if (!Mask)
2428       return;
2429     MaskVal = Mask->getZExtValue();
2430   } else {
2431     // There is no instruction to compare with a 64-bit immediate
2432     // so use TMHH instead if possible.  We need an unsigned ordered
2433     // comparison with an i64 immediate.
2434     if (NewC.Op0.getValueType() != MVT::i64 ||
2435         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2436         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2437         NewC.ICmpType == SystemZICMP::SignedOnly)
2438       return;
2439     // Convert LE and GT comparisons into LT and GE.
2440     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2441         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2442       if (CmpVal == uint64_t(-1))
2443         return;
2444       CmpVal += 1;
2445       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2446     }
2447     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2448     // be masked off without changing the result.
2449     MaskVal = -(CmpVal & -CmpVal);
2450     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2451   }
2452   if (!MaskVal)
2453     return;
2454 
2455   // Check whether the combination of mask, comparison value and comparison
2456   // type are suitable.
2457   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2458   unsigned NewCCMask, ShiftVal;
2459   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2460       NewC.Op0.getOpcode() == ISD::SHL &&
2461       isSimpleShift(NewC.Op0, ShiftVal) &&
2462       (MaskVal >> ShiftVal != 0) &&
2463       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2464       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2465                                         MaskVal >> ShiftVal,
2466                                         CmpVal >> ShiftVal,
2467                                         SystemZICMP::Any))) {
2468     NewC.Op0 = NewC.Op0.getOperand(0);
2469     MaskVal >>= ShiftVal;
2470   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2471              NewC.Op0.getOpcode() == ISD::SRL &&
2472              isSimpleShift(NewC.Op0, ShiftVal) &&
2473              (MaskVal << ShiftVal != 0) &&
2474              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2475              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2476                                                MaskVal << ShiftVal,
2477                                                CmpVal << ShiftVal,
2478                                                SystemZICMP::UnsignedOnly))) {
2479     NewC.Op0 = NewC.Op0.getOperand(0);
2480     MaskVal <<= ShiftVal;
2481   } else {
2482     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2483                                      NewC.ICmpType);
2484     if (!NewCCMask)
2485       return;
2486   }
2487 
2488   // Go ahead and make the change.
2489   C.Opcode = SystemZISD::TM;
2490   C.Op0 = NewC.Op0;
2491   if (Mask && Mask->getZExtValue() == MaskVal)
2492     C.Op1 = SDValue(Mask, 0);
2493   else
2494     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2495   C.CCValid = SystemZ::CCMASK_TM;
2496   C.CCMask = NewCCMask;
2497 }
2498 
2499 // See whether the comparison argument contains a redundant AND
2500 // and remove it if so.  This sometimes happens due to the generic
2501 // BRCOND expansion.
2502 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2503                                   Comparison &C) {
2504   if (C.Op0.getOpcode() != ISD::AND)
2505     return;
2506   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2507   if (!Mask)
2508     return;
2509   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2510   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2511     return;
2512 
2513   C.Op0 = C.Op0.getOperand(0);
2514 }
2515 
2516 // Return a Comparison that tests the condition-code result of intrinsic
2517 // node Call against constant integer CC using comparison code Cond.
2518 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2519 // and CCValid is the set of possible condition-code results.
2520 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2521                                   SDValue Call, unsigned CCValid, uint64_t CC,
2522                                   ISD::CondCode Cond) {
2523   Comparison C(Call, SDValue(), SDValue());
2524   C.Opcode = Opcode;
2525   C.CCValid = CCValid;
2526   if (Cond == ISD::SETEQ)
2527     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2528     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2529   else if (Cond == ISD::SETNE)
2530     // ...and the inverse of that.
2531     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2532   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2533     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2534     // always true for CC>3.
2535     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2536   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2537     // ...and the inverse of that.
2538     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2539   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2540     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2541     // always true for CC>3.
2542     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2543   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2544     // ...and the inverse of that.
2545     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2546   else
2547     llvm_unreachable("Unexpected integer comparison type");
2548   C.CCMask &= CCValid;
2549   return C;
2550 }
2551 
2552 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2553 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2554                          ISD::CondCode Cond, const SDLoc &DL,
2555                          SDValue Chain = SDValue(),
2556                          bool IsSignaling = false) {
2557   if (CmpOp1.getOpcode() == ISD::Constant) {
2558     assert(!Chain);
2559     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2560     unsigned Opcode, CCValid;
2561     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2562         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2563         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2564       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2565     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2566         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2567         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2568       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2569   }
2570   Comparison C(CmpOp0, CmpOp1, Chain);
2571   C.CCMask = CCMaskForCondCode(Cond);
2572   if (C.Op0.getValueType().isFloatingPoint()) {
2573     C.CCValid = SystemZ::CCMASK_FCMP;
2574     if (!C.Chain)
2575       C.Opcode = SystemZISD::FCMP;
2576     else if (!IsSignaling)
2577       C.Opcode = SystemZISD::STRICT_FCMP;
2578     else
2579       C.Opcode = SystemZISD::STRICT_FCMPS;
2580     adjustForFNeg(C);
2581   } else {
2582     assert(!C.Chain);
2583     C.CCValid = SystemZ::CCMASK_ICMP;
2584     C.Opcode = SystemZISD::ICMP;
2585     // Choose the type of comparison.  Equality and inequality tests can
2586     // use either signed or unsigned comparisons.  The choice also doesn't
2587     // matter if both sign bits are known to be clear.  In those cases we
2588     // want to give the main isel code the freedom to choose whichever
2589     // form fits best.
2590     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2591         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2592         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2593       C.ICmpType = SystemZICMP::Any;
2594     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2595       C.ICmpType = SystemZICMP::UnsignedOnly;
2596     else
2597       C.ICmpType = SystemZICMP::SignedOnly;
2598     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2599     adjustForRedundantAnd(DAG, DL, C);
2600     adjustZeroCmp(DAG, DL, C);
2601     adjustSubwordCmp(DAG, DL, C);
2602     adjustForSubtraction(DAG, DL, C);
2603     adjustForLTGFR(C);
2604     adjustICmpTruncate(DAG, DL, C);
2605   }
2606 
2607   if (shouldSwapCmpOperands(C)) {
2608     std::swap(C.Op0, C.Op1);
2609     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2610   }
2611 
2612   adjustForTestUnderMask(DAG, DL, C);
2613   return C;
2614 }
2615 
2616 // Emit the comparison instruction described by C.
2617 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2618   if (!C.Op1.getNode()) {
2619     SDNode *Node;
2620     switch (C.Op0.getOpcode()) {
2621     case ISD::INTRINSIC_W_CHAIN:
2622       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2623       return SDValue(Node, 0);
2624     case ISD::INTRINSIC_WO_CHAIN:
2625       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2626       return SDValue(Node, Node->getNumValues() - 1);
2627     default:
2628       llvm_unreachable("Invalid comparison operands");
2629     }
2630   }
2631   if (C.Opcode == SystemZISD::ICMP)
2632     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2633                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2634   if (C.Opcode == SystemZISD::TM) {
2635     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2636                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2637     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2638                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2639   }
2640   if (C.Chain) {
2641     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2642     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2643   }
2644   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2645 }
2646 
2647 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2648 // 64 bits.  Extend is the extension type to use.  Store the high part
2649 // in Hi and the low part in Lo.
2650 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2651                             SDValue Op0, SDValue Op1, SDValue &Hi,
2652                             SDValue &Lo) {
2653   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2654   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2655   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2656   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2657                    DAG.getConstant(32, DL, MVT::i64));
2658   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2659   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2660 }
2661 
2662 // Lower a binary operation that produces two VT results, one in each
2663 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2664 // and Opcode performs the GR128 operation.  Store the even register result
2665 // in Even and the odd register result in Odd.
2666 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2667                              unsigned Opcode, SDValue Op0, SDValue Op1,
2668                              SDValue &Even, SDValue &Odd) {
2669   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2670   bool Is32Bit = is32Bit(VT);
2671   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2672   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2673 }
2674 
2675 // Return an i32 value that is 1 if the CC value produced by CCReg is
2676 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2677 // in CCValid, so other values can be ignored.
2678 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2679                          unsigned CCValid, unsigned CCMask) {
2680   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2681                    DAG.getConstant(0, DL, MVT::i32),
2682                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2683                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2684   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2685 }
2686 
2687 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2688 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2689 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2690 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2691 // floating-point comparisons.
2692 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2693 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2694   switch (CC) {
2695   case ISD::SETOEQ:
2696   case ISD::SETEQ:
2697     switch (Mode) {
2698     case CmpMode::Int:         return SystemZISD::VICMPE;
2699     case CmpMode::FP:          return SystemZISD::VFCMPE;
2700     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2701     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2702     }
2703     llvm_unreachable("Bad mode");
2704 
2705   case ISD::SETOGE:
2706   case ISD::SETGE:
2707     switch (Mode) {
2708     case CmpMode::Int:         return 0;
2709     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2710     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2711     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2712     }
2713     llvm_unreachable("Bad mode");
2714 
2715   case ISD::SETOGT:
2716   case ISD::SETGT:
2717     switch (Mode) {
2718     case CmpMode::Int:         return SystemZISD::VICMPH;
2719     case CmpMode::FP:          return SystemZISD::VFCMPH;
2720     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2721     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2722     }
2723     llvm_unreachable("Bad mode");
2724 
2725   case ISD::SETUGT:
2726     switch (Mode) {
2727     case CmpMode::Int:         return SystemZISD::VICMPHL;
2728     case CmpMode::FP:          return 0;
2729     case CmpMode::StrictFP:    return 0;
2730     case CmpMode::SignalingFP: return 0;
2731     }
2732     llvm_unreachable("Bad mode");
2733 
2734   default:
2735     return 0;
2736   }
2737 }
2738 
2739 // Return the SystemZISD vector comparison operation for CC or its inverse,
2740 // or 0 if neither can be done directly.  Indicate in Invert whether the
2741 // result is for the inverse of CC.  Mode is as above.
2742 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2743                                             bool &Invert) {
2744   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2745     Invert = false;
2746     return Opcode;
2747   }
2748 
2749   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2750   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2751     Invert = true;
2752     return Opcode;
2753   }
2754 
2755   return 0;
2756 }
2757 
2758 // Return a v2f64 that contains the extended form of elements Start and Start+1
2759 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2760 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2761                                   SDValue Op, SDValue Chain) {
2762   int Mask[] = { Start, -1, Start + 1, -1 };
2763   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2764   if (Chain) {
2765     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2766     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2767   }
2768   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2769 }
2770 
2771 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2772 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2773 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2774                                             const SDLoc &DL, EVT VT,
2775                                             SDValue CmpOp0,
2776                                             SDValue CmpOp1,
2777                                             SDValue Chain) const {
2778   // There is no hardware support for v4f32 (unless we have the vector
2779   // enhancements facility 1), so extend the vector into two v2f64s
2780   // and compare those.
2781   if (CmpOp0.getValueType() == MVT::v4f32 &&
2782       !Subtarget.hasVectorEnhancements1()) {
2783     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2784     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2785     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2786     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2787     if (Chain) {
2788       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2789       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2790       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2791       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2792       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2793                             H1.getValue(1), L1.getValue(1),
2794                             HRes.getValue(1), LRes.getValue(1) };
2795       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2796       SDValue Ops[2] = { Res, NewChain };
2797       return DAG.getMergeValues(Ops, DL);
2798     }
2799     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2800     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2801     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2802   }
2803   if (Chain) {
2804     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2805     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2806   }
2807   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2808 }
2809 
2810 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2811 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2812 // floating-point comparison.  If in addition IsSignaling is true, we have
2813 // a strict signaling floating-point comparison.
2814 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2815                                                 const SDLoc &DL, EVT VT,
2816                                                 ISD::CondCode CC,
2817                                                 SDValue CmpOp0,
2818                                                 SDValue CmpOp1,
2819                                                 SDValue Chain,
2820                                                 bool IsSignaling) const {
2821   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2822   assert (!Chain || IsFP);
2823   assert (!IsSignaling || Chain);
2824   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2825                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2826   bool Invert = false;
2827   SDValue Cmp;
2828   switch (CC) {
2829     // Handle tests for order using (or (ogt y x) (oge x y)).
2830   case ISD::SETUO:
2831     Invert = true;
2832     LLVM_FALLTHROUGH;
2833   case ISD::SETO: {
2834     assert(IsFP && "Unexpected integer comparison");
2835     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2836                               DL, VT, CmpOp1, CmpOp0, Chain);
2837     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2838                               DL, VT, CmpOp0, CmpOp1, Chain);
2839     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2840     if (Chain)
2841       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2842                           LT.getValue(1), GE.getValue(1));
2843     break;
2844   }
2845 
2846     // Handle <> tests using (or (ogt y x) (ogt x y)).
2847   case ISD::SETUEQ:
2848     Invert = true;
2849     LLVM_FALLTHROUGH;
2850   case ISD::SETONE: {
2851     assert(IsFP && "Unexpected integer comparison");
2852     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2853                               DL, VT, CmpOp1, CmpOp0, Chain);
2854     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2855                               DL, VT, CmpOp0, CmpOp1, Chain);
2856     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
2857     if (Chain)
2858       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
2859                           LT.getValue(1), GT.getValue(1));
2860     break;
2861   }
2862 
2863     // Otherwise a single comparison is enough.  It doesn't really
2864     // matter whether we try the inversion or the swap first, since
2865     // there are no cases where both work.
2866   default:
2867     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2868       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
2869     else {
2870       CC = ISD::getSetCCSwappedOperands(CC);
2871       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
2872         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
2873       else
2874         llvm_unreachable("Unhandled comparison");
2875     }
2876     if (Chain)
2877       Chain = Cmp.getValue(1);
2878     break;
2879   }
2880   if (Invert) {
2881     SDValue Mask =
2882       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
2883     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
2884   }
2885   if (Chain && Chain.getNode() != Cmp.getNode()) {
2886     SDValue Ops[2] = { Cmp, Chain };
2887     Cmp = DAG.getMergeValues(Ops, DL);
2888   }
2889   return Cmp;
2890 }
2891 
2892 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
2893                                           SelectionDAG &DAG) const {
2894   SDValue CmpOp0   = Op.getOperand(0);
2895   SDValue CmpOp1   = Op.getOperand(1);
2896   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
2897   SDLoc DL(Op);
2898   EVT VT = Op.getValueType();
2899   if (VT.isVector())
2900     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
2901 
2902   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2903   SDValue CCReg = emitCmp(DAG, DL, C);
2904   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2905 }
2906 
2907 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
2908                                                   SelectionDAG &DAG,
2909                                                   bool IsSignaling) const {
2910   SDValue Chain    = Op.getOperand(0);
2911   SDValue CmpOp0   = Op.getOperand(1);
2912   SDValue CmpOp1   = Op.getOperand(2);
2913   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
2914   SDLoc DL(Op);
2915   EVT VT = Op.getNode()->getValueType(0);
2916   if (VT.isVector()) {
2917     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
2918                                    Chain, IsSignaling);
2919     return Res.getValue(Op.getResNo());
2920   }
2921 
2922   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
2923   SDValue CCReg = emitCmp(DAG, DL, C);
2924   CCReg->setFlags(Op->getFlags());
2925   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
2926   SDValue Ops[2] = { Result, CCReg.getValue(1) };
2927   return DAG.getMergeValues(Ops, DL);
2928 }
2929 
2930 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
2931   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
2932   SDValue CmpOp0   = Op.getOperand(2);
2933   SDValue CmpOp1   = Op.getOperand(3);
2934   SDValue Dest     = Op.getOperand(4);
2935   SDLoc DL(Op);
2936 
2937   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2938   SDValue CCReg = emitCmp(DAG, DL, C);
2939   return DAG.getNode(
2940       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
2941       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2942       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
2943 }
2944 
2945 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
2946 // allowing Pos and Neg to be wider than CmpOp.
2947 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
2948   return (Neg.getOpcode() == ISD::SUB &&
2949           Neg.getOperand(0).getOpcode() == ISD::Constant &&
2950           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
2951           Neg.getOperand(1) == Pos &&
2952           (Pos == CmpOp ||
2953            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
2954             Pos.getOperand(0) == CmpOp)));
2955 }
2956 
2957 // Return the absolute or negative absolute of Op; IsNegative decides which.
2958 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
2959                            bool IsNegative) {
2960   Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op);
2961   if (IsNegative)
2962     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
2963                      DAG.getConstant(0, DL, Op.getValueType()), Op);
2964   return Op;
2965 }
2966 
2967 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
2968                                               SelectionDAG &DAG) const {
2969   SDValue CmpOp0   = Op.getOperand(0);
2970   SDValue CmpOp1   = Op.getOperand(1);
2971   SDValue TrueOp   = Op.getOperand(2);
2972   SDValue FalseOp  = Op.getOperand(3);
2973   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2974   SDLoc DL(Op);
2975 
2976   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
2977 
2978   // Check for absolute and negative-absolute selections, including those
2979   // where the comparison value is sign-extended (for LPGFR and LNGFR).
2980   // This check supplements the one in DAGCombiner.
2981   if (C.Opcode == SystemZISD::ICMP &&
2982       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
2983       C.CCMask != SystemZ::CCMASK_CMP_NE &&
2984       C.Op1.getOpcode() == ISD::Constant &&
2985       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2986     if (isAbsolute(C.Op0, TrueOp, FalseOp))
2987       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
2988     if (isAbsolute(C.Op0, FalseOp, TrueOp))
2989       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
2990   }
2991 
2992   SDValue CCReg = emitCmp(DAG, DL, C);
2993   SDValue Ops[] = {TrueOp, FalseOp,
2994                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
2995                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
2996 
2997   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
2998 }
2999 
3000 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3001                                                   SelectionDAG &DAG) const {
3002   SDLoc DL(Node);
3003   const GlobalValue *GV = Node->getGlobal();
3004   int64_t Offset = Node->getOffset();
3005   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3006   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3007 
3008   SDValue Result;
3009   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3010     if (isInt<32>(Offset)) {
3011       // Assign anchors at 1<<12 byte boundaries.
3012       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3013       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3014       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3015 
3016       // The offset can be folded into the address if it is aligned to a
3017       // halfword.
3018       Offset -= Anchor;
3019       if (Offset != 0 && (Offset & 1) == 0) {
3020         SDValue Full =
3021           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3022         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3023         Offset = 0;
3024       }
3025     } else {
3026       // Conservatively load a constant offset greater than 32 bits into a
3027       // register below.
3028       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3029       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3030     }
3031   } else {
3032     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3033     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3034     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3035                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3036   }
3037 
3038   // If there was a non-zero offset that we didn't fold, create an explicit
3039   // addition for it.
3040   if (Offset != 0)
3041     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3042                          DAG.getConstant(Offset, DL, PtrVT));
3043 
3044   return Result;
3045 }
3046 
3047 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3048                                                  SelectionDAG &DAG,
3049                                                  unsigned Opcode,
3050                                                  SDValue GOTOffset) const {
3051   SDLoc DL(Node);
3052   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3053   SDValue Chain = DAG.getEntryNode();
3054   SDValue Glue;
3055 
3056   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3057       CallingConv::GHC)
3058     report_fatal_error("In GHC calling convention TLS is not supported");
3059 
3060   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3061   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3062   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3063   Glue = Chain.getValue(1);
3064   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3065   Glue = Chain.getValue(1);
3066 
3067   // The first call operand is the chain and the second is the TLS symbol.
3068   SmallVector<SDValue, 8> Ops;
3069   Ops.push_back(Chain);
3070   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3071                                            Node->getValueType(0),
3072                                            0, 0));
3073 
3074   // Add argument registers to the end of the list so that they are
3075   // known live into the call.
3076   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3077   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3078 
3079   // Add a register mask operand representing the call-preserved registers.
3080   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3081   const uint32_t *Mask =
3082       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3083   assert(Mask && "Missing call preserved mask for calling convention");
3084   Ops.push_back(DAG.getRegisterMask(Mask));
3085 
3086   // Glue the call to the argument copies.
3087   Ops.push_back(Glue);
3088 
3089   // Emit the call.
3090   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3091   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3092   Glue = Chain.getValue(1);
3093 
3094   // Copy the return value from %r2.
3095   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3096 }
3097 
3098 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3099                                                   SelectionDAG &DAG) const {
3100   SDValue Chain = DAG.getEntryNode();
3101   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3102 
3103   // The high part of the thread pointer is in access register 0.
3104   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3105   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3106 
3107   // The low part of the thread pointer is in access register 1.
3108   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3109   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3110 
3111   // Merge them into a single 64-bit address.
3112   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3113                                     DAG.getConstant(32, DL, PtrVT));
3114   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3115 }
3116 
3117 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3118                                                      SelectionDAG &DAG) const {
3119   if (DAG.getTarget().useEmulatedTLS())
3120     return LowerToTLSEmulatedModel(Node, DAG);
3121   SDLoc DL(Node);
3122   const GlobalValue *GV = Node->getGlobal();
3123   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3124   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3125 
3126   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3127       CallingConv::GHC)
3128     report_fatal_error("In GHC calling convention TLS is not supported");
3129 
3130   SDValue TP = lowerThreadPointer(DL, DAG);
3131 
3132   // Get the offset of GA from the thread pointer, based on the TLS model.
3133   SDValue Offset;
3134   switch (model) {
3135     case TLSModel::GeneralDynamic: {
3136       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3137       SystemZConstantPoolValue *CPV =
3138         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3139 
3140       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3141       Offset = DAG.getLoad(
3142           PtrVT, DL, DAG.getEntryNode(), Offset,
3143           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3144 
3145       // Call __tls_get_offset to retrieve the offset.
3146       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3147       break;
3148     }
3149 
3150     case TLSModel::LocalDynamic: {
3151       // Load the GOT offset of the module ID.
3152       SystemZConstantPoolValue *CPV =
3153         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3154 
3155       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3156       Offset = DAG.getLoad(
3157           PtrVT, DL, DAG.getEntryNode(), Offset,
3158           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3159 
3160       // Call __tls_get_offset to retrieve the module base offset.
3161       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3162 
3163       // Note: The SystemZLDCleanupPass will remove redundant computations
3164       // of the module base offset.  Count total number of local-dynamic
3165       // accesses to trigger execution of that pass.
3166       SystemZMachineFunctionInfo* MFI =
3167         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3168       MFI->incNumLocalDynamicTLSAccesses();
3169 
3170       // Add the per-symbol offset.
3171       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3172 
3173       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3174       DTPOffset = DAG.getLoad(
3175           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3176           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3177 
3178       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3179       break;
3180     }
3181 
3182     case TLSModel::InitialExec: {
3183       // Load the offset from the GOT.
3184       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3185                                           SystemZII::MO_INDNTPOFF);
3186       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3187       Offset =
3188           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3189                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3190       break;
3191     }
3192 
3193     case TLSModel::LocalExec: {
3194       // Force the offset into the constant pool and load it from there.
3195       SystemZConstantPoolValue *CPV =
3196         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3197 
3198       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3199       Offset = DAG.getLoad(
3200           PtrVT, DL, DAG.getEntryNode(), Offset,
3201           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3202       break;
3203     }
3204   }
3205 
3206   // Add the base and offset together.
3207   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3208 }
3209 
3210 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3211                                                  SelectionDAG &DAG) const {
3212   SDLoc DL(Node);
3213   const BlockAddress *BA = Node->getBlockAddress();
3214   int64_t Offset = Node->getOffset();
3215   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3216 
3217   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3218   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3219   return Result;
3220 }
3221 
3222 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3223                                               SelectionDAG &DAG) const {
3224   SDLoc DL(JT);
3225   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3226   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3227 
3228   // Use LARL to load the address of the table.
3229   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3230 }
3231 
3232 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3233                                                  SelectionDAG &DAG) const {
3234   SDLoc DL(CP);
3235   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3236 
3237   SDValue Result;
3238   if (CP->isMachineConstantPoolEntry())
3239     Result =
3240         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3241   else
3242     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3243                                        CP->getOffset());
3244 
3245   // Use LARL to load the address of the constant pool entry.
3246   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3247 }
3248 
3249 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3250                                               SelectionDAG &DAG) const {
3251   auto *TFL =
3252       static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering());
3253   MachineFunction &MF = DAG.getMachineFunction();
3254   MachineFrameInfo &MFI = MF.getFrameInfo();
3255   MFI.setFrameAddressIsTaken(true);
3256 
3257   SDLoc DL(Op);
3258   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3259   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3260 
3261   // Return null if the back chain is not present.
3262   bool HasBackChain = MF.getFunction().hasFnAttribute("backchain");
3263   if (TFL->usePackedStack(MF) && !HasBackChain)
3264     return DAG.getConstant(0, DL, PtrVT);
3265 
3266   // By definition, the frame address is the address of the back chain.
3267   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3268   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3269 
3270   // FIXME The frontend should detect this case.
3271   if (Depth > 0) {
3272     report_fatal_error("Unsupported stack frame traversal count");
3273   }
3274 
3275   return BackChain;
3276 }
3277 
3278 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3279                                                SelectionDAG &DAG) const {
3280   MachineFunction &MF = DAG.getMachineFunction();
3281   MachineFrameInfo &MFI = MF.getFrameInfo();
3282   MFI.setReturnAddressIsTaken(true);
3283 
3284   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3285     return SDValue();
3286 
3287   SDLoc DL(Op);
3288   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3289   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3290 
3291   // FIXME The frontend should detect this case.
3292   if (Depth > 0) {
3293     report_fatal_error("Unsupported stack frame traversal count");
3294   }
3295 
3296   // Return R14D, which has the return address. Mark it an implicit live-in.
3297   unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3298   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3299 }
3300 
3301 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3302                                             SelectionDAG &DAG) const {
3303   SDLoc DL(Op);
3304   SDValue In = Op.getOperand(0);
3305   EVT InVT = In.getValueType();
3306   EVT ResVT = Op.getValueType();
3307 
3308   // Convert loads directly.  This is normally done by DAGCombiner,
3309   // but we need this case for bitcasts that are created during lowering
3310   // and which are then lowered themselves.
3311   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3312     if (ISD::isNormalLoad(LoadN)) {
3313       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3314                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3315       // Update the chain uses.
3316       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3317       return NewLoad;
3318     }
3319 
3320   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3321     SDValue In64;
3322     if (Subtarget.hasHighWord()) {
3323       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3324                                        MVT::i64);
3325       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3326                                        MVT::i64, SDValue(U64, 0), In);
3327     } else {
3328       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3329       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3330                          DAG.getConstant(32, DL, MVT::i64));
3331     }
3332     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3333     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3334                                       DL, MVT::f32, Out64);
3335   }
3336   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3337     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3338     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3339                                              MVT::f64, SDValue(U64, 0), In);
3340     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3341     if (Subtarget.hasHighWord())
3342       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3343                                         MVT::i32, Out64);
3344     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3345                                 DAG.getConstant(32, DL, MVT::i64));
3346     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3347   }
3348   llvm_unreachable("Unexpected bitcast combination");
3349 }
3350 
3351 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3352                                             SelectionDAG &DAG) const {
3353   MachineFunction &MF = DAG.getMachineFunction();
3354   SystemZMachineFunctionInfo *FuncInfo =
3355     MF.getInfo<SystemZMachineFunctionInfo>();
3356   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3357 
3358   SDValue Chain   = Op.getOperand(0);
3359   SDValue Addr    = Op.getOperand(1);
3360   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3361   SDLoc DL(Op);
3362 
3363   // The initial values of each field.
3364   const unsigned NumFields = 4;
3365   SDValue Fields[NumFields] = {
3366     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3367     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3368     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3369     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3370   };
3371 
3372   // Store each field into its respective slot.
3373   SDValue MemOps[NumFields];
3374   unsigned Offset = 0;
3375   for (unsigned I = 0; I < NumFields; ++I) {
3376     SDValue FieldAddr = Addr;
3377     if (Offset != 0)
3378       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3379                               DAG.getIntPtrConstant(Offset, DL));
3380     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3381                              MachinePointerInfo(SV, Offset));
3382     Offset += 8;
3383   }
3384   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3385 }
3386 
3387 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3388                                            SelectionDAG &DAG) const {
3389   SDValue Chain      = Op.getOperand(0);
3390   SDValue DstPtr     = Op.getOperand(1);
3391   SDValue SrcPtr     = Op.getOperand(2);
3392   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3393   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3394   SDLoc DL(Op);
3395 
3396   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL),
3397                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3398                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3399                        MachinePointerInfo(SrcSV));
3400 }
3401 
3402 SDValue SystemZTargetLowering::
3403 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
3404   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3405   MachineFunction &MF = DAG.getMachineFunction();
3406   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3407   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3408 
3409   SDValue Chain = Op.getOperand(0);
3410   SDValue Size  = Op.getOperand(1);
3411   SDValue Align = Op.getOperand(2);
3412   SDLoc DL(Op);
3413 
3414   // If user has set the no alignment function attribute, ignore
3415   // alloca alignments.
3416   uint64_t AlignVal = (RealignOpt ?
3417                        dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3418 
3419   uint64_t StackAlign = TFI->getStackAlignment();
3420   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3421   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3422 
3423   unsigned SPReg = getStackPointerRegisterToSaveRestore();
3424   SDValue NeededSpace = Size;
3425 
3426   // Get a reference to the stack pointer.
3427   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3428 
3429   // If we need a backchain, save it now.
3430   SDValue Backchain;
3431   if (StoreBackchain)
3432     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
3433 
3434   // Add extra space for alignment if needed.
3435   if (ExtraAlignSpace)
3436     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3437                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3438 
3439   // Get the new stack pointer value.
3440   SDValue NewSP;
3441   if (hasInlineStackProbe(MF)) {
3442     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3443                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3444     Chain = NewSP.getValue(1);
3445   }
3446   else {
3447     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3448     // Copy the new stack pointer back.
3449     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3450   }
3451 
3452   // The allocated data lives above the 160 bytes allocated for the standard
3453   // frame, plus any outgoing stack arguments.  We don't know how much that
3454   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3455   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3456   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3457 
3458   // Dynamically realign if needed.
3459   if (RequiredAlign > StackAlign) {
3460     Result =
3461       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3462                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3463     Result =
3464       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3465                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3466   }
3467 
3468   if (StoreBackchain)
3469     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
3470 
3471   SDValue Ops[2] = { Result, Chain };
3472   return DAG.getMergeValues(Ops, DL);
3473 }
3474 
3475 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3476     SDValue Op, SelectionDAG &DAG) const {
3477   SDLoc DL(Op);
3478 
3479   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3480 }
3481 
3482 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3483                                               SelectionDAG &DAG) const {
3484   EVT VT = Op.getValueType();
3485   SDLoc DL(Op);
3486   SDValue Ops[2];
3487   if (is32Bit(VT))
3488     // Just do a normal 64-bit multiplication and extract the results.
3489     // We define this so that it can be used for constant division.
3490     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3491                     Op.getOperand(1), Ops[1], Ops[0]);
3492   else if (Subtarget.hasMiscellaneousExtensions2())
3493     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3494     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3495     // return the low half first, so the results are in reverse order.
3496     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3497                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3498   else {
3499     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3500     //
3501     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3502     //
3503     // but using the fact that the upper halves are either all zeros
3504     // or all ones:
3505     //
3506     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3507     //
3508     // and grouping the right terms together since they are quicker than the
3509     // multiplication:
3510     //
3511     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3512     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3513     SDValue LL = Op.getOperand(0);
3514     SDValue RL = Op.getOperand(1);
3515     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3516     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3517     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3518     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3519     // return the low half first, so the results are in reverse order.
3520     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3521                      LL, RL, Ops[1], Ops[0]);
3522     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3523     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3524     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3525     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3526   }
3527   return DAG.getMergeValues(Ops, DL);
3528 }
3529 
3530 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3531                                               SelectionDAG &DAG) const {
3532   EVT VT = Op.getValueType();
3533   SDLoc DL(Op);
3534   SDValue Ops[2];
3535   if (is32Bit(VT))
3536     // Just do a normal 64-bit multiplication and extract the results.
3537     // We define this so that it can be used for constant division.
3538     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3539                     Op.getOperand(1), Ops[1], Ops[0]);
3540   else
3541     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3542     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3543     // return the low half first, so the results are in reverse order.
3544     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3545                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3546   return DAG.getMergeValues(Ops, DL);
3547 }
3548 
3549 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3550                                             SelectionDAG &DAG) const {
3551   SDValue Op0 = Op.getOperand(0);
3552   SDValue Op1 = Op.getOperand(1);
3553   EVT VT = Op.getValueType();
3554   SDLoc DL(Op);
3555 
3556   // We use DSGF for 32-bit division.  This means the first operand must
3557   // always be 64-bit, and the second operand should be 32-bit whenever
3558   // that is possible, to improve performance.
3559   if (is32Bit(VT))
3560     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3561   else if (DAG.ComputeNumSignBits(Op1) > 32)
3562     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3563 
3564   // DSG(F) returns the remainder in the even register and the
3565   // quotient in the odd register.
3566   SDValue Ops[2];
3567   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3568   return DAG.getMergeValues(Ops, DL);
3569 }
3570 
3571 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3572                                             SelectionDAG &DAG) const {
3573   EVT VT = Op.getValueType();
3574   SDLoc DL(Op);
3575 
3576   // DL(G) returns the remainder in the even register and the
3577   // quotient in the odd register.
3578   SDValue Ops[2];
3579   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3580                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3581   return DAG.getMergeValues(Ops, DL);
3582 }
3583 
3584 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3585   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3586 
3587   // Get the known-zero masks for each operand.
3588   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3589   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3590                         DAG.computeKnownBits(Ops[1])};
3591 
3592   // See if the upper 32 bits of one operand and the lower 32 bits of the
3593   // other are known zero.  They are the low and high operands respectively.
3594   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3595                        Known[1].Zero.getZExtValue() };
3596   unsigned High, Low;
3597   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3598     High = 1, Low = 0;
3599   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3600     High = 0, Low = 1;
3601   else
3602     return Op;
3603 
3604   SDValue LowOp = Ops[Low];
3605   SDValue HighOp = Ops[High];
3606 
3607   // If the high part is a constant, we're better off using IILH.
3608   if (HighOp.getOpcode() == ISD::Constant)
3609     return Op;
3610 
3611   // If the low part is a constant that is outside the range of LHI,
3612   // then we're better off using IILF.
3613   if (LowOp.getOpcode() == ISD::Constant) {
3614     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3615     if (!isInt<16>(Value))
3616       return Op;
3617   }
3618 
3619   // Check whether the high part is an AND that doesn't change the
3620   // high 32 bits and just masks out low bits.  We can skip it if so.
3621   if (HighOp.getOpcode() == ISD::AND &&
3622       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3623     SDValue HighOp0 = HighOp.getOperand(0);
3624     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3625     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3626       HighOp = HighOp0;
3627   }
3628 
3629   // Take advantage of the fact that all GR32 operations only change the
3630   // low 32 bits by truncating Low to an i32 and inserting it directly
3631   // using a subreg.  The interesting cases are those where the truncation
3632   // can be folded.
3633   SDLoc DL(Op);
3634   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3635   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3636                                    MVT::i64, HighOp, Low32);
3637 }
3638 
3639 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3640 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3641                                           SelectionDAG &DAG) const {
3642   SDNode *N = Op.getNode();
3643   SDValue LHS = N->getOperand(0);
3644   SDValue RHS = N->getOperand(1);
3645   SDLoc DL(N);
3646   unsigned BaseOp = 0;
3647   unsigned CCValid = 0;
3648   unsigned CCMask = 0;
3649 
3650   switch (Op.getOpcode()) {
3651   default: llvm_unreachable("Unknown instruction!");
3652   case ISD::SADDO:
3653     BaseOp = SystemZISD::SADDO;
3654     CCValid = SystemZ::CCMASK_ARITH;
3655     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3656     break;
3657   case ISD::SSUBO:
3658     BaseOp = SystemZISD::SSUBO;
3659     CCValid = SystemZ::CCMASK_ARITH;
3660     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3661     break;
3662   case ISD::UADDO:
3663     BaseOp = SystemZISD::UADDO;
3664     CCValid = SystemZ::CCMASK_LOGICAL;
3665     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3666     break;
3667   case ISD::USUBO:
3668     BaseOp = SystemZISD::USUBO;
3669     CCValid = SystemZ::CCMASK_LOGICAL;
3670     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3671     break;
3672   }
3673 
3674   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3675   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3676 
3677   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3678   if (N->getValueType(1) == MVT::i1)
3679     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3680 
3681   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3682 }
3683 
3684 static bool isAddCarryChain(SDValue Carry) {
3685   while (Carry.getOpcode() == ISD::ADDCARRY)
3686     Carry = Carry.getOperand(2);
3687   return Carry.getOpcode() == ISD::UADDO;
3688 }
3689 
3690 static bool isSubBorrowChain(SDValue Carry) {
3691   while (Carry.getOpcode() == ISD::SUBCARRY)
3692     Carry = Carry.getOperand(2);
3693   return Carry.getOpcode() == ISD::USUBO;
3694 }
3695 
3696 // Lower ADDCARRY/SUBCARRY nodes.
3697 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3698                                                 SelectionDAG &DAG) const {
3699 
3700   SDNode *N = Op.getNode();
3701   MVT VT = N->getSimpleValueType(0);
3702 
3703   // Let legalize expand this if it isn't a legal type yet.
3704   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3705     return SDValue();
3706 
3707   SDValue LHS = N->getOperand(0);
3708   SDValue RHS = N->getOperand(1);
3709   SDValue Carry = Op.getOperand(2);
3710   SDLoc DL(N);
3711   unsigned BaseOp = 0;
3712   unsigned CCValid = 0;
3713   unsigned CCMask = 0;
3714 
3715   switch (Op.getOpcode()) {
3716   default: llvm_unreachable("Unknown instruction!");
3717   case ISD::ADDCARRY:
3718     if (!isAddCarryChain(Carry))
3719       return SDValue();
3720 
3721     BaseOp = SystemZISD::ADDCARRY;
3722     CCValid = SystemZ::CCMASK_LOGICAL;
3723     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3724     break;
3725   case ISD::SUBCARRY:
3726     if (!isSubBorrowChain(Carry))
3727       return SDValue();
3728 
3729     BaseOp = SystemZISD::SUBCARRY;
3730     CCValid = SystemZ::CCMASK_LOGICAL;
3731     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3732     break;
3733   }
3734 
3735   // Set the condition code from the carry flag.
3736   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3737                       DAG.getConstant(CCValid, DL, MVT::i32),
3738                       DAG.getConstant(CCMask, DL, MVT::i32));
3739 
3740   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
3741   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
3742 
3743   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3744   if (N->getValueType(1) == MVT::i1)
3745     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3746 
3747   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3748 }
3749 
3750 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
3751                                           SelectionDAG &DAG) const {
3752   EVT VT = Op.getValueType();
3753   SDLoc DL(Op);
3754   Op = Op.getOperand(0);
3755 
3756   // Handle vector types via VPOPCT.
3757   if (VT.isVector()) {
3758     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
3759     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
3760     switch (VT.getScalarSizeInBits()) {
3761     case 8:
3762       break;
3763     case 16: {
3764       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
3765       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
3766       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
3767       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3768       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
3769       break;
3770     }
3771     case 32: {
3772       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3773                                             DAG.getConstant(0, DL, MVT::i32));
3774       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3775       break;
3776     }
3777     case 64: {
3778       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
3779                                             DAG.getConstant(0, DL, MVT::i32));
3780       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
3781       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
3782       break;
3783     }
3784     default:
3785       llvm_unreachable("Unexpected type");
3786     }
3787     return Op;
3788   }
3789 
3790   // Get the known-zero mask for the operand.
3791   KnownBits Known = DAG.computeKnownBits(Op);
3792   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
3793   if (NumSignificantBits == 0)
3794     return DAG.getConstant(0, DL, VT);
3795 
3796   // Skip known-zero high parts of the operand.
3797   int64_t OrigBitSize = VT.getSizeInBits();
3798   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
3799   BitSize = std::min(BitSize, OrigBitSize);
3800 
3801   // The POPCNT instruction counts the number of bits in each byte.
3802   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
3803   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
3804   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
3805 
3806   // Add up per-byte counts in a binary tree.  All bits of Op at
3807   // position larger than BitSize remain zero throughout.
3808   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
3809     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
3810     if (BitSize != OrigBitSize)
3811       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
3812                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
3813     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
3814   }
3815 
3816   // Extract overall result from high byte.
3817   if (BitSize > 8)
3818     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
3819                      DAG.getConstant(BitSize - 8, DL, VT));
3820 
3821   return Op;
3822 }
3823 
3824 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
3825                                                  SelectionDAG &DAG) const {
3826   SDLoc DL(Op);
3827   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
3828     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
3829   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
3830     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
3831 
3832   // The only fence that needs an instruction is a sequentially-consistent
3833   // cross-thread fence.
3834   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
3835       FenceSSID == SyncScope::System) {
3836     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
3837                                       Op.getOperand(0)),
3838                    0);
3839   }
3840 
3841   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
3842   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
3843 }
3844 
3845 // Op is an atomic load.  Lower it into a normal volatile load.
3846 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
3847                                                 SelectionDAG &DAG) const {
3848   auto *Node = cast<AtomicSDNode>(Op.getNode());
3849   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
3850                         Node->getChain(), Node->getBasePtr(),
3851                         Node->getMemoryVT(), Node->getMemOperand());
3852 }
3853 
3854 // Op is an atomic store.  Lower it into a normal volatile store.
3855 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
3856                                                  SelectionDAG &DAG) const {
3857   auto *Node = cast<AtomicSDNode>(Op.getNode());
3858   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
3859                                     Node->getBasePtr(), Node->getMemoryVT(),
3860                                     Node->getMemOperand());
3861   // We have to enforce sequential consistency by performing a
3862   // serialization operation after the store.
3863   if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent)
3864     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
3865                                        MVT::Other, Chain), 0);
3866   return Chain;
3867 }
3868 
3869 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
3870 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
3871 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
3872                                                    SelectionDAG &DAG,
3873                                                    unsigned Opcode) const {
3874   auto *Node = cast<AtomicSDNode>(Op.getNode());
3875 
3876   // 32-bit operations need no code outside the main loop.
3877   EVT NarrowVT = Node->getMemoryVT();
3878   EVT WideVT = MVT::i32;
3879   if (NarrowVT == WideVT)
3880     return Op;
3881 
3882   int64_t BitSize = NarrowVT.getSizeInBits();
3883   SDValue ChainIn = Node->getChain();
3884   SDValue Addr = Node->getBasePtr();
3885   SDValue Src2 = Node->getVal();
3886   MachineMemOperand *MMO = Node->getMemOperand();
3887   SDLoc DL(Node);
3888   EVT PtrVT = Addr.getValueType();
3889 
3890   // Convert atomic subtracts of constants into additions.
3891   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
3892     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
3893       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
3894       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
3895     }
3896 
3897   // Get the address of the containing word.
3898   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
3899                                     DAG.getConstant(-4, DL, PtrVT));
3900 
3901   // Get the number of bits that the word must be rotated left in order
3902   // to bring the field to the top bits of a GR32.
3903   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
3904                                  DAG.getConstant(3, DL, PtrVT));
3905   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
3906 
3907   // Get the complementing shift amount, for rotating a field in the top
3908   // bits back to its proper position.
3909   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
3910                                     DAG.getConstant(0, DL, WideVT), BitShift);
3911 
3912   // Extend the source operand to 32 bits and prepare it for the inner loop.
3913   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
3914   // operations require the source to be shifted in advance.  (This shift
3915   // can be folded if the source is constant.)  For AND and NAND, the lower
3916   // bits must be set, while for other opcodes they should be left clear.
3917   if (Opcode != SystemZISD::ATOMIC_SWAPW)
3918     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
3919                        DAG.getConstant(32 - BitSize, DL, WideVT));
3920   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
3921       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
3922     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
3923                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
3924 
3925   // Construct the ATOMIC_LOADW_* node.
3926   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
3927   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
3928                     DAG.getConstant(BitSize, DL, WideVT) };
3929   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
3930                                              NarrowVT, MMO);
3931 
3932   // Rotate the result of the final CS so that the field is in the lower
3933   // bits of a GR32, then truncate it.
3934   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
3935                                     DAG.getConstant(BitSize, DL, WideVT));
3936   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
3937 
3938   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
3939   return DAG.getMergeValues(RetOps, DL);
3940 }
3941 
3942 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
3943 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
3944 // operations into additions.
3945 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
3946                                                     SelectionDAG &DAG) const {
3947   auto *Node = cast<AtomicSDNode>(Op.getNode());
3948   EVT MemVT = Node->getMemoryVT();
3949   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
3950     // A full-width operation.
3951     assert(Op.getValueType() == MemVT && "Mismatched VTs");
3952     SDValue Src2 = Node->getVal();
3953     SDValue NegSrc2;
3954     SDLoc DL(Src2);
3955 
3956     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
3957       // Use an addition if the operand is constant and either LAA(G) is
3958       // available or the negative value is in the range of A(G)FHI.
3959       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
3960       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
3961         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
3962     } else if (Subtarget.hasInterlockedAccess1())
3963       // Use LAA(G) if available.
3964       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
3965                             Src2);
3966 
3967     if (NegSrc2.getNode())
3968       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
3969                            Node->getChain(), Node->getBasePtr(), NegSrc2,
3970                            Node->getMemOperand());
3971 
3972     // Use the node as-is.
3973     return Op;
3974   }
3975 
3976   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
3977 }
3978 
3979 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
3980 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
3981                                                     SelectionDAG &DAG) const {
3982   auto *Node = cast<AtomicSDNode>(Op.getNode());
3983   SDValue ChainIn = Node->getOperand(0);
3984   SDValue Addr = Node->getOperand(1);
3985   SDValue CmpVal = Node->getOperand(2);
3986   SDValue SwapVal = Node->getOperand(3);
3987   MachineMemOperand *MMO = Node->getMemOperand();
3988   SDLoc DL(Node);
3989 
3990   // We have native support for 32-bit and 64-bit compare and swap, but we
3991   // still need to expand extracting the "success" result from the CC.
3992   EVT NarrowVT = Node->getMemoryVT();
3993   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
3994   if (NarrowVT == WideVT) {
3995     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
3996     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
3997     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
3998                                                DL, Tys, Ops, NarrowVT, MMO);
3999     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4000                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4001 
4002     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4003     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4004     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4005     return SDValue();
4006   }
4007 
4008   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4009   // via a fullword ATOMIC_CMP_SWAPW operation.
4010   int64_t BitSize = NarrowVT.getSizeInBits();
4011   EVT PtrVT = Addr.getValueType();
4012 
4013   // Get the address of the containing word.
4014   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4015                                     DAG.getConstant(-4, DL, PtrVT));
4016 
4017   // Get the number of bits that the word must be rotated left in order
4018   // to bring the field to the top bits of a GR32.
4019   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4020                                  DAG.getConstant(3, DL, PtrVT));
4021   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4022 
4023   // Get the complementing shift amount, for rotating a field in the top
4024   // bits back to its proper position.
4025   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4026                                     DAG.getConstant(0, DL, WideVT), BitShift);
4027 
4028   // Construct the ATOMIC_CMP_SWAPW node.
4029   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4030   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4031                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4032   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4033                                              VTList, Ops, NarrowVT, MMO);
4034   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4035                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4036 
4037   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4038   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4039   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4040   return SDValue();
4041 }
4042 
4043 MachineMemOperand::Flags
4044 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4045   // Because of how we convert atomic_load and atomic_store to normal loads and
4046   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4047   // since DAGCombine hasn't been updated to account for atomic, but non
4048   // volatile loads.  (See D57601)
4049   if (auto *SI = dyn_cast<StoreInst>(&I))
4050     if (SI->isAtomic())
4051       return MachineMemOperand::MOVolatile;
4052   if (auto *LI = dyn_cast<LoadInst>(&I))
4053     if (LI->isAtomic())
4054       return MachineMemOperand::MOVolatile;
4055   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4056     if (AI->isAtomic())
4057       return MachineMemOperand::MOVolatile;
4058   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4059     if (AI->isAtomic())
4060       return MachineMemOperand::MOVolatile;
4061   return MachineMemOperand::MONone;
4062 }
4063 
4064 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4065                                               SelectionDAG &DAG) const {
4066   MachineFunction &MF = DAG.getMachineFunction();
4067   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4068   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4069     report_fatal_error("Variable-sized stack allocations are not supported "
4070                        "in GHC calling convention");
4071   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4072                             SystemZ::R15D, Op.getValueType());
4073 }
4074 
4075 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4076                                                  SelectionDAG &DAG) const {
4077   MachineFunction &MF = DAG.getMachineFunction();
4078   MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true);
4079   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4080 
4081   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4082     report_fatal_error("Variable-sized stack allocations are not supported "
4083                        "in GHC calling convention");
4084 
4085   SDValue Chain = Op.getOperand(0);
4086   SDValue NewSP = Op.getOperand(1);
4087   SDValue Backchain;
4088   SDLoc DL(Op);
4089 
4090   if (StoreBackchain) {
4091     SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64);
4092     Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo());
4093   }
4094 
4095   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP);
4096 
4097   if (StoreBackchain)
4098     Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo());
4099 
4100   return Chain;
4101 }
4102 
4103 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4104                                              SelectionDAG &DAG) const {
4105   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4106   if (!IsData)
4107     // Just preserve the chain.
4108     return Op.getOperand(0);
4109 
4110   SDLoc DL(Op);
4111   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4112   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4113   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4114   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4115                    Op.getOperand(1)};
4116   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4117                                  Node->getVTList(), Ops,
4118                                  Node->getMemoryVT(), Node->getMemOperand());
4119 }
4120 
4121 // Convert condition code in CCReg to an i32 value.
4122 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4123   SDLoc DL(CCReg);
4124   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4125   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4126                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4127 }
4128 
4129 SDValue
4130 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4131                                               SelectionDAG &DAG) const {
4132   unsigned Opcode, CCValid;
4133   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4134     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4135     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4136     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4137     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4138     return SDValue();
4139   }
4140 
4141   return SDValue();
4142 }
4143 
4144 SDValue
4145 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4146                                                SelectionDAG &DAG) const {
4147   unsigned Opcode, CCValid;
4148   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4149     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4150     if (Op->getNumValues() == 1)
4151       return getCCResult(DAG, SDValue(Node, 0));
4152     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4153     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4154                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4155   }
4156 
4157   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4158   switch (Id) {
4159   case Intrinsic::thread_pointer:
4160     return lowerThreadPointer(SDLoc(Op), DAG);
4161 
4162   case Intrinsic::s390_vpdi:
4163     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4164                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4165 
4166   case Intrinsic::s390_vperm:
4167     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4168                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4169 
4170   case Intrinsic::s390_vuphb:
4171   case Intrinsic::s390_vuphh:
4172   case Intrinsic::s390_vuphf:
4173     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4174                        Op.getOperand(1));
4175 
4176   case Intrinsic::s390_vuplhb:
4177   case Intrinsic::s390_vuplhh:
4178   case Intrinsic::s390_vuplhf:
4179     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4180                        Op.getOperand(1));
4181 
4182   case Intrinsic::s390_vuplb:
4183   case Intrinsic::s390_vuplhw:
4184   case Intrinsic::s390_vuplf:
4185     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4186                        Op.getOperand(1));
4187 
4188   case Intrinsic::s390_vupllb:
4189   case Intrinsic::s390_vupllh:
4190   case Intrinsic::s390_vupllf:
4191     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4192                        Op.getOperand(1));
4193 
4194   case Intrinsic::s390_vsumb:
4195   case Intrinsic::s390_vsumh:
4196   case Intrinsic::s390_vsumgh:
4197   case Intrinsic::s390_vsumgf:
4198   case Intrinsic::s390_vsumqf:
4199   case Intrinsic::s390_vsumqg:
4200     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4201                        Op.getOperand(1), Op.getOperand(2));
4202   }
4203 
4204   return SDValue();
4205 }
4206 
4207 namespace {
4208 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4209 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4210 // Operand is the constant third operand, otherwise it is the number of
4211 // bytes in each element of the result.
4212 struct Permute {
4213   unsigned Opcode;
4214   unsigned Operand;
4215   unsigned char Bytes[SystemZ::VectorBytes];
4216 };
4217 }
4218 
4219 static const Permute PermuteForms[] = {
4220   // VMRHG
4221   { SystemZISD::MERGE_HIGH, 8,
4222     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4223   // VMRHF
4224   { SystemZISD::MERGE_HIGH, 4,
4225     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4226   // VMRHH
4227   { SystemZISD::MERGE_HIGH, 2,
4228     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4229   // VMRHB
4230   { SystemZISD::MERGE_HIGH, 1,
4231     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4232   // VMRLG
4233   { SystemZISD::MERGE_LOW, 8,
4234     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4235   // VMRLF
4236   { SystemZISD::MERGE_LOW, 4,
4237     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4238   // VMRLH
4239   { SystemZISD::MERGE_LOW, 2,
4240     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4241   // VMRLB
4242   { SystemZISD::MERGE_LOW, 1,
4243     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4244   // VPKG
4245   { SystemZISD::PACK, 4,
4246     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4247   // VPKF
4248   { SystemZISD::PACK, 2,
4249     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4250   // VPKH
4251   { SystemZISD::PACK, 1,
4252     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4253   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4254   { SystemZISD::PERMUTE_DWORDS, 4,
4255     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4256   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4257   { SystemZISD::PERMUTE_DWORDS, 1,
4258     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4259 };
4260 
4261 // Called after matching a vector shuffle against a particular pattern.
4262 // Both the original shuffle and the pattern have two vector operands.
4263 // OpNos[0] is the operand of the original shuffle that should be used for
4264 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4265 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4266 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4267 // for operands 0 and 1 of the pattern.
4268 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4269   if (OpNos[0] < 0) {
4270     if (OpNos[1] < 0)
4271       return false;
4272     OpNo0 = OpNo1 = OpNos[1];
4273   } else if (OpNos[1] < 0) {
4274     OpNo0 = OpNo1 = OpNos[0];
4275   } else {
4276     OpNo0 = OpNos[0];
4277     OpNo1 = OpNos[1];
4278   }
4279   return true;
4280 }
4281 
4282 // Bytes is a VPERM-like permute vector, except that -1 is used for
4283 // undefined bytes.  Return true if the VPERM can be implemented using P.
4284 // When returning true set OpNo0 to the VPERM operand that should be
4285 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4286 //
4287 // For example, if swapping the VPERM operands allows P to match, OpNo0
4288 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4289 // operand, but rewriting it to use two duplicated operands allows it to
4290 // match P, then OpNo0 and OpNo1 will be the same.
4291 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4292                          unsigned &OpNo0, unsigned &OpNo1) {
4293   int OpNos[] = { -1, -1 };
4294   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4295     int Elt = Bytes[I];
4296     if (Elt >= 0) {
4297       // Make sure that the two permute vectors use the same suboperand
4298       // byte number.  Only the operand numbers (the high bits) are
4299       // allowed to differ.
4300       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4301         return false;
4302       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4303       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4304       // Make sure that the operand mappings are consistent with previous
4305       // elements.
4306       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4307         return false;
4308       OpNos[ModelOpNo] = RealOpNo;
4309     }
4310   }
4311   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4312 }
4313 
4314 // As above, but search for a matching permute.
4315 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4316                                    unsigned &OpNo0, unsigned &OpNo1) {
4317   for (auto &P : PermuteForms)
4318     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4319       return &P;
4320   return nullptr;
4321 }
4322 
4323 // Bytes is a VPERM-like permute vector, except that -1 is used for
4324 // undefined bytes.  This permute is an operand of an outer permute.
4325 // See whether redistributing the -1 bytes gives a shuffle that can be
4326 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4327 // that, when applied to the result of P, gives the original permute in Bytes.
4328 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4329                                const Permute &P,
4330                                SmallVectorImpl<int> &Transform) {
4331   unsigned To = 0;
4332   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4333     int Elt = Bytes[From];
4334     if (Elt < 0)
4335       // Byte number From of the result is undefined.
4336       Transform[From] = -1;
4337     else {
4338       while (P.Bytes[To] != Elt) {
4339         To += 1;
4340         if (To == SystemZ::VectorBytes)
4341           return false;
4342       }
4343       Transform[From] = To;
4344     }
4345   }
4346   return true;
4347 }
4348 
4349 // As above, but search for a matching permute.
4350 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4351                                          SmallVectorImpl<int> &Transform) {
4352   for (auto &P : PermuteForms)
4353     if (matchDoublePermute(Bytes, P, Transform))
4354       return &P;
4355   return nullptr;
4356 }
4357 
4358 // Convert the mask of the given shuffle op into a byte-level mask,
4359 // as if it had type vNi8.
4360 static bool getVPermMask(SDValue ShuffleOp,
4361                          SmallVectorImpl<int> &Bytes) {
4362   EVT VT = ShuffleOp.getValueType();
4363   unsigned NumElements = VT.getVectorNumElements();
4364   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4365 
4366   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4367     Bytes.resize(NumElements * BytesPerElement, -1);
4368     for (unsigned I = 0; I < NumElements; ++I) {
4369       int Index = VSN->getMaskElt(I);
4370       if (Index >= 0)
4371         for (unsigned J = 0; J < BytesPerElement; ++J)
4372           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4373     }
4374     return true;
4375   }
4376   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4377       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4378     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4379     Bytes.resize(NumElements * BytesPerElement, -1);
4380     for (unsigned I = 0; I < NumElements; ++I)
4381       for (unsigned J = 0; J < BytesPerElement; ++J)
4382         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4383     return true;
4384   }
4385   return false;
4386 }
4387 
4388 // Bytes is a VPERM-like permute vector, except that -1 is used for
4389 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4390 // the result come from a contiguous sequence of bytes from one input.
4391 // Set Base to the selector for the first byte if so.
4392 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4393                             unsigned BytesPerElement, int &Base) {
4394   Base = -1;
4395   for (unsigned I = 0; I < BytesPerElement; ++I) {
4396     if (Bytes[Start + I] >= 0) {
4397       unsigned Elem = Bytes[Start + I];
4398       if (Base < 0) {
4399         Base = Elem - I;
4400         // Make sure the bytes would come from one input operand.
4401         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4402           return false;
4403       } else if (unsigned(Base) != Elem - I)
4404         return false;
4405     }
4406   }
4407   return true;
4408 }
4409 
4410 // Bytes is a VPERM-like permute vector, except that -1 is used for
4411 // undefined bytes.  Return true if it can be performed using VSLDB.
4412 // When returning true, set StartIndex to the shift amount and OpNo0
4413 // and OpNo1 to the VPERM operands that should be used as the first
4414 // and second shift operand respectively.
4415 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4416                                unsigned &StartIndex, unsigned &OpNo0,
4417                                unsigned &OpNo1) {
4418   int OpNos[] = { -1, -1 };
4419   int Shift = -1;
4420   for (unsigned I = 0; I < 16; ++I) {
4421     int Index = Bytes[I];
4422     if (Index >= 0) {
4423       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4424       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4425       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4426       if (Shift < 0)
4427         Shift = ExpectedShift;
4428       else if (Shift != ExpectedShift)
4429         return false;
4430       // Make sure that the operand mappings are consistent with previous
4431       // elements.
4432       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4433         return false;
4434       OpNos[ModelOpNo] = RealOpNo;
4435     }
4436   }
4437   StartIndex = Shift;
4438   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4439 }
4440 
4441 // Create a node that performs P on operands Op0 and Op1, casting the
4442 // operands to the appropriate type.  The type of the result is determined by P.
4443 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4444                               const Permute &P, SDValue Op0, SDValue Op1) {
4445   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4446   // elements of a PACK are twice as wide as the outputs.
4447   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4448                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4449                       P.Operand);
4450   // Cast both operands to the appropriate type.
4451   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4452                               SystemZ::VectorBytes / InBytes);
4453   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4454   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4455   SDValue Op;
4456   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4457     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4458     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4459   } else if (P.Opcode == SystemZISD::PACK) {
4460     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4461                                  SystemZ::VectorBytes / P.Operand);
4462     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4463   } else {
4464     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4465   }
4466   return Op;
4467 }
4468 
4469 static bool isZeroVector(SDValue N) {
4470   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4471     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4472       return Op->getZExtValue() == 0;
4473   return ISD::isBuildVectorAllZeros(N.getNode());
4474 }
4475 
4476 // Bytes is a VPERM-like permute vector, except that -1 is used for
4477 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4478 // VSLDB or VPERM.
4479 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4480                                      SDValue *Ops,
4481                                      const SmallVectorImpl<int> &Bytes) {
4482   for (unsigned I = 0; I < 2; ++I)
4483     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4484 
4485   // First see whether VSLDB can be used.
4486   unsigned StartIndex, OpNo0, OpNo1;
4487   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4488     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4489                        Ops[OpNo1],
4490                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4491 
4492   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4493   // eliminate a zero vector by reusing any zero index in the permute vector.
4494   unsigned ZeroVecIdx =
4495     isZeroVector(Ops[0]) ? 0 : (isZeroVector(Ops[1]) ? 1 : UINT_MAX);
4496   if (ZeroVecIdx != UINT_MAX) {
4497     bool MaskFirst = true;
4498     int ZeroIdx = -1;
4499     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4500       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4501       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4502       if (OpNo == ZeroVecIdx && I == 0) {
4503         // If the first byte is zero, use mask as first operand.
4504         ZeroIdx = 0;
4505         break;
4506       }
4507       if (OpNo != ZeroVecIdx && Byte == 0) {
4508         // If mask contains a zero, use it by placing that vector first.
4509         ZeroIdx = I + SystemZ::VectorBytes;
4510         MaskFirst = false;
4511         break;
4512       }
4513     }
4514     if (ZeroIdx != -1) {
4515       SDValue IndexNodes[SystemZ::VectorBytes];
4516       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4517         if (Bytes[I] >= 0) {
4518           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4519           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4520           if (OpNo == ZeroVecIdx)
4521             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4522           else {
4523             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4524             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4525           }
4526         } else
4527           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4528       }
4529       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4530       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4531       if (MaskFirst)
4532         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4533                            Mask);
4534       else
4535         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4536                            Mask);
4537     }
4538   }
4539 
4540   SDValue IndexNodes[SystemZ::VectorBytes];
4541   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4542     if (Bytes[I] >= 0)
4543       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4544     else
4545       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4546   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4547   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4548                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4549 }
4550 
4551 namespace {
4552 // Describes a general N-operand vector shuffle.
4553 struct GeneralShuffle {
4554   GeneralShuffle(EVT vt) : VT(vt) {}
4555   void addUndef();
4556   bool add(SDValue, unsigned);
4557   SDValue getNode(SelectionDAG &, const SDLoc &);
4558 
4559   // The operands of the shuffle.
4560   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4561 
4562   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4563   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4564   // Bytes[I] / SystemZ::VectorBytes.
4565   SmallVector<int, SystemZ::VectorBytes> Bytes;
4566 
4567   // The type of the shuffle result.
4568   EVT VT;
4569 };
4570 }
4571 
4572 // Add an extra undefined element to the shuffle.
4573 void GeneralShuffle::addUndef() {
4574   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4575   for (unsigned I = 0; I < BytesPerElement; ++I)
4576     Bytes.push_back(-1);
4577 }
4578 
4579 // Add an extra element to the shuffle, taking it from element Elem of Op.
4580 // A null Op indicates a vector input whose value will be calculated later;
4581 // there is at most one such input per shuffle and it always has the same
4582 // type as the result. Aborts and returns false if the source vector elements
4583 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4584 // LLVM they become implicitly extended, but this is rare and not optimized.
4585 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4586   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4587 
4588   // The source vector can have wider elements than the result,
4589   // either through an explicit TRUNCATE or because of type legalization.
4590   // We want the least significant part.
4591   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4592   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4593 
4594   // Return false if the source elements are smaller than their destination
4595   // elements.
4596   if (FromBytesPerElement < BytesPerElement)
4597     return false;
4598 
4599   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4600                    (FromBytesPerElement - BytesPerElement));
4601 
4602   // Look through things like shuffles and bitcasts.
4603   while (Op.getNode()) {
4604     if (Op.getOpcode() == ISD::BITCAST)
4605       Op = Op.getOperand(0);
4606     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4607       // See whether the bytes we need come from a contiguous part of one
4608       // operand.
4609       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4610       if (!getVPermMask(Op, OpBytes))
4611         break;
4612       int NewByte;
4613       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4614         break;
4615       if (NewByte < 0) {
4616         addUndef();
4617         return true;
4618       }
4619       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4620       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4621     } else if (Op.isUndef()) {
4622       addUndef();
4623       return true;
4624     } else
4625       break;
4626   }
4627 
4628   // Make sure that the source of the extraction is in Ops.
4629   unsigned OpNo = 0;
4630   for (; OpNo < Ops.size(); ++OpNo)
4631     if (Ops[OpNo] == Op)
4632       break;
4633   if (OpNo == Ops.size())
4634     Ops.push_back(Op);
4635 
4636   // Add the element to Bytes.
4637   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4638   for (unsigned I = 0; I < BytesPerElement; ++I)
4639     Bytes.push_back(Base + I);
4640 
4641   return true;
4642 }
4643 
4644 // Return SDNodes for the completed shuffle.
4645 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4646   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4647 
4648   if (Ops.size() == 0)
4649     return DAG.getUNDEF(VT);
4650 
4651   // Make sure that there are at least two shuffle operands.
4652   if (Ops.size() == 1)
4653     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4654 
4655   // Create a tree of shuffles, deferring root node until after the loop.
4656   // Try to redistribute the undefined elements of non-root nodes so that
4657   // the non-root shuffles match something like a pack or merge, then adjust
4658   // the parent node's permute vector to compensate for the new order.
4659   // Among other things, this copes with vectors like <2 x i16> that were
4660   // padded with undefined elements during type legalization.
4661   //
4662   // In the best case this redistribution will lead to the whole tree
4663   // using packs and merges.  It should rarely be a loss in other cases.
4664   unsigned Stride = 1;
4665   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4666     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4667       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4668 
4669       // Create a mask for just these two operands.
4670       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4671       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4672         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4673         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4674         if (OpNo == I)
4675           NewBytes[J] = Byte;
4676         else if (OpNo == I + Stride)
4677           NewBytes[J] = SystemZ::VectorBytes + Byte;
4678         else
4679           NewBytes[J] = -1;
4680       }
4681       // See if it would be better to reorganize NewMask to avoid using VPERM.
4682       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4683       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4684         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4685         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4686         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4687           if (NewBytes[J] >= 0) {
4688             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4689                    "Invalid double permute");
4690             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4691           } else
4692             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4693         }
4694       } else {
4695         // Just use NewBytes on the operands.
4696         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4697         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4698           if (NewBytes[J] >= 0)
4699             Bytes[J] = I * SystemZ::VectorBytes + J;
4700       }
4701     }
4702   }
4703 
4704   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4705   if (Stride > 1) {
4706     Ops[1] = Ops[Stride];
4707     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4708       if (Bytes[I] >= int(SystemZ::VectorBytes))
4709         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4710   }
4711 
4712   // Look for an instruction that can do the permute without resorting
4713   // to VPERM.
4714   unsigned OpNo0, OpNo1;
4715   SDValue Op;
4716   if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
4717     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
4718   else
4719     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
4720   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4721 }
4722 
4723 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
4724 static bool isScalarToVector(SDValue Op) {
4725   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
4726     if (!Op.getOperand(I).isUndef())
4727       return false;
4728   return true;
4729 }
4730 
4731 // Return a vector of type VT that contains Value in the first element.
4732 // The other elements don't matter.
4733 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4734                                    SDValue Value) {
4735   // If we have a constant, replicate it to all elements and let the
4736   // BUILD_VECTOR lowering take care of it.
4737   if (Value.getOpcode() == ISD::Constant ||
4738       Value.getOpcode() == ISD::ConstantFP) {
4739     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
4740     return DAG.getBuildVector(VT, DL, Ops);
4741   }
4742   if (Value.isUndef())
4743     return DAG.getUNDEF(VT);
4744   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
4745 }
4746 
4747 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
4748 // element 1.  Used for cases in which replication is cheap.
4749 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4750                                  SDValue Op0, SDValue Op1) {
4751   if (Op0.isUndef()) {
4752     if (Op1.isUndef())
4753       return DAG.getUNDEF(VT);
4754     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
4755   }
4756   if (Op1.isUndef())
4757     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
4758   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
4759                      buildScalarToVector(DAG, DL, VT, Op0),
4760                      buildScalarToVector(DAG, DL, VT, Op1));
4761 }
4762 
4763 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
4764 // vector for them.
4765 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
4766                           SDValue Op1) {
4767   if (Op0.isUndef() && Op1.isUndef())
4768     return DAG.getUNDEF(MVT::v2i64);
4769   // If one of the two inputs is undefined then replicate the other one,
4770   // in order to avoid using another register unnecessarily.
4771   if (Op0.isUndef())
4772     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4773   else if (Op1.isUndef())
4774     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4775   else {
4776     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
4777     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
4778   }
4779   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
4780 }
4781 
4782 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
4783 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
4784 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
4785 // would benefit from this representation and return it if so.
4786 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
4787                                      BuildVectorSDNode *BVN) {
4788   EVT VT = BVN->getValueType(0);
4789   unsigned NumElements = VT.getVectorNumElements();
4790 
4791   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
4792   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
4793   // need a BUILD_VECTOR, add an additional placeholder operand for that
4794   // BUILD_VECTOR and store its operands in ResidueOps.
4795   GeneralShuffle GS(VT);
4796   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
4797   bool FoundOne = false;
4798   for (unsigned I = 0; I < NumElements; ++I) {
4799     SDValue Op = BVN->getOperand(I);
4800     if (Op.getOpcode() == ISD::TRUNCATE)
4801       Op = Op.getOperand(0);
4802     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
4803         Op.getOperand(1).getOpcode() == ISD::Constant) {
4804       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
4805       if (!GS.add(Op.getOperand(0), Elem))
4806         return SDValue();
4807       FoundOne = true;
4808     } else if (Op.isUndef()) {
4809       GS.addUndef();
4810     } else {
4811       if (!GS.add(SDValue(), ResidueOps.size()))
4812         return SDValue();
4813       ResidueOps.push_back(BVN->getOperand(I));
4814     }
4815   }
4816 
4817   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
4818   if (!FoundOne)
4819     return SDValue();
4820 
4821   // Create the BUILD_VECTOR for the remaining elements, if any.
4822   if (!ResidueOps.empty()) {
4823     while (ResidueOps.size() < NumElements)
4824       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
4825     for (auto &Op : GS.Ops) {
4826       if (!Op.getNode()) {
4827         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
4828         break;
4829       }
4830     }
4831   }
4832   return GS.getNode(DAG, SDLoc(BVN));
4833 }
4834 
4835 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
4836   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
4837     return true;
4838   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
4839     return true;
4840   return false;
4841 }
4842 
4843 // Combine GPR scalar values Elems into a vector of type VT.
4844 SDValue
4845 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
4846                                    SmallVectorImpl<SDValue> &Elems) const {
4847   // See whether there is a single replicated value.
4848   SDValue Single;
4849   unsigned int NumElements = Elems.size();
4850   unsigned int Count = 0;
4851   for (auto Elem : Elems) {
4852     if (!Elem.isUndef()) {
4853       if (!Single.getNode())
4854         Single = Elem;
4855       else if (Elem != Single) {
4856         Single = SDValue();
4857         break;
4858       }
4859       Count += 1;
4860     }
4861   }
4862   // There are three cases here:
4863   //
4864   // - if the only defined element is a loaded one, the best sequence
4865   //   is a replicating load.
4866   //
4867   // - otherwise, if the only defined element is an i64 value, we will
4868   //   end up with the same VLVGP sequence regardless of whether we short-cut
4869   //   for replication or fall through to the later code.
4870   //
4871   // - otherwise, if the only defined element is an i32 or smaller value,
4872   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
4873   //   This is only a win if the single defined element is used more than once.
4874   //   In other cases we're better off using a single VLVGx.
4875   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
4876     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
4877 
4878   // If all elements are loads, use VLREP/VLEs (below).
4879   bool AllLoads = true;
4880   for (auto Elem : Elems)
4881     if (!isVectorElementLoad(Elem)) {
4882       AllLoads = false;
4883       break;
4884     }
4885 
4886   // The best way of building a v2i64 from two i64s is to use VLVGP.
4887   if (VT == MVT::v2i64 && !AllLoads)
4888     return joinDwords(DAG, DL, Elems[0], Elems[1]);
4889 
4890   // Use a 64-bit merge high to combine two doubles.
4891   if (VT == MVT::v2f64 && !AllLoads)
4892     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4893 
4894   // Build v4f32 values directly from the FPRs:
4895   //
4896   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
4897   //         V              V         VMRHF
4898   //      <ABxx>         <CDxx>
4899   //                V                 VMRHG
4900   //              <ABCD>
4901   if (VT == MVT::v4f32 && !AllLoads) {
4902     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
4903     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
4904     // Avoid unnecessary undefs by reusing the other operand.
4905     if (Op01.isUndef())
4906       Op01 = Op23;
4907     else if (Op23.isUndef())
4908       Op23 = Op01;
4909     // Merging identical replications is a no-op.
4910     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
4911       return Op01;
4912     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
4913     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
4914     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
4915                              DL, MVT::v2i64, Op01, Op23);
4916     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
4917   }
4918 
4919   // Collect the constant terms.
4920   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
4921   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
4922 
4923   unsigned NumConstants = 0;
4924   for (unsigned I = 0; I < NumElements; ++I) {
4925     SDValue Elem = Elems[I];
4926     if (Elem.getOpcode() == ISD::Constant ||
4927         Elem.getOpcode() == ISD::ConstantFP) {
4928       NumConstants += 1;
4929       Constants[I] = Elem;
4930       Done[I] = true;
4931     }
4932   }
4933   // If there was at least one constant, fill in the other elements of
4934   // Constants with undefs to get a full vector constant and use that
4935   // as the starting point.
4936   SDValue Result;
4937   SDValue ReplicatedVal;
4938   if (NumConstants > 0) {
4939     for (unsigned I = 0; I < NumElements; ++I)
4940       if (!Constants[I].getNode())
4941         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
4942     Result = DAG.getBuildVector(VT, DL, Constants);
4943   } else {
4944     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
4945     // avoid a false dependency on any previous contents of the vector
4946     // register.
4947 
4948     // Use a VLREP if at least one element is a load. Make sure to replicate
4949     // the load with the most elements having its value.
4950     std::map<const SDNode*, unsigned> UseCounts;
4951     SDNode *LoadMaxUses = nullptr;
4952     for (unsigned I = 0; I < NumElements; ++I)
4953       if (isVectorElementLoad(Elems[I])) {
4954         SDNode *Ld = Elems[I].getNode();
4955         UseCounts[Ld]++;
4956         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
4957           LoadMaxUses = Ld;
4958       }
4959     if (LoadMaxUses != nullptr) {
4960       ReplicatedVal = SDValue(LoadMaxUses, 0);
4961       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
4962     } else {
4963       // Try to use VLVGP.
4964       unsigned I1 = NumElements / 2 - 1;
4965       unsigned I2 = NumElements - 1;
4966       bool Def1 = !Elems[I1].isUndef();
4967       bool Def2 = !Elems[I2].isUndef();
4968       if (Def1 || Def2) {
4969         SDValue Elem1 = Elems[Def1 ? I1 : I2];
4970         SDValue Elem2 = Elems[Def2 ? I2 : I1];
4971         Result = DAG.getNode(ISD::BITCAST, DL, VT,
4972                              joinDwords(DAG, DL, Elem1, Elem2));
4973         Done[I1] = true;
4974         Done[I2] = true;
4975       } else
4976         Result = DAG.getUNDEF(VT);
4977     }
4978   }
4979 
4980   // Use VLVGx to insert the other elements.
4981   for (unsigned I = 0; I < NumElements; ++I)
4982     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
4983       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
4984                            DAG.getConstant(I, DL, MVT::i32));
4985   return Result;
4986 }
4987 
4988 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
4989                                                  SelectionDAG &DAG) const {
4990   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
4991   SDLoc DL(Op);
4992   EVT VT = Op.getValueType();
4993 
4994   if (BVN->isConstant()) {
4995     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
4996       return Op;
4997 
4998     // Fall back to loading it from memory.
4999     return SDValue();
5000   }
5001 
5002   // See if we should use shuffles to construct the vector from other vectors.
5003   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5004     return Res;
5005 
5006   // Detect SCALAR_TO_VECTOR conversions.
5007   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5008     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5009 
5010   // Otherwise use buildVector to build the vector up from GPRs.
5011   unsigned NumElements = Op.getNumOperands();
5012   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5013   for (unsigned I = 0; I < NumElements; ++I)
5014     Ops[I] = Op.getOperand(I);
5015   return buildVector(DAG, DL, VT, Ops);
5016 }
5017 
5018 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5019                                                    SelectionDAG &DAG) const {
5020   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5021   SDLoc DL(Op);
5022   EVT VT = Op.getValueType();
5023   unsigned NumElements = VT.getVectorNumElements();
5024 
5025   if (VSN->isSplat()) {
5026     SDValue Op0 = Op.getOperand(0);
5027     unsigned Index = VSN->getSplatIndex();
5028     assert(Index < VT.getVectorNumElements() &&
5029            "Splat index should be defined and in first operand");
5030     // See whether the value we're splatting is directly available as a scalar.
5031     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5032         Op0.getOpcode() == ISD::BUILD_VECTOR)
5033       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5034     // Otherwise keep it as a vector-to-vector operation.
5035     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5036                        DAG.getTargetConstant(Index, DL, MVT::i32));
5037   }
5038 
5039   GeneralShuffle GS(VT);
5040   for (unsigned I = 0; I < NumElements; ++I) {
5041     int Elt = VSN->getMaskElt(I);
5042     if (Elt < 0)
5043       GS.addUndef();
5044     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5045                      unsigned(Elt) % NumElements))
5046       return SDValue();
5047   }
5048   return GS.getNode(DAG, SDLoc(VSN));
5049 }
5050 
5051 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5052                                                      SelectionDAG &DAG) const {
5053   SDLoc DL(Op);
5054   // Just insert the scalar into element 0 of an undefined vector.
5055   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5056                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5057                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5058 }
5059 
5060 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5061                                                       SelectionDAG &DAG) const {
5062   // Handle insertions of floating-point values.
5063   SDLoc DL(Op);
5064   SDValue Op0 = Op.getOperand(0);
5065   SDValue Op1 = Op.getOperand(1);
5066   SDValue Op2 = Op.getOperand(2);
5067   EVT VT = Op.getValueType();
5068 
5069   // Insertions into constant indices of a v2f64 can be done using VPDI.
5070   // However, if the inserted value is a bitcast or a constant then it's
5071   // better to use GPRs, as below.
5072   if (VT == MVT::v2f64 &&
5073       Op1.getOpcode() != ISD::BITCAST &&
5074       Op1.getOpcode() != ISD::ConstantFP &&
5075       Op2.getOpcode() == ISD::Constant) {
5076     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5077     unsigned Mask = VT.getVectorNumElements() - 1;
5078     if (Index <= Mask)
5079       return Op;
5080   }
5081 
5082   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5083   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5084   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5085   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5086                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5087                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5088   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5089 }
5090 
5091 SDValue
5092 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5093                                                SelectionDAG &DAG) const {
5094   // Handle extractions of floating-point values.
5095   SDLoc DL(Op);
5096   SDValue Op0 = Op.getOperand(0);
5097   SDValue Op1 = Op.getOperand(1);
5098   EVT VT = Op.getValueType();
5099   EVT VecVT = Op0.getValueType();
5100 
5101   // Extractions of constant indices can be done directly.
5102   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5103     uint64_t Index = CIndexN->getZExtValue();
5104     unsigned Mask = VecVT.getVectorNumElements() - 1;
5105     if (Index <= Mask)
5106       return Op;
5107   }
5108 
5109   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5110   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5111   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5112   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5113                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5114   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5115 }
5116 
5117 SDValue
5118 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
5119                                               unsigned UnpackHigh) const {
5120   SDValue PackedOp = Op.getOperand(0);
5121   EVT OutVT = Op.getValueType();
5122   EVT InVT = PackedOp.getValueType();
5123   unsigned ToBits = OutVT.getScalarSizeInBits();
5124   unsigned FromBits = InVT.getScalarSizeInBits();
5125   do {
5126     FromBits *= 2;
5127     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5128                                  SystemZ::VectorBits / FromBits);
5129     PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp);
5130   } while (FromBits != ToBits);
5131   return PackedOp;
5132 }
5133 
5134 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5135                                           unsigned ByScalar) const {
5136   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5137   SDValue Op0 = Op.getOperand(0);
5138   SDValue Op1 = Op.getOperand(1);
5139   SDLoc DL(Op);
5140   EVT VT = Op.getValueType();
5141   unsigned ElemBitSize = VT.getScalarSizeInBits();
5142 
5143   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5144   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5145     APInt SplatBits, SplatUndef;
5146     unsigned SplatBitSize;
5147     bool HasAnyUndefs;
5148     // Check for constant splats.  Use ElemBitSize as the minimum element
5149     // width and reject splats that need wider elements.
5150     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5151                              ElemBitSize, true) &&
5152         SplatBitSize == ElemBitSize) {
5153       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5154                                       DL, MVT::i32);
5155       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5156     }
5157     // Check for variable splats.
5158     BitVector UndefElements;
5159     SDValue Splat = BVN->getSplatValue(&UndefElements);
5160     if (Splat) {
5161       // Since i32 is the smallest legal type, we either need a no-op
5162       // or a truncation.
5163       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5164       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5165     }
5166   }
5167 
5168   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5169   // and the shift amount is directly available in a GPR.
5170   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5171     if (VSN->isSplat()) {
5172       SDValue VSNOp0 = VSN->getOperand(0);
5173       unsigned Index = VSN->getSplatIndex();
5174       assert(Index < VT.getVectorNumElements() &&
5175              "Splat index should be defined and in first operand");
5176       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5177           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5178         // Since i32 is the smallest legal type, we either need a no-op
5179         // or a truncation.
5180         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5181                                     VSNOp0.getOperand(Index));
5182         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5183       }
5184     }
5185   }
5186 
5187   // Otherwise just treat the current form as legal.
5188   return Op;
5189 }
5190 
5191 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5192                                               SelectionDAG &DAG) const {
5193   switch (Op.getOpcode()) {
5194   case ISD::FRAMEADDR:
5195     return lowerFRAMEADDR(Op, DAG);
5196   case ISD::RETURNADDR:
5197     return lowerRETURNADDR(Op, DAG);
5198   case ISD::BR_CC:
5199     return lowerBR_CC(Op, DAG);
5200   case ISD::SELECT_CC:
5201     return lowerSELECT_CC(Op, DAG);
5202   case ISD::SETCC:
5203     return lowerSETCC(Op, DAG);
5204   case ISD::STRICT_FSETCC:
5205     return lowerSTRICT_FSETCC(Op, DAG, false);
5206   case ISD::STRICT_FSETCCS:
5207     return lowerSTRICT_FSETCC(Op, DAG, true);
5208   case ISD::GlobalAddress:
5209     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5210   case ISD::GlobalTLSAddress:
5211     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5212   case ISD::BlockAddress:
5213     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5214   case ISD::JumpTable:
5215     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5216   case ISD::ConstantPool:
5217     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5218   case ISD::BITCAST:
5219     return lowerBITCAST(Op, DAG);
5220   case ISD::VASTART:
5221     return lowerVASTART(Op, DAG);
5222   case ISD::VACOPY:
5223     return lowerVACOPY(Op, DAG);
5224   case ISD::DYNAMIC_STACKALLOC:
5225     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5226   case ISD::GET_DYNAMIC_AREA_OFFSET:
5227     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5228   case ISD::SMUL_LOHI:
5229     return lowerSMUL_LOHI(Op, DAG);
5230   case ISD::UMUL_LOHI:
5231     return lowerUMUL_LOHI(Op, DAG);
5232   case ISD::SDIVREM:
5233     return lowerSDIVREM(Op, DAG);
5234   case ISD::UDIVREM:
5235     return lowerUDIVREM(Op, DAG);
5236   case ISD::SADDO:
5237   case ISD::SSUBO:
5238   case ISD::UADDO:
5239   case ISD::USUBO:
5240     return lowerXALUO(Op, DAG);
5241   case ISD::ADDCARRY:
5242   case ISD::SUBCARRY:
5243     return lowerADDSUBCARRY(Op, DAG);
5244   case ISD::OR:
5245     return lowerOR(Op, DAG);
5246   case ISD::CTPOP:
5247     return lowerCTPOP(Op, DAG);
5248   case ISD::ATOMIC_FENCE:
5249     return lowerATOMIC_FENCE(Op, DAG);
5250   case ISD::ATOMIC_SWAP:
5251     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5252   case ISD::ATOMIC_STORE:
5253     return lowerATOMIC_STORE(Op, DAG);
5254   case ISD::ATOMIC_LOAD:
5255     return lowerATOMIC_LOAD(Op, DAG);
5256   case ISD::ATOMIC_LOAD_ADD:
5257     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5258   case ISD::ATOMIC_LOAD_SUB:
5259     return lowerATOMIC_LOAD_SUB(Op, DAG);
5260   case ISD::ATOMIC_LOAD_AND:
5261     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5262   case ISD::ATOMIC_LOAD_OR:
5263     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5264   case ISD::ATOMIC_LOAD_XOR:
5265     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5266   case ISD::ATOMIC_LOAD_NAND:
5267     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5268   case ISD::ATOMIC_LOAD_MIN:
5269     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5270   case ISD::ATOMIC_LOAD_MAX:
5271     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5272   case ISD::ATOMIC_LOAD_UMIN:
5273     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5274   case ISD::ATOMIC_LOAD_UMAX:
5275     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5276   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5277     return lowerATOMIC_CMP_SWAP(Op, DAG);
5278   case ISD::STACKSAVE:
5279     return lowerSTACKSAVE(Op, DAG);
5280   case ISD::STACKRESTORE:
5281     return lowerSTACKRESTORE(Op, DAG);
5282   case ISD::PREFETCH:
5283     return lowerPREFETCH(Op, DAG);
5284   case ISD::INTRINSIC_W_CHAIN:
5285     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5286   case ISD::INTRINSIC_WO_CHAIN:
5287     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5288   case ISD::BUILD_VECTOR:
5289     return lowerBUILD_VECTOR(Op, DAG);
5290   case ISD::VECTOR_SHUFFLE:
5291     return lowerVECTOR_SHUFFLE(Op, DAG);
5292   case ISD::SCALAR_TO_VECTOR:
5293     return lowerSCALAR_TO_VECTOR(Op, DAG);
5294   case ISD::INSERT_VECTOR_ELT:
5295     return lowerINSERT_VECTOR_ELT(Op, DAG);
5296   case ISD::EXTRACT_VECTOR_ELT:
5297     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5298   case ISD::SIGN_EXTEND_VECTOR_INREG:
5299     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH);
5300   case ISD::ZERO_EXTEND_VECTOR_INREG:
5301     return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH);
5302   case ISD::SHL:
5303     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5304   case ISD::SRL:
5305     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5306   case ISD::SRA:
5307     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5308   default:
5309     llvm_unreachable("Unexpected node to lower");
5310   }
5311 }
5312 
5313 // Lower operations with invalid operand or result types (currently used
5314 // only for 128-bit integer types).
5315 
5316 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
5317   SDLoc DL(In);
5318   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5319                            DAG.getIntPtrConstant(0, DL));
5320   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
5321                            DAG.getIntPtrConstant(1, DL));
5322   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
5323                                     MVT::Untyped, Hi, Lo);
5324   return SDValue(Pair, 0);
5325 }
5326 
5327 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
5328   SDLoc DL(In);
5329   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5330                                           DL, MVT::i64, In);
5331   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5332                                           DL, MVT::i64, In);
5333   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
5334 }
5335 
5336 void
5337 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5338                                              SmallVectorImpl<SDValue> &Results,
5339                                              SelectionDAG &DAG) const {
5340   switch (N->getOpcode()) {
5341   case ISD::ATOMIC_LOAD: {
5342     SDLoc DL(N);
5343     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5344     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5345     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5346     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5347                                           DL, Tys, Ops, MVT::i128, MMO);
5348     Results.push_back(lowerGR128ToI128(DAG, Res));
5349     Results.push_back(Res.getValue(1));
5350     break;
5351   }
5352   case ISD::ATOMIC_STORE: {
5353     SDLoc DL(N);
5354     SDVTList Tys = DAG.getVTList(MVT::Other);
5355     SDValue Ops[] = { N->getOperand(0),
5356                       lowerI128ToGR128(DAG, N->getOperand(2)),
5357                       N->getOperand(1) };
5358     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5359     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5360                                           DL, Tys, Ops, MVT::i128, MMO);
5361     // We have to enforce sequential consistency by performing a
5362     // serialization operation after the store.
5363     if (cast<AtomicSDNode>(N)->getOrdering() ==
5364         AtomicOrdering::SequentiallyConsistent)
5365       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5366                                        MVT::Other, Res), 0);
5367     Results.push_back(Res);
5368     break;
5369   }
5370   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5371     SDLoc DL(N);
5372     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5373     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5374                       lowerI128ToGR128(DAG, N->getOperand(2)),
5375                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5376     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5377     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5378                                           DL, Tys, Ops, MVT::i128, MMO);
5379     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5380                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5381     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5382     Results.push_back(lowerGR128ToI128(DAG, Res));
5383     Results.push_back(Success);
5384     Results.push_back(Res.getValue(2));
5385     break;
5386   }
5387   default:
5388     llvm_unreachable("Unexpected node to lower");
5389   }
5390 }
5391 
5392 void
5393 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5394                                           SmallVectorImpl<SDValue> &Results,
5395                                           SelectionDAG &DAG) const {
5396   return LowerOperationWrapper(N, Results, DAG);
5397 }
5398 
5399 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5400 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5401   switch ((SystemZISD::NodeType)Opcode) {
5402     case SystemZISD::FIRST_NUMBER: break;
5403     OPCODE(RET_FLAG);
5404     OPCODE(CALL);
5405     OPCODE(SIBCALL);
5406     OPCODE(TLS_GDCALL);
5407     OPCODE(TLS_LDCALL);
5408     OPCODE(PCREL_WRAPPER);
5409     OPCODE(PCREL_OFFSET);
5410     OPCODE(IABS);
5411     OPCODE(ICMP);
5412     OPCODE(FCMP);
5413     OPCODE(STRICT_FCMP);
5414     OPCODE(STRICT_FCMPS);
5415     OPCODE(TM);
5416     OPCODE(BR_CCMASK);
5417     OPCODE(SELECT_CCMASK);
5418     OPCODE(ADJDYNALLOC);
5419     OPCODE(PROBED_ALLOCA);
5420     OPCODE(POPCNT);
5421     OPCODE(SMUL_LOHI);
5422     OPCODE(UMUL_LOHI);
5423     OPCODE(SDIVREM);
5424     OPCODE(UDIVREM);
5425     OPCODE(SADDO);
5426     OPCODE(SSUBO);
5427     OPCODE(UADDO);
5428     OPCODE(USUBO);
5429     OPCODE(ADDCARRY);
5430     OPCODE(SUBCARRY);
5431     OPCODE(GET_CCMASK);
5432     OPCODE(MVC);
5433     OPCODE(MVC_LOOP);
5434     OPCODE(NC);
5435     OPCODE(NC_LOOP);
5436     OPCODE(OC);
5437     OPCODE(OC_LOOP);
5438     OPCODE(XC);
5439     OPCODE(XC_LOOP);
5440     OPCODE(CLC);
5441     OPCODE(CLC_LOOP);
5442     OPCODE(STPCPY);
5443     OPCODE(STRCMP);
5444     OPCODE(SEARCH_STRING);
5445     OPCODE(IPM);
5446     OPCODE(MEMBARRIER);
5447     OPCODE(TBEGIN);
5448     OPCODE(TBEGIN_NOFLOAT);
5449     OPCODE(TEND);
5450     OPCODE(BYTE_MASK);
5451     OPCODE(ROTATE_MASK);
5452     OPCODE(REPLICATE);
5453     OPCODE(JOIN_DWORDS);
5454     OPCODE(SPLAT);
5455     OPCODE(MERGE_HIGH);
5456     OPCODE(MERGE_LOW);
5457     OPCODE(SHL_DOUBLE);
5458     OPCODE(PERMUTE_DWORDS);
5459     OPCODE(PERMUTE);
5460     OPCODE(PACK);
5461     OPCODE(PACKS_CC);
5462     OPCODE(PACKLS_CC);
5463     OPCODE(UNPACK_HIGH);
5464     OPCODE(UNPACKL_HIGH);
5465     OPCODE(UNPACK_LOW);
5466     OPCODE(UNPACKL_LOW);
5467     OPCODE(VSHL_BY_SCALAR);
5468     OPCODE(VSRL_BY_SCALAR);
5469     OPCODE(VSRA_BY_SCALAR);
5470     OPCODE(VSUM);
5471     OPCODE(VICMPE);
5472     OPCODE(VICMPH);
5473     OPCODE(VICMPHL);
5474     OPCODE(VICMPES);
5475     OPCODE(VICMPHS);
5476     OPCODE(VICMPHLS);
5477     OPCODE(VFCMPE);
5478     OPCODE(STRICT_VFCMPE);
5479     OPCODE(STRICT_VFCMPES);
5480     OPCODE(VFCMPH);
5481     OPCODE(STRICT_VFCMPH);
5482     OPCODE(STRICT_VFCMPHS);
5483     OPCODE(VFCMPHE);
5484     OPCODE(STRICT_VFCMPHE);
5485     OPCODE(STRICT_VFCMPHES);
5486     OPCODE(VFCMPES);
5487     OPCODE(VFCMPHS);
5488     OPCODE(VFCMPHES);
5489     OPCODE(VFTCI);
5490     OPCODE(VEXTEND);
5491     OPCODE(STRICT_VEXTEND);
5492     OPCODE(VROUND);
5493     OPCODE(STRICT_VROUND);
5494     OPCODE(VTM);
5495     OPCODE(VFAE_CC);
5496     OPCODE(VFAEZ_CC);
5497     OPCODE(VFEE_CC);
5498     OPCODE(VFEEZ_CC);
5499     OPCODE(VFENE_CC);
5500     OPCODE(VFENEZ_CC);
5501     OPCODE(VISTR_CC);
5502     OPCODE(VSTRC_CC);
5503     OPCODE(VSTRCZ_CC);
5504     OPCODE(VSTRS_CC);
5505     OPCODE(VSTRSZ_CC);
5506     OPCODE(TDC);
5507     OPCODE(ATOMIC_SWAPW);
5508     OPCODE(ATOMIC_LOADW_ADD);
5509     OPCODE(ATOMIC_LOADW_SUB);
5510     OPCODE(ATOMIC_LOADW_AND);
5511     OPCODE(ATOMIC_LOADW_OR);
5512     OPCODE(ATOMIC_LOADW_XOR);
5513     OPCODE(ATOMIC_LOADW_NAND);
5514     OPCODE(ATOMIC_LOADW_MIN);
5515     OPCODE(ATOMIC_LOADW_MAX);
5516     OPCODE(ATOMIC_LOADW_UMIN);
5517     OPCODE(ATOMIC_LOADW_UMAX);
5518     OPCODE(ATOMIC_CMP_SWAPW);
5519     OPCODE(ATOMIC_CMP_SWAP);
5520     OPCODE(ATOMIC_LOAD_128);
5521     OPCODE(ATOMIC_STORE_128);
5522     OPCODE(ATOMIC_CMP_SWAP_128);
5523     OPCODE(LRV);
5524     OPCODE(STRV);
5525     OPCODE(VLER);
5526     OPCODE(VSTER);
5527     OPCODE(PREFETCH);
5528   }
5529   return nullptr;
5530 #undef OPCODE
5531 }
5532 
5533 // Return true if VT is a vector whose elements are a whole number of bytes
5534 // in width. Also check for presence of vector support.
5535 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5536   if (!Subtarget.hasVector())
5537     return false;
5538 
5539   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5540 }
5541 
5542 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5543 // producing a result of type ResVT.  Op is a possibly bitcast version
5544 // of the input vector and Index is the index (based on type VecVT) that
5545 // should be extracted.  Return the new extraction if a simplification
5546 // was possible or if Force is true.
5547 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5548                                               EVT VecVT, SDValue Op,
5549                                               unsigned Index,
5550                                               DAGCombinerInfo &DCI,
5551                                               bool Force) const {
5552   SelectionDAG &DAG = DCI.DAG;
5553 
5554   // The number of bytes being extracted.
5555   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5556 
5557   for (;;) {
5558     unsigned Opcode = Op.getOpcode();
5559     if (Opcode == ISD::BITCAST)
5560       // Look through bitcasts.
5561       Op = Op.getOperand(0);
5562     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5563              canTreatAsByteVector(Op.getValueType())) {
5564       // Get a VPERM-like permute mask and see whether the bytes covered
5565       // by the extracted element are a contiguous sequence from one
5566       // source operand.
5567       SmallVector<int, SystemZ::VectorBytes> Bytes;
5568       if (!getVPermMask(Op, Bytes))
5569         break;
5570       int First;
5571       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5572                            BytesPerElement, First))
5573         break;
5574       if (First < 0)
5575         return DAG.getUNDEF(ResVT);
5576       // Make sure the contiguous sequence starts at a multiple of the
5577       // original element size.
5578       unsigned Byte = unsigned(First) % Bytes.size();
5579       if (Byte % BytesPerElement != 0)
5580         break;
5581       // We can get the extracted value directly from an input.
5582       Index = Byte / BytesPerElement;
5583       Op = Op.getOperand(unsigned(First) / Bytes.size());
5584       Force = true;
5585     } else if (Opcode == ISD::BUILD_VECTOR &&
5586                canTreatAsByteVector(Op.getValueType())) {
5587       // We can only optimize this case if the BUILD_VECTOR elements are
5588       // at least as wide as the extracted value.
5589       EVT OpVT = Op.getValueType();
5590       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5591       if (OpBytesPerElement < BytesPerElement)
5592         break;
5593       // Make sure that the least-significant bit of the extracted value
5594       // is the least significant bit of an input.
5595       unsigned End = (Index + 1) * BytesPerElement;
5596       if (End % OpBytesPerElement != 0)
5597         break;
5598       // We're extracting the low part of one operand of the BUILD_VECTOR.
5599       Op = Op.getOperand(End / OpBytesPerElement - 1);
5600       if (!Op.getValueType().isInteger()) {
5601         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
5602         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
5603         DCI.AddToWorklist(Op.getNode());
5604       }
5605       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
5606       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
5607       if (VT != ResVT) {
5608         DCI.AddToWorklist(Op.getNode());
5609         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
5610       }
5611       return Op;
5612     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
5613                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
5614                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
5615                canTreatAsByteVector(Op.getValueType()) &&
5616                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
5617       // Make sure that only the unextended bits are significant.
5618       EVT ExtVT = Op.getValueType();
5619       EVT OpVT = Op.getOperand(0).getValueType();
5620       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
5621       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
5622       unsigned Byte = Index * BytesPerElement;
5623       unsigned SubByte = Byte % ExtBytesPerElement;
5624       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
5625       if (SubByte < MinSubByte ||
5626           SubByte + BytesPerElement > ExtBytesPerElement)
5627         break;
5628       // Get the byte offset of the unextended element
5629       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
5630       // ...then add the byte offset relative to that element.
5631       Byte += SubByte - MinSubByte;
5632       if (Byte % BytesPerElement != 0)
5633         break;
5634       Op = Op.getOperand(0);
5635       Index = Byte / BytesPerElement;
5636       Force = true;
5637     } else
5638       break;
5639   }
5640   if (Force) {
5641     if (Op.getValueType() != VecVT) {
5642       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
5643       DCI.AddToWorklist(Op.getNode());
5644     }
5645     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
5646                        DAG.getConstant(Index, DL, MVT::i32));
5647   }
5648   return SDValue();
5649 }
5650 
5651 // Optimize vector operations in scalar value Op on the basis that Op
5652 // is truncated to TruncVT.
5653 SDValue SystemZTargetLowering::combineTruncateExtract(
5654     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
5655   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
5656   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
5657   // of type TruncVT.
5658   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5659       TruncVT.getSizeInBits() % 8 == 0) {
5660     SDValue Vec = Op.getOperand(0);
5661     EVT VecVT = Vec.getValueType();
5662     if (canTreatAsByteVector(VecVT)) {
5663       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5664         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5665         unsigned TruncBytes = TruncVT.getStoreSize();
5666         if (BytesPerElement % TruncBytes == 0) {
5667           // Calculate the value of Y' in the above description.  We are
5668           // splitting the original elements into Scale equal-sized pieces
5669           // and for truncation purposes want the last (least-significant)
5670           // of these pieces for IndexN.  This is easiest to do by calculating
5671           // the start index of the following element and then subtracting 1.
5672           unsigned Scale = BytesPerElement / TruncBytes;
5673           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
5674 
5675           // Defer the creation of the bitcast from X to combineExtract,
5676           // which might be able to optimize the extraction.
5677           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
5678                                    VecVT.getStoreSize() / TruncBytes);
5679           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
5680           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
5681         }
5682       }
5683     }
5684   }
5685   return SDValue();
5686 }
5687 
5688 SDValue SystemZTargetLowering::combineZERO_EXTEND(
5689     SDNode *N, DAGCombinerInfo &DCI) const {
5690   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
5691   SelectionDAG &DAG = DCI.DAG;
5692   SDValue N0 = N->getOperand(0);
5693   EVT VT = N->getValueType(0);
5694   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
5695     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
5696     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5697     if (TrueOp && FalseOp) {
5698       SDLoc DL(N0);
5699       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
5700                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
5701                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
5702       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
5703       // If N0 has multiple uses, change other uses as well.
5704       if (!N0.hasOneUse()) {
5705         SDValue TruncSelect =
5706           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
5707         DCI.CombineTo(N0.getNode(), TruncSelect);
5708       }
5709       return NewSelect;
5710     }
5711   }
5712   return SDValue();
5713 }
5714 
5715 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
5716     SDNode *N, DAGCombinerInfo &DCI) const {
5717   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
5718   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
5719   // into (select_cc LHS, RHS, -1, 0, COND)
5720   SelectionDAG &DAG = DCI.DAG;
5721   SDValue N0 = N->getOperand(0);
5722   EVT VT = N->getValueType(0);
5723   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
5724   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
5725     N0 = N0.getOperand(0);
5726   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
5727     SDLoc DL(N0);
5728     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
5729                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
5730                       N0.getOperand(2) };
5731     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
5732   }
5733   return SDValue();
5734 }
5735 
5736 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
5737     SDNode *N, DAGCombinerInfo &DCI) const {
5738   // Convert (sext (ashr (shl X, C1), C2)) to
5739   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
5740   // cheap as narrower ones.
5741   SelectionDAG &DAG = DCI.DAG;
5742   SDValue N0 = N->getOperand(0);
5743   EVT VT = N->getValueType(0);
5744   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
5745     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
5746     SDValue Inner = N0.getOperand(0);
5747     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
5748       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
5749         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
5750         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
5751         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
5752         EVT ShiftVT = N0.getOperand(1).getValueType();
5753         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
5754                                   Inner.getOperand(0));
5755         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
5756                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
5757                                                   ShiftVT));
5758         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
5759                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
5760       }
5761     }
5762   }
5763   return SDValue();
5764 }
5765 
5766 SDValue SystemZTargetLowering::combineMERGE(
5767     SDNode *N, DAGCombinerInfo &DCI) const {
5768   SelectionDAG &DAG = DCI.DAG;
5769   unsigned Opcode = N->getOpcode();
5770   SDValue Op0 = N->getOperand(0);
5771   SDValue Op1 = N->getOperand(1);
5772   if (Op0.getOpcode() == ISD::BITCAST)
5773     Op0 = Op0.getOperand(0);
5774   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
5775     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
5776     // for v4f32.
5777     if (Op1 == N->getOperand(0))
5778       return Op1;
5779     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
5780     EVT VT = Op1.getValueType();
5781     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
5782     if (ElemBytes <= 4) {
5783       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
5784                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
5785       EVT InVT = VT.changeVectorElementTypeToInteger();
5786       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
5787                                    SystemZ::VectorBytes / ElemBytes / 2);
5788       if (VT != InVT) {
5789         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
5790         DCI.AddToWorklist(Op1.getNode());
5791       }
5792       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
5793       DCI.AddToWorklist(Op.getNode());
5794       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
5795     }
5796   }
5797   return SDValue();
5798 }
5799 
5800 SDValue SystemZTargetLowering::combineLOAD(
5801     SDNode *N, DAGCombinerInfo &DCI) const {
5802   SelectionDAG &DAG = DCI.DAG;
5803   EVT LdVT = N->getValueType(0);
5804   if (LdVT.isVector() || LdVT.isInteger())
5805     return SDValue();
5806   // Transform a scalar load that is REPLICATEd as well as having other
5807   // use(s) to the form where the other use(s) use the first element of the
5808   // REPLICATE instead of the load. Otherwise instruction selection will not
5809   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
5810   // point loads.
5811 
5812   SDValue Replicate;
5813   SmallVector<SDNode*, 8> OtherUses;
5814   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
5815        UI != UE; ++UI) {
5816     if (UI->getOpcode() == SystemZISD::REPLICATE) {
5817       if (Replicate)
5818         return SDValue(); // Should never happen
5819       Replicate = SDValue(*UI, 0);
5820     }
5821     else if (UI.getUse().getResNo() == 0)
5822       OtherUses.push_back(*UI);
5823   }
5824   if (!Replicate || OtherUses.empty())
5825     return SDValue();
5826 
5827   SDLoc DL(N);
5828   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
5829                               Replicate, DAG.getConstant(0, DL, MVT::i32));
5830   // Update uses of the loaded Value while preserving old chains.
5831   for (SDNode *U : OtherUses) {
5832     SmallVector<SDValue, 8> Ops;
5833     for (SDValue Op : U->ops())
5834       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
5835     DAG.UpdateNodeOperands(U, Ops);
5836   }
5837   return SDValue(N, 0);
5838 }
5839 
5840 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
5841   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
5842     return true;
5843   if (Subtarget.hasVectorEnhancements2())
5844     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
5845       return true;
5846   return false;
5847 }
5848 
5849 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
5850   if (!VT.isVector() || !VT.isSimple() ||
5851       VT.getSizeInBits() != 128 ||
5852       VT.getScalarSizeInBits() % 8 != 0)
5853     return false;
5854 
5855   unsigned NumElts = VT.getVectorNumElements();
5856   for (unsigned i = 0; i < NumElts; ++i) {
5857     if (M[i] < 0) continue; // ignore UNDEF indices
5858     if ((unsigned) M[i] != NumElts - 1 - i)
5859       return false;
5860   }
5861 
5862   return true;
5863 }
5864 
5865 SDValue SystemZTargetLowering::combineSTORE(
5866     SDNode *N, DAGCombinerInfo &DCI) const {
5867   SelectionDAG &DAG = DCI.DAG;
5868   auto *SN = cast<StoreSDNode>(N);
5869   auto &Op1 = N->getOperand(1);
5870   EVT MemVT = SN->getMemoryVT();
5871   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
5872   // for the extraction to be done on a vMiN value, so that we can use VSTE.
5873   // If X has wider elements then convert it to:
5874   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
5875   if (MemVT.isInteger() && SN->isTruncatingStore()) {
5876     if (SDValue Value =
5877             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
5878       DCI.AddToWorklist(Value.getNode());
5879 
5880       // Rewrite the store with the new form of stored value.
5881       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
5882                                SN->getBasePtr(), SN->getMemoryVT(),
5883                                SN->getMemOperand());
5884     }
5885   }
5886   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
5887   if (!SN->isTruncatingStore() &&
5888       Op1.getOpcode() == ISD::BSWAP &&
5889       Op1.getNode()->hasOneUse() &&
5890       canLoadStoreByteSwapped(Op1.getValueType())) {
5891 
5892       SDValue BSwapOp = Op1.getOperand(0);
5893 
5894       if (BSwapOp.getValueType() == MVT::i16)
5895         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
5896 
5897       SDValue Ops[] = {
5898         N->getOperand(0), BSwapOp, N->getOperand(2)
5899       };
5900 
5901       return
5902         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
5903                                 Ops, MemVT, SN->getMemOperand());
5904     }
5905   // Combine STORE (element-swap) into VSTER
5906   if (!SN->isTruncatingStore() &&
5907       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
5908       Op1.getNode()->hasOneUse() &&
5909       Subtarget.hasVectorEnhancements2()) {
5910     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
5911     ArrayRef<int> ShuffleMask = SVN->getMask();
5912     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
5913       SDValue Ops[] = {
5914         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
5915       };
5916 
5917       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
5918                                      DAG.getVTList(MVT::Other),
5919                                      Ops, MemVT, SN->getMemOperand());
5920     }
5921   }
5922 
5923   return SDValue();
5924 }
5925 
5926 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
5927     SDNode *N, DAGCombinerInfo &DCI) const {
5928   SelectionDAG &DAG = DCI.DAG;
5929   // Combine element-swap (LOAD) into VLER
5930   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5931       N->getOperand(0).hasOneUse() &&
5932       Subtarget.hasVectorEnhancements2()) {
5933     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
5934     ArrayRef<int> ShuffleMask = SVN->getMask();
5935     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
5936       SDValue Load = N->getOperand(0);
5937       LoadSDNode *LD = cast<LoadSDNode>(Load);
5938 
5939       // Create the element-swapping load.
5940       SDValue Ops[] = {
5941         LD->getChain(),    // Chain
5942         LD->getBasePtr()   // Ptr
5943       };
5944       SDValue ESLoad =
5945         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
5946                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
5947                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
5948 
5949       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
5950       // by the load dead.
5951       DCI.CombineTo(N, ESLoad);
5952 
5953       // Next, combine the load away, we give it a bogus result value but a real
5954       // chain result.  The result value is dead because the shuffle is dead.
5955       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
5956 
5957       // Return N so it doesn't get rechecked!
5958       return SDValue(N, 0);
5959     }
5960   }
5961 
5962   return SDValue();
5963 }
5964 
5965 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
5966     SDNode *N, DAGCombinerInfo &DCI) const {
5967   SelectionDAG &DAG = DCI.DAG;
5968 
5969   if (!Subtarget.hasVector())
5970     return SDValue();
5971 
5972   // Look through bitcasts that retain the number of vector elements.
5973   SDValue Op = N->getOperand(0);
5974   if (Op.getOpcode() == ISD::BITCAST &&
5975       Op.getValueType().isVector() &&
5976       Op.getOperand(0).getValueType().isVector() &&
5977       Op.getValueType().getVectorNumElements() ==
5978       Op.getOperand(0).getValueType().getVectorNumElements())
5979     Op = Op.getOperand(0);
5980 
5981   // Pull BSWAP out of a vector extraction.
5982   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
5983     EVT VecVT = Op.getValueType();
5984     EVT EltVT = VecVT.getVectorElementType();
5985     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
5986                      Op.getOperand(0), N->getOperand(1));
5987     DCI.AddToWorklist(Op.getNode());
5988     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
5989     if (EltVT != N->getValueType(0)) {
5990       DCI.AddToWorklist(Op.getNode());
5991       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
5992     }
5993     return Op;
5994   }
5995 
5996   // Try to simplify a vector extraction.
5997   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
5998     SDValue Op0 = N->getOperand(0);
5999     EVT VecVT = Op0.getValueType();
6000     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6001                           IndexN->getZExtValue(), DCI, false);
6002   }
6003   return SDValue();
6004 }
6005 
6006 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6007     SDNode *N, DAGCombinerInfo &DCI) const {
6008   SelectionDAG &DAG = DCI.DAG;
6009   // (join_dwords X, X) == (replicate X)
6010   if (N->getOperand(0) == N->getOperand(1))
6011     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6012                        N->getOperand(0));
6013   return SDValue();
6014 }
6015 
6016 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6017   SDValue Chain1 = N1->getOperand(0);
6018   SDValue Chain2 = N2->getOperand(0);
6019 
6020   // Trivial case: both nodes take the same chain.
6021   if (Chain1 == Chain2)
6022     return Chain1;
6023 
6024   // FIXME - we could handle more complex cases via TokenFactor,
6025   // assuming we can verify that this would not create a cycle.
6026   return SDValue();
6027 }
6028 
6029 SDValue SystemZTargetLowering::combineFP_ROUND(
6030     SDNode *N, DAGCombinerInfo &DCI) const {
6031 
6032   if (!Subtarget.hasVector())
6033     return SDValue();
6034 
6035   // (fpround (extract_vector_elt X 0))
6036   // (fpround (extract_vector_elt X 1)) ->
6037   // (extract_vector_elt (VROUND X) 0)
6038   // (extract_vector_elt (VROUND X) 2)
6039   //
6040   // This is a special case since the target doesn't really support v2f32s.
6041   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6042   SelectionDAG &DAG = DCI.DAG;
6043   SDValue Op0 = N->getOperand(OpNo);
6044   if (N->getValueType(0) == MVT::f32 &&
6045       Op0.hasOneUse() &&
6046       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6047       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6048       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6049       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6050     SDValue Vec = Op0.getOperand(0);
6051     for (auto *U : Vec->uses()) {
6052       if (U != Op0.getNode() &&
6053           U->hasOneUse() &&
6054           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6055           U->getOperand(0) == Vec &&
6056           U->getOperand(1).getOpcode() == ISD::Constant &&
6057           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6058         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6059         if (OtherRound.getOpcode() == N->getOpcode() &&
6060             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6061             OtherRound.getValueType() == MVT::f32) {
6062           SDValue VRound, Chain;
6063           if (N->isStrictFPOpcode()) {
6064             Chain = MergeInputChains(N, OtherRound.getNode());
6065             if (!Chain)
6066               continue;
6067             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6068                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6069             Chain = VRound.getValue(1);
6070           } else
6071             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6072                                  MVT::v4f32, Vec);
6073           DCI.AddToWorklist(VRound.getNode());
6074           SDValue Extract1 =
6075             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6076                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6077           DCI.AddToWorklist(Extract1.getNode());
6078           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6079           if (Chain)
6080             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6081           SDValue Extract0 =
6082             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6083                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6084           if (Chain)
6085             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6086                                N->getVTList(), Extract0, Chain);
6087           return Extract0;
6088         }
6089       }
6090     }
6091   }
6092   return SDValue();
6093 }
6094 
6095 SDValue SystemZTargetLowering::combineFP_EXTEND(
6096     SDNode *N, DAGCombinerInfo &DCI) const {
6097 
6098   if (!Subtarget.hasVector())
6099     return SDValue();
6100 
6101   // (fpextend (extract_vector_elt X 0))
6102   // (fpextend (extract_vector_elt X 2)) ->
6103   // (extract_vector_elt (VEXTEND X) 0)
6104   // (extract_vector_elt (VEXTEND X) 1)
6105   //
6106   // This is a special case since the target doesn't really support v2f32s.
6107   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6108   SelectionDAG &DAG = DCI.DAG;
6109   SDValue Op0 = N->getOperand(OpNo);
6110   if (N->getValueType(0) == MVT::f64 &&
6111       Op0.hasOneUse() &&
6112       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6113       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6114       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6115       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6116     SDValue Vec = Op0.getOperand(0);
6117     for (auto *U : Vec->uses()) {
6118       if (U != Op0.getNode() &&
6119           U->hasOneUse() &&
6120           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6121           U->getOperand(0) == Vec &&
6122           U->getOperand(1).getOpcode() == ISD::Constant &&
6123           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6124         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6125         if (OtherExtend.getOpcode() == N->getOpcode() &&
6126             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6127             OtherExtend.getValueType() == MVT::f64) {
6128           SDValue VExtend, Chain;
6129           if (N->isStrictFPOpcode()) {
6130             Chain = MergeInputChains(N, OtherExtend.getNode());
6131             if (!Chain)
6132               continue;
6133             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6134                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6135             Chain = VExtend.getValue(1);
6136           } else
6137             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6138                                   MVT::v2f64, Vec);
6139           DCI.AddToWorklist(VExtend.getNode());
6140           SDValue Extract1 =
6141             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6142                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6143           DCI.AddToWorklist(Extract1.getNode());
6144           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6145           if (Chain)
6146             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6147           SDValue Extract0 =
6148             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6149                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6150           if (Chain)
6151             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6152                                N->getVTList(), Extract0, Chain);
6153           return Extract0;
6154         }
6155       }
6156     }
6157   }
6158   return SDValue();
6159 }
6160 
6161 SDValue SystemZTargetLowering::combineINT_TO_FP(
6162     SDNode *N, DAGCombinerInfo &DCI) const {
6163   if (DCI.Level != BeforeLegalizeTypes)
6164     return SDValue();
6165   unsigned Opcode = N->getOpcode();
6166   EVT OutVT = N->getValueType(0);
6167   SelectionDAG &DAG = DCI.DAG;
6168   SDValue Op = N->getOperand(0);
6169   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6170   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6171 
6172   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6173   // v2f64 = uint_to_fp v2i16
6174   // =>
6175   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6176   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6177     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6178                                  OutVT.getVectorNumElements());
6179     unsigned ExtOpcode =
6180       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6181     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6182     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6183   }
6184   return SDValue();
6185 }
6186 
6187 SDValue SystemZTargetLowering::combineBSWAP(
6188     SDNode *N, DAGCombinerInfo &DCI) const {
6189   SelectionDAG &DAG = DCI.DAG;
6190   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6191   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6192       N->getOperand(0).hasOneUse() &&
6193       canLoadStoreByteSwapped(N->getValueType(0))) {
6194       SDValue Load = N->getOperand(0);
6195       LoadSDNode *LD = cast<LoadSDNode>(Load);
6196 
6197       // Create the byte-swapping load.
6198       SDValue Ops[] = {
6199         LD->getChain(),    // Chain
6200         LD->getBasePtr()   // Ptr
6201       };
6202       EVT LoadVT = N->getValueType(0);
6203       if (LoadVT == MVT::i16)
6204         LoadVT = MVT::i32;
6205       SDValue BSLoad =
6206         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6207                                 DAG.getVTList(LoadVT, MVT::Other),
6208                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6209 
6210       // If this is an i16 load, insert the truncate.
6211       SDValue ResVal = BSLoad;
6212       if (N->getValueType(0) == MVT::i16)
6213         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6214 
6215       // First, combine the bswap away.  This makes the value produced by the
6216       // load dead.
6217       DCI.CombineTo(N, ResVal);
6218 
6219       // Next, combine the load away, we give it a bogus result value but a real
6220       // chain result.  The result value is dead because the bswap is dead.
6221       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6222 
6223       // Return N so it doesn't get rechecked!
6224       return SDValue(N, 0);
6225     }
6226 
6227   // Look through bitcasts that retain the number of vector elements.
6228   SDValue Op = N->getOperand(0);
6229   if (Op.getOpcode() == ISD::BITCAST &&
6230       Op.getValueType().isVector() &&
6231       Op.getOperand(0).getValueType().isVector() &&
6232       Op.getValueType().getVectorNumElements() ==
6233       Op.getOperand(0).getValueType().getVectorNumElements())
6234     Op = Op.getOperand(0);
6235 
6236   // Push BSWAP into a vector insertion if at least one side then simplifies.
6237   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6238     SDValue Vec = Op.getOperand(0);
6239     SDValue Elt = Op.getOperand(1);
6240     SDValue Idx = Op.getOperand(2);
6241 
6242     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6243         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6244         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6245         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6246         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6247          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6248       EVT VecVT = N->getValueType(0);
6249       EVT EltVT = N->getValueType(0).getVectorElementType();
6250       if (VecVT != Vec.getValueType()) {
6251         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6252         DCI.AddToWorklist(Vec.getNode());
6253       }
6254       if (EltVT != Elt.getValueType()) {
6255         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6256         DCI.AddToWorklist(Elt.getNode());
6257       }
6258       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6259       DCI.AddToWorklist(Vec.getNode());
6260       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6261       DCI.AddToWorklist(Elt.getNode());
6262       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6263                          Vec, Elt, Idx);
6264     }
6265   }
6266 
6267   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6268   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6269   if (SV && Op.hasOneUse()) {
6270     SDValue Op0 = Op.getOperand(0);
6271     SDValue Op1 = Op.getOperand(1);
6272 
6273     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6274         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6275         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6276         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6277       EVT VecVT = N->getValueType(0);
6278       if (VecVT != Op0.getValueType()) {
6279         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6280         DCI.AddToWorklist(Op0.getNode());
6281       }
6282       if (VecVT != Op1.getValueType()) {
6283         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6284         DCI.AddToWorklist(Op1.getNode());
6285       }
6286       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6287       DCI.AddToWorklist(Op0.getNode());
6288       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6289       DCI.AddToWorklist(Op1.getNode());
6290       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6291     }
6292   }
6293 
6294   return SDValue();
6295 }
6296 
6297 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6298   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6299   // set by the CCReg instruction using the CCValid / CCMask masks,
6300   // If the CCReg instruction is itself a ICMP testing the condition
6301   // code set by some other instruction, see whether we can directly
6302   // use that condition code.
6303 
6304   // Verify that we have an ICMP against some constant.
6305   if (CCValid != SystemZ::CCMASK_ICMP)
6306     return false;
6307   auto *ICmp = CCReg.getNode();
6308   if (ICmp->getOpcode() != SystemZISD::ICMP)
6309     return false;
6310   auto *CompareLHS = ICmp->getOperand(0).getNode();
6311   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6312   if (!CompareRHS)
6313     return false;
6314 
6315   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6316   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6317     // Verify that we have an appropriate mask for a EQ or NE comparison.
6318     bool Invert = false;
6319     if (CCMask == SystemZ::CCMASK_CMP_NE)
6320       Invert = !Invert;
6321     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6322       return false;
6323 
6324     // Verify that the ICMP compares against one of select values.
6325     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6326     if (!TrueVal)
6327       return false;
6328     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6329     if (!FalseVal)
6330       return false;
6331     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6332       Invert = !Invert;
6333     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6334       return false;
6335 
6336     // Compute the effective CC mask for the new branch or select.
6337     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6338     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6339     if (!NewCCValid || !NewCCMask)
6340       return false;
6341     CCValid = NewCCValid->getZExtValue();
6342     CCMask = NewCCMask->getZExtValue();
6343     if (Invert)
6344       CCMask ^= CCValid;
6345 
6346     // Return the updated CCReg link.
6347     CCReg = CompareLHS->getOperand(4);
6348     return true;
6349   }
6350 
6351   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6352   if (CompareLHS->getOpcode() == ISD::SRA) {
6353     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6354     if (!SRACount || SRACount->getZExtValue() != 30)
6355       return false;
6356     auto *SHL = CompareLHS->getOperand(0).getNode();
6357     if (SHL->getOpcode() != ISD::SHL)
6358       return false;
6359     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6360     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6361       return false;
6362     auto *IPM = SHL->getOperand(0).getNode();
6363     if (IPM->getOpcode() != SystemZISD::IPM)
6364       return false;
6365 
6366     // Avoid introducing CC spills (because SRA would clobber CC).
6367     if (!CompareLHS->hasOneUse())
6368       return false;
6369     // Verify that the ICMP compares against zero.
6370     if (CompareRHS->getZExtValue() != 0)
6371       return false;
6372 
6373     // Compute the effective CC mask for the new branch or select.
6374     CCMask = SystemZ::reverseCCMask(CCMask);
6375 
6376     // Return the updated CCReg link.
6377     CCReg = IPM->getOperand(0);
6378     return true;
6379   }
6380 
6381   return false;
6382 }
6383 
6384 SDValue SystemZTargetLowering::combineBR_CCMASK(
6385     SDNode *N, DAGCombinerInfo &DCI) const {
6386   SelectionDAG &DAG = DCI.DAG;
6387 
6388   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6389   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6390   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6391   if (!CCValid || !CCMask)
6392     return SDValue();
6393 
6394   int CCValidVal = CCValid->getZExtValue();
6395   int CCMaskVal = CCMask->getZExtValue();
6396   SDValue Chain = N->getOperand(0);
6397   SDValue CCReg = N->getOperand(4);
6398 
6399   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6400     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6401                        Chain,
6402                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6403                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6404                        N->getOperand(3), CCReg);
6405   return SDValue();
6406 }
6407 
6408 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6409     SDNode *N, DAGCombinerInfo &DCI) const {
6410   SelectionDAG &DAG = DCI.DAG;
6411 
6412   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6413   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6414   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6415   if (!CCValid || !CCMask)
6416     return SDValue();
6417 
6418   int CCValidVal = CCValid->getZExtValue();
6419   int CCMaskVal = CCMask->getZExtValue();
6420   SDValue CCReg = N->getOperand(4);
6421 
6422   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6423     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6424                        N->getOperand(0), N->getOperand(1),
6425                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6426                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6427                        CCReg);
6428   return SDValue();
6429 }
6430 
6431 
6432 SDValue SystemZTargetLowering::combineGET_CCMASK(
6433     SDNode *N, DAGCombinerInfo &DCI) const {
6434 
6435   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6436   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6437   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6438   if (!CCValid || !CCMask)
6439     return SDValue();
6440   int CCValidVal = CCValid->getZExtValue();
6441   int CCMaskVal = CCMask->getZExtValue();
6442 
6443   SDValue Select = N->getOperand(0);
6444   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6445     return SDValue();
6446 
6447   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6448   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6449   if (!SelectCCValid || !SelectCCMask)
6450     return SDValue();
6451   int SelectCCValidVal = SelectCCValid->getZExtValue();
6452   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6453 
6454   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6455   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6456   if (!TrueVal || !FalseVal)
6457     return SDValue();
6458   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6459     ;
6460   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6461     SelectCCMaskVal ^= SelectCCValidVal;
6462   else
6463     return SDValue();
6464 
6465   if (SelectCCValidVal & ~CCValidVal)
6466     return SDValue();
6467   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6468     return SDValue();
6469 
6470   return Select->getOperand(4);
6471 }
6472 
6473 SDValue SystemZTargetLowering::combineIntDIVREM(
6474     SDNode *N, DAGCombinerInfo &DCI) const {
6475   SelectionDAG &DAG = DCI.DAG;
6476   EVT VT = N->getValueType(0);
6477   // In the case where the divisor is a vector of constants a cheaper
6478   // sequence of instructions can replace the divide. BuildSDIV is called to
6479   // do this during DAG combining, but it only succeeds when it can build a
6480   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6481   // since it is not Legal but Custom it can only happen before
6482   // legalization. Therefore we must scalarize this early before Combine
6483   // 1. For widened vectors, this is already the result of type legalization.
6484   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6485       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6486     return DAG.UnrollVectorOp(N);
6487   return SDValue();
6488 }
6489 
6490 SDValue SystemZTargetLowering::combineINTRINSIC(
6491     SDNode *N, DAGCombinerInfo &DCI) const {
6492   SelectionDAG &DAG = DCI.DAG;
6493 
6494   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6495   switch (Id) {
6496   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6497   // or larger is simply a vector load.
6498   case Intrinsic::s390_vll:
6499   case Intrinsic::s390_vlrl:
6500     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6501       if (C->getZExtValue() >= 15)
6502         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6503                            N->getOperand(3), MachinePointerInfo());
6504     break;
6505   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6506   case Intrinsic::s390_vstl:
6507   case Intrinsic::s390_vstrl:
6508     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6509       if (C->getZExtValue() >= 15)
6510         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6511                             N->getOperand(4), MachinePointerInfo());
6512     break;
6513   }
6514 
6515   return SDValue();
6516 }
6517 
6518 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6519   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6520     return N->getOperand(0);
6521   return N;
6522 }
6523 
6524 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6525                                                  DAGCombinerInfo &DCI) const {
6526   switch(N->getOpcode()) {
6527   default: break;
6528   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6529   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6530   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6531   case SystemZISD::MERGE_HIGH:
6532   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6533   case ISD::LOAD:               return combineLOAD(N, DCI);
6534   case ISD::STORE:              return combineSTORE(N, DCI);
6535   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6536   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6537   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6538   case ISD::STRICT_FP_ROUND:
6539   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6540   case ISD::STRICT_FP_EXTEND:
6541   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6542   case ISD::SINT_TO_FP:
6543   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
6544   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6545   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6546   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6547   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6548   case ISD::SDIV:
6549   case ISD::UDIV:
6550   case ISD::SREM:
6551   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6552   case ISD::INTRINSIC_W_CHAIN:
6553   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
6554   }
6555 
6556   return SDValue();
6557 }
6558 
6559 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6560 // are for Op.
6561 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6562                                     unsigned OpNo) {
6563   EVT VT = Op.getValueType();
6564   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6565   APInt SrcDemE;
6566   unsigned Opcode = Op.getOpcode();
6567   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6568     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6569     switch (Id) {
6570     case Intrinsic::s390_vpksh:   // PACKS
6571     case Intrinsic::s390_vpksf:
6572     case Intrinsic::s390_vpksg:
6573     case Intrinsic::s390_vpkshs:  // PACKS_CC
6574     case Intrinsic::s390_vpksfs:
6575     case Intrinsic::s390_vpksgs:
6576     case Intrinsic::s390_vpklsh:  // PACKLS
6577     case Intrinsic::s390_vpklsf:
6578     case Intrinsic::s390_vpklsg:
6579     case Intrinsic::s390_vpklshs: // PACKLS_CC
6580     case Intrinsic::s390_vpklsfs:
6581     case Intrinsic::s390_vpklsgs:
6582       // VECTOR PACK truncates the elements of two source vectors into one.
6583       SrcDemE = DemandedElts;
6584       if (OpNo == 2)
6585         SrcDemE.lshrInPlace(NumElts / 2);
6586       SrcDemE = SrcDemE.trunc(NumElts / 2);
6587       break;
6588       // VECTOR UNPACK extends half the elements of the source vector.
6589     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6590     case Intrinsic::s390_vuphh:
6591     case Intrinsic::s390_vuphf:
6592     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6593     case Intrinsic::s390_vuplhh:
6594     case Intrinsic::s390_vuplhf:
6595       SrcDemE = APInt(NumElts * 2, 0);
6596       SrcDemE.insertBits(DemandedElts, 0);
6597       break;
6598     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6599     case Intrinsic::s390_vuplhw:
6600     case Intrinsic::s390_vuplf:
6601     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6602     case Intrinsic::s390_vupllh:
6603     case Intrinsic::s390_vupllf:
6604       SrcDemE = APInt(NumElts * 2, 0);
6605       SrcDemE.insertBits(DemandedElts, NumElts);
6606       break;
6607     case Intrinsic::s390_vpdi: {
6608       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
6609       SrcDemE = APInt(NumElts, 0);
6610       if (!DemandedElts[OpNo - 1])
6611         break;
6612       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6613       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
6614       // Demand input element 0 or 1, given by the mask bit value.
6615       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
6616       break;
6617     }
6618     case Intrinsic::s390_vsldb: {
6619       // VECTOR SHIFT LEFT DOUBLE BY BYTE
6620       assert(VT == MVT::v16i8 && "Unexpected type.");
6621       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
6622       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
6623       unsigned NumSrc0Els = 16 - FirstIdx;
6624       SrcDemE = APInt(NumElts, 0);
6625       if (OpNo == 1) {
6626         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
6627         SrcDemE.insertBits(DemEls, FirstIdx);
6628       } else {
6629         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
6630         SrcDemE.insertBits(DemEls, 0);
6631       }
6632       break;
6633     }
6634     case Intrinsic::s390_vperm:
6635       SrcDemE = APInt(NumElts, 1);
6636       break;
6637     default:
6638       llvm_unreachable("Unhandled intrinsic.");
6639       break;
6640     }
6641   } else {
6642     switch (Opcode) {
6643     case SystemZISD::JOIN_DWORDS:
6644       // Scalar operand.
6645       SrcDemE = APInt(1, 1);
6646       break;
6647     case SystemZISD::SELECT_CCMASK:
6648       SrcDemE = DemandedElts;
6649       break;
6650     default:
6651       llvm_unreachable("Unhandled opcode.");
6652       break;
6653     }
6654   }
6655   return SrcDemE;
6656 }
6657 
6658 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
6659                                   const APInt &DemandedElts,
6660                                   const SelectionDAG &DAG, unsigned Depth,
6661                                   unsigned OpNo) {
6662   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6663   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6664   KnownBits LHSKnown =
6665       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6666   KnownBits RHSKnown =
6667       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6668   Known.Zero = LHSKnown.Zero & RHSKnown.Zero;
6669   Known.One = LHSKnown.One & RHSKnown.One;
6670 }
6671 
6672 void
6673 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
6674                                                      KnownBits &Known,
6675                                                      const APInt &DemandedElts,
6676                                                      const SelectionDAG &DAG,
6677                                                      unsigned Depth) const {
6678   Known.resetAll();
6679 
6680   // Intrinsic CC result is returned in the two low bits.
6681   unsigned tmp0, tmp1; // not used
6682   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
6683     Known.Zero.setBitsFrom(2);
6684     return;
6685   }
6686   EVT VT = Op.getValueType();
6687   if (Op.getResNo() != 0 || VT == MVT::Untyped)
6688     return;
6689   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
6690           "KnownBits does not match VT in bitwidth");
6691   assert ((!VT.isVector() ||
6692            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
6693           "DemandedElts does not match VT number of elements");
6694   unsigned BitWidth = Known.getBitWidth();
6695   unsigned Opcode = Op.getOpcode();
6696   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6697     bool IsLogical = false;
6698     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6699     switch (Id) {
6700     case Intrinsic::s390_vpksh:   // PACKS
6701     case Intrinsic::s390_vpksf:
6702     case Intrinsic::s390_vpksg:
6703     case Intrinsic::s390_vpkshs:  // PACKS_CC
6704     case Intrinsic::s390_vpksfs:
6705     case Intrinsic::s390_vpksgs:
6706     case Intrinsic::s390_vpklsh:  // PACKLS
6707     case Intrinsic::s390_vpklsf:
6708     case Intrinsic::s390_vpklsg:
6709     case Intrinsic::s390_vpklshs: // PACKLS_CC
6710     case Intrinsic::s390_vpklsfs:
6711     case Intrinsic::s390_vpklsgs:
6712     case Intrinsic::s390_vpdi:
6713     case Intrinsic::s390_vsldb:
6714     case Intrinsic::s390_vperm:
6715       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
6716       break;
6717     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
6718     case Intrinsic::s390_vuplhh:
6719     case Intrinsic::s390_vuplhf:
6720     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
6721     case Intrinsic::s390_vupllh:
6722     case Intrinsic::s390_vupllf:
6723       IsLogical = true;
6724       LLVM_FALLTHROUGH;
6725     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6726     case Intrinsic::s390_vuphh:
6727     case Intrinsic::s390_vuphf:
6728     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6729     case Intrinsic::s390_vuplhw:
6730     case Intrinsic::s390_vuplf: {
6731       SDValue SrcOp = Op.getOperand(1);
6732       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
6733       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
6734       if (IsLogical) {
6735         Known = Known.zext(BitWidth);
6736       } else
6737         Known = Known.sext(BitWidth);
6738       break;
6739     }
6740     default:
6741       break;
6742     }
6743   } else {
6744     switch (Opcode) {
6745     case SystemZISD::JOIN_DWORDS:
6746     case SystemZISD::SELECT_CCMASK:
6747       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
6748       break;
6749     case SystemZISD::REPLICATE: {
6750       SDValue SrcOp = Op.getOperand(0);
6751       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
6752       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
6753         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
6754       break;
6755     }
6756     default:
6757       break;
6758     }
6759   }
6760 
6761   // Known has the width of the source operand(s). Adjust if needed to match
6762   // the passed bitwidth.
6763   if (Known.getBitWidth() != BitWidth)
6764     Known = Known.anyextOrTrunc(BitWidth);
6765 }
6766 
6767 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
6768                                         const SelectionDAG &DAG, unsigned Depth,
6769                                         unsigned OpNo) {
6770   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
6771   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
6772   if (LHS == 1) return 1; // Early out.
6773   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
6774   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
6775   if (RHS == 1) return 1; // Early out.
6776   unsigned Common = std::min(LHS, RHS);
6777   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
6778   EVT VT = Op.getValueType();
6779   unsigned VTBits = VT.getScalarSizeInBits();
6780   if (SrcBitWidth > VTBits) { // PACK
6781     unsigned SrcExtraBits = SrcBitWidth - VTBits;
6782     if (Common > SrcExtraBits)
6783       return (Common - SrcExtraBits);
6784     return 1;
6785   }
6786   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
6787   return Common;
6788 }
6789 
6790 unsigned
6791 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
6792     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
6793     unsigned Depth) const {
6794   if (Op.getResNo() != 0)
6795     return 1;
6796   unsigned Opcode = Op.getOpcode();
6797   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6798     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6799     switch (Id) {
6800     case Intrinsic::s390_vpksh:   // PACKS
6801     case Intrinsic::s390_vpksf:
6802     case Intrinsic::s390_vpksg:
6803     case Intrinsic::s390_vpkshs:  // PACKS_CC
6804     case Intrinsic::s390_vpksfs:
6805     case Intrinsic::s390_vpksgs:
6806     case Intrinsic::s390_vpklsh:  // PACKLS
6807     case Intrinsic::s390_vpklsf:
6808     case Intrinsic::s390_vpklsg:
6809     case Intrinsic::s390_vpklshs: // PACKLS_CC
6810     case Intrinsic::s390_vpklsfs:
6811     case Intrinsic::s390_vpklsgs:
6812     case Intrinsic::s390_vpdi:
6813     case Intrinsic::s390_vsldb:
6814     case Intrinsic::s390_vperm:
6815       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
6816     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
6817     case Intrinsic::s390_vuphh:
6818     case Intrinsic::s390_vuphf:
6819     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
6820     case Intrinsic::s390_vuplhw:
6821     case Intrinsic::s390_vuplf: {
6822       SDValue PackedOp = Op.getOperand(1);
6823       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
6824       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
6825       EVT VT = Op.getValueType();
6826       unsigned VTBits = VT.getScalarSizeInBits();
6827       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
6828       return Tmp;
6829     }
6830     default:
6831       break;
6832     }
6833   } else {
6834     switch (Opcode) {
6835     case SystemZISD::SELECT_CCMASK:
6836       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
6837     default:
6838       break;
6839     }
6840   }
6841 
6842   return 1;
6843 }
6844 
6845 unsigned
6846 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
6847   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
6848   unsigned StackAlign = TFI->getStackAlignment();
6849   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
6850          "Unexpected stack alignment");
6851   // The default stack probe size is 4096 if the function has no
6852   // stack-probe-size attribute.
6853   unsigned StackProbeSize = 4096;
6854   const Function &Fn = MF.getFunction();
6855   if (Fn.hasFnAttribute("stack-probe-size"))
6856     Fn.getFnAttribute("stack-probe-size")
6857         .getValueAsString()
6858         .getAsInteger(0, StackProbeSize);
6859   // Round down to the stack alignment.
6860   StackProbeSize &= ~(StackAlign - 1);
6861   return StackProbeSize ? StackProbeSize : StackAlign;
6862 }
6863 
6864 //===----------------------------------------------------------------------===//
6865 // Custom insertion
6866 //===----------------------------------------------------------------------===//
6867 
6868 // Force base value Base into a register before MI.  Return the register.
6869 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
6870                          const SystemZInstrInfo *TII) {
6871   if (Base.isReg())
6872     return Base.getReg();
6873 
6874   MachineBasicBlock *MBB = MI.getParent();
6875   MachineFunction &MF = *MBB->getParent();
6876   MachineRegisterInfo &MRI = MF.getRegInfo();
6877 
6878   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
6879   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
6880       .add(Base)
6881       .addImm(0)
6882       .addReg(0);
6883   return Reg;
6884 }
6885 
6886 // The CC operand of MI might be missing a kill marker because there
6887 // were multiple uses of CC, and ISel didn't know which to mark.
6888 // Figure out whether MI should have had a kill marker.
6889 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
6890   // Scan forward through BB for a use/def of CC.
6891   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
6892   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
6893     const MachineInstr& mi = *miI;
6894     if (mi.readsRegister(SystemZ::CC))
6895       return false;
6896     if (mi.definesRegister(SystemZ::CC))
6897       break; // Should have kill-flag - update below.
6898   }
6899 
6900   // If we hit the end of the block, check whether CC is live into a
6901   // successor.
6902   if (miI == MBB->end()) {
6903     for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI)
6904       if ((*SI)->isLiveIn(SystemZ::CC))
6905         return false;
6906   }
6907 
6908   return true;
6909 }
6910 
6911 // Return true if it is OK for this Select pseudo-opcode to be cascaded
6912 // together with other Select pseudo-opcodes into a single basic-block with
6913 // a conditional jump around it.
6914 static bool isSelectPseudo(MachineInstr &MI) {
6915   switch (MI.getOpcode()) {
6916   case SystemZ::Select32:
6917   case SystemZ::Select64:
6918   case SystemZ::SelectF32:
6919   case SystemZ::SelectF64:
6920   case SystemZ::SelectF128:
6921   case SystemZ::SelectVR32:
6922   case SystemZ::SelectVR64:
6923   case SystemZ::SelectVR128:
6924     return true;
6925 
6926   default:
6927     return false;
6928   }
6929 }
6930 
6931 // Helper function, which inserts PHI functions into SinkMBB:
6932 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
6933 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
6934 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
6935                                  MachineBasicBlock *TrueMBB,
6936                                  MachineBasicBlock *FalseMBB,
6937                                  MachineBasicBlock *SinkMBB) {
6938   MachineFunction *MF = TrueMBB->getParent();
6939   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
6940 
6941   MachineInstr *FirstMI = Selects.front();
6942   unsigned CCValid = FirstMI->getOperand(3).getImm();
6943   unsigned CCMask = FirstMI->getOperand(4).getImm();
6944 
6945   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
6946 
6947   // As we are creating the PHIs, we have to be careful if there is more than
6948   // one.  Later Selects may reference the results of earlier Selects, but later
6949   // PHIs have to reference the individual true/false inputs from earlier PHIs.
6950   // That also means that PHI construction must work forward from earlier to
6951   // later, and that the code must maintain a mapping from earlier PHI's
6952   // destination registers, and the registers that went into the PHI.
6953   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
6954 
6955   for (auto MI : Selects) {
6956     Register DestReg = MI->getOperand(0).getReg();
6957     Register TrueReg = MI->getOperand(1).getReg();
6958     Register FalseReg = MI->getOperand(2).getReg();
6959 
6960     // If this Select we are generating is the opposite condition from
6961     // the jump we generated, then we have to swap the operands for the
6962     // PHI that is going to be generated.
6963     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
6964       std::swap(TrueReg, FalseReg);
6965 
6966     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
6967       TrueReg = RegRewriteTable[TrueReg].first;
6968 
6969     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
6970       FalseReg = RegRewriteTable[FalseReg].second;
6971 
6972     DebugLoc DL = MI->getDebugLoc();
6973     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
6974       .addReg(TrueReg).addMBB(TrueMBB)
6975       .addReg(FalseReg).addMBB(FalseMBB);
6976 
6977     // Add this PHI to the rewrite table.
6978     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
6979   }
6980 
6981   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
6982 }
6983 
6984 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
6985 MachineBasicBlock *
6986 SystemZTargetLowering::emitSelect(MachineInstr &MI,
6987                                   MachineBasicBlock *MBB) const {
6988   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
6989   const SystemZInstrInfo *TII =
6990       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
6991 
6992   unsigned CCValid = MI.getOperand(3).getImm();
6993   unsigned CCMask = MI.getOperand(4).getImm();
6994 
6995   // If we have a sequence of Select* pseudo instructions using the
6996   // same condition code value, we want to expand all of them into
6997   // a single pair of basic blocks using the same condition.
6998   SmallVector<MachineInstr*, 8> Selects;
6999   SmallVector<MachineInstr*, 8> DbgValues;
7000   Selects.push_back(&MI);
7001   unsigned Count = 0;
7002   for (MachineBasicBlock::iterator NextMIIt =
7003          std::next(MachineBasicBlock::iterator(MI));
7004        NextMIIt != MBB->end(); ++NextMIIt) {
7005     if (isSelectPseudo(*NextMIIt)) {
7006       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7007              "Bad CCValid operands since CC was not redefined.");
7008       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7009           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7010         Selects.push_back(&*NextMIIt);
7011         continue;
7012       }
7013       break;
7014     }
7015     if (NextMIIt->definesRegister(SystemZ::CC) ||
7016         NextMIIt->usesCustomInsertionHook())
7017       break;
7018     bool User = false;
7019     for (auto SelMI : Selects)
7020       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7021         User = true;
7022         break;
7023       }
7024     if (NextMIIt->isDebugInstr()) {
7025       if (User) {
7026         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7027         DbgValues.push_back(&*NextMIIt);
7028       }
7029     }
7030     else if (User || ++Count > 20)
7031       break;
7032   }
7033 
7034   MachineInstr *LastMI = Selects.back();
7035   bool CCKilled =
7036       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7037   MachineBasicBlock *StartMBB = MBB;
7038   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7039   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7040 
7041   // Unless CC was killed in the last Select instruction, mark it as
7042   // live-in to both FalseMBB and JoinMBB.
7043   if (!CCKilled) {
7044     FalseMBB->addLiveIn(SystemZ::CC);
7045     JoinMBB->addLiveIn(SystemZ::CC);
7046   }
7047 
7048   //  StartMBB:
7049   //   BRC CCMask, JoinMBB
7050   //   # fallthrough to FalseMBB
7051   MBB = StartMBB;
7052   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7053     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7054   MBB->addSuccessor(JoinMBB);
7055   MBB->addSuccessor(FalseMBB);
7056 
7057   //  FalseMBB:
7058   //   # fallthrough to JoinMBB
7059   MBB = FalseMBB;
7060   MBB->addSuccessor(JoinMBB);
7061 
7062   //  JoinMBB:
7063   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7064   //  ...
7065   MBB = JoinMBB;
7066   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7067   for (auto SelMI : Selects)
7068     SelMI->eraseFromParent();
7069 
7070   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7071   for (auto DbgMI : DbgValues)
7072     MBB->splice(InsertPos, StartMBB, DbgMI);
7073 
7074   return JoinMBB;
7075 }
7076 
7077 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7078 // StoreOpcode is the store to use and Invert says whether the store should
7079 // happen when the condition is false rather than true.  If a STORE ON
7080 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7081 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7082                                                         MachineBasicBlock *MBB,
7083                                                         unsigned StoreOpcode,
7084                                                         unsigned STOCOpcode,
7085                                                         bool Invert) const {
7086   const SystemZInstrInfo *TII =
7087       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7088 
7089   Register SrcReg = MI.getOperand(0).getReg();
7090   MachineOperand Base = MI.getOperand(1);
7091   int64_t Disp = MI.getOperand(2).getImm();
7092   Register IndexReg = MI.getOperand(3).getReg();
7093   unsigned CCValid = MI.getOperand(4).getImm();
7094   unsigned CCMask = MI.getOperand(5).getImm();
7095   DebugLoc DL = MI.getDebugLoc();
7096 
7097   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7098 
7099   // Use STOCOpcode if possible.  We could use different store patterns in
7100   // order to avoid matching the index register, but the performance trade-offs
7101   // might be more complicated in that case.
7102   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7103     if (Invert)
7104       CCMask ^= CCValid;
7105 
7106     // ISel pattern matching also adds a load memory operand of the same
7107     // address, so take special care to find the storing memory operand.
7108     MachineMemOperand *MMO = nullptr;
7109     for (auto *I : MI.memoperands())
7110       if (I->isStore()) {
7111           MMO = I;
7112           break;
7113         }
7114 
7115     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7116       .addReg(SrcReg)
7117       .add(Base)
7118       .addImm(Disp)
7119       .addImm(CCValid)
7120       .addImm(CCMask)
7121       .addMemOperand(MMO);
7122 
7123     MI.eraseFromParent();
7124     return MBB;
7125   }
7126 
7127   // Get the condition needed to branch around the store.
7128   if (!Invert)
7129     CCMask ^= CCValid;
7130 
7131   MachineBasicBlock *StartMBB = MBB;
7132   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7133   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7134 
7135   // Unless CC was killed in the CondStore instruction, mark it as
7136   // live-in to both FalseMBB and JoinMBB.
7137   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7138     FalseMBB->addLiveIn(SystemZ::CC);
7139     JoinMBB->addLiveIn(SystemZ::CC);
7140   }
7141 
7142   //  StartMBB:
7143   //   BRC CCMask, JoinMBB
7144   //   # fallthrough to FalseMBB
7145   MBB = StartMBB;
7146   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7147     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7148   MBB->addSuccessor(JoinMBB);
7149   MBB->addSuccessor(FalseMBB);
7150 
7151   //  FalseMBB:
7152   //   store %SrcReg, %Disp(%Index,%Base)
7153   //   # fallthrough to JoinMBB
7154   MBB = FalseMBB;
7155   BuildMI(MBB, DL, TII->get(StoreOpcode))
7156       .addReg(SrcReg)
7157       .add(Base)
7158       .addImm(Disp)
7159       .addReg(IndexReg);
7160   MBB->addSuccessor(JoinMBB);
7161 
7162   MI.eraseFromParent();
7163   return JoinMBB;
7164 }
7165 
7166 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7167 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7168 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7169 // BitSize is the width of the field in bits, or 0 if this is a partword
7170 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7171 // is one of the operands.  Invert says whether the field should be
7172 // inverted after performing BinOpcode (e.g. for NAND).
7173 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7174     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7175     unsigned BitSize, bool Invert) const {
7176   MachineFunction &MF = *MBB->getParent();
7177   const SystemZInstrInfo *TII =
7178       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7179   MachineRegisterInfo &MRI = MF.getRegInfo();
7180   bool IsSubWord = (BitSize < 32);
7181 
7182   // Extract the operands.  Base can be a register or a frame index.
7183   // Src2 can be a register or immediate.
7184   Register Dest = MI.getOperand(0).getReg();
7185   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7186   int64_t Disp = MI.getOperand(2).getImm();
7187   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7188   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7189   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7190   DebugLoc DL = MI.getDebugLoc();
7191   if (IsSubWord)
7192     BitSize = MI.getOperand(6).getImm();
7193 
7194   // Subword operations use 32-bit registers.
7195   const TargetRegisterClass *RC = (BitSize <= 32 ?
7196                                    &SystemZ::GR32BitRegClass :
7197                                    &SystemZ::GR64BitRegClass);
7198   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7199   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7200 
7201   // Get the right opcodes for the displacement.
7202   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7203   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7204   assert(LOpcode && CSOpcode && "Displacement out of range");
7205 
7206   // Create virtual registers for temporary results.
7207   Register OrigVal       = MRI.createVirtualRegister(RC);
7208   Register OldVal        = MRI.createVirtualRegister(RC);
7209   Register NewVal        = (BinOpcode || IsSubWord ?
7210                             MRI.createVirtualRegister(RC) : Src2.getReg());
7211   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7212   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7213 
7214   // Insert a basic block for the main loop.
7215   MachineBasicBlock *StartMBB = MBB;
7216   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7217   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7218 
7219   //  StartMBB:
7220   //   ...
7221   //   %OrigVal = L Disp(%Base)
7222   //   # fall through to LoopMMB
7223   MBB = StartMBB;
7224   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7225   MBB->addSuccessor(LoopMBB);
7226 
7227   //  LoopMBB:
7228   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7229   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7230   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7231   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7232   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7233   //   JNE LoopMBB
7234   //   # fall through to DoneMMB
7235   MBB = LoopMBB;
7236   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7237     .addReg(OrigVal).addMBB(StartMBB)
7238     .addReg(Dest).addMBB(LoopMBB);
7239   if (IsSubWord)
7240     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7241       .addReg(OldVal).addReg(BitShift).addImm(0);
7242   if (Invert) {
7243     // Perform the operation normally and then invert every bit of the field.
7244     Register Tmp = MRI.createVirtualRegister(RC);
7245     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7246     if (BitSize <= 32)
7247       // XILF with the upper BitSize bits set.
7248       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7249         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7250     else {
7251       // Use LCGR and add -1 to the result, which is more compact than
7252       // an XILF, XILH pair.
7253       Register Tmp2 = MRI.createVirtualRegister(RC);
7254       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7255       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7256         .addReg(Tmp2).addImm(-1);
7257     }
7258   } else if (BinOpcode)
7259     // A simply binary operation.
7260     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7261         .addReg(RotatedOldVal)
7262         .add(Src2);
7263   else if (IsSubWord)
7264     // Use RISBG to rotate Src2 into position and use it to replace the
7265     // field in RotatedOldVal.
7266     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7267       .addReg(RotatedOldVal).addReg(Src2.getReg())
7268       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7269   if (IsSubWord)
7270     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7271       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7272   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7273       .addReg(OldVal)
7274       .addReg(NewVal)
7275       .add(Base)
7276       .addImm(Disp);
7277   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7278     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7279   MBB->addSuccessor(LoopMBB);
7280   MBB->addSuccessor(DoneMBB);
7281 
7282   MI.eraseFromParent();
7283   return DoneMBB;
7284 }
7285 
7286 // Implement EmitInstrWithCustomInserter for pseudo
7287 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7288 // instruction that should be used to compare the current field with the
7289 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7290 // for when the current field should be kept.  BitSize is the width of
7291 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7292 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7293     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7294     unsigned KeepOldMask, unsigned BitSize) const {
7295   MachineFunction &MF = *MBB->getParent();
7296   const SystemZInstrInfo *TII =
7297       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7298   MachineRegisterInfo &MRI = MF.getRegInfo();
7299   bool IsSubWord = (BitSize < 32);
7300 
7301   // Extract the operands.  Base can be a register or a frame index.
7302   Register Dest = MI.getOperand(0).getReg();
7303   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7304   int64_t Disp = MI.getOperand(2).getImm();
7305   Register Src2 = MI.getOperand(3).getReg();
7306   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7307   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7308   DebugLoc DL = MI.getDebugLoc();
7309   if (IsSubWord)
7310     BitSize = MI.getOperand(6).getImm();
7311 
7312   // Subword operations use 32-bit registers.
7313   const TargetRegisterClass *RC = (BitSize <= 32 ?
7314                                    &SystemZ::GR32BitRegClass :
7315                                    &SystemZ::GR64BitRegClass);
7316   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7317   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7318 
7319   // Get the right opcodes for the displacement.
7320   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7321   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7322   assert(LOpcode && CSOpcode && "Displacement out of range");
7323 
7324   // Create virtual registers for temporary results.
7325   Register OrigVal       = MRI.createVirtualRegister(RC);
7326   Register OldVal        = MRI.createVirtualRegister(RC);
7327   Register NewVal        = MRI.createVirtualRegister(RC);
7328   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7329   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7330   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7331 
7332   // Insert 3 basic blocks for the loop.
7333   MachineBasicBlock *StartMBB  = MBB;
7334   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7335   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7336   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7337   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7338 
7339   //  StartMBB:
7340   //   ...
7341   //   %OrigVal     = L Disp(%Base)
7342   //   # fall through to LoopMMB
7343   MBB = StartMBB;
7344   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7345   MBB->addSuccessor(LoopMBB);
7346 
7347   //  LoopMBB:
7348   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7349   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7350   //   CompareOpcode %RotatedOldVal, %Src2
7351   //   BRC KeepOldMask, UpdateMBB
7352   MBB = LoopMBB;
7353   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7354     .addReg(OrigVal).addMBB(StartMBB)
7355     .addReg(Dest).addMBB(UpdateMBB);
7356   if (IsSubWord)
7357     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7358       .addReg(OldVal).addReg(BitShift).addImm(0);
7359   BuildMI(MBB, DL, TII->get(CompareOpcode))
7360     .addReg(RotatedOldVal).addReg(Src2);
7361   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7362     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7363   MBB->addSuccessor(UpdateMBB);
7364   MBB->addSuccessor(UseAltMBB);
7365 
7366   //  UseAltMBB:
7367   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7368   //   # fall through to UpdateMMB
7369   MBB = UseAltMBB;
7370   if (IsSubWord)
7371     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7372       .addReg(RotatedOldVal).addReg(Src2)
7373       .addImm(32).addImm(31 + BitSize).addImm(0);
7374   MBB->addSuccessor(UpdateMBB);
7375 
7376   //  UpdateMBB:
7377   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7378   //                        [ %RotatedAltVal, UseAltMBB ]
7379   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7380   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7381   //   JNE LoopMBB
7382   //   # fall through to DoneMMB
7383   MBB = UpdateMBB;
7384   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7385     .addReg(RotatedOldVal).addMBB(LoopMBB)
7386     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7387   if (IsSubWord)
7388     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7389       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7390   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7391       .addReg(OldVal)
7392       .addReg(NewVal)
7393       .add(Base)
7394       .addImm(Disp);
7395   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7396     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7397   MBB->addSuccessor(LoopMBB);
7398   MBB->addSuccessor(DoneMBB);
7399 
7400   MI.eraseFromParent();
7401   return DoneMBB;
7402 }
7403 
7404 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7405 // instruction MI.
7406 MachineBasicBlock *
7407 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7408                                           MachineBasicBlock *MBB) const {
7409 
7410   MachineFunction &MF = *MBB->getParent();
7411   const SystemZInstrInfo *TII =
7412       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7413   MachineRegisterInfo &MRI = MF.getRegInfo();
7414 
7415   // Extract the operands.  Base can be a register or a frame index.
7416   Register Dest = MI.getOperand(0).getReg();
7417   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7418   int64_t Disp = MI.getOperand(2).getImm();
7419   Register OrigCmpVal = MI.getOperand(3).getReg();
7420   Register OrigSwapVal = MI.getOperand(4).getReg();
7421   Register BitShift = MI.getOperand(5).getReg();
7422   Register NegBitShift = MI.getOperand(6).getReg();
7423   int64_t BitSize = MI.getOperand(7).getImm();
7424   DebugLoc DL = MI.getDebugLoc();
7425 
7426   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7427 
7428   // Get the right opcodes for the displacement.
7429   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7430   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7431   assert(LOpcode && CSOpcode && "Displacement out of range");
7432 
7433   // Create virtual registers for temporary results.
7434   Register OrigOldVal = MRI.createVirtualRegister(RC);
7435   Register OldVal = MRI.createVirtualRegister(RC);
7436   Register CmpVal = MRI.createVirtualRegister(RC);
7437   Register SwapVal = MRI.createVirtualRegister(RC);
7438   Register StoreVal = MRI.createVirtualRegister(RC);
7439   Register RetryOldVal = MRI.createVirtualRegister(RC);
7440   Register RetryCmpVal = MRI.createVirtualRegister(RC);
7441   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7442 
7443   // Insert 2 basic blocks for the loop.
7444   MachineBasicBlock *StartMBB = MBB;
7445   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7446   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7447   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7448 
7449   //  StartMBB:
7450   //   ...
7451   //   %OrigOldVal     = L Disp(%Base)
7452   //   # fall through to LoopMMB
7453   MBB = StartMBB;
7454   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7455       .add(Base)
7456       .addImm(Disp)
7457       .addReg(0);
7458   MBB->addSuccessor(LoopMBB);
7459 
7460   //  LoopMBB:
7461   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7462   //   %CmpVal        = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ]
7463   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7464   //   %Dest          = RLL %OldVal, BitSize(%BitShift)
7465   //                      ^^ The low BitSize bits contain the field
7466   //                         of interest.
7467   //   %RetryCmpVal   = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0
7468   //                      ^^ Replace the upper 32-BitSize bits of the
7469   //                         comparison value with those that we loaded,
7470   //                         so that we can use a full word comparison.
7471   //   CR %Dest, %RetryCmpVal
7472   //   JNE DoneMBB
7473   //   # Fall through to SetMBB
7474   MBB = LoopMBB;
7475   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7476     .addReg(OrigOldVal).addMBB(StartMBB)
7477     .addReg(RetryOldVal).addMBB(SetMBB);
7478   BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal)
7479     .addReg(OrigCmpVal).addMBB(StartMBB)
7480     .addReg(RetryCmpVal).addMBB(SetMBB);
7481   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7482     .addReg(OrigSwapVal).addMBB(StartMBB)
7483     .addReg(RetrySwapVal).addMBB(SetMBB);
7484   BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest)
7485     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7486   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal)
7487     .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7488   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7489     .addReg(Dest).addReg(RetryCmpVal);
7490   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7491     .addImm(SystemZ::CCMASK_ICMP)
7492     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7493   MBB->addSuccessor(DoneMBB);
7494   MBB->addSuccessor(SetMBB);
7495 
7496   //  SetMBB:
7497   //   %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0
7498   //                      ^^ Replace the upper 32-BitSize bits of the new
7499   //                         value with those that we loaded.
7500   //   %StoreVal    = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7501   //                      ^^ Rotate the new field to its proper position.
7502   //   %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base)
7503   //   JNE LoopMBB
7504   //   # fall through to ExitMMB
7505   MBB = SetMBB;
7506   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7507     .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0);
7508   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7509     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7510   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7511       .addReg(OldVal)
7512       .addReg(StoreVal)
7513       .add(Base)
7514       .addImm(Disp);
7515   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7516     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7517   MBB->addSuccessor(LoopMBB);
7518   MBB->addSuccessor(DoneMBB);
7519 
7520   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7521   // to the block after the loop.  At this point, CC may have been defined
7522   // either by the CR in LoopMBB or by the CS in SetMBB.
7523   if (!MI.registerDefIsDead(SystemZ::CC))
7524     DoneMBB->addLiveIn(SystemZ::CC);
7525 
7526   MI.eraseFromParent();
7527   return DoneMBB;
7528 }
7529 
7530 // Emit a move from two GR64s to a GR128.
7531 MachineBasicBlock *
7532 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7533                                    MachineBasicBlock *MBB) const {
7534   MachineFunction &MF = *MBB->getParent();
7535   const SystemZInstrInfo *TII =
7536       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7537   MachineRegisterInfo &MRI = MF.getRegInfo();
7538   DebugLoc DL = MI.getDebugLoc();
7539 
7540   Register Dest = MI.getOperand(0).getReg();
7541   Register Hi = MI.getOperand(1).getReg();
7542   Register Lo = MI.getOperand(2).getReg();
7543   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7544   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7545 
7546   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7547   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7548     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7549   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7550     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7551 
7552   MI.eraseFromParent();
7553   return MBB;
7554 }
7555 
7556 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7557 // if the high register of the GR128 value must be cleared or false if
7558 // it's "don't care".
7559 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7560                                                      MachineBasicBlock *MBB,
7561                                                      bool ClearEven) const {
7562   MachineFunction &MF = *MBB->getParent();
7563   const SystemZInstrInfo *TII =
7564       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7565   MachineRegisterInfo &MRI = MF.getRegInfo();
7566   DebugLoc DL = MI.getDebugLoc();
7567 
7568   Register Dest = MI.getOperand(0).getReg();
7569   Register Src = MI.getOperand(1).getReg();
7570   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7571 
7572   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7573   if (ClearEven) {
7574     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7575     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7576 
7577     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7578       .addImm(0);
7579     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7580       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7581     In128 = NewIn128;
7582   }
7583   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7584     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7585 
7586   MI.eraseFromParent();
7587   return MBB;
7588 }
7589 
7590 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper(
7591     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7592   MachineFunction &MF = *MBB->getParent();
7593   const SystemZInstrInfo *TII =
7594       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7595   MachineRegisterInfo &MRI = MF.getRegInfo();
7596   DebugLoc DL = MI.getDebugLoc();
7597 
7598   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
7599   uint64_t DestDisp = MI.getOperand(1).getImm();
7600   MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2));
7601   uint64_t SrcDisp = MI.getOperand(3).getImm();
7602   uint64_t Length = MI.getOperand(4).getImm();
7603 
7604   // When generating more than one CLC, all but the last will need to
7605   // branch to the end when a difference is found.
7606   MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ?
7607                                SystemZ::splitBlockAfter(MI, MBB) : nullptr);
7608 
7609   // Check for the loop form, in which operand 5 is the trip count.
7610   if (MI.getNumExplicitOperands() > 5) {
7611     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
7612 
7613     Register StartCountReg = MI.getOperand(5).getReg();
7614     Register StartSrcReg   = forceReg(MI, SrcBase, TII);
7615     Register StartDestReg  = (HaveSingleBase ? StartSrcReg :
7616                               forceReg(MI, DestBase, TII));
7617 
7618     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
7619     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
7620     Register ThisDestReg = (HaveSingleBase ? ThisSrcReg :
7621                             MRI.createVirtualRegister(RC));
7622     Register NextSrcReg  = MRI.createVirtualRegister(RC);
7623     Register NextDestReg = (HaveSingleBase ? NextSrcReg :
7624                             MRI.createVirtualRegister(RC));
7625 
7626     RC = &SystemZ::GR64BitRegClass;
7627     Register ThisCountReg = MRI.createVirtualRegister(RC);
7628     Register NextCountReg = MRI.createVirtualRegister(RC);
7629 
7630     MachineBasicBlock *StartMBB = MBB;
7631     MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7632     MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7633     MachineBasicBlock *NextMBB =
7634         (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
7635 
7636     //  StartMBB:
7637     //   # fall through to LoopMMB
7638     MBB->addSuccessor(LoopMBB);
7639 
7640     //  LoopMBB:
7641     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
7642     //                      [ %NextDestReg, NextMBB ]
7643     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
7644     //                     [ %NextSrcReg, NextMBB ]
7645     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
7646     //                       [ %NextCountReg, NextMBB ]
7647     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
7648     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
7649     //   ( JLH EndMBB )
7650     //
7651     // The prefetch is used only for MVC.  The JLH is used only for CLC.
7652     MBB = LoopMBB;
7653 
7654     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
7655       .addReg(StartDestReg).addMBB(StartMBB)
7656       .addReg(NextDestReg).addMBB(NextMBB);
7657     if (!HaveSingleBase)
7658       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
7659         .addReg(StartSrcReg).addMBB(StartMBB)
7660         .addReg(NextSrcReg).addMBB(NextMBB);
7661     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
7662       .addReg(StartCountReg).addMBB(StartMBB)
7663       .addReg(NextCountReg).addMBB(NextMBB);
7664     if (Opcode == SystemZ::MVC)
7665       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
7666         .addImm(SystemZ::PFD_WRITE)
7667         .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0);
7668     BuildMI(MBB, DL, TII->get(Opcode))
7669       .addReg(ThisDestReg).addImm(DestDisp).addImm(256)
7670       .addReg(ThisSrcReg).addImm(SrcDisp);
7671     if (EndMBB) {
7672       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7673         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7674         .addMBB(EndMBB);
7675       MBB->addSuccessor(EndMBB);
7676       MBB->addSuccessor(NextMBB);
7677     }
7678 
7679     // NextMBB:
7680     //   %NextDestReg = LA 256(%ThisDestReg)
7681     //   %NextSrcReg = LA 256(%ThisSrcReg)
7682     //   %NextCountReg = AGHI %ThisCountReg, -1
7683     //   CGHI %NextCountReg, 0
7684     //   JLH LoopMBB
7685     //   # fall through to DoneMMB
7686     //
7687     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
7688     MBB = NextMBB;
7689 
7690     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
7691       .addReg(ThisDestReg).addImm(256).addReg(0);
7692     if (!HaveSingleBase)
7693       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
7694         .addReg(ThisSrcReg).addImm(256).addReg(0);
7695     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
7696       .addReg(ThisCountReg).addImm(-1);
7697     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7698       .addReg(NextCountReg).addImm(0);
7699     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7700       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7701       .addMBB(LoopMBB);
7702     MBB->addSuccessor(LoopMBB);
7703     MBB->addSuccessor(DoneMBB);
7704 
7705     DestBase = MachineOperand::CreateReg(NextDestReg, false);
7706     SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
7707     Length &= 255;
7708     if (EndMBB && !Length)
7709       // If the loop handled the whole CLC range, DoneMBB will be empty with
7710       // CC live-through into EndMBB, so add it as live-in.
7711       DoneMBB->addLiveIn(SystemZ::CC);
7712     MBB = DoneMBB;
7713   }
7714   // Handle any remaining bytes with straight-line code.
7715   while (Length > 0) {
7716     uint64_t ThisLength = std::min(Length, uint64_t(256));
7717     // The previous iteration might have created out-of-range displacements.
7718     // Apply them using LAY if so.
7719     if (!isUInt<12>(DestDisp)) {
7720       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7721       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7722           .add(DestBase)
7723           .addImm(DestDisp)
7724           .addReg(0);
7725       DestBase = MachineOperand::CreateReg(Reg, false);
7726       DestDisp = 0;
7727     }
7728     if (!isUInt<12>(SrcDisp)) {
7729       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7730       BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg)
7731           .add(SrcBase)
7732           .addImm(SrcDisp)
7733           .addReg(0);
7734       SrcBase = MachineOperand::CreateReg(Reg, false);
7735       SrcDisp = 0;
7736     }
7737     BuildMI(*MBB, MI, DL, TII->get(Opcode))
7738         .add(DestBase)
7739         .addImm(DestDisp)
7740         .addImm(ThisLength)
7741         .add(SrcBase)
7742         .addImm(SrcDisp)
7743         .setMemRefs(MI.memoperands());
7744     DestDisp += ThisLength;
7745     SrcDisp += ThisLength;
7746     Length -= ThisLength;
7747     // If there's another CLC to go, branch to the end if a difference
7748     // was found.
7749     if (EndMBB && Length > 0) {
7750       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
7751       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7752         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
7753         .addMBB(EndMBB);
7754       MBB->addSuccessor(EndMBB);
7755       MBB->addSuccessor(NextMBB);
7756       MBB = NextMBB;
7757     }
7758   }
7759   if (EndMBB) {
7760     MBB->addSuccessor(EndMBB);
7761     MBB = EndMBB;
7762     MBB->addLiveIn(SystemZ::CC);
7763   }
7764 
7765   MI.eraseFromParent();
7766   return MBB;
7767 }
7768 
7769 // Decompose string pseudo-instruction MI into a loop that continually performs
7770 // Opcode until CC != 3.
7771 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
7772     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7773   MachineFunction &MF = *MBB->getParent();
7774   const SystemZInstrInfo *TII =
7775       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7776   MachineRegisterInfo &MRI = MF.getRegInfo();
7777   DebugLoc DL = MI.getDebugLoc();
7778 
7779   uint64_t End1Reg = MI.getOperand(0).getReg();
7780   uint64_t Start1Reg = MI.getOperand(1).getReg();
7781   uint64_t Start2Reg = MI.getOperand(2).getReg();
7782   uint64_t CharReg = MI.getOperand(3).getReg();
7783 
7784   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
7785   uint64_t This1Reg = MRI.createVirtualRegister(RC);
7786   uint64_t This2Reg = MRI.createVirtualRegister(RC);
7787   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
7788 
7789   MachineBasicBlock *StartMBB = MBB;
7790   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
7791   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
7792 
7793   //  StartMBB:
7794   //   # fall through to LoopMMB
7795   MBB->addSuccessor(LoopMBB);
7796 
7797   //  LoopMBB:
7798   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
7799   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
7800   //   R0L = %CharReg
7801   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
7802   //   JO LoopMBB
7803   //   # fall through to DoneMMB
7804   //
7805   // The load of R0L can be hoisted by post-RA LICM.
7806   MBB = LoopMBB;
7807 
7808   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
7809     .addReg(Start1Reg).addMBB(StartMBB)
7810     .addReg(End1Reg).addMBB(LoopMBB);
7811   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
7812     .addReg(Start2Reg).addMBB(StartMBB)
7813     .addReg(End2Reg).addMBB(LoopMBB);
7814   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
7815   BuildMI(MBB, DL, TII->get(Opcode))
7816     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
7817     .addReg(This1Reg).addReg(This2Reg);
7818   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7819     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
7820   MBB->addSuccessor(LoopMBB);
7821   MBB->addSuccessor(DoneMBB);
7822 
7823   DoneMBB->addLiveIn(SystemZ::CC);
7824 
7825   MI.eraseFromParent();
7826   return DoneMBB;
7827 }
7828 
7829 // Update TBEGIN instruction with final opcode and register clobbers.
7830 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
7831     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
7832     bool NoFloat) const {
7833   MachineFunction &MF = *MBB->getParent();
7834   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7835   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
7836 
7837   // Update opcode.
7838   MI.setDesc(TII->get(Opcode));
7839 
7840   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
7841   // Make sure to add the corresponding GRSM bits if they are missing.
7842   uint64_t Control = MI.getOperand(2).getImm();
7843   static const unsigned GPRControlBit[16] = {
7844     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
7845     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
7846   };
7847   Control |= GPRControlBit[15];
7848   if (TFI->hasFP(MF))
7849     Control |= GPRControlBit[11];
7850   MI.getOperand(2).setImm(Control);
7851 
7852   // Add GPR clobbers.
7853   for (int I = 0; I < 16; I++) {
7854     if ((Control & GPRControlBit[I]) == 0) {
7855       unsigned Reg = SystemZMC::GR64Regs[I];
7856       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7857     }
7858   }
7859 
7860   // Add FPR/VR clobbers.
7861   if (!NoFloat && (Control & 4) != 0) {
7862     if (Subtarget.hasVector()) {
7863       for (int I = 0; I < 32; I++) {
7864         unsigned Reg = SystemZMC::VR128Regs[I];
7865         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7866       }
7867     } else {
7868       for (int I = 0; I < 16; I++) {
7869         unsigned Reg = SystemZMC::FP64Regs[I];
7870         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
7871       }
7872     }
7873   }
7874 
7875   return MBB;
7876 }
7877 
7878 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
7879     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
7880   MachineFunction &MF = *MBB->getParent();
7881   MachineRegisterInfo *MRI = &MF.getRegInfo();
7882   const SystemZInstrInfo *TII =
7883       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7884   DebugLoc DL = MI.getDebugLoc();
7885 
7886   Register SrcReg = MI.getOperand(0).getReg();
7887 
7888   // Create new virtual register of the same class as source.
7889   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
7890   Register DstReg = MRI->createVirtualRegister(RC);
7891 
7892   // Replace pseudo with a normal load-and-test that models the def as
7893   // well.
7894   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
7895     .addReg(SrcReg)
7896     .setMIFlags(MI.getFlags());
7897   MI.eraseFromParent();
7898 
7899   return MBB;
7900 }
7901 
7902 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
7903     MachineInstr &MI, MachineBasicBlock *MBB) const {
7904   MachineFunction &MF = *MBB->getParent();
7905   MachineRegisterInfo *MRI = &MF.getRegInfo();
7906   const SystemZInstrInfo *TII =
7907       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7908   DebugLoc DL = MI.getDebugLoc();
7909   const unsigned ProbeSize = getStackProbeSize(MF);
7910   Register DstReg = MI.getOperand(0).getReg();
7911   Register SizeReg = MI.getOperand(2).getReg();
7912 
7913   MachineBasicBlock *StartMBB = MBB;
7914   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
7915   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
7916   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
7917   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
7918   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
7919 
7920   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
7921     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
7922 
7923   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7924   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7925 
7926   //  LoopTestMBB
7927   //  BRC TailTestMBB
7928   //  # fallthrough to LoopBodyMBB
7929   StartMBB->addSuccessor(LoopTestMBB);
7930   MBB = LoopTestMBB;
7931   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
7932     .addReg(SizeReg)
7933     .addMBB(StartMBB)
7934     .addReg(IncReg)
7935     .addMBB(LoopBodyMBB);
7936   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
7937     .addReg(PHIReg)
7938     .addImm(ProbeSize);
7939   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7940     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
7941     .addMBB(TailTestMBB);
7942   MBB->addSuccessor(LoopBodyMBB);
7943   MBB->addSuccessor(TailTestMBB);
7944 
7945   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
7946   //  J LoopTestMBB
7947   MBB = LoopBodyMBB;
7948   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
7949     .addReg(PHIReg)
7950     .addImm(ProbeSize);
7951   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
7952     .addReg(SystemZ::R15D)
7953     .addImm(ProbeSize);
7954   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
7955     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
7956     .setMemRefs(VolLdMMO);
7957   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
7958   MBB->addSuccessor(LoopTestMBB);
7959 
7960   //  TailTestMBB
7961   //  BRC DoneMBB
7962   //  # fallthrough to TailMBB
7963   MBB = TailTestMBB;
7964   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
7965     .addReg(PHIReg)
7966     .addImm(0);
7967   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7968     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
7969     .addMBB(DoneMBB);
7970   MBB->addSuccessor(TailMBB);
7971   MBB->addSuccessor(DoneMBB);
7972 
7973   //  TailMBB
7974   //  # fallthrough to DoneMBB
7975   MBB = TailMBB;
7976   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
7977     .addReg(SystemZ::R15D)
7978     .addReg(PHIReg);
7979   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
7980     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
7981     .setMemRefs(VolLdMMO);
7982   MBB->addSuccessor(DoneMBB);
7983 
7984   //  DoneMBB
7985   MBB = DoneMBB;
7986   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
7987     .addReg(SystemZ::R15D);
7988 
7989   MI.eraseFromParent();
7990   return DoneMBB;
7991 }
7992 
7993 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
7994     MachineInstr &MI, MachineBasicBlock *MBB) const {
7995   switch (MI.getOpcode()) {
7996   case SystemZ::Select32:
7997   case SystemZ::Select64:
7998   case SystemZ::SelectF32:
7999   case SystemZ::SelectF64:
8000   case SystemZ::SelectF128:
8001   case SystemZ::SelectVR32:
8002   case SystemZ::SelectVR64:
8003   case SystemZ::SelectVR128:
8004     return emitSelect(MI, MBB);
8005 
8006   case SystemZ::CondStore8Mux:
8007     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8008   case SystemZ::CondStore8MuxInv:
8009     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8010   case SystemZ::CondStore16Mux:
8011     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8012   case SystemZ::CondStore16MuxInv:
8013     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8014   case SystemZ::CondStore32Mux:
8015     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8016   case SystemZ::CondStore32MuxInv:
8017     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8018   case SystemZ::CondStore8:
8019     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8020   case SystemZ::CondStore8Inv:
8021     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8022   case SystemZ::CondStore16:
8023     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8024   case SystemZ::CondStore16Inv:
8025     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8026   case SystemZ::CondStore32:
8027     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8028   case SystemZ::CondStore32Inv:
8029     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8030   case SystemZ::CondStore64:
8031     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8032   case SystemZ::CondStore64Inv:
8033     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8034   case SystemZ::CondStoreF32:
8035     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8036   case SystemZ::CondStoreF32Inv:
8037     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8038   case SystemZ::CondStoreF64:
8039     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8040   case SystemZ::CondStoreF64Inv:
8041     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8042 
8043   case SystemZ::PAIR128:
8044     return emitPair128(MI, MBB);
8045   case SystemZ::AEXT128:
8046     return emitExt128(MI, MBB, false);
8047   case SystemZ::ZEXT128:
8048     return emitExt128(MI, MBB, true);
8049 
8050   case SystemZ::ATOMIC_SWAPW:
8051     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8052   case SystemZ::ATOMIC_SWAP_32:
8053     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8054   case SystemZ::ATOMIC_SWAP_64:
8055     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8056 
8057   case SystemZ::ATOMIC_LOADW_AR:
8058     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8059   case SystemZ::ATOMIC_LOADW_AFI:
8060     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8061   case SystemZ::ATOMIC_LOAD_AR:
8062     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8063   case SystemZ::ATOMIC_LOAD_AHI:
8064     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8065   case SystemZ::ATOMIC_LOAD_AFI:
8066     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8067   case SystemZ::ATOMIC_LOAD_AGR:
8068     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8069   case SystemZ::ATOMIC_LOAD_AGHI:
8070     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8071   case SystemZ::ATOMIC_LOAD_AGFI:
8072     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8073 
8074   case SystemZ::ATOMIC_LOADW_SR:
8075     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8076   case SystemZ::ATOMIC_LOAD_SR:
8077     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8078   case SystemZ::ATOMIC_LOAD_SGR:
8079     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8080 
8081   case SystemZ::ATOMIC_LOADW_NR:
8082     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8083   case SystemZ::ATOMIC_LOADW_NILH:
8084     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8085   case SystemZ::ATOMIC_LOAD_NR:
8086     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8087   case SystemZ::ATOMIC_LOAD_NILL:
8088     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8089   case SystemZ::ATOMIC_LOAD_NILH:
8090     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8091   case SystemZ::ATOMIC_LOAD_NILF:
8092     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8093   case SystemZ::ATOMIC_LOAD_NGR:
8094     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8095   case SystemZ::ATOMIC_LOAD_NILL64:
8096     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8097   case SystemZ::ATOMIC_LOAD_NILH64:
8098     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8099   case SystemZ::ATOMIC_LOAD_NIHL64:
8100     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8101   case SystemZ::ATOMIC_LOAD_NIHH64:
8102     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8103   case SystemZ::ATOMIC_LOAD_NILF64:
8104     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8105   case SystemZ::ATOMIC_LOAD_NIHF64:
8106     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8107 
8108   case SystemZ::ATOMIC_LOADW_OR:
8109     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8110   case SystemZ::ATOMIC_LOADW_OILH:
8111     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8112   case SystemZ::ATOMIC_LOAD_OR:
8113     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8114   case SystemZ::ATOMIC_LOAD_OILL:
8115     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8116   case SystemZ::ATOMIC_LOAD_OILH:
8117     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8118   case SystemZ::ATOMIC_LOAD_OILF:
8119     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8120   case SystemZ::ATOMIC_LOAD_OGR:
8121     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8122   case SystemZ::ATOMIC_LOAD_OILL64:
8123     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8124   case SystemZ::ATOMIC_LOAD_OILH64:
8125     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8126   case SystemZ::ATOMIC_LOAD_OIHL64:
8127     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8128   case SystemZ::ATOMIC_LOAD_OIHH64:
8129     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8130   case SystemZ::ATOMIC_LOAD_OILF64:
8131     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8132   case SystemZ::ATOMIC_LOAD_OIHF64:
8133     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8134 
8135   case SystemZ::ATOMIC_LOADW_XR:
8136     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8137   case SystemZ::ATOMIC_LOADW_XILF:
8138     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8139   case SystemZ::ATOMIC_LOAD_XR:
8140     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8141   case SystemZ::ATOMIC_LOAD_XILF:
8142     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8143   case SystemZ::ATOMIC_LOAD_XGR:
8144     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8145   case SystemZ::ATOMIC_LOAD_XILF64:
8146     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8147   case SystemZ::ATOMIC_LOAD_XIHF64:
8148     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8149 
8150   case SystemZ::ATOMIC_LOADW_NRi:
8151     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8152   case SystemZ::ATOMIC_LOADW_NILHi:
8153     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8154   case SystemZ::ATOMIC_LOAD_NRi:
8155     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8156   case SystemZ::ATOMIC_LOAD_NILLi:
8157     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8158   case SystemZ::ATOMIC_LOAD_NILHi:
8159     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8160   case SystemZ::ATOMIC_LOAD_NILFi:
8161     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8162   case SystemZ::ATOMIC_LOAD_NGRi:
8163     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8164   case SystemZ::ATOMIC_LOAD_NILL64i:
8165     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8166   case SystemZ::ATOMIC_LOAD_NILH64i:
8167     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8168   case SystemZ::ATOMIC_LOAD_NIHL64i:
8169     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8170   case SystemZ::ATOMIC_LOAD_NIHH64i:
8171     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8172   case SystemZ::ATOMIC_LOAD_NILF64i:
8173     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8174   case SystemZ::ATOMIC_LOAD_NIHF64i:
8175     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8176 
8177   case SystemZ::ATOMIC_LOADW_MIN:
8178     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8179                                 SystemZ::CCMASK_CMP_LE, 0);
8180   case SystemZ::ATOMIC_LOAD_MIN_32:
8181     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8182                                 SystemZ::CCMASK_CMP_LE, 32);
8183   case SystemZ::ATOMIC_LOAD_MIN_64:
8184     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8185                                 SystemZ::CCMASK_CMP_LE, 64);
8186 
8187   case SystemZ::ATOMIC_LOADW_MAX:
8188     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8189                                 SystemZ::CCMASK_CMP_GE, 0);
8190   case SystemZ::ATOMIC_LOAD_MAX_32:
8191     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8192                                 SystemZ::CCMASK_CMP_GE, 32);
8193   case SystemZ::ATOMIC_LOAD_MAX_64:
8194     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8195                                 SystemZ::CCMASK_CMP_GE, 64);
8196 
8197   case SystemZ::ATOMIC_LOADW_UMIN:
8198     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8199                                 SystemZ::CCMASK_CMP_LE, 0);
8200   case SystemZ::ATOMIC_LOAD_UMIN_32:
8201     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8202                                 SystemZ::CCMASK_CMP_LE, 32);
8203   case SystemZ::ATOMIC_LOAD_UMIN_64:
8204     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8205                                 SystemZ::CCMASK_CMP_LE, 64);
8206 
8207   case SystemZ::ATOMIC_LOADW_UMAX:
8208     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8209                                 SystemZ::CCMASK_CMP_GE, 0);
8210   case SystemZ::ATOMIC_LOAD_UMAX_32:
8211     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8212                                 SystemZ::CCMASK_CMP_GE, 32);
8213   case SystemZ::ATOMIC_LOAD_UMAX_64:
8214     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8215                                 SystemZ::CCMASK_CMP_GE, 64);
8216 
8217   case SystemZ::ATOMIC_CMP_SWAPW:
8218     return emitAtomicCmpSwapW(MI, MBB);
8219   case SystemZ::MVCSequence:
8220   case SystemZ::MVCLoop:
8221     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8222   case SystemZ::NCSequence:
8223   case SystemZ::NCLoop:
8224     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8225   case SystemZ::OCSequence:
8226   case SystemZ::OCLoop:
8227     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8228   case SystemZ::XCSequence:
8229   case SystemZ::XCLoop:
8230     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8231   case SystemZ::CLCSequence:
8232   case SystemZ::CLCLoop:
8233     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8234   case SystemZ::CLSTLoop:
8235     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8236   case SystemZ::MVSTLoop:
8237     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8238   case SystemZ::SRSTLoop:
8239     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8240   case SystemZ::TBEGIN:
8241     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8242   case SystemZ::TBEGIN_nofloat:
8243     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8244   case SystemZ::TBEGINC:
8245     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8246   case SystemZ::LTEBRCompare_VecPseudo:
8247     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8248   case SystemZ::LTDBRCompare_VecPseudo:
8249     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8250   case SystemZ::LTXBRCompare_VecPseudo:
8251     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8252 
8253   case SystemZ::PROBED_ALLOCA:
8254     return emitProbedAlloca(MI, MBB);
8255 
8256   case TargetOpcode::STACKMAP:
8257   case TargetOpcode::PATCHPOINT:
8258     return emitPatchPoint(MI, MBB);
8259 
8260   default:
8261     llvm_unreachable("Unexpected instr type to insert");
8262   }
8263 }
8264 
8265 // This is only used by the isel schedulers, and is needed only to prevent
8266 // compiler from crashing when list-ilp is used.
8267 const TargetRegisterClass *
8268 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8269   if (VT == MVT::Untyped)
8270     return &SystemZ::ADDR128BitRegClass;
8271   return TargetLowering::getRepRegClassFor(VT);
8272 }
8273