1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 84 85 // Set up the register classes. 86 if (Subtarget.hasHighWord()) 87 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 88 else 89 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 90 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 91 if (!useSoftFloat()) { 92 if (Subtarget.hasVector()) { 93 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 94 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 95 } else { 96 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 98 } 99 if (Subtarget.hasVectorEnhancements1()) 100 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 101 else 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 } 113 114 // Compute derived properties from the register classes 115 computeRegisterProperties(Subtarget.getRegisterInfo()); 116 117 // Set up special registers. 118 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 119 120 // TODO: It may be better to default to latency-oriented scheduling, however 121 // LLVM's current latency-oriented scheduler can't handle physreg definitions 122 // such as SystemZ has with CC, so set this to the register-pressure 123 // scheduler, because it can. 124 setSchedulingPreference(Sched::RegPressure); 125 126 setBooleanContents(ZeroOrOneBooleanContent); 127 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 128 129 // Instructions are strings of 2-byte aligned 2-byte values. 130 setMinFunctionAlignment(Align(2)); 131 // For performance reasons we prefer 16-byte alignment. 132 setPrefFunctionAlignment(Align(16)); 133 134 // Handle operations that are handled in a similar way for all types. 135 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 136 I <= MVT::LAST_FP_VALUETYPE; 137 ++I) { 138 MVT VT = MVT::SimpleValueType(I); 139 if (isTypeLegal(VT)) { 140 // Lower SET_CC into an IPM-based sequence. 141 setOperationAction(ISD::SETCC, VT, Custom); 142 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 143 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 144 145 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 146 setOperationAction(ISD::SELECT, VT, Expand); 147 148 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 149 setOperationAction(ISD::SELECT_CC, VT, Custom); 150 setOperationAction(ISD::BR_CC, VT, Custom); 151 } 152 } 153 154 // Expand jump table branches as address arithmetic followed by an 155 // indirect jump. 156 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 157 158 // Expand BRCOND into a BR_CC (see above). 159 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 160 161 // Handle integer types. 162 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 163 I <= MVT::LAST_INTEGER_VALUETYPE; 164 ++I) { 165 MVT VT = MVT::SimpleValueType(I); 166 if (isTypeLegal(VT)) { 167 // Expand individual DIV and REMs into DIVREMs. 168 setOperationAction(ISD::SDIV, VT, Expand); 169 setOperationAction(ISD::UDIV, VT, Expand); 170 setOperationAction(ISD::SREM, VT, Expand); 171 setOperationAction(ISD::UREM, VT, Expand); 172 setOperationAction(ISD::SDIVREM, VT, Custom); 173 setOperationAction(ISD::UDIVREM, VT, Custom); 174 175 // Support addition/subtraction with overflow. 176 setOperationAction(ISD::SADDO, VT, Custom); 177 setOperationAction(ISD::SSUBO, VT, Custom); 178 179 // Support addition/subtraction with carry. 180 setOperationAction(ISD::UADDO, VT, Custom); 181 setOperationAction(ISD::USUBO, VT, Custom); 182 183 // Support carry in as value rather than glue. 184 setOperationAction(ISD::ADDCARRY, VT, Custom); 185 setOperationAction(ISD::SUBCARRY, VT, Custom); 186 187 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 188 // stores, putting a serialization instruction after the stores. 189 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 190 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 191 192 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 193 // available, or if the operand is constant. 194 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 195 196 // Use POPCNT on z196 and above. 197 if (Subtarget.hasPopulationCount()) 198 setOperationAction(ISD::CTPOP, VT, Custom); 199 else 200 setOperationAction(ISD::CTPOP, VT, Expand); 201 202 // No special instructions for these. 203 setOperationAction(ISD::CTTZ, VT, Expand); 204 setOperationAction(ISD::ROTR, VT, Expand); 205 206 // Use *MUL_LOHI where possible instead of MULH*. 207 setOperationAction(ISD::MULHS, VT, Expand); 208 setOperationAction(ISD::MULHU, VT, Expand); 209 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 210 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 211 212 // Only z196 and above have native support for conversions to unsigned. 213 // On z10, promoting to i64 doesn't generate an inexact condition for 214 // values that are outside the i32 range but in the i64 range, so use 215 // the default expansion. 216 if (!Subtarget.hasFPExtension()) 217 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 218 219 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 220 // default to Expand, so need to be modified to Legal where appropriate. 221 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 222 if (Subtarget.hasFPExtension()) 223 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 224 225 // And similarly for STRICT_[SU]INT_TO_FP. 226 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 227 if (Subtarget.hasFPExtension()) 228 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 229 } 230 } 231 232 // Type legalization will convert 8- and 16-bit atomic operations into 233 // forms that operate on i32s (but still keeping the original memory VT). 234 // Lower them into full i32 operations. 235 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 236 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 237 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 238 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 239 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 240 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 242 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 243 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 244 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 245 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 246 247 // Even though i128 is not a legal type, we still need to custom lower 248 // the atomic operations in order to exploit SystemZ instructions. 249 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 250 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 251 252 // We can use the CC result of compare-and-swap to implement 253 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 254 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 255 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 256 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 257 258 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 259 260 // Traps are legal, as we will convert them to "j .+2". 261 setOperationAction(ISD::TRAP, MVT::Other, Legal); 262 263 // z10 has instructions for signed but not unsigned FP conversion. 264 // Handle unsigned 32-bit types as signed 64-bit types. 265 if (!Subtarget.hasFPExtension()) { 266 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 267 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 268 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 269 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 270 } 271 272 // We have native support for a 64-bit CTLZ, via FLOGR. 273 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 274 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 275 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 276 277 // On z15 we have native support for a 64-bit CTPOP. 278 if (Subtarget.hasMiscellaneousExtensions3()) { 279 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 280 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 281 } 282 283 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 284 setOperationAction(ISD::OR, MVT::i64, Custom); 285 286 // FIXME: Can we support these natively? 287 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 288 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 289 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 290 291 // We have native instructions for i8, i16 and i32 extensions, but not i1. 292 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 293 for (MVT VT : MVT::integer_valuetypes()) { 294 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 295 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 296 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 297 } 298 299 // Handle the various types of symbolic address. 300 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 301 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 302 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 303 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 304 setOperationAction(ISD::JumpTable, PtrVT, Custom); 305 306 // We need to handle dynamic allocations specially because of the 307 // 160-byte area at the bottom of the stack. 308 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 309 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 310 311 // Use custom expanders so that we can force the function to use 312 // a frame pointer. 313 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 314 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 315 316 // Handle prefetches with PFD or PFDRL. 317 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 318 319 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 320 // Assume by default that all vector operations need to be expanded. 321 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 322 if (getOperationAction(Opcode, VT) == Legal) 323 setOperationAction(Opcode, VT, Expand); 324 325 // Likewise all truncating stores and extending loads. 326 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 327 setTruncStoreAction(VT, InnerVT, Expand); 328 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 329 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 330 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 331 } 332 333 if (isTypeLegal(VT)) { 334 // These operations are legal for anything that can be stored in a 335 // vector register, even if there is no native support for the format 336 // as such. In particular, we can do these for v4f32 even though there 337 // are no specific instructions for that format. 338 setOperationAction(ISD::LOAD, VT, Legal); 339 setOperationAction(ISD::STORE, VT, Legal); 340 setOperationAction(ISD::VSELECT, VT, Legal); 341 setOperationAction(ISD::BITCAST, VT, Legal); 342 setOperationAction(ISD::UNDEF, VT, Legal); 343 344 // Likewise, except that we need to replace the nodes with something 345 // more specific. 346 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 347 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 348 } 349 } 350 351 // Handle integer vector types. 352 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 353 if (isTypeLegal(VT)) { 354 // These operations have direct equivalents. 355 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 356 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 357 setOperationAction(ISD::ADD, VT, Legal); 358 setOperationAction(ISD::SUB, VT, Legal); 359 if (VT != MVT::v2i64) 360 setOperationAction(ISD::MUL, VT, Legal); 361 setOperationAction(ISD::AND, VT, Legal); 362 setOperationAction(ISD::OR, VT, Legal); 363 setOperationAction(ISD::XOR, VT, Legal); 364 if (Subtarget.hasVectorEnhancements1()) 365 setOperationAction(ISD::CTPOP, VT, Legal); 366 else 367 setOperationAction(ISD::CTPOP, VT, Custom); 368 setOperationAction(ISD::CTTZ, VT, Legal); 369 setOperationAction(ISD::CTLZ, VT, Legal); 370 371 // Convert a GPR scalar to a vector by inserting it into element 0. 372 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 373 374 // Use a series of unpacks for extensions. 375 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 376 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 377 378 // Detect shifts by a scalar amount and convert them into 379 // V*_BY_SCALAR. 380 setOperationAction(ISD::SHL, VT, Custom); 381 setOperationAction(ISD::SRA, VT, Custom); 382 setOperationAction(ISD::SRL, VT, Custom); 383 384 // At present ROTL isn't matched by DAGCombiner. ROTR should be 385 // converted into ROTL. 386 setOperationAction(ISD::ROTL, VT, Expand); 387 setOperationAction(ISD::ROTR, VT, Expand); 388 389 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 390 // and inverting the result as necessary. 391 setOperationAction(ISD::SETCC, VT, Custom); 392 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 393 if (Subtarget.hasVectorEnhancements1()) 394 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 395 } 396 } 397 398 if (Subtarget.hasVector()) { 399 // There should be no need to check for float types other than v2f64 400 // since <2 x f32> isn't a legal type. 401 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 402 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 403 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 404 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 405 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 406 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 407 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 408 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 409 410 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 411 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 412 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 413 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 414 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 415 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 416 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 417 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 418 } 419 420 if (Subtarget.hasVectorEnhancements2()) { 421 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 422 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 423 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 424 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 425 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 426 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 427 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 428 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 429 430 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 431 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 432 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 433 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 434 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 435 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 436 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 437 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 438 } 439 440 // Handle floating-point types. 441 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 442 I <= MVT::LAST_FP_VALUETYPE; 443 ++I) { 444 MVT VT = MVT::SimpleValueType(I); 445 if (isTypeLegal(VT)) { 446 // We can use FI for FRINT. 447 setOperationAction(ISD::FRINT, VT, Legal); 448 449 // We can use the extended form of FI for other rounding operations. 450 if (Subtarget.hasFPExtension()) { 451 setOperationAction(ISD::FNEARBYINT, VT, Legal); 452 setOperationAction(ISD::FFLOOR, VT, Legal); 453 setOperationAction(ISD::FCEIL, VT, Legal); 454 setOperationAction(ISD::FTRUNC, VT, Legal); 455 setOperationAction(ISD::FROUND, VT, Legal); 456 } 457 458 // No special instructions for these. 459 setOperationAction(ISD::FSIN, VT, Expand); 460 setOperationAction(ISD::FCOS, VT, Expand); 461 setOperationAction(ISD::FSINCOS, VT, Expand); 462 setOperationAction(ISD::FREM, VT, Expand); 463 setOperationAction(ISD::FPOW, VT, Expand); 464 465 // Handle constrained floating-point operations. 466 setOperationAction(ISD::STRICT_FADD, VT, Legal); 467 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 468 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 469 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 470 setOperationAction(ISD::STRICT_FMA, VT, Legal); 471 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 472 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 473 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 474 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 475 if (Subtarget.hasFPExtension()) { 476 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 477 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 478 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 479 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 480 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 481 } 482 } 483 } 484 485 // Handle floating-point vector types. 486 if (Subtarget.hasVector()) { 487 // Scalar-to-vector conversion is just a subreg. 488 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 489 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 490 491 // Some insertions and extractions can be done directly but others 492 // need to go via integers. 493 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 494 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 495 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 496 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 497 498 // These operations have direct equivalents. 499 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 500 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 501 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 502 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 503 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 504 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 505 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 506 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 507 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 508 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 509 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 510 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 511 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 512 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 513 514 // Handle constrained floating-point operations. 515 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 516 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 517 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 518 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 519 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 520 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 521 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 522 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 523 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 524 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 525 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 526 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 527 } 528 529 // The vector enhancements facility 1 has instructions for these. 530 if (Subtarget.hasVectorEnhancements1()) { 531 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 532 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 533 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 534 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 535 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 536 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 537 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 538 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 539 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 540 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 541 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 542 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 543 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 544 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 545 546 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 547 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 548 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 549 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 550 551 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 552 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 553 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 554 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 555 556 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 557 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 558 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 559 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 560 561 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 562 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 563 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 564 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 565 566 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 567 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 568 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 569 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 570 571 // Handle constrained floating-point operations. 572 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 573 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 574 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 575 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 576 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 577 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 578 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 579 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 580 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 581 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 582 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 583 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 584 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 585 MVT::v4f32, MVT::v2f64 }) { 586 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 587 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 588 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 589 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 590 } 591 } 592 593 // We only have fused f128 multiply-addition on vector registers. 594 if (!Subtarget.hasVectorEnhancements1()) { 595 setOperationAction(ISD::FMA, MVT::f128, Expand); 596 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 597 } 598 599 // We don't have a copysign instruction on vector registers. 600 if (Subtarget.hasVectorEnhancements1()) 601 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 602 603 // Needed so that we don't try to implement f128 constant loads using 604 // a load-and-extend of a f80 constant (in cases where the constant 605 // would fit in an f80). 606 for (MVT VT : MVT::fp_valuetypes()) 607 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 608 609 // We don't have extending load instruction on vector registers. 610 if (Subtarget.hasVectorEnhancements1()) { 611 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 612 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 613 } 614 615 // Floating-point truncation and stores need to be done separately. 616 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 617 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 618 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 619 620 // We have 64-bit FPR<->GPR moves, but need special handling for 621 // 32-bit forms. 622 if (!Subtarget.hasVector()) { 623 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 624 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 625 } 626 627 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 628 // structure, but VAEND is a no-op. 629 setOperationAction(ISD::VASTART, MVT::Other, Custom); 630 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 631 setOperationAction(ISD::VAEND, MVT::Other, Expand); 632 633 // Codes for which we want to perform some z-specific combinations. 634 setTargetDAGCombine(ISD::ZERO_EXTEND); 635 setTargetDAGCombine(ISD::SIGN_EXTEND); 636 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 637 setTargetDAGCombine(ISD::LOAD); 638 setTargetDAGCombine(ISD::STORE); 639 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 640 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 641 setTargetDAGCombine(ISD::FP_ROUND); 642 setTargetDAGCombine(ISD::STRICT_FP_ROUND); 643 setTargetDAGCombine(ISD::FP_EXTEND); 644 setTargetDAGCombine(ISD::SINT_TO_FP); 645 setTargetDAGCombine(ISD::UINT_TO_FP); 646 setTargetDAGCombine(ISD::STRICT_FP_EXTEND); 647 setTargetDAGCombine(ISD::BSWAP); 648 setTargetDAGCombine(ISD::SDIV); 649 setTargetDAGCombine(ISD::UDIV); 650 setTargetDAGCombine(ISD::SREM); 651 setTargetDAGCombine(ISD::UREM); 652 653 // Handle intrinsics. 654 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 655 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 656 657 // We want to use MVC in preference to even a single load/store pair. 658 MaxStoresPerMemcpy = 0; 659 MaxStoresPerMemcpyOptSize = 0; 660 661 // The main memset sequence is a byte store followed by an MVC. 662 // Two STC or MV..I stores win over that, but the kind of fused stores 663 // generated by target-independent code don't when the byte value is 664 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 665 // than "STC;MVC". Handle the choice in target-specific code instead. 666 MaxStoresPerMemset = 0; 667 MaxStoresPerMemsetOptSize = 0; 668 669 // Default to having -disable-strictnode-mutation on 670 IsStrictFPEnabled = true; 671 } 672 673 bool SystemZTargetLowering::useSoftFloat() const { 674 return Subtarget.hasSoftFloat(); 675 } 676 677 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 678 LLVMContext &, EVT VT) const { 679 if (!VT.isVector()) 680 return MVT::i32; 681 return VT.changeVectorElementTypeToInteger(); 682 } 683 684 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 685 const MachineFunction &MF, EVT VT) const { 686 VT = VT.getScalarType(); 687 688 if (!VT.isSimple()) 689 return false; 690 691 switch (VT.getSimpleVT().SimpleTy) { 692 case MVT::f32: 693 case MVT::f64: 694 return true; 695 case MVT::f128: 696 return Subtarget.hasVectorEnhancements1(); 697 default: 698 break; 699 } 700 701 return false; 702 } 703 704 // Return true if the constant can be generated with a vector instruction, 705 // such as VGM, VGMB or VREPI. 706 bool SystemZVectorConstantInfo::isVectorConstantLegal( 707 const SystemZSubtarget &Subtarget) { 708 const SystemZInstrInfo *TII = 709 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 710 if (!Subtarget.hasVector() || 711 (isFP128 && !Subtarget.hasVectorEnhancements1())) 712 return false; 713 714 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 715 // preferred way of creating all-zero and all-one vectors so give it 716 // priority over other methods below. 717 unsigned Mask = 0; 718 unsigned I = 0; 719 for (; I < SystemZ::VectorBytes; ++I) { 720 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 721 if (Byte == 0xff) 722 Mask |= 1ULL << I; 723 else if (Byte != 0) 724 break; 725 } 726 if (I == SystemZ::VectorBytes) { 727 Opcode = SystemZISD::BYTE_MASK; 728 OpVals.push_back(Mask); 729 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 730 return true; 731 } 732 733 if (SplatBitSize > 64) 734 return false; 735 736 auto tryValue = [&](uint64_t Value) -> bool { 737 // Try VECTOR REPLICATE IMMEDIATE 738 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 739 if (isInt<16>(SignedValue)) { 740 OpVals.push_back(((unsigned) SignedValue)); 741 Opcode = SystemZISD::REPLICATE; 742 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 743 SystemZ::VectorBits / SplatBitSize); 744 return true; 745 } 746 // Try VECTOR GENERATE MASK 747 unsigned Start, End; 748 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 749 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 750 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 751 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 752 OpVals.push_back(Start - (64 - SplatBitSize)); 753 OpVals.push_back(End - (64 - SplatBitSize)); 754 Opcode = SystemZISD::ROTATE_MASK; 755 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 756 SystemZ::VectorBits / SplatBitSize); 757 return true; 758 } 759 return false; 760 }; 761 762 // First try assuming that any undefined bits above the highest set bit 763 // and below the lowest set bit are 1s. This increases the likelihood of 764 // being able to use a sign-extended element value in VECTOR REPLICATE 765 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 766 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 767 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 768 uint64_t Lower = 769 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 770 uint64_t Upper = 771 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 772 if (tryValue(SplatBitsZ | Upper | Lower)) 773 return true; 774 775 // Now try assuming that any undefined bits between the first and 776 // last defined set bits are set. This increases the chances of 777 // using a non-wraparound mask. 778 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 779 return tryValue(SplatBitsZ | Middle); 780 } 781 782 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 783 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 784 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 785 786 // Find the smallest splat. 787 SplatBits = FPImm.bitcastToAPInt(); 788 unsigned Width = SplatBits.getBitWidth(); 789 while (Width > 8) { 790 unsigned HalfSize = Width / 2; 791 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 792 APInt LowValue = SplatBits.trunc(HalfSize); 793 794 // If the two halves do not match, stop here. 795 if (HighValue != LowValue || 8 > HalfSize) 796 break; 797 798 SplatBits = HighValue; 799 Width = HalfSize; 800 } 801 SplatUndef = 0; 802 SplatBitSize = Width; 803 } 804 805 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 806 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 807 bool HasAnyUndefs; 808 809 // Get IntBits by finding the 128 bit splat. 810 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 811 true); 812 813 // Get SplatBits by finding the 8 bit or greater splat. 814 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 815 true); 816 } 817 818 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 819 bool ForCodeSize) const { 820 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 821 if (Imm.isZero() || Imm.isNegZero()) 822 return true; 823 824 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 825 } 826 827 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 828 // We can use CGFI or CLGFI. 829 return isInt<32>(Imm) || isUInt<32>(Imm); 830 } 831 832 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 833 // We can use ALGFI or SLGFI. 834 return isUInt<32>(Imm) || isUInt<32>(-Imm); 835 } 836 837 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 838 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const { 839 // Unaligned accesses should never be slower than the expanded version. 840 // We check specifically for aligned accesses in the few cases where 841 // they are required. 842 if (Fast) 843 *Fast = true; 844 return true; 845 } 846 847 // Information about the addressing mode for a memory access. 848 struct AddressingMode { 849 // True if a long displacement is supported. 850 bool LongDisplacement; 851 852 // True if use of index register is supported. 853 bool IndexReg; 854 855 AddressingMode(bool LongDispl, bool IdxReg) : 856 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 857 }; 858 859 // Return the desired addressing mode for a Load which has only one use (in 860 // the same block) which is a Store. 861 static AddressingMode getLoadStoreAddrMode(bool HasVector, 862 Type *Ty) { 863 // With vector support a Load->Store combination may be combined to either 864 // an MVC or vector operations and it seems to work best to allow the 865 // vector addressing mode. 866 if (HasVector) 867 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 868 869 // Otherwise only the MVC case is special. 870 bool MVC = Ty->isIntegerTy(8); 871 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 872 } 873 874 // Return the addressing mode which seems most desirable given an LLVM 875 // Instruction pointer. 876 static AddressingMode 877 supportedAddressingMode(Instruction *I, bool HasVector) { 878 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 879 switch (II->getIntrinsicID()) { 880 default: break; 881 case Intrinsic::memset: 882 case Intrinsic::memmove: 883 case Intrinsic::memcpy: 884 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 885 } 886 } 887 888 if (isa<LoadInst>(I) && I->hasOneUse()) { 889 auto *SingleUser = cast<Instruction>(*I->user_begin()); 890 if (SingleUser->getParent() == I->getParent()) { 891 if (isa<ICmpInst>(SingleUser)) { 892 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 893 if (C->getBitWidth() <= 64 && 894 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 895 // Comparison of memory with 16 bit signed / unsigned immediate 896 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 897 } else if (isa<StoreInst>(SingleUser)) 898 // Load->Store 899 return getLoadStoreAddrMode(HasVector, I->getType()); 900 } 901 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 902 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 903 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 904 // Load->Store 905 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 906 } 907 908 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 909 910 // * Use LDE instead of LE/LEY for z13 to avoid partial register 911 // dependencies (LDE only supports small offsets). 912 // * Utilize the vector registers to hold floating point 913 // values (vector load / store instructions only support small 914 // offsets). 915 916 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 917 I->getOperand(0)->getType()); 918 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 919 bool IsVectorAccess = MemAccessTy->isVectorTy(); 920 921 // A store of an extracted vector element will be combined into a VSTE type 922 // instruction. 923 if (!IsVectorAccess && isa<StoreInst>(I)) { 924 Value *DataOp = I->getOperand(0); 925 if (isa<ExtractElementInst>(DataOp)) 926 IsVectorAccess = true; 927 } 928 929 // A load which gets inserted into a vector element will be combined into a 930 // VLE type instruction. 931 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 932 User *LoadUser = *I->user_begin(); 933 if (isa<InsertElementInst>(LoadUser)) 934 IsVectorAccess = true; 935 } 936 937 if (IsFPAccess || IsVectorAccess) 938 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 939 } 940 941 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 942 } 943 944 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 945 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 946 // Punt on globals for now, although they can be used in limited 947 // RELATIVE LONG cases. 948 if (AM.BaseGV) 949 return false; 950 951 // Require a 20-bit signed offset. 952 if (!isInt<20>(AM.BaseOffs)) 953 return false; 954 955 AddressingMode SupportedAM(true, true); 956 if (I != nullptr) 957 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 958 959 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 960 return false; 961 962 if (!SupportedAM.IndexReg) 963 // No indexing allowed. 964 return AM.Scale == 0; 965 else 966 // Indexing is OK but no scale factor can be applied. 967 return AM.Scale == 0 || AM.Scale == 1; 968 } 969 970 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 971 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 972 return false; 973 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 974 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 975 return FromBits > ToBits; 976 } 977 978 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 979 if (!FromVT.isInteger() || !ToVT.isInteger()) 980 return false; 981 unsigned FromBits = FromVT.getSizeInBits(); 982 unsigned ToBits = ToVT.getSizeInBits(); 983 return FromBits > ToBits; 984 } 985 986 //===----------------------------------------------------------------------===// 987 // Inline asm support 988 //===----------------------------------------------------------------------===// 989 990 TargetLowering::ConstraintType 991 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 992 if (Constraint.size() == 1) { 993 switch (Constraint[0]) { 994 case 'a': // Address register 995 case 'd': // Data register (equivalent to 'r') 996 case 'f': // Floating-point register 997 case 'h': // High-part register 998 case 'r': // General-purpose register 999 case 'v': // Vector register 1000 return C_RegisterClass; 1001 1002 case 'Q': // Memory with base and unsigned 12-bit displacement 1003 case 'R': // Likewise, plus an index 1004 case 'S': // Memory with base and signed 20-bit displacement 1005 case 'T': // Likewise, plus an index 1006 case 'm': // Equivalent to 'T'. 1007 return C_Memory; 1008 1009 case 'I': // Unsigned 8-bit constant 1010 case 'J': // Unsigned 12-bit constant 1011 case 'K': // Signed 16-bit constant 1012 case 'L': // Signed 20-bit displacement (on all targets we support) 1013 case 'M': // 0x7fffffff 1014 return C_Immediate; 1015 1016 default: 1017 break; 1018 } 1019 } 1020 return TargetLowering::getConstraintType(Constraint); 1021 } 1022 1023 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1024 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1025 const char *constraint) const { 1026 ConstraintWeight weight = CW_Invalid; 1027 Value *CallOperandVal = info.CallOperandVal; 1028 // If we don't have a value, we can't do a match, 1029 // but allow it at the lowest weight. 1030 if (!CallOperandVal) 1031 return CW_Default; 1032 Type *type = CallOperandVal->getType(); 1033 // Look at the constraint type. 1034 switch (*constraint) { 1035 default: 1036 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1037 break; 1038 1039 case 'a': // Address register 1040 case 'd': // Data register (equivalent to 'r') 1041 case 'h': // High-part register 1042 case 'r': // General-purpose register 1043 if (CallOperandVal->getType()->isIntegerTy()) 1044 weight = CW_Register; 1045 break; 1046 1047 case 'f': // Floating-point register 1048 if (type->isFloatingPointTy()) 1049 weight = CW_Register; 1050 break; 1051 1052 case 'v': // Vector register 1053 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1054 Subtarget.hasVector()) 1055 weight = CW_Register; 1056 break; 1057 1058 case 'I': // Unsigned 8-bit constant 1059 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1060 if (isUInt<8>(C->getZExtValue())) 1061 weight = CW_Constant; 1062 break; 1063 1064 case 'J': // Unsigned 12-bit constant 1065 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1066 if (isUInt<12>(C->getZExtValue())) 1067 weight = CW_Constant; 1068 break; 1069 1070 case 'K': // Signed 16-bit constant 1071 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1072 if (isInt<16>(C->getSExtValue())) 1073 weight = CW_Constant; 1074 break; 1075 1076 case 'L': // Signed 20-bit displacement (on all targets we support) 1077 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1078 if (isInt<20>(C->getSExtValue())) 1079 weight = CW_Constant; 1080 break; 1081 1082 case 'M': // 0x7fffffff 1083 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1084 if (C->getZExtValue() == 0x7fffffff) 1085 weight = CW_Constant; 1086 break; 1087 } 1088 return weight; 1089 } 1090 1091 // Parse a "{tNNN}" register constraint for which the register type "t" 1092 // has already been verified. MC is the class associated with "t" and 1093 // Map maps 0-based register numbers to LLVM register numbers. 1094 static std::pair<unsigned, const TargetRegisterClass *> 1095 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1096 const unsigned *Map, unsigned Size) { 1097 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1098 if (isdigit(Constraint[2])) { 1099 unsigned Index; 1100 bool Failed = 1101 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1102 if (!Failed && Index < Size && Map[Index]) 1103 return std::make_pair(Map[Index], RC); 1104 } 1105 return std::make_pair(0U, nullptr); 1106 } 1107 1108 std::pair<unsigned, const TargetRegisterClass *> 1109 SystemZTargetLowering::getRegForInlineAsmConstraint( 1110 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1111 if (Constraint.size() == 1) { 1112 // GCC Constraint Letters 1113 switch (Constraint[0]) { 1114 default: break; 1115 case 'd': // Data register (equivalent to 'r') 1116 case 'r': // General-purpose register 1117 if (VT == MVT::i64) 1118 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1119 else if (VT == MVT::i128) 1120 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1121 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1122 1123 case 'a': // Address register 1124 if (VT == MVT::i64) 1125 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1126 else if (VT == MVT::i128) 1127 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1128 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1129 1130 case 'h': // High-part register (an LLVM extension) 1131 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1132 1133 case 'f': // Floating-point register 1134 if (!useSoftFloat()) { 1135 if (VT == MVT::f64) 1136 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1137 else if (VT == MVT::f128) 1138 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1139 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1140 } 1141 break; 1142 case 'v': // Vector register 1143 if (Subtarget.hasVector()) { 1144 if (VT == MVT::f32) 1145 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1146 if (VT == MVT::f64) 1147 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1148 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1149 } 1150 break; 1151 } 1152 } 1153 if (Constraint.size() > 0 && Constraint[0] == '{') { 1154 // We need to override the default register parsing for GPRs and FPRs 1155 // because the interpretation depends on VT. The internal names of 1156 // the registers are also different from the external names 1157 // (F0D and F0S instead of F0, etc.). 1158 if (Constraint[1] == 'r') { 1159 if (VT == MVT::i32) 1160 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1161 SystemZMC::GR32Regs, 16); 1162 if (VT == MVT::i128) 1163 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1164 SystemZMC::GR128Regs, 16); 1165 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1166 SystemZMC::GR64Regs, 16); 1167 } 1168 if (Constraint[1] == 'f') { 1169 if (useSoftFloat()) 1170 return std::make_pair( 1171 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1172 if (VT == MVT::f32) 1173 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1174 SystemZMC::FP32Regs, 16); 1175 if (VT == MVT::f128) 1176 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1177 SystemZMC::FP128Regs, 16); 1178 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1179 SystemZMC::FP64Regs, 16); 1180 } 1181 if (Constraint[1] == 'v') { 1182 if (!Subtarget.hasVector()) 1183 return std::make_pair( 1184 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1185 if (VT == MVT::f32) 1186 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1187 SystemZMC::VR32Regs, 32); 1188 if (VT == MVT::f64) 1189 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1190 SystemZMC::VR64Regs, 32); 1191 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1192 SystemZMC::VR128Regs, 32); 1193 } 1194 } 1195 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1196 } 1197 1198 // FIXME? Maybe this could be a TableGen attribute on some registers and 1199 // this table could be generated automatically from RegInfo. 1200 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1201 const MachineFunction &MF) const { 1202 1203 Register Reg = StringSwitch<Register>(RegName) 1204 .Case("r15", SystemZ::R15D) 1205 .Default(0); 1206 if (Reg) 1207 return Reg; 1208 report_fatal_error("Invalid register name global variable"); 1209 } 1210 1211 void SystemZTargetLowering:: 1212 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1213 std::vector<SDValue> &Ops, 1214 SelectionDAG &DAG) const { 1215 // Only support length 1 constraints for now. 1216 if (Constraint.length() == 1) { 1217 switch (Constraint[0]) { 1218 case 'I': // Unsigned 8-bit constant 1219 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1220 if (isUInt<8>(C->getZExtValue())) 1221 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1222 Op.getValueType())); 1223 return; 1224 1225 case 'J': // Unsigned 12-bit constant 1226 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1227 if (isUInt<12>(C->getZExtValue())) 1228 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1229 Op.getValueType())); 1230 return; 1231 1232 case 'K': // Signed 16-bit constant 1233 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1234 if (isInt<16>(C->getSExtValue())) 1235 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1236 Op.getValueType())); 1237 return; 1238 1239 case 'L': // Signed 20-bit displacement (on all targets we support) 1240 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1241 if (isInt<20>(C->getSExtValue())) 1242 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1243 Op.getValueType())); 1244 return; 1245 1246 case 'M': // 0x7fffffff 1247 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1248 if (C->getZExtValue() == 0x7fffffff) 1249 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1250 Op.getValueType())); 1251 return; 1252 } 1253 } 1254 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1255 } 1256 1257 //===----------------------------------------------------------------------===// 1258 // Calling conventions 1259 //===----------------------------------------------------------------------===// 1260 1261 #include "SystemZGenCallingConv.inc" 1262 1263 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1264 CallingConv::ID) const { 1265 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1266 SystemZ::R14D, 0 }; 1267 return ScratchRegs; 1268 } 1269 1270 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1271 Type *ToType) const { 1272 return isTruncateFree(FromType, ToType); 1273 } 1274 1275 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1276 return CI->isTailCall(); 1277 } 1278 1279 // We do not yet support 128-bit single-element vector types. If the user 1280 // attempts to use such types as function argument or return type, prefer 1281 // to error out instead of emitting code violating the ABI. 1282 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1283 if (ArgVT.isVector() && !VT.isVector()) 1284 report_fatal_error("Unsupported vector argument or return type"); 1285 } 1286 1287 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1288 for (unsigned i = 0; i < Ins.size(); ++i) 1289 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1290 } 1291 1292 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1293 for (unsigned i = 0; i < Outs.size(); ++i) 1294 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1295 } 1296 1297 // Value is a value that has been passed to us in the location described by VA 1298 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1299 // any loads onto Chain. 1300 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1301 CCValAssign &VA, SDValue Chain, 1302 SDValue Value) { 1303 // If the argument has been promoted from a smaller type, insert an 1304 // assertion to capture this. 1305 if (VA.getLocInfo() == CCValAssign::SExt) 1306 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1307 DAG.getValueType(VA.getValVT())); 1308 else if (VA.getLocInfo() == CCValAssign::ZExt) 1309 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1310 DAG.getValueType(VA.getValVT())); 1311 1312 if (VA.isExtInLoc()) 1313 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1314 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1315 // If this is a short vector argument loaded from the stack, 1316 // extend from i64 to full vector size and then bitcast. 1317 assert(VA.getLocVT() == MVT::i64); 1318 assert(VA.getValVT().isVector()); 1319 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1320 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1321 } else 1322 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1323 return Value; 1324 } 1325 1326 // Value is a value of type VA.getValVT() that we need to copy into 1327 // the location described by VA. Return a copy of Value converted to 1328 // VA.getValVT(). The caller is responsible for handling indirect values. 1329 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1330 CCValAssign &VA, SDValue Value) { 1331 switch (VA.getLocInfo()) { 1332 case CCValAssign::SExt: 1333 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1334 case CCValAssign::ZExt: 1335 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1336 case CCValAssign::AExt: 1337 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1338 case CCValAssign::BCvt: 1339 // If this is a short vector argument to be stored to the stack, 1340 // bitcast to v2i64 and then extract first element. 1341 assert(VA.getLocVT() == MVT::i64); 1342 assert(VA.getValVT().isVector()); 1343 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1344 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1345 DAG.getConstant(0, DL, MVT::i32)); 1346 case CCValAssign::Full: 1347 return Value; 1348 default: 1349 llvm_unreachable("Unhandled getLocInfo()"); 1350 } 1351 } 1352 1353 SDValue SystemZTargetLowering::LowerFormalArguments( 1354 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1355 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1356 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1357 MachineFunction &MF = DAG.getMachineFunction(); 1358 MachineFrameInfo &MFI = MF.getFrameInfo(); 1359 MachineRegisterInfo &MRI = MF.getRegInfo(); 1360 SystemZMachineFunctionInfo *FuncInfo = 1361 MF.getInfo<SystemZMachineFunctionInfo>(); 1362 auto *TFL = 1363 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1364 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1365 1366 // Detect unsupported vector argument types. 1367 if (Subtarget.hasVector()) 1368 VerifyVectorTypes(Ins); 1369 1370 // Assign locations to all of the incoming arguments. 1371 SmallVector<CCValAssign, 16> ArgLocs; 1372 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1373 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1374 1375 unsigned NumFixedGPRs = 0; 1376 unsigned NumFixedFPRs = 0; 1377 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1378 SDValue ArgValue; 1379 CCValAssign &VA = ArgLocs[I]; 1380 EVT LocVT = VA.getLocVT(); 1381 if (VA.isRegLoc()) { 1382 // Arguments passed in registers 1383 const TargetRegisterClass *RC; 1384 switch (LocVT.getSimpleVT().SimpleTy) { 1385 default: 1386 // Integers smaller than i64 should be promoted to i64. 1387 llvm_unreachable("Unexpected argument type"); 1388 case MVT::i32: 1389 NumFixedGPRs += 1; 1390 RC = &SystemZ::GR32BitRegClass; 1391 break; 1392 case MVT::i64: 1393 NumFixedGPRs += 1; 1394 RC = &SystemZ::GR64BitRegClass; 1395 break; 1396 case MVT::f32: 1397 NumFixedFPRs += 1; 1398 RC = &SystemZ::FP32BitRegClass; 1399 break; 1400 case MVT::f64: 1401 NumFixedFPRs += 1; 1402 RC = &SystemZ::FP64BitRegClass; 1403 break; 1404 case MVT::v16i8: 1405 case MVT::v8i16: 1406 case MVT::v4i32: 1407 case MVT::v2i64: 1408 case MVT::v4f32: 1409 case MVT::v2f64: 1410 RC = &SystemZ::VR128BitRegClass; 1411 break; 1412 } 1413 1414 Register VReg = MRI.createVirtualRegister(RC); 1415 MRI.addLiveIn(VA.getLocReg(), VReg); 1416 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1417 } else { 1418 assert(VA.isMemLoc() && "Argument not register or memory"); 1419 1420 // Create the frame index object for this incoming parameter. 1421 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1422 VA.getLocMemOffset(), true); 1423 1424 // Create the SelectionDAG nodes corresponding to a load 1425 // from this parameter. Unpromoted ints and floats are 1426 // passed as right-justified 8-byte values. 1427 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1428 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1429 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1430 DAG.getIntPtrConstant(4, DL)); 1431 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1432 MachinePointerInfo::getFixedStack(MF, FI)); 1433 } 1434 1435 // Convert the value of the argument register into the value that's 1436 // being passed. 1437 if (VA.getLocInfo() == CCValAssign::Indirect) { 1438 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1439 MachinePointerInfo())); 1440 // If the original argument was split (e.g. i128), we need 1441 // to load all parts of it here (using the same address). 1442 unsigned ArgIndex = Ins[I].OrigArgIndex; 1443 assert (Ins[I].PartOffset == 0); 1444 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1445 CCValAssign &PartVA = ArgLocs[I + 1]; 1446 unsigned PartOffset = Ins[I + 1].PartOffset; 1447 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1448 DAG.getIntPtrConstant(PartOffset, DL)); 1449 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1450 MachinePointerInfo())); 1451 ++I; 1452 } 1453 } else 1454 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1455 } 1456 1457 if (IsVarArg) { 1458 // Save the number of non-varargs registers for later use by va_start, etc. 1459 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1460 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1461 1462 // Likewise the address (in the form of a frame index) of where the 1463 // first stack vararg would be. The 1-byte size here is arbitrary. 1464 int64_t StackSize = CCInfo.getNextStackOffset(); 1465 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1466 1467 // ...and a similar frame index for the caller-allocated save area 1468 // that will be used to store the incoming registers. 1469 int64_t RegSaveOffset = 1470 -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1471 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1472 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1473 1474 // Store the FPR varargs in the reserved frame slots. (We store the 1475 // GPRs as part of the prologue.) 1476 if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) { 1477 SDValue MemOps[SystemZ::NumArgFPRs]; 1478 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1479 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]); 1480 int FI = 1481 MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true); 1482 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1483 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1484 &SystemZ::FP64BitRegClass); 1485 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1486 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1487 MachinePointerInfo::getFixedStack(MF, FI)); 1488 } 1489 // Join the stores, which are independent of one another. 1490 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1491 makeArrayRef(&MemOps[NumFixedFPRs], 1492 SystemZ::NumArgFPRs-NumFixedFPRs)); 1493 } 1494 } 1495 1496 return Chain; 1497 } 1498 1499 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1500 SmallVectorImpl<CCValAssign> &ArgLocs, 1501 SmallVectorImpl<ISD::OutputArg> &Outs) { 1502 // Punt if there are any indirect or stack arguments, or if the call 1503 // needs the callee-saved argument register R6, or if the call uses 1504 // the callee-saved register arguments SwiftSelf and SwiftError. 1505 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1506 CCValAssign &VA = ArgLocs[I]; 1507 if (VA.getLocInfo() == CCValAssign::Indirect) 1508 return false; 1509 if (!VA.isRegLoc()) 1510 return false; 1511 Register Reg = VA.getLocReg(); 1512 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1513 return false; 1514 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1515 return false; 1516 } 1517 return true; 1518 } 1519 1520 SDValue 1521 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1522 SmallVectorImpl<SDValue> &InVals) const { 1523 SelectionDAG &DAG = CLI.DAG; 1524 SDLoc &DL = CLI.DL; 1525 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1526 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1527 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1528 SDValue Chain = CLI.Chain; 1529 SDValue Callee = CLI.Callee; 1530 bool &IsTailCall = CLI.IsTailCall; 1531 CallingConv::ID CallConv = CLI.CallConv; 1532 bool IsVarArg = CLI.IsVarArg; 1533 MachineFunction &MF = DAG.getMachineFunction(); 1534 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1535 1536 // Detect unsupported vector argument and return types. 1537 if (Subtarget.hasVector()) { 1538 VerifyVectorTypes(Outs); 1539 VerifyVectorTypes(Ins); 1540 } 1541 1542 // Analyze the operands of the call, assigning locations to each operand. 1543 SmallVector<CCValAssign, 16> ArgLocs; 1544 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1545 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1546 1547 // We don't support GuaranteedTailCallOpt, only automatically-detected 1548 // sibling calls. 1549 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1550 IsTailCall = false; 1551 1552 // Get a count of how many bytes are to be pushed on the stack. 1553 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1554 1555 // Mark the start of the call. 1556 if (!IsTailCall) 1557 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1558 1559 // Copy argument values to their designated locations. 1560 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1561 SmallVector<SDValue, 8> MemOpChains; 1562 SDValue StackPtr; 1563 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1564 CCValAssign &VA = ArgLocs[I]; 1565 SDValue ArgValue = OutVals[I]; 1566 1567 if (VA.getLocInfo() == CCValAssign::Indirect) { 1568 // Store the argument in a stack slot and pass its address. 1569 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1570 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1571 MemOpChains.push_back( 1572 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1573 MachinePointerInfo::getFixedStack(MF, FI))); 1574 // If the original argument was split (e.g. i128), we need 1575 // to store all parts of it here (and pass just one address). 1576 unsigned ArgIndex = Outs[I].OrigArgIndex; 1577 assert (Outs[I].PartOffset == 0); 1578 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1579 SDValue PartValue = OutVals[I + 1]; 1580 unsigned PartOffset = Outs[I + 1].PartOffset; 1581 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1582 DAG.getIntPtrConstant(PartOffset, DL)); 1583 MemOpChains.push_back( 1584 DAG.getStore(Chain, DL, PartValue, Address, 1585 MachinePointerInfo::getFixedStack(MF, FI))); 1586 ++I; 1587 } 1588 ArgValue = SpillSlot; 1589 } else 1590 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1591 1592 if (VA.isRegLoc()) 1593 // Queue up the argument copies and emit them at the end. 1594 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1595 else { 1596 assert(VA.isMemLoc() && "Argument not register or memory"); 1597 1598 // Work out the address of the stack slot. Unpromoted ints and 1599 // floats are passed as right-justified 8-byte values. 1600 if (!StackPtr.getNode()) 1601 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1602 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1603 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1604 Offset += 4; 1605 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1606 DAG.getIntPtrConstant(Offset, DL)); 1607 1608 // Emit the store. 1609 MemOpChains.push_back( 1610 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1611 } 1612 } 1613 1614 // Join the stores, which are independent of one another. 1615 if (!MemOpChains.empty()) 1616 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1617 1618 // Accept direct calls by converting symbolic call addresses to the 1619 // associated Target* opcodes. Force %r1 to be used for indirect 1620 // tail calls. 1621 SDValue Glue; 1622 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1623 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1624 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1625 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1626 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1627 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1628 } else if (IsTailCall) { 1629 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1630 Glue = Chain.getValue(1); 1631 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1632 } 1633 1634 // Build a sequence of copy-to-reg nodes, chained and glued together. 1635 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1636 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1637 RegsToPass[I].second, Glue); 1638 Glue = Chain.getValue(1); 1639 } 1640 1641 // The first call operand is the chain and the second is the target address. 1642 SmallVector<SDValue, 8> Ops; 1643 Ops.push_back(Chain); 1644 Ops.push_back(Callee); 1645 1646 // Add argument registers to the end of the list so that they are 1647 // known live into the call. 1648 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1649 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1650 RegsToPass[I].second.getValueType())); 1651 1652 // Add a register mask operand representing the call-preserved registers. 1653 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1654 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1655 assert(Mask && "Missing call preserved mask for calling convention"); 1656 Ops.push_back(DAG.getRegisterMask(Mask)); 1657 1658 // Glue the call to the argument copies, if any. 1659 if (Glue.getNode()) 1660 Ops.push_back(Glue); 1661 1662 // Emit the call. 1663 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1664 if (IsTailCall) 1665 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1666 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1667 Glue = Chain.getValue(1); 1668 1669 // Mark the end of the call, which is glued to the call itself. 1670 Chain = DAG.getCALLSEQ_END(Chain, 1671 DAG.getConstant(NumBytes, DL, PtrVT, true), 1672 DAG.getConstant(0, DL, PtrVT, true), 1673 Glue, DL); 1674 Glue = Chain.getValue(1); 1675 1676 // Assign locations to each value returned by this call. 1677 SmallVector<CCValAssign, 16> RetLocs; 1678 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1679 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1680 1681 // Copy all of the result registers out of their specified physreg. 1682 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1683 CCValAssign &VA = RetLocs[I]; 1684 1685 // Copy the value out, gluing the copy to the end of the call sequence. 1686 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1687 VA.getLocVT(), Glue); 1688 Chain = RetValue.getValue(1); 1689 Glue = RetValue.getValue(2); 1690 1691 // Convert the value of the return register into the value that's 1692 // being returned. 1693 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1694 } 1695 1696 return Chain; 1697 } 1698 1699 bool SystemZTargetLowering:: 1700 CanLowerReturn(CallingConv::ID CallConv, 1701 MachineFunction &MF, bool isVarArg, 1702 const SmallVectorImpl<ISD::OutputArg> &Outs, 1703 LLVMContext &Context) const { 1704 // Detect unsupported vector return types. 1705 if (Subtarget.hasVector()) 1706 VerifyVectorTypes(Outs); 1707 1708 // Special case that we cannot easily detect in RetCC_SystemZ since 1709 // i128 is not a legal type. 1710 for (auto &Out : Outs) 1711 if (Out.ArgVT == MVT::i128) 1712 return false; 1713 1714 SmallVector<CCValAssign, 16> RetLocs; 1715 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1716 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1717 } 1718 1719 SDValue 1720 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1721 bool IsVarArg, 1722 const SmallVectorImpl<ISD::OutputArg> &Outs, 1723 const SmallVectorImpl<SDValue> &OutVals, 1724 const SDLoc &DL, SelectionDAG &DAG) const { 1725 MachineFunction &MF = DAG.getMachineFunction(); 1726 1727 // Detect unsupported vector return types. 1728 if (Subtarget.hasVector()) 1729 VerifyVectorTypes(Outs); 1730 1731 // Assign locations to each returned value. 1732 SmallVector<CCValAssign, 16> RetLocs; 1733 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1734 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1735 1736 // Quick exit for void returns 1737 if (RetLocs.empty()) 1738 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1739 1740 if (CallConv == CallingConv::GHC) 1741 report_fatal_error("GHC functions return void only"); 1742 1743 // Copy the result values into the output registers. 1744 SDValue Glue; 1745 SmallVector<SDValue, 4> RetOps; 1746 RetOps.push_back(Chain); 1747 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1748 CCValAssign &VA = RetLocs[I]; 1749 SDValue RetValue = OutVals[I]; 1750 1751 // Make the return register live on exit. 1752 assert(VA.isRegLoc() && "Can only return in registers!"); 1753 1754 // Promote the value as required. 1755 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1756 1757 // Chain and glue the copies together. 1758 Register Reg = VA.getLocReg(); 1759 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1760 Glue = Chain.getValue(1); 1761 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1762 } 1763 1764 // Update chain and glue. 1765 RetOps[0] = Chain; 1766 if (Glue.getNode()) 1767 RetOps.push_back(Glue); 1768 1769 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1770 } 1771 1772 // Return true if Op is an intrinsic node with chain that returns the CC value 1773 // as its only (other) argument. Provide the associated SystemZISD opcode and 1774 // the mask of valid CC values if so. 1775 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1776 unsigned &CCValid) { 1777 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1778 switch (Id) { 1779 case Intrinsic::s390_tbegin: 1780 Opcode = SystemZISD::TBEGIN; 1781 CCValid = SystemZ::CCMASK_TBEGIN; 1782 return true; 1783 1784 case Intrinsic::s390_tbegin_nofloat: 1785 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1786 CCValid = SystemZ::CCMASK_TBEGIN; 1787 return true; 1788 1789 case Intrinsic::s390_tend: 1790 Opcode = SystemZISD::TEND; 1791 CCValid = SystemZ::CCMASK_TEND; 1792 return true; 1793 1794 default: 1795 return false; 1796 } 1797 } 1798 1799 // Return true if Op is an intrinsic node without chain that returns the 1800 // CC value as its final argument. Provide the associated SystemZISD 1801 // opcode and the mask of valid CC values if so. 1802 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1803 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1804 switch (Id) { 1805 case Intrinsic::s390_vpkshs: 1806 case Intrinsic::s390_vpksfs: 1807 case Intrinsic::s390_vpksgs: 1808 Opcode = SystemZISD::PACKS_CC; 1809 CCValid = SystemZ::CCMASK_VCMP; 1810 return true; 1811 1812 case Intrinsic::s390_vpklshs: 1813 case Intrinsic::s390_vpklsfs: 1814 case Intrinsic::s390_vpklsgs: 1815 Opcode = SystemZISD::PACKLS_CC; 1816 CCValid = SystemZ::CCMASK_VCMP; 1817 return true; 1818 1819 case Intrinsic::s390_vceqbs: 1820 case Intrinsic::s390_vceqhs: 1821 case Intrinsic::s390_vceqfs: 1822 case Intrinsic::s390_vceqgs: 1823 Opcode = SystemZISD::VICMPES; 1824 CCValid = SystemZ::CCMASK_VCMP; 1825 return true; 1826 1827 case Intrinsic::s390_vchbs: 1828 case Intrinsic::s390_vchhs: 1829 case Intrinsic::s390_vchfs: 1830 case Intrinsic::s390_vchgs: 1831 Opcode = SystemZISD::VICMPHS; 1832 CCValid = SystemZ::CCMASK_VCMP; 1833 return true; 1834 1835 case Intrinsic::s390_vchlbs: 1836 case Intrinsic::s390_vchlhs: 1837 case Intrinsic::s390_vchlfs: 1838 case Intrinsic::s390_vchlgs: 1839 Opcode = SystemZISD::VICMPHLS; 1840 CCValid = SystemZ::CCMASK_VCMP; 1841 return true; 1842 1843 case Intrinsic::s390_vtm: 1844 Opcode = SystemZISD::VTM; 1845 CCValid = SystemZ::CCMASK_VCMP; 1846 return true; 1847 1848 case Intrinsic::s390_vfaebs: 1849 case Intrinsic::s390_vfaehs: 1850 case Intrinsic::s390_vfaefs: 1851 Opcode = SystemZISD::VFAE_CC; 1852 CCValid = SystemZ::CCMASK_ANY; 1853 return true; 1854 1855 case Intrinsic::s390_vfaezbs: 1856 case Intrinsic::s390_vfaezhs: 1857 case Intrinsic::s390_vfaezfs: 1858 Opcode = SystemZISD::VFAEZ_CC; 1859 CCValid = SystemZ::CCMASK_ANY; 1860 return true; 1861 1862 case Intrinsic::s390_vfeebs: 1863 case Intrinsic::s390_vfeehs: 1864 case Intrinsic::s390_vfeefs: 1865 Opcode = SystemZISD::VFEE_CC; 1866 CCValid = SystemZ::CCMASK_ANY; 1867 return true; 1868 1869 case Intrinsic::s390_vfeezbs: 1870 case Intrinsic::s390_vfeezhs: 1871 case Intrinsic::s390_vfeezfs: 1872 Opcode = SystemZISD::VFEEZ_CC; 1873 CCValid = SystemZ::CCMASK_ANY; 1874 return true; 1875 1876 case Intrinsic::s390_vfenebs: 1877 case Intrinsic::s390_vfenehs: 1878 case Intrinsic::s390_vfenefs: 1879 Opcode = SystemZISD::VFENE_CC; 1880 CCValid = SystemZ::CCMASK_ANY; 1881 return true; 1882 1883 case Intrinsic::s390_vfenezbs: 1884 case Intrinsic::s390_vfenezhs: 1885 case Intrinsic::s390_vfenezfs: 1886 Opcode = SystemZISD::VFENEZ_CC; 1887 CCValid = SystemZ::CCMASK_ANY; 1888 return true; 1889 1890 case Intrinsic::s390_vistrbs: 1891 case Intrinsic::s390_vistrhs: 1892 case Intrinsic::s390_vistrfs: 1893 Opcode = SystemZISD::VISTR_CC; 1894 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1895 return true; 1896 1897 case Intrinsic::s390_vstrcbs: 1898 case Intrinsic::s390_vstrchs: 1899 case Intrinsic::s390_vstrcfs: 1900 Opcode = SystemZISD::VSTRC_CC; 1901 CCValid = SystemZ::CCMASK_ANY; 1902 return true; 1903 1904 case Intrinsic::s390_vstrczbs: 1905 case Intrinsic::s390_vstrczhs: 1906 case Intrinsic::s390_vstrczfs: 1907 Opcode = SystemZISD::VSTRCZ_CC; 1908 CCValid = SystemZ::CCMASK_ANY; 1909 return true; 1910 1911 case Intrinsic::s390_vstrsb: 1912 case Intrinsic::s390_vstrsh: 1913 case Intrinsic::s390_vstrsf: 1914 Opcode = SystemZISD::VSTRS_CC; 1915 CCValid = SystemZ::CCMASK_ANY; 1916 return true; 1917 1918 case Intrinsic::s390_vstrszb: 1919 case Intrinsic::s390_vstrszh: 1920 case Intrinsic::s390_vstrszf: 1921 Opcode = SystemZISD::VSTRSZ_CC; 1922 CCValid = SystemZ::CCMASK_ANY; 1923 return true; 1924 1925 case Intrinsic::s390_vfcedbs: 1926 case Intrinsic::s390_vfcesbs: 1927 Opcode = SystemZISD::VFCMPES; 1928 CCValid = SystemZ::CCMASK_VCMP; 1929 return true; 1930 1931 case Intrinsic::s390_vfchdbs: 1932 case Intrinsic::s390_vfchsbs: 1933 Opcode = SystemZISD::VFCMPHS; 1934 CCValid = SystemZ::CCMASK_VCMP; 1935 return true; 1936 1937 case Intrinsic::s390_vfchedbs: 1938 case Intrinsic::s390_vfchesbs: 1939 Opcode = SystemZISD::VFCMPHES; 1940 CCValid = SystemZ::CCMASK_VCMP; 1941 return true; 1942 1943 case Intrinsic::s390_vftcidb: 1944 case Intrinsic::s390_vftcisb: 1945 Opcode = SystemZISD::VFTCI; 1946 CCValid = SystemZ::CCMASK_VCMP; 1947 return true; 1948 1949 case Intrinsic::s390_tdc: 1950 Opcode = SystemZISD::TDC; 1951 CCValid = SystemZ::CCMASK_TDC; 1952 return true; 1953 1954 default: 1955 return false; 1956 } 1957 } 1958 1959 // Emit an intrinsic with chain and an explicit CC register result. 1960 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1961 unsigned Opcode) { 1962 // Copy all operands except the intrinsic ID. 1963 unsigned NumOps = Op.getNumOperands(); 1964 SmallVector<SDValue, 6> Ops; 1965 Ops.reserve(NumOps - 1); 1966 Ops.push_back(Op.getOperand(0)); 1967 for (unsigned I = 2; I < NumOps; ++I) 1968 Ops.push_back(Op.getOperand(I)); 1969 1970 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1971 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1972 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1973 SDValue OldChain = SDValue(Op.getNode(), 1); 1974 SDValue NewChain = SDValue(Intr.getNode(), 1); 1975 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1976 return Intr.getNode(); 1977 } 1978 1979 // Emit an intrinsic with an explicit CC register result. 1980 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1981 unsigned Opcode) { 1982 // Copy all operands except the intrinsic ID. 1983 unsigned NumOps = Op.getNumOperands(); 1984 SmallVector<SDValue, 6> Ops; 1985 Ops.reserve(NumOps - 1); 1986 for (unsigned I = 1; I < NumOps; ++I) 1987 Ops.push_back(Op.getOperand(I)); 1988 1989 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1990 return Intr.getNode(); 1991 } 1992 1993 // CC is a comparison that will be implemented using an integer or 1994 // floating-point comparison. Return the condition code mask for 1995 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1996 // unsigned comparisons and clear for signed ones. In the floating-point 1997 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1998 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1999 #define CONV(X) \ 2000 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2001 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2002 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2003 2004 switch (CC) { 2005 default: 2006 llvm_unreachable("Invalid integer condition!"); 2007 2008 CONV(EQ); 2009 CONV(NE); 2010 CONV(GT); 2011 CONV(GE); 2012 CONV(LT); 2013 CONV(LE); 2014 2015 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2016 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2017 } 2018 #undef CONV 2019 } 2020 2021 // If C can be converted to a comparison against zero, adjust the operands 2022 // as necessary. 2023 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2024 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2025 return; 2026 2027 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2028 if (!ConstOp1) 2029 return; 2030 2031 int64_t Value = ConstOp1->getSExtValue(); 2032 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2033 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2034 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2035 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2036 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2037 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2038 } 2039 } 2040 2041 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2042 // adjust the operands as necessary. 2043 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2044 Comparison &C) { 2045 // For us to make any changes, it must a comparison between a single-use 2046 // load and a constant. 2047 if (!C.Op0.hasOneUse() || 2048 C.Op0.getOpcode() != ISD::LOAD || 2049 C.Op1.getOpcode() != ISD::Constant) 2050 return; 2051 2052 // We must have an 8- or 16-bit load. 2053 auto *Load = cast<LoadSDNode>(C.Op0); 2054 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 2055 if (NumBits != 8 && NumBits != 16) 2056 return; 2057 2058 // The load must be an extending one and the constant must be within the 2059 // range of the unextended value. 2060 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2061 uint64_t Value = ConstOp1->getZExtValue(); 2062 uint64_t Mask = (1 << NumBits) - 1; 2063 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2064 // Make sure that ConstOp1 is in range of C.Op0. 2065 int64_t SignedValue = ConstOp1->getSExtValue(); 2066 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2067 return; 2068 if (C.ICmpType != SystemZICMP::SignedOnly) { 2069 // Unsigned comparison between two sign-extended values is equivalent 2070 // to unsigned comparison between two zero-extended values. 2071 Value &= Mask; 2072 } else if (NumBits == 8) { 2073 // Try to treat the comparison as unsigned, so that we can use CLI. 2074 // Adjust CCMask and Value as necessary. 2075 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2076 // Test whether the high bit of the byte is set. 2077 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2078 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2079 // Test whether the high bit of the byte is clear. 2080 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2081 else 2082 // No instruction exists for this combination. 2083 return; 2084 C.ICmpType = SystemZICMP::UnsignedOnly; 2085 } 2086 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2087 if (Value > Mask) 2088 return; 2089 // If the constant is in range, we can use any comparison. 2090 C.ICmpType = SystemZICMP::Any; 2091 } else 2092 return; 2093 2094 // Make sure that the first operand is an i32 of the right extension type. 2095 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2096 ISD::SEXTLOAD : 2097 ISD::ZEXTLOAD); 2098 if (C.Op0.getValueType() != MVT::i32 || 2099 Load->getExtensionType() != ExtType) { 2100 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2101 Load->getBasePtr(), Load->getPointerInfo(), 2102 Load->getMemoryVT(), Load->getAlignment(), 2103 Load->getMemOperand()->getFlags()); 2104 // Update the chain uses. 2105 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2106 } 2107 2108 // Make sure that the second operand is an i32 with the right value. 2109 if (C.Op1.getValueType() != MVT::i32 || 2110 Value != ConstOp1->getZExtValue()) 2111 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2112 } 2113 2114 // Return true if Op is either an unextended load, or a load suitable 2115 // for integer register-memory comparisons of type ICmpType. 2116 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2117 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2118 if (Load) { 2119 // There are no instructions to compare a register with a memory byte. 2120 if (Load->getMemoryVT() == MVT::i8) 2121 return false; 2122 // Otherwise decide on extension type. 2123 switch (Load->getExtensionType()) { 2124 case ISD::NON_EXTLOAD: 2125 return true; 2126 case ISD::SEXTLOAD: 2127 return ICmpType != SystemZICMP::UnsignedOnly; 2128 case ISD::ZEXTLOAD: 2129 return ICmpType != SystemZICMP::SignedOnly; 2130 default: 2131 break; 2132 } 2133 } 2134 return false; 2135 } 2136 2137 // Return true if it is better to swap the operands of C. 2138 static bool shouldSwapCmpOperands(const Comparison &C) { 2139 // Leave f128 comparisons alone, since they have no memory forms. 2140 if (C.Op0.getValueType() == MVT::f128) 2141 return false; 2142 2143 // Always keep a floating-point constant second, since comparisons with 2144 // zero can use LOAD TEST and comparisons with other constants make a 2145 // natural memory operand. 2146 if (isa<ConstantFPSDNode>(C.Op1)) 2147 return false; 2148 2149 // Never swap comparisons with zero since there are many ways to optimize 2150 // those later. 2151 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2152 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2153 return false; 2154 2155 // Also keep natural memory operands second if the loaded value is 2156 // only used here. Several comparisons have memory forms. 2157 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2158 return false; 2159 2160 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2161 // In that case we generally prefer the memory to be second. 2162 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2163 // The only exceptions are when the second operand is a constant and 2164 // we can use things like CHHSI. 2165 if (!ConstOp1) 2166 return true; 2167 // The unsigned memory-immediate instructions can handle 16-bit 2168 // unsigned integers. 2169 if (C.ICmpType != SystemZICMP::SignedOnly && 2170 isUInt<16>(ConstOp1->getZExtValue())) 2171 return false; 2172 // The signed memory-immediate instructions can handle 16-bit 2173 // signed integers. 2174 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2175 isInt<16>(ConstOp1->getSExtValue())) 2176 return false; 2177 return true; 2178 } 2179 2180 // Try to promote the use of CGFR and CLGFR. 2181 unsigned Opcode0 = C.Op0.getOpcode(); 2182 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2183 return true; 2184 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2185 return true; 2186 if (C.ICmpType != SystemZICMP::SignedOnly && 2187 Opcode0 == ISD::AND && 2188 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2189 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2190 return true; 2191 2192 return false; 2193 } 2194 2195 // Check whether C tests for equality between X and Y and whether X - Y 2196 // or Y - X is also computed. In that case it's better to compare the 2197 // result of the subtraction against zero. 2198 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2199 Comparison &C) { 2200 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2201 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2202 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2203 SDNode *N = *I; 2204 if (N->getOpcode() == ISD::SUB && 2205 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2206 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2207 C.Op0 = SDValue(N, 0); 2208 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2209 return; 2210 } 2211 } 2212 } 2213 } 2214 2215 // Check whether C compares a floating-point value with zero and if that 2216 // floating-point value is also negated. In this case we can use the 2217 // negation to set CC, so avoiding separate LOAD AND TEST and 2218 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2219 static void adjustForFNeg(Comparison &C) { 2220 // This optimization is invalid for strict comparisons, since FNEG 2221 // does not raise any exceptions. 2222 if (C.Chain) 2223 return; 2224 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2225 if (C1 && C1->isZero()) { 2226 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2227 SDNode *N = *I; 2228 if (N->getOpcode() == ISD::FNEG) { 2229 C.Op0 = SDValue(N, 0); 2230 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2231 return; 2232 } 2233 } 2234 } 2235 } 2236 2237 // Check whether C compares (shl X, 32) with 0 and whether X is 2238 // also sign-extended. In that case it is better to test the result 2239 // of the sign extension using LTGFR. 2240 // 2241 // This case is important because InstCombine transforms a comparison 2242 // with (sext (trunc X)) into a comparison with (shl X, 32). 2243 static void adjustForLTGFR(Comparison &C) { 2244 // Check for a comparison between (shl X, 32) and 0. 2245 if (C.Op0.getOpcode() == ISD::SHL && 2246 C.Op0.getValueType() == MVT::i64 && 2247 C.Op1.getOpcode() == ISD::Constant && 2248 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2249 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2250 if (C1 && C1->getZExtValue() == 32) { 2251 SDValue ShlOp0 = C.Op0.getOperand(0); 2252 // See whether X has any SIGN_EXTEND_INREG uses. 2253 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2254 SDNode *N = *I; 2255 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2256 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2257 C.Op0 = SDValue(N, 0); 2258 return; 2259 } 2260 } 2261 } 2262 } 2263 } 2264 2265 // If C compares the truncation of an extending load, try to compare 2266 // the untruncated value instead. This exposes more opportunities to 2267 // reuse CC. 2268 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2269 Comparison &C) { 2270 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2271 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2272 C.Op1.getOpcode() == ISD::Constant && 2273 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2274 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2275 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2276 unsigned Type = L->getExtensionType(); 2277 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2278 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2279 C.Op0 = C.Op0.getOperand(0); 2280 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2281 } 2282 } 2283 } 2284 } 2285 2286 // Return true if shift operation N has an in-range constant shift value. 2287 // Store it in ShiftVal if so. 2288 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2289 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2290 if (!Shift) 2291 return false; 2292 2293 uint64_t Amount = Shift->getZExtValue(); 2294 if (Amount >= N.getValueSizeInBits()) 2295 return false; 2296 2297 ShiftVal = Amount; 2298 return true; 2299 } 2300 2301 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2302 // instruction and whether the CC value is descriptive enough to handle 2303 // a comparison of type Opcode between the AND result and CmpVal. 2304 // CCMask says which comparison result is being tested and BitSize is 2305 // the number of bits in the operands. If TEST UNDER MASK can be used, 2306 // return the corresponding CC mask, otherwise return 0. 2307 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2308 uint64_t Mask, uint64_t CmpVal, 2309 unsigned ICmpType) { 2310 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2311 2312 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2313 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2314 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2315 return 0; 2316 2317 // Work out the masks for the lowest and highest bits. 2318 unsigned HighShift = 63 - countLeadingZeros(Mask); 2319 uint64_t High = uint64_t(1) << HighShift; 2320 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2321 2322 // Signed ordered comparisons are effectively unsigned if the sign 2323 // bit is dropped. 2324 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2325 2326 // Check for equality comparisons with 0, or the equivalent. 2327 if (CmpVal == 0) { 2328 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2329 return SystemZ::CCMASK_TM_ALL_0; 2330 if (CCMask == SystemZ::CCMASK_CMP_NE) 2331 return SystemZ::CCMASK_TM_SOME_1; 2332 } 2333 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2334 if (CCMask == SystemZ::CCMASK_CMP_LT) 2335 return SystemZ::CCMASK_TM_ALL_0; 2336 if (CCMask == SystemZ::CCMASK_CMP_GE) 2337 return SystemZ::CCMASK_TM_SOME_1; 2338 } 2339 if (EffectivelyUnsigned && CmpVal < Low) { 2340 if (CCMask == SystemZ::CCMASK_CMP_LE) 2341 return SystemZ::CCMASK_TM_ALL_0; 2342 if (CCMask == SystemZ::CCMASK_CMP_GT) 2343 return SystemZ::CCMASK_TM_SOME_1; 2344 } 2345 2346 // Check for equality comparisons with the mask, or the equivalent. 2347 if (CmpVal == Mask) { 2348 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2349 return SystemZ::CCMASK_TM_ALL_1; 2350 if (CCMask == SystemZ::CCMASK_CMP_NE) 2351 return SystemZ::CCMASK_TM_SOME_0; 2352 } 2353 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2354 if (CCMask == SystemZ::CCMASK_CMP_GT) 2355 return SystemZ::CCMASK_TM_ALL_1; 2356 if (CCMask == SystemZ::CCMASK_CMP_LE) 2357 return SystemZ::CCMASK_TM_SOME_0; 2358 } 2359 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2360 if (CCMask == SystemZ::CCMASK_CMP_GE) 2361 return SystemZ::CCMASK_TM_ALL_1; 2362 if (CCMask == SystemZ::CCMASK_CMP_LT) 2363 return SystemZ::CCMASK_TM_SOME_0; 2364 } 2365 2366 // Check for ordered comparisons with the top bit. 2367 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2368 if (CCMask == SystemZ::CCMASK_CMP_LE) 2369 return SystemZ::CCMASK_TM_MSB_0; 2370 if (CCMask == SystemZ::CCMASK_CMP_GT) 2371 return SystemZ::CCMASK_TM_MSB_1; 2372 } 2373 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2374 if (CCMask == SystemZ::CCMASK_CMP_LT) 2375 return SystemZ::CCMASK_TM_MSB_0; 2376 if (CCMask == SystemZ::CCMASK_CMP_GE) 2377 return SystemZ::CCMASK_TM_MSB_1; 2378 } 2379 2380 // If there are just two bits, we can do equality checks for Low and High 2381 // as well. 2382 if (Mask == Low + High) { 2383 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2384 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2385 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2386 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2387 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2388 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2389 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2390 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2391 } 2392 2393 // Looks like we've exhausted our options. 2394 return 0; 2395 } 2396 2397 // See whether C can be implemented as a TEST UNDER MASK instruction. 2398 // Update the arguments with the TM version if so. 2399 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2400 Comparison &C) { 2401 // Check that we have a comparison with a constant. 2402 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2403 if (!ConstOp1) 2404 return; 2405 uint64_t CmpVal = ConstOp1->getZExtValue(); 2406 2407 // Check whether the nonconstant input is an AND with a constant mask. 2408 Comparison NewC(C); 2409 uint64_t MaskVal; 2410 ConstantSDNode *Mask = nullptr; 2411 if (C.Op0.getOpcode() == ISD::AND) { 2412 NewC.Op0 = C.Op0.getOperand(0); 2413 NewC.Op1 = C.Op0.getOperand(1); 2414 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2415 if (!Mask) 2416 return; 2417 MaskVal = Mask->getZExtValue(); 2418 } else { 2419 // There is no instruction to compare with a 64-bit immediate 2420 // so use TMHH instead if possible. We need an unsigned ordered 2421 // comparison with an i64 immediate. 2422 if (NewC.Op0.getValueType() != MVT::i64 || 2423 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2424 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2425 NewC.ICmpType == SystemZICMP::SignedOnly) 2426 return; 2427 // Convert LE and GT comparisons into LT and GE. 2428 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2429 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2430 if (CmpVal == uint64_t(-1)) 2431 return; 2432 CmpVal += 1; 2433 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2434 } 2435 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2436 // be masked off without changing the result. 2437 MaskVal = -(CmpVal & -CmpVal); 2438 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2439 } 2440 if (!MaskVal) 2441 return; 2442 2443 // Check whether the combination of mask, comparison value and comparison 2444 // type are suitable. 2445 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2446 unsigned NewCCMask, ShiftVal; 2447 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2448 NewC.Op0.getOpcode() == ISD::SHL && 2449 isSimpleShift(NewC.Op0, ShiftVal) && 2450 (MaskVal >> ShiftVal != 0) && 2451 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2452 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2453 MaskVal >> ShiftVal, 2454 CmpVal >> ShiftVal, 2455 SystemZICMP::Any))) { 2456 NewC.Op0 = NewC.Op0.getOperand(0); 2457 MaskVal >>= ShiftVal; 2458 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2459 NewC.Op0.getOpcode() == ISD::SRL && 2460 isSimpleShift(NewC.Op0, ShiftVal) && 2461 (MaskVal << ShiftVal != 0) && 2462 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2463 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2464 MaskVal << ShiftVal, 2465 CmpVal << ShiftVal, 2466 SystemZICMP::UnsignedOnly))) { 2467 NewC.Op0 = NewC.Op0.getOperand(0); 2468 MaskVal <<= ShiftVal; 2469 } else { 2470 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2471 NewC.ICmpType); 2472 if (!NewCCMask) 2473 return; 2474 } 2475 2476 // Go ahead and make the change. 2477 C.Opcode = SystemZISD::TM; 2478 C.Op0 = NewC.Op0; 2479 if (Mask && Mask->getZExtValue() == MaskVal) 2480 C.Op1 = SDValue(Mask, 0); 2481 else 2482 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2483 C.CCValid = SystemZ::CCMASK_TM; 2484 C.CCMask = NewCCMask; 2485 } 2486 2487 // See whether the comparison argument contains a redundant AND 2488 // and remove it if so. This sometimes happens due to the generic 2489 // BRCOND expansion. 2490 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2491 Comparison &C) { 2492 if (C.Op0.getOpcode() != ISD::AND) 2493 return; 2494 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2495 if (!Mask) 2496 return; 2497 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2498 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2499 return; 2500 2501 C.Op0 = C.Op0.getOperand(0); 2502 } 2503 2504 // Return a Comparison that tests the condition-code result of intrinsic 2505 // node Call against constant integer CC using comparison code Cond. 2506 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2507 // and CCValid is the set of possible condition-code results. 2508 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2509 SDValue Call, unsigned CCValid, uint64_t CC, 2510 ISD::CondCode Cond) { 2511 Comparison C(Call, SDValue(), SDValue()); 2512 C.Opcode = Opcode; 2513 C.CCValid = CCValid; 2514 if (Cond == ISD::SETEQ) 2515 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2516 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2517 else if (Cond == ISD::SETNE) 2518 // ...and the inverse of that. 2519 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2520 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2521 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2522 // always true for CC>3. 2523 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2524 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2525 // ...and the inverse of that. 2526 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2527 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2528 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2529 // always true for CC>3. 2530 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2531 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2532 // ...and the inverse of that. 2533 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2534 else 2535 llvm_unreachable("Unexpected integer comparison type"); 2536 C.CCMask &= CCValid; 2537 return C; 2538 } 2539 2540 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2541 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2542 ISD::CondCode Cond, const SDLoc &DL, 2543 SDValue Chain = SDValue(), 2544 bool IsSignaling = false) { 2545 if (CmpOp1.getOpcode() == ISD::Constant) { 2546 assert(!Chain); 2547 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2548 unsigned Opcode, CCValid; 2549 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2550 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2551 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2552 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2553 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2554 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2555 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2556 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2557 } 2558 Comparison C(CmpOp0, CmpOp1, Chain); 2559 C.CCMask = CCMaskForCondCode(Cond); 2560 if (C.Op0.getValueType().isFloatingPoint()) { 2561 C.CCValid = SystemZ::CCMASK_FCMP; 2562 if (!C.Chain) 2563 C.Opcode = SystemZISD::FCMP; 2564 else if (!IsSignaling) 2565 C.Opcode = SystemZISD::STRICT_FCMP; 2566 else 2567 C.Opcode = SystemZISD::STRICT_FCMPS; 2568 adjustForFNeg(C); 2569 } else { 2570 assert(!C.Chain); 2571 C.CCValid = SystemZ::CCMASK_ICMP; 2572 C.Opcode = SystemZISD::ICMP; 2573 // Choose the type of comparison. Equality and inequality tests can 2574 // use either signed or unsigned comparisons. The choice also doesn't 2575 // matter if both sign bits are known to be clear. In those cases we 2576 // want to give the main isel code the freedom to choose whichever 2577 // form fits best. 2578 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2579 C.CCMask == SystemZ::CCMASK_CMP_NE || 2580 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2581 C.ICmpType = SystemZICMP::Any; 2582 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2583 C.ICmpType = SystemZICMP::UnsignedOnly; 2584 else 2585 C.ICmpType = SystemZICMP::SignedOnly; 2586 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2587 adjustForRedundantAnd(DAG, DL, C); 2588 adjustZeroCmp(DAG, DL, C); 2589 adjustSubwordCmp(DAG, DL, C); 2590 adjustForSubtraction(DAG, DL, C); 2591 adjustForLTGFR(C); 2592 adjustICmpTruncate(DAG, DL, C); 2593 } 2594 2595 if (shouldSwapCmpOperands(C)) { 2596 std::swap(C.Op0, C.Op1); 2597 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2598 } 2599 2600 adjustForTestUnderMask(DAG, DL, C); 2601 return C; 2602 } 2603 2604 // Emit the comparison instruction described by C. 2605 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2606 if (!C.Op1.getNode()) { 2607 SDNode *Node; 2608 switch (C.Op0.getOpcode()) { 2609 case ISD::INTRINSIC_W_CHAIN: 2610 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2611 return SDValue(Node, 0); 2612 case ISD::INTRINSIC_WO_CHAIN: 2613 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2614 return SDValue(Node, Node->getNumValues() - 1); 2615 default: 2616 llvm_unreachable("Invalid comparison operands"); 2617 } 2618 } 2619 if (C.Opcode == SystemZISD::ICMP) 2620 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2621 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2622 if (C.Opcode == SystemZISD::TM) { 2623 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2624 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2625 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2626 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2627 } 2628 if (C.Chain) { 2629 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2630 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2631 } 2632 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2633 } 2634 2635 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2636 // 64 bits. Extend is the extension type to use. Store the high part 2637 // in Hi and the low part in Lo. 2638 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2639 SDValue Op0, SDValue Op1, SDValue &Hi, 2640 SDValue &Lo) { 2641 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2642 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2643 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2644 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2645 DAG.getConstant(32, DL, MVT::i64)); 2646 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2647 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2648 } 2649 2650 // Lower a binary operation that produces two VT results, one in each 2651 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2652 // and Opcode performs the GR128 operation. Store the even register result 2653 // in Even and the odd register result in Odd. 2654 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2655 unsigned Opcode, SDValue Op0, SDValue Op1, 2656 SDValue &Even, SDValue &Odd) { 2657 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2658 bool Is32Bit = is32Bit(VT); 2659 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2660 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2661 } 2662 2663 // Return an i32 value that is 1 if the CC value produced by CCReg is 2664 // in the mask CCMask and 0 otherwise. CC is known to have a value 2665 // in CCValid, so other values can be ignored. 2666 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2667 unsigned CCValid, unsigned CCMask) { 2668 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2669 DAG.getConstant(0, DL, MVT::i32), 2670 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2671 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2672 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2673 } 2674 2675 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2676 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2677 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2678 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2679 // floating-point comparisons. 2680 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2681 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2682 switch (CC) { 2683 case ISD::SETOEQ: 2684 case ISD::SETEQ: 2685 switch (Mode) { 2686 case CmpMode::Int: return SystemZISD::VICMPE; 2687 case CmpMode::FP: return SystemZISD::VFCMPE; 2688 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2689 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2690 } 2691 llvm_unreachable("Bad mode"); 2692 2693 case ISD::SETOGE: 2694 case ISD::SETGE: 2695 switch (Mode) { 2696 case CmpMode::Int: return 0; 2697 case CmpMode::FP: return SystemZISD::VFCMPHE; 2698 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2699 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2700 } 2701 llvm_unreachable("Bad mode"); 2702 2703 case ISD::SETOGT: 2704 case ISD::SETGT: 2705 switch (Mode) { 2706 case CmpMode::Int: return SystemZISD::VICMPH; 2707 case CmpMode::FP: return SystemZISD::VFCMPH; 2708 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2709 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2710 } 2711 llvm_unreachable("Bad mode"); 2712 2713 case ISD::SETUGT: 2714 switch (Mode) { 2715 case CmpMode::Int: return SystemZISD::VICMPHL; 2716 case CmpMode::FP: return 0; 2717 case CmpMode::StrictFP: return 0; 2718 case CmpMode::SignalingFP: return 0; 2719 } 2720 llvm_unreachable("Bad mode"); 2721 2722 default: 2723 return 0; 2724 } 2725 } 2726 2727 // Return the SystemZISD vector comparison operation for CC or its inverse, 2728 // or 0 if neither can be done directly. Indicate in Invert whether the 2729 // result is for the inverse of CC. Mode is as above. 2730 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2731 bool &Invert) { 2732 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2733 Invert = false; 2734 return Opcode; 2735 } 2736 2737 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2738 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2739 Invert = true; 2740 return Opcode; 2741 } 2742 2743 return 0; 2744 } 2745 2746 // Return a v2f64 that contains the extended form of elements Start and Start+1 2747 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2748 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2749 SDValue Op, SDValue Chain) { 2750 int Mask[] = { Start, -1, Start + 1, -1 }; 2751 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2752 if (Chain) { 2753 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2754 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2755 } 2756 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2757 } 2758 2759 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2760 // producing a result of type VT. If Chain is nonnull, return the strict form. 2761 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2762 const SDLoc &DL, EVT VT, 2763 SDValue CmpOp0, 2764 SDValue CmpOp1, 2765 SDValue Chain) const { 2766 // There is no hardware support for v4f32 (unless we have the vector 2767 // enhancements facility 1), so extend the vector into two v2f64s 2768 // and compare those. 2769 if (CmpOp0.getValueType() == MVT::v4f32 && 2770 !Subtarget.hasVectorEnhancements1()) { 2771 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2772 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2773 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2774 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2775 if (Chain) { 2776 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2777 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2778 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2779 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2780 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2781 H1.getValue(1), L1.getValue(1), 2782 HRes.getValue(1), LRes.getValue(1) }; 2783 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2784 SDValue Ops[2] = { Res, NewChain }; 2785 return DAG.getMergeValues(Ops, DL); 2786 } 2787 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2788 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2789 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2790 } 2791 if (Chain) { 2792 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2793 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2794 } 2795 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2796 } 2797 2798 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2799 // an integer mask of type VT. If Chain is nonnull, we have a strict 2800 // floating-point comparison. If in addition IsSignaling is true, we have 2801 // a strict signaling floating-point comparison. 2802 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2803 const SDLoc &DL, EVT VT, 2804 ISD::CondCode CC, 2805 SDValue CmpOp0, 2806 SDValue CmpOp1, 2807 SDValue Chain, 2808 bool IsSignaling) const { 2809 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2810 assert (!Chain || IsFP); 2811 assert (!IsSignaling || Chain); 2812 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2813 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2814 bool Invert = false; 2815 SDValue Cmp; 2816 switch (CC) { 2817 // Handle tests for order using (or (ogt y x) (oge x y)). 2818 case ISD::SETUO: 2819 Invert = true; 2820 LLVM_FALLTHROUGH; 2821 case ISD::SETO: { 2822 assert(IsFP && "Unexpected integer comparison"); 2823 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2824 DL, VT, CmpOp1, CmpOp0, Chain); 2825 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 2826 DL, VT, CmpOp0, CmpOp1, Chain); 2827 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2828 if (Chain) 2829 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2830 LT.getValue(1), GE.getValue(1)); 2831 break; 2832 } 2833 2834 // Handle <> tests using (or (ogt y x) (ogt x y)). 2835 case ISD::SETUEQ: 2836 Invert = true; 2837 LLVM_FALLTHROUGH; 2838 case ISD::SETONE: { 2839 assert(IsFP && "Unexpected integer comparison"); 2840 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2841 DL, VT, CmpOp1, CmpOp0, Chain); 2842 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2843 DL, VT, CmpOp0, CmpOp1, Chain); 2844 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2845 if (Chain) 2846 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2847 LT.getValue(1), GT.getValue(1)); 2848 break; 2849 } 2850 2851 // Otherwise a single comparison is enough. It doesn't really 2852 // matter whether we try the inversion or the swap first, since 2853 // there are no cases where both work. 2854 default: 2855 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2856 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 2857 else { 2858 CC = ISD::getSetCCSwappedOperands(CC); 2859 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2860 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 2861 else 2862 llvm_unreachable("Unhandled comparison"); 2863 } 2864 if (Chain) 2865 Chain = Cmp.getValue(1); 2866 break; 2867 } 2868 if (Invert) { 2869 SDValue Mask = 2870 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2871 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2872 } 2873 if (Chain && Chain.getNode() != Cmp.getNode()) { 2874 SDValue Ops[2] = { Cmp, Chain }; 2875 Cmp = DAG.getMergeValues(Ops, DL); 2876 } 2877 return Cmp; 2878 } 2879 2880 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2881 SelectionDAG &DAG) const { 2882 SDValue CmpOp0 = Op.getOperand(0); 2883 SDValue CmpOp1 = Op.getOperand(1); 2884 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2885 SDLoc DL(Op); 2886 EVT VT = Op.getValueType(); 2887 if (VT.isVector()) 2888 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2889 2890 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2891 SDValue CCReg = emitCmp(DAG, DL, C); 2892 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2893 } 2894 2895 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 2896 SelectionDAG &DAG, 2897 bool IsSignaling) const { 2898 SDValue Chain = Op.getOperand(0); 2899 SDValue CmpOp0 = Op.getOperand(1); 2900 SDValue CmpOp1 = Op.getOperand(2); 2901 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 2902 SDLoc DL(Op); 2903 EVT VT = Op.getNode()->getValueType(0); 2904 if (VT.isVector()) { 2905 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 2906 Chain, IsSignaling); 2907 return Res.getValue(Op.getResNo()); 2908 } 2909 2910 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 2911 SDValue CCReg = emitCmp(DAG, DL, C); 2912 CCReg->setFlags(Op->getFlags()); 2913 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2914 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 2915 return DAG.getMergeValues(Ops, DL); 2916 } 2917 2918 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2919 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2920 SDValue CmpOp0 = Op.getOperand(2); 2921 SDValue CmpOp1 = Op.getOperand(3); 2922 SDValue Dest = Op.getOperand(4); 2923 SDLoc DL(Op); 2924 2925 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2926 SDValue CCReg = emitCmp(DAG, DL, C); 2927 return DAG.getNode( 2928 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 2929 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2930 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2931 } 2932 2933 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2934 // allowing Pos and Neg to be wider than CmpOp. 2935 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2936 return (Neg.getOpcode() == ISD::SUB && 2937 Neg.getOperand(0).getOpcode() == ISD::Constant && 2938 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2939 Neg.getOperand(1) == Pos && 2940 (Pos == CmpOp || 2941 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2942 Pos.getOperand(0) == CmpOp))); 2943 } 2944 2945 // Return the absolute or negative absolute of Op; IsNegative decides which. 2946 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2947 bool IsNegative) { 2948 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2949 if (IsNegative) 2950 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2951 DAG.getConstant(0, DL, Op.getValueType()), Op); 2952 return Op; 2953 } 2954 2955 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2956 SelectionDAG &DAG) const { 2957 SDValue CmpOp0 = Op.getOperand(0); 2958 SDValue CmpOp1 = Op.getOperand(1); 2959 SDValue TrueOp = Op.getOperand(2); 2960 SDValue FalseOp = Op.getOperand(3); 2961 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2962 SDLoc DL(Op); 2963 2964 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2965 2966 // Check for absolute and negative-absolute selections, including those 2967 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2968 // This check supplements the one in DAGCombiner. 2969 if (C.Opcode == SystemZISD::ICMP && 2970 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2971 C.CCMask != SystemZ::CCMASK_CMP_NE && 2972 C.Op1.getOpcode() == ISD::Constant && 2973 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2974 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2975 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2976 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2977 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2978 } 2979 2980 SDValue CCReg = emitCmp(DAG, DL, C); 2981 SDValue Ops[] = {TrueOp, FalseOp, 2982 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2983 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 2984 2985 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2986 } 2987 2988 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2989 SelectionDAG &DAG) const { 2990 SDLoc DL(Node); 2991 const GlobalValue *GV = Node->getGlobal(); 2992 int64_t Offset = Node->getOffset(); 2993 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2994 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2995 2996 SDValue Result; 2997 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2998 if (isInt<32>(Offset)) { 2999 // Assign anchors at 1<<12 byte boundaries. 3000 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3001 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3002 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3003 3004 // The offset can be folded into the address if it is aligned to a 3005 // halfword. 3006 Offset -= Anchor; 3007 if (Offset != 0 && (Offset & 1) == 0) { 3008 SDValue Full = 3009 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3010 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3011 Offset = 0; 3012 } 3013 } else { 3014 // Conservatively load a constant offset greater than 32 bits into a 3015 // register below. 3016 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3017 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3018 } 3019 } else { 3020 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3021 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3022 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3023 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3024 } 3025 3026 // If there was a non-zero offset that we didn't fold, create an explicit 3027 // addition for it. 3028 if (Offset != 0) 3029 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3030 DAG.getConstant(Offset, DL, PtrVT)); 3031 3032 return Result; 3033 } 3034 3035 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3036 SelectionDAG &DAG, 3037 unsigned Opcode, 3038 SDValue GOTOffset) const { 3039 SDLoc DL(Node); 3040 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3041 SDValue Chain = DAG.getEntryNode(); 3042 SDValue Glue; 3043 3044 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3045 CallingConv::GHC) 3046 report_fatal_error("In GHC calling convention TLS is not supported"); 3047 3048 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3049 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3050 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3051 Glue = Chain.getValue(1); 3052 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3053 Glue = Chain.getValue(1); 3054 3055 // The first call operand is the chain and the second is the TLS symbol. 3056 SmallVector<SDValue, 8> Ops; 3057 Ops.push_back(Chain); 3058 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3059 Node->getValueType(0), 3060 0, 0)); 3061 3062 // Add argument registers to the end of the list so that they are 3063 // known live into the call. 3064 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3065 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3066 3067 // Add a register mask operand representing the call-preserved registers. 3068 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3069 const uint32_t *Mask = 3070 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3071 assert(Mask && "Missing call preserved mask for calling convention"); 3072 Ops.push_back(DAG.getRegisterMask(Mask)); 3073 3074 // Glue the call to the argument copies. 3075 Ops.push_back(Glue); 3076 3077 // Emit the call. 3078 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3079 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3080 Glue = Chain.getValue(1); 3081 3082 // Copy the return value from %r2. 3083 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3084 } 3085 3086 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3087 SelectionDAG &DAG) const { 3088 SDValue Chain = DAG.getEntryNode(); 3089 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3090 3091 // The high part of the thread pointer is in access register 0. 3092 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3093 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3094 3095 // The low part of the thread pointer is in access register 1. 3096 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3097 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3098 3099 // Merge them into a single 64-bit address. 3100 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3101 DAG.getConstant(32, DL, PtrVT)); 3102 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3103 } 3104 3105 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3106 SelectionDAG &DAG) const { 3107 if (DAG.getTarget().useEmulatedTLS()) 3108 return LowerToTLSEmulatedModel(Node, DAG); 3109 SDLoc DL(Node); 3110 const GlobalValue *GV = Node->getGlobal(); 3111 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3112 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3113 3114 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3115 CallingConv::GHC) 3116 report_fatal_error("In GHC calling convention TLS is not supported"); 3117 3118 SDValue TP = lowerThreadPointer(DL, DAG); 3119 3120 // Get the offset of GA from the thread pointer, based on the TLS model. 3121 SDValue Offset; 3122 switch (model) { 3123 case TLSModel::GeneralDynamic: { 3124 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3125 SystemZConstantPoolValue *CPV = 3126 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3127 3128 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3129 Offset = DAG.getLoad( 3130 PtrVT, DL, DAG.getEntryNode(), Offset, 3131 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3132 3133 // Call __tls_get_offset to retrieve the offset. 3134 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3135 break; 3136 } 3137 3138 case TLSModel::LocalDynamic: { 3139 // Load the GOT offset of the module ID. 3140 SystemZConstantPoolValue *CPV = 3141 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3142 3143 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3144 Offset = DAG.getLoad( 3145 PtrVT, DL, DAG.getEntryNode(), Offset, 3146 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3147 3148 // Call __tls_get_offset to retrieve the module base offset. 3149 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3150 3151 // Note: The SystemZLDCleanupPass will remove redundant computations 3152 // of the module base offset. Count total number of local-dynamic 3153 // accesses to trigger execution of that pass. 3154 SystemZMachineFunctionInfo* MFI = 3155 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3156 MFI->incNumLocalDynamicTLSAccesses(); 3157 3158 // Add the per-symbol offset. 3159 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3160 3161 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 3162 DTPOffset = DAG.getLoad( 3163 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3164 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3165 3166 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3167 break; 3168 } 3169 3170 case TLSModel::InitialExec: { 3171 // Load the offset from the GOT. 3172 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3173 SystemZII::MO_INDNTPOFF); 3174 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3175 Offset = 3176 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3177 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3178 break; 3179 } 3180 3181 case TLSModel::LocalExec: { 3182 // Force the offset into the constant pool and load it from there. 3183 SystemZConstantPoolValue *CPV = 3184 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3185 3186 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3187 Offset = DAG.getLoad( 3188 PtrVT, DL, DAG.getEntryNode(), Offset, 3189 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3190 break; 3191 } 3192 } 3193 3194 // Add the base and offset together. 3195 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3196 } 3197 3198 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3199 SelectionDAG &DAG) const { 3200 SDLoc DL(Node); 3201 const BlockAddress *BA = Node->getBlockAddress(); 3202 int64_t Offset = Node->getOffset(); 3203 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3204 3205 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3206 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3207 return Result; 3208 } 3209 3210 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3211 SelectionDAG &DAG) const { 3212 SDLoc DL(JT); 3213 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3214 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3215 3216 // Use LARL to load the address of the table. 3217 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3218 } 3219 3220 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3221 SelectionDAG &DAG) const { 3222 SDLoc DL(CP); 3223 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3224 3225 SDValue Result; 3226 if (CP->isMachineConstantPoolEntry()) 3227 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 3228 CP->getAlignment()); 3229 else 3230 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 3231 CP->getAlignment(), CP->getOffset()); 3232 3233 // Use LARL to load the address of the constant pool entry. 3234 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3235 } 3236 3237 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3238 SelectionDAG &DAG) const { 3239 auto *TFL = 3240 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 3241 MachineFunction &MF = DAG.getMachineFunction(); 3242 MachineFrameInfo &MFI = MF.getFrameInfo(); 3243 MFI.setFrameAddressIsTaken(true); 3244 3245 SDLoc DL(Op); 3246 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3247 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3248 3249 // Return null if the back chain is not present. 3250 bool HasBackChain = MF.getFunction().hasFnAttribute("backchain"); 3251 if (TFL->usePackedStack(MF) && !HasBackChain) 3252 return DAG.getConstant(0, DL, PtrVT); 3253 3254 // By definition, the frame address is the address of the back chain. 3255 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3256 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3257 3258 // FIXME The frontend should detect this case. 3259 if (Depth > 0) { 3260 report_fatal_error("Unsupported stack frame traversal count"); 3261 } 3262 3263 return BackChain; 3264 } 3265 3266 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3267 SelectionDAG &DAG) const { 3268 MachineFunction &MF = DAG.getMachineFunction(); 3269 MachineFrameInfo &MFI = MF.getFrameInfo(); 3270 MFI.setReturnAddressIsTaken(true); 3271 3272 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3273 return SDValue(); 3274 3275 SDLoc DL(Op); 3276 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3277 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3278 3279 // FIXME The frontend should detect this case. 3280 if (Depth > 0) { 3281 report_fatal_error("Unsupported stack frame traversal count"); 3282 } 3283 3284 // Return R14D, which has the return address. Mark it an implicit live-in. 3285 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3286 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3287 } 3288 3289 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3290 SelectionDAG &DAG) const { 3291 SDLoc DL(Op); 3292 SDValue In = Op.getOperand(0); 3293 EVT InVT = In.getValueType(); 3294 EVT ResVT = Op.getValueType(); 3295 3296 // Convert loads directly. This is normally done by DAGCombiner, 3297 // but we need this case for bitcasts that are created during lowering 3298 // and which are then lowered themselves. 3299 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3300 if (ISD::isNormalLoad(LoadN)) { 3301 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3302 LoadN->getBasePtr(), LoadN->getMemOperand()); 3303 // Update the chain uses. 3304 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3305 return NewLoad; 3306 } 3307 3308 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3309 SDValue In64; 3310 if (Subtarget.hasHighWord()) { 3311 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3312 MVT::i64); 3313 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3314 MVT::i64, SDValue(U64, 0), In); 3315 } else { 3316 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3317 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3318 DAG.getConstant(32, DL, MVT::i64)); 3319 } 3320 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3321 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3322 DL, MVT::f32, Out64); 3323 } 3324 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3325 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3326 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3327 MVT::f64, SDValue(U64, 0), In); 3328 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3329 if (Subtarget.hasHighWord()) 3330 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3331 MVT::i32, Out64); 3332 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3333 DAG.getConstant(32, DL, MVT::i64)); 3334 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3335 } 3336 llvm_unreachable("Unexpected bitcast combination"); 3337 } 3338 3339 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3340 SelectionDAG &DAG) const { 3341 MachineFunction &MF = DAG.getMachineFunction(); 3342 SystemZMachineFunctionInfo *FuncInfo = 3343 MF.getInfo<SystemZMachineFunctionInfo>(); 3344 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3345 3346 SDValue Chain = Op.getOperand(0); 3347 SDValue Addr = Op.getOperand(1); 3348 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3349 SDLoc DL(Op); 3350 3351 // The initial values of each field. 3352 const unsigned NumFields = 4; 3353 SDValue Fields[NumFields] = { 3354 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3355 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3356 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3357 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3358 }; 3359 3360 // Store each field into its respective slot. 3361 SDValue MemOps[NumFields]; 3362 unsigned Offset = 0; 3363 for (unsigned I = 0; I < NumFields; ++I) { 3364 SDValue FieldAddr = Addr; 3365 if (Offset != 0) 3366 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3367 DAG.getIntPtrConstant(Offset, DL)); 3368 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3369 MachinePointerInfo(SV, Offset)); 3370 Offset += 8; 3371 } 3372 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3373 } 3374 3375 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3376 SelectionDAG &DAG) const { 3377 SDValue Chain = Op.getOperand(0); 3378 SDValue DstPtr = Op.getOperand(1); 3379 SDValue SrcPtr = Op.getOperand(2); 3380 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3381 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3382 SDLoc DL(Op); 3383 3384 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3385 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3386 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3387 MachinePointerInfo(SrcSV)); 3388 } 3389 3390 SDValue SystemZTargetLowering:: 3391 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3392 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3393 MachineFunction &MF = DAG.getMachineFunction(); 3394 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3395 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3396 3397 SDValue Chain = Op.getOperand(0); 3398 SDValue Size = Op.getOperand(1); 3399 SDValue Align = Op.getOperand(2); 3400 SDLoc DL(Op); 3401 3402 // If user has set the no alignment function attribute, ignore 3403 // alloca alignments. 3404 uint64_t AlignVal = (RealignOpt ? 3405 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3406 3407 uint64_t StackAlign = TFI->getStackAlignment(); 3408 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3409 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3410 3411 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3412 SDValue NeededSpace = Size; 3413 3414 // Get a reference to the stack pointer. 3415 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3416 3417 // If we need a backchain, save it now. 3418 SDValue Backchain; 3419 if (StoreBackchain) 3420 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3421 3422 // Add extra space for alignment if needed. 3423 if (ExtraAlignSpace) 3424 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3425 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3426 3427 // Get the new stack pointer value. 3428 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3429 3430 // Copy the new stack pointer back. 3431 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3432 3433 // The allocated data lives above the 160 bytes allocated for the standard 3434 // frame, plus any outgoing stack arguments. We don't know how much that 3435 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3436 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3437 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3438 3439 // Dynamically realign if needed. 3440 if (RequiredAlign > StackAlign) { 3441 Result = 3442 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3443 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3444 Result = 3445 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3446 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3447 } 3448 3449 if (StoreBackchain) 3450 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3451 3452 SDValue Ops[2] = { Result, Chain }; 3453 return DAG.getMergeValues(Ops, DL); 3454 } 3455 3456 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3457 SDValue Op, SelectionDAG &DAG) const { 3458 SDLoc DL(Op); 3459 3460 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3461 } 3462 3463 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3464 SelectionDAG &DAG) const { 3465 EVT VT = Op.getValueType(); 3466 SDLoc DL(Op); 3467 SDValue Ops[2]; 3468 if (is32Bit(VT)) 3469 // Just do a normal 64-bit multiplication and extract the results. 3470 // We define this so that it can be used for constant division. 3471 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3472 Op.getOperand(1), Ops[1], Ops[0]); 3473 else if (Subtarget.hasMiscellaneousExtensions2()) 3474 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3475 // the high result in the even register. ISD::SMUL_LOHI is defined to 3476 // return the low half first, so the results are in reverse order. 3477 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3478 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3479 else { 3480 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3481 // 3482 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3483 // 3484 // but using the fact that the upper halves are either all zeros 3485 // or all ones: 3486 // 3487 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3488 // 3489 // and grouping the right terms together since they are quicker than the 3490 // multiplication: 3491 // 3492 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3493 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3494 SDValue LL = Op.getOperand(0); 3495 SDValue RL = Op.getOperand(1); 3496 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3497 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3498 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3499 // the high result in the even register. ISD::SMUL_LOHI is defined to 3500 // return the low half first, so the results are in reverse order. 3501 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3502 LL, RL, Ops[1], Ops[0]); 3503 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3504 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3505 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3506 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3507 } 3508 return DAG.getMergeValues(Ops, DL); 3509 } 3510 3511 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3512 SelectionDAG &DAG) const { 3513 EVT VT = Op.getValueType(); 3514 SDLoc DL(Op); 3515 SDValue Ops[2]; 3516 if (is32Bit(VT)) 3517 // Just do a normal 64-bit multiplication and extract the results. 3518 // We define this so that it can be used for constant division. 3519 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3520 Op.getOperand(1), Ops[1], Ops[0]); 3521 else 3522 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3523 // the high result in the even register. ISD::UMUL_LOHI is defined to 3524 // return the low half first, so the results are in reverse order. 3525 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3526 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3527 return DAG.getMergeValues(Ops, DL); 3528 } 3529 3530 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3531 SelectionDAG &DAG) const { 3532 SDValue Op0 = Op.getOperand(0); 3533 SDValue Op1 = Op.getOperand(1); 3534 EVT VT = Op.getValueType(); 3535 SDLoc DL(Op); 3536 3537 // We use DSGF for 32-bit division. This means the first operand must 3538 // always be 64-bit, and the second operand should be 32-bit whenever 3539 // that is possible, to improve performance. 3540 if (is32Bit(VT)) 3541 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3542 else if (DAG.ComputeNumSignBits(Op1) > 32) 3543 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3544 3545 // DSG(F) returns the remainder in the even register and the 3546 // quotient in the odd register. 3547 SDValue Ops[2]; 3548 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3549 return DAG.getMergeValues(Ops, DL); 3550 } 3551 3552 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3553 SelectionDAG &DAG) const { 3554 EVT VT = Op.getValueType(); 3555 SDLoc DL(Op); 3556 3557 // DL(G) returns the remainder in the even register and the 3558 // quotient in the odd register. 3559 SDValue Ops[2]; 3560 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3561 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3562 return DAG.getMergeValues(Ops, DL); 3563 } 3564 3565 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3566 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3567 3568 // Get the known-zero masks for each operand. 3569 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3570 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3571 DAG.computeKnownBits(Ops[1])}; 3572 3573 // See if the upper 32 bits of one operand and the lower 32 bits of the 3574 // other are known zero. They are the low and high operands respectively. 3575 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3576 Known[1].Zero.getZExtValue() }; 3577 unsigned High, Low; 3578 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3579 High = 1, Low = 0; 3580 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3581 High = 0, Low = 1; 3582 else 3583 return Op; 3584 3585 SDValue LowOp = Ops[Low]; 3586 SDValue HighOp = Ops[High]; 3587 3588 // If the high part is a constant, we're better off using IILH. 3589 if (HighOp.getOpcode() == ISD::Constant) 3590 return Op; 3591 3592 // If the low part is a constant that is outside the range of LHI, 3593 // then we're better off using IILF. 3594 if (LowOp.getOpcode() == ISD::Constant) { 3595 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3596 if (!isInt<16>(Value)) 3597 return Op; 3598 } 3599 3600 // Check whether the high part is an AND that doesn't change the 3601 // high 32 bits and just masks out low bits. We can skip it if so. 3602 if (HighOp.getOpcode() == ISD::AND && 3603 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3604 SDValue HighOp0 = HighOp.getOperand(0); 3605 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3606 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3607 HighOp = HighOp0; 3608 } 3609 3610 // Take advantage of the fact that all GR32 operations only change the 3611 // low 32 bits by truncating Low to an i32 and inserting it directly 3612 // using a subreg. The interesting cases are those where the truncation 3613 // can be folded. 3614 SDLoc DL(Op); 3615 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3616 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3617 MVT::i64, HighOp, Low32); 3618 } 3619 3620 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3621 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3622 SelectionDAG &DAG) const { 3623 SDNode *N = Op.getNode(); 3624 SDValue LHS = N->getOperand(0); 3625 SDValue RHS = N->getOperand(1); 3626 SDLoc DL(N); 3627 unsigned BaseOp = 0; 3628 unsigned CCValid = 0; 3629 unsigned CCMask = 0; 3630 3631 switch (Op.getOpcode()) { 3632 default: llvm_unreachable("Unknown instruction!"); 3633 case ISD::SADDO: 3634 BaseOp = SystemZISD::SADDO; 3635 CCValid = SystemZ::CCMASK_ARITH; 3636 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3637 break; 3638 case ISD::SSUBO: 3639 BaseOp = SystemZISD::SSUBO; 3640 CCValid = SystemZ::CCMASK_ARITH; 3641 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3642 break; 3643 case ISD::UADDO: 3644 BaseOp = SystemZISD::UADDO; 3645 CCValid = SystemZ::CCMASK_LOGICAL; 3646 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3647 break; 3648 case ISD::USUBO: 3649 BaseOp = SystemZISD::USUBO; 3650 CCValid = SystemZ::CCMASK_LOGICAL; 3651 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3652 break; 3653 } 3654 3655 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3656 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3657 3658 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3659 if (N->getValueType(1) == MVT::i1) 3660 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3661 3662 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3663 } 3664 3665 static bool isAddCarryChain(SDValue Carry) { 3666 while (Carry.getOpcode() == ISD::ADDCARRY) 3667 Carry = Carry.getOperand(2); 3668 return Carry.getOpcode() == ISD::UADDO; 3669 } 3670 3671 static bool isSubBorrowChain(SDValue Carry) { 3672 while (Carry.getOpcode() == ISD::SUBCARRY) 3673 Carry = Carry.getOperand(2); 3674 return Carry.getOpcode() == ISD::USUBO; 3675 } 3676 3677 // Lower ADDCARRY/SUBCARRY nodes. 3678 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3679 SelectionDAG &DAG) const { 3680 3681 SDNode *N = Op.getNode(); 3682 MVT VT = N->getSimpleValueType(0); 3683 3684 // Let legalize expand this if it isn't a legal type yet. 3685 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3686 return SDValue(); 3687 3688 SDValue LHS = N->getOperand(0); 3689 SDValue RHS = N->getOperand(1); 3690 SDValue Carry = Op.getOperand(2); 3691 SDLoc DL(N); 3692 unsigned BaseOp = 0; 3693 unsigned CCValid = 0; 3694 unsigned CCMask = 0; 3695 3696 switch (Op.getOpcode()) { 3697 default: llvm_unreachable("Unknown instruction!"); 3698 case ISD::ADDCARRY: 3699 if (!isAddCarryChain(Carry)) 3700 return SDValue(); 3701 3702 BaseOp = SystemZISD::ADDCARRY; 3703 CCValid = SystemZ::CCMASK_LOGICAL; 3704 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3705 break; 3706 case ISD::SUBCARRY: 3707 if (!isSubBorrowChain(Carry)) 3708 return SDValue(); 3709 3710 BaseOp = SystemZISD::SUBCARRY; 3711 CCValid = SystemZ::CCMASK_LOGICAL; 3712 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3713 break; 3714 } 3715 3716 // Set the condition code from the carry flag. 3717 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3718 DAG.getConstant(CCValid, DL, MVT::i32), 3719 DAG.getConstant(CCMask, DL, MVT::i32)); 3720 3721 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3722 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3723 3724 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3725 if (N->getValueType(1) == MVT::i1) 3726 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3727 3728 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3729 } 3730 3731 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3732 SelectionDAG &DAG) const { 3733 EVT VT = Op.getValueType(); 3734 SDLoc DL(Op); 3735 Op = Op.getOperand(0); 3736 3737 // Handle vector types via VPOPCT. 3738 if (VT.isVector()) { 3739 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3740 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3741 switch (VT.getScalarSizeInBits()) { 3742 case 8: 3743 break; 3744 case 16: { 3745 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3746 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3747 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3748 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3749 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3750 break; 3751 } 3752 case 32: { 3753 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3754 DAG.getConstant(0, DL, MVT::i32)); 3755 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3756 break; 3757 } 3758 case 64: { 3759 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3760 DAG.getConstant(0, DL, MVT::i32)); 3761 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3762 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3763 break; 3764 } 3765 default: 3766 llvm_unreachable("Unexpected type"); 3767 } 3768 return Op; 3769 } 3770 3771 // Get the known-zero mask for the operand. 3772 KnownBits Known = DAG.computeKnownBits(Op); 3773 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 3774 if (NumSignificantBits == 0) 3775 return DAG.getConstant(0, DL, VT); 3776 3777 // Skip known-zero high parts of the operand. 3778 int64_t OrigBitSize = VT.getSizeInBits(); 3779 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3780 BitSize = std::min(BitSize, OrigBitSize); 3781 3782 // The POPCNT instruction counts the number of bits in each byte. 3783 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3784 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3785 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3786 3787 // Add up per-byte counts in a binary tree. All bits of Op at 3788 // position larger than BitSize remain zero throughout. 3789 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3790 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3791 if (BitSize != OrigBitSize) 3792 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3793 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3794 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3795 } 3796 3797 // Extract overall result from high byte. 3798 if (BitSize > 8) 3799 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3800 DAG.getConstant(BitSize - 8, DL, VT)); 3801 3802 return Op; 3803 } 3804 3805 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3806 SelectionDAG &DAG) const { 3807 SDLoc DL(Op); 3808 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3809 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3810 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3811 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3812 3813 // The only fence that needs an instruction is a sequentially-consistent 3814 // cross-thread fence. 3815 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3816 FenceSSID == SyncScope::System) { 3817 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3818 Op.getOperand(0)), 3819 0); 3820 } 3821 3822 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3823 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3824 } 3825 3826 // Op is an atomic load. Lower it into a normal volatile load. 3827 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3828 SelectionDAG &DAG) const { 3829 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3830 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3831 Node->getChain(), Node->getBasePtr(), 3832 Node->getMemoryVT(), Node->getMemOperand()); 3833 } 3834 3835 // Op is an atomic store. Lower it into a normal volatile store. 3836 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3837 SelectionDAG &DAG) const { 3838 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3839 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3840 Node->getBasePtr(), Node->getMemoryVT(), 3841 Node->getMemOperand()); 3842 // We have to enforce sequential consistency by performing a 3843 // serialization operation after the store. 3844 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3845 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3846 MVT::Other, Chain), 0); 3847 return Chain; 3848 } 3849 3850 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3851 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3852 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3853 SelectionDAG &DAG, 3854 unsigned Opcode) const { 3855 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3856 3857 // 32-bit operations need no code outside the main loop. 3858 EVT NarrowVT = Node->getMemoryVT(); 3859 EVT WideVT = MVT::i32; 3860 if (NarrowVT == WideVT) 3861 return Op; 3862 3863 int64_t BitSize = NarrowVT.getSizeInBits(); 3864 SDValue ChainIn = Node->getChain(); 3865 SDValue Addr = Node->getBasePtr(); 3866 SDValue Src2 = Node->getVal(); 3867 MachineMemOperand *MMO = Node->getMemOperand(); 3868 SDLoc DL(Node); 3869 EVT PtrVT = Addr.getValueType(); 3870 3871 // Convert atomic subtracts of constants into additions. 3872 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3873 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3874 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3875 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3876 } 3877 3878 // Get the address of the containing word. 3879 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3880 DAG.getConstant(-4, DL, PtrVT)); 3881 3882 // Get the number of bits that the word must be rotated left in order 3883 // to bring the field to the top bits of a GR32. 3884 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3885 DAG.getConstant(3, DL, PtrVT)); 3886 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3887 3888 // Get the complementing shift amount, for rotating a field in the top 3889 // bits back to its proper position. 3890 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3891 DAG.getConstant(0, DL, WideVT), BitShift); 3892 3893 // Extend the source operand to 32 bits and prepare it for the inner loop. 3894 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3895 // operations require the source to be shifted in advance. (This shift 3896 // can be folded if the source is constant.) For AND and NAND, the lower 3897 // bits must be set, while for other opcodes they should be left clear. 3898 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3899 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3900 DAG.getConstant(32 - BitSize, DL, WideVT)); 3901 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3902 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3903 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3904 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3905 3906 // Construct the ATOMIC_LOADW_* node. 3907 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3908 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3909 DAG.getConstant(BitSize, DL, WideVT) }; 3910 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3911 NarrowVT, MMO); 3912 3913 // Rotate the result of the final CS so that the field is in the lower 3914 // bits of a GR32, then truncate it. 3915 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3916 DAG.getConstant(BitSize, DL, WideVT)); 3917 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3918 3919 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3920 return DAG.getMergeValues(RetOps, DL); 3921 } 3922 3923 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3924 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3925 // operations into additions. 3926 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3927 SelectionDAG &DAG) const { 3928 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3929 EVT MemVT = Node->getMemoryVT(); 3930 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3931 // A full-width operation. 3932 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3933 SDValue Src2 = Node->getVal(); 3934 SDValue NegSrc2; 3935 SDLoc DL(Src2); 3936 3937 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3938 // Use an addition if the operand is constant and either LAA(G) is 3939 // available or the negative value is in the range of A(G)FHI. 3940 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3941 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3942 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3943 } else if (Subtarget.hasInterlockedAccess1()) 3944 // Use LAA(G) if available. 3945 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3946 Src2); 3947 3948 if (NegSrc2.getNode()) 3949 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3950 Node->getChain(), Node->getBasePtr(), NegSrc2, 3951 Node->getMemOperand()); 3952 3953 // Use the node as-is. 3954 return Op; 3955 } 3956 3957 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3958 } 3959 3960 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3961 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3962 SelectionDAG &DAG) const { 3963 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3964 SDValue ChainIn = Node->getOperand(0); 3965 SDValue Addr = Node->getOperand(1); 3966 SDValue CmpVal = Node->getOperand(2); 3967 SDValue SwapVal = Node->getOperand(3); 3968 MachineMemOperand *MMO = Node->getMemOperand(); 3969 SDLoc DL(Node); 3970 3971 // We have native support for 32-bit and 64-bit compare and swap, but we 3972 // still need to expand extracting the "success" result from the CC. 3973 EVT NarrowVT = Node->getMemoryVT(); 3974 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3975 if (NarrowVT == WideVT) { 3976 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3977 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3978 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3979 DL, Tys, Ops, NarrowVT, MMO); 3980 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3981 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3982 3983 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3984 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3985 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3986 return SDValue(); 3987 } 3988 3989 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3990 // via a fullword ATOMIC_CMP_SWAPW operation. 3991 int64_t BitSize = NarrowVT.getSizeInBits(); 3992 EVT PtrVT = Addr.getValueType(); 3993 3994 // Get the address of the containing word. 3995 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3996 DAG.getConstant(-4, DL, PtrVT)); 3997 3998 // Get the number of bits that the word must be rotated left in order 3999 // to bring the field to the top bits of a GR32. 4000 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4001 DAG.getConstant(3, DL, PtrVT)); 4002 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4003 4004 // Get the complementing shift amount, for rotating a field in the top 4005 // bits back to its proper position. 4006 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4007 DAG.getConstant(0, DL, WideVT), BitShift); 4008 4009 // Construct the ATOMIC_CMP_SWAPW node. 4010 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4011 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4012 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4013 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4014 VTList, Ops, NarrowVT, MMO); 4015 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4016 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4017 4018 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4019 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4020 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4021 return SDValue(); 4022 } 4023 4024 MachineMemOperand::Flags 4025 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4026 // Because of how we convert atomic_load and atomic_store to normal loads and 4027 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4028 // since DAGCombine hasn't been updated to account for atomic, but non 4029 // volatile loads. (See D57601) 4030 if (auto *SI = dyn_cast<StoreInst>(&I)) 4031 if (SI->isAtomic()) 4032 return MachineMemOperand::MOVolatile; 4033 if (auto *LI = dyn_cast<LoadInst>(&I)) 4034 if (LI->isAtomic()) 4035 return MachineMemOperand::MOVolatile; 4036 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4037 if (AI->isAtomic()) 4038 return MachineMemOperand::MOVolatile; 4039 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4040 if (AI->isAtomic()) 4041 return MachineMemOperand::MOVolatile; 4042 return MachineMemOperand::MONone; 4043 } 4044 4045 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4046 SelectionDAG &DAG) const { 4047 MachineFunction &MF = DAG.getMachineFunction(); 4048 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4049 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4050 report_fatal_error("Variable-sized stack allocations are not supported " 4051 "in GHC calling convention"); 4052 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4053 SystemZ::R15D, Op.getValueType()); 4054 } 4055 4056 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4057 SelectionDAG &DAG) const { 4058 MachineFunction &MF = DAG.getMachineFunction(); 4059 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4060 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4061 4062 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4063 report_fatal_error("Variable-sized stack allocations are not supported " 4064 "in GHC calling convention"); 4065 4066 SDValue Chain = Op.getOperand(0); 4067 SDValue NewSP = Op.getOperand(1); 4068 SDValue Backchain; 4069 SDLoc DL(Op); 4070 4071 if (StoreBackchain) { 4072 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 4073 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 4074 } 4075 4076 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 4077 4078 if (StoreBackchain) 4079 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 4080 4081 return Chain; 4082 } 4083 4084 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4085 SelectionDAG &DAG) const { 4086 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4087 if (!IsData) 4088 // Just preserve the chain. 4089 return Op.getOperand(0); 4090 4091 SDLoc DL(Op); 4092 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4093 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4094 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4095 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4096 Op.getOperand(1)}; 4097 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4098 Node->getVTList(), Ops, 4099 Node->getMemoryVT(), Node->getMemOperand()); 4100 } 4101 4102 // Convert condition code in CCReg to an i32 value. 4103 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4104 SDLoc DL(CCReg); 4105 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4106 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4107 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4108 } 4109 4110 SDValue 4111 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4112 SelectionDAG &DAG) const { 4113 unsigned Opcode, CCValid; 4114 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4115 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4116 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4117 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4118 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4119 return SDValue(); 4120 } 4121 4122 return SDValue(); 4123 } 4124 4125 SDValue 4126 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4127 SelectionDAG &DAG) const { 4128 unsigned Opcode, CCValid; 4129 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4130 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4131 if (Op->getNumValues() == 1) 4132 return getCCResult(DAG, SDValue(Node, 0)); 4133 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4134 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4135 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4136 } 4137 4138 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4139 switch (Id) { 4140 case Intrinsic::thread_pointer: 4141 return lowerThreadPointer(SDLoc(Op), DAG); 4142 4143 case Intrinsic::s390_vpdi: 4144 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4145 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4146 4147 case Intrinsic::s390_vperm: 4148 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4149 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4150 4151 case Intrinsic::s390_vuphb: 4152 case Intrinsic::s390_vuphh: 4153 case Intrinsic::s390_vuphf: 4154 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4155 Op.getOperand(1)); 4156 4157 case Intrinsic::s390_vuplhb: 4158 case Intrinsic::s390_vuplhh: 4159 case Intrinsic::s390_vuplhf: 4160 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4161 Op.getOperand(1)); 4162 4163 case Intrinsic::s390_vuplb: 4164 case Intrinsic::s390_vuplhw: 4165 case Intrinsic::s390_vuplf: 4166 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4167 Op.getOperand(1)); 4168 4169 case Intrinsic::s390_vupllb: 4170 case Intrinsic::s390_vupllh: 4171 case Intrinsic::s390_vupllf: 4172 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4173 Op.getOperand(1)); 4174 4175 case Intrinsic::s390_vsumb: 4176 case Intrinsic::s390_vsumh: 4177 case Intrinsic::s390_vsumgh: 4178 case Intrinsic::s390_vsumgf: 4179 case Intrinsic::s390_vsumqf: 4180 case Intrinsic::s390_vsumqg: 4181 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4182 Op.getOperand(1), Op.getOperand(2)); 4183 } 4184 4185 return SDValue(); 4186 } 4187 4188 namespace { 4189 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4190 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4191 // Operand is the constant third operand, otherwise it is the number of 4192 // bytes in each element of the result. 4193 struct Permute { 4194 unsigned Opcode; 4195 unsigned Operand; 4196 unsigned char Bytes[SystemZ::VectorBytes]; 4197 }; 4198 } 4199 4200 static const Permute PermuteForms[] = { 4201 // VMRHG 4202 { SystemZISD::MERGE_HIGH, 8, 4203 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4204 // VMRHF 4205 { SystemZISD::MERGE_HIGH, 4, 4206 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4207 // VMRHH 4208 { SystemZISD::MERGE_HIGH, 2, 4209 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4210 // VMRHB 4211 { SystemZISD::MERGE_HIGH, 1, 4212 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4213 // VMRLG 4214 { SystemZISD::MERGE_LOW, 8, 4215 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4216 // VMRLF 4217 { SystemZISD::MERGE_LOW, 4, 4218 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4219 // VMRLH 4220 { SystemZISD::MERGE_LOW, 2, 4221 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4222 // VMRLB 4223 { SystemZISD::MERGE_LOW, 1, 4224 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4225 // VPKG 4226 { SystemZISD::PACK, 4, 4227 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4228 // VPKF 4229 { SystemZISD::PACK, 2, 4230 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4231 // VPKH 4232 { SystemZISD::PACK, 1, 4233 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4234 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4235 { SystemZISD::PERMUTE_DWORDS, 4, 4236 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4237 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4238 { SystemZISD::PERMUTE_DWORDS, 1, 4239 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4240 }; 4241 4242 // Called after matching a vector shuffle against a particular pattern. 4243 // Both the original shuffle and the pattern have two vector operands. 4244 // OpNos[0] is the operand of the original shuffle that should be used for 4245 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4246 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4247 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4248 // for operands 0 and 1 of the pattern. 4249 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4250 if (OpNos[0] < 0) { 4251 if (OpNos[1] < 0) 4252 return false; 4253 OpNo0 = OpNo1 = OpNos[1]; 4254 } else if (OpNos[1] < 0) { 4255 OpNo0 = OpNo1 = OpNos[0]; 4256 } else { 4257 OpNo0 = OpNos[0]; 4258 OpNo1 = OpNos[1]; 4259 } 4260 return true; 4261 } 4262 4263 // Bytes is a VPERM-like permute vector, except that -1 is used for 4264 // undefined bytes. Return true if the VPERM can be implemented using P. 4265 // When returning true set OpNo0 to the VPERM operand that should be 4266 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4267 // 4268 // For example, if swapping the VPERM operands allows P to match, OpNo0 4269 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4270 // operand, but rewriting it to use two duplicated operands allows it to 4271 // match P, then OpNo0 and OpNo1 will be the same. 4272 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4273 unsigned &OpNo0, unsigned &OpNo1) { 4274 int OpNos[] = { -1, -1 }; 4275 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4276 int Elt = Bytes[I]; 4277 if (Elt >= 0) { 4278 // Make sure that the two permute vectors use the same suboperand 4279 // byte number. Only the operand numbers (the high bits) are 4280 // allowed to differ. 4281 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4282 return false; 4283 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4284 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4285 // Make sure that the operand mappings are consistent with previous 4286 // elements. 4287 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4288 return false; 4289 OpNos[ModelOpNo] = RealOpNo; 4290 } 4291 } 4292 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4293 } 4294 4295 // As above, but search for a matching permute. 4296 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4297 unsigned &OpNo0, unsigned &OpNo1) { 4298 for (auto &P : PermuteForms) 4299 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4300 return &P; 4301 return nullptr; 4302 } 4303 4304 // Bytes is a VPERM-like permute vector, except that -1 is used for 4305 // undefined bytes. This permute is an operand of an outer permute. 4306 // See whether redistributing the -1 bytes gives a shuffle that can be 4307 // implemented using P. If so, set Transform to a VPERM-like permute vector 4308 // that, when applied to the result of P, gives the original permute in Bytes. 4309 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4310 const Permute &P, 4311 SmallVectorImpl<int> &Transform) { 4312 unsigned To = 0; 4313 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4314 int Elt = Bytes[From]; 4315 if (Elt < 0) 4316 // Byte number From of the result is undefined. 4317 Transform[From] = -1; 4318 else { 4319 while (P.Bytes[To] != Elt) { 4320 To += 1; 4321 if (To == SystemZ::VectorBytes) 4322 return false; 4323 } 4324 Transform[From] = To; 4325 } 4326 } 4327 return true; 4328 } 4329 4330 // As above, but search for a matching permute. 4331 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4332 SmallVectorImpl<int> &Transform) { 4333 for (auto &P : PermuteForms) 4334 if (matchDoublePermute(Bytes, P, Transform)) 4335 return &P; 4336 return nullptr; 4337 } 4338 4339 // Convert the mask of the given shuffle op into a byte-level mask, 4340 // as if it had type vNi8. 4341 static bool getVPermMask(SDValue ShuffleOp, 4342 SmallVectorImpl<int> &Bytes) { 4343 EVT VT = ShuffleOp.getValueType(); 4344 unsigned NumElements = VT.getVectorNumElements(); 4345 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4346 4347 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4348 Bytes.resize(NumElements * BytesPerElement, -1); 4349 for (unsigned I = 0; I < NumElements; ++I) { 4350 int Index = VSN->getMaskElt(I); 4351 if (Index >= 0) 4352 for (unsigned J = 0; J < BytesPerElement; ++J) 4353 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4354 } 4355 return true; 4356 } 4357 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4358 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4359 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4360 Bytes.resize(NumElements * BytesPerElement, -1); 4361 for (unsigned I = 0; I < NumElements; ++I) 4362 for (unsigned J = 0; J < BytesPerElement; ++J) 4363 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4364 return true; 4365 } 4366 return false; 4367 } 4368 4369 // Bytes is a VPERM-like permute vector, except that -1 is used for 4370 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4371 // the result come from a contiguous sequence of bytes from one input. 4372 // Set Base to the selector for the first byte if so. 4373 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4374 unsigned BytesPerElement, int &Base) { 4375 Base = -1; 4376 for (unsigned I = 0; I < BytesPerElement; ++I) { 4377 if (Bytes[Start + I] >= 0) { 4378 unsigned Elem = Bytes[Start + I]; 4379 if (Base < 0) { 4380 Base = Elem - I; 4381 // Make sure the bytes would come from one input operand. 4382 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4383 return false; 4384 } else if (unsigned(Base) != Elem - I) 4385 return false; 4386 } 4387 } 4388 return true; 4389 } 4390 4391 // Bytes is a VPERM-like permute vector, except that -1 is used for 4392 // undefined bytes. Return true if it can be performed using VSLDI. 4393 // When returning true, set StartIndex to the shift amount and OpNo0 4394 // and OpNo1 to the VPERM operands that should be used as the first 4395 // and second shift operand respectively. 4396 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4397 unsigned &StartIndex, unsigned &OpNo0, 4398 unsigned &OpNo1) { 4399 int OpNos[] = { -1, -1 }; 4400 int Shift = -1; 4401 for (unsigned I = 0; I < 16; ++I) { 4402 int Index = Bytes[I]; 4403 if (Index >= 0) { 4404 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4405 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4406 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4407 if (Shift < 0) 4408 Shift = ExpectedShift; 4409 else if (Shift != ExpectedShift) 4410 return false; 4411 // Make sure that the operand mappings are consistent with previous 4412 // elements. 4413 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4414 return false; 4415 OpNos[ModelOpNo] = RealOpNo; 4416 } 4417 } 4418 StartIndex = Shift; 4419 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4420 } 4421 4422 // Create a node that performs P on operands Op0 and Op1, casting the 4423 // operands to the appropriate type. The type of the result is determined by P. 4424 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4425 const Permute &P, SDValue Op0, SDValue Op1) { 4426 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4427 // elements of a PACK are twice as wide as the outputs. 4428 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4429 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4430 P.Operand); 4431 // Cast both operands to the appropriate type. 4432 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4433 SystemZ::VectorBytes / InBytes); 4434 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4435 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4436 SDValue Op; 4437 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4438 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4439 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4440 } else if (P.Opcode == SystemZISD::PACK) { 4441 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4442 SystemZ::VectorBytes / P.Operand); 4443 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4444 } else { 4445 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4446 } 4447 return Op; 4448 } 4449 4450 // Bytes is a VPERM-like permute vector, except that -1 is used for 4451 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4452 // VSLDI or VPERM. 4453 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4454 SDValue *Ops, 4455 const SmallVectorImpl<int> &Bytes) { 4456 for (unsigned I = 0; I < 2; ++I) 4457 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4458 4459 // First see whether VSLDI can be used. 4460 unsigned StartIndex, OpNo0, OpNo1; 4461 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4462 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4463 Ops[OpNo1], 4464 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4465 4466 // Fall back on VPERM. Construct an SDNode for the permute vector. 4467 SDValue IndexNodes[SystemZ::VectorBytes]; 4468 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4469 if (Bytes[I] >= 0) 4470 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4471 else 4472 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4473 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4474 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 4475 } 4476 4477 namespace { 4478 // Describes a general N-operand vector shuffle. 4479 struct GeneralShuffle { 4480 GeneralShuffle(EVT vt) : VT(vt) {} 4481 void addUndef(); 4482 bool add(SDValue, unsigned); 4483 SDValue getNode(SelectionDAG &, const SDLoc &); 4484 4485 // The operands of the shuffle. 4486 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4487 4488 // Index I is -1 if byte I of the result is undefined. Otherwise the 4489 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4490 // Bytes[I] / SystemZ::VectorBytes. 4491 SmallVector<int, SystemZ::VectorBytes> Bytes; 4492 4493 // The type of the shuffle result. 4494 EVT VT; 4495 }; 4496 } 4497 4498 // Add an extra undefined element to the shuffle. 4499 void GeneralShuffle::addUndef() { 4500 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4501 for (unsigned I = 0; I < BytesPerElement; ++I) 4502 Bytes.push_back(-1); 4503 } 4504 4505 // Add an extra element to the shuffle, taking it from element Elem of Op. 4506 // A null Op indicates a vector input whose value will be calculated later; 4507 // there is at most one such input per shuffle and it always has the same 4508 // type as the result. Aborts and returns false if the source vector elements 4509 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4510 // LLVM they become implicitly extended, but this is rare and not optimized. 4511 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4512 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4513 4514 // The source vector can have wider elements than the result, 4515 // either through an explicit TRUNCATE or because of type legalization. 4516 // We want the least significant part. 4517 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4518 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4519 4520 // Return false if the source elements are smaller than their destination 4521 // elements. 4522 if (FromBytesPerElement < BytesPerElement) 4523 return false; 4524 4525 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4526 (FromBytesPerElement - BytesPerElement)); 4527 4528 // Look through things like shuffles and bitcasts. 4529 while (Op.getNode()) { 4530 if (Op.getOpcode() == ISD::BITCAST) 4531 Op = Op.getOperand(0); 4532 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4533 // See whether the bytes we need come from a contiguous part of one 4534 // operand. 4535 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4536 if (!getVPermMask(Op, OpBytes)) 4537 break; 4538 int NewByte; 4539 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4540 break; 4541 if (NewByte < 0) { 4542 addUndef(); 4543 return true; 4544 } 4545 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4546 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4547 } else if (Op.isUndef()) { 4548 addUndef(); 4549 return true; 4550 } else 4551 break; 4552 } 4553 4554 // Make sure that the source of the extraction is in Ops. 4555 unsigned OpNo = 0; 4556 for (; OpNo < Ops.size(); ++OpNo) 4557 if (Ops[OpNo] == Op) 4558 break; 4559 if (OpNo == Ops.size()) 4560 Ops.push_back(Op); 4561 4562 // Add the element to Bytes. 4563 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4564 for (unsigned I = 0; I < BytesPerElement; ++I) 4565 Bytes.push_back(Base + I); 4566 4567 return true; 4568 } 4569 4570 // Return SDNodes for the completed shuffle. 4571 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4572 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4573 4574 if (Ops.size() == 0) 4575 return DAG.getUNDEF(VT); 4576 4577 // Make sure that there are at least two shuffle operands. 4578 if (Ops.size() == 1) 4579 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4580 4581 // Create a tree of shuffles, deferring root node until after the loop. 4582 // Try to redistribute the undefined elements of non-root nodes so that 4583 // the non-root shuffles match something like a pack or merge, then adjust 4584 // the parent node's permute vector to compensate for the new order. 4585 // Among other things, this copes with vectors like <2 x i16> that were 4586 // padded with undefined elements during type legalization. 4587 // 4588 // In the best case this redistribution will lead to the whole tree 4589 // using packs and merges. It should rarely be a loss in other cases. 4590 unsigned Stride = 1; 4591 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4592 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4593 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4594 4595 // Create a mask for just these two operands. 4596 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4597 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4598 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4599 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4600 if (OpNo == I) 4601 NewBytes[J] = Byte; 4602 else if (OpNo == I + Stride) 4603 NewBytes[J] = SystemZ::VectorBytes + Byte; 4604 else 4605 NewBytes[J] = -1; 4606 } 4607 // See if it would be better to reorganize NewMask to avoid using VPERM. 4608 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4609 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4610 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4611 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4612 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4613 if (NewBytes[J] >= 0) { 4614 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4615 "Invalid double permute"); 4616 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4617 } else 4618 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4619 } 4620 } else { 4621 // Just use NewBytes on the operands. 4622 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4623 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4624 if (NewBytes[J] >= 0) 4625 Bytes[J] = I * SystemZ::VectorBytes + J; 4626 } 4627 } 4628 } 4629 4630 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4631 if (Stride > 1) { 4632 Ops[1] = Ops[Stride]; 4633 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4634 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4635 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4636 } 4637 4638 // Look for an instruction that can do the permute without resorting 4639 // to VPERM. 4640 unsigned OpNo0, OpNo1; 4641 SDValue Op; 4642 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4643 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4644 else 4645 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4646 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4647 } 4648 4649 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4650 static bool isScalarToVector(SDValue Op) { 4651 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4652 if (!Op.getOperand(I).isUndef()) 4653 return false; 4654 return true; 4655 } 4656 4657 // Return a vector of type VT that contains Value in the first element. 4658 // The other elements don't matter. 4659 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4660 SDValue Value) { 4661 // If we have a constant, replicate it to all elements and let the 4662 // BUILD_VECTOR lowering take care of it. 4663 if (Value.getOpcode() == ISD::Constant || 4664 Value.getOpcode() == ISD::ConstantFP) { 4665 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4666 return DAG.getBuildVector(VT, DL, Ops); 4667 } 4668 if (Value.isUndef()) 4669 return DAG.getUNDEF(VT); 4670 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4671 } 4672 4673 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4674 // element 1. Used for cases in which replication is cheap. 4675 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4676 SDValue Op0, SDValue Op1) { 4677 if (Op0.isUndef()) { 4678 if (Op1.isUndef()) 4679 return DAG.getUNDEF(VT); 4680 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4681 } 4682 if (Op1.isUndef()) 4683 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4684 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4685 buildScalarToVector(DAG, DL, VT, Op0), 4686 buildScalarToVector(DAG, DL, VT, Op1)); 4687 } 4688 4689 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4690 // vector for them. 4691 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4692 SDValue Op1) { 4693 if (Op0.isUndef() && Op1.isUndef()) 4694 return DAG.getUNDEF(MVT::v2i64); 4695 // If one of the two inputs is undefined then replicate the other one, 4696 // in order to avoid using another register unnecessarily. 4697 if (Op0.isUndef()) 4698 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4699 else if (Op1.isUndef()) 4700 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4701 else { 4702 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4703 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4704 } 4705 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4706 } 4707 4708 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4709 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4710 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4711 // would benefit from this representation and return it if so. 4712 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4713 BuildVectorSDNode *BVN) { 4714 EVT VT = BVN->getValueType(0); 4715 unsigned NumElements = VT.getVectorNumElements(); 4716 4717 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4718 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4719 // need a BUILD_VECTOR, add an additional placeholder operand for that 4720 // BUILD_VECTOR and store its operands in ResidueOps. 4721 GeneralShuffle GS(VT); 4722 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4723 bool FoundOne = false; 4724 for (unsigned I = 0; I < NumElements; ++I) { 4725 SDValue Op = BVN->getOperand(I); 4726 if (Op.getOpcode() == ISD::TRUNCATE) 4727 Op = Op.getOperand(0); 4728 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4729 Op.getOperand(1).getOpcode() == ISD::Constant) { 4730 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4731 if (!GS.add(Op.getOperand(0), Elem)) 4732 return SDValue(); 4733 FoundOne = true; 4734 } else if (Op.isUndef()) { 4735 GS.addUndef(); 4736 } else { 4737 if (!GS.add(SDValue(), ResidueOps.size())) 4738 return SDValue(); 4739 ResidueOps.push_back(BVN->getOperand(I)); 4740 } 4741 } 4742 4743 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4744 if (!FoundOne) 4745 return SDValue(); 4746 4747 // Create the BUILD_VECTOR for the remaining elements, if any. 4748 if (!ResidueOps.empty()) { 4749 while (ResidueOps.size() < NumElements) 4750 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4751 for (auto &Op : GS.Ops) { 4752 if (!Op.getNode()) { 4753 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4754 break; 4755 } 4756 } 4757 } 4758 return GS.getNode(DAG, SDLoc(BVN)); 4759 } 4760 4761 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 4762 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 4763 return true; 4764 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 4765 return true; 4766 return false; 4767 } 4768 4769 // Combine GPR scalar values Elems into a vector of type VT. 4770 SDValue 4771 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4772 SmallVectorImpl<SDValue> &Elems) const { 4773 // See whether there is a single replicated value. 4774 SDValue Single; 4775 unsigned int NumElements = Elems.size(); 4776 unsigned int Count = 0; 4777 for (auto Elem : Elems) { 4778 if (!Elem.isUndef()) { 4779 if (!Single.getNode()) 4780 Single = Elem; 4781 else if (Elem != Single) { 4782 Single = SDValue(); 4783 break; 4784 } 4785 Count += 1; 4786 } 4787 } 4788 // There are three cases here: 4789 // 4790 // - if the only defined element is a loaded one, the best sequence 4791 // is a replicating load. 4792 // 4793 // - otherwise, if the only defined element is an i64 value, we will 4794 // end up with the same VLVGP sequence regardless of whether we short-cut 4795 // for replication or fall through to the later code. 4796 // 4797 // - otherwise, if the only defined element is an i32 or smaller value, 4798 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4799 // This is only a win if the single defined element is used more than once. 4800 // In other cases we're better off using a single VLVGx. 4801 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 4802 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4803 4804 // If all elements are loads, use VLREP/VLEs (below). 4805 bool AllLoads = true; 4806 for (auto Elem : Elems) 4807 if (!isVectorElementLoad(Elem)) { 4808 AllLoads = false; 4809 break; 4810 } 4811 4812 // The best way of building a v2i64 from two i64s is to use VLVGP. 4813 if (VT == MVT::v2i64 && !AllLoads) 4814 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4815 4816 // Use a 64-bit merge high to combine two doubles. 4817 if (VT == MVT::v2f64 && !AllLoads) 4818 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4819 4820 // Build v4f32 values directly from the FPRs: 4821 // 4822 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4823 // V V VMRHF 4824 // <ABxx> <CDxx> 4825 // V VMRHG 4826 // <ABCD> 4827 if (VT == MVT::v4f32 && !AllLoads) { 4828 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4829 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4830 // Avoid unnecessary undefs by reusing the other operand. 4831 if (Op01.isUndef()) 4832 Op01 = Op23; 4833 else if (Op23.isUndef()) 4834 Op23 = Op01; 4835 // Merging identical replications is a no-op. 4836 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4837 return Op01; 4838 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4839 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4840 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4841 DL, MVT::v2i64, Op01, Op23); 4842 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4843 } 4844 4845 // Collect the constant terms. 4846 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4847 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4848 4849 unsigned NumConstants = 0; 4850 for (unsigned I = 0; I < NumElements; ++I) { 4851 SDValue Elem = Elems[I]; 4852 if (Elem.getOpcode() == ISD::Constant || 4853 Elem.getOpcode() == ISD::ConstantFP) { 4854 NumConstants += 1; 4855 Constants[I] = Elem; 4856 Done[I] = true; 4857 } 4858 } 4859 // If there was at least one constant, fill in the other elements of 4860 // Constants with undefs to get a full vector constant and use that 4861 // as the starting point. 4862 SDValue Result; 4863 SDValue ReplicatedVal; 4864 if (NumConstants > 0) { 4865 for (unsigned I = 0; I < NumElements; ++I) 4866 if (!Constants[I].getNode()) 4867 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4868 Result = DAG.getBuildVector(VT, DL, Constants); 4869 } else { 4870 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4871 // avoid a false dependency on any previous contents of the vector 4872 // register. 4873 4874 // Use a VLREP if at least one element is a load. Make sure to replicate 4875 // the load with the most elements having its value. 4876 std::map<const SDNode*, unsigned> UseCounts; 4877 SDNode *LoadMaxUses = nullptr; 4878 for (unsigned I = 0; I < NumElements; ++I) 4879 if (isVectorElementLoad(Elems[I])) { 4880 SDNode *Ld = Elems[I].getNode(); 4881 UseCounts[Ld]++; 4882 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 4883 LoadMaxUses = Ld; 4884 } 4885 if (LoadMaxUses != nullptr) { 4886 ReplicatedVal = SDValue(LoadMaxUses, 0); 4887 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 4888 } else { 4889 // Try to use VLVGP. 4890 unsigned I1 = NumElements / 2 - 1; 4891 unsigned I2 = NumElements - 1; 4892 bool Def1 = !Elems[I1].isUndef(); 4893 bool Def2 = !Elems[I2].isUndef(); 4894 if (Def1 || Def2) { 4895 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4896 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4897 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4898 joinDwords(DAG, DL, Elem1, Elem2)); 4899 Done[I1] = true; 4900 Done[I2] = true; 4901 } else 4902 Result = DAG.getUNDEF(VT); 4903 } 4904 } 4905 4906 // Use VLVGx to insert the other elements. 4907 for (unsigned I = 0; I < NumElements; ++I) 4908 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 4909 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4910 DAG.getConstant(I, DL, MVT::i32)); 4911 return Result; 4912 } 4913 4914 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4915 SelectionDAG &DAG) const { 4916 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4917 SDLoc DL(Op); 4918 EVT VT = Op.getValueType(); 4919 4920 if (BVN->isConstant()) { 4921 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 4922 return Op; 4923 4924 // Fall back to loading it from memory. 4925 return SDValue(); 4926 } 4927 4928 // See if we should use shuffles to construct the vector from other vectors. 4929 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4930 return Res; 4931 4932 // Detect SCALAR_TO_VECTOR conversions. 4933 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4934 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4935 4936 // Otherwise use buildVector to build the vector up from GPRs. 4937 unsigned NumElements = Op.getNumOperands(); 4938 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4939 for (unsigned I = 0; I < NumElements; ++I) 4940 Ops[I] = Op.getOperand(I); 4941 return buildVector(DAG, DL, VT, Ops); 4942 } 4943 4944 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4945 SelectionDAG &DAG) const { 4946 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4947 SDLoc DL(Op); 4948 EVT VT = Op.getValueType(); 4949 unsigned NumElements = VT.getVectorNumElements(); 4950 4951 if (VSN->isSplat()) { 4952 SDValue Op0 = Op.getOperand(0); 4953 unsigned Index = VSN->getSplatIndex(); 4954 assert(Index < VT.getVectorNumElements() && 4955 "Splat index should be defined and in first operand"); 4956 // See whether the value we're splatting is directly available as a scalar. 4957 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4958 Op0.getOpcode() == ISD::BUILD_VECTOR) 4959 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4960 // Otherwise keep it as a vector-to-vector operation. 4961 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4962 DAG.getTargetConstant(Index, DL, MVT::i32)); 4963 } 4964 4965 GeneralShuffle GS(VT); 4966 for (unsigned I = 0; I < NumElements; ++I) { 4967 int Elt = VSN->getMaskElt(I); 4968 if (Elt < 0) 4969 GS.addUndef(); 4970 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4971 unsigned(Elt) % NumElements)) 4972 return SDValue(); 4973 } 4974 return GS.getNode(DAG, SDLoc(VSN)); 4975 } 4976 4977 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4978 SelectionDAG &DAG) const { 4979 SDLoc DL(Op); 4980 // Just insert the scalar into element 0 of an undefined vector. 4981 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4982 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4983 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4984 } 4985 4986 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4987 SelectionDAG &DAG) const { 4988 // Handle insertions of floating-point values. 4989 SDLoc DL(Op); 4990 SDValue Op0 = Op.getOperand(0); 4991 SDValue Op1 = Op.getOperand(1); 4992 SDValue Op2 = Op.getOperand(2); 4993 EVT VT = Op.getValueType(); 4994 4995 // Insertions into constant indices of a v2f64 can be done using VPDI. 4996 // However, if the inserted value is a bitcast or a constant then it's 4997 // better to use GPRs, as below. 4998 if (VT == MVT::v2f64 && 4999 Op1.getOpcode() != ISD::BITCAST && 5000 Op1.getOpcode() != ISD::ConstantFP && 5001 Op2.getOpcode() == ISD::Constant) { 5002 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 5003 unsigned Mask = VT.getVectorNumElements() - 1; 5004 if (Index <= Mask) 5005 return Op; 5006 } 5007 5008 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5009 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5010 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5011 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5012 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5013 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5014 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5015 } 5016 5017 SDValue 5018 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5019 SelectionDAG &DAG) const { 5020 // Handle extractions of floating-point values. 5021 SDLoc DL(Op); 5022 SDValue Op0 = Op.getOperand(0); 5023 SDValue Op1 = Op.getOperand(1); 5024 EVT VT = Op.getValueType(); 5025 EVT VecVT = Op0.getValueType(); 5026 5027 // Extractions of constant indices can be done directly. 5028 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5029 uint64_t Index = CIndexN->getZExtValue(); 5030 unsigned Mask = VecVT.getVectorNumElements() - 1; 5031 if (Index <= Mask) 5032 return Op; 5033 } 5034 5035 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5036 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5037 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5038 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5039 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5040 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5041 } 5042 5043 SDValue 5044 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 5045 unsigned UnpackHigh) const { 5046 SDValue PackedOp = Op.getOperand(0); 5047 EVT OutVT = Op.getValueType(); 5048 EVT InVT = PackedOp.getValueType(); 5049 unsigned ToBits = OutVT.getScalarSizeInBits(); 5050 unsigned FromBits = InVT.getScalarSizeInBits(); 5051 do { 5052 FromBits *= 2; 5053 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5054 SystemZ::VectorBits / FromBits); 5055 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 5056 } while (FromBits != ToBits); 5057 return PackedOp; 5058 } 5059 5060 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5061 unsigned ByScalar) const { 5062 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5063 SDValue Op0 = Op.getOperand(0); 5064 SDValue Op1 = Op.getOperand(1); 5065 SDLoc DL(Op); 5066 EVT VT = Op.getValueType(); 5067 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5068 5069 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5070 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5071 APInt SplatBits, SplatUndef; 5072 unsigned SplatBitSize; 5073 bool HasAnyUndefs; 5074 // Check for constant splats. Use ElemBitSize as the minimum element 5075 // width and reject splats that need wider elements. 5076 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5077 ElemBitSize, true) && 5078 SplatBitSize == ElemBitSize) { 5079 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5080 DL, MVT::i32); 5081 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5082 } 5083 // Check for variable splats. 5084 BitVector UndefElements; 5085 SDValue Splat = BVN->getSplatValue(&UndefElements); 5086 if (Splat) { 5087 // Since i32 is the smallest legal type, we either need a no-op 5088 // or a truncation. 5089 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5090 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5091 } 5092 } 5093 5094 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5095 // and the shift amount is directly available in a GPR. 5096 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5097 if (VSN->isSplat()) { 5098 SDValue VSNOp0 = VSN->getOperand(0); 5099 unsigned Index = VSN->getSplatIndex(); 5100 assert(Index < VT.getVectorNumElements() && 5101 "Splat index should be defined and in first operand"); 5102 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5103 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5104 // Since i32 is the smallest legal type, we either need a no-op 5105 // or a truncation. 5106 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5107 VSNOp0.getOperand(Index)); 5108 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5109 } 5110 } 5111 } 5112 5113 // Otherwise just treat the current form as legal. 5114 return Op; 5115 } 5116 5117 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5118 SelectionDAG &DAG) const { 5119 switch (Op.getOpcode()) { 5120 case ISD::FRAMEADDR: 5121 return lowerFRAMEADDR(Op, DAG); 5122 case ISD::RETURNADDR: 5123 return lowerRETURNADDR(Op, DAG); 5124 case ISD::BR_CC: 5125 return lowerBR_CC(Op, DAG); 5126 case ISD::SELECT_CC: 5127 return lowerSELECT_CC(Op, DAG); 5128 case ISD::SETCC: 5129 return lowerSETCC(Op, DAG); 5130 case ISD::STRICT_FSETCC: 5131 return lowerSTRICT_FSETCC(Op, DAG, false); 5132 case ISD::STRICT_FSETCCS: 5133 return lowerSTRICT_FSETCC(Op, DAG, true); 5134 case ISD::GlobalAddress: 5135 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5136 case ISD::GlobalTLSAddress: 5137 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5138 case ISD::BlockAddress: 5139 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5140 case ISD::JumpTable: 5141 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5142 case ISD::ConstantPool: 5143 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5144 case ISD::BITCAST: 5145 return lowerBITCAST(Op, DAG); 5146 case ISD::VASTART: 5147 return lowerVASTART(Op, DAG); 5148 case ISD::VACOPY: 5149 return lowerVACOPY(Op, DAG); 5150 case ISD::DYNAMIC_STACKALLOC: 5151 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5152 case ISD::GET_DYNAMIC_AREA_OFFSET: 5153 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5154 case ISD::SMUL_LOHI: 5155 return lowerSMUL_LOHI(Op, DAG); 5156 case ISD::UMUL_LOHI: 5157 return lowerUMUL_LOHI(Op, DAG); 5158 case ISD::SDIVREM: 5159 return lowerSDIVREM(Op, DAG); 5160 case ISD::UDIVREM: 5161 return lowerUDIVREM(Op, DAG); 5162 case ISD::SADDO: 5163 case ISD::SSUBO: 5164 case ISD::UADDO: 5165 case ISD::USUBO: 5166 return lowerXALUO(Op, DAG); 5167 case ISD::ADDCARRY: 5168 case ISD::SUBCARRY: 5169 return lowerADDSUBCARRY(Op, DAG); 5170 case ISD::OR: 5171 return lowerOR(Op, DAG); 5172 case ISD::CTPOP: 5173 return lowerCTPOP(Op, DAG); 5174 case ISD::ATOMIC_FENCE: 5175 return lowerATOMIC_FENCE(Op, DAG); 5176 case ISD::ATOMIC_SWAP: 5177 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5178 case ISD::ATOMIC_STORE: 5179 return lowerATOMIC_STORE(Op, DAG); 5180 case ISD::ATOMIC_LOAD: 5181 return lowerATOMIC_LOAD(Op, DAG); 5182 case ISD::ATOMIC_LOAD_ADD: 5183 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5184 case ISD::ATOMIC_LOAD_SUB: 5185 return lowerATOMIC_LOAD_SUB(Op, DAG); 5186 case ISD::ATOMIC_LOAD_AND: 5187 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5188 case ISD::ATOMIC_LOAD_OR: 5189 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5190 case ISD::ATOMIC_LOAD_XOR: 5191 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5192 case ISD::ATOMIC_LOAD_NAND: 5193 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5194 case ISD::ATOMIC_LOAD_MIN: 5195 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5196 case ISD::ATOMIC_LOAD_MAX: 5197 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5198 case ISD::ATOMIC_LOAD_UMIN: 5199 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5200 case ISD::ATOMIC_LOAD_UMAX: 5201 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5202 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5203 return lowerATOMIC_CMP_SWAP(Op, DAG); 5204 case ISD::STACKSAVE: 5205 return lowerSTACKSAVE(Op, DAG); 5206 case ISD::STACKRESTORE: 5207 return lowerSTACKRESTORE(Op, DAG); 5208 case ISD::PREFETCH: 5209 return lowerPREFETCH(Op, DAG); 5210 case ISD::INTRINSIC_W_CHAIN: 5211 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5212 case ISD::INTRINSIC_WO_CHAIN: 5213 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5214 case ISD::BUILD_VECTOR: 5215 return lowerBUILD_VECTOR(Op, DAG); 5216 case ISD::VECTOR_SHUFFLE: 5217 return lowerVECTOR_SHUFFLE(Op, DAG); 5218 case ISD::SCALAR_TO_VECTOR: 5219 return lowerSCALAR_TO_VECTOR(Op, DAG); 5220 case ISD::INSERT_VECTOR_ELT: 5221 return lowerINSERT_VECTOR_ELT(Op, DAG); 5222 case ISD::EXTRACT_VECTOR_ELT: 5223 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5224 case ISD::SIGN_EXTEND_VECTOR_INREG: 5225 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 5226 case ISD::ZERO_EXTEND_VECTOR_INREG: 5227 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 5228 case ISD::SHL: 5229 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5230 case ISD::SRL: 5231 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5232 case ISD::SRA: 5233 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5234 default: 5235 llvm_unreachable("Unexpected node to lower"); 5236 } 5237 } 5238 5239 // Lower operations with invalid operand or result types (currently used 5240 // only for 128-bit integer types). 5241 5242 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 5243 SDLoc DL(In); 5244 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5245 DAG.getIntPtrConstant(0, DL)); 5246 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5247 DAG.getIntPtrConstant(1, DL)); 5248 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 5249 MVT::Untyped, Hi, Lo); 5250 return SDValue(Pair, 0); 5251 } 5252 5253 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 5254 SDLoc DL(In); 5255 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5256 DL, MVT::i64, In); 5257 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5258 DL, MVT::i64, In); 5259 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 5260 } 5261 5262 void 5263 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5264 SmallVectorImpl<SDValue> &Results, 5265 SelectionDAG &DAG) const { 5266 switch (N->getOpcode()) { 5267 case ISD::ATOMIC_LOAD: { 5268 SDLoc DL(N); 5269 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5270 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5271 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5272 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5273 DL, Tys, Ops, MVT::i128, MMO); 5274 Results.push_back(lowerGR128ToI128(DAG, Res)); 5275 Results.push_back(Res.getValue(1)); 5276 break; 5277 } 5278 case ISD::ATOMIC_STORE: { 5279 SDLoc DL(N); 5280 SDVTList Tys = DAG.getVTList(MVT::Other); 5281 SDValue Ops[] = { N->getOperand(0), 5282 lowerI128ToGR128(DAG, N->getOperand(2)), 5283 N->getOperand(1) }; 5284 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5285 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5286 DL, Tys, Ops, MVT::i128, MMO); 5287 // We have to enforce sequential consistency by performing a 5288 // serialization operation after the store. 5289 if (cast<AtomicSDNode>(N)->getOrdering() == 5290 AtomicOrdering::SequentiallyConsistent) 5291 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5292 MVT::Other, Res), 0); 5293 Results.push_back(Res); 5294 break; 5295 } 5296 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5297 SDLoc DL(N); 5298 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5299 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5300 lowerI128ToGR128(DAG, N->getOperand(2)), 5301 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5302 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5303 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5304 DL, Tys, Ops, MVT::i128, MMO); 5305 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5306 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5307 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5308 Results.push_back(lowerGR128ToI128(DAG, Res)); 5309 Results.push_back(Success); 5310 Results.push_back(Res.getValue(2)); 5311 break; 5312 } 5313 default: 5314 llvm_unreachable("Unexpected node to lower"); 5315 } 5316 } 5317 5318 void 5319 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5320 SmallVectorImpl<SDValue> &Results, 5321 SelectionDAG &DAG) const { 5322 return LowerOperationWrapper(N, Results, DAG); 5323 } 5324 5325 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5326 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5327 switch ((SystemZISD::NodeType)Opcode) { 5328 case SystemZISD::FIRST_NUMBER: break; 5329 OPCODE(RET_FLAG); 5330 OPCODE(CALL); 5331 OPCODE(SIBCALL); 5332 OPCODE(TLS_GDCALL); 5333 OPCODE(TLS_LDCALL); 5334 OPCODE(PCREL_WRAPPER); 5335 OPCODE(PCREL_OFFSET); 5336 OPCODE(IABS); 5337 OPCODE(ICMP); 5338 OPCODE(FCMP); 5339 OPCODE(STRICT_FCMP); 5340 OPCODE(STRICT_FCMPS); 5341 OPCODE(TM); 5342 OPCODE(BR_CCMASK); 5343 OPCODE(SELECT_CCMASK); 5344 OPCODE(ADJDYNALLOC); 5345 OPCODE(POPCNT); 5346 OPCODE(SMUL_LOHI); 5347 OPCODE(UMUL_LOHI); 5348 OPCODE(SDIVREM); 5349 OPCODE(UDIVREM); 5350 OPCODE(SADDO); 5351 OPCODE(SSUBO); 5352 OPCODE(UADDO); 5353 OPCODE(USUBO); 5354 OPCODE(ADDCARRY); 5355 OPCODE(SUBCARRY); 5356 OPCODE(GET_CCMASK); 5357 OPCODE(MVC); 5358 OPCODE(MVC_LOOP); 5359 OPCODE(NC); 5360 OPCODE(NC_LOOP); 5361 OPCODE(OC); 5362 OPCODE(OC_LOOP); 5363 OPCODE(XC); 5364 OPCODE(XC_LOOP); 5365 OPCODE(CLC); 5366 OPCODE(CLC_LOOP); 5367 OPCODE(STPCPY); 5368 OPCODE(STRCMP); 5369 OPCODE(SEARCH_STRING); 5370 OPCODE(IPM); 5371 OPCODE(MEMBARRIER); 5372 OPCODE(TBEGIN); 5373 OPCODE(TBEGIN_NOFLOAT); 5374 OPCODE(TEND); 5375 OPCODE(BYTE_MASK); 5376 OPCODE(ROTATE_MASK); 5377 OPCODE(REPLICATE); 5378 OPCODE(JOIN_DWORDS); 5379 OPCODE(SPLAT); 5380 OPCODE(MERGE_HIGH); 5381 OPCODE(MERGE_LOW); 5382 OPCODE(SHL_DOUBLE); 5383 OPCODE(PERMUTE_DWORDS); 5384 OPCODE(PERMUTE); 5385 OPCODE(PACK); 5386 OPCODE(PACKS_CC); 5387 OPCODE(PACKLS_CC); 5388 OPCODE(UNPACK_HIGH); 5389 OPCODE(UNPACKL_HIGH); 5390 OPCODE(UNPACK_LOW); 5391 OPCODE(UNPACKL_LOW); 5392 OPCODE(VSHL_BY_SCALAR); 5393 OPCODE(VSRL_BY_SCALAR); 5394 OPCODE(VSRA_BY_SCALAR); 5395 OPCODE(VSUM); 5396 OPCODE(VICMPE); 5397 OPCODE(VICMPH); 5398 OPCODE(VICMPHL); 5399 OPCODE(VICMPES); 5400 OPCODE(VICMPHS); 5401 OPCODE(VICMPHLS); 5402 OPCODE(VFCMPE); 5403 OPCODE(STRICT_VFCMPE); 5404 OPCODE(STRICT_VFCMPES); 5405 OPCODE(VFCMPH); 5406 OPCODE(STRICT_VFCMPH); 5407 OPCODE(STRICT_VFCMPHS); 5408 OPCODE(VFCMPHE); 5409 OPCODE(STRICT_VFCMPHE); 5410 OPCODE(STRICT_VFCMPHES); 5411 OPCODE(VFCMPES); 5412 OPCODE(VFCMPHS); 5413 OPCODE(VFCMPHES); 5414 OPCODE(VFTCI); 5415 OPCODE(VEXTEND); 5416 OPCODE(STRICT_VEXTEND); 5417 OPCODE(VROUND); 5418 OPCODE(STRICT_VROUND); 5419 OPCODE(VTM); 5420 OPCODE(VFAE_CC); 5421 OPCODE(VFAEZ_CC); 5422 OPCODE(VFEE_CC); 5423 OPCODE(VFEEZ_CC); 5424 OPCODE(VFENE_CC); 5425 OPCODE(VFENEZ_CC); 5426 OPCODE(VISTR_CC); 5427 OPCODE(VSTRC_CC); 5428 OPCODE(VSTRCZ_CC); 5429 OPCODE(VSTRS_CC); 5430 OPCODE(VSTRSZ_CC); 5431 OPCODE(TDC); 5432 OPCODE(ATOMIC_SWAPW); 5433 OPCODE(ATOMIC_LOADW_ADD); 5434 OPCODE(ATOMIC_LOADW_SUB); 5435 OPCODE(ATOMIC_LOADW_AND); 5436 OPCODE(ATOMIC_LOADW_OR); 5437 OPCODE(ATOMIC_LOADW_XOR); 5438 OPCODE(ATOMIC_LOADW_NAND); 5439 OPCODE(ATOMIC_LOADW_MIN); 5440 OPCODE(ATOMIC_LOADW_MAX); 5441 OPCODE(ATOMIC_LOADW_UMIN); 5442 OPCODE(ATOMIC_LOADW_UMAX); 5443 OPCODE(ATOMIC_CMP_SWAPW); 5444 OPCODE(ATOMIC_CMP_SWAP); 5445 OPCODE(ATOMIC_LOAD_128); 5446 OPCODE(ATOMIC_STORE_128); 5447 OPCODE(ATOMIC_CMP_SWAP_128); 5448 OPCODE(LRV); 5449 OPCODE(STRV); 5450 OPCODE(VLER); 5451 OPCODE(VSTER); 5452 OPCODE(PREFETCH); 5453 } 5454 return nullptr; 5455 #undef OPCODE 5456 } 5457 5458 // Return true if VT is a vector whose elements are a whole number of bytes 5459 // in width. Also check for presence of vector support. 5460 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5461 if (!Subtarget.hasVector()) 5462 return false; 5463 5464 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5465 } 5466 5467 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5468 // producing a result of type ResVT. Op is a possibly bitcast version 5469 // of the input vector and Index is the index (based on type VecVT) that 5470 // should be extracted. Return the new extraction if a simplification 5471 // was possible or if Force is true. 5472 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5473 EVT VecVT, SDValue Op, 5474 unsigned Index, 5475 DAGCombinerInfo &DCI, 5476 bool Force) const { 5477 SelectionDAG &DAG = DCI.DAG; 5478 5479 // The number of bytes being extracted. 5480 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5481 5482 for (;;) { 5483 unsigned Opcode = Op.getOpcode(); 5484 if (Opcode == ISD::BITCAST) 5485 // Look through bitcasts. 5486 Op = Op.getOperand(0); 5487 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5488 canTreatAsByteVector(Op.getValueType())) { 5489 // Get a VPERM-like permute mask and see whether the bytes covered 5490 // by the extracted element are a contiguous sequence from one 5491 // source operand. 5492 SmallVector<int, SystemZ::VectorBytes> Bytes; 5493 if (!getVPermMask(Op, Bytes)) 5494 break; 5495 int First; 5496 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5497 BytesPerElement, First)) 5498 break; 5499 if (First < 0) 5500 return DAG.getUNDEF(ResVT); 5501 // Make sure the contiguous sequence starts at a multiple of the 5502 // original element size. 5503 unsigned Byte = unsigned(First) % Bytes.size(); 5504 if (Byte % BytesPerElement != 0) 5505 break; 5506 // We can get the extracted value directly from an input. 5507 Index = Byte / BytesPerElement; 5508 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5509 Force = true; 5510 } else if (Opcode == ISD::BUILD_VECTOR && 5511 canTreatAsByteVector(Op.getValueType())) { 5512 // We can only optimize this case if the BUILD_VECTOR elements are 5513 // at least as wide as the extracted value. 5514 EVT OpVT = Op.getValueType(); 5515 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5516 if (OpBytesPerElement < BytesPerElement) 5517 break; 5518 // Make sure that the least-significant bit of the extracted value 5519 // is the least significant bit of an input. 5520 unsigned End = (Index + 1) * BytesPerElement; 5521 if (End % OpBytesPerElement != 0) 5522 break; 5523 // We're extracting the low part of one operand of the BUILD_VECTOR. 5524 Op = Op.getOperand(End / OpBytesPerElement - 1); 5525 if (!Op.getValueType().isInteger()) { 5526 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5527 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5528 DCI.AddToWorklist(Op.getNode()); 5529 } 5530 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5531 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5532 if (VT != ResVT) { 5533 DCI.AddToWorklist(Op.getNode()); 5534 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5535 } 5536 return Op; 5537 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5538 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5539 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5540 canTreatAsByteVector(Op.getValueType()) && 5541 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5542 // Make sure that only the unextended bits are significant. 5543 EVT ExtVT = Op.getValueType(); 5544 EVT OpVT = Op.getOperand(0).getValueType(); 5545 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5546 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5547 unsigned Byte = Index * BytesPerElement; 5548 unsigned SubByte = Byte % ExtBytesPerElement; 5549 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5550 if (SubByte < MinSubByte || 5551 SubByte + BytesPerElement > ExtBytesPerElement) 5552 break; 5553 // Get the byte offset of the unextended element 5554 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5555 // ...then add the byte offset relative to that element. 5556 Byte += SubByte - MinSubByte; 5557 if (Byte % BytesPerElement != 0) 5558 break; 5559 Op = Op.getOperand(0); 5560 Index = Byte / BytesPerElement; 5561 Force = true; 5562 } else 5563 break; 5564 } 5565 if (Force) { 5566 if (Op.getValueType() != VecVT) { 5567 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5568 DCI.AddToWorklist(Op.getNode()); 5569 } 5570 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5571 DAG.getConstant(Index, DL, MVT::i32)); 5572 } 5573 return SDValue(); 5574 } 5575 5576 // Optimize vector operations in scalar value Op on the basis that Op 5577 // is truncated to TruncVT. 5578 SDValue SystemZTargetLowering::combineTruncateExtract( 5579 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5580 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5581 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5582 // of type TruncVT. 5583 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5584 TruncVT.getSizeInBits() % 8 == 0) { 5585 SDValue Vec = Op.getOperand(0); 5586 EVT VecVT = Vec.getValueType(); 5587 if (canTreatAsByteVector(VecVT)) { 5588 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5589 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5590 unsigned TruncBytes = TruncVT.getStoreSize(); 5591 if (BytesPerElement % TruncBytes == 0) { 5592 // Calculate the value of Y' in the above description. We are 5593 // splitting the original elements into Scale equal-sized pieces 5594 // and for truncation purposes want the last (least-significant) 5595 // of these pieces for IndexN. This is easiest to do by calculating 5596 // the start index of the following element and then subtracting 1. 5597 unsigned Scale = BytesPerElement / TruncBytes; 5598 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5599 5600 // Defer the creation of the bitcast from X to combineExtract, 5601 // which might be able to optimize the extraction. 5602 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5603 VecVT.getStoreSize() / TruncBytes); 5604 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5605 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5606 } 5607 } 5608 } 5609 } 5610 return SDValue(); 5611 } 5612 5613 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5614 SDNode *N, DAGCombinerInfo &DCI) const { 5615 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5616 SelectionDAG &DAG = DCI.DAG; 5617 SDValue N0 = N->getOperand(0); 5618 EVT VT = N->getValueType(0); 5619 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5620 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5621 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5622 if (TrueOp && FalseOp) { 5623 SDLoc DL(N0); 5624 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5625 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5626 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5627 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5628 // If N0 has multiple uses, change other uses as well. 5629 if (!N0.hasOneUse()) { 5630 SDValue TruncSelect = 5631 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5632 DCI.CombineTo(N0.getNode(), TruncSelect); 5633 } 5634 return NewSelect; 5635 } 5636 } 5637 return SDValue(); 5638 } 5639 5640 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5641 SDNode *N, DAGCombinerInfo &DCI) const { 5642 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5643 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5644 // into (select_cc LHS, RHS, -1, 0, COND) 5645 SelectionDAG &DAG = DCI.DAG; 5646 SDValue N0 = N->getOperand(0); 5647 EVT VT = N->getValueType(0); 5648 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5649 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5650 N0 = N0.getOperand(0); 5651 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5652 SDLoc DL(N0); 5653 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5654 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5655 N0.getOperand(2) }; 5656 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5657 } 5658 return SDValue(); 5659 } 5660 5661 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5662 SDNode *N, DAGCombinerInfo &DCI) const { 5663 // Convert (sext (ashr (shl X, C1), C2)) to 5664 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5665 // cheap as narrower ones. 5666 SelectionDAG &DAG = DCI.DAG; 5667 SDValue N0 = N->getOperand(0); 5668 EVT VT = N->getValueType(0); 5669 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5670 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5671 SDValue Inner = N0.getOperand(0); 5672 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5673 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5674 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5675 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5676 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5677 EVT ShiftVT = N0.getOperand(1).getValueType(); 5678 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5679 Inner.getOperand(0)); 5680 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5681 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5682 ShiftVT)); 5683 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5684 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5685 } 5686 } 5687 } 5688 return SDValue(); 5689 } 5690 5691 SDValue SystemZTargetLowering::combineMERGE( 5692 SDNode *N, DAGCombinerInfo &DCI) const { 5693 SelectionDAG &DAG = DCI.DAG; 5694 unsigned Opcode = N->getOpcode(); 5695 SDValue Op0 = N->getOperand(0); 5696 SDValue Op1 = N->getOperand(1); 5697 if (Op0.getOpcode() == ISD::BITCAST) 5698 Op0 = Op0.getOperand(0); 5699 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5700 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5701 // for v4f32. 5702 if (Op1 == N->getOperand(0)) 5703 return Op1; 5704 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5705 EVT VT = Op1.getValueType(); 5706 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5707 if (ElemBytes <= 4) { 5708 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5709 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5710 EVT InVT = VT.changeVectorElementTypeToInteger(); 5711 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5712 SystemZ::VectorBytes / ElemBytes / 2); 5713 if (VT != InVT) { 5714 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5715 DCI.AddToWorklist(Op1.getNode()); 5716 } 5717 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5718 DCI.AddToWorklist(Op.getNode()); 5719 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5720 } 5721 } 5722 return SDValue(); 5723 } 5724 5725 SDValue SystemZTargetLowering::combineLOAD( 5726 SDNode *N, DAGCombinerInfo &DCI) const { 5727 SelectionDAG &DAG = DCI.DAG; 5728 EVT LdVT = N->getValueType(0); 5729 if (LdVT.isVector() || LdVT.isInteger()) 5730 return SDValue(); 5731 // Transform a scalar load that is REPLICATEd as well as having other 5732 // use(s) to the form where the other use(s) use the first element of the 5733 // REPLICATE instead of the load. Otherwise instruction selection will not 5734 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5735 // point loads. 5736 5737 SDValue Replicate; 5738 SmallVector<SDNode*, 8> OtherUses; 5739 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5740 UI != UE; ++UI) { 5741 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5742 if (Replicate) 5743 return SDValue(); // Should never happen 5744 Replicate = SDValue(*UI, 0); 5745 } 5746 else if (UI.getUse().getResNo() == 0) 5747 OtherUses.push_back(*UI); 5748 } 5749 if (!Replicate || OtherUses.empty()) 5750 return SDValue(); 5751 5752 SDLoc DL(N); 5753 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5754 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5755 // Update uses of the loaded Value while preserving old chains. 5756 for (SDNode *U : OtherUses) { 5757 SmallVector<SDValue, 8> Ops; 5758 for (SDValue Op : U->ops()) 5759 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5760 DAG.UpdateNodeOperands(U, Ops); 5761 } 5762 return SDValue(N, 0); 5763 } 5764 5765 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 5766 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 5767 return true; 5768 if (Subtarget.hasVectorEnhancements2()) 5769 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 5770 return true; 5771 return false; 5772 } 5773 5774 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 5775 if (!VT.isVector() || !VT.isSimple() || 5776 VT.getSizeInBits() != 128 || 5777 VT.getScalarSizeInBits() % 8 != 0) 5778 return false; 5779 5780 unsigned NumElts = VT.getVectorNumElements(); 5781 for (unsigned i = 0; i < NumElts; ++i) { 5782 if (M[i] < 0) continue; // ignore UNDEF indices 5783 if ((unsigned) M[i] != NumElts - 1 - i) 5784 return false; 5785 } 5786 5787 return true; 5788 } 5789 5790 SDValue SystemZTargetLowering::combineSTORE( 5791 SDNode *N, DAGCombinerInfo &DCI) const { 5792 SelectionDAG &DAG = DCI.DAG; 5793 auto *SN = cast<StoreSDNode>(N); 5794 auto &Op1 = N->getOperand(1); 5795 EVT MemVT = SN->getMemoryVT(); 5796 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5797 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5798 // If X has wider elements then convert it to: 5799 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5800 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5801 if (SDValue Value = 5802 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5803 DCI.AddToWorklist(Value.getNode()); 5804 5805 // Rewrite the store with the new form of stored value. 5806 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5807 SN->getBasePtr(), SN->getMemoryVT(), 5808 SN->getMemOperand()); 5809 } 5810 } 5811 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 5812 if (!SN->isTruncatingStore() && 5813 Op1.getOpcode() == ISD::BSWAP && 5814 Op1.getNode()->hasOneUse() && 5815 canLoadStoreByteSwapped(Op1.getValueType())) { 5816 5817 SDValue BSwapOp = Op1.getOperand(0); 5818 5819 if (BSwapOp.getValueType() == MVT::i16) 5820 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5821 5822 SDValue Ops[] = { 5823 N->getOperand(0), BSwapOp, N->getOperand(2) 5824 }; 5825 5826 return 5827 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5828 Ops, MemVT, SN->getMemOperand()); 5829 } 5830 // Combine STORE (element-swap) into VSTER 5831 if (!SN->isTruncatingStore() && 5832 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 5833 Op1.getNode()->hasOneUse() && 5834 Subtarget.hasVectorEnhancements2()) { 5835 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 5836 ArrayRef<int> ShuffleMask = SVN->getMask(); 5837 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 5838 SDValue Ops[] = { 5839 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 5840 }; 5841 5842 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 5843 DAG.getVTList(MVT::Other), 5844 Ops, MemVT, SN->getMemOperand()); 5845 } 5846 } 5847 5848 return SDValue(); 5849 } 5850 5851 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 5852 SDNode *N, DAGCombinerInfo &DCI) const { 5853 SelectionDAG &DAG = DCI.DAG; 5854 // Combine element-swap (LOAD) into VLER 5855 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5856 N->getOperand(0).hasOneUse() && 5857 Subtarget.hasVectorEnhancements2()) { 5858 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 5859 ArrayRef<int> ShuffleMask = SVN->getMask(); 5860 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 5861 SDValue Load = N->getOperand(0); 5862 LoadSDNode *LD = cast<LoadSDNode>(Load); 5863 5864 // Create the element-swapping load. 5865 SDValue Ops[] = { 5866 LD->getChain(), // Chain 5867 LD->getBasePtr() // Ptr 5868 }; 5869 SDValue ESLoad = 5870 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 5871 DAG.getVTList(LD->getValueType(0), MVT::Other), 5872 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5873 5874 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 5875 // by the load dead. 5876 DCI.CombineTo(N, ESLoad); 5877 5878 // Next, combine the load away, we give it a bogus result value but a real 5879 // chain result. The result value is dead because the shuffle is dead. 5880 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 5881 5882 // Return N so it doesn't get rechecked! 5883 return SDValue(N, 0); 5884 } 5885 } 5886 5887 return SDValue(); 5888 } 5889 5890 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5891 SDNode *N, DAGCombinerInfo &DCI) const { 5892 SelectionDAG &DAG = DCI.DAG; 5893 5894 if (!Subtarget.hasVector()) 5895 return SDValue(); 5896 5897 // Look through bitcasts that retain the number of vector elements. 5898 SDValue Op = N->getOperand(0); 5899 if (Op.getOpcode() == ISD::BITCAST && 5900 Op.getValueType().isVector() && 5901 Op.getOperand(0).getValueType().isVector() && 5902 Op.getValueType().getVectorNumElements() == 5903 Op.getOperand(0).getValueType().getVectorNumElements()) 5904 Op = Op.getOperand(0); 5905 5906 // Pull BSWAP out of a vector extraction. 5907 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 5908 EVT VecVT = Op.getValueType(); 5909 EVT EltVT = VecVT.getVectorElementType(); 5910 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 5911 Op.getOperand(0), N->getOperand(1)); 5912 DCI.AddToWorklist(Op.getNode()); 5913 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 5914 if (EltVT != N->getValueType(0)) { 5915 DCI.AddToWorklist(Op.getNode()); 5916 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 5917 } 5918 return Op; 5919 } 5920 5921 // Try to simplify a vector extraction. 5922 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5923 SDValue Op0 = N->getOperand(0); 5924 EVT VecVT = Op0.getValueType(); 5925 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5926 IndexN->getZExtValue(), DCI, false); 5927 } 5928 return SDValue(); 5929 } 5930 5931 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5932 SDNode *N, DAGCombinerInfo &DCI) const { 5933 SelectionDAG &DAG = DCI.DAG; 5934 // (join_dwords X, X) == (replicate X) 5935 if (N->getOperand(0) == N->getOperand(1)) 5936 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5937 N->getOperand(0)); 5938 return SDValue(); 5939 } 5940 5941 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 5942 SDValue Chain1 = N1->getOperand(0); 5943 SDValue Chain2 = N2->getOperand(0); 5944 5945 // Trivial case: both nodes take the same chain. 5946 if (Chain1 == Chain2) 5947 return Chain1; 5948 5949 // FIXME - we could handle more complex cases via TokenFactor, 5950 // assuming we can verify that this would not create a cycle. 5951 return SDValue(); 5952 } 5953 5954 SDValue SystemZTargetLowering::combineFP_ROUND( 5955 SDNode *N, DAGCombinerInfo &DCI) const { 5956 5957 if (!Subtarget.hasVector()) 5958 return SDValue(); 5959 5960 // (fpround (extract_vector_elt X 0)) 5961 // (fpround (extract_vector_elt X 1)) -> 5962 // (extract_vector_elt (VROUND X) 0) 5963 // (extract_vector_elt (VROUND X) 2) 5964 // 5965 // This is a special case since the target doesn't really support v2f32s. 5966 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 5967 SelectionDAG &DAG = DCI.DAG; 5968 SDValue Op0 = N->getOperand(OpNo); 5969 if (N->getValueType(0) == MVT::f32 && 5970 Op0.hasOneUse() && 5971 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5972 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5973 Op0.getOperand(1).getOpcode() == ISD::Constant && 5974 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5975 SDValue Vec = Op0.getOperand(0); 5976 for (auto *U : Vec->uses()) { 5977 if (U != Op0.getNode() && 5978 U->hasOneUse() && 5979 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5980 U->getOperand(0) == Vec && 5981 U->getOperand(1).getOpcode() == ISD::Constant && 5982 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5983 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5984 if (OtherRound.getOpcode() == N->getOpcode() && 5985 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 5986 OtherRound.getValueType() == MVT::f32) { 5987 SDValue VRound, Chain; 5988 if (N->isStrictFPOpcode()) { 5989 Chain = MergeInputChains(N, OtherRound.getNode()); 5990 if (!Chain) 5991 continue; 5992 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 5993 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 5994 Chain = VRound.getValue(1); 5995 } else 5996 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5997 MVT::v4f32, Vec); 5998 DCI.AddToWorklist(VRound.getNode()); 5999 SDValue Extract1 = 6000 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 6001 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 6002 DCI.AddToWorklist(Extract1.getNode()); 6003 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6004 if (Chain) 6005 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 6006 SDValue Extract0 = 6007 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 6008 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6009 if (Chain) 6010 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6011 N->getVTList(), Extract0, Chain); 6012 return Extract0; 6013 } 6014 } 6015 } 6016 } 6017 return SDValue(); 6018 } 6019 6020 SDValue SystemZTargetLowering::combineFP_EXTEND( 6021 SDNode *N, DAGCombinerInfo &DCI) const { 6022 6023 if (!Subtarget.hasVector()) 6024 return SDValue(); 6025 6026 // (fpextend (extract_vector_elt X 0)) 6027 // (fpextend (extract_vector_elt X 2)) -> 6028 // (extract_vector_elt (VEXTEND X) 0) 6029 // (extract_vector_elt (VEXTEND X) 1) 6030 // 6031 // This is a special case since the target doesn't really support v2f32s. 6032 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6033 SelectionDAG &DAG = DCI.DAG; 6034 SDValue Op0 = N->getOperand(OpNo); 6035 if (N->getValueType(0) == MVT::f64 && 6036 Op0.hasOneUse() && 6037 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6038 Op0.getOperand(0).getValueType() == MVT::v4f32 && 6039 Op0.getOperand(1).getOpcode() == ISD::Constant && 6040 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6041 SDValue Vec = Op0.getOperand(0); 6042 for (auto *U : Vec->uses()) { 6043 if (U != Op0.getNode() && 6044 U->hasOneUse() && 6045 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6046 U->getOperand(0) == Vec && 6047 U->getOperand(1).getOpcode() == ISD::Constant && 6048 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 6049 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6050 if (OtherExtend.getOpcode() == N->getOpcode() && 6051 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 6052 OtherExtend.getValueType() == MVT::f64) { 6053 SDValue VExtend, Chain; 6054 if (N->isStrictFPOpcode()) { 6055 Chain = MergeInputChains(N, OtherExtend.getNode()); 6056 if (!Chain) 6057 continue; 6058 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6059 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6060 Chain = VExtend.getValue(1); 6061 } else 6062 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 6063 MVT::v2f64, Vec); 6064 DCI.AddToWorklist(VExtend.getNode()); 6065 SDValue Extract1 = 6066 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 6067 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 6068 DCI.AddToWorklist(Extract1.getNode()); 6069 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6070 if (Chain) 6071 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 6072 SDValue Extract0 = 6073 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 6074 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6075 if (Chain) 6076 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6077 N->getVTList(), Extract0, Chain); 6078 return Extract0; 6079 } 6080 } 6081 } 6082 } 6083 return SDValue(); 6084 } 6085 6086 SDValue SystemZTargetLowering::combineINT_TO_FP( 6087 SDNode *N, DAGCombinerInfo &DCI) const { 6088 if (DCI.Level != BeforeLegalizeTypes) 6089 return SDValue(); 6090 unsigned Opcode = N->getOpcode(); 6091 EVT OutVT = N->getValueType(0); 6092 SelectionDAG &DAG = DCI.DAG; 6093 SDValue Op = N->getOperand(0); 6094 unsigned OutScalarBits = OutVT.getScalarSizeInBits(); 6095 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 6096 6097 // Insert an extension before type-legalization to avoid scalarization, e.g.: 6098 // v2f64 = uint_to_fp v2i16 6099 // => 6100 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 6101 if (OutVT.isVector() && OutScalarBits > InScalarBits) { 6102 MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()), 6103 OutVT.getVectorNumElements()); 6104 unsigned ExtOpcode = 6105 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 6106 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 6107 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 6108 } 6109 return SDValue(); 6110 } 6111 6112 SDValue SystemZTargetLowering::combineBSWAP( 6113 SDNode *N, DAGCombinerInfo &DCI) const { 6114 SelectionDAG &DAG = DCI.DAG; 6115 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6116 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6117 N->getOperand(0).hasOneUse() && 6118 canLoadStoreByteSwapped(N->getValueType(0))) { 6119 SDValue Load = N->getOperand(0); 6120 LoadSDNode *LD = cast<LoadSDNode>(Load); 6121 6122 // Create the byte-swapping load. 6123 SDValue Ops[] = { 6124 LD->getChain(), // Chain 6125 LD->getBasePtr() // Ptr 6126 }; 6127 EVT LoadVT = N->getValueType(0); 6128 if (LoadVT == MVT::i16) 6129 LoadVT = MVT::i32; 6130 SDValue BSLoad = 6131 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6132 DAG.getVTList(LoadVT, MVT::Other), 6133 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6134 6135 // If this is an i16 load, insert the truncate. 6136 SDValue ResVal = BSLoad; 6137 if (N->getValueType(0) == MVT::i16) 6138 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6139 6140 // First, combine the bswap away. This makes the value produced by the 6141 // load dead. 6142 DCI.CombineTo(N, ResVal); 6143 6144 // Next, combine the load away, we give it a bogus result value but a real 6145 // chain result. The result value is dead because the bswap is dead. 6146 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6147 6148 // Return N so it doesn't get rechecked! 6149 return SDValue(N, 0); 6150 } 6151 6152 // Look through bitcasts that retain the number of vector elements. 6153 SDValue Op = N->getOperand(0); 6154 if (Op.getOpcode() == ISD::BITCAST && 6155 Op.getValueType().isVector() && 6156 Op.getOperand(0).getValueType().isVector() && 6157 Op.getValueType().getVectorNumElements() == 6158 Op.getOperand(0).getValueType().getVectorNumElements()) 6159 Op = Op.getOperand(0); 6160 6161 // Push BSWAP into a vector insertion if at least one side then simplifies. 6162 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6163 SDValue Vec = Op.getOperand(0); 6164 SDValue Elt = Op.getOperand(1); 6165 SDValue Idx = Op.getOperand(2); 6166 6167 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6168 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6169 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6170 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6171 (canLoadStoreByteSwapped(N->getValueType(0)) && 6172 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6173 EVT VecVT = N->getValueType(0); 6174 EVT EltVT = N->getValueType(0).getVectorElementType(); 6175 if (VecVT != Vec.getValueType()) { 6176 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6177 DCI.AddToWorklist(Vec.getNode()); 6178 } 6179 if (EltVT != Elt.getValueType()) { 6180 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6181 DCI.AddToWorklist(Elt.getNode()); 6182 } 6183 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6184 DCI.AddToWorklist(Vec.getNode()); 6185 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6186 DCI.AddToWorklist(Elt.getNode()); 6187 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6188 Vec, Elt, Idx); 6189 } 6190 } 6191 6192 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6193 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6194 if (SV && Op.hasOneUse()) { 6195 SDValue Op0 = Op.getOperand(0); 6196 SDValue Op1 = Op.getOperand(1); 6197 6198 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6199 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6200 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6201 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6202 EVT VecVT = N->getValueType(0); 6203 if (VecVT != Op0.getValueType()) { 6204 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6205 DCI.AddToWorklist(Op0.getNode()); 6206 } 6207 if (VecVT != Op1.getValueType()) { 6208 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6209 DCI.AddToWorklist(Op1.getNode()); 6210 } 6211 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6212 DCI.AddToWorklist(Op0.getNode()); 6213 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6214 DCI.AddToWorklist(Op1.getNode()); 6215 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6216 } 6217 } 6218 6219 return SDValue(); 6220 } 6221 6222 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6223 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6224 // set by the CCReg instruction using the CCValid / CCMask masks, 6225 // If the CCReg instruction is itself a ICMP testing the condition 6226 // code set by some other instruction, see whether we can directly 6227 // use that condition code. 6228 6229 // Verify that we have an ICMP against some constant. 6230 if (CCValid != SystemZ::CCMASK_ICMP) 6231 return false; 6232 auto *ICmp = CCReg.getNode(); 6233 if (ICmp->getOpcode() != SystemZISD::ICMP) 6234 return false; 6235 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6236 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6237 if (!CompareRHS) 6238 return false; 6239 6240 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6241 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6242 // Verify that we have an appropriate mask for a EQ or NE comparison. 6243 bool Invert = false; 6244 if (CCMask == SystemZ::CCMASK_CMP_NE) 6245 Invert = !Invert; 6246 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6247 return false; 6248 6249 // Verify that the ICMP compares against one of select values. 6250 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6251 if (!TrueVal) 6252 return false; 6253 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6254 if (!FalseVal) 6255 return false; 6256 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6257 Invert = !Invert; 6258 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6259 return false; 6260 6261 // Compute the effective CC mask for the new branch or select. 6262 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6263 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6264 if (!NewCCValid || !NewCCMask) 6265 return false; 6266 CCValid = NewCCValid->getZExtValue(); 6267 CCMask = NewCCMask->getZExtValue(); 6268 if (Invert) 6269 CCMask ^= CCValid; 6270 6271 // Return the updated CCReg link. 6272 CCReg = CompareLHS->getOperand(4); 6273 return true; 6274 } 6275 6276 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6277 if (CompareLHS->getOpcode() == ISD::SRA) { 6278 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6279 if (!SRACount || SRACount->getZExtValue() != 30) 6280 return false; 6281 auto *SHL = CompareLHS->getOperand(0).getNode(); 6282 if (SHL->getOpcode() != ISD::SHL) 6283 return false; 6284 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6285 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6286 return false; 6287 auto *IPM = SHL->getOperand(0).getNode(); 6288 if (IPM->getOpcode() != SystemZISD::IPM) 6289 return false; 6290 6291 // Avoid introducing CC spills (because SRA would clobber CC). 6292 if (!CompareLHS->hasOneUse()) 6293 return false; 6294 // Verify that the ICMP compares against zero. 6295 if (CompareRHS->getZExtValue() != 0) 6296 return false; 6297 6298 // Compute the effective CC mask for the new branch or select. 6299 CCMask = SystemZ::reverseCCMask(CCMask); 6300 6301 // Return the updated CCReg link. 6302 CCReg = IPM->getOperand(0); 6303 return true; 6304 } 6305 6306 return false; 6307 } 6308 6309 SDValue SystemZTargetLowering::combineBR_CCMASK( 6310 SDNode *N, DAGCombinerInfo &DCI) const { 6311 SelectionDAG &DAG = DCI.DAG; 6312 6313 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6314 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6315 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6316 if (!CCValid || !CCMask) 6317 return SDValue(); 6318 6319 int CCValidVal = CCValid->getZExtValue(); 6320 int CCMaskVal = CCMask->getZExtValue(); 6321 SDValue Chain = N->getOperand(0); 6322 SDValue CCReg = N->getOperand(4); 6323 6324 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6325 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6326 Chain, 6327 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6328 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6329 N->getOperand(3), CCReg); 6330 return SDValue(); 6331 } 6332 6333 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6334 SDNode *N, DAGCombinerInfo &DCI) const { 6335 SelectionDAG &DAG = DCI.DAG; 6336 6337 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6338 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6339 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6340 if (!CCValid || !CCMask) 6341 return SDValue(); 6342 6343 int CCValidVal = CCValid->getZExtValue(); 6344 int CCMaskVal = CCMask->getZExtValue(); 6345 SDValue CCReg = N->getOperand(4); 6346 6347 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6348 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6349 N->getOperand(0), N->getOperand(1), 6350 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6351 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6352 CCReg); 6353 return SDValue(); 6354 } 6355 6356 6357 SDValue SystemZTargetLowering::combineGET_CCMASK( 6358 SDNode *N, DAGCombinerInfo &DCI) const { 6359 6360 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6361 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6362 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6363 if (!CCValid || !CCMask) 6364 return SDValue(); 6365 int CCValidVal = CCValid->getZExtValue(); 6366 int CCMaskVal = CCMask->getZExtValue(); 6367 6368 SDValue Select = N->getOperand(0); 6369 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6370 return SDValue(); 6371 6372 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6373 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6374 if (!SelectCCValid || !SelectCCMask) 6375 return SDValue(); 6376 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6377 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6378 6379 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6380 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6381 if (!TrueVal || !FalseVal) 6382 return SDValue(); 6383 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6384 ; 6385 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6386 SelectCCMaskVal ^= SelectCCValidVal; 6387 else 6388 return SDValue(); 6389 6390 if (SelectCCValidVal & ~CCValidVal) 6391 return SDValue(); 6392 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6393 return SDValue(); 6394 6395 return Select->getOperand(4); 6396 } 6397 6398 SDValue SystemZTargetLowering::combineIntDIVREM( 6399 SDNode *N, DAGCombinerInfo &DCI) const { 6400 SelectionDAG &DAG = DCI.DAG; 6401 EVT VT = N->getValueType(0); 6402 // In the case where the divisor is a vector of constants a cheaper 6403 // sequence of instructions can replace the divide. BuildSDIV is called to 6404 // do this during DAG combining, but it only succeeds when it can build a 6405 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6406 // since it is not Legal but Custom it can only happen before 6407 // legalization. Therefore we must scalarize this early before Combine 6408 // 1. For widened vectors, this is already the result of type legalization. 6409 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6410 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6411 return DAG.UnrollVectorOp(N); 6412 return SDValue(); 6413 } 6414 6415 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6416 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6417 return N->getOperand(0); 6418 return N; 6419 } 6420 6421 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6422 DAGCombinerInfo &DCI) const { 6423 switch(N->getOpcode()) { 6424 default: break; 6425 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6426 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6427 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6428 case SystemZISD::MERGE_HIGH: 6429 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6430 case ISD::LOAD: return combineLOAD(N, DCI); 6431 case ISD::STORE: return combineSTORE(N, DCI); 6432 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6433 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6434 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6435 case ISD::STRICT_FP_ROUND: 6436 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6437 case ISD::STRICT_FP_EXTEND: 6438 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6439 case ISD::SINT_TO_FP: 6440 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 6441 case ISD::BSWAP: return combineBSWAP(N, DCI); 6442 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6443 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6444 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6445 case ISD::SDIV: 6446 case ISD::UDIV: 6447 case ISD::SREM: 6448 case ISD::UREM: return combineIntDIVREM(N, DCI); 6449 } 6450 6451 return SDValue(); 6452 } 6453 6454 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6455 // are for Op. 6456 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6457 unsigned OpNo) { 6458 EVT VT = Op.getValueType(); 6459 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6460 APInt SrcDemE; 6461 unsigned Opcode = Op.getOpcode(); 6462 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6463 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6464 switch (Id) { 6465 case Intrinsic::s390_vpksh: // PACKS 6466 case Intrinsic::s390_vpksf: 6467 case Intrinsic::s390_vpksg: 6468 case Intrinsic::s390_vpkshs: // PACKS_CC 6469 case Intrinsic::s390_vpksfs: 6470 case Intrinsic::s390_vpksgs: 6471 case Intrinsic::s390_vpklsh: // PACKLS 6472 case Intrinsic::s390_vpklsf: 6473 case Intrinsic::s390_vpklsg: 6474 case Intrinsic::s390_vpklshs: // PACKLS_CC 6475 case Intrinsic::s390_vpklsfs: 6476 case Intrinsic::s390_vpklsgs: 6477 // VECTOR PACK truncates the elements of two source vectors into one. 6478 SrcDemE = DemandedElts; 6479 if (OpNo == 2) 6480 SrcDemE.lshrInPlace(NumElts / 2); 6481 SrcDemE = SrcDemE.trunc(NumElts / 2); 6482 break; 6483 // VECTOR UNPACK extends half the elements of the source vector. 6484 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6485 case Intrinsic::s390_vuphh: 6486 case Intrinsic::s390_vuphf: 6487 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6488 case Intrinsic::s390_vuplhh: 6489 case Intrinsic::s390_vuplhf: 6490 SrcDemE = APInt(NumElts * 2, 0); 6491 SrcDemE.insertBits(DemandedElts, 0); 6492 break; 6493 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6494 case Intrinsic::s390_vuplhw: 6495 case Intrinsic::s390_vuplf: 6496 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6497 case Intrinsic::s390_vupllh: 6498 case Intrinsic::s390_vupllf: 6499 SrcDemE = APInt(NumElts * 2, 0); 6500 SrcDemE.insertBits(DemandedElts, NumElts); 6501 break; 6502 case Intrinsic::s390_vpdi: { 6503 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6504 SrcDemE = APInt(NumElts, 0); 6505 if (!DemandedElts[OpNo - 1]) 6506 break; 6507 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6508 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6509 // Demand input element 0 or 1, given by the mask bit value. 6510 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6511 break; 6512 } 6513 case Intrinsic::s390_vsldb: { 6514 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6515 assert(VT == MVT::v16i8 && "Unexpected type."); 6516 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6517 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6518 unsigned NumSrc0Els = 16 - FirstIdx; 6519 SrcDemE = APInt(NumElts, 0); 6520 if (OpNo == 1) { 6521 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6522 SrcDemE.insertBits(DemEls, FirstIdx); 6523 } else { 6524 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6525 SrcDemE.insertBits(DemEls, 0); 6526 } 6527 break; 6528 } 6529 case Intrinsic::s390_vperm: 6530 SrcDemE = APInt(NumElts, 1); 6531 break; 6532 default: 6533 llvm_unreachable("Unhandled intrinsic."); 6534 break; 6535 } 6536 } else { 6537 switch (Opcode) { 6538 case SystemZISD::JOIN_DWORDS: 6539 // Scalar operand. 6540 SrcDemE = APInt(1, 1); 6541 break; 6542 case SystemZISD::SELECT_CCMASK: 6543 SrcDemE = DemandedElts; 6544 break; 6545 default: 6546 llvm_unreachable("Unhandled opcode."); 6547 break; 6548 } 6549 } 6550 return SrcDemE; 6551 } 6552 6553 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6554 const APInt &DemandedElts, 6555 const SelectionDAG &DAG, unsigned Depth, 6556 unsigned OpNo) { 6557 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6558 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6559 KnownBits LHSKnown = 6560 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6561 KnownBits RHSKnown = 6562 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6563 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 6564 Known.One = LHSKnown.One & RHSKnown.One; 6565 } 6566 6567 void 6568 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6569 KnownBits &Known, 6570 const APInt &DemandedElts, 6571 const SelectionDAG &DAG, 6572 unsigned Depth) const { 6573 Known.resetAll(); 6574 6575 // Intrinsic CC result is returned in the two low bits. 6576 unsigned tmp0, tmp1; // not used 6577 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6578 Known.Zero.setBitsFrom(2); 6579 return; 6580 } 6581 EVT VT = Op.getValueType(); 6582 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6583 return; 6584 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6585 "KnownBits does not match VT in bitwidth"); 6586 assert ((!VT.isVector() || 6587 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6588 "DemandedElts does not match VT number of elements"); 6589 unsigned BitWidth = Known.getBitWidth(); 6590 unsigned Opcode = Op.getOpcode(); 6591 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6592 bool IsLogical = false; 6593 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6594 switch (Id) { 6595 case Intrinsic::s390_vpksh: // PACKS 6596 case Intrinsic::s390_vpksf: 6597 case Intrinsic::s390_vpksg: 6598 case Intrinsic::s390_vpkshs: // PACKS_CC 6599 case Intrinsic::s390_vpksfs: 6600 case Intrinsic::s390_vpksgs: 6601 case Intrinsic::s390_vpklsh: // PACKLS 6602 case Intrinsic::s390_vpklsf: 6603 case Intrinsic::s390_vpklsg: 6604 case Intrinsic::s390_vpklshs: // PACKLS_CC 6605 case Intrinsic::s390_vpklsfs: 6606 case Intrinsic::s390_vpklsgs: 6607 case Intrinsic::s390_vpdi: 6608 case Intrinsic::s390_vsldb: 6609 case Intrinsic::s390_vperm: 6610 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6611 break; 6612 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6613 case Intrinsic::s390_vuplhh: 6614 case Intrinsic::s390_vuplhf: 6615 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6616 case Intrinsic::s390_vupllh: 6617 case Intrinsic::s390_vupllf: 6618 IsLogical = true; 6619 LLVM_FALLTHROUGH; 6620 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6621 case Intrinsic::s390_vuphh: 6622 case Intrinsic::s390_vuphf: 6623 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6624 case Intrinsic::s390_vuplhw: 6625 case Intrinsic::s390_vuplf: { 6626 SDValue SrcOp = Op.getOperand(1); 6627 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6628 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6629 if (IsLogical) { 6630 Known = Known.zext(BitWidth); 6631 } else 6632 Known = Known.sext(BitWidth); 6633 break; 6634 } 6635 default: 6636 break; 6637 } 6638 } else { 6639 switch (Opcode) { 6640 case SystemZISD::JOIN_DWORDS: 6641 case SystemZISD::SELECT_CCMASK: 6642 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6643 break; 6644 case SystemZISD::REPLICATE: { 6645 SDValue SrcOp = Op.getOperand(0); 6646 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6647 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6648 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6649 break; 6650 } 6651 default: 6652 break; 6653 } 6654 } 6655 6656 // Known has the width of the source operand(s). Adjust if needed to match 6657 // the passed bitwidth. 6658 if (Known.getBitWidth() != BitWidth) 6659 Known = Known.anyextOrTrunc(BitWidth); 6660 } 6661 6662 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6663 const SelectionDAG &DAG, unsigned Depth, 6664 unsigned OpNo) { 6665 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6666 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6667 if (LHS == 1) return 1; // Early out. 6668 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6669 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6670 if (RHS == 1) return 1; // Early out. 6671 unsigned Common = std::min(LHS, RHS); 6672 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6673 EVT VT = Op.getValueType(); 6674 unsigned VTBits = VT.getScalarSizeInBits(); 6675 if (SrcBitWidth > VTBits) { // PACK 6676 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6677 if (Common > SrcExtraBits) 6678 return (Common - SrcExtraBits); 6679 return 1; 6680 } 6681 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6682 return Common; 6683 } 6684 6685 unsigned 6686 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6687 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6688 unsigned Depth) const { 6689 if (Op.getResNo() != 0) 6690 return 1; 6691 unsigned Opcode = Op.getOpcode(); 6692 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6693 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6694 switch (Id) { 6695 case Intrinsic::s390_vpksh: // PACKS 6696 case Intrinsic::s390_vpksf: 6697 case Intrinsic::s390_vpksg: 6698 case Intrinsic::s390_vpkshs: // PACKS_CC 6699 case Intrinsic::s390_vpksfs: 6700 case Intrinsic::s390_vpksgs: 6701 case Intrinsic::s390_vpklsh: // PACKLS 6702 case Intrinsic::s390_vpklsf: 6703 case Intrinsic::s390_vpklsg: 6704 case Intrinsic::s390_vpklshs: // PACKLS_CC 6705 case Intrinsic::s390_vpklsfs: 6706 case Intrinsic::s390_vpklsgs: 6707 case Intrinsic::s390_vpdi: 6708 case Intrinsic::s390_vsldb: 6709 case Intrinsic::s390_vperm: 6710 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6711 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6712 case Intrinsic::s390_vuphh: 6713 case Intrinsic::s390_vuphf: 6714 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6715 case Intrinsic::s390_vuplhw: 6716 case Intrinsic::s390_vuplf: { 6717 SDValue PackedOp = Op.getOperand(1); 6718 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6719 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6720 EVT VT = Op.getValueType(); 6721 unsigned VTBits = VT.getScalarSizeInBits(); 6722 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6723 return Tmp; 6724 } 6725 default: 6726 break; 6727 } 6728 } else { 6729 switch (Opcode) { 6730 case SystemZISD::SELECT_CCMASK: 6731 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6732 default: 6733 break; 6734 } 6735 } 6736 6737 return 1; 6738 } 6739 6740 //===----------------------------------------------------------------------===// 6741 // Custom insertion 6742 //===----------------------------------------------------------------------===// 6743 6744 // Create a new basic block after MBB. 6745 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 6746 MachineFunction &MF = *MBB->getParent(); 6747 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 6748 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 6749 return NewMBB; 6750 } 6751 6752 // Split MBB after MI and return the new block (the one that contains 6753 // instructions after MI). 6754 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 6755 MachineBasicBlock *MBB) { 6756 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6757 NewMBB->splice(NewMBB->begin(), MBB, 6758 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6759 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6760 return NewMBB; 6761 } 6762 6763 // Split MBB before MI and return the new block (the one that contains MI). 6764 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6765 MachineBasicBlock *MBB) { 6766 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6767 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6768 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6769 return NewMBB; 6770 } 6771 6772 // Force base value Base into a register before MI. Return the register. 6773 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 6774 const SystemZInstrInfo *TII) { 6775 if (Base.isReg()) 6776 return Base.getReg(); 6777 6778 MachineBasicBlock *MBB = MI.getParent(); 6779 MachineFunction &MF = *MBB->getParent(); 6780 MachineRegisterInfo &MRI = MF.getRegInfo(); 6781 6782 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6783 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6784 .add(Base) 6785 .addImm(0) 6786 .addReg(0); 6787 return Reg; 6788 } 6789 6790 // The CC operand of MI might be missing a kill marker because there 6791 // were multiple uses of CC, and ISel didn't know which to mark. 6792 // Figure out whether MI should have had a kill marker. 6793 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6794 // Scan forward through BB for a use/def of CC. 6795 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6796 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6797 const MachineInstr& mi = *miI; 6798 if (mi.readsRegister(SystemZ::CC)) 6799 return false; 6800 if (mi.definesRegister(SystemZ::CC)) 6801 break; // Should have kill-flag - update below. 6802 } 6803 6804 // If we hit the end of the block, check whether CC is live into a 6805 // successor. 6806 if (miI == MBB->end()) { 6807 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6808 if ((*SI)->isLiveIn(SystemZ::CC)) 6809 return false; 6810 } 6811 6812 return true; 6813 } 6814 6815 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6816 // together with other Select pseudo-opcodes into a single basic-block with 6817 // a conditional jump around it. 6818 static bool isSelectPseudo(MachineInstr &MI) { 6819 switch (MI.getOpcode()) { 6820 case SystemZ::Select32: 6821 case SystemZ::Select64: 6822 case SystemZ::SelectF32: 6823 case SystemZ::SelectF64: 6824 case SystemZ::SelectF128: 6825 case SystemZ::SelectVR32: 6826 case SystemZ::SelectVR64: 6827 case SystemZ::SelectVR128: 6828 return true; 6829 6830 default: 6831 return false; 6832 } 6833 } 6834 6835 // Helper function, which inserts PHI functions into SinkMBB: 6836 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6837 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 6838 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 6839 MachineBasicBlock *TrueMBB, 6840 MachineBasicBlock *FalseMBB, 6841 MachineBasicBlock *SinkMBB) { 6842 MachineFunction *MF = TrueMBB->getParent(); 6843 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6844 6845 MachineInstr *FirstMI = Selects.front(); 6846 unsigned CCValid = FirstMI->getOperand(3).getImm(); 6847 unsigned CCMask = FirstMI->getOperand(4).getImm(); 6848 6849 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6850 6851 // As we are creating the PHIs, we have to be careful if there is more than 6852 // one. Later Selects may reference the results of earlier Selects, but later 6853 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6854 // That also means that PHI construction must work forward from earlier to 6855 // later, and that the code must maintain a mapping from earlier PHI's 6856 // destination registers, and the registers that went into the PHI. 6857 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6858 6859 for (auto MI : Selects) { 6860 Register DestReg = MI->getOperand(0).getReg(); 6861 Register TrueReg = MI->getOperand(1).getReg(); 6862 Register FalseReg = MI->getOperand(2).getReg(); 6863 6864 // If this Select we are generating is the opposite condition from 6865 // the jump we generated, then we have to swap the operands for the 6866 // PHI that is going to be generated. 6867 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 6868 std::swap(TrueReg, FalseReg); 6869 6870 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6871 TrueReg = RegRewriteTable[TrueReg].first; 6872 6873 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6874 FalseReg = RegRewriteTable[FalseReg].second; 6875 6876 DebugLoc DL = MI->getDebugLoc(); 6877 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6878 .addReg(TrueReg).addMBB(TrueMBB) 6879 .addReg(FalseReg).addMBB(FalseMBB); 6880 6881 // Add this PHI to the rewrite table. 6882 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6883 } 6884 6885 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6886 } 6887 6888 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6889 MachineBasicBlock * 6890 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6891 MachineBasicBlock *MBB) const { 6892 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 6893 const SystemZInstrInfo *TII = 6894 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6895 6896 unsigned CCValid = MI.getOperand(3).getImm(); 6897 unsigned CCMask = MI.getOperand(4).getImm(); 6898 6899 // If we have a sequence of Select* pseudo instructions using the 6900 // same condition code value, we want to expand all of them into 6901 // a single pair of basic blocks using the same condition. 6902 SmallVector<MachineInstr*, 8> Selects; 6903 SmallVector<MachineInstr*, 8> DbgValues; 6904 Selects.push_back(&MI); 6905 unsigned Count = 0; 6906 for (MachineBasicBlock::iterator NextMIIt = 6907 std::next(MachineBasicBlock::iterator(MI)); 6908 NextMIIt != MBB->end(); ++NextMIIt) { 6909 if (isSelectPseudo(*NextMIIt)) { 6910 assert(NextMIIt->getOperand(3).getImm() == CCValid && 6911 "Bad CCValid operands since CC was not redefined."); 6912 if (NextMIIt->getOperand(4).getImm() == CCMask || 6913 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 6914 Selects.push_back(&*NextMIIt); 6915 continue; 6916 } 6917 break; 6918 } 6919 if (NextMIIt->definesRegister(SystemZ::CC) || 6920 NextMIIt->usesCustomInsertionHook()) 6921 break; 6922 bool User = false; 6923 for (auto SelMI : Selects) 6924 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 6925 User = true; 6926 break; 6927 } 6928 if (NextMIIt->isDebugInstr()) { 6929 if (User) { 6930 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 6931 DbgValues.push_back(&*NextMIIt); 6932 } 6933 } 6934 else if (User || ++Count > 20) 6935 break; 6936 } 6937 6938 MachineInstr *LastMI = Selects.back(); 6939 bool CCKilled = 6940 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 6941 MachineBasicBlock *StartMBB = MBB; 6942 MachineBasicBlock *JoinMBB = splitBlockAfter(LastMI, MBB); 6943 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6944 6945 // Unless CC was killed in the last Select instruction, mark it as 6946 // live-in to both FalseMBB and JoinMBB. 6947 if (!CCKilled) { 6948 FalseMBB->addLiveIn(SystemZ::CC); 6949 JoinMBB->addLiveIn(SystemZ::CC); 6950 } 6951 6952 // StartMBB: 6953 // BRC CCMask, JoinMBB 6954 // # fallthrough to FalseMBB 6955 MBB = StartMBB; 6956 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 6957 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6958 MBB->addSuccessor(JoinMBB); 6959 MBB->addSuccessor(FalseMBB); 6960 6961 // FalseMBB: 6962 // # fallthrough to JoinMBB 6963 MBB = FalseMBB; 6964 MBB->addSuccessor(JoinMBB); 6965 6966 // JoinMBB: 6967 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 6968 // ... 6969 MBB = JoinMBB; 6970 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 6971 for (auto SelMI : Selects) 6972 SelMI->eraseFromParent(); 6973 6974 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 6975 for (auto DbgMI : DbgValues) 6976 MBB->splice(InsertPos, StartMBB, DbgMI); 6977 6978 return JoinMBB; 6979 } 6980 6981 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 6982 // StoreOpcode is the store to use and Invert says whether the store should 6983 // happen when the condition is false rather than true. If a STORE ON 6984 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 6985 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 6986 MachineBasicBlock *MBB, 6987 unsigned StoreOpcode, 6988 unsigned STOCOpcode, 6989 bool Invert) const { 6990 const SystemZInstrInfo *TII = 6991 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6992 6993 Register SrcReg = MI.getOperand(0).getReg(); 6994 MachineOperand Base = MI.getOperand(1); 6995 int64_t Disp = MI.getOperand(2).getImm(); 6996 Register IndexReg = MI.getOperand(3).getReg(); 6997 unsigned CCValid = MI.getOperand(4).getImm(); 6998 unsigned CCMask = MI.getOperand(5).getImm(); 6999 DebugLoc DL = MI.getDebugLoc(); 7000 7001 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 7002 7003 // Use STOCOpcode if possible. We could use different store patterns in 7004 // order to avoid matching the index register, but the performance trade-offs 7005 // might be more complicated in that case. 7006 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 7007 if (Invert) 7008 CCMask ^= CCValid; 7009 7010 // ISel pattern matching also adds a load memory operand of the same 7011 // address, so take special care to find the storing memory operand. 7012 MachineMemOperand *MMO = nullptr; 7013 for (auto *I : MI.memoperands()) 7014 if (I->isStore()) { 7015 MMO = I; 7016 break; 7017 } 7018 7019 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 7020 .addReg(SrcReg) 7021 .add(Base) 7022 .addImm(Disp) 7023 .addImm(CCValid) 7024 .addImm(CCMask) 7025 .addMemOperand(MMO); 7026 7027 MI.eraseFromParent(); 7028 return MBB; 7029 } 7030 7031 // Get the condition needed to branch around the store. 7032 if (!Invert) 7033 CCMask ^= CCValid; 7034 7035 MachineBasicBlock *StartMBB = MBB; 7036 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 7037 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 7038 7039 // Unless CC was killed in the CondStore instruction, mark it as 7040 // live-in to both FalseMBB and JoinMBB. 7041 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 7042 FalseMBB->addLiveIn(SystemZ::CC); 7043 JoinMBB->addLiveIn(SystemZ::CC); 7044 } 7045 7046 // StartMBB: 7047 // BRC CCMask, JoinMBB 7048 // # fallthrough to FalseMBB 7049 MBB = StartMBB; 7050 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7051 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7052 MBB->addSuccessor(JoinMBB); 7053 MBB->addSuccessor(FalseMBB); 7054 7055 // FalseMBB: 7056 // store %SrcReg, %Disp(%Index,%Base) 7057 // # fallthrough to JoinMBB 7058 MBB = FalseMBB; 7059 BuildMI(MBB, DL, TII->get(StoreOpcode)) 7060 .addReg(SrcReg) 7061 .add(Base) 7062 .addImm(Disp) 7063 .addReg(IndexReg); 7064 MBB->addSuccessor(JoinMBB); 7065 7066 MI.eraseFromParent(); 7067 return JoinMBB; 7068 } 7069 7070 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 7071 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 7072 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 7073 // BitSize is the width of the field in bits, or 0 if this is a partword 7074 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 7075 // is one of the operands. Invert says whether the field should be 7076 // inverted after performing BinOpcode (e.g. for NAND). 7077 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 7078 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 7079 unsigned BitSize, bool Invert) const { 7080 MachineFunction &MF = *MBB->getParent(); 7081 const SystemZInstrInfo *TII = 7082 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7083 MachineRegisterInfo &MRI = MF.getRegInfo(); 7084 bool IsSubWord = (BitSize < 32); 7085 7086 // Extract the operands. Base can be a register or a frame index. 7087 // Src2 can be a register or immediate. 7088 Register Dest = MI.getOperand(0).getReg(); 7089 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7090 int64_t Disp = MI.getOperand(2).getImm(); 7091 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 7092 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 7093 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 7094 DebugLoc DL = MI.getDebugLoc(); 7095 if (IsSubWord) 7096 BitSize = MI.getOperand(6).getImm(); 7097 7098 // Subword operations use 32-bit registers. 7099 const TargetRegisterClass *RC = (BitSize <= 32 ? 7100 &SystemZ::GR32BitRegClass : 7101 &SystemZ::GR64BitRegClass); 7102 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7103 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7104 7105 // Get the right opcodes for the displacement. 7106 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7107 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7108 assert(LOpcode && CSOpcode && "Displacement out of range"); 7109 7110 // Create virtual registers for temporary results. 7111 Register OrigVal = MRI.createVirtualRegister(RC); 7112 Register OldVal = MRI.createVirtualRegister(RC); 7113 Register NewVal = (BinOpcode || IsSubWord ? 7114 MRI.createVirtualRegister(RC) : Src2.getReg()); 7115 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7116 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7117 7118 // Insert a basic block for the main loop. 7119 MachineBasicBlock *StartMBB = MBB; 7120 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7121 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7122 7123 // StartMBB: 7124 // ... 7125 // %OrigVal = L Disp(%Base) 7126 // # fall through to LoopMMB 7127 MBB = StartMBB; 7128 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7129 MBB->addSuccessor(LoopMBB); 7130 7131 // LoopMBB: 7132 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7133 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7134 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7135 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7136 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7137 // JNE LoopMBB 7138 // # fall through to DoneMMB 7139 MBB = LoopMBB; 7140 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7141 .addReg(OrigVal).addMBB(StartMBB) 7142 .addReg(Dest).addMBB(LoopMBB); 7143 if (IsSubWord) 7144 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7145 .addReg(OldVal).addReg(BitShift).addImm(0); 7146 if (Invert) { 7147 // Perform the operation normally and then invert every bit of the field. 7148 Register Tmp = MRI.createVirtualRegister(RC); 7149 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7150 if (BitSize <= 32) 7151 // XILF with the upper BitSize bits set. 7152 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7153 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7154 else { 7155 // Use LCGR and add -1 to the result, which is more compact than 7156 // an XILF, XILH pair. 7157 Register Tmp2 = MRI.createVirtualRegister(RC); 7158 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7159 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7160 .addReg(Tmp2).addImm(-1); 7161 } 7162 } else if (BinOpcode) 7163 // A simply binary operation. 7164 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7165 .addReg(RotatedOldVal) 7166 .add(Src2); 7167 else if (IsSubWord) 7168 // Use RISBG to rotate Src2 into position and use it to replace the 7169 // field in RotatedOldVal. 7170 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7171 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7172 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7173 if (IsSubWord) 7174 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7175 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7176 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7177 .addReg(OldVal) 7178 .addReg(NewVal) 7179 .add(Base) 7180 .addImm(Disp); 7181 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7182 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7183 MBB->addSuccessor(LoopMBB); 7184 MBB->addSuccessor(DoneMBB); 7185 7186 MI.eraseFromParent(); 7187 return DoneMBB; 7188 } 7189 7190 // Implement EmitInstrWithCustomInserter for pseudo 7191 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7192 // instruction that should be used to compare the current field with the 7193 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7194 // for when the current field should be kept. BitSize is the width of 7195 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7196 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7197 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7198 unsigned KeepOldMask, unsigned BitSize) const { 7199 MachineFunction &MF = *MBB->getParent(); 7200 const SystemZInstrInfo *TII = 7201 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7202 MachineRegisterInfo &MRI = MF.getRegInfo(); 7203 bool IsSubWord = (BitSize < 32); 7204 7205 // Extract the operands. Base can be a register or a frame index. 7206 Register Dest = MI.getOperand(0).getReg(); 7207 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7208 int64_t Disp = MI.getOperand(2).getImm(); 7209 Register Src2 = MI.getOperand(3).getReg(); 7210 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7211 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7212 DebugLoc DL = MI.getDebugLoc(); 7213 if (IsSubWord) 7214 BitSize = MI.getOperand(6).getImm(); 7215 7216 // Subword operations use 32-bit registers. 7217 const TargetRegisterClass *RC = (BitSize <= 32 ? 7218 &SystemZ::GR32BitRegClass : 7219 &SystemZ::GR64BitRegClass); 7220 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7221 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7222 7223 // Get the right opcodes for the displacement. 7224 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7225 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7226 assert(LOpcode && CSOpcode && "Displacement out of range"); 7227 7228 // Create virtual registers for temporary results. 7229 Register OrigVal = MRI.createVirtualRegister(RC); 7230 Register OldVal = MRI.createVirtualRegister(RC); 7231 Register NewVal = MRI.createVirtualRegister(RC); 7232 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7233 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7234 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7235 7236 // Insert 3 basic blocks for the loop. 7237 MachineBasicBlock *StartMBB = MBB; 7238 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7239 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7240 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 7241 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 7242 7243 // StartMBB: 7244 // ... 7245 // %OrigVal = L Disp(%Base) 7246 // # fall through to LoopMMB 7247 MBB = StartMBB; 7248 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7249 MBB->addSuccessor(LoopMBB); 7250 7251 // LoopMBB: 7252 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7253 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7254 // CompareOpcode %RotatedOldVal, %Src2 7255 // BRC KeepOldMask, UpdateMBB 7256 MBB = LoopMBB; 7257 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7258 .addReg(OrigVal).addMBB(StartMBB) 7259 .addReg(Dest).addMBB(UpdateMBB); 7260 if (IsSubWord) 7261 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7262 .addReg(OldVal).addReg(BitShift).addImm(0); 7263 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7264 .addReg(RotatedOldVal).addReg(Src2); 7265 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7266 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7267 MBB->addSuccessor(UpdateMBB); 7268 MBB->addSuccessor(UseAltMBB); 7269 7270 // UseAltMBB: 7271 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7272 // # fall through to UpdateMMB 7273 MBB = UseAltMBB; 7274 if (IsSubWord) 7275 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7276 .addReg(RotatedOldVal).addReg(Src2) 7277 .addImm(32).addImm(31 + BitSize).addImm(0); 7278 MBB->addSuccessor(UpdateMBB); 7279 7280 // UpdateMBB: 7281 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7282 // [ %RotatedAltVal, UseAltMBB ] 7283 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7284 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7285 // JNE LoopMBB 7286 // # fall through to DoneMMB 7287 MBB = UpdateMBB; 7288 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7289 .addReg(RotatedOldVal).addMBB(LoopMBB) 7290 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7291 if (IsSubWord) 7292 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7293 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7294 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7295 .addReg(OldVal) 7296 .addReg(NewVal) 7297 .add(Base) 7298 .addImm(Disp); 7299 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7300 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7301 MBB->addSuccessor(LoopMBB); 7302 MBB->addSuccessor(DoneMBB); 7303 7304 MI.eraseFromParent(); 7305 return DoneMBB; 7306 } 7307 7308 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7309 // instruction MI. 7310 MachineBasicBlock * 7311 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7312 MachineBasicBlock *MBB) const { 7313 7314 MachineFunction &MF = *MBB->getParent(); 7315 const SystemZInstrInfo *TII = 7316 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7317 MachineRegisterInfo &MRI = MF.getRegInfo(); 7318 7319 // Extract the operands. Base can be a register or a frame index. 7320 Register Dest = MI.getOperand(0).getReg(); 7321 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7322 int64_t Disp = MI.getOperand(2).getImm(); 7323 Register OrigCmpVal = MI.getOperand(3).getReg(); 7324 Register OrigSwapVal = MI.getOperand(4).getReg(); 7325 Register BitShift = MI.getOperand(5).getReg(); 7326 Register NegBitShift = MI.getOperand(6).getReg(); 7327 int64_t BitSize = MI.getOperand(7).getImm(); 7328 DebugLoc DL = MI.getDebugLoc(); 7329 7330 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7331 7332 // Get the right opcodes for the displacement. 7333 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7334 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7335 assert(LOpcode && CSOpcode && "Displacement out of range"); 7336 7337 // Create virtual registers for temporary results. 7338 Register OrigOldVal = MRI.createVirtualRegister(RC); 7339 Register OldVal = MRI.createVirtualRegister(RC); 7340 Register CmpVal = MRI.createVirtualRegister(RC); 7341 Register SwapVal = MRI.createVirtualRegister(RC); 7342 Register StoreVal = MRI.createVirtualRegister(RC); 7343 Register RetryOldVal = MRI.createVirtualRegister(RC); 7344 Register RetryCmpVal = MRI.createVirtualRegister(RC); 7345 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7346 7347 // Insert 2 basic blocks for the loop. 7348 MachineBasicBlock *StartMBB = MBB; 7349 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7350 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7351 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 7352 7353 // StartMBB: 7354 // ... 7355 // %OrigOldVal = L Disp(%Base) 7356 // # fall through to LoopMMB 7357 MBB = StartMBB; 7358 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7359 .add(Base) 7360 .addImm(Disp) 7361 .addReg(0); 7362 MBB->addSuccessor(LoopMBB); 7363 7364 // LoopMBB: 7365 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7366 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 7367 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7368 // %Dest = RLL %OldVal, BitSize(%BitShift) 7369 // ^^ The low BitSize bits contain the field 7370 // of interest. 7371 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 7372 // ^^ Replace the upper 32-BitSize bits of the 7373 // comparison value with those that we loaded, 7374 // so that we can use a full word comparison. 7375 // CR %Dest, %RetryCmpVal 7376 // JNE DoneMBB 7377 // # Fall through to SetMBB 7378 MBB = LoopMBB; 7379 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7380 .addReg(OrigOldVal).addMBB(StartMBB) 7381 .addReg(RetryOldVal).addMBB(SetMBB); 7382 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 7383 .addReg(OrigCmpVal).addMBB(StartMBB) 7384 .addReg(RetryCmpVal).addMBB(SetMBB); 7385 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7386 .addReg(OrigSwapVal).addMBB(StartMBB) 7387 .addReg(RetrySwapVal).addMBB(SetMBB); 7388 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 7389 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7390 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 7391 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7392 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7393 .addReg(Dest).addReg(RetryCmpVal); 7394 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7395 .addImm(SystemZ::CCMASK_ICMP) 7396 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7397 MBB->addSuccessor(DoneMBB); 7398 MBB->addSuccessor(SetMBB); 7399 7400 // SetMBB: 7401 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 7402 // ^^ Replace the upper 32-BitSize bits of the new 7403 // value with those that we loaded. 7404 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7405 // ^^ Rotate the new field to its proper position. 7406 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 7407 // JNE LoopMBB 7408 // # fall through to ExitMMB 7409 MBB = SetMBB; 7410 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7411 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7412 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7413 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7414 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7415 .addReg(OldVal) 7416 .addReg(StoreVal) 7417 .add(Base) 7418 .addImm(Disp); 7419 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7420 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7421 MBB->addSuccessor(LoopMBB); 7422 MBB->addSuccessor(DoneMBB); 7423 7424 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7425 // to the block after the loop. At this point, CC may have been defined 7426 // either by the CR in LoopMBB or by the CS in SetMBB. 7427 if (!MI.registerDefIsDead(SystemZ::CC)) 7428 DoneMBB->addLiveIn(SystemZ::CC); 7429 7430 MI.eraseFromParent(); 7431 return DoneMBB; 7432 } 7433 7434 // Emit a move from two GR64s to a GR128. 7435 MachineBasicBlock * 7436 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7437 MachineBasicBlock *MBB) const { 7438 MachineFunction &MF = *MBB->getParent(); 7439 const SystemZInstrInfo *TII = 7440 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7441 MachineRegisterInfo &MRI = MF.getRegInfo(); 7442 DebugLoc DL = MI.getDebugLoc(); 7443 7444 Register Dest = MI.getOperand(0).getReg(); 7445 Register Hi = MI.getOperand(1).getReg(); 7446 Register Lo = MI.getOperand(2).getReg(); 7447 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7448 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7449 7450 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7451 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7452 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7453 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7454 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7455 7456 MI.eraseFromParent(); 7457 return MBB; 7458 } 7459 7460 // Emit an extension from a GR64 to a GR128. ClearEven is true 7461 // if the high register of the GR128 value must be cleared or false if 7462 // it's "don't care". 7463 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7464 MachineBasicBlock *MBB, 7465 bool ClearEven) const { 7466 MachineFunction &MF = *MBB->getParent(); 7467 const SystemZInstrInfo *TII = 7468 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7469 MachineRegisterInfo &MRI = MF.getRegInfo(); 7470 DebugLoc DL = MI.getDebugLoc(); 7471 7472 Register Dest = MI.getOperand(0).getReg(); 7473 Register Src = MI.getOperand(1).getReg(); 7474 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7475 7476 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7477 if (ClearEven) { 7478 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7479 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7480 7481 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7482 .addImm(0); 7483 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7484 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7485 In128 = NewIn128; 7486 } 7487 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7488 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7489 7490 MI.eraseFromParent(); 7491 return MBB; 7492 } 7493 7494 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 7495 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7496 MachineFunction &MF = *MBB->getParent(); 7497 const SystemZInstrInfo *TII = 7498 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7499 MachineRegisterInfo &MRI = MF.getRegInfo(); 7500 DebugLoc DL = MI.getDebugLoc(); 7501 7502 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7503 uint64_t DestDisp = MI.getOperand(1).getImm(); 7504 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 7505 uint64_t SrcDisp = MI.getOperand(3).getImm(); 7506 uint64_t Length = MI.getOperand(4).getImm(); 7507 7508 // When generating more than one CLC, all but the last will need to 7509 // branch to the end when a difference is found. 7510 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 7511 splitBlockAfter(MI, MBB) : nullptr); 7512 7513 // Check for the loop form, in which operand 5 is the trip count. 7514 if (MI.getNumExplicitOperands() > 5) { 7515 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7516 7517 Register StartCountReg = MI.getOperand(5).getReg(); 7518 Register StartSrcReg = forceReg(MI, SrcBase, TII); 7519 Register StartDestReg = (HaveSingleBase ? StartSrcReg : 7520 forceReg(MI, DestBase, TII)); 7521 7522 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 7523 Register ThisSrcReg = MRI.createVirtualRegister(RC); 7524 Register ThisDestReg = (HaveSingleBase ? ThisSrcReg : 7525 MRI.createVirtualRegister(RC)); 7526 Register NextSrcReg = MRI.createVirtualRegister(RC); 7527 Register NextDestReg = (HaveSingleBase ? NextSrcReg : 7528 MRI.createVirtualRegister(RC)); 7529 7530 RC = &SystemZ::GR64BitRegClass; 7531 Register ThisCountReg = MRI.createVirtualRegister(RC); 7532 Register NextCountReg = MRI.createVirtualRegister(RC); 7533 7534 MachineBasicBlock *StartMBB = MBB; 7535 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7536 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7537 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 7538 7539 // StartMBB: 7540 // # fall through to LoopMMB 7541 MBB->addSuccessor(LoopMBB); 7542 7543 // LoopMBB: 7544 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 7545 // [ %NextDestReg, NextMBB ] 7546 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 7547 // [ %NextSrcReg, NextMBB ] 7548 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 7549 // [ %NextCountReg, NextMBB ] 7550 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 7551 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 7552 // ( JLH EndMBB ) 7553 // 7554 // The prefetch is used only for MVC. The JLH is used only for CLC. 7555 MBB = LoopMBB; 7556 7557 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 7558 .addReg(StartDestReg).addMBB(StartMBB) 7559 .addReg(NextDestReg).addMBB(NextMBB); 7560 if (!HaveSingleBase) 7561 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 7562 .addReg(StartSrcReg).addMBB(StartMBB) 7563 .addReg(NextSrcReg).addMBB(NextMBB); 7564 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 7565 .addReg(StartCountReg).addMBB(StartMBB) 7566 .addReg(NextCountReg).addMBB(NextMBB); 7567 if (Opcode == SystemZ::MVC) 7568 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 7569 .addImm(SystemZ::PFD_WRITE) 7570 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 7571 BuildMI(MBB, DL, TII->get(Opcode)) 7572 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 7573 .addReg(ThisSrcReg).addImm(SrcDisp); 7574 if (EndMBB) { 7575 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7576 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7577 .addMBB(EndMBB); 7578 MBB->addSuccessor(EndMBB); 7579 MBB->addSuccessor(NextMBB); 7580 } 7581 7582 // NextMBB: 7583 // %NextDestReg = LA 256(%ThisDestReg) 7584 // %NextSrcReg = LA 256(%ThisSrcReg) 7585 // %NextCountReg = AGHI %ThisCountReg, -1 7586 // CGHI %NextCountReg, 0 7587 // JLH LoopMBB 7588 // # fall through to DoneMMB 7589 // 7590 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 7591 MBB = NextMBB; 7592 7593 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 7594 .addReg(ThisDestReg).addImm(256).addReg(0); 7595 if (!HaveSingleBase) 7596 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 7597 .addReg(ThisSrcReg).addImm(256).addReg(0); 7598 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7599 .addReg(ThisCountReg).addImm(-1); 7600 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7601 .addReg(NextCountReg).addImm(0); 7602 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7603 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7604 .addMBB(LoopMBB); 7605 MBB->addSuccessor(LoopMBB); 7606 MBB->addSuccessor(DoneMBB); 7607 7608 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7609 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7610 Length &= 255; 7611 if (EndMBB && !Length) 7612 // If the loop handled the whole CLC range, DoneMBB will be empty with 7613 // CC live-through into EndMBB, so add it as live-in. 7614 DoneMBB->addLiveIn(SystemZ::CC); 7615 MBB = DoneMBB; 7616 } 7617 // Handle any remaining bytes with straight-line code. 7618 while (Length > 0) { 7619 uint64_t ThisLength = std::min(Length, uint64_t(256)); 7620 // The previous iteration might have created out-of-range displacements. 7621 // Apply them using LAY if so. 7622 if (!isUInt<12>(DestDisp)) { 7623 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7624 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7625 .add(DestBase) 7626 .addImm(DestDisp) 7627 .addReg(0); 7628 DestBase = MachineOperand::CreateReg(Reg, false); 7629 DestDisp = 0; 7630 } 7631 if (!isUInt<12>(SrcDisp)) { 7632 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7633 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7634 .add(SrcBase) 7635 .addImm(SrcDisp) 7636 .addReg(0); 7637 SrcBase = MachineOperand::CreateReg(Reg, false); 7638 SrcDisp = 0; 7639 } 7640 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 7641 .add(DestBase) 7642 .addImm(DestDisp) 7643 .addImm(ThisLength) 7644 .add(SrcBase) 7645 .addImm(SrcDisp) 7646 .setMemRefs(MI.memoperands()); 7647 DestDisp += ThisLength; 7648 SrcDisp += ThisLength; 7649 Length -= ThisLength; 7650 // If there's another CLC to go, branch to the end if a difference 7651 // was found. 7652 if (EndMBB && Length > 0) { 7653 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 7654 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7655 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7656 .addMBB(EndMBB); 7657 MBB->addSuccessor(EndMBB); 7658 MBB->addSuccessor(NextMBB); 7659 MBB = NextMBB; 7660 } 7661 } 7662 if (EndMBB) { 7663 MBB->addSuccessor(EndMBB); 7664 MBB = EndMBB; 7665 MBB->addLiveIn(SystemZ::CC); 7666 } 7667 7668 MI.eraseFromParent(); 7669 return MBB; 7670 } 7671 7672 // Decompose string pseudo-instruction MI into a loop that continually performs 7673 // Opcode until CC != 3. 7674 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7675 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7676 MachineFunction &MF = *MBB->getParent(); 7677 const SystemZInstrInfo *TII = 7678 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7679 MachineRegisterInfo &MRI = MF.getRegInfo(); 7680 DebugLoc DL = MI.getDebugLoc(); 7681 7682 uint64_t End1Reg = MI.getOperand(0).getReg(); 7683 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7684 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7685 uint64_t CharReg = MI.getOperand(3).getReg(); 7686 7687 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7688 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7689 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7690 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7691 7692 MachineBasicBlock *StartMBB = MBB; 7693 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7694 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7695 7696 // StartMBB: 7697 // # fall through to LoopMMB 7698 MBB->addSuccessor(LoopMBB); 7699 7700 // LoopMBB: 7701 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7702 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7703 // R0L = %CharReg 7704 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7705 // JO LoopMBB 7706 // # fall through to DoneMMB 7707 // 7708 // The load of R0L can be hoisted by post-RA LICM. 7709 MBB = LoopMBB; 7710 7711 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7712 .addReg(Start1Reg).addMBB(StartMBB) 7713 .addReg(End1Reg).addMBB(LoopMBB); 7714 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7715 .addReg(Start2Reg).addMBB(StartMBB) 7716 .addReg(End2Reg).addMBB(LoopMBB); 7717 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7718 BuildMI(MBB, DL, TII->get(Opcode)) 7719 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7720 .addReg(This1Reg).addReg(This2Reg); 7721 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7722 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7723 MBB->addSuccessor(LoopMBB); 7724 MBB->addSuccessor(DoneMBB); 7725 7726 DoneMBB->addLiveIn(SystemZ::CC); 7727 7728 MI.eraseFromParent(); 7729 return DoneMBB; 7730 } 7731 7732 // Update TBEGIN instruction with final opcode and register clobbers. 7733 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7734 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7735 bool NoFloat) const { 7736 MachineFunction &MF = *MBB->getParent(); 7737 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7738 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7739 7740 // Update opcode. 7741 MI.setDesc(TII->get(Opcode)); 7742 7743 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7744 // Make sure to add the corresponding GRSM bits if they are missing. 7745 uint64_t Control = MI.getOperand(2).getImm(); 7746 static const unsigned GPRControlBit[16] = { 7747 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7748 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7749 }; 7750 Control |= GPRControlBit[15]; 7751 if (TFI->hasFP(MF)) 7752 Control |= GPRControlBit[11]; 7753 MI.getOperand(2).setImm(Control); 7754 7755 // Add GPR clobbers. 7756 for (int I = 0; I < 16; I++) { 7757 if ((Control & GPRControlBit[I]) == 0) { 7758 unsigned Reg = SystemZMC::GR64Regs[I]; 7759 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7760 } 7761 } 7762 7763 // Add FPR/VR clobbers. 7764 if (!NoFloat && (Control & 4) != 0) { 7765 if (Subtarget.hasVector()) { 7766 for (int I = 0; I < 32; I++) { 7767 unsigned Reg = SystemZMC::VR128Regs[I]; 7768 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7769 } 7770 } else { 7771 for (int I = 0; I < 16; I++) { 7772 unsigned Reg = SystemZMC::FP64Regs[I]; 7773 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7774 } 7775 } 7776 } 7777 7778 return MBB; 7779 } 7780 7781 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 7782 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7783 MachineFunction &MF = *MBB->getParent(); 7784 MachineRegisterInfo *MRI = &MF.getRegInfo(); 7785 const SystemZInstrInfo *TII = 7786 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7787 DebugLoc DL = MI.getDebugLoc(); 7788 7789 Register SrcReg = MI.getOperand(0).getReg(); 7790 7791 // Create new virtual register of the same class as source. 7792 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7793 Register DstReg = MRI->createVirtualRegister(RC); 7794 7795 // Replace pseudo with a normal load-and-test that models the def as 7796 // well. 7797 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7798 .addReg(SrcReg) 7799 .setMIFlags(MI.getFlags()); 7800 MI.eraseFromParent(); 7801 7802 return MBB; 7803 } 7804 7805 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7806 MachineInstr &MI, MachineBasicBlock *MBB) const { 7807 switch (MI.getOpcode()) { 7808 case SystemZ::Select32: 7809 case SystemZ::Select64: 7810 case SystemZ::SelectF32: 7811 case SystemZ::SelectF64: 7812 case SystemZ::SelectF128: 7813 case SystemZ::SelectVR32: 7814 case SystemZ::SelectVR64: 7815 case SystemZ::SelectVR128: 7816 return emitSelect(MI, MBB); 7817 7818 case SystemZ::CondStore8Mux: 7819 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7820 case SystemZ::CondStore8MuxInv: 7821 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7822 case SystemZ::CondStore16Mux: 7823 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7824 case SystemZ::CondStore16MuxInv: 7825 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7826 case SystemZ::CondStore32Mux: 7827 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7828 case SystemZ::CondStore32MuxInv: 7829 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7830 case SystemZ::CondStore8: 7831 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7832 case SystemZ::CondStore8Inv: 7833 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7834 case SystemZ::CondStore16: 7835 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7836 case SystemZ::CondStore16Inv: 7837 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7838 case SystemZ::CondStore32: 7839 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7840 case SystemZ::CondStore32Inv: 7841 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7842 case SystemZ::CondStore64: 7843 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7844 case SystemZ::CondStore64Inv: 7845 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7846 case SystemZ::CondStoreF32: 7847 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7848 case SystemZ::CondStoreF32Inv: 7849 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7850 case SystemZ::CondStoreF64: 7851 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7852 case SystemZ::CondStoreF64Inv: 7853 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7854 7855 case SystemZ::PAIR128: 7856 return emitPair128(MI, MBB); 7857 case SystemZ::AEXT128: 7858 return emitExt128(MI, MBB, false); 7859 case SystemZ::ZEXT128: 7860 return emitExt128(MI, MBB, true); 7861 7862 case SystemZ::ATOMIC_SWAPW: 7863 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7864 case SystemZ::ATOMIC_SWAP_32: 7865 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7866 case SystemZ::ATOMIC_SWAP_64: 7867 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7868 7869 case SystemZ::ATOMIC_LOADW_AR: 7870 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7871 case SystemZ::ATOMIC_LOADW_AFI: 7872 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7873 case SystemZ::ATOMIC_LOAD_AR: 7874 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7875 case SystemZ::ATOMIC_LOAD_AHI: 7876 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7877 case SystemZ::ATOMIC_LOAD_AFI: 7878 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7879 case SystemZ::ATOMIC_LOAD_AGR: 7880 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7881 case SystemZ::ATOMIC_LOAD_AGHI: 7882 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7883 case SystemZ::ATOMIC_LOAD_AGFI: 7884 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7885 7886 case SystemZ::ATOMIC_LOADW_SR: 7887 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7888 case SystemZ::ATOMIC_LOAD_SR: 7889 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7890 case SystemZ::ATOMIC_LOAD_SGR: 7891 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7892 7893 case SystemZ::ATOMIC_LOADW_NR: 7894 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7895 case SystemZ::ATOMIC_LOADW_NILH: 7896 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7897 case SystemZ::ATOMIC_LOAD_NR: 7898 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7899 case SystemZ::ATOMIC_LOAD_NILL: 7900 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7901 case SystemZ::ATOMIC_LOAD_NILH: 7902 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7903 case SystemZ::ATOMIC_LOAD_NILF: 7904 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7905 case SystemZ::ATOMIC_LOAD_NGR: 7906 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7907 case SystemZ::ATOMIC_LOAD_NILL64: 7908 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7909 case SystemZ::ATOMIC_LOAD_NILH64: 7910 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7911 case SystemZ::ATOMIC_LOAD_NIHL64: 7912 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 7913 case SystemZ::ATOMIC_LOAD_NIHH64: 7914 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 7915 case SystemZ::ATOMIC_LOAD_NILF64: 7916 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 7917 case SystemZ::ATOMIC_LOAD_NIHF64: 7918 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 7919 7920 case SystemZ::ATOMIC_LOADW_OR: 7921 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 7922 case SystemZ::ATOMIC_LOADW_OILH: 7923 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 7924 case SystemZ::ATOMIC_LOAD_OR: 7925 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 7926 case SystemZ::ATOMIC_LOAD_OILL: 7927 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 7928 case SystemZ::ATOMIC_LOAD_OILH: 7929 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 7930 case SystemZ::ATOMIC_LOAD_OILF: 7931 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 7932 case SystemZ::ATOMIC_LOAD_OGR: 7933 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 7934 case SystemZ::ATOMIC_LOAD_OILL64: 7935 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 7936 case SystemZ::ATOMIC_LOAD_OILH64: 7937 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 7938 case SystemZ::ATOMIC_LOAD_OIHL64: 7939 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 7940 case SystemZ::ATOMIC_LOAD_OIHH64: 7941 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 7942 case SystemZ::ATOMIC_LOAD_OILF64: 7943 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 7944 case SystemZ::ATOMIC_LOAD_OIHF64: 7945 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 7946 7947 case SystemZ::ATOMIC_LOADW_XR: 7948 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 7949 case SystemZ::ATOMIC_LOADW_XILF: 7950 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 7951 case SystemZ::ATOMIC_LOAD_XR: 7952 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 7953 case SystemZ::ATOMIC_LOAD_XILF: 7954 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 7955 case SystemZ::ATOMIC_LOAD_XGR: 7956 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 7957 case SystemZ::ATOMIC_LOAD_XILF64: 7958 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 7959 case SystemZ::ATOMIC_LOAD_XIHF64: 7960 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 7961 7962 case SystemZ::ATOMIC_LOADW_NRi: 7963 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 7964 case SystemZ::ATOMIC_LOADW_NILHi: 7965 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 7966 case SystemZ::ATOMIC_LOAD_NRi: 7967 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 7968 case SystemZ::ATOMIC_LOAD_NILLi: 7969 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 7970 case SystemZ::ATOMIC_LOAD_NILHi: 7971 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 7972 case SystemZ::ATOMIC_LOAD_NILFi: 7973 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 7974 case SystemZ::ATOMIC_LOAD_NGRi: 7975 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 7976 case SystemZ::ATOMIC_LOAD_NILL64i: 7977 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 7978 case SystemZ::ATOMIC_LOAD_NILH64i: 7979 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 7980 case SystemZ::ATOMIC_LOAD_NIHL64i: 7981 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 7982 case SystemZ::ATOMIC_LOAD_NIHH64i: 7983 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 7984 case SystemZ::ATOMIC_LOAD_NILF64i: 7985 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 7986 case SystemZ::ATOMIC_LOAD_NIHF64i: 7987 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 7988 7989 case SystemZ::ATOMIC_LOADW_MIN: 7990 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7991 SystemZ::CCMASK_CMP_LE, 0); 7992 case SystemZ::ATOMIC_LOAD_MIN_32: 7993 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7994 SystemZ::CCMASK_CMP_LE, 32); 7995 case SystemZ::ATOMIC_LOAD_MIN_64: 7996 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7997 SystemZ::CCMASK_CMP_LE, 64); 7998 7999 case SystemZ::ATOMIC_LOADW_MAX: 8000 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8001 SystemZ::CCMASK_CMP_GE, 0); 8002 case SystemZ::ATOMIC_LOAD_MAX_32: 8003 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8004 SystemZ::CCMASK_CMP_GE, 32); 8005 case SystemZ::ATOMIC_LOAD_MAX_64: 8006 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8007 SystemZ::CCMASK_CMP_GE, 64); 8008 8009 case SystemZ::ATOMIC_LOADW_UMIN: 8010 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8011 SystemZ::CCMASK_CMP_LE, 0); 8012 case SystemZ::ATOMIC_LOAD_UMIN_32: 8013 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8014 SystemZ::CCMASK_CMP_LE, 32); 8015 case SystemZ::ATOMIC_LOAD_UMIN_64: 8016 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8017 SystemZ::CCMASK_CMP_LE, 64); 8018 8019 case SystemZ::ATOMIC_LOADW_UMAX: 8020 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8021 SystemZ::CCMASK_CMP_GE, 0); 8022 case SystemZ::ATOMIC_LOAD_UMAX_32: 8023 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8024 SystemZ::CCMASK_CMP_GE, 32); 8025 case SystemZ::ATOMIC_LOAD_UMAX_64: 8026 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8027 SystemZ::CCMASK_CMP_GE, 64); 8028 8029 case SystemZ::ATOMIC_CMP_SWAPW: 8030 return emitAtomicCmpSwapW(MI, MBB); 8031 case SystemZ::MVCSequence: 8032 case SystemZ::MVCLoop: 8033 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 8034 case SystemZ::NCSequence: 8035 case SystemZ::NCLoop: 8036 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 8037 case SystemZ::OCSequence: 8038 case SystemZ::OCLoop: 8039 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 8040 case SystemZ::XCSequence: 8041 case SystemZ::XCLoop: 8042 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 8043 case SystemZ::CLCSequence: 8044 case SystemZ::CLCLoop: 8045 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 8046 case SystemZ::CLSTLoop: 8047 return emitStringWrapper(MI, MBB, SystemZ::CLST); 8048 case SystemZ::MVSTLoop: 8049 return emitStringWrapper(MI, MBB, SystemZ::MVST); 8050 case SystemZ::SRSTLoop: 8051 return emitStringWrapper(MI, MBB, SystemZ::SRST); 8052 case SystemZ::TBEGIN: 8053 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 8054 case SystemZ::TBEGIN_nofloat: 8055 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 8056 case SystemZ::TBEGINC: 8057 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 8058 case SystemZ::LTEBRCompare_VecPseudo: 8059 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 8060 case SystemZ::LTDBRCompare_VecPseudo: 8061 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 8062 case SystemZ::LTXBRCompare_VecPseudo: 8063 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 8064 8065 case TargetOpcode::STACKMAP: 8066 case TargetOpcode::PATCHPOINT: 8067 return emitPatchPoint(MI, MBB); 8068 8069 default: 8070 llvm_unreachable("Unexpected instr type to insert"); 8071 } 8072 } 8073 8074 // This is only used by the isel schedulers, and is needed only to prevent 8075 // compiler from crashing when list-ilp is used. 8076 const TargetRegisterClass * 8077 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 8078 if (VT == MVT::Untyped) 8079 return &SystemZ::ADDR128BitRegClass; 8080 return TargetLowering::getRepRegClassFor(VT); 8081 } 8082