1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include <cctype> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "systemz-lower" 29 30 namespace { 31 // Represents a sequence for extracting a 0/1 value from an IPM result: 32 // (((X ^ XORValue) + AddValue) >> Bit) 33 struct IPMConversion { 34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 36 37 int64_t XORValue; 38 int64_t AddValue; 39 unsigned Bit; 40 }; 41 42 // Represents information about a comparison. 43 struct Comparison { 44 Comparison(SDValue Op0In, SDValue Op1In) 45 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 46 47 // The operands to the comparison. 48 SDValue Op0, Op1; 49 50 // The opcode that should be used to compare Op0 and Op1. 51 unsigned Opcode; 52 53 // A SystemZICMP value. Only used for integer comparisons. 54 unsigned ICmpType; 55 56 // The mask of CC values that Opcode can produce. 57 unsigned CCValid; 58 59 // The mask of CC values for which the original condition is true. 60 unsigned CCMask; 61 }; 62 } // end anonymous namespace 63 64 // Classify VT as either 32 or 64 bit. 65 static bool is32Bit(EVT VT) { 66 switch (VT.getSimpleVT().SimpleTy) { 67 case MVT::i32: 68 return true; 69 case MVT::i64: 70 return false; 71 default: 72 llvm_unreachable("Unsupported type"); 73 } 74 } 75 76 // Return a version of MachineOperand that can be safely used before the 77 // final use. 78 static MachineOperand earlyUseOperand(MachineOperand Op) { 79 if (Op.isReg()) 80 Op.setIsKill(false); 81 return Op; 82 } 83 84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 85 const SystemZSubtarget &STI) 86 : TargetLowering(TM), Subtarget(STI) { 87 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 88 89 // Set up the register classes. 90 if (Subtarget.hasHighWord()) 91 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 92 else 93 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 94 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 95 if (Subtarget.hasVector()) { 96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 98 } else { 99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 101 } 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 113 // Compute derived properties from the register classes 114 computeRegisterProperties(Subtarget.getRegisterInfo()); 115 116 // Set up special registers. 117 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 118 119 // TODO: It may be better to default to latency-oriented scheduling, however 120 // LLVM's current latency-oriented scheduler can't handle physreg definitions 121 // such as SystemZ has with CC, so set this to the register-pressure 122 // scheduler, because it can. 123 setSchedulingPreference(Sched::RegPressure); 124 125 setBooleanContents(ZeroOrOneBooleanContent); 126 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 127 128 // Instructions are strings of 2-byte aligned 2-byte values. 129 setMinFunctionAlignment(2); 130 131 // Handle operations that are handled in a similar way for all types. 132 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 133 I <= MVT::LAST_FP_VALUETYPE; 134 ++I) { 135 MVT VT = MVT::SimpleValueType(I); 136 if (isTypeLegal(VT)) { 137 // Lower SET_CC into an IPM-based sequence. 138 setOperationAction(ISD::SETCC, VT, Custom); 139 140 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 141 setOperationAction(ISD::SELECT, VT, Expand); 142 143 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 144 setOperationAction(ISD::SELECT_CC, VT, Custom); 145 setOperationAction(ISD::BR_CC, VT, Custom); 146 } 147 } 148 149 // Expand jump table branches as address arithmetic followed by an 150 // indirect jump. 151 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 152 153 // Expand BRCOND into a BR_CC (see above). 154 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 155 156 // Handle integer types. 157 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 158 I <= MVT::LAST_INTEGER_VALUETYPE; 159 ++I) { 160 MVT VT = MVT::SimpleValueType(I); 161 if (isTypeLegal(VT)) { 162 // Expand individual DIV and REMs into DIVREMs. 163 setOperationAction(ISD::SDIV, VT, Expand); 164 setOperationAction(ISD::UDIV, VT, Expand); 165 setOperationAction(ISD::SREM, VT, Expand); 166 setOperationAction(ISD::UREM, VT, Expand); 167 setOperationAction(ISD::SDIVREM, VT, Custom); 168 setOperationAction(ISD::UDIVREM, VT, Custom); 169 170 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 171 // stores, putting a serialization instruction after the stores. 172 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 173 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 174 175 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 176 // available, or if the operand is constant. 177 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 178 179 // Use POPCNT on z196 and above. 180 if (Subtarget.hasPopulationCount()) 181 setOperationAction(ISD::CTPOP, VT, Custom); 182 else 183 setOperationAction(ISD::CTPOP, VT, Expand); 184 185 // No special instructions for these. 186 setOperationAction(ISD::CTTZ, VT, Expand); 187 setOperationAction(ISD::ROTR, VT, Expand); 188 189 // Use *MUL_LOHI where possible instead of MULH*. 190 setOperationAction(ISD::MULHS, VT, Expand); 191 setOperationAction(ISD::MULHU, VT, Expand); 192 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 193 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 194 195 // Only z196 and above have native support for conversions to unsigned. 196 if (!Subtarget.hasFPExtension()) 197 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 198 } 199 } 200 201 // Type legalization will convert 8- and 16-bit atomic operations into 202 // forms that operate on i32s (but still keeping the original memory VT). 203 // Lower them into full i32 operations. 204 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 205 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 206 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 207 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 208 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 209 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 216 217 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 218 219 // z10 has instructions for signed but not unsigned FP conversion. 220 // Handle unsigned 32-bit types as signed 64-bit types. 221 if (!Subtarget.hasFPExtension()) { 222 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 223 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 224 } 225 226 // We have native support for a 64-bit CTLZ, via FLOGR. 227 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 228 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 229 230 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 231 setOperationAction(ISD::OR, MVT::i64, Custom); 232 233 // FIXME: Can we support these natively? 234 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 235 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 236 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 237 238 // We have native instructions for i8, i16 and i32 extensions, but not i1. 239 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 240 for (MVT VT : MVT::integer_valuetypes()) { 241 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 242 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 243 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 244 } 245 246 // Handle the various types of symbolic address. 247 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 248 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 249 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 250 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 251 setOperationAction(ISD::JumpTable, PtrVT, Custom); 252 253 // We need to handle dynamic allocations specially because of the 254 // 160-byte area at the bottom of the stack. 255 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 256 257 // Use custom expanders so that we can force the function to use 258 // a frame pointer. 259 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 260 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 261 262 // Handle prefetches with PFD or PFDRL. 263 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 264 265 for (MVT VT : MVT::vector_valuetypes()) { 266 // Assume by default that all vector operations need to be expanded. 267 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 268 if (getOperationAction(Opcode, VT) == Legal) 269 setOperationAction(Opcode, VT, Expand); 270 271 // Likewise all truncating stores and extending loads. 272 for (MVT InnerVT : MVT::vector_valuetypes()) { 273 setTruncStoreAction(VT, InnerVT, Expand); 274 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 275 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 276 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 277 } 278 279 if (isTypeLegal(VT)) { 280 // These operations are legal for anything that can be stored in a 281 // vector register, even if there is no native support for the format 282 // as such. In particular, we can do these for v4f32 even though there 283 // are no specific instructions for that format. 284 setOperationAction(ISD::LOAD, VT, Legal); 285 setOperationAction(ISD::STORE, VT, Legal); 286 setOperationAction(ISD::VSELECT, VT, Legal); 287 setOperationAction(ISD::BITCAST, VT, Legal); 288 setOperationAction(ISD::UNDEF, VT, Legal); 289 290 // Likewise, except that we need to replace the nodes with something 291 // more specific. 292 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 293 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 294 } 295 } 296 297 // Handle integer vector types. 298 for (MVT VT : MVT::integer_vector_valuetypes()) { 299 if (isTypeLegal(VT)) { 300 // These operations have direct equivalents. 301 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 302 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 303 setOperationAction(ISD::ADD, VT, Legal); 304 setOperationAction(ISD::SUB, VT, Legal); 305 if (VT != MVT::v2i64) 306 setOperationAction(ISD::MUL, VT, Legal); 307 setOperationAction(ISD::AND, VT, Legal); 308 setOperationAction(ISD::OR, VT, Legal); 309 setOperationAction(ISD::XOR, VT, Legal); 310 setOperationAction(ISD::CTPOP, VT, Custom); 311 setOperationAction(ISD::CTTZ, VT, Legal); 312 setOperationAction(ISD::CTLZ, VT, Legal); 313 314 // Convert a GPR scalar to a vector by inserting it into element 0. 315 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 316 317 // Use a series of unpacks for extensions. 318 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 319 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 320 321 // Detect shifts by a scalar amount and convert them into 322 // V*_BY_SCALAR. 323 setOperationAction(ISD::SHL, VT, Custom); 324 setOperationAction(ISD::SRA, VT, Custom); 325 setOperationAction(ISD::SRL, VT, Custom); 326 327 // At present ROTL isn't matched by DAGCombiner. ROTR should be 328 // converted into ROTL. 329 setOperationAction(ISD::ROTL, VT, Expand); 330 setOperationAction(ISD::ROTR, VT, Expand); 331 332 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 333 // and inverting the result as necessary. 334 setOperationAction(ISD::SETCC, VT, Custom); 335 } 336 } 337 338 if (Subtarget.hasVector()) { 339 // There should be no need to check for float types other than v2f64 340 // since <2 x f32> isn't a legal type. 341 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 342 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 343 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 344 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 345 } 346 347 // Handle floating-point types. 348 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 349 I <= MVT::LAST_FP_VALUETYPE; 350 ++I) { 351 MVT VT = MVT::SimpleValueType(I); 352 if (isTypeLegal(VT)) { 353 // We can use FI for FRINT. 354 setOperationAction(ISD::FRINT, VT, Legal); 355 356 // We can use the extended form of FI for other rounding operations. 357 if (Subtarget.hasFPExtension()) { 358 setOperationAction(ISD::FNEARBYINT, VT, Legal); 359 setOperationAction(ISD::FFLOOR, VT, Legal); 360 setOperationAction(ISD::FCEIL, VT, Legal); 361 setOperationAction(ISD::FTRUNC, VT, Legal); 362 setOperationAction(ISD::FROUND, VT, Legal); 363 } 364 365 // No special instructions for these. 366 setOperationAction(ISD::FSIN, VT, Expand); 367 setOperationAction(ISD::FCOS, VT, Expand); 368 setOperationAction(ISD::FSINCOS, VT, Expand); 369 setOperationAction(ISD::FREM, VT, Expand); 370 setOperationAction(ISD::FPOW, VT, Expand); 371 } 372 } 373 374 // Handle floating-point vector types. 375 if (Subtarget.hasVector()) { 376 // Scalar-to-vector conversion is just a subreg. 377 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 378 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 379 380 // Some insertions and extractions can be done directly but others 381 // need to go via integers. 382 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 383 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 384 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 385 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 386 387 // These operations have direct equivalents. 388 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 389 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 390 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 391 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 392 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 393 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 394 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 395 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 396 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 397 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 398 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 399 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 400 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 401 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 402 } 403 404 // We have fused multiply-addition for f32 and f64 but not f128. 405 setOperationAction(ISD::FMA, MVT::f32, Legal); 406 setOperationAction(ISD::FMA, MVT::f64, Legal); 407 setOperationAction(ISD::FMA, MVT::f128, Expand); 408 409 // Needed so that we don't try to implement f128 constant loads using 410 // a load-and-extend of a f80 constant (in cases where the constant 411 // would fit in an f80). 412 for (MVT VT : MVT::fp_valuetypes()) 413 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 414 415 // Floating-point truncation and stores need to be done separately. 416 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 417 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 418 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 419 420 // We have 64-bit FPR<->GPR moves, but need special handling for 421 // 32-bit forms. 422 if (!Subtarget.hasVector()) { 423 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 424 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 425 } 426 427 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 428 // structure, but VAEND is a no-op. 429 setOperationAction(ISD::VASTART, MVT::Other, Custom); 430 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 431 setOperationAction(ISD::VAEND, MVT::Other, Expand); 432 433 // Codes for which we want to perform some z-specific combinations. 434 setTargetDAGCombine(ISD::SIGN_EXTEND); 435 setTargetDAGCombine(ISD::STORE); 436 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 437 setTargetDAGCombine(ISD::FP_ROUND); 438 439 // Handle intrinsics. 440 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 441 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 442 443 // We want to use MVC in preference to even a single load/store pair. 444 MaxStoresPerMemcpy = 0; 445 MaxStoresPerMemcpyOptSize = 0; 446 447 // The main memset sequence is a byte store followed by an MVC. 448 // Two STC or MV..I stores win over that, but the kind of fused stores 449 // generated by target-independent code don't when the byte value is 450 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 451 // than "STC;MVC". Handle the choice in target-specific code instead. 452 MaxStoresPerMemset = 0; 453 MaxStoresPerMemsetOptSize = 0; 454 } 455 456 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 457 LLVMContext &, EVT VT) const { 458 if (!VT.isVector()) 459 return MVT::i32; 460 return VT.changeVectorElementTypeToInteger(); 461 } 462 463 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 464 VT = VT.getScalarType(); 465 466 if (!VT.isSimple()) 467 return false; 468 469 switch (VT.getSimpleVT().SimpleTy) { 470 case MVT::f32: 471 case MVT::f64: 472 return true; 473 case MVT::f128: 474 return false; 475 default: 476 break; 477 } 478 479 return false; 480 } 481 482 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 483 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 484 return Imm.isZero() || Imm.isNegZero(); 485 } 486 487 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 488 // We can use CGFI or CLGFI. 489 return isInt<32>(Imm) || isUInt<32>(Imm); 490 } 491 492 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 493 // We can use ALGFI or SLGFI. 494 return isUInt<32>(Imm) || isUInt<32>(-Imm); 495 } 496 497 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 498 unsigned, 499 unsigned, 500 bool *Fast) const { 501 // Unaligned accesses should never be slower than the expanded version. 502 // We check specifically for aligned accesses in the few cases where 503 // they are required. 504 if (Fast) 505 *Fast = true; 506 return true; 507 } 508 509 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 510 const AddrMode &AM, Type *Ty, 511 unsigned AS) const { 512 // Punt on globals for now, although they can be used in limited 513 // RELATIVE LONG cases. 514 if (AM.BaseGV) 515 return false; 516 517 // Require a 20-bit signed offset. 518 if (!isInt<20>(AM.BaseOffs)) 519 return false; 520 521 // Indexing is OK but no scale factor can be applied. 522 return AM.Scale == 0 || AM.Scale == 1; 523 } 524 525 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 526 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 527 return false; 528 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 529 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 530 return FromBits > ToBits; 531 } 532 533 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 534 if (!FromVT.isInteger() || !ToVT.isInteger()) 535 return false; 536 unsigned FromBits = FromVT.getSizeInBits(); 537 unsigned ToBits = ToVT.getSizeInBits(); 538 return FromBits > ToBits; 539 } 540 541 //===----------------------------------------------------------------------===// 542 // Inline asm support 543 //===----------------------------------------------------------------------===// 544 545 TargetLowering::ConstraintType 546 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 547 if (Constraint.size() == 1) { 548 switch (Constraint[0]) { 549 case 'a': // Address register 550 case 'd': // Data register (equivalent to 'r') 551 case 'f': // Floating-point register 552 case 'h': // High-part register 553 case 'r': // General-purpose register 554 return C_RegisterClass; 555 556 case 'Q': // Memory with base and unsigned 12-bit displacement 557 case 'R': // Likewise, plus an index 558 case 'S': // Memory with base and signed 20-bit displacement 559 case 'T': // Likewise, plus an index 560 case 'm': // Equivalent to 'T'. 561 return C_Memory; 562 563 case 'I': // Unsigned 8-bit constant 564 case 'J': // Unsigned 12-bit constant 565 case 'K': // Signed 16-bit constant 566 case 'L': // Signed 20-bit displacement (on all targets we support) 567 case 'M': // 0x7fffffff 568 return C_Other; 569 570 default: 571 break; 572 } 573 } 574 return TargetLowering::getConstraintType(Constraint); 575 } 576 577 TargetLowering::ConstraintWeight SystemZTargetLowering:: 578 getSingleConstraintMatchWeight(AsmOperandInfo &info, 579 const char *constraint) const { 580 ConstraintWeight weight = CW_Invalid; 581 Value *CallOperandVal = info.CallOperandVal; 582 // If we don't have a value, we can't do a match, 583 // but allow it at the lowest weight. 584 if (!CallOperandVal) 585 return CW_Default; 586 Type *type = CallOperandVal->getType(); 587 // Look at the constraint type. 588 switch (*constraint) { 589 default: 590 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 591 break; 592 593 case 'a': // Address register 594 case 'd': // Data register (equivalent to 'r') 595 case 'h': // High-part register 596 case 'r': // General-purpose register 597 if (CallOperandVal->getType()->isIntegerTy()) 598 weight = CW_Register; 599 break; 600 601 case 'f': // Floating-point register 602 if (type->isFloatingPointTy()) 603 weight = CW_Register; 604 break; 605 606 case 'I': // Unsigned 8-bit constant 607 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 608 if (isUInt<8>(C->getZExtValue())) 609 weight = CW_Constant; 610 break; 611 612 case 'J': // Unsigned 12-bit constant 613 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 614 if (isUInt<12>(C->getZExtValue())) 615 weight = CW_Constant; 616 break; 617 618 case 'K': // Signed 16-bit constant 619 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 620 if (isInt<16>(C->getSExtValue())) 621 weight = CW_Constant; 622 break; 623 624 case 'L': // Signed 20-bit displacement (on all targets we support) 625 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 626 if (isInt<20>(C->getSExtValue())) 627 weight = CW_Constant; 628 break; 629 630 case 'M': // 0x7fffffff 631 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 632 if (C->getZExtValue() == 0x7fffffff) 633 weight = CW_Constant; 634 break; 635 } 636 return weight; 637 } 638 639 // Parse a "{tNNN}" register constraint for which the register type "t" 640 // has already been verified. MC is the class associated with "t" and 641 // Map maps 0-based register numbers to LLVM register numbers. 642 static std::pair<unsigned, const TargetRegisterClass *> 643 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 644 const unsigned *Map) { 645 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 646 if (isdigit(Constraint[2])) { 647 unsigned Index; 648 bool Failed = 649 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 650 if (!Failed && Index < 16 && Map[Index]) 651 return std::make_pair(Map[Index], RC); 652 } 653 return std::make_pair(0U, nullptr); 654 } 655 656 std::pair<unsigned, const TargetRegisterClass *> 657 SystemZTargetLowering::getRegForInlineAsmConstraint( 658 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 659 if (Constraint.size() == 1) { 660 // GCC Constraint Letters 661 switch (Constraint[0]) { 662 default: break; 663 case 'd': // Data register (equivalent to 'r') 664 case 'r': // General-purpose register 665 if (VT == MVT::i64) 666 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 667 else if (VT == MVT::i128) 668 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 669 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 670 671 case 'a': // Address register 672 if (VT == MVT::i64) 673 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 674 else if (VT == MVT::i128) 675 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 676 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 677 678 case 'h': // High-part register (an LLVM extension) 679 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 680 681 case 'f': // Floating-point register 682 if (VT == MVT::f64) 683 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 684 else if (VT == MVT::f128) 685 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 686 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 687 } 688 } 689 if (Constraint.size() > 0 && Constraint[0] == '{') { 690 // We need to override the default register parsing for GPRs and FPRs 691 // because the interpretation depends on VT. The internal names of 692 // the registers are also different from the external names 693 // (F0D and F0S instead of F0, etc.). 694 if (Constraint[1] == 'r') { 695 if (VT == MVT::i32) 696 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 697 SystemZMC::GR32Regs); 698 if (VT == MVT::i128) 699 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 700 SystemZMC::GR128Regs); 701 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 702 SystemZMC::GR64Regs); 703 } 704 if (Constraint[1] == 'f') { 705 if (VT == MVT::f32) 706 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 707 SystemZMC::FP32Regs); 708 if (VT == MVT::f128) 709 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 710 SystemZMC::FP128Regs); 711 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 712 SystemZMC::FP64Regs); 713 } 714 } 715 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 716 } 717 718 void SystemZTargetLowering:: 719 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 720 std::vector<SDValue> &Ops, 721 SelectionDAG &DAG) const { 722 // Only support length 1 constraints for now. 723 if (Constraint.length() == 1) { 724 switch (Constraint[0]) { 725 case 'I': // Unsigned 8-bit constant 726 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 727 if (isUInt<8>(C->getZExtValue())) 728 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 729 Op.getValueType())); 730 return; 731 732 case 'J': // Unsigned 12-bit constant 733 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 734 if (isUInt<12>(C->getZExtValue())) 735 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 736 Op.getValueType())); 737 return; 738 739 case 'K': // Signed 16-bit constant 740 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 741 if (isInt<16>(C->getSExtValue())) 742 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 743 Op.getValueType())); 744 return; 745 746 case 'L': // Signed 20-bit displacement (on all targets we support) 747 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 748 if (isInt<20>(C->getSExtValue())) 749 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 750 Op.getValueType())); 751 return; 752 753 case 'M': // 0x7fffffff 754 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 755 if (C->getZExtValue() == 0x7fffffff) 756 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 757 Op.getValueType())); 758 return; 759 } 760 } 761 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 762 } 763 764 //===----------------------------------------------------------------------===// 765 // Calling conventions 766 //===----------------------------------------------------------------------===// 767 768 #include "SystemZGenCallingConv.inc" 769 770 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 771 Type *ToType) const { 772 return isTruncateFree(FromType, ToType); 773 } 774 775 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 776 return CI->isTailCall(); 777 } 778 779 // We do not yet support 128-bit single-element vector types. If the user 780 // attempts to use such types as function argument or return type, prefer 781 // to error out instead of emitting code violating the ABI. 782 static void VerifyVectorType(MVT VT, EVT ArgVT) { 783 if (ArgVT.isVector() && !VT.isVector()) 784 report_fatal_error("Unsupported vector argument or return type"); 785 } 786 787 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 788 for (unsigned i = 0; i < Ins.size(); ++i) 789 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 790 } 791 792 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 793 for (unsigned i = 0; i < Outs.size(); ++i) 794 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 795 } 796 797 // Value is a value that has been passed to us in the location described by VA 798 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 799 // any loads onto Chain. 800 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, 801 CCValAssign &VA, SDValue Chain, 802 SDValue Value) { 803 // If the argument has been promoted from a smaller type, insert an 804 // assertion to capture this. 805 if (VA.getLocInfo() == CCValAssign::SExt) 806 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 807 DAG.getValueType(VA.getValVT())); 808 else if (VA.getLocInfo() == CCValAssign::ZExt) 809 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 810 DAG.getValueType(VA.getValVT())); 811 812 if (VA.isExtInLoc()) 813 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 814 else if (VA.getLocInfo() == CCValAssign::BCvt) { 815 // If this is a short vector argument loaded from the stack, 816 // extend from i64 to full vector size and then bitcast. 817 assert(VA.getLocVT() == MVT::i64); 818 assert(VA.getValVT().isVector()); 819 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 820 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 821 } else 822 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 823 return Value; 824 } 825 826 // Value is a value of type VA.getValVT() that we need to copy into 827 // the location described by VA. Return a copy of Value converted to 828 // VA.getValVT(). The caller is responsible for handling indirect values. 829 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, 830 CCValAssign &VA, SDValue Value) { 831 switch (VA.getLocInfo()) { 832 case CCValAssign::SExt: 833 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 834 case CCValAssign::ZExt: 835 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 836 case CCValAssign::AExt: 837 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 838 case CCValAssign::BCvt: 839 // If this is a short vector argument to be stored to the stack, 840 // bitcast to v2i64 and then extract first element. 841 assert(VA.getLocVT() == MVT::i64); 842 assert(VA.getValVT().isVector()); 843 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 844 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 845 DAG.getConstant(0, DL, MVT::i32)); 846 case CCValAssign::Full: 847 return Value; 848 default: 849 llvm_unreachable("Unhandled getLocInfo()"); 850 } 851 } 852 853 SDValue SystemZTargetLowering:: 854 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 855 const SmallVectorImpl<ISD::InputArg> &Ins, 856 SDLoc DL, SelectionDAG &DAG, 857 SmallVectorImpl<SDValue> &InVals) const { 858 MachineFunction &MF = DAG.getMachineFunction(); 859 MachineFrameInfo *MFI = MF.getFrameInfo(); 860 MachineRegisterInfo &MRI = MF.getRegInfo(); 861 SystemZMachineFunctionInfo *FuncInfo = 862 MF.getInfo<SystemZMachineFunctionInfo>(); 863 auto *TFL = 864 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 865 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 866 867 // Detect unsupported vector argument types. 868 if (Subtarget.hasVector()) 869 VerifyVectorTypes(Ins); 870 871 // Assign locations to all of the incoming arguments. 872 SmallVector<CCValAssign, 16> ArgLocs; 873 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 874 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 875 876 unsigned NumFixedGPRs = 0; 877 unsigned NumFixedFPRs = 0; 878 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 879 SDValue ArgValue; 880 CCValAssign &VA = ArgLocs[I]; 881 EVT LocVT = VA.getLocVT(); 882 if (VA.isRegLoc()) { 883 // Arguments passed in registers 884 const TargetRegisterClass *RC; 885 switch (LocVT.getSimpleVT().SimpleTy) { 886 default: 887 // Integers smaller than i64 should be promoted to i64. 888 llvm_unreachable("Unexpected argument type"); 889 case MVT::i32: 890 NumFixedGPRs += 1; 891 RC = &SystemZ::GR32BitRegClass; 892 break; 893 case MVT::i64: 894 NumFixedGPRs += 1; 895 RC = &SystemZ::GR64BitRegClass; 896 break; 897 case MVT::f32: 898 NumFixedFPRs += 1; 899 RC = &SystemZ::FP32BitRegClass; 900 break; 901 case MVT::f64: 902 NumFixedFPRs += 1; 903 RC = &SystemZ::FP64BitRegClass; 904 break; 905 case MVT::v16i8: 906 case MVT::v8i16: 907 case MVT::v4i32: 908 case MVT::v2i64: 909 case MVT::v4f32: 910 case MVT::v2f64: 911 RC = &SystemZ::VR128BitRegClass; 912 break; 913 } 914 915 unsigned VReg = MRI.createVirtualRegister(RC); 916 MRI.addLiveIn(VA.getLocReg(), VReg); 917 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 918 } else { 919 assert(VA.isMemLoc() && "Argument not register or memory"); 920 921 // Create the frame index object for this incoming parameter. 922 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 923 VA.getLocMemOffset(), true); 924 925 // Create the SelectionDAG nodes corresponding to a load 926 // from this parameter. Unpromoted ints and floats are 927 // passed as right-justified 8-byte values. 928 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 929 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 930 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 931 DAG.getIntPtrConstant(4, DL)); 932 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 933 MachinePointerInfo::getFixedStack(MF, FI), false, 934 false, false, 0); 935 } 936 937 // Convert the value of the argument register into the value that's 938 // being passed. 939 if (VA.getLocInfo() == CCValAssign::Indirect) { 940 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, 941 ArgValue, MachinePointerInfo(), 942 false, false, false, 0)); 943 // If the original argument was split (e.g. i128), we need 944 // to load all parts of it here (using the same address). 945 unsigned ArgIndex = Ins[I].OrigArgIndex; 946 assert (Ins[I].PartOffset == 0); 947 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 948 CCValAssign &PartVA = ArgLocs[I + 1]; 949 unsigned PartOffset = Ins[I + 1].PartOffset; 950 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 951 DAG.getIntPtrConstant(PartOffset, DL)); 952 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, 953 Address, MachinePointerInfo(), 954 false, false, false, 0)); 955 ++I; 956 } 957 } else 958 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 959 } 960 961 if (IsVarArg) { 962 // Save the number of non-varargs registers for later use by va_start, etc. 963 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 964 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 965 966 // Likewise the address (in the form of a frame index) of where the 967 // first stack vararg would be. The 1-byte size here is arbitrary. 968 int64_t StackSize = CCInfo.getNextStackOffset(); 969 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 970 971 // ...and a similar frame index for the caller-allocated save area 972 // that will be used to store the incoming registers. 973 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 974 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 975 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 976 977 // Store the FPR varargs in the reserved frame slots. (We store the 978 // GPRs as part of the prologue.) 979 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 980 SDValue MemOps[SystemZ::NumArgFPRs]; 981 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 982 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 983 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 984 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 985 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 986 &SystemZ::FP64BitRegClass); 987 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 988 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 989 MachinePointerInfo::getFixedStack(MF, FI), 990 false, false, 0); 991 } 992 // Join the stores, which are independent of one another. 993 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 994 makeArrayRef(&MemOps[NumFixedFPRs], 995 SystemZ::NumArgFPRs-NumFixedFPRs)); 996 } 997 } 998 999 return Chain; 1000 } 1001 1002 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1003 SmallVectorImpl<CCValAssign> &ArgLocs, 1004 SmallVectorImpl<ISD::OutputArg> &Outs) { 1005 // Punt if there are any indirect or stack arguments, or if the call 1006 // needs the callee-saved argument register R6, or if the call uses 1007 // the callee-saved register arguments SwiftSelf and SwiftError. 1008 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1009 CCValAssign &VA = ArgLocs[I]; 1010 if (VA.getLocInfo() == CCValAssign::Indirect) 1011 return false; 1012 if (!VA.isRegLoc()) 1013 return false; 1014 unsigned Reg = VA.getLocReg(); 1015 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1016 return false; 1017 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1018 return false; 1019 } 1020 return true; 1021 } 1022 1023 SDValue 1024 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1025 SmallVectorImpl<SDValue> &InVals) const { 1026 SelectionDAG &DAG = CLI.DAG; 1027 SDLoc &DL = CLI.DL; 1028 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1029 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1030 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1031 SDValue Chain = CLI.Chain; 1032 SDValue Callee = CLI.Callee; 1033 bool &IsTailCall = CLI.IsTailCall; 1034 CallingConv::ID CallConv = CLI.CallConv; 1035 bool IsVarArg = CLI.IsVarArg; 1036 MachineFunction &MF = DAG.getMachineFunction(); 1037 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1038 1039 // Detect unsupported vector argument and return types. 1040 if (Subtarget.hasVector()) { 1041 VerifyVectorTypes(Outs); 1042 VerifyVectorTypes(Ins); 1043 } 1044 1045 // Analyze the operands of the call, assigning locations to each operand. 1046 SmallVector<CCValAssign, 16> ArgLocs; 1047 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1048 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1049 1050 // We don't support GuaranteedTailCallOpt, only automatically-detected 1051 // sibling calls. 1052 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1053 IsTailCall = false; 1054 1055 // Get a count of how many bytes are to be pushed on the stack. 1056 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1057 1058 // Mark the start of the call. 1059 if (!IsTailCall) 1060 Chain = DAG.getCALLSEQ_START(Chain, 1061 DAG.getConstant(NumBytes, DL, PtrVT, true), 1062 DL); 1063 1064 // Copy argument values to their designated locations. 1065 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1066 SmallVector<SDValue, 8> MemOpChains; 1067 SDValue StackPtr; 1068 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1069 CCValAssign &VA = ArgLocs[I]; 1070 SDValue ArgValue = OutVals[I]; 1071 1072 if (VA.getLocInfo() == CCValAssign::Indirect) { 1073 // Store the argument in a stack slot and pass its address. 1074 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1075 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1076 MemOpChains.push_back(DAG.getStore( 1077 Chain, DL, ArgValue, SpillSlot, 1078 MachinePointerInfo::getFixedStack(MF, FI), false, false, 0)); 1079 // If the original argument was split (e.g. i128), we need 1080 // to store all parts of it here (and pass just one address). 1081 unsigned ArgIndex = Outs[I].OrigArgIndex; 1082 assert (Outs[I].PartOffset == 0); 1083 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1084 SDValue PartValue = OutVals[I + 1]; 1085 unsigned PartOffset = Outs[I + 1].PartOffset; 1086 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1087 DAG.getIntPtrConstant(PartOffset, DL)); 1088 MemOpChains.push_back(DAG.getStore( 1089 Chain, DL, PartValue, Address, 1090 MachinePointerInfo::getFixedStack(MF, FI), false, false, 0)); 1091 ++I; 1092 } 1093 ArgValue = SpillSlot; 1094 } else 1095 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1096 1097 if (VA.isRegLoc()) 1098 // Queue up the argument copies and emit them at the end. 1099 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1100 else { 1101 assert(VA.isMemLoc() && "Argument not register or memory"); 1102 1103 // Work out the address of the stack slot. Unpromoted ints and 1104 // floats are passed as right-justified 8-byte values. 1105 if (!StackPtr.getNode()) 1106 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1107 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1108 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1109 Offset += 4; 1110 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1111 DAG.getIntPtrConstant(Offset, DL)); 1112 1113 // Emit the store. 1114 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, 1115 MachinePointerInfo(), 1116 false, false, 0)); 1117 } 1118 } 1119 1120 // Join the stores, which are independent of one another. 1121 if (!MemOpChains.empty()) 1122 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1123 1124 // Accept direct calls by converting symbolic call addresses to the 1125 // associated Target* opcodes. Force %r1 to be used for indirect 1126 // tail calls. 1127 SDValue Glue; 1128 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1129 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1130 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1131 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1132 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1133 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1134 } else if (IsTailCall) { 1135 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1136 Glue = Chain.getValue(1); 1137 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1138 } 1139 1140 // Build a sequence of copy-to-reg nodes, chained and glued together. 1141 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1142 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1143 RegsToPass[I].second, Glue); 1144 Glue = Chain.getValue(1); 1145 } 1146 1147 // The first call operand is the chain and the second is the target address. 1148 SmallVector<SDValue, 8> Ops; 1149 Ops.push_back(Chain); 1150 Ops.push_back(Callee); 1151 1152 // Add argument registers to the end of the list so that they are 1153 // known live into the call. 1154 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1155 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1156 RegsToPass[I].second.getValueType())); 1157 1158 // Add a register mask operand representing the call-preserved registers. 1159 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1160 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1161 assert(Mask && "Missing call preserved mask for calling convention"); 1162 Ops.push_back(DAG.getRegisterMask(Mask)); 1163 1164 // Glue the call to the argument copies, if any. 1165 if (Glue.getNode()) 1166 Ops.push_back(Glue); 1167 1168 // Emit the call. 1169 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1170 if (IsTailCall) 1171 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1172 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1173 Glue = Chain.getValue(1); 1174 1175 // Mark the end of the call, which is glued to the call itself. 1176 Chain = DAG.getCALLSEQ_END(Chain, 1177 DAG.getConstant(NumBytes, DL, PtrVT, true), 1178 DAG.getConstant(0, DL, PtrVT, true), 1179 Glue, DL); 1180 Glue = Chain.getValue(1); 1181 1182 // Assign locations to each value returned by this call. 1183 SmallVector<CCValAssign, 16> RetLocs; 1184 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1185 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1186 1187 // Copy all of the result registers out of their specified physreg. 1188 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1189 CCValAssign &VA = RetLocs[I]; 1190 1191 // Copy the value out, gluing the copy to the end of the call sequence. 1192 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1193 VA.getLocVT(), Glue); 1194 Chain = RetValue.getValue(1); 1195 Glue = RetValue.getValue(2); 1196 1197 // Convert the value of the return register into the value that's 1198 // being returned. 1199 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1200 } 1201 1202 return Chain; 1203 } 1204 1205 bool SystemZTargetLowering:: 1206 CanLowerReturn(CallingConv::ID CallConv, 1207 MachineFunction &MF, bool isVarArg, 1208 const SmallVectorImpl<ISD::OutputArg> &Outs, 1209 LLVMContext &Context) const { 1210 // Detect unsupported vector return types. 1211 if (Subtarget.hasVector()) 1212 VerifyVectorTypes(Outs); 1213 1214 // Special case that we cannot easily detect in RetCC_SystemZ since 1215 // i128 is not a legal type. 1216 for (auto &Out : Outs) 1217 if (Out.ArgVT == MVT::i128) 1218 return false; 1219 1220 SmallVector<CCValAssign, 16> RetLocs; 1221 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1222 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1223 } 1224 1225 SDValue 1226 SystemZTargetLowering::LowerReturn(SDValue Chain, 1227 CallingConv::ID CallConv, bool IsVarArg, 1228 const SmallVectorImpl<ISD::OutputArg> &Outs, 1229 const SmallVectorImpl<SDValue> &OutVals, 1230 SDLoc DL, SelectionDAG &DAG) const { 1231 MachineFunction &MF = DAG.getMachineFunction(); 1232 1233 // Detect unsupported vector return types. 1234 if (Subtarget.hasVector()) 1235 VerifyVectorTypes(Outs); 1236 1237 // Assign locations to each returned value. 1238 SmallVector<CCValAssign, 16> RetLocs; 1239 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1240 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1241 1242 // Quick exit for void returns 1243 if (RetLocs.empty()) 1244 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1245 1246 // Copy the result values into the output registers. 1247 SDValue Glue; 1248 SmallVector<SDValue, 4> RetOps; 1249 RetOps.push_back(Chain); 1250 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1251 CCValAssign &VA = RetLocs[I]; 1252 SDValue RetValue = OutVals[I]; 1253 1254 // Make the return register live on exit. 1255 assert(VA.isRegLoc() && "Can only return in registers!"); 1256 1257 // Promote the value as required. 1258 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1259 1260 // Chain and glue the copies together. 1261 unsigned Reg = VA.getLocReg(); 1262 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1263 Glue = Chain.getValue(1); 1264 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1265 } 1266 1267 // Update chain and glue. 1268 RetOps[0] = Chain; 1269 if (Glue.getNode()) 1270 RetOps.push_back(Glue); 1271 1272 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1273 } 1274 1275 SDValue SystemZTargetLowering:: 1276 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { 1277 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1278 } 1279 1280 // Return true if Op is an intrinsic node with chain that returns the CC value 1281 // as its only (other) argument. Provide the associated SystemZISD opcode and 1282 // the mask of valid CC values if so. 1283 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1284 unsigned &CCValid) { 1285 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1286 switch (Id) { 1287 case Intrinsic::s390_tbegin: 1288 Opcode = SystemZISD::TBEGIN; 1289 CCValid = SystemZ::CCMASK_TBEGIN; 1290 return true; 1291 1292 case Intrinsic::s390_tbegin_nofloat: 1293 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1294 CCValid = SystemZ::CCMASK_TBEGIN; 1295 return true; 1296 1297 case Intrinsic::s390_tend: 1298 Opcode = SystemZISD::TEND; 1299 CCValid = SystemZ::CCMASK_TEND; 1300 return true; 1301 1302 default: 1303 return false; 1304 } 1305 } 1306 1307 // Return true if Op is an intrinsic node without chain that returns the 1308 // CC value as its final argument. Provide the associated SystemZISD 1309 // opcode and the mask of valid CC values if so. 1310 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1311 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1312 switch (Id) { 1313 case Intrinsic::s390_vpkshs: 1314 case Intrinsic::s390_vpksfs: 1315 case Intrinsic::s390_vpksgs: 1316 Opcode = SystemZISD::PACKS_CC; 1317 CCValid = SystemZ::CCMASK_VCMP; 1318 return true; 1319 1320 case Intrinsic::s390_vpklshs: 1321 case Intrinsic::s390_vpklsfs: 1322 case Intrinsic::s390_vpklsgs: 1323 Opcode = SystemZISD::PACKLS_CC; 1324 CCValid = SystemZ::CCMASK_VCMP; 1325 return true; 1326 1327 case Intrinsic::s390_vceqbs: 1328 case Intrinsic::s390_vceqhs: 1329 case Intrinsic::s390_vceqfs: 1330 case Intrinsic::s390_vceqgs: 1331 Opcode = SystemZISD::VICMPES; 1332 CCValid = SystemZ::CCMASK_VCMP; 1333 return true; 1334 1335 case Intrinsic::s390_vchbs: 1336 case Intrinsic::s390_vchhs: 1337 case Intrinsic::s390_vchfs: 1338 case Intrinsic::s390_vchgs: 1339 Opcode = SystemZISD::VICMPHS; 1340 CCValid = SystemZ::CCMASK_VCMP; 1341 return true; 1342 1343 case Intrinsic::s390_vchlbs: 1344 case Intrinsic::s390_vchlhs: 1345 case Intrinsic::s390_vchlfs: 1346 case Intrinsic::s390_vchlgs: 1347 Opcode = SystemZISD::VICMPHLS; 1348 CCValid = SystemZ::CCMASK_VCMP; 1349 return true; 1350 1351 case Intrinsic::s390_vtm: 1352 Opcode = SystemZISD::VTM; 1353 CCValid = SystemZ::CCMASK_VCMP; 1354 return true; 1355 1356 case Intrinsic::s390_vfaebs: 1357 case Intrinsic::s390_vfaehs: 1358 case Intrinsic::s390_vfaefs: 1359 Opcode = SystemZISD::VFAE_CC; 1360 CCValid = SystemZ::CCMASK_ANY; 1361 return true; 1362 1363 case Intrinsic::s390_vfaezbs: 1364 case Intrinsic::s390_vfaezhs: 1365 case Intrinsic::s390_vfaezfs: 1366 Opcode = SystemZISD::VFAEZ_CC; 1367 CCValid = SystemZ::CCMASK_ANY; 1368 return true; 1369 1370 case Intrinsic::s390_vfeebs: 1371 case Intrinsic::s390_vfeehs: 1372 case Intrinsic::s390_vfeefs: 1373 Opcode = SystemZISD::VFEE_CC; 1374 CCValid = SystemZ::CCMASK_ANY; 1375 return true; 1376 1377 case Intrinsic::s390_vfeezbs: 1378 case Intrinsic::s390_vfeezhs: 1379 case Intrinsic::s390_vfeezfs: 1380 Opcode = SystemZISD::VFEEZ_CC; 1381 CCValid = SystemZ::CCMASK_ANY; 1382 return true; 1383 1384 case Intrinsic::s390_vfenebs: 1385 case Intrinsic::s390_vfenehs: 1386 case Intrinsic::s390_vfenefs: 1387 Opcode = SystemZISD::VFENE_CC; 1388 CCValid = SystemZ::CCMASK_ANY; 1389 return true; 1390 1391 case Intrinsic::s390_vfenezbs: 1392 case Intrinsic::s390_vfenezhs: 1393 case Intrinsic::s390_vfenezfs: 1394 Opcode = SystemZISD::VFENEZ_CC; 1395 CCValid = SystemZ::CCMASK_ANY; 1396 return true; 1397 1398 case Intrinsic::s390_vistrbs: 1399 case Intrinsic::s390_vistrhs: 1400 case Intrinsic::s390_vistrfs: 1401 Opcode = SystemZISD::VISTR_CC; 1402 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1403 return true; 1404 1405 case Intrinsic::s390_vstrcbs: 1406 case Intrinsic::s390_vstrchs: 1407 case Intrinsic::s390_vstrcfs: 1408 Opcode = SystemZISD::VSTRC_CC; 1409 CCValid = SystemZ::CCMASK_ANY; 1410 return true; 1411 1412 case Intrinsic::s390_vstrczbs: 1413 case Intrinsic::s390_vstrczhs: 1414 case Intrinsic::s390_vstrczfs: 1415 Opcode = SystemZISD::VSTRCZ_CC; 1416 CCValid = SystemZ::CCMASK_ANY; 1417 return true; 1418 1419 case Intrinsic::s390_vfcedbs: 1420 Opcode = SystemZISD::VFCMPES; 1421 CCValid = SystemZ::CCMASK_VCMP; 1422 return true; 1423 1424 case Intrinsic::s390_vfchdbs: 1425 Opcode = SystemZISD::VFCMPHS; 1426 CCValid = SystemZ::CCMASK_VCMP; 1427 return true; 1428 1429 case Intrinsic::s390_vfchedbs: 1430 Opcode = SystemZISD::VFCMPHES; 1431 CCValid = SystemZ::CCMASK_VCMP; 1432 return true; 1433 1434 case Intrinsic::s390_vftcidb: 1435 Opcode = SystemZISD::VFTCI; 1436 CCValid = SystemZ::CCMASK_VCMP; 1437 return true; 1438 1439 default: 1440 return false; 1441 } 1442 } 1443 1444 // Emit an intrinsic with chain with a glued value instead of its CC result. 1445 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1446 unsigned Opcode) { 1447 // Copy all operands except the intrinsic ID. 1448 unsigned NumOps = Op.getNumOperands(); 1449 SmallVector<SDValue, 6> Ops; 1450 Ops.reserve(NumOps - 1); 1451 Ops.push_back(Op.getOperand(0)); 1452 for (unsigned I = 2; I < NumOps; ++I) 1453 Ops.push_back(Op.getOperand(I)); 1454 1455 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1456 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1457 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1458 SDValue OldChain = SDValue(Op.getNode(), 1); 1459 SDValue NewChain = SDValue(Intr.getNode(), 0); 1460 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1461 return Intr; 1462 } 1463 1464 // Emit an intrinsic with a glued value instead of its CC result. 1465 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1466 unsigned Opcode) { 1467 // Copy all operands except the intrinsic ID. 1468 unsigned NumOps = Op.getNumOperands(); 1469 SmallVector<SDValue, 6> Ops; 1470 Ops.reserve(NumOps - 1); 1471 for (unsigned I = 1; I < NumOps; ++I) 1472 Ops.push_back(Op.getOperand(I)); 1473 1474 if (Op->getNumValues() == 1) 1475 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1476 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1477 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1478 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1479 } 1480 1481 // CC is a comparison that will be implemented using an integer or 1482 // floating-point comparison. Return the condition code mask for 1483 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1484 // unsigned comparisons and clear for signed ones. In the floating-point 1485 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1486 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1487 #define CONV(X) \ 1488 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1489 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1490 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1491 1492 switch (CC) { 1493 default: 1494 llvm_unreachable("Invalid integer condition!"); 1495 1496 CONV(EQ); 1497 CONV(NE); 1498 CONV(GT); 1499 CONV(GE); 1500 CONV(LT); 1501 CONV(LE); 1502 1503 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1504 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1505 } 1506 #undef CONV 1507 } 1508 1509 // Return a sequence for getting a 1 from an IPM result when CC has a 1510 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1511 // The handling of CC values outside CCValid doesn't matter. 1512 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1513 // Deal with cases where the result can be taken directly from a bit 1514 // of the IPM result. 1515 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1516 return IPMConversion(0, 0, SystemZ::IPM_CC); 1517 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1518 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1519 1520 // Deal with cases where we can add a value to force the sign bit 1521 // to contain the right value. Putting the bit in 31 means we can 1522 // use SRL rather than RISBG(L), and also makes it easier to get a 1523 // 0/-1 value, so it has priority over the other tests below. 1524 // 1525 // These sequences rely on the fact that the upper two bits of the 1526 // IPM result are zero. 1527 uint64_t TopBit = uint64_t(1) << 31; 1528 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1529 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1530 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1531 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1532 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1533 | SystemZ::CCMASK_1 1534 | SystemZ::CCMASK_2))) 1535 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1536 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1537 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1538 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1539 | SystemZ::CCMASK_2 1540 | SystemZ::CCMASK_3))) 1541 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1542 1543 // Next try inverting the value and testing a bit. 0/1 could be 1544 // handled this way too, but we dealt with that case above. 1545 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1546 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1547 1548 // Handle cases where adding a value forces a non-sign bit to contain 1549 // the right value. 1550 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1551 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1552 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1553 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1554 1555 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1556 // can be done by inverting the low CC bit and applying one of the 1557 // sign-based extractions above. 1558 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1559 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1560 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1561 return IPMConversion(1 << SystemZ::IPM_CC, 1562 TopBit - (3 << SystemZ::IPM_CC), 31); 1563 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1564 | SystemZ::CCMASK_1 1565 | SystemZ::CCMASK_3))) 1566 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1567 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1568 | SystemZ::CCMASK_2 1569 | SystemZ::CCMASK_3))) 1570 return IPMConversion(1 << SystemZ::IPM_CC, 1571 TopBit - (1 << SystemZ::IPM_CC), 31); 1572 1573 llvm_unreachable("Unexpected CC combination"); 1574 } 1575 1576 // If C can be converted to a comparison against zero, adjust the operands 1577 // as necessary. 1578 static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1579 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1580 return; 1581 1582 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1583 if (!ConstOp1) 1584 return; 1585 1586 int64_t Value = ConstOp1->getSExtValue(); 1587 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1588 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1589 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1590 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1591 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1592 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1593 } 1594 } 1595 1596 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1597 // adjust the operands as necessary. 1598 static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1599 // For us to make any changes, it must a comparison between a single-use 1600 // load and a constant. 1601 if (!C.Op0.hasOneUse() || 1602 C.Op0.getOpcode() != ISD::LOAD || 1603 C.Op1.getOpcode() != ISD::Constant) 1604 return; 1605 1606 // We must have an 8- or 16-bit load. 1607 auto *Load = cast<LoadSDNode>(C.Op0); 1608 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1609 if (NumBits != 8 && NumBits != 16) 1610 return; 1611 1612 // The load must be an extending one and the constant must be within the 1613 // range of the unextended value. 1614 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1615 uint64_t Value = ConstOp1->getZExtValue(); 1616 uint64_t Mask = (1 << NumBits) - 1; 1617 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1618 // Make sure that ConstOp1 is in range of C.Op0. 1619 int64_t SignedValue = ConstOp1->getSExtValue(); 1620 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1621 return; 1622 if (C.ICmpType != SystemZICMP::SignedOnly) { 1623 // Unsigned comparison between two sign-extended values is equivalent 1624 // to unsigned comparison between two zero-extended values. 1625 Value &= Mask; 1626 } else if (NumBits == 8) { 1627 // Try to treat the comparison as unsigned, so that we can use CLI. 1628 // Adjust CCMask and Value as necessary. 1629 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1630 // Test whether the high bit of the byte is set. 1631 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1632 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1633 // Test whether the high bit of the byte is clear. 1634 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1635 else 1636 // No instruction exists for this combination. 1637 return; 1638 C.ICmpType = SystemZICMP::UnsignedOnly; 1639 } 1640 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1641 if (Value > Mask) 1642 return; 1643 // If the constant is in range, we can use any comparison. 1644 C.ICmpType = SystemZICMP::Any; 1645 } else 1646 return; 1647 1648 // Make sure that the first operand is an i32 of the right extension type. 1649 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1650 ISD::SEXTLOAD : 1651 ISD::ZEXTLOAD); 1652 if (C.Op0.getValueType() != MVT::i32 || 1653 Load->getExtensionType() != ExtType) 1654 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, 1655 Load->getChain(), Load->getBasePtr(), 1656 Load->getPointerInfo(), Load->getMemoryVT(), 1657 Load->isVolatile(), Load->isNonTemporal(), 1658 Load->isInvariant(), Load->getAlignment()); 1659 1660 // Make sure that the second operand is an i32 with the right value. 1661 if (C.Op1.getValueType() != MVT::i32 || 1662 Value != ConstOp1->getZExtValue()) 1663 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1664 } 1665 1666 // Return true if Op is either an unextended load, or a load suitable 1667 // for integer register-memory comparisons of type ICmpType. 1668 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1669 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1670 if (Load) { 1671 // There are no instructions to compare a register with a memory byte. 1672 if (Load->getMemoryVT() == MVT::i8) 1673 return false; 1674 // Otherwise decide on extension type. 1675 switch (Load->getExtensionType()) { 1676 case ISD::NON_EXTLOAD: 1677 return true; 1678 case ISD::SEXTLOAD: 1679 return ICmpType != SystemZICMP::UnsignedOnly; 1680 case ISD::ZEXTLOAD: 1681 return ICmpType != SystemZICMP::SignedOnly; 1682 default: 1683 break; 1684 } 1685 } 1686 return false; 1687 } 1688 1689 // Return true if it is better to swap the operands of C. 1690 static bool shouldSwapCmpOperands(const Comparison &C) { 1691 // Leave f128 comparisons alone, since they have no memory forms. 1692 if (C.Op0.getValueType() == MVT::f128) 1693 return false; 1694 1695 // Always keep a floating-point constant second, since comparisons with 1696 // zero can use LOAD TEST and comparisons with other constants make a 1697 // natural memory operand. 1698 if (isa<ConstantFPSDNode>(C.Op1)) 1699 return false; 1700 1701 // Never swap comparisons with zero since there are many ways to optimize 1702 // those later. 1703 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1704 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1705 return false; 1706 1707 // Also keep natural memory operands second if the loaded value is 1708 // only used here. Several comparisons have memory forms. 1709 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1710 return false; 1711 1712 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1713 // In that case we generally prefer the memory to be second. 1714 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1715 // The only exceptions are when the second operand is a constant and 1716 // we can use things like CHHSI. 1717 if (!ConstOp1) 1718 return true; 1719 // The unsigned memory-immediate instructions can handle 16-bit 1720 // unsigned integers. 1721 if (C.ICmpType != SystemZICMP::SignedOnly && 1722 isUInt<16>(ConstOp1->getZExtValue())) 1723 return false; 1724 // The signed memory-immediate instructions can handle 16-bit 1725 // signed integers. 1726 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1727 isInt<16>(ConstOp1->getSExtValue())) 1728 return false; 1729 return true; 1730 } 1731 1732 // Try to promote the use of CGFR and CLGFR. 1733 unsigned Opcode0 = C.Op0.getOpcode(); 1734 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1735 return true; 1736 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1737 return true; 1738 if (C.ICmpType != SystemZICMP::SignedOnly && 1739 Opcode0 == ISD::AND && 1740 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1741 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1742 return true; 1743 1744 return false; 1745 } 1746 1747 // Return a version of comparison CC mask CCMask in which the LT and GT 1748 // actions are swapped. 1749 static unsigned reverseCCMask(unsigned CCMask) { 1750 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1751 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1752 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1753 (CCMask & SystemZ::CCMASK_CMP_UO)); 1754 } 1755 1756 // Check whether C tests for equality between X and Y and whether X - Y 1757 // or Y - X is also computed. In that case it's better to compare the 1758 // result of the subtraction against zero. 1759 static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1760 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1761 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1762 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1763 SDNode *N = *I; 1764 if (N->getOpcode() == ISD::SUB && 1765 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1766 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1767 C.Op0 = SDValue(N, 0); 1768 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1769 return; 1770 } 1771 } 1772 } 1773 } 1774 1775 // Check whether C compares a floating-point value with zero and if that 1776 // floating-point value is also negated. In this case we can use the 1777 // negation to set CC, so avoiding separate LOAD AND TEST and 1778 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1779 static void adjustForFNeg(Comparison &C) { 1780 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1781 if (C1 && C1->isZero()) { 1782 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1783 SDNode *N = *I; 1784 if (N->getOpcode() == ISD::FNEG) { 1785 C.Op0 = SDValue(N, 0); 1786 C.CCMask = reverseCCMask(C.CCMask); 1787 return; 1788 } 1789 } 1790 } 1791 } 1792 1793 // Check whether C compares (shl X, 32) with 0 and whether X is 1794 // also sign-extended. In that case it is better to test the result 1795 // of the sign extension using LTGFR. 1796 // 1797 // This case is important because InstCombine transforms a comparison 1798 // with (sext (trunc X)) into a comparison with (shl X, 32). 1799 static void adjustForLTGFR(Comparison &C) { 1800 // Check for a comparison between (shl X, 32) and 0. 1801 if (C.Op0.getOpcode() == ISD::SHL && 1802 C.Op0.getValueType() == MVT::i64 && 1803 C.Op1.getOpcode() == ISD::Constant && 1804 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1805 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1806 if (C1 && C1->getZExtValue() == 32) { 1807 SDValue ShlOp0 = C.Op0.getOperand(0); 1808 // See whether X has any SIGN_EXTEND_INREG uses. 1809 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1810 SDNode *N = *I; 1811 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1812 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1813 C.Op0 = SDValue(N, 0); 1814 return; 1815 } 1816 } 1817 } 1818 } 1819 } 1820 1821 // If C compares the truncation of an extending load, try to compare 1822 // the untruncated value instead. This exposes more opportunities to 1823 // reuse CC. 1824 static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1825 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1826 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1827 C.Op1.getOpcode() == ISD::Constant && 1828 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1829 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1830 if (L->getMemoryVT().getStoreSizeInBits() 1831 <= C.Op0.getValueType().getSizeInBits()) { 1832 unsigned Type = L->getExtensionType(); 1833 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1834 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1835 C.Op0 = C.Op0.getOperand(0); 1836 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1837 } 1838 } 1839 } 1840 } 1841 1842 // Return true if shift operation N has an in-range constant shift value. 1843 // Store it in ShiftVal if so. 1844 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1845 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1846 if (!Shift) 1847 return false; 1848 1849 uint64_t Amount = Shift->getZExtValue(); 1850 if (Amount >= N.getValueType().getSizeInBits()) 1851 return false; 1852 1853 ShiftVal = Amount; 1854 return true; 1855 } 1856 1857 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1858 // instruction and whether the CC value is descriptive enough to handle 1859 // a comparison of type Opcode between the AND result and CmpVal. 1860 // CCMask says which comparison result is being tested and BitSize is 1861 // the number of bits in the operands. If TEST UNDER MASK can be used, 1862 // return the corresponding CC mask, otherwise return 0. 1863 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1864 uint64_t Mask, uint64_t CmpVal, 1865 unsigned ICmpType) { 1866 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1867 1868 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1869 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1870 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1871 return 0; 1872 1873 // Work out the masks for the lowest and highest bits. 1874 unsigned HighShift = 63 - countLeadingZeros(Mask); 1875 uint64_t High = uint64_t(1) << HighShift; 1876 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1877 1878 // Signed ordered comparisons are effectively unsigned if the sign 1879 // bit is dropped. 1880 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1881 1882 // Check for equality comparisons with 0, or the equivalent. 1883 if (CmpVal == 0) { 1884 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1885 return SystemZ::CCMASK_TM_ALL_0; 1886 if (CCMask == SystemZ::CCMASK_CMP_NE) 1887 return SystemZ::CCMASK_TM_SOME_1; 1888 } 1889 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 1890 if (CCMask == SystemZ::CCMASK_CMP_LT) 1891 return SystemZ::CCMASK_TM_ALL_0; 1892 if (CCMask == SystemZ::CCMASK_CMP_GE) 1893 return SystemZ::CCMASK_TM_SOME_1; 1894 } 1895 if (EffectivelyUnsigned && CmpVal < Low) { 1896 if (CCMask == SystemZ::CCMASK_CMP_LE) 1897 return SystemZ::CCMASK_TM_ALL_0; 1898 if (CCMask == SystemZ::CCMASK_CMP_GT) 1899 return SystemZ::CCMASK_TM_SOME_1; 1900 } 1901 1902 // Check for equality comparisons with the mask, or the equivalent. 1903 if (CmpVal == Mask) { 1904 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1905 return SystemZ::CCMASK_TM_ALL_1; 1906 if (CCMask == SystemZ::CCMASK_CMP_NE) 1907 return SystemZ::CCMASK_TM_SOME_0; 1908 } 1909 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1910 if (CCMask == SystemZ::CCMASK_CMP_GT) 1911 return SystemZ::CCMASK_TM_ALL_1; 1912 if (CCMask == SystemZ::CCMASK_CMP_LE) 1913 return SystemZ::CCMASK_TM_SOME_0; 1914 } 1915 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1916 if (CCMask == SystemZ::CCMASK_CMP_GE) 1917 return SystemZ::CCMASK_TM_ALL_1; 1918 if (CCMask == SystemZ::CCMASK_CMP_LT) 1919 return SystemZ::CCMASK_TM_SOME_0; 1920 } 1921 1922 // Check for ordered comparisons with the top bit. 1923 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1924 if (CCMask == SystemZ::CCMASK_CMP_LE) 1925 return SystemZ::CCMASK_TM_MSB_0; 1926 if (CCMask == SystemZ::CCMASK_CMP_GT) 1927 return SystemZ::CCMASK_TM_MSB_1; 1928 } 1929 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1930 if (CCMask == SystemZ::CCMASK_CMP_LT) 1931 return SystemZ::CCMASK_TM_MSB_0; 1932 if (CCMask == SystemZ::CCMASK_CMP_GE) 1933 return SystemZ::CCMASK_TM_MSB_1; 1934 } 1935 1936 // If there are just two bits, we can do equality checks for Low and High 1937 // as well. 1938 if (Mask == Low + High) { 1939 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1940 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1941 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1942 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1943 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1944 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1945 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1946 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1947 } 1948 1949 // Looks like we've exhausted our options. 1950 return 0; 1951 } 1952 1953 // See whether C can be implemented as a TEST UNDER MASK instruction. 1954 // Update the arguments with the TM version if so. 1955 static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1956 // Check that we have a comparison with a constant. 1957 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1958 if (!ConstOp1) 1959 return; 1960 uint64_t CmpVal = ConstOp1->getZExtValue(); 1961 1962 // Check whether the nonconstant input is an AND with a constant mask. 1963 Comparison NewC(C); 1964 uint64_t MaskVal; 1965 ConstantSDNode *Mask = nullptr; 1966 if (C.Op0.getOpcode() == ISD::AND) { 1967 NewC.Op0 = C.Op0.getOperand(0); 1968 NewC.Op1 = C.Op0.getOperand(1); 1969 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 1970 if (!Mask) 1971 return; 1972 MaskVal = Mask->getZExtValue(); 1973 } else { 1974 // There is no instruction to compare with a 64-bit immediate 1975 // so use TMHH instead if possible. We need an unsigned ordered 1976 // comparison with an i64 immediate. 1977 if (NewC.Op0.getValueType() != MVT::i64 || 1978 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 1979 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 1980 NewC.ICmpType == SystemZICMP::SignedOnly) 1981 return; 1982 // Convert LE and GT comparisons into LT and GE. 1983 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 1984 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 1985 if (CmpVal == uint64_t(-1)) 1986 return; 1987 CmpVal += 1; 1988 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1989 } 1990 // If the low N bits of Op1 are zero than the low N bits of Op0 can 1991 // be masked off without changing the result. 1992 MaskVal = -(CmpVal & -CmpVal); 1993 NewC.ICmpType = SystemZICMP::UnsignedOnly; 1994 } 1995 if (!MaskVal) 1996 return; 1997 1998 // Check whether the combination of mask, comparison value and comparison 1999 // type are suitable. 2000 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); 2001 unsigned NewCCMask, ShiftVal; 2002 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2003 NewC.Op0.getOpcode() == ISD::SHL && 2004 isSimpleShift(NewC.Op0, ShiftVal) && 2005 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2006 MaskVal >> ShiftVal, 2007 CmpVal >> ShiftVal, 2008 SystemZICMP::Any))) { 2009 NewC.Op0 = NewC.Op0.getOperand(0); 2010 MaskVal >>= ShiftVal; 2011 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2012 NewC.Op0.getOpcode() == ISD::SRL && 2013 isSimpleShift(NewC.Op0, ShiftVal) && 2014 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2015 MaskVal << ShiftVal, 2016 CmpVal << ShiftVal, 2017 SystemZICMP::UnsignedOnly))) { 2018 NewC.Op0 = NewC.Op0.getOperand(0); 2019 MaskVal <<= ShiftVal; 2020 } else { 2021 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2022 NewC.ICmpType); 2023 if (!NewCCMask) 2024 return; 2025 } 2026 2027 // Go ahead and make the change. 2028 C.Opcode = SystemZISD::TM; 2029 C.Op0 = NewC.Op0; 2030 if (Mask && Mask->getZExtValue() == MaskVal) 2031 C.Op1 = SDValue(Mask, 0); 2032 else 2033 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2034 C.CCValid = SystemZ::CCMASK_TM; 2035 C.CCMask = NewCCMask; 2036 } 2037 2038 // Return a Comparison that tests the condition-code result of intrinsic 2039 // node Call against constant integer CC using comparison code Cond. 2040 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2041 // and CCValid is the set of possible condition-code results. 2042 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2043 SDValue Call, unsigned CCValid, uint64_t CC, 2044 ISD::CondCode Cond) { 2045 Comparison C(Call, SDValue()); 2046 C.Opcode = Opcode; 2047 C.CCValid = CCValid; 2048 if (Cond == ISD::SETEQ) 2049 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2050 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2051 else if (Cond == ISD::SETNE) 2052 // ...and the inverse of that. 2053 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2054 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2055 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2056 // always true for CC>3. 2057 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2058 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2059 // ...and the inverse of that. 2060 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2061 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2062 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2063 // always true for CC>3. 2064 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2065 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2066 // ...and the inverse of that. 2067 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2068 else 2069 llvm_unreachable("Unexpected integer comparison type"); 2070 C.CCMask &= CCValid; 2071 return C; 2072 } 2073 2074 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2075 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2076 ISD::CondCode Cond, SDLoc DL) { 2077 if (CmpOp1.getOpcode() == ISD::Constant) { 2078 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2079 unsigned Opcode, CCValid; 2080 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2081 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2082 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2083 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2084 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2085 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2086 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2087 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2088 } 2089 Comparison C(CmpOp0, CmpOp1); 2090 C.CCMask = CCMaskForCondCode(Cond); 2091 if (C.Op0.getValueType().isFloatingPoint()) { 2092 C.CCValid = SystemZ::CCMASK_FCMP; 2093 C.Opcode = SystemZISD::FCMP; 2094 adjustForFNeg(C); 2095 } else { 2096 C.CCValid = SystemZ::CCMASK_ICMP; 2097 C.Opcode = SystemZISD::ICMP; 2098 // Choose the type of comparison. Equality and inequality tests can 2099 // use either signed or unsigned comparisons. The choice also doesn't 2100 // matter if both sign bits are known to be clear. In those cases we 2101 // want to give the main isel code the freedom to choose whichever 2102 // form fits best. 2103 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2104 C.CCMask == SystemZ::CCMASK_CMP_NE || 2105 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2106 C.ICmpType = SystemZICMP::Any; 2107 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2108 C.ICmpType = SystemZICMP::UnsignedOnly; 2109 else 2110 C.ICmpType = SystemZICMP::SignedOnly; 2111 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2112 adjustZeroCmp(DAG, DL, C); 2113 adjustSubwordCmp(DAG, DL, C); 2114 adjustForSubtraction(DAG, DL, C); 2115 adjustForLTGFR(C); 2116 adjustICmpTruncate(DAG, DL, C); 2117 } 2118 2119 if (shouldSwapCmpOperands(C)) { 2120 std::swap(C.Op0, C.Op1); 2121 C.CCMask = reverseCCMask(C.CCMask); 2122 } 2123 2124 adjustForTestUnderMask(DAG, DL, C); 2125 return C; 2126 } 2127 2128 // Emit the comparison instruction described by C. 2129 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 2130 if (!C.Op1.getNode()) { 2131 SDValue Op; 2132 switch (C.Op0.getOpcode()) { 2133 case ISD::INTRINSIC_W_CHAIN: 2134 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2135 break; 2136 case ISD::INTRINSIC_WO_CHAIN: 2137 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2138 break; 2139 default: 2140 llvm_unreachable("Invalid comparison operands"); 2141 } 2142 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2143 } 2144 if (C.Opcode == SystemZISD::ICMP) 2145 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2146 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2147 if (C.Opcode == SystemZISD::TM) { 2148 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2149 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2150 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2151 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2152 } 2153 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2154 } 2155 2156 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2157 // 64 bits. Extend is the extension type to use. Store the high part 2158 // in Hi and the low part in Lo. 2159 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, 2160 unsigned Extend, SDValue Op0, SDValue Op1, 2161 SDValue &Hi, SDValue &Lo) { 2162 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2163 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2164 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2165 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2166 DAG.getConstant(32, DL, MVT::i64)); 2167 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2168 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2169 } 2170 2171 // Lower a binary operation that produces two VT results, one in each 2172 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2173 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2174 // on the extended Op0 and (unextended) Op1. Store the even register result 2175 // in Even and the odd register result in Odd. 2176 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, 2177 unsigned Extend, unsigned Opcode, 2178 SDValue Op0, SDValue Op1, 2179 SDValue &Even, SDValue &Odd) { 2180 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2181 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2182 SDValue(In128, 0), Op1); 2183 bool Is32Bit = is32Bit(VT); 2184 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2185 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2186 } 2187 2188 // Return an i32 value that is 1 if the CC value produced by Glue is 2189 // in the mask CCMask and 0 otherwise. CC is known to have a value 2190 // in CCValid, so other values can be ignored. 2191 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue, 2192 unsigned CCValid, unsigned CCMask) { 2193 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2194 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2195 2196 if (Conversion.XORValue) 2197 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2198 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2199 2200 if (Conversion.AddValue) 2201 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2202 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2203 2204 // The SHR/AND sequence should get optimized to an RISBG. 2205 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2206 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2207 if (Conversion.Bit != 31) 2208 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2209 DAG.getConstant(1, DL, MVT::i32)); 2210 return Result; 2211 } 2212 2213 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2214 // be done directly. IsFP is true if CC is for a floating-point rather than 2215 // integer comparison. 2216 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2217 switch (CC) { 2218 case ISD::SETOEQ: 2219 case ISD::SETEQ: 2220 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2221 2222 case ISD::SETOGE: 2223 case ISD::SETGE: 2224 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2225 2226 case ISD::SETOGT: 2227 case ISD::SETGT: 2228 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2229 2230 case ISD::SETUGT: 2231 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2232 2233 default: 2234 return 0; 2235 } 2236 } 2237 2238 // Return the SystemZISD vector comparison operation for CC or its inverse, 2239 // or 0 if neither can be done directly. Indicate in Invert whether the 2240 // result is for the inverse of CC. IsFP is true if CC is for a 2241 // floating-point rather than integer comparison. 2242 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2243 bool &Invert) { 2244 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2245 Invert = false; 2246 return Opcode; 2247 } 2248 2249 CC = ISD::getSetCCInverse(CC, !IsFP); 2250 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2251 Invert = true; 2252 return Opcode; 2253 } 2254 2255 return 0; 2256 } 2257 2258 // Return a v2f64 that contains the extended form of elements Start and Start+1 2259 // of v4f32 value Op. 2260 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL, 2261 SDValue Op) { 2262 int Mask[] = { Start, -1, Start + 1, -1 }; 2263 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2264 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2265 } 2266 2267 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2268 // producing a result of type VT. 2269 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL, 2270 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2271 // There is no hardware support for v4f32, so extend the vector into 2272 // two v2f64s and compare those. 2273 if (CmpOp0.getValueType() == MVT::v4f32) { 2274 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2275 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2276 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2277 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2278 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2279 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2280 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2281 } 2282 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2283 } 2284 2285 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2286 // an integer mask of type VT. 2287 static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, 2288 ISD::CondCode CC, SDValue CmpOp0, 2289 SDValue CmpOp1) { 2290 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2291 bool Invert = false; 2292 SDValue Cmp; 2293 switch (CC) { 2294 // Handle tests for order using (or (ogt y x) (oge x y)). 2295 case ISD::SETUO: 2296 Invert = true; 2297 case ISD::SETO: { 2298 assert(IsFP && "Unexpected integer comparison"); 2299 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2300 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2301 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2302 break; 2303 } 2304 2305 // Handle <> tests using (or (ogt y x) (ogt x y)). 2306 case ISD::SETUEQ: 2307 Invert = true; 2308 case ISD::SETONE: { 2309 assert(IsFP && "Unexpected integer comparison"); 2310 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2311 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2312 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2313 break; 2314 } 2315 2316 // Otherwise a single comparison is enough. It doesn't really 2317 // matter whether we try the inversion or the swap first, since 2318 // there are no cases where both work. 2319 default: 2320 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2321 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2322 else { 2323 CC = ISD::getSetCCSwappedOperands(CC); 2324 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2325 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2326 else 2327 llvm_unreachable("Unhandled comparison"); 2328 } 2329 break; 2330 } 2331 if (Invert) { 2332 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2333 DAG.getConstant(65535, DL, MVT::i32)); 2334 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2335 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2336 } 2337 return Cmp; 2338 } 2339 2340 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2341 SelectionDAG &DAG) const { 2342 SDValue CmpOp0 = Op.getOperand(0); 2343 SDValue CmpOp1 = Op.getOperand(1); 2344 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2345 SDLoc DL(Op); 2346 EVT VT = Op.getValueType(); 2347 if (VT.isVector()) 2348 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2349 2350 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2351 SDValue Glue = emitCmp(DAG, DL, C); 2352 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2353 } 2354 2355 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2356 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2357 SDValue CmpOp0 = Op.getOperand(2); 2358 SDValue CmpOp1 = Op.getOperand(3); 2359 SDValue Dest = Op.getOperand(4); 2360 SDLoc DL(Op); 2361 2362 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2363 SDValue Glue = emitCmp(DAG, DL, C); 2364 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2365 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2366 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2367 } 2368 2369 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2370 // allowing Pos and Neg to be wider than CmpOp. 2371 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2372 return (Neg.getOpcode() == ISD::SUB && 2373 Neg.getOperand(0).getOpcode() == ISD::Constant && 2374 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2375 Neg.getOperand(1) == Pos && 2376 (Pos == CmpOp || 2377 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2378 Pos.getOperand(0) == CmpOp))); 2379 } 2380 2381 // Return the absolute or negative absolute of Op; IsNegative decides which. 2382 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op, 2383 bool IsNegative) { 2384 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2385 if (IsNegative) 2386 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2387 DAG.getConstant(0, DL, Op.getValueType()), Op); 2388 return Op; 2389 } 2390 2391 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2392 SelectionDAG &DAG) const { 2393 SDValue CmpOp0 = Op.getOperand(0); 2394 SDValue CmpOp1 = Op.getOperand(1); 2395 SDValue TrueOp = Op.getOperand(2); 2396 SDValue FalseOp = Op.getOperand(3); 2397 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2398 SDLoc DL(Op); 2399 2400 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2401 2402 // Check for absolute and negative-absolute selections, including those 2403 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2404 // This check supplements the one in DAGCombiner. 2405 if (C.Opcode == SystemZISD::ICMP && 2406 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2407 C.CCMask != SystemZ::CCMASK_CMP_NE && 2408 C.Op1.getOpcode() == ISD::Constant && 2409 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2410 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2411 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2412 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2413 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2414 } 2415 2416 SDValue Glue = emitCmp(DAG, DL, C); 2417 2418 // Special case for handling -1/0 results. The shifts we use here 2419 // should get optimized with the IPM conversion sequence. 2420 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2421 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2422 if (TrueC && FalseC) { 2423 int64_t TrueVal = TrueC->getSExtValue(); 2424 int64_t FalseVal = FalseC->getSExtValue(); 2425 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2426 // Invert the condition if we want -1 on false. 2427 if (TrueVal == 0) 2428 C.CCMask ^= C.CCValid; 2429 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2430 EVT VT = Op.getValueType(); 2431 // Extend the result to VT. Upper bits are ignored. 2432 if (!is32Bit(VT)) 2433 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2434 // Sign-extend from the low bit. 2435 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2436 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2437 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2438 } 2439 } 2440 2441 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2442 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2443 2444 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2445 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2446 } 2447 2448 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2449 SelectionDAG &DAG) const { 2450 SDLoc DL(Node); 2451 const GlobalValue *GV = Node->getGlobal(); 2452 int64_t Offset = Node->getOffset(); 2453 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2454 Reloc::Model RM = DAG.getTarget().getRelocationModel(); 2455 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2456 2457 SDValue Result; 2458 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { 2459 // Assign anchors at 1<<12 byte boundaries. 2460 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2461 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2462 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2463 2464 // The offset can be folded into the address if it is aligned to a halfword. 2465 Offset -= Anchor; 2466 if (Offset != 0 && (Offset & 1) == 0) { 2467 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2468 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2469 Offset = 0; 2470 } 2471 } else { 2472 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2473 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2474 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2475 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2476 false, false, false, 0); 2477 } 2478 2479 // If there was a non-zero offset that we didn't fold, create an explicit 2480 // addition for it. 2481 if (Offset != 0) 2482 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2483 DAG.getConstant(Offset, DL, PtrVT)); 2484 2485 return Result; 2486 } 2487 2488 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2489 SelectionDAG &DAG, 2490 unsigned Opcode, 2491 SDValue GOTOffset) const { 2492 SDLoc DL(Node); 2493 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2494 SDValue Chain = DAG.getEntryNode(); 2495 SDValue Glue; 2496 2497 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2498 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2499 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2500 Glue = Chain.getValue(1); 2501 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2502 Glue = Chain.getValue(1); 2503 2504 // The first call operand is the chain and the second is the TLS symbol. 2505 SmallVector<SDValue, 8> Ops; 2506 Ops.push_back(Chain); 2507 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2508 Node->getValueType(0), 2509 0, 0)); 2510 2511 // Add argument registers to the end of the list so that they are 2512 // known live into the call. 2513 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2514 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2515 2516 // Add a register mask operand representing the call-preserved registers. 2517 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2518 const uint32_t *Mask = 2519 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2520 assert(Mask && "Missing call preserved mask for calling convention"); 2521 Ops.push_back(DAG.getRegisterMask(Mask)); 2522 2523 // Glue the call to the argument copies. 2524 Ops.push_back(Glue); 2525 2526 // Emit the call. 2527 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2528 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2529 Glue = Chain.getValue(1); 2530 2531 // Copy the return value from %r2. 2532 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2533 } 2534 2535 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2536 SelectionDAG &DAG) const { 2537 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2538 2539 // The high part of the thread pointer is in access register 0. 2540 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2541 DAG.getConstant(0, DL, MVT::i32)); 2542 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2543 2544 // The low part of the thread pointer is in access register 1. 2545 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2546 DAG.getConstant(1, DL, MVT::i32)); 2547 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2548 2549 // Merge them into a single 64-bit address. 2550 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2551 DAG.getConstant(32, DL, PtrVT)); 2552 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2553 } 2554 2555 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2556 SelectionDAG &DAG) const { 2557 if (DAG.getTarget().Options.EmulatedTLS) 2558 return LowerToTLSEmulatedModel(Node, DAG); 2559 SDLoc DL(Node); 2560 const GlobalValue *GV = Node->getGlobal(); 2561 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2562 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2563 2564 SDValue TP = lowerThreadPointer(DL, DAG); 2565 2566 // Get the offset of GA from the thread pointer, based on the TLS model. 2567 SDValue Offset; 2568 switch (model) { 2569 case TLSModel::GeneralDynamic: { 2570 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2571 SystemZConstantPoolValue *CPV = 2572 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2573 2574 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2575 Offset = DAG.getLoad( 2576 PtrVT, DL, DAG.getEntryNode(), Offset, 2577 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2578 false, false, 0); 2579 2580 // Call __tls_get_offset to retrieve the offset. 2581 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2582 break; 2583 } 2584 2585 case TLSModel::LocalDynamic: { 2586 // Load the GOT offset of the module ID. 2587 SystemZConstantPoolValue *CPV = 2588 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2589 2590 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2591 Offset = DAG.getLoad( 2592 PtrVT, DL, DAG.getEntryNode(), Offset, 2593 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2594 false, false, 0); 2595 2596 // Call __tls_get_offset to retrieve the module base offset. 2597 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2598 2599 // Note: The SystemZLDCleanupPass will remove redundant computations 2600 // of the module base offset. Count total number of local-dynamic 2601 // accesses to trigger execution of that pass. 2602 SystemZMachineFunctionInfo* MFI = 2603 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2604 MFI->incNumLocalDynamicTLSAccesses(); 2605 2606 // Add the per-symbol offset. 2607 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2608 2609 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2610 DTPOffset = DAG.getLoad( 2611 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2612 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2613 false, false, 0); 2614 2615 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2616 break; 2617 } 2618 2619 case TLSModel::InitialExec: { 2620 // Load the offset from the GOT. 2621 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2622 SystemZII::MO_INDNTPOFF); 2623 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2624 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2625 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2626 false, false, false, 0); 2627 break; 2628 } 2629 2630 case TLSModel::LocalExec: { 2631 // Force the offset into the constant pool and load it from there. 2632 SystemZConstantPoolValue *CPV = 2633 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2634 2635 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2636 Offset = DAG.getLoad( 2637 PtrVT, DL, DAG.getEntryNode(), Offset, 2638 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2639 false, false, 0); 2640 break; 2641 } 2642 } 2643 2644 // Add the base and offset together. 2645 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2646 } 2647 2648 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2649 SelectionDAG &DAG) const { 2650 SDLoc DL(Node); 2651 const BlockAddress *BA = Node->getBlockAddress(); 2652 int64_t Offset = Node->getOffset(); 2653 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2654 2655 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2656 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2657 return Result; 2658 } 2659 2660 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2661 SelectionDAG &DAG) const { 2662 SDLoc DL(JT); 2663 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2664 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2665 2666 // Use LARL to load the address of the table. 2667 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2668 } 2669 2670 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2671 SelectionDAG &DAG) const { 2672 SDLoc DL(CP); 2673 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2674 2675 SDValue Result; 2676 if (CP->isMachineConstantPoolEntry()) 2677 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2678 CP->getAlignment()); 2679 else 2680 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2681 CP->getAlignment(), CP->getOffset()); 2682 2683 // Use LARL to load the address of the constant pool entry. 2684 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2685 } 2686 2687 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 2688 SelectionDAG &DAG) const { 2689 MachineFunction &MF = DAG.getMachineFunction(); 2690 MachineFrameInfo *MFI = MF.getFrameInfo(); 2691 MFI->setFrameAddressIsTaken(true); 2692 2693 SDLoc DL(Op); 2694 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2695 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2696 2697 // If the back chain frame index has not been allocated yet, do so. 2698 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 2699 int BackChainIdx = FI->getFramePointerSaveIndex(); 2700 if (!BackChainIdx) { 2701 // By definition, the frame address is the address of the back chain. 2702 BackChainIdx = MFI->CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 2703 FI->setFramePointerSaveIndex(BackChainIdx); 2704 } 2705 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 2706 2707 // FIXME The frontend should detect this case. 2708 if (Depth > 0) { 2709 report_fatal_error("Unsupported stack frame traversal count"); 2710 } 2711 2712 return BackChain; 2713 } 2714 2715 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 2716 SelectionDAG &DAG) const { 2717 MachineFunction &MF = DAG.getMachineFunction(); 2718 MachineFrameInfo *MFI = MF.getFrameInfo(); 2719 MFI->setReturnAddressIsTaken(true); 2720 2721 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2722 return SDValue(); 2723 2724 SDLoc DL(Op); 2725 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2726 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2727 2728 // FIXME The frontend should detect this case. 2729 if (Depth > 0) { 2730 report_fatal_error("Unsupported stack frame traversal count"); 2731 } 2732 2733 // Return R14D, which has the return address. Mark it an implicit live-in. 2734 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 2735 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 2736 } 2737 2738 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2739 SelectionDAG &DAG) const { 2740 SDLoc DL(Op); 2741 SDValue In = Op.getOperand(0); 2742 EVT InVT = In.getValueType(); 2743 EVT ResVT = Op.getValueType(); 2744 2745 // Convert loads directly. This is normally done by DAGCombiner, 2746 // but we need this case for bitcasts that are created during lowering 2747 // and which are then lowered themselves. 2748 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2749 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2750 LoadN->getMemOperand()); 2751 2752 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2753 SDValue In64; 2754 if (Subtarget.hasHighWord()) { 2755 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2756 MVT::i64); 2757 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2758 MVT::i64, SDValue(U64, 0), In); 2759 } else { 2760 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2761 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2762 DAG.getConstant(32, DL, MVT::i64)); 2763 } 2764 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2765 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2766 DL, MVT::f32, Out64); 2767 } 2768 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2769 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2770 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2771 MVT::f64, SDValue(U64, 0), In); 2772 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2773 if (Subtarget.hasHighWord()) 2774 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2775 MVT::i32, Out64); 2776 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2777 DAG.getConstant(32, DL, MVT::i64)); 2778 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2779 } 2780 llvm_unreachable("Unexpected bitcast combination"); 2781 } 2782 2783 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2784 SelectionDAG &DAG) const { 2785 MachineFunction &MF = DAG.getMachineFunction(); 2786 SystemZMachineFunctionInfo *FuncInfo = 2787 MF.getInfo<SystemZMachineFunctionInfo>(); 2788 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2789 2790 SDValue Chain = Op.getOperand(0); 2791 SDValue Addr = Op.getOperand(1); 2792 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2793 SDLoc DL(Op); 2794 2795 // The initial values of each field. 2796 const unsigned NumFields = 4; 2797 SDValue Fields[NumFields] = { 2798 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2799 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2800 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2801 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2802 }; 2803 2804 // Store each field into its respective slot. 2805 SDValue MemOps[NumFields]; 2806 unsigned Offset = 0; 2807 for (unsigned I = 0; I < NumFields; ++I) { 2808 SDValue FieldAddr = Addr; 2809 if (Offset != 0) 2810 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2811 DAG.getIntPtrConstant(Offset, DL)); 2812 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2813 MachinePointerInfo(SV, Offset), 2814 false, false, 0); 2815 Offset += 8; 2816 } 2817 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2818 } 2819 2820 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2821 SelectionDAG &DAG) const { 2822 SDValue Chain = Op.getOperand(0); 2823 SDValue DstPtr = Op.getOperand(1); 2824 SDValue SrcPtr = Op.getOperand(2); 2825 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2826 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2827 SDLoc DL(Op); 2828 2829 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2830 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2831 /*isTailCall*/false, 2832 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2833 } 2834 2835 SDValue SystemZTargetLowering:: 2836 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2837 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 2838 bool RealignOpt = !DAG.getMachineFunction().getFunction()-> 2839 hasFnAttribute("no-realign-stack"); 2840 2841 SDValue Chain = Op.getOperand(0); 2842 SDValue Size = Op.getOperand(1); 2843 SDValue Align = Op.getOperand(2); 2844 SDLoc DL(Op); 2845 2846 // If user has set the no alignment function attribute, ignore 2847 // alloca alignments. 2848 uint64_t AlignVal = (RealignOpt ? 2849 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 2850 2851 uint64_t StackAlign = TFI->getStackAlignment(); 2852 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 2853 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 2854 2855 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2856 SDValue NeededSpace = Size; 2857 2858 // Get a reference to the stack pointer. 2859 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2860 2861 // Add extra space for alignment if needed. 2862 if (ExtraAlignSpace) 2863 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 2864 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2865 2866 // Get the new stack pointer value. 2867 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 2868 2869 // Copy the new stack pointer back. 2870 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2871 2872 // The allocated data lives above the 160 bytes allocated for the standard 2873 // frame, plus any outgoing stack arguments. We don't know how much that 2874 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2875 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2876 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2877 2878 // Dynamically realign if needed. 2879 if (RequiredAlign > StackAlign) { 2880 Result = 2881 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 2882 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2883 Result = 2884 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 2885 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 2886 } 2887 2888 SDValue Ops[2] = { Result, Chain }; 2889 return DAG.getMergeValues(Ops, DL); 2890 } 2891 2892 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2893 SelectionDAG &DAG) const { 2894 EVT VT = Op.getValueType(); 2895 SDLoc DL(Op); 2896 SDValue Ops[2]; 2897 if (is32Bit(VT)) 2898 // Just do a normal 64-bit multiplication and extract the results. 2899 // We define this so that it can be used for constant division. 2900 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2901 Op.getOperand(1), Ops[1], Ops[0]); 2902 else { 2903 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2904 // 2905 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2906 // 2907 // but using the fact that the upper halves are either all zeros 2908 // or all ones: 2909 // 2910 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2911 // 2912 // and grouping the right terms together since they are quicker than the 2913 // multiplication: 2914 // 2915 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2916 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2917 SDValue LL = Op.getOperand(0); 2918 SDValue RL = Op.getOperand(1); 2919 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2920 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2921 // UMUL_LOHI64 returns the low result in the odd register and the high 2922 // result in the even register. SMUL_LOHI is defined to return the 2923 // low half first, so the results are in reverse order. 2924 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2925 LL, RL, Ops[1], Ops[0]); 2926 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2927 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2928 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2929 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2930 } 2931 return DAG.getMergeValues(Ops, DL); 2932 } 2933 2934 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2935 SelectionDAG &DAG) const { 2936 EVT VT = Op.getValueType(); 2937 SDLoc DL(Op); 2938 SDValue Ops[2]; 2939 if (is32Bit(VT)) 2940 // Just do a normal 64-bit multiplication and extract the results. 2941 // We define this so that it can be used for constant division. 2942 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 2943 Op.getOperand(1), Ops[1], Ops[0]); 2944 else 2945 // UMUL_LOHI64 returns the low result in the odd register and the high 2946 // result in the even register. UMUL_LOHI is defined to return the 2947 // low half first, so the results are in reverse order. 2948 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2949 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2950 return DAG.getMergeValues(Ops, DL); 2951 } 2952 2953 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 2954 SelectionDAG &DAG) const { 2955 SDValue Op0 = Op.getOperand(0); 2956 SDValue Op1 = Op.getOperand(1); 2957 EVT VT = Op.getValueType(); 2958 SDLoc DL(Op); 2959 unsigned Opcode; 2960 2961 // We use DSGF for 32-bit division. 2962 if (is32Bit(VT)) { 2963 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 2964 Opcode = SystemZISD::SDIVREM32; 2965 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 2966 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 2967 Opcode = SystemZISD::SDIVREM32; 2968 } else 2969 Opcode = SystemZISD::SDIVREM64; 2970 2971 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 2972 // input is "don't care". The instruction returns the remainder in 2973 // the even register and the quotient in the odd register. 2974 SDValue Ops[2]; 2975 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 2976 Op0, Op1, Ops[1], Ops[0]); 2977 return DAG.getMergeValues(Ops, DL); 2978 } 2979 2980 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 2981 SelectionDAG &DAG) const { 2982 EVT VT = Op.getValueType(); 2983 SDLoc DL(Op); 2984 2985 // DL(G) uses a double-width dividend, so we need to clear the even 2986 // register in the GR128 input. The instruction returns the remainder 2987 // in the even register and the quotient in the odd register. 2988 SDValue Ops[2]; 2989 if (is32Bit(VT)) 2990 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 2991 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2992 else 2993 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 2994 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2995 return DAG.getMergeValues(Ops, DL); 2996 } 2997 2998 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 2999 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3000 3001 // Get the known-zero masks for each operand. 3002 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 3003 APInt KnownZero[2], KnownOne[2]; 3004 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 3005 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 3006 3007 // See if the upper 32 bits of one operand and the lower 32 bits of the 3008 // other are known zero. They are the low and high operands respectively. 3009 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 3010 KnownZero[1].getZExtValue() }; 3011 unsigned High, Low; 3012 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3013 High = 1, Low = 0; 3014 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3015 High = 0, Low = 1; 3016 else 3017 return Op; 3018 3019 SDValue LowOp = Ops[Low]; 3020 SDValue HighOp = Ops[High]; 3021 3022 // If the high part is a constant, we're better off using IILH. 3023 if (HighOp.getOpcode() == ISD::Constant) 3024 return Op; 3025 3026 // If the low part is a constant that is outside the range of LHI, 3027 // then we're better off using IILF. 3028 if (LowOp.getOpcode() == ISD::Constant) { 3029 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3030 if (!isInt<16>(Value)) 3031 return Op; 3032 } 3033 3034 // Check whether the high part is an AND that doesn't change the 3035 // high 32 bits and just masks out low bits. We can skip it if so. 3036 if (HighOp.getOpcode() == ISD::AND && 3037 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3038 SDValue HighOp0 = HighOp.getOperand(0); 3039 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3040 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3041 HighOp = HighOp0; 3042 } 3043 3044 // Take advantage of the fact that all GR32 operations only change the 3045 // low 32 bits by truncating Low to an i32 and inserting it directly 3046 // using a subreg. The interesting cases are those where the truncation 3047 // can be folded. 3048 SDLoc DL(Op); 3049 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3050 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3051 MVT::i64, HighOp, Low32); 3052 } 3053 3054 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3055 SelectionDAG &DAG) const { 3056 EVT VT = Op.getValueType(); 3057 SDLoc DL(Op); 3058 Op = Op.getOperand(0); 3059 3060 // Handle vector types via VPOPCT. 3061 if (VT.isVector()) { 3062 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3063 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3064 switch (VT.getVectorElementType().getSizeInBits()) { 3065 case 8: 3066 break; 3067 case 16: { 3068 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3069 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3070 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3071 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3072 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3073 break; 3074 } 3075 case 32: { 3076 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3077 DAG.getConstant(0, DL, MVT::i32)); 3078 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3079 break; 3080 } 3081 case 64: { 3082 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3083 DAG.getConstant(0, DL, MVT::i32)); 3084 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3085 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3086 break; 3087 } 3088 default: 3089 llvm_unreachable("Unexpected type"); 3090 } 3091 return Op; 3092 } 3093 3094 // Get the known-zero mask for the operand. 3095 APInt KnownZero, KnownOne; 3096 DAG.computeKnownBits(Op, KnownZero, KnownOne); 3097 unsigned NumSignificantBits = (~KnownZero).getActiveBits(); 3098 if (NumSignificantBits == 0) 3099 return DAG.getConstant(0, DL, VT); 3100 3101 // Skip known-zero high parts of the operand. 3102 int64_t OrigBitSize = VT.getSizeInBits(); 3103 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3104 BitSize = std::min(BitSize, OrigBitSize); 3105 3106 // The POPCNT instruction counts the number of bits in each byte. 3107 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3108 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3109 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3110 3111 // Add up per-byte counts in a binary tree. All bits of Op at 3112 // position larger than BitSize remain zero throughout. 3113 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3114 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3115 if (BitSize != OrigBitSize) 3116 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3117 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3118 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3119 } 3120 3121 // Extract overall result from high byte. 3122 if (BitSize > 8) 3123 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3124 DAG.getConstant(BitSize - 8, DL, VT)); 3125 3126 return Op; 3127 } 3128 3129 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3130 SelectionDAG &DAG) const { 3131 SDLoc DL(Op); 3132 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3133 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3134 SynchronizationScope FenceScope = static_cast<SynchronizationScope>( 3135 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3136 3137 // The only fence that needs an instruction is a sequentially-consistent 3138 // cross-thread fence. 3139 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3140 FenceScope == CrossThread) { 3141 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3142 Op.getOperand(0)), 3143 0); 3144 } 3145 3146 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3147 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3148 } 3149 3150 // Op is an atomic load. Lower it into a normal volatile load. 3151 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3152 SelectionDAG &DAG) const { 3153 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3154 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3155 Node->getChain(), Node->getBasePtr(), 3156 Node->getMemoryVT(), Node->getMemOperand()); 3157 } 3158 3159 // Op is an atomic store. Lower it into a normal volatile store followed 3160 // by a serialization. 3161 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3162 SelectionDAG &DAG) const { 3163 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3164 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3165 Node->getBasePtr(), Node->getMemoryVT(), 3166 Node->getMemOperand()); 3167 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3168 Chain), 0); 3169 } 3170 3171 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3172 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3173 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3174 SelectionDAG &DAG, 3175 unsigned Opcode) const { 3176 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3177 3178 // 32-bit operations need no code outside the main loop. 3179 EVT NarrowVT = Node->getMemoryVT(); 3180 EVT WideVT = MVT::i32; 3181 if (NarrowVT == WideVT) 3182 return Op; 3183 3184 int64_t BitSize = NarrowVT.getSizeInBits(); 3185 SDValue ChainIn = Node->getChain(); 3186 SDValue Addr = Node->getBasePtr(); 3187 SDValue Src2 = Node->getVal(); 3188 MachineMemOperand *MMO = Node->getMemOperand(); 3189 SDLoc DL(Node); 3190 EVT PtrVT = Addr.getValueType(); 3191 3192 // Convert atomic subtracts of constants into additions. 3193 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3194 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3195 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3196 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3197 } 3198 3199 // Get the address of the containing word. 3200 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3201 DAG.getConstant(-4, DL, PtrVT)); 3202 3203 // Get the number of bits that the word must be rotated left in order 3204 // to bring the field to the top bits of a GR32. 3205 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3206 DAG.getConstant(3, DL, PtrVT)); 3207 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3208 3209 // Get the complementing shift amount, for rotating a field in the top 3210 // bits back to its proper position. 3211 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3212 DAG.getConstant(0, DL, WideVT), BitShift); 3213 3214 // Extend the source operand to 32 bits and prepare it for the inner loop. 3215 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3216 // operations require the source to be shifted in advance. (This shift 3217 // can be folded if the source is constant.) For AND and NAND, the lower 3218 // bits must be set, while for other opcodes they should be left clear. 3219 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3220 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3221 DAG.getConstant(32 - BitSize, DL, WideVT)); 3222 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3223 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3224 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3225 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3226 3227 // Construct the ATOMIC_LOADW_* node. 3228 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3229 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3230 DAG.getConstant(BitSize, DL, WideVT) }; 3231 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3232 NarrowVT, MMO); 3233 3234 // Rotate the result of the final CS so that the field is in the lower 3235 // bits of a GR32, then truncate it. 3236 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3237 DAG.getConstant(BitSize, DL, WideVT)); 3238 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3239 3240 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3241 return DAG.getMergeValues(RetOps, DL); 3242 } 3243 3244 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3245 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3246 // operations into additions. 3247 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3248 SelectionDAG &DAG) const { 3249 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3250 EVT MemVT = Node->getMemoryVT(); 3251 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3252 // A full-width operation. 3253 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3254 SDValue Src2 = Node->getVal(); 3255 SDValue NegSrc2; 3256 SDLoc DL(Src2); 3257 3258 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3259 // Use an addition if the operand is constant and either LAA(G) is 3260 // available or the negative value is in the range of A(G)FHI. 3261 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3262 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3263 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3264 } else if (Subtarget.hasInterlockedAccess1()) 3265 // Use LAA(G) if available. 3266 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3267 Src2); 3268 3269 if (NegSrc2.getNode()) 3270 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3271 Node->getChain(), Node->getBasePtr(), NegSrc2, 3272 Node->getMemOperand(), Node->getOrdering(), 3273 Node->getSynchScope()); 3274 3275 // Use the node as-is. 3276 return Op; 3277 } 3278 3279 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3280 } 3281 3282 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3283 // into a fullword ATOMIC_CMP_SWAPW operation. 3284 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3285 SelectionDAG &DAG) const { 3286 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3287 3288 // We have native support for 32-bit compare and swap. 3289 EVT NarrowVT = Node->getMemoryVT(); 3290 EVT WideVT = MVT::i32; 3291 if (NarrowVT == WideVT) 3292 return Op; 3293 3294 int64_t BitSize = NarrowVT.getSizeInBits(); 3295 SDValue ChainIn = Node->getOperand(0); 3296 SDValue Addr = Node->getOperand(1); 3297 SDValue CmpVal = Node->getOperand(2); 3298 SDValue SwapVal = Node->getOperand(3); 3299 MachineMemOperand *MMO = Node->getMemOperand(); 3300 SDLoc DL(Node); 3301 EVT PtrVT = Addr.getValueType(); 3302 3303 // Get the address of the containing word. 3304 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3305 DAG.getConstant(-4, DL, PtrVT)); 3306 3307 // Get the number of bits that the word must be rotated left in order 3308 // to bring the field to the top bits of a GR32. 3309 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3310 DAG.getConstant(3, DL, PtrVT)); 3311 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3312 3313 // Get the complementing shift amount, for rotating a field in the top 3314 // bits back to its proper position. 3315 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3316 DAG.getConstant(0, DL, WideVT), BitShift); 3317 3318 // Construct the ATOMIC_CMP_SWAPW node. 3319 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3320 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3321 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3322 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3323 VTList, Ops, NarrowVT, MMO); 3324 return AtomicOp; 3325 } 3326 3327 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3328 SelectionDAG &DAG) const { 3329 MachineFunction &MF = DAG.getMachineFunction(); 3330 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3331 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3332 SystemZ::R15D, Op.getValueType()); 3333 } 3334 3335 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3336 SelectionDAG &DAG) const { 3337 MachineFunction &MF = DAG.getMachineFunction(); 3338 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3339 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), 3340 SystemZ::R15D, Op.getOperand(1)); 3341 } 3342 3343 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3344 SelectionDAG &DAG) const { 3345 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3346 if (!IsData) 3347 // Just preserve the chain. 3348 return Op.getOperand(0); 3349 3350 SDLoc DL(Op); 3351 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3352 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3353 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3354 SDValue Ops[] = { 3355 Op.getOperand(0), 3356 DAG.getConstant(Code, DL, MVT::i32), 3357 Op.getOperand(1) 3358 }; 3359 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3360 Node->getVTList(), Ops, 3361 Node->getMemoryVT(), Node->getMemOperand()); 3362 } 3363 3364 // Return an i32 that contains the value of CC immediately after After, 3365 // whose final operand must be MVT::Glue. 3366 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3367 SDLoc DL(After); 3368 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3369 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3370 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3371 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3372 } 3373 3374 SDValue 3375 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3376 SelectionDAG &DAG) const { 3377 unsigned Opcode, CCValid; 3378 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3379 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3380 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3381 SDValue CC = getCCResult(DAG, Glued.getNode()); 3382 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3383 return SDValue(); 3384 } 3385 3386 return SDValue(); 3387 } 3388 3389 SDValue 3390 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3391 SelectionDAG &DAG) const { 3392 unsigned Opcode, CCValid; 3393 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3394 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3395 SDValue CC = getCCResult(DAG, Glued.getNode()); 3396 if (Op->getNumValues() == 1) 3397 return CC; 3398 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3399 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued, 3400 CC); 3401 } 3402 3403 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3404 switch (Id) { 3405 case Intrinsic::thread_pointer: 3406 return lowerThreadPointer(SDLoc(Op), DAG); 3407 3408 case Intrinsic::s390_vpdi: 3409 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3410 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3411 3412 case Intrinsic::s390_vperm: 3413 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3414 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3415 3416 case Intrinsic::s390_vuphb: 3417 case Intrinsic::s390_vuphh: 3418 case Intrinsic::s390_vuphf: 3419 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3420 Op.getOperand(1)); 3421 3422 case Intrinsic::s390_vuplhb: 3423 case Intrinsic::s390_vuplhh: 3424 case Intrinsic::s390_vuplhf: 3425 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3426 Op.getOperand(1)); 3427 3428 case Intrinsic::s390_vuplb: 3429 case Intrinsic::s390_vuplhw: 3430 case Intrinsic::s390_vuplf: 3431 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3432 Op.getOperand(1)); 3433 3434 case Intrinsic::s390_vupllb: 3435 case Intrinsic::s390_vupllh: 3436 case Intrinsic::s390_vupllf: 3437 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3438 Op.getOperand(1)); 3439 3440 case Intrinsic::s390_vsumb: 3441 case Intrinsic::s390_vsumh: 3442 case Intrinsic::s390_vsumgh: 3443 case Intrinsic::s390_vsumgf: 3444 case Intrinsic::s390_vsumqf: 3445 case Intrinsic::s390_vsumqg: 3446 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3447 Op.getOperand(1), Op.getOperand(2)); 3448 } 3449 3450 return SDValue(); 3451 } 3452 3453 namespace { 3454 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3455 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3456 // Operand is the constant third operand, otherwise it is the number of 3457 // bytes in each element of the result. 3458 struct Permute { 3459 unsigned Opcode; 3460 unsigned Operand; 3461 unsigned char Bytes[SystemZ::VectorBytes]; 3462 }; 3463 } 3464 3465 static const Permute PermuteForms[] = { 3466 // VMRHG 3467 { SystemZISD::MERGE_HIGH, 8, 3468 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3469 // VMRHF 3470 { SystemZISD::MERGE_HIGH, 4, 3471 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3472 // VMRHH 3473 { SystemZISD::MERGE_HIGH, 2, 3474 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3475 // VMRHB 3476 { SystemZISD::MERGE_HIGH, 1, 3477 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3478 // VMRLG 3479 { SystemZISD::MERGE_LOW, 8, 3480 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3481 // VMRLF 3482 { SystemZISD::MERGE_LOW, 4, 3483 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3484 // VMRLH 3485 { SystemZISD::MERGE_LOW, 2, 3486 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3487 // VMRLB 3488 { SystemZISD::MERGE_LOW, 1, 3489 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3490 // VPKG 3491 { SystemZISD::PACK, 4, 3492 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3493 // VPKF 3494 { SystemZISD::PACK, 2, 3495 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3496 // VPKH 3497 { SystemZISD::PACK, 1, 3498 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3499 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3500 { SystemZISD::PERMUTE_DWORDS, 4, 3501 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3502 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3503 { SystemZISD::PERMUTE_DWORDS, 1, 3504 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3505 }; 3506 3507 // Called after matching a vector shuffle against a particular pattern. 3508 // Both the original shuffle and the pattern have two vector operands. 3509 // OpNos[0] is the operand of the original shuffle that should be used for 3510 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3511 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3512 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3513 // for operands 0 and 1 of the pattern. 3514 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3515 if (OpNos[0] < 0) { 3516 if (OpNos[1] < 0) 3517 return false; 3518 OpNo0 = OpNo1 = OpNos[1]; 3519 } else if (OpNos[1] < 0) { 3520 OpNo0 = OpNo1 = OpNos[0]; 3521 } else { 3522 OpNo0 = OpNos[0]; 3523 OpNo1 = OpNos[1]; 3524 } 3525 return true; 3526 } 3527 3528 // Bytes is a VPERM-like permute vector, except that -1 is used for 3529 // undefined bytes. Return true if the VPERM can be implemented using P. 3530 // When returning true set OpNo0 to the VPERM operand that should be 3531 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3532 // 3533 // For example, if swapping the VPERM operands allows P to match, OpNo0 3534 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3535 // operand, but rewriting it to use two duplicated operands allows it to 3536 // match P, then OpNo0 and OpNo1 will be the same. 3537 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3538 unsigned &OpNo0, unsigned &OpNo1) { 3539 int OpNos[] = { -1, -1 }; 3540 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3541 int Elt = Bytes[I]; 3542 if (Elt >= 0) { 3543 // Make sure that the two permute vectors use the same suboperand 3544 // byte number. Only the operand numbers (the high bits) are 3545 // allowed to differ. 3546 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3547 return false; 3548 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3549 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3550 // Make sure that the operand mappings are consistent with previous 3551 // elements. 3552 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3553 return false; 3554 OpNos[ModelOpNo] = RealOpNo; 3555 } 3556 } 3557 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3558 } 3559 3560 // As above, but search for a matching permute. 3561 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3562 unsigned &OpNo0, unsigned &OpNo1) { 3563 for (auto &P : PermuteForms) 3564 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3565 return &P; 3566 return nullptr; 3567 } 3568 3569 // Bytes is a VPERM-like permute vector, except that -1 is used for 3570 // undefined bytes. This permute is an operand of an outer permute. 3571 // See whether redistributing the -1 bytes gives a shuffle that can be 3572 // implemented using P. If so, set Transform to a VPERM-like permute vector 3573 // that, when applied to the result of P, gives the original permute in Bytes. 3574 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3575 const Permute &P, 3576 SmallVectorImpl<int> &Transform) { 3577 unsigned To = 0; 3578 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3579 int Elt = Bytes[From]; 3580 if (Elt < 0) 3581 // Byte number From of the result is undefined. 3582 Transform[From] = -1; 3583 else { 3584 while (P.Bytes[To] != Elt) { 3585 To += 1; 3586 if (To == SystemZ::VectorBytes) 3587 return false; 3588 } 3589 Transform[From] = To; 3590 } 3591 } 3592 return true; 3593 } 3594 3595 // As above, but search for a matching permute. 3596 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3597 SmallVectorImpl<int> &Transform) { 3598 for (auto &P : PermuteForms) 3599 if (matchDoublePermute(Bytes, P, Transform)) 3600 return &P; 3601 return nullptr; 3602 } 3603 3604 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3605 // as if it had type vNi8. 3606 static void getVPermMask(ShuffleVectorSDNode *VSN, 3607 SmallVectorImpl<int> &Bytes) { 3608 EVT VT = VSN->getValueType(0); 3609 unsigned NumElements = VT.getVectorNumElements(); 3610 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3611 Bytes.resize(NumElements * BytesPerElement, -1); 3612 for (unsigned I = 0; I < NumElements; ++I) { 3613 int Index = VSN->getMaskElt(I); 3614 if (Index >= 0) 3615 for (unsigned J = 0; J < BytesPerElement; ++J) 3616 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3617 } 3618 } 3619 3620 // Bytes is a VPERM-like permute vector, except that -1 is used for 3621 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3622 // the result come from a contiguous sequence of bytes from one input. 3623 // Set Base to the selector for the first byte if so. 3624 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3625 unsigned BytesPerElement, int &Base) { 3626 Base = -1; 3627 for (unsigned I = 0; I < BytesPerElement; ++I) { 3628 if (Bytes[Start + I] >= 0) { 3629 unsigned Elem = Bytes[Start + I]; 3630 if (Base < 0) { 3631 Base = Elem - I; 3632 // Make sure the bytes would come from one input operand. 3633 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3634 return false; 3635 } else if (unsigned(Base) != Elem - I) 3636 return false; 3637 } 3638 } 3639 return true; 3640 } 3641 3642 // Bytes is a VPERM-like permute vector, except that -1 is used for 3643 // undefined bytes. Return true if it can be performed using VSLDI. 3644 // When returning true, set StartIndex to the shift amount and OpNo0 3645 // and OpNo1 to the VPERM operands that should be used as the first 3646 // and second shift operand respectively. 3647 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3648 unsigned &StartIndex, unsigned &OpNo0, 3649 unsigned &OpNo1) { 3650 int OpNos[] = { -1, -1 }; 3651 int Shift = -1; 3652 for (unsigned I = 0; I < 16; ++I) { 3653 int Index = Bytes[I]; 3654 if (Index >= 0) { 3655 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3656 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3657 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3658 if (Shift < 0) 3659 Shift = ExpectedShift; 3660 else if (Shift != ExpectedShift) 3661 return false; 3662 // Make sure that the operand mappings are consistent with previous 3663 // elements. 3664 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3665 return false; 3666 OpNos[ModelOpNo] = RealOpNo; 3667 } 3668 } 3669 StartIndex = Shift; 3670 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3671 } 3672 3673 // Create a node that performs P on operands Op0 and Op1, casting the 3674 // operands to the appropriate type. The type of the result is determined by P. 3675 static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL, 3676 const Permute &P, SDValue Op0, SDValue Op1) { 3677 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3678 // elements of a PACK are twice as wide as the outputs. 3679 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3680 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3681 P.Operand); 3682 // Cast both operands to the appropriate type. 3683 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3684 SystemZ::VectorBytes / InBytes); 3685 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3686 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3687 SDValue Op; 3688 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3689 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3690 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3691 } else if (P.Opcode == SystemZISD::PACK) { 3692 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3693 SystemZ::VectorBytes / P.Operand); 3694 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3695 } else { 3696 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3697 } 3698 return Op; 3699 } 3700 3701 // Bytes is a VPERM-like permute vector, except that -1 is used for 3702 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3703 // VSLDI or VPERM. 3704 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops, 3705 const SmallVectorImpl<int> &Bytes) { 3706 for (unsigned I = 0; I < 2; ++I) 3707 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3708 3709 // First see whether VSLDI can be used. 3710 unsigned StartIndex, OpNo0, OpNo1; 3711 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3712 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3713 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3714 3715 // Fall back on VPERM. Construct an SDNode for the permute vector. 3716 SDValue IndexNodes[SystemZ::VectorBytes]; 3717 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3718 if (Bytes[I] >= 0) 3719 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3720 else 3721 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3722 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 3723 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3724 } 3725 3726 namespace { 3727 // Describes a general N-operand vector shuffle. 3728 struct GeneralShuffle { 3729 GeneralShuffle(EVT vt) : VT(vt) {} 3730 void addUndef(); 3731 void add(SDValue, unsigned); 3732 SDValue getNode(SelectionDAG &, SDLoc); 3733 3734 // The operands of the shuffle. 3735 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3736 3737 // Index I is -1 if byte I of the result is undefined. Otherwise the 3738 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3739 // Bytes[I] / SystemZ::VectorBytes. 3740 SmallVector<int, SystemZ::VectorBytes> Bytes; 3741 3742 // The type of the shuffle result. 3743 EVT VT; 3744 }; 3745 } 3746 3747 // Add an extra undefined element to the shuffle. 3748 void GeneralShuffle::addUndef() { 3749 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3750 for (unsigned I = 0; I < BytesPerElement; ++I) 3751 Bytes.push_back(-1); 3752 } 3753 3754 // Add an extra element to the shuffle, taking it from element Elem of Op. 3755 // A null Op indicates a vector input whose value will be calculated later; 3756 // there is at most one such input per shuffle and it always has the same 3757 // type as the result. 3758 void GeneralShuffle::add(SDValue Op, unsigned Elem) { 3759 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3760 3761 // The source vector can have wider elements than the result, 3762 // either through an explicit TRUNCATE or because of type legalization. 3763 // We want the least significant part. 3764 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3765 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3766 assert(FromBytesPerElement >= BytesPerElement && 3767 "Invalid EXTRACT_VECTOR_ELT"); 3768 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3769 (FromBytesPerElement - BytesPerElement)); 3770 3771 // Look through things like shuffles and bitcasts. 3772 while (Op.getNode()) { 3773 if (Op.getOpcode() == ISD::BITCAST) 3774 Op = Op.getOperand(0); 3775 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3776 // See whether the bytes we need come from a contiguous part of one 3777 // operand. 3778 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3779 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3780 int NewByte; 3781 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3782 break; 3783 if (NewByte < 0) { 3784 addUndef(); 3785 return; 3786 } 3787 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3788 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3789 } else if (Op.isUndef()) { 3790 addUndef(); 3791 return; 3792 } else 3793 break; 3794 } 3795 3796 // Make sure that the source of the extraction is in Ops. 3797 unsigned OpNo = 0; 3798 for (; OpNo < Ops.size(); ++OpNo) 3799 if (Ops[OpNo] == Op) 3800 break; 3801 if (OpNo == Ops.size()) 3802 Ops.push_back(Op); 3803 3804 // Add the element to Bytes. 3805 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3806 for (unsigned I = 0; I < BytesPerElement; ++I) 3807 Bytes.push_back(Base + I); 3808 } 3809 3810 // Return SDNodes for the completed shuffle. 3811 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) { 3812 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3813 3814 if (Ops.size() == 0) 3815 return DAG.getUNDEF(VT); 3816 3817 // Make sure that there are at least two shuffle operands. 3818 if (Ops.size() == 1) 3819 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3820 3821 // Create a tree of shuffles, deferring root node until after the loop. 3822 // Try to redistribute the undefined elements of non-root nodes so that 3823 // the non-root shuffles match something like a pack or merge, then adjust 3824 // the parent node's permute vector to compensate for the new order. 3825 // Among other things, this copes with vectors like <2 x i16> that were 3826 // padded with undefined elements during type legalization. 3827 // 3828 // In the best case this redistribution will lead to the whole tree 3829 // using packs and merges. It should rarely be a loss in other cases. 3830 unsigned Stride = 1; 3831 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3832 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3833 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3834 3835 // Create a mask for just these two operands. 3836 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3837 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3838 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3839 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3840 if (OpNo == I) 3841 NewBytes[J] = Byte; 3842 else if (OpNo == I + Stride) 3843 NewBytes[J] = SystemZ::VectorBytes + Byte; 3844 else 3845 NewBytes[J] = -1; 3846 } 3847 // See if it would be better to reorganize NewMask to avoid using VPERM. 3848 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3849 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3850 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3851 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3852 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3853 if (NewBytes[J] >= 0) { 3854 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3855 "Invalid double permute"); 3856 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3857 } else 3858 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3859 } 3860 } else { 3861 // Just use NewBytes on the operands. 3862 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3863 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3864 if (NewBytes[J] >= 0) 3865 Bytes[J] = I * SystemZ::VectorBytes + J; 3866 } 3867 } 3868 } 3869 3870 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3871 if (Stride > 1) { 3872 Ops[1] = Ops[Stride]; 3873 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3874 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3875 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3876 } 3877 3878 // Look for an instruction that can do the permute without resorting 3879 // to VPERM. 3880 unsigned OpNo0, OpNo1; 3881 SDValue Op; 3882 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3883 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3884 else 3885 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3886 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3887 } 3888 3889 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3890 static bool isScalarToVector(SDValue Op) { 3891 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3892 if (!Op.getOperand(I).isUndef()) 3893 return false; 3894 return true; 3895 } 3896 3897 // Return a vector of type VT that contains Value in the first element. 3898 // The other elements don't matter. 3899 static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3900 SDValue Value) { 3901 // If we have a constant, replicate it to all elements and let the 3902 // BUILD_VECTOR lowering take care of it. 3903 if (Value.getOpcode() == ISD::Constant || 3904 Value.getOpcode() == ISD::ConstantFP) { 3905 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3906 return DAG.getBuildVector(VT, DL, Ops); 3907 } 3908 if (Value.isUndef()) 3909 return DAG.getUNDEF(VT); 3910 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 3911 } 3912 3913 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 3914 // element 1. Used for cases in which replication is cheap. 3915 static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT, 3916 SDValue Op0, SDValue Op1) { 3917 if (Op0.isUndef()) { 3918 if (Op1.isUndef()) 3919 return DAG.getUNDEF(VT); 3920 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 3921 } 3922 if (Op1.isUndef()) 3923 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 3924 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 3925 buildScalarToVector(DAG, DL, VT, Op0), 3926 buildScalarToVector(DAG, DL, VT, Op1)); 3927 } 3928 3929 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 3930 // vector for them. 3931 static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0, 3932 SDValue Op1) { 3933 if (Op0.isUndef() && Op1.isUndef()) 3934 return DAG.getUNDEF(MVT::v2i64); 3935 // If one of the two inputs is undefined then replicate the other one, 3936 // in order to avoid using another register unnecessarily. 3937 if (Op0.isUndef()) 3938 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3939 else if (Op1.isUndef()) 3940 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3941 else { 3942 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3943 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3944 } 3945 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 3946 } 3947 3948 // Try to represent constant BUILD_VECTOR node BVN using a 3949 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 3950 // on success. 3951 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 3952 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 3953 unsigned BytesPerElement = ElemVT.getStoreSize(); 3954 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 3955 SDValue Op = BVN->getOperand(I); 3956 if (!Op.isUndef()) { 3957 uint64_t Value; 3958 if (Op.getOpcode() == ISD::Constant) 3959 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 3960 else if (Op.getOpcode() == ISD::ConstantFP) 3961 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 3962 .getZExtValue()); 3963 else 3964 return false; 3965 for (unsigned J = 0; J < BytesPerElement; ++J) { 3966 uint64_t Byte = (Value >> (J * 8)) & 0xff; 3967 if (Byte == 0xff) 3968 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 3969 else if (Byte != 0) 3970 return false; 3971 } 3972 } 3973 } 3974 return true; 3975 } 3976 3977 // Try to load a vector constant in which BitsPerElement-bit value Value 3978 // is replicated to fill the vector. VT is the type of the resulting 3979 // constant, which may have elements of a different size from BitsPerElement. 3980 // Return the SDValue of the constant on success, otherwise return 3981 // an empty value. 3982 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 3983 const SystemZInstrInfo *TII, 3984 SDLoc DL, EVT VT, uint64_t Value, 3985 unsigned BitsPerElement) { 3986 // Signed 16-bit values can be replicated using VREPI. 3987 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 3988 if (isInt<16>(SignedValue)) { 3989 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3990 SystemZ::VectorBits / BitsPerElement); 3991 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 3992 DAG.getConstant(SignedValue, DL, MVT::i32)); 3993 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3994 } 3995 // See whether rotating the constant left some N places gives a value that 3996 // is one less than a power of 2 (i.e. all zeros followed by all ones). 3997 // If so we can use VGM. 3998 unsigned Start, End; 3999 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 4000 // isRxSBGMask returns the bit numbers for a full 64-bit value, 4001 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 4002 // bit numbers for an BitsPerElement value, so that 0 denotes 4003 // 1 << (BitsPerElement-1). 4004 Start -= 64 - BitsPerElement; 4005 End -= 64 - BitsPerElement; 4006 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4007 SystemZ::VectorBits / BitsPerElement); 4008 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 4009 DAG.getConstant(Start, DL, MVT::i32), 4010 DAG.getConstant(End, DL, MVT::i32)); 4011 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4012 } 4013 return SDValue(); 4014 } 4015 4016 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4017 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4018 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4019 // would benefit from this representation and return it if so. 4020 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4021 BuildVectorSDNode *BVN) { 4022 EVT VT = BVN->getValueType(0); 4023 unsigned NumElements = VT.getVectorNumElements(); 4024 4025 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4026 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4027 // need a BUILD_VECTOR, add an additional placeholder operand for that 4028 // BUILD_VECTOR and store its operands in ResidueOps. 4029 GeneralShuffle GS(VT); 4030 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4031 bool FoundOne = false; 4032 for (unsigned I = 0; I < NumElements; ++I) { 4033 SDValue Op = BVN->getOperand(I); 4034 if (Op.getOpcode() == ISD::TRUNCATE) 4035 Op = Op.getOperand(0); 4036 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4037 Op.getOperand(1).getOpcode() == ISD::Constant) { 4038 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4039 GS.add(Op.getOperand(0), Elem); 4040 FoundOne = true; 4041 } else if (Op.isUndef()) { 4042 GS.addUndef(); 4043 } else { 4044 GS.add(SDValue(), ResidueOps.size()); 4045 ResidueOps.push_back(BVN->getOperand(I)); 4046 } 4047 } 4048 4049 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4050 if (!FoundOne) 4051 return SDValue(); 4052 4053 // Create the BUILD_VECTOR for the remaining elements, if any. 4054 if (!ResidueOps.empty()) { 4055 while (ResidueOps.size() < NumElements) 4056 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4057 for (auto &Op : GS.Ops) { 4058 if (!Op.getNode()) { 4059 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4060 break; 4061 } 4062 } 4063 } 4064 return GS.getNode(DAG, SDLoc(BVN)); 4065 } 4066 4067 // Combine GPR scalar values Elems into a vector of type VT. 4068 static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 4069 SmallVectorImpl<SDValue> &Elems) { 4070 // See whether there is a single replicated value. 4071 SDValue Single; 4072 unsigned int NumElements = Elems.size(); 4073 unsigned int Count = 0; 4074 for (auto Elem : Elems) { 4075 if (!Elem.isUndef()) { 4076 if (!Single.getNode()) 4077 Single = Elem; 4078 else if (Elem != Single) { 4079 Single = SDValue(); 4080 break; 4081 } 4082 Count += 1; 4083 } 4084 } 4085 // There are three cases here: 4086 // 4087 // - if the only defined element is a loaded one, the best sequence 4088 // is a replicating load. 4089 // 4090 // - otherwise, if the only defined element is an i64 value, we will 4091 // end up with the same VLVGP sequence regardless of whether we short-cut 4092 // for replication or fall through to the later code. 4093 // 4094 // - otherwise, if the only defined element is an i32 or smaller value, 4095 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4096 // This is only a win if the single defined element is used more than once. 4097 // In other cases we're better off using a single VLVGx. 4098 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4099 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4100 4101 // The best way of building a v2i64 from two i64s is to use VLVGP. 4102 if (VT == MVT::v2i64) 4103 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4104 4105 // Use a 64-bit merge high to combine two doubles. 4106 if (VT == MVT::v2f64) 4107 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4108 4109 // Build v4f32 values directly from the FPRs: 4110 // 4111 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4112 // V V VMRHF 4113 // <ABxx> <CDxx> 4114 // V VMRHG 4115 // <ABCD> 4116 if (VT == MVT::v4f32) { 4117 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4118 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4119 // Avoid unnecessary undefs by reusing the other operand. 4120 if (Op01.isUndef()) 4121 Op01 = Op23; 4122 else if (Op23.isUndef()) 4123 Op23 = Op01; 4124 // Merging identical replications is a no-op. 4125 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4126 return Op01; 4127 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4128 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4129 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4130 DL, MVT::v2i64, Op01, Op23); 4131 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4132 } 4133 4134 // Collect the constant terms. 4135 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4136 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4137 4138 unsigned NumConstants = 0; 4139 for (unsigned I = 0; I < NumElements; ++I) { 4140 SDValue Elem = Elems[I]; 4141 if (Elem.getOpcode() == ISD::Constant || 4142 Elem.getOpcode() == ISD::ConstantFP) { 4143 NumConstants += 1; 4144 Constants[I] = Elem; 4145 Done[I] = true; 4146 } 4147 } 4148 // If there was at least one constant, fill in the other elements of 4149 // Constants with undefs to get a full vector constant and use that 4150 // as the starting point. 4151 SDValue Result; 4152 if (NumConstants > 0) { 4153 for (unsigned I = 0; I < NumElements; ++I) 4154 if (!Constants[I].getNode()) 4155 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4156 Result = DAG.getBuildVector(VT, DL, Constants); 4157 } else { 4158 // Otherwise try to use VLVGP to start the sequence in order to 4159 // avoid a false dependency on any previous contents of the vector 4160 // register. This only makes sense if one of the associated elements 4161 // is defined. 4162 unsigned I1 = NumElements / 2 - 1; 4163 unsigned I2 = NumElements - 1; 4164 bool Def1 = !Elems[I1].isUndef(); 4165 bool Def2 = !Elems[I2].isUndef(); 4166 if (Def1 || Def2) { 4167 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4168 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4169 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4170 joinDwords(DAG, DL, Elem1, Elem2)); 4171 Done[I1] = true; 4172 Done[I2] = true; 4173 } else 4174 Result = DAG.getUNDEF(VT); 4175 } 4176 4177 // Use VLVGx to insert the other elements. 4178 for (unsigned I = 0; I < NumElements; ++I) 4179 if (!Done[I] && !Elems[I].isUndef()) 4180 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4181 DAG.getConstant(I, DL, MVT::i32)); 4182 return Result; 4183 } 4184 4185 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4186 SelectionDAG &DAG) const { 4187 const SystemZInstrInfo *TII = 4188 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4189 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4190 SDLoc DL(Op); 4191 EVT VT = Op.getValueType(); 4192 4193 if (BVN->isConstant()) { 4194 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4195 // preferred way of creating all-zero and all-one vectors so give it 4196 // priority over other methods below. 4197 uint64_t Mask = 0; 4198 if (tryBuildVectorByteMask(BVN, Mask)) { 4199 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4200 DAG.getConstant(Mask, DL, MVT::i32)); 4201 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4202 } 4203 4204 // Try using some form of replication. 4205 APInt SplatBits, SplatUndef; 4206 unsigned SplatBitSize; 4207 bool HasAnyUndefs; 4208 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4209 8, true) && 4210 SplatBitSize <= 64) { 4211 // First try assuming that any undefined bits above the highest set bit 4212 // and below the lowest set bit are 1s. This increases the likelihood of 4213 // being able to use a sign-extended element value in VECTOR REPLICATE 4214 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4215 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4216 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4217 uint64_t Lower = (SplatUndefZ 4218 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4219 uint64_t Upper = (SplatUndefZ 4220 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4221 uint64_t Value = SplatBitsZ | Upper | Lower; 4222 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4223 SplatBitSize); 4224 if (Op.getNode()) 4225 return Op; 4226 4227 // Now try assuming that any undefined bits between the first and 4228 // last defined set bits are set. This increases the chances of 4229 // using a non-wraparound mask. 4230 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4231 Value = SplatBitsZ | Middle; 4232 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4233 if (Op.getNode()) 4234 return Op; 4235 } 4236 4237 // Fall back to loading it from memory. 4238 return SDValue(); 4239 } 4240 4241 // See if we should use shuffles to construct the vector from other vectors. 4242 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4243 return Res; 4244 4245 // Detect SCALAR_TO_VECTOR conversions. 4246 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4247 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4248 4249 // Otherwise use buildVector to build the vector up from GPRs. 4250 unsigned NumElements = Op.getNumOperands(); 4251 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4252 for (unsigned I = 0; I < NumElements; ++I) 4253 Ops[I] = Op.getOperand(I); 4254 return buildVector(DAG, DL, VT, Ops); 4255 } 4256 4257 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4258 SelectionDAG &DAG) const { 4259 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4260 SDLoc DL(Op); 4261 EVT VT = Op.getValueType(); 4262 unsigned NumElements = VT.getVectorNumElements(); 4263 4264 if (VSN->isSplat()) { 4265 SDValue Op0 = Op.getOperand(0); 4266 unsigned Index = VSN->getSplatIndex(); 4267 assert(Index < VT.getVectorNumElements() && 4268 "Splat index should be defined and in first operand"); 4269 // See whether the value we're splatting is directly available as a scalar. 4270 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4271 Op0.getOpcode() == ISD::BUILD_VECTOR) 4272 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4273 // Otherwise keep it as a vector-to-vector operation. 4274 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4275 DAG.getConstant(Index, DL, MVT::i32)); 4276 } 4277 4278 GeneralShuffle GS(VT); 4279 for (unsigned I = 0; I < NumElements; ++I) { 4280 int Elt = VSN->getMaskElt(I); 4281 if (Elt < 0) 4282 GS.addUndef(); 4283 else 4284 GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4285 unsigned(Elt) % NumElements); 4286 } 4287 return GS.getNode(DAG, SDLoc(VSN)); 4288 } 4289 4290 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4291 SelectionDAG &DAG) const { 4292 SDLoc DL(Op); 4293 // Just insert the scalar into element 0 of an undefined vector. 4294 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4295 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4296 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4297 } 4298 4299 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4300 SelectionDAG &DAG) const { 4301 // Handle insertions of floating-point values. 4302 SDLoc DL(Op); 4303 SDValue Op0 = Op.getOperand(0); 4304 SDValue Op1 = Op.getOperand(1); 4305 SDValue Op2 = Op.getOperand(2); 4306 EVT VT = Op.getValueType(); 4307 4308 // Insertions into constant indices of a v2f64 can be done using VPDI. 4309 // However, if the inserted value is a bitcast or a constant then it's 4310 // better to use GPRs, as below. 4311 if (VT == MVT::v2f64 && 4312 Op1.getOpcode() != ISD::BITCAST && 4313 Op1.getOpcode() != ISD::ConstantFP && 4314 Op2.getOpcode() == ISD::Constant) { 4315 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4316 unsigned Mask = VT.getVectorNumElements() - 1; 4317 if (Index <= Mask) 4318 return Op; 4319 } 4320 4321 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4322 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); 4323 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4324 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4325 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4326 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4327 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4328 } 4329 4330 SDValue 4331 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4332 SelectionDAG &DAG) const { 4333 // Handle extractions of floating-point values. 4334 SDLoc DL(Op); 4335 SDValue Op0 = Op.getOperand(0); 4336 SDValue Op1 = Op.getOperand(1); 4337 EVT VT = Op.getValueType(); 4338 EVT VecVT = Op0.getValueType(); 4339 4340 // Extractions of constant indices can be done directly. 4341 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4342 uint64_t Index = CIndexN->getZExtValue(); 4343 unsigned Mask = VecVT.getVectorNumElements() - 1; 4344 if (Index <= Mask) 4345 return Op; 4346 } 4347 4348 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4349 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4350 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4351 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4352 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4353 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4354 } 4355 4356 SDValue 4357 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4358 unsigned UnpackHigh) const { 4359 SDValue PackedOp = Op.getOperand(0); 4360 EVT OutVT = Op.getValueType(); 4361 EVT InVT = PackedOp.getValueType(); 4362 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits(); 4363 unsigned FromBits = InVT.getVectorElementType().getSizeInBits(); 4364 do { 4365 FromBits *= 2; 4366 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4367 SystemZ::VectorBits / FromBits); 4368 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4369 } while (FromBits != ToBits); 4370 return PackedOp; 4371 } 4372 4373 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4374 unsigned ByScalar) const { 4375 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4376 SDValue Op0 = Op.getOperand(0); 4377 SDValue Op1 = Op.getOperand(1); 4378 SDLoc DL(Op); 4379 EVT VT = Op.getValueType(); 4380 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits(); 4381 4382 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4383 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4384 APInt SplatBits, SplatUndef; 4385 unsigned SplatBitSize; 4386 bool HasAnyUndefs; 4387 // Check for constant splats. Use ElemBitSize as the minimum element 4388 // width and reject splats that need wider elements. 4389 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4390 ElemBitSize, true) && 4391 SplatBitSize == ElemBitSize) { 4392 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4393 DL, MVT::i32); 4394 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4395 } 4396 // Check for variable splats. 4397 BitVector UndefElements; 4398 SDValue Splat = BVN->getSplatValue(&UndefElements); 4399 if (Splat) { 4400 // Since i32 is the smallest legal type, we either need a no-op 4401 // or a truncation. 4402 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4403 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4404 } 4405 } 4406 4407 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4408 // and the shift amount is directly available in a GPR. 4409 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4410 if (VSN->isSplat()) { 4411 SDValue VSNOp0 = VSN->getOperand(0); 4412 unsigned Index = VSN->getSplatIndex(); 4413 assert(Index < VT.getVectorNumElements() && 4414 "Splat index should be defined and in first operand"); 4415 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4416 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4417 // Since i32 is the smallest legal type, we either need a no-op 4418 // or a truncation. 4419 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4420 VSNOp0.getOperand(Index)); 4421 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4422 } 4423 } 4424 } 4425 4426 // Otherwise just treat the current form as legal. 4427 return Op; 4428 } 4429 4430 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4431 SelectionDAG &DAG) const { 4432 switch (Op.getOpcode()) { 4433 case ISD::FRAMEADDR: 4434 return lowerFRAMEADDR(Op, DAG); 4435 case ISD::RETURNADDR: 4436 return lowerRETURNADDR(Op, DAG); 4437 case ISD::BR_CC: 4438 return lowerBR_CC(Op, DAG); 4439 case ISD::SELECT_CC: 4440 return lowerSELECT_CC(Op, DAG); 4441 case ISD::SETCC: 4442 return lowerSETCC(Op, DAG); 4443 case ISD::GlobalAddress: 4444 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4445 case ISD::GlobalTLSAddress: 4446 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4447 case ISD::BlockAddress: 4448 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4449 case ISD::JumpTable: 4450 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4451 case ISD::ConstantPool: 4452 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4453 case ISD::BITCAST: 4454 return lowerBITCAST(Op, DAG); 4455 case ISD::VASTART: 4456 return lowerVASTART(Op, DAG); 4457 case ISD::VACOPY: 4458 return lowerVACOPY(Op, DAG); 4459 case ISD::DYNAMIC_STACKALLOC: 4460 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4461 case ISD::SMUL_LOHI: 4462 return lowerSMUL_LOHI(Op, DAG); 4463 case ISD::UMUL_LOHI: 4464 return lowerUMUL_LOHI(Op, DAG); 4465 case ISD::SDIVREM: 4466 return lowerSDIVREM(Op, DAG); 4467 case ISD::UDIVREM: 4468 return lowerUDIVREM(Op, DAG); 4469 case ISD::OR: 4470 return lowerOR(Op, DAG); 4471 case ISD::CTPOP: 4472 return lowerCTPOP(Op, DAG); 4473 case ISD::ATOMIC_FENCE: 4474 return lowerATOMIC_FENCE(Op, DAG); 4475 case ISD::ATOMIC_SWAP: 4476 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4477 case ISD::ATOMIC_STORE: 4478 return lowerATOMIC_STORE(Op, DAG); 4479 case ISD::ATOMIC_LOAD: 4480 return lowerATOMIC_LOAD(Op, DAG); 4481 case ISD::ATOMIC_LOAD_ADD: 4482 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4483 case ISD::ATOMIC_LOAD_SUB: 4484 return lowerATOMIC_LOAD_SUB(Op, DAG); 4485 case ISD::ATOMIC_LOAD_AND: 4486 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4487 case ISD::ATOMIC_LOAD_OR: 4488 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4489 case ISD::ATOMIC_LOAD_XOR: 4490 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4491 case ISD::ATOMIC_LOAD_NAND: 4492 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4493 case ISD::ATOMIC_LOAD_MIN: 4494 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4495 case ISD::ATOMIC_LOAD_MAX: 4496 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4497 case ISD::ATOMIC_LOAD_UMIN: 4498 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4499 case ISD::ATOMIC_LOAD_UMAX: 4500 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4501 case ISD::ATOMIC_CMP_SWAP: 4502 return lowerATOMIC_CMP_SWAP(Op, DAG); 4503 case ISD::STACKSAVE: 4504 return lowerSTACKSAVE(Op, DAG); 4505 case ISD::STACKRESTORE: 4506 return lowerSTACKRESTORE(Op, DAG); 4507 case ISD::PREFETCH: 4508 return lowerPREFETCH(Op, DAG); 4509 case ISD::INTRINSIC_W_CHAIN: 4510 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4511 case ISD::INTRINSIC_WO_CHAIN: 4512 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4513 case ISD::BUILD_VECTOR: 4514 return lowerBUILD_VECTOR(Op, DAG); 4515 case ISD::VECTOR_SHUFFLE: 4516 return lowerVECTOR_SHUFFLE(Op, DAG); 4517 case ISD::SCALAR_TO_VECTOR: 4518 return lowerSCALAR_TO_VECTOR(Op, DAG); 4519 case ISD::INSERT_VECTOR_ELT: 4520 return lowerINSERT_VECTOR_ELT(Op, DAG); 4521 case ISD::EXTRACT_VECTOR_ELT: 4522 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4523 case ISD::SIGN_EXTEND_VECTOR_INREG: 4524 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4525 case ISD::ZERO_EXTEND_VECTOR_INREG: 4526 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4527 case ISD::SHL: 4528 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4529 case ISD::SRL: 4530 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4531 case ISD::SRA: 4532 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4533 default: 4534 llvm_unreachable("Unexpected node to lower"); 4535 } 4536 } 4537 4538 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4539 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4540 switch ((SystemZISD::NodeType)Opcode) { 4541 case SystemZISD::FIRST_NUMBER: break; 4542 OPCODE(RET_FLAG); 4543 OPCODE(CALL); 4544 OPCODE(SIBCALL); 4545 OPCODE(TLS_GDCALL); 4546 OPCODE(TLS_LDCALL); 4547 OPCODE(PCREL_WRAPPER); 4548 OPCODE(PCREL_OFFSET); 4549 OPCODE(IABS); 4550 OPCODE(ICMP); 4551 OPCODE(FCMP); 4552 OPCODE(TM); 4553 OPCODE(BR_CCMASK); 4554 OPCODE(SELECT_CCMASK); 4555 OPCODE(ADJDYNALLOC); 4556 OPCODE(EXTRACT_ACCESS); 4557 OPCODE(POPCNT); 4558 OPCODE(UMUL_LOHI64); 4559 OPCODE(SDIVREM32); 4560 OPCODE(SDIVREM64); 4561 OPCODE(UDIVREM32); 4562 OPCODE(UDIVREM64); 4563 OPCODE(MVC); 4564 OPCODE(MVC_LOOP); 4565 OPCODE(NC); 4566 OPCODE(NC_LOOP); 4567 OPCODE(OC); 4568 OPCODE(OC_LOOP); 4569 OPCODE(XC); 4570 OPCODE(XC_LOOP); 4571 OPCODE(CLC); 4572 OPCODE(CLC_LOOP); 4573 OPCODE(STPCPY); 4574 OPCODE(STRCMP); 4575 OPCODE(SEARCH_STRING); 4576 OPCODE(IPM); 4577 OPCODE(SERIALIZE); 4578 OPCODE(MEMBARRIER); 4579 OPCODE(TBEGIN); 4580 OPCODE(TBEGIN_NOFLOAT); 4581 OPCODE(TEND); 4582 OPCODE(BYTE_MASK); 4583 OPCODE(ROTATE_MASK); 4584 OPCODE(REPLICATE); 4585 OPCODE(JOIN_DWORDS); 4586 OPCODE(SPLAT); 4587 OPCODE(MERGE_HIGH); 4588 OPCODE(MERGE_LOW); 4589 OPCODE(SHL_DOUBLE); 4590 OPCODE(PERMUTE_DWORDS); 4591 OPCODE(PERMUTE); 4592 OPCODE(PACK); 4593 OPCODE(PACKS_CC); 4594 OPCODE(PACKLS_CC); 4595 OPCODE(UNPACK_HIGH); 4596 OPCODE(UNPACKL_HIGH); 4597 OPCODE(UNPACK_LOW); 4598 OPCODE(UNPACKL_LOW); 4599 OPCODE(VSHL_BY_SCALAR); 4600 OPCODE(VSRL_BY_SCALAR); 4601 OPCODE(VSRA_BY_SCALAR); 4602 OPCODE(VSUM); 4603 OPCODE(VICMPE); 4604 OPCODE(VICMPH); 4605 OPCODE(VICMPHL); 4606 OPCODE(VICMPES); 4607 OPCODE(VICMPHS); 4608 OPCODE(VICMPHLS); 4609 OPCODE(VFCMPE); 4610 OPCODE(VFCMPH); 4611 OPCODE(VFCMPHE); 4612 OPCODE(VFCMPES); 4613 OPCODE(VFCMPHS); 4614 OPCODE(VFCMPHES); 4615 OPCODE(VFTCI); 4616 OPCODE(VEXTEND); 4617 OPCODE(VROUND); 4618 OPCODE(VTM); 4619 OPCODE(VFAE_CC); 4620 OPCODE(VFAEZ_CC); 4621 OPCODE(VFEE_CC); 4622 OPCODE(VFEEZ_CC); 4623 OPCODE(VFENE_CC); 4624 OPCODE(VFENEZ_CC); 4625 OPCODE(VISTR_CC); 4626 OPCODE(VSTRC_CC); 4627 OPCODE(VSTRCZ_CC); 4628 OPCODE(ATOMIC_SWAPW); 4629 OPCODE(ATOMIC_LOADW_ADD); 4630 OPCODE(ATOMIC_LOADW_SUB); 4631 OPCODE(ATOMIC_LOADW_AND); 4632 OPCODE(ATOMIC_LOADW_OR); 4633 OPCODE(ATOMIC_LOADW_XOR); 4634 OPCODE(ATOMIC_LOADW_NAND); 4635 OPCODE(ATOMIC_LOADW_MIN); 4636 OPCODE(ATOMIC_LOADW_MAX); 4637 OPCODE(ATOMIC_LOADW_UMIN); 4638 OPCODE(ATOMIC_LOADW_UMAX); 4639 OPCODE(ATOMIC_CMP_SWAPW); 4640 OPCODE(PREFETCH); 4641 } 4642 return nullptr; 4643 #undef OPCODE 4644 } 4645 4646 // Return true if VT is a vector whose elements are a whole number of bytes 4647 // in width. 4648 static bool canTreatAsByteVector(EVT VT) { 4649 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0; 4650 } 4651 4652 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4653 // producing a result of type ResVT. Op is a possibly bitcast version 4654 // of the input vector and Index is the index (based on type VecVT) that 4655 // should be extracted. Return the new extraction if a simplification 4656 // was possible or if Force is true. 4657 SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT, 4658 SDValue Op, unsigned Index, 4659 DAGCombinerInfo &DCI, 4660 bool Force) const { 4661 SelectionDAG &DAG = DCI.DAG; 4662 4663 // The number of bytes being extracted. 4664 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4665 4666 for (;;) { 4667 unsigned Opcode = Op.getOpcode(); 4668 if (Opcode == ISD::BITCAST) 4669 // Look through bitcasts. 4670 Op = Op.getOperand(0); 4671 else if (Opcode == ISD::VECTOR_SHUFFLE && 4672 canTreatAsByteVector(Op.getValueType())) { 4673 // Get a VPERM-like permute mask and see whether the bytes covered 4674 // by the extracted element are a contiguous sequence from one 4675 // source operand. 4676 SmallVector<int, SystemZ::VectorBytes> Bytes; 4677 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4678 int First; 4679 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4680 BytesPerElement, First)) 4681 break; 4682 if (First < 0) 4683 return DAG.getUNDEF(ResVT); 4684 // Make sure the contiguous sequence starts at a multiple of the 4685 // original element size. 4686 unsigned Byte = unsigned(First) % Bytes.size(); 4687 if (Byte % BytesPerElement != 0) 4688 break; 4689 // We can get the extracted value directly from an input. 4690 Index = Byte / BytesPerElement; 4691 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4692 Force = true; 4693 } else if (Opcode == ISD::BUILD_VECTOR && 4694 canTreatAsByteVector(Op.getValueType())) { 4695 // We can only optimize this case if the BUILD_VECTOR elements are 4696 // at least as wide as the extracted value. 4697 EVT OpVT = Op.getValueType(); 4698 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4699 if (OpBytesPerElement < BytesPerElement) 4700 break; 4701 // Make sure that the least-significant bit of the extracted value 4702 // is the least significant bit of an input. 4703 unsigned End = (Index + 1) * BytesPerElement; 4704 if (End % OpBytesPerElement != 0) 4705 break; 4706 // We're extracting the low part of one operand of the BUILD_VECTOR. 4707 Op = Op.getOperand(End / OpBytesPerElement - 1); 4708 if (!Op.getValueType().isInteger()) { 4709 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()); 4710 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4711 DCI.AddToWorklist(Op.getNode()); 4712 } 4713 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4714 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4715 if (VT != ResVT) { 4716 DCI.AddToWorklist(Op.getNode()); 4717 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4718 } 4719 return Op; 4720 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4721 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4722 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4723 canTreatAsByteVector(Op.getValueType()) && 4724 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4725 // Make sure that only the unextended bits are significant. 4726 EVT ExtVT = Op.getValueType(); 4727 EVT OpVT = Op.getOperand(0).getValueType(); 4728 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4729 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4730 unsigned Byte = Index * BytesPerElement; 4731 unsigned SubByte = Byte % ExtBytesPerElement; 4732 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4733 if (SubByte < MinSubByte || 4734 SubByte + BytesPerElement > ExtBytesPerElement) 4735 break; 4736 // Get the byte offset of the unextended element 4737 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4738 // ...then add the byte offset relative to that element. 4739 Byte += SubByte - MinSubByte; 4740 if (Byte % BytesPerElement != 0) 4741 break; 4742 Op = Op.getOperand(0); 4743 Index = Byte / BytesPerElement; 4744 Force = true; 4745 } else 4746 break; 4747 } 4748 if (Force) { 4749 if (Op.getValueType() != VecVT) { 4750 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4751 DCI.AddToWorklist(Op.getNode()); 4752 } 4753 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4754 DAG.getConstant(Index, DL, MVT::i32)); 4755 } 4756 return SDValue(); 4757 } 4758 4759 // Optimize vector operations in scalar value Op on the basis that Op 4760 // is truncated to TruncVT. 4761 SDValue 4762 SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op, 4763 DAGCombinerInfo &DCI) const { 4764 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4765 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4766 // of type TruncVT. 4767 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4768 TruncVT.getSizeInBits() % 8 == 0) { 4769 SDValue Vec = Op.getOperand(0); 4770 EVT VecVT = Vec.getValueType(); 4771 if (canTreatAsByteVector(VecVT)) { 4772 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4773 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4774 unsigned TruncBytes = TruncVT.getStoreSize(); 4775 if (BytesPerElement % TruncBytes == 0) { 4776 // Calculate the value of Y' in the above description. We are 4777 // splitting the original elements into Scale equal-sized pieces 4778 // and for truncation purposes want the last (least-significant) 4779 // of these pieces for IndexN. This is easiest to do by calculating 4780 // the start index of the following element and then subtracting 1. 4781 unsigned Scale = BytesPerElement / TruncBytes; 4782 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4783 4784 // Defer the creation of the bitcast from X to combineExtract, 4785 // which might be able to optimize the extraction. 4786 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4787 VecVT.getStoreSize() / TruncBytes); 4788 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4789 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4790 } 4791 } 4792 } 4793 } 4794 return SDValue(); 4795 } 4796 4797 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 4798 DAGCombinerInfo &DCI) const { 4799 SelectionDAG &DAG = DCI.DAG; 4800 unsigned Opcode = N->getOpcode(); 4801 if (Opcode == ISD::SIGN_EXTEND) { 4802 // Convert (sext (ashr (shl X, C1), C2)) to 4803 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4804 // cheap as narrower ones. 4805 SDValue N0 = N->getOperand(0); 4806 EVT VT = N->getValueType(0); 4807 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4808 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4809 SDValue Inner = N0.getOperand(0); 4810 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4811 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4812 unsigned Extra = (VT.getSizeInBits() - 4813 N0.getValueType().getSizeInBits()); 4814 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4815 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4816 EVT ShiftVT = N0.getOperand(1).getValueType(); 4817 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4818 Inner.getOperand(0)); 4819 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4820 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4821 ShiftVT)); 4822 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4823 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4824 } 4825 } 4826 } 4827 } 4828 if (Opcode == SystemZISD::MERGE_HIGH || 4829 Opcode == SystemZISD::MERGE_LOW) { 4830 SDValue Op0 = N->getOperand(0); 4831 SDValue Op1 = N->getOperand(1); 4832 if (Op0.getOpcode() == ISD::BITCAST) 4833 Op0 = Op0.getOperand(0); 4834 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4835 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4836 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4837 // for v4f32. 4838 if (Op1 == N->getOperand(0)) 4839 return Op1; 4840 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4841 EVT VT = Op1.getValueType(); 4842 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4843 if (ElemBytes <= 4) { 4844 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4845 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4846 EVT InVT = VT.changeVectorElementTypeToInteger(); 4847 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4848 SystemZ::VectorBytes / ElemBytes / 2); 4849 if (VT != InVT) { 4850 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4851 DCI.AddToWorklist(Op1.getNode()); 4852 } 4853 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4854 DCI.AddToWorklist(Op.getNode()); 4855 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4856 } 4857 } 4858 } 4859 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4860 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4861 // If X has wider elements then convert it to: 4862 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4863 if (Opcode == ISD::STORE) { 4864 auto *SN = cast<StoreSDNode>(N); 4865 EVT MemVT = SN->getMemoryVT(); 4866 if (MemVT.isInteger()) { 4867 if (SDValue Value = 4868 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 4869 DCI.AddToWorklist(Value.getNode()); 4870 4871 // Rewrite the store with the new form of stored value. 4872 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4873 SN->getBasePtr(), SN->getMemoryVT(), 4874 SN->getMemOperand()); 4875 } 4876 } 4877 } 4878 // Try to simplify a vector extraction. 4879 if (Opcode == ISD::EXTRACT_VECTOR_ELT) { 4880 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 4881 SDValue Op0 = N->getOperand(0); 4882 EVT VecVT = Op0.getValueType(); 4883 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 4884 IndexN->getZExtValue(), DCI, false); 4885 } 4886 } 4887 // (join_dwords X, X) == (replicate X) 4888 if (Opcode == SystemZISD::JOIN_DWORDS && 4889 N->getOperand(0) == N->getOperand(1)) 4890 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 4891 N->getOperand(0)); 4892 // (fround (extract_vector_elt X 0)) 4893 // (fround (extract_vector_elt X 1)) -> 4894 // (extract_vector_elt (VROUND X) 0) 4895 // (extract_vector_elt (VROUND X) 1) 4896 // 4897 // This is a special case since the target doesn't really support v2f32s. 4898 if (Opcode == ISD::FP_ROUND) { 4899 SDValue Op0 = N->getOperand(0); 4900 if (N->getValueType(0) == MVT::f32 && 4901 Op0.hasOneUse() && 4902 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4903 Op0.getOperand(0).getValueType() == MVT::v2f64 && 4904 Op0.getOperand(1).getOpcode() == ISD::Constant && 4905 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 4906 SDValue Vec = Op0.getOperand(0); 4907 for (auto *U : Vec->uses()) { 4908 if (U != Op0.getNode() && 4909 U->hasOneUse() && 4910 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4911 U->getOperand(0) == Vec && 4912 U->getOperand(1).getOpcode() == ISD::Constant && 4913 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 4914 SDValue OtherRound = SDValue(*U->use_begin(), 0); 4915 if (OtherRound.getOpcode() == ISD::FP_ROUND && 4916 OtherRound.getOperand(0) == SDValue(U, 0) && 4917 OtherRound.getValueType() == MVT::f32) { 4918 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 4919 MVT::v4f32, Vec); 4920 DCI.AddToWorklist(VRound.getNode()); 4921 SDValue Extract1 = 4922 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 4923 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 4924 DCI.AddToWorklist(Extract1.getNode()); 4925 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 4926 SDValue Extract0 = 4927 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 4928 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 4929 return Extract0; 4930 } 4931 } 4932 } 4933 } 4934 } 4935 return SDValue(); 4936 } 4937 4938 //===----------------------------------------------------------------------===// 4939 // Custom insertion 4940 //===----------------------------------------------------------------------===// 4941 4942 // Create a new basic block after MBB. 4943 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 4944 MachineFunction &MF = *MBB->getParent(); 4945 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 4946 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 4947 return NewMBB; 4948 } 4949 4950 // Split MBB after MI and return the new block (the one that contains 4951 // instructions after MI). 4952 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, 4953 MachineBasicBlock *MBB) { 4954 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4955 NewMBB->splice(NewMBB->begin(), MBB, 4956 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 4957 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4958 return NewMBB; 4959 } 4960 4961 // Split MBB before MI and return the new block (the one that contains MI). 4962 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, 4963 MachineBasicBlock *MBB) { 4964 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4965 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 4966 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4967 return NewMBB; 4968 } 4969 4970 // Force base value Base into a register before MI. Return the register. 4971 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, 4972 const SystemZInstrInfo *TII) { 4973 if (Base.isReg()) 4974 return Base.getReg(); 4975 4976 MachineBasicBlock *MBB = MI->getParent(); 4977 MachineFunction &MF = *MBB->getParent(); 4978 MachineRegisterInfo &MRI = MF.getRegInfo(); 4979 4980 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 4981 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) 4982 .addOperand(Base).addImm(0).addReg(0); 4983 return Reg; 4984 } 4985 4986 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 4987 MachineBasicBlock * 4988 SystemZTargetLowering::emitSelect(MachineInstr *MI, 4989 MachineBasicBlock *MBB) const { 4990 const SystemZInstrInfo *TII = 4991 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4992 4993 unsigned DestReg = MI->getOperand(0).getReg(); 4994 unsigned TrueReg = MI->getOperand(1).getReg(); 4995 unsigned FalseReg = MI->getOperand(2).getReg(); 4996 unsigned CCValid = MI->getOperand(3).getImm(); 4997 unsigned CCMask = MI->getOperand(4).getImm(); 4998 DebugLoc DL = MI->getDebugLoc(); 4999 5000 MachineBasicBlock *StartMBB = MBB; 5001 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5002 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5003 5004 // StartMBB: 5005 // BRC CCMask, JoinMBB 5006 // # fallthrough to FalseMBB 5007 MBB = StartMBB; 5008 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5009 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5010 MBB->addSuccessor(JoinMBB); 5011 MBB->addSuccessor(FalseMBB); 5012 5013 // FalseMBB: 5014 // # fallthrough to JoinMBB 5015 MBB = FalseMBB; 5016 MBB->addSuccessor(JoinMBB); 5017 5018 // JoinMBB: 5019 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 5020 // ... 5021 MBB = JoinMBB; 5022 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 5023 .addReg(TrueReg).addMBB(StartMBB) 5024 .addReg(FalseReg).addMBB(FalseMBB); 5025 5026 MI->eraseFromParent(); 5027 return JoinMBB; 5028 } 5029 5030 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 5031 // StoreOpcode is the store to use and Invert says whether the store should 5032 // happen when the condition is false rather than true. If a STORE ON 5033 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 5034 MachineBasicBlock * 5035 SystemZTargetLowering::emitCondStore(MachineInstr *MI, 5036 MachineBasicBlock *MBB, 5037 unsigned StoreOpcode, unsigned STOCOpcode, 5038 bool Invert) const { 5039 const SystemZInstrInfo *TII = 5040 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5041 5042 unsigned SrcReg = MI->getOperand(0).getReg(); 5043 MachineOperand Base = MI->getOperand(1); 5044 int64_t Disp = MI->getOperand(2).getImm(); 5045 unsigned IndexReg = MI->getOperand(3).getReg(); 5046 unsigned CCValid = MI->getOperand(4).getImm(); 5047 unsigned CCMask = MI->getOperand(5).getImm(); 5048 DebugLoc DL = MI->getDebugLoc(); 5049 5050 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 5051 5052 // Use STOCOpcode if possible. We could use different store patterns in 5053 // order to avoid matching the index register, but the performance trade-offs 5054 // might be more complicated in that case. 5055 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 5056 if (Invert) 5057 CCMask ^= CCValid; 5058 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 5059 .addReg(SrcReg).addOperand(Base).addImm(Disp) 5060 .addImm(CCValid).addImm(CCMask); 5061 MI->eraseFromParent(); 5062 return MBB; 5063 } 5064 5065 // Get the condition needed to branch around the store. 5066 if (!Invert) 5067 CCMask ^= CCValid; 5068 5069 MachineBasicBlock *StartMBB = MBB; 5070 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 5071 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 5072 5073 // StartMBB: 5074 // BRC CCMask, JoinMBB 5075 // # fallthrough to FalseMBB 5076 MBB = StartMBB; 5077 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5078 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 5079 MBB->addSuccessor(JoinMBB); 5080 MBB->addSuccessor(FalseMBB); 5081 5082 // FalseMBB: 5083 // store %SrcReg, %Disp(%Index,%Base) 5084 // # fallthrough to JoinMBB 5085 MBB = FalseMBB; 5086 BuildMI(MBB, DL, TII->get(StoreOpcode)) 5087 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 5088 MBB->addSuccessor(JoinMBB); 5089 5090 MI->eraseFromParent(); 5091 return JoinMBB; 5092 } 5093 5094 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 5095 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 5096 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 5097 // BitSize is the width of the field in bits, or 0 if this is a partword 5098 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 5099 // is one of the operands. Invert says whether the field should be 5100 // inverted after performing BinOpcode (e.g. for NAND). 5101 MachineBasicBlock * 5102 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, 5103 MachineBasicBlock *MBB, 5104 unsigned BinOpcode, 5105 unsigned BitSize, 5106 bool Invert) const { 5107 MachineFunction &MF = *MBB->getParent(); 5108 const SystemZInstrInfo *TII = 5109 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5110 MachineRegisterInfo &MRI = MF.getRegInfo(); 5111 bool IsSubWord = (BitSize < 32); 5112 5113 // Extract the operands. Base can be a register or a frame index. 5114 // Src2 can be a register or immediate. 5115 unsigned Dest = MI->getOperand(0).getReg(); 5116 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5117 int64_t Disp = MI->getOperand(2).getImm(); 5118 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); 5119 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5120 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5121 DebugLoc DL = MI->getDebugLoc(); 5122 if (IsSubWord) 5123 BitSize = MI->getOperand(6).getImm(); 5124 5125 // Subword operations use 32-bit registers. 5126 const TargetRegisterClass *RC = (BitSize <= 32 ? 5127 &SystemZ::GR32BitRegClass : 5128 &SystemZ::GR64BitRegClass); 5129 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5130 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5131 5132 // Get the right opcodes for the displacement. 5133 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5134 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5135 assert(LOpcode && CSOpcode && "Displacement out of range"); 5136 5137 // Create virtual registers for temporary results. 5138 unsigned OrigVal = MRI.createVirtualRegister(RC); 5139 unsigned OldVal = MRI.createVirtualRegister(RC); 5140 unsigned NewVal = (BinOpcode || IsSubWord ? 5141 MRI.createVirtualRegister(RC) : Src2.getReg()); 5142 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5143 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5144 5145 // Insert a basic block for the main loop. 5146 MachineBasicBlock *StartMBB = MBB; 5147 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5148 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5149 5150 // StartMBB: 5151 // ... 5152 // %OrigVal = L Disp(%Base) 5153 // # fall through to LoopMMB 5154 MBB = StartMBB; 5155 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5156 .addOperand(Base).addImm(Disp).addReg(0); 5157 MBB->addSuccessor(LoopMBB); 5158 5159 // LoopMBB: 5160 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 5161 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5162 // %RotatedNewVal = OP %RotatedOldVal, %Src2 5163 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5164 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5165 // JNE LoopMBB 5166 // # fall through to DoneMMB 5167 MBB = LoopMBB; 5168 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5169 .addReg(OrigVal).addMBB(StartMBB) 5170 .addReg(Dest).addMBB(LoopMBB); 5171 if (IsSubWord) 5172 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5173 .addReg(OldVal).addReg(BitShift).addImm(0); 5174 if (Invert) { 5175 // Perform the operation normally and then invert every bit of the field. 5176 unsigned Tmp = MRI.createVirtualRegister(RC); 5177 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 5178 .addReg(RotatedOldVal).addOperand(Src2); 5179 if (BitSize <= 32) 5180 // XILF with the upper BitSize bits set. 5181 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5182 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5183 else { 5184 // Use LCGR and add -1 to the result, which is more compact than 5185 // an XILF, XILH pair. 5186 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5187 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5188 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5189 .addReg(Tmp2).addImm(-1); 5190 } 5191 } else if (BinOpcode) 5192 // A simply binary operation. 5193 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5194 .addReg(RotatedOldVal).addOperand(Src2); 5195 else if (IsSubWord) 5196 // Use RISBG to rotate Src2 into position and use it to replace the 5197 // field in RotatedOldVal. 5198 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5199 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5200 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5201 if (IsSubWord) 5202 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5203 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5204 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5205 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5206 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5207 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5208 MBB->addSuccessor(LoopMBB); 5209 MBB->addSuccessor(DoneMBB); 5210 5211 MI->eraseFromParent(); 5212 return DoneMBB; 5213 } 5214 5215 // Implement EmitInstrWithCustomInserter for pseudo 5216 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5217 // instruction that should be used to compare the current field with the 5218 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5219 // for when the current field should be kept. BitSize is the width of 5220 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5221 MachineBasicBlock * 5222 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, 5223 MachineBasicBlock *MBB, 5224 unsigned CompareOpcode, 5225 unsigned KeepOldMask, 5226 unsigned BitSize) const { 5227 MachineFunction &MF = *MBB->getParent(); 5228 const SystemZInstrInfo *TII = 5229 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5230 MachineRegisterInfo &MRI = MF.getRegInfo(); 5231 bool IsSubWord = (BitSize < 32); 5232 5233 // Extract the operands. Base can be a register or a frame index. 5234 unsigned Dest = MI->getOperand(0).getReg(); 5235 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5236 int64_t Disp = MI->getOperand(2).getImm(); 5237 unsigned Src2 = MI->getOperand(3).getReg(); 5238 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5239 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5240 DebugLoc DL = MI->getDebugLoc(); 5241 if (IsSubWord) 5242 BitSize = MI->getOperand(6).getImm(); 5243 5244 // Subword operations use 32-bit registers. 5245 const TargetRegisterClass *RC = (BitSize <= 32 ? 5246 &SystemZ::GR32BitRegClass : 5247 &SystemZ::GR64BitRegClass); 5248 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5249 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5250 5251 // Get the right opcodes for the displacement. 5252 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5253 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5254 assert(LOpcode && CSOpcode && "Displacement out of range"); 5255 5256 // Create virtual registers for temporary results. 5257 unsigned OrigVal = MRI.createVirtualRegister(RC); 5258 unsigned OldVal = MRI.createVirtualRegister(RC); 5259 unsigned NewVal = MRI.createVirtualRegister(RC); 5260 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5261 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5262 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5263 5264 // Insert 3 basic blocks for the loop. 5265 MachineBasicBlock *StartMBB = MBB; 5266 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5267 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5268 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5269 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5270 5271 // StartMBB: 5272 // ... 5273 // %OrigVal = L Disp(%Base) 5274 // # fall through to LoopMMB 5275 MBB = StartMBB; 5276 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5277 .addOperand(Base).addImm(Disp).addReg(0); 5278 MBB->addSuccessor(LoopMBB); 5279 5280 // LoopMBB: 5281 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5282 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5283 // CompareOpcode %RotatedOldVal, %Src2 5284 // BRC KeepOldMask, UpdateMBB 5285 MBB = LoopMBB; 5286 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5287 .addReg(OrigVal).addMBB(StartMBB) 5288 .addReg(Dest).addMBB(UpdateMBB); 5289 if (IsSubWord) 5290 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5291 .addReg(OldVal).addReg(BitShift).addImm(0); 5292 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5293 .addReg(RotatedOldVal).addReg(Src2); 5294 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5295 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5296 MBB->addSuccessor(UpdateMBB); 5297 MBB->addSuccessor(UseAltMBB); 5298 5299 // UseAltMBB: 5300 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5301 // # fall through to UpdateMMB 5302 MBB = UseAltMBB; 5303 if (IsSubWord) 5304 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5305 .addReg(RotatedOldVal).addReg(Src2) 5306 .addImm(32).addImm(31 + BitSize).addImm(0); 5307 MBB->addSuccessor(UpdateMBB); 5308 5309 // UpdateMBB: 5310 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5311 // [ %RotatedAltVal, UseAltMBB ] 5312 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5313 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5314 // JNE LoopMBB 5315 // # fall through to DoneMMB 5316 MBB = UpdateMBB; 5317 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5318 .addReg(RotatedOldVal).addMBB(LoopMBB) 5319 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5320 if (IsSubWord) 5321 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5322 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5323 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5324 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5325 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5326 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5327 MBB->addSuccessor(LoopMBB); 5328 MBB->addSuccessor(DoneMBB); 5329 5330 MI->eraseFromParent(); 5331 return DoneMBB; 5332 } 5333 5334 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5335 // instruction MI. 5336 MachineBasicBlock * 5337 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, 5338 MachineBasicBlock *MBB) const { 5339 5340 MachineFunction &MF = *MBB->getParent(); 5341 const SystemZInstrInfo *TII = 5342 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5343 MachineRegisterInfo &MRI = MF.getRegInfo(); 5344 5345 // Extract the operands. Base can be a register or a frame index. 5346 unsigned Dest = MI->getOperand(0).getReg(); 5347 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5348 int64_t Disp = MI->getOperand(2).getImm(); 5349 unsigned OrigCmpVal = MI->getOperand(3).getReg(); 5350 unsigned OrigSwapVal = MI->getOperand(4).getReg(); 5351 unsigned BitShift = MI->getOperand(5).getReg(); 5352 unsigned NegBitShift = MI->getOperand(6).getReg(); 5353 int64_t BitSize = MI->getOperand(7).getImm(); 5354 DebugLoc DL = MI->getDebugLoc(); 5355 5356 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5357 5358 // Get the right opcodes for the displacement. 5359 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5360 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5361 assert(LOpcode && CSOpcode && "Displacement out of range"); 5362 5363 // Create virtual registers for temporary results. 5364 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5365 unsigned OldVal = MRI.createVirtualRegister(RC); 5366 unsigned CmpVal = MRI.createVirtualRegister(RC); 5367 unsigned SwapVal = MRI.createVirtualRegister(RC); 5368 unsigned StoreVal = MRI.createVirtualRegister(RC); 5369 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5370 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5371 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5372 5373 // Insert 2 basic blocks for the loop. 5374 MachineBasicBlock *StartMBB = MBB; 5375 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5376 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5377 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5378 5379 // StartMBB: 5380 // ... 5381 // %OrigOldVal = L Disp(%Base) 5382 // # fall through to LoopMMB 5383 MBB = StartMBB; 5384 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5385 .addOperand(Base).addImm(Disp).addReg(0); 5386 MBB->addSuccessor(LoopMBB); 5387 5388 // LoopMBB: 5389 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5390 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5391 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5392 // %Dest = RLL %OldVal, BitSize(%BitShift) 5393 // ^^ The low BitSize bits contain the field 5394 // of interest. 5395 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5396 // ^^ Replace the upper 32-BitSize bits of the 5397 // comparison value with those that we loaded, 5398 // so that we can use a full word comparison. 5399 // CR %Dest, %RetryCmpVal 5400 // JNE DoneMBB 5401 // # Fall through to SetMBB 5402 MBB = LoopMBB; 5403 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5404 .addReg(OrigOldVal).addMBB(StartMBB) 5405 .addReg(RetryOldVal).addMBB(SetMBB); 5406 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5407 .addReg(OrigCmpVal).addMBB(StartMBB) 5408 .addReg(RetryCmpVal).addMBB(SetMBB); 5409 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5410 .addReg(OrigSwapVal).addMBB(StartMBB) 5411 .addReg(RetrySwapVal).addMBB(SetMBB); 5412 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5413 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5414 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5415 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5416 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5417 .addReg(Dest).addReg(RetryCmpVal); 5418 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5419 .addImm(SystemZ::CCMASK_ICMP) 5420 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5421 MBB->addSuccessor(DoneMBB); 5422 MBB->addSuccessor(SetMBB); 5423 5424 // SetMBB: 5425 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5426 // ^^ Replace the upper 32-BitSize bits of the new 5427 // value with those that we loaded. 5428 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5429 // ^^ Rotate the new field to its proper position. 5430 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5431 // JNE LoopMBB 5432 // # fall through to ExitMMB 5433 MBB = SetMBB; 5434 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5435 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5436 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5437 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5438 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5439 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 5440 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5441 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5442 MBB->addSuccessor(LoopMBB); 5443 MBB->addSuccessor(DoneMBB); 5444 5445 MI->eraseFromParent(); 5446 return DoneMBB; 5447 } 5448 5449 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5450 // if the high register of the GR128 value must be cleared or false if 5451 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5452 // and subreg_l64 when extending a GR64. 5453 MachineBasicBlock * 5454 SystemZTargetLowering::emitExt128(MachineInstr *MI, 5455 MachineBasicBlock *MBB, 5456 bool ClearEven, unsigned SubReg) const { 5457 MachineFunction &MF = *MBB->getParent(); 5458 const SystemZInstrInfo *TII = 5459 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5460 MachineRegisterInfo &MRI = MF.getRegInfo(); 5461 DebugLoc DL = MI->getDebugLoc(); 5462 5463 unsigned Dest = MI->getOperand(0).getReg(); 5464 unsigned Src = MI->getOperand(1).getReg(); 5465 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5466 5467 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5468 if (ClearEven) { 5469 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5470 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5471 5472 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5473 .addImm(0); 5474 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5475 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5476 In128 = NewIn128; 5477 } 5478 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5479 .addReg(In128).addReg(Src).addImm(SubReg); 5480 5481 MI->eraseFromParent(); 5482 return MBB; 5483 } 5484 5485 MachineBasicBlock * 5486 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, 5487 MachineBasicBlock *MBB, 5488 unsigned Opcode) const { 5489 MachineFunction &MF = *MBB->getParent(); 5490 const SystemZInstrInfo *TII = 5491 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5492 MachineRegisterInfo &MRI = MF.getRegInfo(); 5493 DebugLoc DL = MI->getDebugLoc(); 5494 5495 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); 5496 uint64_t DestDisp = MI->getOperand(1).getImm(); 5497 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); 5498 uint64_t SrcDisp = MI->getOperand(3).getImm(); 5499 uint64_t Length = MI->getOperand(4).getImm(); 5500 5501 // When generating more than one CLC, all but the last will need to 5502 // branch to the end when a difference is found. 5503 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5504 splitBlockAfter(MI, MBB) : nullptr); 5505 5506 // Check for the loop form, in which operand 5 is the trip count. 5507 if (MI->getNumExplicitOperands() > 5) { 5508 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5509 5510 uint64_t StartCountReg = MI->getOperand(5).getReg(); 5511 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5512 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5513 forceReg(MI, DestBase, TII)); 5514 5515 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5516 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5517 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5518 MRI.createVirtualRegister(RC)); 5519 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5520 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5521 MRI.createVirtualRegister(RC)); 5522 5523 RC = &SystemZ::GR64BitRegClass; 5524 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5525 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5526 5527 MachineBasicBlock *StartMBB = MBB; 5528 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5529 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5530 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5531 5532 // StartMBB: 5533 // # fall through to LoopMMB 5534 MBB->addSuccessor(LoopMBB); 5535 5536 // LoopMBB: 5537 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5538 // [ %NextDestReg, NextMBB ] 5539 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5540 // [ %NextSrcReg, NextMBB ] 5541 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5542 // [ %NextCountReg, NextMBB ] 5543 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5544 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5545 // ( JLH EndMBB ) 5546 // 5547 // The prefetch is used only for MVC. The JLH is used only for CLC. 5548 MBB = LoopMBB; 5549 5550 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5551 .addReg(StartDestReg).addMBB(StartMBB) 5552 .addReg(NextDestReg).addMBB(NextMBB); 5553 if (!HaveSingleBase) 5554 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5555 .addReg(StartSrcReg).addMBB(StartMBB) 5556 .addReg(NextSrcReg).addMBB(NextMBB); 5557 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5558 .addReg(StartCountReg).addMBB(StartMBB) 5559 .addReg(NextCountReg).addMBB(NextMBB); 5560 if (Opcode == SystemZ::MVC) 5561 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5562 .addImm(SystemZ::PFD_WRITE) 5563 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5564 BuildMI(MBB, DL, TII->get(Opcode)) 5565 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5566 .addReg(ThisSrcReg).addImm(SrcDisp); 5567 if (EndMBB) { 5568 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5569 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5570 .addMBB(EndMBB); 5571 MBB->addSuccessor(EndMBB); 5572 MBB->addSuccessor(NextMBB); 5573 } 5574 5575 // NextMBB: 5576 // %NextDestReg = LA 256(%ThisDestReg) 5577 // %NextSrcReg = LA 256(%ThisSrcReg) 5578 // %NextCountReg = AGHI %ThisCountReg, -1 5579 // CGHI %NextCountReg, 0 5580 // JLH LoopMBB 5581 // # fall through to DoneMMB 5582 // 5583 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5584 MBB = NextMBB; 5585 5586 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5587 .addReg(ThisDestReg).addImm(256).addReg(0); 5588 if (!HaveSingleBase) 5589 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5590 .addReg(ThisSrcReg).addImm(256).addReg(0); 5591 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5592 .addReg(ThisCountReg).addImm(-1); 5593 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5594 .addReg(NextCountReg).addImm(0); 5595 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5596 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5597 .addMBB(LoopMBB); 5598 MBB->addSuccessor(LoopMBB); 5599 MBB->addSuccessor(DoneMBB); 5600 5601 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5602 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5603 Length &= 255; 5604 MBB = DoneMBB; 5605 } 5606 // Handle any remaining bytes with straight-line code. 5607 while (Length > 0) { 5608 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5609 // The previous iteration might have created out-of-range displacements. 5610 // Apply them using LAY if so. 5611 if (!isUInt<12>(DestDisp)) { 5612 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5613 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5614 .addOperand(DestBase).addImm(DestDisp).addReg(0); 5615 DestBase = MachineOperand::CreateReg(Reg, false); 5616 DestDisp = 0; 5617 } 5618 if (!isUInt<12>(SrcDisp)) { 5619 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5620 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5621 .addOperand(SrcBase).addImm(SrcDisp).addReg(0); 5622 SrcBase = MachineOperand::CreateReg(Reg, false); 5623 SrcDisp = 0; 5624 } 5625 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5626 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 5627 .addOperand(SrcBase).addImm(SrcDisp); 5628 DestDisp += ThisLength; 5629 SrcDisp += ThisLength; 5630 Length -= ThisLength; 5631 // If there's another CLC to go, branch to the end if a difference 5632 // was found. 5633 if (EndMBB && Length > 0) { 5634 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5635 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5636 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5637 .addMBB(EndMBB); 5638 MBB->addSuccessor(EndMBB); 5639 MBB->addSuccessor(NextMBB); 5640 MBB = NextMBB; 5641 } 5642 } 5643 if (EndMBB) { 5644 MBB->addSuccessor(EndMBB); 5645 MBB = EndMBB; 5646 MBB->addLiveIn(SystemZ::CC); 5647 } 5648 5649 MI->eraseFromParent(); 5650 return MBB; 5651 } 5652 5653 // Decompose string pseudo-instruction MI into a loop that continually performs 5654 // Opcode until CC != 3. 5655 MachineBasicBlock * 5656 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, 5657 MachineBasicBlock *MBB, 5658 unsigned Opcode) const { 5659 MachineFunction &MF = *MBB->getParent(); 5660 const SystemZInstrInfo *TII = 5661 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5662 MachineRegisterInfo &MRI = MF.getRegInfo(); 5663 DebugLoc DL = MI->getDebugLoc(); 5664 5665 uint64_t End1Reg = MI->getOperand(0).getReg(); 5666 uint64_t Start1Reg = MI->getOperand(1).getReg(); 5667 uint64_t Start2Reg = MI->getOperand(2).getReg(); 5668 uint64_t CharReg = MI->getOperand(3).getReg(); 5669 5670 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5671 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5672 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5673 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5674 5675 MachineBasicBlock *StartMBB = MBB; 5676 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5677 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5678 5679 // StartMBB: 5680 // # fall through to LoopMMB 5681 MBB->addSuccessor(LoopMBB); 5682 5683 // LoopMBB: 5684 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5685 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5686 // R0L = %CharReg 5687 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5688 // JO LoopMBB 5689 // # fall through to DoneMMB 5690 // 5691 // The load of R0L can be hoisted by post-RA LICM. 5692 MBB = LoopMBB; 5693 5694 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5695 .addReg(Start1Reg).addMBB(StartMBB) 5696 .addReg(End1Reg).addMBB(LoopMBB); 5697 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 5698 .addReg(Start2Reg).addMBB(StartMBB) 5699 .addReg(End2Reg).addMBB(LoopMBB); 5700 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 5701 BuildMI(MBB, DL, TII->get(Opcode)) 5702 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 5703 .addReg(This1Reg).addReg(This2Reg); 5704 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5705 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 5706 MBB->addSuccessor(LoopMBB); 5707 MBB->addSuccessor(DoneMBB); 5708 5709 DoneMBB->addLiveIn(SystemZ::CC); 5710 5711 MI->eraseFromParent(); 5712 return DoneMBB; 5713 } 5714 5715 // Update TBEGIN instruction with final opcode and register clobbers. 5716 MachineBasicBlock * 5717 SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI, 5718 MachineBasicBlock *MBB, 5719 unsigned Opcode, 5720 bool NoFloat) const { 5721 MachineFunction &MF = *MBB->getParent(); 5722 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 5723 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 5724 5725 // Update opcode. 5726 MI->setDesc(TII->get(Opcode)); 5727 5728 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 5729 // Make sure to add the corresponding GRSM bits if they are missing. 5730 uint64_t Control = MI->getOperand(2).getImm(); 5731 static const unsigned GPRControlBit[16] = { 5732 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 5733 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 5734 }; 5735 Control |= GPRControlBit[15]; 5736 if (TFI->hasFP(MF)) 5737 Control |= GPRControlBit[11]; 5738 MI->getOperand(2).setImm(Control); 5739 5740 // Add GPR clobbers. 5741 for (int I = 0; I < 16; I++) { 5742 if ((Control & GPRControlBit[I]) == 0) { 5743 unsigned Reg = SystemZMC::GR64Regs[I]; 5744 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5745 } 5746 } 5747 5748 // Add FPR/VR clobbers. 5749 if (!NoFloat && (Control & 4) != 0) { 5750 if (Subtarget.hasVector()) { 5751 for (int I = 0; I < 32; I++) { 5752 unsigned Reg = SystemZMC::VR128Regs[I]; 5753 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5754 } 5755 } else { 5756 for (int I = 0; I < 16; I++) { 5757 unsigned Reg = SystemZMC::FP64Regs[I]; 5758 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5759 } 5760 } 5761 } 5762 5763 return MBB; 5764 } 5765 5766 MachineBasicBlock * 5767 SystemZTargetLowering::emitLoadAndTestCmp0(MachineInstr *MI, 5768 MachineBasicBlock *MBB, 5769 unsigned Opcode) const { 5770 MachineFunction &MF = *MBB->getParent(); 5771 MachineRegisterInfo *MRI = &MF.getRegInfo(); 5772 const SystemZInstrInfo *TII = 5773 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5774 DebugLoc DL = MI->getDebugLoc(); 5775 5776 unsigned SrcReg = MI->getOperand(0).getReg(); 5777 5778 // Create new virtual register of the same class as source. 5779 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 5780 unsigned DstReg = MRI->createVirtualRegister(RC); 5781 5782 // Replace pseudo with a normal load-and-test that models the def as 5783 // well. 5784 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 5785 .addReg(SrcReg); 5786 MI->eraseFromParent(); 5787 5788 return MBB; 5789 } 5790 5791 MachineBasicBlock *SystemZTargetLowering:: 5792 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { 5793 switch (MI->getOpcode()) { 5794 case SystemZ::Select32Mux: 5795 case SystemZ::Select32: 5796 case SystemZ::SelectF32: 5797 case SystemZ::Select64: 5798 case SystemZ::SelectF64: 5799 case SystemZ::SelectF128: 5800 return emitSelect(MI, MBB); 5801 5802 case SystemZ::CondStore8Mux: 5803 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 5804 case SystemZ::CondStore8MuxInv: 5805 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 5806 case SystemZ::CondStore16Mux: 5807 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 5808 case SystemZ::CondStore16MuxInv: 5809 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 5810 case SystemZ::CondStore8: 5811 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 5812 case SystemZ::CondStore8Inv: 5813 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 5814 case SystemZ::CondStore16: 5815 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 5816 case SystemZ::CondStore16Inv: 5817 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 5818 case SystemZ::CondStore32: 5819 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 5820 case SystemZ::CondStore32Inv: 5821 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 5822 case SystemZ::CondStore64: 5823 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 5824 case SystemZ::CondStore64Inv: 5825 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 5826 case SystemZ::CondStoreF32: 5827 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 5828 case SystemZ::CondStoreF32Inv: 5829 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 5830 case SystemZ::CondStoreF64: 5831 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 5832 case SystemZ::CondStoreF64Inv: 5833 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 5834 5835 case SystemZ::AEXT128_64: 5836 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 5837 case SystemZ::ZEXT128_32: 5838 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 5839 case SystemZ::ZEXT128_64: 5840 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 5841 5842 case SystemZ::ATOMIC_SWAPW: 5843 return emitAtomicLoadBinary(MI, MBB, 0, 0); 5844 case SystemZ::ATOMIC_SWAP_32: 5845 return emitAtomicLoadBinary(MI, MBB, 0, 32); 5846 case SystemZ::ATOMIC_SWAP_64: 5847 return emitAtomicLoadBinary(MI, MBB, 0, 64); 5848 5849 case SystemZ::ATOMIC_LOADW_AR: 5850 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 5851 case SystemZ::ATOMIC_LOADW_AFI: 5852 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 5853 case SystemZ::ATOMIC_LOAD_AR: 5854 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 5855 case SystemZ::ATOMIC_LOAD_AHI: 5856 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 5857 case SystemZ::ATOMIC_LOAD_AFI: 5858 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 5859 case SystemZ::ATOMIC_LOAD_AGR: 5860 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 5861 case SystemZ::ATOMIC_LOAD_AGHI: 5862 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 5863 case SystemZ::ATOMIC_LOAD_AGFI: 5864 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 5865 5866 case SystemZ::ATOMIC_LOADW_SR: 5867 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 5868 case SystemZ::ATOMIC_LOAD_SR: 5869 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 5870 case SystemZ::ATOMIC_LOAD_SGR: 5871 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 5872 5873 case SystemZ::ATOMIC_LOADW_NR: 5874 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 5875 case SystemZ::ATOMIC_LOADW_NILH: 5876 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 5877 case SystemZ::ATOMIC_LOAD_NR: 5878 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 5879 case SystemZ::ATOMIC_LOAD_NILL: 5880 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 5881 case SystemZ::ATOMIC_LOAD_NILH: 5882 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 5883 case SystemZ::ATOMIC_LOAD_NILF: 5884 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 5885 case SystemZ::ATOMIC_LOAD_NGR: 5886 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 5887 case SystemZ::ATOMIC_LOAD_NILL64: 5888 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 5889 case SystemZ::ATOMIC_LOAD_NILH64: 5890 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 5891 case SystemZ::ATOMIC_LOAD_NIHL64: 5892 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 5893 case SystemZ::ATOMIC_LOAD_NIHH64: 5894 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 5895 case SystemZ::ATOMIC_LOAD_NILF64: 5896 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 5897 case SystemZ::ATOMIC_LOAD_NIHF64: 5898 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 5899 5900 case SystemZ::ATOMIC_LOADW_OR: 5901 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 5902 case SystemZ::ATOMIC_LOADW_OILH: 5903 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 5904 case SystemZ::ATOMIC_LOAD_OR: 5905 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 5906 case SystemZ::ATOMIC_LOAD_OILL: 5907 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 5908 case SystemZ::ATOMIC_LOAD_OILH: 5909 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 5910 case SystemZ::ATOMIC_LOAD_OILF: 5911 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 5912 case SystemZ::ATOMIC_LOAD_OGR: 5913 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 5914 case SystemZ::ATOMIC_LOAD_OILL64: 5915 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 5916 case SystemZ::ATOMIC_LOAD_OILH64: 5917 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 5918 case SystemZ::ATOMIC_LOAD_OIHL64: 5919 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 5920 case SystemZ::ATOMIC_LOAD_OIHH64: 5921 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 5922 case SystemZ::ATOMIC_LOAD_OILF64: 5923 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 5924 case SystemZ::ATOMIC_LOAD_OIHF64: 5925 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 5926 5927 case SystemZ::ATOMIC_LOADW_XR: 5928 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 5929 case SystemZ::ATOMIC_LOADW_XILF: 5930 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 5931 case SystemZ::ATOMIC_LOAD_XR: 5932 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 5933 case SystemZ::ATOMIC_LOAD_XILF: 5934 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 5935 case SystemZ::ATOMIC_LOAD_XGR: 5936 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 5937 case SystemZ::ATOMIC_LOAD_XILF64: 5938 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 5939 case SystemZ::ATOMIC_LOAD_XIHF64: 5940 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 5941 5942 case SystemZ::ATOMIC_LOADW_NRi: 5943 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 5944 case SystemZ::ATOMIC_LOADW_NILHi: 5945 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 5946 case SystemZ::ATOMIC_LOAD_NRi: 5947 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 5948 case SystemZ::ATOMIC_LOAD_NILLi: 5949 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 5950 case SystemZ::ATOMIC_LOAD_NILHi: 5951 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 5952 case SystemZ::ATOMIC_LOAD_NILFi: 5953 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 5954 case SystemZ::ATOMIC_LOAD_NGRi: 5955 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 5956 case SystemZ::ATOMIC_LOAD_NILL64i: 5957 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 5958 case SystemZ::ATOMIC_LOAD_NILH64i: 5959 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 5960 case SystemZ::ATOMIC_LOAD_NIHL64i: 5961 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 5962 case SystemZ::ATOMIC_LOAD_NIHH64i: 5963 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 5964 case SystemZ::ATOMIC_LOAD_NILF64i: 5965 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 5966 case SystemZ::ATOMIC_LOAD_NIHF64i: 5967 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 5968 5969 case SystemZ::ATOMIC_LOADW_MIN: 5970 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5971 SystemZ::CCMASK_CMP_LE, 0); 5972 case SystemZ::ATOMIC_LOAD_MIN_32: 5973 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5974 SystemZ::CCMASK_CMP_LE, 32); 5975 case SystemZ::ATOMIC_LOAD_MIN_64: 5976 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5977 SystemZ::CCMASK_CMP_LE, 64); 5978 5979 case SystemZ::ATOMIC_LOADW_MAX: 5980 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5981 SystemZ::CCMASK_CMP_GE, 0); 5982 case SystemZ::ATOMIC_LOAD_MAX_32: 5983 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5984 SystemZ::CCMASK_CMP_GE, 32); 5985 case SystemZ::ATOMIC_LOAD_MAX_64: 5986 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5987 SystemZ::CCMASK_CMP_GE, 64); 5988 5989 case SystemZ::ATOMIC_LOADW_UMIN: 5990 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5991 SystemZ::CCMASK_CMP_LE, 0); 5992 case SystemZ::ATOMIC_LOAD_UMIN_32: 5993 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5994 SystemZ::CCMASK_CMP_LE, 32); 5995 case SystemZ::ATOMIC_LOAD_UMIN_64: 5996 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5997 SystemZ::CCMASK_CMP_LE, 64); 5998 5999 case SystemZ::ATOMIC_LOADW_UMAX: 6000 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6001 SystemZ::CCMASK_CMP_GE, 0); 6002 case SystemZ::ATOMIC_LOAD_UMAX_32: 6003 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 6004 SystemZ::CCMASK_CMP_GE, 32); 6005 case SystemZ::ATOMIC_LOAD_UMAX_64: 6006 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 6007 SystemZ::CCMASK_CMP_GE, 64); 6008 6009 case SystemZ::ATOMIC_CMP_SWAPW: 6010 return emitAtomicCmpSwapW(MI, MBB); 6011 case SystemZ::MVCSequence: 6012 case SystemZ::MVCLoop: 6013 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 6014 case SystemZ::NCSequence: 6015 case SystemZ::NCLoop: 6016 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 6017 case SystemZ::OCSequence: 6018 case SystemZ::OCLoop: 6019 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 6020 case SystemZ::XCSequence: 6021 case SystemZ::XCLoop: 6022 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 6023 case SystemZ::CLCSequence: 6024 case SystemZ::CLCLoop: 6025 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 6026 case SystemZ::CLSTLoop: 6027 return emitStringWrapper(MI, MBB, SystemZ::CLST); 6028 case SystemZ::MVSTLoop: 6029 return emitStringWrapper(MI, MBB, SystemZ::MVST); 6030 case SystemZ::SRSTLoop: 6031 return emitStringWrapper(MI, MBB, SystemZ::SRST); 6032 case SystemZ::TBEGIN: 6033 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 6034 case SystemZ::TBEGIN_nofloat: 6035 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 6036 case SystemZ::TBEGINC: 6037 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 6038 case SystemZ::LTEBRCompare_VecPseudo: 6039 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 6040 case SystemZ::LTDBRCompare_VecPseudo: 6041 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 6042 case SystemZ::LTXBRCompare_VecPseudo: 6043 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 6044 6045 default: 6046 llvm_unreachable("Unexpected instr type to insert"); 6047 } 6048 } 6049