1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
84 
85   auto *Regs = STI.getSpecialRegisters();
86 
87   // Set up the register classes.
88   if (Subtarget.hasHighWord())
89     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
90   else
91     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
92   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
93   if (!useSoftFloat()) {
94     if (Subtarget.hasVector()) {
95       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
96       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
97     } else {
98       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
99       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
100     }
101     if (Subtarget.hasVectorEnhancements1())
102       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
103     else
104       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
105 
106     if (Subtarget.hasVector()) {
107       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
111       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
112       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
113     }
114   }
115 
116   // Compute derived properties from the register classes
117   computeRegisterProperties(Subtarget.getRegisterInfo());
118 
119   // Set up special registers.
120   setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
121 
122   // TODO: It may be better to default to latency-oriented scheduling, however
123   // LLVM's current latency-oriented scheduler can't handle physreg definitions
124   // such as SystemZ has with CC, so set this to the register-pressure
125   // scheduler, because it can.
126   setSchedulingPreference(Sched::RegPressure);
127 
128   setBooleanContents(ZeroOrOneBooleanContent);
129   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
130 
131   // Instructions are strings of 2-byte aligned 2-byte values.
132   setMinFunctionAlignment(Align(2));
133   // For performance reasons we prefer 16-byte alignment.
134   setPrefFunctionAlignment(Align(16));
135 
136   // Handle operations that are handled in a similar way for all types.
137   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
138        I <= MVT::LAST_FP_VALUETYPE;
139        ++I) {
140     MVT VT = MVT::SimpleValueType(I);
141     if (isTypeLegal(VT)) {
142       // Lower SET_CC into an IPM-based sequence.
143       setOperationAction(ISD::SETCC, VT, Custom);
144       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
145       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
146 
147       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
148       setOperationAction(ISD::SELECT, VT, Expand);
149 
150       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
151       setOperationAction(ISD::SELECT_CC, VT, Custom);
152       setOperationAction(ISD::BR_CC,     VT, Custom);
153     }
154   }
155 
156   // Expand jump table branches as address arithmetic followed by an
157   // indirect jump.
158   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
159 
160   // Expand BRCOND into a BR_CC (see above).
161   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
162 
163   // Handle integer types.
164   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
165        I <= MVT::LAST_INTEGER_VALUETYPE;
166        ++I) {
167     MVT VT = MVT::SimpleValueType(I);
168     if (isTypeLegal(VT)) {
169       setOperationAction(ISD::ABS, VT, Legal);
170 
171       // Expand individual DIV and REMs into DIVREMs.
172       setOperationAction(ISD::SDIV, VT, Expand);
173       setOperationAction(ISD::UDIV, VT, Expand);
174       setOperationAction(ISD::SREM, VT, Expand);
175       setOperationAction(ISD::UREM, VT, Expand);
176       setOperationAction(ISD::SDIVREM, VT, Custom);
177       setOperationAction(ISD::UDIVREM, VT, Custom);
178 
179       // Support addition/subtraction with overflow.
180       setOperationAction(ISD::SADDO, VT, Custom);
181       setOperationAction(ISD::SSUBO, VT, Custom);
182 
183       // Support addition/subtraction with carry.
184       setOperationAction(ISD::UADDO, VT, Custom);
185       setOperationAction(ISD::USUBO, VT, Custom);
186 
187       // Support carry in as value rather than glue.
188       setOperationAction(ISD::ADDCARRY, VT, Custom);
189       setOperationAction(ISD::SUBCARRY, VT, Custom);
190 
191       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
192       // stores, putting a serialization instruction after the stores.
193       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
194       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
195 
196       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
197       // available, or if the operand is constant.
198       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
199 
200       // Use POPCNT on z196 and above.
201       if (Subtarget.hasPopulationCount())
202         setOperationAction(ISD::CTPOP, VT, Custom);
203       else
204         setOperationAction(ISD::CTPOP, VT, Expand);
205 
206       // No special instructions for these.
207       setOperationAction(ISD::CTTZ,            VT, Expand);
208       setOperationAction(ISD::ROTR,            VT, Expand);
209 
210       // Use *MUL_LOHI where possible instead of MULH*.
211       setOperationAction(ISD::MULHS, VT, Expand);
212       setOperationAction(ISD::MULHU, VT, Expand);
213       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
214       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
215 
216       // Only z196 and above have native support for conversions to unsigned.
217       // On z10, promoting to i64 doesn't generate an inexact condition for
218       // values that are outside the i32 range but in the i64 range, so use
219       // the default expansion.
220       if (!Subtarget.hasFPExtension())
221         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
222 
223       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
224       // default to Expand, so need to be modified to Legal where appropriate.
225       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
226       if (Subtarget.hasFPExtension())
227         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
228 
229       // And similarly for STRICT_[SU]INT_TO_FP.
230       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
231       if (Subtarget.hasFPExtension())
232         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
233     }
234   }
235 
236   // Type legalization will convert 8- and 16-bit atomic operations into
237   // forms that operate on i32s (but still keeping the original memory VT).
238   // Lower them into full i32 operations.
239   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
248   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
249   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
250 
251   // Even though i128 is not a legal type, we still need to custom lower
252   // the atomic operations in order to exploit SystemZ instructions.
253   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
254   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
255 
256   // We can use the CC result of compare-and-swap to implement
257   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
259   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
260   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
261 
262   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
263 
264   // Traps are legal, as we will convert them to "j .+2".
265   setOperationAction(ISD::TRAP, MVT::Other, Legal);
266 
267   // z10 has instructions for signed but not unsigned FP conversion.
268   // Handle unsigned 32-bit types as signed 64-bit types.
269   if (!Subtarget.hasFPExtension()) {
270     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
272     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
273     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
274   }
275 
276   // We have native support for a 64-bit CTLZ, via FLOGR.
277   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
278   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
279   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
280 
281   // On z15 we have native support for a 64-bit CTPOP.
282   if (Subtarget.hasMiscellaneousExtensions3()) {
283     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
284     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
285   }
286 
287   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
288   setOperationAction(ISD::OR, MVT::i64, Custom);
289 
290   // Expand 128 bit shifts without using a libcall.
291   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
292   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
293   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
294   setLibcallName(RTLIB::SRL_I128, nullptr);
295   setLibcallName(RTLIB::SHL_I128, nullptr);
296   setLibcallName(RTLIB::SRA_I128, nullptr);
297 
298   // Handle bitcast from fp128 to i128.
299   setOperationAction(ISD::BITCAST, MVT::i128, Custom);
300 
301   // We have native instructions for i8, i16 and i32 extensions, but not i1.
302   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
303   for (MVT VT : MVT::integer_valuetypes()) {
304     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
305     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
306     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
307   }
308 
309   // Handle the various types of symbolic address.
310   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
311   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
312   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
313   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
314   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
315 
316   // We need to handle dynamic allocations specially because of the
317   // 160-byte area at the bottom of the stack.
318   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
319   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
320 
321   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
322   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
323 
324   // Handle prefetches with PFD or PFDRL.
325   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
326 
327   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
328     // Assume by default that all vector operations need to be expanded.
329     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
330       if (getOperationAction(Opcode, VT) == Legal)
331         setOperationAction(Opcode, VT, Expand);
332 
333     // Likewise all truncating stores and extending loads.
334     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
335       setTruncStoreAction(VT, InnerVT, Expand);
336       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
337       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
338       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
339     }
340 
341     if (isTypeLegal(VT)) {
342       // These operations are legal for anything that can be stored in a
343       // vector register, even if there is no native support for the format
344       // as such.  In particular, we can do these for v4f32 even though there
345       // are no specific instructions for that format.
346       setOperationAction(ISD::LOAD, VT, Legal);
347       setOperationAction(ISD::STORE, VT, Legal);
348       setOperationAction(ISD::VSELECT, VT, Legal);
349       setOperationAction(ISD::BITCAST, VT, Legal);
350       setOperationAction(ISD::UNDEF, VT, Legal);
351 
352       // Likewise, except that we need to replace the nodes with something
353       // more specific.
354       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
355       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
356     }
357   }
358 
359   // Handle integer vector types.
360   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
361     if (isTypeLegal(VT)) {
362       // These operations have direct equivalents.
363       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
364       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
365       setOperationAction(ISD::ADD, VT, Legal);
366       setOperationAction(ISD::SUB, VT, Legal);
367       if (VT != MVT::v2i64)
368         setOperationAction(ISD::MUL, VT, Legal);
369       setOperationAction(ISD::ABS, VT, Legal);
370       setOperationAction(ISD::AND, VT, Legal);
371       setOperationAction(ISD::OR, VT, Legal);
372       setOperationAction(ISD::XOR, VT, Legal);
373       if (Subtarget.hasVectorEnhancements1())
374         setOperationAction(ISD::CTPOP, VT, Legal);
375       else
376         setOperationAction(ISD::CTPOP, VT, Custom);
377       setOperationAction(ISD::CTTZ, VT, Legal);
378       setOperationAction(ISD::CTLZ, VT, Legal);
379 
380       // Convert a GPR scalar to a vector by inserting it into element 0.
381       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
382 
383       // Use a series of unpacks for extensions.
384       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
385       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
386 
387       // Detect shifts by a scalar amount and convert them into
388       // V*_BY_SCALAR.
389       setOperationAction(ISD::SHL, VT, Custom);
390       setOperationAction(ISD::SRA, VT, Custom);
391       setOperationAction(ISD::SRL, VT, Custom);
392 
393       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
394       // converted into ROTL.
395       setOperationAction(ISD::ROTL, VT, Expand);
396       setOperationAction(ISD::ROTR, VT, Expand);
397 
398       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
399       // and inverting the result as necessary.
400       setOperationAction(ISD::SETCC, VT, Custom);
401       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
402       if (Subtarget.hasVectorEnhancements1())
403         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
404     }
405   }
406 
407   if (Subtarget.hasVector()) {
408     // There should be no need to check for float types other than v2f64
409     // since <2 x f32> isn't a legal type.
410     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
418 
419     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
420     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
421     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
422     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
423     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
424     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
425     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
426     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
427   }
428 
429   if (Subtarget.hasVectorEnhancements2()) {
430     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
438 
439     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
440     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
441     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
442     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
443     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
444     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
445     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
446     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
447   }
448 
449   // Handle floating-point types.
450   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
451        I <= MVT::LAST_FP_VALUETYPE;
452        ++I) {
453     MVT VT = MVT::SimpleValueType(I);
454     if (isTypeLegal(VT)) {
455       // We can use FI for FRINT.
456       setOperationAction(ISD::FRINT, VT, Legal);
457 
458       // We can use the extended form of FI for other rounding operations.
459       if (Subtarget.hasFPExtension()) {
460         setOperationAction(ISD::FNEARBYINT, VT, Legal);
461         setOperationAction(ISD::FFLOOR, VT, Legal);
462         setOperationAction(ISD::FCEIL, VT, Legal);
463         setOperationAction(ISD::FTRUNC, VT, Legal);
464         setOperationAction(ISD::FROUND, VT, Legal);
465       }
466 
467       // No special instructions for these.
468       setOperationAction(ISD::FSIN, VT, Expand);
469       setOperationAction(ISD::FCOS, VT, Expand);
470       setOperationAction(ISD::FSINCOS, VT, Expand);
471       setOperationAction(ISD::FREM, VT, Expand);
472       setOperationAction(ISD::FPOW, VT, Expand);
473 
474       // Handle constrained floating-point operations.
475       setOperationAction(ISD::STRICT_FADD, VT, Legal);
476       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
477       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
478       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
479       setOperationAction(ISD::STRICT_FMA, VT, Legal);
480       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
481       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
482       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
483       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
484       if (Subtarget.hasFPExtension()) {
485         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
486         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
487         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
488         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
489         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
490       }
491     }
492   }
493 
494   // Handle floating-point vector types.
495   if (Subtarget.hasVector()) {
496     // Scalar-to-vector conversion is just a subreg.
497     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
498     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
499 
500     // Some insertions and extractions can be done directly but others
501     // need to go via integers.
502     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
503     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
504     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
505     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
506 
507     // These operations have direct equivalents.
508     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
509     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
510     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
511     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
512     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
513     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
514     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
515     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
516     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
517     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
518     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
519     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
520     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
521     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
522 
523     // Handle constrained floating-point operations.
524     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
525     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
526     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
527     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
530     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
531     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
532     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
533     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
534     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
535     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
536   }
537 
538   // The vector enhancements facility 1 has instructions for these.
539   if (Subtarget.hasVectorEnhancements1()) {
540     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
541     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
542     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
543     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
544     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
545     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
546     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
547     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
548     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
549     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
550     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
551     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
552     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
553     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
554 
555     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
556     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
557     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
558     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
559 
560     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
561     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
562     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
563     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
564 
565     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
566     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
567     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
568     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
569 
570     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
571     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
572     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
573     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
574 
575     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
576     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
577     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
578     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
579 
580     // Handle constrained floating-point operations.
581     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
582     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
583     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
584     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
587     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
588     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
589     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
590     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
591     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
592     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
593     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
594                      MVT::v4f32, MVT::v2f64 }) {
595       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
596       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
597       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
598       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
599     }
600   }
601 
602   // We only have fused f128 multiply-addition on vector registers.
603   if (!Subtarget.hasVectorEnhancements1()) {
604     setOperationAction(ISD::FMA, MVT::f128, Expand);
605     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
606   }
607 
608   // We don't have a copysign instruction on vector registers.
609   if (Subtarget.hasVectorEnhancements1())
610     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
611 
612   // Needed so that we don't try to implement f128 constant loads using
613   // a load-and-extend of a f80 constant (in cases where the constant
614   // would fit in an f80).
615   for (MVT VT : MVT::fp_valuetypes())
616     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
617 
618   // We don't have extending load instruction on vector registers.
619   if (Subtarget.hasVectorEnhancements1()) {
620     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
621     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
622   }
623 
624   // Floating-point truncation and stores need to be done separately.
625   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
626   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
627   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
628 
629   // We have 64-bit FPR<->GPR moves, but need special handling for
630   // 32-bit forms.
631   if (!Subtarget.hasVector()) {
632     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
633     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
634   }
635 
636   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
637   // structure, but VAEND is a no-op.
638   setOperationAction(ISD::VASTART, MVT::Other, Custom);
639   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
640   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
641 
642   // Codes for which we want to perform some z-specific combinations.
643   setTargetDAGCombine({ISD::ZERO_EXTEND,
644                        ISD::SIGN_EXTEND,
645                        ISD::SIGN_EXTEND_INREG,
646                        ISD::LOAD,
647                        ISD::STORE,
648                        ISD::VECTOR_SHUFFLE,
649                        ISD::EXTRACT_VECTOR_ELT,
650                        ISD::FP_ROUND,
651                        ISD::STRICT_FP_ROUND,
652                        ISD::FP_EXTEND,
653                        ISD::SINT_TO_FP,
654                        ISD::UINT_TO_FP,
655                        ISD::STRICT_FP_EXTEND,
656                        ISD::BSWAP,
657                        ISD::SDIV,
658                        ISD::UDIV,
659                        ISD::SREM,
660                        ISD::UREM,
661                        ISD::INTRINSIC_VOID,
662                        ISD::INTRINSIC_W_CHAIN});
663 
664   // Handle intrinsics.
665   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
666   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
667 
668   // We want to use MVC in preference to even a single load/store pair.
669   MaxStoresPerMemcpy = 0;
670   MaxStoresPerMemcpyOptSize = 0;
671 
672   // The main memset sequence is a byte store followed by an MVC.
673   // Two STC or MV..I stores win over that, but the kind of fused stores
674   // generated by target-independent code don't when the byte value is
675   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
676   // than "STC;MVC".  Handle the choice in target-specific code instead.
677   MaxStoresPerMemset = 0;
678   MaxStoresPerMemsetOptSize = 0;
679 
680   // Default to having -disable-strictnode-mutation on
681   IsStrictFPEnabled = true;
682 }
683 
684 bool SystemZTargetLowering::useSoftFloat() const {
685   return Subtarget.hasSoftFloat();
686 }
687 
688 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
689                                               LLVMContext &, EVT VT) const {
690   if (!VT.isVector())
691     return MVT::i32;
692   return VT.changeVectorElementTypeToInteger();
693 }
694 
695 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
696     const MachineFunction &MF, EVT VT) const {
697   VT = VT.getScalarType();
698 
699   if (!VT.isSimple())
700     return false;
701 
702   switch (VT.getSimpleVT().SimpleTy) {
703   case MVT::f32:
704   case MVT::f64:
705     return true;
706   case MVT::f128:
707     return Subtarget.hasVectorEnhancements1();
708   default:
709     break;
710   }
711 
712   return false;
713 }
714 
715 // Return true if the constant can be generated with a vector instruction,
716 // such as VGM, VGMB or VREPI.
717 bool SystemZVectorConstantInfo::isVectorConstantLegal(
718     const SystemZSubtarget &Subtarget) {
719   const SystemZInstrInfo *TII =
720       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
721   if (!Subtarget.hasVector() ||
722       (isFP128 && !Subtarget.hasVectorEnhancements1()))
723     return false;
724 
725   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
726   // preferred way of creating all-zero and all-one vectors so give it
727   // priority over other methods below.
728   unsigned Mask = 0;
729   unsigned I = 0;
730   for (; I < SystemZ::VectorBytes; ++I) {
731     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
732     if (Byte == 0xff)
733       Mask |= 1ULL << I;
734     else if (Byte != 0)
735       break;
736   }
737   if (I == SystemZ::VectorBytes) {
738     Opcode = SystemZISD::BYTE_MASK;
739     OpVals.push_back(Mask);
740     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
741     return true;
742   }
743 
744   if (SplatBitSize > 64)
745     return false;
746 
747   auto tryValue = [&](uint64_t Value) -> bool {
748     // Try VECTOR REPLICATE IMMEDIATE
749     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
750     if (isInt<16>(SignedValue)) {
751       OpVals.push_back(((unsigned) SignedValue));
752       Opcode = SystemZISD::REPLICATE;
753       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
754                                SystemZ::VectorBits / SplatBitSize);
755       return true;
756     }
757     // Try VECTOR GENERATE MASK
758     unsigned Start, End;
759     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
760       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
761       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
762       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
763       OpVals.push_back(Start - (64 - SplatBitSize));
764       OpVals.push_back(End - (64 - SplatBitSize));
765       Opcode = SystemZISD::ROTATE_MASK;
766       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
767                                SystemZ::VectorBits / SplatBitSize);
768       return true;
769     }
770     return false;
771   };
772 
773   // First try assuming that any undefined bits above the highest set bit
774   // and below the lowest set bit are 1s.  This increases the likelihood of
775   // being able to use a sign-extended element value in VECTOR REPLICATE
776   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
777   uint64_t SplatBitsZ = SplatBits.getZExtValue();
778   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
779   uint64_t Lower =
780       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
781   uint64_t Upper =
782       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
783   if (tryValue(SplatBitsZ | Upper | Lower))
784     return true;
785 
786   // Now try assuming that any undefined bits between the first and
787   // last defined set bits are set.  This increases the chances of
788   // using a non-wraparound mask.
789   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
790   return tryValue(SplatBitsZ | Middle);
791 }
792 
793 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) {
794   IntBits = FPImm.bitcastToAPInt().zextOrSelf(128);
795   isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad());
796   SplatBits = FPImm.bitcastToAPInt();
797   unsigned Width = SplatBits.getBitWidth();
798   IntBits <<= (SystemZ::VectorBits - Width);
799 
800   // Find the smallest splat.
801   while (Width > 8) {
802     unsigned HalfSize = Width / 2;
803     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
804     APInt LowValue = SplatBits.trunc(HalfSize);
805 
806     // If the two halves do not match, stop here.
807     if (HighValue != LowValue || 8 > HalfSize)
808       break;
809 
810     SplatBits = HighValue;
811     Width = HalfSize;
812   }
813   SplatUndef = 0;
814   SplatBitSize = Width;
815 }
816 
817 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
818   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
819   bool HasAnyUndefs;
820 
821   // Get IntBits by finding the 128 bit splat.
822   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
823                        true);
824 
825   // Get SplatBits by finding the 8 bit or greater splat.
826   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
827                        true);
828 }
829 
830 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
831                                          bool ForCodeSize) const {
832   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
833   if (Imm.isZero() || Imm.isNegZero())
834     return true;
835 
836   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
837 }
838 
839 /// Returns true if stack probing through inline assembly is requested.
840 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
841   // If the function specifically requests inline stack probes, emit them.
842   if (MF.getFunction().hasFnAttribute("probe-stack"))
843     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
844            "inline-asm";
845   return false;
846 }
847 
848 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
849   // We can use CGFI or CLGFI.
850   return isInt<32>(Imm) || isUInt<32>(Imm);
851 }
852 
853 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
854   // We can use ALGFI or SLGFI.
855   return isUInt<32>(Imm) || isUInt<32>(-Imm);
856 }
857 
858 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
859     EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const {
860   // Unaligned accesses should never be slower than the expanded version.
861   // We check specifically for aligned accesses in the few cases where
862   // they are required.
863   if (Fast)
864     *Fast = true;
865   return true;
866 }
867 
868 // Information about the addressing mode for a memory access.
869 struct AddressingMode {
870   // True if a long displacement is supported.
871   bool LongDisplacement;
872 
873   // True if use of index register is supported.
874   bool IndexReg;
875 
876   AddressingMode(bool LongDispl, bool IdxReg) :
877     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
878 };
879 
880 // Return the desired addressing mode for a Load which has only one use (in
881 // the same block) which is a Store.
882 static AddressingMode getLoadStoreAddrMode(bool HasVector,
883                                           Type *Ty) {
884   // With vector support a Load->Store combination may be combined to either
885   // an MVC or vector operations and it seems to work best to allow the
886   // vector addressing mode.
887   if (HasVector)
888     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
889 
890   // Otherwise only the MVC case is special.
891   bool MVC = Ty->isIntegerTy(8);
892   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
893 }
894 
895 // Return the addressing mode which seems most desirable given an LLVM
896 // Instruction pointer.
897 static AddressingMode
898 supportedAddressingMode(Instruction *I, bool HasVector) {
899   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
900     switch (II->getIntrinsicID()) {
901     default: break;
902     case Intrinsic::memset:
903     case Intrinsic::memmove:
904     case Intrinsic::memcpy:
905       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
906     }
907   }
908 
909   if (isa<LoadInst>(I) && I->hasOneUse()) {
910     auto *SingleUser = cast<Instruction>(*I->user_begin());
911     if (SingleUser->getParent() == I->getParent()) {
912       if (isa<ICmpInst>(SingleUser)) {
913         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
914           if (C->getBitWidth() <= 64 &&
915               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
916             // Comparison of memory with 16 bit signed / unsigned immediate
917             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
918       } else if (isa<StoreInst>(SingleUser))
919         // Load->Store
920         return getLoadStoreAddrMode(HasVector, I->getType());
921     }
922   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
923     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
924       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
925         // Load->Store
926         return getLoadStoreAddrMode(HasVector, LoadI->getType());
927   }
928 
929   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
930 
931     // * Use LDE instead of LE/LEY for z13 to avoid partial register
932     //   dependencies (LDE only supports small offsets).
933     // * Utilize the vector registers to hold floating point
934     //   values (vector load / store instructions only support small
935     //   offsets).
936 
937     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
938                          I->getOperand(0)->getType());
939     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
940     bool IsVectorAccess = MemAccessTy->isVectorTy();
941 
942     // A store of an extracted vector element will be combined into a VSTE type
943     // instruction.
944     if (!IsVectorAccess && isa<StoreInst>(I)) {
945       Value *DataOp = I->getOperand(0);
946       if (isa<ExtractElementInst>(DataOp))
947         IsVectorAccess = true;
948     }
949 
950     // A load which gets inserted into a vector element will be combined into a
951     // VLE type instruction.
952     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
953       User *LoadUser = *I->user_begin();
954       if (isa<InsertElementInst>(LoadUser))
955         IsVectorAccess = true;
956     }
957 
958     if (IsFPAccess || IsVectorAccess)
959       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
960   }
961 
962   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
963 }
964 
965 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
966        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
967   // Punt on globals for now, although they can be used in limited
968   // RELATIVE LONG cases.
969   if (AM.BaseGV)
970     return false;
971 
972   // Require a 20-bit signed offset.
973   if (!isInt<20>(AM.BaseOffs))
974     return false;
975 
976   AddressingMode SupportedAM(true, true);
977   if (I != nullptr)
978     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
979 
980   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
981     return false;
982 
983   if (!SupportedAM.IndexReg)
984     // No indexing allowed.
985     return AM.Scale == 0;
986   else
987     // Indexing is OK but no scale factor can be applied.
988     return AM.Scale == 0 || AM.Scale == 1;
989 }
990 
991 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
992   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
993     return false;
994   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
995   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
996   return FromBits > ToBits;
997 }
998 
999 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1000   if (!FromVT.isInteger() || !ToVT.isInteger())
1001     return false;
1002   unsigned FromBits = FromVT.getFixedSizeInBits();
1003   unsigned ToBits = ToVT.getFixedSizeInBits();
1004   return FromBits > ToBits;
1005 }
1006 
1007 //===----------------------------------------------------------------------===//
1008 // Inline asm support
1009 //===----------------------------------------------------------------------===//
1010 
1011 TargetLowering::ConstraintType
1012 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1013   if (Constraint.size() == 1) {
1014     switch (Constraint[0]) {
1015     case 'a': // Address register
1016     case 'd': // Data register (equivalent to 'r')
1017     case 'f': // Floating-point register
1018     case 'h': // High-part register
1019     case 'r': // General-purpose register
1020     case 'v': // Vector register
1021       return C_RegisterClass;
1022 
1023     case 'Q': // Memory with base and unsigned 12-bit displacement
1024     case 'R': // Likewise, plus an index
1025     case 'S': // Memory with base and signed 20-bit displacement
1026     case 'T': // Likewise, plus an index
1027     case 'm': // Equivalent to 'T'.
1028       return C_Memory;
1029 
1030     case 'I': // Unsigned 8-bit constant
1031     case 'J': // Unsigned 12-bit constant
1032     case 'K': // Signed 16-bit constant
1033     case 'L': // Signed 20-bit displacement (on all targets we support)
1034     case 'M': // 0x7fffffff
1035       return C_Immediate;
1036 
1037     default:
1038       break;
1039     }
1040   }
1041   return TargetLowering::getConstraintType(Constraint);
1042 }
1043 
1044 TargetLowering::ConstraintWeight SystemZTargetLowering::
1045 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1046                                const char *constraint) const {
1047   ConstraintWeight weight = CW_Invalid;
1048   Value *CallOperandVal = info.CallOperandVal;
1049   // If we don't have a value, we can't do a match,
1050   // but allow it at the lowest weight.
1051   if (!CallOperandVal)
1052     return CW_Default;
1053   Type *type = CallOperandVal->getType();
1054   // Look at the constraint type.
1055   switch (*constraint) {
1056   default:
1057     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1058     break;
1059 
1060   case 'a': // Address register
1061   case 'd': // Data register (equivalent to 'r')
1062   case 'h': // High-part register
1063   case 'r': // General-purpose register
1064     if (CallOperandVal->getType()->isIntegerTy())
1065       weight = CW_Register;
1066     break;
1067 
1068   case 'f': // Floating-point register
1069     if (type->isFloatingPointTy())
1070       weight = CW_Register;
1071     break;
1072 
1073   case 'v': // Vector register
1074     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1075         Subtarget.hasVector())
1076       weight = CW_Register;
1077     break;
1078 
1079   case 'I': // Unsigned 8-bit constant
1080     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1081       if (isUInt<8>(C->getZExtValue()))
1082         weight = CW_Constant;
1083     break;
1084 
1085   case 'J': // Unsigned 12-bit constant
1086     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1087       if (isUInt<12>(C->getZExtValue()))
1088         weight = CW_Constant;
1089     break;
1090 
1091   case 'K': // Signed 16-bit constant
1092     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1093       if (isInt<16>(C->getSExtValue()))
1094         weight = CW_Constant;
1095     break;
1096 
1097   case 'L': // Signed 20-bit displacement (on all targets we support)
1098     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1099       if (isInt<20>(C->getSExtValue()))
1100         weight = CW_Constant;
1101     break;
1102 
1103   case 'M': // 0x7fffffff
1104     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1105       if (C->getZExtValue() == 0x7fffffff)
1106         weight = CW_Constant;
1107     break;
1108   }
1109   return weight;
1110 }
1111 
1112 // Parse a "{tNNN}" register constraint for which the register type "t"
1113 // has already been verified.  MC is the class associated with "t" and
1114 // Map maps 0-based register numbers to LLVM register numbers.
1115 static std::pair<unsigned, const TargetRegisterClass *>
1116 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1117                     const unsigned *Map, unsigned Size) {
1118   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1119   if (isdigit(Constraint[2])) {
1120     unsigned Index;
1121     bool Failed =
1122         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1123     if (!Failed && Index < Size && Map[Index])
1124       return std::make_pair(Map[Index], RC);
1125   }
1126   return std::make_pair(0U, nullptr);
1127 }
1128 
1129 std::pair<unsigned, const TargetRegisterClass *>
1130 SystemZTargetLowering::getRegForInlineAsmConstraint(
1131     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1132   if (Constraint.size() == 1) {
1133     // GCC Constraint Letters
1134     switch (Constraint[0]) {
1135     default: break;
1136     case 'd': // Data register (equivalent to 'r')
1137     case 'r': // General-purpose register
1138       if (VT == MVT::i64)
1139         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1140       else if (VT == MVT::i128)
1141         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1142       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1143 
1144     case 'a': // Address register
1145       if (VT == MVT::i64)
1146         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1147       else if (VT == MVT::i128)
1148         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1149       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1150 
1151     case 'h': // High-part register (an LLVM extension)
1152       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1153 
1154     case 'f': // Floating-point register
1155       if (!useSoftFloat()) {
1156         if (VT == MVT::f64)
1157           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1158         else if (VT == MVT::f128)
1159           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1160         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1161       }
1162       break;
1163     case 'v': // Vector register
1164       if (Subtarget.hasVector()) {
1165         if (VT == MVT::f32)
1166           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1167         if (VT == MVT::f64)
1168           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1169         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1170       }
1171       break;
1172     }
1173   }
1174   if (Constraint.size() > 0 && Constraint[0] == '{') {
1175     // We need to override the default register parsing for GPRs and FPRs
1176     // because the interpretation depends on VT.  The internal names of
1177     // the registers are also different from the external names
1178     // (F0D and F0S instead of F0, etc.).
1179     if (Constraint[1] == 'r') {
1180       if (VT == MVT::i32)
1181         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1182                                    SystemZMC::GR32Regs, 16);
1183       if (VT == MVT::i128)
1184         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1185                                    SystemZMC::GR128Regs, 16);
1186       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1187                                  SystemZMC::GR64Regs, 16);
1188     }
1189     if (Constraint[1] == 'f') {
1190       if (useSoftFloat())
1191         return std::make_pair(
1192             0u, static_cast<const TargetRegisterClass *>(nullptr));
1193       if (VT == MVT::f32)
1194         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1195                                    SystemZMC::FP32Regs, 16);
1196       if (VT == MVT::f128)
1197         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1198                                    SystemZMC::FP128Regs, 16);
1199       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1200                                  SystemZMC::FP64Regs, 16);
1201     }
1202     if (Constraint[1] == 'v') {
1203       if (!Subtarget.hasVector())
1204         return std::make_pair(
1205             0u, static_cast<const TargetRegisterClass *>(nullptr));
1206       if (VT == MVT::f32)
1207         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1208                                    SystemZMC::VR32Regs, 32);
1209       if (VT == MVT::f64)
1210         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1211                                    SystemZMC::VR64Regs, 32);
1212       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1213                                  SystemZMC::VR128Regs, 32);
1214     }
1215   }
1216   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1217 }
1218 
1219 // FIXME? Maybe this could be a TableGen attribute on some registers and
1220 // this table could be generated automatically from RegInfo.
1221 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1222                                                   const MachineFunction &MF) const {
1223 
1224   Register Reg = StringSwitch<Register>(RegName)
1225                    .Case("r15", SystemZ::R15D)
1226                    .Default(0);
1227   if (Reg)
1228     return Reg;
1229   report_fatal_error("Invalid register name global variable");
1230 }
1231 
1232 void SystemZTargetLowering::
1233 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1234                              std::vector<SDValue> &Ops,
1235                              SelectionDAG &DAG) const {
1236   // Only support length 1 constraints for now.
1237   if (Constraint.length() == 1) {
1238     switch (Constraint[0]) {
1239     case 'I': // Unsigned 8-bit constant
1240       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1241         if (isUInt<8>(C->getZExtValue()))
1242           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1243                                               Op.getValueType()));
1244       return;
1245 
1246     case 'J': // Unsigned 12-bit constant
1247       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1248         if (isUInt<12>(C->getZExtValue()))
1249           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1250                                               Op.getValueType()));
1251       return;
1252 
1253     case 'K': // Signed 16-bit constant
1254       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1255         if (isInt<16>(C->getSExtValue()))
1256           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1257                                               Op.getValueType()));
1258       return;
1259 
1260     case 'L': // Signed 20-bit displacement (on all targets we support)
1261       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1262         if (isInt<20>(C->getSExtValue()))
1263           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1264                                               Op.getValueType()));
1265       return;
1266 
1267     case 'M': // 0x7fffffff
1268       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1269         if (C->getZExtValue() == 0x7fffffff)
1270           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1271                                               Op.getValueType()));
1272       return;
1273     }
1274   }
1275   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1276 }
1277 
1278 //===----------------------------------------------------------------------===//
1279 // Calling conventions
1280 //===----------------------------------------------------------------------===//
1281 
1282 #include "SystemZGenCallingConv.inc"
1283 
1284 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1285   CallingConv::ID) const {
1286   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1287                                            SystemZ::R14D, 0 };
1288   return ScratchRegs;
1289 }
1290 
1291 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1292                                                      Type *ToType) const {
1293   return isTruncateFree(FromType, ToType);
1294 }
1295 
1296 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1297   return CI->isTailCall();
1298 }
1299 
1300 // We do not yet support 128-bit single-element vector types.  If the user
1301 // attempts to use such types as function argument or return type, prefer
1302 // to error out instead of emitting code violating the ABI.
1303 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1304   if (ArgVT.isVector() && !VT.isVector())
1305     report_fatal_error("Unsupported vector argument or return type");
1306 }
1307 
1308 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1309   for (unsigned i = 0; i < Ins.size(); ++i)
1310     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1311 }
1312 
1313 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1314   for (unsigned i = 0; i < Outs.size(); ++i)
1315     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1316 }
1317 
1318 // Value is a value that has been passed to us in the location described by VA
1319 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1320 // any loads onto Chain.
1321 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1322                                    CCValAssign &VA, SDValue Chain,
1323                                    SDValue Value) {
1324   // If the argument has been promoted from a smaller type, insert an
1325   // assertion to capture this.
1326   if (VA.getLocInfo() == CCValAssign::SExt)
1327     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1328                         DAG.getValueType(VA.getValVT()));
1329   else if (VA.getLocInfo() == CCValAssign::ZExt)
1330     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1331                         DAG.getValueType(VA.getValVT()));
1332 
1333   if (VA.isExtInLoc())
1334     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1335   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1336     // If this is a short vector argument loaded from the stack,
1337     // extend from i64 to full vector size and then bitcast.
1338     assert(VA.getLocVT() == MVT::i64);
1339     assert(VA.getValVT().isVector());
1340     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1341     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1342   } else
1343     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1344   return Value;
1345 }
1346 
1347 // Value is a value of type VA.getValVT() that we need to copy into
1348 // the location described by VA.  Return a copy of Value converted to
1349 // VA.getValVT().  The caller is responsible for handling indirect values.
1350 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1351                                    CCValAssign &VA, SDValue Value) {
1352   switch (VA.getLocInfo()) {
1353   case CCValAssign::SExt:
1354     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1355   case CCValAssign::ZExt:
1356     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1357   case CCValAssign::AExt:
1358     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1359   case CCValAssign::BCvt: {
1360     assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1361     assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f64 ||
1362            VA.getValVT() == MVT::f128);
1363     MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1364                             ? MVT::v2i64
1365                             : VA.getLocVT();
1366     Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1367     // For ELF, this is a short vector argument to be stored to the stack,
1368     // bitcast to v2i64 and then extract first element.
1369     if (BitCastToType == MVT::v2i64)
1370       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1371                          DAG.getConstant(0, DL, MVT::i32));
1372     return Value;
1373   }
1374   case CCValAssign::Full:
1375     return Value;
1376   default:
1377     llvm_unreachable("Unhandled getLocInfo()");
1378   }
1379 }
1380 
1381 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1382   SDLoc DL(In);
1383   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1384                            DAG.getIntPtrConstant(0, DL));
1385   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1386                            DAG.getIntPtrConstant(1, DL));
1387   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1388                                     MVT::Untyped, Hi, Lo);
1389   return SDValue(Pair, 0);
1390 }
1391 
1392 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1393   SDLoc DL(In);
1394   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1395                                           DL, MVT::i64, In);
1396   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1397                                           DL, MVT::i64, In);
1398   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1399 }
1400 
1401 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1402     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1403     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
1404   EVT ValueVT = Val.getValueType();
1405   assert((ValueVT != MVT::i128 ||
1406           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1407            (NumParts == 2 && PartVT == MVT::i64))) &&
1408          "Unknown handling of i128 value.");
1409   if (ValueVT == MVT::i128 && NumParts == 1) {
1410     // Inline assembly operand.
1411     Parts[0] = lowerI128ToGR128(DAG, Val);
1412     return true;
1413   }
1414   return false;
1415 }
1416 
1417 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1418     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1419     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
1420   assert((ValueVT != MVT::i128 ||
1421           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1422            (NumParts == 2 && PartVT == MVT::i64))) &&
1423          "Unknown handling of i128 value.");
1424   if (ValueVT == MVT::i128 && NumParts == 1)
1425     // Inline assembly operand.
1426     return lowerGR128ToI128(DAG, Parts[0]);
1427   return SDValue();
1428 }
1429 
1430 SDValue SystemZTargetLowering::LowerFormalArguments(
1431     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1432     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1433     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1434   MachineFunction &MF = DAG.getMachineFunction();
1435   MachineFrameInfo &MFI = MF.getFrameInfo();
1436   MachineRegisterInfo &MRI = MF.getRegInfo();
1437   SystemZMachineFunctionInfo *FuncInfo =
1438       MF.getInfo<SystemZMachineFunctionInfo>();
1439   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1440   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1441 
1442   // Detect unsupported vector argument types.
1443   if (Subtarget.hasVector())
1444     VerifyVectorTypes(Ins);
1445 
1446   // Assign locations to all of the incoming arguments.
1447   SmallVector<CCValAssign, 16> ArgLocs;
1448   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1449   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1450 
1451   unsigned NumFixedGPRs = 0;
1452   unsigned NumFixedFPRs = 0;
1453   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1454     SDValue ArgValue;
1455     CCValAssign &VA = ArgLocs[I];
1456     EVT LocVT = VA.getLocVT();
1457     if (VA.isRegLoc()) {
1458       // Arguments passed in registers
1459       const TargetRegisterClass *RC;
1460       switch (LocVT.getSimpleVT().SimpleTy) {
1461       default:
1462         // Integers smaller than i64 should be promoted to i64.
1463         llvm_unreachable("Unexpected argument type");
1464       case MVT::i32:
1465         NumFixedGPRs += 1;
1466         RC = &SystemZ::GR32BitRegClass;
1467         break;
1468       case MVT::i64:
1469         NumFixedGPRs += 1;
1470         RC = &SystemZ::GR64BitRegClass;
1471         break;
1472       case MVT::f32:
1473         NumFixedFPRs += 1;
1474         RC = &SystemZ::FP32BitRegClass;
1475         break;
1476       case MVT::f64:
1477         NumFixedFPRs += 1;
1478         RC = &SystemZ::FP64BitRegClass;
1479         break;
1480       case MVT::f128:
1481         NumFixedFPRs += 2;
1482         RC = &SystemZ::FP128BitRegClass;
1483         break;
1484       case MVT::v16i8:
1485       case MVT::v8i16:
1486       case MVT::v4i32:
1487       case MVT::v2i64:
1488       case MVT::v4f32:
1489       case MVT::v2f64:
1490         RC = &SystemZ::VR128BitRegClass;
1491         break;
1492       }
1493 
1494       Register VReg = MRI.createVirtualRegister(RC);
1495       MRI.addLiveIn(VA.getLocReg(), VReg);
1496       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1497     } else {
1498       assert(VA.isMemLoc() && "Argument not register or memory");
1499 
1500       // Create the frame index object for this incoming parameter.
1501       // FIXME: Pre-include call frame size in the offset, should not
1502       // need to manually add it here.
1503       int64_t ArgSPOffset = VA.getLocMemOffset();
1504       if (Subtarget.isTargetXPLINK64()) {
1505         auto &XPRegs =
1506             Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
1507         ArgSPOffset += XPRegs.getCallFrameSize();
1508       }
1509       int FI =
1510           MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
1511 
1512       // Create the SelectionDAG nodes corresponding to a load
1513       // from this parameter.  Unpromoted ints and floats are
1514       // passed as right-justified 8-byte values.
1515       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1516       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1517         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1518                           DAG.getIntPtrConstant(4, DL));
1519       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1520                              MachinePointerInfo::getFixedStack(MF, FI));
1521     }
1522 
1523     // Convert the value of the argument register into the value that's
1524     // being passed.
1525     if (VA.getLocInfo() == CCValAssign::Indirect) {
1526       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1527                                    MachinePointerInfo()));
1528       // If the original argument was split (e.g. i128), we need
1529       // to load all parts of it here (using the same address).
1530       unsigned ArgIndex = Ins[I].OrigArgIndex;
1531       assert (Ins[I].PartOffset == 0);
1532       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1533         CCValAssign &PartVA = ArgLocs[I + 1];
1534         unsigned PartOffset = Ins[I + 1].PartOffset;
1535         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1536                                       DAG.getIntPtrConstant(PartOffset, DL));
1537         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1538                                      MachinePointerInfo()));
1539         ++I;
1540       }
1541     } else
1542       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1543   }
1544 
1545   // FIXME: Add support for lowering varargs for XPLINK64 in a later patch.
1546   if (IsVarArg && Subtarget.isTargetELF()) {
1547     // Save the number of non-varargs registers for later use by va_start, etc.
1548     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1549     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1550 
1551     // Likewise the address (in the form of a frame index) of where the
1552     // first stack vararg would be.  The 1-byte size here is arbitrary.
1553     int64_t StackSize = CCInfo.getNextStackOffset();
1554     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1555 
1556     // ...and a similar frame index for the caller-allocated save area
1557     // that will be used to store the incoming registers.
1558     int64_t RegSaveOffset =
1559       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1560     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1561     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1562 
1563     // Store the FPR varargs in the reserved frame slots.  (We store the
1564     // GPRs as part of the prologue.)
1565     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1566       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1567       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1568         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1569         int FI =
1570           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1571         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1572         Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1573                                      &SystemZ::FP64BitRegClass);
1574         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1575         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1576                                  MachinePointerInfo::getFixedStack(MF, FI));
1577       }
1578       // Join the stores, which are independent of one another.
1579       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1580                           makeArrayRef(&MemOps[NumFixedFPRs],
1581                                        SystemZ::ELFNumArgFPRs-NumFixedFPRs));
1582     }
1583   }
1584 
1585   // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special
1586   // register (R5)
1587   return Chain;
1588 }
1589 
1590 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1591                               SmallVectorImpl<CCValAssign> &ArgLocs,
1592                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1593   // Punt if there are any indirect or stack arguments, or if the call
1594   // needs the callee-saved argument register R6, or if the call uses
1595   // the callee-saved register arguments SwiftSelf and SwiftError.
1596   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1597     CCValAssign &VA = ArgLocs[I];
1598     if (VA.getLocInfo() == CCValAssign::Indirect)
1599       return false;
1600     if (!VA.isRegLoc())
1601       return false;
1602     Register Reg = VA.getLocReg();
1603     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1604       return false;
1605     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1606       return false;
1607   }
1608   return true;
1609 }
1610 
1611 SDValue
1612 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1613                                  SmallVectorImpl<SDValue> &InVals) const {
1614   SelectionDAG &DAG = CLI.DAG;
1615   SDLoc &DL = CLI.DL;
1616   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1617   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1618   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1619   SDValue Chain = CLI.Chain;
1620   SDValue Callee = CLI.Callee;
1621   bool &IsTailCall = CLI.IsTailCall;
1622   CallingConv::ID CallConv = CLI.CallConv;
1623   bool IsVarArg = CLI.IsVarArg;
1624   MachineFunction &MF = DAG.getMachineFunction();
1625   EVT PtrVT = getPointerTy(MF.getDataLayout());
1626   LLVMContext &Ctx = *DAG.getContext();
1627   SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1628 
1629   // FIXME: z/OS support to be added in later.
1630   if (Subtarget.isTargetXPLINK64())
1631     IsTailCall = false;
1632 
1633   // Detect unsupported vector argument and return types.
1634   if (Subtarget.hasVector()) {
1635     VerifyVectorTypes(Outs);
1636     VerifyVectorTypes(Ins);
1637   }
1638 
1639   // Analyze the operands of the call, assigning locations to each operand.
1640   SmallVector<CCValAssign, 16> ArgLocs;
1641   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1642   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1643 
1644   // We don't support GuaranteedTailCallOpt, only automatically-detected
1645   // sibling calls.
1646   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1647     IsTailCall = false;
1648 
1649   // Get a count of how many bytes are to be pushed on the stack.
1650   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1651 
1652   if (Subtarget.isTargetXPLINK64())
1653     // Although the XPLINK specifications for AMODE64 state that minimum size
1654     // of the param area is minimum 32 bytes and no rounding is otherwise
1655     // specified, we round this area in 64 bytes increments to be compatible
1656     // with existing compilers.
1657     NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64));
1658 
1659   // Mark the start of the call.
1660   if (!IsTailCall)
1661     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1662 
1663   // Copy argument values to their designated locations.
1664   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1665   SmallVector<SDValue, 8> MemOpChains;
1666   SDValue StackPtr;
1667   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1668     CCValAssign &VA = ArgLocs[I];
1669     SDValue ArgValue = OutVals[I];
1670 
1671     if (VA.getLocInfo() == CCValAssign::Indirect) {
1672       // Store the argument in a stack slot and pass its address.
1673       unsigned ArgIndex = Outs[I].OrigArgIndex;
1674       EVT SlotVT;
1675       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1676         // Allocate the full stack space for a promoted (and split) argument.
1677         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1678         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1679         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1680         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1681         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1682       } else {
1683         SlotVT = Outs[I].ArgVT;
1684       }
1685       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1686       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1687       MemOpChains.push_back(
1688           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1689                        MachinePointerInfo::getFixedStack(MF, FI)));
1690       // If the original argument was split (e.g. i128), we need
1691       // to store all parts of it here (and pass just one address).
1692       assert (Outs[I].PartOffset == 0);
1693       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1694         SDValue PartValue = OutVals[I + 1];
1695         unsigned PartOffset = Outs[I + 1].PartOffset;
1696         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1697                                       DAG.getIntPtrConstant(PartOffset, DL));
1698         MemOpChains.push_back(
1699             DAG.getStore(Chain, DL, PartValue, Address,
1700                          MachinePointerInfo::getFixedStack(MF, FI)));
1701         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1702                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1703         ++I;
1704       }
1705       ArgValue = SpillSlot;
1706     } else
1707       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1708 
1709     if (VA.isRegLoc()) {
1710       // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1711       // MVT::i128 type. We decompose the 128-bit type to a pair of its high
1712       // and low values.
1713       if (VA.getLocVT() == MVT::i128)
1714         ArgValue = lowerI128ToGR128(DAG, ArgValue);
1715       // Queue up the argument copies and emit them at the end.
1716       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1717     } else {
1718       assert(VA.isMemLoc() && "Argument not register or memory");
1719 
1720       // Work out the address of the stack slot.  Unpromoted ints and
1721       // floats are passed as right-justified 8-byte values.
1722       if (!StackPtr.getNode())
1723         StackPtr = DAG.getCopyFromReg(Chain, DL,
1724                                       Regs->getStackPointerRegister(), PtrVT);
1725       unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1726                         VA.getLocMemOffset();
1727       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1728         Offset += 4;
1729       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1730                                     DAG.getIntPtrConstant(Offset, DL));
1731 
1732       // Emit the store.
1733       MemOpChains.push_back(
1734           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1735 
1736       // Although long doubles or vectors are passed through the stack when
1737       // they are vararg (non-fixed arguments), if a long double or vector
1738       // occupies the third and fourth slot of the argument list GPR3 should
1739       // still shadow the third slot of the argument list.
1740       if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
1741         SDValue ShadowArgValue =
1742             DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
1743                         DAG.getIntPtrConstant(1, DL));
1744         RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
1745       }
1746     }
1747   }
1748 
1749   // Join the stores, which are independent of one another.
1750   if (!MemOpChains.empty())
1751     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1752 
1753   // Accept direct calls by converting symbolic call addresses to the
1754   // associated Target* opcodes.  Force %r1 to be used for indirect
1755   // tail calls.
1756   SDValue Glue;
1757   // FIXME: Add support for XPLINK using the ADA register.
1758   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1759     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1760     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1761   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1762     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1763     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1764   } else if (IsTailCall) {
1765     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1766     Glue = Chain.getValue(1);
1767     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1768   }
1769 
1770   // Build a sequence of copy-to-reg nodes, chained and glued together.
1771   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1772     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1773                              RegsToPass[I].second, Glue);
1774     Glue = Chain.getValue(1);
1775   }
1776 
1777   // The first call operand is the chain and the second is the target address.
1778   SmallVector<SDValue, 8> Ops;
1779   Ops.push_back(Chain);
1780   Ops.push_back(Callee);
1781 
1782   // Add argument registers to the end of the list so that they are
1783   // known live into the call.
1784   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1785     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1786                                   RegsToPass[I].second.getValueType()));
1787 
1788   // Add a register mask operand representing the call-preserved registers.
1789   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1790   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1791   assert(Mask && "Missing call preserved mask for calling convention");
1792   Ops.push_back(DAG.getRegisterMask(Mask));
1793 
1794   // Glue the call to the argument copies, if any.
1795   if (Glue.getNode())
1796     Ops.push_back(Glue);
1797 
1798   // Emit the call.
1799   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1800   if (IsTailCall)
1801     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1802   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1803   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1804   Glue = Chain.getValue(1);
1805 
1806   // Mark the end of the call, which is glued to the call itself.
1807   Chain = DAG.getCALLSEQ_END(Chain,
1808                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1809                              DAG.getConstant(0, DL, PtrVT, true),
1810                              Glue, DL);
1811   Glue = Chain.getValue(1);
1812 
1813   // Assign locations to each value returned by this call.
1814   SmallVector<CCValAssign, 16> RetLocs;
1815   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
1816   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1817 
1818   // Copy all of the result registers out of their specified physreg.
1819   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1820     CCValAssign &VA = RetLocs[I];
1821 
1822     // Copy the value out, gluing the copy to the end of the call sequence.
1823     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1824                                           VA.getLocVT(), Glue);
1825     Chain = RetValue.getValue(1);
1826     Glue = RetValue.getValue(2);
1827 
1828     // Convert the value of the return register into the value that's
1829     // being returned.
1830     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1831   }
1832 
1833   return Chain;
1834 }
1835 
1836 // Generate a call taking the given operands as arguments and returning a
1837 // result of type RetVT.
1838 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall(
1839     SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT,
1840     ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL,
1841     bool DoesNotReturn, bool IsReturnValueUsed) const {
1842   TargetLowering::ArgListTy Args;
1843   Args.reserve(Ops.size());
1844 
1845   TargetLowering::ArgListEntry Entry;
1846   for (SDValue Op : Ops) {
1847     Entry.Node = Op;
1848     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1849     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
1850     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
1851     Args.push_back(Entry);
1852   }
1853 
1854   SDValue Callee =
1855       DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout()));
1856 
1857   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1858   TargetLowering::CallLoweringInfo CLI(DAG);
1859   bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned);
1860   CLI.setDebugLoc(DL)
1861       .setChain(Chain)
1862       .setCallee(CallConv, RetTy, Callee, std::move(Args))
1863       .setNoReturn(DoesNotReturn)
1864       .setDiscardResult(!IsReturnValueUsed)
1865       .setSExtResult(SignExtend)
1866       .setZExtResult(!SignExtend);
1867   return LowerCallTo(CLI);
1868 }
1869 
1870 bool SystemZTargetLowering::
1871 CanLowerReturn(CallingConv::ID CallConv,
1872                MachineFunction &MF, bool isVarArg,
1873                const SmallVectorImpl<ISD::OutputArg> &Outs,
1874                LLVMContext &Context) const {
1875   // Detect unsupported vector return types.
1876   if (Subtarget.hasVector())
1877     VerifyVectorTypes(Outs);
1878 
1879   // Special case that we cannot easily detect in RetCC_SystemZ since
1880   // i128 is not a legal type.
1881   for (auto &Out : Outs)
1882     if (Out.ArgVT == MVT::i128)
1883       return false;
1884 
1885   SmallVector<CCValAssign, 16> RetLocs;
1886   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1887   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1888 }
1889 
1890 SDValue
1891 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1892                                    bool IsVarArg,
1893                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1894                                    const SmallVectorImpl<SDValue> &OutVals,
1895                                    const SDLoc &DL, SelectionDAG &DAG) const {
1896   MachineFunction &MF = DAG.getMachineFunction();
1897 
1898   // Detect unsupported vector return types.
1899   if (Subtarget.hasVector())
1900     VerifyVectorTypes(Outs);
1901 
1902   // Assign locations to each returned value.
1903   SmallVector<CCValAssign, 16> RetLocs;
1904   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1905   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1906 
1907   // Quick exit for void returns
1908   if (RetLocs.empty())
1909     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1910 
1911   if (CallConv == CallingConv::GHC)
1912     report_fatal_error("GHC functions return void only");
1913 
1914   // Copy the result values into the output registers.
1915   SDValue Glue;
1916   SmallVector<SDValue, 4> RetOps;
1917   RetOps.push_back(Chain);
1918   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1919     CCValAssign &VA = RetLocs[I];
1920     SDValue RetValue = OutVals[I];
1921 
1922     // Make the return register live on exit.
1923     assert(VA.isRegLoc() && "Can only return in registers!");
1924 
1925     // Promote the value as required.
1926     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1927 
1928     // Chain and glue the copies together.
1929     Register Reg = VA.getLocReg();
1930     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1931     Glue = Chain.getValue(1);
1932     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1933   }
1934 
1935   // Update chain and glue.
1936   RetOps[0] = Chain;
1937   if (Glue.getNode())
1938     RetOps.push_back(Glue);
1939 
1940   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1941 }
1942 
1943 // Return true if Op is an intrinsic node with chain that returns the CC value
1944 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1945 // the mask of valid CC values if so.
1946 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1947                                       unsigned &CCValid) {
1948   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1949   switch (Id) {
1950   case Intrinsic::s390_tbegin:
1951     Opcode = SystemZISD::TBEGIN;
1952     CCValid = SystemZ::CCMASK_TBEGIN;
1953     return true;
1954 
1955   case Intrinsic::s390_tbegin_nofloat:
1956     Opcode = SystemZISD::TBEGIN_NOFLOAT;
1957     CCValid = SystemZ::CCMASK_TBEGIN;
1958     return true;
1959 
1960   case Intrinsic::s390_tend:
1961     Opcode = SystemZISD::TEND;
1962     CCValid = SystemZ::CCMASK_TEND;
1963     return true;
1964 
1965   default:
1966     return false;
1967   }
1968 }
1969 
1970 // Return true if Op is an intrinsic node without chain that returns the
1971 // CC value as its final argument.  Provide the associated SystemZISD
1972 // opcode and the mask of valid CC values if so.
1973 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
1974   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1975   switch (Id) {
1976   case Intrinsic::s390_vpkshs:
1977   case Intrinsic::s390_vpksfs:
1978   case Intrinsic::s390_vpksgs:
1979     Opcode = SystemZISD::PACKS_CC;
1980     CCValid = SystemZ::CCMASK_VCMP;
1981     return true;
1982 
1983   case Intrinsic::s390_vpklshs:
1984   case Intrinsic::s390_vpklsfs:
1985   case Intrinsic::s390_vpklsgs:
1986     Opcode = SystemZISD::PACKLS_CC;
1987     CCValid = SystemZ::CCMASK_VCMP;
1988     return true;
1989 
1990   case Intrinsic::s390_vceqbs:
1991   case Intrinsic::s390_vceqhs:
1992   case Intrinsic::s390_vceqfs:
1993   case Intrinsic::s390_vceqgs:
1994     Opcode = SystemZISD::VICMPES;
1995     CCValid = SystemZ::CCMASK_VCMP;
1996     return true;
1997 
1998   case Intrinsic::s390_vchbs:
1999   case Intrinsic::s390_vchhs:
2000   case Intrinsic::s390_vchfs:
2001   case Intrinsic::s390_vchgs:
2002     Opcode = SystemZISD::VICMPHS;
2003     CCValid = SystemZ::CCMASK_VCMP;
2004     return true;
2005 
2006   case Intrinsic::s390_vchlbs:
2007   case Intrinsic::s390_vchlhs:
2008   case Intrinsic::s390_vchlfs:
2009   case Intrinsic::s390_vchlgs:
2010     Opcode = SystemZISD::VICMPHLS;
2011     CCValid = SystemZ::CCMASK_VCMP;
2012     return true;
2013 
2014   case Intrinsic::s390_vtm:
2015     Opcode = SystemZISD::VTM;
2016     CCValid = SystemZ::CCMASK_VCMP;
2017     return true;
2018 
2019   case Intrinsic::s390_vfaebs:
2020   case Intrinsic::s390_vfaehs:
2021   case Intrinsic::s390_vfaefs:
2022     Opcode = SystemZISD::VFAE_CC;
2023     CCValid = SystemZ::CCMASK_ANY;
2024     return true;
2025 
2026   case Intrinsic::s390_vfaezbs:
2027   case Intrinsic::s390_vfaezhs:
2028   case Intrinsic::s390_vfaezfs:
2029     Opcode = SystemZISD::VFAEZ_CC;
2030     CCValid = SystemZ::CCMASK_ANY;
2031     return true;
2032 
2033   case Intrinsic::s390_vfeebs:
2034   case Intrinsic::s390_vfeehs:
2035   case Intrinsic::s390_vfeefs:
2036     Opcode = SystemZISD::VFEE_CC;
2037     CCValid = SystemZ::CCMASK_ANY;
2038     return true;
2039 
2040   case Intrinsic::s390_vfeezbs:
2041   case Intrinsic::s390_vfeezhs:
2042   case Intrinsic::s390_vfeezfs:
2043     Opcode = SystemZISD::VFEEZ_CC;
2044     CCValid = SystemZ::CCMASK_ANY;
2045     return true;
2046 
2047   case Intrinsic::s390_vfenebs:
2048   case Intrinsic::s390_vfenehs:
2049   case Intrinsic::s390_vfenefs:
2050     Opcode = SystemZISD::VFENE_CC;
2051     CCValid = SystemZ::CCMASK_ANY;
2052     return true;
2053 
2054   case Intrinsic::s390_vfenezbs:
2055   case Intrinsic::s390_vfenezhs:
2056   case Intrinsic::s390_vfenezfs:
2057     Opcode = SystemZISD::VFENEZ_CC;
2058     CCValid = SystemZ::CCMASK_ANY;
2059     return true;
2060 
2061   case Intrinsic::s390_vistrbs:
2062   case Intrinsic::s390_vistrhs:
2063   case Intrinsic::s390_vistrfs:
2064     Opcode = SystemZISD::VISTR_CC;
2065     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2066     return true;
2067 
2068   case Intrinsic::s390_vstrcbs:
2069   case Intrinsic::s390_vstrchs:
2070   case Intrinsic::s390_vstrcfs:
2071     Opcode = SystemZISD::VSTRC_CC;
2072     CCValid = SystemZ::CCMASK_ANY;
2073     return true;
2074 
2075   case Intrinsic::s390_vstrczbs:
2076   case Intrinsic::s390_vstrczhs:
2077   case Intrinsic::s390_vstrczfs:
2078     Opcode = SystemZISD::VSTRCZ_CC;
2079     CCValid = SystemZ::CCMASK_ANY;
2080     return true;
2081 
2082   case Intrinsic::s390_vstrsb:
2083   case Intrinsic::s390_vstrsh:
2084   case Intrinsic::s390_vstrsf:
2085     Opcode = SystemZISD::VSTRS_CC;
2086     CCValid = SystemZ::CCMASK_ANY;
2087     return true;
2088 
2089   case Intrinsic::s390_vstrszb:
2090   case Intrinsic::s390_vstrszh:
2091   case Intrinsic::s390_vstrszf:
2092     Opcode = SystemZISD::VSTRSZ_CC;
2093     CCValid = SystemZ::CCMASK_ANY;
2094     return true;
2095 
2096   case Intrinsic::s390_vfcedbs:
2097   case Intrinsic::s390_vfcesbs:
2098     Opcode = SystemZISD::VFCMPES;
2099     CCValid = SystemZ::CCMASK_VCMP;
2100     return true;
2101 
2102   case Intrinsic::s390_vfchdbs:
2103   case Intrinsic::s390_vfchsbs:
2104     Opcode = SystemZISD::VFCMPHS;
2105     CCValid = SystemZ::CCMASK_VCMP;
2106     return true;
2107 
2108   case Intrinsic::s390_vfchedbs:
2109   case Intrinsic::s390_vfchesbs:
2110     Opcode = SystemZISD::VFCMPHES;
2111     CCValid = SystemZ::CCMASK_VCMP;
2112     return true;
2113 
2114   case Intrinsic::s390_vftcidb:
2115   case Intrinsic::s390_vftcisb:
2116     Opcode = SystemZISD::VFTCI;
2117     CCValid = SystemZ::CCMASK_VCMP;
2118     return true;
2119 
2120   case Intrinsic::s390_tdc:
2121     Opcode = SystemZISD::TDC;
2122     CCValid = SystemZ::CCMASK_TDC;
2123     return true;
2124 
2125   default:
2126     return false;
2127   }
2128 }
2129 
2130 // Emit an intrinsic with chain and an explicit CC register result.
2131 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2132                                            unsigned Opcode) {
2133   // Copy all operands except the intrinsic ID.
2134   unsigned NumOps = Op.getNumOperands();
2135   SmallVector<SDValue, 6> Ops;
2136   Ops.reserve(NumOps - 1);
2137   Ops.push_back(Op.getOperand(0));
2138   for (unsigned I = 2; I < NumOps; ++I)
2139     Ops.push_back(Op.getOperand(I));
2140 
2141   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2142   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2143   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2144   SDValue OldChain = SDValue(Op.getNode(), 1);
2145   SDValue NewChain = SDValue(Intr.getNode(), 1);
2146   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2147   return Intr.getNode();
2148 }
2149 
2150 // Emit an intrinsic with an explicit CC register result.
2151 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2152                                    unsigned Opcode) {
2153   // Copy all operands except the intrinsic ID.
2154   unsigned NumOps = Op.getNumOperands();
2155   SmallVector<SDValue, 6> Ops;
2156   Ops.reserve(NumOps - 1);
2157   for (unsigned I = 1; I < NumOps; ++I)
2158     Ops.push_back(Op.getOperand(I));
2159 
2160   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2161   return Intr.getNode();
2162 }
2163 
2164 // CC is a comparison that will be implemented using an integer or
2165 // floating-point comparison.  Return the condition code mask for
2166 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2167 // unsigned comparisons and clear for signed ones.  In the floating-point
2168 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2169 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2170 #define CONV(X) \
2171   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2172   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2173   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2174 
2175   switch (CC) {
2176   default:
2177     llvm_unreachable("Invalid integer condition!");
2178 
2179   CONV(EQ);
2180   CONV(NE);
2181   CONV(GT);
2182   CONV(GE);
2183   CONV(LT);
2184   CONV(LE);
2185 
2186   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2187   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2188   }
2189 #undef CONV
2190 }
2191 
2192 // If C can be converted to a comparison against zero, adjust the operands
2193 // as necessary.
2194 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2195   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2196     return;
2197 
2198   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2199   if (!ConstOp1)
2200     return;
2201 
2202   int64_t Value = ConstOp1->getSExtValue();
2203   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2204       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2205       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2206       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2207     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2208     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2209   }
2210 }
2211 
2212 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2213 // adjust the operands as necessary.
2214 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2215                              Comparison &C) {
2216   // For us to make any changes, it must a comparison between a single-use
2217   // load and a constant.
2218   if (!C.Op0.hasOneUse() ||
2219       C.Op0.getOpcode() != ISD::LOAD ||
2220       C.Op1.getOpcode() != ISD::Constant)
2221     return;
2222 
2223   // We must have an 8- or 16-bit load.
2224   auto *Load = cast<LoadSDNode>(C.Op0);
2225   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2226   if ((NumBits != 8 && NumBits != 16) ||
2227       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2228     return;
2229 
2230   // The load must be an extending one and the constant must be within the
2231   // range of the unextended value.
2232   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2233   uint64_t Value = ConstOp1->getZExtValue();
2234   uint64_t Mask = (1 << NumBits) - 1;
2235   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2236     // Make sure that ConstOp1 is in range of C.Op0.
2237     int64_t SignedValue = ConstOp1->getSExtValue();
2238     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2239       return;
2240     if (C.ICmpType != SystemZICMP::SignedOnly) {
2241       // Unsigned comparison between two sign-extended values is equivalent
2242       // to unsigned comparison between two zero-extended values.
2243       Value &= Mask;
2244     } else if (NumBits == 8) {
2245       // Try to treat the comparison as unsigned, so that we can use CLI.
2246       // Adjust CCMask and Value as necessary.
2247       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2248         // Test whether the high bit of the byte is set.
2249         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2250       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2251         // Test whether the high bit of the byte is clear.
2252         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2253       else
2254         // No instruction exists for this combination.
2255         return;
2256       C.ICmpType = SystemZICMP::UnsignedOnly;
2257     }
2258   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2259     if (Value > Mask)
2260       return;
2261     // If the constant is in range, we can use any comparison.
2262     C.ICmpType = SystemZICMP::Any;
2263   } else
2264     return;
2265 
2266   // Make sure that the first operand is an i32 of the right extension type.
2267   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2268                               ISD::SEXTLOAD :
2269                               ISD::ZEXTLOAD);
2270   if (C.Op0.getValueType() != MVT::i32 ||
2271       Load->getExtensionType() != ExtType) {
2272     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2273                            Load->getBasePtr(), Load->getPointerInfo(),
2274                            Load->getMemoryVT(), Load->getAlignment(),
2275                            Load->getMemOperand()->getFlags());
2276     // Update the chain uses.
2277     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2278   }
2279 
2280   // Make sure that the second operand is an i32 with the right value.
2281   if (C.Op1.getValueType() != MVT::i32 ||
2282       Value != ConstOp1->getZExtValue())
2283     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2284 }
2285 
2286 // Return true if Op is either an unextended load, or a load suitable
2287 // for integer register-memory comparisons of type ICmpType.
2288 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2289   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2290   if (Load) {
2291     // There are no instructions to compare a register with a memory byte.
2292     if (Load->getMemoryVT() == MVT::i8)
2293       return false;
2294     // Otherwise decide on extension type.
2295     switch (Load->getExtensionType()) {
2296     case ISD::NON_EXTLOAD:
2297       return true;
2298     case ISD::SEXTLOAD:
2299       return ICmpType != SystemZICMP::UnsignedOnly;
2300     case ISD::ZEXTLOAD:
2301       return ICmpType != SystemZICMP::SignedOnly;
2302     default:
2303       break;
2304     }
2305   }
2306   return false;
2307 }
2308 
2309 // Return true if it is better to swap the operands of C.
2310 static bool shouldSwapCmpOperands(const Comparison &C) {
2311   // Leave f128 comparisons alone, since they have no memory forms.
2312   if (C.Op0.getValueType() == MVT::f128)
2313     return false;
2314 
2315   // Always keep a floating-point constant second, since comparisons with
2316   // zero can use LOAD TEST and comparisons with other constants make a
2317   // natural memory operand.
2318   if (isa<ConstantFPSDNode>(C.Op1))
2319     return false;
2320 
2321   // Never swap comparisons with zero since there are many ways to optimize
2322   // those later.
2323   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2324   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2325     return false;
2326 
2327   // Also keep natural memory operands second if the loaded value is
2328   // only used here.  Several comparisons have memory forms.
2329   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2330     return false;
2331 
2332   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2333   // In that case we generally prefer the memory to be second.
2334   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2335     // The only exceptions are when the second operand is a constant and
2336     // we can use things like CHHSI.
2337     if (!ConstOp1)
2338       return true;
2339     // The unsigned memory-immediate instructions can handle 16-bit
2340     // unsigned integers.
2341     if (C.ICmpType != SystemZICMP::SignedOnly &&
2342         isUInt<16>(ConstOp1->getZExtValue()))
2343       return false;
2344     // The signed memory-immediate instructions can handle 16-bit
2345     // signed integers.
2346     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2347         isInt<16>(ConstOp1->getSExtValue()))
2348       return false;
2349     return true;
2350   }
2351 
2352   // Try to promote the use of CGFR and CLGFR.
2353   unsigned Opcode0 = C.Op0.getOpcode();
2354   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2355     return true;
2356   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2357     return true;
2358   if (C.ICmpType != SystemZICMP::SignedOnly &&
2359       Opcode0 == ISD::AND &&
2360       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2361       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2362     return true;
2363 
2364   return false;
2365 }
2366 
2367 // Check whether C tests for equality between X and Y and whether X - Y
2368 // or Y - X is also computed.  In that case it's better to compare the
2369 // result of the subtraction against zero.
2370 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2371                                  Comparison &C) {
2372   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2373       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2374     for (SDNode *N : C.Op0->uses()) {
2375       if (N->getOpcode() == ISD::SUB &&
2376           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2377            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2378         C.Op0 = SDValue(N, 0);
2379         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2380         return;
2381       }
2382     }
2383   }
2384 }
2385 
2386 // Check whether C compares a floating-point value with zero and if that
2387 // floating-point value is also negated.  In this case we can use the
2388 // negation to set CC, so avoiding separate LOAD AND TEST and
2389 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2390 static void adjustForFNeg(Comparison &C) {
2391   // This optimization is invalid for strict comparisons, since FNEG
2392   // does not raise any exceptions.
2393   if (C.Chain)
2394     return;
2395   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2396   if (C1 && C1->isZero()) {
2397     for (SDNode *N : C.Op0->uses()) {
2398       if (N->getOpcode() == ISD::FNEG) {
2399         C.Op0 = SDValue(N, 0);
2400         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2401         return;
2402       }
2403     }
2404   }
2405 }
2406 
2407 // Check whether C compares (shl X, 32) with 0 and whether X is
2408 // also sign-extended.  In that case it is better to test the result
2409 // of the sign extension using LTGFR.
2410 //
2411 // This case is important because InstCombine transforms a comparison
2412 // with (sext (trunc X)) into a comparison with (shl X, 32).
2413 static void adjustForLTGFR(Comparison &C) {
2414   // Check for a comparison between (shl X, 32) and 0.
2415   if (C.Op0.getOpcode() == ISD::SHL &&
2416       C.Op0.getValueType() == MVT::i64 &&
2417       C.Op1.getOpcode() == ISD::Constant &&
2418       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2419     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2420     if (C1 && C1->getZExtValue() == 32) {
2421       SDValue ShlOp0 = C.Op0.getOperand(0);
2422       // See whether X has any SIGN_EXTEND_INREG uses.
2423       for (SDNode *N : ShlOp0->uses()) {
2424         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2425             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2426           C.Op0 = SDValue(N, 0);
2427           return;
2428         }
2429       }
2430     }
2431   }
2432 }
2433 
2434 // If C compares the truncation of an extending load, try to compare
2435 // the untruncated value instead.  This exposes more opportunities to
2436 // reuse CC.
2437 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2438                                Comparison &C) {
2439   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2440       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2441       C.Op1.getOpcode() == ISD::Constant &&
2442       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2443     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2444     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2445         C.Op0.getValueSizeInBits().getFixedSize()) {
2446       unsigned Type = L->getExtensionType();
2447       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2448           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2449         C.Op0 = C.Op0.getOperand(0);
2450         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2451       }
2452     }
2453   }
2454 }
2455 
2456 // Return true if shift operation N has an in-range constant shift value.
2457 // Store it in ShiftVal if so.
2458 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2459   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2460   if (!Shift)
2461     return false;
2462 
2463   uint64_t Amount = Shift->getZExtValue();
2464   if (Amount >= N.getValueSizeInBits())
2465     return false;
2466 
2467   ShiftVal = Amount;
2468   return true;
2469 }
2470 
2471 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2472 // instruction and whether the CC value is descriptive enough to handle
2473 // a comparison of type Opcode between the AND result and CmpVal.
2474 // CCMask says which comparison result is being tested and BitSize is
2475 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2476 // return the corresponding CC mask, otherwise return 0.
2477 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2478                                      uint64_t Mask, uint64_t CmpVal,
2479                                      unsigned ICmpType) {
2480   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2481 
2482   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2483   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2484       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2485     return 0;
2486 
2487   // Work out the masks for the lowest and highest bits.
2488   unsigned HighShift = 63 - countLeadingZeros(Mask);
2489   uint64_t High = uint64_t(1) << HighShift;
2490   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2491 
2492   // Signed ordered comparisons are effectively unsigned if the sign
2493   // bit is dropped.
2494   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2495 
2496   // Check for equality comparisons with 0, or the equivalent.
2497   if (CmpVal == 0) {
2498     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2499       return SystemZ::CCMASK_TM_ALL_0;
2500     if (CCMask == SystemZ::CCMASK_CMP_NE)
2501       return SystemZ::CCMASK_TM_SOME_1;
2502   }
2503   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2504     if (CCMask == SystemZ::CCMASK_CMP_LT)
2505       return SystemZ::CCMASK_TM_ALL_0;
2506     if (CCMask == SystemZ::CCMASK_CMP_GE)
2507       return SystemZ::CCMASK_TM_SOME_1;
2508   }
2509   if (EffectivelyUnsigned && CmpVal < Low) {
2510     if (CCMask == SystemZ::CCMASK_CMP_LE)
2511       return SystemZ::CCMASK_TM_ALL_0;
2512     if (CCMask == SystemZ::CCMASK_CMP_GT)
2513       return SystemZ::CCMASK_TM_SOME_1;
2514   }
2515 
2516   // Check for equality comparisons with the mask, or the equivalent.
2517   if (CmpVal == Mask) {
2518     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2519       return SystemZ::CCMASK_TM_ALL_1;
2520     if (CCMask == SystemZ::CCMASK_CMP_NE)
2521       return SystemZ::CCMASK_TM_SOME_0;
2522   }
2523   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2524     if (CCMask == SystemZ::CCMASK_CMP_GT)
2525       return SystemZ::CCMASK_TM_ALL_1;
2526     if (CCMask == SystemZ::CCMASK_CMP_LE)
2527       return SystemZ::CCMASK_TM_SOME_0;
2528   }
2529   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2530     if (CCMask == SystemZ::CCMASK_CMP_GE)
2531       return SystemZ::CCMASK_TM_ALL_1;
2532     if (CCMask == SystemZ::CCMASK_CMP_LT)
2533       return SystemZ::CCMASK_TM_SOME_0;
2534   }
2535 
2536   // Check for ordered comparisons with the top bit.
2537   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2538     if (CCMask == SystemZ::CCMASK_CMP_LE)
2539       return SystemZ::CCMASK_TM_MSB_0;
2540     if (CCMask == SystemZ::CCMASK_CMP_GT)
2541       return SystemZ::CCMASK_TM_MSB_1;
2542   }
2543   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2544     if (CCMask == SystemZ::CCMASK_CMP_LT)
2545       return SystemZ::CCMASK_TM_MSB_0;
2546     if (CCMask == SystemZ::CCMASK_CMP_GE)
2547       return SystemZ::CCMASK_TM_MSB_1;
2548   }
2549 
2550   // If there are just two bits, we can do equality checks for Low and High
2551   // as well.
2552   if (Mask == Low + High) {
2553     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2554       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2555     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2556       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2557     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2558       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2559     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2560       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2561   }
2562 
2563   // Looks like we've exhausted our options.
2564   return 0;
2565 }
2566 
2567 // See whether C can be implemented as a TEST UNDER MASK instruction.
2568 // Update the arguments with the TM version if so.
2569 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2570                                    Comparison &C) {
2571   // Check that we have a comparison with a constant.
2572   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2573   if (!ConstOp1)
2574     return;
2575   uint64_t CmpVal = ConstOp1->getZExtValue();
2576 
2577   // Check whether the nonconstant input is an AND with a constant mask.
2578   Comparison NewC(C);
2579   uint64_t MaskVal;
2580   ConstantSDNode *Mask = nullptr;
2581   if (C.Op0.getOpcode() == ISD::AND) {
2582     NewC.Op0 = C.Op0.getOperand(0);
2583     NewC.Op1 = C.Op0.getOperand(1);
2584     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2585     if (!Mask)
2586       return;
2587     MaskVal = Mask->getZExtValue();
2588   } else {
2589     // There is no instruction to compare with a 64-bit immediate
2590     // so use TMHH instead if possible.  We need an unsigned ordered
2591     // comparison with an i64 immediate.
2592     if (NewC.Op0.getValueType() != MVT::i64 ||
2593         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2594         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2595         NewC.ICmpType == SystemZICMP::SignedOnly)
2596       return;
2597     // Convert LE and GT comparisons into LT and GE.
2598     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2599         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2600       if (CmpVal == uint64_t(-1))
2601         return;
2602       CmpVal += 1;
2603       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2604     }
2605     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2606     // be masked off without changing the result.
2607     MaskVal = -(CmpVal & -CmpVal);
2608     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2609   }
2610   if (!MaskVal)
2611     return;
2612 
2613   // Check whether the combination of mask, comparison value and comparison
2614   // type are suitable.
2615   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2616   unsigned NewCCMask, ShiftVal;
2617   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2618       NewC.Op0.getOpcode() == ISD::SHL &&
2619       isSimpleShift(NewC.Op0, ShiftVal) &&
2620       (MaskVal >> ShiftVal != 0) &&
2621       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2622       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2623                                         MaskVal >> ShiftVal,
2624                                         CmpVal >> ShiftVal,
2625                                         SystemZICMP::Any))) {
2626     NewC.Op0 = NewC.Op0.getOperand(0);
2627     MaskVal >>= ShiftVal;
2628   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2629              NewC.Op0.getOpcode() == ISD::SRL &&
2630              isSimpleShift(NewC.Op0, ShiftVal) &&
2631              (MaskVal << ShiftVal != 0) &&
2632              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2633              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2634                                                MaskVal << ShiftVal,
2635                                                CmpVal << ShiftVal,
2636                                                SystemZICMP::UnsignedOnly))) {
2637     NewC.Op0 = NewC.Op0.getOperand(0);
2638     MaskVal <<= ShiftVal;
2639   } else {
2640     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2641                                      NewC.ICmpType);
2642     if (!NewCCMask)
2643       return;
2644   }
2645 
2646   // Go ahead and make the change.
2647   C.Opcode = SystemZISD::TM;
2648   C.Op0 = NewC.Op0;
2649   if (Mask && Mask->getZExtValue() == MaskVal)
2650     C.Op1 = SDValue(Mask, 0);
2651   else
2652     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2653   C.CCValid = SystemZ::CCMASK_TM;
2654   C.CCMask = NewCCMask;
2655 }
2656 
2657 // See whether the comparison argument contains a redundant AND
2658 // and remove it if so.  This sometimes happens due to the generic
2659 // BRCOND expansion.
2660 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2661                                   Comparison &C) {
2662   if (C.Op0.getOpcode() != ISD::AND)
2663     return;
2664   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2665   if (!Mask)
2666     return;
2667   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2668   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2669     return;
2670 
2671   C.Op0 = C.Op0.getOperand(0);
2672 }
2673 
2674 // Return a Comparison that tests the condition-code result of intrinsic
2675 // node Call against constant integer CC using comparison code Cond.
2676 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2677 // and CCValid is the set of possible condition-code results.
2678 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2679                                   SDValue Call, unsigned CCValid, uint64_t CC,
2680                                   ISD::CondCode Cond) {
2681   Comparison C(Call, SDValue(), SDValue());
2682   C.Opcode = Opcode;
2683   C.CCValid = CCValid;
2684   if (Cond == ISD::SETEQ)
2685     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2686     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2687   else if (Cond == ISD::SETNE)
2688     // ...and the inverse of that.
2689     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2690   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2691     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2692     // always true for CC>3.
2693     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2694   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2695     // ...and the inverse of that.
2696     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2697   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2698     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2699     // always true for CC>3.
2700     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2701   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2702     // ...and the inverse of that.
2703     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2704   else
2705     llvm_unreachable("Unexpected integer comparison type");
2706   C.CCMask &= CCValid;
2707   return C;
2708 }
2709 
2710 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2711 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2712                          ISD::CondCode Cond, const SDLoc &DL,
2713                          SDValue Chain = SDValue(),
2714                          bool IsSignaling = false) {
2715   if (CmpOp1.getOpcode() == ISD::Constant) {
2716     assert(!Chain);
2717     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2718     unsigned Opcode, CCValid;
2719     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2720         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2721         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2722       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2723     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2724         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2725         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2726       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2727   }
2728   Comparison C(CmpOp0, CmpOp1, Chain);
2729   C.CCMask = CCMaskForCondCode(Cond);
2730   if (C.Op0.getValueType().isFloatingPoint()) {
2731     C.CCValid = SystemZ::CCMASK_FCMP;
2732     if (!C.Chain)
2733       C.Opcode = SystemZISD::FCMP;
2734     else if (!IsSignaling)
2735       C.Opcode = SystemZISD::STRICT_FCMP;
2736     else
2737       C.Opcode = SystemZISD::STRICT_FCMPS;
2738     adjustForFNeg(C);
2739   } else {
2740     assert(!C.Chain);
2741     C.CCValid = SystemZ::CCMASK_ICMP;
2742     C.Opcode = SystemZISD::ICMP;
2743     // Choose the type of comparison.  Equality and inequality tests can
2744     // use either signed or unsigned comparisons.  The choice also doesn't
2745     // matter if both sign bits are known to be clear.  In those cases we
2746     // want to give the main isel code the freedom to choose whichever
2747     // form fits best.
2748     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2749         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2750         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2751       C.ICmpType = SystemZICMP::Any;
2752     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2753       C.ICmpType = SystemZICMP::UnsignedOnly;
2754     else
2755       C.ICmpType = SystemZICMP::SignedOnly;
2756     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2757     adjustForRedundantAnd(DAG, DL, C);
2758     adjustZeroCmp(DAG, DL, C);
2759     adjustSubwordCmp(DAG, DL, C);
2760     adjustForSubtraction(DAG, DL, C);
2761     adjustForLTGFR(C);
2762     adjustICmpTruncate(DAG, DL, C);
2763   }
2764 
2765   if (shouldSwapCmpOperands(C)) {
2766     std::swap(C.Op0, C.Op1);
2767     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2768   }
2769 
2770   adjustForTestUnderMask(DAG, DL, C);
2771   return C;
2772 }
2773 
2774 // Emit the comparison instruction described by C.
2775 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2776   if (!C.Op1.getNode()) {
2777     SDNode *Node;
2778     switch (C.Op0.getOpcode()) {
2779     case ISD::INTRINSIC_W_CHAIN:
2780       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2781       return SDValue(Node, 0);
2782     case ISD::INTRINSIC_WO_CHAIN:
2783       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2784       return SDValue(Node, Node->getNumValues() - 1);
2785     default:
2786       llvm_unreachable("Invalid comparison operands");
2787     }
2788   }
2789   if (C.Opcode == SystemZISD::ICMP)
2790     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2791                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2792   if (C.Opcode == SystemZISD::TM) {
2793     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2794                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2795     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2796                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2797   }
2798   if (C.Chain) {
2799     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2800     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2801   }
2802   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2803 }
2804 
2805 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2806 // 64 bits.  Extend is the extension type to use.  Store the high part
2807 // in Hi and the low part in Lo.
2808 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2809                             SDValue Op0, SDValue Op1, SDValue &Hi,
2810                             SDValue &Lo) {
2811   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2812   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2813   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2814   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2815                    DAG.getConstant(32, DL, MVT::i64));
2816   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2817   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2818 }
2819 
2820 // Lower a binary operation that produces two VT results, one in each
2821 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2822 // and Opcode performs the GR128 operation.  Store the even register result
2823 // in Even and the odd register result in Odd.
2824 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2825                              unsigned Opcode, SDValue Op0, SDValue Op1,
2826                              SDValue &Even, SDValue &Odd) {
2827   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2828   bool Is32Bit = is32Bit(VT);
2829   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2830   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2831 }
2832 
2833 // Return an i32 value that is 1 if the CC value produced by CCReg is
2834 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2835 // in CCValid, so other values can be ignored.
2836 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2837                          unsigned CCValid, unsigned CCMask) {
2838   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2839                    DAG.getConstant(0, DL, MVT::i32),
2840                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2841                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2842   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2843 }
2844 
2845 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2846 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2847 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2848 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2849 // floating-point comparisons.
2850 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2851 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2852   switch (CC) {
2853   case ISD::SETOEQ:
2854   case ISD::SETEQ:
2855     switch (Mode) {
2856     case CmpMode::Int:         return SystemZISD::VICMPE;
2857     case CmpMode::FP:          return SystemZISD::VFCMPE;
2858     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2859     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2860     }
2861     llvm_unreachable("Bad mode");
2862 
2863   case ISD::SETOGE:
2864   case ISD::SETGE:
2865     switch (Mode) {
2866     case CmpMode::Int:         return 0;
2867     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2868     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2869     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2870     }
2871     llvm_unreachable("Bad mode");
2872 
2873   case ISD::SETOGT:
2874   case ISD::SETGT:
2875     switch (Mode) {
2876     case CmpMode::Int:         return SystemZISD::VICMPH;
2877     case CmpMode::FP:          return SystemZISD::VFCMPH;
2878     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2879     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2880     }
2881     llvm_unreachable("Bad mode");
2882 
2883   case ISD::SETUGT:
2884     switch (Mode) {
2885     case CmpMode::Int:         return SystemZISD::VICMPHL;
2886     case CmpMode::FP:          return 0;
2887     case CmpMode::StrictFP:    return 0;
2888     case CmpMode::SignalingFP: return 0;
2889     }
2890     llvm_unreachable("Bad mode");
2891 
2892   default:
2893     return 0;
2894   }
2895 }
2896 
2897 // Return the SystemZISD vector comparison operation for CC or its inverse,
2898 // or 0 if neither can be done directly.  Indicate in Invert whether the
2899 // result is for the inverse of CC.  Mode is as above.
2900 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2901                                             bool &Invert) {
2902   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2903     Invert = false;
2904     return Opcode;
2905   }
2906 
2907   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2908   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2909     Invert = true;
2910     return Opcode;
2911   }
2912 
2913   return 0;
2914 }
2915 
2916 // Return a v2f64 that contains the extended form of elements Start and Start+1
2917 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2918 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2919                                   SDValue Op, SDValue Chain) {
2920   int Mask[] = { Start, -1, Start + 1, -1 };
2921   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2922   if (Chain) {
2923     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2924     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2925   }
2926   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2927 }
2928 
2929 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2930 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2931 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2932                                             const SDLoc &DL, EVT VT,
2933                                             SDValue CmpOp0,
2934                                             SDValue CmpOp1,
2935                                             SDValue Chain) const {
2936   // There is no hardware support for v4f32 (unless we have the vector
2937   // enhancements facility 1), so extend the vector into two v2f64s
2938   // and compare those.
2939   if (CmpOp0.getValueType() == MVT::v4f32 &&
2940       !Subtarget.hasVectorEnhancements1()) {
2941     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2942     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2943     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2944     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2945     if (Chain) {
2946       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2947       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2948       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2949       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2950       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2951                             H1.getValue(1), L1.getValue(1),
2952                             HRes.getValue(1), LRes.getValue(1) };
2953       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2954       SDValue Ops[2] = { Res, NewChain };
2955       return DAG.getMergeValues(Ops, DL);
2956     }
2957     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
2958     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
2959     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2960   }
2961   if (Chain) {
2962     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
2963     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
2964   }
2965   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
2966 }
2967 
2968 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
2969 // an integer mask of type VT.  If Chain is nonnull, we have a strict
2970 // floating-point comparison.  If in addition IsSignaling is true, we have
2971 // a strict signaling floating-point comparison.
2972 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
2973                                                 const SDLoc &DL, EVT VT,
2974                                                 ISD::CondCode CC,
2975                                                 SDValue CmpOp0,
2976                                                 SDValue CmpOp1,
2977                                                 SDValue Chain,
2978                                                 bool IsSignaling) const {
2979   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
2980   assert (!Chain || IsFP);
2981   assert (!IsSignaling || Chain);
2982   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
2983                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
2984   bool Invert = false;
2985   SDValue Cmp;
2986   switch (CC) {
2987     // Handle tests for order using (or (ogt y x) (oge x y)).
2988   case ISD::SETUO:
2989     Invert = true;
2990     LLVM_FALLTHROUGH;
2991   case ISD::SETO: {
2992     assert(IsFP && "Unexpected integer comparison");
2993     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
2994                               DL, VT, CmpOp1, CmpOp0, Chain);
2995     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
2996                               DL, VT, CmpOp0, CmpOp1, Chain);
2997     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
2998     if (Chain)
2999       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3000                           LT.getValue(1), GE.getValue(1));
3001     break;
3002   }
3003 
3004     // Handle <> tests using (or (ogt y x) (ogt x y)).
3005   case ISD::SETUEQ:
3006     Invert = true;
3007     LLVM_FALLTHROUGH;
3008   case ISD::SETONE: {
3009     assert(IsFP && "Unexpected integer comparison");
3010     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3011                               DL, VT, CmpOp1, CmpOp0, Chain);
3012     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3013                               DL, VT, CmpOp0, CmpOp1, Chain);
3014     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
3015     if (Chain)
3016       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3017                           LT.getValue(1), GT.getValue(1));
3018     break;
3019   }
3020 
3021     // Otherwise a single comparison is enough.  It doesn't really
3022     // matter whether we try the inversion or the swap first, since
3023     // there are no cases where both work.
3024   default:
3025     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3026       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
3027     else {
3028       CC = ISD::getSetCCSwappedOperands(CC);
3029       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3030         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
3031       else
3032         llvm_unreachable("Unhandled comparison");
3033     }
3034     if (Chain)
3035       Chain = Cmp.getValue(1);
3036     break;
3037   }
3038   if (Invert) {
3039     SDValue Mask =
3040       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
3041     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3042   }
3043   if (Chain && Chain.getNode() != Cmp.getNode()) {
3044     SDValue Ops[2] = { Cmp, Chain };
3045     Cmp = DAG.getMergeValues(Ops, DL);
3046   }
3047   return Cmp;
3048 }
3049 
3050 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3051                                           SelectionDAG &DAG) const {
3052   SDValue CmpOp0   = Op.getOperand(0);
3053   SDValue CmpOp1   = Op.getOperand(1);
3054   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3055   SDLoc DL(Op);
3056   EVT VT = Op.getValueType();
3057   if (VT.isVector())
3058     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3059 
3060   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3061   SDValue CCReg = emitCmp(DAG, DL, C);
3062   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3063 }
3064 
3065 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3066                                                   SelectionDAG &DAG,
3067                                                   bool IsSignaling) const {
3068   SDValue Chain    = Op.getOperand(0);
3069   SDValue CmpOp0   = Op.getOperand(1);
3070   SDValue CmpOp1   = Op.getOperand(2);
3071   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3072   SDLoc DL(Op);
3073   EVT VT = Op.getNode()->getValueType(0);
3074   if (VT.isVector()) {
3075     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3076                                    Chain, IsSignaling);
3077     return Res.getValue(Op.getResNo());
3078   }
3079 
3080   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3081   SDValue CCReg = emitCmp(DAG, DL, C);
3082   CCReg->setFlags(Op->getFlags());
3083   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3084   SDValue Ops[2] = { Result, CCReg.getValue(1) };
3085   return DAG.getMergeValues(Ops, DL);
3086 }
3087 
3088 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3089   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3090   SDValue CmpOp0   = Op.getOperand(2);
3091   SDValue CmpOp1   = Op.getOperand(3);
3092   SDValue Dest     = Op.getOperand(4);
3093   SDLoc DL(Op);
3094 
3095   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3096   SDValue CCReg = emitCmp(DAG, DL, C);
3097   return DAG.getNode(
3098       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3099       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3100       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3101 }
3102 
3103 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3104 // allowing Pos and Neg to be wider than CmpOp.
3105 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3106   return (Neg.getOpcode() == ISD::SUB &&
3107           Neg.getOperand(0).getOpcode() == ISD::Constant &&
3108           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
3109           Neg.getOperand(1) == Pos &&
3110           (Pos == CmpOp ||
3111            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3112             Pos.getOperand(0) == CmpOp)));
3113 }
3114 
3115 // Return the absolute or negative absolute of Op; IsNegative decides which.
3116 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3117                            bool IsNegative) {
3118   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3119   if (IsNegative)
3120     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3121                      DAG.getConstant(0, DL, Op.getValueType()), Op);
3122   return Op;
3123 }
3124 
3125 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3126                                               SelectionDAG &DAG) const {
3127   SDValue CmpOp0   = Op.getOperand(0);
3128   SDValue CmpOp1   = Op.getOperand(1);
3129   SDValue TrueOp   = Op.getOperand(2);
3130   SDValue FalseOp  = Op.getOperand(3);
3131   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3132   SDLoc DL(Op);
3133 
3134   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3135 
3136   // Check for absolute and negative-absolute selections, including those
3137   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3138   // This check supplements the one in DAGCombiner.
3139   if (C.Opcode == SystemZISD::ICMP &&
3140       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3141       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3142       C.Op1.getOpcode() == ISD::Constant &&
3143       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
3144     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3145       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3146     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3147       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3148   }
3149 
3150   SDValue CCReg = emitCmp(DAG, DL, C);
3151   SDValue Ops[] = {TrueOp, FalseOp,
3152                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3153                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3154 
3155   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3156 }
3157 
3158 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3159                                                   SelectionDAG &DAG) const {
3160   SDLoc DL(Node);
3161   const GlobalValue *GV = Node->getGlobal();
3162   int64_t Offset = Node->getOffset();
3163   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3164   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3165 
3166   SDValue Result;
3167   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3168     if (isInt<32>(Offset)) {
3169       // Assign anchors at 1<<12 byte boundaries.
3170       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3171       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3172       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3173 
3174       // The offset can be folded into the address if it is aligned to a
3175       // halfword.
3176       Offset -= Anchor;
3177       if (Offset != 0 && (Offset & 1) == 0) {
3178         SDValue Full =
3179           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3180         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3181         Offset = 0;
3182       }
3183     } else {
3184       // Conservatively load a constant offset greater than 32 bits into a
3185       // register below.
3186       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3187       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3188     }
3189   } else {
3190     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3191     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3192     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3193                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3194   }
3195 
3196   // If there was a non-zero offset that we didn't fold, create an explicit
3197   // addition for it.
3198   if (Offset != 0)
3199     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3200                          DAG.getConstant(Offset, DL, PtrVT));
3201 
3202   return Result;
3203 }
3204 
3205 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3206                                                  SelectionDAG &DAG,
3207                                                  unsigned Opcode,
3208                                                  SDValue GOTOffset) const {
3209   SDLoc DL(Node);
3210   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3211   SDValue Chain = DAG.getEntryNode();
3212   SDValue Glue;
3213 
3214   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3215       CallingConv::GHC)
3216     report_fatal_error("In GHC calling convention TLS is not supported");
3217 
3218   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3219   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3220   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3221   Glue = Chain.getValue(1);
3222   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3223   Glue = Chain.getValue(1);
3224 
3225   // The first call operand is the chain and the second is the TLS symbol.
3226   SmallVector<SDValue, 8> Ops;
3227   Ops.push_back(Chain);
3228   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3229                                            Node->getValueType(0),
3230                                            0, 0));
3231 
3232   // Add argument registers to the end of the list so that they are
3233   // known live into the call.
3234   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3235   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3236 
3237   // Add a register mask operand representing the call-preserved registers.
3238   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3239   const uint32_t *Mask =
3240       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3241   assert(Mask && "Missing call preserved mask for calling convention");
3242   Ops.push_back(DAG.getRegisterMask(Mask));
3243 
3244   // Glue the call to the argument copies.
3245   Ops.push_back(Glue);
3246 
3247   // Emit the call.
3248   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3249   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3250   Glue = Chain.getValue(1);
3251 
3252   // Copy the return value from %r2.
3253   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3254 }
3255 
3256 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3257                                                   SelectionDAG &DAG) const {
3258   SDValue Chain = DAG.getEntryNode();
3259   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3260 
3261   // The high part of the thread pointer is in access register 0.
3262   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3263   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3264 
3265   // The low part of the thread pointer is in access register 1.
3266   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3267   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3268 
3269   // Merge them into a single 64-bit address.
3270   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3271                                     DAG.getConstant(32, DL, PtrVT));
3272   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3273 }
3274 
3275 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3276                                                      SelectionDAG &DAG) const {
3277   if (DAG.getTarget().useEmulatedTLS())
3278     return LowerToTLSEmulatedModel(Node, DAG);
3279   SDLoc DL(Node);
3280   const GlobalValue *GV = Node->getGlobal();
3281   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3282   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3283 
3284   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3285       CallingConv::GHC)
3286     report_fatal_error("In GHC calling convention TLS is not supported");
3287 
3288   SDValue TP = lowerThreadPointer(DL, DAG);
3289 
3290   // Get the offset of GA from the thread pointer, based on the TLS model.
3291   SDValue Offset;
3292   switch (model) {
3293     case TLSModel::GeneralDynamic: {
3294       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3295       SystemZConstantPoolValue *CPV =
3296         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3297 
3298       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3299       Offset = DAG.getLoad(
3300           PtrVT, DL, DAG.getEntryNode(), Offset,
3301           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3302 
3303       // Call __tls_get_offset to retrieve the offset.
3304       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3305       break;
3306     }
3307 
3308     case TLSModel::LocalDynamic: {
3309       // Load the GOT offset of the module ID.
3310       SystemZConstantPoolValue *CPV =
3311         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3312 
3313       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3314       Offset = DAG.getLoad(
3315           PtrVT, DL, DAG.getEntryNode(), Offset,
3316           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3317 
3318       // Call __tls_get_offset to retrieve the module base offset.
3319       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3320 
3321       // Note: The SystemZLDCleanupPass will remove redundant computations
3322       // of the module base offset.  Count total number of local-dynamic
3323       // accesses to trigger execution of that pass.
3324       SystemZMachineFunctionInfo* MFI =
3325         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3326       MFI->incNumLocalDynamicTLSAccesses();
3327 
3328       // Add the per-symbol offset.
3329       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3330 
3331       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3332       DTPOffset = DAG.getLoad(
3333           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3334           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3335 
3336       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3337       break;
3338     }
3339 
3340     case TLSModel::InitialExec: {
3341       // Load the offset from the GOT.
3342       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3343                                           SystemZII::MO_INDNTPOFF);
3344       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3345       Offset =
3346           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3347                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3348       break;
3349     }
3350 
3351     case TLSModel::LocalExec: {
3352       // Force the offset into the constant pool and load it from there.
3353       SystemZConstantPoolValue *CPV =
3354         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3355 
3356       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3357       Offset = DAG.getLoad(
3358           PtrVT, DL, DAG.getEntryNode(), Offset,
3359           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3360       break;
3361     }
3362   }
3363 
3364   // Add the base and offset together.
3365   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3366 }
3367 
3368 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3369                                                  SelectionDAG &DAG) const {
3370   SDLoc DL(Node);
3371   const BlockAddress *BA = Node->getBlockAddress();
3372   int64_t Offset = Node->getOffset();
3373   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3374 
3375   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3376   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3377   return Result;
3378 }
3379 
3380 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3381                                               SelectionDAG &DAG) const {
3382   SDLoc DL(JT);
3383   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3384   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3385 
3386   // Use LARL to load the address of the table.
3387   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3388 }
3389 
3390 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3391                                                  SelectionDAG &DAG) const {
3392   SDLoc DL(CP);
3393   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3394 
3395   SDValue Result;
3396   if (CP->isMachineConstantPoolEntry())
3397     Result =
3398         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3399   else
3400     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3401                                        CP->getOffset());
3402 
3403   // Use LARL to load the address of the constant pool entry.
3404   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3405 }
3406 
3407 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3408                                               SelectionDAG &DAG) const {
3409   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3410   MachineFunction &MF = DAG.getMachineFunction();
3411   MachineFrameInfo &MFI = MF.getFrameInfo();
3412   MFI.setFrameAddressIsTaken(true);
3413 
3414   SDLoc DL(Op);
3415   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3416   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3417 
3418   // By definition, the frame address is the address of the back chain.  (In
3419   // the case of packed stack without backchain, return the address where the
3420   // backchain would have been stored. This will either be an unused space or
3421   // contain a saved register).
3422   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3423   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3424 
3425   // FIXME The frontend should detect this case.
3426   if (Depth > 0) {
3427     report_fatal_error("Unsupported stack frame traversal count");
3428   }
3429 
3430   return BackChain;
3431 }
3432 
3433 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3434                                                SelectionDAG &DAG) const {
3435   MachineFunction &MF = DAG.getMachineFunction();
3436   MachineFrameInfo &MFI = MF.getFrameInfo();
3437   MFI.setReturnAddressIsTaken(true);
3438 
3439   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3440     return SDValue();
3441 
3442   SDLoc DL(Op);
3443   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3444   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3445 
3446   // FIXME The frontend should detect this case.
3447   if (Depth > 0) {
3448     report_fatal_error("Unsupported stack frame traversal count");
3449   }
3450 
3451   // Return R14D, which has the return address. Mark it an implicit live-in.
3452   Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3453   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3454 }
3455 
3456 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3457                                             SelectionDAG &DAG) const {
3458   SDLoc DL(Op);
3459   SDValue In = Op.getOperand(0);
3460   EVT InVT = In.getValueType();
3461   EVT ResVT = Op.getValueType();
3462 
3463   // Convert loads directly.  This is normally done by DAGCombiner,
3464   // but we need this case for bitcasts that are created during lowering
3465   // and which are then lowered themselves.
3466   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3467     if (ISD::isNormalLoad(LoadN)) {
3468       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3469                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3470       // Update the chain uses.
3471       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3472       return NewLoad;
3473     }
3474 
3475   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3476     SDValue In64;
3477     if (Subtarget.hasHighWord()) {
3478       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3479                                        MVT::i64);
3480       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3481                                        MVT::i64, SDValue(U64, 0), In);
3482     } else {
3483       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3484       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3485                          DAG.getConstant(32, DL, MVT::i64));
3486     }
3487     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3488     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3489                                       DL, MVT::f32, Out64);
3490   }
3491   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3492     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3493     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3494                                              MVT::f64, SDValue(U64, 0), In);
3495     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3496     if (Subtarget.hasHighWord())
3497       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3498                                         MVT::i32, Out64);
3499     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3500                                 DAG.getConstant(32, DL, MVT::i64));
3501     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3502   }
3503   llvm_unreachable("Unexpected bitcast combination");
3504 }
3505 
3506 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3507                                             SelectionDAG &DAG) const {
3508 
3509   if (Subtarget.isTargetXPLINK64())
3510     return lowerVASTART_XPLINK(Op, DAG);
3511   else
3512     return lowerVASTART_ELF(Op, DAG);
3513 }
3514 
3515 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op,
3516                                                    SelectionDAG &DAG) const {
3517   MachineFunction &MF = DAG.getMachineFunction();
3518   SystemZMachineFunctionInfo *FuncInfo =
3519       MF.getInfo<SystemZMachineFunctionInfo>();
3520 
3521   SDLoc DL(Op);
3522 
3523   // vastart just stores the address of the VarArgsFrameIndex slot into the
3524   // memory location argument.
3525   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3526   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3527   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3528   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3529                       MachinePointerInfo(SV));
3530 }
3531 
3532 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op,
3533                                                 SelectionDAG &DAG) const {
3534   MachineFunction &MF = DAG.getMachineFunction();
3535   SystemZMachineFunctionInfo *FuncInfo =
3536     MF.getInfo<SystemZMachineFunctionInfo>();
3537   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3538 
3539   SDValue Chain   = Op.getOperand(0);
3540   SDValue Addr    = Op.getOperand(1);
3541   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3542   SDLoc DL(Op);
3543 
3544   // The initial values of each field.
3545   const unsigned NumFields = 4;
3546   SDValue Fields[NumFields] = {
3547     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3548     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3549     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3550     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3551   };
3552 
3553   // Store each field into its respective slot.
3554   SDValue MemOps[NumFields];
3555   unsigned Offset = 0;
3556   for (unsigned I = 0; I < NumFields; ++I) {
3557     SDValue FieldAddr = Addr;
3558     if (Offset != 0)
3559       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3560                               DAG.getIntPtrConstant(Offset, DL));
3561     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3562                              MachinePointerInfo(SV, Offset));
3563     Offset += 8;
3564   }
3565   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3566 }
3567 
3568 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3569                                            SelectionDAG &DAG) const {
3570   SDValue Chain      = Op.getOperand(0);
3571   SDValue DstPtr     = Op.getOperand(1);
3572   SDValue SrcPtr     = Op.getOperand(2);
3573   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3574   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3575   SDLoc DL(Op);
3576 
3577   uint32_t Sz =
3578       Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32;
3579   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL),
3580                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3581                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3582                        MachinePointerInfo(SrcSV));
3583 }
3584 
3585 SDValue
3586 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
3587                                                SelectionDAG &DAG) const {
3588   if (Subtarget.isTargetXPLINK64())
3589     return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG);
3590   else
3591     return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG);
3592 }
3593 
3594 SDValue
3595 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op,
3596                                                       SelectionDAG &DAG) const {
3597   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3598   MachineFunction &MF = DAG.getMachineFunction();
3599   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3600   SDValue Chain = Op.getOperand(0);
3601   SDValue Size = Op.getOperand(1);
3602   SDValue Align = Op.getOperand(2);
3603   SDLoc DL(Op);
3604 
3605   // If user has set the no alignment function attribute, ignore
3606   // alloca alignments.
3607   uint64_t AlignVal =
3608       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3609 
3610   uint64_t StackAlign = TFI->getStackAlignment();
3611   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3612   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3613 
3614   SDValue NeededSpace = Size;
3615 
3616   // Add extra space for alignment if needed.
3617   EVT PtrVT = getPointerTy(MF.getDataLayout());
3618   if (ExtraAlignSpace)
3619     NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace,
3620                               DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3621 
3622   bool IsSigned = false;
3623   bool DoesNotReturn = false;
3624   bool IsReturnValueUsed = false;
3625   EVT VT = Op.getValueType();
3626   SDValue AllocaCall =
3627       makeExternalCall(Chain, DAG, "@@ALCAXP", VT, makeArrayRef(NeededSpace),
3628                        CallingConv::C, IsSigned, DL, DoesNotReturn,
3629                        IsReturnValueUsed)
3630           .first;
3631 
3632   // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue
3633   // to end of call in order to ensure it isn't broken up from the call
3634   // sequence.
3635   auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
3636   Register SPReg = Regs.getStackPointerRegister();
3637   Chain = AllocaCall.getValue(1);
3638   SDValue Glue = AllocaCall.getValue(2);
3639   SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue);
3640   Chain = NewSPRegNode.getValue(1);
3641 
3642   MVT PtrMVT = getPointerMemTy(MF.getDataLayout());
3643   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT);
3644   SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust);
3645 
3646   // Dynamically realign if needed.
3647   if (ExtraAlignSpace) {
3648     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3649                          DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3650     Result = DAG.getNode(ISD::AND, DL, PtrVT, Result,
3651                          DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT));
3652   }
3653 
3654   SDValue Ops[2] = {Result, Chain};
3655   return DAG.getMergeValues(Ops, DL);
3656 }
3657 
3658 SDValue
3659 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op,
3660                                                    SelectionDAG &DAG) const {
3661   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3662   MachineFunction &MF = DAG.getMachineFunction();
3663   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3664   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3665 
3666   SDValue Chain = Op.getOperand(0);
3667   SDValue Size  = Op.getOperand(1);
3668   SDValue Align = Op.getOperand(2);
3669   SDLoc DL(Op);
3670 
3671   // If user has set the no alignment function attribute, ignore
3672   // alloca alignments.
3673   uint64_t AlignVal =
3674       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3675 
3676   uint64_t StackAlign = TFI->getStackAlignment();
3677   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3678   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3679 
3680   Register SPReg = getStackPointerRegisterToSaveRestore();
3681   SDValue NeededSpace = Size;
3682 
3683   // Get a reference to the stack pointer.
3684   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3685 
3686   // If we need a backchain, save it now.
3687   SDValue Backchain;
3688   if (StoreBackchain)
3689     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3690                             MachinePointerInfo());
3691 
3692   // Add extra space for alignment if needed.
3693   if (ExtraAlignSpace)
3694     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3695                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3696 
3697   // Get the new stack pointer value.
3698   SDValue NewSP;
3699   if (hasInlineStackProbe(MF)) {
3700     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3701                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3702     Chain = NewSP.getValue(1);
3703   }
3704   else {
3705     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3706     // Copy the new stack pointer back.
3707     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3708   }
3709 
3710   // The allocated data lives above the 160 bytes allocated for the standard
3711   // frame, plus any outgoing stack arguments.  We don't know how much that
3712   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3713   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3714   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3715 
3716   // Dynamically realign if needed.
3717   if (RequiredAlign > StackAlign) {
3718     Result =
3719       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3720                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3721     Result =
3722       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3723                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3724   }
3725 
3726   if (StoreBackchain)
3727     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3728                          MachinePointerInfo());
3729 
3730   SDValue Ops[2] = { Result, Chain };
3731   return DAG.getMergeValues(Ops, DL);
3732 }
3733 
3734 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3735     SDValue Op, SelectionDAG &DAG) const {
3736   SDLoc DL(Op);
3737 
3738   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3739 }
3740 
3741 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3742                                               SelectionDAG &DAG) const {
3743   EVT VT = Op.getValueType();
3744   SDLoc DL(Op);
3745   SDValue Ops[2];
3746   if (is32Bit(VT))
3747     // Just do a normal 64-bit multiplication and extract the results.
3748     // We define this so that it can be used for constant division.
3749     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3750                     Op.getOperand(1), Ops[1], Ops[0]);
3751   else if (Subtarget.hasMiscellaneousExtensions2())
3752     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3753     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3754     // return the low half first, so the results are in reverse order.
3755     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3756                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3757   else {
3758     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3759     //
3760     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3761     //
3762     // but using the fact that the upper halves are either all zeros
3763     // or all ones:
3764     //
3765     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3766     //
3767     // and grouping the right terms together since they are quicker than the
3768     // multiplication:
3769     //
3770     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3771     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3772     SDValue LL = Op.getOperand(0);
3773     SDValue RL = Op.getOperand(1);
3774     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3775     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3776     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3777     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3778     // return the low half first, so the results are in reverse order.
3779     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3780                      LL, RL, Ops[1], Ops[0]);
3781     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3782     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3783     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3784     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3785   }
3786   return DAG.getMergeValues(Ops, DL);
3787 }
3788 
3789 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3790                                               SelectionDAG &DAG) const {
3791   EVT VT = Op.getValueType();
3792   SDLoc DL(Op);
3793   SDValue Ops[2];
3794   if (is32Bit(VT))
3795     // Just do a normal 64-bit multiplication and extract the results.
3796     // We define this so that it can be used for constant division.
3797     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3798                     Op.getOperand(1), Ops[1], Ops[0]);
3799   else
3800     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3801     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3802     // return the low half first, so the results are in reverse order.
3803     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3804                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3805   return DAG.getMergeValues(Ops, DL);
3806 }
3807 
3808 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3809                                             SelectionDAG &DAG) const {
3810   SDValue Op0 = Op.getOperand(0);
3811   SDValue Op1 = Op.getOperand(1);
3812   EVT VT = Op.getValueType();
3813   SDLoc DL(Op);
3814 
3815   // We use DSGF for 32-bit division.  This means the first operand must
3816   // always be 64-bit, and the second operand should be 32-bit whenever
3817   // that is possible, to improve performance.
3818   if (is32Bit(VT))
3819     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3820   else if (DAG.ComputeNumSignBits(Op1) > 32)
3821     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3822 
3823   // DSG(F) returns the remainder in the even register and the
3824   // quotient in the odd register.
3825   SDValue Ops[2];
3826   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3827   return DAG.getMergeValues(Ops, DL);
3828 }
3829 
3830 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3831                                             SelectionDAG &DAG) const {
3832   EVT VT = Op.getValueType();
3833   SDLoc DL(Op);
3834 
3835   // DL(G) returns the remainder in the even register and the
3836   // quotient in the odd register.
3837   SDValue Ops[2];
3838   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3839                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3840   return DAG.getMergeValues(Ops, DL);
3841 }
3842 
3843 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3844   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3845 
3846   // Get the known-zero masks for each operand.
3847   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3848   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3849                         DAG.computeKnownBits(Ops[1])};
3850 
3851   // See if the upper 32 bits of one operand and the lower 32 bits of the
3852   // other are known zero.  They are the low and high operands respectively.
3853   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3854                        Known[1].Zero.getZExtValue() };
3855   unsigned High, Low;
3856   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3857     High = 1, Low = 0;
3858   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3859     High = 0, Low = 1;
3860   else
3861     return Op;
3862 
3863   SDValue LowOp = Ops[Low];
3864   SDValue HighOp = Ops[High];
3865 
3866   // If the high part is a constant, we're better off using IILH.
3867   if (HighOp.getOpcode() == ISD::Constant)
3868     return Op;
3869 
3870   // If the low part is a constant that is outside the range of LHI,
3871   // then we're better off using IILF.
3872   if (LowOp.getOpcode() == ISD::Constant) {
3873     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3874     if (!isInt<16>(Value))
3875       return Op;
3876   }
3877 
3878   // Check whether the high part is an AND that doesn't change the
3879   // high 32 bits and just masks out low bits.  We can skip it if so.
3880   if (HighOp.getOpcode() == ISD::AND &&
3881       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3882     SDValue HighOp0 = HighOp.getOperand(0);
3883     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3884     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3885       HighOp = HighOp0;
3886   }
3887 
3888   // Take advantage of the fact that all GR32 operations only change the
3889   // low 32 bits by truncating Low to an i32 and inserting it directly
3890   // using a subreg.  The interesting cases are those where the truncation
3891   // can be folded.
3892   SDLoc DL(Op);
3893   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3894   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3895                                    MVT::i64, HighOp, Low32);
3896 }
3897 
3898 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3899 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3900                                           SelectionDAG &DAG) const {
3901   SDNode *N = Op.getNode();
3902   SDValue LHS = N->getOperand(0);
3903   SDValue RHS = N->getOperand(1);
3904   SDLoc DL(N);
3905   unsigned BaseOp = 0;
3906   unsigned CCValid = 0;
3907   unsigned CCMask = 0;
3908 
3909   switch (Op.getOpcode()) {
3910   default: llvm_unreachable("Unknown instruction!");
3911   case ISD::SADDO:
3912     BaseOp = SystemZISD::SADDO;
3913     CCValid = SystemZ::CCMASK_ARITH;
3914     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3915     break;
3916   case ISD::SSUBO:
3917     BaseOp = SystemZISD::SSUBO;
3918     CCValid = SystemZ::CCMASK_ARITH;
3919     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3920     break;
3921   case ISD::UADDO:
3922     BaseOp = SystemZISD::UADDO;
3923     CCValid = SystemZ::CCMASK_LOGICAL;
3924     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3925     break;
3926   case ISD::USUBO:
3927     BaseOp = SystemZISD::USUBO;
3928     CCValid = SystemZ::CCMASK_LOGICAL;
3929     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3930     break;
3931   }
3932 
3933   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3934   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3935 
3936   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3937   if (N->getValueType(1) == MVT::i1)
3938     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3939 
3940   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3941 }
3942 
3943 static bool isAddCarryChain(SDValue Carry) {
3944   while (Carry.getOpcode() == ISD::ADDCARRY)
3945     Carry = Carry.getOperand(2);
3946   return Carry.getOpcode() == ISD::UADDO;
3947 }
3948 
3949 static bool isSubBorrowChain(SDValue Carry) {
3950   while (Carry.getOpcode() == ISD::SUBCARRY)
3951     Carry = Carry.getOperand(2);
3952   return Carry.getOpcode() == ISD::USUBO;
3953 }
3954 
3955 // Lower ADDCARRY/SUBCARRY nodes.
3956 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
3957                                                 SelectionDAG &DAG) const {
3958 
3959   SDNode *N = Op.getNode();
3960   MVT VT = N->getSimpleValueType(0);
3961 
3962   // Let legalize expand this if it isn't a legal type yet.
3963   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
3964     return SDValue();
3965 
3966   SDValue LHS = N->getOperand(0);
3967   SDValue RHS = N->getOperand(1);
3968   SDValue Carry = Op.getOperand(2);
3969   SDLoc DL(N);
3970   unsigned BaseOp = 0;
3971   unsigned CCValid = 0;
3972   unsigned CCMask = 0;
3973 
3974   switch (Op.getOpcode()) {
3975   default: llvm_unreachable("Unknown instruction!");
3976   case ISD::ADDCARRY:
3977     if (!isAddCarryChain(Carry))
3978       return SDValue();
3979 
3980     BaseOp = SystemZISD::ADDCARRY;
3981     CCValid = SystemZ::CCMASK_LOGICAL;
3982     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3983     break;
3984   case ISD::SUBCARRY:
3985     if (!isSubBorrowChain(Carry))
3986       return SDValue();
3987 
3988     BaseOp = SystemZISD::SUBCARRY;
3989     CCValid = SystemZ::CCMASK_LOGICAL;
3990     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3991     break;
3992   }
3993 
3994   // Set the condition code from the carry flag.
3995   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
3996                       DAG.getConstant(CCValid, DL, MVT::i32),
3997                       DAG.getConstant(CCMask, DL, MVT::i32));
3998 
3999   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4000   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
4001 
4002   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4003   if (N->getValueType(1) == MVT::i1)
4004     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4005 
4006   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4007 }
4008 
4009 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
4010                                           SelectionDAG &DAG) const {
4011   EVT VT = Op.getValueType();
4012   SDLoc DL(Op);
4013   Op = Op.getOperand(0);
4014 
4015   // Handle vector types via VPOPCT.
4016   if (VT.isVector()) {
4017     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
4018     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
4019     switch (VT.getScalarSizeInBits()) {
4020     case 8:
4021       break;
4022     case 16: {
4023       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4024       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
4025       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
4026       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4027       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
4028       break;
4029     }
4030     case 32: {
4031       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4032                                             DAG.getConstant(0, DL, MVT::i32));
4033       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4034       break;
4035     }
4036     case 64: {
4037       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4038                                             DAG.getConstant(0, DL, MVT::i32));
4039       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
4040       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4041       break;
4042     }
4043     default:
4044       llvm_unreachable("Unexpected type");
4045     }
4046     return Op;
4047   }
4048 
4049   // Get the known-zero mask for the operand.
4050   KnownBits Known = DAG.computeKnownBits(Op);
4051   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
4052   if (NumSignificantBits == 0)
4053     return DAG.getConstant(0, DL, VT);
4054 
4055   // Skip known-zero high parts of the operand.
4056   int64_t OrigBitSize = VT.getSizeInBits();
4057   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
4058   BitSize = std::min(BitSize, OrigBitSize);
4059 
4060   // The POPCNT instruction counts the number of bits in each byte.
4061   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
4062   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
4063   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4064 
4065   // Add up per-byte counts in a binary tree.  All bits of Op at
4066   // position larger than BitSize remain zero throughout.
4067   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
4068     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
4069     if (BitSize != OrigBitSize)
4070       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
4071                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
4072     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4073   }
4074 
4075   // Extract overall result from high byte.
4076   if (BitSize > 8)
4077     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
4078                      DAG.getConstant(BitSize - 8, DL, VT));
4079 
4080   return Op;
4081 }
4082 
4083 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
4084                                                  SelectionDAG &DAG) const {
4085   SDLoc DL(Op);
4086   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
4087     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
4088   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
4089     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
4090 
4091   // The only fence that needs an instruction is a sequentially-consistent
4092   // cross-thread fence.
4093   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
4094       FenceSSID == SyncScope::System) {
4095     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
4096                                       Op.getOperand(0)),
4097                    0);
4098   }
4099 
4100   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
4101   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
4102 }
4103 
4104 // Op is an atomic load.  Lower it into a normal volatile load.
4105 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
4106                                                 SelectionDAG &DAG) const {
4107   auto *Node = cast<AtomicSDNode>(Op.getNode());
4108   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
4109                         Node->getChain(), Node->getBasePtr(),
4110                         Node->getMemoryVT(), Node->getMemOperand());
4111 }
4112 
4113 // Op is an atomic store.  Lower it into a normal volatile store.
4114 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
4115                                                  SelectionDAG &DAG) const {
4116   auto *Node = cast<AtomicSDNode>(Op.getNode());
4117   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
4118                                     Node->getBasePtr(), Node->getMemoryVT(),
4119                                     Node->getMemOperand());
4120   // We have to enforce sequential consistency by performing a
4121   // serialization operation after the store.
4122   if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
4123     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
4124                                        MVT::Other, Chain), 0);
4125   return Chain;
4126 }
4127 
4128 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
4129 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
4130 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
4131                                                    SelectionDAG &DAG,
4132                                                    unsigned Opcode) const {
4133   auto *Node = cast<AtomicSDNode>(Op.getNode());
4134 
4135   // 32-bit operations need no code outside the main loop.
4136   EVT NarrowVT = Node->getMemoryVT();
4137   EVT WideVT = MVT::i32;
4138   if (NarrowVT == WideVT)
4139     return Op;
4140 
4141   int64_t BitSize = NarrowVT.getSizeInBits();
4142   SDValue ChainIn = Node->getChain();
4143   SDValue Addr = Node->getBasePtr();
4144   SDValue Src2 = Node->getVal();
4145   MachineMemOperand *MMO = Node->getMemOperand();
4146   SDLoc DL(Node);
4147   EVT PtrVT = Addr.getValueType();
4148 
4149   // Convert atomic subtracts of constants into additions.
4150   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4151     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4152       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4153       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
4154     }
4155 
4156   // Get the address of the containing word.
4157   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4158                                     DAG.getConstant(-4, DL, PtrVT));
4159 
4160   // Get the number of bits that the word must be rotated left in order
4161   // to bring the field to the top bits of a GR32.
4162   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4163                                  DAG.getConstant(3, DL, PtrVT));
4164   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4165 
4166   // Get the complementing shift amount, for rotating a field in the top
4167   // bits back to its proper position.
4168   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4169                                     DAG.getConstant(0, DL, WideVT), BitShift);
4170 
4171   // Extend the source operand to 32 bits and prepare it for the inner loop.
4172   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4173   // operations require the source to be shifted in advance.  (This shift
4174   // can be folded if the source is constant.)  For AND and NAND, the lower
4175   // bits must be set, while for other opcodes they should be left clear.
4176   if (Opcode != SystemZISD::ATOMIC_SWAPW)
4177     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4178                        DAG.getConstant(32 - BitSize, DL, WideVT));
4179   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4180       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4181     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4182                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4183 
4184   // Construct the ATOMIC_LOADW_* node.
4185   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4186   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4187                     DAG.getConstant(BitSize, DL, WideVT) };
4188   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4189                                              NarrowVT, MMO);
4190 
4191   // Rotate the result of the final CS so that the field is in the lower
4192   // bits of a GR32, then truncate it.
4193   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4194                                     DAG.getConstant(BitSize, DL, WideVT));
4195   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4196 
4197   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4198   return DAG.getMergeValues(RetOps, DL);
4199 }
4200 
4201 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
4202 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
4203 // operations into additions.
4204 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4205                                                     SelectionDAG &DAG) const {
4206   auto *Node = cast<AtomicSDNode>(Op.getNode());
4207   EVT MemVT = Node->getMemoryVT();
4208   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4209     // A full-width operation.
4210     assert(Op.getValueType() == MemVT && "Mismatched VTs");
4211     SDValue Src2 = Node->getVal();
4212     SDValue NegSrc2;
4213     SDLoc DL(Src2);
4214 
4215     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
4216       // Use an addition if the operand is constant and either LAA(G) is
4217       // available or the negative value is in the range of A(G)FHI.
4218       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
4219       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
4220         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
4221     } else if (Subtarget.hasInterlockedAccess1())
4222       // Use LAA(G) if available.
4223       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
4224                             Src2);
4225 
4226     if (NegSrc2.getNode())
4227       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4228                            Node->getChain(), Node->getBasePtr(), NegSrc2,
4229                            Node->getMemOperand());
4230 
4231     // Use the node as-is.
4232     return Op;
4233   }
4234 
4235   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4236 }
4237 
4238 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4239 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4240                                                     SelectionDAG &DAG) const {
4241   auto *Node = cast<AtomicSDNode>(Op.getNode());
4242   SDValue ChainIn = Node->getOperand(0);
4243   SDValue Addr = Node->getOperand(1);
4244   SDValue CmpVal = Node->getOperand(2);
4245   SDValue SwapVal = Node->getOperand(3);
4246   MachineMemOperand *MMO = Node->getMemOperand();
4247   SDLoc DL(Node);
4248 
4249   // We have native support for 32-bit and 64-bit compare and swap, but we
4250   // still need to expand extracting the "success" result from the CC.
4251   EVT NarrowVT = Node->getMemoryVT();
4252   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4253   if (NarrowVT == WideVT) {
4254     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4255     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4256     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4257                                                DL, Tys, Ops, NarrowVT, MMO);
4258     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4259                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4260 
4261     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4262     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4263     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4264     return SDValue();
4265   }
4266 
4267   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4268   // via a fullword ATOMIC_CMP_SWAPW operation.
4269   int64_t BitSize = NarrowVT.getSizeInBits();
4270   EVT PtrVT = Addr.getValueType();
4271 
4272   // Get the address of the containing word.
4273   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4274                                     DAG.getConstant(-4, DL, PtrVT));
4275 
4276   // Get the number of bits that the word must be rotated left in order
4277   // to bring the field to the top bits of a GR32.
4278   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4279                                  DAG.getConstant(3, DL, PtrVT));
4280   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4281 
4282   // Get the complementing shift amount, for rotating a field in the top
4283   // bits back to its proper position.
4284   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4285                                     DAG.getConstant(0, DL, WideVT), BitShift);
4286 
4287   // Construct the ATOMIC_CMP_SWAPW node.
4288   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4289   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4290                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4291   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4292                                              VTList, Ops, NarrowVT, MMO);
4293   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4294                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4295 
4296   // emitAtomicCmpSwapW() will zero extend the result (original value).
4297   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4298                                 DAG.getValueType(NarrowVT));
4299   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4300   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4301   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4302   return SDValue();
4303 }
4304 
4305 MachineMemOperand::Flags
4306 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4307   // Because of how we convert atomic_load and atomic_store to normal loads and
4308   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4309   // since DAGCombine hasn't been updated to account for atomic, but non
4310   // volatile loads.  (See D57601)
4311   if (auto *SI = dyn_cast<StoreInst>(&I))
4312     if (SI->isAtomic())
4313       return MachineMemOperand::MOVolatile;
4314   if (auto *LI = dyn_cast<LoadInst>(&I))
4315     if (LI->isAtomic())
4316       return MachineMemOperand::MOVolatile;
4317   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4318     if (AI->isAtomic())
4319       return MachineMemOperand::MOVolatile;
4320   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4321     if (AI->isAtomic())
4322       return MachineMemOperand::MOVolatile;
4323   return MachineMemOperand::MONone;
4324 }
4325 
4326 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4327                                               SelectionDAG &DAG) const {
4328   MachineFunction &MF = DAG.getMachineFunction();
4329   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4330   auto *Regs = Subtarget->getSpecialRegisters();
4331   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4332     report_fatal_error("Variable-sized stack allocations are not supported "
4333                        "in GHC calling convention");
4334   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4335                             Regs->getStackPointerRegister(), Op.getValueType());
4336 }
4337 
4338 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4339                                                  SelectionDAG &DAG) const {
4340   MachineFunction &MF = DAG.getMachineFunction();
4341   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4342   auto *Regs = Subtarget->getSpecialRegisters();
4343   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4344 
4345   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4346     report_fatal_error("Variable-sized stack allocations are not supported "
4347                        "in GHC calling convention");
4348 
4349   SDValue Chain = Op.getOperand(0);
4350   SDValue NewSP = Op.getOperand(1);
4351   SDValue Backchain;
4352   SDLoc DL(Op);
4353 
4354   if (StoreBackchain) {
4355     SDValue OldSP = DAG.getCopyFromReg(
4356         Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4357     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4358                             MachinePointerInfo());
4359   }
4360 
4361   Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
4362 
4363   if (StoreBackchain)
4364     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4365                          MachinePointerInfo());
4366 
4367   return Chain;
4368 }
4369 
4370 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4371                                              SelectionDAG &DAG) const {
4372   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4373   if (!IsData)
4374     // Just preserve the chain.
4375     return Op.getOperand(0);
4376 
4377   SDLoc DL(Op);
4378   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4379   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4380   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4381   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4382                    Op.getOperand(1)};
4383   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4384                                  Node->getVTList(), Ops,
4385                                  Node->getMemoryVT(), Node->getMemOperand());
4386 }
4387 
4388 // Convert condition code in CCReg to an i32 value.
4389 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4390   SDLoc DL(CCReg);
4391   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4392   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4393                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4394 }
4395 
4396 SDValue
4397 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4398                                               SelectionDAG &DAG) const {
4399   unsigned Opcode, CCValid;
4400   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4401     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4402     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4403     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4404     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4405     return SDValue();
4406   }
4407 
4408   return SDValue();
4409 }
4410 
4411 SDValue
4412 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4413                                                SelectionDAG &DAG) const {
4414   unsigned Opcode, CCValid;
4415   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4416     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4417     if (Op->getNumValues() == 1)
4418       return getCCResult(DAG, SDValue(Node, 0));
4419     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4420     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4421                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4422   }
4423 
4424   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4425   switch (Id) {
4426   case Intrinsic::thread_pointer:
4427     return lowerThreadPointer(SDLoc(Op), DAG);
4428 
4429   case Intrinsic::s390_vpdi:
4430     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4431                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4432 
4433   case Intrinsic::s390_vperm:
4434     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4435                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4436 
4437   case Intrinsic::s390_vuphb:
4438   case Intrinsic::s390_vuphh:
4439   case Intrinsic::s390_vuphf:
4440     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4441                        Op.getOperand(1));
4442 
4443   case Intrinsic::s390_vuplhb:
4444   case Intrinsic::s390_vuplhh:
4445   case Intrinsic::s390_vuplhf:
4446     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4447                        Op.getOperand(1));
4448 
4449   case Intrinsic::s390_vuplb:
4450   case Intrinsic::s390_vuplhw:
4451   case Intrinsic::s390_vuplf:
4452     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4453                        Op.getOperand(1));
4454 
4455   case Intrinsic::s390_vupllb:
4456   case Intrinsic::s390_vupllh:
4457   case Intrinsic::s390_vupllf:
4458     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4459                        Op.getOperand(1));
4460 
4461   case Intrinsic::s390_vsumb:
4462   case Intrinsic::s390_vsumh:
4463   case Intrinsic::s390_vsumgh:
4464   case Intrinsic::s390_vsumgf:
4465   case Intrinsic::s390_vsumqf:
4466   case Intrinsic::s390_vsumqg:
4467     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4468                        Op.getOperand(1), Op.getOperand(2));
4469   }
4470 
4471   return SDValue();
4472 }
4473 
4474 namespace {
4475 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4476 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4477 // Operand is the constant third operand, otherwise it is the number of
4478 // bytes in each element of the result.
4479 struct Permute {
4480   unsigned Opcode;
4481   unsigned Operand;
4482   unsigned char Bytes[SystemZ::VectorBytes];
4483 };
4484 }
4485 
4486 static const Permute PermuteForms[] = {
4487   // VMRHG
4488   { SystemZISD::MERGE_HIGH, 8,
4489     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4490   // VMRHF
4491   { SystemZISD::MERGE_HIGH, 4,
4492     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4493   // VMRHH
4494   { SystemZISD::MERGE_HIGH, 2,
4495     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4496   // VMRHB
4497   { SystemZISD::MERGE_HIGH, 1,
4498     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4499   // VMRLG
4500   { SystemZISD::MERGE_LOW, 8,
4501     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4502   // VMRLF
4503   { SystemZISD::MERGE_LOW, 4,
4504     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4505   // VMRLH
4506   { SystemZISD::MERGE_LOW, 2,
4507     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4508   // VMRLB
4509   { SystemZISD::MERGE_LOW, 1,
4510     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4511   // VPKG
4512   { SystemZISD::PACK, 4,
4513     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4514   // VPKF
4515   { SystemZISD::PACK, 2,
4516     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4517   // VPKH
4518   { SystemZISD::PACK, 1,
4519     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4520   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4521   { SystemZISD::PERMUTE_DWORDS, 4,
4522     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4523   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4524   { SystemZISD::PERMUTE_DWORDS, 1,
4525     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4526 };
4527 
4528 // Called after matching a vector shuffle against a particular pattern.
4529 // Both the original shuffle and the pattern have two vector operands.
4530 // OpNos[0] is the operand of the original shuffle that should be used for
4531 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4532 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4533 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4534 // for operands 0 and 1 of the pattern.
4535 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4536   if (OpNos[0] < 0) {
4537     if (OpNos[1] < 0)
4538       return false;
4539     OpNo0 = OpNo1 = OpNos[1];
4540   } else if (OpNos[1] < 0) {
4541     OpNo0 = OpNo1 = OpNos[0];
4542   } else {
4543     OpNo0 = OpNos[0];
4544     OpNo1 = OpNos[1];
4545   }
4546   return true;
4547 }
4548 
4549 // Bytes is a VPERM-like permute vector, except that -1 is used for
4550 // undefined bytes.  Return true if the VPERM can be implemented using P.
4551 // When returning true set OpNo0 to the VPERM operand that should be
4552 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4553 //
4554 // For example, if swapping the VPERM operands allows P to match, OpNo0
4555 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4556 // operand, but rewriting it to use two duplicated operands allows it to
4557 // match P, then OpNo0 and OpNo1 will be the same.
4558 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4559                          unsigned &OpNo0, unsigned &OpNo1) {
4560   int OpNos[] = { -1, -1 };
4561   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4562     int Elt = Bytes[I];
4563     if (Elt >= 0) {
4564       // Make sure that the two permute vectors use the same suboperand
4565       // byte number.  Only the operand numbers (the high bits) are
4566       // allowed to differ.
4567       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4568         return false;
4569       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4570       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4571       // Make sure that the operand mappings are consistent with previous
4572       // elements.
4573       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4574         return false;
4575       OpNos[ModelOpNo] = RealOpNo;
4576     }
4577   }
4578   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4579 }
4580 
4581 // As above, but search for a matching permute.
4582 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4583                                    unsigned &OpNo0, unsigned &OpNo1) {
4584   for (auto &P : PermuteForms)
4585     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4586       return &P;
4587   return nullptr;
4588 }
4589 
4590 // Bytes is a VPERM-like permute vector, except that -1 is used for
4591 // undefined bytes.  This permute is an operand of an outer permute.
4592 // See whether redistributing the -1 bytes gives a shuffle that can be
4593 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4594 // that, when applied to the result of P, gives the original permute in Bytes.
4595 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4596                                const Permute &P,
4597                                SmallVectorImpl<int> &Transform) {
4598   unsigned To = 0;
4599   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4600     int Elt = Bytes[From];
4601     if (Elt < 0)
4602       // Byte number From of the result is undefined.
4603       Transform[From] = -1;
4604     else {
4605       while (P.Bytes[To] != Elt) {
4606         To += 1;
4607         if (To == SystemZ::VectorBytes)
4608           return false;
4609       }
4610       Transform[From] = To;
4611     }
4612   }
4613   return true;
4614 }
4615 
4616 // As above, but search for a matching permute.
4617 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4618                                          SmallVectorImpl<int> &Transform) {
4619   for (auto &P : PermuteForms)
4620     if (matchDoublePermute(Bytes, P, Transform))
4621       return &P;
4622   return nullptr;
4623 }
4624 
4625 // Convert the mask of the given shuffle op into a byte-level mask,
4626 // as if it had type vNi8.
4627 static bool getVPermMask(SDValue ShuffleOp,
4628                          SmallVectorImpl<int> &Bytes) {
4629   EVT VT = ShuffleOp.getValueType();
4630   unsigned NumElements = VT.getVectorNumElements();
4631   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4632 
4633   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4634     Bytes.resize(NumElements * BytesPerElement, -1);
4635     for (unsigned I = 0; I < NumElements; ++I) {
4636       int Index = VSN->getMaskElt(I);
4637       if (Index >= 0)
4638         for (unsigned J = 0; J < BytesPerElement; ++J)
4639           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4640     }
4641     return true;
4642   }
4643   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4644       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4645     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4646     Bytes.resize(NumElements * BytesPerElement, -1);
4647     for (unsigned I = 0; I < NumElements; ++I)
4648       for (unsigned J = 0; J < BytesPerElement; ++J)
4649         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4650     return true;
4651   }
4652   return false;
4653 }
4654 
4655 // Bytes is a VPERM-like permute vector, except that -1 is used for
4656 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4657 // the result come from a contiguous sequence of bytes from one input.
4658 // Set Base to the selector for the first byte if so.
4659 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4660                             unsigned BytesPerElement, int &Base) {
4661   Base = -1;
4662   for (unsigned I = 0; I < BytesPerElement; ++I) {
4663     if (Bytes[Start + I] >= 0) {
4664       unsigned Elem = Bytes[Start + I];
4665       if (Base < 0) {
4666         Base = Elem - I;
4667         // Make sure the bytes would come from one input operand.
4668         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4669           return false;
4670       } else if (unsigned(Base) != Elem - I)
4671         return false;
4672     }
4673   }
4674   return true;
4675 }
4676 
4677 // Bytes is a VPERM-like permute vector, except that -1 is used for
4678 // undefined bytes.  Return true if it can be performed using VSLDB.
4679 // When returning true, set StartIndex to the shift amount and OpNo0
4680 // and OpNo1 to the VPERM operands that should be used as the first
4681 // and second shift operand respectively.
4682 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4683                                unsigned &StartIndex, unsigned &OpNo0,
4684                                unsigned &OpNo1) {
4685   int OpNos[] = { -1, -1 };
4686   int Shift = -1;
4687   for (unsigned I = 0; I < 16; ++I) {
4688     int Index = Bytes[I];
4689     if (Index >= 0) {
4690       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4691       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4692       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4693       if (Shift < 0)
4694         Shift = ExpectedShift;
4695       else if (Shift != ExpectedShift)
4696         return false;
4697       // Make sure that the operand mappings are consistent with previous
4698       // elements.
4699       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4700         return false;
4701       OpNos[ModelOpNo] = RealOpNo;
4702     }
4703   }
4704   StartIndex = Shift;
4705   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4706 }
4707 
4708 // Create a node that performs P on operands Op0 and Op1, casting the
4709 // operands to the appropriate type.  The type of the result is determined by P.
4710 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4711                               const Permute &P, SDValue Op0, SDValue Op1) {
4712   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4713   // elements of a PACK are twice as wide as the outputs.
4714   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4715                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4716                       P.Operand);
4717   // Cast both operands to the appropriate type.
4718   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4719                               SystemZ::VectorBytes / InBytes);
4720   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4721   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4722   SDValue Op;
4723   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4724     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4725     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4726   } else if (P.Opcode == SystemZISD::PACK) {
4727     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4728                                  SystemZ::VectorBytes / P.Operand);
4729     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4730   } else {
4731     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4732   }
4733   return Op;
4734 }
4735 
4736 static bool isZeroVector(SDValue N) {
4737   if (N->getOpcode() == ISD::BITCAST)
4738     N = N->getOperand(0);
4739   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4740     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4741       return Op->getZExtValue() == 0;
4742   return ISD::isBuildVectorAllZeros(N.getNode());
4743 }
4744 
4745 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4746 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4747   for (unsigned I = 0; I < Num ; I++)
4748     if (isZeroVector(Ops[I]))
4749       return I;
4750   return UINT32_MAX;
4751 }
4752 
4753 // Bytes is a VPERM-like permute vector, except that -1 is used for
4754 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4755 // VSLDB or VPERM.
4756 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4757                                      SDValue *Ops,
4758                                      const SmallVectorImpl<int> &Bytes) {
4759   for (unsigned I = 0; I < 2; ++I)
4760     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4761 
4762   // First see whether VSLDB can be used.
4763   unsigned StartIndex, OpNo0, OpNo1;
4764   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4765     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4766                        Ops[OpNo1],
4767                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4768 
4769   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4770   // eliminate a zero vector by reusing any zero index in the permute vector.
4771   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4772   if (ZeroVecIdx != UINT32_MAX) {
4773     bool MaskFirst = true;
4774     int ZeroIdx = -1;
4775     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4776       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4777       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4778       if (OpNo == ZeroVecIdx && I == 0) {
4779         // If the first byte is zero, use mask as first operand.
4780         ZeroIdx = 0;
4781         break;
4782       }
4783       if (OpNo != ZeroVecIdx && Byte == 0) {
4784         // If mask contains a zero, use it by placing that vector first.
4785         ZeroIdx = I + SystemZ::VectorBytes;
4786         MaskFirst = false;
4787         break;
4788       }
4789     }
4790     if (ZeroIdx != -1) {
4791       SDValue IndexNodes[SystemZ::VectorBytes];
4792       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4793         if (Bytes[I] >= 0) {
4794           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4795           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4796           if (OpNo == ZeroVecIdx)
4797             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4798           else {
4799             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4800             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4801           }
4802         } else
4803           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4804       }
4805       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4806       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4807       if (MaskFirst)
4808         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4809                            Mask);
4810       else
4811         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4812                            Mask);
4813     }
4814   }
4815 
4816   SDValue IndexNodes[SystemZ::VectorBytes];
4817   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4818     if (Bytes[I] >= 0)
4819       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4820     else
4821       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4822   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4823   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4824                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4825 }
4826 
4827 namespace {
4828 // Describes a general N-operand vector shuffle.
4829 struct GeneralShuffle {
4830   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4831   void addUndef();
4832   bool add(SDValue, unsigned);
4833   SDValue getNode(SelectionDAG &, const SDLoc &);
4834   void tryPrepareForUnpack();
4835   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4836   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4837 
4838   // The operands of the shuffle.
4839   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4840 
4841   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4842   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4843   // Bytes[I] / SystemZ::VectorBytes.
4844   SmallVector<int, SystemZ::VectorBytes> Bytes;
4845 
4846   // The type of the shuffle result.
4847   EVT VT;
4848 
4849   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4850   unsigned UnpackFromEltSize;
4851 };
4852 }
4853 
4854 // Add an extra undefined element to the shuffle.
4855 void GeneralShuffle::addUndef() {
4856   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4857   for (unsigned I = 0; I < BytesPerElement; ++I)
4858     Bytes.push_back(-1);
4859 }
4860 
4861 // Add an extra element to the shuffle, taking it from element Elem of Op.
4862 // A null Op indicates a vector input whose value will be calculated later;
4863 // there is at most one such input per shuffle and it always has the same
4864 // type as the result. Aborts and returns false if the source vector elements
4865 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4866 // LLVM they become implicitly extended, but this is rare and not optimized.
4867 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4868   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4869 
4870   // The source vector can have wider elements than the result,
4871   // either through an explicit TRUNCATE or because of type legalization.
4872   // We want the least significant part.
4873   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4874   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4875 
4876   // Return false if the source elements are smaller than their destination
4877   // elements.
4878   if (FromBytesPerElement < BytesPerElement)
4879     return false;
4880 
4881   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4882                    (FromBytesPerElement - BytesPerElement));
4883 
4884   // Look through things like shuffles and bitcasts.
4885   while (Op.getNode()) {
4886     if (Op.getOpcode() == ISD::BITCAST)
4887       Op = Op.getOperand(0);
4888     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4889       // See whether the bytes we need come from a contiguous part of one
4890       // operand.
4891       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4892       if (!getVPermMask(Op, OpBytes))
4893         break;
4894       int NewByte;
4895       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4896         break;
4897       if (NewByte < 0) {
4898         addUndef();
4899         return true;
4900       }
4901       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4902       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4903     } else if (Op.isUndef()) {
4904       addUndef();
4905       return true;
4906     } else
4907       break;
4908   }
4909 
4910   // Make sure that the source of the extraction is in Ops.
4911   unsigned OpNo = 0;
4912   for (; OpNo < Ops.size(); ++OpNo)
4913     if (Ops[OpNo] == Op)
4914       break;
4915   if (OpNo == Ops.size())
4916     Ops.push_back(Op);
4917 
4918   // Add the element to Bytes.
4919   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4920   for (unsigned I = 0; I < BytesPerElement; ++I)
4921     Bytes.push_back(Base + I);
4922 
4923   return true;
4924 }
4925 
4926 // Return SDNodes for the completed shuffle.
4927 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4928   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4929 
4930   if (Ops.size() == 0)
4931     return DAG.getUNDEF(VT);
4932 
4933   // Use a single unpack if possible as the last operation.
4934   tryPrepareForUnpack();
4935 
4936   // Make sure that there are at least two shuffle operands.
4937   if (Ops.size() == 1)
4938     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4939 
4940   // Create a tree of shuffles, deferring root node until after the loop.
4941   // Try to redistribute the undefined elements of non-root nodes so that
4942   // the non-root shuffles match something like a pack or merge, then adjust
4943   // the parent node's permute vector to compensate for the new order.
4944   // Among other things, this copes with vectors like <2 x i16> that were
4945   // padded with undefined elements during type legalization.
4946   //
4947   // In the best case this redistribution will lead to the whole tree
4948   // using packs and merges.  It should rarely be a loss in other cases.
4949   unsigned Stride = 1;
4950   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4951     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4952       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
4953 
4954       // Create a mask for just these two operands.
4955       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
4956       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4957         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
4958         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
4959         if (OpNo == I)
4960           NewBytes[J] = Byte;
4961         else if (OpNo == I + Stride)
4962           NewBytes[J] = SystemZ::VectorBytes + Byte;
4963         else
4964           NewBytes[J] = -1;
4965       }
4966       // See if it would be better to reorganize NewMask to avoid using VPERM.
4967       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
4968       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
4969         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
4970         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
4971         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
4972           if (NewBytes[J] >= 0) {
4973             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
4974                    "Invalid double permute");
4975             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
4976           } else
4977             assert(NewBytesMap[J] < 0 && "Invalid double permute");
4978         }
4979       } else {
4980         // Just use NewBytes on the operands.
4981         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
4982         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
4983           if (NewBytes[J] >= 0)
4984             Bytes[J] = I * SystemZ::VectorBytes + J;
4985       }
4986     }
4987   }
4988 
4989   // Now we just have 2 inputs.  Put the second operand in Ops[1].
4990   if (Stride > 1) {
4991     Ops[1] = Ops[Stride];
4992     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4993       if (Bytes[I] >= int(SystemZ::VectorBytes))
4994         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
4995   }
4996 
4997   // Look for an instruction that can do the permute without resorting
4998   // to VPERM.
4999   unsigned OpNo0, OpNo1;
5000   SDValue Op;
5001   if (unpackWasPrepared() && Ops[1].isUndef())
5002     Op = Ops[0];
5003   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
5004     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
5005   else
5006     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
5007 
5008   Op = insertUnpackIfPrepared(DAG, DL, Op);
5009 
5010   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5011 }
5012 
5013 #ifndef NDEBUG
5014 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
5015   dbgs() << Msg.c_str() << " { ";
5016   for (unsigned i = 0; i < Bytes.size(); i++)
5017     dbgs() << Bytes[i] << " ";
5018   dbgs() << "}\n";
5019 }
5020 #endif
5021 
5022 // If the Bytes vector matches an unpack operation, prepare to do the unpack
5023 // after all else by removing the zero vector and the effect of the unpack on
5024 // Bytes.
5025 void GeneralShuffle::tryPrepareForUnpack() {
5026   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
5027   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
5028     return;
5029 
5030   // Only do this if removing the zero vector reduces the depth, otherwise
5031   // the critical path will increase with the final unpack.
5032   if (Ops.size() > 2 &&
5033       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
5034     return;
5035 
5036   // Find an unpack that would allow removing the zero vector from Ops.
5037   UnpackFromEltSize = 1;
5038   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
5039     bool MatchUnpack = true;
5040     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
5041     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
5042       unsigned ToEltSize = UnpackFromEltSize * 2;
5043       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
5044       if (!IsZextByte)
5045         SrcBytes.push_back(Bytes[Elt]);
5046       if (Bytes[Elt] != -1) {
5047         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
5048         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
5049           MatchUnpack = false;
5050           break;
5051         }
5052       }
5053     }
5054     if (MatchUnpack) {
5055       if (Ops.size() == 2) {
5056         // Don't use unpack if a single source operand needs rearrangement.
5057         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
5058           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
5059             UnpackFromEltSize = UINT_MAX;
5060             return;
5061           }
5062       }
5063       break;
5064     }
5065   }
5066   if (UnpackFromEltSize > 4)
5067     return;
5068 
5069   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
5070              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
5071              << ".\n";
5072              dumpBytes(Bytes, "Original Bytes vector:"););
5073 
5074   // Apply the unpack in reverse to the Bytes array.
5075   unsigned B = 0;
5076   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
5077     Elt += UnpackFromEltSize;
5078     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
5079       Bytes[B] = Bytes[Elt];
5080   }
5081   while (B < SystemZ::VectorBytes)
5082     Bytes[B++] = -1;
5083 
5084   // Remove the zero vector from Ops
5085   Ops.erase(&Ops[ZeroVecOpNo]);
5086   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5087     if (Bytes[I] >= 0) {
5088       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5089       if (OpNo > ZeroVecOpNo)
5090         Bytes[I] -= SystemZ::VectorBytes;
5091     }
5092 
5093   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
5094              dbgs() << "\n";);
5095 }
5096 
5097 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
5098                                                const SDLoc &DL,
5099                                                SDValue Op) {
5100   if (!unpackWasPrepared())
5101     return Op;
5102   unsigned InBits = UnpackFromEltSize * 8;
5103   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
5104                                 SystemZ::VectorBits / InBits);
5105   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
5106   unsigned OutBits = InBits * 2;
5107   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
5108                                SystemZ::VectorBits / OutBits);
5109   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
5110 }
5111 
5112 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
5113 static bool isScalarToVector(SDValue Op) {
5114   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
5115     if (!Op.getOperand(I).isUndef())
5116       return false;
5117   return true;
5118 }
5119 
5120 // Return a vector of type VT that contains Value in the first element.
5121 // The other elements don't matter.
5122 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5123                                    SDValue Value) {
5124   // If we have a constant, replicate it to all elements and let the
5125   // BUILD_VECTOR lowering take care of it.
5126   if (Value.getOpcode() == ISD::Constant ||
5127       Value.getOpcode() == ISD::ConstantFP) {
5128     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
5129     return DAG.getBuildVector(VT, DL, Ops);
5130   }
5131   if (Value.isUndef())
5132     return DAG.getUNDEF(VT);
5133   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
5134 }
5135 
5136 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
5137 // element 1.  Used for cases in which replication is cheap.
5138 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5139                                  SDValue Op0, SDValue Op1) {
5140   if (Op0.isUndef()) {
5141     if (Op1.isUndef())
5142       return DAG.getUNDEF(VT);
5143     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5144   }
5145   if (Op1.isUndef())
5146     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5147   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5148                      buildScalarToVector(DAG, DL, VT, Op0),
5149                      buildScalarToVector(DAG, DL, VT, Op1));
5150 }
5151 
5152 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5153 // vector for them.
5154 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5155                           SDValue Op1) {
5156   if (Op0.isUndef() && Op1.isUndef())
5157     return DAG.getUNDEF(MVT::v2i64);
5158   // If one of the two inputs is undefined then replicate the other one,
5159   // in order to avoid using another register unnecessarily.
5160   if (Op0.isUndef())
5161     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5162   else if (Op1.isUndef())
5163     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5164   else {
5165     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5166     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5167   }
5168   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5169 }
5170 
5171 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
5172 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
5173 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
5174 // would benefit from this representation and return it if so.
5175 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
5176                                      BuildVectorSDNode *BVN) {
5177   EVT VT = BVN->getValueType(0);
5178   unsigned NumElements = VT.getVectorNumElements();
5179 
5180   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
5181   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
5182   // need a BUILD_VECTOR, add an additional placeholder operand for that
5183   // BUILD_VECTOR and store its operands in ResidueOps.
5184   GeneralShuffle GS(VT);
5185   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
5186   bool FoundOne = false;
5187   for (unsigned I = 0; I < NumElements; ++I) {
5188     SDValue Op = BVN->getOperand(I);
5189     if (Op.getOpcode() == ISD::TRUNCATE)
5190       Op = Op.getOperand(0);
5191     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5192         Op.getOperand(1).getOpcode() == ISD::Constant) {
5193       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5194       if (!GS.add(Op.getOperand(0), Elem))
5195         return SDValue();
5196       FoundOne = true;
5197     } else if (Op.isUndef()) {
5198       GS.addUndef();
5199     } else {
5200       if (!GS.add(SDValue(), ResidueOps.size()))
5201         return SDValue();
5202       ResidueOps.push_back(BVN->getOperand(I));
5203     }
5204   }
5205 
5206   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5207   if (!FoundOne)
5208     return SDValue();
5209 
5210   // Create the BUILD_VECTOR for the remaining elements, if any.
5211   if (!ResidueOps.empty()) {
5212     while (ResidueOps.size() < NumElements)
5213       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5214     for (auto &Op : GS.Ops) {
5215       if (!Op.getNode()) {
5216         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5217         break;
5218       }
5219     }
5220   }
5221   return GS.getNode(DAG, SDLoc(BVN));
5222 }
5223 
5224 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5225   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5226     return true;
5227   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5228     return true;
5229   return false;
5230 }
5231 
5232 // Combine GPR scalar values Elems into a vector of type VT.
5233 SDValue
5234 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5235                                    SmallVectorImpl<SDValue> &Elems) const {
5236   // See whether there is a single replicated value.
5237   SDValue Single;
5238   unsigned int NumElements = Elems.size();
5239   unsigned int Count = 0;
5240   for (auto Elem : Elems) {
5241     if (!Elem.isUndef()) {
5242       if (!Single.getNode())
5243         Single = Elem;
5244       else if (Elem != Single) {
5245         Single = SDValue();
5246         break;
5247       }
5248       Count += 1;
5249     }
5250   }
5251   // There are three cases here:
5252   //
5253   // - if the only defined element is a loaded one, the best sequence
5254   //   is a replicating load.
5255   //
5256   // - otherwise, if the only defined element is an i64 value, we will
5257   //   end up with the same VLVGP sequence regardless of whether we short-cut
5258   //   for replication or fall through to the later code.
5259   //
5260   // - otherwise, if the only defined element is an i32 or smaller value,
5261   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5262   //   This is only a win if the single defined element is used more than once.
5263   //   In other cases we're better off using a single VLVGx.
5264   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5265     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5266 
5267   // If all elements are loads, use VLREP/VLEs (below).
5268   bool AllLoads = true;
5269   for (auto Elem : Elems)
5270     if (!isVectorElementLoad(Elem)) {
5271       AllLoads = false;
5272       break;
5273     }
5274 
5275   // The best way of building a v2i64 from two i64s is to use VLVGP.
5276   if (VT == MVT::v2i64 && !AllLoads)
5277     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5278 
5279   // Use a 64-bit merge high to combine two doubles.
5280   if (VT == MVT::v2f64 && !AllLoads)
5281     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5282 
5283   // Build v4f32 values directly from the FPRs:
5284   //
5285   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5286   //         V              V         VMRHF
5287   //      <ABxx>         <CDxx>
5288   //                V                 VMRHG
5289   //              <ABCD>
5290   if (VT == MVT::v4f32 && !AllLoads) {
5291     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5292     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5293     // Avoid unnecessary undefs by reusing the other operand.
5294     if (Op01.isUndef())
5295       Op01 = Op23;
5296     else if (Op23.isUndef())
5297       Op23 = Op01;
5298     // Merging identical replications is a no-op.
5299     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5300       return Op01;
5301     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5302     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5303     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5304                              DL, MVT::v2i64, Op01, Op23);
5305     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5306   }
5307 
5308   // Collect the constant terms.
5309   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5310   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5311 
5312   unsigned NumConstants = 0;
5313   for (unsigned I = 0; I < NumElements; ++I) {
5314     SDValue Elem = Elems[I];
5315     if (Elem.getOpcode() == ISD::Constant ||
5316         Elem.getOpcode() == ISD::ConstantFP) {
5317       NumConstants += 1;
5318       Constants[I] = Elem;
5319       Done[I] = true;
5320     }
5321   }
5322   // If there was at least one constant, fill in the other elements of
5323   // Constants with undefs to get a full vector constant and use that
5324   // as the starting point.
5325   SDValue Result;
5326   SDValue ReplicatedVal;
5327   if (NumConstants > 0) {
5328     for (unsigned I = 0; I < NumElements; ++I)
5329       if (!Constants[I].getNode())
5330         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5331     Result = DAG.getBuildVector(VT, DL, Constants);
5332   } else {
5333     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5334     // avoid a false dependency on any previous contents of the vector
5335     // register.
5336 
5337     // Use a VLREP if at least one element is a load. Make sure to replicate
5338     // the load with the most elements having its value.
5339     std::map<const SDNode*, unsigned> UseCounts;
5340     SDNode *LoadMaxUses = nullptr;
5341     for (unsigned I = 0; I < NumElements; ++I)
5342       if (isVectorElementLoad(Elems[I])) {
5343         SDNode *Ld = Elems[I].getNode();
5344         UseCounts[Ld]++;
5345         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5346           LoadMaxUses = Ld;
5347       }
5348     if (LoadMaxUses != nullptr) {
5349       ReplicatedVal = SDValue(LoadMaxUses, 0);
5350       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5351     } else {
5352       // Try to use VLVGP.
5353       unsigned I1 = NumElements / 2 - 1;
5354       unsigned I2 = NumElements - 1;
5355       bool Def1 = !Elems[I1].isUndef();
5356       bool Def2 = !Elems[I2].isUndef();
5357       if (Def1 || Def2) {
5358         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5359         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5360         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5361                              joinDwords(DAG, DL, Elem1, Elem2));
5362         Done[I1] = true;
5363         Done[I2] = true;
5364       } else
5365         Result = DAG.getUNDEF(VT);
5366     }
5367   }
5368 
5369   // Use VLVGx to insert the other elements.
5370   for (unsigned I = 0; I < NumElements; ++I)
5371     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5372       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5373                            DAG.getConstant(I, DL, MVT::i32));
5374   return Result;
5375 }
5376 
5377 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5378                                                  SelectionDAG &DAG) const {
5379   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5380   SDLoc DL(Op);
5381   EVT VT = Op.getValueType();
5382 
5383   if (BVN->isConstant()) {
5384     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5385       return Op;
5386 
5387     // Fall back to loading it from memory.
5388     return SDValue();
5389   }
5390 
5391   // See if we should use shuffles to construct the vector from other vectors.
5392   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5393     return Res;
5394 
5395   // Detect SCALAR_TO_VECTOR conversions.
5396   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5397     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5398 
5399   // Otherwise use buildVector to build the vector up from GPRs.
5400   unsigned NumElements = Op.getNumOperands();
5401   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5402   for (unsigned I = 0; I < NumElements; ++I)
5403     Ops[I] = Op.getOperand(I);
5404   return buildVector(DAG, DL, VT, Ops);
5405 }
5406 
5407 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5408                                                    SelectionDAG &DAG) const {
5409   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5410   SDLoc DL(Op);
5411   EVT VT = Op.getValueType();
5412   unsigned NumElements = VT.getVectorNumElements();
5413 
5414   if (VSN->isSplat()) {
5415     SDValue Op0 = Op.getOperand(0);
5416     unsigned Index = VSN->getSplatIndex();
5417     assert(Index < VT.getVectorNumElements() &&
5418            "Splat index should be defined and in first operand");
5419     // See whether the value we're splatting is directly available as a scalar.
5420     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5421         Op0.getOpcode() == ISD::BUILD_VECTOR)
5422       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5423     // Otherwise keep it as a vector-to-vector operation.
5424     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5425                        DAG.getTargetConstant(Index, DL, MVT::i32));
5426   }
5427 
5428   GeneralShuffle GS(VT);
5429   for (unsigned I = 0; I < NumElements; ++I) {
5430     int Elt = VSN->getMaskElt(I);
5431     if (Elt < 0)
5432       GS.addUndef();
5433     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5434                      unsigned(Elt) % NumElements))
5435       return SDValue();
5436   }
5437   return GS.getNode(DAG, SDLoc(VSN));
5438 }
5439 
5440 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5441                                                      SelectionDAG &DAG) const {
5442   SDLoc DL(Op);
5443   // Just insert the scalar into element 0 of an undefined vector.
5444   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5445                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5446                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5447 }
5448 
5449 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5450                                                       SelectionDAG &DAG) const {
5451   // Handle insertions of floating-point values.
5452   SDLoc DL(Op);
5453   SDValue Op0 = Op.getOperand(0);
5454   SDValue Op1 = Op.getOperand(1);
5455   SDValue Op2 = Op.getOperand(2);
5456   EVT VT = Op.getValueType();
5457 
5458   // Insertions into constant indices of a v2f64 can be done using VPDI.
5459   // However, if the inserted value is a bitcast or a constant then it's
5460   // better to use GPRs, as below.
5461   if (VT == MVT::v2f64 &&
5462       Op1.getOpcode() != ISD::BITCAST &&
5463       Op1.getOpcode() != ISD::ConstantFP &&
5464       Op2.getOpcode() == ISD::Constant) {
5465     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5466     unsigned Mask = VT.getVectorNumElements() - 1;
5467     if (Index <= Mask)
5468       return Op;
5469   }
5470 
5471   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5472   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5473   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5474   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5475                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5476                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5477   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5478 }
5479 
5480 SDValue
5481 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5482                                                SelectionDAG &DAG) const {
5483   // Handle extractions of floating-point values.
5484   SDLoc DL(Op);
5485   SDValue Op0 = Op.getOperand(0);
5486   SDValue Op1 = Op.getOperand(1);
5487   EVT VT = Op.getValueType();
5488   EVT VecVT = Op0.getValueType();
5489 
5490   // Extractions of constant indices can be done directly.
5491   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5492     uint64_t Index = CIndexN->getZExtValue();
5493     unsigned Mask = VecVT.getVectorNumElements() - 1;
5494     if (Index <= Mask)
5495       return Op;
5496   }
5497 
5498   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5499   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5500   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5501   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5502                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5503   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5504 }
5505 
5506 SDValue SystemZTargetLowering::
5507 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5508   SDValue PackedOp = Op.getOperand(0);
5509   EVT OutVT = Op.getValueType();
5510   EVT InVT = PackedOp.getValueType();
5511   unsigned ToBits = OutVT.getScalarSizeInBits();
5512   unsigned FromBits = InVT.getScalarSizeInBits();
5513   do {
5514     FromBits *= 2;
5515     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5516                                  SystemZ::VectorBits / FromBits);
5517     PackedOp =
5518       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5519   } while (FromBits != ToBits);
5520   return PackedOp;
5521 }
5522 
5523 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5524 SDValue SystemZTargetLowering::
5525 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5526   SDValue PackedOp = Op.getOperand(0);
5527   SDLoc DL(Op);
5528   EVT OutVT = Op.getValueType();
5529   EVT InVT = PackedOp.getValueType();
5530   unsigned InNumElts = InVT.getVectorNumElements();
5531   unsigned OutNumElts = OutVT.getVectorNumElements();
5532   unsigned NumInPerOut = InNumElts / OutNumElts;
5533 
5534   SDValue ZeroVec =
5535     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5536 
5537   SmallVector<int, 16> Mask(InNumElts);
5538   unsigned ZeroVecElt = InNumElts;
5539   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5540     unsigned MaskElt = PackedElt * NumInPerOut;
5541     unsigned End = MaskElt + NumInPerOut - 1;
5542     for (; MaskElt < End; MaskElt++)
5543       Mask[MaskElt] = ZeroVecElt++;
5544     Mask[MaskElt] = PackedElt;
5545   }
5546   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5547   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5548 }
5549 
5550 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5551                                           unsigned ByScalar) const {
5552   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5553   SDValue Op0 = Op.getOperand(0);
5554   SDValue Op1 = Op.getOperand(1);
5555   SDLoc DL(Op);
5556   EVT VT = Op.getValueType();
5557   unsigned ElemBitSize = VT.getScalarSizeInBits();
5558 
5559   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5560   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5561     APInt SplatBits, SplatUndef;
5562     unsigned SplatBitSize;
5563     bool HasAnyUndefs;
5564     // Check for constant splats.  Use ElemBitSize as the minimum element
5565     // width and reject splats that need wider elements.
5566     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5567                              ElemBitSize, true) &&
5568         SplatBitSize == ElemBitSize) {
5569       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5570                                       DL, MVT::i32);
5571       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5572     }
5573     // Check for variable splats.
5574     BitVector UndefElements;
5575     SDValue Splat = BVN->getSplatValue(&UndefElements);
5576     if (Splat) {
5577       // Since i32 is the smallest legal type, we either need a no-op
5578       // or a truncation.
5579       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5580       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5581     }
5582   }
5583 
5584   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5585   // and the shift amount is directly available in a GPR.
5586   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5587     if (VSN->isSplat()) {
5588       SDValue VSNOp0 = VSN->getOperand(0);
5589       unsigned Index = VSN->getSplatIndex();
5590       assert(Index < VT.getVectorNumElements() &&
5591              "Splat index should be defined and in first operand");
5592       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5593           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5594         // Since i32 is the smallest legal type, we either need a no-op
5595         // or a truncation.
5596         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5597                                     VSNOp0.getOperand(Index));
5598         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5599       }
5600     }
5601   }
5602 
5603   // Otherwise just treat the current form as legal.
5604   return Op;
5605 }
5606 
5607 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5608                                               SelectionDAG &DAG) const {
5609   switch (Op.getOpcode()) {
5610   case ISD::FRAMEADDR:
5611     return lowerFRAMEADDR(Op, DAG);
5612   case ISD::RETURNADDR:
5613     return lowerRETURNADDR(Op, DAG);
5614   case ISD::BR_CC:
5615     return lowerBR_CC(Op, DAG);
5616   case ISD::SELECT_CC:
5617     return lowerSELECT_CC(Op, DAG);
5618   case ISD::SETCC:
5619     return lowerSETCC(Op, DAG);
5620   case ISD::STRICT_FSETCC:
5621     return lowerSTRICT_FSETCC(Op, DAG, false);
5622   case ISD::STRICT_FSETCCS:
5623     return lowerSTRICT_FSETCC(Op, DAG, true);
5624   case ISD::GlobalAddress:
5625     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5626   case ISD::GlobalTLSAddress:
5627     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5628   case ISD::BlockAddress:
5629     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5630   case ISD::JumpTable:
5631     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5632   case ISD::ConstantPool:
5633     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5634   case ISD::BITCAST:
5635     return lowerBITCAST(Op, DAG);
5636   case ISD::VASTART:
5637     return lowerVASTART(Op, DAG);
5638   case ISD::VACOPY:
5639     return lowerVACOPY(Op, DAG);
5640   case ISD::DYNAMIC_STACKALLOC:
5641     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5642   case ISD::GET_DYNAMIC_AREA_OFFSET:
5643     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5644   case ISD::SMUL_LOHI:
5645     return lowerSMUL_LOHI(Op, DAG);
5646   case ISD::UMUL_LOHI:
5647     return lowerUMUL_LOHI(Op, DAG);
5648   case ISD::SDIVREM:
5649     return lowerSDIVREM(Op, DAG);
5650   case ISD::UDIVREM:
5651     return lowerUDIVREM(Op, DAG);
5652   case ISD::SADDO:
5653   case ISD::SSUBO:
5654   case ISD::UADDO:
5655   case ISD::USUBO:
5656     return lowerXALUO(Op, DAG);
5657   case ISD::ADDCARRY:
5658   case ISD::SUBCARRY:
5659     return lowerADDSUBCARRY(Op, DAG);
5660   case ISD::OR:
5661     return lowerOR(Op, DAG);
5662   case ISD::CTPOP:
5663     return lowerCTPOP(Op, DAG);
5664   case ISD::ATOMIC_FENCE:
5665     return lowerATOMIC_FENCE(Op, DAG);
5666   case ISD::ATOMIC_SWAP:
5667     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5668   case ISD::ATOMIC_STORE:
5669     return lowerATOMIC_STORE(Op, DAG);
5670   case ISD::ATOMIC_LOAD:
5671     return lowerATOMIC_LOAD(Op, DAG);
5672   case ISD::ATOMIC_LOAD_ADD:
5673     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5674   case ISD::ATOMIC_LOAD_SUB:
5675     return lowerATOMIC_LOAD_SUB(Op, DAG);
5676   case ISD::ATOMIC_LOAD_AND:
5677     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5678   case ISD::ATOMIC_LOAD_OR:
5679     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5680   case ISD::ATOMIC_LOAD_XOR:
5681     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5682   case ISD::ATOMIC_LOAD_NAND:
5683     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5684   case ISD::ATOMIC_LOAD_MIN:
5685     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5686   case ISD::ATOMIC_LOAD_MAX:
5687     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5688   case ISD::ATOMIC_LOAD_UMIN:
5689     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5690   case ISD::ATOMIC_LOAD_UMAX:
5691     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5692   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5693     return lowerATOMIC_CMP_SWAP(Op, DAG);
5694   case ISD::STACKSAVE:
5695     return lowerSTACKSAVE(Op, DAG);
5696   case ISD::STACKRESTORE:
5697     return lowerSTACKRESTORE(Op, DAG);
5698   case ISD::PREFETCH:
5699     return lowerPREFETCH(Op, DAG);
5700   case ISD::INTRINSIC_W_CHAIN:
5701     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5702   case ISD::INTRINSIC_WO_CHAIN:
5703     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5704   case ISD::BUILD_VECTOR:
5705     return lowerBUILD_VECTOR(Op, DAG);
5706   case ISD::VECTOR_SHUFFLE:
5707     return lowerVECTOR_SHUFFLE(Op, DAG);
5708   case ISD::SCALAR_TO_VECTOR:
5709     return lowerSCALAR_TO_VECTOR(Op, DAG);
5710   case ISD::INSERT_VECTOR_ELT:
5711     return lowerINSERT_VECTOR_ELT(Op, DAG);
5712   case ISD::EXTRACT_VECTOR_ELT:
5713     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5714   case ISD::SIGN_EXTEND_VECTOR_INREG:
5715     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5716   case ISD::ZERO_EXTEND_VECTOR_INREG:
5717     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5718   case ISD::SHL:
5719     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5720   case ISD::SRL:
5721     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5722   case ISD::SRA:
5723     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5724   default:
5725     llvm_unreachable("Unexpected node to lower");
5726   }
5727 }
5728 
5729 // Lower operations with invalid operand or result types (currently used
5730 // only for 128-bit integer types).
5731 void
5732 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5733                                              SmallVectorImpl<SDValue> &Results,
5734                                              SelectionDAG &DAG) const {
5735   switch (N->getOpcode()) {
5736   case ISD::ATOMIC_LOAD: {
5737     SDLoc DL(N);
5738     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5739     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5740     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5741     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5742                                           DL, Tys, Ops, MVT::i128, MMO);
5743     Results.push_back(lowerGR128ToI128(DAG, Res));
5744     Results.push_back(Res.getValue(1));
5745     break;
5746   }
5747   case ISD::ATOMIC_STORE: {
5748     SDLoc DL(N);
5749     SDVTList Tys = DAG.getVTList(MVT::Other);
5750     SDValue Ops[] = { N->getOperand(0),
5751                       lowerI128ToGR128(DAG, N->getOperand(2)),
5752                       N->getOperand(1) };
5753     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5754     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5755                                           DL, Tys, Ops, MVT::i128, MMO);
5756     // We have to enforce sequential consistency by performing a
5757     // serialization operation after the store.
5758     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
5759         AtomicOrdering::SequentiallyConsistent)
5760       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5761                                        MVT::Other, Res), 0);
5762     Results.push_back(Res);
5763     break;
5764   }
5765   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5766     SDLoc DL(N);
5767     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5768     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5769                       lowerI128ToGR128(DAG, N->getOperand(2)),
5770                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5771     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5772     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5773                                           DL, Tys, Ops, MVT::i128, MMO);
5774     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5775                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5776     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5777     Results.push_back(lowerGR128ToI128(DAG, Res));
5778     Results.push_back(Success);
5779     Results.push_back(Res.getValue(2));
5780     break;
5781   }
5782   case ISD::BITCAST: {
5783     SDValue Src = N->getOperand(0);
5784     if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
5785         !useSoftFloat()) {
5786       SDLoc DL(N);
5787       SDValue Lo, Hi;
5788       if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) {
5789         SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src);
5790         Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5791                          DAG.getConstant(1, DL, MVT::i32));
5792         Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5793                          DAG.getConstant(0, DL, MVT::i32));
5794       } else {
5795         assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass &&
5796                "Unrecognized register class for f128.");
5797         SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5798                                                   DL, MVT::f64, Src);
5799         SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5800                                                   DL, MVT::f64, Src);
5801         Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP);
5802         Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP);
5803       }
5804       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi));
5805     }
5806     break;
5807   }
5808   default:
5809     llvm_unreachable("Unexpected node to lower");
5810   }
5811 }
5812 
5813 void
5814 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5815                                           SmallVectorImpl<SDValue> &Results,
5816                                           SelectionDAG &DAG) const {
5817   return LowerOperationWrapper(N, Results, DAG);
5818 }
5819 
5820 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5821 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5822   switch ((SystemZISD::NodeType)Opcode) {
5823     case SystemZISD::FIRST_NUMBER: break;
5824     OPCODE(RET_FLAG);
5825     OPCODE(CALL);
5826     OPCODE(SIBCALL);
5827     OPCODE(TLS_GDCALL);
5828     OPCODE(TLS_LDCALL);
5829     OPCODE(PCREL_WRAPPER);
5830     OPCODE(PCREL_OFFSET);
5831     OPCODE(ICMP);
5832     OPCODE(FCMP);
5833     OPCODE(STRICT_FCMP);
5834     OPCODE(STRICT_FCMPS);
5835     OPCODE(TM);
5836     OPCODE(BR_CCMASK);
5837     OPCODE(SELECT_CCMASK);
5838     OPCODE(ADJDYNALLOC);
5839     OPCODE(PROBED_ALLOCA);
5840     OPCODE(POPCNT);
5841     OPCODE(SMUL_LOHI);
5842     OPCODE(UMUL_LOHI);
5843     OPCODE(SDIVREM);
5844     OPCODE(UDIVREM);
5845     OPCODE(SADDO);
5846     OPCODE(SSUBO);
5847     OPCODE(UADDO);
5848     OPCODE(USUBO);
5849     OPCODE(ADDCARRY);
5850     OPCODE(SUBCARRY);
5851     OPCODE(GET_CCMASK);
5852     OPCODE(MVC);
5853     OPCODE(NC);
5854     OPCODE(OC);
5855     OPCODE(XC);
5856     OPCODE(CLC);
5857     OPCODE(MEMSET_MVC);
5858     OPCODE(STPCPY);
5859     OPCODE(STRCMP);
5860     OPCODE(SEARCH_STRING);
5861     OPCODE(IPM);
5862     OPCODE(MEMBARRIER);
5863     OPCODE(TBEGIN);
5864     OPCODE(TBEGIN_NOFLOAT);
5865     OPCODE(TEND);
5866     OPCODE(BYTE_MASK);
5867     OPCODE(ROTATE_MASK);
5868     OPCODE(REPLICATE);
5869     OPCODE(JOIN_DWORDS);
5870     OPCODE(SPLAT);
5871     OPCODE(MERGE_HIGH);
5872     OPCODE(MERGE_LOW);
5873     OPCODE(SHL_DOUBLE);
5874     OPCODE(PERMUTE_DWORDS);
5875     OPCODE(PERMUTE);
5876     OPCODE(PACK);
5877     OPCODE(PACKS_CC);
5878     OPCODE(PACKLS_CC);
5879     OPCODE(UNPACK_HIGH);
5880     OPCODE(UNPACKL_HIGH);
5881     OPCODE(UNPACK_LOW);
5882     OPCODE(UNPACKL_LOW);
5883     OPCODE(VSHL_BY_SCALAR);
5884     OPCODE(VSRL_BY_SCALAR);
5885     OPCODE(VSRA_BY_SCALAR);
5886     OPCODE(VSUM);
5887     OPCODE(VICMPE);
5888     OPCODE(VICMPH);
5889     OPCODE(VICMPHL);
5890     OPCODE(VICMPES);
5891     OPCODE(VICMPHS);
5892     OPCODE(VICMPHLS);
5893     OPCODE(VFCMPE);
5894     OPCODE(STRICT_VFCMPE);
5895     OPCODE(STRICT_VFCMPES);
5896     OPCODE(VFCMPH);
5897     OPCODE(STRICT_VFCMPH);
5898     OPCODE(STRICT_VFCMPHS);
5899     OPCODE(VFCMPHE);
5900     OPCODE(STRICT_VFCMPHE);
5901     OPCODE(STRICT_VFCMPHES);
5902     OPCODE(VFCMPES);
5903     OPCODE(VFCMPHS);
5904     OPCODE(VFCMPHES);
5905     OPCODE(VFTCI);
5906     OPCODE(VEXTEND);
5907     OPCODE(STRICT_VEXTEND);
5908     OPCODE(VROUND);
5909     OPCODE(STRICT_VROUND);
5910     OPCODE(VTM);
5911     OPCODE(VFAE_CC);
5912     OPCODE(VFAEZ_CC);
5913     OPCODE(VFEE_CC);
5914     OPCODE(VFEEZ_CC);
5915     OPCODE(VFENE_CC);
5916     OPCODE(VFENEZ_CC);
5917     OPCODE(VISTR_CC);
5918     OPCODE(VSTRC_CC);
5919     OPCODE(VSTRCZ_CC);
5920     OPCODE(VSTRS_CC);
5921     OPCODE(VSTRSZ_CC);
5922     OPCODE(TDC);
5923     OPCODE(ATOMIC_SWAPW);
5924     OPCODE(ATOMIC_LOADW_ADD);
5925     OPCODE(ATOMIC_LOADW_SUB);
5926     OPCODE(ATOMIC_LOADW_AND);
5927     OPCODE(ATOMIC_LOADW_OR);
5928     OPCODE(ATOMIC_LOADW_XOR);
5929     OPCODE(ATOMIC_LOADW_NAND);
5930     OPCODE(ATOMIC_LOADW_MIN);
5931     OPCODE(ATOMIC_LOADW_MAX);
5932     OPCODE(ATOMIC_LOADW_UMIN);
5933     OPCODE(ATOMIC_LOADW_UMAX);
5934     OPCODE(ATOMIC_CMP_SWAPW);
5935     OPCODE(ATOMIC_CMP_SWAP);
5936     OPCODE(ATOMIC_LOAD_128);
5937     OPCODE(ATOMIC_STORE_128);
5938     OPCODE(ATOMIC_CMP_SWAP_128);
5939     OPCODE(LRV);
5940     OPCODE(STRV);
5941     OPCODE(VLER);
5942     OPCODE(VSTER);
5943     OPCODE(PREFETCH);
5944   }
5945   return nullptr;
5946 #undef OPCODE
5947 }
5948 
5949 // Return true if VT is a vector whose elements are a whole number of bytes
5950 // in width. Also check for presence of vector support.
5951 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
5952   if (!Subtarget.hasVector())
5953     return false;
5954 
5955   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
5956 }
5957 
5958 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
5959 // producing a result of type ResVT.  Op is a possibly bitcast version
5960 // of the input vector and Index is the index (based on type VecVT) that
5961 // should be extracted.  Return the new extraction if a simplification
5962 // was possible or if Force is true.
5963 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
5964                                               EVT VecVT, SDValue Op,
5965                                               unsigned Index,
5966                                               DAGCombinerInfo &DCI,
5967                                               bool Force) const {
5968   SelectionDAG &DAG = DCI.DAG;
5969 
5970   // The number of bytes being extracted.
5971   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
5972 
5973   for (;;) {
5974     unsigned Opcode = Op.getOpcode();
5975     if (Opcode == ISD::BITCAST)
5976       // Look through bitcasts.
5977       Op = Op.getOperand(0);
5978     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
5979              canTreatAsByteVector(Op.getValueType())) {
5980       // Get a VPERM-like permute mask and see whether the bytes covered
5981       // by the extracted element are a contiguous sequence from one
5982       // source operand.
5983       SmallVector<int, SystemZ::VectorBytes> Bytes;
5984       if (!getVPermMask(Op, Bytes))
5985         break;
5986       int First;
5987       if (!getShuffleInput(Bytes, Index * BytesPerElement,
5988                            BytesPerElement, First))
5989         break;
5990       if (First < 0)
5991         return DAG.getUNDEF(ResVT);
5992       // Make sure the contiguous sequence starts at a multiple of the
5993       // original element size.
5994       unsigned Byte = unsigned(First) % Bytes.size();
5995       if (Byte % BytesPerElement != 0)
5996         break;
5997       // We can get the extracted value directly from an input.
5998       Index = Byte / BytesPerElement;
5999       Op = Op.getOperand(unsigned(First) / Bytes.size());
6000       Force = true;
6001     } else if (Opcode == ISD::BUILD_VECTOR &&
6002                canTreatAsByteVector(Op.getValueType())) {
6003       // We can only optimize this case if the BUILD_VECTOR elements are
6004       // at least as wide as the extracted value.
6005       EVT OpVT = Op.getValueType();
6006       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6007       if (OpBytesPerElement < BytesPerElement)
6008         break;
6009       // Make sure that the least-significant bit of the extracted value
6010       // is the least significant bit of an input.
6011       unsigned End = (Index + 1) * BytesPerElement;
6012       if (End % OpBytesPerElement != 0)
6013         break;
6014       // We're extracting the low part of one operand of the BUILD_VECTOR.
6015       Op = Op.getOperand(End / OpBytesPerElement - 1);
6016       if (!Op.getValueType().isInteger()) {
6017         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
6018         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
6019         DCI.AddToWorklist(Op.getNode());
6020       }
6021       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
6022       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
6023       if (VT != ResVT) {
6024         DCI.AddToWorklist(Op.getNode());
6025         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
6026       }
6027       return Op;
6028     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
6029                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
6030                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
6031                canTreatAsByteVector(Op.getValueType()) &&
6032                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
6033       // Make sure that only the unextended bits are significant.
6034       EVT ExtVT = Op.getValueType();
6035       EVT OpVT = Op.getOperand(0).getValueType();
6036       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
6037       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6038       unsigned Byte = Index * BytesPerElement;
6039       unsigned SubByte = Byte % ExtBytesPerElement;
6040       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
6041       if (SubByte < MinSubByte ||
6042           SubByte + BytesPerElement > ExtBytesPerElement)
6043         break;
6044       // Get the byte offset of the unextended element
6045       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
6046       // ...then add the byte offset relative to that element.
6047       Byte += SubByte - MinSubByte;
6048       if (Byte % BytesPerElement != 0)
6049         break;
6050       Op = Op.getOperand(0);
6051       Index = Byte / BytesPerElement;
6052       Force = true;
6053     } else
6054       break;
6055   }
6056   if (Force) {
6057     if (Op.getValueType() != VecVT) {
6058       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
6059       DCI.AddToWorklist(Op.getNode());
6060     }
6061     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
6062                        DAG.getConstant(Index, DL, MVT::i32));
6063   }
6064   return SDValue();
6065 }
6066 
6067 // Optimize vector operations in scalar value Op on the basis that Op
6068 // is truncated to TruncVT.
6069 SDValue SystemZTargetLowering::combineTruncateExtract(
6070     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
6071   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
6072   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
6073   // of type TruncVT.
6074   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6075       TruncVT.getSizeInBits() % 8 == 0) {
6076     SDValue Vec = Op.getOperand(0);
6077     EVT VecVT = Vec.getValueType();
6078     if (canTreatAsByteVector(VecVT)) {
6079       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6080         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6081         unsigned TruncBytes = TruncVT.getStoreSize();
6082         if (BytesPerElement % TruncBytes == 0) {
6083           // Calculate the value of Y' in the above description.  We are
6084           // splitting the original elements into Scale equal-sized pieces
6085           // and for truncation purposes want the last (least-significant)
6086           // of these pieces for IndexN.  This is easiest to do by calculating
6087           // the start index of the following element and then subtracting 1.
6088           unsigned Scale = BytesPerElement / TruncBytes;
6089           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
6090 
6091           // Defer the creation of the bitcast from X to combineExtract,
6092           // which might be able to optimize the extraction.
6093           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
6094                                    VecVT.getStoreSize() / TruncBytes);
6095           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
6096           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
6097         }
6098       }
6099     }
6100   }
6101   return SDValue();
6102 }
6103 
6104 SDValue SystemZTargetLowering::combineZERO_EXTEND(
6105     SDNode *N, DAGCombinerInfo &DCI) const {
6106   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
6107   SelectionDAG &DAG = DCI.DAG;
6108   SDValue N0 = N->getOperand(0);
6109   EVT VT = N->getValueType(0);
6110   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
6111     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
6112     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6113     if (TrueOp && FalseOp) {
6114       SDLoc DL(N0);
6115       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
6116                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
6117                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
6118       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
6119       // If N0 has multiple uses, change other uses as well.
6120       if (!N0.hasOneUse()) {
6121         SDValue TruncSelect =
6122           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
6123         DCI.CombineTo(N0.getNode(), TruncSelect);
6124       }
6125       return NewSelect;
6126     }
6127   }
6128   return SDValue();
6129 }
6130 
6131 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
6132     SDNode *N, DAGCombinerInfo &DCI) const {
6133   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
6134   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
6135   // into (select_cc LHS, RHS, -1, 0, COND)
6136   SelectionDAG &DAG = DCI.DAG;
6137   SDValue N0 = N->getOperand(0);
6138   EVT VT = N->getValueType(0);
6139   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6140   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
6141     N0 = N0.getOperand(0);
6142   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
6143     SDLoc DL(N0);
6144     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
6145                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
6146                       N0.getOperand(2) };
6147     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
6148   }
6149   return SDValue();
6150 }
6151 
6152 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
6153     SDNode *N, DAGCombinerInfo &DCI) const {
6154   // Convert (sext (ashr (shl X, C1), C2)) to
6155   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
6156   // cheap as narrower ones.
6157   SelectionDAG &DAG = DCI.DAG;
6158   SDValue N0 = N->getOperand(0);
6159   EVT VT = N->getValueType(0);
6160   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
6161     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6162     SDValue Inner = N0.getOperand(0);
6163     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
6164       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
6165         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
6166         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
6167         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
6168         EVT ShiftVT = N0.getOperand(1).getValueType();
6169         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
6170                                   Inner.getOperand(0));
6171         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
6172                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
6173                                                   ShiftVT));
6174         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
6175                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
6176       }
6177     }
6178   }
6179   return SDValue();
6180 }
6181 
6182 SDValue SystemZTargetLowering::combineMERGE(
6183     SDNode *N, DAGCombinerInfo &DCI) const {
6184   SelectionDAG &DAG = DCI.DAG;
6185   unsigned Opcode = N->getOpcode();
6186   SDValue Op0 = N->getOperand(0);
6187   SDValue Op1 = N->getOperand(1);
6188   if (Op0.getOpcode() == ISD::BITCAST)
6189     Op0 = Op0.getOperand(0);
6190   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6191     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
6192     // for v4f32.
6193     if (Op1 == N->getOperand(0))
6194       return Op1;
6195     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6196     EVT VT = Op1.getValueType();
6197     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6198     if (ElemBytes <= 4) {
6199       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6200                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6201       EVT InVT = VT.changeVectorElementTypeToInteger();
6202       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6203                                    SystemZ::VectorBytes / ElemBytes / 2);
6204       if (VT != InVT) {
6205         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6206         DCI.AddToWorklist(Op1.getNode());
6207       }
6208       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6209       DCI.AddToWorklist(Op.getNode());
6210       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6211     }
6212   }
6213   return SDValue();
6214 }
6215 
6216 SDValue SystemZTargetLowering::combineLOAD(
6217     SDNode *N, DAGCombinerInfo &DCI) const {
6218   SelectionDAG &DAG = DCI.DAG;
6219   EVT LdVT = N->getValueType(0);
6220   if (LdVT.isVector() || LdVT.isInteger())
6221     return SDValue();
6222   // Transform a scalar load that is REPLICATEd as well as having other
6223   // use(s) to the form where the other use(s) use the first element of the
6224   // REPLICATE instead of the load. Otherwise instruction selection will not
6225   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6226   // point loads.
6227 
6228   SDValue Replicate;
6229   SmallVector<SDNode*, 8> OtherUses;
6230   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6231        UI != UE; ++UI) {
6232     if (UI->getOpcode() == SystemZISD::REPLICATE) {
6233       if (Replicate)
6234         return SDValue(); // Should never happen
6235       Replicate = SDValue(*UI, 0);
6236     }
6237     else if (UI.getUse().getResNo() == 0)
6238       OtherUses.push_back(*UI);
6239   }
6240   if (!Replicate || OtherUses.empty())
6241     return SDValue();
6242 
6243   SDLoc DL(N);
6244   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6245                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6246   // Update uses of the loaded Value while preserving old chains.
6247   for (SDNode *U : OtherUses) {
6248     SmallVector<SDValue, 8> Ops;
6249     for (SDValue Op : U->ops())
6250       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6251     DAG.UpdateNodeOperands(U, Ops);
6252   }
6253   return SDValue(N, 0);
6254 }
6255 
6256 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6257   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6258     return true;
6259   if (Subtarget.hasVectorEnhancements2())
6260     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6261       return true;
6262   return false;
6263 }
6264 
6265 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6266   if (!VT.isVector() || !VT.isSimple() ||
6267       VT.getSizeInBits() != 128 ||
6268       VT.getScalarSizeInBits() % 8 != 0)
6269     return false;
6270 
6271   unsigned NumElts = VT.getVectorNumElements();
6272   for (unsigned i = 0; i < NumElts; ++i) {
6273     if (M[i] < 0) continue; // ignore UNDEF indices
6274     if ((unsigned) M[i] != NumElts - 1 - i)
6275       return false;
6276   }
6277 
6278   return true;
6279 }
6280 
6281 SDValue SystemZTargetLowering::combineSTORE(
6282     SDNode *N, DAGCombinerInfo &DCI) const {
6283   SelectionDAG &DAG = DCI.DAG;
6284   auto *SN = cast<StoreSDNode>(N);
6285   auto &Op1 = N->getOperand(1);
6286   EVT MemVT = SN->getMemoryVT();
6287   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6288   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6289   // If X has wider elements then convert it to:
6290   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6291   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6292     if (SDValue Value =
6293             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6294       DCI.AddToWorklist(Value.getNode());
6295 
6296       // Rewrite the store with the new form of stored value.
6297       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6298                                SN->getBasePtr(), SN->getMemoryVT(),
6299                                SN->getMemOperand());
6300     }
6301   }
6302   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6303   if (!SN->isTruncatingStore() &&
6304       Op1.getOpcode() == ISD::BSWAP &&
6305       Op1.getNode()->hasOneUse() &&
6306       canLoadStoreByteSwapped(Op1.getValueType())) {
6307 
6308       SDValue BSwapOp = Op1.getOperand(0);
6309 
6310       if (BSwapOp.getValueType() == MVT::i16)
6311         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6312 
6313       SDValue Ops[] = {
6314         N->getOperand(0), BSwapOp, N->getOperand(2)
6315       };
6316 
6317       return
6318         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6319                                 Ops, MemVT, SN->getMemOperand());
6320     }
6321   // Combine STORE (element-swap) into VSTER
6322   if (!SN->isTruncatingStore() &&
6323       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6324       Op1.getNode()->hasOneUse() &&
6325       Subtarget.hasVectorEnhancements2()) {
6326     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6327     ArrayRef<int> ShuffleMask = SVN->getMask();
6328     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6329       SDValue Ops[] = {
6330         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6331       };
6332 
6333       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6334                                      DAG.getVTList(MVT::Other),
6335                                      Ops, MemVT, SN->getMemOperand());
6336     }
6337   }
6338 
6339   return SDValue();
6340 }
6341 
6342 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6343     SDNode *N, DAGCombinerInfo &DCI) const {
6344   SelectionDAG &DAG = DCI.DAG;
6345   // Combine element-swap (LOAD) into VLER
6346   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6347       N->getOperand(0).hasOneUse() &&
6348       Subtarget.hasVectorEnhancements2()) {
6349     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6350     ArrayRef<int> ShuffleMask = SVN->getMask();
6351     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6352       SDValue Load = N->getOperand(0);
6353       LoadSDNode *LD = cast<LoadSDNode>(Load);
6354 
6355       // Create the element-swapping load.
6356       SDValue Ops[] = {
6357         LD->getChain(),    // Chain
6358         LD->getBasePtr()   // Ptr
6359       };
6360       SDValue ESLoad =
6361         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6362                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6363                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6364 
6365       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6366       // by the load dead.
6367       DCI.CombineTo(N, ESLoad);
6368 
6369       // Next, combine the load away, we give it a bogus result value but a real
6370       // chain result.  The result value is dead because the shuffle is dead.
6371       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6372 
6373       // Return N so it doesn't get rechecked!
6374       return SDValue(N, 0);
6375     }
6376   }
6377 
6378   return SDValue();
6379 }
6380 
6381 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6382     SDNode *N, DAGCombinerInfo &DCI) const {
6383   SelectionDAG &DAG = DCI.DAG;
6384 
6385   if (!Subtarget.hasVector())
6386     return SDValue();
6387 
6388   // Look through bitcasts that retain the number of vector elements.
6389   SDValue Op = N->getOperand(0);
6390   if (Op.getOpcode() == ISD::BITCAST &&
6391       Op.getValueType().isVector() &&
6392       Op.getOperand(0).getValueType().isVector() &&
6393       Op.getValueType().getVectorNumElements() ==
6394       Op.getOperand(0).getValueType().getVectorNumElements())
6395     Op = Op.getOperand(0);
6396 
6397   // Pull BSWAP out of a vector extraction.
6398   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6399     EVT VecVT = Op.getValueType();
6400     EVT EltVT = VecVT.getVectorElementType();
6401     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6402                      Op.getOperand(0), N->getOperand(1));
6403     DCI.AddToWorklist(Op.getNode());
6404     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6405     if (EltVT != N->getValueType(0)) {
6406       DCI.AddToWorklist(Op.getNode());
6407       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6408     }
6409     return Op;
6410   }
6411 
6412   // Try to simplify a vector extraction.
6413   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6414     SDValue Op0 = N->getOperand(0);
6415     EVT VecVT = Op0.getValueType();
6416     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6417                           IndexN->getZExtValue(), DCI, false);
6418   }
6419   return SDValue();
6420 }
6421 
6422 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6423     SDNode *N, DAGCombinerInfo &DCI) const {
6424   SelectionDAG &DAG = DCI.DAG;
6425   // (join_dwords X, X) == (replicate X)
6426   if (N->getOperand(0) == N->getOperand(1))
6427     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6428                        N->getOperand(0));
6429   return SDValue();
6430 }
6431 
6432 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6433   SDValue Chain1 = N1->getOperand(0);
6434   SDValue Chain2 = N2->getOperand(0);
6435 
6436   // Trivial case: both nodes take the same chain.
6437   if (Chain1 == Chain2)
6438     return Chain1;
6439 
6440   // FIXME - we could handle more complex cases via TokenFactor,
6441   // assuming we can verify that this would not create a cycle.
6442   return SDValue();
6443 }
6444 
6445 SDValue SystemZTargetLowering::combineFP_ROUND(
6446     SDNode *N, DAGCombinerInfo &DCI) const {
6447 
6448   if (!Subtarget.hasVector())
6449     return SDValue();
6450 
6451   // (fpround (extract_vector_elt X 0))
6452   // (fpround (extract_vector_elt X 1)) ->
6453   // (extract_vector_elt (VROUND X) 0)
6454   // (extract_vector_elt (VROUND X) 2)
6455   //
6456   // This is a special case since the target doesn't really support v2f32s.
6457   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6458   SelectionDAG &DAG = DCI.DAG;
6459   SDValue Op0 = N->getOperand(OpNo);
6460   if (N->getValueType(0) == MVT::f32 &&
6461       Op0.hasOneUse() &&
6462       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6463       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6464       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6465       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6466     SDValue Vec = Op0.getOperand(0);
6467     for (auto *U : Vec->uses()) {
6468       if (U != Op0.getNode() &&
6469           U->hasOneUse() &&
6470           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6471           U->getOperand(0) == Vec &&
6472           U->getOperand(1).getOpcode() == ISD::Constant &&
6473           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6474         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6475         if (OtherRound.getOpcode() == N->getOpcode() &&
6476             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6477             OtherRound.getValueType() == MVT::f32) {
6478           SDValue VRound, Chain;
6479           if (N->isStrictFPOpcode()) {
6480             Chain = MergeInputChains(N, OtherRound.getNode());
6481             if (!Chain)
6482               continue;
6483             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6484                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6485             Chain = VRound.getValue(1);
6486           } else
6487             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6488                                  MVT::v4f32, Vec);
6489           DCI.AddToWorklist(VRound.getNode());
6490           SDValue Extract1 =
6491             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6492                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6493           DCI.AddToWorklist(Extract1.getNode());
6494           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6495           if (Chain)
6496             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6497           SDValue Extract0 =
6498             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6499                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6500           if (Chain)
6501             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6502                                N->getVTList(), Extract0, Chain);
6503           return Extract0;
6504         }
6505       }
6506     }
6507   }
6508   return SDValue();
6509 }
6510 
6511 SDValue SystemZTargetLowering::combineFP_EXTEND(
6512     SDNode *N, DAGCombinerInfo &DCI) const {
6513 
6514   if (!Subtarget.hasVector())
6515     return SDValue();
6516 
6517   // (fpextend (extract_vector_elt X 0))
6518   // (fpextend (extract_vector_elt X 2)) ->
6519   // (extract_vector_elt (VEXTEND X) 0)
6520   // (extract_vector_elt (VEXTEND X) 1)
6521   //
6522   // This is a special case since the target doesn't really support v2f32s.
6523   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6524   SelectionDAG &DAG = DCI.DAG;
6525   SDValue Op0 = N->getOperand(OpNo);
6526   if (N->getValueType(0) == MVT::f64 &&
6527       Op0.hasOneUse() &&
6528       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6529       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6530       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6531       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6532     SDValue Vec = Op0.getOperand(0);
6533     for (auto *U : Vec->uses()) {
6534       if (U != Op0.getNode() &&
6535           U->hasOneUse() &&
6536           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6537           U->getOperand(0) == Vec &&
6538           U->getOperand(1).getOpcode() == ISD::Constant &&
6539           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6540         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6541         if (OtherExtend.getOpcode() == N->getOpcode() &&
6542             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6543             OtherExtend.getValueType() == MVT::f64) {
6544           SDValue VExtend, Chain;
6545           if (N->isStrictFPOpcode()) {
6546             Chain = MergeInputChains(N, OtherExtend.getNode());
6547             if (!Chain)
6548               continue;
6549             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6550                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6551             Chain = VExtend.getValue(1);
6552           } else
6553             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6554                                   MVT::v2f64, Vec);
6555           DCI.AddToWorklist(VExtend.getNode());
6556           SDValue Extract1 =
6557             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6558                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6559           DCI.AddToWorklist(Extract1.getNode());
6560           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6561           if (Chain)
6562             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6563           SDValue Extract0 =
6564             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6565                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6566           if (Chain)
6567             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6568                                N->getVTList(), Extract0, Chain);
6569           return Extract0;
6570         }
6571       }
6572     }
6573   }
6574   return SDValue();
6575 }
6576 
6577 SDValue SystemZTargetLowering::combineINT_TO_FP(
6578     SDNode *N, DAGCombinerInfo &DCI) const {
6579   if (DCI.Level != BeforeLegalizeTypes)
6580     return SDValue();
6581   unsigned Opcode = N->getOpcode();
6582   EVT OutVT = N->getValueType(0);
6583   SelectionDAG &DAG = DCI.DAG;
6584   SDValue Op = N->getOperand(0);
6585   unsigned OutScalarBits = OutVT.getScalarSizeInBits();
6586   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6587 
6588   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6589   // v2f64 = uint_to_fp v2i16
6590   // =>
6591   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6592   if (OutVT.isVector() && OutScalarBits > InScalarBits) {
6593     MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()),
6594                                  OutVT.getVectorNumElements());
6595     unsigned ExtOpcode =
6596       (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6597     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6598     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6599   }
6600   return SDValue();
6601 }
6602 
6603 SDValue SystemZTargetLowering::combineBSWAP(
6604     SDNode *N, DAGCombinerInfo &DCI) const {
6605   SelectionDAG &DAG = DCI.DAG;
6606   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6607   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6608       N->getOperand(0).hasOneUse() &&
6609       canLoadStoreByteSwapped(N->getValueType(0))) {
6610       SDValue Load = N->getOperand(0);
6611       LoadSDNode *LD = cast<LoadSDNode>(Load);
6612 
6613       // Create the byte-swapping load.
6614       SDValue Ops[] = {
6615         LD->getChain(),    // Chain
6616         LD->getBasePtr()   // Ptr
6617       };
6618       EVT LoadVT = N->getValueType(0);
6619       if (LoadVT == MVT::i16)
6620         LoadVT = MVT::i32;
6621       SDValue BSLoad =
6622         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6623                                 DAG.getVTList(LoadVT, MVT::Other),
6624                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6625 
6626       // If this is an i16 load, insert the truncate.
6627       SDValue ResVal = BSLoad;
6628       if (N->getValueType(0) == MVT::i16)
6629         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6630 
6631       // First, combine the bswap away.  This makes the value produced by the
6632       // load dead.
6633       DCI.CombineTo(N, ResVal);
6634 
6635       // Next, combine the load away, we give it a bogus result value but a real
6636       // chain result.  The result value is dead because the bswap is dead.
6637       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6638 
6639       // Return N so it doesn't get rechecked!
6640       return SDValue(N, 0);
6641     }
6642 
6643   // Look through bitcasts that retain the number of vector elements.
6644   SDValue Op = N->getOperand(0);
6645   if (Op.getOpcode() == ISD::BITCAST &&
6646       Op.getValueType().isVector() &&
6647       Op.getOperand(0).getValueType().isVector() &&
6648       Op.getValueType().getVectorNumElements() ==
6649       Op.getOperand(0).getValueType().getVectorNumElements())
6650     Op = Op.getOperand(0);
6651 
6652   // Push BSWAP into a vector insertion if at least one side then simplifies.
6653   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6654     SDValue Vec = Op.getOperand(0);
6655     SDValue Elt = Op.getOperand(1);
6656     SDValue Idx = Op.getOperand(2);
6657 
6658     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6659         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6660         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6661         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6662         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6663          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6664       EVT VecVT = N->getValueType(0);
6665       EVT EltVT = N->getValueType(0).getVectorElementType();
6666       if (VecVT != Vec.getValueType()) {
6667         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6668         DCI.AddToWorklist(Vec.getNode());
6669       }
6670       if (EltVT != Elt.getValueType()) {
6671         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6672         DCI.AddToWorklist(Elt.getNode());
6673       }
6674       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6675       DCI.AddToWorklist(Vec.getNode());
6676       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6677       DCI.AddToWorklist(Elt.getNode());
6678       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6679                          Vec, Elt, Idx);
6680     }
6681   }
6682 
6683   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6684   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6685   if (SV && Op.hasOneUse()) {
6686     SDValue Op0 = Op.getOperand(0);
6687     SDValue Op1 = Op.getOperand(1);
6688 
6689     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6690         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6691         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6692         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6693       EVT VecVT = N->getValueType(0);
6694       if (VecVT != Op0.getValueType()) {
6695         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6696         DCI.AddToWorklist(Op0.getNode());
6697       }
6698       if (VecVT != Op1.getValueType()) {
6699         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6700         DCI.AddToWorklist(Op1.getNode());
6701       }
6702       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6703       DCI.AddToWorklist(Op0.getNode());
6704       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6705       DCI.AddToWorklist(Op1.getNode());
6706       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6707     }
6708   }
6709 
6710   return SDValue();
6711 }
6712 
6713 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6714   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6715   // set by the CCReg instruction using the CCValid / CCMask masks,
6716   // If the CCReg instruction is itself a ICMP testing the condition
6717   // code set by some other instruction, see whether we can directly
6718   // use that condition code.
6719 
6720   // Verify that we have an ICMP against some constant.
6721   if (CCValid != SystemZ::CCMASK_ICMP)
6722     return false;
6723   auto *ICmp = CCReg.getNode();
6724   if (ICmp->getOpcode() != SystemZISD::ICMP)
6725     return false;
6726   auto *CompareLHS = ICmp->getOperand(0).getNode();
6727   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6728   if (!CompareRHS)
6729     return false;
6730 
6731   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6732   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6733     // Verify that we have an appropriate mask for a EQ or NE comparison.
6734     bool Invert = false;
6735     if (CCMask == SystemZ::CCMASK_CMP_NE)
6736       Invert = !Invert;
6737     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6738       return false;
6739 
6740     // Verify that the ICMP compares against one of select values.
6741     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6742     if (!TrueVal)
6743       return false;
6744     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6745     if (!FalseVal)
6746       return false;
6747     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6748       Invert = !Invert;
6749     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6750       return false;
6751 
6752     // Compute the effective CC mask for the new branch or select.
6753     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6754     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6755     if (!NewCCValid || !NewCCMask)
6756       return false;
6757     CCValid = NewCCValid->getZExtValue();
6758     CCMask = NewCCMask->getZExtValue();
6759     if (Invert)
6760       CCMask ^= CCValid;
6761 
6762     // Return the updated CCReg link.
6763     CCReg = CompareLHS->getOperand(4);
6764     return true;
6765   }
6766 
6767   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6768   if (CompareLHS->getOpcode() == ISD::SRA) {
6769     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6770     if (!SRACount || SRACount->getZExtValue() != 30)
6771       return false;
6772     auto *SHL = CompareLHS->getOperand(0).getNode();
6773     if (SHL->getOpcode() != ISD::SHL)
6774       return false;
6775     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6776     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6777       return false;
6778     auto *IPM = SHL->getOperand(0).getNode();
6779     if (IPM->getOpcode() != SystemZISD::IPM)
6780       return false;
6781 
6782     // Avoid introducing CC spills (because SRA would clobber CC).
6783     if (!CompareLHS->hasOneUse())
6784       return false;
6785     // Verify that the ICMP compares against zero.
6786     if (CompareRHS->getZExtValue() != 0)
6787       return false;
6788 
6789     // Compute the effective CC mask for the new branch or select.
6790     CCMask = SystemZ::reverseCCMask(CCMask);
6791 
6792     // Return the updated CCReg link.
6793     CCReg = IPM->getOperand(0);
6794     return true;
6795   }
6796 
6797   return false;
6798 }
6799 
6800 SDValue SystemZTargetLowering::combineBR_CCMASK(
6801     SDNode *N, DAGCombinerInfo &DCI) const {
6802   SelectionDAG &DAG = DCI.DAG;
6803 
6804   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6805   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6806   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6807   if (!CCValid || !CCMask)
6808     return SDValue();
6809 
6810   int CCValidVal = CCValid->getZExtValue();
6811   int CCMaskVal = CCMask->getZExtValue();
6812   SDValue Chain = N->getOperand(0);
6813   SDValue CCReg = N->getOperand(4);
6814 
6815   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6816     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6817                        Chain,
6818                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6819                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6820                        N->getOperand(3), CCReg);
6821   return SDValue();
6822 }
6823 
6824 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
6825     SDNode *N, DAGCombinerInfo &DCI) const {
6826   SelectionDAG &DAG = DCI.DAG;
6827 
6828   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
6829   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
6830   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
6831   if (!CCValid || !CCMask)
6832     return SDValue();
6833 
6834   int CCValidVal = CCValid->getZExtValue();
6835   int CCMaskVal = CCMask->getZExtValue();
6836   SDValue CCReg = N->getOperand(4);
6837 
6838   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6839     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
6840                        N->getOperand(0), N->getOperand(1),
6841                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
6842                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
6843                        CCReg);
6844   return SDValue();
6845 }
6846 
6847 
6848 SDValue SystemZTargetLowering::combineGET_CCMASK(
6849     SDNode *N, DAGCombinerInfo &DCI) const {
6850 
6851   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
6852   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6853   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6854   if (!CCValid || !CCMask)
6855     return SDValue();
6856   int CCValidVal = CCValid->getZExtValue();
6857   int CCMaskVal = CCMask->getZExtValue();
6858 
6859   SDValue Select = N->getOperand(0);
6860   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
6861     return SDValue();
6862 
6863   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
6864   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
6865   if (!SelectCCValid || !SelectCCMask)
6866     return SDValue();
6867   int SelectCCValidVal = SelectCCValid->getZExtValue();
6868   int SelectCCMaskVal = SelectCCMask->getZExtValue();
6869 
6870   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
6871   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
6872   if (!TrueVal || !FalseVal)
6873     return SDValue();
6874   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
6875     ;
6876   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
6877     SelectCCMaskVal ^= SelectCCValidVal;
6878   else
6879     return SDValue();
6880 
6881   if (SelectCCValidVal & ~CCValidVal)
6882     return SDValue();
6883   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
6884     return SDValue();
6885 
6886   return Select->getOperand(4);
6887 }
6888 
6889 SDValue SystemZTargetLowering::combineIntDIVREM(
6890     SDNode *N, DAGCombinerInfo &DCI) const {
6891   SelectionDAG &DAG = DCI.DAG;
6892   EVT VT = N->getValueType(0);
6893   // In the case where the divisor is a vector of constants a cheaper
6894   // sequence of instructions can replace the divide. BuildSDIV is called to
6895   // do this during DAG combining, but it only succeeds when it can build a
6896   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
6897   // since it is not Legal but Custom it can only happen before
6898   // legalization. Therefore we must scalarize this early before Combine
6899   // 1. For widened vectors, this is already the result of type legalization.
6900   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
6901       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
6902     return DAG.UnrollVectorOp(N);
6903   return SDValue();
6904 }
6905 
6906 SDValue SystemZTargetLowering::combineINTRINSIC(
6907     SDNode *N, DAGCombinerInfo &DCI) const {
6908   SelectionDAG &DAG = DCI.DAG;
6909 
6910   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
6911   switch (Id) {
6912   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
6913   // or larger is simply a vector load.
6914   case Intrinsic::s390_vll:
6915   case Intrinsic::s390_vlrl:
6916     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
6917       if (C->getZExtValue() >= 15)
6918         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
6919                            N->getOperand(3), MachinePointerInfo());
6920     break;
6921   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
6922   case Intrinsic::s390_vstl:
6923   case Intrinsic::s390_vstrl:
6924     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
6925       if (C->getZExtValue() >= 15)
6926         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
6927                             N->getOperand(4), MachinePointerInfo());
6928     break;
6929   }
6930 
6931   return SDValue();
6932 }
6933 
6934 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
6935   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
6936     return N->getOperand(0);
6937   return N;
6938 }
6939 
6940 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
6941                                                  DAGCombinerInfo &DCI) const {
6942   switch(N->getOpcode()) {
6943   default: break;
6944   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
6945   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
6946   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
6947   case SystemZISD::MERGE_HIGH:
6948   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
6949   case ISD::LOAD:               return combineLOAD(N, DCI);
6950   case ISD::STORE:              return combineSTORE(N, DCI);
6951   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
6952   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
6953   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
6954   case ISD::STRICT_FP_ROUND:
6955   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
6956   case ISD::STRICT_FP_EXTEND:
6957   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
6958   case ISD::SINT_TO_FP:
6959   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
6960   case ISD::BSWAP:              return combineBSWAP(N, DCI);
6961   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
6962   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
6963   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
6964   case ISD::SDIV:
6965   case ISD::UDIV:
6966   case ISD::SREM:
6967   case ISD::UREM:               return combineIntDIVREM(N, DCI);
6968   case ISD::INTRINSIC_W_CHAIN:
6969   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
6970   }
6971 
6972   return SDValue();
6973 }
6974 
6975 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
6976 // are for Op.
6977 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
6978                                     unsigned OpNo) {
6979   EVT VT = Op.getValueType();
6980   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
6981   APInt SrcDemE;
6982   unsigned Opcode = Op.getOpcode();
6983   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
6984     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
6985     switch (Id) {
6986     case Intrinsic::s390_vpksh:   // PACKS
6987     case Intrinsic::s390_vpksf:
6988     case Intrinsic::s390_vpksg:
6989     case Intrinsic::s390_vpkshs:  // PACKS_CC
6990     case Intrinsic::s390_vpksfs:
6991     case Intrinsic::s390_vpksgs:
6992     case Intrinsic::s390_vpklsh:  // PACKLS
6993     case Intrinsic::s390_vpklsf:
6994     case Intrinsic::s390_vpklsg:
6995     case Intrinsic::s390_vpklshs: // PACKLS_CC
6996     case Intrinsic::s390_vpklsfs:
6997     case Intrinsic::s390_vpklsgs:
6998       // VECTOR PACK truncates the elements of two source vectors into one.
6999       SrcDemE = DemandedElts;
7000       if (OpNo == 2)
7001         SrcDemE.lshrInPlace(NumElts / 2);
7002       SrcDemE = SrcDemE.trunc(NumElts / 2);
7003       break;
7004       // VECTOR UNPACK extends half the elements of the source vector.
7005     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7006     case Intrinsic::s390_vuphh:
7007     case Intrinsic::s390_vuphf:
7008     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7009     case Intrinsic::s390_vuplhh:
7010     case Intrinsic::s390_vuplhf:
7011       SrcDemE = APInt(NumElts * 2, 0);
7012       SrcDemE.insertBits(DemandedElts, 0);
7013       break;
7014     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7015     case Intrinsic::s390_vuplhw:
7016     case Intrinsic::s390_vuplf:
7017     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7018     case Intrinsic::s390_vupllh:
7019     case Intrinsic::s390_vupllf:
7020       SrcDemE = APInt(NumElts * 2, 0);
7021       SrcDemE.insertBits(DemandedElts, NumElts);
7022       break;
7023     case Intrinsic::s390_vpdi: {
7024       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
7025       SrcDemE = APInt(NumElts, 0);
7026       if (!DemandedElts[OpNo - 1])
7027         break;
7028       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7029       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
7030       // Demand input element 0 or 1, given by the mask bit value.
7031       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
7032       break;
7033     }
7034     case Intrinsic::s390_vsldb: {
7035       // VECTOR SHIFT LEFT DOUBLE BY BYTE
7036       assert(VT == MVT::v16i8 && "Unexpected type.");
7037       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7038       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
7039       unsigned NumSrc0Els = 16 - FirstIdx;
7040       SrcDemE = APInt(NumElts, 0);
7041       if (OpNo == 1) {
7042         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
7043         SrcDemE.insertBits(DemEls, FirstIdx);
7044       } else {
7045         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
7046         SrcDemE.insertBits(DemEls, 0);
7047       }
7048       break;
7049     }
7050     case Intrinsic::s390_vperm:
7051       SrcDemE = APInt(NumElts, 1);
7052       break;
7053     default:
7054       llvm_unreachable("Unhandled intrinsic.");
7055       break;
7056     }
7057   } else {
7058     switch (Opcode) {
7059     case SystemZISD::JOIN_DWORDS:
7060       // Scalar operand.
7061       SrcDemE = APInt(1, 1);
7062       break;
7063     case SystemZISD::SELECT_CCMASK:
7064       SrcDemE = DemandedElts;
7065       break;
7066     default:
7067       llvm_unreachable("Unhandled opcode.");
7068       break;
7069     }
7070   }
7071   return SrcDemE;
7072 }
7073 
7074 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
7075                                   const APInt &DemandedElts,
7076                                   const SelectionDAG &DAG, unsigned Depth,
7077                                   unsigned OpNo) {
7078   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7079   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7080   KnownBits LHSKnown =
7081       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7082   KnownBits RHSKnown =
7083       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7084   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
7085 }
7086 
7087 void
7088 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7089                                                      KnownBits &Known,
7090                                                      const APInt &DemandedElts,
7091                                                      const SelectionDAG &DAG,
7092                                                      unsigned Depth) const {
7093   Known.resetAll();
7094 
7095   // Intrinsic CC result is returned in the two low bits.
7096   unsigned tmp0, tmp1; // not used
7097   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
7098     Known.Zero.setBitsFrom(2);
7099     return;
7100   }
7101   EVT VT = Op.getValueType();
7102   if (Op.getResNo() != 0 || VT == MVT::Untyped)
7103     return;
7104   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
7105           "KnownBits does not match VT in bitwidth");
7106   assert ((!VT.isVector() ||
7107            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
7108           "DemandedElts does not match VT number of elements");
7109   unsigned BitWidth = Known.getBitWidth();
7110   unsigned Opcode = Op.getOpcode();
7111   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7112     bool IsLogical = false;
7113     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7114     switch (Id) {
7115     case Intrinsic::s390_vpksh:   // PACKS
7116     case Intrinsic::s390_vpksf:
7117     case Intrinsic::s390_vpksg:
7118     case Intrinsic::s390_vpkshs:  // PACKS_CC
7119     case Intrinsic::s390_vpksfs:
7120     case Intrinsic::s390_vpksgs:
7121     case Intrinsic::s390_vpklsh:  // PACKLS
7122     case Intrinsic::s390_vpklsf:
7123     case Intrinsic::s390_vpklsg:
7124     case Intrinsic::s390_vpklshs: // PACKLS_CC
7125     case Intrinsic::s390_vpklsfs:
7126     case Intrinsic::s390_vpklsgs:
7127     case Intrinsic::s390_vpdi:
7128     case Intrinsic::s390_vsldb:
7129     case Intrinsic::s390_vperm:
7130       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
7131       break;
7132     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7133     case Intrinsic::s390_vuplhh:
7134     case Intrinsic::s390_vuplhf:
7135     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7136     case Intrinsic::s390_vupllh:
7137     case Intrinsic::s390_vupllf:
7138       IsLogical = true;
7139       LLVM_FALLTHROUGH;
7140     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7141     case Intrinsic::s390_vuphh:
7142     case Intrinsic::s390_vuphf:
7143     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7144     case Intrinsic::s390_vuplhw:
7145     case Intrinsic::s390_vuplf: {
7146       SDValue SrcOp = Op.getOperand(1);
7147       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
7148       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
7149       if (IsLogical) {
7150         Known = Known.zext(BitWidth);
7151       } else
7152         Known = Known.sext(BitWidth);
7153       break;
7154     }
7155     default:
7156       break;
7157     }
7158   } else {
7159     switch (Opcode) {
7160     case SystemZISD::JOIN_DWORDS:
7161     case SystemZISD::SELECT_CCMASK:
7162       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
7163       break;
7164     case SystemZISD::REPLICATE: {
7165       SDValue SrcOp = Op.getOperand(0);
7166       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
7167       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
7168         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
7169       break;
7170     }
7171     default:
7172       break;
7173     }
7174   }
7175 
7176   // Known has the width of the source operand(s). Adjust if needed to match
7177   // the passed bitwidth.
7178   if (Known.getBitWidth() != BitWidth)
7179     Known = Known.anyextOrTrunc(BitWidth);
7180 }
7181 
7182 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
7183                                         const SelectionDAG &DAG, unsigned Depth,
7184                                         unsigned OpNo) {
7185   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7186   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7187   if (LHS == 1) return 1; // Early out.
7188   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7189   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7190   if (RHS == 1) return 1; // Early out.
7191   unsigned Common = std::min(LHS, RHS);
7192   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
7193   EVT VT = Op.getValueType();
7194   unsigned VTBits = VT.getScalarSizeInBits();
7195   if (SrcBitWidth > VTBits) { // PACK
7196     unsigned SrcExtraBits = SrcBitWidth - VTBits;
7197     if (Common > SrcExtraBits)
7198       return (Common - SrcExtraBits);
7199     return 1;
7200   }
7201   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
7202   return Common;
7203 }
7204 
7205 unsigned
7206 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
7207     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7208     unsigned Depth) const {
7209   if (Op.getResNo() != 0)
7210     return 1;
7211   unsigned Opcode = Op.getOpcode();
7212   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7213     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7214     switch (Id) {
7215     case Intrinsic::s390_vpksh:   // PACKS
7216     case Intrinsic::s390_vpksf:
7217     case Intrinsic::s390_vpksg:
7218     case Intrinsic::s390_vpkshs:  // PACKS_CC
7219     case Intrinsic::s390_vpksfs:
7220     case Intrinsic::s390_vpksgs:
7221     case Intrinsic::s390_vpklsh:  // PACKLS
7222     case Intrinsic::s390_vpklsf:
7223     case Intrinsic::s390_vpklsg:
7224     case Intrinsic::s390_vpklshs: // PACKLS_CC
7225     case Intrinsic::s390_vpklsfs:
7226     case Intrinsic::s390_vpklsgs:
7227     case Intrinsic::s390_vpdi:
7228     case Intrinsic::s390_vsldb:
7229     case Intrinsic::s390_vperm:
7230       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
7231     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7232     case Intrinsic::s390_vuphh:
7233     case Intrinsic::s390_vuphf:
7234     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7235     case Intrinsic::s390_vuplhw:
7236     case Intrinsic::s390_vuplf: {
7237       SDValue PackedOp = Op.getOperand(1);
7238       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
7239       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
7240       EVT VT = Op.getValueType();
7241       unsigned VTBits = VT.getScalarSizeInBits();
7242       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7243       return Tmp;
7244     }
7245     default:
7246       break;
7247     }
7248   } else {
7249     switch (Opcode) {
7250     case SystemZISD::SELECT_CCMASK:
7251       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7252     default:
7253       break;
7254     }
7255   }
7256 
7257   return 1;
7258 }
7259 
7260 unsigned
7261 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7262   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7263   unsigned StackAlign = TFI->getStackAlignment();
7264   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7265          "Unexpected stack alignment");
7266   // The default stack probe size is 4096 if the function has no
7267   // stack-probe-size attribute.
7268   unsigned StackProbeSize = 4096;
7269   const Function &Fn = MF.getFunction();
7270   if (Fn.hasFnAttribute("stack-probe-size"))
7271     Fn.getFnAttribute("stack-probe-size")
7272         .getValueAsString()
7273         .getAsInteger(0, StackProbeSize);
7274   // Round down to the stack alignment.
7275   StackProbeSize &= ~(StackAlign - 1);
7276   return StackProbeSize ? StackProbeSize : StackAlign;
7277 }
7278 
7279 //===----------------------------------------------------------------------===//
7280 // Custom insertion
7281 //===----------------------------------------------------------------------===//
7282 
7283 // Force base value Base into a register before MI.  Return the register.
7284 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7285                          const SystemZInstrInfo *TII) {
7286   MachineBasicBlock *MBB = MI.getParent();
7287   MachineFunction &MF = *MBB->getParent();
7288   MachineRegisterInfo &MRI = MF.getRegInfo();
7289 
7290   if (Base.isReg()) {
7291     // Copy Base into a new virtual register to help register coalescing in
7292     // cases with multiple uses.
7293     Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7294     BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
7295       .add(Base);
7296     return Reg;
7297   }
7298 
7299   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7300   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7301       .add(Base)
7302       .addImm(0)
7303       .addReg(0);
7304   return Reg;
7305 }
7306 
7307 // The CC operand of MI might be missing a kill marker because there
7308 // were multiple uses of CC, and ISel didn't know which to mark.
7309 // Figure out whether MI should have had a kill marker.
7310 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7311   // Scan forward through BB for a use/def of CC.
7312   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7313   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7314     const MachineInstr& mi = *miI;
7315     if (mi.readsRegister(SystemZ::CC))
7316       return false;
7317     if (mi.definesRegister(SystemZ::CC))
7318       break; // Should have kill-flag - update below.
7319   }
7320 
7321   // If we hit the end of the block, check whether CC is live into a
7322   // successor.
7323   if (miI == MBB->end()) {
7324     for (const MachineBasicBlock *Succ : MBB->successors())
7325       if (Succ->isLiveIn(SystemZ::CC))
7326         return false;
7327   }
7328 
7329   return true;
7330 }
7331 
7332 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7333 // together with other Select pseudo-opcodes into a single basic-block with
7334 // a conditional jump around it.
7335 static bool isSelectPseudo(MachineInstr &MI) {
7336   switch (MI.getOpcode()) {
7337   case SystemZ::Select32:
7338   case SystemZ::Select64:
7339   case SystemZ::SelectF32:
7340   case SystemZ::SelectF64:
7341   case SystemZ::SelectF128:
7342   case SystemZ::SelectVR32:
7343   case SystemZ::SelectVR64:
7344   case SystemZ::SelectVR128:
7345     return true;
7346 
7347   default:
7348     return false;
7349   }
7350 }
7351 
7352 // Helper function, which inserts PHI functions into SinkMBB:
7353 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7354 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7355 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7356                                  MachineBasicBlock *TrueMBB,
7357                                  MachineBasicBlock *FalseMBB,
7358                                  MachineBasicBlock *SinkMBB) {
7359   MachineFunction *MF = TrueMBB->getParent();
7360   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7361 
7362   MachineInstr *FirstMI = Selects.front();
7363   unsigned CCValid = FirstMI->getOperand(3).getImm();
7364   unsigned CCMask = FirstMI->getOperand(4).getImm();
7365 
7366   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7367 
7368   // As we are creating the PHIs, we have to be careful if there is more than
7369   // one.  Later Selects may reference the results of earlier Selects, but later
7370   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7371   // That also means that PHI construction must work forward from earlier to
7372   // later, and that the code must maintain a mapping from earlier PHI's
7373   // destination registers, and the registers that went into the PHI.
7374   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7375 
7376   for (auto MI : Selects) {
7377     Register DestReg = MI->getOperand(0).getReg();
7378     Register TrueReg = MI->getOperand(1).getReg();
7379     Register FalseReg = MI->getOperand(2).getReg();
7380 
7381     // If this Select we are generating is the opposite condition from
7382     // the jump we generated, then we have to swap the operands for the
7383     // PHI that is going to be generated.
7384     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7385       std::swap(TrueReg, FalseReg);
7386 
7387     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7388       TrueReg = RegRewriteTable[TrueReg].first;
7389 
7390     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7391       FalseReg = RegRewriteTable[FalseReg].second;
7392 
7393     DebugLoc DL = MI->getDebugLoc();
7394     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7395       .addReg(TrueReg).addMBB(TrueMBB)
7396       .addReg(FalseReg).addMBB(FalseMBB);
7397 
7398     // Add this PHI to the rewrite table.
7399     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7400   }
7401 
7402   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7403 }
7404 
7405 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7406 MachineBasicBlock *
7407 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7408                                   MachineBasicBlock *MBB) const {
7409   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7410   const SystemZInstrInfo *TII =
7411       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7412 
7413   unsigned CCValid = MI.getOperand(3).getImm();
7414   unsigned CCMask = MI.getOperand(4).getImm();
7415 
7416   // If we have a sequence of Select* pseudo instructions using the
7417   // same condition code value, we want to expand all of them into
7418   // a single pair of basic blocks using the same condition.
7419   SmallVector<MachineInstr*, 8> Selects;
7420   SmallVector<MachineInstr*, 8> DbgValues;
7421   Selects.push_back(&MI);
7422   unsigned Count = 0;
7423   for (MachineBasicBlock::iterator NextMIIt =
7424          std::next(MachineBasicBlock::iterator(MI));
7425        NextMIIt != MBB->end(); ++NextMIIt) {
7426     if (isSelectPseudo(*NextMIIt)) {
7427       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7428              "Bad CCValid operands since CC was not redefined.");
7429       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7430           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7431         Selects.push_back(&*NextMIIt);
7432         continue;
7433       }
7434       break;
7435     }
7436     if (NextMIIt->definesRegister(SystemZ::CC) ||
7437         NextMIIt->usesCustomInsertionHook())
7438       break;
7439     bool User = false;
7440     for (auto SelMI : Selects)
7441       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7442         User = true;
7443         break;
7444       }
7445     if (NextMIIt->isDebugInstr()) {
7446       if (User) {
7447         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7448         DbgValues.push_back(&*NextMIIt);
7449       }
7450     }
7451     else if (User || ++Count > 20)
7452       break;
7453   }
7454 
7455   MachineInstr *LastMI = Selects.back();
7456   bool CCKilled =
7457       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7458   MachineBasicBlock *StartMBB = MBB;
7459   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7460   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7461 
7462   // Unless CC was killed in the last Select instruction, mark it as
7463   // live-in to both FalseMBB and JoinMBB.
7464   if (!CCKilled) {
7465     FalseMBB->addLiveIn(SystemZ::CC);
7466     JoinMBB->addLiveIn(SystemZ::CC);
7467   }
7468 
7469   //  StartMBB:
7470   //   BRC CCMask, JoinMBB
7471   //   # fallthrough to FalseMBB
7472   MBB = StartMBB;
7473   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7474     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7475   MBB->addSuccessor(JoinMBB);
7476   MBB->addSuccessor(FalseMBB);
7477 
7478   //  FalseMBB:
7479   //   # fallthrough to JoinMBB
7480   MBB = FalseMBB;
7481   MBB->addSuccessor(JoinMBB);
7482 
7483   //  JoinMBB:
7484   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7485   //  ...
7486   MBB = JoinMBB;
7487   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7488   for (auto SelMI : Selects)
7489     SelMI->eraseFromParent();
7490 
7491   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7492   for (auto DbgMI : DbgValues)
7493     MBB->splice(InsertPos, StartMBB, DbgMI);
7494 
7495   return JoinMBB;
7496 }
7497 
7498 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7499 // StoreOpcode is the store to use and Invert says whether the store should
7500 // happen when the condition is false rather than true.  If a STORE ON
7501 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7502 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7503                                                         MachineBasicBlock *MBB,
7504                                                         unsigned StoreOpcode,
7505                                                         unsigned STOCOpcode,
7506                                                         bool Invert) const {
7507   const SystemZInstrInfo *TII =
7508       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7509 
7510   Register SrcReg = MI.getOperand(0).getReg();
7511   MachineOperand Base = MI.getOperand(1);
7512   int64_t Disp = MI.getOperand(2).getImm();
7513   Register IndexReg = MI.getOperand(3).getReg();
7514   unsigned CCValid = MI.getOperand(4).getImm();
7515   unsigned CCMask = MI.getOperand(5).getImm();
7516   DebugLoc DL = MI.getDebugLoc();
7517 
7518   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7519 
7520   // ISel pattern matching also adds a load memory operand of the same
7521   // address, so take special care to find the storing memory operand.
7522   MachineMemOperand *MMO = nullptr;
7523   for (auto *I : MI.memoperands())
7524     if (I->isStore()) {
7525       MMO = I;
7526       break;
7527     }
7528 
7529   // Use STOCOpcode if possible.  We could use different store patterns in
7530   // order to avoid matching the index register, but the performance trade-offs
7531   // might be more complicated in that case.
7532   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7533     if (Invert)
7534       CCMask ^= CCValid;
7535 
7536     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7537       .addReg(SrcReg)
7538       .add(Base)
7539       .addImm(Disp)
7540       .addImm(CCValid)
7541       .addImm(CCMask)
7542       .addMemOperand(MMO);
7543 
7544     MI.eraseFromParent();
7545     return MBB;
7546   }
7547 
7548   // Get the condition needed to branch around the store.
7549   if (!Invert)
7550     CCMask ^= CCValid;
7551 
7552   MachineBasicBlock *StartMBB = MBB;
7553   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7554   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7555 
7556   // Unless CC was killed in the CondStore instruction, mark it as
7557   // live-in to both FalseMBB and JoinMBB.
7558   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7559     FalseMBB->addLiveIn(SystemZ::CC);
7560     JoinMBB->addLiveIn(SystemZ::CC);
7561   }
7562 
7563   //  StartMBB:
7564   //   BRC CCMask, JoinMBB
7565   //   # fallthrough to FalseMBB
7566   MBB = StartMBB;
7567   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7568     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7569   MBB->addSuccessor(JoinMBB);
7570   MBB->addSuccessor(FalseMBB);
7571 
7572   //  FalseMBB:
7573   //   store %SrcReg, %Disp(%Index,%Base)
7574   //   # fallthrough to JoinMBB
7575   MBB = FalseMBB;
7576   BuildMI(MBB, DL, TII->get(StoreOpcode))
7577       .addReg(SrcReg)
7578       .add(Base)
7579       .addImm(Disp)
7580       .addReg(IndexReg)
7581       .addMemOperand(MMO);
7582   MBB->addSuccessor(JoinMBB);
7583 
7584   MI.eraseFromParent();
7585   return JoinMBB;
7586 }
7587 
7588 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7589 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7590 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7591 // BitSize is the width of the field in bits, or 0 if this is a partword
7592 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7593 // is one of the operands.  Invert says whether the field should be
7594 // inverted after performing BinOpcode (e.g. for NAND).
7595 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7596     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7597     unsigned BitSize, bool Invert) const {
7598   MachineFunction &MF = *MBB->getParent();
7599   const SystemZInstrInfo *TII =
7600       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7601   MachineRegisterInfo &MRI = MF.getRegInfo();
7602   bool IsSubWord = (BitSize < 32);
7603 
7604   // Extract the operands.  Base can be a register or a frame index.
7605   // Src2 can be a register or immediate.
7606   Register Dest = MI.getOperand(0).getReg();
7607   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7608   int64_t Disp = MI.getOperand(2).getImm();
7609   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7610   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7611   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7612   DebugLoc DL = MI.getDebugLoc();
7613   if (IsSubWord)
7614     BitSize = MI.getOperand(6).getImm();
7615 
7616   // Subword operations use 32-bit registers.
7617   const TargetRegisterClass *RC = (BitSize <= 32 ?
7618                                    &SystemZ::GR32BitRegClass :
7619                                    &SystemZ::GR64BitRegClass);
7620   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7621   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7622 
7623   // Get the right opcodes for the displacement.
7624   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7625   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7626   assert(LOpcode && CSOpcode && "Displacement out of range");
7627 
7628   // Create virtual registers for temporary results.
7629   Register OrigVal       = MRI.createVirtualRegister(RC);
7630   Register OldVal        = MRI.createVirtualRegister(RC);
7631   Register NewVal        = (BinOpcode || IsSubWord ?
7632                             MRI.createVirtualRegister(RC) : Src2.getReg());
7633   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7634   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7635 
7636   // Insert a basic block for the main loop.
7637   MachineBasicBlock *StartMBB = MBB;
7638   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7639   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7640 
7641   //  StartMBB:
7642   //   ...
7643   //   %OrigVal = L Disp(%Base)
7644   //   # fall through to LoopMBB
7645   MBB = StartMBB;
7646   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7647   MBB->addSuccessor(LoopMBB);
7648 
7649   //  LoopMBB:
7650   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7651   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7652   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7653   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7654   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7655   //   JNE LoopMBB
7656   //   # fall through to DoneMBB
7657   MBB = LoopMBB;
7658   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7659     .addReg(OrigVal).addMBB(StartMBB)
7660     .addReg(Dest).addMBB(LoopMBB);
7661   if (IsSubWord)
7662     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7663       .addReg(OldVal).addReg(BitShift).addImm(0);
7664   if (Invert) {
7665     // Perform the operation normally and then invert every bit of the field.
7666     Register Tmp = MRI.createVirtualRegister(RC);
7667     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7668     if (BitSize <= 32)
7669       // XILF with the upper BitSize bits set.
7670       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7671         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7672     else {
7673       // Use LCGR and add -1 to the result, which is more compact than
7674       // an XILF, XILH pair.
7675       Register Tmp2 = MRI.createVirtualRegister(RC);
7676       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7677       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7678         .addReg(Tmp2).addImm(-1);
7679     }
7680   } else if (BinOpcode)
7681     // A simply binary operation.
7682     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7683         .addReg(RotatedOldVal)
7684         .add(Src2);
7685   else if (IsSubWord)
7686     // Use RISBG to rotate Src2 into position and use it to replace the
7687     // field in RotatedOldVal.
7688     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7689       .addReg(RotatedOldVal).addReg(Src2.getReg())
7690       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7691   if (IsSubWord)
7692     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7693       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7694   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7695       .addReg(OldVal)
7696       .addReg(NewVal)
7697       .add(Base)
7698       .addImm(Disp);
7699   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7700     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7701   MBB->addSuccessor(LoopMBB);
7702   MBB->addSuccessor(DoneMBB);
7703 
7704   MI.eraseFromParent();
7705   return DoneMBB;
7706 }
7707 
7708 // Implement EmitInstrWithCustomInserter for pseudo
7709 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7710 // instruction that should be used to compare the current field with the
7711 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7712 // for when the current field should be kept.  BitSize is the width of
7713 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7714 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7715     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7716     unsigned KeepOldMask, unsigned BitSize) const {
7717   MachineFunction &MF = *MBB->getParent();
7718   const SystemZInstrInfo *TII =
7719       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7720   MachineRegisterInfo &MRI = MF.getRegInfo();
7721   bool IsSubWord = (BitSize < 32);
7722 
7723   // Extract the operands.  Base can be a register or a frame index.
7724   Register Dest = MI.getOperand(0).getReg();
7725   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7726   int64_t Disp = MI.getOperand(2).getImm();
7727   Register Src2 = MI.getOperand(3).getReg();
7728   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7729   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7730   DebugLoc DL = MI.getDebugLoc();
7731   if (IsSubWord)
7732     BitSize = MI.getOperand(6).getImm();
7733 
7734   // Subword operations use 32-bit registers.
7735   const TargetRegisterClass *RC = (BitSize <= 32 ?
7736                                    &SystemZ::GR32BitRegClass :
7737                                    &SystemZ::GR64BitRegClass);
7738   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7739   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7740 
7741   // Get the right opcodes for the displacement.
7742   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7743   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7744   assert(LOpcode && CSOpcode && "Displacement out of range");
7745 
7746   // Create virtual registers for temporary results.
7747   Register OrigVal       = MRI.createVirtualRegister(RC);
7748   Register OldVal        = MRI.createVirtualRegister(RC);
7749   Register NewVal        = MRI.createVirtualRegister(RC);
7750   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7751   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7752   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7753 
7754   // Insert 3 basic blocks for the loop.
7755   MachineBasicBlock *StartMBB  = MBB;
7756   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7757   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7758   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7759   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7760 
7761   //  StartMBB:
7762   //   ...
7763   //   %OrigVal     = L Disp(%Base)
7764   //   # fall through to LoopMBB
7765   MBB = StartMBB;
7766   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7767   MBB->addSuccessor(LoopMBB);
7768 
7769   //  LoopMBB:
7770   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7771   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7772   //   CompareOpcode %RotatedOldVal, %Src2
7773   //   BRC KeepOldMask, UpdateMBB
7774   MBB = LoopMBB;
7775   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7776     .addReg(OrigVal).addMBB(StartMBB)
7777     .addReg(Dest).addMBB(UpdateMBB);
7778   if (IsSubWord)
7779     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7780       .addReg(OldVal).addReg(BitShift).addImm(0);
7781   BuildMI(MBB, DL, TII->get(CompareOpcode))
7782     .addReg(RotatedOldVal).addReg(Src2);
7783   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7784     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7785   MBB->addSuccessor(UpdateMBB);
7786   MBB->addSuccessor(UseAltMBB);
7787 
7788   //  UseAltMBB:
7789   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7790   //   # fall through to UpdateMBB
7791   MBB = UseAltMBB;
7792   if (IsSubWord)
7793     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7794       .addReg(RotatedOldVal).addReg(Src2)
7795       .addImm(32).addImm(31 + BitSize).addImm(0);
7796   MBB->addSuccessor(UpdateMBB);
7797 
7798   //  UpdateMBB:
7799   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7800   //                        [ %RotatedAltVal, UseAltMBB ]
7801   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7802   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7803   //   JNE LoopMBB
7804   //   # fall through to DoneMBB
7805   MBB = UpdateMBB;
7806   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7807     .addReg(RotatedOldVal).addMBB(LoopMBB)
7808     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7809   if (IsSubWord)
7810     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7811       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7812   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7813       .addReg(OldVal)
7814       .addReg(NewVal)
7815       .add(Base)
7816       .addImm(Disp);
7817   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7818     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7819   MBB->addSuccessor(LoopMBB);
7820   MBB->addSuccessor(DoneMBB);
7821 
7822   MI.eraseFromParent();
7823   return DoneMBB;
7824 }
7825 
7826 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
7827 // instruction MI.
7828 MachineBasicBlock *
7829 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
7830                                           MachineBasicBlock *MBB) const {
7831   MachineFunction &MF = *MBB->getParent();
7832   const SystemZInstrInfo *TII =
7833       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7834   MachineRegisterInfo &MRI = MF.getRegInfo();
7835 
7836   // Extract the operands.  Base can be a register or a frame index.
7837   Register Dest = MI.getOperand(0).getReg();
7838   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7839   int64_t Disp = MI.getOperand(2).getImm();
7840   Register CmpVal = MI.getOperand(3).getReg();
7841   Register OrigSwapVal = MI.getOperand(4).getReg();
7842   Register BitShift = MI.getOperand(5).getReg();
7843   Register NegBitShift = MI.getOperand(6).getReg();
7844   int64_t BitSize = MI.getOperand(7).getImm();
7845   DebugLoc DL = MI.getDebugLoc();
7846 
7847   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
7848 
7849   // Get the right opcodes for the displacement and zero-extension.
7850   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
7851   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
7852   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
7853   assert(LOpcode && CSOpcode && "Displacement out of range");
7854 
7855   // Create virtual registers for temporary results.
7856   Register OrigOldVal = MRI.createVirtualRegister(RC);
7857   Register OldVal = MRI.createVirtualRegister(RC);
7858   Register SwapVal = MRI.createVirtualRegister(RC);
7859   Register StoreVal = MRI.createVirtualRegister(RC);
7860   Register OldValRot = MRI.createVirtualRegister(RC);
7861   Register RetryOldVal = MRI.createVirtualRegister(RC);
7862   Register RetrySwapVal = MRI.createVirtualRegister(RC);
7863 
7864   // Insert 2 basic blocks for the loop.
7865   MachineBasicBlock *StartMBB = MBB;
7866   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7867   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7868   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
7869 
7870   //  StartMBB:
7871   //   ...
7872   //   %OrigOldVal     = L Disp(%Base)
7873   //   # fall through to LoopMBB
7874   MBB = StartMBB;
7875   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
7876       .add(Base)
7877       .addImm(Disp)
7878       .addReg(0);
7879   MBB->addSuccessor(LoopMBB);
7880 
7881   //  LoopMBB:
7882   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
7883   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
7884   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
7885   //                      ^^ The low BitSize bits contain the field
7886   //                         of interest.
7887   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
7888   //                      ^^ Replace the upper 32-BitSize bits of the
7889   //                         swap value with those that we loaded and rotated.
7890   //   %Dest = LL[CH] %OldValRot
7891   //   CR %Dest, %CmpVal
7892   //   JNE DoneMBB
7893   //   # Fall through to SetMBB
7894   MBB = LoopMBB;
7895   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7896     .addReg(OrigOldVal).addMBB(StartMBB)
7897     .addReg(RetryOldVal).addMBB(SetMBB);
7898   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
7899     .addReg(OrigSwapVal).addMBB(StartMBB)
7900     .addReg(RetrySwapVal).addMBB(SetMBB);
7901   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
7902     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
7903   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
7904     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
7905   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
7906     .addReg(OldValRot);
7907   BuildMI(MBB, DL, TII->get(SystemZ::CR))
7908     .addReg(Dest).addReg(CmpVal);
7909   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7910     .addImm(SystemZ::CCMASK_ICMP)
7911     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
7912   MBB->addSuccessor(DoneMBB);
7913   MBB->addSuccessor(SetMBB);
7914 
7915   //  SetMBB:
7916   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
7917   //                      ^^ Rotate the new field to its proper position.
7918   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
7919   //   JNE LoopMBB
7920   //   # fall through to ExitMBB
7921   MBB = SetMBB;
7922   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
7923     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
7924   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
7925       .addReg(OldVal)
7926       .addReg(StoreVal)
7927       .add(Base)
7928       .addImm(Disp);
7929   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7930     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7931   MBB->addSuccessor(LoopMBB);
7932   MBB->addSuccessor(DoneMBB);
7933 
7934   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
7935   // to the block after the loop.  At this point, CC may have been defined
7936   // either by the CR in LoopMBB or by the CS in SetMBB.
7937   if (!MI.registerDefIsDead(SystemZ::CC))
7938     DoneMBB->addLiveIn(SystemZ::CC);
7939 
7940   MI.eraseFromParent();
7941   return DoneMBB;
7942 }
7943 
7944 // Emit a move from two GR64s to a GR128.
7945 MachineBasicBlock *
7946 SystemZTargetLowering::emitPair128(MachineInstr &MI,
7947                                    MachineBasicBlock *MBB) const {
7948   MachineFunction &MF = *MBB->getParent();
7949   const SystemZInstrInfo *TII =
7950       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7951   MachineRegisterInfo &MRI = MF.getRegInfo();
7952   DebugLoc DL = MI.getDebugLoc();
7953 
7954   Register Dest = MI.getOperand(0).getReg();
7955   Register Hi = MI.getOperand(1).getReg();
7956   Register Lo = MI.getOperand(2).getReg();
7957   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7958   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7959 
7960   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
7961   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
7962     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
7963   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7964     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
7965 
7966   MI.eraseFromParent();
7967   return MBB;
7968 }
7969 
7970 // Emit an extension from a GR64 to a GR128.  ClearEven is true
7971 // if the high register of the GR128 value must be cleared or false if
7972 // it's "don't care".
7973 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
7974                                                      MachineBasicBlock *MBB,
7975                                                      bool ClearEven) const {
7976   MachineFunction &MF = *MBB->getParent();
7977   const SystemZInstrInfo *TII =
7978       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7979   MachineRegisterInfo &MRI = MF.getRegInfo();
7980   DebugLoc DL = MI.getDebugLoc();
7981 
7982   Register Dest = MI.getOperand(0).getReg();
7983   Register Src = MI.getOperand(1).getReg();
7984   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7985 
7986   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
7987   if (ClearEven) {
7988     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
7989     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
7990 
7991     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
7992       .addImm(0);
7993     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
7994       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
7995     In128 = NewIn128;
7996   }
7997   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
7998     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
7999 
8000   MI.eraseFromParent();
8001   return MBB;
8002 }
8003 
8004 MachineBasicBlock *
8005 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
8006                                          MachineBasicBlock *MBB,
8007                                          unsigned Opcode, bool IsMemset) const {
8008   MachineFunction &MF = *MBB->getParent();
8009   const SystemZInstrInfo *TII =
8010       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8011   MachineRegisterInfo &MRI = MF.getRegInfo();
8012   DebugLoc DL = MI.getDebugLoc();
8013 
8014   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
8015   uint64_t DestDisp = MI.getOperand(1).getImm();
8016   MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
8017   uint64_t SrcDisp;
8018 
8019   // Fold the displacement Disp if it is out of range.
8020   auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
8021     if (!isUInt<12>(Disp)) {
8022       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8023       unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
8024       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
8025         .add(Base).addImm(Disp).addReg(0);
8026       Base = MachineOperand::CreateReg(Reg, false);
8027       Disp = 0;
8028     }
8029   };
8030 
8031   if (!IsMemset) {
8032     SrcBase = earlyUseOperand(MI.getOperand(2));
8033     SrcDisp = MI.getOperand(3).getImm();
8034   } else {
8035     SrcBase = DestBase;
8036     SrcDisp = DestDisp++;
8037     foldDisplIfNeeded(DestBase, DestDisp);
8038   }
8039 
8040   MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
8041   bool IsImmForm = LengthMO.isImm();
8042   bool IsRegForm = !IsImmForm;
8043 
8044   // Build and insert one Opcode of Length, with special treatment for memset.
8045   auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
8046                             MachineBasicBlock::iterator InsPos,
8047                             MachineOperand DBase, uint64_t DDisp,
8048                             MachineOperand SBase, uint64_t SDisp,
8049                             unsigned Length) -> void {
8050     assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
8051     if (IsMemset) {
8052       MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
8053       if (ByteMO.isImm())
8054         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
8055           .add(SBase).addImm(SDisp).add(ByteMO);
8056       else
8057         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
8058           .add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
8059       if (--Length == 0)
8060         return;
8061     }
8062     BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
8063       .add(DBase).addImm(DDisp).addImm(Length)
8064       .add(SBase).addImm(SDisp)
8065       .setMemRefs(MI.memoperands());
8066   };
8067 
8068   bool NeedsLoop = false;
8069   uint64_t ImmLength = 0;
8070   Register LenAdjReg = SystemZ::NoRegister;
8071   if (IsImmForm) {
8072     ImmLength = LengthMO.getImm();
8073     ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
8074     if (ImmLength == 0) {
8075       MI.eraseFromParent();
8076       return MBB;
8077     }
8078     if (Opcode == SystemZ::CLC) {
8079       if (ImmLength > 3 * 256)
8080         // A two-CLC sequence is a clear win over a loop, not least because
8081         // it needs only one branch.  A three-CLC sequence needs the same
8082         // number of branches as a loop (i.e. 2), but is shorter.  That
8083         // brings us to lengths greater than 768 bytes.  It seems relatively
8084         // likely that a difference will be found within the first 768 bytes,
8085         // so we just optimize for the smallest number of branch
8086         // instructions, in order to avoid polluting the prediction buffer
8087         // too much.
8088         NeedsLoop = true;
8089     } else if (ImmLength > 6 * 256)
8090       // The heuristic we use is to prefer loops for anything that would
8091       // require 7 or more MVCs.  With these kinds of sizes there isn't much
8092       // to choose between straight-line code and looping code, since the
8093       // time will be dominated by the MVCs themselves.
8094       NeedsLoop = true;
8095   } else {
8096     NeedsLoop = true;
8097     LenAdjReg = LengthMO.getReg();
8098   }
8099 
8100   // When generating more than one CLC, all but the last will need to
8101   // branch to the end when a difference is found.
8102   MachineBasicBlock *EndMBB =
8103       (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
8104            ? SystemZ::splitBlockAfter(MI, MBB)
8105            : nullptr);
8106 
8107   if (NeedsLoop) {
8108     Register StartCountReg =
8109       MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8110     if (IsImmForm) {
8111       TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
8112       ImmLength &= 255;
8113     } else {
8114       BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
8115         .addReg(LenAdjReg)
8116         .addReg(0)
8117         .addImm(8);
8118     }
8119 
8120     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
8121     auto loadZeroAddress = [&]() -> MachineOperand {
8122       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8123       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
8124       return MachineOperand::CreateReg(Reg, false);
8125     };
8126     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
8127       DestBase = loadZeroAddress();
8128     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
8129       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
8130 
8131     MachineBasicBlock *StartMBB = nullptr;
8132     MachineBasicBlock *LoopMBB = nullptr;
8133     MachineBasicBlock *NextMBB = nullptr;
8134     MachineBasicBlock *DoneMBB = nullptr;
8135     MachineBasicBlock *AllDoneMBB = nullptr;
8136 
8137     Register StartSrcReg = forceReg(MI, SrcBase, TII);
8138     Register StartDestReg =
8139         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
8140 
8141     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
8142     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
8143     Register ThisDestReg =
8144         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
8145     Register NextSrcReg  = MRI.createVirtualRegister(RC);
8146     Register NextDestReg =
8147         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
8148     RC = &SystemZ::GR64BitRegClass;
8149     Register ThisCountReg = MRI.createVirtualRegister(RC);
8150     Register NextCountReg = MRI.createVirtualRegister(RC);
8151 
8152     if (IsRegForm) {
8153       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8154       StartMBB = SystemZ::emitBlockAfter(MBB);
8155       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8156       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8157       DoneMBB = SystemZ::emitBlockAfter(NextMBB);
8158 
8159       //  MBB:
8160       //   # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
8161       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8162         .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
8163       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8164         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8165         .addMBB(AllDoneMBB);
8166       MBB->addSuccessor(AllDoneMBB);
8167       if (!IsMemset)
8168         MBB->addSuccessor(StartMBB);
8169       else {
8170         // MemsetOneCheckMBB:
8171         // # Jump to MemsetOneMBB for a memset of length 1, or
8172         // # fall thru to StartMBB.
8173         MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
8174         MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
8175         MBB->addSuccessor(MemsetOneCheckMBB);
8176         MBB = MemsetOneCheckMBB;
8177         BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8178           .addReg(LenAdjReg).addImm(-1);
8179         BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8180           .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8181           .addMBB(MemsetOneMBB);
8182         MBB->addSuccessor(MemsetOneMBB, {10, 100});
8183         MBB->addSuccessor(StartMBB, {90, 100});
8184 
8185         // MemsetOneMBB:
8186         // # Jump back to AllDoneMBB after a single MVI or STC.
8187         MBB = MemsetOneMBB;
8188         insertMemMemOp(MBB, MBB->end(),
8189                        MachineOperand::CreateReg(StartDestReg, false), DestDisp,
8190                        MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
8191                        1);
8192         BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
8193         MBB->addSuccessor(AllDoneMBB);
8194       }
8195 
8196       // StartMBB:
8197       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
8198       MBB = StartMBB;
8199       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8200         .addReg(StartCountReg).addImm(0);
8201       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8202         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8203         .addMBB(DoneMBB);
8204       MBB->addSuccessor(DoneMBB);
8205       MBB->addSuccessor(LoopMBB);
8206     }
8207     else {
8208       StartMBB = MBB;
8209       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8210       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8211       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8212 
8213       //  StartMBB:
8214       //   # fall through to LoopMBB
8215       MBB->addSuccessor(LoopMBB);
8216 
8217       DestBase = MachineOperand::CreateReg(NextDestReg, false);
8218       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
8219       if (EndMBB && !ImmLength)
8220         // If the loop handled the whole CLC range, DoneMBB will be empty with
8221         // CC live-through into EndMBB, so add it as live-in.
8222         DoneMBB->addLiveIn(SystemZ::CC);
8223     }
8224 
8225     //  LoopMBB:
8226     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
8227     //                      [ %NextDestReg, NextMBB ]
8228     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
8229     //                     [ %NextSrcReg, NextMBB ]
8230     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
8231     //                       [ %NextCountReg, NextMBB ]
8232     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
8233     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
8234     //   ( JLH EndMBB )
8235     //
8236     // The prefetch is used only for MVC.  The JLH is used only for CLC.
8237     MBB = LoopMBB;
8238     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
8239       .addReg(StartDestReg).addMBB(StartMBB)
8240       .addReg(NextDestReg).addMBB(NextMBB);
8241     if (!HaveSingleBase)
8242       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
8243         .addReg(StartSrcReg).addMBB(StartMBB)
8244         .addReg(NextSrcReg).addMBB(NextMBB);
8245     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
8246       .addReg(StartCountReg).addMBB(StartMBB)
8247       .addReg(NextCountReg).addMBB(NextMBB);
8248     if (Opcode == SystemZ::MVC)
8249       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
8250         .addImm(SystemZ::PFD_WRITE)
8251         .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
8252     insertMemMemOp(MBB, MBB->end(),
8253                    MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
8254                    MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
8255     if (EndMBB) {
8256       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8257         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8258         .addMBB(EndMBB);
8259       MBB->addSuccessor(EndMBB);
8260       MBB->addSuccessor(NextMBB);
8261     }
8262 
8263     // NextMBB:
8264     //   %NextDestReg = LA 256(%ThisDestReg)
8265     //   %NextSrcReg = LA 256(%ThisSrcReg)
8266     //   %NextCountReg = AGHI %ThisCountReg, -1
8267     //   CGHI %NextCountReg, 0
8268     //   JLH LoopMBB
8269     //   # fall through to DoneMBB
8270     //
8271     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
8272     MBB = NextMBB;
8273     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
8274       .addReg(ThisDestReg).addImm(256).addReg(0);
8275     if (!HaveSingleBase)
8276       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
8277         .addReg(ThisSrcReg).addImm(256).addReg(0);
8278     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
8279       .addReg(ThisCountReg).addImm(-1);
8280     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8281       .addReg(NextCountReg).addImm(0);
8282     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8283       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8284       .addMBB(LoopMBB);
8285     MBB->addSuccessor(LoopMBB);
8286     MBB->addSuccessor(DoneMBB);
8287 
8288     MBB = DoneMBB;
8289     if (IsRegForm) {
8290       // DoneMBB:
8291       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
8292       // # Use EXecute Relative Long for the remainder of the bytes. The target
8293       //   instruction of the EXRL will have a length field of 1 since 0 is an
8294       //   illegal value. The number of bytes processed becomes (%LenAdjReg &
8295       //   0xff) + 1.
8296       // # Fall through to AllDoneMBB.
8297       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8298       Register RemDestReg = HaveSingleBase ? RemSrcReg
8299         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8300       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
8301         .addReg(StartDestReg).addMBB(StartMBB)
8302         .addReg(NextDestReg).addMBB(NextMBB);
8303       if (!HaveSingleBase)
8304         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
8305           .addReg(StartSrcReg).addMBB(StartMBB)
8306           .addReg(NextSrcReg).addMBB(NextMBB);
8307       if (IsMemset)
8308         insertMemMemOp(MBB, MBB->end(),
8309                        MachineOperand::CreateReg(RemDestReg, false), DestDisp,
8310                        MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
8311       MachineInstrBuilder EXRL_MIB =
8312         BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
8313           .addImm(Opcode)
8314           .addReg(LenAdjReg)
8315           .addReg(RemDestReg).addImm(DestDisp)
8316           .addReg(RemSrcReg).addImm(SrcDisp);
8317       MBB->addSuccessor(AllDoneMBB);
8318       MBB = AllDoneMBB;
8319       if (EndMBB) {
8320         EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
8321         MBB->addLiveIn(SystemZ::CC);
8322       }
8323     }
8324   }
8325 
8326   // Handle any remaining bytes with straight-line code.
8327   while (ImmLength > 0) {
8328     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
8329     // The previous iteration might have created out-of-range displacements.
8330     // Apply them using LA/LAY if so.
8331     foldDisplIfNeeded(DestBase, DestDisp);
8332     foldDisplIfNeeded(SrcBase, SrcDisp);
8333     insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
8334     DestDisp += ThisLength;
8335     SrcDisp += ThisLength;
8336     ImmLength -= ThisLength;
8337     // If there's another CLC to go, branch to the end if a difference
8338     // was found.
8339     if (EndMBB && ImmLength > 0) {
8340       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
8341       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8342         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8343         .addMBB(EndMBB);
8344       MBB->addSuccessor(EndMBB);
8345       MBB->addSuccessor(NextMBB);
8346       MBB = NextMBB;
8347     }
8348   }
8349   if (EndMBB) {
8350     MBB->addSuccessor(EndMBB);
8351     MBB = EndMBB;
8352     MBB->addLiveIn(SystemZ::CC);
8353   }
8354 
8355   MI.eraseFromParent();
8356   return MBB;
8357 }
8358 
8359 // Decompose string pseudo-instruction MI into a loop that continually performs
8360 // Opcode until CC != 3.
8361 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
8362     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8363   MachineFunction &MF = *MBB->getParent();
8364   const SystemZInstrInfo *TII =
8365       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8366   MachineRegisterInfo &MRI = MF.getRegInfo();
8367   DebugLoc DL = MI.getDebugLoc();
8368 
8369   uint64_t End1Reg = MI.getOperand(0).getReg();
8370   uint64_t Start1Reg = MI.getOperand(1).getReg();
8371   uint64_t Start2Reg = MI.getOperand(2).getReg();
8372   uint64_t CharReg = MI.getOperand(3).getReg();
8373 
8374   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
8375   uint64_t This1Reg = MRI.createVirtualRegister(RC);
8376   uint64_t This2Reg = MRI.createVirtualRegister(RC);
8377   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
8378 
8379   MachineBasicBlock *StartMBB = MBB;
8380   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8381   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8382 
8383   //  StartMBB:
8384   //   # fall through to LoopMBB
8385   MBB->addSuccessor(LoopMBB);
8386 
8387   //  LoopMBB:
8388   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
8389   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
8390   //   R0L = %CharReg
8391   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
8392   //   JO LoopMBB
8393   //   # fall through to DoneMBB
8394   //
8395   // The load of R0L can be hoisted by post-RA LICM.
8396   MBB = LoopMBB;
8397 
8398   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
8399     .addReg(Start1Reg).addMBB(StartMBB)
8400     .addReg(End1Reg).addMBB(LoopMBB);
8401   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
8402     .addReg(Start2Reg).addMBB(StartMBB)
8403     .addReg(End2Reg).addMBB(LoopMBB);
8404   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
8405   BuildMI(MBB, DL, TII->get(Opcode))
8406     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
8407     .addReg(This1Reg).addReg(This2Reg);
8408   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8409     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
8410   MBB->addSuccessor(LoopMBB);
8411   MBB->addSuccessor(DoneMBB);
8412 
8413   DoneMBB->addLiveIn(SystemZ::CC);
8414 
8415   MI.eraseFromParent();
8416   return DoneMBB;
8417 }
8418 
8419 // Update TBEGIN instruction with final opcode and register clobbers.
8420 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
8421     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
8422     bool NoFloat) const {
8423   MachineFunction &MF = *MBB->getParent();
8424   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8425   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8426 
8427   // Update opcode.
8428   MI.setDesc(TII->get(Opcode));
8429 
8430   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
8431   // Make sure to add the corresponding GRSM bits if they are missing.
8432   uint64_t Control = MI.getOperand(2).getImm();
8433   static const unsigned GPRControlBit[16] = {
8434     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8435     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8436   };
8437   Control |= GPRControlBit[15];
8438   if (TFI->hasFP(MF))
8439     Control |= GPRControlBit[11];
8440   MI.getOperand(2).setImm(Control);
8441 
8442   // Add GPR clobbers.
8443   for (int I = 0; I < 16; I++) {
8444     if ((Control & GPRControlBit[I]) == 0) {
8445       unsigned Reg = SystemZMC::GR64Regs[I];
8446       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8447     }
8448   }
8449 
8450   // Add FPR/VR clobbers.
8451   if (!NoFloat && (Control & 4) != 0) {
8452     if (Subtarget.hasVector()) {
8453       for (unsigned Reg : SystemZMC::VR128Regs) {
8454         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8455       }
8456     } else {
8457       for (unsigned Reg : SystemZMC::FP64Regs) {
8458         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8459       }
8460     }
8461   }
8462 
8463   return MBB;
8464 }
8465 
8466 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8467     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8468   MachineFunction &MF = *MBB->getParent();
8469   MachineRegisterInfo *MRI = &MF.getRegInfo();
8470   const SystemZInstrInfo *TII =
8471       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8472   DebugLoc DL = MI.getDebugLoc();
8473 
8474   Register SrcReg = MI.getOperand(0).getReg();
8475 
8476   // Create new virtual register of the same class as source.
8477   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8478   Register DstReg = MRI->createVirtualRegister(RC);
8479 
8480   // Replace pseudo with a normal load-and-test that models the def as
8481   // well.
8482   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8483     .addReg(SrcReg)
8484     .setMIFlags(MI.getFlags());
8485   MI.eraseFromParent();
8486 
8487   return MBB;
8488 }
8489 
8490 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8491     MachineInstr &MI, MachineBasicBlock *MBB) const {
8492   MachineFunction &MF = *MBB->getParent();
8493   MachineRegisterInfo *MRI = &MF.getRegInfo();
8494   const SystemZInstrInfo *TII =
8495       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8496   DebugLoc DL = MI.getDebugLoc();
8497   const unsigned ProbeSize = getStackProbeSize(MF);
8498   Register DstReg = MI.getOperand(0).getReg();
8499   Register SizeReg = MI.getOperand(2).getReg();
8500 
8501   MachineBasicBlock *StartMBB = MBB;
8502   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8503   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8504   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8505   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8506   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8507 
8508   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8509     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8510 
8511   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8512   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8513 
8514   //  LoopTestMBB
8515   //  BRC TailTestMBB
8516   //  # fallthrough to LoopBodyMBB
8517   StartMBB->addSuccessor(LoopTestMBB);
8518   MBB = LoopTestMBB;
8519   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8520     .addReg(SizeReg)
8521     .addMBB(StartMBB)
8522     .addReg(IncReg)
8523     .addMBB(LoopBodyMBB);
8524   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8525     .addReg(PHIReg)
8526     .addImm(ProbeSize);
8527   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8528     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8529     .addMBB(TailTestMBB);
8530   MBB->addSuccessor(LoopBodyMBB);
8531   MBB->addSuccessor(TailTestMBB);
8532 
8533   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8534   //  J LoopTestMBB
8535   MBB = LoopBodyMBB;
8536   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8537     .addReg(PHIReg)
8538     .addImm(ProbeSize);
8539   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8540     .addReg(SystemZ::R15D)
8541     .addImm(ProbeSize);
8542   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8543     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8544     .setMemRefs(VolLdMMO);
8545   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8546   MBB->addSuccessor(LoopTestMBB);
8547 
8548   //  TailTestMBB
8549   //  BRC DoneMBB
8550   //  # fallthrough to TailMBB
8551   MBB = TailTestMBB;
8552   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8553     .addReg(PHIReg)
8554     .addImm(0);
8555   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8556     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8557     .addMBB(DoneMBB);
8558   MBB->addSuccessor(TailMBB);
8559   MBB->addSuccessor(DoneMBB);
8560 
8561   //  TailMBB
8562   //  # fallthrough to DoneMBB
8563   MBB = TailMBB;
8564   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8565     .addReg(SystemZ::R15D)
8566     .addReg(PHIReg);
8567   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8568     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8569     .setMemRefs(VolLdMMO);
8570   MBB->addSuccessor(DoneMBB);
8571 
8572   //  DoneMBB
8573   MBB = DoneMBB;
8574   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8575     .addReg(SystemZ::R15D);
8576 
8577   MI.eraseFromParent();
8578   return DoneMBB;
8579 }
8580 
8581 SDValue SystemZTargetLowering::
8582 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8583   MachineFunction &MF = DAG.getMachineFunction();
8584   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
8585   SDLoc DL(SP);
8586   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8587                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8588 }
8589 
8590 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8591     MachineInstr &MI, MachineBasicBlock *MBB) const {
8592   switch (MI.getOpcode()) {
8593   case SystemZ::Select32:
8594   case SystemZ::Select64:
8595   case SystemZ::SelectF32:
8596   case SystemZ::SelectF64:
8597   case SystemZ::SelectF128:
8598   case SystemZ::SelectVR32:
8599   case SystemZ::SelectVR64:
8600   case SystemZ::SelectVR128:
8601     return emitSelect(MI, MBB);
8602 
8603   case SystemZ::CondStore8Mux:
8604     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8605   case SystemZ::CondStore8MuxInv:
8606     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8607   case SystemZ::CondStore16Mux:
8608     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8609   case SystemZ::CondStore16MuxInv:
8610     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8611   case SystemZ::CondStore32Mux:
8612     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8613   case SystemZ::CondStore32MuxInv:
8614     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8615   case SystemZ::CondStore8:
8616     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8617   case SystemZ::CondStore8Inv:
8618     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8619   case SystemZ::CondStore16:
8620     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8621   case SystemZ::CondStore16Inv:
8622     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8623   case SystemZ::CondStore32:
8624     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8625   case SystemZ::CondStore32Inv:
8626     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8627   case SystemZ::CondStore64:
8628     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8629   case SystemZ::CondStore64Inv:
8630     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8631   case SystemZ::CondStoreF32:
8632     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8633   case SystemZ::CondStoreF32Inv:
8634     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8635   case SystemZ::CondStoreF64:
8636     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8637   case SystemZ::CondStoreF64Inv:
8638     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8639 
8640   case SystemZ::PAIR128:
8641     return emitPair128(MI, MBB);
8642   case SystemZ::AEXT128:
8643     return emitExt128(MI, MBB, false);
8644   case SystemZ::ZEXT128:
8645     return emitExt128(MI, MBB, true);
8646 
8647   case SystemZ::ATOMIC_SWAPW:
8648     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8649   case SystemZ::ATOMIC_SWAP_32:
8650     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8651   case SystemZ::ATOMIC_SWAP_64:
8652     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8653 
8654   case SystemZ::ATOMIC_LOADW_AR:
8655     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8656   case SystemZ::ATOMIC_LOADW_AFI:
8657     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8658   case SystemZ::ATOMIC_LOAD_AR:
8659     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8660   case SystemZ::ATOMIC_LOAD_AHI:
8661     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8662   case SystemZ::ATOMIC_LOAD_AFI:
8663     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8664   case SystemZ::ATOMIC_LOAD_AGR:
8665     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8666   case SystemZ::ATOMIC_LOAD_AGHI:
8667     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8668   case SystemZ::ATOMIC_LOAD_AGFI:
8669     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8670 
8671   case SystemZ::ATOMIC_LOADW_SR:
8672     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8673   case SystemZ::ATOMIC_LOAD_SR:
8674     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8675   case SystemZ::ATOMIC_LOAD_SGR:
8676     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8677 
8678   case SystemZ::ATOMIC_LOADW_NR:
8679     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8680   case SystemZ::ATOMIC_LOADW_NILH:
8681     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8682   case SystemZ::ATOMIC_LOAD_NR:
8683     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8684   case SystemZ::ATOMIC_LOAD_NILL:
8685     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8686   case SystemZ::ATOMIC_LOAD_NILH:
8687     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8688   case SystemZ::ATOMIC_LOAD_NILF:
8689     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8690   case SystemZ::ATOMIC_LOAD_NGR:
8691     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8692   case SystemZ::ATOMIC_LOAD_NILL64:
8693     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8694   case SystemZ::ATOMIC_LOAD_NILH64:
8695     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8696   case SystemZ::ATOMIC_LOAD_NIHL64:
8697     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8698   case SystemZ::ATOMIC_LOAD_NIHH64:
8699     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8700   case SystemZ::ATOMIC_LOAD_NILF64:
8701     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8702   case SystemZ::ATOMIC_LOAD_NIHF64:
8703     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8704 
8705   case SystemZ::ATOMIC_LOADW_OR:
8706     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8707   case SystemZ::ATOMIC_LOADW_OILH:
8708     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8709   case SystemZ::ATOMIC_LOAD_OR:
8710     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8711   case SystemZ::ATOMIC_LOAD_OILL:
8712     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8713   case SystemZ::ATOMIC_LOAD_OILH:
8714     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8715   case SystemZ::ATOMIC_LOAD_OILF:
8716     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8717   case SystemZ::ATOMIC_LOAD_OGR:
8718     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8719   case SystemZ::ATOMIC_LOAD_OILL64:
8720     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8721   case SystemZ::ATOMIC_LOAD_OILH64:
8722     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8723   case SystemZ::ATOMIC_LOAD_OIHL64:
8724     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8725   case SystemZ::ATOMIC_LOAD_OIHH64:
8726     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8727   case SystemZ::ATOMIC_LOAD_OILF64:
8728     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8729   case SystemZ::ATOMIC_LOAD_OIHF64:
8730     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8731 
8732   case SystemZ::ATOMIC_LOADW_XR:
8733     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8734   case SystemZ::ATOMIC_LOADW_XILF:
8735     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8736   case SystemZ::ATOMIC_LOAD_XR:
8737     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8738   case SystemZ::ATOMIC_LOAD_XILF:
8739     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8740   case SystemZ::ATOMIC_LOAD_XGR:
8741     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8742   case SystemZ::ATOMIC_LOAD_XILF64:
8743     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8744   case SystemZ::ATOMIC_LOAD_XIHF64:
8745     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8746 
8747   case SystemZ::ATOMIC_LOADW_NRi:
8748     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8749   case SystemZ::ATOMIC_LOADW_NILHi:
8750     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8751   case SystemZ::ATOMIC_LOAD_NRi:
8752     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8753   case SystemZ::ATOMIC_LOAD_NILLi:
8754     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8755   case SystemZ::ATOMIC_LOAD_NILHi:
8756     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8757   case SystemZ::ATOMIC_LOAD_NILFi:
8758     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8759   case SystemZ::ATOMIC_LOAD_NGRi:
8760     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8761   case SystemZ::ATOMIC_LOAD_NILL64i:
8762     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8763   case SystemZ::ATOMIC_LOAD_NILH64i:
8764     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8765   case SystemZ::ATOMIC_LOAD_NIHL64i:
8766     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8767   case SystemZ::ATOMIC_LOAD_NIHH64i:
8768     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8769   case SystemZ::ATOMIC_LOAD_NILF64i:
8770     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8771   case SystemZ::ATOMIC_LOAD_NIHF64i:
8772     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8773 
8774   case SystemZ::ATOMIC_LOADW_MIN:
8775     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8776                                 SystemZ::CCMASK_CMP_LE, 0);
8777   case SystemZ::ATOMIC_LOAD_MIN_32:
8778     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8779                                 SystemZ::CCMASK_CMP_LE, 32);
8780   case SystemZ::ATOMIC_LOAD_MIN_64:
8781     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8782                                 SystemZ::CCMASK_CMP_LE, 64);
8783 
8784   case SystemZ::ATOMIC_LOADW_MAX:
8785     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8786                                 SystemZ::CCMASK_CMP_GE, 0);
8787   case SystemZ::ATOMIC_LOAD_MAX_32:
8788     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8789                                 SystemZ::CCMASK_CMP_GE, 32);
8790   case SystemZ::ATOMIC_LOAD_MAX_64:
8791     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8792                                 SystemZ::CCMASK_CMP_GE, 64);
8793 
8794   case SystemZ::ATOMIC_LOADW_UMIN:
8795     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8796                                 SystemZ::CCMASK_CMP_LE, 0);
8797   case SystemZ::ATOMIC_LOAD_UMIN_32:
8798     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8799                                 SystemZ::CCMASK_CMP_LE, 32);
8800   case SystemZ::ATOMIC_LOAD_UMIN_64:
8801     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8802                                 SystemZ::CCMASK_CMP_LE, 64);
8803 
8804   case SystemZ::ATOMIC_LOADW_UMAX:
8805     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8806                                 SystemZ::CCMASK_CMP_GE, 0);
8807   case SystemZ::ATOMIC_LOAD_UMAX_32:
8808     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8809                                 SystemZ::CCMASK_CMP_GE, 32);
8810   case SystemZ::ATOMIC_LOAD_UMAX_64:
8811     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8812                                 SystemZ::CCMASK_CMP_GE, 64);
8813 
8814   case SystemZ::ATOMIC_CMP_SWAPW:
8815     return emitAtomicCmpSwapW(MI, MBB);
8816   case SystemZ::MVCImm:
8817   case SystemZ::MVCReg:
8818     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
8819   case SystemZ::NCImm:
8820     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
8821   case SystemZ::OCImm:
8822     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
8823   case SystemZ::XCImm:
8824   case SystemZ::XCReg:
8825     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
8826   case SystemZ::CLCImm:
8827   case SystemZ::CLCReg:
8828     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
8829   case SystemZ::MemsetImmImm:
8830   case SystemZ::MemsetImmReg:
8831   case SystemZ::MemsetRegImm:
8832   case SystemZ::MemsetRegReg:
8833     return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
8834   case SystemZ::CLSTLoop:
8835     return emitStringWrapper(MI, MBB, SystemZ::CLST);
8836   case SystemZ::MVSTLoop:
8837     return emitStringWrapper(MI, MBB, SystemZ::MVST);
8838   case SystemZ::SRSTLoop:
8839     return emitStringWrapper(MI, MBB, SystemZ::SRST);
8840   case SystemZ::TBEGIN:
8841     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
8842   case SystemZ::TBEGIN_nofloat:
8843     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
8844   case SystemZ::TBEGINC:
8845     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
8846   case SystemZ::LTEBRCompare_VecPseudo:
8847     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
8848   case SystemZ::LTDBRCompare_VecPseudo:
8849     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
8850   case SystemZ::LTXBRCompare_VecPseudo:
8851     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
8852 
8853   case SystemZ::PROBED_ALLOCA:
8854     return emitProbedAlloca(MI, MBB);
8855 
8856   case TargetOpcode::STACKMAP:
8857   case TargetOpcode::PATCHPOINT:
8858     return emitPatchPoint(MI, MBB);
8859 
8860   default:
8861     llvm_unreachable("Unexpected instr type to insert");
8862   }
8863 }
8864 
8865 // This is only used by the isel schedulers, and is needed only to prevent
8866 // compiler from crashing when list-ilp is used.
8867 const TargetRegisterClass *
8868 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
8869   if (VT == MVT::Untyped)
8870     return &SystemZ::ADDR128BitRegClass;
8871   return TargetLowering::getRepRegClassFor(VT);
8872 }
8873