1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In) 37 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 38 39 // The operands to the comparison. 40 SDValue Op0, Op1; 41 42 // The opcode that should be used to compare Op0 and Op1. 43 unsigned Opcode; 44 45 // A SystemZICMP value. Only used for integer comparisons. 46 unsigned ICmpType; 47 48 // The mask of CC values that Opcode can produce. 49 unsigned CCValid; 50 51 // The mask of CC values for which the original condition is true. 52 unsigned CCMask; 53 }; 54 } // end anonymous namespace 55 56 // Classify VT as either 32 or 64 bit. 57 static bool is32Bit(EVT VT) { 58 switch (VT.getSimpleVT().SimpleTy) { 59 case MVT::i32: 60 return true; 61 case MVT::i64: 62 return false; 63 default: 64 llvm_unreachable("Unsupported type"); 65 } 66 } 67 68 // Return a version of MachineOperand that can be safely used before the 69 // final use. 70 static MachineOperand earlyUseOperand(MachineOperand Op) { 71 if (Op.isReg()) 72 Op.setIsKill(false); 73 return Op; 74 } 75 76 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 77 const SystemZSubtarget &STI) 78 : TargetLowering(TM), Subtarget(STI) { 79 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 80 81 // Set up the register classes. 82 if (Subtarget.hasHighWord()) 83 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 84 else 85 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 86 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 87 if (Subtarget.hasVector()) { 88 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 89 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 90 } else { 91 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 92 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 93 } 94 if (Subtarget.hasVectorEnhancements1()) 95 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 96 else 97 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 98 99 if (Subtarget.hasVector()) { 100 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 101 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 102 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 103 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 104 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 105 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 106 } 107 108 // Compute derived properties from the register classes 109 computeRegisterProperties(Subtarget.getRegisterInfo()); 110 111 // Set up special registers. 112 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 113 114 // TODO: It may be better to default to latency-oriented scheduling, however 115 // LLVM's current latency-oriented scheduler can't handle physreg definitions 116 // such as SystemZ has with CC, so set this to the register-pressure 117 // scheduler, because it can. 118 setSchedulingPreference(Sched::RegPressure); 119 120 setBooleanContents(ZeroOrOneBooleanContent); 121 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 122 123 // Instructions are strings of 2-byte aligned 2-byte values. 124 setMinFunctionAlignment(2); 125 // For performance reasons we prefer 16-byte alignment. 126 setPrefFunctionAlignment(4); 127 128 // Handle operations that are handled in a similar way for all types. 129 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 130 I <= MVT::LAST_FP_VALUETYPE; 131 ++I) { 132 MVT VT = MVT::SimpleValueType(I); 133 if (isTypeLegal(VT)) { 134 // Lower SET_CC into an IPM-based sequence. 135 setOperationAction(ISD::SETCC, VT, Custom); 136 137 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 138 setOperationAction(ISD::SELECT, VT, Expand); 139 140 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 141 setOperationAction(ISD::SELECT_CC, VT, Custom); 142 setOperationAction(ISD::BR_CC, VT, Custom); 143 } 144 } 145 146 // Expand jump table branches as address arithmetic followed by an 147 // indirect jump. 148 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 149 150 // Expand BRCOND into a BR_CC (see above). 151 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 152 153 // Handle integer types. 154 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 155 I <= MVT::LAST_INTEGER_VALUETYPE; 156 ++I) { 157 MVT VT = MVT::SimpleValueType(I); 158 if (isTypeLegal(VT)) { 159 // Expand individual DIV and REMs into DIVREMs. 160 setOperationAction(ISD::SDIV, VT, Expand); 161 setOperationAction(ISD::UDIV, VT, Expand); 162 setOperationAction(ISD::SREM, VT, Expand); 163 setOperationAction(ISD::UREM, VT, Expand); 164 setOperationAction(ISD::SDIVREM, VT, Custom); 165 setOperationAction(ISD::UDIVREM, VT, Custom); 166 167 // Support addition/subtraction with overflow. 168 setOperationAction(ISD::SADDO, VT, Custom); 169 setOperationAction(ISD::SSUBO, VT, Custom); 170 171 // Support addition/subtraction with carry. 172 setOperationAction(ISD::UADDO, VT, Custom); 173 setOperationAction(ISD::USUBO, VT, Custom); 174 175 // Support carry in as value rather than glue. 176 setOperationAction(ISD::ADDCARRY, VT, Custom); 177 setOperationAction(ISD::SUBCARRY, VT, Custom); 178 179 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 180 // stores, putting a serialization instruction after the stores. 181 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 182 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 183 184 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 185 // available, or if the operand is constant. 186 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 187 188 // Use POPCNT on z196 and above. 189 if (Subtarget.hasPopulationCount()) 190 setOperationAction(ISD::CTPOP, VT, Custom); 191 else 192 setOperationAction(ISD::CTPOP, VT, Expand); 193 194 // No special instructions for these. 195 setOperationAction(ISD::CTTZ, VT, Expand); 196 setOperationAction(ISD::ROTR, VT, Expand); 197 198 // Use *MUL_LOHI where possible instead of MULH*. 199 setOperationAction(ISD::MULHS, VT, Expand); 200 setOperationAction(ISD::MULHU, VT, Expand); 201 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 202 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 203 204 // Only z196 and above have native support for conversions to unsigned. 205 // On z10, promoting to i64 doesn't generate an inexact condition for 206 // values that are outside the i32 range but in the i64 range, so use 207 // the default expansion. 208 if (!Subtarget.hasFPExtension()) 209 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 210 } 211 } 212 213 // Type legalization will convert 8- and 16-bit atomic operations into 214 // forms that operate on i32s (but still keeping the original memory VT). 215 // Lower them into full i32 operations. 216 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 220 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 221 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 222 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 223 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 224 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 225 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 226 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 227 228 // Even though i128 is not a legal type, we still need to custom lower 229 // the atomic operations in order to exploit SystemZ instructions. 230 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 231 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 232 233 // We can use the CC result of compare-and-swap to implement 234 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 235 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 236 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 237 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 238 239 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 240 241 // Traps are legal, as we will convert them to "j .+2". 242 setOperationAction(ISD::TRAP, MVT::Other, Legal); 243 244 // z10 has instructions for signed but not unsigned FP conversion. 245 // Handle unsigned 32-bit types as signed 64-bit types. 246 if (!Subtarget.hasFPExtension()) { 247 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 248 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 249 } 250 251 // We have native support for a 64-bit CTLZ, via FLOGR. 252 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 253 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 254 255 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 256 setOperationAction(ISD::OR, MVT::i64, Custom); 257 258 // FIXME: Can we support these natively? 259 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 260 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 261 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 262 263 // We have native instructions for i8, i16 and i32 extensions, but not i1. 264 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 265 for (MVT VT : MVT::integer_valuetypes()) { 266 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 267 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 268 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 269 } 270 271 // Handle the various types of symbolic address. 272 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 273 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 274 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 275 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 276 setOperationAction(ISD::JumpTable, PtrVT, Custom); 277 278 // We need to handle dynamic allocations specially because of the 279 // 160-byte area at the bottom of the stack. 280 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 281 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 282 283 // Use custom expanders so that we can force the function to use 284 // a frame pointer. 285 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 286 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 287 288 // Handle prefetches with PFD or PFDRL. 289 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 290 291 for (MVT VT : MVT::vector_valuetypes()) { 292 // Assume by default that all vector operations need to be expanded. 293 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 294 if (getOperationAction(Opcode, VT) == Legal) 295 setOperationAction(Opcode, VT, Expand); 296 297 // Likewise all truncating stores and extending loads. 298 for (MVT InnerVT : MVT::vector_valuetypes()) { 299 setTruncStoreAction(VT, InnerVT, Expand); 300 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 301 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 302 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 303 } 304 305 if (isTypeLegal(VT)) { 306 // These operations are legal for anything that can be stored in a 307 // vector register, even if there is no native support for the format 308 // as such. In particular, we can do these for v4f32 even though there 309 // are no specific instructions for that format. 310 setOperationAction(ISD::LOAD, VT, Legal); 311 setOperationAction(ISD::STORE, VT, Legal); 312 setOperationAction(ISD::VSELECT, VT, Legal); 313 setOperationAction(ISD::BITCAST, VT, Legal); 314 setOperationAction(ISD::UNDEF, VT, Legal); 315 316 // Likewise, except that we need to replace the nodes with something 317 // more specific. 318 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 319 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 320 } 321 } 322 323 // Handle integer vector types. 324 for (MVT VT : MVT::integer_vector_valuetypes()) { 325 if (isTypeLegal(VT)) { 326 // These operations have direct equivalents. 327 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 328 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 329 setOperationAction(ISD::ADD, VT, Legal); 330 setOperationAction(ISD::SUB, VT, Legal); 331 if (VT != MVT::v2i64) 332 setOperationAction(ISD::MUL, VT, Legal); 333 setOperationAction(ISD::AND, VT, Legal); 334 setOperationAction(ISD::OR, VT, Legal); 335 setOperationAction(ISD::XOR, VT, Legal); 336 if (Subtarget.hasVectorEnhancements1()) 337 setOperationAction(ISD::CTPOP, VT, Legal); 338 else 339 setOperationAction(ISD::CTPOP, VT, Custom); 340 setOperationAction(ISD::CTTZ, VT, Legal); 341 setOperationAction(ISD::CTLZ, VT, Legal); 342 343 // Convert a GPR scalar to a vector by inserting it into element 0. 344 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 345 346 // Use a series of unpacks for extensions. 347 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 348 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 349 350 // Detect shifts by a scalar amount and convert them into 351 // V*_BY_SCALAR. 352 setOperationAction(ISD::SHL, VT, Custom); 353 setOperationAction(ISD::SRA, VT, Custom); 354 setOperationAction(ISD::SRL, VT, Custom); 355 356 // At present ROTL isn't matched by DAGCombiner. ROTR should be 357 // converted into ROTL. 358 setOperationAction(ISD::ROTL, VT, Expand); 359 setOperationAction(ISD::ROTR, VT, Expand); 360 361 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 362 // and inverting the result as necessary. 363 setOperationAction(ISD::SETCC, VT, Custom); 364 } 365 } 366 367 if (Subtarget.hasVector()) { 368 // There should be no need to check for float types other than v2f64 369 // since <2 x f32> isn't a legal type. 370 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 371 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 372 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 373 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 374 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 375 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 376 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 377 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 378 } 379 380 // Handle floating-point types. 381 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 382 I <= MVT::LAST_FP_VALUETYPE; 383 ++I) { 384 MVT VT = MVT::SimpleValueType(I); 385 if (isTypeLegal(VT)) { 386 // We can use FI for FRINT. 387 setOperationAction(ISD::FRINT, VT, Legal); 388 389 // We can use the extended form of FI for other rounding operations. 390 if (Subtarget.hasFPExtension()) { 391 setOperationAction(ISD::FNEARBYINT, VT, Legal); 392 setOperationAction(ISD::FFLOOR, VT, Legal); 393 setOperationAction(ISD::FCEIL, VT, Legal); 394 setOperationAction(ISD::FTRUNC, VT, Legal); 395 setOperationAction(ISD::FROUND, VT, Legal); 396 } 397 398 // No special instructions for these. 399 setOperationAction(ISD::FSIN, VT, Expand); 400 setOperationAction(ISD::FCOS, VT, Expand); 401 setOperationAction(ISD::FSINCOS, VT, Expand); 402 setOperationAction(ISD::FREM, VT, Expand); 403 setOperationAction(ISD::FPOW, VT, Expand); 404 } 405 } 406 407 // Handle floating-point vector types. 408 if (Subtarget.hasVector()) { 409 // Scalar-to-vector conversion is just a subreg. 410 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 411 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 412 413 // Some insertions and extractions can be done directly but others 414 // need to go via integers. 415 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 416 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 417 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 418 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 419 420 // These operations have direct equivalents. 421 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 422 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 423 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 424 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 425 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 426 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 427 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 428 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 429 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 430 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 431 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 432 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 433 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 434 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 435 } 436 437 // The vector enhancements facility 1 has instructions for these. 438 if (Subtarget.hasVectorEnhancements1()) { 439 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 440 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 441 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 442 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 443 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 444 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 445 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 446 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 447 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 448 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 449 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 450 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 451 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 452 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 453 454 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 455 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 456 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 457 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 458 459 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 460 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 461 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 462 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 463 464 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 465 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 466 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 467 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 468 469 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 470 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 471 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 472 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 473 474 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 475 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 476 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 477 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 478 } 479 480 // We have fused multiply-addition for f32 and f64 but not f128. 481 setOperationAction(ISD::FMA, MVT::f32, Legal); 482 setOperationAction(ISD::FMA, MVT::f64, Legal); 483 if (Subtarget.hasVectorEnhancements1()) 484 setOperationAction(ISD::FMA, MVT::f128, Legal); 485 else 486 setOperationAction(ISD::FMA, MVT::f128, Expand); 487 488 // We don't have a copysign instruction on vector registers. 489 if (Subtarget.hasVectorEnhancements1()) 490 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 491 492 // Needed so that we don't try to implement f128 constant loads using 493 // a load-and-extend of a f80 constant (in cases where the constant 494 // would fit in an f80). 495 for (MVT VT : MVT::fp_valuetypes()) 496 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 497 498 // We don't have extending load instruction on vector registers. 499 if (Subtarget.hasVectorEnhancements1()) { 500 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 501 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 502 } 503 504 // Floating-point truncation and stores need to be done separately. 505 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 506 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 507 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 508 509 // We have 64-bit FPR<->GPR moves, but need special handling for 510 // 32-bit forms. 511 if (!Subtarget.hasVector()) { 512 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 513 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 514 } 515 516 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 517 // structure, but VAEND is a no-op. 518 setOperationAction(ISD::VASTART, MVT::Other, Custom); 519 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 520 setOperationAction(ISD::VAEND, MVT::Other, Expand); 521 522 // Codes for which we want to perform some z-specific combinations. 523 setTargetDAGCombine(ISD::ZERO_EXTEND); 524 setTargetDAGCombine(ISD::SIGN_EXTEND); 525 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 526 setTargetDAGCombine(ISD::LOAD); 527 setTargetDAGCombine(ISD::STORE); 528 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 529 setTargetDAGCombine(ISD::FP_ROUND); 530 setTargetDAGCombine(ISD::FP_EXTEND); 531 setTargetDAGCombine(ISD::BSWAP); 532 setTargetDAGCombine(ISD::SDIV); 533 setTargetDAGCombine(ISD::UDIV); 534 setTargetDAGCombine(ISD::SREM); 535 setTargetDAGCombine(ISD::UREM); 536 537 // Handle intrinsics. 538 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 539 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 540 541 // We want to use MVC in preference to even a single load/store pair. 542 MaxStoresPerMemcpy = 0; 543 MaxStoresPerMemcpyOptSize = 0; 544 545 // The main memset sequence is a byte store followed by an MVC. 546 // Two STC or MV..I stores win over that, but the kind of fused stores 547 // generated by target-independent code don't when the byte value is 548 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 549 // than "STC;MVC". Handle the choice in target-specific code instead. 550 MaxStoresPerMemset = 0; 551 MaxStoresPerMemsetOptSize = 0; 552 } 553 554 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 555 LLVMContext &, EVT VT) const { 556 if (!VT.isVector()) 557 return MVT::i32; 558 return VT.changeVectorElementTypeToInteger(); 559 } 560 561 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 562 VT = VT.getScalarType(); 563 564 if (!VT.isSimple()) 565 return false; 566 567 switch (VT.getSimpleVT().SimpleTy) { 568 case MVT::f32: 569 case MVT::f64: 570 return true; 571 case MVT::f128: 572 return Subtarget.hasVectorEnhancements1(); 573 default: 574 break; 575 } 576 577 return false; 578 } 579 580 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 581 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 582 return Imm.isZero() || Imm.isNegZero(); 583 } 584 585 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 586 // We can use CGFI or CLGFI. 587 return isInt<32>(Imm) || isUInt<32>(Imm); 588 } 589 590 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 591 // We can use ALGFI or SLGFI. 592 return isUInt<32>(Imm) || isUInt<32>(-Imm); 593 } 594 595 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 596 unsigned, 597 unsigned, 598 bool *Fast) const { 599 // Unaligned accesses should never be slower than the expanded version. 600 // We check specifically for aligned accesses in the few cases where 601 // they are required. 602 if (Fast) 603 *Fast = true; 604 return true; 605 } 606 607 // Information about the addressing mode for a memory access. 608 struct AddressingMode { 609 // True if a long displacement is supported. 610 bool LongDisplacement; 611 612 // True if use of index register is supported. 613 bool IndexReg; 614 615 AddressingMode(bool LongDispl, bool IdxReg) : 616 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 617 }; 618 619 // Return the desired addressing mode for a Load which has only one use (in 620 // the same block) which is a Store. 621 static AddressingMode getLoadStoreAddrMode(bool HasVector, 622 Type *Ty) { 623 // With vector support a Load->Store combination may be combined to either 624 // an MVC or vector operations and it seems to work best to allow the 625 // vector addressing mode. 626 if (HasVector) 627 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 628 629 // Otherwise only the MVC case is special. 630 bool MVC = Ty->isIntegerTy(8); 631 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 632 } 633 634 // Return the addressing mode which seems most desirable given an LLVM 635 // Instruction pointer. 636 static AddressingMode 637 supportedAddressingMode(Instruction *I, bool HasVector) { 638 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 639 switch (II->getIntrinsicID()) { 640 default: break; 641 case Intrinsic::memset: 642 case Intrinsic::memmove: 643 case Intrinsic::memcpy: 644 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 645 } 646 } 647 648 if (isa<LoadInst>(I) && I->hasOneUse()) { 649 auto *SingleUser = dyn_cast<Instruction>(*I->user_begin()); 650 if (SingleUser->getParent() == I->getParent()) { 651 if (isa<ICmpInst>(SingleUser)) { 652 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 653 if (C->getBitWidth() <= 64 && 654 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 655 // Comparison of memory with 16 bit signed / unsigned immediate 656 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 657 } else if (isa<StoreInst>(SingleUser)) 658 // Load->Store 659 return getLoadStoreAddrMode(HasVector, I->getType()); 660 } 661 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 662 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 663 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 664 // Load->Store 665 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 666 } 667 668 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 669 670 // * Use LDE instead of LE/LEY for z13 to avoid partial register 671 // dependencies (LDE only supports small offsets). 672 // * Utilize the vector registers to hold floating point 673 // values (vector load / store instructions only support small 674 // offsets). 675 676 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 677 I->getOperand(0)->getType()); 678 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 679 bool IsVectorAccess = MemAccessTy->isVectorTy(); 680 681 // A store of an extracted vector element will be combined into a VSTE type 682 // instruction. 683 if (!IsVectorAccess && isa<StoreInst>(I)) { 684 Value *DataOp = I->getOperand(0); 685 if (isa<ExtractElementInst>(DataOp)) 686 IsVectorAccess = true; 687 } 688 689 // A load which gets inserted into a vector element will be combined into a 690 // VLE type instruction. 691 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 692 User *LoadUser = *I->user_begin(); 693 if (isa<InsertElementInst>(LoadUser)) 694 IsVectorAccess = true; 695 } 696 697 if (IsFPAccess || IsVectorAccess) 698 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 699 } 700 701 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 702 } 703 704 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 705 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 706 // Punt on globals for now, although they can be used in limited 707 // RELATIVE LONG cases. 708 if (AM.BaseGV) 709 return false; 710 711 // Require a 20-bit signed offset. 712 if (!isInt<20>(AM.BaseOffs)) 713 return false; 714 715 AddressingMode SupportedAM(true, true); 716 if (I != nullptr) 717 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 718 719 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 720 return false; 721 722 if (!SupportedAM.IndexReg) 723 // No indexing allowed. 724 return AM.Scale == 0; 725 else 726 // Indexing is OK but no scale factor can be applied. 727 return AM.Scale == 0 || AM.Scale == 1; 728 } 729 730 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 731 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 732 return false; 733 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 734 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 735 return FromBits > ToBits; 736 } 737 738 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 739 if (!FromVT.isInteger() || !ToVT.isInteger()) 740 return false; 741 unsigned FromBits = FromVT.getSizeInBits(); 742 unsigned ToBits = ToVT.getSizeInBits(); 743 return FromBits > ToBits; 744 } 745 746 //===----------------------------------------------------------------------===// 747 // Inline asm support 748 //===----------------------------------------------------------------------===// 749 750 TargetLowering::ConstraintType 751 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 752 if (Constraint.size() == 1) { 753 switch (Constraint[0]) { 754 case 'a': // Address register 755 case 'd': // Data register (equivalent to 'r') 756 case 'f': // Floating-point register 757 case 'h': // High-part register 758 case 'r': // General-purpose register 759 case 'v': // Vector register 760 return C_RegisterClass; 761 762 case 'Q': // Memory with base and unsigned 12-bit displacement 763 case 'R': // Likewise, plus an index 764 case 'S': // Memory with base and signed 20-bit displacement 765 case 'T': // Likewise, plus an index 766 case 'm': // Equivalent to 'T'. 767 return C_Memory; 768 769 case 'I': // Unsigned 8-bit constant 770 case 'J': // Unsigned 12-bit constant 771 case 'K': // Signed 16-bit constant 772 case 'L': // Signed 20-bit displacement (on all targets we support) 773 case 'M': // 0x7fffffff 774 return C_Other; 775 776 default: 777 break; 778 } 779 } 780 return TargetLowering::getConstraintType(Constraint); 781 } 782 783 TargetLowering::ConstraintWeight SystemZTargetLowering:: 784 getSingleConstraintMatchWeight(AsmOperandInfo &info, 785 const char *constraint) const { 786 ConstraintWeight weight = CW_Invalid; 787 Value *CallOperandVal = info.CallOperandVal; 788 // If we don't have a value, we can't do a match, 789 // but allow it at the lowest weight. 790 if (!CallOperandVal) 791 return CW_Default; 792 Type *type = CallOperandVal->getType(); 793 // Look at the constraint type. 794 switch (*constraint) { 795 default: 796 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 797 break; 798 799 case 'a': // Address register 800 case 'd': // Data register (equivalent to 'r') 801 case 'h': // High-part register 802 case 'r': // General-purpose register 803 if (CallOperandVal->getType()->isIntegerTy()) 804 weight = CW_Register; 805 break; 806 807 case 'f': // Floating-point register 808 if (type->isFloatingPointTy()) 809 weight = CW_Register; 810 break; 811 812 case 'v': // Vector register 813 if ((type->isVectorTy() || type->isFloatingPointTy()) && 814 Subtarget.hasVector()) 815 weight = CW_Register; 816 break; 817 818 case 'I': // Unsigned 8-bit constant 819 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 820 if (isUInt<8>(C->getZExtValue())) 821 weight = CW_Constant; 822 break; 823 824 case 'J': // Unsigned 12-bit constant 825 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 826 if (isUInt<12>(C->getZExtValue())) 827 weight = CW_Constant; 828 break; 829 830 case 'K': // Signed 16-bit constant 831 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 832 if (isInt<16>(C->getSExtValue())) 833 weight = CW_Constant; 834 break; 835 836 case 'L': // Signed 20-bit displacement (on all targets we support) 837 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 838 if (isInt<20>(C->getSExtValue())) 839 weight = CW_Constant; 840 break; 841 842 case 'M': // 0x7fffffff 843 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 844 if (C->getZExtValue() == 0x7fffffff) 845 weight = CW_Constant; 846 break; 847 } 848 return weight; 849 } 850 851 // Parse a "{tNNN}" register constraint for which the register type "t" 852 // has already been verified. MC is the class associated with "t" and 853 // Map maps 0-based register numbers to LLVM register numbers. 854 static std::pair<unsigned, const TargetRegisterClass *> 855 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 856 const unsigned *Map, unsigned Size) { 857 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 858 if (isdigit(Constraint[2])) { 859 unsigned Index; 860 bool Failed = 861 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 862 if (!Failed && Index < Size && Map[Index]) 863 return std::make_pair(Map[Index], RC); 864 } 865 return std::make_pair(0U, nullptr); 866 } 867 868 std::pair<unsigned, const TargetRegisterClass *> 869 SystemZTargetLowering::getRegForInlineAsmConstraint( 870 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 871 if (Constraint.size() == 1) { 872 // GCC Constraint Letters 873 switch (Constraint[0]) { 874 default: break; 875 case 'd': // Data register (equivalent to 'r') 876 case 'r': // General-purpose register 877 if (VT == MVT::i64) 878 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 879 else if (VT == MVT::i128) 880 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 881 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 882 883 case 'a': // Address register 884 if (VT == MVT::i64) 885 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 886 else if (VT == MVT::i128) 887 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 888 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 889 890 case 'h': // High-part register (an LLVM extension) 891 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 892 893 case 'f': // Floating-point register 894 if (VT == MVT::f64) 895 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 896 else if (VT == MVT::f128) 897 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 898 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 899 900 case 'v': // Vector register 901 if (Subtarget.hasVector()) { 902 if (VT == MVT::f32) 903 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 904 if (VT == MVT::f64) 905 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 906 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 907 } 908 break; 909 } 910 } 911 if (Constraint.size() > 0 && Constraint[0] == '{') { 912 // We need to override the default register parsing for GPRs and FPRs 913 // because the interpretation depends on VT. The internal names of 914 // the registers are also different from the external names 915 // (F0D and F0S instead of F0, etc.). 916 if (Constraint[1] == 'r') { 917 if (VT == MVT::i32) 918 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 919 SystemZMC::GR32Regs, 16); 920 if (VT == MVT::i128) 921 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 922 SystemZMC::GR128Regs, 16); 923 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 924 SystemZMC::GR64Regs, 16); 925 } 926 if (Constraint[1] == 'f') { 927 if (VT == MVT::f32) 928 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 929 SystemZMC::FP32Regs, 16); 930 if (VT == MVT::f128) 931 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 932 SystemZMC::FP128Regs, 16); 933 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 934 SystemZMC::FP64Regs, 16); 935 } 936 if (Constraint[1] == 'v') { 937 if (VT == MVT::f32) 938 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 939 SystemZMC::VR32Regs, 32); 940 if (VT == MVT::f64) 941 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 942 SystemZMC::VR64Regs, 32); 943 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 944 SystemZMC::VR128Regs, 32); 945 } 946 } 947 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 948 } 949 950 void SystemZTargetLowering:: 951 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 952 std::vector<SDValue> &Ops, 953 SelectionDAG &DAG) const { 954 // Only support length 1 constraints for now. 955 if (Constraint.length() == 1) { 956 switch (Constraint[0]) { 957 case 'I': // Unsigned 8-bit constant 958 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 959 if (isUInt<8>(C->getZExtValue())) 960 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 961 Op.getValueType())); 962 return; 963 964 case 'J': // Unsigned 12-bit constant 965 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 966 if (isUInt<12>(C->getZExtValue())) 967 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 968 Op.getValueType())); 969 return; 970 971 case 'K': // Signed 16-bit constant 972 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 973 if (isInt<16>(C->getSExtValue())) 974 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 975 Op.getValueType())); 976 return; 977 978 case 'L': // Signed 20-bit displacement (on all targets we support) 979 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 980 if (isInt<20>(C->getSExtValue())) 981 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 982 Op.getValueType())); 983 return; 984 985 case 'M': // 0x7fffffff 986 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 987 if (C->getZExtValue() == 0x7fffffff) 988 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 989 Op.getValueType())); 990 return; 991 } 992 } 993 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 994 } 995 996 //===----------------------------------------------------------------------===// 997 // Calling conventions 998 //===----------------------------------------------------------------------===// 999 1000 #include "SystemZGenCallingConv.inc" 1001 1002 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1003 CallingConv::ID) const { 1004 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1005 SystemZ::R14D, 0 }; 1006 return ScratchRegs; 1007 } 1008 1009 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1010 Type *ToType) const { 1011 return isTruncateFree(FromType, ToType); 1012 } 1013 1014 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1015 return CI->isTailCall(); 1016 } 1017 1018 // We do not yet support 128-bit single-element vector types. If the user 1019 // attempts to use such types as function argument or return type, prefer 1020 // to error out instead of emitting code violating the ABI. 1021 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1022 if (ArgVT.isVector() && !VT.isVector()) 1023 report_fatal_error("Unsupported vector argument or return type"); 1024 } 1025 1026 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1027 for (unsigned i = 0; i < Ins.size(); ++i) 1028 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1029 } 1030 1031 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1032 for (unsigned i = 0; i < Outs.size(); ++i) 1033 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1034 } 1035 1036 // Value is a value that has been passed to us in the location described by VA 1037 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1038 // any loads onto Chain. 1039 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1040 CCValAssign &VA, SDValue Chain, 1041 SDValue Value) { 1042 // If the argument has been promoted from a smaller type, insert an 1043 // assertion to capture this. 1044 if (VA.getLocInfo() == CCValAssign::SExt) 1045 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1046 DAG.getValueType(VA.getValVT())); 1047 else if (VA.getLocInfo() == CCValAssign::ZExt) 1048 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1049 DAG.getValueType(VA.getValVT())); 1050 1051 if (VA.isExtInLoc()) 1052 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1053 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1054 // If this is a short vector argument loaded from the stack, 1055 // extend from i64 to full vector size and then bitcast. 1056 assert(VA.getLocVT() == MVT::i64); 1057 assert(VA.getValVT().isVector()); 1058 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1059 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1060 } else 1061 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1062 return Value; 1063 } 1064 1065 // Value is a value of type VA.getValVT() that we need to copy into 1066 // the location described by VA. Return a copy of Value converted to 1067 // VA.getValVT(). The caller is responsible for handling indirect values. 1068 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1069 CCValAssign &VA, SDValue Value) { 1070 switch (VA.getLocInfo()) { 1071 case CCValAssign::SExt: 1072 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1073 case CCValAssign::ZExt: 1074 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1075 case CCValAssign::AExt: 1076 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1077 case CCValAssign::BCvt: 1078 // If this is a short vector argument to be stored to the stack, 1079 // bitcast to v2i64 and then extract first element. 1080 assert(VA.getLocVT() == MVT::i64); 1081 assert(VA.getValVT().isVector()); 1082 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1083 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1084 DAG.getConstant(0, DL, MVT::i32)); 1085 case CCValAssign::Full: 1086 return Value; 1087 default: 1088 llvm_unreachable("Unhandled getLocInfo()"); 1089 } 1090 } 1091 1092 SDValue SystemZTargetLowering::LowerFormalArguments( 1093 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1094 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1095 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1096 MachineFunction &MF = DAG.getMachineFunction(); 1097 MachineFrameInfo &MFI = MF.getFrameInfo(); 1098 MachineRegisterInfo &MRI = MF.getRegInfo(); 1099 SystemZMachineFunctionInfo *FuncInfo = 1100 MF.getInfo<SystemZMachineFunctionInfo>(); 1101 auto *TFL = 1102 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1103 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1104 1105 // Detect unsupported vector argument types. 1106 if (Subtarget.hasVector()) 1107 VerifyVectorTypes(Ins); 1108 1109 // Assign locations to all of the incoming arguments. 1110 SmallVector<CCValAssign, 16> ArgLocs; 1111 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1112 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1113 1114 unsigned NumFixedGPRs = 0; 1115 unsigned NumFixedFPRs = 0; 1116 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1117 SDValue ArgValue; 1118 CCValAssign &VA = ArgLocs[I]; 1119 EVT LocVT = VA.getLocVT(); 1120 if (VA.isRegLoc()) { 1121 // Arguments passed in registers 1122 const TargetRegisterClass *RC; 1123 switch (LocVT.getSimpleVT().SimpleTy) { 1124 default: 1125 // Integers smaller than i64 should be promoted to i64. 1126 llvm_unreachable("Unexpected argument type"); 1127 case MVT::i32: 1128 NumFixedGPRs += 1; 1129 RC = &SystemZ::GR32BitRegClass; 1130 break; 1131 case MVT::i64: 1132 NumFixedGPRs += 1; 1133 RC = &SystemZ::GR64BitRegClass; 1134 break; 1135 case MVT::f32: 1136 NumFixedFPRs += 1; 1137 RC = &SystemZ::FP32BitRegClass; 1138 break; 1139 case MVT::f64: 1140 NumFixedFPRs += 1; 1141 RC = &SystemZ::FP64BitRegClass; 1142 break; 1143 case MVT::v16i8: 1144 case MVT::v8i16: 1145 case MVT::v4i32: 1146 case MVT::v2i64: 1147 case MVT::v4f32: 1148 case MVT::v2f64: 1149 RC = &SystemZ::VR128BitRegClass; 1150 break; 1151 } 1152 1153 unsigned VReg = MRI.createVirtualRegister(RC); 1154 MRI.addLiveIn(VA.getLocReg(), VReg); 1155 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1156 } else { 1157 assert(VA.isMemLoc() && "Argument not register or memory"); 1158 1159 // Create the frame index object for this incoming parameter. 1160 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1161 VA.getLocMemOffset(), true); 1162 1163 // Create the SelectionDAG nodes corresponding to a load 1164 // from this parameter. Unpromoted ints and floats are 1165 // passed as right-justified 8-byte values. 1166 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1167 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1168 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1169 DAG.getIntPtrConstant(4, DL)); 1170 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1171 MachinePointerInfo::getFixedStack(MF, FI)); 1172 } 1173 1174 // Convert the value of the argument register into the value that's 1175 // being passed. 1176 if (VA.getLocInfo() == CCValAssign::Indirect) { 1177 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1178 MachinePointerInfo())); 1179 // If the original argument was split (e.g. i128), we need 1180 // to load all parts of it here (using the same address). 1181 unsigned ArgIndex = Ins[I].OrigArgIndex; 1182 assert (Ins[I].PartOffset == 0); 1183 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1184 CCValAssign &PartVA = ArgLocs[I + 1]; 1185 unsigned PartOffset = Ins[I + 1].PartOffset; 1186 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1187 DAG.getIntPtrConstant(PartOffset, DL)); 1188 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1189 MachinePointerInfo())); 1190 ++I; 1191 } 1192 } else 1193 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1194 } 1195 1196 if (IsVarArg) { 1197 // Save the number of non-varargs registers for later use by va_start, etc. 1198 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1199 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1200 1201 // Likewise the address (in the form of a frame index) of where the 1202 // first stack vararg would be. The 1-byte size here is arbitrary. 1203 int64_t StackSize = CCInfo.getNextStackOffset(); 1204 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1205 1206 // ...and a similar frame index for the caller-allocated save area 1207 // that will be used to store the incoming registers. 1208 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1209 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1210 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1211 1212 // Store the FPR varargs in the reserved frame slots. (We store the 1213 // GPRs as part of the prologue.) 1214 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1215 SDValue MemOps[SystemZ::NumArgFPRs]; 1216 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1217 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1218 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1219 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1220 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1221 &SystemZ::FP64BitRegClass); 1222 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1223 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1224 MachinePointerInfo::getFixedStack(MF, FI)); 1225 } 1226 // Join the stores, which are independent of one another. 1227 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1228 makeArrayRef(&MemOps[NumFixedFPRs], 1229 SystemZ::NumArgFPRs-NumFixedFPRs)); 1230 } 1231 } 1232 1233 return Chain; 1234 } 1235 1236 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1237 SmallVectorImpl<CCValAssign> &ArgLocs, 1238 SmallVectorImpl<ISD::OutputArg> &Outs) { 1239 // Punt if there are any indirect or stack arguments, or if the call 1240 // needs the callee-saved argument register R6, or if the call uses 1241 // the callee-saved register arguments SwiftSelf and SwiftError. 1242 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1243 CCValAssign &VA = ArgLocs[I]; 1244 if (VA.getLocInfo() == CCValAssign::Indirect) 1245 return false; 1246 if (!VA.isRegLoc()) 1247 return false; 1248 unsigned Reg = VA.getLocReg(); 1249 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1250 return false; 1251 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1252 return false; 1253 } 1254 return true; 1255 } 1256 1257 SDValue 1258 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1259 SmallVectorImpl<SDValue> &InVals) const { 1260 SelectionDAG &DAG = CLI.DAG; 1261 SDLoc &DL = CLI.DL; 1262 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1263 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1264 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1265 SDValue Chain = CLI.Chain; 1266 SDValue Callee = CLI.Callee; 1267 bool &IsTailCall = CLI.IsTailCall; 1268 CallingConv::ID CallConv = CLI.CallConv; 1269 bool IsVarArg = CLI.IsVarArg; 1270 MachineFunction &MF = DAG.getMachineFunction(); 1271 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1272 1273 // Detect unsupported vector argument and return types. 1274 if (Subtarget.hasVector()) { 1275 VerifyVectorTypes(Outs); 1276 VerifyVectorTypes(Ins); 1277 } 1278 1279 // Analyze the operands of the call, assigning locations to each operand. 1280 SmallVector<CCValAssign, 16> ArgLocs; 1281 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1282 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1283 1284 // We don't support GuaranteedTailCallOpt, only automatically-detected 1285 // sibling calls. 1286 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1287 IsTailCall = false; 1288 1289 // Get a count of how many bytes are to be pushed on the stack. 1290 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1291 1292 // Mark the start of the call. 1293 if (!IsTailCall) 1294 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1295 1296 // Copy argument values to their designated locations. 1297 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1298 SmallVector<SDValue, 8> MemOpChains; 1299 SDValue StackPtr; 1300 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1301 CCValAssign &VA = ArgLocs[I]; 1302 SDValue ArgValue = OutVals[I]; 1303 1304 if (VA.getLocInfo() == CCValAssign::Indirect) { 1305 // Store the argument in a stack slot and pass its address. 1306 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1307 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1308 MemOpChains.push_back( 1309 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1310 MachinePointerInfo::getFixedStack(MF, FI))); 1311 // If the original argument was split (e.g. i128), we need 1312 // to store all parts of it here (and pass just one address). 1313 unsigned ArgIndex = Outs[I].OrigArgIndex; 1314 assert (Outs[I].PartOffset == 0); 1315 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1316 SDValue PartValue = OutVals[I + 1]; 1317 unsigned PartOffset = Outs[I + 1].PartOffset; 1318 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1319 DAG.getIntPtrConstant(PartOffset, DL)); 1320 MemOpChains.push_back( 1321 DAG.getStore(Chain, DL, PartValue, Address, 1322 MachinePointerInfo::getFixedStack(MF, FI))); 1323 ++I; 1324 } 1325 ArgValue = SpillSlot; 1326 } else 1327 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1328 1329 if (VA.isRegLoc()) 1330 // Queue up the argument copies and emit them at the end. 1331 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1332 else { 1333 assert(VA.isMemLoc() && "Argument not register or memory"); 1334 1335 // Work out the address of the stack slot. Unpromoted ints and 1336 // floats are passed as right-justified 8-byte values. 1337 if (!StackPtr.getNode()) 1338 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1339 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1340 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1341 Offset += 4; 1342 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1343 DAG.getIntPtrConstant(Offset, DL)); 1344 1345 // Emit the store. 1346 MemOpChains.push_back( 1347 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1348 } 1349 } 1350 1351 // Join the stores, which are independent of one another. 1352 if (!MemOpChains.empty()) 1353 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1354 1355 // Accept direct calls by converting symbolic call addresses to the 1356 // associated Target* opcodes. Force %r1 to be used for indirect 1357 // tail calls. 1358 SDValue Glue; 1359 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1360 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1361 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1362 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1363 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1364 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1365 } else if (IsTailCall) { 1366 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1367 Glue = Chain.getValue(1); 1368 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1369 } 1370 1371 // Build a sequence of copy-to-reg nodes, chained and glued together. 1372 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1373 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1374 RegsToPass[I].second, Glue); 1375 Glue = Chain.getValue(1); 1376 } 1377 1378 // The first call operand is the chain and the second is the target address. 1379 SmallVector<SDValue, 8> Ops; 1380 Ops.push_back(Chain); 1381 Ops.push_back(Callee); 1382 1383 // Add argument registers to the end of the list so that they are 1384 // known live into the call. 1385 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1386 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1387 RegsToPass[I].second.getValueType())); 1388 1389 // Add a register mask operand representing the call-preserved registers. 1390 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1391 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1392 assert(Mask && "Missing call preserved mask for calling convention"); 1393 Ops.push_back(DAG.getRegisterMask(Mask)); 1394 1395 // Glue the call to the argument copies, if any. 1396 if (Glue.getNode()) 1397 Ops.push_back(Glue); 1398 1399 // Emit the call. 1400 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1401 if (IsTailCall) 1402 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1403 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1404 Glue = Chain.getValue(1); 1405 1406 // Mark the end of the call, which is glued to the call itself. 1407 Chain = DAG.getCALLSEQ_END(Chain, 1408 DAG.getConstant(NumBytes, DL, PtrVT, true), 1409 DAG.getConstant(0, DL, PtrVT, true), 1410 Glue, DL); 1411 Glue = Chain.getValue(1); 1412 1413 // Assign locations to each value returned by this call. 1414 SmallVector<CCValAssign, 16> RetLocs; 1415 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1416 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1417 1418 // Copy all of the result registers out of their specified physreg. 1419 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1420 CCValAssign &VA = RetLocs[I]; 1421 1422 // Copy the value out, gluing the copy to the end of the call sequence. 1423 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1424 VA.getLocVT(), Glue); 1425 Chain = RetValue.getValue(1); 1426 Glue = RetValue.getValue(2); 1427 1428 // Convert the value of the return register into the value that's 1429 // being returned. 1430 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1431 } 1432 1433 return Chain; 1434 } 1435 1436 bool SystemZTargetLowering:: 1437 CanLowerReturn(CallingConv::ID CallConv, 1438 MachineFunction &MF, bool isVarArg, 1439 const SmallVectorImpl<ISD::OutputArg> &Outs, 1440 LLVMContext &Context) const { 1441 // Detect unsupported vector return types. 1442 if (Subtarget.hasVector()) 1443 VerifyVectorTypes(Outs); 1444 1445 // Special case that we cannot easily detect in RetCC_SystemZ since 1446 // i128 is not a legal type. 1447 for (auto &Out : Outs) 1448 if (Out.ArgVT == MVT::i128) 1449 return false; 1450 1451 SmallVector<CCValAssign, 16> RetLocs; 1452 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1453 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1454 } 1455 1456 SDValue 1457 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1458 bool IsVarArg, 1459 const SmallVectorImpl<ISD::OutputArg> &Outs, 1460 const SmallVectorImpl<SDValue> &OutVals, 1461 const SDLoc &DL, SelectionDAG &DAG) const { 1462 MachineFunction &MF = DAG.getMachineFunction(); 1463 1464 // Detect unsupported vector return types. 1465 if (Subtarget.hasVector()) 1466 VerifyVectorTypes(Outs); 1467 1468 // Assign locations to each returned value. 1469 SmallVector<CCValAssign, 16> RetLocs; 1470 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1471 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1472 1473 // Quick exit for void returns 1474 if (RetLocs.empty()) 1475 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1476 1477 // Copy the result values into the output registers. 1478 SDValue Glue; 1479 SmallVector<SDValue, 4> RetOps; 1480 RetOps.push_back(Chain); 1481 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1482 CCValAssign &VA = RetLocs[I]; 1483 SDValue RetValue = OutVals[I]; 1484 1485 // Make the return register live on exit. 1486 assert(VA.isRegLoc() && "Can only return in registers!"); 1487 1488 // Promote the value as required. 1489 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1490 1491 // Chain and glue the copies together. 1492 unsigned Reg = VA.getLocReg(); 1493 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1494 Glue = Chain.getValue(1); 1495 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1496 } 1497 1498 // Update chain and glue. 1499 RetOps[0] = Chain; 1500 if (Glue.getNode()) 1501 RetOps.push_back(Glue); 1502 1503 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1504 } 1505 1506 // Return true if Op is an intrinsic node with chain that returns the CC value 1507 // as its only (other) argument. Provide the associated SystemZISD opcode and 1508 // the mask of valid CC values if so. 1509 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1510 unsigned &CCValid) { 1511 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1512 switch (Id) { 1513 case Intrinsic::s390_tbegin: 1514 Opcode = SystemZISD::TBEGIN; 1515 CCValid = SystemZ::CCMASK_TBEGIN; 1516 return true; 1517 1518 case Intrinsic::s390_tbegin_nofloat: 1519 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1520 CCValid = SystemZ::CCMASK_TBEGIN; 1521 return true; 1522 1523 case Intrinsic::s390_tend: 1524 Opcode = SystemZISD::TEND; 1525 CCValid = SystemZ::CCMASK_TEND; 1526 return true; 1527 1528 default: 1529 return false; 1530 } 1531 } 1532 1533 // Return true if Op is an intrinsic node without chain that returns the 1534 // CC value as its final argument. Provide the associated SystemZISD 1535 // opcode and the mask of valid CC values if so. 1536 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1537 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1538 switch (Id) { 1539 case Intrinsic::s390_vpkshs: 1540 case Intrinsic::s390_vpksfs: 1541 case Intrinsic::s390_vpksgs: 1542 Opcode = SystemZISD::PACKS_CC; 1543 CCValid = SystemZ::CCMASK_VCMP; 1544 return true; 1545 1546 case Intrinsic::s390_vpklshs: 1547 case Intrinsic::s390_vpklsfs: 1548 case Intrinsic::s390_vpklsgs: 1549 Opcode = SystemZISD::PACKLS_CC; 1550 CCValid = SystemZ::CCMASK_VCMP; 1551 return true; 1552 1553 case Intrinsic::s390_vceqbs: 1554 case Intrinsic::s390_vceqhs: 1555 case Intrinsic::s390_vceqfs: 1556 case Intrinsic::s390_vceqgs: 1557 Opcode = SystemZISD::VICMPES; 1558 CCValid = SystemZ::CCMASK_VCMP; 1559 return true; 1560 1561 case Intrinsic::s390_vchbs: 1562 case Intrinsic::s390_vchhs: 1563 case Intrinsic::s390_vchfs: 1564 case Intrinsic::s390_vchgs: 1565 Opcode = SystemZISD::VICMPHS; 1566 CCValid = SystemZ::CCMASK_VCMP; 1567 return true; 1568 1569 case Intrinsic::s390_vchlbs: 1570 case Intrinsic::s390_vchlhs: 1571 case Intrinsic::s390_vchlfs: 1572 case Intrinsic::s390_vchlgs: 1573 Opcode = SystemZISD::VICMPHLS; 1574 CCValid = SystemZ::CCMASK_VCMP; 1575 return true; 1576 1577 case Intrinsic::s390_vtm: 1578 Opcode = SystemZISD::VTM; 1579 CCValid = SystemZ::CCMASK_VCMP; 1580 return true; 1581 1582 case Intrinsic::s390_vfaebs: 1583 case Intrinsic::s390_vfaehs: 1584 case Intrinsic::s390_vfaefs: 1585 Opcode = SystemZISD::VFAE_CC; 1586 CCValid = SystemZ::CCMASK_ANY; 1587 return true; 1588 1589 case Intrinsic::s390_vfaezbs: 1590 case Intrinsic::s390_vfaezhs: 1591 case Intrinsic::s390_vfaezfs: 1592 Opcode = SystemZISD::VFAEZ_CC; 1593 CCValid = SystemZ::CCMASK_ANY; 1594 return true; 1595 1596 case Intrinsic::s390_vfeebs: 1597 case Intrinsic::s390_vfeehs: 1598 case Intrinsic::s390_vfeefs: 1599 Opcode = SystemZISD::VFEE_CC; 1600 CCValid = SystemZ::CCMASK_ANY; 1601 return true; 1602 1603 case Intrinsic::s390_vfeezbs: 1604 case Intrinsic::s390_vfeezhs: 1605 case Intrinsic::s390_vfeezfs: 1606 Opcode = SystemZISD::VFEEZ_CC; 1607 CCValid = SystemZ::CCMASK_ANY; 1608 return true; 1609 1610 case Intrinsic::s390_vfenebs: 1611 case Intrinsic::s390_vfenehs: 1612 case Intrinsic::s390_vfenefs: 1613 Opcode = SystemZISD::VFENE_CC; 1614 CCValid = SystemZ::CCMASK_ANY; 1615 return true; 1616 1617 case Intrinsic::s390_vfenezbs: 1618 case Intrinsic::s390_vfenezhs: 1619 case Intrinsic::s390_vfenezfs: 1620 Opcode = SystemZISD::VFENEZ_CC; 1621 CCValid = SystemZ::CCMASK_ANY; 1622 return true; 1623 1624 case Intrinsic::s390_vistrbs: 1625 case Intrinsic::s390_vistrhs: 1626 case Intrinsic::s390_vistrfs: 1627 Opcode = SystemZISD::VISTR_CC; 1628 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1629 return true; 1630 1631 case Intrinsic::s390_vstrcbs: 1632 case Intrinsic::s390_vstrchs: 1633 case Intrinsic::s390_vstrcfs: 1634 Opcode = SystemZISD::VSTRC_CC; 1635 CCValid = SystemZ::CCMASK_ANY; 1636 return true; 1637 1638 case Intrinsic::s390_vstrczbs: 1639 case Intrinsic::s390_vstrczhs: 1640 case Intrinsic::s390_vstrczfs: 1641 Opcode = SystemZISD::VSTRCZ_CC; 1642 CCValid = SystemZ::CCMASK_ANY; 1643 return true; 1644 1645 case Intrinsic::s390_vfcedbs: 1646 case Intrinsic::s390_vfcesbs: 1647 Opcode = SystemZISD::VFCMPES; 1648 CCValid = SystemZ::CCMASK_VCMP; 1649 return true; 1650 1651 case Intrinsic::s390_vfchdbs: 1652 case Intrinsic::s390_vfchsbs: 1653 Opcode = SystemZISD::VFCMPHS; 1654 CCValid = SystemZ::CCMASK_VCMP; 1655 return true; 1656 1657 case Intrinsic::s390_vfchedbs: 1658 case Intrinsic::s390_vfchesbs: 1659 Opcode = SystemZISD::VFCMPHES; 1660 CCValid = SystemZ::CCMASK_VCMP; 1661 return true; 1662 1663 case Intrinsic::s390_vftcidb: 1664 case Intrinsic::s390_vftcisb: 1665 Opcode = SystemZISD::VFTCI; 1666 CCValid = SystemZ::CCMASK_VCMP; 1667 return true; 1668 1669 case Intrinsic::s390_tdc: 1670 Opcode = SystemZISD::TDC; 1671 CCValid = SystemZ::CCMASK_TDC; 1672 return true; 1673 1674 default: 1675 return false; 1676 } 1677 } 1678 1679 // Emit an intrinsic with chain and an explicit CC register result. 1680 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1681 unsigned Opcode) { 1682 // Copy all operands except the intrinsic ID. 1683 unsigned NumOps = Op.getNumOperands(); 1684 SmallVector<SDValue, 6> Ops; 1685 Ops.reserve(NumOps - 1); 1686 Ops.push_back(Op.getOperand(0)); 1687 for (unsigned I = 2; I < NumOps; ++I) 1688 Ops.push_back(Op.getOperand(I)); 1689 1690 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1691 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1692 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1693 SDValue OldChain = SDValue(Op.getNode(), 1); 1694 SDValue NewChain = SDValue(Intr.getNode(), 1); 1695 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1696 return Intr.getNode(); 1697 } 1698 1699 // Emit an intrinsic with an explicit CC register result. 1700 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1701 unsigned Opcode) { 1702 // Copy all operands except the intrinsic ID. 1703 unsigned NumOps = Op.getNumOperands(); 1704 SmallVector<SDValue, 6> Ops; 1705 Ops.reserve(NumOps - 1); 1706 for (unsigned I = 1; I < NumOps; ++I) 1707 Ops.push_back(Op.getOperand(I)); 1708 1709 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1710 return Intr.getNode(); 1711 } 1712 1713 // CC is a comparison that will be implemented using an integer or 1714 // floating-point comparison. Return the condition code mask for 1715 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1716 // unsigned comparisons and clear for signed ones. In the floating-point 1717 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1718 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1719 #define CONV(X) \ 1720 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1721 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1722 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1723 1724 switch (CC) { 1725 default: 1726 llvm_unreachable("Invalid integer condition!"); 1727 1728 CONV(EQ); 1729 CONV(NE); 1730 CONV(GT); 1731 CONV(GE); 1732 CONV(LT); 1733 CONV(LE); 1734 1735 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1736 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1737 } 1738 #undef CONV 1739 } 1740 1741 // If C can be converted to a comparison against zero, adjust the operands 1742 // as necessary. 1743 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1744 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1745 return; 1746 1747 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1748 if (!ConstOp1) 1749 return; 1750 1751 int64_t Value = ConstOp1->getSExtValue(); 1752 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1753 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1754 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1755 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1756 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1757 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1758 } 1759 } 1760 1761 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1762 // adjust the operands as necessary. 1763 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1764 Comparison &C) { 1765 // For us to make any changes, it must a comparison between a single-use 1766 // load and a constant. 1767 if (!C.Op0.hasOneUse() || 1768 C.Op0.getOpcode() != ISD::LOAD || 1769 C.Op1.getOpcode() != ISD::Constant) 1770 return; 1771 1772 // We must have an 8- or 16-bit load. 1773 auto *Load = cast<LoadSDNode>(C.Op0); 1774 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1775 if (NumBits != 8 && NumBits != 16) 1776 return; 1777 1778 // The load must be an extending one and the constant must be within the 1779 // range of the unextended value. 1780 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1781 uint64_t Value = ConstOp1->getZExtValue(); 1782 uint64_t Mask = (1 << NumBits) - 1; 1783 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1784 // Make sure that ConstOp1 is in range of C.Op0. 1785 int64_t SignedValue = ConstOp1->getSExtValue(); 1786 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1787 return; 1788 if (C.ICmpType != SystemZICMP::SignedOnly) { 1789 // Unsigned comparison between two sign-extended values is equivalent 1790 // to unsigned comparison between two zero-extended values. 1791 Value &= Mask; 1792 } else if (NumBits == 8) { 1793 // Try to treat the comparison as unsigned, so that we can use CLI. 1794 // Adjust CCMask and Value as necessary. 1795 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1796 // Test whether the high bit of the byte is set. 1797 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1798 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1799 // Test whether the high bit of the byte is clear. 1800 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1801 else 1802 // No instruction exists for this combination. 1803 return; 1804 C.ICmpType = SystemZICMP::UnsignedOnly; 1805 } 1806 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1807 if (Value > Mask) 1808 return; 1809 // If the constant is in range, we can use any comparison. 1810 C.ICmpType = SystemZICMP::Any; 1811 } else 1812 return; 1813 1814 // Make sure that the first operand is an i32 of the right extension type. 1815 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1816 ISD::SEXTLOAD : 1817 ISD::ZEXTLOAD); 1818 if (C.Op0.getValueType() != MVT::i32 || 1819 Load->getExtensionType() != ExtType) { 1820 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 1821 Load->getBasePtr(), Load->getPointerInfo(), 1822 Load->getMemoryVT(), Load->getAlignment(), 1823 Load->getMemOperand()->getFlags()); 1824 // Update the chain uses. 1825 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 1826 } 1827 1828 // Make sure that the second operand is an i32 with the right value. 1829 if (C.Op1.getValueType() != MVT::i32 || 1830 Value != ConstOp1->getZExtValue()) 1831 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1832 } 1833 1834 // Return true if Op is either an unextended load, or a load suitable 1835 // for integer register-memory comparisons of type ICmpType. 1836 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1837 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1838 if (Load) { 1839 // There are no instructions to compare a register with a memory byte. 1840 if (Load->getMemoryVT() == MVT::i8) 1841 return false; 1842 // Otherwise decide on extension type. 1843 switch (Load->getExtensionType()) { 1844 case ISD::NON_EXTLOAD: 1845 return true; 1846 case ISD::SEXTLOAD: 1847 return ICmpType != SystemZICMP::UnsignedOnly; 1848 case ISD::ZEXTLOAD: 1849 return ICmpType != SystemZICMP::SignedOnly; 1850 default: 1851 break; 1852 } 1853 } 1854 return false; 1855 } 1856 1857 // Return true if it is better to swap the operands of C. 1858 static bool shouldSwapCmpOperands(const Comparison &C) { 1859 // Leave f128 comparisons alone, since they have no memory forms. 1860 if (C.Op0.getValueType() == MVT::f128) 1861 return false; 1862 1863 // Always keep a floating-point constant second, since comparisons with 1864 // zero can use LOAD TEST and comparisons with other constants make a 1865 // natural memory operand. 1866 if (isa<ConstantFPSDNode>(C.Op1)) 1867 return false; 1868 1869 // Never swap comparisons with zero since there are many ways to optimize 1870 // those later. 1871 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1872 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1873 return false; 1874 1875 // Also keep natural memory operands second if the loaded value is 1876 // only used here. Several comparisons have memory forms. 1877 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1878 return false; 1879 1880 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1881 // In that case we generally prefer the memory to be second. 1882 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1883 // The only exceptions are when the second operand is a constant and 1884 // we can use things like CHHSI. 1885 if (!ConstOp1) 1886 return true; 1887 // The unsigned memory-immediate instructions can handle 16-bit 1888 // unsigned integers. 1889 if (C.ICmpType != SystemZICMP::SignedOnly && 1890 isUInt<16>(ConstOp1->getZExtValue())) 1891 return false; 1892 // The signed memory-immediate instructions can handle 16-bit 1893 // signed integers. 1894 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1895 isInt<16>(ConstOp1->getSExtValue())) 1896 return false; 1897 return true; 1898 } 1899 1900 // Try to promote the use of CGFR and CLGFR. 1901 unsigned Opcode0 = C.Op0.getOpcode(); 1902 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1903 return true; 1904 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1905 return true; 1906 if (C.ICmpType != SystemZICMP::SignedOnly && 1907 Opcode0 == ISD::AND && 1908 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1909 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1910 return true; 1911 1912 return false; 1913 } 1914 1915 // Return a version of comparison CC mask CCMask in which the LT and GT 1916 // actions are swapped. 1917 static unsigned reverseCCMask(unsigned CCMask) { 1918 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1919 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1920 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1921 (CCMask & SystemZ::CCMASK_CMP_UO)); 1922 } 1923 1924 // Check whether C tests for equality between X and Y and whether X - Y 1925 // or Y - X is also computed. In that case it's better to compare the 1926 // result of the subtraction against zero. 1927 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 1928 Comparison &C) { 1929 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1930 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1931 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1932 SDNode *N = *I; 1933 if (N->getOpcode() == ISD::SUB && 1934 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1935 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1936 C.Op0 = SDValue(N, 0); 1937 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1938 return; 1939 } 1940 } 1941 } 1942 } 1943 1944 // Check whether C compares a floating-point value with zero and if that 1945 // floating-point value is also negated. In this case we can use the 1946 // negation to set CC, so avoiding separate LOAD AND TEST and 1947 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1948 static void adjustForFNeg(Comparison &C) { 1949 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1950 if (C1 && C1->isZero()) { 1951 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1952 SDNode *N = *I; 1953 if (N->getOpcode() == ISD::FNEG) { 1954 C.Op0 = SDValue(N, 0); 1955 C.CCMask = reverseCCMask(C.CCMask); 1956 return; 1957 } 1958 } 1959 } 1960 } 1961 1962 // Check whether C compares (shl X, 32) with 0 and whether X is 1963 // also sign-extended. In that case it is better to test the result 1964 // of the sign extension using LTGFR. 1965 // 1966 // This case is important because InstCombine transforms a comparison 1967 // with (sext (trunc X)) into a comparison with (shl X, 32). 1968 static void adjustForLTGFR(Comparison &C) { 1969 // Check for a comparison between (shl X, 32) and 0. 1970 if (C.Op0.getOpcode() == ISD::SHL && 1971 C.Op0.getValueType() == MVT::i64 && 1972 C.Op1.getOpcode() == ISD::Constant && 1973 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1974 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1975 if (C1 && C1->getZExtValue() == 32) { 1976 SDValue ShlOp0 = C.Op0.getOperand(0); 1977 // See whether X has any SIGN_EXTEND_INREG uses. 1978 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1979 SDNode *N = *I; 1980 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1981 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1982 C.Op0 = SDValue(N, 0); 1983 return; 1984 } 1985 } 1986 } 1987 } 1988 } 1989 1990 // If C compares the truncation of an extending load, try to compare 1991 // the untruncated value instead. This exposes more opportunities to 1992 // reuse CC. 1993 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 1994 Comparison &C) { 1995 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1996 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1997 C.Op1.getOpcode() == ISD::Constant && 1998 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1999 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2000 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2001 unsigned Type = L->getExtensionType(); 2002 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2003 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2004 C.Op0 = C.Op0.getOperand(0); 2005 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2006 } 2007 } 2008 } 2009 } 2010 2011 // Return true if shift operation N has an in-range constant shift value. 2012 // Store it in ShiftVal if so. 2013 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2014 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2015 if (!Shift) 2016 return false; 2017 2018 uint64_t Amount = Shift->getZExtValue(); 2019 if (Amount >= N.getValueSizeInBits()) 2020 return false; 2021 2022 ShiftVal = Amount; 2023 return true; 2024 } 2025 2026 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2027 // instruction and whether the CC value is descriptive enough to handle 2028 // a comparison of type Opcode between the AND result and CmpVal. 2029 // CCMask says which comparison result is being tested and BitSize is 2030 // the number of bits in the operands. If TEST UNDER MASK can be used, 2031 // return the corresponding CC mask, otherwise return 0. 2032 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2033 uint64_t Mask, uint64_t CmpVal, 2034 unsigned ICmpType) { 2035 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2036 2037 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2038 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2039 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2040 return 0; 2041 2042 // Work out the masks for the lowest and highest bits. 2043 unsigned HighShift = 63 - countLeadingZeros(Mask); 2044 uint64_t High = uint64_t(1) << HighShift; 2045 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2046 2047 // Signed ordered comparisons are effectively unsigned if the sign 2048 // bit is dropped. 2049 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2050 2051 // Check for equality comparisons with 0, or the equivalent. 2052 if (CmpVal == 0) { 2053 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2054 return SystemZ::CCMASK_TM_ALL_0; 2055 if (CCMask == SystemZ::CCMASK_CMP_NE) 2056 return SystemZ::CCMASK_TM_SOME_1; 2057 } 2058 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2059 if (CCMask == SystemZ::CCMASK_CMP_LT) 2060 return SystemZ::CCMASK_TM_ALL_0; 2061 if (CCMask == SystemZ::CCMASK_CMP_GE) 2062 return SystemZ::CCMASK_TM_SOME_1; 2063 } 2064 if (EffectivelyUnsigned && CmpVal < Low) { 2065 if (CCMask == SystemZ::CCMASK_CMP_LE) 2066 return SystemZ::CCMASK_TM_ALL_0; 2067 if (CCMask == SystemZ::CCMASK_CMP_GT) 2068 return SystemZ::CCMASK_TM_SOME_1; 2069 } 2070 2071 // Check for equality comparisons with the mask, or the equivalent. 2072 if (CmpVal == Mask) { 2073 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2074 return SystemZ::CCMASK_TM_ALL_1; 2075 if (CCMask == SystemZ::CCMASK_CMP_NE) 2076 return SystemZ::CCMASK_TM_SOME_0; 2077 } 2078 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2079 if (CCMask == SystemZ::CCMASK_CMP_GT) 2080 return SystemZ::CCMASK_TM_ALL_1; 2081 if (CCMask == SystemZ::CCMASK_CMP_LE) 2082 return SystemZ::CCMASK_TM_SOME_0; 2083 } 2084 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2085 if (CCMask == SystemZ::CCMASK_CMP_GE) 2086 return SystemZ::CCMASK_TM_ALL_1; 2087 if (CCMask == SystemZ::CCMASK_CMP_LT) 2088 return SystemZ::CCMASK_TM_SOME_0; 2089 } 2090 2091 // Check for ordered comparisons with the top bit. 2092 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2093 if (CCMask == SystemZ::CCMASK_CMP_LE) 2094 return SystemZ::CCMASK_TM_MSB_0; 2095 if (CCMask == SystemZ::CCMASK_CMP_GT) 2096 return SystemZ::CCMASK_TM_MSB_1; 2097 } 2098 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2099 if (CCMask == SystemZ::CCMASK_CMP_LT) 2100 return SystemZ::CCMASK_TM_MSB_0; 2101 if (CCMask == SystemZ::CCMASK_CMP_GE) 2102 return SystemZ::CCMASK_TM_MSB_1; 2103 } 2104 2105 // If there are just two bits, we can do equality checks for Low and High 2106 // as well. 2107 if (Mask == Low + High) { 2108 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2109 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2110 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2111 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2112 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2113 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2114 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2115 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2116 } 2117 2118 // Looks like we've exhausted our options. 2119 return 0; 2120 } 2121 2122 // See whether C can be implemented as a TEST UNDER MASK instruction. 2123 // Update the arguments with the TM version if so. 2124 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2125 Comparison &C) { 2126 // Check that we have a comparison with a constant. 2127 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2128 if (!ConstOp1) 2129 return; 2130 uint64_t CmpVal = ConstOp1->getZExtValue(); 2131 2132 // Check whether the nonconstant input is an AND with a constant mask. 2133 Comparison NewC(C); 2134 uint64_t MaskVal; 2135 ConstantSDNode *Mask = nullptr; 2136 if (C.Op0.getOpcode() == ISD::AND) { 2137 NewC.Op0 = C.Op0.getOperand(0); 2138 NewC.Op1 = C.Op0.getOperand(1); 2139 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2140 if (!Mask) 2141 return; 2142 MaskVal = Mask->getZExtValue(); 2143 } else { 2144 // There is no instruction to compare with a 64-bit immediate 2145 // so use TMHH instead if possible. We need an unsigned ordered 2146 // comparison with an i64 immediate. 2147 if (NewC.Op0.getValueType() != MVT::i64 || 2148 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2149 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2150 NewC.ICmpType == SystemZICMP::SignedOnly) 2151 return; 2152 // Convert LE and GT comparisons into LT and GE. 2153 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2154 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2155 if (CmpVal == uint64_t(-1)) 2156 return; 2157 CmpVal += 1; 2158 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2159 } 2160 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2161 // be masked off without changing the result. 2162 MaskVal = -(CmpVal & -CmpVal); 2163 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2164 } 2165 if (!MaskVal) 2166 return; 2167 2168 // Check whether the combination of mask, comparison value and comparison 2169 // type are suitable. 2170 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2171 unsigned NewCCMask, ShiftVal; 2172 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2173 NewC.Op0.getOpcode() == ISD::SHL && 2174 isSimpleShift(NewC.Op0, ShiftVal) && 2175 (MaskVal >> ShiftVal != 0) && 2176 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2177 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2178 MaskVal >> ShiftVal, 2179 CmpVal >> ShiftVal, 2180 SystemZICMP::Any))) { 2181 NewC.Op0 = NewC.Op0.getOperand(0); 2182 MaskVal >>= ShiftVal; 2183 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2184 NewC.Op0.getOpcode() == ISD::SRL && 2185 isSimpleShift(NewC.Op0, ShiftVal) && 2186 (MaskVal << ShiftVal != 0) && 2187 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2188 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2189 MaskVal << ShiftVal, 2190 CmpVal << ShiftVal, 2191 SystemZICMP::UnsignedOnly))) { 2192 NewC.Op0 = NewC.Op0.getOperand(0); 2193 MaskVal <<= ShiftVal; 2194 } else { 2195 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2196 NewC.ICmpType); 2197 if (!NewCCMask) 2198 return; 2199 } 2200 2201 // Go ahead and make the change. 2202 C.Opcode = SystemZISD::TM; 2203 C.Op0 = NewC.Op0; 2204 if (Mask && Mask->getZExtValue() == MaskVal) 2205 C.Op1 = SDValue(Mask, 0); 2206 else 2207 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2208 C.CCValid = SystemZ::CCMASK_TM; 2209 C.CCMask = NewCCMask; 2210 } 2211 2212 // See whether the comparison argument contains a redundant AND 2213 // and remove it if so. This sometimes happens due to the generic 2214 // BRCOND expansion. 2215 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2216 Comparison &C) { 2217 if (C.Op0.getOpcode() != ISD::AND) 2218 return; 2219 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2220 if (!Mask) 2221 return; 2222 KnownBits Known; 2223 DAG.computeKnownBits(C.Op0.getOperand(0), Known); 2224 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2225 return; 2226 2227 C.Op0 = C.Op0.getOperand(0); 2228 } 2229 2230 // Return a Comparison that tests the condition-code result of intrinsic 2231 // node Call against constant integer CC using comparison code Cond. 2232 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2233 // and CCValid is the set of possible condition-code results. 2234 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2235 SDValue Call, unsigned CCValid, uint64_t CC, 2236 ISD::CondCode Cond) { 2237 Comparison C(Call, SDValue()); 2238 C.Opcode = Opcode; 2239 C.CCValid = CCValid; 2240 if (Cond == ISD::SETEQ) 2241 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2242 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2243 else if (Cond == ISD::SETNE) 2244 // ...and the inverse of that. 2245 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2246 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2247 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2248 // always true for CC>3. 2249 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2250 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2251 // ...and the inverse of that. 2252 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2253 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2254 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2255 // always true for CC>3. 2256 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2257 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2258 // ...and the inverse of that. 2259 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2260 else 2261 llvm_unreachable("Unexpected integer comparison type"); 2262 C.CCMask &= CCValid; 2263 return C; 2264 } 2265 2266 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2267 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2268 ISD::CondCode Cond, const SDLoc &DL) { 2269 if (CmpOp1.getOpcode() == ISD::Constant) { 2270 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2271 unsigned Opcode, CCValid; 2272 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2273 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2274 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2275 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2276 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2277 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2278 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2279 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2280 } 2281 Comparison C(CmpOp0, CmpOp1); 2282 C.CCMask = CCMaskForCondCode(Cond); 2283 if (C.Op0.getValueType().isFloatingPoint()) { 2284 C.CCValid = SystemZ::CCMASK_FCMP; 2285 C.Opcode = SystemZISD::FCMP; 2286 adjustForFNeg(C); 2287 } else { 2288 C.CCValid = SystemZ::CCMASK_ICMP; 2289 C.Opcode = SystemZISD::ICMP; 2290 // Choose the type of comparison. Equality and inequality tests can 2291 // use either signed or unsigned comparisons. The choice also doesn't 2292 // matter if both sign bits are known to be clear. In those cases we 2293 // want to give the main isel code the freedom to choose whichever 2294 // form fits best. 2295 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2296 C.CCMask == SystemZ::CCMASK_CMP_NE || 2297 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2298 C.ICmpType = SystemZICMP::Any; 2299 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2300 C.ICmpType = SystemZICMP::UnsignedOnly; 2301 else 2302 C.ICmpType = SystemZICMP::SignedOnly; 2303 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2304 adjustForRedundantAnd(DAG, DL, C); 2305 adjustZeroCmp(DAG, DL, C); 2306 adjustSubwordCmp(DAG, DL, C); 2307 adjustForSubtraction(DAG, DL, C); 2308 adjustForLTGFR(C); 2309 adjustICmpTruncate(DAG, DL, C); 2310 } 2311 2312 if (shouldSwapCmpOperands(C)) { 2313 std::swap(C.Op0, C.Op1); 2314 C.CCMask = reverseCCMask(C.CCMask); 2315 } 2316 2317 adjustForTestUnderMask(DAG, DL, C); 2318 return C; 2319 } 2320 2321 // Emit the comparison instruction described by C. 2322 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2323 if (!C.Op1.getNode()) { 2324 SDNode *Node; 2325 switch (C.Op0.getOpcode()) { 2326 case ISD::INTRINSIC_W_CHAIN: 2327 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2328 return SDValue(Node, 0); 2329 case ISD::INTRINSIC_WO_CHAIN: 2330 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2331 return SDValue(Node, Node->getNumValues() - 1); 2332 default: 2333 llvm_unreachable("Invalid comparison operands"); 2334 } 2335 } 2336 if (C.Opcode == SystemZISD::ICMP) 2337 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2338 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2339 if (C.Opcode == SystemZISD::TM) { 2340 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2341 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2342 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2343 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2344 } 2345 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2346 } 2347 2348 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2349 // 64 bits. Extend is the extension type to use. Store the high part 2350 // in Hi and the low part in Lo. 2351 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2352 SDValue Op0, SDValue Op1, SDValue &Hi, 2353 SDValue &Lo) { 2354 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2355 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2356 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2357 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2358 DAG.getConstant(32, DL, MVT::i64)); 2359 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2360 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2361 } 2362 2363 // Lower a binary operation that produces two VT results, one in each 2364 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2365 // and Opcode performs the GR128 operation. Store the even register result 2366 // in Even and the odd register result in Odd. 2367 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2368 unsigned Opcode, SDValue Op0, SDValue Op1, 2369 SDValue &Even, SDValue &Odd) { 2370 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2371 bool Is32Bit = is32Bit(VT); 2372 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2373 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2374 } 2375 2376 // Return an i32 value that is 1 if the CC value produced by CCReg is 2377 // in the mask CCMask and 0 otherwise. CC is known to have a value 2378 // in CCValid, so other values can be ignored. 2379 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2380 unsigned CCValid, unsigned CCMask) { 2381 SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32), 2382 DAG.getConstant(0, DL, MVT::i32), 2383 DAG.getConstant(CCValid, DL, MVT::i32), 2384 DAG.getConstant(CCMask, DL, MVT::i32), CCReg }; 2385 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2386 } 2387 2388 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2389 // be done directly. IsFP is true if CC is for a floating-point rather than 2390 // integer comparison. 2391 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2392 switch (CC) { 2393 case ISD::SETOEQ: 2394 case ISD::SETEQ: 2395 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2396 2397 case ISD::SETOGE: 2398 case ISD::SETGE: 2399 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2400 2401 case ISD::SETOGT: 2402 case ISD::SETGT: 2403 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2404 2405 case ISD::SETUGT: 2406 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2407 2408 default: 2409 return 0; 2410 } 2411 } 2412 2413 // Return the SystemZISD vector comparison operation for CC or its inverse, 2414 // or 0 if neither can be done directly. Indicate in Invert whether the 2415 // result is for the inverse of CC. IsFP is true if CC is for a 2416 // floating-point rather than integer comparison. 2417 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2418 bool &Invert) { 2419 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2420 Invert = false; 2421 return Opcode; 2422 } 2423 2424 CC = ISD::getSetCCInverse(CC, !IsFP); 2425 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2426 Invert = true; 2427 return Opcode; 2428 } 2429 2430 return 0; 2431 } 2432 2433 // Return a v2f64 that contains the extended form of elements Start and Start+1 2434 // of v4f32 value Op. 2435 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2436 SDValue Op) { 2437 int Mask[] = { Start, -1, Start + 1, -1 }; 2438 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2439 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2440 } 2441 2442 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2443 // producing a result of type VT. 2444 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2445 const SDLoc &DL, EVT VT, 2446 SDValue CmpOp0, 2447 SDValue CmpOp1) const { 2448 // There is no hardware support for v4f32 (unless we have the vector 2449 // enhancements facility 1), so extend the vector into two v2f64s 2450 // and compare those. 2451 if (CmpOp0.getValueType() == MVT::v4f32 && 2452 !Subtarget.hasVectorEnhancements1()) { 2453 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2454 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2455 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2456 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2457 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2458 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2459 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2460 } 2461 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2462 } 2463 2464 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2465 // an integer mask of type VT. 2466 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2467 const SDLoc &DL, EVT VT, 2468 ISD::CondCode CC, 2469 SDValue CmpOp0, 2470 SDValue CmpOp1) const { 2471 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2472 bool Invert = false; 2473 SDValue Cmp; 2474 switch (CC) { 2475 // Handle tests for order using (or (ogt y x) (oge x y)). 2476 case ISD::SETUO: 2477 Invert = true; 2478 LLVM_FALLTHROUGH; 2479 case ISD::SETO: { 2480 assert(IsFP && "Unexpected integer comparison"); 2481 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2482 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2483 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2484 break; 2485 } 2486 2487 // Handle <> tests using (or (ogt y x) (ogt x y)). 2488 case ISD::SETUEQ: 2489 Invert = true; 2490 LLVM_FALLTHROUGH; 2491 case ISD::SETONE: { 2492 assert(IsFP && "Unexpected integer comparison"); 2493 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2494 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2495 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2496 break; 2497 } 2498 2499 // Otherwise a single comparison is enough. It doesn't really 2500 // matter whether we try the inversion or the swap first, since 2501 // there are no cases where both work. 2502 default: 2503 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2504 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2505 else { 2506 CC = ISD::getSetCCSwappedOperands(CC); 2507 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2508 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2509 else 2510 llvm_unreachable("Unhandled comparison"); 2511 } 2512 break; 2513 } 2514 if (Invert) { 2515 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2516 DAG.getConstant(65535, DL, MVT::i32)); 2517 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2518 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2519 } 2520 return Cmp; 2521 } 2522 2523 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2524 SelectionDAG &DAG) const { 2525 SDValue CmpOp0 = Op.getOperand(0); 2526 SDValue CmpOp1 = Op.getOperand(1); 2527 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2528 SDLoc DL(Op); 2529 EVT VT = Op.getValueType(); 2530 if (VT.isVector()) 2531 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2532 2533 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2534 SDValue CCReg = emitCmp(DAG, DL, C); 2535 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2536 } 2537 2538 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2539 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2540 SDValue CmpOp0 = Op.getOperand(2); 2541 SDValue CmpOp1 = Op.getOperand(3); 2542 SDValue Dest = Op.getOperand(4); 2543 SDLoc DL(Op); 2544 2545 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2546 SDValue CCReg = emitCmp(DAG, DL, C); 2547 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2548 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2549 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2550 } 2551 2552 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2553 // allowing Pos and Neg to be wider than CmpOp. 2554 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2555 return (Neg.getOpcode() == ISD::SUB && 2556 Neg.getOperand(0).getOpcode() == ISD::Constant && 2557 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2558 Neg.getOperand(1) == Pos && 2559 (Pos == CmpOp || 2560 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2561 Pos.getOperand(0) == CmpOp))); 2562 } 2563 2564 // Return the absolute or negative absolute of Op; IsNegative decides which. 2565 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2566 bool IsNegative) { 2567 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2568 if (IsNegative) 2569 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2570 DAG.getConstant(0, DL, Op.getValueType()), Op); 2571 return Op; 2572 } 2573 2574 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2575 SelectionDAG &DAG) const { 2576 SDValue CmpOp0 = Op.getOperand(0); 2577 SDValue CmpOp1 = Op.getOperand(1); 2578 SDValue TrueOp = Op.getOperand(2); 2579 SDValue FalseOp = Op.getOperand(3); 2580 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2581 SDLoc DL(Op); 2582 2583 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2584 2585 // Check for absolute and negative-absolute selections, including those 2586 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2587 // This check supplements the one in DAGCombiner. 2588 if (C.Opcode == SystemZISD::ICMP && 2589 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2590 C.CCMask != SystemZ::CCMASK_CMP_NE && 2591 C.Op1.getOpcode() == ISD::Constant && 2592 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2593 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2594 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2595 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2596 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2597 } 2598 2599 SDValue CCReg = emitCmp(DAG, DL, C); 2600 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2601 DAG.getConstant(C.CCMask, DL, MVT::i32), CCReg}; 2602 2603 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2604 } 2605 2606 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2607 SelectionDAG &DAG) const { 2608 SDLoc DL(Node); 2609 const GlobalValue *GV = Node->getGlobal(); 2610 int64_t Offset = Node->getOffset(); 2611 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2612 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2613 2614 SDValue Result; 2615 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2616 // Assign anchors at 1<<12 byte boundaries. 2617 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2618 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2619 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2620 2621 // The offset can be folded into the address if it is aligned to a halfword. 2622 Offset -= Anchor; 2623 if (Offset != 0 && (Offset & 1) == 0) { 2624 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2625 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2626 Offset = 0; 2627 } 2628 } else { 2629 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2630 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2631 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2632 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2633 } 2634 2635 // If there was a non-zero offset that we didn't fold, create an explicit 2636 // addition for it. 2637 if (Offset != 0) 2638 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2639 DAG.getConstant(Offset, DL, PtrVT)); 2640 2641 return Result; 2642 } 2643 2644 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2645 SelectionDAG &DAG, 2646 unsigned Opcode, 2647 SDValue GOTOffset) const { 2648 SDLoc DL(Node); 2649 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2650 SDValue Chain = DAG.getEntryNode(); 2651 SDValue Glue; 2652 2653 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2654 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2655 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2656 Glue = Chain.getValue(1); 2657 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2658 Glue = Chain.getValue(1); 2659 2660 // The first call operand is the chain and the second is the TLS symbol. 2661 SmallVector<SDValue, 8> Ops; 2662 Ops.push_back(Chain); 2663 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2664 Node->getValueType(0), 2665 0, 0)); 2666 2667 // Add argument registers to the end of the list so that they are 2668 // known live into the call. 2669 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2670 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2671 2672 // Add a register mask operand representing the call-preserved registers. 2673 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2674 const uint32_t *Mask = 2675 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2676 assert(Mask && "Missing call preserved mask for calling convention"); 2677 Ops.push_back(DAG.getRegisterMask(Mask)); 2678 2679 // Glue the call to the argument copies. 2680 Ops.push_back(Glue); 2681 2682 // Emit the call. 2683 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2684 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2685 Glue = Chain.getValue(1); 2686 2687 // Copy the return value from %r2. 2688 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2689 } 2690 2691 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2692 SelectionDAG &DAG) const { 2693 SDValue Chain = DAG.getEntryNode(); 2694 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2695 2696 // The high part of the thread pointer is in access register 0. 2697 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 2698 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2699 2700 // The low part of the thread pointer is in access register 1. 2701 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 2702 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2703 2704 // Merge them into a single 64-bit address. 2705 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2706 DAG.getConstant(32, DL, PtrVT)); 2707 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2708 } 2709 2710 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2711 SelectionDAG &DAG) const { 2712 if (DAG.getTarget().useEmulatedTLS()) 2713 return LowerToTLSEmulatedModel(Node, DAG); 2714 SDLoc DL(Node); 2715 const GlobalValue *GV = Node->getGlobal(); 2716 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2717 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2718 2719 SDValue TP = lowerThreadPointer(DL, DAG); 2720 2721 // Get the offset of GA from the thread pointer, based on the TLS model. 2722 SDValue Offset; 2723 switch (model) { 2724 case TLSModel::GeneralDynamic: { 2725 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2726 SystemZConstantPoolValue *CPV = 2727 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2728 2729 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2730 Offset = DAG.getLoad( 2731 PtrVT, DL, DAG.getEntryNode(), Offset, 2732 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2733 2734 // Call __tls_get_offset to retrieve the offset. 2735 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2736 break; 2737 } 2738 2739 case TLSModel::LocalDynamic: { 2740 // Load the GOT offset of the module ID. 2741 SystemZConstantPoolValue *CPV = 2742 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2743 2744 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2745 Offset = DAG.getLoad( 2746 PtrVT, DL, DAG.getEntryNode(), Offset, 2747 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2748 2749 // Call __tls_get_offset to retrieve the module base offset. 2750 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2751 2752 // Note: The SystemZLDCleanupPass will remove redundant computations 2753 // of the module base offset. Count total number of local-dynamic 2754 // accesses to trigger execution of that pass. 2755 SystemZMachineFunctionInfo* MFI = 2756 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2757 MFI->incNumLocalDynamicTLSAccesses(); 2758 2759 // Add the per-symbol offset. 2760 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2761 2762 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2763 DTPOffset = DAG.getLoad( 2764 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2765 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2766 2767 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2768 break; 2769 } 2770 2771 case TLSModel::InitialExec: { 2772 // Load the offset from the GOT. 2773 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2774 SystemZII::MO_INDNTPOFF); 2775 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2776 Offset = 2777 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2778 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2779 break; 2780 } 2781 2782 case TLSModel::LocalExec: { 2783 // Force the offset into the constant pool and load it from there. 2784 SystemZConstantPoolValue *CPV = 2785 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2786 2787 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2788 Offset = DAG.getLoad( 2789 PtrVT, DL, DAG.getEntryNode(), Offset, 2790 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2791 break; 2792 } 2793 } 2794 2795 // Add the base and offset together. 2796 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2797 } 2798 2799 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2800 SelectionDAG &DAG) const { 2801 SDLoc DL(Node); 2802 const BlockAddress *BA = Node->getBlockAddress(); 2803 int64_t Offset = Node->getOffset(); 2804 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2805 2806 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2807 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2808 return Result; 2809 } 2810 2811 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2812 SelectionDAG &DAG) const { 2813 SDLoc DL(JT); 2814 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2815 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2816 2817 // Use LARL to load the address of the table. 2818 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2819 } 2820 2821 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2822 SelectionDAG &DAG) const { 2823 SDLoc DL(CP); 2824 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2825 2826 SDValue Result; 2827 if (CP->isMachineConstantPoolEntry()) 2828 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2829 CP->getAlignment()); 2830 else 2831 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2832 CP->getAlignment(), CP->getOffset()); 2833 2834 // Use LARL to load the address of the constant pool entry. 2835 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2836 } 2837 2838 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 2839 SelectionDAG &DAG) const { 2840 MachineFunction &MF = DAG.getMachineFunction(); 2841 MachineFrameInfo &MFI = MF.getFrameInfo(); 2842 MFI.setFrameAddressIsTaken(true); 2843 2844 SDLoc DL(Op); 2845 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2846 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2847 2848 // If the back chain frame index has not been allocated yet, do so. 2849 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 2850 int BackChainIdx = FI->getFramePointerSaveIndex(); 2851 if (!BackChainIdx) { 2852 // By definition, the frame address is the address of the back chain. 2853 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 2854 FI->setFramePointerSaveIndex(BackChainIdx); 2855 } 2856 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 2857 2858 // FIXME The frontend should detect this case. 2859 if (Depth > 0) { 2860 report_fatal_error("Unsupported stack frame traversal count"); 2861 } 2862 2863 return BackChain; 2864 } 2865 2866 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 2867 SelectionDAG &DAG) const { 2868 MachineFunction &MF = DAG.getMachineFunction(); 2869 MachineFrameInfo &MFI = MF.getFrameInfo(); 2870 MFI.setReturnAddressIsTaken(true); 2871 2872 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2873 return SDValue(); 2874 2875 SDLoc DL(Op); 2876 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2877 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2878 2879 // FIXME The frontend should detect this case. 2880 if (Depth > 0) { 2881 report_fatal_error("Unsupported stack frame traversal count"); 2882 } 2883 2884 // Return R14D, which has the return address. Mark it an implicit live-in. 2885 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 2886 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 2887 } 2888 2889 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2890 SelectionDAG &DAG) const { 2891 SDLoc DL(Op); 2892 SDValue In = Op.getOperand(0); 2893 EVT InVT = In.getValueType(); 2894 EVT ResVT = Op.getValueType(); 2895 2896 // Convert loads directly. This is normally done by DAGCombiner, 2897 // but we need this case for bitcasts that are created during lowering 2898 // and which are then lowered themselves. 2899 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2900 if (ISD::isNormalLoad(LoadN)) { 2901 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 2902 LoadN->getBasePtr(), LoadN->getMemOperand()); 2903 // Update the chain uses. 2904 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 2905 return NewLoad; 2906 } 2907 2908 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2909 SDValue In64; 2910 if (Subtarget.hasHighWord()) { 2911 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2912 MVT::i64); 2913 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2914 MVT::i64, SDValue(U64, 0), In); 2915 } else { 2916 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2917 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2918 DAG.getConstant(32, DL, MVT::i64)); 2919 } 2920 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2921 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 2922 DL, MVT::f32, Out64); 2923 } 2924 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2925 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2926 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2927 MVT::f64, SDValue(U64, 0), In); 2928 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2929 if (Subtarget.hasHighWord()) 2930 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2931 MVT::i32, Out64); 2932 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2933 DAG.getConstant(32, DL, MVT::i64)); 2934 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2935 } 2936 llvm_unreachable("Unexpected bitcast combination"); 2937 } 2938 2939 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2940 SelectionDAG &DAG) const { 2941 MachineFunction &MF = DAG.getMachineFunction(); 2942 SystemZMachineFunctionInfo *FuncInfo = 2943 MF.getInfo<SystemZMachineFunctionInfo>(); 2944 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2945 2946 SDValue Chain = Op.getOperand(0); 2947 SDValue Addr = Op.getOperand(1); 2948 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2949 SDLoc DL(Op); 2950 2951 // The initial values of each field. 2952 const unsigned NumFields = 4; 2953 SDValue Fields[NumFields] = { 2954 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2955 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2956 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2957 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2958 }; 2959 2960 // Store each field into its respective slot. 2961 SDValue MemOps[NumFields]; 2962 unsigned Offset = 0; 2963 for (unsigned I = 0; I < NumFields; ++I) { 2964 SDValue FieldAddr = Addr; 2965 if (Offset != 0) 2966 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2967 DAG.getIntPtrConstant(Offset, DL)); 2968 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2969 MachinePointerInfo(SV, Offset)); 2970 Offset += 8; 2971 } 2972 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2973 } 2974 2975 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2976 SelectionDAG &DAG) const { 2977 SDValue Chain = Op.getOperand(0); 2978 SDValue DstPtr = Op.getOperand(1); 2979 SDValue SrcPtr = Op.getOperand(2); 2980 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2981 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2982 SDLoc DL(Op); 2983 2984 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2985 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2986 /*isTailCall*/false, 2987 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2988 } 2989 2990 SDValue SystemZTargetLowering:: 2991 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2992 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 2993 MachineFunction &MF = DAG.getMachineFunction(); 2994 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 2995 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 2996 2997 SDValue Chain = Op.getOperand(0); 2998 SDValue Size = Op.getOperand(1); 2999 SDValue Align = Op.getOperand(2); 3000 SDLoc DL(Op); 3001 3002 // If user has set the no alignment function attribute, ignore 3003 // alloca alignments. 3004 uint64_t AlignVal = (RealignOpt ? 3005 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3006 3007 uint64_t StackAlign = TFI->getStackAlignment(); 3008 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3009 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3010 3011 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3012 SDValue NeededSpace = Size; 3013 3014 // Get a reference to the stack pointer. 3015 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3016 3017 // If we need a backchain, save it now. 3018 SDValue Backchain; 3019 if (StoreBackchain) 3020 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3021 3022 // Add extra space for alignment if needed. 3023 if (ExtraAlignSpace) 3024 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3025 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3026 3027 // Get the new stack pointer value. 3028 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3029 3030 // Copy the new stack pointer back. 3031 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3032 3033 // The allocated data lives above the 160 bytes allocated for the standard 3034 // frame, plus any outgoing stack arguments. We don't know how much that 3035 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3036 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3037 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3038 3039 // Dynamically realign if needed. 3040 if (RequiredAlign > StackAlign) { 3041 Result = 3042 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3043 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3044 Result = 3045 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3046 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3047 } 3048 3049 if (StoreBackchain) 3050 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3051 3052 SDValue Ops[2] = { Result, Chain }; 3053 return DAG.getMergeValues(Ops, DL); 3054 } 3055 3056 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3057 SDValue Op, SelectionDAG &DAG) const { 3058 SDLoc DL(Op); 3059 3060 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3061 } 3062 3063 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3064 SelectionDAG &DAG) const { 3065 EVT VT = Op.getValueType(); 3066 SDLoc DL(Op); 3067 SDValue Ops[2]; 3068 if (is32Bit(VT)) 3069 // Just do a normal 64-bit multiplication and extract the results. 3070 // We define this so that it can be used for constant division. 3071 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3072 Op.getOperand(1), Ops[1], Ops[0]); 3073 else if (Subtarget.hasMiscellaneousExtensions2()) 3074 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3075 // the high result in the even register. ISD::SMUL_LOHI is defined to 3076 // return the low half first, so the results are in reverse order. 3077 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3078 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3079 else { 3080 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3081 // 3082 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3083 // 3084 // but using the fact that the upper halves are either all zeros 3085 // or all ones: 3086 // 3087 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3088 // 3089 // and grouping the right terms together since they are quicker than the 3090 // multiplication: 3091 // 3092 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3093 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3094 SDValue LL = Op.getOperand(0); 3095 SDValue RL = Op.getOperand(1); 3096 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3097 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3098 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3099 // the high result in the even register. ISD::SMUL_LOHI is defined to 3100 // return the low half first, so the results are in reverse order. 3101 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3102 LL, RL, Ops[1], Ops[0]); 3103 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3104 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3105 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3106 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3107 } 3108 return DAG.getMergeValues(Ops, DL); 3109 } 3110 3111 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3112 SelectionDAG &DAG) const { 3113 EVT VT = Op.getValueType(); 3114 SDLoc DL(Op); 3115 SDValue Ops[2]; 3116 if (is32Bit(VT)) 3117 // Just do a normal 64-bit multiplication and extract the results. 3118 // We define this so that it can be used for constant division. 3119 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3120 Op.getOperand(1), Ops[1], Ops[0]); 3121 else 3122 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3123 // the high result in the even register. ISD::UMUL_LOHI is defined to 3124 // return the low half first, so the results are in reverse order. 3125 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3126 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3127 return DAG.getMergeValues(Ops, DL); 3128 } 3129 3130 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3131 SelectionDAG &DAG) const { 3132 SDValue Op0 = Op.getOperand(0); 3133 SDValue Op1 = Op.getOperand(1); 3134 EVT VT = Op.getValueType(); 3135 SDLoc DL(Op); 3136 3137 // We use DSGF for 32-bit division. This means the first operand must 3138 // always be 64-bit, and the second operand should be 32-bit whenever 3139 // that is possible, to improve performance. 3140 if (is32Bit(VT)) 3141 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3142 else if (DAG.ComputeNumSignBits(Op1) > 32) 3143 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3144 3145 // DSG(F) returns the remainder in the even register and the 3146 // quotient in the odd register. 3147 SDValue Ops[2]; 3148 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3149 return DAG.getMergeValues(Ops, DL); 3150 } 3151 3152 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3153 SelectionDAG &DAG) const { 3154 EVT VT = Op.getValueType(); 3155 SDLoc DL(Op); 3156 3157 // DL(G) returns the remainder in the even register and the 3158 // quotient in the odd register. 3159 SDValue Ops[2]; 3160 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3161 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3162 return DAG.getMergeValues(Ops, DL); 3163 } 3164 3165 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3166 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3167 3168 // Get the known-zero masks for each operand. 3169 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 3170 KnownBits Known[2]; 3171 DAG.computeKnownBits(Ops[0], Known[0]); 3172 DAG.computeKnownBits(Ops[1], Known[1]); 3173 3174 // See if the upper 32 bits of one operand and the lower 32 bits of the 3175 // other are known zero. They are the low and high operands respectively. 3176 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3177 Known[1].Zero.getZExtValue() }; 3178 unsigned High, Low; 3179 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3180 High = 1, Low = 0; 3181 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3182 High = 0, Low = 1; 3183 else 3184 return Op; 3185 3186 SDValue LowOp = Ops[Low]; 3187 SDValue HighOp = Ops[High]; 3188 3189 // If the high part is a constant, we're better off using IILH. 3190 if (HighOp.getOpcode() == ISD::Constant) 3191 return Op; 3192 3193 // If the low part is a constant that is outside the range of LHI, 3194 // then we're better off using IILF. 3195 if (LowOp.getOpcode() == ISD::Constant) { 3196 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3197 if (!isInt<16>(Value)) 3198 return Op; 3199 } 3200 3201 // Check whether the high part is an AND that doesn't change the 3202 // high 32 bits and just masks out low bits. We can skip it if so. 3203 if (HighOp.getOpcode() == ISD::AND && 3204 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3205 SDValue HighOp0 = HighOp.getOperand(0); 3206 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3207 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3208 HighOp = HighOp0; 3209 } 3210 3211 // Take advantage of the fact that all GR32 operations only change the 3212 // low 32 bits by truncating Low to an i32 and inserting it directly 3213 // using a subreg. The interesting cases are those where the truncation 3214 // can be folded. 3215 SDLoc DL(Op); 3216 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3217 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3218 MVT::i64, HighOp, Low32); 3219 } 3220 3221 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3222 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3223 SelectionDAG &DAG) const { 3224 SDNode *N = Op.getNode(); 3225 SDValue LHS = N->getOperand(0); 3226 SDValue RHS = N->getOperand(1); 3227 SDLoc DL(N); 3228 unsigned BaseOp = 0; 3229 unsigned CCValid = 0; 3230 unsigned CCMask = 0; 3231 3232 switch (Op.getOpcode()) { 3233 default: llvm_unreachable("Unknown instruction!"); 3234 case ISD::SADDO: 3235 BaseOp = SystemZISD::SADDO; 3236 CCValid = SystemZ::CCMASK_ARITH; 3237 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3238 break; 3239 case ISD::SSUBO: 3240 BaseOp = SystemZISD::SSUBO; 3241 CCValid = SystemZ::CCMASK_ARITH; 3242 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3243 break; 3244 case ISD::UADDO: 3245 BaseOp = SystemZISD::UADDO; 3246 CCValid = SystemZ::CCMASK_LOGICAL; 3247 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3248 break; 3249 case ISD::USUBO: 3250 BaseOp = SystemZISD::USUBO; 3251 CCValid = SystemZ::CCMASK_LOGICAL; 3252 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3253 break; 3254 } 3255 3256 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3257 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3258 3259 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3260 if (N->getValueType(1) == MVT::i1) 3261 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3262 3263 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3264 } 3265 3266 // Lower ADDCARRY/SUBCARRY nodes. 3267 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3268 SelectionDAG &DAG) const { 3269 3270 SDNode *N = Op.getNode(); 3271 MVT VT = N->getSimpleValueType(0); 3272 3273 // Let legalize expand this if it isn't a legal type yet. 3274 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3275 return SDValue(); 3276 3277 SDValue LHS = N->getOperand(0); 3278 SDValue RHS = N->getOperand(1); 3279 SDValue Carry = Op.getOperand(2); 3280 SDLoc DL(N); 3281 unsigned BaseOp = 0; 3282 unsigned CCValid = 0; 3283 unsigned CCMask = 0; 3284 3285 switch (Op.getOpcode()) { 3286 default: llvm_unreachable("Unknown instruction!"); 3287 case ISD::ADDCARRY: 3288 BaseOp = SystemZISD::ADDCARRY; 3289 CCValid = SystemZ::CCMASK_LOGICAL; 3290 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3291 break; 3292 case ISD::SUBCARRY: 3293 BaseOp = SystemZISD::SUBCARRY; 3294 CCValid = SystemZ::CCMASK_LOGICAL; 3295 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3296 break; 3297 } 3298 3299 // Set the condition code from the carry flag. 3300 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3301 DAG.getConstant(CCValid, DL, MVT::i32), 3302 DAG.getConstant(CCMask, DL, MVT::i32)); 3303 3304 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3305 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3306 3307 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3308 if (N->getValueType(1) == MVT::i1) 3309 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3310 3311 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3312 } 3313 3314 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3315 SelectionDAG &DAG) const { 3316 EVT VT = Op.getValueType(); 3317 SDLoc DL(Op); 3318 Op = Op.getOperand(0); 3319 3320 // Handle vector types via VPOPCT. 3321 if (VT.isVector()) { 3322 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3323 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3324 switch (VT.getScalarSizeInBits()) { 3325 case 8: 3326 break; 3327 case 16: { 3328 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3329 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3330 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3331 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3332 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3333 break; 3334 } 3335 case 32: { 3336 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3337 DAG.getConstant(0, DL, MVT::i32)); 3338 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3339 break; 3340 } 3341 case 64: { 3342 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3343 DAG.getConstant(0, DL, MVT::i32)); 3344 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3345 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3346 break; 3347 } 3348 default: 3349 llvm_unreachable("Unexpected type"); 3350 } 3351 return Op; 3352 } 3353 3354 // Get the known-zero mask for the operand. 3355 KnownBits Known; 3356 DAG.computeKnownBits(Op, Known); 3357 unsigned NumSignificantBits = (~Known.Zero).getActiveBits(); 3358 if (NumSignificantBits == 0) 3359 return DAG.getConstant(0, DL, VT); 3360 3361 // Skip known-zero high parts of the operand. 3362 int64_t OrigBitSize = VT.getSizeInBits(); 3363 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3364 BitSize = std::min(BitSize, OrigBitSize); 3365 3366 // The POPCNT instruction counts the number of bits in each byte. 3367 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3368 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3369 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3370 3371 // Add up per-byte counts in a binary tree. All bits of Op at 3372 // position larger than BitSize remain zero throughout. 3373 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3374 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3375 if (BitSize != OrigBitSize) 3376 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3377 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3378 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3379 } 3380 3381 // Extract overall result from high byte. 3382 if (BitSize > 8) 3383 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3384 DAG.getConstant(BitSize - 8, DL, VT)); 3385 3386 return Op; 3387 } 3388 3389 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3390 SelectionDAG &DAG) const { 3391 SDLoc DL(Op); 3392 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3393 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3394 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3395 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3396 3397 // The only fence that needs an instruction is a sequentially-consistent 3398 // cross-thread fence. 3399 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3400 FenceSSID == SyncScope::System) { 3401 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3402 Op.getOperand(0)), 3403 0); 3404 } 3405 3406 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3407 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3408 } 3409 3410 // Op is an atomic load. Lower it into a normal volatile load. 3411 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3412 SelectionDAG &DAG) const { 3413 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3414 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3415 Node->getChain(), Node->getBasePtr(), 3416 Node->getMemoryVT(), Node->getMemOperand()); 3417 } 3418 3419 // Op is an atomic store. Lower it into a normal volatile store. 3420 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3421 SelectionDAG &DAG) const { 3422 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3423 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3424 Node->getBasePtr(), Node->getMemoryVT(), 3425 Node->getMemOperand()); 3426 // We have to enforce sequential consistency by performing a 3427 // serialization operation after the store. 3428 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3429 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3430 MVT::Other, Chain), 0); 3431 return Chain; 3432 } 3433 3434 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3435 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3436 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3437 SelectionDAG &DAG, 3438 unsigned Opcode) const { 3439 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3440 3441 // 32-bit operations need no code outside the main loop. 3442 EVT NarrowVT = Node->getMemoryVT(); 3443 EVT WideVT = MVT::i32; 3444 if (NarrowVT == WideVT) 3445 return Op; 3446 3447 int64_t BitSize = NarrowVT.getSizeInBits(); 3448 SDValue ChainIn = Node->getChain(); 3449 SDValue Addr = Node->getBasePtr(); 3450 SDValue Src2 = Node->getVal(); 3451 MachineMemOperand *MMO = Node->getMemOperand(); 3452 SDLoc DL(Node); 3453 EVT PtrVT = Addr.getValueType(); 3454 3455 // Convert atomic subtracts of constants into additions. 3456 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3457 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3458 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3459 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3460 } 3461 3462 // Get the address of the containing word. 3463 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3464 DAG.getConstant(-4, DL, PtrVT)); 3465 3466 // Get the number of bits that the word must be rotated left in order 3467 // to bring the field to the top bits of a GR32. 3468 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3469 DAG.getConstant(3, DL, PtrVT)); 3470 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3471 3472 // Get the complementing shift amount, for rotating a field in the top 3473 // bits back to its proper position. 3474 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3475 DAG.getConstant(0, DL, WideVT), BitShift); 3476 3477 // Extend the source operand to 32 bits and prepare it for the inner loop. 3478 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3479 // operations require the source to be shifted in advance. (This shift 3480 // can be folded if the source is constant.) For AND and NAND, the lower 3481 // bits must be set, while for other opcodes they should be left clear. 3482 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3483 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3484 DAG.getConstant(32 - BitSize, DL, WideVT)); 3485 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3486 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3487 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3488 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3489 3490 // Construct the ATOMIC_LOADW_* node. 3491 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3492 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3493 DAG.getConstant(BitSize, DL, WideVT) }; 3494 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3495 NarrowVT, MMO); 3496 3497 // Rotate the result of the final CS so that the field is in the lower 3498 // bits of a GR32, then truncate it. 3499 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3500 DAG.getConstant(BitSize, DL, WideVT)); 3501 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3502 3503 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3504 return DAG.getMergeValues(RetOps, DL); 3505 } 3506 3507 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3508 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3509 // operations into additions. 3510 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3511 SelectionDAG &DAG) const { 3512 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3513 EVT MemVT = Node->getMemoryVT(); 3514 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3515 // A full-width operation. 3516 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3517 SDValue Src2 = Node->getVal(); 3518 SDValue NegSrc2; 3519 SDLoc DL(Src2); 3520 3521 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3522 // Use an addition if the operand is constant and either LAA(G) is 3523 // available or the negative value is in the range of A(G)FHI. 3524 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3525 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3526 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3527 } else if (Subtarget.hasInterlockedAccess1()) 3528 // Use LAA(G) if available. 3529 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3530 Src2); 3531 3532 if (NegSrc2.getNode()) 3533 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3534 Node->getChain(), Node->getBasePtr(), NegSrc2, 3535 Node->getMemOperand()); 3536 3537 // Use the node as-is. 3538 return Op; 3539 } 3540 3541 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3542 } 3543 3544 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3545 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3546 SelectionDAG &DAG) const { 3547 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3548 SDValue ChainIn = Node->getOperand(0); 3549 SDValue Addr = Node->getOperand(1); 3550 SDValue CmpVal = Node->getOperand(2); 3551 SDValue SwapVal = Node->getOperand(3); 3552 MachineMemOperand *MMO = Node->getMemOperand(); 3553 SDLoc DL(Node); 3554 3555 // We have native support for 32-bit and 64-bit compare and swap, but we 3556 // still need to expand extracting the "success" result from the CC. 3557 EVT NarrowVT = Node->getMemoryVT(); 3558 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3559 if (NarrowVT == WideVT) { 3560 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3561 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3562 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3563 DL, Tys, Ops, NarrowVT, MMO); 3564 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3565 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3566 3567 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3568 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3569 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3570 return SDValue(); 3571 } 3572 3573 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3574 // via a fullword ATOMIC_CMP_SWAPW operation. 3575 int64_t BitSize = NarrowVT.getSizeInBits(); 3576 EVT PtrVT = Addr.getValueType(); 3577 3578 // Get the address of the containing word. 3579 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3580 DAG.getConstant(-4, DL, PtrVT)); 3581 3582 // Get the number of bits that the word must be rotated left in order 3583 // to bring the field to the top bits of a GR32. 3584 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3585 DAG.getConstant(3, DL, PtrVT)); 3586 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3587 3588 // Get the complementing shift amount, for rotating a field in the top 3589 // bits back to its proper position. 3590 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3591 DAG.getConstant(0, DL, WideVT), BitShift); 3592 3593 // Construct the ATOMIC_CMP_SWAPW node. 3594 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3595 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3596 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3597 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3598 VTList, Ops, NarrowVT, MMO); 3599 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3600 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 3601 3602 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3603 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3604 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3605 return SDValue(); 3606 } 3607 3608 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3609 SelectionDAG &DAG) const { 3610 MachineFunction &MF = DAG.getMachineFunction(); 3611 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3612 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3613 SystemZ::R15D, Op.getValueType()); 3614 } 3615 3616 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3617 SelectionDAG &DAG) const { 3618 MachineFunction &MF = DAG.getMachineFunction(); 3619 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3620 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3621 3622 SDValue Chain = Op.getOperand(0); 3623 SDValue NewSP = Op.getOperand(1); 3624 SDValue Backchain; 3625 SDLoc DL(Op); 3626 3627 if (StoreBackchain) { 3628 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3629 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3630 } 3631 3632 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3633 3634 if (StoreBackchain) 3635 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3636 3637 return Chain; 3638 } 3639 3640 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3641 SelectionDAG &DAG) const { 3642 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3643 if (!IsData) 3644 // Just preserve the chain. 3645 return Op.getOperand(0); 3646 3647 SDLoc DL(Op); 3648 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3649 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3650 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3651 SDValue Ops[] = { 3652 Op.getOperand(0), 3653 DAG.getConstant(Code, DL, MVT::i32), 3654 Op.getOperand(1) 3655 }; 3656 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3657 Node->getVTList(), Ops, 3658 Node->getMemoryVT(), Node->getMemOperand()); 3659 } 3660 3661 // Convert condition code in CCReg to an i32 value. 3662 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 3663 SDLoc DL(CCReg); 3664 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 3665 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3666 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3667 } 3668 3669 SDValue 3670 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3671 SelectionDAG &DAG) const { 3672 unsigned Opcode, CCValid; 3673 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3674 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3675 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 3676 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 3677 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3678 return SDValue(); 3679 } 3680 3681 return SDValue(); 3682 } 3683 3684 SDValue 3685 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3686 SelectionDAG &DAG) const { 3687 unsigned Opcode, CCValid; 3688 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3689 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 3690 if (Op->getNumValues() == 1) 3691 return getCCResult(DAG, SDValue(Node, 0)); 3692 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3693 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 3694 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 3695 } 3696 3697 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3698 switch (Id) { 3699 case Intrinsic::thread_pointer: 3700 return lowerThreadPointer(SDLoc(Op), DAG); 3701 3702 case Intrinsic::s390_vpdi: 3703 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3704 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3705 3706 case Intrinsic::s390_vperm: 3707 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3708 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3709 3710 case Intrinsic::s390_vuphb: 3711 case Intrinsic::s390_vuphh: 3712 case Intrinsic::s390_vuphf: 3713 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3714 Op.getOperand(1)); 3715 3716 case Intrinsic::s390_vuplhb: 3717 case Intrinsic::s390_vuplhh: 3718 case Intrinsic::s390_vuplhf: 3719 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3720 Op.getOperand(1)); 3721 3722 case Intrinsic::s390_vuplb: 3723 case Intrinsic::s390_vuplhw: 3724 case Intrinsic::s390_vuplf: 3725 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3726 Op.getOperand(1)); 3727 3728 case Intrinsic::s390_vupllb: 3729 case Intrinsic::s390_vupllh: 3730 case Intrinsic::s390_vupllf: 3731 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3732 Op.getOperand(1)); 3733 3734 case Intrinsic::s390_vsumb: 3735 case Intrinsic::s390_vsumh: 3736 case Intrinsic::s390_vsumgh: 3737 case Intrinsic::s390_vsumgf: 3738 case Intrinsic::s390_vsumqf: 3739 case Intrinsic::s390_vsumqg: 3740 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3741 Op.getOperand(1), Op.getOperand(2)); 3742 } 3743 3744 return SDValue(); 3745 } 3746 3747 namespace { 3748 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3749 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3750 // Operand is the constant third operand, otherwise it is the number of 3751 // bytes in each element of the result. 3752 struct Permute { 3753 unsigned Opcode; 3754 unsigned Operand; 3755 unsigned char Bytes[SystemZ::VectorBytes]; 3756 }; 3757 } 3758 3759 static const Permute PermuteForms[] = { 3760 // VMRHG 3761 { SystemZISD::MERGE_HIGH, 8, 3762 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3763 // VMRHF 3764 { SystemZISD::MERGE_HIGH, 4, 3765 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3766 // VMRHH 3767 { SystemZISD::MERGE_HIGH, 2, 3768 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3769 // VMRHB 3770 { SystemZISD::MERGE_HIGH, 1, 3771 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3772 // VMRLG 3773 { SystemZISD::MERGE_LOW, 8, 3774 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3775 // VMRLF 3776 { SystemZISD::MERGE_LOW, 4, 3777 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3778 // VMRLH 3779 { SystemZISD::MERGE_LOW, 2, 3780 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3781 // VMRLB 3782 { SystemZISD::MERGE_LOW, 1, 3783 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3784 // VPKG 3785 { SystemZISD::PACK, 4, 3786 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3787 // VPKF 3788 { SystemZISD::PACK, 2, 3789 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3790 // VPKH 3791 { SystemZISD::PACK, 1, 3792 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3793 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3794 { SystemZISD::PERMUTE_DWORDS, 4, 3795 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3796 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3797 { SystemZISD::PERMUTE_DWORDS, 1, 3798 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3799 }; 3800 3801 // Called after matching a vector shuffle against a particular pattern. 3802 // Both the original shuffle and the pattern have two vector operands. 3803 // OpNos[0] is the operand of the original shuffle that should be used for 3804 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3805 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3806 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3807 // for operands 0 and 1 of the pattern. 3808 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3809 if (OpNos[0] < 0) { 3810 if (OpNos[1] < 0) 3811 return false; 3812 OpNo0 = OpNo1 = OpNos[1]; 3813 } else if (OpNos[1] < 0) { 3814 OpNo0 = OpNo1 = OpNos[0]; 3815 } else { 3816 OpNo0 = OpNos[0]; 3817 OpNo1 = OpNos[1]; 3818 } 3819 return true; 3820 } 3821 3822 // Bytes is a VPERM-like permute vector, except that -1 is used for 3823 // undefined bytes. Return true if the VPERM can be implemented using P. 3824 // When returning true set OpNo0 to the VPERM operand that should be 3825 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3826 // 3827 // For example, if swapping the VPERM operands allows P to match, OpNo0 3828 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3829 // operand, but rewriting it to use two duplicated operands allows it to 3830 // match P, then OpNo0 and OpNo1 will be the same. 3831 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3832 unsigned &OpNo0, unsigned &OpNo1) { 3833 int OpNos[] = { -1, -1 }; 3834 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3835 int Elt = Bytes[I]; 3836 if (Elt >= 0) { 3837 // Make sure that the two permute vectors use the same suboperand 3838 // byte number. Only the operand numbers (the high bits) are 3839 // allowed to differ. 3840 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3841 return false; 3842 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3843 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3844 // Make sure that the operand mappings are consistent with previous 3845 // elements. 3846 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3847 return false; 3848 OpNos[ModelOpNo] = RealOpNo; 3849 } 3850 } 3851 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3852 } 3853 3854 // As above, but search for a matching permute. 3855 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3856 unsigned &OpNo0, unsigned &OpNo1) { 3857 for (auto &P : PermuteForms) 3858 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3859 return &P; 3860 return nullptr; 3861 } 3862 3863 // Bytes is a VPERM-like permute vector, except that -1 is used for 3864 // undefined bytes. This permute is an operand of an outer permute. 3865 // See whether redistributing the -1 bytes gives a shuffle that can be 3866 // implemented using P. If so, set Transform to a VPERM-like permute vector 3867 // that, when applied to the result of P, gives the original permute in Bytes. 3868 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3869 const Permute &P, 3870 SmallVectorImpl<int> &Transform) { 3871 unsigned To = 0; 3872 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3873 int Elt = Bytes[From]; 3874 if (Elt < 0) 3875 // Byte number From of the result is undefined. 3876 Transform[From] = -1; 3877 else { 3878 while (P.Bytes[To] != Elt) { 3879 To += 1; 3880 if (To == SystemZ::VectorBytes) 3881 return false; 3882 } 3883 Transform[From] = To; 3884 } 3885 } 3886 return true; 3887 } 3888 3889 // As above, but search for a matching permute. 3890 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3891 SmallVectorImpl<int> &Transform) { 3892 for (auto &P : PermuteForms) 3893 if (matchDoublePermute(Bytes, P, Transform)) 3894 return &P; 3895 return nullptr; 3896 } 3897 3898 // Convert the mask of the given shuffle op into a byte-level mask, 3899 // as if it had type vNi8. 3900 static bool getVPermMask(SDValue ShuffleOp, 3901 SmallVectorImpl<int> &Bytes) { 3902 EVT VT = ShuffleOp.getValueType(); 3903 unsigned NumElements = VT.getVectorNumElements(); 3904 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3905 3906 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 3907 Bytes.resize(NumElements * BytesPerElement, -1); 3908 for (unsigned I = 0; I < NumElements; ++I) { 3909 int Index = VSN->getMaskElt(I); 3910 if (Index >= 0) 3911 for (unsigned J = 0; J < BytesPerElement; ++J) 3912 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3913 } 3914 return true; 3915 } 3916 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 3917 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 3918 unsigned Index = ShuffleOp.getConstantOperandVal(1); 3919 Bytes.resize(NumElements * BytesPerElement, -1); 3920 for (unsigned I = 0; I < NumElements; ++I) 3921 for (unsigned J = 0; J < BytesPerElement; ++J) 3922 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3923 return true; 3924 } 3925 return false; 3926 } 3927 3928 // Bytes is a VPERM-like permute vector, except that -1 is used for 3929 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3930 // the result come from a contiguous sequence of bytes from one input. 3931 // Set Base to the selector for the first byte if so. 3932 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3933 unsigned BytesPerElement, int &Base) { 3934 Base = -1; 3935 for (unsigned I = 0; I < BytesPerElement; ++I) { 3936 if (Bytes[Start + I] >= 0) { 3937 unsigned Elem = Bytes[Start + I]; 3938 if (Base < 0) { 3939 Base = Elem - I; 3940 // Make sure the bytes would come from one input operand. 3941 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3942 return false; 3943 } else if (unsigned(Base) != Elem - I) 3944 return false; 3945 } 3946 } 3947 return true; 3948 } 3949 3950 // Bytes is a VPERM-like permute vector, except that -1 is used for 3951 // undefined bytes. Return true if it can be performed using VSLDI. 3952 // When returning true, set StartIndex to the shift amount and OpNo0 3953 // and OpNo1 to the VPERM operands that should be used as the first 3954 // and second shift operand respectively. 3955 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3956 unsigned &StartIndex, unsigned &OpNo0, 3957 unsigned &OpNo1) { 3958 int OpNos[] = { -1, -1 }; 3959 int Shift = -1; 3960 for (unsigned I = 0; I < 16; ++I) { 3961 int Index = Bytes[I]; 3962 if (Index >= 0) { 3963 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3964 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3965 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3966 if (Shift < 0) 3967 Shift = ExpectedShift; 3968 else if (Shift != ExpectedShift) 3969 return false; 3970 // Make sure that the operand mappings are consistent with previous 3971 // elements. 3972 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3973 return false; 3974 OpNos[ModelOpNo] = RealOpNo; 3975 } 3976 } 3977 StartIndex = Shift; 3978 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3979 } 3980 3981 // Create a node that performs P on operands Op0 and Op1, casting the 3982 // operands to the appropriate type. The type of the result is determined by P. 3983 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3984 const Permute &P, SDValue Op0, SDValue Op1) { 3985 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3986 // elements of a PACK are twice as wide as the outputs. 3987 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3988 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3989 P.Operand); 3990 // Cast both operands to the appropriate type. 3991 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3992 SystemZ::VectorBytes / InBytes); 3993 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3994 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3995 SDValue Op; 3996 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3997 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3998 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3999 } else if (P.Opcode == SystemZISD::PACK) { 4000 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4001 SystemZ::VectorBytes / P.Operand); 4002 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4003 } else { 4004 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4005 } 4006 return Op; 4007 } 4008 4009 // Bytes is a VPERM-like permute vector, except that -1 is used for 4010 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4011 // VSLDI or VPERM. 4012 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4013 SDValue *Ops, 4014 const SmallVectorImpl<int> &Bytes) { 4015 for (unsigned I = 0; I < 2; ++I) 4016 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4017 4018 // First see whether VSLDI can be used. 4019 unsigned StartIndex, OpNo0, OpNo1; 4020 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4021 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4022 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 4023 4024 // Fall back on VPERM. Construct an SDNode for the permute vector. 4025 SDValue IndexNodes[SystemZ::VectorBytes]; 4026 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4027 if (Bytes[I] >= 0) 4028 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4029 else 4030 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4031 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4032 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 4033 } 4034 4035 namespace { 4036 // Describes a general N-operand vector shuffle. 4037 struct GeneralShuffle { 4038 GeneralShuffle(EVT vt) : VT(vt) {} 4039 void addUndef(); 4040 bool add(SDValue, unsigned); 4041 SDValue getNode(SelectionDAG &, const SDLoc &); 4042 4043 // The operands of the shuffle. 4044 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4045 4046 // Index I is -1 if byte I of the result is undefined. Otherwise the 4047 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4048 // Bytes[I] / SystemZ::VectorBytes. 4049 SmallVector<int, SystemZ::VectorBytes> Bytes; 4050 4051 // The type of the shuffle result. 4052 EVT VT; 4053 }; 4054 } 4055 4056 // Add an extra undefined element to the shuffle. 4057 void GeneralShuffle::addUndef() { 4058 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4059 for (unsigned I = 0; I < BytesPerElement; ++I) 4060 Bytes.push_back(-1); 4061 } 4062 4063 // Add an extra element to the shuffle, taking it from element Elem of Op. 4064 // A null Op indicates a vector input whose value will be calculated later; 4065 // there is at most one such input per shuffle and it always has the same 4066 // type as the result. Aborts and returns false if the source vector elements 4067 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4068 // LLVM they become implicitly extended, but this is rare and not optimized. 4069 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4070 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4071 4072 // The source vector can have wider elements than the result, 4073 // either through an explicit TRUNCATE or because of type legalization. 4074 // We want the least significant part. 4075 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4076 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4077 4078 // Return false if the source elements are smaller than their destination 4079 // elements. 4080 if (FromBytesPerElement < BytesPerElement) 4081 return false; 4082 4083 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4084 (FromBytesPerElement - BytesPerElement)); 4085 4086 // Look through things like shuffles and bitcasts. 4087 while (Op.getNode()) { 4088 if (Op.getOpcode() == ISD::BITCAST) 4089 Op = Op.getOperand(0); 4090 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4091 // See whether the bytes we need come from a contiguous part of one 4092 // operand. 4093 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4094 if (!getVPermMask(Op, OpBytes)) 4095 break; 4096 int NewByte; 4097 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4098 break; 4099 if (NewByte < 0) { 4100 addUndef(); 4101 return true; 4102 } 4103 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4104 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4105 } else if (Op.isUndef()) { 4106 addUndef(); 4107 return true; 4108 } else 4109 break; 4110 } 4111 4112 // Make sure that the source of the extraction is in Ops. 4113 unsigned OpNo = 0; 4114 for (; OpNo < Ops.size(); ++OpNo) 4115 if (Ops[OpNo] == Op) 4116 break; 4117 if (OpNo == Ops.size()) 4118 Ops.push_back(Op); 4119 4120 // Add the element to Bytes. 4121 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4122 for (unsigned I = 0; I < BytesPerElement; ++I) 4123 Bytes.push_back(Base + I); 4124 4125 return true; 4126 } 4127 4128 // Return SDNodes for the completed shuffle. 4129 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4130 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4131 4132 if (Ops.size() == 0) 4133 return DAG.getUNDEF(VT); 4134 4135 // Make sure that there are at least two shuffle operands. 4136 if (Ops.size() == 1) 4137 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4138 4139 // Create a tree of shuffles, deferring root node until after the loop. 4140 // Try to redistribute the undefined elements of non-root nodes so that 4141 // the non-root shuffles match something like a pack or merge, then adjust 4142 // the parent node's permute vector to compensate for the new order. 4143 // Among other things, this copes with vectors like <2 x i16> that were 4144 // padded with undefined elements during type legalization. 4145 // 4146 // In the best case this redistribution will lead to the whole tree 4147 // using packs and merges. It should rarely be a loss in other cases. 4148 unsigned Stride = 1; 4149 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4150 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4151 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4152 4153 // Create a mask for just these two operands. 4154 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4155 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4156 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4157 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4158 if (OpNo == I) 4159 NewBytes[J] = Byte; 4160 else if (OpNo == I + Stride) 4161 NewBytes[J] = SystemZ::VectorBytes + Byte; 4162 else 4163 NewBytes[J] = -1; 4164 } 4165 // See if it would be better to reorganize NewMask to avoid using VPERM. 4166 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4167 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4168 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4169 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4170 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4171 if (NewBytes[J] >= 0) { 4172 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4173 "Invalid double permute"); 4174 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4175 } else 4176 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4177 } 4178 } else { 4179 // Just use NewBytes on the operands. 4180 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4181 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4182 if (NewBytes[J] >= 0) 4183 Bytes[J] = I * SystemZ::VectorBytes + J; 4184 } 4185 } 4186 } 4187 4188 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4189 if (Stride > 1) { 4190 Ops[1] = Ops[Stride]; 4191 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4192 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4193 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4194 } 4195 4196 // Look for an instruction that can do the permute without resorting 4197 // to VPERM. 4198 unsigned OpNo0, OpNo1; 4199 SDValue Op; 4200 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4201 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4202 else 4203 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4204 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4205 } 4206 4207 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4208 static bool isScalarToVector(SDValue Op) { 4209 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4210 if (!Op.getOperand(I).isUndef()) 4211 return false; 4212 return true; 4213 } 4214 4215 // Return a vector of type VT that contains Value in the first element. 4216 // The other elements don't matter. 4217 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4218 SDValue Value) { 4219 // If we have a constant, replicate it to all elements and let the 4220 // BUILD_VECTOR lowering take care of it. 4221 if (Value.getOpcode() == ISD::Constant || 4222 Value.getOpcode() == ISD::ConstantFP) { 4223 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4224 return DAG.getBuildVector(VT, DL, Ops); 4225 } 4226 if (Value.isUndef()) 4227 return DAG.getUNDEF(VT); 4228 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4229 } 4230 4231 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4232 // element 1. Used for cases in which replication is cheap. 4233 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4234 SDValue Op0, SDValue Op1) { 4235 if (Op0.isUndef()) { 4236 if (Op1.isUndef()) 4237 return DAG.getUNDEF(VT); 4238 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4239 } 4240 if (Op1.isUndef()) 4241 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4242 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4243 buildScalarToVector(DAG, DL, VT, Op0), 4244 buildScalarToVector(DAG, DL, VT, Op1)); 4245 } 4246 4247 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4248 // vector for them. 4249 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4250 SDValue Op1) { 4251 if (Op0.isUndef() && Op1.isUndef()) 4252 return DAG.getUNDEF(MVT::v2i64); 4253 // If one of the two inputs is undefined then replicate the other one, 4254 // in order to avoid using another register unnecessarily. 4255 if (Op0.isUndef()) 4256 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4257 else if (Op1.isUndef()) 4258 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4259 else { 4260 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4261 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4262 } 4263 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4264 } 4265 4266 // Try to represent constant BUILD_VECTOR node BVN using a 4267 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 4268 // on success. 4269 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 4270 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 4271 unsigned BytesPerElement = ElemVT.getStoreSize(); 4272 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 4273 SDValue Op = BVN->getOperand(I); 4274 if (!Op.isUndef()) { 4275 uint64_t Value; 4276 if (Op.getOpcode() == ISD::Constant) 4277 Value = cast<ConstantSDNode>(Op)->getZExtValue(); 4278 else if (Op.getOpcode() == ISD::ConstantFP) 4279 Value = (cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 4280 .getZExtValue()); 4281 else 4282 return false; 4283 for (unsigned J = 0; J < BytesPerElement; ++J) { 4284 uint64_t Byte = (Value >> (J * 8)) & 0xff; 4285 if (Byte == 0xff) 4286 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 4287 else if (Byte != 0) 4288 return false; 4289 } 4290 } 4291 } 4292 return true; 4293 } 4294 4295 // Try to load a vector constant in which BitsPerElement-bit value Value 4296 // is replicated to fill the vector. VT is the type of the resulting 4297 // constant, which may have elements of a different size from BitsPerElement. 4298 // Return the SDValue of the constant on success, otherwise return 4299 // an empty value. 4300 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 4301 const SystemZInstrInfo *TII, 4302 const SDLoc &DL, EVT VT, uint64_t Value, 4303 unsigned BitsPerElement) { 4304 // Signed 16-bit values can be replicated using VREPI. 4305 // Mark the constants as opaque or DAGCombiner will convert back to 4306 // BUILD_VECTOR. 4307 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 4308 if (isInt<16>(SignedValue)) { 4309 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4310 SystemZ::VectorBits / BitsPerElement); 4311 SDValue Op = DAG.getNode( 4312 SystemZISD::REPLICATE, DL, VecVT, 4313 DAG.getConstant(SignedValue, DL, MVT::i32, false, true /*isOpaque*/)); 4314 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4315 } 4316 // See whether rotating the constant left some N places gives a value that 4317 // is one less than a power of 2 (i.e. all zeros followed by all ones). 4318 // If so we can use VGM. 4319 unsigned Start, End; 4320 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 4321 // isRxSBGMask returns the bit numbers for a full 64-bit value, 4322 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 4323 // bit numbers for an BitsPerElement value, so that 0 denotes 4324 // 1 << (BitsPerElement-1). 4325 Start -= 64 - BitsPerElement; 4326 End -= 64 - BitsPerElement; 4327 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4328 SystemZ::VectorBits / BitsPerElement); 4329 SDValue Op = DAG.getNode( 4330 SystemZISD::ROTATE_MASK, DL, VecVT, 4331 DAG.getConstant(Start, DL, MVT::i32, false, true /*isOpaque*/), 4332 DAG.getConstant(End, DL, MVT::i32, false, true /*isOpaque*/)); 4333 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4334 } 4335 return SDValue(); 4336 } 4337 4338 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4339 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4340 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4341 // would benefit from this representation and return it if so. 4342 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4343 BuildVectorSDNode *BVN) { 4344 EVT VT = BVN->getValueType(0); 4345 unsigned NumElements = VT.getVectorNumElements(); 4346 4347 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4348 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4349 // need a BUILD_VECTOR, add an additional placeholder operand for that 4350 // BUILD_VECTOR and store its operands in ResidueOps. 4351 GeneralShuffle GS(VT); 4352 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4353 bool FoundOne = false; 4354 for (unsigned I = 0; I < NumElements; ++I) { 4355 SDValue Op = BVN->getOperand(I); 4356 if (Op.getOpcode() == ISD::TRUNCATE) 4357 Op = Op.getOperand(0); 4358 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4359 Op.getOperand(1).getOpcode() == ISD::Constant) { 4360 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4361 if (!GS.add(Op.getOperand(0), Elem)) 4362 return SDValue(); 4363 FoundOne = true; 4364 } else if (Op.isUndef()) { 4365 GS.addUndef(); 4366 } else { 4367 if (!GS.add(SDValue(), ResidueOps.size())) 4368 return SDValue(); 4369 ResidueOps.push_back(BVN->getOperand(I)); 4370 } 4371 } 4372 4373 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4374 if (!FoundOne) 4375 return SDValue(); 4376 4377 // Create the BUILD_VECTOR for the remaining elements, if any. 4378 if (!ResidueOps.empty()) { 4379 while (ResidueOps.size() < NumElements) 4380 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4381 for (auto &Op : GS.Ops) { 4382 if (!Op.getNode()) { 4383 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4384 break; 4385 } 4386 } 4387 } 4388 return GS.getNode(DAG, SDLoc(BVN)); 4389 } 4390 4391 // Combine GPR scalar values Elems into a vector of type VT. 4392 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4393 SmallVectorImpl<SDValue> &Elems) { 4394 // See whether there is a single replicated value. 4395 SDValue Single; 4396 unsigned int NumElements = Elems.size(); 4397 unsigned int Count = 0; 4398 for (auto Elem : Elems) { 4399 if (!Elem.isUndef()) { 4400 if (!Single.getNode()) 4401 Single = Elem; 4402 else if (Elem != Single) { 4403 Single = SDValue(); 4404 break; 4405 } 4406 Count += 1; 4407 } 4408 } 4409 // There are three cases here: 4410 // 4411 // - if the only defined element is a loaded one, the best sequence 4412 // is a replicating load. 4413 // 4414 // - otherwise, if the only defined element is an i64 value, we will 4415 // end up with the same VLVGP sequence regardless of whether we short-cut 4416 // for replication or fall through to the later code. 4417 // 4418 // - otherwise, if the only defined element is an i32 or smaller value, 4419 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4420 // This is only a win if the single defined element is used more than once. 4421 // In other cases we're better off using a single VLVGx. 4422 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4423 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4424 4425 // If all elements are loads, use VLREP/VLEs (below). 4426 bool AllLoads = true; 4427 for (auto Elem : Elems) 4428 if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) { 4429 AllLoads = false; 4430 break; 4431 } 4432 4433 // The best way of building a v2i64 from two i64s is to use VLVGP. 4434 if (VT == MVT::v2i64 && !AllLoads) 4435 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4436 4437 // Use a 64-bit merge high to combine two doubles. 4438 if (VT == MVT::v2f64 && !AllLoads) 4439 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4440 4441 // Build v4f32 values directly from the FPRs: 4442 // 4443 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4444 // V V VMRHF 4445 // <ABxx> <CDxx> 4446 // V VMRHG 4447 // <ABCD> 4448 if (VT == MVT::v4f32 && !AllLoads) { 4449 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4450 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4451 // Avoid unnecessary undefs by reusing the other operand. 4452 if (Op01.isUndef()) 4453 Op01 = Op23; 4454 else if (Op23.isUndef()) 4455 Op23 = Op01; 4456 // Merging identical replications is a no-op. 4457 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4458 return Op01; 4459 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4460 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4461 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4462 DL, MVT::v2i64, Op01, Op23); 4463 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4464 } 4465 4466 // Collect the constant terms. 4467 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4468 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4469 4470 unsigned NumConstants = 0; 4471 for (unsigned I = 0; I < NumElements; ++I) { 4472 SDValue Elem = Elems[I]; 4473 if (Elem.getOpcode() == ISD::Constant || 4474 Elem.getOpcode() == ISD::ConstantFP) { 4475 NumConstants += 1; 4476 Constants[I] = Elem; 4477 Done[I] = true; 4478 } 4479 } 4480 // If there was at least one constant, fill in the other elements of 4481 // Constants with undefs to get a full vector constant and use that 4482 // as the starting point. 4483 SDValue Result; 4484 SDValue ReplicatedVal; 4485 if (NumConstants > 0) { 4486 for (unsigned I = 0; I < NumElements; ++I) 4487 if (!Constants[I].getNode()) 4488 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4489 Result = DAG.getBuildVector(VT, DL, Constants); 4490 } else { 4491 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4492 // avoid a false dependency on any previous contents of the vector 4493 // register. 4494 4495 // Use a VLREP if at least one element is a load. Make sure to replicate 4496 // the load with the most elements having its value. 4497 std::map<const SDNode*, unsigned> UseCounts; 4498 SDNode *LoadMaxUses = nullptr; 4499 for (unsigned I = 0; I < NumElements; ++I) 4500 if (Elems[I].getOpcode() == ISD::LOAD && 4501 cast<LoadSDNode>(Elems[I])->isUnindexed()) { 4502 SDNode *Ld = Elems[I].getNode(); 4503 UseCounts[Ld]++; 4504 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 4505 LoadMaxUses = Ld; 4506 } 4507 if (LoadMaxUses != nullptr) { 4508 ReplicatedVal = SDValue(LoadMaxUses, 0); 4509 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 4510 } else { 4511 // Try to use VLVGP. 4512 unsigned I1 = NumElements / 2 - 1; 4513 unsigned I2 = NumElements - 1; 4514 bool Def1 = !Elems[I1].isUndef(); 4515 bool Def2 = !Elems[I2].isUndef(); 4516 if (Def1 || Def2) { 4517 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4518 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4519 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4520 joinDwords(DAG, DL, Elem1, Elem2)); 4521 Done[I1] = true; 4522 Done[I2] = true; 4523 } else 4524 Result = DAG.getUNDEF(VT); 4525 } 4526 } 4527 4528 // Use VLVGx to insert the other elements. 4529 for (unsigned I = 0; I < NumElements; ++I) 4530 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 4531 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4532 DAG.getConstant(I, DL, MVT::i32)); 4533 return Result; 4534 } 4535 4536 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4537 SelectionDAG &DAG) const { 4538 const SystemZInstrInfo *TII = 4539 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4540 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4541 SDLoc DL(Op); 4542 EVT VT = Op.getValueType(); 4543 4544 if (BVN->isConstant()) { 4545 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4546 // preferred way of creating all-zero and all-one vectors so give it 4547 // priority over other methods below. 4548 uint64_t Mask = 0; 4549 if (tryBuildVectorByteMask(BVN, Mask)) { 4550 SDValue Op = DAG.getNode( 4551 SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4552 DAG.getConstant(Mask, DL, MVT::i32, false, true /*isOpaque*/)); 4553 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4554 } 4555 4556 // Try using some form of replication. 4557 APInt SplatBits, SplatUndef; 4558 unsigned SplatBitSize; 4559 bool HasAnyUndefs; 4560 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4561 8, true) && 4562 SplatBitSize <= 64) { 4563 // First try assuming that any undefined bits above the highest set bit 4564 // and below the lowest set bit are 1s. This increases the likelihood of 4565 // being able to use a sign-extended element value in VECTOR REPLICATE 4566 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4567 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4568 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4569 uint64_t Lower = (SplatUndefZ 4570 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4571 uint64_t Upper = (SplatUndefZ 4572 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4573 uint64_t Value = SplatBitsZ | Upper | Lower; 4574 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4575 SplatBitSize); 4576 if (Op.getNode()) 4577 return Op; 4578 4579 // Now try assuming that any undefined bits between the first and 4580 // last defined set bits are set. This increases the chances of 4581 // using a non-wraparound mask. 4582 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4583 Value = SplatBitsZ | Middle; 4584 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4585 if (Op.getNode()) 4586 return Op; 4587 } 4588 4589 // Fall back to loading it from memory. 4590 return SDValue(); 4591 } 4592 4593 // See if we should use shuffles to construct the vector from other vectors. 4594 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4595 return Res; 4596 4597 // Detect SCALAR_TO_VECTOR conversions. 4598 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4599 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4600 4601 // Otherwise use buildVector to build the vector up from GPRs. 4602 unsigned NumElements = Op.getNumOperands(); 4603 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4604 for (unsigned I = 0; I < NumElements; ++I) 4605 Ops[I] = Op.getOperand(I); 4606 return buildVector(DAG, DL, VT, Ops); 4607 } 4608 4609 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4610 SelectionDAG &DAG) const { 4611 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4612 SDLoc DL(Op); 4613 EVT VT = Op.getValueType(); 4614 unsigned NumElements = VT.getVectorNumElements(); 4615 4616 if (VSN->isSplat()) { 4617 SDValue Op0 = Op.getOperand(0); 4618 unsigned Index = VSN->getSplatIndex(); 4619 assert(Index < VT.getVectorNumElements() && 4620 "Splat index should be defined and in first operand"); 4621 // See whether the value we're splatting is directly available as a scalar. 4622 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4623 Op0.getOpcode() == ISD::BUILD_VECTOR) 4624 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4625 // Otherwise keep it as a vector-to-vector operation. 4626 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4627 DAG.getConstant(Index, DL, MVT::i32)); 4628 } 4629 4630 GeneralShuffle GS(VT); 4631 for (unsigned I = 0; I < NumElements; ++I) { 4632 int Elt = VSN->getMaskElt(I); 4633 if (Elt < 0) 4634 GS.addUndef(); 4635 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4636 unsigned(Elt) % NumElements)) 4637 return SDValue(); 4638 } 4639 return GS.getNode(DAG, SDLoc(VSN)); 4640 } 4641 4642 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4643 SelectionDAG &DAG) const { 4644 SDLoc DL(Op); 4645 // Just insert the scalar into element 0 of an undefined vector. 4646 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4647 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4648 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4649 } 4650 4651 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4652 SelectionDAG &DAG) const { 4653 // Handle insertions of floating-point values. 4654 SDLoc DL(Op); 4655 SDValue Op0 = Op.getOperand(0); 4656 SDValue Op1 = Op.getOperand(1); 4657 SDValue Op2 = Op.getOperand(2); 4658 EVT VT = Op.getValueType(); 4659 4660 // Insertions into constant indices of a v2f64 can be done using VPDI. 4661 // However, if the inserted value is a bitcast or a constant then it's 4662 // better to use GPRs, as below. 4663 if (VT == MVT::v2f64 && 4664 Op1.getOpcode() != ISD::BITCAST && 4665 Op1.getOpcode() != ISD::ConstantFP && 4666 Op2.getOpcode() == ISD::Constant) { 4667 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 4668 unsigned Mask = VT.getVectorNumElements() - 1; 4669 if (Index <= Mask) 4670 return Op; 4671 } 4672 4673 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4674 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4675 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4676 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4677 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4678 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4679 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4680 } 4681 4682 SDValue 4683 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4684 SelectionDAG &DAG) const { 4685 // Handle extractions of floating-point values. 4686 SDLoc DL(Op); 4687 SDValue Op0 = Op.getOperand(0); 4688 SDValue Op1 = Op.getOperand(1); 4689 EVT VT = Op.getValueType(); 4690 EVT VecVT = Op0.getValueType(); 4691 4692 // Extractions of constant indices can be done directly. 4693 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4694 uint64_t Index = CIndexN->getZExtValue(); 4695 unsigned Mask = VecVT.getVectorNumElements() - 1; 4696 if (Index <= Mask) 4697 return Op; 4698 } 4699 4700 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4701 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4702 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4703 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4704 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4705 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4706 } 4707 4708 SDValue 4709 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4710 unsigned UnpackHigh) const { 4711 SDValue PackedOp = Op.getOperand(0); 4712 EVT OutVT = Op.getValueType(); 4713 EVT InVT = PackedOp.getValueType(); 4714 unsigned ToBits = OutVT.getScalarSizeInBits(); 4715 unsigned FromBits = InVT.getScalarSizeInBits(); 4716 do { 4717 FromBits *= 2; 4718 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4719 SystemZ::VectorBits / FromBits); 4720 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4721 } while (FromBits != ToBits); 4722 return PackedOp; 4723 } 4724 4725 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4726 unsigned ByScalar) const { 4727 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4728 SDValue Op0 = Op.getOperand(0); 4729 SDValue Op1 = Op.getOperand(1); 4730 SDLoc DL(Op); 4731 EVT VT = Op.getValueType(); 4732 unsigned ElemBitSize = VT.getScalarSizeInBits(); 4733 4734 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4735 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4736 APInt SplatBits, SplatUndef; 4737 unsigned SplatBitSize; 4738 bool HasAnyUndefs; 4739 // Check for constant splats. Use ElemBitSize as the minimum element 4740 // width and reject splats that need wider elements. 4741 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4742 ElemBitSize, true) && 4743 SplatBitSize == ElemBitSize) { 4744 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4745 DL, MVT::i32); 4746 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4747 } 4748 // Check for variable splats. 4749 BitVector UndefElements; 4750 SDValue Splat = BVN->getSplatValue(&UndefElements); 4751 if (Splat) { 4752 // Since i32 is the smallest legal type, we either need a no-op 4753 // or a truncation. 4754 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4755 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4756 } 4757 } 4758 4759 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4760 // and the shift amount is directly available in a GPR. 4761 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4762 if (VSN->isSplat()) { 4763 SDValue VSNOp0 = VSN->getOperand(0); 4764 unsigned Index = VSN->getSplatIndex(); 4765 assert(Index < VT.getVectorNumElements() && 4766 "Splat index should be defined and in first operand"); 4767 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4768 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4769 // Since i32 is the smallest legal type, we either need a no-op 4770 // or a truncation. 4771 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4772 VSNOp0.getOperand(Index)); 4773 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4774 } 4775 } 4776 } 4777 4778 // Otherwise just treat the current form as legal. 4779 return Op; 4780 } 4781 4782 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4783 SelectionDAG &DAG) const { 4784 switch (Op.getOpcode()) { 4785 case ISD::FRAMEADDR: 4786 return lowerFRAMEADDR(Op, DAG); 4787 case ISD::RETURNADDR: 4788 return lowerRETURNADDR(Op, DAG); 4789 case ISD::BR_CC: 4790 return lowerBR_CC(Op, DAG); 4791 case ISD::SELECT_CC: 4792 return lowerSELECT_CC(Op, DAG); 4793 case ISD::SETCC: 4794 return lowerSETCC(Op, DAG); 4795 case ISD::GlobalAddress: 4796 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4797 case ISD::GlobalTLSAddress: 4798 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4799 case ISD::BlockAddress: 4800 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4801 case ISD::JumpTable: 4802 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4803 case ISD::ConstantPool: 4804 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4805 case ISD::BITCAST: 4806 return lowerBITCAST(Op, DAG); 4807 case ISD::VASTART: 4808 return lowerVASTART(Op, DAG); 4809 case ISD::VACOPY: 4810 return lowerVACOPY(Op, DAG); 4811 case ISD::DYNAMIC_STACKALLOC: 4812 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4813 case ISD::GET_DYNAMIC_AREA_OFFSET: 4814 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4815 case ISD::SMUL_LOHI: 4816 return lowerSMUL_LOHI(Op, DAG); 4817 case ISD::UMUL_LOHI: 4818 return lowerUMUL_LOHI(Op, DAG); 4819 case ISD::SDIVREM: 4820 return lowerSDIVREM(Op, DAG); 4821 case ISD::UDIVREM: 4822 return lowerUDIVREM(Op, DAG); 4823 case ISD::SADDO: 4824 case ISD::SSUBO: 4825 case ISD::UADDO: 4826 case ISD::USUBO: 4827 return lowerXALUO(Op, DAG); 4828 case ISD::ADDCARRY: 4829 case ISD::SUBCARRY: 4830 return lowerADDSUBCARRY(Op, DAG); 4831 case ISD::OR: 4832 return lowerOR(Op, DAG); 4833 case ISD::CTPOP: 4834 return lowerCTPOP(Op, DAG); 4835 case ISD::ATOMIC_FENCE: 4836 return lowerATOMIC_FENCE(Op, DAG); 4837 case ISD::ATOMIC_SWAP: 4838 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4839 case ISD::ATOMIC_STORE: 4840 return lowerATOMIC_STORE(Op, DAG); 4841 case ISD::ATOMIC_LOAD: 4842 return lowerATOMIC_LOAD(Op, DAG); 4843 case ISD::ATOMIC_LOAD_ADD: 4844 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4845 case ISD::ATOMIC_LOAD_SUB: 4846 return lowerATOMIC_LOAD_SUB(Op, DAG); 4847 case ISD::ATOMIC_LOAD_AND: 4848 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4849 case ISD::ATOMIC_LOAD_OR: 4850 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4851 case ISD::ATOMIC_LOAD_XOR: 4852 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4853 case ISD::ATOMIC_LOAD_NAND: 4854 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4855 case ISD::ATOMIC_LOAD_MIN: 4856 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4857 case ISD::ATOMIC_LOAD_MAX: 4858 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4859 case ISD::ATOMIC_LOAD_UMIN: 4860 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4861 case ISD::ATOMIC_LOAD_UMAX: 4862 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4863 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4864 return lowerATOMIC_CMP_SWAP(Op, DAG); 4865 case ISD::STACKSAVE: 4866 return lowerSTACKSAVE(Op, DAG); 4867 case ISD::STACKRESTORE: 4868 return lowerSTACKRESTORE(Op, DAG); 4869 case ISD::PREFETCH: 4870 return lowerPREFETCH(Op, DAG); 4871 case ISD::INTRINSIC_W_CHAIN: 4872 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4873 case ISD::INTRINSIC_WO_CHAIN: 4874 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4875 case ISD::BUILD_VECTOR: 4876 return lowerBUILD_VECTOR(Op, DAG); 4877 case ISD::VECTOR_SHUFFLE: 4878 return lowerVECTOR_SHUFFLE(Op, DAG); 4879 case ISD::SCALAR_TO_VECTOR: 4880 return lowerSCALAR_TO_VECTOR(Op, DAG); 4881 case ISD::INSERT_VECTOR_ELT: 4882 return lowerINSERT_VECTOR_ELT(Op, DAG); 4883 case ISD::EXTRACT_VECTOR_ELT: 4884 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4885 case ISD::SIGN_EXTEND_VECTOR_INREG: 4886 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4887 case ISD::ZERO_EXTEND_VECTOR_INREG: 4888 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4889 case ISD::SHL: 4890 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4891 case ISD::SRL: 4892 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4893 case ISD::SRA: 4894 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4895 default: 4896 llvm_unreachable("Unexpected node to lower"); 4897 } 4898 } 4899 4900 // Lower operations with invalid operand or result types (currently used 4901 // only for 128-bit integer types). 4902 4903 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 4904 SDLoc DL(In); 4905 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 4906 DAG.getIntPtrConstant(0, DL)); 4907 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 4908 DAG.getIntPtrConstant(1, DL)); 4909 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 4910 MVT::Untyped, Hi, Lo); 4911 return SDValue(Pair, 0); 4912 } 4913 4914 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 4915 SDLoc DL(In); 4916 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 4917 DL, MVT::i64, In); 4918 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 4919 DL, MVT::i64, In); 4920 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 4921 } 4922 4923 void 4924 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 4925 SmallVectorImpl<SDValue> &Results, 4926 SelectionDAG &DAG) const { 4927 switch (N->getOpcode()) { 4928 case ISD::ATOMIC_LOAD: { 4929 SDLoc DL(N); 4930 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 4931 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 4932 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4933 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 4934 DL, Tys, Ops, MVT::i128, MMO); 4935 Results.push_back(lowerGR128ToI128(DAG, Res)); 4936 Results.push_back(Res.getValue(1)); 4937 break; 4938 } 4939 case ISD::ATOMIC_STORE: { 4940 SDLoc DL(N); 4941 SDVTList Tys = DAG.getVTList(MVT::Other); 4942 SDValue Ops[] = { N->getOperand(0), 4943 lowerI128ToGR128(DAG, N->getOperand(2)), 4944 N->getOperand(1) }; 4945 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4946 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 4947 DL, Tys, Ops, MVT::i128, MMO); 4948 // We have to enforce sequential consistency by performing a 4949 // serialization operation after the store. 4950 if (cast<AtomicSDNode>(N)->getOrdering() == 4951 AtomicOrdering::SequentiallyConsistent) 4952 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 4953 MVT::Other, Res), 0); 4954 Results.push_back(Res); 4955 break; 4956 } 4957 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 4958 SDLoc DL(N); 4959 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 4960 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 4961 lowerI128ToGR128(DAG, N->getOperand(2)), 4962 lowerI128ToGR128(DAG, N->getOperand(3)) }; 4963 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4964 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 4965 DL, Tys, Ops, MVT::i128, MMO); 4966 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 4967 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4968 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 4969 Results.push_back(lowerGR128ToI128(DAG, Res)); 4970 Results.push_back(Success); 4971 Results.push_back(Res.getValue(2)); 4972 break; 4973 } 4974 default: 4975 llvm_unreachable("Unexpected node to lower"); 4976 } 4977 } 4978 4979 void 4980 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 4981 SmallVectorImpl<SDValue> &Results, 4982 SelectionDAG &DAG) const { 4983 return LowerOperationWrapper(N, Results, DAG); 4984 } 4985 4986 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4987 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4988 switch ((SystemZISD::NodeType)Opcode) { 4989 case SystemZISD::FIRST_NUMBER: break; 4990 OPCODE(RET_FLAG); 4991 OPCODE(CALL); 4992 OPCODE(SIBCALL); 4993 OPCODE(TLS_GDCALL); 4994 OPCODE(TLS_LDCALL); 4995 OPCODE(PCREL_WRAPPER); 4996 OPCODE(PCREL_OFFSET); 4997 OPCODE(IABS); 4998 OPCODE(ICMP); 4999 OPCODE(FCMP); 5000 OPCODE(TM); 5001 OPCODE(BR_CCMASK); 5002 OPCODE(SELECT_CCMASK); 5003 OPCODE(ADJDYNALLOC); 5004 OPCODE(POPCNT); 5005 OPCODE(SMUL_LOHI); 5006 OPCODE(UMUL_LOHI); 5007 OPCODE(SDIVREM); 5008 OPCODE(UDIVREM); 5009 OPCODE(SADDO); 5010 OPCODE(SSUBO); 5011 OPCODE(UADDO); 5012 OPCODE(USUBO); 5013 OPCODE(ADDCARRY); 5014 OPCODE(SUBCARRY); 5015 OPCODE(GET_CCMASK); 5016 OPCODE(MVC); 5017 OPCODE(MVC_LOOP); 5018 OPCODE(NC); 5019 OPCODE(NC_LOOP); 5020 OPCODE(OC); 5021 OPCODE(OC_LOOP); 5022 OPCODE(XC); 5023 OPCODE(XC_LOOP); 5024 OPCODE(CLC); 5025 OPCODE(CLC_LOOP); 5026 OPCODE(STPCPY); 5027 OPCODE(STRCMP); 5028 OPCODE(SEARCH_STRING); 5029 OPCODE(IPM); 5030 OPCODE(MEMBARRIER); 5031 OPCODE(TBEGIN); 5032 OPCODE(TBEGIN_NOFLOAT); 5033 OPCODE(TEND); 5034 OPCODE(BYTE_MASK); 5035 OPCODE(ROTATE_MASK); 5036 OPCODE(REPLICATE); 5037 OPCODE(JOIN_DWORDS); 5038 OPCODE(SPLAT); 5039 OPCODE(MERGE_HIGH); 5040 OPCODE(MERGE_LOW); 5041 OPCODE(SHL_DOUBLE); 5042 OPCODE(PERMUTE_DWORDS); 5043 OPCODE(PERMUTE); 5044 OPCODE(PACK); 5045 OPCODE(PACKS_CC); 5046 OPCODE(PACKLS_CC); 5047 OPCODE(UNPACK_HIGH); 5048 OPCODE(UNPACKL_HIGH); 5049 OPCODE(UNPACK_LOW); 5050 OPCODE(UNPACKL_LOW); 5051 OPCODE(VSHL_BY_SCALAR); 5052 OPCODE(VSRL_BY_SCALAR); 5053 OPCODE(VSRA_BY_SCALAR); 5054 OPCODE(VSUM); 5055 OPCODE(VICMPE); 5056 OPCODE(VICMPH); 5057 OPCODE(VICMPHL); 5058 OPCODE(VICMPES); 5059 OPCODE(VICMPHS); 5060 OPCODE(VICMPHLS); 5061 OPCODE(VFCMPE); 5062 OPCODE(VFCMPH); 5063 OPCODE(VFCMPHE); 5064 OPCODE(VFCMPES); 5065 OPCODE(VFCMPHS); 5066 OPCODE(VFCMPHES); 5067 OPCODE(VFTCI); 5068 OPCODE(VEXTEND); 5069 OPCODE(VROUND); 5070 OPCODE(VTM); 5071 OPCODE(VFAE_CC); 5072 OPCODE(VFAEZ_CC); 5073 OPCODE(VFEE_CC); 5074 OPCODE(VFEEZ_CC); 5075 OPCODE(VFENE_CC); 5076 OPCODE(VFENEZ_CC); 5077 OPCODE(VISTR_CC); 5078 OPCODE(VSTRC_CC); 5079 OPCODE(VSTRCZ_CC); 5080 OPCODE(TDC); 5081 OPCODE(ATOMIC_SWAPW); 5082 OPCODE(ATOMIC_LOADW_ADD); 5083 OPCODE(ATOMIC_LOADW_SUB); 5084 OPCODE(ATOMIC_LOADW_AND); 5085 OPCODE(ATOMIC_LOADW_OR); 5086 OPCODE(ATOMIC_LOADW_XOR); 5087 OPCODE(ATOMIC_LOADW_NAND); 5088 OPCODE(ATOMIC_LOADW_MIN); 5089 OPCODE(ATOMIC_LOADW_MAX); 5090 OPCODE(ATOMIC_LOADW_UMIN); 5091 OPCODE(ATOMIC_LOADW_UMAX); 5092 OPCODE(ATOMIC_CMP_SWAPW); 5093 OPCODE(ATOMIC_CMP_SWAP); 5094 OPCODE(ATOMIC_LOAD_128); 5095 OPCODE(ATOMIC_STORE_128); 5096 OPCODE(ATOMIC_CMP_SWAP_128); 5097 OPCODE(LRV); 5098 OPCODE(STRV); 5099 OPCODE(PREFETCH); 5100 } 5101 return nullptr; 5102 #undef OPCODE 5103 } 5104 5105 // Return true if VT is a vector whose elements are a whole number of bytes 5106 // in width. Also check for presence of vector support. 5107 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5108 if (!Subtarget.hasVector()) 5109 return false; 5110 5111 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5112 } 5113 5114 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5115 // producing a result of type ResVT. Op is a possibly bitcast version 5116 // of the input vector and Index is the index (based on type VecVT) that 5117 // should be extracted. Return the new extraction if a simplification 5118 // was possible or if Force is true. 5119 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5120 EVT VecVT, SDValue Op, 5121 unsigned Index, 5122 DAGCombinerInfo &DCI, 5123 bool Force) const { 5124 SelectionDAG &DAG = DCI.DAG; 5125 5126 // The number of bytes being extracted. 5127 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5128 5129 for (;;) { 5130 unsigned Opcode = Op.getOpcode(); 5131 if (Opcode == ISD::BITCAST) 5132 // Look through bitcasts. 5133 Op = Op.getOperand(0); 5134 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5135 canTreatAsByteVector(Op.getValueType())) { 5136 // Get a VPERM-like permute mask and see whether the bytes covered 5137 // by the extracted element are a contiguous sequence from one 5138 // source operand. 5139 SmallVector<int, SystemZ::VectorBytes> Bytes; 5140 if (!getVPermMask(Op, Bytes)) 5141 break; 5142 int First; 5143 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5144 BytesPerElement, First)) 5145 break; 5146 if (First < 0) 5147 return DAG.getUNDEF(ResVT); 5148 // Make sure the contiguous sequence starts at a multiple of the 5149 // original element size. 5150 unsigned Byte = unsigned(First) % Bytes.size(); 5151 if (Byte % BytesPerElement != 0) 5152 break; 5153 // We can get the extracted value directly from an input. 5154 Index = Byte / BytesPerElement; 5155 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5156 Force = true; 5157 } else if (Opcode == ISD::BUILD_VECTOR && 5158 canTreatAsByteVector(Op.getValueType())) { 5159 // We can only optimize this case if the BUILD_VECTOR elements are 5160 // at least as wide as the extracted value. 5161 EVT OpVT = Op.getValueType(); 5162 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5163 if (OpBytesPerElement < BytesPerElement) 5164 break; 5165 // Make sure that the least-significant bit of the extracted value 5166 // is the least significant bit of an input. 5167 unsigned End = (Index + 1) * BytesPerElement; 5168 if (End % OpBytesPerElement != 0) 5169 break; 5170 // We're extracting the low part of one operand of the BUILD_VECTOR. 5171 Op = Op.getOperand(End / OpBytesPerElement - 1); 5172 if (!Op.getValueType().isInteger()) { 5173 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5174 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5175 DCI.AddToWorklist(Op.getNode()); 5176 } 5177 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5178 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5179 if (VT != ResVT) { 5180 DCI.AddToWorklist(Op.getNode()); 5181 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5182 } 5183 return Op; 5184 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5185 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5186 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5187 canTreatAsByteVector(Op.getValueType()) && 5188 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5189 // Make sure that only the unextended bits are significant. 5190 EVT ExtVT = Op.getValueType(); 5191 EVT OpVT = Op.getOperand(0).getValueType(); 5192 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5193 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5194 unsigned Byte = Index * BytesPerElement; 5195 unsigned SubByte = Byte % ExtBytesPerElement; 5196 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5197 if (SubByte < MinSubByte || 5198 SubByte + BytesPerElement > ExtBytesPerElement) 5199 break; 5200 // Get the byte offset of the unextended element 5201 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5202 // ...then add the byte offset relative to that element. 5203 Byte += SubByte - MinSubByte; 5204 if (Byte % BytesPerElement != 0) 5205 break; 5206 Op = Op.getOperand(0); 5207 Index = Byte / BytesPerElement; 5208 Force = true; 5209 } else 5210 break; 5211 } 5212 if (Force) { 5213 if (Op.getValueType() != VecVT) { 5214 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5215 DCI.AddToWorklist(Op.getNode()); 5216 } 5217 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5218 DAG.getConstant(Index, DL, MVT::i32)); 5219 } 5220 return SDValue(); 5221 } 5222 5223 // Optimize vector operations in scalar value Op on the basis that Op 5224 // is truncated to TruncVT. 5225 SDValue SystemZTargetLowering::combineTruncateExtract( 5226 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5227 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5228 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5229 // of type TruncVT. 5230 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5231 TruncVT.getSizeInBits() % 8 == 0) { 5232 SDValue Vec = Op.getOperand(0); 5233 EVT VecVT = Vec.getValueType(); 5234 if (canTreatAsByteVector(VecVT)) { 5235 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5236 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5237 unsigned TruncBytes = TruncVT.getStoreSize(); 5238 if (BytesPerElement % TruncBytes == 0) { 5239 // Calculate the value of Y' in the above description. We are 5240 // splitting the original elements into Scale equal-sized pieces 5241 // and for truncation purposes want the last (least-significant) 5242 // of these pieces for IndexN. This is easiest to do by calculating 5243 // the start index of the following element and then subtracting 1. 5244 unsigned Scale = BytesPerElement / TruncBytes; 5245 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5246 5247 // Defer the creation of the bitcast from X to combineExtract, 5248 // which might be able to optimize the extraction. 5249 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5250 VecVT.getStoreSize() / TruncBytes); 5251 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5252 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5253 } 5254 } 5255 } 5256 } 5257 return SDValue(); 5258 } 5259 5260 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5261 SDNode *N, DAGCombinerInfo &DCI) const { 5262 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5263 SelectionDAG &DAG = DCI.DAG; 5264 SDValue N0 = N->getOperand(0); 5265 EVT VT = N->getValueType(0); 5266 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5267 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5268 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5269 if (TrueOp && FalseOp) { 5270 SDLoc DL(N0); 5271 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5272 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5273 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5274 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5275 // If N0 has multiple uses, change other uses as well. 5276 if (!N0.hasOneUse()) { 5277 SDValue TruncSelect = 5278 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5279 DCI.CombineTo(N0.getNode(), TruncSelect); 5280 } 5281 return NewSelect; 5282 } 5283 } 5284 return SDValue(); 5285 } 5286 5287 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5288 SDNode *N, DAGCombinerInfo &DCI) const { 5289 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5290 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5291 // into (select_cc LHS, RHS, -1, 0, COND) 5292 SelectionDAG &DAG = DCI.DAG; 5293 SDValue N0 = N->getOperand(0); 5294 EVT VT = N->getValueType(0); 5295 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5296 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5297 N0 = N0.getOperand(0); 5298 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5299 SDLoc DL(N0); 5300 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5301 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5302 N0.getOperand(2) }; 5303 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5304 } 5305 return SDValue(); 5306 } 5307 5308 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5309 SDNode *N, DAGCombinerInfo &DCI) const { 5310 // Convert (sext (ashr (shl X, C1), C2)) to 5311 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5312 // cheap as narrower ones. 5313 SelectionDAG &DAG = DCI.DAG; 5314 SDValue N0 = N->getOperand(0); 5315 EVT VT = N->getValueType(0); 5316 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5317 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5318 SDValue Inner = N0.getOperand(0); 5319 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5320 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5321 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5322 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5323 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5324 EVT ShiftVT = N0.getOperand(1).getValueType(); 5325 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5326 Inner.getOperand(0)); 5327 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5328 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5329 ShiftVT)); 5330 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5331 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5332 } 5333 } 5334 } 5335 return SDValue(); 5336 } 5337 5338 SDValue SystemZTargetLowering::combineMERGE( 5339 SDNode *N, DAGCombinerInfo &DCI) const { 5340 SelectionDAG &DAG = DCI.DAG; 5341 unsigned Opcode = N->getOpcode(); 5342 SDValue Op0 = N->getOperand(0); 5343 SDValue Op1 = N->getOperand(1); 5344 if (Op0.getOpcode() == ISD::BITCAST) 5345 Op0 = Op0.getOperand(0); 5346 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 5347 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 5348 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5349 // for v4f32. 5350 if (Op1 == N->getOperand(0)) 5351 return Op1; 5352 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5353 EVT VT = Op1.getValueType(); 5354 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5355 if (ElemBytes <= 4) { 5356 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5357 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5358 EVT InVT = VT.changeVectorElementTypeToInteger(); 5359 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5360 SystemZ::VectorBytes / ElemBytes / 2); 5361 if (VT != InVT) { 5362 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5363 DCI.AddToWorklist(Op1.getNode()); 5364 } 5365 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5366 DCI.AddToWorklist(Op.getNode()); 5367 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5368 } 5369 } 5370 return SDValue(); 5371 } 5372 5373 SDValue SystemZTargetLowering::combineLOAD( 5374 SDNode *N, DAGCombinerInfo &DCI) const { 5375 SelectionDAG &DAG = DCI.DAG; 5376 EVT LdVT = N->getValueType(0); 5377 if (LdVT.isVector() || LdVT.isInteger()) 5378 return SDValue(); 5379 // Transform a scalar load that is REPLICATEd as well as having other 5380 // use(s) to the form where the other use(s) use the first element of the 5381 // REPLICATE instead of the load. Otherwise instruction selection will not 5382 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5383 // point loads. 5384 5385 SDValue Replicate; 5386 SmallVector<SDNode*, 8> OtherUses; 5387 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5388 UI != UE; ++UI) { 5389 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5390 if (Replicate) 5391 return SDValue(); // Should never happen 5392 Replicate = SDValue(*UI, 0); 5393 } 5394 else if (UI.getUse().getResNo() == 0) 5395 OtherUses.push_back(*UI); 5396 } 5397 if (!Replicate || OtherUses.empty()) 5398 return SDValue(); 5399 5400 SDLoc DL(N); 5401 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5402 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5403 // Update uses of the loaded Value while preserving old chains. 5404 for (SDNode *U : OtherUses) { 5405 SmallVector<SDValue, 8> Ops; 5406 for (SDValue Op : U->ops()) 5407 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5408 DAG.UpdateNodeOperands(U, Ops); 5409 } 5410 return SDValue(N, 0); 5411 } 5412 5413 SDValue SystemZTargetLowering::combineSTORE( 5414 SDNode *N, DAGCombinerInfo &DCI) const { 5415 SelectionDAG &DAG = DCI.DAG; 5416 auto *SN = cast<StoreSDNode>(N); 5417 auto &Op1 = N->getOperand(1); 5418 EVT MemVT = SN->getMemoryVT(); 5419 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5420 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5421 // If X has wider elements then convert it to: 5422 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5423 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5424 if (SDValue Value = 5425 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5426 DCI.AddToWorklist(Value.getNode()); 5427 5428 // Rewrite the store with the new form of stored value. 5429 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5430 SN->getBasePtr(), SN->getMemoryVT(), 5431 SN->getMemOperand()); 5432 } 5433 } 5434 // Combine STORE (BSWAP) into STRVH/STRV/STRVG 5435 if (!SN->isTruncatingStore() && 5436 Op1.getOpcode() == ISD::BSWAP && 5437 Op1.getNode()->hasOneUse() && 5438 (Op1.getValueType() == MVT::i16 || 5439 Op1.getValueType() == MVT::i32 || 5440 Op1.getValueType() == MVT::i64)) { 5441 5442 SDValue BSwapOp = Op1.getOperand(0); 5443 5444 if (BSwapOp.getValueType() == MVT::i16) 5445 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5446 5447 SDValue Ops[] = { 5448 N->getOperand(0), BSwapOp, N->getOperand(2) 5449 }; 5450 5451 return 5452 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5453 Ops, MemVT, SN->getMemOperand()); 5454 } 5455 return SDValue(); 5456 } 5457 5458 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5459 SDNode *N, DAGCombinerInfo &DCI) const { 5460 5461 if (!Subtarget.hasVector()) 5462 return SDValue(); 5463 5464 // Try to simplify a vector extraction. 5465 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5466 SDValue Op0 = N->getOperand(0); 5467 EVT VecVT = Op0.getValueType(); 5468 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5469 IndexN->getZExtValue(), DCI, false); 5470 } 5471 return SDValue(); 5472 } 5473 5474 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5475 SDNode *N, DAGCombinerInfo &DCI) const { 5476 SelectionDAG &DAG = DCI.DAG; 5477 // (join_dwords X, X) == (replicate X) 5478 if (N->getOperand(0) == N->getOperand(1)) 5479 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5480 N->getOperand(0)); 5481 return SDValue(); 5482 } 5483 5484 SDValue SystemZTargetLowering::combineFP_ROUND( 5485 SDNode *N, DAGCombinerInfo &DCI) const { 5486 // (fpround (extract_vector_elt X 0)) 5487 // (fpround (extract_vector_elt X 1)) -> 5488 // (extract_vector_elt (VROUND X) 0) 5489 // (extract_vector_elt (VROUND X) 2) 5490 // 5491 // This is a special case since the target doesn't really support v2f32s. 5492 SelectionDAG &DAG = DCI.DAG; 5493 SDValue Op0 = N->getOperand(0); 5494 if (N->getValueType(0) == MVT::f32 && 5495 Op0.hasOneUse() && 5496 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5497 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5498 Op0.getOperand(1).getOpcode() == ISD::Constant && 5499 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5500 SDValue Vec = Op0.getOperand(0); 5501 for (auto *U : Vec->uses()) { 5502 if (U != Op0.getNode() && 5503 U->hasOneUse() && 5504 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5505 U->getOperand(0) == Vec && 5506 U->getOperand(1).getOpcode() == ISD::Constant && 5507 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5508 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5509 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5510 OtherRound.getOperand(0) == SDValue(U, 0) && 5511 OtherRound.getValueType() == MVT::f32) { 5512 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5513 MVT::v4f32, Vec); 5514 DCI.AddToWorklist(VRound.getNode()); 5515 SDValue Extract1 = 5516 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5517 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5518 DCI.AddToWorklist(Extract1.getNode()); 5519 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5520 SDValue Extract0 = 5521 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5522 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5523 return Extract0; 5524 } 5525 } 5526 } 5527 } 5528 return SDValue(); 5529 } 5530 5531 SDValue SystemZTargetLowering::combineFP_EXTEND( 5532 SDNode *N, DAGCombinerInfo &DCI) const { 5533 // (fpextend (extract_vector_elt X 0)) 5534 // (fpextend (extract_vector_elt X 2)) -> 5535 // (extract_vector_elt (VEXTEND X) 0) 5536 // (extract_vector_elt (VEXTEND X) 1) 5537 // 5538 // This is a special case since the target doesn't really support v2f32s. 5539 SelectionDAG &DAG = DCI.DAG; 5540 SDValue Op0 = N->getOperand(0); 5541 if (N->getValueType(0) == MVT::f64 && 5542 Op0.hasOneUse() && 5543 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5544 Op0.getOperand(0).getValueType() == MVT::v4f32 && 5545 Op0.getOperand(1).getOpcode() == ISD::Constant && 5546 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5547 SDValue Vec = Op0.getOperand(0); 5548 for (auto *U : Vec->uses()) { 5549 if (U != Op0.getNode() && 5550 U->hasOneUse() && 5551 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5552 U->getOperand(0) == Vec && 5553 U->getOperand(1).getOpcode() == ISD::Constant && 5554 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 5555 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 5556 if (OtherExtend.getOpcode() == ISD::FP_EXTEND && 5557 OtherExtend.getOperand(0) == SDValue(U, 0) && 5558 OtherExtend.getValueType() == MVT::f64) { 5559 SDValue VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 5560 MVT::v2f64, Vec); 5561 DCI.AddToWorklist(VExtend.getNode()); 5562 SDValue Extract1 = 5563 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 5564 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 5565 DCI.AddToWorklist(Extract1.getNode()); 5566 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 5567 SDValue Extract0 = 5568 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 5569 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5570 return Extract0; 5571 } 5572 } 5573 } 5574 } 5575 return SDValue(); 5576 } 5577 5578 SDValue SystemZTargetLowering::combineBSWAP( 5579 SDNode *N, DAGCombinerInfo &DCI) const { 5580 SelectionDAG &DAG = DCI.DAG; 5581 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG 5582 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5583 N->getOperand(0).hasOneUse() && 5584 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 || 5585 N->getValueType(0) == MVT::i64)) { 5586 SDValue Load = N->getOperand(0); 5587 LoadSDNode *LD = cast<LoadSDNode>(Load); 5588 5589 // Create the byte-swapping load. 5590 SDValue Ops[] = { 5591 LD->getChain(), // Chain 5592 LD->getBasePtr() // Ptr 5593 }; 5594 EVT LoadVT = N->getValueType(0); 5595 if (LoadVT == MVT::i16) 5596 LoadVT = MVT::i32; 5597 SDValue BSLoad = 5598 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 5599 DAG.getVTList(LoadVT, MVT::Other), 5600 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5601 5602 // If this is an i16 load, insert the truncate. 5603 SDValue ResVal = BSLoad; 5604 if (N->getValueType(0) == MVT::i16) 5605 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5606 5607 // First, combine the bswap away. This makes the value produced by the 5608 // load dead. 5609 DCI.CombineTo(N, ResVal); 5610 5611 // Next, combine the load away, we give it a bogus result value but a real 5612 // chain result. The result value is dead because the bswap is dead. 5613 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5614 5615 // Return N so it doesn't get rechecked! 5616 return SDValue(N, 0); 5617 } 5618 return SDValue(); 5619 } 5620 5621 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 5622 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 5623 // set by the CCReg instruction using the CCValid / CCMask masks, 5624 // If the CCReg instruction is itself a (ICMP (SELECT_CCMASK)) testing 5625 // the condition code set by some other instruction, see whether we 5626 // can directly use that condition code. 5627 bool Invert = false; 5628 5629 // Verify that we have an appropriate mask for a EQ or NE comparison. 5630 if (CCValid != SystemZ::CCMASK_ICMP) 5631 return false; 5632 if (CCMask == SystemZ::CCMASK_CMP_NE) 5633 Invert = !Invert; 5634 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 5635 return false; 5636 5637 // Verify that we have an ICMP that is the user of a SELECT_CCMASK. 5638 SDNode *ICmp = CCReg.getNode(); 5639 if (ICmp->getOpcode() != SystemZISD::ICMP) 5640 return false; 5641 SDNode *Select = ICmp->getOperand(0).getNode(); 5642 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 5643 return false; 5644 5645 // Verify that the ICMP compares against one of select values. 5646 auto *CompareVal = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 5647 if (!CompareVal) 5648 return false; 5649 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 5650 if (!TrueVal) 5651 return false; 5652 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 5653 if (!FalseVal) 5654 return false; 5655 if (CompareVal->getZExtValue() == FalseVal->getZExtValue()) 5656 Invert = !Invert; 5657 else if (CompareVal->getZExtValue() != TrueVal->getZExtValue()) 5658 return false; 5659 5660 // Compute the effective CC mask for the new branch or select. 5661 auto *NewCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 5662 auto *NewCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 5663 if (!NewCCValid || !NewCCMask) 5664 return false; 5665 CCValid = NewCCValid->getZExtValue(); 5666 CCMask = NewCCMask->getZExtValue(); 5667 if (Invert) 5668 CCMask ^= CCValid; 5669 5670 // Return the updated CCReg link. 5671 CCReg = Select->getOperand(4); 5672 return true; 5673 } 5674 5675 SDValue SystemZTargetLowering::combineBR_CCMASK( 5676 SDNode *N, DAGCombinerInfo &DCI) const { 5677 SelectionDAG &DAG = DCI.DAG; 5678 5679 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 5680 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5681 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5682 if (!CCValid || !CCMask) 5683 return SDValue(); 5684 5685 int CCValidVal = CCValid->getZExtValue(); 5686 int CCMaskVal = CCMask->getZExtValue(); 5687 SDValue Chain = N->getOperand(0); 5688 SDValue CCReg = N->getOperand(4); 5689 5690 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 5691 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 5692 Chain, 5693 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32), 5694 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32), 5695 N->getOperand(3), CCReg); 5696 return SDValue(); 5697 } 5698 5699 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 5700 SDNode *N, DAGCombinerInfo &DCI) const { 5701 SelectionDAG &DAG = DCI.DAG; 5702 5703 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 5704 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5705 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 5706 if (!CCValid || !CCMask) 5707 return SDValue(); 5708 5709 int CCValidVal = CCValid->getZExtValue(); 5710 int CCMaskVal = CCMask->getZExtValue(); 5711 SDValue CCReg = N->getOperand(4); 5712 5713 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 5714 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 5715 N->getOperand(0), 5716 N->getOperand(1), 5717 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32), 5718 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32), 5719 CCReg); 5720 return SDValue(); 5721 } 5722 5723 5724 SDValue SystemZTargetLowering::combineGET_CCMASK( 5725 SDNode *N, DAGCombinerInfo &DCI) const { 5726 5727 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 5728 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5729 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5730 if (!CCValid || !CCMask) 5731 return SDValue(); 5732 int CCValidVal = CCValid->getZExtValue(); 5733 int CCMaskVal = CCMask->getZExtValue(); 5734 5735 SDValue Select = N->getOperand(0); 5736 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 5737 return SDValue(); 5738 5739 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 5740 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 5741 if (!SelectCCValid || !SelectCCMask) 5742 return SDValue(); 5743 int SelectCCValidVal = SelectCCValid->getZExtValue(); 5744 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 5745 5746 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 5747 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 5748 if (!TrueVal || !FalseVal) 5749 return SDValue(); 5750 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 5751 ; 5752 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 5753 SelectCCMaskVal ^= SelectCCValidVal; 5754 else 5755 return SDValue(); 5756 5757 if (SelectCCValidVal & ~CCValidVal) 5758 return SDValue(); 5759 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 5760 return SDValue(); 5761 5762 return Select->getOperand(4); 5763 } 5764 5765 SDValue SystemZTargetLowering::combineIntDIVREM( 5766 SDNode *N, DAGCombinerInfo &DCI) const { 5767 SelectionDAG &DAG = DCI.DAG; 5768 EVT VT = N->getValueType(0); 5769 // In the case where the divisor is a vector of constants a cheaper 5770 // sequence of instructions can replace the divide. BuildSDIV is called to 5771 // do this during DAG combining, but it only succeeds when it can build a 5772 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 5773 // since it is not Legal but Custom it can only happen before 5774 // legalization. Therefore we must scalarize this early before Combine 5775 // 1. For widened vectors, this is already the result of type legalization. 5776 if (VT.isVector() && isTypeLegal(VT) && 5777 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 5778 return DAG.UnrollVectorOp(N); 5779 return SDValue(); 5780 } 5781 5782 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 5783 DAGCombinerInfo &DCI) const { 5784 switch(N->getOpcode()) { 5785 default: break; 5786 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 5787 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 5788 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 5789 case SystemZISD::MERGE_HIGH: 5790 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 5791 case ISD::LOAD: return combineLOAD(N, DCI); 5792 case ISD::STORE: return combineSTORE(N, DCI); 5793 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 5794 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 5795 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 5796 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 5797 case ISD::BSWAP: return combineBSWAP(N, DCI); 5798 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 5799 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 5800 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 5801 case ISD::SDIV: 5802 case ISD::UDIV: 5803 case ISD::SREM: 5804 case ISD::UREM: return combineIntDIVREM(N, DCI); 5805 } 5806 5807 return SDValue(); 5808 } 5809 5810 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 5811 // are for Op. 5812 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 5813 unsigned OpNo) { 5814 EVT VT = Op.getValueType(); 5815 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 5816 APInt SrcDemE; 5817 unsigned Opcode = Op.getOpcode(); 5818 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 5819 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5820 switch (Id) { 5821 case Intrinsic::s390_vpksh: // PACKS 5822 case Intrinsic::s390_vpksf: 5823 case Intrinsic::s390_vpksg: 5824 case Intrinsic::s390_vpkshs: // PACKS_CC 5825 case Intrinsic::s390_vpksfs: 5826 case Intrinsic::s390_vpksgs: 5827 case Intrinsic::s390_vpklsh: // PACKLS 5828 case Intrinsic::s390_vpklsf: 5829 case Intrinsic::s390_vpklsg: 5830 case Intrinsic::s390_vpklshs: // PACKLS_CC 5831 case Intrinsic::s390_vpklsfs: 5832 case Intrinsic::s390_vpklsgs: 5833 // VECTOR PACK truncates the elements of two source vectors into one. 5834 SrcDemE = DemandedElts; 5835 if (OpNo == 2) 5836 SrcDemE.lshrInPlace(NumElts / 2); 5837 SrcDemE = SrcDemE.trunc(NumElts / 2); 5838 break; 5839 // VECTOR UNPACK extends half the elements of the source vector. 5840 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 5841 case Intrinsic::s390_vuphh: 5842 case Intrinsic::s390_vuphf: 5843 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 5844 case Intrinsic::s390_vuplhh: 5845 case Intrinsic::s390_vuplhf: 5846 SrcDemE = APInt(NumElts * 2, 0); 5847 SrcDemE.insertBits(DemandedElts, 0); 5848 break; 5849 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 5850 case Intrinsic::s390_vuplhw: 5851 case Intrinsic::s390_vuplf: 5852 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 5853 case Intrinsic::s390_vupllh: 5854 case Intrinsic::s390_vupllf: 5855 SrcDemE = APInt(NumElts * 2, 0); 5856 SrcDemE.insertBits(DemandedElts, NumElts); 5857 break; 5858 case Intrinsic::s390_vpdi: { 5859 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 5860 SrcDemE = APInt(NumElts, 0); 5861 if (!DemandedElts[OpNo - 1]) 5862 break; 5863 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 5864 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 5865 // Demand input element 0 or 1, given by the mask bit value. 5866 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 5867 break; 5868 } 5869 case Intrinsic::s390_vsldb: { 5870 // VECTOR SHIFT LEFT DOUBLE BY BYTE 5871 assert(VT == MVT::v16i8 && "Unexpected type."); 5872 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 5873 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 5874 unsigned NumSrc0Els = 16 - FirstIdx; 5875 SrcDemE = APInt(NumElts, 0); 5876 if (OpNo == 1) { 5877 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 5878 SrcDemE.insertBits(DemEls, FirstIdx); 5879 } else { 5880 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 5881 SrcDemE.insertBits(DemEls, 0); 5882 } 5883 break; 5884 } 5885 case Intrinsic::s390_vperm: 5886 SrcDemE = APInt(NumElts, 1); 5887 break; 5888 default: 5889 llvm_unreachable("Unhandled intrinsic."); 5890 break; 5891 } 5892 } else { 5893 switch (Opcode) { 5894 case SystemZISD::JOIN_DWORDS: 5895 // Scalar operand. 5896 SrcDemE = APInt(1, 1); 5897 break; 5898 case SystemZISD::SELECT_CCMASK: 5899 SrcDemE = DemandedElts; 5900 break; 5901 default: 5902 llvm_unreachable("Unhandled opcode."); 5903 break; 5904 } 5905 } 5906 return SrcDemE; 5907 } 5908 5909 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 5910 const APInt &DemandedElts, 5911 const SelectionDAG &DAG, unsigned Depth, 5912 unsigned OpNo) { 5913 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 5914 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 5915 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 5916 KnownBits LHSKnown(SrcBitWidth), RHSKnown(SrcBitWidth); 5917 DAG.computeKnownBits(Op.getOperand(OpNo), LHSKnown, Src0DemE, Depth + 1); 5918 DAG.computeKnownBits(Op.getOperand(OpNo + 1), RHSKnown, Src1DemE, Depth + 1); 5919 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 5920 Known.One = LHSKnown.One & RHSKnown.One; 5921 } 5922 5923 void 5924 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 5925 KnownBits &Known, 5926 const APInt &DemandedElts, 5927 const SelectionDAG &DAG, 5928 unsigned Depth) const { 5929 Known.resetAll(); 5930 5931 // Intrinsic CC result is returned in the two low bits. 5932 unsigned tmp0, tmp1; // not used 5933 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 5934 Known.Zero.setBitsFrom(2); 5935 return; 5936 } 5937 EVT VT = Op.getValueType(); 5938 if (Op.getResNo() != 0 || VT == MVT::Untyped) 5939 return; 5940 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 5941 "KnownBits does not match VT in bitwidth"); 5942 assert ((!VT.isVector() || 5943 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 5944 "DemandedElts does not match VT number of elements"); 5945 unsigned BitWidth = Known.getBitWidth(); 5946 unsigned Opcode = Op.getOpcode(); 5947 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 5948 bool IsLogical = false; 5949 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5950 switch (Id) { 5951 case Intrinsic::s390_vpksh: // PACKS 5952 case Intrinsic::s390_vpksf: 5953 case Intrinsic::s390_vpksg: 5954 case Intrinsic::s390_vpkshs: // PACKS_CC 5955 case Intrinsic::s390_vpksfs: 5956 case Intrinsic::s390_vpksgs: 5957 case Intrinsic::s390_vpklsh: // PACKLS 5958 case Intrinsic::s390_vpklsf: 5959 case Intrinsic::s390_vpklsg: 5960 case Intrinsic::s390_vpklshs: // PACKLS_CC 5961 case Intrinsic::s390_vpklsfs: 5962 case Intrinsic::s390_vpklsgs: 5963 case Intrinsic::s390_vpdi: 5964 case Intrinsic::s390_vsldb: 5965 case Intrinsic::s390_vperm: 5966 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 5967 break; 5968 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 5969 case Intrinsic::s390_vuplhh: 5970 case Intrinsic::s390_vuplhf: 5971 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 5972 case Intrinsic::s390_vupllh: 5973 case Intrinsic::s390_vupllf: 5974 IsLogical = true; 5975 LLVM_FALLTHROUGH; 5976 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 5977 case Intrinsic::s390_vuphh: 5978 case Intrinsic::s390_vuphf: 5979 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 5980 case Intrinsic::s390_vuplhw: 5981 case Intrinsic::s390_vuplf: { 5982 SDValue SrcOp = Op.getOperand(1); 5983 unsigned SrcBitWidth = SrcOp.getScalarValueSizeInBits(); 5984 Known = KnownBits(SrcBitWidth); 5985 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 5986 DAG.computeKnownBits(SrcOp, Known, SrcDemE, Depth + 1); 5987 if (IsLogical) { 5988 Known = Known.zext(BitWidth); 5989 Known.Zero.setBitsFrom(SrcBitWidth); 5990 } else 5991 Known = Known.sext(BitWidth); 5992 break; 5993 } 5994 default: 5995 break; 5996 } 5997 } else { 5998 switch (Opcode) { 5999 case SystemZISD::JOIN_DWORDS: 6000 case SystemZISD::SELECT_CCMASK: 6001 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6002 break; 6003 case SystemZISD::REPLICATE: { 6004 SDValue SrcOp = Op.getOperand(0); 6005 DAG.computeKnownBits(SrcOp, Known, Depth + 1); 6006 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6007 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6008 break; 6009 } 6010 default: 6011 break; 6012 } 6013 } 6014 6015 // Known has the width of the source operand(s). Adjust if needed to match 6016 // the passed bitwidth. 6017 if (Known.getBitWidth() != BitWidth) 6018 Known = Known.zextOrTrunc(BitWidth); 6019 } 6020 6021 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6022 const SelectionDAG &DAG, unsigned Depth, 6023 unsigned OpNo) { 6024 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6025 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6026 if (LHS == 1) return 1; // Early out. 6027 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6028 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6029 if (RHS == 1) return 1; // Early out. 6030 unsigned Common = std::min(LHS, RHS); 6031 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6032 EVT VT = Op.getValueType(); 6033 unsigned VTBits = VT.getScalarSizeInBits(); 6034 if (SrcBitWidth > VTBits) { // PACK 6035 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6036 if (Common > SrcExtraBits) 6037 return (Common - SrcExtraBits); 6038 return 1; 6039 } 6040 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6041 return Common; 6042 } 6043 6044 unsigned 6045 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6046 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6047 unsigned Depth) const { 6048 if (Op.getResNo() != 0) 6049 return 1; 6050 unsigned Opcode = Op.getOpcode(); 6051 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6052 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6053 switch (Id) { 6054 case Intrinsic::s390_vpksh: // PACKS 6055 case Intrinsic::s390_vpksf: 6056 case Intrinsic::s390_vpksg: 6057 case Intrinsic::s390_vpkshs: // PACKS_CC 6058 case Intrinsic::s390_vpksfs: 6059 case Intrinsic::s390_vpksgs: 6060 case Intrinsic::s390_vpklsh: // PACKLS 6061 case Intrinsic::s390_vpklsf: 6062 case Intrinsic::s390_vpklsg: 6063 case Intrinsic::s390_vpklshs: // PACKLS_CC 6064 case Intrinsic::s390_vpklsfs: 6065 case Intrinsic::s390_vpklsgs: 6066 case Intrinsic::s390_vpdi: 6067 case Intrinsic::s390_vsldb: 6068 case Intrinsic::s390_vperm: 6069 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6070 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6071 case Intrinsic::s390_vuphh: 6072 case Intrinsic::s390_vuphf: 6073 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6074 case Intrinsic::s390_vuplhw: 6075 case Intrinsic::s390_vuplf: { 6076 SDValue PackedOp = Op.getOperand(1); 6077 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6078 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6079 EVT VT = Op.getValueType(); 6080 unsigned VTBits = VT.getScalarSizeInBits(); 6081 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6082 return Tmp; 6083 } 6084 default: 6085 break; 6086 } 6087 } else { 6088 switch (Opcode) { 6089 case SystemZISD::SELECT_CCMASK: 6090 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6091 default: 6092 break; 6093 } 6094 } 6095 6096 return 1; 6097 } 6098 6099 //===----------------------------------------------------------------------===// 6100 // Custom insertion 6101 //===----------------------------------------------------------------------===// 6102 6103 // Create a new basic block after MBB. 6104 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 6105 MachineFunction &MF = *MBB->getParent(); 6106 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 6107 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 6108 return NewMBB; 6109 } 6110 6111 // Split MBB after MI and return the new block (the one that contains 6112 // instructions after MI). 6113 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 6114 MachineBasicBlock *MBB) { 6115 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6116 NewMBB->splice(NewMBB->begin(), MBB, 6117 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6118 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6119 return NewMBB; 6120 } 6121 6122 // Split MBB before MI and return the new block (the one that contains MI). 6123 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6124 MachineBasicBlock *MBB) { 6125 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6126 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6127 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6128 return NewMBB; 6129 } 6130 6131 // Force base value Base into a register before MI. Return the register. 6132 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base, 6133 const SystemZInstrInfo *TII) { 6134 if (Base.isReg()) 6135 return Base.getReg(); 6136 6137 MachineBasicBlock *MBB = MI.getParent(); 6138 MachineFunction &MF = *MBB->getParent(); 6139 MachineRegisterInfo &MRI = MF.getRegInfo(); 6140 6141 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6142 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6143 .add(Base) 6144 .addImm(0) 6145 .addReg(0); 6146 return Reg; 6147 } 6148 6149 // The CC operand of MI might be missing a kill marker because there 6150 // were multiple uses of CC, and ISel didn't know which to mark. 6151 // Figure out whether MI should have had a kill marker. 6152 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6153 // Scan forward through BB for a use/def of CC. 6154 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6155 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6156 const MachineInstr& mi = *miI; 6157 if (mi.readsRegister(SystemZ::CC)) 6158 return false; 6159 if (mi.definesRegister(SystemZ::CC)) 6160 break; // Should have kill-flag - update below. 6161 } 6162 6163 // If we hit the end of the block, check whether CC is live into a 6164 // successor. 6165 if (miI == MBB->end()) { 6166 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6167 if ((*SI)->isLiveIn(SystemZ::CC)) 6168 return false; 6169 } 6170 6171 return true; 6172 } 6173 6174 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6175 // together with other Select pseudo-opcodes into a single basic-block with 6176 // a conditional jump around it. 6177 static bool isSelectPseudo(MachineInstr &MI) { 6178 switch (MI.getOpcode()) { 6179 case SystemZ::Select32: 6180 case SystemZ::Select64: 6181 case SystemZ::SelectF32: 6182 case SystemZ::SelectF64: 6183 case SystemZ::SelectF128: 6184 case SystemZ::SelectVR32: 6185 case SystemZ::SelectVR64: 6186 case SystemZ::SelectVR128: 6187 return true; 6188 6189 default: 6190 return false; 6191 } 6192 } 6193 6194 // Helper function, which inserts PHI functions into SinkMBB: 6195 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6196 // where %FalseValue(i) and %TrueValue(i) are taken from the consequent Selects 6197 // in [MIItBegin, MIItEnd) range. 6198 static void createPHIsForSelects(MachineBasicBlock::iterator MIItBegin, 6199 MachineBasicBlock::iterator MIItEnd, 6200 MachineBasicBlock *TrueMBB, 6201 MachineBasicBlock *FalseMBB, 6202 MachineBasicBlock *SinkMBB) { 6203 MachineFunction *MF = TrueMBB->getParent(); 6204 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6205 6206 unsigned CCValid = MIItBegin->getOperand(3).getImm(); 6207 unsigned CCMask = MIItBegin->getOperand(4).getImm(); 6208 DebugLoc DL = MIItBegin->getDebugLoc(); 6209 6210 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6211 6212 // As we are creating the PHIs, we have to be careful if there is more than 6213 // one. Later Selects may reference the results of earlier Selects, but later 6214 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6215 // That also means that PHI construction must work forward from earlier to 6216 // later, and that the code must maintain a mapping from earlier PHI's 6217 // destination registers, and the registers that went into the PHI. 6218 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6219 6220 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) { 6221 unsigned DestReg = MIIt->getOperand(0).getReg(); 6222 unsigned TrueReg = MIIt->getOperand(1).getReg(); 6223 unsigned FalseReg = MIIt->getOperand(2).getReg(); 6224 6225 // If this Select we are generating is the opposite condition from 6226 // the jump we generated, then we have to swap the operands for the 6227 // PHI that is going to be generated. 6228 if (MIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) 6229 std::swap(TrueReg, FalseReg); 6230 6231 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6232 TrueReg = RegRewriteTable[TrueReg].first; 6233 6234 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6235 FalseReg = RegRewriteTable[FalseReg].second; 6236 6237 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6238 .addReg(TrueReg).addMBB(TrueMBB) 6239 .addReg(FalseReg).addMBB(FalseMBB); 6240 6241 // Add this PHI to the rewrite table. 6242 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6243 } 6244 } 6245 6246 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6247 MachineBasicBlock * 6248 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6249 MachineBasicBlock *MBB) const { 6250 const SystemZInstrInfo *TII = 6251 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6252 6253 unsigned CCValid = MI.getOperand(3).getImm(); 6254 unsigned CCMask = MI.getOperand(4).getImm(); 6255 DebugLoc DL = MI.getDebugLoc(); 6256 6257 // If we have a sequence of Select* pseudo instructions using the 6258 // same condition code value, we want to expand all of them into 6259 // a single pair of basic blocks using the same condition. 6260 MachineInstr *LastMI = &MI; 6261 MachineBasicBlock::iterator NextMIIt = 6262 std::next(MachineBasicBlock::iterator(MI)); 6263 6264 if (isSelectPseudo(MI)) 6265 while (NextMIIt != MBB->end() && isSelectPseudo(*NextMIIt) && 6266 NextMIIt->getOperand(3).getImm() == CCValid && 6267 (NextMIIt->getOperand(4).getImm() == CCMask || 6268 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask))) { 6269 LastMI = &*NextMIIt; 6270 ++NextMIIt; 6271 } 6272 6273 MachineBasicBlock *StartMBB = MBB; 6274 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6275 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6276 6277 // Unless CC was killed in the last Select instruction, mark it as 6278 // live-in to both FalseMBB and JoinMBB. 6279 if (!LastMI->killsRegister(SystemZ::CC) && !checkCCKill(*LastMI, JoinMBB)) { 6280 FalseMBB->addLiveIn(SystemZ::CC); 6281 JoinMBB->addLiveIn(SystemZ::CC); 6282 } 6283 6284 // StartMBB: 6285 // BRC CCMask, JoinMBB 6286 // # fallthrough to FalseMBB 6287 MBB = StartMBB; 6288 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6289 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6290 MBB->addSuccessor(JoinMBB); 6291 MBB->addSuccessor(FalseMBB); 6292 6293 // FalseMBB: 6294 // # fallthrough to JoinMBB 6295 MBB = FalseMBB; 6296 MBB->addSuccessor(JoinMBB); 6297 6298 // JoinMBB: 6299 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 6300 // ... 6301 MBB = JoinMBB; 6302 MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); 6303 MachineBasicBlock::iterator MIItEnd = 6304 std::next(MachineBasicBlock::iterator(LastMI)); 6305 createPHIsForSelects(MIItBegin, MIItEnd, StartMBB, FalseMBB, MBB); 6306 6307 StartMBB->erase(MIItBegin, MIItEnd); 6308 return JoinMBB; 6309 } 6310 6311 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 6312 // StoreOpcode is the store to use and Invert says whether the store should 6313 // happen when the condition is false rather than true. If a STORE ON 6314 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 6315 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 6316 MachineBasicBlock *MBB, 6317 unsigned StoreOpcode, 6318 unsigned STOCOpcode, 6319 bool Invert) const { 6320 const SystemZInstrInfo *TII = 6321 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6322 6323 unsigned SrcReg = MI.getOperand(0).getReg(); 6324 MachineOperand Base = MI.getOperand(1); 6325 int64_t Disp = MI.getOperand(2).getImm(); 6326 unsigned IndexReg = MI.getOperand(3).getReg(); 6327 unsigned CCValid = MI.getOperand(4).getImm(); 6328 unsigned CCMask = MI.getOperand(5).getImm(); 6329 DebugLoc DL = MI.getDebugLoc(); 6330 6331 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 6332 6333 // Use STOCOpcode if possible. We could use different store patterns in 6334 // order to avoid matching the index register, but the performance trade-offs 6335 // might be more complicated in that case. 6336 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 6337 if (Invert) 6338 CCMask ^= CCValid; 6339 6340 // ISel pattern matching also adds a load memory operand of the same 6341 // address, so take special care to find the storing memory operand. 6342 MachineMemOperand *MMO = nullptr; 6343 for (auto *I : MI.memoperands()) 6344 if (I->isStore()) { 6345 MMO = I; 6346 break; 6347 } 6348 6349 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 6350 .addReg(SrcReg) 6351 .add(Base) 6352 .addImm(Disp) 6353 .addImm(CCValid) 6354 .addImm(CCMask) 6355 .addMemOperand(MMO); 6356 6357 MI.eraseFromParent(); 6358 return MBB; 6359 } 6360 6361 // Get the condition needed to branch around the store. 6362 if (!Invert) 6363 CCMask ^= CCValid; 6364 6365 MachineBasicBlock *StartMBB = MBB; 6366 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6367 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6368 6369 // Unless CC was killed in the CondStore instruction, mark it as 6370 // live-in to both FalseMBB and JoinMBB. 6371 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 6372 FalseMBB->addLiveIn(SystemZ::CC); 6373 JoinMBB->addLiveIn(SystemZ::CC); 6374 } 6375 6376 // StartMBB: 6377 // BRC CCMask, JoinMBB 6378 // # fallthrough to FalseMBB 6379 MBB = StartMBB; 6380 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6381 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6382 MBB->addSuccessor(JoinMBB); 6383 MBB->addSuccessor(FalseMBB); 6384 6385 // FalseMBB: 6386 // store %SrcReg, %Disp(%Index,%Base) 6387 // # fallthrough to JoinMBB 6388 MBB = FalseMBB; 6389 BuildMI(MBB, DL, TII->get(StoreOpcode)) 6390 .addReg(SrcReg) 6391 .add(Base) 6392 .addImm(Disp) 6393 .addReg(IndexReg); 6394 MBB->addSuccessor(JoinMBB); 6395 6396 MI.eraseFromParent(); 6397 return JoinMBB; 6398 } 6399 6400 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 6401 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 6402 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 6403 // BitSize is the width of the field in bits, or 0 if this is a partword 6404 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 6405 // is one of the operands. Invert says whether the field should be 6406 // inverted after performing BinOpcode (e.g. for NAND). 6407 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 6408 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 6409 unsigned BitSize, bool Invert) const { 6410 MachineFunction &MF = *MBB->getParent(); 6411 const SystemZInstrInfo *TII = 6412 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6413 MachineRegisterInfo &MRI = MF.getRegInfo(); 6414 bool IsSubWord = (BitSize < 32); 6415 6416 // Extract the operands. Base can be a register or a frame index. 6417 // Src2 can be a register or immediate. 6418 unsigned Dest = MI.getOperand(0).getReg(); 6419 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6420 int64_t Disp = MI.getOperand(2).getImm(); 6421 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 6422 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 6423 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 6424 DebugLoc DL = MI.getDebugLoc(); 6425 if (IsSubWord) 6426 BitSize = MI.getOperand(6).getImm(); 6427 6428 // Subword operations use 32-bit registers. 6429 const TargetRegisterClass *RC = (BitSize <= 32 ? 6430 &SystemZ::GR32BitRegClass : 6431 &SystemZ::GR64BitRegClass); 6432 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6433 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6434 6435 // Get the right opcodes for the displacement. 6436 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6437 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6438 assert(LOpcode && CSOpcode && "Displacement out of range"); 6439 6440 // Create virtual registers for temporary results. 6441 unsigned OrigVal = MRI.createVirtualRegister(RC); 6442 unsigned OldVal = MRI.createVirtualRegister(RC); 6443 unsigned NewVal = (BinOpcode || IsSubWord ? 6444 MRI.createVirtualRegister(RC) : Src2.getReg()); 6445 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6446 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6447 6448 // Insert a basic block for the main loop. 6449 MachineBasicBlock *StartMBB = MBB; 6450 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6451 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6452 6453 // StartMBB: 6454 // ... 6455 // %OrigVal = L Disp(%Base) 6456 // # fall through to LoopMMB 6457 MBB = StartMBB; 6458 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 6459 MBB->addSuccessor(LoopMBB); 6460 6461 // LoopMBB: 6462 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 6463 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 6464 // %RotatedNewVal = OP %RotatedOldVal, %Src2 6465 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 6466 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 6467 // JNE LoopMBB 6468 // # fall through to DoneMMB 6469 MBB = LoopMBB; 6470 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6471 .addReg(OrigVal).addMBB(StartMBB) 6472 .addReg(Dest).addMBB(LoopMBB); 6473 if (IsSubWord) 6474 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 6475 .addReg(OldVal).addReg(BitShift).addImm(0); 6476 if (Invert) { 6477 // Perform the operation normally and then invert every bit of the field. 6478 unsigned Tmp = MRI.createVirtualRegister(RC); 6479 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 6480 if (BitSize <= 32) 6481 // XILF with the upper BitSize bits set. 6482 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 6483 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 6484 else { 6485 // Use LCGR and add -1 to the result, which is more compact than 6486 // an XILF, XILH pair. 6487 unsigned Tmp2 = MRI.createVirtualRegister(RC); 6488 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 6489 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 6490 .addReg(Tmp2).addImm(-1); 6491 } 6492 } else if (BinOpcode) 6493 // A simply binary operation. 6494 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 6495 .addReg(RotatedOldVal) 6496 .add(Src2); 6497 else if (IsSubWord) 6498 // Use RISBG to rotate Src2 into position and use it to replace the 6499 // field in RotatedOldVal. 6500 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 6501 .addReg(RotatedOldVal).addReg(Src2.getReg()) 6502 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 6503 if (IsSubWord) 6504 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 6505 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 6506 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 6507 .addReg(OldVal) 6508 .addReg(NewVal) 6509 .add(Base) 6510 .addImm(Disp); 6511 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6512 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6513 MBB->addSuccessor(LoopMBB); 6514 MBB->addSuccessor(DoneMBB); 6515 6516 MI.eraseFromParent(); 6517 return DoneMBB; 6518 } 6519 6520 // Implement EmitInstrWithCustomInserter for pseudo 6521 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 6522 // instruction that should be used to compare the current field with the 6523 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 6524 // for when the current field should be kept. BitSize is the width of 6525 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 6526 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 6527 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 6528 unsigned KeepOldMask, unsigned BitSize) const { 6529 MachineFunction &MF = *MBB->getParent(); 6530 const SystemZInstrInfo *TII = 6531 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6532 MachineRegisterInfo &MRI = MF.getRegInfo(); 6533 bool IsSubWord = (BitSize < 32); 6534 6535 // Extract the operands. Base can be a register or a frame index. 6536 unsigned Dest = MI.getOperand(0).getReg(); 6537 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6538 int64_t Disp = MI.getOperand(2).getImm(); 6539 unsigned Src2 = MI.getOperand(3).getReg(); 6540 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 6541 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 6542 DebugLoc DL = MI.getDebugLoc(); 6543 if (IsSubWord) 6544 BitSize = MI.getOperand(6).getImm(); 6545 6546 // Subword operations use 32-bit registers. 6547 const TargetRegisterClass *RC = (BitSize <= 32 ? 6548 &SystemZ::GR32BitRegClass : 6549 &SystemZ::GR64BitRegClass); 6550 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6551 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6552 6553 // Get the right opcodes for the displacement. 6554 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6555 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6556 assert(LOpcode && CSOpcode && "Displacement out of range"); 6557 6558 // Create virtual registers for temporary results. 6559 unsigned OrigVal = MRI.createVirtualRegister(RC); 6560 unsigned OldVal = MRI.createVirtualRegister(RC); 6561 unsigned NewVal = MRI.createVirtualRegister(RC); 6562 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6563 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 6564 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6565 6566 // Insert 3 basic blocks for the loop. 6567 MachineBasicBlock *StartMBB = MBB; 6568 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6569 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6570 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 6571 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 6572 6573 // StartMBB: 6574 // ... 6575 // %OrigVal = L Disp(%Base) 6576 // # fall through to LoopMMB 6577 MBB = StartMBB; 6578 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 6579 MBB->addSuccessor(LoopMBB); 6580 6581 // LoopMBB: 6582 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 6583 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 6584 // CompareOpcode %RotatedOldVal, %Src2 6585 // BRC KeepOldMask, UpdateMBB 6586 MBB = LoopMBB; 6587 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6588 .addReg(OrigVal).addMBB(StartMBB) 6589 .addReg(Dest).addMBB(UpdateMBB); 6590 if (IsSubWord) 6591 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 6592 .addReg(OldVal).addReg(BitShift).addImm(0); 6593 BuildMI(MBB, DL, TII->get(CompareOpcode)) 6594 .addReg(RotatedOldVal).addReg(Src2); 6595 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6596 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 6597 MBB->addSuccessor(UpdateMBB); 6598 MBB->addSuccessor(UseAltMBB); 6599 6600 // UseAltMBB: 6601 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 6602 // # fall through to UpdateMMB 6603 MBB = UseAltMBB; 6604 if (IsSubWord) 6605 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 6606 .addReg(RotatedOldVal).addReg(Src2) 6607 .addImm(32).addImm(31 + BitSize).addImm(0); 6608 MBB->addSuccessor(UpdateMBB); 6609 6610 // UpdateMBB: 6611 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 6612 // [ %RotatedAltVal, UseAltMBB ] 6613 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 6614 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 6615 // JNE LoopMBB 6616 // # fall through to DoneMMB 6617 MBB = UpdateMBB; 6618 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 6619 .addReg(RotatedOldVal).addMBB(LoopMBB) 6620 .addReg(RotatedAltVal).addMBB(UseAltMBB); 6621 if (IsSubWord) 6622 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 6623 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 6624 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 6625 .addReg(OldVal) 6626 .addReg(NewVal) 6627 .add(Base) 6628 .addImm(Disp); 6629 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6630 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6631 MBB->addSuccessor(LoopMBB); 6632 MBB->addSuccessor(DoneMBB); 6633 6634 MI.eraseFromParent(); 6635 return DoneMBB; 6636 } 6637 6638 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 6639 // instruction MI. 6640 MachineBasicBlock * 6641 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 6642 MachineBasicBlock *MBB) const { 6643 6644 MachineFunction &MF = *MBB->getParent(); 6645 const SystemZInstrInfo *TII = 6646 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6647 MachineRegisterInfo &MRI = MF.getRegInfo(); 6648 6649 // Extract the operands. Base can be a register or a frame index. 6650 unsigned Dest = MI.getOperand(0).getReg(); 6651 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6652 int64_t Disp = MI.getOperand(2).getImm(); 6653 unsigned OrigCmpVal = MI.getOperand(3).getReg(); 6654 unsigned OrigSwapVal = MI.getOperand(4).getReg(); 6655 unsigned BitShift = MI.getOperand(5).getReg(); 6656 unsigned NegBitShift = MI.getOperand(6).getReg(); 6657 int64_t BitSize = MI.getOperand(7).getImm(); 6658 DebugLoc DL = MI.getDebugLoc(); 6659 6660 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 6661 6662 // Get the right opcodes for the displacement. 6663 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 6664 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 6665 assert(LOpcode && CSOpcode && "Displacement out of range"); 6666 6667 // Create virtual registers for temporary results. 6668 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 6669 unsigned OldVal = MRI.createVirtualRegister(RC); 6670 unsigned CmpVal = MRI.createVirtualRegister(RC); 6671 unsigned SwapVal = MRI.createVirtualRegister(RC); 6672 unsigned StoreVal = MRI.createVirtualRegister(RC); 6673 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 6674 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 6675 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 6676 6677 // Insert 2 basic blocks for the loop. 6678 MachineBasicBlock *StartMBB = MBB; 6679 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6680 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6681 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 6682 6683 // StartMBB: 6684 // ... 6685 // %OrigOldVal = L Disp(%Base) 6686 // # fall through to LoopMMB 6687 MBB = StartMBB; 6688 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 6689 .add(Base) 6690 .addImm(Disp) 6691 .addReg(0); 6692 MBB->addSuccessor(LoopMBB); 6693 6694 // LoopMBB: 6695 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 6696 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 6697 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 6698 // %Dest = RLL %OldVal, BitSize(%BitShift) 6699 // ^^ The low BitSize bits contain the field 6700 // of interest. 6701 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 6702 // ^^ Replace the upper 32-BitSize bits of the 6703 // comparison value with those that we loaded, 6704 // so that we can use a full word comparison. 6705 // CR %Dest, %RetryCmpVal 6706 // JNE DoneMBB 6707 // # Fall through to SetMBB 6708 MBB = LoopMBB; 6709 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6710 .addReg(OrigOldVal).addMBB(StartMBB) 6711 .addReg(RetryOldVal).addMBB(SetMBB); 6712 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 6713 .addReg(OrigCmpVal).addMBB(StartMBB) 6714 .addReg(RetryCmpVal).addMBB(SetMBB); 6715 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 6716 .addReg(OrigSwapVal).addMBB(StartMBB) 6717 .addReg(RetrySwapVal).addMBB(SetMBB); 6718 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 6719 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 6720 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 6721 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 6722 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 6723 .addReg(Dest).addReg(RetryCmpVal); 6724 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6725 .addImm(SystemZ::CCMASK_ICMP) 6726 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 6727 MBB->addSuccessor(DoneMBB); 6728 MBB->addSuccessor(SetMBB); 6729 6730 // SetMBB: 6731 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 6732 // ^^ Replace the upper 32-BitSize bits of the new 6733 // value with those that we loaded. 6734 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 6735 // ^^ Rotate the new field to its proper position. 6736 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 6737 // JNE LoopMBB 6738 // # fall through to ExitMMB 6739 MBB = SetMBB; 6740 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 6741 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 6742 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 6743 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 6744 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 6745 .addReg(OldVal) 6746 .addReg(StoreVal) 6747 .add(Base) 6748 .addImm(Disp); 6749 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6750 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6751 MBB->addSuccessor(LoopMBB); 6752 MBB->addSuccessor(DoneMBB); 6753 6754 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 6755 // to the block after the loop. At this point, CC may have been defined 6756 // either by the CR in LoopMBB or by the CS in SetMBB. 6757 if (!MI.registerDefIsDead(SystemZ::CC)) 6758 DoneMBB->addLiveIn(SystemZ::CC); 6759 6760 MI.eraseFromParent(); 6761 return DoneMBB; 6762 } 6763 6764 // Emit a move from two GR64s to a GR128. 6765 MachineBasicBlock * 6766 SystemZTargetLowering::emitPair128(MachineInstr &MI, 6767 MachineBasicBlock *MBB) const { 6768 MachineFunction &MF = *MBB->getParent(); 6769 const SystemZInstrInfo *TII = 6770 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6771 MachineRegisterInfo &MRI = MF.getRegInfo(); 6772 DebugLoc DL = MI.getDebugLoc(); 6773 6774 unsigned Dest = MI.getOperand(0).getReg(); 6775 unsigned Hi = MI.getOperand(1).getReg(); 6776 unsigned Lo = MI.getOperand(2).getReg(); 6777 unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6778 unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6779 6780 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 6781 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 6782 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 6783 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 6784 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 6785 6786 MI.eraseFromParent(); 6787 return MBB; 6788 } 6789 6790 // Emit an extension from a GR64 to a GR128. ClearEven is true 6791 // if the high register of the GR128 value must be cleared or false if 6792 // it's "don't care". 6793 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 6794 MachineBasicBlock *MBB, 6795 bool ClearEven) const { 6796 MachineFunction &MF = *MBB->getParent(); 6797 const SystemZInstrInfo *TII = 6798 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6799 MachineRegisterInfo &MRI = MF.getRegInfo(); 6800 DebugLoc DL = MI.getDebugLoc(); 6801 6802 unsigned Dest = MI.getOperand(0).getReg(); 6803 unsigned Src = MI.getOperand(1).getReg(); 6804 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6805 6806 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 6807 if (ClearEven) { 6808 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6809 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 6810 6811 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 6812 .addImm(0); 6813 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 6814 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 6815 In128 = NewIn128; 6816 } 6817 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 6818 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 6819 6820 MI.eraseFromParent(); 6821 return MBB; 6822 } 6823 6824 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 6825 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6826 MachineFunction &MF = *MBB->getParent(); 6827 const SystemZInstrInfo *TII = 6828 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6829 MachineRegisterInfo &MRI = MF.getRegInfo(); 6830 DebugLoc DL = MI.getDebugLoc(); 6831 6832 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 6833 uint64_t DestDisp = MI.getOperand(1).getImm(); 6834 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 6835 uint64_t SrcDisp = MI.getOperand(3).getImm(); 6836 uint64_t Length = MI.getOperand(4).getImm(); 6837 6838 // When generating more than one CLC, all but the last will need to 6839 // branch to the end when a difference is found. 6840 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 6841 splitBlockAfter(MI, MBB) : nullptr); 6842 6843 // Check for the loop form, in which operand 5 is the trip count. 6844 if (MI.getNumExplicitOperands() > 5) { 6845 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 6846 6847 uint64_t StartCountReg = MI.getOperand(5).getReg(); 6848 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 6849 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 6850 forceReg(MI, DestBase, TII)); 6851 6852 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 6853 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 6854 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 6855 MRI.createVirtualRegister(RC)); 6856 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 6857 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 6858 MRI.createVirtualRegister(RC)); 6859 6860 RC = &SystemZ::GR64BitRegClass; 6861 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 6862 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 6863 6864 MachineBasicBlock *StartMBB = MBB; 6865 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6866 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6867 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 6868 6869 // StartMBB: 6870 // # fall through to LoopMMB 6871 MBB->addSuccessor(LoopMBB); 6872 6873 // LoopMBB: 6874 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 6875 // [ %NextDestReg, NextMBB ] 6876 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 6877 // [ %NextSrcReg, NextMBB ] 6878 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 6879 // [ %NextCountReg, NextMBB ] 6880 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 6881 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 6882 // ( JLH EndMBB ) 6883 // 6884 // The prefetch is used only for MVC. The JLH is used only for CLC. 6885 MBB = LoopMBB; 6886 6887 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 6888 .addReg(StartDestReg).addMBB(StartMBB) 6889 .addReg(NextDestReg).addMBB(NextMBB); 6890 if (!HaveSingleBase) 6891 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 6892 .addReg(StartSrcReg).addMBB(StartMBB) 6893 .addReg(NextSrcReg).addMBB(NextMBB); 6894 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 6895 .addReg(StartCountReg).addMBB(StartMBB) 6896 .addReg(NextCountReg).addMBB(NextMBB); 6897 if (Opcode == SystemZ::MVC) 6898 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 6899 .addImm(SystemZ::PFD_WRITE) 6900 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 6901 BuildMI(MBB, DL, TII->get(Opcode)) 6902 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 6903 .addReg(ThisSrcReg).addImm(SrcDisp); 6904 if (EndMBB) { 6905 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6906 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6907 .addMBB(EndMBB); 6908 MBB->addSuccessor(EndMBB); 6909 MBB->addSuccessor(NextMBB); 6910 } 6911 6912 // NextMBB: 6913 // %NextDestReg = LA 256(%ThisDestReg) 6914 // %NextSrcReg = LA 256(%ThisSrcReg) 6915 // %NextCountReg = AGHI %ThisCountReg, -1 6916 // CGHI %NextCountReg, 0 6917 // JLH LoopMBB 6918 // # fall through to DoneMMB 6919 // 6920 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 6921 MBB = NextMBB; 6922 6923 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 6924 .addReg(ThisDestReg).addImm(256).addReg(0); 6925 if (!HaveSingleBase) 6926 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 6927 .addReg(ThisSrcReg).addImm(256).addReg(0); 6928 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 6929 .addReg(ThisCountReg).addImm(-1); 6930 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 6931 .addReg(NextCountReg).addImm(0); 6932 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6933 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6934 .addMBB(LoopMBB); 6935 MBB->addSuccessor(LoopMBB); 6936 MBB->addSuccessor(DoneMBB); 6937 6938 DestBase = MachineOperand::CreateReg(NextDestReg, false); 6939 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 6940 Length &= 255; 6941 if (EndMBB && !Length) 6942 // If the loop handled the whole CLC range, DoneMBB will be empty with 6943 // CC live-through into EndMBB, so add it as live-in. 6944 DoneMBB->addLiveIn(SystemZ::CC); 6945 MBB = DoneMBB; 6946 } 6947 // Handle any remaining bytes with straight-line code. 6948 while (Length > 0) { 6949 uint64_t ThisLength = std::min(Length, uint64_t(256)); 6950 // The previous iteration might have created out-of-range displacements. 6951 // Apply them using LAY if so. 6952 if (!isUInt<12>(DestDisp)) { 6953 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6954 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 6955 .add(DestBase) 6956 .addImm(DestDisp) 6957 .addReg(0); 6958 DestBase = MachineOperand::CreateReg(Reg, false); 6959 DestDisp = 0; 6960 } 6961 if (!isUInt<12>(SrcDisp)) { 6962 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6963 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 6964 .add(SrcBase) 6965 .addImm(SrcDisp) 6966 .addReg(0); 6967 SrcBase = MachineOperand::CreateReg(Reg, false); 6968 SrcDisp = 0; 6969 } 6970 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 6971 .add(DestBase) 6972 .addImm(DestDisp) 6973 .addImm(ThisLength) 6974 .add(SrcBase) 6975 .addImm(SrcDisp) 6976 .setMemRefs(MI.memoperands()); 6977 DestDisp += ThisLength; 6978 SrcDisp += ThisLength; 6979 Length -= ThisLength; 6980 // If there's another CLC to go, branch to the end if a difference 6981 // was found. 6982 if (EndMBB && Length > 0) { 6983 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 6984 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6985 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6986 .addMBB(EndMBB); 6987 MBB->addSuccessor(EndMBB); 6988 MBB->addSuccessor(NextMBB); 6989 MBB = NextMBB; 6990 } 6991 } 6992 if (EndMBB) { 6993 MBB->addSuccessor(EndMBB); 6994 MBB = EndMBB; 6995 MBB->addLiveIn(SystemZ::CC); 6996 } 6997 6998 MI.eraseFromParent(); 6999 return MBB; 7000 } 7001 7002 // Decompose string pseudo-instruction MI into a loop that continually performs 7003 // Opcode until CC != 3. 7004 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7005 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7006 MachineFunction &MF = *MBB->getParent(); 7007 const SystemZInstrInfo *TII = 7008 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7009 MachineRegisterInfo &MRI = MF.getRegInfo(); 7010 DebugLoc DL = MI.getDebugLoc(); 7011 7012 uint64_t End1Reg = MI.getOperand(0).getReg(); 7013 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7014 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7015 uint64_t CharReg = MI.getOperand(3).getReg(); 7016 7017 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7018 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7019 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7020 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7021 7022 MachineBasicBlock *StartMBB = MBB; 7023 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7024 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7025 7026 // StartMBB: 7027 // # fall through to LoopMMB 7028 MBB->addSuccessor(LoopMBB); 7029 7030 // LoopMBB: 7031 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7032 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7033 // R0L = %CharReg 7034 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7035 // JO LoopMBB 7036 // # fall through to DoneMMB 7037 // 7038 // The load of R0L can be hoisted by post-RA LICM. 7039 MBB = LoopMBB; 7040 7041 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7042 .addReg(Start1Reg).addMBB(StartMBB) 7043 .addReg(End1Reg).addMBB(LoopMBB); 7044 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7045 .addReg(Start2Reg).addMBB(StartMBB) 7046 .addReg(End2Reg).addMBB(LoopMBB); 7047 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7048 BuildMI(MBB, DL, TII->get(Opcode)) 7049 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7050 .addReg(This1Reg).addReg(This2Reg); 7051 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7052 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7053 MBB->addSuccessor(LoopMBB); 7054 MBB->addSuccessor(DoneMBB); 7055 7056 DoneMBB->addLiveIn(SystemZ::CC); 7057 7058 MI.eraseFromParent(); 7059 return DoneMBB; 7060 } 7061 7062 // Update TBEGIN instruction with final opcode and register clobbers. 7063 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7064 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7065 bool NoFloat) const { 7066 MachineFunction &MF = *MBB->getParent(); 7067 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7068 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7069 7070 // Update opcode. 7071 MI.setDesc(TII->get(Opcode)); 7072 7073 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7074 // Make sure to add the corresponding GRSM bits if they are missing. 7075 uint64_t Control = MI.getOperand(2).getImm(); 7076 static const unsigned GPRControlBit[16] = { 7077 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7078 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7079 }; 7080 Control |= GPRControlBit[15]; 7081 if (TFI->hasFP(MF)) 7082 Control |= GPRControlBit[11]; 7083 MI.getOperand(2).setImm(Control); 7084 7085 // Add GPR clobbers. 7086 for (int I = 0; I < 16; I++) { 7087 if ((Control & GPRControlBit[I]) == 0) { 7088 unsigned Reg = SystemZMC::GR64Regs[I]; 7089 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7090 } 7091 } 7092 7093 // Add FPR/VR clobbers. 7094 if (!NoFloat && (Control & 4) != 0) { 7095 if (Subtarget.hasVector()) { 7096 for (int I = 0; I < 32; I++) { 7097 unsigned Reg = SystemZMC::VR128Regs[I]; 7098 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7099 } 7100 } else { 7101 for (int I = 0; I < 16; I++) { 7102 unsigned Reg = SystemZMC::FP64Regs[I]; 7103 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7104 } 7105 } 7106 } 7107 7108 return MBB; 7109 } 7110 7111 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 7112 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7113 MachineFunction &MF = *MBB->getParent(); 7114 MachineRegisterInfo *MRI = &MF.getRegInfo(); 7115 const SystemZInstrInfo *TII = 7116 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7117 DebugLoc DL = MI.getDebugLoc(); 7118 7119 unsigned SrcReg = MI.getOperand(0).getReg(); 7120 7121 // Create new virtual register of the same class as source. 7122 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7123 unsigned DstReg = MRI->createVirtualRegister(RC); 7124 7125 // Replace pseudo with a normal load-and-test that models the def as 7126 // well. 7127 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7128 .addReg(SrcReg); 7129 MI.eraseFromParent(); 7130 7131 return MBB; 7132 } 7133 7134 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7135 MachineInstr &MI, MachineBasicBlock *MBB) const { 7136 switch (MI.getOpcode()) { 7137 case SystemZ::Select32: 7138 case SystemZ::Select64: 7139 case SystemZ::SelectF32: 7140 case SystemZ::SelectF64: 7141 case SystemZ::SelectF128: 7142 case SystemZ::SelectVR32: 7143 case SystemZ::SelectVR64: 7144 case SystemZ::SelectVR128: 7145 return emitSelect(MI, MBB); 7146 7147 case SystemZ::CondStore8Mux: 7148 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7149 case SystemZ::CondStore8MuxInv: 7150 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7151 case SystemZ::CondStore16Mux: 7152 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7153 case SystemZ::CondStore16MuxInv: 7154 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7155 case SystemZ::CondStore32Mux: 7156 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7157 case SystemZ::CondStore32MuxInv: 7158 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7159 case SystemZ::CondStore8: 7160 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7161 case SystemZ::CondStore8Inv: 7162 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7163 case SystemZ::CondStore16: 7164 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7165 case SystemZ::CondStore16Inv: 7166 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7167 case SystemZ::CondStore32: 7168 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7169 case SystemZ::CondStore32Inv: 7170 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7171 case SystemZ::CondStore64: 7172 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7173 case SystemZ::CondStore64Inv: 7174 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7175 case SystemZ::CondStoreF32: 7176 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7177 case SystemZ::CondStoreF32Inv: 7178 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7179 case SystemZ::CondStoreF64: 7180 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7181 case SystemZ::CondStoreF64Inv: 7182 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7183 7184 case SystemZ::PAIR128: 7185 return emitPair128(MI, MBB); 7186 case SystemZ::AEXT128: 7187 return emitExt128(MI, MBB, false); 7188 case SystemZ::ZEXT128: 7189 return emitExt128(MI, MBB, true); 7190 7191 case SystemZ::ATOMIC_SWAPW: 7192 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7193 case SystemZ::ATOMIC_SWAP_32: 7194 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7195 case SystemZ::ATOMIC_SWAP_64: 7196 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7197 7198 case SystemZ::ATOMIC_LOADW_AR: 7199 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7200 case SystemZ::ATOMIC_LOADW_AFI: 7201 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7202 case SystemZ::ATOMIC_LOAD_AR: 7203 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7204 case SystemZ::ATOMIC_LOAD_AHI: 7205 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7206 case SystemZ::ATOMIC_LOAD_AFI: 7207 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7208 case SystemZ::ATOMIC_LOAD_AGR: 7209 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7210 case SystemZ::ATOMIC_LOAD_AGHI: 7211 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7212 case SystemZ::ATOMIC_LOAD_AGFI: 7213 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7214 7215 case SystemZ::ATOMIC_LOADW_SR: 7216 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7217 case SystemZ::ATOMIC_LOAD_SR: 7218 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7219 case SystemZ::ATOMIC_LOAD_SGR: 7220 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7221 7222 case SystemZ::ATOMIC_LOADW_NR: 7223 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7224 case SystemZ::ATOMIC_LOADW_NILH: 7225 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7226 case SystemZ::ATOMIC_LOAD_NR: 7227 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7228 case SystemZ::ATOMIC_LOAD_NILL: 7229 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7230 case SystemZ::ATOMIC_LOAD_NILH: 7231 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7232 case SystemZ::ATOMIC_LOAD_NILF: 7233 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7234 case SystemZ::ATOMIC_LOAD_NGR: 7235 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7236 case SystemZ::ATOMIC_LOAD_NILL64: 7237 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7238 case SystemZ::ATOMIC_LOAD_NILH64: 7239 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7240 case SystemZ::ATOMIC_LOAD_NIHL64: 7241 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 7242 case SystemZ::ATOMIC_LOAD_NIHH64: 7243 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 7244 case SystemZ::ATOMIC_LOAD_NILF64: 7245 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 7246 case SystemZ::ATOMIC_LOAD_NIHF64: 7247 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 7248 7249 case SystemZ::ATOMIC_LOADW_OR: 7250 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 7251 case SystemZ::ATOMIC_LOADW_OILH: 7252 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 7253 case SystemZ::ATOMIC_LOAD_OR: 7254 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 7255 case SystemZ::ATOMIC_LOAD_OILL: 7256 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 7257 case SystemZ::ATOMIC_LOAD_OILH: 7258 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 7259 case SystemZ::ATOMIC_LOAD_OILF: 7260 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 7261 case SystemZ::ATOMIC_LOAD_OGR: 7262 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 7263 case SystemZ::ATOMIC_LOAD_OILL64: 7264 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 7265 case SystemZ::ATOMIC_LOAD_OILH64: 7266 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 7267 case SystemZ::ATOMIC_LOAD_OIHL64: 7268 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 7269 case SystemZ::ATOMIC_LOAD_OIHH64: 7270 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 7271 case SystemZ::ATOMIC_LOAD_OILF64: 7272 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 7273 case SystemZ::ATOMIC_LOAD_OIHF64: 7274 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 7275 7276 case SystemZ::ATOMIC_LOADW_XR: 7277 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 7278 case SystemZ::ATOMIC_LOADW_XILF: 7279 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 7280 case SystemZ::ATOMIC_LOAD_XR: 7281 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 7282 case SystemZ::ATOMIC_LOAD_XILF: 7283 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 7284 case SystemZ::ATOMIC_LOAD_XGR: 7285 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 7286 case SystemZ::ATOMIC_LOAD_XILF64: 7287 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 7288 case SystemZ::ATOMIC_LOAD_XIHF64: 7289 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 7290 7291 case SystemZ::ATOMIC_LOADW_NRi: 7292 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 7293 case SystemZ::ATOMIC_LOADW_NILHi: 7294 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 7295 case SystemZ::ATOMIC_LOAD_NRi: 7296 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 7297 case SystemZ::ATOMIC_LOAD_NILLi: 7298 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 7299 case SystemZ::ATOMIC_LOAD_NILHi: 7300 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 7301 case SystemZ::ATOMIC_LOAD_NILFi: 7302 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 7303 case SystemZ::ATOMIC_LOAD_NGRi: 7304 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 7305 case SystemZ::ATOMIC_LOAD_NILL64i: 7306 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 7307 case SystemZ::ATOMIC_LOAD_NILH64i: 7308 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 7309 case SystemZ::ATOMIC_LOAD_NIHL64i: 7310 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 7311 case SystemZ::ATOMIC_LOAD_NIHH64i: 7312 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 7313 case SystemZ::ATOMIC_LOAD_NILF64i: 7314 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 7315 case SystemZ::ATOMIC_LOAD_NIHF64i: 7316 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 7317 7318 case SystemZ::ATOMIC_LOADW_MIN: 7319 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7320 SystemZ::CCMASK_CMP_LE, 0); 7321 case SystemZ::ATOMIC_LOAD_MIN_32: 7322 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7323 SystemZ::CCMASK_CMP_LE, 32); 7324 case SystemZ::ATOMIC_LOAD_MIN_64: 7325 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7326 SystemZ::CCMASK_CMP_LE, 64); 7327 7328 case SystemZ::ATOMIC_LOADW_MAX: 7329 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7330 SystemZ::CCMASK_CMP_GE, 0); 7331 case SystemZ::ATOMIC_LOAD_MAX_32: 7332 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7333 SystemZ::CCMASK_CMP_GE, 32); 7334 case SystemZ::ATOMIC_LOAD_MAX_64: 7335 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7336 SystemZ::CCMASK_CMP_GE, 64); 7337 7338 case SystemZ::ATOMIC_LOADW_UMIN: 7339 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7340 SystemZ::CCMASK_CMP_LE, 0); 7341 case SystemZ::ATOMIC_LOAD_UMIN_32: 7342 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7343 SystemZ::CCMASK_CMP_LE, 32); 7344 case SystemZ::ATOMIC_LOAD_UMIN_64: 7345 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7346 SystemZ::CCMASK_CMP_LE, 64); 7347 7348 case SystemZ::ATOMIC_LOADW_UMAX: 7349 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7350 SystemZ::CCMASK_CMP_GE, 0); 7351 case SystemZ::ATOMIC_LOAD_UMAX_32: 7352 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7353 SystemZ::CCMASK_CMP_GE, 32); 7354 case SystemZ::ATOMIC_LOAD_UMAX_64: 7355 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7356 SystemZ::CCMASK_CMP_GE, 64); 7357 7358 case SystemZ::ATOMIC_CMP_SWAPW: 7359 return emitAtomicCmpSwapW(MI, MBB); 7360 case SystemZ::MVCSequence: 7361 case SystemZ::MVCLoop: 7362 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 7363 case SystemZ::NCSequence: 7364 case SystemZ::NCLoop: 7365 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 7366 case SystemZ::OCSequence: 7367 case SystemZ::OCLoop: 7368 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 7369 case SystemZ::XCSequence: 7370 case SystemZ::XCLoop: 7371 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 7372 case SystemZ::CLCSequence: 7373 case SystemZ::CLCLoop: 7374 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 7375 case SystemZ::CLSTLoop: 7376 return emitStringWrapper(MI, MBB, SystemZ::CLST); 7377 case SystemZ::MVSTLoop: 7378 return emitStringWrapper(MI, MBB, SystemZ::MVST); 7379 case SystemZ::SRSTLoop: 7380 return emitStringWrapper(MI, MBB, SystemZ::SRST); 7381 case SystemZ::TBEGIN: 7382 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 7383 case SystemZ::TBEGIN_nofloat: 7384 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 7385 case SystemZ::TBEGINC: 7386 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 7387 case SystemZ::LTEBRCompare_VecPseudo: 7388 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 7389 case SystemZ::LTDBRCompare_VecPseudo: 7390 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 7391 case SystemZ::LTXBRCompare_VecPseudo: 7392 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 7393 7394 case TargetOpcode::STACKMAP: 7395 case TargetOpcode::PATCHPOINT: 7396 return emitPatchPoint(MI, MBB); 7397 7398 default: 7399 llvm_unreachable("Unexpected instr type to insert"); 7400 } 7401 } 7402 7403 // This is only used by the isel schedulers, and is needed only to prevent 7404 // compiler from crashing when list-ilp is used. 7405 const TargetRegisterClass * 7406 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 7407 if (VT == MVT::Untyped) 7408 return &SystemZ::ADDR128BitRegClass; 7409 return TargetLowering::getRepRegClassFor(VT); 7410 } 7411