1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 84 85 // Set up the register classes. 86 if (Subtarget.hasHighWord()) 87 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 88 else 89 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 90 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 91 if (!useSoftFloat()) { 92 if (Subtarget.hasVector()) { 93 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 94 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 95 } else { 96 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 98 } 99 if (Subtarget.hasVectorEnhancements1()) 100 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 101 else 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 } 113 114 // Compute derived properties from the register classes 115 computeRegisterProperties(Subtarget.getRegisterInfo()); 116 117 // Set up special registers. 118 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 119 120 // TODO: It may be better to default to latency-oriented scheduling, however 121 // LLVM's current latency-oriented scheduler can't handle physreg definitions 122 // such as SystemZ has with CC, so set this to the register-pressure 123 // scheduler, because it can. 124 setSchedulingPreference(Sched::RegPressure); 125 126 setBooleanContents(ZeroOrOneBooleanContent); 127 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 128 129 // Instructions are strings of 2-byte aligned 2-byte values. 130 setMinFunctionAlignment(Align(2)); 131 // For performance reasons we prefer 16-byte alignment. 132 setPrefFunctionAlignment(Align(16)); 133 134 // Handle operations that are handled in a similar way for all types. 135 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 136 I <= MVT::LAST_FP_VALUETYPE; 137 ++I) { 138 MVT VT = MVT::SimpleValueType(I); 139 if (isTypeLegal(VT)) { 140 // Lower SET_CC into an IPM-based sequence. 141 setOperationAction(ISD::SETCC, VT, Custom); 142 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 143 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 144 145 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 146 setOperationAction(ISD::SELECT, VT, Expand); 147 148 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 149 setOperationAction(ISD::SELECT_CC, VT, Custom); 150 setOperationAction(ISD::BR_CC, VT, Custom); 151 } 152 } 153 154 // Expand jump table branches as address arithmetic followed by an 155 // indirect jump. 156 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 157 158 // Expand BRCOND into a BR_CC (see above). 159 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 160 161 // Handle integer types. 162 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 163 I <= MVT::LAST_INTEGER_VALUETYPE; 164 ++I) { 165 MVT VT = MVT::SimpleValueType(I); 166 if (isTypeLegal(VT)) { 167 // Expand individual DIV and REMs into DIVREMs. 168 setOperationAction(ISD::SDIV, VT, Expand); 169 setOperationAction(ISD::UDIV, VT, Expand); 170 setOperationAction(ISD::SREM, VT, Expand); 171 setOperationAction(ISD::UREM, VT, Expand); 172 setOperationAction(ISD::SDIVREM, VT, Custom); 173 setOperationAction(ISD::UDIVREM, VT, Custom); 174 175 // Support addition/subtraction with overflow. 176 setOperationAction(ISD::SADDO, VT, Custom); 177 setOperationAction(ISD::SSUBO, VT, Custom); 178 179 // Support addition/subtraction with carry. 180 setOperationAction(ISD::UADDO, VT, Custom); 181 setOperationAction(ISD::USUBO, VT, Custom); 182 183 // Support carry in as value rather than glue. 184 setOperationAction(ISD::ADDCARRY, VT, Custom); 185 setOperationAction(ISD::SUBCARRY, VT, Custom); 186 187 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 188 // stores, putting a serialization instruction after the stores. 189 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 190 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 191 192 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 193 // available, or if the operand is constant. 194 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 195 196 // Use POPCNT on z196 and above. 197 if (Subtarget.hasPopulationCount()) 198 setOperationAction(ISD::CTPOP, VT, Custom); 199 else 200 setOperationAction(ISD::CTPOP, VT, Expand); 201 202 // No special instructions for these. 203 setOperationAction(ISD::CTTZ, VT, Expand); 204 setOperationAction(ISD::ROTR, VT, Expand); 205 206 // Use *MUL_LOHI where possible instead of MULH*. 207 setOperationAction(ISD::MULHS, VT, Expand); 208 setOperationAction(ISD::MULHU, VT, Expand); 209 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 210 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 211 212 // Only z196 and above have native support for conversions to unsigned. 213 // On z10, promoting to i64 doesn't generate an inexact condition for 214 // values that are outside the i32 range but in the i64 range, so use 215 // the default expansion. 216 if (!Subtarget.hasFPExtension()) 217 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 218 219 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 220 // default to Expand, so need to be modified to Legal where appropriate. 221 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 222 if (Subtarget.hasFPExtension()) 223 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 224 225 // And similarly for STRICT_[SU]INT_TO_FP. 226 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 227 if (Subtarget.hasFPExtension()) 228 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 229 } 230 } 231 232 // Type legalization will convert 8- and 16-bit atomic operations into 233 // forms that operate on i32s (but still keeping the original memory VT). 234 // Lower them into full i32 operations. 235 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 236 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 237 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 238 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 239 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 240 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 242 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 243 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 244 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 245 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 246 247 // Even though i128 is not a legal type, we still need to custom lower 248 // the atomic operations in order to exploit SystemZ instructions. 249 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 250 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 251 252 // We can use the CC result of compare-and-swap to implement 253 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 254 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 255 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 256 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 257 258 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 259 260 // Traps are legal, as we will convert them to "j .+2". 261 setOperationAction(ISD::TRAP, MVT::Other, Legal); 262 263 // z10 has instructions for signed but not unsigned FP conversion. 264 // Handle unsigned 32-bit types as signed 64-bit types. 265 if (!Subtarget.hasFPExtension()) { 266 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 267 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 268 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 269 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 270 } 271 272 // We have native support for a 64-bit CTLZ, via FLOGR. 273 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 274 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 275 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 276 277 // On z15 we have native support for a 64-bit CTPOP. 278 if (Subtarget.hasMiscellaneousExtensions3()) { 279 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 280 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 281 } 282 283 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 284 setOperationAction(ISD::OR, MVT::i64, Custom); 285 286 // FIXME: Can we support these natively? 287 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 288 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 289 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 290 291 // We have native instructions for i8, i16 and i32 extensions, but not i1. 292 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 293 for (MVT VT : MVT::integer_valuetypes()) { 294 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 295 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 296 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 297 } 298 299 // Handle the various types of symbolic address. 300 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 301 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 302 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 303 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 304 setOperationAction(ISD::JumpTable, PtrVT, Custom); 305 306 // We need to handle dynamic allocations specially because of the 307 // 160-byte area at the bottom of the stack. 308 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 309 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 310 311 // Use custom expanders so that we can force the function to use 312 // a frame pointer. 313 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 314 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 315 316 // Handle prefetches with PFD or PFDRL. 317 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 318 319 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 320 // Assume by default that all vector operations need to be expanded. 321 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 322 if (getOperationAction(Opcode, VT) == Legal) 323 setOperationAction(Opcode, VT, Expand); 324 325 // Likewise all truncating stores and extending loads. 326 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 327 setTruncStoreAction(VT, InnerVT, Expand); 328 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 329 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 330 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 331 } 332 333 if (isTypeLegal(VT)) { 334 // These operations are legal for anything that can be stored in a 335 // vector register, even if there is no native support for the format 336 // as such. In particular, we can do these for v4f32 even though there 337 // are no specific instructions for that format. 338 setOperationAction(ISD::LOAD, VT, Legal); 339 setOperationAction(ISD::STORE, VT, Legal); 340 setOperationAction(ISD::VSELECT, VT, Legal); 341 setOperationAction(ISD::BITCAST, VT, Legal); 342 setOperationAction(ISD::UNDEF, VT, Legal); 343 344 // Likewise, except that we need to replace the nodes with something 345 // more specific. 346 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 347 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 348 } 349 } 350 351 // Handle integer vector types. 352 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 353 if (isTypeLegal(VT)) { 354 // These operations have direct equivalents. 355 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 356 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 357 setOperationAction(ISD::ADD, VT, Legal); 358 setOperationAction(ISD::SUB, VT, Legal); 359 if (VT != MVT::v2i64) 360 setOperationAction(ISD::MUL, VT, Legal); 361 setOperationAction(ISD::AND, VT, Legal); 362 setOperationAction(ISD::OR, VT, Legal); 363 setOperationAction(ISD::XOR, VT, Legal); 364 if (Subtarget.hasVectorEnhancements1()) 365 setOperationAction(ISD::CTPOP, VT, Legal); 366 else 367 setOperationAction(ISD::CTPOP, VT, Custom); 368 setOperationAction(ISD::CTTZ, VT, Legal); 369 setOperationAction(ISD::CTLZ, VT, Legal); 370 371 // Convert a GPR scalar to a vector by inserting it into element 0. 372 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 373 374 // Use a series of unpacks for extensions. 375 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 376 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 377 378 // Detect shifts by a scalar amount and convert them into 379 // V*_BY_SCALAR. 380 setOperationAction(ISD::SHL, VT, Custom); 381 setOperationAction(ISD::SRA, VT, Custom); 382 setOperationAction(ISD::SRL, VT, Custom); 383 384 // At present ROTL isn't matched by DAGCombiner. ROTR should be 385 // converted into ROTL. 386 setOperationAction(ISD::ROTL, VT, Expand); 387 setOperationAction(ISD::ROTR, VT, Expand); 388 389 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 390 // and inverting the result as necessary. 391 setOperationAction(ISD::SETCC, VT, Custom); 392 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 393 if (Subtarget.hasVectorEnhancements1()) 394 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 395 } 396 } 397 398 if (Subtarget.hasVector()) { 399 // There should be no need to check for float types other than v2f64 400 // since <2 x f32> isn't a legal type. 401 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 402 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 403 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 404 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 405 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 406 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 407 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 408 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 409 410 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 411 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 412 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 413 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 414 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 415 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 416 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 417 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 418 } 419 420 if (Subtarget.hasVectorEnhancements2()) { 421 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 422 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 423 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 424 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 425 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 426 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 427 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 428 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 429 430 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 431 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 432 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 433 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 434 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 435 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 436 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 437 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 438 } 439 440 // Handle floating-point types. 441 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 442 I <= MVT::LAST_FP_VALUETYPE; 443 ++I) { 444 MVT VT = MVT::SimpleValueType(I); 445 if (isTypeLegal(VT)) { 446 // We can use FI for FRINT. 447 setOperationAction(ISD::FRINT, VT, Legal); 448 449 // We can use the extended form of FI for other rounding operations. 450 if (Subtarget.hasFPExtension()) { 451 setOperationAction(ISD::FNEARBYINT, VT, Legal); 452 setOperationAction(ISD::FFLOOR, VT, Legal); 453 setOperationAction(ISD::FCEIL, VT, Legal); 454 setOperationAction(ISD::FTRUNC, VT, Legal); 455 setOperationAction(ISD::FROUND, VT, Legal); 456 } 457 458 // No special instructions for these. 459 setOperationAction(ISD::FSIN, VT, Expand); 460 setOperationAction(ISD::FCOS, VT, Expand); 461 setOperationAction(ISD::FSINCOS, VT, Expand); 462 setOperationAction(ISD::FREM, VT, Expand); 463 setOperationAction(ISD::FPOW, VT, Expand); 464 465 // Handle constrained floating-point operations. 466 setOperationAction(ISD::STRICT_FADD, VT, Legal); 467 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 468 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 469 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 470 setOperationAction(ISD::STRICT_FMA, VT, Legal); 471 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 472 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 473 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 474 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 475 if (Subtarget.hasFPExtension()) { 476 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 477 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 478 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 479 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 480 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 481 } 482 } 483 } 484 485 // Handle floating-point vector types. 486 if (Subtarget.hasVector()) { 487 // Scalar-to-vector conversion is just a subreg. 488 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 489 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 490 491 // Some insertions and extractions can be done directly but others 492 // need to go via integers. 493 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 494 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 495 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 496 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 497 498 // These operations have direct equivalents. 499 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 500 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 501 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 502 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 503 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 504 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 505 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 506 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 507 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 508 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 509 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 510 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 511 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 512 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 513 514 // Handle constrained floating-point operations. 515 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 516 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 517 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 518 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 519 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 520 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 521 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 522 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 523 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 524 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 525 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 526 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 527 } 528 529 // The vector enhancements facility 1 has instructions for these. 530 if (Subtarget.hasVectorEnhancements1()) { 531 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 532 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 533 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 534 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 535 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 536 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 537 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 538 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 539 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 540 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 541 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 542 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 543 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 544 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 545 546 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 547 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 548 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 549 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 550 551 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 552 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 553 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 554 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 555 556 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 557 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 558 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 559 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 560 561 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 562 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 563 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 564 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 565 566 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 567 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 568 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 569 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 570 571 // Handle constrained floating-point operations. 572 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 573 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 574 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 575 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 576 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 577 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 578 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 579 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 580 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 581 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 582 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 583 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 584 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 585 MVT::v4f32, MVT::v2f64 }) { 586 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 587 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 588 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 589 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 590 } 591 } 592 593 // We only have fused f128 multiply-addition on vector registers. 594 if (!Subtarget.hasVectorEnhancements1()) { 595 setOperationAction(ISD::FMA, MVT::f128, Expand); 596 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 597 } 598 599 // We don't have a copysign instruction on vector registers. 600 if (Subtarget.hasVectorEnhancements1()) 601 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 602 603 // Needed so that we don't try to implement f128 constant loads using 604 // a load-and-extend of a f80 constant (in cases where the constant 605 // would fit in an f80). 606 for (MVT VT : MVT::fp_valuetypes()) 607 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 608 609 // We don't have extending load instruction on vector registers. 610 if (Subtarget.hasVectorEnhancements1()) { 611 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 612 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 613 } 614 615 // Floating-point truncation and stores need to be done separately. 616 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 617 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 618 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 619 620 // We have 64-bit FPR<->GPR moves, but need special handling for 621 // 32-bit forms. 622 if (!Subtarget.hasVector()) { 623 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 624 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 625 } 626 627 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 628 // structure, but VAEND is a no-op. 629 setOperationAction(ISD::VASTART, MVT::Other, Custom); 630 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 631 setOperationAction(ISD::VAEND, MVT::Other, Expand); 632 633 // Codes for which we want to perform some z-specific combinations. 634 setTargetDAGCombine(ISD::ZERO_EXTEND); 635 setTargetDAGCombine(ISD::SIGN_EXTEND); 636 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 637 setTargetDAGCombine(ISD::LOAD); 638 setTargetDAGCombine(ISD::STORE); 639 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 640 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 641 setTargetDAGCombine(ISD::FP_ROUND); 642 setTargetDAGCombine(ISD::STRICT_FP_ROUND); 643 setTargetDAGCombine(ISD::FP_EXTEND); 644 setTargetDAGCombine(ISD::SINT_TO_FP); 645 setTargetDAGCombine(ISD::UINT_TO_FP); 646 setTargetDAGCombine(ISD::STRICT_FP_EXTEND); 647 setTargetDAGCombine(ISD::BSWAP); 648 setTargetDAGCombine(ISD::SDIV); 649 setTargetDAGCombine(ISD::UDIV); 650 setTargetDAGCombine(ISD::SREM); 651 setTargetDAGCombine(ISD::UREM); 652 setTargetDAGCombine(ISD::INTRINSIC_VOID); 653 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 654 655 // Handle intrinsics. 656 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 657 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 658 659 // We want to use MVC in preference to even a single load/store pair. 660 MaxStoresPerMemcpy = 0; 661 MaxStoresPerMemcpyOptSize = 0; 662 663 // The main memset sequence is a byte store followed by an MVC. 664 // Two STC or MV..I stores win over that, but the kind of fused stores 665 // generated by target-independent code don't when the byte value is 666 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 667 // than "STC;MVC". Handle the choice in target-specific code instead. 668 MaxStoresPerMemset = 0; 669 MaxStoresPerMemsetOptSize = 0; 670 671 // Default to having -disable-strictnode-mutation on 672 IsStrictFPEnabled = true; 673 } 674 675 bool SystemZTargetLowering::useSoftFloat() const { 676 return Subtarget.hasSoftFloat(); 677 } 678 679 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 680 LLVMContext &, EVT VT) const { 681 if (!VT.isVector()) 682 return MVT::i32; 683 return VT.changeVectorElementTypeToInteger(); 684 } 685 686 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 687 const MachineFunction &MF, EVT VT) const { 688 VT = VT.getScalarType(); 689 690 if (!VT.isSimple()) 691 return false; 692 693 switch (VT.getSimpleVT().SimpleTy) { 694 case MVT::f32: 695 case MVT::f64: 696 return true; 697 case MVT::f128: 698 return Subtarget.hasVectorEnhancements1(); 699 default: 700 break; 701 } 702 703 return false; 704 } 705 706 // Return true if the constant can be generated with a vector instruction, 707 // such as VGM, VGMB or VREPI. 708 bool SystemZVectorConstantInfo::isVectorConstantLegal( 709 const SystemZSubtarget &Subtarget) { 710 const SystemZInstrInfo *TII = 711 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 712 if (!Subtarget.hasVector() || 713 (isFP128 && !Subtarget.hasVectorEnhancements1())) 714 return false; 715 716 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 717 // preferred way of creating all-zero and all-one vectors so give it 718 // priority over other methods below. 719 unsigned Mask = 0; 720 unsigned I = 0; 721 for (; I < SystemZ::VectorBytes; ++I) { 722 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 723 if (Byte == 0xff) 724 Mask |= 1ULL << I; 725 else if (Byte != 0) 726 break; 727 } 728 if (I == SystemZ::VectorBytes) { 729 Opcode = SystemZISD::BYTE_MASK; 730 OpVals.push_back(Mask); 731 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 732 return true; 733 } 734 735 if (SplatBitSize > 64) 736 return false; 737 738 auto tryValue = [&](uint64_t Value) -> bool { 739 // Try VECTOR REPLICATE IMMEDIATE 740 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 741 if (isInt<16>(SignedValue)) { 742 OpVals.push_back(((unsigned) SignedValue)); 743 Opcode = SystemZISD::REPLICATE; 744 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 745 SystemZ::VectorBits / SplatBitSize); 746 return true; 747 } 748 // Try VECTOR GENERATE MASK 749 unsigned Start, End; 750 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 751 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 752 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 753 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 754 OpVals.push_back(Start - (64 - SplatBitSize)); 755 OpVals.push_back(End - (64 - SplatBitSize)); 756 Opcode = SystemZISD::ROTATE_MASK; 757 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 758 SystemZ::VectorBits / SplatBitSize); 759 return true; 760 } 761 return false; 762 }; 763 764 // First try assuming that any undefined bits above the highest set bit 765 // and below the lowest set bit are 1s. This increases the likelihood of 766 // being able to use a sign-extended element value in VECTOR REPLICATE 767 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 768 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 769 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 770 uint64_t Lower = 771 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 772 uint64_t Upper = 773 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 774 if (tryValue(SplatBitsZ | Upper | Lower)) 775 return true; 776 777 // Now try assuming that any undefined bits between the first and 778 // last defined set bits are set. This increases the chances of 779 // using a non-wraparound mask. 780 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 781 return tryValue(SplatBitsZ | Middle); 782 } 783 784 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 785 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 786 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 787 SplatBits = FPImm.bitcastToAPInt(); 788 unsigned Width = SplatBits.getBitWidth(); 789 IntBits <<= (SystemZ::VectorBits - Width); 790 791 // Find the smallest splat. 792 while (Width > 8) { 793 unsigned HalfSize = Width / 2; 794 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 795 APInt LowValue = SplatBits.trunc(HalfSize); 796 797 // If the two halves do not match, stop here. 798 if (HighValue != LowValue || 8 > HalfSize) 799 break; 800 801 SplatBits = HighValue; 802 Width = HalfSize; 803 } 804 SplatUndef = 0; 805 SplatBitSize = Width; 806 } 807 808 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 809 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 810 bool HasAnyUndefs; 811 812 // Get IntBits by finding the 128 bit splat. 813 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 814 true); 815 816 // Get SplatBits by finding the 8 bit or greater splat. 817 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 818 true); 819 } 820 821 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 822 bool ForCodeSize) const { 823 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 824 if (Imm.isZero() || Imm.isNegZero()) 825 return true; 826 827 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 828 } 829 830 /// Returns true if stack probing through inline assembly is requested. 831 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const { 832 // If the function specifically requests inline stack probes, emit them. 833 if (MF.getFunction().hasFnAttribute("probe-stack")) 834 return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == 835 "inline-asm"; 836 return false; 837 } 838 839 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 840 // We can use CGFI or CLGFI. 841 return isInt<32>(Imm) || isUInt<32>(Imm); 842 } 843 844 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 845 // We can use ALGFI or SLGFI. 846 return isUInt<32>(Imm) || isUInt<32>(-Imm); 847 } 848 849 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 850 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const { 851 // Unaligned accesses should never be slower than the expanded version. 852 // We check specifically for aligned accesses in the few cases where 853 // they are required. 854 if (Fast) 855 *Fast = true; 856 return true; 857 } 858 859 // Information about the addressing mode for a memory access. 860 struct AddressingMode { 861 // True if a long displacement is supported. 862 bool LongDisplacement; 863 864 // True if use of index register is supported. 865 bool IndexReg; 866 867 AddressingMode(bool LongDispl, bool IdxReg) : 868 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 869 }; 870 871 // Return the desired addressing mode for a Load which has only one use (in 872 // the same block) which is a Store. 873 static AddressingMode getLoadStoreAddrMode(bool HasVector, 874 Type *Ty) { 875 // With vector support a Load->Store combination may be combined to either 876 // an MVC or vector operations and it seems to work best to allow the 877 // vector addressing mode. 878 if (HasVector) 879 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 880 881 // Otherwise only the MVC case is special. 882 bool MVC = Ty->isIntegerTy(8); 883 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 884 } 885 886 // Return the addressing mode which seems most desirable given an LLVM 887 // Instruction pointer. 888 static AddressingMode 889 supportedAddressingMode(Instruction *I, bool HasVector) { 890 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 891 switch (II->getIntrinsicID()) { 892 default: break; 893 case Intrinsic::memset: 894 case Intrinsic::memmove: 895 case Intrinsic::memcpy: 896 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 897 } 898 } 899 900 if (isa<LoadInst>(I) && I->hasOneUse()) { 901 auto *SingleUser = cast<Instruction>(*I->user_begin()); 902 if (SingleUser->getParent() == I->getParent()) { 903 if (isa<ICmpInst>(SingleUser)) { 904 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 905 if (C->getBitWidth() <= 64 && 906 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 907 // Comparison of memory with 16 bit signed / unsigned immediate 908 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 909 } else if (isa<StoreInst>(SingleUser)) 910 // Load->Store 911 return getLoadStoreAddrMode(HasVector, I->getType()); 912 } 913 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 914 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 915 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 916 // Load->Store 917 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 918 } 919 920 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 921 922 // * Use LDE instead of LE/LEY for z13 to avoid partial register 923 // dependencies (LDE only supports small offsets). 924 // * Utilize the vector registers to hold floating point 925 // values (vector load / store instructions only support small 926 // offsets). 927 928 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 929 I->getOperand(0)->getType()); 930 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 931 bool IsVectorAccess = MemAccessTy->isVectorTy(); 932 933 // A store of an extracted vector element will be combined into a VSTE type 934 // instruction. 935 if (!IsVectorAccess && isa<StoreInst>(I)) { 936 Value *DataOp = I->getOperand(0); 937 if (isa<ExtractElementInst>(DataOp)) 938 IsVectorAccess = true; 939 } 940 941 // A load which gets inserted into a vector element will be combined into a 942 // VLE type instruction. 943 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 944 User *LoadUser = *I->user_begin(); 945 if (isa<InsertElementInst>(LoadUser)) 946 IsVectorAccess = true; 947 } 948 949 if (IsFPAccess || IsVectorAccess) 950 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 951 } 952 953 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 954 } 955 956 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 957 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 958 // Punt on globals for now, although they can be used in limited 959 // RELATIVE LONG cases. 960 if (AM.BaseGV) 961 return false; 962 963 // Require a 20-bit signed offset. 964 if (!isInt<20>(AM.BaseOffs)) 965 return false; 966 967 AddressingMode SupportedAM(true, true); 968 if (I != nullptr) 969 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 970 971 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 972 return false; 973 974 if (!SupportedAM.IndexReg) 975 // No indexing allowed. 976 return AM.Scale == 0; 977 else 978 // Indexing is OK but no scale factor can be applied. 979 return AM.Scale == 0 || AM.Scale == 1; 980 } 981 982 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 983 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 984 return false; 985 unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize(); 986 unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize(); 987 return FromBits > ToBits; 988 } 989 990 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 991 if (!FromVT.isInteger() || !ToVT.isInteger()) 992 return false; 993 unsigned FromBits = FromVT.getFixedSizeInBits(); 994 unsigned ToBits = ToVT.getFixedSizeInBits(); 995 return FromBits > ToBits; 996 } 997 998 //===----------------------------------------------------------------------===// 999 // Inline asm support 1000 //===----------------------------------------------------------------------===// 1001 1002 TargetLowering::ConstraintType 1003 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 1004 if (Constraint.size() == 1) { 1005 switch (Constraint[0]) { 1006 case 'a': // Address register 1007 case 'd': // Data register (equivalent to 'r') 1008 case 'f': // Floating-point register 1009 case 'h': // High-part register 1010 case 'r': // General-purpose register 1011 case 'v': // Vector register 1012 return C_RegisterClass; 1013 1014 case 'Q': // Memory with base and unsigned 12-bit displacement 1015 case 'R': // Likewise, plus an index 1016 case 'S': // Memory with base and signed 20-bit displacement 1017 case 'T': // Likewise, plus an index 1018 case 'm': // Equivalent to 'T'. 1019 return C_Memory; 1020 1021 case 'I': // Unsigned 8-bit constant 1022 case 'J': // Unsigned 12-bit constant 1023 case 'K': // Signed 16-bit constant 1024 case 'L': // Signed 20-bit displacement (on all targets we support) 1025 case 'M': // 0x7fffffff 1026 return C_Immediate; 1027 1028 default: 1029 break; 1030 } 1031 } 1032 return TargetLowering::getConstraintType(Constraint); 1033 } 1034 1035 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1036 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1037 const char *constraint) const { 1038 ConstraintWeight weight = CW_Invalid; 1039 Value *CallOperandVal = info.CallOperandVal; 1040 // If we don't have a value, we can't do a match, 1041 // but allow it at the lowest weight. 1042 if (!CallOperandVal) 1043 return CW_Default; 1044 Type *type = CallOperandVal->getType(); 1045 // Look at the constraint type. 1046 switch (*constraint) { 1047 default: 1048 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1049 break; 1050 1051 case 'a': // Address register 1052 case 'd': // Data register (equivalent to 'r') 1053 case 'h': // High-part register 1054 case 'r': // General-purpose register 1055 if (CallOperandVal->getType()->isIntegerTy()) 1056 weight = CW_Register; 1057 break; 1058 1059 case 'f': // Floating-point register 1060 if (type->isFloatingPointTy()) 1061 weight = CW_Register; 1062 break; 1063 1064 case 'v': // Vector register 1065 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1066 Subtarget.hasVector()) 1067 weight = CW_Register; 1068 break; 1069 1070 case 'I': // Unsigned 8-bit constant 1071 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1072 if (isUInt<8>(C->getZExtValue())) 1073 weight = CW_Constant; 1074 break; 1075 1076 case 'J': // Unsigned 12-bit constant 1077 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1078 if (isUInt<12>(C->getZExtValue())) 1079 weight = CW_Constant; 1080 break; 1081 1082 case 'K': // Signed 16-bit constant 1083 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1084 if (isInt<16>(C->getSExtValue())) 1085 weight = CW_Constant; 1086 break; 1087 1088 case 'L': // Signed 20-bit displacement (on all targets we support) 1089 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1090 if (isInt<20>(C->getSExtValue())) 1091 weight = CW_Constant; 1092 break; 1093 1094 case 'M': // 0x7fffffff 1095 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1096 if (C->getZExtValue() == 0x7fffffff) 1097 weight = CW_Constant; 1098 break; 1099 } 1100 return weight; 1101 } 1102 1103 // Parse a "{tNNN}" register constraint for which the register type "t" 1104 // has already been verified. MC is the class associated with "t" and 1105 // Map maps 0-based register numbers to LLVM register numbers. 1106 static std::pair<unsigned, const TargetRegisterClass *> 1107 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1108 const unsigned *Map, unsigned Size) { 1109 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1110 if (isdigit(Constraint[2])) { 1111 unsigned Index; 1112 bool Failed = 1113 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1114 if (!Failed && Index < Size && Map[Index]) 1115 return std::make_pair(Map[Index], RC); 1116 } 1117 return std::make_pair(0U, nullptr); 1118 } 1119 1120 std::pair<unsigned, const TargetRegisterClass *> 1121 SystemZTargetLowering::getRegForInlineAsmConstraint( 1122 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1123 if (Constraint.size() == 1) { 1124 // GCC Constraint Letters 1125 switch (Constraint[0]) { 1126 default: break; 1127 case 'd': // Data register (equivalent to 'r') 1128 case 'r': // General-purpose register 1129 if (VT == MVT::i64) 1130 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1131 else if (VT == MVT::i128) 1132 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1133 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1134 1135 case 'a': // Address register 1136 if (VT == MVT::i64) 1137 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1138 else if (VT == MVT::i128) 1139 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1140 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1141 1142 case 'h': // High-part register (an LLVM extension) 1143 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1144 1145 case 'f': // Floating-point register 1146 if (!useSoftFloat()) { 1147 if (VT == MVT::f64) 1148 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1149 else if (VT == MVT::f128) 1150 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1151 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1152 } 1153 break; 1154 case 'v': // Vector register 1155 if (Subtarget.hasVector()) { 1156 if (VT == MVT::f32) 1157 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1158 if (VT == MVT::f64) 1159 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1160 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1161 } 1162 break; 1163 } 1164 } 1165 if (Constraint.size() > 0 && Constraint[0] == '{') { 1166 // We need to override the default register parsing for GPRs and FPRs 1167 // because the interpretation depends on VT. The internal names of 1168 // the registers are also different from the external names 1169 // (F0D and F0S instead of F0, etc.). 1170 if (Constraint[1] == 'r') { 1171 if (VT == MVT::i32) 1172 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1173 SystemZMC::GR32Regs, 16); 1174 if (VT == MVT::i128) 1175 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1176 SystemZMC::GR128Regs, 16); 1177 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1178 SystemZMC::GR64Regs, 16); 1179 } 1180 if (Constraint[1] == 'f') { 1181 if (useSoftFloat()) 1182 return std::make_pair( 1183 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1184 if (VT == MVT::f32) 1185 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1186 SystemZMC::FP32Regs, 16); 1187 if (VT == MVT::f128) 1188 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1189 SystemZMC::FP128Regs, 16); 1190 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1191 SystemZMC::FP64Regs, 16); 1192 } 1193 if (Constraint[1] == 'v') { 1194 if (!Subtarget.hasVector()) 1195 return std::make_pair( 1196 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1197 if (VT == MVT::f32) 1198 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1199 SystemZMC::VR32Regs, 32); 1200 if (VT == MVT::f64) 1201 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1202 SystemZMC::VR64Regs, 32); 1203 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1204 SystemZMC::VR128Regs, 32); 1205 } 1206 } 1207 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1208 } 1209 1210 // FIXME? Maybe this could be a TableGen attribute on some registers and 1211 // this table could be generated automatically from RegInfo. 1212 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1213 const MachineFunction &MF) const { 1214 1215 Register Reg = StringSwitch<Register>(RegName) 1216 .Case("r15", SystemZ::R15D) 1217 .Default(0); 1218 if (Reg) 1219 return Reg; 1220 report_fatal_error("Invalid register name global variable"); 1221 } 1222 1223 void SystemZTargetLowering:: 1224 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1225 std::vector<SDValue> &Ops, 1226 SelectionDAG &DAG) const { 1227 // Only support length 1 constraints for now. 1228 if (Constraint.length() == 1) { 1229 switch (Constraint[0]) { 1230 case 'I': // Unsigned 8-bit constant 1231 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1232 if (isUInt<8>(C->getZExtValue())) 1233 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1234 Op.getValueType())); 1235 return; 1236 1237 case 'J': // Unsigned 12-bit constant 1238 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1239 if (isUInt<12>(C->getZExtValue())) 1240 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1241 Op.getValueType())); 1242 return; 1243 1244 case 'K': // Signed 16-bit constant 1245 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1246 if (isInt<16>(C->getSExtValue())) 1247 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1248 Op.getValueType())); 1249 return; 1250 1251 case 'L': // Signed 20-bit displacement (on all targets we support) 1252 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1253 if (isInt<20>(C->getSExtValue())) 1254 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1255 Op.getValueType())); 1256 return; 1257 1258 case 'M': // 0x7fffffff 1259 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1260 if (C->getZExtValue() == 0x7fffffff) 1261 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1262 Op.getValueType())); 1263 return; 1264 } 1265 } 1266 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1267 } 1268 1269 //===----------------------------------------------------------------------===// 1270 // Calling conventions 1271 //===----------------------------------------------------------------------===// 1272 1273 #include "SystemZGenCallingConv.inc" 1274 1275 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1276 CallingConv::ID) const { 1277 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1278 SystemZ::R14D, 0 }; 1279 return ScratchRegs; 1280 } 1281 1282 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1283 Type *ToType) const { 1284 return isTruncateFree(FromType, ToType); 1285 } 1286 1287 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1288 return CI->isTailCall(); 1289 } 1290 1291 // We do not yet support 128-bit single-element vector types. If the user 1292 // attempts to use such types as function argument or return type, prefer 1293 // to error out instead of emitting code violating the ABI. 1294 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1295 if (ArgVT.isVector() && !VT.isVector()) 1296 report_fatal_error("Unsupported vector argument or return type"); 1297 } 1298 1299 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1300 for (unsigned i = 0; i < Ins.size(); ++i) 1301 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1302 } 1303 1304 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1305 for (unsigned i = 0; i < Outs.size(); ++i) 1306 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1307 } 1308 1309 // Value is a value that has been passed to us in the location described by VA 1310 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1311 // any loads onto Chain. 1312 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1313 CCValAssign &VA, SDValue Chain, 1314 SDValue Value) { 1315 // If the argument has been promoted from a smaller type, insert an 1316 // assertion to capture this. 1317 if (VA.getLocInfo() == CCValAssign::SExt) 1318 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1319 DAG.getValueType(VA.getValVT())); 1320 else if (VA.getLocInfo() == CCValAssign::ZExt) 1321 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1322 DAG.getValueType(VA.getValVT())); 1323 1324 if (VA.isExtInLoc()) 1325 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1326 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1327 // If this is a short vector argument loaded from the stack, 1328 // extend from i64 to full vector size and then bitcast. 1329 assert(VA.getLocVT() == MVT::i64); 1330 assert(VA.getValVT().isVector()); 1331 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1332 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1333 } else 1334 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1335 return Value; 1336 } 1337 1338 // Value is a value of type VA.getValVT() that we need to copy into 1339 // the location described by VA. Return a copy of Value converted to 1340 // VA.getValVT(). The caller is responsible for handling indirect values. 1341 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1342 CCValAssign &VA, SDValue Value) { 1343 switch (VA.getLocInfo()) { 1344 case CCValAssign::SExt: 1345 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1346 case CCValAssign::ZExt: 1347 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1348 case CCValAssign::AExt: 1349 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1350 case CCValAssign::BCvt: 1351 // If this is a short vector argument to be stored to the stack, 1352 // bitcast to v2i64 and then extract first element. 1353 assert(VA.getLocVT() == MVT::i64); 1354 assert(VA.getValVT().isVector()); 1355 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1356 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1357 DAG.getConstant(0, DL, MVT::i32)); 1358 case CCValAssign::Full: 1359 return Value; 1360 default: 1361 llvm_unreachable("Unhandled getLocInfo()"); 1362 } 1363 } 1364 1365 SDValue SystemZTargetLowering::LowerFormalArguments( 1366 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1367 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1368 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1369 MachineFunction &MF = DAG.getMachineFunction(); 1370 MachineFrameInfo &MFI = MF.getFrameInfo(); 1371 MachineRegisterInfo &MRI = MF.getRegInfo(); 1372 SystemZMachineFunctionInfo *FuncInfo = 1373 MF.getInfo<SystemZMachineFunctionInfo>(); 1374 auto *TFL = 1375 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1376 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1377 1378 // Detect unsupported vector argument types. 1379 if (Subtarget.hasVector()) 1380 VerifyVectorTypes(Ins); 1381 1382 // Assign locations to all of the incoming arguments. 1383 SmallVector<CCValAssign, 16> ArgLocs; 1384 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1385 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1386 1387 unsigned NumFixedGPRs = 0; 1388 unsigned NumFixedFPRs = 0; 1389 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1390 SDValue ArgValue; 1391 CCValAssign &VA = ArgLocs[I]; 1392 EVT LocVT = VA.getLocVT(); 1393 if (VA.isRegLoc()) { 1394 // Arguments passed in registers 1395 const TargetRegisterClass *RC; 1396 switch (LocVT.getSimpleVT().SimpleTy) { 1397 default: 1398 // Integers smaller than i64 should be promoted to i64. 1399 llvm_unreachable("Unexpected argument type"); 1400 case MVT::i32: 1401 NumFixedGPRs += 1; 1402 RC = &SystemZ::GR32BitRegClass; 1403 break; 1404 case MVT::i64: 1405 NumFixedGPRs += 1; 1406 RC = &SystemZ::GR64BitRegClass; 1407 break; 1408 case MVT::f32: 1409 NumFixedFPRs += 1; 1410 RC = &SystemZ::FP32BitRegClass; 1411 break; 1412 case MVT::f64: 1413 NumFixedFPRs += 1; 1414 RC = &SystemZ::FP64BitRegClass; 1415 break; 1416 case MVT::v16i8: 1417 case MVT::v8i16: 1418 case MVT::v4i32: 1419 case MVT::v2i64: 1420 case MVT::v4f32: 1421 case MVT::v2f64: 1422 RC = &SystemZ::VR128BitRegClass; 1423 break; 1424 } 1425 1426 Register VReg = MRI.createVirtualRegister(RC); 1427 MRI.addLiveIn(VA.getLocReg(), VReg); 1428 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1429 } else { 1430 assert(VA.isMemLoc() && "Argument not register or memory"); 1431 1432 // Create the frame index object for this incoming parameter. 1433 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1434 VA.getLocMemOffset(), true); 1435 1436 // Create the SelectionDAG nodes corresponding to a load 1437 // from this parameter. Unpromoted ints and floats are 1438 // passed as right-justified 8-byte values. 1439 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1440 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1441 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1442 DAG.getIntPtrConstant(4, DL)); 1443 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1444 MachinePointerInfo::getFixedStack(MF, FI)); 1445 } 1446 1447 // Convert the value of the argument register into the value that's 1448 // being passed. 1449 if (VA.getLocInfo() == CCValAssign::Indirect) { 1450 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1451 MachinePointerInfo())); 1452 // If the original argument was split (e.g. i128), we need 1453 // to load all parts of it here (using the same address). 1454 unsigned ArgIndex = Ins[I].OrigArgIndex; 1455 assert (Ins[I].PartOffset == 0); 1456 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1457 CCValAssign &PartVA = ArgLocs[I + 1]; 1458 unsigned PartOffset = Ins[I + 1].PartOffset; 1459 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1460 DAG.getIntPtrConstant(PartOffset, DL)); 1461 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1462 MachinePointerInfo())); 1463 ++I; 1464 } 1465 } else 1466 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1467 } 1468 1469 if (IsVarArg) { 1470 // Save the number of non-varargs registers for later use by va_start, etc. 1471 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1472 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1473 1474 // Likewise the address (in the form of a frame index) of where the 1475 // first stack vararg would be. The 1-byte size here is arbitrary. 1476 int64_t StackSize = CCInfo.getNextStackOffset(); 1477 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1478 1479 // ...and a similar frame index for the caller-allocated save area 1480 // that will be used to store the incoming registers. 1481 int64_t RegSaveOffset = 1482 -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1483 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1484 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1485 1486 // Store the FPR varargs in the reserved frame slots. (We store the 1487 // GPRs as part of the prologue.) 1488 if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) { 1489 SDValue MemOps[SystemZ::NumArgFPRs]; 1490 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1491 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]); 1492 int FI = 1493 MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true); 1494 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1495 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1496 &SystemZ::FP64BitRegClass); 1497 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1498 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1499 MachinePointerInfo::getFixedStack(MF, FI)); 1500 } 1501 // Join the stores, which are independent of one another. 1502 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1503 makeArrayRef(&MemOps[NumFixedFPRs], 1504 SystemZ::NumArgFPRs-NumFixedFPRs)); 1505 } 1506 } 1507 1508 return Chain; 1509 } 1510 1511 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1512 SmallVectorImpl<CCValAssign> &ArgLocs, 1513 SmallVectorImpl<ISD::OutputArg> &Outs) { 1514 // Punt if there are any indirect or stack arguments, or if the call 1515 // needs the callee-saved argument register R6, or if the call uses 1516 // the callee-saved register arguments SwiftSelf and SwiftError. 1517 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1518 CCValAssign &VA = ArgLocs[I]; 1519 if (VA.getLocInfo() == CCValAssign::Indirect) 1520 return false; 1521 if (!VA.isRegLoc()) 1522 return false; 1523 Register Reg = VA.getLocReg(); 1524 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1525 return false; 1526 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1527 return false; 1528 } 1529 return true; 1530 } 1531 1532 SDValue 1533 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1534 SmallVectorImpl<SDValue> &InVals) const { 1535 SelectionDAG &DAG = CLI.DAG; 1536 SDLoc &DL = CLI.DL; 1537 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1538 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1539 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1540 SDValue Chain = CLI.Chain; 1541 SDValue Callee = CLI.Callee; 1542 bool &IsTailCall = CLI.IsTailCall; 1543 CallingConv::ID CallConv = CLI.CallConv; 1544 bool IsVarArg = CLI.IsVarArg; 1545 MachineFunction &MF = DAG.getMachineFunction(); 1546 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1547 1548 // Detect unsupported vector argument and return types. 1549 if (Subtarget.hasVector()) { 1550 VerifyVectorTypes(Outs); 1551 VerifyVectorTypes(Ins); 1552 } 1553 1554 // Analyze the operands of the call, assigning locations to each operand. 1555 SmallVector<CCValAssign, 16> ArgLocs; 1556 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1557 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1558 1559 // We don't support GuaranteedTailCallOpt, only automatically-detected 1560 // sibling calls. 1561 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1562 IsTailCall = false; 1563 1564 // Get a count of how many bytes are to be pushed on the stack. 1565 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1566 1567 // Mark the start of the call. 1568 if (!IsTailCall) 1569 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1570 1571 // Copy argument values to their designated locations. 1572 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1573 SmallVector<SDValue, 8> MemOpChains; 1574 SDValue StackPtr; 1575 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1576 CCValAssign &VA = ArgLocs[I]; 1577 SDValue ArgValue = OutVals[I]; 1578 1579 if (VA.getLocInfo() == CCValAssign::Indirect) { 1580 // Store the argument in a stack slot and pass its address. 1581 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1582 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1583 MemOpChains.push_back( 1584 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1585 MachinePointerInfo::getFixedStack(MF, FI))); 1586 // If the original argument was split (e.g. i128), we need 1587 // to store all parts of it here (and pass just one address). 1588 unsigned ArgIndex = Outs[I].OrigArgIndex; 1589 assert (Outs[I].PartOffset == 0); 1590 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1591 SDValue PartValue = OutVals[I + 1]; 1592 unsigned PartOffset = Outs[I + 1].PartOffset; 1593 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1594 DAG.getIntPtrConstant(PartOffset, DL)); 1595 MemOpChains.push_back( 1596 DAG.getStore(Chain, DL, PartValue, Address, 1597 MachinePointerInfo::getFixedStack(MF, FI))); 1598 ++I; 1599 } 1600 ArgValue = SpillSlot; 1601 } else 1602 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1603 1604 if (VA.isRegLoc()) 1605 // Queue up the argument copies and emit them at the end. 1606 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1607 else { 1608 assert(VA.isMemLoc() && "Argument not register or memory"); 1609 1610 // Work out the address of the stack slot. Unpromoted ints and 1611 // floats are passed as right-justified 8-byte values. 1612 if (!StackPtr.getNode()) 1613 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1614 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1615 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1616 Offset += 4; 1617 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1618 DAG.getIntPtrConstant(Offset, DL)); 1619 1620 // Emit the store. 1621 MemOpChains.push_back( 1622 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1623 } 1624 } 1625 1626 // Join the stores, which are independent of one another. 1627 if (!MemOpChains.empty()) 1628 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1629 1630 // Accept direct calls by converting symbolic call addresses to the 1631 // associated Target* opcodes. Force %r1 to be used for indirect 1632 // tail calls. 1633 SDValue Glue; 1634 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1635 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1636 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1637 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1638 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1639 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1640 } else if (IsTailCall) { 1641 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1642 Glue = Chain.getValue(1); 1643 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1644 } 1645 1646 // Build a sequence of copy-to-reg nodes, chained and glued together. 1647 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1648 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1649 RegsToPass[I].second, Glue); 1650 Glue = Chain.getValue(1); 1651 } 1652 1653 // The first call operand is the chain and the second is the target address. 1654 SmallVector<SDValue, 8> Ops; 1655 Ops.push_back(Chain); 1656 Ops.push_back(Callee); 1657 1658 // Add argument registers to the end of the list so that they are 1659 // known live into the call. 1660 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1661 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1662 RegsToPass[I].second.getValueType())); 1663 1664 // Add a register mask operand representing the call-preserved registers. 1665 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1666 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1667 assert(Mask && "Missing call preserved mask for calling convention"); 1668 Ops.push_back(DAG.getRegisterMask(Mask)); 1669 1670 // Glue the call to the argument copies, if any. 1671 if (Glue.getNode()) 1672 Ops.push_back(Glue); 1673 1674 // Emit the call. 1675 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1676 if (IsTailCall) 1677 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1678 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1679 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); 1680 Glue = Chain.getValue(1); 1681 1682 // Mark the end of the call, which is glued to the call itself. 1683 Chain = DAG.getCALLSEQ_END(Chain, 1684 DAG.getConstant(NumBytes, DL, PtrVT, true), 1685 DAG.getConstant(0, DL, PtrVT, true), 1686 Glue, DL); 1687 Glue = Chain.getValue(1); 1688 1689 // Assign locations to each value returned by this call. 1690 SmallVector<CCValAssign, 16> RetLocs; 1691 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1692 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1693 1694 // Copy all of the result registers out of their specified physreg. 1695 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1696 CCValAssign &VA = RetLocs[I]; 1697 1698 // Copy the value out, gluing the copy to the end of the call sequence. 1699 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1700 VA.getLocVT(), Glue); 1701 Chain = RetValue.getValue(1); 1702 Glue = RetValue.getValue(2); 1703 1704 // Convert the value of the return register into the value that's 1705 // being returned. 1706 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1707 } 1708 1709 return Chain; 1710 } 1711 1712 bool SystemZTargetLowering:: 1713 CanLowerReturn(CallingConv::ID CallConv, 1714 MachineFunction &MF, bool isVarArg, 1715 const SmallVectorImpl<ISD::OutputArg> &Outs, 1716 LLVMContext &Context) const { 1717 // Detect unsupported vector return types. 1718 if (Subtarget.hasVector()) 1719 VerifyVectorTypes(Outs); 1720 1721 // Special case that we cannot easily detect in RetCC_SystemZ since 1722 // i128 is not a legal type. 1723 for (auto &Out : Outs) 1724 if (Out.ArgVT == MVT::i128) 1725 return false; 1726 1727 SmallVector<CCValAssign, 16> RetLocs; 1728 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1729 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1730 } 1731 1732 SDValue 1733 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1734 bool IsVarArg, 1735 const SmallVectorImpl<ISD::OutputArg> &Outs, 1736 const SmallVectorImpl<SDValue> &OutVals, 1737 const SDLoc &DL, SelectionDAG &DAG) const { 1738 MachineFunction &MF = DAG.getMachineFunction(); 1739 1740 // Detect unsupported vector return types. 1741 if (Subtarget.hasVector()) 1742 VerifyVectorTypes(Outs); 1743 1744 // Assign locations to each returned value. 1745 SmallVector<CCValAssign, 16> RetLocs; 1746 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1747 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1748 1749 // Quick exit for void returns 1750 if (RetLocs.empty()) 1751 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1752 1753 if (CallConv == CallingConv::GHC) 1754 report_fatal_error("GHC functions return void only"); 1755 1756 // Copy the result values into the output registers. 1757 SDValue Glue; 1758 SmallVector<SDValue, 4> RetOps; 1759 RetOps.push_back(Chain); 1760 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1761 CCValAssign &VA = RetLocs[I]; 1762 SDValue RetValue = OutVals[I]; 1763 1764 // Make the return register live on exit. 1765 assert(VA.isRegLoc() && "Can only return in registers!"); 1766 1767 // Promote the value as required. 1768 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1769 1770 // Chain and glue the copies together. 1771 Register Reg = VA.getLocReg(); 1772 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1773 Glue = Chain.getValue(1); 1774 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1775 } 1776 1777 // Update chain and glue. 1778 RetOps[0] = Chain; 1779 if (Glue.getNode()) 1780 RetOps.push_back(Glue); 1781 1782 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1783 } 1784 1785 // Return true if Op is an intrinsic node with chain that returns the CC value 1786 // as its only (other) argument. Provide the associated SystemZISD opcode and 1787 // the mask of valid CC values if so. 1788 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1789 unsigned &CCValid) { 1790 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1791 switch (Id) { 1792 case Intrinsic::s390_tbegin: 1793 Opcode = SystemZISD::TBEGIN; 1794 CCValid = SystemZ::CCMASK_TBEGIN; 1795 return true; 1796 1797 case Intrinsic::s390_tbegin_nofloat: 1798 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1799 CCValid = SystemZ::CCMASK_TBEGIN; 1800 return true; 1801 1802 case Intrinsic::s390_tend: 1803 Opcode = SystemZISD::TEND; 1804 CCValid = SystemZ::CCMASK_TEND; 1805 return true; 1806 1807 default: 1808 return false; 1809 } 1810 } 1811 1812 // Return true if Op is an intrinsic node without chain that returns the 1813 // CC value as its final argument. Provide the associated SystemZISD 1814 // opcode and the mask of valid CC values if so. 1815 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1816 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1817 switch (Id) { 1818 case Intrinsic::s390_vpkshs: 1819 case Intrinsic::s390_vpksfs: 1820 case Intrinsic::s390_vpksgs: 1821 Opcode = SystemZISD::PACKS_CC; 1822 CCValid = SystemZ::CCMASK_VCMP; 1823 return true; 1824 1825 case Intrinsic::s390_vpklshs: 1826 case Intrinsic::s390_vpklsfs: 1827 case Intrinsic::s390_vpklsgs: 1828 Opcode = SystemZISD::PACKLS_CC; 1829 CCValid = SystemZ::CCMASK_VCMP; 1830 return true; 1831 1832 case Intrinsic::s390_vceqbs: 1833 case Intrinsic::s390_vceqhs: 1834 case Intrinsic::s390_vceqfs: 1835 case Intrinsic::s390_vceqgs: 1836 Opcode = SystemZISD::VICMPES; 1837 CCValid = SystemZ::CCMASK_VCMP; 1838 return true; 1839 1840 case Intrinsic::s390_vchbs: 1841 case Intrinsic::s390_vchhs: 1842 case Intrinsic::s390_vchfs: 1843 case Intrinsic::s390_vchgs: 1844 Opcode = SystemZISD::VICMPHS; 1845 CCValid = SystemZ::CCMASK_VCMP; 1846 return true; 1847 1848 case Intrinsic::s390_vchlbs: 1849 case Intrinsic::s390_vchlhs: 1850 case Intrinsic::s390_vchlfs: 1851 case Intrinsic::s390_vchlgs: 1852 Opcode = SystemZISD::VICMPHLS; 1853 CCValid = SystemZ::CCMASK_VCMP; 1854 return true; 1855 1856 case Intrinsic::s390_vtm: 1857 Opcode = SystemZISD::VTM; 1858 CCValid = SystemZ::CCMASK_VCMP; 1859 return true; 1860 1861 case Intrinsic::s390_vfaebs: 1862 case Intrinsic::s390_vfaehs: 1863 case Intrinsic::s390_vfaefs: 1864 Opcode = SystemZISD::VFAE_CC; 1865 CCValid = SystemZ::CCMASK_ANY; 1866 return true; 1867 1868 case Intrinsic::s390_vfaezbs: 1869 case Intrinsic::s390_vfaezhs: 1870 case Intrinsic::s390_vfaezfs: 1871 Opcode = SystemZISD::VFAEZ_CC; 1872 CCValid = SystemZ::CCMASK_ANY; 1873 return true; 1874 1875 case Intrinsic::s390_vfeebs: 1876 case Intrinsic::s390_vfeehs: 1877 case Intrinsic::s390_vfeefs: 1878 Opcode = SystemZISD::VFEE_CC; 1879 CCValid = SystemZ::CCMASK_ANY; 1880 return true; 1881 1882 case Intrinsic::s390_vfeezbs: 1883 case Intrinsic::s390_vfeezhs: 1884 case Intrinsic::s390_vfeezfs: 1885 Opcode = SystemZISD::VFEEZ_CC; 1886 CCValid = SystemZ::CCMASK_ANY; 1887 return true; 1888 1889 case Intrinsic::s390_vfenebs: 1890 case Intrinsic::s390_vfenehs: 1891 case Intrinsic::s390_vfenefs: 1892 Opcode = SystemZISD::VFENE_CC; 1893 CCValid = SystemZ::CCMASK_ANY; 1894 return true; 1895 1896 case Intrinsic::s390_vfenezbs: 1897 case Intrinsic::s390_vfenezhs: 1898 case Intrinsic::s390_vfenezfs: 1899 Opcode = SystemZISD::VFENEZ_CC; 1900 CCValid = SystemZ::CCMASK_ANY; 1901 return true; 1902 1903 case Intrinsic::s390_vistrbs: 1904 case Intrinsic::s390_vistrhs: 1905 case Intrinsic::s390_vistrfs: 1906 Opcode = SystemZISD::VISTR_CC; 1907 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1908 return true; 1909 1910 case Intrinsic::s390_vstrcbs: 1911 case Intrinsic::s390_vstrchs: 1912 case Intrinsic::s390_vstrcfs: 1913 Opcode = SystemZISD::VSTRC_CC; 1914 CCValid = SystemZ::CCMASK_ANY; 1915 return true; 1916 1917 case Intrinsic::s390_vstrczbs: 1918 case Intrinsic::s390_vstrczhs: 1919 case Intrinsic::s390_vstrczfs: 1920 Opcode = SystemZISD::VSTRCZ_CC; 1921 CCValid = SystemZ::CCMASK_ANY; 1922 return true; 1923 1924 case Intrinsic::s390_vstrsb: 1925 case Intrinsic::s390_vstrsh: 1926 case Intrinsic::s390_vstrsf: 1927 Opcode = SystemZISD::VSTRS_CC; 1928 CCValid = SystemZ::CCMASK_ANY; 1929 return true; 1930 1931 case Intrinsic::s390_vstrszb: 1932 case Intrinsic::s390_vstrszh: 1933 case Intrinsic::s390_vstrszf: 1934 Opcode = SystemZISD::VSTRSZ_CC; 1935 CCValid = SystemZ::CCMASK_ANY; 1936 return true; 1937 1938 case Intrinsic::s390_vfcedbs: 1939 case Intrinsic::s390_vfcesbs: 1940 Opcode = SystemZISD::VFCMPES; 1941 CCValid = SystemZ::CCMASK_VCMP; 1942 return true; 1943 1944 case Intrinsic::s390_vfchdbs: 1945 case Intrinsic::s390_vfchsbs: 1946 Opcode = SystemZISD::VFCMPHS; 1947 CCValid = SystemZ::CCMASK_VCMP; 1948 return true; 1949 1950 case Intrinsic::s390_vfchedbs: 1951 case Intrinsic::s390_vfchesbs: 1952 Opcode = SystemZISD::VFCMPHES; 1953 CCValid = SystemZ::CCMASK_VCMP; 1954 return true; 1955 1956 case Intrinsic::s390_vftcidb: 1957 case Intrinsic::s390_vftcisb: 1958 Opcode = SystemZISD::VFTCI; 1959 CCValid = SystemZ::CCMASK_VCMP; 1960 return true; 1961 1962 case Intrinsic::s390_tdc: 1963 Opcode = SystemZISD::TDC; 1964 CCValid = SystemZ::CCMASK_TDC; 1965 return true; 1966 1967 default: 1968 return false; 1969 } 1970 } 1971 1972 // Emit an intrinsic with chain and an explicit CC register result. 1973 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1974 unsigned Opcode) { 1975 // Copy all operands except the intrinsic ID. 1976 unsigned NumOps = Op.getNumOperands(); 1977 SmallVector<SDValue, 6> Ops; 1978 Ops.reserve(NumOps - 1); 1979 Ops.push_back(Op.getOperand(0)); 1980 for (unsigned I = 2; I < NumOps; ++I) 1981 Ops.push_back(Op.getOperand(I)); 1982 1983 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1984 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1985 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1986 SDValue OldChain = SDValue(Op.getNode(), 1); 1987 SDValue NewChain = SDValue(Intr.getNode(), 1); 1988 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1989 return Intr.getNode(); 1990 } 1991 1992 // Emit an intrinsic with an explicit CC register result. 1993 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1994 unsigned Opcode) { 1995 // Copy all operands except the intrinsic ID. 1996 unsigned NumOps = Op.getNumOperands(); 1997 SmallVector<SDValue, 6> Ops; 1998 Ops.reserve(NumOps - 1); 1999 for (unsigned I = 1; I < NumOps; ++I) 2000 Ops.push_back(Op.getOperand(I)); 2001 2002 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 2003 return Intr.getNode(); 2004 } 2005 2006 // CC is a comparison that will be implemented using an integer or 2007 // floating-point comparison. Return the condition code mask for 2008 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 2009 // unsigned comparisons and clear for signed ones. In the floating-point 2010 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 2011 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 2012 #define CONV(X) \ 2013 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2014 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2015 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2016 2017 switch (CC) { 2018 default: 2019 llvm_unreachable("Invalid integer condition!"); 2020 2021 CONV(EQ); 2022 CONV(NE); 2023 CONV(GT); 2024 CONV(GE); 2025 CONV(LT); 2026 CONV(LE); 2027 2028 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2029 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2030 } 2031 #undef CONV 2032 } 2033 2034 // If C can be converted to a comparison against zero, adjust the operands 2035 // as necessary. 2036 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2037 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2038 return; 2039 2040 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2041 if (!ConstOp1) 2042 return; 2043 2044 int64_t Value = ConstOp1->getSExtValue(); 2045 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2046 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2047 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2048 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2049 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2050 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2051 } 2052 } 2053 2054 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2055 // adjust the operands as necessary. 2056 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2057 Comparison &C) { 2058 // For us to make any changes, it must a comparison between a single-use 2059 // load and a constant. 2060 if (!C.Op0.hasOneUse() || 2061 C.Op0.getOpcode() != ISD::LOAD || 2062 C.Op1.getOpcode() != ISD::Constant) 2063 return; 2064 2065 // We must have an 8- or 16-bit load. 2066 auto *Load = cast<LoadSDNode>(C.Op0); 2067 unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 2068 if ((NumBits != 8 && NumBits != 16) || 2069 NumBits != Load->getMemoryVT().getStoreSizeInBits()) 2070 return; 2071 2072 // The load must be an extending one and the constant must be within the 2073 // range of the unextended value. 2074 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2075 uint64_t Value = ConstOp1->getZExtValue(); 2076 uint64_t Mask = (1 << NumBits) - 1; 2077 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2078 // Make sure that ConstOp1 is in range of C.Op0. 2079 int64_t SignedValue = ConstOp1->getSExtValue(); 2080 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2081 return; 2082 if (C.ICmpType != SystemZICMP::SignedOnly) { 2083 // Unsigned comparison between two sign-extended values is equivalent 2084 // to unsigned comparison between two zero-extended values. 2085 Value &= Mask; 2086 } else if (NumBits == 8) { 2087 // Try to treat the comparison as unsigned, so that we can use CLI. 2088 // Adjust CCMask and Value as necessary. 2089 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2090 // Test whether the high bit of the byte is set. 2091 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2092 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2093 // Test whether the high bit of the byte is clear. 2094 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2095 else 2096 // No instruction exists for this combination. 2097 return; 2098 C.ICmpType = SystemZICMP::UnsignedOnly; 2099 } 2100 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2101 if (Value > Mask) 2102 return; 2103 // If the constant is in range, we can use any comparison. 2104 C.ICmpType = SystemZICMP::Any; 2105 } else 2106 return; 2107 2108 // Make sure that the first operand is an i32 of the right extension type. 2109 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2110 ISD::SEXTLOAD : 2111 ISD::ZEXTLOAD); 2112 if (C.Op0.getValueType() != MVT::i32 || 2113 Load->getExtensionType() != ExtType) { 2114 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2115 Load->getBasePtr(), Load->getPointerInfo(), 2116 Load->getMemoryVT(), Load->getAlignment(), 2117 Load->getMemOperand()->getFlags()); 2118 // Update the chain uses. 2119 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2120 } 2121 2122 // Make sure that the second operand is an i32 with the right value. 2123 if (C.Op1.getValueType() != MVT::i32 || 2124 Value != ConstOp1->getZExtValue()) 2125 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2126 } 2127 2128 // Return true if Op is either an unextended load, or a load suitable 2129 // for integer register-memory comparisons of type ICmpType. 2130 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2131 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2132 if (Load) { 2133 // There are no instructions to compare a register with a memory byte. 2134 if (Load->getMemoryVT() == MVT::i8) 2135 return false; 2136 // Otherwise decide on extension type. 2137 switch (Load->getExtensionType()) { 2138 case ISD::NON_EXTLOAD: 2139 return true; 2140 case ISD::SEXTLOAD: 2141 return ICmpType != SystemZICMP::UnsignedOnly; 2142 case ISD::ZEXTLOAD: 2143 return ICmpType != SystemZICMP::SignedOnly; 2144 default: 2145 break; 2146 } 2147 } 2148 return false; 2149 } 2150 2151 // Return true if it is better to swap the operands of C. 2152 static bool shouldSwapCmpOperands(const Comparison &C) { 2153 // Leave f128 comparisons alone, since they have no memory forms. 2154 if (C.Op0.getValueType() == MVT::f128) 2155 return false; 2156 2157 // Always keep a floating-point constant second, since comparisons with 2158 // zero can use LOAD TEST and comparisons with other constants make a 2159 // natural memory operand. 2160 if (isa<ConstantFPSDNode>(C.Op1)) 2161 return false; 2162 2163 // Never swap comparisons with zero since there are many ways to optimize 2164 // those later. 2165 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2166 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2167 return false; 2168 2169 // Also keep natural memory operands second if the loaded value is 2170 // only used here. Several comparisons have memory forms. 2171 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2172 return false; 2173 2174 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2175 // In that case we generally prefer the memory to be second. 2176 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2177 // The only exceptions are when the second operand is a constant and 2178 // we can use things like CHHSI. 2179 if (!ConstOp1) 2180 return true; 2181 // The unsigned memory-immediate instructions can handle 16-bit 2182 // unsigned integers. 2183 if (C.ICmpType != SystemZICMP::SignedOnly && 2184 isUInt<16>(ConstOp1->getZExtValue())) 2185 return false; 2186 // The signed memory-immediate instructions can handle 16-bit 2187 // signed integers. 2188 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2189 isInt<16>(ConstOp1->getSExtValue())) 2190 return false; 2191 return true; 2192 } 2193 2194 // Try to promote the use of CGFR and CLGFR. 2195 unsigned Opcode0 = C.Op0.getOpcode(); 2196 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2197 return true; 2198 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2199 return true; 2200 if (C.ICmpType != SystemZICMP::SignedOnly && 2201 Opcode0 == ISD::AND && 2202 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2203 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2204 return true; 2205 2206 return false; 2207 } 2208 2209 // Check whether C tests for equality between X and Y and whether X - Y 2210 // or Y - X is also computed. In that case it's better to compare the 2211 // result of the subtraction against zero. 2212 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2213 Comparison &C) { 2214 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2215 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2216 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2217 SDNode *N = *I; 2218 if (N->getOpcode() == ISD::SUB && 2219 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2220 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2221 C.Op0 = SDValue(N, 0); 2222 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2223 return; 2224 } 2225 } 2226 } 2227 } 2228 2229 // Check whether C compares a floating-point value with zero and if that 2230 // floating-point value is also negated. In this case we can use the 2231 // negation to set CC, so avoiding separate LOAD AND TEST and 2232 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2233 static void adjustForFNeg(Comparison &C) { 2234 // This optimization is invalid for strict comparisons, since FNEG 2235 // does not raise any exceptions. 2236 if (C.Chain) 2237 return; 2238 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2239 if (C1 && C1->isZero()) { 2240 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2241 SDNode *N = *I; 2242 if (N->getOpcode() == ISD::FNEG) { 2243 C.Op0 = SDValue(N, 0); 2244 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2245 return; 2246 } 2247 } 2248 } 2249 } 2250 2251 // Check whether C compares (shl X, 32) with 0 and whether X is 2252 // also sign-extended. In that case it is better to test the result 2253 // of the sign extension using LTGFR. 2254 // 2255 // This case is important because InstCombine transforms a comparison 2256 // with (sext (trunc X)) into a comparison with (shl X, 32). 2257 static void adjustForLTGFR(Comparison &C) { 2258 // Check for a comparison between (shl X, 32) and 0. 2259 if (C.Op0.getOpcode() == ISD::SHL && 2260 C.Op0.getValueType() == MVT::i64 && 2261 C.Op1.getOpcode() == ISD::Constant && 2262 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2263 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2264 if (C1 && C1->getZExtValue() == 32) { 2265 SDValue ShlOp0 = C.Op0.getOperand(0); 2266 // See whether X has any SIGN_EXTEND_INREG uses. 2267 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2268 SDNode *N = *I; 2269 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2270 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2271 C.Op0 = SDValue(N, 0); 2272 return; 2273 } 2274 } 2275 } 2276 } 2277 } 2278 2279 // If C compares the truncation of an extending load, try to compare 2280 // the untruncated value instead. This exposes more opportunities to 2281 // reuse CC. 2282 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2283 Comparison &C) { 2284 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2285 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2286 C.Op1.getOpcode() == ISD::Constant && 2287 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2288 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2289 if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <= 2290 C.Op0.getValueSizeInBits().getFixedSize()) { 2291 unsigned Type = L->getExtensionType(); 2292 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2293 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2294 C.Op0 = C.Op0.getOperand(0); 2295 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2296 } 2297 } 2298 } 2299 } 2300 2301 // Return true if shift operation N has an in-range constant shift value. 2302 // Store it in ShiftVal if so. 2303 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2304 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2305 if (!Shift) 2306 return false; 2307 2308 uint64_t Amount = Shift->getZExtValue(); 2309 if (Amount >= N.getValueSizeInBits()) 2310 return false; 2311 2312 ShiftVal = Amount; 2313 return true; 2314 } 2315 2316 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2317 // instruction and whether the CC value is descriptive enough to handle 2318 // a comparison of type Opcode between the AND result and CmpVal. 2319 // CCMask says which comparison result is being tested and BitSize is 2320 // the number of bits in the operands. If TEST UNDER MASK can be used, 2321 // return the corresponding CC mask, otherwise return 0. 2322 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2323 uint64_t Mask, uint64_t CmpVal, 2324 unsigned ICmpType) { 2325 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2326 2327 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2328 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2329 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2330 return 0; 2331 2332 // Work out the masks for the lowest and highest bits. 2333 unsigned HighShift = 63 - countLeadingZeros(Mask); 2334 uint64_t High = uint64_t(1) << HighShift; 2335 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2336 2337 // Signed ordered comparisons are effectively unsigned if the sign 2338 // bit is dropped. 2339 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2340 2341 // Check for equality comparisons with 0, or the equivalent. 2342 if (CmpVal == 0) { 2343 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2344 return SystemZ::CCMASK_TM_ALL_0; 2345 if (CCMask == SystemZ::CCMASK_CMP_NE) 2346 return SystemZ::CCMASK_TM_SOME_1; 2347 } 2348 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2349 if (CCMask == SystemZ::CCMASK_CMP_LT) 2350 return SystemZ::CCMASK_TM_ALL_0; 2351 if (CCMask == SystemZ::CCMASK_CMP_GE) 2352 return SystemZ::CCMASK_TM_SOME_1; 2353 } 2354 if (EffectivelyUnsigned && CmpVal < Low) { 2355 if (CCMask == SystemZ::CCMASK_CMP_LE) 2356 return SystemZ::CCMASK_TM_ALL_0; 2357 if (CCMask == SystemZ::CCMASK_CMP_GT) 2358 return SystemZ::CCMASK_TM_SOME_1; 2359 } 2360 2361 // Check for equality comparisons with the mask, or the equivalent. 2362 if (CmpVal == Mask) { 2363 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2364 return SystemZ::CCMASK_TM_ALL_1; 2365 if (CCMask == SystemZ::CCMASK_CMP_NE) 2366 return SystemZ::CCMASK_TM_SOME_0; 2367 } 2368 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2369 if (CCMask == SystemZ::CCMASK_CMP_GT) 2370 return SystemZ::CCMASK_TM_ALL_1; 2371 if (CCMask == SystemZ::CCMASK_CMP_LE) 2372 return SystemZ::CCMASK_TM_SOME_0; 2373 } 2374 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2375 if (CCMask == SystemZ::CCMASK_CMP_GE) 2376 return SystemZ::CCMASK_TM_ALL_1; 2377 if (CCMask == SystemZ::CCMASK_CMP_LT) 2378 return SystemZ::CCMASK_TM_SOME_0; 2379 } 2380 2381 // Check for ordered comparisons with the top bit. 2382 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2383 if (CCMask == SystemZ::CCMASK_CMP_LE) 2384 return SystemZ::CCMASK_TM_MSB_0; 2385 if (CCMask == SystemZ::CCMASK_CMP_GT) 2386 return SystemZ::CCMASK_TM_MSB_1; 2387 } 2388 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2389 if (CCMask == SystemZ::CCMASK_CMP_LT) 2390 return SystemZ::CCMASK_TM_MSB_0; 2391 if (CCMask == SystemZ::CCMASK_CMP_GE) 2392 return SystemZ::CCMASK_TM_MSB_1; 2393 } 2394 2395 // If there are just two bits, we can do equality checks for Low and High 2396 // as well. 2397 if (Mask == Low + High) { 2398 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2399 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2400 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2401 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2402 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2403 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2404 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2405 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2406 } 2407 2408 // Looks like we've exhausted our options. 2409 return 0; 2410 } 2411 2412 // See whether C can be implemented as a TEST UNDER MASK instruction. 2413 // Update the arguments with the TM version if so. 2414 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2415 Comparison &C) { 2416 // Check that we have a comparison with a constant. 2417 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2418 if (!ConstOp1) 2419 return; 2420 uint64_t CmpVal = ConstOp1->getZExtValue(); 2421 2422 // Check whether the nonconstant input is an AND with a constant mask. 2423 Comparison NewC(C); 2424 uint64_t MaskVal; 2425 ConstantSDNode *Mask = nullptr; 2426 if (C.Op0.getOpcode() == ISD::AND) { 2427 NewC.Op0 = C.Op0.getOperand(0); 2428 NewC.Op1 = C.Op0.getOperand(1); 2429 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2430 if (!Mask) 2431 return; 2432 MaskVal = Mask->getZExtValue(); 2433 } else { 2434 // There is no instruction to compare with a 64-bit immediate 2435 // so use TMHH instead if possible. We need an unsigned ordered 2436 // comparison with an i64 immediate. 2437 if (NewC.Op0.getValueType() != MVT::i64 || 2438 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2439 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2440 NewC.ICmpType == SystemZICMP::SignedOnly) 2441 return; 2442 // Convert LE and GT comparisons into LT and GE. 2443 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2444 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2445 if (CmpVal == uint64_t(-1)) 2446 return; 2447 CmpVal += 1; 2448 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2449 } 2450 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2451 // be masked off without changing the result. 2452 MaskVal = -(CmpVal & -CmpVal); 2453 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2454 } 2455 if (!MaskVal) 2456 return; 2457 2458 // Check whether the combination of mask, comparison value and comparison 2459 // type are suitable. 2460 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2461 unsigned NewCCMask, ShiftVal; 2462 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2463 NewC.Op0.getOpcode() == ISD::SHL && 2464 isSimpleShift(NewC.Op0, ShiftVal) && 2465 (MaskVal >> ShiftVal != 0) && 2466 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2467 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2468 MaskVal >> ShiftVal, 2469 CmpVal >> ShiftVal, 2470 SystemZICMP::Any))) { 2471 NewC.Op0 = NewC.Op0.getOperand(0); 2472 MaskVal >>= ShiftVal; 2473 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2474 NewC.Op0.getOpcode() == ISD::SRL && 2475 isSimpleShift(NewC.Op0, ShiftVal) && 2476 (MaskVal << ShiftVal != 0) && 2477 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2478 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2479 MaskVal << ShiftVal, 2480 CmpVal << ShiftVal, 2481 SystemZICMP::UnsignedOnly))) { 2482 NewC.Op0 = NewC.Op0.getOperand(0); 2483 MaskVal <<= ShiftVal; 2484 } else { 2485 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2486 NewC.ICmpType); 2487 if (!NewCCMask) 2488 return; 2489 } 2490 2491 // Go ahead and make the change. 2492 C.Opcode = SystemZISD::TM; 2493 C.Op0 = NewC.Op0; 2494 if (Mask && Mask->getZExtValue() == MaskVal) 2495 C.Op1 = SDValue(Mask, 0); 2496 else 2497 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2498 C.CCValid = SystemZ::CCMASK_TM; 2499 C.CCMask = NewCCMask; 2500 } 2501 2502 // See whether the comparison argument contains a redundant AND 2503 // and remove it if so. This sometimes happens due to the generic 2504 // BRCOND expansion. 2505 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2506 Comparison &C) { 2507 if (C.Op0.getOpcode() != ISD::AND) 2508 return; 2509 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2510 if (!Mask) 2511 return; 2512 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2513 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2514 return; 2515 2516 C.Op0 = C.Op0.getOperand(0); 2517 } 2518 2519 // Return a Comparison that tests the condition-code result of intrinsic 2520 // node Call against constant integer CC using comparison code Cond. 2521 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2522 // and CCValid is the set of possible condition-code results. 2523 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2524 SDValue Call, unsigned CCValid, uint64_t CC, 2525 ISD::CondCode Cond) { 2526 Comparison C(Call, SDValue(), SDValue()); 2527 C.Opcode = Opcode; 2528 C.CCValid = CCValid; 2529 if (Cond == ISD::SETEQ) 2530 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2531 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2532 else if (Cond == ISD::SETNE) 2533 // ...and the inverse of that. 2534 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2535 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2536 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2537 // always true for CC>3. 2538 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2539 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2540 // ...and the inverse of that. 2541 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2542 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2543 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2544 // always true for CC>3. 2545 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2546 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2547 // ...and the inverse of that. 2548 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2549 else 2550 llvm_unreachable("Unexpected integer comparison type"); 2551 C.CCMask &= CCValid; 2552 return C; 2553 } 2554 2555 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2556 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2557 ISD::CondCode Cond, const SDLoc &DL, 2558 SDValue Chain = SDValue(), 2559 bool IsSignaling = false) { 2560 if (CmpOp1.getOpcode() == ISD::Constant) { 2561 assert(!Chain); 2562 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2563 unsigned Opcode, CCValid; 2564 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2565 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2566 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2567 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2568 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2569 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2570 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2571 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2572 } 2573 Comparison C(CmpOp0, CmpOp1, Chain); 2574 C.CCMask = CCMaskForCondCode(Cond); 2575 if (C.Op0.getValueType().isFloatingPoint()) { 2576 C.CCValid = SystemZ::CCMASK_FCMP; 2577 if (!C.Chain) 2578 C.Opcode = SystemZISD::FCMP; 2579 else if (!IsSignaling) 2580 C.Opcode = SystemZISD::STRICT_FCMP; 2581 else 2582 C.Opcode = SystemZISD::STRICT_FCMPS; 2583 adjustForFNeg(C); 2584 } else { 2585 assert(!C.Chain); 2586 C.CCValid = SystemZ::CCMASK_ICMP; 2587 C.Opcode = SystemZISD::ICMP; 2588 // Choose the type of comparison. Equality and inequality tests can 2589 // use either signed or unsigned comparisons. The choice also doesn't 2590 // matter if both sign bits are known to be clear. In those cases we 2591 // want to give the main isel code the freedom to choose whichever 2592 // form fits best. 2593 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2594 C.CCMask == SystemZ::CCMASK_CMP_NE || 2595 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2596 C.ICmpType = SystemZICMP::Any; 2597 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2598 C.ICmpType = SystemZICMP::UnsignedOnly; 2599 else 2600 C.ICmpType = SystemZICMP::SignedOnly; 2601 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2602 adjustForRedundantAnd(DAG, DL, C); 2603 adjustZeroCmp(DAG, DL, C); 2604 adjustSubwordCmp(DAG, DL, C); 2605 adjustForSubtraction(DAG, DL, C); 2606 adjustForLTGFR(C); 2607 adjustICmpTruncate(DAG, DL, C); 2608 } 2609 2610 if (shouldSwapCmpOperands(C)) { 2611 std::swap(C.Op0, C.Op1); 2612 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2613 } 2614 2615 adjustForTestUnderMask(DAG, DL, C); 2616 return C; 2617 } 2618 2619 // Emit the comparison instruction described by C. 2620 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2621 if (!C.Op1.getNode()) { 2622 SDNode *Node; 2623 switch (C.Op0.getOpcode()) { 2624 case ISD::INTRINSIC_W_CHAIN: 2625 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2626 return SDValue(Node, 0); 2627 case ISD::INTRINSIC_WO_CHAIN: 2628 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2629 return SDValue(Node, Node->getNumValues() - 1); 2630 default: 2631 llvm_unreachable("Invalid comparison operands"); 2632 } 2633 } 2634 if (C.Opcode == SystemZISD::ICMP) 2635 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2636 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2637 if (C.Opcode == SystemZISD::TM) { 2638 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2639 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2640 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2641 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2642 } 2643 if (C.Chain) { 2644 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2645 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2646 } 2647 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2648 } 2649 2650 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2651 // 64 bits. Extend is the extension type to use. Store the high part 2652 // in Hi and the low part in Lo. 2653 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2654 SDValue Op0, SDValue Op1, SDValue &Hi, 2655 SDValue &Lo) { 2656 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2657 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2658 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2659 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2660 DAG.getConstant(32, DL, MVT::i64)); 2661 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2662 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2663 } 2664 2665 // Lower a binary operation that produces two VT results, one in each 2666 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2667 // and Opcode performs the GR128 operation. Store the even register result 2668 // in Even and the odd register result in Odd. 2669 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2670 unsigned Opcode, SDValue Op0, SDValue Op1, 2671 SDValue &Even, SDValue &Odd) { 2672 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2673 bool Is32Bit = is32Bit(VT); 2674 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2675 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2676 } 2677 2678 // Return an i32 value that is 1 if the CC value produced by CCReg is 2679 // in the mask CCMask and 0 otherwise. CC is known to have a value 2680 // in CCValid, so other values can be ignored. 2681 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2682 unsigned CCValid, unsigned CCMask) { 2683 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2684 DAG.getConstant(0, DL, MVT::i32), 2685 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2686 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2687 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2688 } 2689 2690 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2691 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2692 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2693 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2694 // floating-point comparisons. 2695 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2696 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2697 switch (CC) { 2698 case ISD::SETOEQ: 2699 case ISD::SETEQ: 2700 switch (Mode) { 2701 case CmpMode::Int: return SystemZISD::VICMPE; 2702 case CmpMode::FP: return SystemZISD::VFCMPE; 2703 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2704 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2705 } 2706 llvm_unreachable("Bad mode"); 2707 2708 case ISD::SETOGE: 2709 case ISD::SETGE: 2710 switch (Mode) { 2711 case CmpMode::Int: return 0; 2712 case CmpMode::FP: return SystemZISD::VFCMPHE; 2713 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2714 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2715 } 2716 llvm_unreachable("Bad mode"); 2717 2718 case ISD::SETOGT: 2719 case ISD::SETGT: 2720 switch (Mode) { 2721 case CmpMode::Int: return SystemZISD::VICMPH; 2722 case CmpMode::FP: return SystemZISD::VFCMPH; 2723 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2724 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2725 } 2726 llvm_unreachable("Bad mode"); 2727 2728 case ISD::SETUGT: 2729 switch (Mode) { 2730 case CmpMode::Int: return SystemZISD::VICMPHL; 2731 case CmpMode::FP: return 0; 2732 case CmpMode::StrictFP: return 0; 2733 case CmpMode::SignalingFP: return 0; 2734 } 2735 llvm_unreachable("Bad mode"); 2736 2737 default: 2738 return 0; 2739 } 2740 } 2741 2742 // Return the SystemZISD vector comparison operation for CC or its inverse, 2743 // or 0 if neither can be done directly. Indicate in Invert whether the 2744 // result is for the inverse of CC. Mode is as above. 2745 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2746 bool &Invert) { 2747 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2748 Invert = false; 2749 return Opcode; 2750 } 2751 2752 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2753 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2754 Invert = true; 2755 return Opcode; 2756 } 2757 2758 return 0; 2759 } 2760 2761 // Return a v2f64 that contains the extended form of elements Start and Start+1 2762 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2763 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2764 SDValue Op, SDValue Chain) { 2765 int Mask[] = { Start, -1, Start + 1, -1 }; 2766 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2767 if (Chain) { 2768 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2769 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2770 } 2771 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2772 } 2773 2774 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2775 // producing a result of type VT. If Chain is nonnull, return the strict form. 2776 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2777 const SDLoc &DL, EVT VT, 2778 SDValue CmpOp0, 2779 SDValue CmpOp1, 2780 SDValue Chain) const { 2781 // There is no hardware support for v4f32 (unless we have the vector 2782 // enhancements facility 1), so extend the vector into two v2f64s 2783 // and compare those. 2784 if (CmpOp0.getValueType() == MVT::v4f32 && 2785 !Subtarget.hasVectorEnhancements1()) { 2786 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2787 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2788 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2789 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2790 if (Chain) { 2791 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2792 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2793 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2794 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2795 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2796 H1.getValue(1), L1.getValue(1), 2797 HRes.getValue(1), LRes.getValue(1) }; 2798 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2799 SDValue Ops[2] = { Res, NewChain }; 2800 return DAG.getMergeValues(Ops, DL); 2801 } 2802 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2803 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2804 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2805 } 2806 if (Chain) { 2807 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2808 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2809 } 2810 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2811 } 2812 2813 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2814 // an integer mask of type VT. If Chain is nonnull, we have a strict 2815 // floating-point comparison. If in addition IsSignaling is true, we have 2816 // a strict signaling floating-point comparison. 2817 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2818 const SDLoc &DL, EVT VT, 2819 ISD::CondCode CC, 2820 SDValue CmpOp0, 2821 SDValue CmpOp1, 2822 SDValue Chain, 2823 bool IsSignaling) const { 2824 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2825 assert (!Chain || IsFP); 2826 assert (!IsSignaling || Chain); 2827 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2828 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2829 bool Invert = false; 2830 SDValue Cmp; 2831 switch (CC) { 2832 // Handle tests for order using (or (ogt y x) (oge x y)). 2833 case ISD::SETUO: 2834 Invert = true; 2835 LLVM_FALLTHROUGH; 2836 case ISD::SETO: { 2837 assert(IsFP && "Unexpected integer comparison"); 2838 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2839 DL, VT, CmpOp1, CmpOp0, Chain); 2840 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 2841 DL, VT, CmpOp0, CmpOp1, Chain); 2842 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2843 if (Chain) 2844 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2845 LT.getValue(1), GE.getValue(1)); 2846 break; 2847 } 2848 2849 // Handle <> tests using (or (ogt y x) (ogt x y)). 2850 case ISD::SETUEQ: 2851 Invert = true; 2852 LLVM_FALLTHROUGH; 2853 case ISD::SETONE: { 2854 assert(IsFP && "Unexpected integer comparison"); 2855 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2856 DL, VT, CmpOp1, CmpOp0, Chain); 2857 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2858 DL, VT, CmpOp0, CmpOp1, Chain); 2859 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2860 if (Chain) 2861 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2862 LT.getValue(1), GT.getValue(1)); 2863 break; 2864 } 2865 2866 // Otherwise a single comparison is enough. It doesn't really 2867 // matter whether we try the inversion or the swap first, since 2868 // there are no cases where both work. 2869 default: 2870 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2871 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 2872 else { 2873 CC = ISD::getSetCCSwappedOperands(CC); 2874 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2875 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 2876 else 2877 llvm_unreachable("Unhandled comparison"); 2878 } 2879 if (Chain) 2880 Chain = Cmp.getValue(1); 2881 break; 2882 } 2883 if (Invert) { 2884 SDValue Mask = 2885 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2886 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2887 } 2888 if (Chain && Chain.getNode() != Cmp.getNode()) { 2889 SDValue Ops[2] = { Cmp, Chain }; 2890 Cmp = DAG.getMergeValues(Ops, DL); 2891 } 2892 return Cmp; 2893 } 2894 2895 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2896 SelectionDAG &DAG) const { 2897 SDValue CmpOp0 = Op.getOperand(0); 2898 SDValue CmpOp1 = Op.getOperand(1); 2899 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2900 SDLoc DL(Op); 2901 EVT VT = Op.getValueType(); 2902 if (VT.isVector()) 2903 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2904 2905 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2906 SDValue CCReg = emitCmp(DAG, DL, C); 2907 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2908 } 2909 2910 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 2911 SelectionDAG &DAG, 2912 bool IsSignaling) const { 2913 SDValue Chain = Op.getOperand(0); 2914 SDValue CmpOp0 = Op.getOperand(1); 2915 SDValue CmpOp1 = Op.getOperand(2); 2916 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 2917 SDLoc DL(Op); 2918 EVT VT = Op.getNode()->getValueType(0); 2919 if (VT.isVector()) { 2920 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 2921 Chain, IsSignaling); 2922 return Res.getValue(Op.getResNo()); 2923 } 2924 2925 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 2926 SDValue CCReg = emitCmp(DAG, DL, C); 2927 CCReg->setFlags(Op->getFlags()); 2928 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2929 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 2930 return DAG.getMergeValues(Ops, DL); 2931 } 2932 2933 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2934 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2935 SDValue CmpOp0 = Op.getOperand(2); 2936 SDValue CmpOp1 = Op.getOperand(3); 2937 SDValue Dest = Op.getOperand(4); 2938 SDLoc DL(Op); 2939 2940 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2941 SDValue CCReg = emitCmp(DAG, DL, C); 2942 return DAG.getNode( 2943 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 2944 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2945 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2946 } 2947 2948 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2949 // allowing Pos and Neg to be wider than CmpOp. 2950 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2951 return (Neg.getOpcode() == ISD::SUB && 2952 Neg.getOperand(0).getOpcode() == ISD::Constant && 2953 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2954 Neg.getOperand(1) == Pos && 2955 (Pos == CmpOp || 2956 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2957 Pos.getOperand(0) == CmpOp))); 2958 } 2959 2960 // Return the absolute or negative absolute of Op; IsNegative decides which. 2961 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2962 bool IsNegative) { 2963 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2964 if (IsNegative) 2965 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2966 DAG.getConstant(0, DL, Op.getValueType()), Op); 2967 return Op; 2968 } 2969 2970 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2971 SelectionDAG &DAG) const { 2972 SDValue CmpOp0 = Op.getOperand(0); 2973 SDValue CmpOp1 = Op.getOperand(1); 2974 SDValue TrueOp = Op.getOperand(2); 2975 SDValue FalseOp = Op.getOperand(3); 2976 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2977 SDLoc DL(Op); 2978 2979 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2980 2981 // Check for absolute and negative-absolute selections, including those 2982 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2983 // This check supplements the one in DAGCombiner. 2984 if (C.Opcode == SystemZISD::ICMP && 2985 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2986 C.CCMask != SystemZ::CCMASK_CMP_NE && 2987 C.Op1.getOpcode() == ISD::Constant && 2988 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2989 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2990 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2991 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2992 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2993 } 2994 2995 SDValue CCReg = emitCmp(DAG, DL, C); 2996 SDValue Ops[] = {TrueOp, FalseOp, 2997 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2998 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 2999 3000 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 3001 } 3002 3003 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 3004 SelectionDAG &DAG) const { 3005 SDLoc DL(Node); 3006 const GlobalValue *GV = Node->getGlobal(); 3007 int64_t Offset = Node->getOffset(); 3008 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3009 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 3010 3011 SDValue Result; 3012 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 3013 if (isInt<32>(Offset)) { 3014 // Assign anchors at 1<<12 byte boundaries. 3015 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3016 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3017 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3018 3019 // The offset can be folded into the address if it is aligned to a 3020 // halfword. 3021 Offset -= Anchor; 3022 if (Offset != 0 && (Offset & 1) == 0) { 3023 SDValue Full = 3024 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3025 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3026 Offset = 0; 3027 } 3028 } else { 3029 // Conservatively load a constant offset greater than 32 bits into a 3030 // register below. 3031 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3032 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3033 } 3034 } else { 3035 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3036 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3037 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3038 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3039 } 3040 3041 // If there was a non-zero offset that we didn't fold, create an explicit 3042 // addition for it. 3043 if (Offset != 0) 3044 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3045 DAG.getConstant(Offset, DL, PtrVT)); 3046 3047 return Result; 3048 } 3049 3050 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3051 SelectionDAG &DAG, 3052 unsigned Opcode, 3053 SDValue GOTOffset) const { 3054 SDLoc DL(Node); 3055 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3056 SDValue Chain = DAG.getEntryNode(); 3057 SDValue Glue; 3058 3059 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3060 CallingConv::GHC) 3061 report_fatal_error("In GHC calling convention TLS is not supported"); 3062 3063 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3064 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3065 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3066 Glue = Chain.getValue(1); 3067 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3068 Glue = Chain.getValue(1); 3069 3070 // The first call operand is the chain and the second is the TLS symbol. 3071 SmallVector<SDValue, 8> Ops; 3072 Ops.push_back(Chain); 3073 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3074 Node->getValueType(0), 3075 0, 0)); 3076 3077 // Add argument registers to the end of the list so that they are 3078 // known live into the call. 3079 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3080 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3081 3082 // Add a register mask operand representing the call-preserved registers. 3083 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3084 const uint32_t *Mask = 3085 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3086 assert(Mask && "Missing call preserved mask for calling convention"); 3087 Ops.push_back(DAG.getRegisterMask(Mask)); 3088 3089 // Glue the call to the argument copies. 3090 Ops.push_back(Glue); 3091 3092 // Emit the call. 3093 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3094 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3095 Glue = Chain.getValue(1); 3096 3097 // Copy the return value from %r2. 3098 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3099 } 3100 3101 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3102 SelectionDAG &DAG) const { 3103 SDValue Chain = DAG.getEntryNode(); 3104 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3105 3106 // The high part of the thread pointer is in access register 0. 3107 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3108 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3109 3110 // The low part of the thread pointer is in access register 1. 3111 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3112 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3113 3114 // Merge them into a single 64-bit address. 3115 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3116 DAG.getConstant(32, DL, PtrVT)); 3117 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3118 } 3119 3120 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3121 SelectionDAG &DAG) const { 3122 if (DAG.getTarget().useEmulatedTLS()) 3123 return LowerToTLSEmulatedModel(Node, DAG); 3124 SDLoc DL(Node); 3125 const GlobalValue *GV = Node->getGlobal(); 3126 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3127 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3128 3129 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3130 CallingConv::GHC) 3131 report_fatal_error("In GHC calling convention TLS is not supported"); 3132 3133 SDValue TP = lowerThreadPointer(DL, DAG); 3134 3135 // Get the offset of GA from the thread pointer, based on the TLS model. 3136 SDValue Offset; 3137 switch (model) { 3138 case TLSModel::GeneralDynamic: { 3139 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3140 SystemZConstantPoolValue *CPV = 3141 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3142 3143 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3144 Offset = DAG.getLoad( 3145 PtrVT, DL, DAG.getEntryNode(), Offset, 3146 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3147 3148 // Call __tls_get_offset to retrieve the offset. 3149 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3150 break; 3151 } 3152 3153 case TLSModel::LocalDynamic: { 3154 // Load the GOT offset of the module ID. 3155 SystemZConstantPoolValue *CPV = 3156 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3157 3158 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3159 Offset = DAG.getLoad( 3160 PtrVT, DL, DAG.getEntryNode(), Offset, 3161 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3162 3163 // Call __tls_get_offset to retrieve the module base offset. 3164 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3165 3166 // Note: The SystemZLDCleanupPass will remove redundant computations 3167 // of the module base offset. Count total number of local-dynamic 3168 // accesses to trigger execution of that pass. 3169 SystemZMachineFunctionInfo* MFI = 3170 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3171 MFI->incNumLocalDynamicTLSAccesses(); 3172 3173 // Add the per-symbol offset. 3174 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3175 3176 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3177 DTPOffset = DAG.getLoad( 3178 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3179 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3180 3181 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3182 break; 3183 } 3184 3185 case TLSModel::InitialExec: { 3186 // Load the offset from the GOT. 3187 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3188 SystemZII::MO_INDNTPOFF); 3189 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3190 Offset = 3191 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3192 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3193 break; 3194 } 3195 3196 case TLSModel::LocalExec: { 3197 // Force the offset into the constant pool and load it from there. 3198 SystemZConstantPoolValue *CPV = 3199 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3200 3201 Offset = DAG.getConstantPool(CPV, PtrVT, Align(8)); 3202 Offset = DAG.getLoad( 3203 PtrVT, DL, DAG.getEntryNode(), Offset, 3204 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3205 break; 3206 } 3207 } 3208 3209 // Add the base and offset together. 3210 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3211 } 3212 3213 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3214 SelectionDAG &DAG) const { 3215 SDLoc DL(Node); 3216 const BlockAddress *BA = Node->getBlockAddress(); 3217 int64_t Offset = Node->getOffset(); 3218 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3219 3220 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3221 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3222 return Result; 3223 } 3224 3225 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3226 SelectionDAG &DAG) const { 3227 SDLoc DL(JT); 3228 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3229 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3230 3231 // Use LARL to load the address of the table. 3232 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3233 } 3234 3235 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3236 SelectionDAG &DAG) const { 3237 SDLoc DL(CP); 3238 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3239 3240 SDValue Result; 3241 if (CP->isMachineConstantPoolEntry()) 3242 Result = 3243 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign()); 3244 else 3245 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(), 3246 CP->getOffset()); 3247 3248 // Use LARL to load the address of the constant pool entry. 3249 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3250 } 3251 3252 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3253 SelectionDAG &DAG) const { 3254 auto *TFL = 3255 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 3256 MachineFunction &MF = DAG.getMachineFunction(); 3257 MachineFrameInfo &MFI = MF.getFrameInfo(); 3258 MFI.setFrameAddressIsTaken(true); 3259 3260 SDLoc DL(Op); 3261 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3262 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3263 3264 // Return null if the back chain is not present. 3265 bool HasBackChain = MF.getFunction().hasFnAttribute("backchain"); 3266 if (TFL->usePackedStack(MF) && !HasBackChain) 3267 return DAG.getConstant(0, DL, PtrVT); 3268 3269 // By definition, the frame address is the address of the back chain. 3270 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3271 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3272 3273 // FIXME The frontend should detect this case. 3274 if (Depth > 0) { 3275 report_fatal_error("Unsupported stack frame traversal count"); 3276 } 3277 3278 return BackChain; 3279 } 3280 3281 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3282 SelectionDAG &DAG) const { 3283 MachineFunction &MF = DAG.getMachineFunction(); 3284 MachineFrameInfo &MFI = MF.getFrameInfo(); 3285 MFI.setReturnAddressIsTaken(true); 3286 3287 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3288 return SDValue(); 3289 3290 SDLoc DL(Op); 3291 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3292 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3293 3294 // FIXME The frontend should detect this case. 3295 if (Depth > 0) { 3296 report_fatal_error("Unsupported stack frame traversal count"); 3297 } 3298 3299 // Return R14D, which has the return address. Mark it an implicit live-in. 3300 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3301 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3302 } 3303 3304 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3305 SelectionDAG &DAG) const { 3306 SDLoc DL(Op); 3307 SDValue In = Op.getOperand(0); 3308 EVT InVT = In.getValueType(); 3309 EVT ResVT = Op.getValueType(); 3310 3311 // Convert loads directly. This is normally done by DAGCombiner, 3312 // but we need this case for bitcasts that are created during lowering 3313 // and which are then lowered themselves. 3314 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3315 if (ISD::isNormalLoad(LoadN)) { 3316 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3317 LoadN->getBasePtr(), LoadN->getMemOperand()); 3318 // Update the chain uses. 3319 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3320 return NewLoad; 3321 } 3322 3323 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3324 SDValue In64; 3325 if (Subtarget.hasHighWord()) { 3326 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3327 MVT::i64); 3328 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3329 MVT::i64, SDValue(U64, 0), In); 3330 } else { 3331 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3332 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3333 DAG.getConstant(32, DL, MVT::i64)); 3334 } 3335 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3336 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3337 DL, MVT::f32, Out64); 3338 } 3339 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3340 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3341 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3342 MVT::f64, SDValue(U64, 0), In); 3343 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3344 if (Subtarget.hasHighWord()) 3345 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3346 MVT::i32, Out64); 3347 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3348 DAG.getConstant(32, DL, MVT::i64)); 3349 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3350 } 3351 llvm_unreachable("Unexpected bitcast combination"); 3352 } 3353 3354 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3355 SelectionDAG &DAG) const { 3356 MachineFunction &MF = DAG.getMachineFunction(); 3357 SystemZMachineFunctionInfo *FuncInfo = 3358 MF.getInfo<SystemZMachineFunctionInfo>(); 3359 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3360 3361 SDValue Chain = Op.getOperand(0); 3362 SDValue Addr = Op.getOperand(1); 3363 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3364 SDLoc DL(Op); 3365 3366 // The initial values of each field. 3367 const unsigned NumFields = 4; 3368 SDValue Fields[NumFields] = { 3369 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3370 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3371 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3372 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3373 }; 3374 3375 // Store each field into its respective slot. 3376 SDValue MemOps[NumFields]; 3377 unsigned Offset = 0; 3378 for (unsigned I = 0; I < NumFields; ++I) { 3379 SDValue FieldAddr = Addr; 3380 if (Offset != 0) 3381 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3382 DAG.getIntPtrConstant(Offset, DL)); 3383 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3384 MachinePointerInfo(SV, Offset)); 3385 Offset += 8; 3386 } 3387 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3388 } 3389 3390 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3391 SelectionDAG &DAG) const { 3392 SDValue Chain = Op.getOperand(0); 3393 SDValue DstPtr = Op.getOperand(1); 3394 SDValue SrcPtr = Op.getOperand(2); 3395 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3396 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3397 SDLoc DL(Op); 3398 3399 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3400 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3401 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3402 MachinePointerInfo(SrcSV)); 3403 } 3404 3405 SDValue SystemZTargetLowering:: 3406 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3407 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3408 MachineFunction &MF = DAG.getMachineFunction(); 3409 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3410 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3411 3412 SDValue Chain = Op.getOperand(0); 3413 SDValue Size = Op.getOperand(1); 3414 SDValue Align = Op.getOperand(2); 3415 SDLoc DL(Op); 3416 3417 // If user has set the no alignment function attribute, ignore 3418 // alloca alignments. 3419 uint64_t AlignVal = (RealignOpt ? 3420 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3421 3422 uint64_t StackAlign = TFI->getStackAlignment(); 3423 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3424 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3425 3426 Register SPReg = getStackPointerRegisterToSaveRestore(); 3427 SDValue NeededSpace = Size; 3428 3429 // Get a reference to the stack pointer. 3430 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3431 3432 // If we need a backchain, save it now. 3433 SDValue Backchain; 3434 if (StoreBackchain) 3435 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3436 3437 // Add extra space for alignment if needed. 3438 if (ExtraAlignSpace) 3439 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3440 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3441 3442 // Get the new stack pointer value. 3443 SDValue NewSP; 3444 if (hasInlineStackProbe(MF)) { 3445 NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL, 3446 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace); 3447 Chain = NewSP.getValue(1); 3448 } 3449 else { 3450 NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3451 // Copy the new stack pointer back. 3452 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3453 } 3454 3455 // The allocated data lives above the 160 bytes allocated for the standard 3456 // frame, plus any outgoing stack arguments. We don't know how much that 3457 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3458 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3459 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3460 3461 // Dynamically realign if needed. 3462 if (RequiredAlign > StackAlign) { 3463 Result = 3464 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3465 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3466 Result = 3467 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3468 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3469 } 3470 3471 if (StoreBackchain) 3472 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3473 3474 SDValue Ops[2] = { Result, Chain }; 3475 return DAG.getMergeValues(Ops, DL); 3476 } 3477 3478 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3479 SDValue Op, SelectionDAG &DAG) const { 3480 SDLoc DL(Op); 3481 3482 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3483 } 3484 3485 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3486 SelectionDAG &DAG) const { 3487 EVT VT = Op.getValueType(); 3488 SDLoc DL(Op); 3489 SDValue Ops[2]; 3490 if (is32Bit(VT)) 3491 // Just do a normal 64-bit multiplication and extract the results. 3492 // We define this so that it can be used for constant division. 3493 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3494 Op.getOperand(1), Ops[1], Ops[0]); 3495 else if (Subtarget.hasMiscellaneousExtensions2()) 3496 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3497 // the high result in the even register. ISD::SMUL_LOHI is defined to 3498 // return the low half first, so the results are in reverse order. 3499 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3500 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3501 else { 3502 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3503 // 3504 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3505 // 3506 // but using the fact that the upper halves are either all zeros 3507 // or all ones: 3508 // 3509 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3510 // 3511 // and grouping the right terms together since they are quicker than the 3512 // multiplication: 3513 // 3514 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3515 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3516 SDValue LL = Op.getOperand(0); 3517 SDValue RL = Op.getOperand(1); 3518 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3519 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3520 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3521 // the high result in the even register. ISD::SMUL_LOHI is defined to 3522 // return the low half first, so the results are in reverse order. 3523 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3524 LL, RL, Ops[1], Ops[0]); 3525 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3526 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3527 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3528 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3529 } 3530 return DAG.getMergeValues(Ops, DL); 3531 } 3532 3533 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3534 SelectionDAG &DAG) const { 3535 EVT VT = Op.getValueType(); 3536 SDLoc DL(Op); 3537 SDValue Ops[2]; 3538 if (is32Bit(VT)) 3539 // Just do a normal 64-bit multiplication and extract the results. 3540 // We define this so that it can be used for constant division. 3541 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3542 Op.getOperand(1), Ops[1], Ops[0]); 3543 else 3544 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3545 // the high result in the even register. ISD::UMUL_LOHI is defined to 3546 // return the low half first, so the results are in reverse order. 3547 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3548 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3549 return DAG.getMergeValues(Ops, DL); 3550 } 3551 3552 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3553 SelectionDAG &DAG) const { 3554 SDValue Op0 = Op.getOperand(0); 3555 SDValue Op1 = Op.getOperand(1); 3556 EVT VT = Op.getValueType(); 3557 SDLoc DL(Op); 3558 3559 // We use DSGF for 32-bit division. This means the first operand must 3560 // always be 64-bit, and the second operand should be 32-bit whenever 3561 // that is possible, to improve performance. 3562 if (is32Bit(VT)) 3563 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3564 else if (DAG.ComputeNumSignBits(Op1) > 32) 3565 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3566 3567 // DSG(F) returns the remainder in the even register and the 3568 // quotient in the odd register. 3569 SDValue Ops[2]; 3570 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3571 return DAG.getMergeValues(Ops, DL); 3572 } 3573 3574 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3575 SelectionDAG &DAG) const { 3576 EVT VT = Op.getValueType(); 3577 SDLoc DL(Op); 3578 3579 // DL(G) returns the remainder in the even register and the 3580 // quotient in the odd register. 3581 SDValue Ops[2]; 3582 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3583 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3584 return DAG.getMergeValues(Ops, DL); 3585 } 3586 3587 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3588 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3589 3590 // Get the known-zero masks for each operand. 3591 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3592 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3593 DAG.computeKnownBits(Ops[1])}; 3594 3595 // See if the upper 32 bits of one operand and the lower 32 bits of the 3596 // other are known zero. They are the low and high operands respectively. 3597 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3598 Known[1].Zero.getZExtValue() }; 3599 unsigned High, Low; 3600 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3601 High = 1, Low = 0; 3602 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3603 High = 0, Low = 1; 3604 else 3605 return Op; 3606 3607 SDValue LowOp = Ops[Low]; 3608 SDValue HighOp = Ops[High]; 3609 3610 // If the high part is a constant, we're better off using IILH. 3611 if (HighOp.getOpcode() == ISD::Constant) 3612 return Op; 3613 3614 // If the low part is a constant that is outside the range of LHI, 3615 // then we're better off using IILF. 3616 if (LowOp.getOpcode() == ISD::Constant) { 3617 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3618 if (!isInt<16>(Value)) 3619 return Op; 3620 } 3621 3622 // Check whether the high part is an AND that doesn't change the 3623 // high 32 bits and just masks out low bits. We can skip it if so. 3624 if (HighOp.getOpcode() == ISD::AND && 3625 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3626 SDValue HighOp0 = HighOp.getOperand(0); 3627 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3628 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3629 HighOp = HighOp0; 3630 } 3631 3632 // Take advantage of the fact that all GR32 operations only change the 3633 // low 32 bits by truncating Low to an i32 and inserting it directly 3634 // using a subreg. The interesting cases are those where the truncation 3635 // can be folded. 3636 SDLoc DL(Op); 3637 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3638 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3639 MVT::i64, HighOp, Low32); 3640 } 3641 3642 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3643 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3644 SelectionDAG &DAG) const { 3645 SDNode *N = Op.getNode(); 3646 SDValue LHS = N->getOperand(0); 3647 SDValue RHS = N->getOperand(1); 3648 SDLoc DL(N); 3649 unsigned BaseOp = 0; 3650 unsigned CCValid = 0; 3651 unsigned CCMask = 0; 3652 3653 switch (Op.getOpcode()) { 3654 default: llvm_unreachable("Unknown instruction!"); 3655 case ISD::SADDO: 3656 BaseOp = SystemZISD::SADDO; 3657 CCValid = SystemZ::CCMASK_ARITH; 3658 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3659 break; 3660 case ISD::SSUBO: 3661 BaseOp = SystemZISD::SSUBO; 3662 CCValid = SystemZ::CCMASK_ARITH; 3663 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3664 break; 3665 case ISD::UADDO: 3666 BaseOp = SystemZISD::UADDO; 3667 CCValid = SystemZ::CCMASK_LOGICAL; 3668 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3669 break; 3670 case ISD::USUBO: 3671 BaseOp = SystemZISD::USUBO; 3672 CCValid = SystemZ::CCMASK_LOGICAL; 3673 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3674 break; 3675 } 3676 3677 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3678 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3679 3680 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3681 if (N->getValueType(1) == MVT::i1) 3682 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3683 3684 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3685 } 3686 3687 static bool isAddCarryChain(SDValue Carry) { 3688 while (Carry.getOpcode() == ISD::ADDCARRY) 3689 Carry = Carry.getOperand(2); 3690 return Carry.getOpcode() == ISD::UADDO; 3691 } 3692 3693 static bool isSubBorrowChain(SDValue Carry) { 3694 while (Carry.getOpcode() == ISD::SUBCARRY) 3695 Carry = Carry.getOperand(2); 3696 return Carry.getOpcode() == ISD::USUBO; 3697 } 3698 3699 // Lower ADDCARRY/SUBCARRY nodes. 3700 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3701 SelectionDAG &DAG) const { 3702 3703 SDNode *N = Op.getNode(); 3704 MVT VT = N->getSimpleValueType(0); 3705 3706 // Let legalize expand this if it isn't a legal type yet. 3707 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3708 return SDValue(); 3709 3710 SDValue LHS = N->getOperand(0); 3711 SDValue RHS = N->getOperand(1); 3712 SDValue Carry = Op.getOperand(2); 3713 SDLoc DL(N); 3714 unsigned BaseOp = 0; 3715 unsigned CCValid = 0; 3716 unsigned CCMask = 0; 3717 3718 switch (Op.getOpcode()) { 3719 default: llvm_unreachable("Unknown instruction!"); 3720 case ISD::ADDCARRY: 3721 if (!isAddCarryChain(Carry)) 3722 return SDValue(); 3723 3724 BaseOp = SystemZISD::ADDCARRY; 3725 CCValid = SystemZ::CCMASK_LOGICAL; 3726 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3727 break; 3728 case ISD::SUBCARRY: 3729 if (!isSubBorrowChain(Carry)) 3730 return SDValue(); 3731 3732 BaseOp = SystemZISD::SUBCARRY; 3733 CCValid = SystemZ::CCMASK_LOGICAL; 3734 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3735 break; 3736 } 3737 3738 // Set the condition code from the carry flag. 3739 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3740 DAG.getConstant(CCValid, DL, MVT::i32), 3741 DAG.getConstant(CCMask, DL, MVT::i32)); 3742 3743 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3744 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3745 3746 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3747 if (N->getValueType(1) == MVT::i1) 3748 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3749 3750 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3751 } 3752 3753 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3754 SelectionDAG &DAG) const { 3755 EVT VT = Op.getValueType(); 3756 SDLoc DL(Op); 3757 Op = Op.getOperand(0); 3758 3759 // Handle vector types via VPOPCT. 3760 if (VT.isVector()) { 3761 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3762 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3763 switch (VT.getScalarSizeInBits()) { 3764 case 8: 3765 break; 3766 case 16: { 3767 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3768 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3769 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3770 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3771 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3772 break; 3773 } 3774 case 32: { 3775 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3776 DAG.getConstant(0, DL, MVT::i32)); 3777 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3778 break; 3779 } 3780 case 64: { 3781 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3782 DAG.getConstant(0, DL, MVT::i32)); 3783 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3784 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3785 break; 3786 } 3787 default: 3788 llvm_unreachable("Unexpected type"); 3789 } 3790 return Op; 3791 } 3792 3793 // Get the known-zero mask for the operand. 3794 KnownBits Known = DAG.computeKnownBits(Op); 3795 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 3796 if (NumSignificantBits == 0) 3797 return DAG.getConstant(0, DL, VT); 3798 3799 // Skip known-zero high parts of the operand. 3800 int64_t OrigBitSize = VT.getSizeInBits(); 3801 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3802 BitSize = std::min(BitSize, OrigBitSize); 3803 3804 // The POPCNT instruction counts the number of bits in each byte. 3805 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3806 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3807 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3808 3809 // Add up per-byte counts in a binary tree. All bits of Op at 3810 // position larger than BitSize remain zero throughout. 3811 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3812 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3813 if (BitSize != OrigBitSize) 3814 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3815 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3816 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3817 } 3818 3819 // Extract overall result from high byte. 3820 if (BitSize > 8) 3821 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3822 DAG.getConstant(BitSize - 8, DL, VT)); 3823 3824 return Op; 3825 } 3826 3827 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3828 SelectionDAG &DAG) const { 3829 SDLoc DL(Op); 3830 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3831 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3832 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3833 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3834 3835 // The only fence that needs an instruction is a sequentially-consistent 3836 // cross-thread fence. 3837 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3838 FenceSSID == SyncScope::System) { 3839 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3840 Op.getOperand(0)), 3841 0); 3842 } 3843 3844 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3845 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3846 } 3847 3848 // Op is an atomic load. Lower it into a normal volatile load. 3849 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3850 SelectionDAG &DAG) const { 3851 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3852 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3853 Node->getChain(), Node->getBasePtr(), 3854 Node->getMemoryVT(), Node->getMemOperand()); 3855 } 3856 3857 // Op is an atomic store. Lower it into a normal volatile store. 3858 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3859 SelectionDAG &DAG) const { 3860 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3861 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3862 Node->getBasePtr(), Node->getMemoryVT(), 3863 Node->getMemOperand()); 3864 // We have to enforce sequential consistency by performing a 3865 // serialization operation after the store. 3866 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3867 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3868 MVT::Other, Chain), 0); 3869 return Chain; 3870 } 3871 3872 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3873 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3874 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3875 SelectionDAG &DAG, 3876 unsigned Opcode) const { 3877 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3878 3879 // 32-bit operations need no code outside the main loop. 3880 EVT NarrowVT = Node->getMemoryVT(); 3881 EVT WideVT = MVT::i32; 3882 if (NarrowVT == WideVT) 3883 return Op; 3884 3885 int64_t BitSize = NarrowVT.getSizeInBits(); 3886 SDValue ChainIn = Node->getChain(); 3887 SDValue Addr = Node->getBasePtr(); 3888 SDValue Src2 = Node->getVal(); 3889 MachineMemOperand *MMO = Node->getMemOperand(); 3890 SDLoc DL(Node); 3891 EVT PtrVT = Addr.getValueType(); 3892 3893 // Convert atomic subtracts of constants into additions. 3894 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3895 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3896 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3897 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3898 } 3899 3900 // Get the address of the containing word. 3901 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3902 DAG.getConstant(-4, DL, PtrVT)); 3903 3904 // Get the number of bits that the word must be rotated left in order 3905 // to bring the field to the top bits of a GR32. 3906 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3907 DAG.getConstant(3, DL, PtrVT)); 3908 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3909 3910 // Get the complementing shift amount, for rotating a field in the top 3911 // bits back to its proper position. 3912 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3913 DAG.getConstant(0, DL, WideVT), BitShift); 3914 3915 // Extend the source operand to 32 bits and prepare it for the inner loop. 3916 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3917 // operations require the source to be shifted in advance. (This shift 3918 // can be folded if the source is constant.) For AND and NAND, the lower 3919 // bits must be set, while for other opcodes they should be left clear. 3920 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3921 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3922 DAG.getConstant(32 - BitSize, DL, WideVT)); 3923 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3924 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3925 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3926 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3927 3928 // Construct the ATOMIC_LOADW_* node. 3929 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3930 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3931 DAG.getConstant(BitSize, DL, WideVT) }; 3932 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3933 NarrowVT, MMO); 3934 3935 // Rotate the result of the final CS so that the field is in the lower 3936 // bits of a GR32, then truncate it. 3937 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3938 DAG.getConstant(BitSize, DL, WideVT)); 3939 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3940 3941 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3942 return DAG.getMergeValues(RetOps, DL); 3943 } 3944 3945 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3946 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3947 // operations into additions. 3948 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3949 SelectionDAG &DAG) const { 3950 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3951 EVT MemVT = Node->getMemoryVT(); 3952 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3953 // A full-width operation. 3954 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3955 SDValue Src2 = Node->getVal(); 3956 SDValue NegSrc2; 3957 SDLoc DL(Src2); 3958 3959 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3960 // Use an addition if the operand is constant and either LAA(G) is 3961 // available or the negative value is in the range of A(G)FHI. 3962 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3963 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3964 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3965 } else if (Subtarget.hasInterlockedAccess1()) 3966 // Use LAA(G) if available. 3967 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3968 Src2); 3969 3970 if (NegSrc2.getNode()) 3971 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3972 Node->getChain(), Node->getBasePtr(), NegSrc2, 3973 Node->getMemOperand()); 3974 3975 // Use the node as-is. 3976 return Op; 3977 } 3978 3979 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3980 } 3981 3982 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3983 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3984 SelectionDAG &DAG) const { 3985 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3986 SDValue ChainIn = Node->getOperand(0); 3987 SDValue Addr = Node->getOperand(1); 3988 SDValue CmpVal = Node->getOperand(2); 3989 SDValue SwapVal = Node->getOperand(3); 3990 MachineMemOperand *MMO = Node->getMemOperand(); 3991 SDLoc DL(Node); 3992 3993 // We have native support for 32-bit and 64-bit compare and swap, but we 3994 // still need to expand extracting the "success" result from the CC. 3995 EVT NarrowVT = Node->getMemoryVT(); 3996 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3997 if (NarrowVT == WideVT) { 3998 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3999 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 4000 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 4001 DL, Tys, Ops, NarrowVT, MMO); 4002 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4003 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4004 4005 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4006 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4007 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4008 return SDValue(); 4009 } 4010 4011 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 4012 // via a fullword ATOMIC_CMP_SWAPW operation. 4013 int64_t BitSize = NarrowVT.getSizeInBits(); 4014 EVT PtrVT = Addr.getValueType(); 4015 4016 // Get the address of the containing word. 4017 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 4018 DAG.getConstant(-4, DL, PtrVT)); 4019 4020 // Get the number of bits that the word must be rotated left in order 4021 // to bring the field to the top bits of a GR32. 4022 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4023 DAG.getConstant(3, DL, PtrVT)); 4024 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4025 4026 // Get the complementing shift amount, for rotating a field in the top 4027 // bits back to its proper position. 4028 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4029 DAG.getConstant(0, DL, WideVT), BitShift); 4030 4031 // Construct the ATOMIC_CMP_SWAPW node. 4032 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4033 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4034 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4035 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4036 VTList, Ops, NarrowVT, MMO); 4037 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4038 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4039 4040 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4041 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4042 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4043 return SDValue(); 4044 } 4045 4046 MachineMemOperand::Flags 4047 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4048 // Because of how we convert atomic_load and atomic_store to normal loads and 4049 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4050 // since DAGCombine hasn't been updated to account for atomic, but non 4051 // volatile loads. (See D57601) 4052 if (auto *SI = dyn_cast<StoreInst>(&I)) 4053 if (SI->isAtomic()) 4054 return MachineMemOperand::MOVolatile; 4055 if (auto *LI = dyn_cast<LoadInst>(&I)) 4056 if (LI->isAtomic()) 4057 return MachineMemOperand::MOVolatile; 4058 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4059 if (AI->isAtomic()) 4060 return MachineMemOperand::MOVolatile; 4061 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4062 if (AI->isAtomic()) 4063 return MachineMemOperand::MOVolatile; 4064 return MachineMemOperand::MONone; 4065 } 4066 4067 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4068 SelectionDAG &DAG) const { 4069 MachineFunction &MF = DAG.getMachineFunction(); 4070 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4071 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4072 report_fatal_error("Variable-sized stack allocations are not supported " 4073 "in GHC calling convention"); 4074 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4075 SystemZ::R15D, Op.getValueType()); 4076 } 4077 4078 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4079 SelectionDAG &DAG) const { 4080 MachineFunction &MF = DAG.getMachineFunction(); 4081 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4082 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4083 4084 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4085 report_fatal_error("Variable-sized stack allocations are not supported " 4086 "in GHC calling convention"); 4087 4088 SDValue Chain = Op.getOperand(0); 4089 SDValue NewSP = Op.getOperand(1); 4090 SDValue Backchain; 4091 SDLoc DL(Op); 4092 4093 if (StoreBackchain) { 4094 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 4095 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 4096 } 4097 4098 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 4099 4100 if (StoreBackchain) 4101 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 4102 4103 return Chain; 4104 } 4105 4106 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4107 SelectionDAG &DAG) const { 4108 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4109 if (!IsData) 4110 // Just preserve the chain. 4111 return Op.getOperand(0); 4112 4113 SDLoc DL(Op); 4114 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4115 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4116 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4117 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4118 Op.getOperand(1)}; 4119 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4120 Node->getVTList(), Ops, 4121 Node->getMemoryVT(), Node->getMemOperand()); 4122 } 4123 4124 // Convert condition code in CCReg to an i32 value. 4125 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4126 SDLoc DL(CCReg); 4127 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4128 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4129 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4130 } 4131 4132 SDValue 4133 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4134 SelectionDAG &DAG) const { 4135 unsigned Opcode, CCValid; 4136 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4137 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4138 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4139 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4140 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4141 return SDValue(); 4142 } 4143 4144 return SDValue(); 4145 } 4146 4147 SDValue 4148 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4149 SelectionDAG &DAG) const { 4150 unsigned Opcode, CCValid; 4151 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4152 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4153 if (Op->getNumValues() == 1) 4154 return getCCResult(DAG, SDValue(Node, 0)); 4155 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4156 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4157 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4158 } 4159 4160 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4161 switch (Id) { 4162 case Intrinsic::thread_pointer: 4163 return lowerThreadPointer(SDLoc(Op), DAG); 4164 4165 case Intrinsic::s390_vpdi: 4166 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4167 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4168 4169 case Intrinsic::s390_vperm: 4170 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4171 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4172 4173 case Intrinsic::s390_vuphb: 4174 case Intrinsic::s390_vuphh: 4175 case Intrinsic::s390_vuphf: 4176 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4177 Op.getOperand(1)); 4178 4179 case Intrinsic::s390_vuplhb: 4180 case Intrinsic::s390_vuplhh: 4181 case Intrinsic::s390_vuplhf: 4182 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4183 Op.getOperand(1)); 4184 4185 case Intrinsic::s390_vuplb: 4186 case Intrinsic::s390_vuplhw: 4187 case Intrinsic::s390_vuplf: 4188 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4189 Op.getOperand(1)); 4190 4191 case Intrinsic::s390_vupllb: 4192 case Intrinsic::s390_vupllh: 4193 case Intrinsic::s390_vupllf: 4194 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4195 Op.getOperand(1)); 4196 4197 case Intrinsic::s390_vsumb: 4198 case Intrinsic::s390_vsumh: 4199 case Intrinsic::s390_vsumgh: 4200 case Intrinsic::s390_vsumgf: 4201 case Intrinsic::s390_vsumqf: 4202 case Intrinsic::s390_vsumqg: 4203 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4204 Op.getOperand(1), Op.getOperand(2)); 4205 } 4206 4207 return SDValue(); 4208 } 4209 4210 namespace { 4211 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4212 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4213 // Operand is the constant third operand, otherwise it is the number of 4214 // bytes in each element of the result. 4215 struct Permute { 4216 unsigned Opcode; 4217 unsigned Operand; 4218 unsigned char Bytes[SystemZ::VectorBytes]; 4219 }; 4220 } 4221 4222 static const Permute PermuteForms[] = { 4223 // VMRHG 4224 { SystemZISD::MERGE_HIGH, 8, 4225 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4226 // VMRHF 4227 { SystemZISD::MERGE_HIGH, 4, 4228 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4229 // VMRHH 4230 { SystemZISD::MERGE_HIGH, 2, 4231 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4232 // VMRHB 4233 { SystemZISD::MERGE_HIGH, 1, 4234 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4235 // VMRLG 4236 { SystemZISD::MERGE_LOW, 8, 4237 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4238 // VMRLF 4239 { SystemZISD::MERGE_LOW, 4, 4240 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4241 // VMRLH 4242 { SystemZISD::MERGE_LOW, 2, 4243 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4244 // VMRLB 4245 { SystemZISD::MERGE_LOW, 1, 4246 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4247 // VPKG 4248 { SystemZISD::PACK, 4, 4249 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4250 // VPKF 4251 { SystemZISD::PACK, 2, 4252 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4253 // VPKH 4254 { SystemZISD::PACK, 1, 4255 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4256 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4257 { SystemZISD::PERMUTE_DWORDS, 4, 4258 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4259 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4260 { SystemZISD::PERMUTE_DWORDS, 1, 4261 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4262 }; 4263 4264 // Called after matching a vector shuffle against a particular pattern. 4265 // Both the original shuffle and the pattern have two vector operands. 4266 // OpNos[0] is the operand of the original shuffle that should be used for 4267 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4268 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4269 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4270 // for operands 0 and 1 of the pattern. 4271 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4272 if (OpNos[0] < 0) { 4273 if (OpNos[1] < 0) 4274 return false; 4275 OpNo0 = OpNo1 = OpNos[1]; 4276 } else if (OpNos[1] < 0) { 4277 OpNo0 = OpNo1 = OpNos[0]; 4278 } else { 4279 OpNo0 = OpNos[0]; 4280 OpNo1 = OpNos[1]; 4281 } 4282 return true; 4283 } 4284 4285 // Bytes is a VPERM-like permute vector, except that -1 is used for 4286 // undefined bytes. Return true if the VPERM can be implemented using P. 4287 // When returning true set OpNo0 to the VPERM operand that should be 4288 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4289 // 4290 // For example, if swapping the VPERM operands allows P to match, OpNo0 4291 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4292 // operand, but rewriting it to use two duplicated operands allows it to 4293 // match P, then OpNo0 and OpNo1 will be the same. 4294 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4295 unsigned &OpNo0, unsigned &OpNo1) { 4296 int OpNos[] = { -1, -1 }; 4297 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4298 int Elt = Bytes[I]; 4299 if (Elt >= 0) { 4300 // Make sure that the two permute vectors use the same suboperand 4301 // byte number. Only the operand numbers (the high bits) are 4302 // allowed to differ. 4303 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4304 return false; 4305 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4306 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4307 // Make sure that the operand mappings are consistent with previous 4308 // elements. 4309 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4310 return false; 4311 OpNos[ModelOpNo] = RealOpNo; 4312 } 4313 } 4314 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4315 } 4316 4317 // As above, but search for a matching permute. 4318 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4319 unsigned &OpNo0, unsigned &OpNo1) { 4320 for (auto &P : PermuteForms) 4321 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4322 return &P; 4323 return nullptr; 4324 } 4325 4326 // Bytes is a VPERM-like permute vector, except that -1 is used for 4327 // undefined bytes. This permute is an operand of an outer permute. 4328 // See whether redistributing the -1 bytes gives a shuffle that can be 4329 // implemented using P. If so, set Transform to a VPERM-like permute vector 4330 // that, when applied to the result of P, gives the original permute in Bytes. 4331 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4332 const Permute &P, 4333 SmallVectorImpl<int> &Transform) { 4334 unsigned To = 0; 4335 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4336 int Elt = Bytes[From]; 4337 if (Elt < 0) 4338 // Byte number From of the result is undefined. 4339 Transform[From] = -1; 4340 else { 4341 while (P.Bytes[To] != Elt) { 4342 To += 1; 4343 if (To == SystemZ::VectorBytes) 4344 return false; 4345 } 4346 Transform[From] = To; 4347 } 4348 } 4349 return true; 4350 } 4351 4352 // As above, but search for a matching permute. 4353 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4354 SmallVectorImpl<int> &Transform) { 4355 for (auto &P : PermuteForms) 4356 if (matchDoublePermute(Bytes, P, Transform)) 4357 return &P; 4358 return nullptr; 4359 } 4360 4361 // Convert the mask of the given shuffle op into a byte-level mask, 4362 // as if it had type vNi8. 4363 static bool getVPermMask(SDValue ShuffleOp, 4364 SmallVectorImpl<int> &Bytes) { 4365 EVT VT = ShuffleOp.getValueType(); 4366 unsigned NumElements = VT.getVectorNumElements(); 4367 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4368 4369 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4370 Bytes.resize(NumElements * BytesPerElement, -1); 4371 for (unsigned I = 0; I < NumElements; ++I) { 4372 int Index = VSN->getMaskElt(I); 4373 if (Index >= 0) 4374 for (unsigned J = 0; J < BytesPerElement; ++J) 4375 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4376 } 4377 return true; 4378 } 4379 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4380 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4381 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4382 Bytes.resize(NumElements * BytesPerElement, -1); 4383 for (unsigned I = 0; I < NumElements; ++I) 4384 for (unsigned J = 0; J < BytesPerElement; ++J) 4385 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4386 return true; 4387 } 4388 return false; 4389 } 4390 4391 // Bytes is a VPERM-like permute vector, except that -1 is used for 4392 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4393 // the result come from a contiguous sequence of bytes from one input. 4394 // Set Base to the selector for the first byte if so. 4395 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4396 unsigned BytesPerElement, int &Base) { 4397 Base = -1; 4398 for (unsigned I = 0; I < BytesPerElement; ++I) { 4399 if (Bytes[Start + I] >= 0) { 4400 unsigned Elem = Bytes[Start + I]; 4401 if (Base < 0) { 4402 Base = Elem - I; 4403 // Make sure the bytes would come from one input operand. 4404 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4405 return false; 4406 } else if (unsigned(Base) != Elem - I) 4407 return false; 4408 } 4409 } 4410 return true; 4411 } 4412 4413 // Bytes is a VPERM-like permute vector, except that -1 is used for 4414 // undefined bytes. Return true if it can be performed using VSLDB. 4415 // When returning true, set StartIndex to the shift amount and OpNo0 4416 // and OpNo1 to the VPERM operands that should be used as the first 4417 // and second shift operand respectively. 4418 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4419 unsigned &StartIndex, unsigned &OpNo0, 4420 unsigned &OpNo1) { 4421 int OpNos[] = { -1, -1 }; 4422 int Shift = -1; 4423 for (unsigned I = 0; I < 16; ++I) { 4424 int Index = Bytes[I]; 4425 if (Index >= 0) { 4426 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4427 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4428 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4429 if (Shift < 0) 4430 Shift = ExpectedShift; 4431 else if (Shift != ExpectedShift) 4432 return false; 4433 // Make sure that the operand mappings are consistent with previous 4434 // elements. 4435 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4436 return false; 4437 OpNos[ModelOpNo] = RealOpNo; 4438 } 4439 } 4440 StartIndex = Shift; 4441 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4442 } 4443 4444 // Create a node that performs P on operands Op0 and Op1, casting the 4445 // operands to the appropriate type. The type of the result is determined by P. 4446 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4447 const Permute &P, SDValue Op0, SDValue Op1) { 4448 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4449 // elements of a PACK are twice as wide as the outputs. 4450 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4451 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4452 P.Operand); 4453 // Cast both operands to the appropriate type. 4454 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4455 SystemZ::VectorBytes / InBytes); 4456 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4457 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4458 SDValue Op; 4459 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4460 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4461 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4462 } else if (P.Opcode == SystemZISD::PACK) { 4463 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4464 SystemZ::VectorBytes / P.Operand); 4465 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4466 } else { 4467 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4468 } 4469 return Op; 4470 } 4471 4472 static bool isZeroVector(SDValue N) { 4473 if (N->getOpcode() == ISD::BITCAST) 4474 N = N->getOperand(0); 4475 if (N->getOpcode() == ISD::SPLAT_VECTOR) 4476 if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0))) 4477 return Op->getZExtValue() == 0; 4478 return ISD::isBuildVectorAllZeros(N.getNode()); 4479 } 4480 4481 // Return the index of the zero/undef vector, or UINT32_MAX if not found. 4482 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) { 4483 for (unsigned I = 0; I < Num ; I++) 4484 if (isZeroVector(Ops[I])) 4485 return I; 4486 return UINT32_MAX; 4487 } 4488 4489 // Bytes is a VPERM-like permute vector, except that -1 is used for 4490 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4491 // VSLDB or VPERM. 4492 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4493 SDValue *Ops, 4494 const SmallVectorImpl<int> &Bytes) { 4495 for (unsigned I = 0; I < 2; ++I) 4496 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4497 4498 // First see whether VSLDB can be used. 4499 unsigned StartIndex, OpNo0, OpNo1; 4500 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4501 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4502 Ops[OpNo1], 4503 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4504 4505 // Fall back on VPERM. Construct an SDNode for the permute vector. Try to 4506 // eliminate a zero vector by reusing any zero index in the permute vector. 4507 unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2); 4508 if (ZeroVecIdx != UINT32_MAX) { 4509 bool MaskFirst = true; 4510 int ZeroIdx = -1; 4511 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4512 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4513 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4514 if (OpNo == ZeroVecIdx && I == 0) { 4515 // If the first byte is zero, use mask as first operand. 4516 ZeroIdx = 0; 4517 break; 4518 } 4519 if (OpNo != ZeroVecIdx && Byte == 0) { 4520 // If mask contains a zero, use it by placing that vector first. 4521 ZeroIdx = I + SystemZ::VectorBytes; 4522 MaskFirst = false; 4523 break; 4524 } 4525 } 4526 if (ZeroIdx != -1) { 4527 SDValue IndexNodes[SystemZ::VectorBytes]; 4528 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4529 if (Bytes[I] >= 0) { 4530 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4531 unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes; 4532 if (OpNo == ZeroVecIdx) 4533 IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32); 4534 else { 4535 unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte; 4536 IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32); 4537 } 4538 } else 4539 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4540 } 4541 SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4542 SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0]; 4543 if (MaskFirst) 4544 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src, 4545 Mask); 4546 else 4547 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask, 4548 Mask); 4549 } 4550 } 4551 4552 SDValue IndexNodes[SystemZ::VectorBytes]; 4553 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4554 if (Bytes[I] >= 0) 4555 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4556 else 4557 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4558 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4559 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], 4560 (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2); 4561 } 4562 4563 namespace { 4564 // Describes a general N-operand vector shuffle. 4565 struct GeneralShuffle { 4566 GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {} 4567 void addUndef(); 4568 bool add(SDValue, unsigned); 4569 SDValue getNode(SelectionDAG &, const SDLoc &); 4570 void tryPrepareForUnpack(); 4571 bool unpackWasPrepared() { return UnpackFromEltSize <= 4; } 4572 SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op); 4573 4574 // The operands of the shuffle. 4575 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4576 4577 // Index I is -1 if byte I of the result is undefined. Otherwise the 4578 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4579 // Bytes[I] / SystemZ::VectorBytes. 4580 SmallVector<int, SystemZ::VectorBytes> Bytes; 4581 4582 // The type of the shuffle result. 4583 EVT VT; 4584 4585 // Holds a value of 1, 2 or 4 if a final unpack has been prepared for. 4586 unsigned UnpackFromEltSize; 4587 }; 4588 } 4589 4590 // Add an extra undefined element to the shuffle. 4591 void GeneralShuffle::addUndef() { 4592 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4593 for (unsigned I = 0; I < BytesPerElement; ++I) 4594 Bytes.push_back(-1); 4595 } 4596 4597 // Add an extra element to the shuffle, taking it from element Elem of Op. 4598 // A null Op indicates a vector input whose value will be calculated later; 4599 // there is at most one such input per shuffle and it always has the same 4600 // type as the result. Aborts and returns false if the source vector elements 4601 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4602 // LLVM they become implicitly extended, but this is rare and not optimized. 4603 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4604 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4605 4606 // The source vector can have wider elements than the result, 4607 // either through an explicit TRUNCATE or because of type legalization. 4608 // We want the least significant part. 4609 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4610 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4611 4612 // Return false if the source elements are smaller than their destination 4613 // elements. 4614 if (FromBytesPerElement < BytesPerElement) 4615 return false; 4616 4617 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4618 (FromBytesPerElement - BytesPerElement)); 4619 4620 // Look through things like shuffles and bitcasts. 4621 while (Op.getNode()) { 4622 if (Op.getOpcode() == ISD::BITCAST) 4623 Op = Op.getOperand(0); 4624 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4625 // See whether the bytes we need come from a contiguous part of one 4626 // operand. 4627 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4628 if (!getVPermMask(Op, OpBytes)) 4629 break; 4630 int NewByte; 4631 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4632 break; 4633 if (NewByte < 0) { 4634 addUndef(); 4635 return true; 4636 } 4637 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4638 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4639 } else if (Op.isUndef()) { 4640 addUndef(); 4641 return true; 4642 } else 4643 break; 4644 } 4645 4646 // Make sure that the source of the extraction is in Ops. 4647 unsigned OpNo = 0; 4648 for (; OpNo < Ops.size(); ++OpNo) 4649 if (Ops[OpNo] == Op) 4650 break; 4651 if (OpNo == Ops.size()) 4652 Ops.push_back(Op); 4653 4654 // Add the element to Bytes. 4655 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4656 for (unsigned I = 0; I < BytesPerElement; ++I) 4657 Bytes.push_back(Base + I); 4658 4659 return true; 4660 } 4661 4662 // Return SDNodes for the completed shuffle. 4663 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4664 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4665 4666 if (Ops.size() == 0) 4667 return DAG.getUNDEF(VT); 4668 4669 // Use a single unpack if possible as the last operation. 4670 tryPrepareForUnpack(); 4671 4672 // Make sure that there are at least two shuffle operands. 4673 if (Ops.size() == 1) 4674 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4675 4676 // Create a tree of shuffles, deferring root node until after the loop. 4677 // Try to redistribute the undefined elements of non-root nodes so that 4678 // the non-root shuffles match something like a pack or merge, then adjust 4679 // the parent node's permute vector to compensate for the new order. 4680 // Among other things, this copes with vectors like <2 x i16> that were 4681 // padded with undefined elements during type legalization. 4682 // 4683 // In the best case this redistribution will lead to the whole tree 4684 // using packs and merges. It should rarely be a loss in other cases. 4685 unsigned Stride = 1; 4686 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4687 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4688 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4689 4690 // Create a mask for just these two operands. 4691 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4692 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4693 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4694 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4695 if (OpNo == I) 4696 NewBytes[J] = Byte; 4697 else if (OpNo == I + Stride) 4698 NewBytes[J] = SystemZ::VectorBytes + Byte; 4699 else 4700 NewBytes[J] = -1; 4701 } 4702 // See if it would be better to reorganize NewMask to avoid using VPERM. 4703 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4704 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4705 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4706 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4707 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4708 if (NewBytes[J] >= 0) { 4709 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4710 "Invalid double permute"); 4711 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4712 } else 4713 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4714 } 4715 } else { 4716 // Just use NewBytes on the operands. 4717 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4718 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4719 if (NewBytes[J] >= 0) 4720 Bytes[J] = I * SystemZ::VectorBytes + J; 4721 } 4722 } 4723 } 4724 4725 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4726 if (Stride > 1) { 4727 Ops[1] = Ops[Stride]; 4728 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4729 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4730 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4731 } 4732 4733 // Look for an instruction that can do the permute without resorting 4734 // to VPERM. 4735 unsigned OpNo0, OpNo1; 4736 SDValue Op; 4737 if (unpackWasPrepared() && Ops[1].isUndef()) 4738 Op = Ops[0]; 4739 else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4740 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4741 else 4742 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4743 4744 Op = insertUnpackIfPrepared(DAG, DL, Op); 4745 4746 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4747 } 4748 4749 #ifndef NDEBUG 4750 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) { 4751 dbgs() << Msg.c_str() << " { "; 4752 for (unsigned i = 0; i < Bytes.size(); i++) 4753 dbgs() << Bytes[i] << " "; 4754 dbgs() << "}\n"; 4755 } 4756 #endif 4757 4758 // If the Bytes vector matches an unpack operation, prepare to do the unpack 4759 // after all else by removing the zero vector and the effect of the unpack on 4760 // Bytes. 4761 void GeneralShuffle::tryPrepareForUnpack() { 4762 uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size()); 4763 if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1) 4764 return; 4765 4766 // Only do this if removing the zero vector reduces the depth, otherwise 4767 // the critical path will increase with the final unpack. 4768 if (Ops.size() > 2 && 4769 Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1)) 4770 return; 4771 4772 // Find an unpack that would allow removing the zero vector from Ops. 4773 UnpackFromEltSize = 1; 4774 for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) { 4775 bool MatchUnpack = true; 4776 SmallVector<int, SystemZ::VectorBytes> SrcBytes; 4777 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) { 4778 unsigned ToEltSize = UnpackFromEltSize * 2; 4779 bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize; 4780 if (!IsZextByte) 4781 SrcBytes.push_back(Bytes[Elt]); 4782 if (Bytes[Elt] != -1) { 4783 unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes; 4784 if (IsZextByte != (OpNo == ZeroVecOpNo)) { 4785 MatchUnpack = false; 4786 break; 4787 } 4788 } 4789 } 4790 if (MatchUnpack) { 4791 if (Ops.size() == 2) { 4792 // Don't use unpack if a single source operand needs rearrangement. 4793 for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++) 4794 if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) { 4795 UnpackFromEltSize = UINT_MAX; 4796 return; 4797 } 4798 } 4799 break; 4800 } 4801 } 4802 if (UnpackFromEltSize > 4) 4803 return; 4804 4805 LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size " 4806 << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo 4807 << ".\n"; 4808 dumpBytes(Bytes, "Original Bytes vector:");); 4809 4810 // Apply the unpack in reverse to the Bytes array. 4811 unsigned B = 0; 4812 for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) { 4813 Elt += UnpackFromEltSize; 4814 for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++) 4815 Bytes[B] = Bytes[Elt]; 4816 } 4817 while (B < SystemZ::VectorBytes) 4818 Bytes[B++] = -1; 4819 4820 // Remove the zero vector from Ops 4821 Ops.erase(&Ops[ZeroVecOpNo]); 4822 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4823 if (Bytes[I] >= 0) { 4824 unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes; 4825 if (OpNo > ZeroVecOpNo) 4826 Bytes[I] -= SystemZ::VectorBytes; 4827 } 4828 4829 LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:"); 4830 dbgs() << "\n";); 4831 } 4832 4833 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG, 4834 const SDLoc &DL, 4835 SDValue Op) { 4836 if (!unpackWasPrepared()) 4837 return Op; 4838 unsigned InBits = UnpackFromEltSize * 8; 4839 EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits), 4840 SystemZ::VectorBits / InBits); 4841 SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op); 4842 unsigned OutBits = InBits * 2; 4843 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits), 4844 SystemZ::VectorBits / OutBits); 4845 return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp); 4846 } 4847 4848 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4849 static bool isScalarToVector(SDValue Op) { 4850 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4851 if (!Op.getOperand(I).isUndef()) 4852 return false; 4853 return true; 4854 } 4855 4856 // Return a vector of type VT that contains Value in the first element. 4857 // The other elements don't matter. 4858 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4859 SDValue Value) { 4860 // If we have a constant, replicate it to all elements and let the 4861 // BUILD_VECTOR lowering take care of it. 4862 if (Value.getOpcode() == ISD::Constant || 4863 Value.getOpcode() == ISD::ConstantFP) { 4864 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4865 return DAG.getBuildVector(VT, DL, Ops); 4866 } 4867 if (Value.isUndef()) 4868 return DAG.getUNDEF(VT); 4869 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4870 } 4871 4872 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4873 // element 1. Used for cases in which replication is cheap. 4874 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4875 SDValue Op0, SDValue Op1) { 4876 if (Op0.isUndef()) { 4877 if (Op1.isUndef()) 4878 return DAG.getUNDEF(VT); 4879 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4880 } 4881 if (Op1.isUndef()) 4882 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4883 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4884 buildScalarToVector(DAG, DL, VT, Op0), 4885 buildScalarToVector(DAG, DL, VT, Op1)); 4886 } 4887 4888 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4889 // vector for them. 4890 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4891 SDValue Op1) { 4892 if (Op0.isUndef() && Op1.isUndef()) 4893 return DAG.getUNDEF(MVT::v2i64); 4894 // If one of the two inputs is undefined then replicate the other one, 4895 // in order to avoid using another register unnecessarily. 4896 if (Op0.isUndef()) 4897 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4898 else if (Op1.isUndef()) 4899 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4900 else { 4901 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4902 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4903 } 4904 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4905 } 4906 4907 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4908 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4909 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4910 // would benefit from this representation and return it if so. 4911 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4912 BuildVectorSDNode *BVN) { 4913 EVT VT = BVN->getValueType(0); 4914 unsigned NumElements = VT.getVectorNumElements(); 4915 4916 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4917 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4918 // need a BUILD_VECTOR, add an additional placeholder operand for that 4919 // BUILD_VECTOR and store its operands in ResidueOps. 4920 GeneralShuffle GS(VT); 4921 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4922 bool FoundOne = false; 4923 for (unsigned I = 0; I < NumElements; ++I) { 4924 SDValue Op = BVN->getOperand(I); 4925 if (Op.getOpcode() == ISD::TRUNCATE) 4926 Op = Op.getOperand(0); 4927 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4928 Op.getOperand(1).getOpcode() == ISD::Constant) { 4929 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4930 if (!GS.add(Op.getOperand(0), Elem)) 4931 return SDValue(); 4932 FoundOne = true; 4933 } else if (Op.isUndef()) { 4934 GS.addUndef(); 4935 } else { 4936 if (!GS.add(SDValue(), ResidueOps.size())) 4937 return SDValue(); 4938 ResidueOps.push_back(BVN->getOperand(I)); 4939 } 4940 } 4941 4942 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4943 if (!FoundOne) 4944 return SDValue(); 4945 4946 // Create the BUILD_VECTOR for the remaining elements, if any. 4947 if (!ResidueOps.empty()) { 4948 while (ResidueOps.size() < NumElements) 4949 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4950 for (auto &Op : GS.Ops) { 4951 if (!Op.getNode()) { 4952 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4953 break; 4954 } 4955 } 4956 } 4957 return GS.getNode(DAG, SDLoc(BVN)); 4958 } 4959 4960 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 4961 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 4962 return true; 4963 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 4964 return true; 4965 return false; 4966 } 4967 4968 // Combine GPR scalar values Elems into a vector of type VT. 4969 SDValue 4970 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4971 SmallVectorImpl<SDValue> &Elems) const { 4972 // See whether there is a single replicated value. 4973 SDValue Single; 4974 unsigned int NumElements = Elems.size(); 4975 unsigned int Count = 0; 4976 for (auto Elem : Elems) { 4977 if (!Elem.isUndef()) { 4978 if (!Single.getNode()) 4979 Single = Elem; 4980 else if (Elem != Single) { 4981 Single = SDValue(); 4982 break; 4983 } 4984 Count += 1; 4985 } 4986 } 4987 // There are three cases here: 4988 // 4989 // - if the only defined element is a loaded one, the best sequence 4990 // is a replicating load. 4991 // 4992 // - otherwise, if the only defined element is an i64 value, we will 4993 // end up with the same VLVGP sequence regardless of whether we short-cut 4994 // for replication or fall through to the later code. 4995 // 4996 // - otherwise, if the only defined element is an i32 or smaller value, 4997 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4998 // This is only a win if the single defined element is used more than once. 4999 // In other cases we're better off using a single VLVGx. 5000 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 5001 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 5002 5003 // If all elements are loads, use VLREP/VLEs (below). 5004 bool AllLoads = true; 5005 for (auto Elem : Elems) 5006 if (!isVectorElementLoad(Elem)) { 5007 AllLoads = false; 5008 break; 5009 } 5010 5011 // The best way of building a v2i64 from two i64s is to use VLVGP. 5012 if (VT == MVT::v2i64 && !AllLoads) 5013 return joinDwords(DAG, DL, Elems[0], Elems[1]); 5014 5015 // Use a 64-bit merge high to combine two doubles. 5016 if (VT == MVT::v2f64 && !AllLoads) 5017 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5018 5019 // Build v4f32 values directly from the FPRs: 5020 // 5021 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 5022 // V V VMRHF 5023 // <ABxx> <CDxx> 5024 // V VMRHG 5025 // <ABCD> 5026 if (VT == MVT::v4f32 && !AllLoads) { 5027 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 5028 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 5029 // Avoid unnecessary undefs by reusing the other operand. 5030 if (Op01.isUndef()) 5031 Op01 = Op23; 5032 else if (Op23.isUndef()) 5033 Op23 = Op01; 5034 // Merging identical replications is a no-op. 5035 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 5036 return Op01; 5037 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 5038 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 5039 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 5040 DL, MVT::v2i64, Op01, Op23); 5041 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 5042 } 5043 5044 // Collect the constant terms. 5045 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 5046 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 5047 5048 unsigned NumConstants = 0; 5049 for (unsigned I = 0; I < NumElements; ++I) { 5050 SDValue Elem = Elems[I]; 5051 if (Elem.getOpcode() == ISD::Constant || 5052 Elem.getOpcode() == ISD::ConstantFP) { 5053 NumConstants += 1; 5054 Constants[I] = Elem; 5055 Done[I] = true; 5056 } 5057 } 5058 // If there was at least one constant, fill in the other elements of 5059 // Constants with undefs to get a full vector constant and use that 5060 // as the starting point. 5061 SDValue Result; 5062 SDValue ReplicatedVal; 5063 if (NumConstants > 0) { 5064 for (unsigned I = 0; I < NumElements; ++I) 5065 if (!Constants[I].getNode()) 5066 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 5067 Result = DAG.getBuildVector(VT, DL, Constants); 5068 } else { 5069 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 5070 // avoid a false dependency on any previous contents of the vector 5071 // register. 5072 5073 // Use a VLREP if at least one element is a load. Make sure to replicate 5074 // the load with the most elements having its value. 5075 std::map<const SDNode*, unsigned> UseCounts; 5076 SDNode *LoadMaxUses = nullptr; 5077 for (unsigned I = 0; I < NumElements; ++I) 5078 if (isVectorElementLoad(Elems[I])) { 5079 SDNode *Ld = Elems[I].getNode(); 5080 UseCounts[Ld]++; 5081 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 5082 LoadMaxUses = Ld; 5083 } 5084 if (LoadMaxUses != nullptr) { 5085 ReplicatedVal = SDValue(LoadMaxUses, 0); 5086 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 5087 } else { 5088 // Try to use VLVGP. 5089 unsigned I1 = NumElements / 2 - 1; 5090 unsigned I2 = NumElements - 1; 5091 bool Def1 = !Elems[I1].isUndef(); 5092 bool Def2 = !Elems[I2].isUndef(); 5093 if (Def1 || Def2) { 5094 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 5095 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 5096 Result = DAG.getNode(ISD::BITCAST, DL, VT, 5097 joinDwords(DAG, DL, Elem1, Elem2)); 5098 Done[I1] = true; 5099 Done[I2] = true; 5100 } else 5101 Result = DAG.getUNDEF(VT); 5102 } 5103 } 5104 5105 // Use VLVGx to insert the other elements. 5106 for (unsigned I = 0; I < NumElements; ++I) 5107 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 5108 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 5109 DAG.getConstant(I, DL, MVT::i32)); 5110 return Result; 5111 } 5112 5113 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 5114 SelectionDAG &DAG) const { 5115 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 5116 SDLoc DL(Op); 5117 EVT VT = Op.getValueType(); 5118 5119 if (BVN->isConstant()) { 5120 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 5121 return Op; 5122 5123 // Fall back to loading it from memory. 5124 return SDValue(); 5125 } 5126 5127 // See if we should use shuffles to construct the vector from other vectors. 5128 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 5129 return Res; 5130 5131 // Detect SCALAR_TO_VECTOR conversions. 5132 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 5133 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 5134 5135 // Otherwise use buildVector to build the vector up from GPRs. 5136 unsigned NumElements = Op.getNumOperands(); 5137 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 5138 for (unsigned I = 0; I < NumElements; ++I) 5139 Ops[I] = Op.getOperand(I); 5140 return buildVector(DAG, DL, VT, Ops); 5141 } 5142 5143 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 5144 SelectionDAG &DAG) const { 5145 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 5146 SDLoc DL(Op); 5147 EVT VT = Op.getValueType(); 5148 unsigned NumElements = VT.getVectorNumElements(); 5149 5150 if (VSN->isSplat()) { 5151 SDValue Op0 = Op.getOperand(0); 5152 unsigned Index = VSN->getSplatIndex(); 5153 assert(Index < VT.getVectorNumElements() && 5154 "Splat index should be defined and in first operand"); 5155 // See whether the value we're splatting is directly available as a scalar. 5156 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5157 Op0.getOpcode() == ISD::BUILD_VECTOR) 5158 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 5159 // Otherwise keep it as a vector-to-vector operation. 5160 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 5161 DAG.getTargetConstant(Index, DL, MVT::i32)); 5162 } 5163 5164 GeneralShuffle GS(VT); 5165 for (unsigned I = 0; I < NumElements; ++I) { 5166 int Elt = VSN->getMaskElt(I); 5167 if (Elt < 0) 5168 GS.addUndef(); 5169 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 5170 unsigned(Elt) % NumElements)) 5171 return SDValue(); 5172 } 5173 return GS.getNode(DAG, SDLoc(VSN)); 5174 } 5175 5176 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 5177 SelectionDAG &DAG) const { 5178 SDLoc DL(Op); 5179 // Just insert the scalar into element 0 of an undefined vector. 5180 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 5181 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 5182 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 5183 } 5184 5185 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 5186 SelectionDAG &DAG) const { 5187 // Handle insertions of floating-point values. 5188 SDLoc DL(Op); 5189 SDValue Op0 = Op.getOperand(0); 5190 SDValue Op1 = Op.getOperand(1); 5191 SDValue Op2 = Op.getOperand(2); 5192 EVT VT = Op.getValueType(); 5193 5194 // Insertions into constant indices of a v2f64 can be done using VPDI. 5195 // However, if the inserted value is a bitcast or a constant then it's 5196 // better to use GPRs, as below. 5197 if (VT == MVT::v2f64 && 5198 Op1.getOpcode() != ISD::BITCAST && 5199 Op1.getOpcode() != ISD::ConstantFP && 5200 Op2.getOpcode() == ISD::Constant) { 5201 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 5202 unsigned Mask = VT.getVectorNumElements() - 1; 5203 if (Index <= Mask) 5204 return Op; 5205 } 5206 5207 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5208 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5209 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5210 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5211 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5212 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5213 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5214 } 5215 5216 SDValue 5217 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5218 SelectionDAG &DAG) const { 5219 // Handle extractions of floating-point values. 5220 SDLoc DL(Op); 5221 SDValue Op0 = Op.getOperand(0); 5222 SDValue Op1 = Op.getOperand(1); 5223 EVT VT = Op.getValueType(); 5224 EVT VecVT = Op0.getValueType(); 5225 5226 // Extractions of constant indices can be done directly. 5227 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5228 uint64_t Index = CIndexN->getZExtValue(); 5229 unsigned Mask = VecVT.getVectorNumElements() - 1; 5230 if (Index <= Mask) 5231 return Op; 5232 } 5233 5234 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5235 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5236 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5237 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5238 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5239 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5240 } 5241 5242 SDValue SystemZTargetLowering:: 5243 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5244 SDValue PackedOp = Op.getOperand(0); 5245 EVT OutVT = Op.getValueType(); 5246 EVT InVT = PackedOp.getValueType(); 5247 unsigned ToBits = OutVT.getScalarSizeInBits(); 5248 unsigned FromBits = InVT.getScalarSizeInBits(); 5249 do { 5250 FromBits *= 2; 5251 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5252 SystemZ::VectorBits / FromBits); 5253 PackedOp = 5254 DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp); 5255 } while (FromBits != ToBits); 5256 return PackedOp; 5257 } 5258 5259 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector. 5260 SDValue SystemZTargetLowering:: 5261 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const { 5262 SDValue PackedOp = Op.getOperand(0); 5263 SDLoc DL(Op); 5264 EVT OutVT = Op.getValueType(); 5265 EVT InVT = PackedOp.getValueType(); 5266 unsigned InNumElts = InVT.getVectorNumElements(); 5267 unsigned OutNumElts = OutVT.getVectorNumElements(); 5268 unsigned NumInPerOut = InNumElts / OutNumElts; 5269 5270 SDValue ZeroVec = 5271 DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType())); 5272 5273 SmallVector<int, 16> Mask(InNumElts); 5274 unsigned ZeroVecElt = InNumElts; 5275 for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) { 5276 unsigned MaskElt = PackedElt * NumInPerOut; 5277 unsigned End = MaskElt + NumInPerOut - 1; 5278 for (; MaskElt < End; MaskElt++) 5279 Mask[MaskElt] = ZeroVecElt++; 5280 Mask[MaskElt] = PackedElt; 5281 } 5282 SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask); 5283 return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf); 5284 } 5285 5286 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5287 unsigned ByScalar) const { 5288 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5289 SDValue Op0 = Op.getOperand(0); 5290 SDValue Op1 = Op.getOperand(1); 5291 SDLoc DL(Op); 5292 EVT VT = Op.getValueType(); 5293 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5294 5295 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5296 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5297 APInt SplatBits, SplatUndef; 5298 unsigned SplatBitSize; 5299 bool HasAnyUndefs; 5300 // Check for constant splats. Use ElemBitSize as the minimum element 5301 // width and reject splats that need wider elements. 5302 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5303 ElemBitSize, true) && 5304 SplatBitSize == ElemBitSize) { 5305 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5306 DL, MVT::i32); 5307 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5308 } 5309 // Check for variable splats. 5310 BitVector UndefElements; 5311 SDValue Splat = BVN->getSplatValue(&UndefElements); 5312 if (Splat) { 5313 // Since i32 is the smallest legal type, we either need a no-op 5314 // or a truncation. 5315 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5316 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5317 } 5318 } 5319 5320 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5321 // and the shift amount is directly available in a GPR. 5322 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5323 if (VSN->isSplat()) { 5324 SDValue VSNOp0 = VSN->getOperand(0); 5325 unsigned Index = VSN->getSplatIndex(); 5326 assert(Index < VT.getVectorNumElements() && 5327 "Splat index should be defined and in first operand"); 5328 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5329 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5330 // Since i32 is the smallest legal type, we either need a no-op 5331 // or a truncation. 5332 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5333 VSNOp0.getOperand(Index)); 5334 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5335 } 5336 } 5337 } 5338 5339 // Otherwise just treat the current form as legal. 5340 return Op; 5341 } 5342 5343 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5344 SelectionDAG &DAG) const { 5345 switch (Op.getOpcode()) { 5346 case ISD::FRAMEADDR: 5347 return lowerFRAMEADDR(Op, DAG); 5348 case ISD::RETURNADDR: 5349 return lowerRETURNADDR(Op, DAG); 5350 case ISD::BR_CC: 5351 return lowerBR_CC(Op, DAG); 5352 case ISD::SELECT_CC: 5353 return lowerSELECT_CC(Op, DAG); 5354 case ISD::SETCC: 5355 return lowerSETCC(Op, DAG); 5356 case ISD::STRICT_FSETCC: 5357 return lowerSTRICT_FSETCC(Op, DAG, false); 5358 case ISD::STRICT_FSETCCS: 5359 return lowerSTRICT_FSETCC(Op, DAG, true); 5360 case ISD::GlobalAddress: 5361 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5362 case ISD::GlobalTLSAddress: 5363 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5364 case ISD::BlockAddress: 5365 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5366 case ISD::JumpTable: 5367 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5368 case ISD::ConstantPool: 5369 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5370 case ISD::BITCAST: 5371 return lowerBITCAST(Op, DAG); 5372 case ISD::VASTART: 5373 return lowerVASTART(Op, DAG); 5374 case ISD::VACOPY: 5375 return lowerVACOPY(Op, DAG); 5376 case ISD::DYNAMIC_STACKALLOC: 5377 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5378 case ISD::GET_DYNAMIC_AREA_OFFSET: 5379 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5380 case ISD::SMUL_LOHI: 5381 return lowerSMUL_LOHI(Op, DAG); 5382 case ISD::UMUL_LOHI: 5383 return lowerUMUL_LOHI(Op, DAG); 5384 case ISD::SDIVREM: 5385 return lowerSDIVREM(Op, DAG); 5386 case ISD::UDIVREM: 5387 return lowerUDIVREM(Op, DAG); 5388 case ISD::SADDO: 5389 case ISD::SSUBO: 5390 case ISD::UADDO: 5391 case ISD::USUBO: 5392 return lowerXALUO(Op, DAG); 5393 case ISD::ADDCARRY: 5394 case ISD::SUBCARRY: 5395 return lowerADDSUBCARRY(Op, DAG); 5396 case ISD::OR: 5397 return lowerOR(Op, DAG); 5398 case ISD::CTPOP: 5399 return lowerCTPOP(Op, DAG); 5400 case ISD::ATOMIC_FENCE: 5401 return lowerATOMIC_FENCE(Op, DAG); 5402 case ISD::ATOMIC_SWAP: 5403 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5404 case ISD::ATOMIC_STORE: 5405 return lowerATOMIC_STORE(Op, DAG); 5406 case ISD::ATOMIC_LOAD: 5407 return lowerATOMIC_LOAD(Op, DAG); 5408 case ISD::ATOMIC_LOAD_ADD: 5409 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5410 case ISD::ATOMIC_LOAD_SUB: 5411 return lowerATOMIC_LOAD_SUB(Op, DAG); 5412 case ISD::ATOMIC_LOAD_AND: 5413 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5414 case ISD::ATOMIC_LOAD_OR: 5415 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5416 case ISD::ATOMIC_LOAD_XOR: 5417 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5418 case ISD::ATOMIC_LOAD_NAND: 5419 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5420 case ISD::ATOMIC_LOAD_MIN: 5421 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5422 case ISD::ATOMIC_LOAD_MAX: 5423 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5424 case ISD::ATOMIC_LOAD_UMIN: 5425 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5426 case ISD::ATOMIC_LOAD_UMAX: 5427 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5428 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5429 return lowerATOMIC_CMP_SWAP(Op, DAG); 5430 case ISD::STACKSAVE: 5431 return lowerSTACKSAVE(Op, DAG); 5432 case ISD::STACKRESTORE: 5433 return lowerSTACKRESTORE(Op, DAG); 5434 case ISD::PREFETCH: 5435 return lowerPREFETCH(Op, DAG); 5436 case ISD::INTRINSIC_W_CHAIN: 5437 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5438 case ISD::INTRINSIC_WO_CHAIN: 5439 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5440 case ISD::BUILD_VECTOR: 5441 return lowerBUILD_VECTOR(Op, DAG); 5442 case ISD::VECTOR_SHUFFLE: 5443 return lowerVECTOR_SHUFFLE(Op, DAG); 5444 case ISD::SCALAR_TO_VECTOR: 5445 return lowerSCALAR_TO_VECTOR(Op, DAG); 5446 case ISD::INSERT_VECTOR_ELT: 5447 return lowerINSERT_VECTOR_ELT(Op, DAG); 5448 case ISD::EXTRACT_VECTOR_ELT: 5449 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5450 case ISD::SIGN_EXTEND_VECTOR_INREG: 5451 return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG); 5452 case ISD::ZERO_EXTEND_VECTOR_INREG: 5453 return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG); 5454 case ISD::SHL: 5455 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5456 case ISD::SRL: 5457 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5458 case ISD::SRA: 5459 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5460 default: 5461 llvm_unreachable("Unexpected node to lower"); 5462 } 5463 } 5464 5465 // Lower operations with invalid operand or result types (currently used 5466 // only for 128-bit integer types). 5467 5468 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 5469 SDLoc DL(In); 5470 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5471 DAG.getIntPtrConstant(0, DL)); 5472 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5473 DAG.getIntPtrConstant(1, DL)); 5474 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 5475 MVT::Untyped, Hi, Lo); 5476 return SDValue(Pair, 0); 5477 } 5478 5479 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 5480 SDLoc DL(In); 5481 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5482 DL, MVT::i64, In); 5483 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5484 DL, MVT::i64, In); 5485 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 5486 } 5487 5488 void 5489 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5490 SmallVectorImpl<SDValue> &Results, 5491 SelectionDAG &DAG) const { 5492 switch (N->getOpcode()) { 5493 case ISD::ATOMIC_LOAD: { 5494 SDLoc DL(N); 5495 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5496 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5497 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5498 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5499 DL, Tys, Ops, MVT::i128, MMO); 5500 Results.push_back(lowerGR128ToI128(DAG, Res)); 5501 Results.push_back(Res.getValue(1)); 5502 break; 5503 } 5504 case ISD::ATOMIC_STORE: { 5505 SDLoc DL(N); 5506 SDVTList Tys = DAG.getVTList(MVT::Other); 5507 SDValue Ops[] = { N->getOperand(0), 5508 lowerI128ToGR128(DAG, N->getOperand(2)), 5509 N->getOperand(1) }; 5510 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5511 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5512 DL, Tys, Ops, MVT::i128, MMO); 5513 // We have to enforce sequential consistency by performing a 5514 // serialization operation after the store. 5515 if (cast<AtomicSDNode>(N)->getOrdering() == 5516 AtomicOrdering::SequentiallyConsistent) 5517 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5518 MVT::Other, Res), 0); 5519 Results.push_back(Res); 5520 break; 5521 } 5522 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5523 SDLoc DL(N); 5524 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5525 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5526 lowerI128ToGR128(DAG, N->getOperand(2)), 5527 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5528 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5529 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5530 DL, Tys, Ops, MVT::i128, MMO); 5531 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5532 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5533 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5534 Results.push_back(lowerGR128ToI128(DAG, Res)); 5535 Results.push_back(Success); 5536 Results.push_back(Res.getValue(2)); 5537 break; 5538 } 5539 default: 5540 llvm_unreachable("Unexpected node to lower"); 5541 } 5542 } 5543 5544 void 5545 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5546 SmallVectorImpl<SDValue> &Results, 5547 SelectionDAG &DAG) const { 5548 return LowerOperationWrapper(N, Results, DAG); 5549 } 5550 5551 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5552 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5553 switch ((SystemZISD::NodeType)Opcode) { 5554 case SystemZISD::FIRST_NUMBER: break; 5555 OPCODE(RET_FLAG); 5556 OPCODE(CALL); 5557 OPCODE(SIBCALL); 5558 OPCODE(TLS_GDCALL); 5559 OPCODE(TLS_LDCALL); 5560 OPCODE(PCREL_WRAPPER); 5561 OPCODE(PCREL_OFFSET); 5562 OPCODE(IABS); 5563 OPCODE(ICMP); 5564 OPCODE(FCMP); 5565 OPCODE(STRICT_FCMP); 5566 OPCODE(STRICT_FCMPS); 5567 OPCODE(TM); 5568 OPCODE(BR_CCMASK); 5569 OPCODE(SELECT_CCMASK); 5570 OPCODE(ADJDYNALLOC); 5571 OPCODE(PROBED_ALLOCA); 5572 OPCODE(POPCNT); 5573 OPCODE(SMUL_LOHI); 5574 OPCODE(UMUL_LOHI); 5575 OPCODE(SDIVREM); 5576 OPCODE(UDIVREM); 5577 OPCODE(SADDO); 5578 OPCODE(SSUBO); 5579 OPCODE(UADDO); 5580 OPCODE(USUBO); 5581 OPCODE(ADDCARRY); 5582 OPCODE(SUBCARRY); 5583 OPCODE(GET_CCMASK); 5584 OPCODE(MVC); 5585 OPCODE(MVC_LOOP); 5586 OPCODE(NC); 5587 OPCODE(NC_LOOP); 5588 OPCODE(OC); 5589 OPCODE(OC_LOOP); 5590 OPCODE(XC); 5591 OPCODE(XC_LOOP); 5592 OPCODE(CLC); 5593 OPCODE(CLC_LOOP); 5594 OPCODE(STPCPY); 5595 OPCODE(STRCMP); 5596 OPCODE(SEARCH_STRING); 5597 OPCODE(IPM); 5598 OPCODE(MEMBARRIER); 5599 OPCODE(TBEGIN); 5600 OPCODE(TBEGIN_NOFLOAT); 5601 OPCODE(TEND); 5602 OPCODE(BYTE_MASK); 5603 OPCODE(ROTATE_MASK); 5604 OPCODE(REPLICATE); 5605 OPCODE(JOIN_DWORDS); 5606 OPCODE(SPLAT); 5607 OPCODE(MERGE_HIGH); 5608 OPCODE(MERGE_LOW); 5609 OPCODE(SHL_DOUBLE); 5610 OPCODE(PERMUTE_DWORDS); 5611 OPCODE(PERMUTE); 5612 OPCODE(PACK); 5613 OPCODE(PACKS_CC); 5614 OPCODE(PACKLS_CC); 5615 OPCODE(UNPACK_HIGH); 5616 OPCODE(UNPACKL_HIGH); 5617 OPCODE(UNPACK_LOW); 5618 OPCODE(UNPACKL_LOW); 5619 OPCODE(VSHL_BY_SCALAR); 5620 OPCODE(VSRL_BY_SCALAR); 5621 OPCODE(VSRA_BY_SCALAR); 5622 OPCODE(VSUM); 5623 OPCODE(VICMPE); 5624 OPCODE(VICMPH); 5625 OPCODE(VICMPHL); 5626 OPCODE(VICMPES); 5627 OPCODE(VICMPHS); 5628 OPCODE(VICMPHLS); 5629 OPCODE(VFCMPE); 5630 OPCODE(STRICT_VFCMPE); 5631 OPCODE(STRICT_VFCMPES); 5632 OPCODE(VFCMPH); 5633 OPCODE(STRICT_VFCMPH); 5634 OPCODE(STRICT_VFCMPHS); 5635 OPCODE(VFCMPHE); 5636 OPCODE(STRICT_VFCMPHE); 5637 OPCODE(STRICT_VFCMPHES); 5638 OPCODE(VFCMPES); 5639 OPCODE(VFCMPHS); 5640 OPCODE(VFCMPHES); 5641 OPCODE(VFTCI); 5642 OPCODE(VEXTEND); 5643 OPCODE(STRICT_VEXTEND); 5644 OPCODE(VROUND); 5645 OPCODE(STRICT_VROUND); 5646 OPCODE(VTM); 5647 OPCODE(VFAE_CC); 5648 OPCODE(VFAEZ_CC); 5649 OPCODE(VFEE_CC); 5650 OPCODE(VFEEZ_CC); 5651 OPCODE(VFENE_CC); 5652 OPCODE(VFENEZ_CC); 5653 OPCODE(VISTR_CC); 5654 OPCODE(VSTRC_CC); 5655 OPCODE(VSTRCZ_CC); 5656 OPCODE(VSTRS_CC); 5657 OPCODE(VSTRSZ_CC); 5658 OPCODE(TDC); 5659 OPCODE(ATOMIC_SWAPW); 5660 OPCODE(ATOMIC_LOADW_ADD); 5661 OPCODE(ATOMIC_LOADW_SUB); 5662 OPCODE(ATOMIC_LOADW_AND); 5663 OPCODE(ATOMIC_LOADW_OR); 5664 OPCODE(ATOMIC_LOADW_XOR); 5665 OPCODE(ATOMIC_LOADW_NAND); 5666 OPCODE(ATOMIC_LOADW_MIN); 5667 OPCODE(ATOMIC_LOADW_MAX); 5668 OPCODE(ATOMIC_LOADW_UMIN); 5669 OPCODE(ATOMIC_LOADW_UMAX); 5670 OPCODE(ATOMIC_CMP_SWAPW); 5671 OPCODE(ATOMIC_CMP_SWAP); 5672 OPCODE(ATOMIC_LOAD_128); 5673 OPCODE(ATOMIC_STORE_128); 5674 OPCODE(ATOMIC_CMP_SWAP_128); 5675 OPCODE(LRV); 5676 OPCODE(STRV); 5677 OPCODE(VLER); 5678 OPCODE(VSTER); 5679 OPCODE(PREFETCH); 5680 } 5681 return nullptr; 5682 #undef OPCODE 5683 } 5684 5685 // Return true if VT is a vector whose elements are a whole number of bytes 5686 // in width. Also check for presence of vector support. 5687 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5688 if (!Subtarget.hasVector()) 5689 return false; 5690 5691 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5692 } 5693 5694 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5695 // producing a result of type ResVT. Op is a possibly bitcast version 5696 // of the input vector and Index is the index (based on type VecVT) that 5697 // should be extracted. Return the new extraction if a simplification 5698 // was possible or if Force is true. 5699 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5700 EVT VecVT, SDValue Op, 5701 unsigned Index, 5702 DAGCombinerInfo &DCI, 5703 bool Force) const { 5704 SelectionDAG &DAG = DCI.DAG; 5705 5706 // The number of bytes being extracted. 5707 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5708 5709 for (;;) { 5710 unsigned Opcode = Op.getOpcode(); 5711 if (Opcode == ISD::BITCAST) 5712 // Look through bitcasts. 5713 Op = Op.getOperand(0); 5714 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5715 canTreatAsByteVector(Op.getValueType())) { 5716 // Get a VPERM-like permute mask and see whether the bytes covered 5717 // by the extracted element are a contiguous sequence from one 5718 // source operand. 5719 SmallVector<int, SystemZ::VectorBytes> Bytes; 5720 if (!getVPermMask(Op, Bytes)) 5721 break; 5722 int First; 5723 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5724 BytesPerElement, First)) 5725 break; 5726 if (First < 0) 5727 return DAG.getUNDEF(ResVT); 5728 // Make sure the contiguous sequence starts at a multiple of the 5729 // original element size. 5730 unsigned Byte = unsigned(First) % Bytes.size(); 5731 if (Byte % BytesPerElement != 0) 5732 break; 5733 // We can get the extracted value directly from an input. 5734 Index = Byte / BytesPerElement; 5735 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5736 Force = true; 5737 } else if (Opcode == ISD::BUILD_VECTOR && 5738 canTreatAsByteVector(Op.getValueType())) { 5739 // We can only optimize this case if the BUILD_VECTOR elements are 5740 // at least as wide as the extracted value. 5741 EVT OpVT = Op.getValueType(); 5742 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5743 if (OpBytesPerElement < BytesPerElement) 5744 break; 5745 // Make sure that the least-significant bit of the extracted value 5746 // is the least significant bit of an input. 5747 unsigned End = (Index + 1) * BytesPerElement; 5748 if (End % OpBytesPerElement != 0) 5749 break; 5750 // We're extracting the low part of one operand of the BUILD_VECTOR. 5751 Op = Op.getOperand(End / OpBytesPerElement - 1); 5752 if (!Op.getValueType().isInteger()) { 5753 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5754 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5755 DCI.AddToWorklist(Op.getNode()); 5756 } 5757 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5758 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5759 if (VT != ResVT) { 5760 DCI.AddToWorklist(Op.getNode()); 5761 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5762 } 5763 return Op; 5764 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5765 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5766 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5767 canTreatAsByteVector(Op.getValueType()) && 5768 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5769 // Make sure that only the unextended bits are significant. 5770 EVT ExtVT = Op.getValueType(); 5771 EVT OpVT = Op.getOperand(0).getValueType(); 5772 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5773 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5774 unsigned Byte = Index * BytesPerElement; 5775 unsigned SubByte = Byte % ExtBytesPerElement; 5776 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5777 if (SubByte < MinSubByte || 5778 SubByte + BytesPerElement > ExtBytesPerElement) 5779 break; 5780 // Get the byte offset of the unextended element 5781 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5782 // ...then add the byte offset relative to that element. 5783 Byte += SubByte - MinSubByte; 5784 if (Byte % BytesPerElement != 0) 5785 break; 5786 Op = Op.getOperand(0); 5787 Index = Byte / BytesPerElement; 5788 Force = true; 5789 } else 5790 break; 5791 } 5792 if (Force) { 5793 if (Op.getValueType() != VecVT) { 5794 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5795 DCI.AddToWorklist(Op.getNode()); 5796 } 5797 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5798 DAG.getConstant(Index, DL, MVT::i32)); 5799 } 5800 return SDValue(); 5801 } 5802 5803 // Optimize vector operations in scalar value Op on the basis that Op 5804 // is truncated to TruncVT. 5805 SDValue SystemZTargetLowering::combineTruncateExtract( 5806 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5807 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5808 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5809 // of type TruncVT. 5810 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5811 TruncVT.getSizeInBits() % 8 == 0) { 5812 SDValue Vec = Op.getOperand(0); 5813 EVT VecVT = Vec.getValueType(); 5814 if (canTreatAsByteVector(VecVT)) { 5815 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5816 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5817 unsigned TruncBytes = TruncVT.getStoreSize(); 5818 if (BytesPerElement % TruncBytes == 0) { 5819 // Calculate the value of Y' in the above description. We are 5820 // splitting the original elements into Scale equal-sized pieces 5821 // and for truncation purposes want the last (least-significant) 5822 // of these pieces for IndexN. This is easiest to do by calculating 5823 // the start index of the following element and then subtracting 1. 5824 unsigned Scale = BytesPerElement / TruncBytes; 5825 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5826 5827 // Defer the creation of the bitcast from X to combineExtract, 5828 // which might be able to optimize the extraction. 5829 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5830 VecVT.getStoreSize() / TruncBytes); 5831 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5832 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5833 } 5834 } 5835 } 5836 } 5837 return SDValue(); 5838 } 5839 5840 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5841 SDNode *N, DAGCombinerInfo &DCI) const { 5842 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5843 SelectionDAG &DAG = DCI.DAG; 5844 SDValue N0 = N->getOperand(0); 5845 EVT VT = N->getValueType(0); 5846 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5847 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5848 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5849 if (TrueOp && FalseOp) { 5850 SDLoc DL(N0); 5851 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5852 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5853 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5854 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5855 // If N0 has multiple uses, change other uses as well. 5856 if (!N0.hasOneUse()) { 5857 SDValue TruncSelect = 5858 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5859 DCI.CombineTo(N0.getNode(), TruncSelect); 5860 } 5861 return NewSelect; 5862 } 5863 } 5864 return SDValue(); 5865 } 5866 5867 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5868 SDNode *N, DAGCombinerInfo &DCI) const { 5869 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5870 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5871 // into (select_cc LHS, RHS, -1, 0, COND) 5872 SelectionDAG &DAG = DCI.DAG; 5873 SDValue N0 = N->getOperand(0); 5874 EVT VT = N->getValueType(0); 5875 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5876 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5877 N0 = N0.getOperand(0); 5878 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5879 SDLoc DL(N0); 5880 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5881 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5882 N0.getOperand(2) }; 5883 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5884 } 5885 return SDValue(); 5886 } 5887 5888 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5889 SDNode *N, DAGCombinerInfo &DCI) const { 5890 // Convert (sext (ashr (shl X, C1), C2)) to 5891 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5892 // cheap as narrower ones. 5893 SelectionDAG &DAG = DCI.DAG; 5894 SDValue N0 = N->getOperand(0); 5895 EVT VT = N->getValueType(0); 5896 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5897 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5898 SDValue Inner = N0.getOperand(0); 5899 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5900 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5901 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5902 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5903 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5904 EVT ShiftVT = N0.getOperand(1).getValueType(); 5905 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5906 Inner.getOperand(0)); 5907 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5908 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5909 ShiftVT)); 5910 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5911 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5912 } 5913 } 5914 } 5915 return SDValue(); 5916 } 5917 5918 SDValue SystemZTargetLowering::combineMERGE( 5919 SDNode *N, DAGCombinerInfo &DCI) const { 5920 SelectionDAG &DAG = DCI.DAG; 5921 unsigned Opcode = N->getOpcode(); 5922 SDValue Op0 = N->getOperand(0); 5923 SDValue Op1 = N->getOperand(1); 5924 if (Op0.getOpcode() == ISD::BITCAST) 5925 Op0 = Op0.getOperand(0); 5926 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5927 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5928 // for v4f32. 5929 if (Op1 == N->getOperand(0)) 5930 return Op1; 5931 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5932 EVT VT = Op1.getValueType(); 5933 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5934 if (ElemBytes <= 4) { 5935 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5936 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5937 EVT InVT = VT.changeVectorElementTypeToInteger(); 5938 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5939 SystemZ::VectorBytes / ElemBytes / 2); 5940 if (VT != InVT) { 5941 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5942 DCI.AddToWorklist(Op1.getNode()); 5943 } 5944 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5945 DCI.AddToWorklist(Op.getNode()); 5946 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5947 } 5948 } 5949 return SDValue(); 5950 } 5951 5952 SDValue SystemZTargetLowering::combineLOAD( 5953 SDNode *N, DAGCombinerInfo &DCI) const { 5954 SelectionDAG &DAG = DCI.DAG; 5955 EVT LdVT = N->getValueType(0); 5956 if (LdVT.isVector() || LdVT.isInteger()) 5957 return SDValue(); 5958 // Transform a scalar load that is REPLICATEd as well as having other 5959 // use(s) to the form where the other use(s) use the first element of the 5960 // REPLICATE instead of the load. Otherwise instruction selection will not 5961 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5962 // point loads. 5963 5964 SDValue Replicate; 5965 SmallVector<SDNode*, 8> OtherUses; 5966 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5967 UI != UE; ++UI) { 5968 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5969 if (Replicate) 5970 return SDValue(); // Should never happen 5971 Replicate = SDValue(*UI, 0); 5972 } 5973 else if (UI.getUse().getResNo() == 0) 5974 OtherUses.push_back(*UI); 5975 } 5976 if (!Replicate || OtherUses.empty()) 5977 return SDValue(); 5978 5979 SDLoc DL(N); 5980 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5981 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5982 // Update uses of the loaded Value while preserving old chains. 5983 for (SDNode *U : OtherUses) { 5984 SmallVector<SDValue, 8> Ops; 5985 for (SDValue Op : U->ops()) 5986 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5987 DAG.UpdateNodeOperands(U, Ops); 5988 } 5989 return SDValue(N, 0); 5990 } 5991 5992 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 5993 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 5994 return true; 5995 if (Subtarget.hasVectorEnhancements2()) 5996 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 5997 return true; 5998 return false; 5999 } 6000 6001 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 6002 if (!VT.isVector() || !VT.isSimple() || 6003 VT.getSizeInBits() != 128 || 6004 VT.getScalarSizeInBits() % 8 != 0) 6005 return false; 6006 6007 unsigned NumElts = VT.getVectorNumElements(); 6008 for (unsigned i = 0; i < NumElts; ++i) { 6009 if (M[i] < 0) continue; // ignore UNDEF indices 6010 if ((unsigned) M[i] != NumElts - 1 - i) 6011 return false; 6012 } 6013 6014 return true; 6015 } 6016 6017 SDValue SystemZTargetLowering::combineSTORE( 6018 SDNode *N, DAGCombinerInfo &DCI) const { 6019 SelectionDAG &DAG = DCI.DAG; 6020 auto *SN = cast<StoreSDNode>(N); 6021 auto &Op1 = N->getOperand(1); 6022 EVT MemVT = SN->getMemoryVT(); 6023 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 6024 // for the extraction to be done on a vMiN value, so that we can use VSTE. 6025 // If X has wider elements then convert it to: 6026 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 6027 if (MemVT.isInteger() && SN->isTruncatingStore()) { 6028 if (SDValue Value = 6029 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 6030 DCI.AddToWorklist(Value.getNode()); 6031 6032 // Rewrite the store with the new form of stored value. 6033 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 6034 SN->getBasePtr(), SN->getMemoryVT(), 6035 SN->getMemOperand()); 6036 } 6037 } 6038 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 6039 if (!SN->isTruncatingStore() && 6040 Op1.getOpcode() == ISD::BSWAP && 6041 Op1.getNode()->hasOneUse() && 6042 canLoadStoreByteSwapped(Op1.getValueType())) { 6043 6044 SDValue BSwapOp = Op1.getOperand(0); 6045 6046 if (BSwapOp.getValueType() == MVT::i16) 6047 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 6048 6049 SDValue Ops[] = { 6050 N->getOperand(0), BSwapOp, N->getOperand(2) 6051 }; 6052 6053 return 6054 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 6055 Ops, MemVT, SN->getMemOperand()); 6056 } 6057 // Combine STORE (element-swap) into VSTER 6058 if (!SN->isTruncatingStore() && 6059 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 6060 Op1.getNode()->hasOneUse() && 6061 Subtarget.hasVectorEnhancements2()) { 6062 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 6063 ArrayRef<int> ShuffleMask = SVN->getMask(); 6064 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 6065 SDValue Ops[] = { 6066 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 6067 }; 6068 6069 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 6070 DAG.getVTList(MVT::Other), 6071 Ops, MemVT, SN->getMemOperand()); 6072 } 6073 } 6074 6075 return SDValue(); 6076 } 6077 6078 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 6079 SDNode *N, DAGCombinerInfo &DCI) const { 6080 SelectionDAG &DAG = DCI.DAG; 6081 // Combine element-swap (LOAD) into VLER 6082 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6083 N->getOperand(0).hasOneUse() && 6084 Subtarget.hasVectorEnhancements2()) { 6085 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 6086 ArrayRef<int> ShuffleMask = SVN->getMask(); 6087 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 6088 SDValue Load = N->getOperand(0); 6089 LoadSDNode *LD = cast<LoadSDNode>(Load); 6090 6091 // Create the element-swapping load. 6092 SDValue Ops[] = { 6093 LD->getChain(), // Chain 6094 LD->getBasePtr() // Ptr 6095 }; 6096 SDValue ESLoad = 6097 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 6098 DAG.getVTList(LD->getValueType(0), MVT::Other), 6099 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6100 6101 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 6102 // by the load dead. 6103 DCI.CombineTo(N, ESLoad); 6104 6105 // Next, combine the load away, we give it a bogus result value but a real 6106 // chain result. The result value is dead because the shuffle is dead. 6107 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 6108 6109 // Return N so it doesn't get rechecked! 6110 return SDValue(N, 0); 6111 } 6112 } 6113 6114 return SDValue(); 6115 } 6116 6117 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 6118 SDNode *N, DAGCombinerInfo &DCI) const { 6119 SelectionDAG &DAG = DCI.DAG; 6120 6121 if (!Subtarget.hasVector()) 6122 return SDValue(); 6123 6124 // Look through bitcasts that retain the number of vector elements. 6125 SDValue Op = N->getOperand(0); 6126 if (Op.getOpcode() == ISD::BITCAST && 6127 Op.getValueType().isVector() && 6128 Op.getOperand(0).getValueType().isVector() && 6129 Op.getValueType().getVectorNumElements() == 6130 Op.getOperand(0).getValueType().getVectorNumElements()) 6131 Op = Op.getOperand(0); 6132 6133 // Pull BSWAP out of a vector extraction. 6134 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 6135 EVT VecVT = Op.getValueType(); 6136 EVT EltVT = VecVT.getVectorElementType(); 6137 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 6138 Op.getOperand(0), N->getOperand(1)); 6139 DCI.AddToWorklist(Op.getNode()); 6140 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 6141 if (EltVT != N->getValueType(0)) { 6142 DCI.AddToWorklist(Op.getNode()); 6143 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 6144 } 6145 return Op; 6146 } 6147 6148 // Try to simplify a vector extraction. 6149 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 6150 SDValue Op0 = N->getOperand(0); 6151 EVT VecVT = Op0.getValueType(); 6152 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 6153 IndexN->getZExtValue(), DCI, false); 6154 } 6155 return SDValue(); 6156 } 6157 6158 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 6159 SDNode *N, DAGCombinerInfo &DCI) const { 6160 SelectionDAG &DAG = DCI.DAG; 6161 // (join_dwords X, X) == (replicate X) 6162 if (N->getOperand(0) == N->getOperand(1)) 6163 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 6164 N->getOperand(0)); 6165 return SDValue(); 6166 } 6167 6168 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 6169 SDValue Chain1 = N1->getOperand(0); 6170 SDValue Chain2 = N2->getOperand(0); 6171 6172 // Trivial case: both nodes take the same chain. 6173 if (Chain1 == Chain2) 6174 return Chain1; 6175 6176 // FIXME - we could handle more complex cases via TokenFactor, 6177 // assuming we can verify that this would not create a cycle. 6178 return SDValue(); 6179 } 6180 6181 SDValue SystemZTargetLowering::combineFP_ROUND( 6182 SDNode *N, DAGCombinerInfo &DCI) const { 6183 6184 if (!Subtarget.hasVector()) 6185 return SDValue(); 6186 6187 // (fpround (extract_vector_elt X 0)) 6188 // (fpround (extract_vector_elt X 1)) -> 6189 // (extract_vector_elt (VROUND X) 0) 6190 // (extract_vector_elt (VROUND X) 2) 6191 // 6192 // This is a special case since the target doesn't really support v2f32s. 6193 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6194 SelectionDAG &DAG = DCI.DAG; 6195 SDValue Op0 = N->getOperand(OpNo); 6196 if (N->getValueType(0) == MVT::f32 && 6197 Op0.hasOneUse() && 6198 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6199 Op0.getOperand(0).getValueType() == MVT::v2f64 && 6200 Op0.getOperand(1).getOpcode() == ISD::Constant && 6201 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6202 SDValue Vec = Op0.getOperand(0); 6203 for (auto *U : Vec->uses()) { 6204 if (U != Op0.getNode() && 6205 U->hasOneUse() && 6206 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6207 U->getOperand(0) == Vec && 6208 U->getOperand(1).getOpcode() == ISD::Constant && 6209 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 6210 SDValue OtherRound = SDValue(*U->use_begin(), 0); 6211 if (OtherRound.getOpcode() == N->getOpcode() && 6212 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 6213 OtherRound.getValueType() == MVT::f32) { 6214 SDValue VRound, Chain; 6215 if (N->isStrictFPOpcode()) { 6216 Chain = MergeInputChains(N, OtherRound.getNode()); 6217 if (!Chain) 6218 continue; 6219 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 6220 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 6221 Chain = VRound.getValue(1); 6222 } else 6223 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 6224 MVT::v4f32, Vec); 6225 DCI.AddToWorklist(VRound.getNode()); 6226 SDValue Extract1 = 6227 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 6228 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 6229 DCI.AddToWorklist(Extract1.getNode()); 6230 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6231 if (Chain) 6232 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 6233 SDValue Extract0 = 6234 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 6235 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6236 if (Chain) 6237 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6238 N->getVTList(), Extract0, Chain); 6239 return Extract0; 6240 } 6241 } 6242 } 6243 } 6244 return SDValue(); 6245 } 6246 6247 SDValue SystemZTargetLowering::combineFP_EXTEND( 6248 SDNode *N, DAGCombinerInfo &DCI) const { 6249 6250 if (!Subtarget.hasVector()) 6251 return SDValue(); 6252 6253 // (fpextend (extract_vector_elt X 0)) 6254 // (fpextend (extract_vector_elt X 2)) -> 6255 // (extract_vector_elt (VEXTEND X) 0) 6256 // (extract_vector_elt (VEXTEND X) 1) 6257 // 6258 // This is a special case since the target doesn't really support v2f32s. 6259 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6260 SelectionDAG &DAG = DCI.DAG; 6261 SDValue Op0 = N->getOperand(OpNo); 6262 if (N->getValueType(0) == MVT::f64 && 6263 Op0.hasOneUse() && 6264 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6265 Op0.getOperand(0).getValueType() == MVT::v4f32 && 6266 Op0.getOperand(1).getOpcode() == ISD::Constant && 6267 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6268 SDValue Vec = Op0.getOperand(0); 6269 for (auto *U : Vec->uses()) { 6270 if (U != Op0.getNode() && 6271 U->hasOneUse() && 6272 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6273 U->getOperand(0) == Vec && 6274 U->getOperand(1).getOpcode() == ISD::Constant && 6275 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 6276 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6277 if (OtherExtend.getOpcode() == N->getOpcode() && 6278 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 6279 OtherExtend.getValueType() == MVT::f64) { 6280 SDValue VExtend, Chain; 6281 if (N->isStrictFPOpcode()) { 6282 Chain = MergeInputChains(N, OtherExtend.getNode()); 6283 if (!Chain) 6284 continue; 6285 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6286 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6287 Chain = VExtend.getValue(1); 6288 } else 6289 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 6290 MVT::v2f64, Vec); 6291 DCI.AddToWorklist(VExtend.getNode()); 6292 SDValue Extract1 = 6293 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 6294 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 6295 DCI.AddToWorklist(Extract1.getNode()); 6296 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6297 if (Chain) 6298 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 6299 SDValue Extract0 = 6300 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 6301 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6302 if (Chain) 6303 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6304 N->getVTList(), Extract0, Chain); 6305 return Extract0; 6306 } 6307 } 6308 } 6309 } 6310 return SDValue(); 6311 } 6312 6313 SDValue SystemZTargetLowering::combineINT_TO_FP( 6314 SDNode *N, DAGCombinerInfo &DCI) const { 6315 if (DCI.Level != BeforeLegalizeTypes) 6316 return SDValue(); 6317 unsigned Opcode = N->getOpcode(); 6318 EVT OutVT = N->getValueType(0); 6319 SelectionDAG &DAG = DCI.DAG; 6320 SDValue Op = N->getOperand(0); 6321 unsigned OutScalarBits = OutVT.getScalarSizeInBits(); 6322 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 6323 6324 // Insert an extension before type-legalization to avoid scalarization, e.g.: 6325 // v2f64 = uint_to_fp v2i16 6326 // => 6327 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 6328 if (OutVT.isVector() && OutScalarBits > InScalarBits) { 6329 MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()), 6330 OutVT.getVectorNumElements()); 6331 unsigned ExtOpcode = 6332 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 6333 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 6334 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 6335 } 6336 return SDValue(); 6337 } 6338 6339 SDValue SystemZTargetLowering::combineBSWAP( 6340 SDNode *N, DAGCombinerInfo &DCI) const { 6341 SelectionDAG &DAG = DCI.DAG; 6342 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6343 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6344 N->getOperand(0).hasOneUse() && 6345 canLoadStoreByteSwapped(N->getValueType(0))) { 6346 SDValue Load = N->getOperand(0); 6347 LoadSDNode *LD = cast<LoadSDNode>(Load); 6348 6349 // Create the byte-swapping load. 6350 SDValue Ops[] = { 6351 LD->getChain(), // Chain 6352 LD->getBasePtr() // Ptr 6353 }; 6354 EVT LoadVT = N->getValueType(0); 6355 if (LoadVT == MVT::i16) 6356 LoadVT = MVT::i32; 6357 SDValue BSLoad = 6358 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6359 DAG.getVTList(LoadVT, MVT::Other), 6360 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6361 6362 // If this is an i16 load, insert the truncate. 6363 SDValue ResVal = BSLoad; 6364 if (N->getValueType(0) == MVT::i16) 6365 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6366 6367 // First, combine the bswap away. This makes the value produced by the 6368 // load dead. 6369 DCI.CombineTo(N, ResVal); 6370 6371 // Next, combine the load away, we give it a bogus result value but a real 6372 // chain result. The result value is dead because the bswap is dead. 6373 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6374 6375 // Return N so it doesn't get rechecked! 6376 return SDValue(N, 0); 6377 } 6378 6379 // Look through bitcasts that retain the number of vector elements. 6380 SDValue Op = N->getOperand(0); 6381 if (Op.getOpcode() == ISD::BITCAST && 6382 Op.getValueType().isVector() && 6383 Op.getOperand(0).getValueType().isVector() && 6384 Op.getValueType().getVectorNumElements() == 6385 Op.getOperand(0).getValueType().getVectorNumElements()) 6386 Op = Op.getOperand(0); 6387 6388 // Push BSWAP into a vector insertion if at least one side then simplifies. 6389 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6390 SDValue Vec = Op.getOperand(0); 6391 SDValue Elt = Op.getOperand(1); 6392 SDValue Idx = Op.getOperand(2); 6393 6394 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6395 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6396 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6397 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6398 (canLoadStoreByteSwapped(N->getValueType(0)) && 6399 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6400 EVT VecVT = N->getValueType(0); 6401 EVT EltVT = N->getValueType(0).getVectorElementType(); 6402 if (VecVT != Vec.getValueType()) { 6403 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6404 DCI.AddToWorklist(Vec.getNode()); 6405 } 6406 if (EltVT != Elt.getValueType()) { 6407 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6408 DCI.AddToWorklist(Elt.getNode()); 6409 } 6410 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6411 DCI.AddToWorklist(Vec.getNode()); 6412 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6413 DCI.AddToWorklist(Elt.getNode()); 6414 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6415 Vec, Elt, Idx); 6416 } 6417 } 6418 6419 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6420 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6421 if (SV && Op.hasOneUse()) { 6422 SDValue Op0 = Op.getOperand(0); 6423 SDValue Op1 = Op.getOperand(1); 6424 6425 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6426 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6427 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6428 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6429 EVT VecVT = N->getValueType(0); 6430 if (VecVT != Op0.getValueType()) { 6431 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6432 DCI.AddToWorklist(Op0.getNode()); 6433 } 6434 if (VecVT != Op1.getValueType()) { 6435 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6436 DCI.AddToWorklist(Op1.getNode()); 6437 } 6438 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6439 DCI.AddToWorklist(Op0.getNode()); 6440 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6441 DCI.AddToWorklist(Op1.getNode()); 6442 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6443 } 6444 } 6445 6446 return SDValue(); 6447 } 6448 6449 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6450 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6451 // set by the CCReg instruction using the CCValid / CCMask masks, 6452 // If the CCReg instruction is itself a ICMP testing the condition 6453 // code set by some other instruction, see whether we can directly 6454 // use that condition code. 6455 6456 // Verify that we have an ICMP against some constant. 6457 if (CCValid != SystemZ::CCMASK_ICMP) 6458 return false; 6459 auto *ICmp = CCReg.getNode(); 6460 if (ICmp->getOpcode() != SystemZISD::ICMP) 6461 return false; 6462 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6463 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6464 if (!CompareRHS) 6465 return false; 6466 6467 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6468 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6469 // Verify that we have an appropriate mask for a EQ or NE comparison. 6470 bool Invert = false; 6471 if (CCMask == SystemZ::CCMASK_CMP_NE) 6472 Invert = !Invert; 6473 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6474 return false; 6475 6476 // Verify that the ICMP compares against one of select values. 6477 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6478 if (!TrueVal) 6479 return false; 6480 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6481 if (!FalseVal) 6482 return false; 6483 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6484 Invert = !Invert; 6485 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6486 return false; 6487 6488 // Compute the effective CC mask for the new branch or select. 6489 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6490 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6491 if (!NewCCValid || !NewCCMask) 6492 return false; 6493 CCValid = NewCCValid->getZExtValue(); 6494 CCMask = NewCCMask->getZExtValue(); 6495 if (Invert) 6496 CCMask ^= CCValid; 6497 6498 // Return the updated CCReg link. 6499 CCReg = CompareLHS->getOperand(4); 6500 return true; 6501 } 6502 6503 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6504 if (CompareLHS->getOpcode() == ISD::SRA) { 6505 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6506 if (!SRACount || SRACount->getZExtValue() != 30) 6507 return false; 6508 auto *SHL = CompareLHS->getOperand(0).getNode(); 6509 if (SHL->getOpcode() != ISD::SHL) 6510 return false; 6511 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6512 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6513 return false; 6514 auto *IPM = SHL->getOperand(0).getNode(); 6515 if (IPM->getOpcode() != SystemZISD::IPM) 6516 return false; 6517 6518 // Avoid introducing CC spills (because SRA would clobber CC). 6519 if (!CompareLHS->hasOneUse()) 6520 return false; 6521 // Verify that the ICMP compares against zero. 6522 if (CompareRHS->getZExtValue() != 0) 6523 return false; 6524 6525 // Compute the effective CC mask for the new branch or select. 6526 CCMask = SystemZ::reverseCCMask(CCMask); 6527 6528 // Return the updated CCReg link. 6529 CCReg = IPM->getOperand(0); 6530 return true; 6531 } 6532 6533 return false; 6534 } 6535 6536 SDValue SystemZTargetLowering::combineBR_CCMASK( 6537 SDNode *N, DAGCombinerInfo &DCI) const { 6538 SelectionDAG &DAG = DCI.DAG; 6539 6540 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6541 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6542 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6543 if (!CCValid || !CCMask) 6544 return SDValue(); 6545 6546 int CCValidVal = CCValid->getZExtValue(); 6547 int CCMaskVal = CCMask->getZExtValue(); 6548 SDValue Chain = N->getOperand(0); 6549 SDValue CCReg = N->getOperand(4); 6550 6551 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6552 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6553 Chain, 6554 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6555 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6556 N->getOperand(3), CCReg); 6557 return SDValue(); 6558 } 6559 6560 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6561 SDNode *N, DAGCombinerInfo &DCI) const { 6562 SelectionDAG &DAG = DCI.DAG; 6563 6564 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6565 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6566 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6567 if (!CCValid || !CCMask) 6568 return SDValue(); 6569 6570 int CCValidVal = CCValid->getZExtValue(); 6571 int CCMaskVal = CCMask->getZExtValue(); 6572 SDValue CCReg = N->getOperand(4); 6573 6574 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6575 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6576 N->getOperand(0), N->getOperand(1), 6577 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6578 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6579 CCReg); 6580 return SDValue(); 6581 } 6582 6583 6584 SDValue SystemZTargetLowering::combineGET_CCMASK( 6585 SDNode *N, DAGCombinerInfo &DCI) const { 6586 6587 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6588 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6589 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6590 if (!CCValid || !CCMask) 6591 return SDValue(); 6592 int CCValidVal = CCValid->getZExtValue(); 6593 int CCMaskVal = CCMask->getZExtValue(); 6594 6595 SDValue Select = N->getOperand(0); 6596 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6597 return SDValue(); 6598 6599 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6600 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6601 if (!SelectCCValid || !SelectCCMask) 6602 return SDValue(); 6603 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6604 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6605 6606 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6607 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6608 if (!TrueVal || !FalseVal) 6609 return SDValue(); 6610 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6611 ; 6612 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6613 SelectCCMaskVal ^= SelectCCValidVal; 6614 else 6615 return SDValue(); 6616 6617 if (SelectCCValidVal & ~CCValidVal) 6618 return SDValue(); 6619 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6620 return SDValue(); 6621 6622 return Select->getOperand(4); 6623 } 6624 6625 SDValue SystemZTargetLowering::combineIntDIVREM( 6626 SDNode *N, DAGCombinerInfo &DCI) const { 6627 SelectionDAG &DAG = DCI.DAG; 6628 EVT VT = N->getValueType(0); 6629 // In the case where the divisor is a vector of constants a cheaper 6630 // sequence of instructions can replace the divide. BuildSDIV is called to 6631 // do this during DAG combining, but it only succeeds when it can build a 6632 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6633 // since it is not Legal but Custom it can only happen before 6634 // legalization. Therefore we must scalarize this early before Combine 6635 // 1. For widened vectors, this is already the result of type legalization. 6636 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6637 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6638 return DAG.UnrollVectorOp(N); 6639 return SDValue(); 6640 } 6641 6642 SDValue SystemZTargetLowering::combineINTRINSIC( 6643 SDNode *N, DAGCombinerInfo &DCI) const { 6644 SelectionDAG &DAG = DCI.DAG; 6645 6646 unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 6647 switch (Id) { 6648 // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15 6649 // or larger is simply a vector load. 6650 case Intrinsic::s390_vll: 6651 case Intrinsic::s390_vlrl: 6652 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2))) 6653 if (C->getZExtValue() >= 15) 6654 return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0), 6655 N->getOperand(3), MachinePointerInfo()); 6656 break; 6657 // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH. 6658 case Intrinsic::s390_vstl: 6659 case Intrinsic::s390_vstrl: 6660 if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3))) 6661 if (C->getZExtValue() >= 15) 6662 return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2), 6663 N->getOperand(4), MachinePointerInfo()); 6664 break; 6665 } 6666 6667 return SDValue(); 6668 } 6669 6670 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6671 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6672 return N->getOperand(0); 6673 return N; 6674 } 6675 6676 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6677 DAGCombinerInfo &DCI) const { 6678 switch(N->getOpcode()) { 6679 default: break; 6680 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6681 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6682 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6683 case SystemZISD::MERGE_HIGH: 6684 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6685 case ISD::LOAD: return combineLOAD(N, DCI); 6686 case ISD::STORE: return combineSTORE(N, DCI); 6687 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6688 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6689 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6690 case ISD::STRICT_FP_ROUND: 6691 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6692 case ISD::STRICT_FP_EXTEND: 6693 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6694 case ISD::SINT_TO_FP: 6695 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 6696 case ISD::BSWAP: return combineBSWAP(N, DCI); 6697 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6698 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6699 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6700 case ISD::SDIV: 6701 case ISD::UDIV: 6702 case ISD::SREM: 6703 case ISD::UREM: return combineIntDIVREM(N, DCI); 6704 case ISD::INTRINSIC_W_CHAIN: 6705 case ISD::INTRINSIC_VOID: return combineINTRINSIC(N, DCI); 6706 } 6707 6708 return SDValue(); 6709 } 6710 6711 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6712 // are for Op. 6713 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6714 unsigned OpNo) { 6715 EVT VT = Op.getValueType(); 6716 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6717 APInt SrcDemE; 6718 unsigned Opcode = Op.getOpcode(); 6719 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6720 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6721 switch (Id) { 6722 case Intrinsic::s390_vpksh: // PACKS 6723 case Intrinsic::s390_vpksf: 6724 case Intrinsic::s390_vpksg: 6725 case Intrinsic::s390_vpkshs: // PACKS_CC 6726 case Intrinsic::s390_vpksfs: 6727 case Intrinsic::s390_vpksgs: 6728 case Intrinsic::s390_vpklsh: // PACKLS 6729 case Intrinsic::s390_vpklsf: 6730 case Intrinsic::s390_vpklsg: 6731 case Intrinsic::s390_vpklshs: // PACKLS_CC 6732 case Intrinsic::s390_vpklsfs: 6733 case Intrinsic::s390_vpklsgs: 6734 // VECTOR PACK truncates the elements of two source vectors into one. 6735 SrcDemE = DemandedElts; 6736 if (OpNo == 2) 6737 SrcDemE.lshrInPlace(NumElts / 2); 6738 SrcDemE = SrcDemE.trunc(NumElts / 2); 6739 break; 6740 // VECTOR UNPACK extends half the elements of the source vector. 6741 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6742 case Intrinsic::s390_vuphh: 6743 case Intrinsic::s390_vuphf: 6744 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6745 case Intrinsic::s390_vuplhh: 6746 case Intrinsic::s390_vuplhf: 6747 SrcDemE = APInt(NumElts * 2, 0); 6748 SrcDemE.insertBits(DemandedElts, 0); 6749 break; 6750 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6751 case Intrinsic::s390_vuplhw: 6752 case Intrinsic::s390_vuplf: 6753 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6754 case Intrinsic::s390_vupllh: 6755 case Intrinsic::s390_vupllf: 6756 SrcDemE = APInt(NumElts * 2, 0); 6757 SrcDemE.insertBits(DemandedElts, NumElts); 6758 break; 6759 case Intrinsic::s390_vpdi: { 6760 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6761 SrcDemE = APInt(NumElts, 0); 6762 if (!DemandedElts[OpNo - 1]) 6763 break; 6764 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6765 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6766 // Demand input element 0 or 1, given by the mask bit value. 6767 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6768 break; 6769 } 6770 case Intrinsic::s390_vsldb: { 6771 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6772 assert(VT == MVT::v16i8 && "Unexpected type."); 6773 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6774 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6775 unsigned NumSrc0Els = 16 - FirstIdx; 6776 SrcDemE = APInt(NumElts, 0); 6777 if (OpNo == 1) { 6778 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6779 SrcDemE.insertBits(DemEls, FirstIdx); 6780 } else { 6781 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6782 SrcDemE.insertBits(DemEls, 0); 6783 } 6784 break; 6785 } 6786 case Intrinsic::s390_vperm: 6787 SrcDemE = APInt(NumElts, 1); 6788 break; 6789 default: 6790 llvm_unreachable("Unhandled intrinsic."); 6791 break; 6792 } 6793 } else { 6794 switch (Opcode) { 6795 case SystemZISD::JOIN_DWORDS: 6796 // Scalar operand. 6797 SrcDemE = APInt(1, 1); 6798 break; 6799 case SystemZISD::SELECT_CCMASK: 6800 SrcDemE = DemandedElts; 6801 break; 6802 default: 6803 llvm_unreachable("Unhandled opcode."); 6804 break; 6805 } 6806 } 6807 return SrcDemE; 6808 } 6809 6810 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6811 const APInt &DemandedElts, 6812 const SelectionDAG &DAG, unsigned Depth, 6813 unsigned OpNo) { 6814 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6815 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6816 KnownBits LHSKnown = 6817 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6818 KnownBits RHSKnown = 6819 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6820 Known = KnownBits::commonBits(LHSKnown, RHSKnown); 6821 } 6822 6823 void 6824 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6825 KnownBits &Known, 6826 const APInt &DemandedElts, 6827 const SelectionDAG &DAG, 6828 unsigned Depth) const { 6829 Known.resetAll(); 6830 6831 // Intrinsic CC result is returned in the two low bits. 6832 unsigned tmp0, tmp1; // not used 6833 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6834 Known.Zero.setBitsFrom(2); 6835 return; 6836 } 6837 EVT VT = Op.getValueType(); 6838 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6839 return; 6840 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6841 "KnownBits does not match VT in bitwidth"); 6842 assert ((!VT.isVector() || 6843 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6844 "DemandedElts does not match VT number of elements"); 6845 unsigned BitWidth = Known.getBitWidth(); 6846 unsigned Opcode = Op.getOpcode(); 6847 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6848 bool IsLogical = false; 6849 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6850 switch (Id) { 6851 case Intrinsic::s390_vpksh: // PACKS 6852 case Intrinsic::s390_vpksf: 6853 case Intrinsic::s390_vpksg: 6854 case Intrinsic::s390_vpkshs: // PACKS_CC 6855 case Intrinsic::s390_vpksfs: 6856 case Intrinsic::s390_vpksgs: 6857 case Intrinsic::s390_vpklsh: // PACKLS 6858 case Intrinsic::s390_vpklsf: 6859 case Intrinsic::s390_vpklsg: 6860 case Intrinsic::s390_vpklshs: // PACKLS_CC 6861 case Intrinsic::s390_vpklsfs: 6862 case Intrinsic::s390_vpklsgs: 6863 case Intrinsic::s390_vpdi: 6864 case Intrinsic::s390_vsldb: 6865 case Intrinsic::s390_vperm: 6866 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6867 break; 6868 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6869 case Intrinsic::s390_vuplhh: 6870 case Intrinsic::s390_vuplhf: 6871 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6872 case Intrinsic::s390_vupllh: 6873 case Intrinsic::s390_vupllf: 6874 IsLogical = true; 6875 LLVM_FALLTHROUGH; 6876 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6877 case Intrinsic::s390_vuphh: 6878 case Intrinsic::s390_vuphf: 6879 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6880 case Intrinsic::s390_vuplhw: 6881 case Intrinsic::s390_vuplf: { 6882 SDValue SrcOp = Op.getOperand(1); 6883 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6884 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6885 if (IsLogical) { 6886 Known = Known.zext(BitWidth); 6887 } else 6888 Known = Known.sext(BitWidth); 6889 break; 6890 } 6891 default: 6892 break; 6893 } 6894 } else { 6895 switch (Opcode) { 6896 case SystemZISD::JOIN_DWORDS: 6897 case SystemZISD::SELECT_CCMASK: 6898 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6899 break; 6900 case SystemZISD::REPLICATE: { 6901 SDValue SrcOp = Op.getOperand(0); 6902 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6903 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6904 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6905 break; 6906 } 6907 default: 6908 break; 6909 } 6910 } 6911 6912 // Known has the width of the source operand(s). Adjust if needed to match 6913 // the passed bitwidth. 6914 if (Known.getBitWidth() != BitWidth) 6915 Known = Known.anyextOrTrunc(BitWidth); 6916 } 6917 6918 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6919 const SelectionDAG &DAG, unsigned Depth, 6920 unsigned OpNo) { 6921 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6922 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6923 if (LHS == 1) return 1; // Early out. 6924 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6925 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6926 if (RHS == 1) return 1; // Early out. 6927 unsigned Common = std::min(LHS, RHS); 6928 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6929 EVT VT = Op.getValueType(); 6930 unsigned VTBits = VT.getScalarSizeInBits(); 6931 if (SrcBitWidth > VTBits) { // PACK 6932 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6933 if (Common > SrcExtraBits) 6934 return (Common - SrcExtraBits); 6935 return 1; 6936 } 6937 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6938 return Common; 6939 } 6940 6941 unsigned 6942 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6943 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6944 unsigned Depth) const { 6945 if (Op.getResNo() != 0) 6946 return 1; 6947 unsigned Opcode = Op.getOpcode(); 6948 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6949 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6950 switch (Id) { 6951 case Intrinsic::s390_vpksh: // PACKS 6952 case Intrinsic::s390_vpksf: 6953 case Intrinsic::s390_vpksg: 6954 case Intrinsic::s390_vpkshs: // PACKS_CC 6955 case Intrinsic::s390_vpksfs: 6956 case Intrinsic::s390_vpksgs: 6957 case Intrinsic::s390_vpklsh: // PACKLS 6958 case Intrinsic::s390_vpklsf: 6959 case Intrinsic::s390_vpklsg: 6960 case Intrinsic::s390_vpklshs: // PACKLS_CC 6961 case Intrinsic::s390_vpklsfs: 6962 case Intrinsic::s390_vpklsgs: 6963 case Intrinsic::s390_vpdi: 6964 case Intrinsic::s390_vsldb: 6965 case Intrinsic::s390_vperm: 6966 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6967 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6968 case Intrinsic::s390_vuphh: 6969 case Intrinsic::s390_vuphf: 6970 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6971 case Intrinsic::s390_vuplhw: 6972 case Intrinsic::s390_vuplf: { 6973 SDValue PackedOp = Op.getOperand(1); 6974 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6975 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6976 EVT VT = Op.getValueType(); 6977 unsigned VTBits = VT.getScalarSizeInBits(); 6978 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6979 return Tmp; 6980 } 6981 default: 6982 break; 6983 } 6984 } else { 6985 switch (Opcode) { 6986 case SystemZISD::SELECT_CCMASK: 6987 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6988 default: 6989 break; 6990 } 6991 } 6992 6993 return 1; 6994 } 6995 6996 unsigned 6997 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const { 6998 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 6999 unsigned StackAlign = TFI->getStackAlignment(); 7000 assert(StackAlign >=1 && isPowerOf2_32(StackAlign) && 7001 "Unexpected stack alignment"); 7002 // The default stack probe size is 4096 if the function has no 7003 // stack-probe-size attribute. 7004 unsigned StackProbeSize = 4096; 7005 const Function &Fn = MF.getFunction(); 7006 if (Fn.hasFnAttribute("stack-probe-size")) 7007 Fn.getFnAttribute("stack-probe-size") 7008 .getValueAsString() 7009 .getAsInteger(0, StackProbeSize); 7010 // Round down to the stack alignment. 7011 StackProbeSize &= ~(StackAlign - 1); 7012 return StackProbeSize ? StackProbeSize : StackAlign; 7013 } 7014 7015 //===----------------------------------------------------------------------===// 7016 // Custom insertion 7017 //===----------------------------------------------------------------------===// 7018 7019 // Force base value Base into a register before MI. Return the register. 7020 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 7021 const SystemZInstrInfo *TII) { 7022 if (Base.isReg()) 7023 return Base.getReg(); 7024 7025 MachineBasicBlock *MBB = MI.getParent(); 7026 MachineFunction &MF = *MBB->getParent(); 7027 MachineRegisterInfo &MRI = MF.getRegInfo(); 7028 7029 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7030 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 7031 .add(Base) 7032 .addImm(0) 7033 .addReg(0); 7034 return Reg; 7035 } 7036 7037 // The CC operand of MI might be missing a kill marker because there 7038 // were multiple uses of CC, and ISel didn't know which to mark. 7039 // Figure out whether MI should have had a kill marker. 7040 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 7041 // Scan forward through BB for a use/def of CC. 7042 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 7043 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 7044 const MachineInstr& mi = *miI; 7045 if (mi.readsRegister(SystemZ::CC)) 7046 return false; 7047 if (mi.definesRegister(SystemZ::CC)) 7048 break; // Should have kill-flag - update below. 7049 } 7050 7051 // If we hit the end of the block, check whether CC is live into a 7052 // successor. 7053 if (miI == MBB->end()) { 7054 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 7055 if ((*SI)->isLiveIn(SystemZ::CC)) 7056 return false; 7057 } 7058 7059 return true; 7060 } 7061 7062 // Return true if it is OK for this Select pseudo-opcode to be cascaded 7063 // together with other Select pseudo-opcodes into a single basic-block with 7064 // a conditional jump around it. 7065 static bool isSelectPseudo(MachineInstr &MI) { 7066 switch (MI.getOpcode()) { 7067 case SystemZ::Select32: 7068 case SystemZ::Select64: 7069 case SystemZ::SelectF32: 7070 case SystemZ::SelectF64: 7071 case SystemZ::SelectF128: 7072 case SystemZ::SelectVR32: 7073 case SystemZ::SelectVR64: 7074 case SystemZ::SelectVR128: 7075 return true; 7076 7077 default: 7078 return false; 7079 } 7080 } 7081 7082 // Helper function, which inserts PHI functions into SinkMBB: 7083 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 7084 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 7085 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 7086 MachineBasicBlock *TrueMBB, 7087 MachineBasicBlock *FalseMBB, 7088 MachineBasicBlock *SinkMBB) { 7089 MachineFunction *MF = TrueMBB->getParent(); 7090 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 7091 7092 MachineInstr *FirstMI = Selects.front(); 7093 unsigned CCValid = FirstMI->getOperand(3).getImm(); 7094 unsigned CCMask = FirstMI->getOperand(4).getImm(); 7095 7096 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 7097 7098 // As we are creating the PHIs, we have to be careful if there is more than 7099 // one. Later Selects may reference the results of earlier Selects, but later 7100 // PHIs have to reference the individual true/false inputs from earlier PHIs. 7101 // That also means that PHI construction must work forward from earlier to 7102 // later, and that the code must maintain a mapping from earlier PHI's 7103 // destination registers, and the registers that went into the PHI. 7104 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 7105 7106 for (auto MI : Selects) { 7107 Register DestReg = MI->getOperand(0).getReg(); 7108 Register TrueReg = MI->getOperand(1).getReg(); 7109 Register FalseReg = MI->getOperand(2).getReg(); 7110 7111 // If this Select we are generating is the opposite condition from 7112 // the jump we generated, then we have to swap the operands for the 7113 // PHI that is going to be generated. 7114 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 7115 std::swap(TrueReg, FalseReg); 7116 7117 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 7118 TrueReg = RegRewriteTable[TrueReg].first; 7119 7120 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 7121 FalseReg = RegRewriteTable[FalseReg].second; 7122 7123 DebugLoc DL = MI->getDebugLoc(); 7124 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 7125 .addReg(TrueReg).addMBB(TrueMBB) 7126 .addReg(FalseReg).addMBB(FalseMBB); 7127 7128 // Add this PHI to the rewrite table. 7129 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 7130 } 7131 7132 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 7133 } 7134 7135 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 7136 MachineBasicBlock * 7137 SystemZTargetLowering::emitSelect(MachineInstr &MI, 7138 MachineBasicBlock *MBB) const { 7139 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 7140 const SystemZInstrInfo *TII = 7141 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7142 7143 unsigned CCValid = MI.getOperand(3).getImm(); 7144 unsigned CCMask = MI.getOperand(4).getImm(); 7145 7146 // If we have a sequence of Select* pseudo instructions using the 7147 // same condition code value, we want to expand all of them into 7148 // a single pair of basic blocks using the same condition. 7149 SmallVector<MachineInstr*, 8> Selects; 7150 SmallVector<MachineInstr*, 8> DbgValues; 7151 Selects.push_back(&MI); 7152 unsigned Count = 0; 7153 for (MachineBasicBlock::iterator NextMIIt = 7154 std::next(MachineBasicBlock::iterator(MI)); 7155 NextMIIt != MBB->end(); ++NextMIIt) { 7156 if (isSelectPseudo(*NextMIIt)) { 7157 assert(NextMIIt->getOperand(3).getImm() == CCValid && 7158 "Bad CCValid operands since CC was not redefined."); 7159 if (NextMIIt->getOperand(4).getImm() == CCMask || 7160 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 7161 Selects.push_back(&*NextMIIt); 7162 continue; 7163 } 7164 break; 7165 } 7166 if (NextMIIt->definesRegister(SystemZ::CC) || 7167 NextMIIt->usesCustomInsertionHook()) 7168 break; 7169 bool User = false; 7170 for (auto SelMI : Selects) 7171 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 7172 User = true; 7173 break; 7174 } 7175 if (NextMIIt->isDebugInstr()) { 7176 if (User) { 7177 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 7178 DbgValues.push_back(&*NextMIIt); 7179 } 7180 } 7181 else if (User || ++Count > 20) 7182 break; 7183 } 7184 7185 MachineInstr *LastMI = Selects.back(); 7186 bool CCKilled = 7187 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 7188 MachineBasicBlock *StartMBB = MBB; 7189 MachineBasicBlock *JoinMBB = SystemZ::splitBlockAfter(LastMI, MBB); 7190 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7191 7192 // Unless CC was killed in the last Select instruction, mark it as 7193 // live-in to both FalseMBB and JoinMBB. 7194 if (!CCKilled) { 7195 FalseMBB->addLiveIn(SystemZ::CC); 7196 JoinMBB->addLiveIn(SystemZ::CC); 7197 } 7198 7199 // StartMBB: 7200 // BRC CCMask, JoinMBB 7201 // # fallthrough to FalseMBB 7202 MBB = StartMBB; 7203 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 7204 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7205 MBB->addSuccessor(JoinMBB); 7206 MBB->addSuccessor(FalseMBB); 7207 7208 // FalseMBB: 7209 // # fallthrough to JoinMBB 7210 MBB = FalseMBB; 7211 MBB->addSuccessor(JoinMBB); 7212 7213 // JoinMBB: 7214 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 7215 // ... 7216 MBB = JoinMBB; 7217 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 7218 for (auto SelMI : Selects) 7219 SelMI->eraseFromParent(); 7220 7221 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 7222 for (auto DbgMI : DbgValues) 7223 MBB->splice(InsertPos, StartMBB, DbgMI); 7224 7225 return JoinMBB; 7226 } 7227 7228 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 7229 // StoreOpcode is the store to use and Invert says whether the store should 7230 // happen when the condition is false rather than true. If a STORE ON 7231 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 7232 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 7233 MachineBasicBlock *MBB, 7234 unsigned StoreOpcode, 7235 unsigned STOCOpcode, 7236 bool Invert) const { 7237 const SystemZInstrInfo *TII = 7238 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7239 7240 Register SrcReg = MI.getOperand(0).getReg(); 7241 MachineOperand Base = MI.getOperand(1); 7242 int64_t Disp = MI.getOperand(2).getImm(); 7243 Register IndexReg = MI.getOperand(3).getReg(); 7244 unsigned CCValid = MI.getOperand(4).getImm(); 7245 unsigned CCMask = MI.getOperand(5).getImm(); 7246 DebugLoc DL = MI.getDebugLoc(); 7247 7248 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 7249 7250 // ISel pattern matching also adds a load memory operand of the same 7251 // address, so take special care to find the storing memory operand. 7252 MachineMemOperand *MMO = nullptr; 7253 for (auto *I : MI.memoperands()) 7254 if (I->isStore()) { 7255 MMO = I; 7256 break; 7257 } 7258 7259 // Use STOCOpcode if possible. We could use different store patterns in 7260 // order to avoid matching the index register, but the performance trade-offs 7261 // might be more complicated in that case. 7262 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 7263 if (Invert) 7264 CCMask ^= CCValid; 7265 7266 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 7267 .addReg(SrcReg) 7268 .add(Base) 7269 .addImm(Disp) 7270 .addImm(CCValid) 7271 .addImm(CCMask) 7272 .addMemOperand(MMO); 7273 7274 MI.eraseFromParent(); 7275 return MBB; 7276 } 7277 7278 // Get the condition needed to branch around the store. 7279 if (!Invert) 7280 CCMask ^= CCValid; 7281 7282 MachineBasicBlock *StartMBB = MBB; 7283 MachineBasicBlock *JoinMBB = SystemZ::splitBlockBefore(MI, MBB); 7284 MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB); 7285 7286 // Unless CC was killed in the CondStore instruction, mark it as 7287 // live-in to both FalseMBB and JoinMBB. 7288 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 7289 FalseMBB->addLiveIn(SystemZ::CC); 7290 JoinMBB->addLiveIn(SystemZ::CC); 7291 } 7292 7293 // StartMBB: 7294 // BRC CCMask, JoinMBB 7295 // # fallthrough to FalseMBB 7296 MBB = StartMBB; 7297 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7298 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7299 MBB->addSuccessor(JoinMBB); 7300 MBB->addSuccessor(FalseMBB); 7301 7302 // FalseMBB: 7303 // store %SrcReg, %Disp(%Index,%Base) 7304 // # fallthrough to JoinMBB 7305 MBB = FalseMBB; 7306 BuildMI(MBB, DL, TII->get(StoreOpcode)) 7307 .addReg(SrcReg) 7308 .add(Base) 7309 .addImm(Disp) 7310 .addReg(IndexReg) 7311 .addMemOperand(MMO); 7312 MBB->addSuccessor(JoinMBB); 7313 7314 MI.eraseFromParent(); 7315 return JoinMBB; 7316 } 7317 7318 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 7319 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 7320 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 7321 // BitSize is the width of the field in bits, or 0 if this is a partword 7322 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 7323 // is one of the operands. Invert says whether the field should be 7324 // inverted after performing BinOpcode (e.g. for NAND). 7325 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 7326 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 7327 unsigned BitSize, bool Invert) const { 7328 MachineFunction &MF = *MBB->getParent(); 7329 const SystemZInstrInfo *TII = 7330 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7331 MachineRegisterInfo &MRI = MF.getRegInfo(); 7332 bool IsSubWord = (BitSize < 32); 7333 7334 // Extract the operands. Base can be a register or a frame index. 7335 // Src2 can be a register or immediate. 7336 Register Dest = MI.getOperand(0).getReg(); 7337 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7338 int64_t Disp = MI.getOperand(2).getImm(); 7339 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 7340 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 7341 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 7342 DebugLoc DL = MI.getDebugLoc(); 7343 if (IsSubWord) 7344 BitSize = MI.getOperand(6).getImm(); 7345 7346 // Subword operations use 32-bit registers. 7347 const TargetRegisterClass *RC = (BitSize <= 32 ? 7348 &SystemZ::GR32BitRegClass : 7349 &SystemZ::GR64BitRegClass); 7350 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7351 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7352 7353 // Get the right opcodes for the displacement. 7354 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7355 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7356 assert(LOpcode && CSOpcode && "Displacement out of range"); 7357 7358 // Create virtual registers for temporary results. 7359 Register OrigVal = MRI.createVirtualRegister(RC); 7360 Register OldVal = MRI.createVirtualRegister(RC); 7361 Register NewVal = (BinOpcode || IsSubWord ? 7362 MRI.createVirtualRegister(RC) : Src2.getReg()); 7363 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7364 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7365 7366 // Insert a basic block for the main loop. 7367 MachineBasicBlock *StartMBB = MBB; 7368 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7369 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7370 7371 // StartMBB: 7372 // ... 7373 // %OrigVal = L Disp(%Base) 7374 // # fall through to LoopMMB 7375 MBB = StartMBB; 7376 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7377 MBB->addSuccessor(LoopMBB); 7378 7379 // LoopMBB: 7380 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7381 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7382 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7383 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7384 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7385 // JNE LoopMBB 7386 // # fall through to DoneMMB 7387 MBB = LoopMBB; 7388 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7389 .addReg(OrigVal).addMBB(StartMBB) 7390 .addReg(Dest).addMBB(LoopMBB); 7391 if (IsSubWord) 7392 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7393 .addReg(OldVal).addReg(BitShift).addImm(0); 7394 if (Invert) { 7395 // Perform the operation normally and then invert every bit of the field. 7396 Register Tmp = MRI.createVirtualRegister(RC); 7397 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7398 if (BitSize <= 32) 7399 // XILF with the upper BitSize bits set. 7400 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7401 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7402 else { 7403 // Use LCGR and add -1 to the result, which is more compact than 7404 // an XILF, XILH pair. 7405 Register Tmp2 = MRI.createVirtualRegister(RC); 7406 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7407 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7408 .addReg(Tmp2).addImm(-1); 7409 } 7410 } else if (BinOpcode) 7411 // A simply binary operation. 7412 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7413 .addReg(RotatedOldVal) 7414 .add(Src2); 7415 else if (IsSubWord) 7416 // Use RISBG to rotate Src2 into position and use it to replace the 7417 // field in RotatedOldVal. 7418 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7419 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7420 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7421 if (IsSubWord) 7422 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7423 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7424 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7425 .addReg(OldVal) 7426 .addReg(NewVal) 7427 .add(Base) 7428 .addImm(Disp); 7429 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7430 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7431 MBB->addSuccessor(LoopMBB); 7432 MBB->addSuccessor(DoneMBB); 7433 7434 MI.eraseFromParent(); 7435 return DoneMBB; 7436 } 7437 7438 // Implement EmitInstrWithCustomInserter for pseudo 7439 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7440 // instruction that should be used to compare the current field with the 7441 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7442 // for when the current field should be kept. BitSize is the width of 7443 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7444 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7445 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7446 unsigned KeepOldMask, unsigned BitSize) const { 7447 MachineFunction &MF = *MBB->getParent(); 7448 const SystemZInstrInfo *TII = 7449 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7450 MachineRegisterInfo &MRI = MF.getRegInfo(); 7451 bool IsSubWord = (BitSize < 32); 7452 7453 // Extract the operands. Base can be a register or a frame index. 7454 Register Dest = MI.getOperand(0).getReg(); 7455 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7456 int64_t Disp = MI.getOperand(2).getImm(); 7457 Register Src2 = MI.getOperand(3).getReg(); 7458 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7459 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7460 DebugLoc DL = MI.getDebugLoc(); 7461 if (IsSubWord) 7462 BitSize = MI.getOperand(6).getImm(); 7463 7464 // Subword operations use 32-bit registers. 7465 const TargetRegisterClass *RC = (BitSize <= 32 ? 7466 &SystemZ::GR32BitRegClass : 7467 &SystemZ::GR64BitRegClass); 7468 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7469 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7470 7471 // Get the right opcodes for the displacement. 7472 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7473 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7474 assert(LOpcode && CSOpcode && "Displacement out of range"); 7475 7476 // Create virtual registers for temporary results. 7477 Register OrigVal = MRI.createVirtualRegister(RC); 7478 Register OldVal = MRI.createVirtualRegister(RC); 7479 Register NewVal = MRI.createVirtualRegister(RC); 7480 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7481 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7482 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7483 7484 // Insert 3 basic blocks for the loop. 7485 MachineBasicBlock *StartMBB = MBB; 7486 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7487 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7488 MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB); 7489 MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB); 7490 7491 // StartMBB: 7492 // ... 7493 // %OrigVal = L Disp(%Base) 7494 // # fall through to LoopMMB 7495 MBB = StartMBB; 7496 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7497 MBB->addSuccessor(LoopMBB); 7498 7499 // LoopMBB: 7500 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7501 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7502 // CompareOpcode %RotatedOldVal, %Src2 7503 // BRC KeepOldMask, UpdateMBB 7504 MBB = LoopMBB; 7505 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7506 .addReg(OrigVal).addMBB(StartMBB) 7507 .addReg(Dest).addMBB(UpdateMBB); 7508 if (IsSubWord) 7509 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7510 .addReg(OldVal).addReg(BitShift).addImm(0); 7511 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7512 .addReg(RotatedOldVal).addReg(Src2); 7513 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7514 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7515 MBB->addSuccessor(UpdateMBB); 7516 MBB->addSuccessor(UseAltMBB); 7517 7518 // UseAltMBB: 7519 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7520 // # fall through to UpdateMMB 7521 MBB = UseAltMBB; 7522 if (IsSubWord) 7523 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7524 .addReg(RotatedOldVal).addReg(Src2) 7525 .addImm(32).addImm(31 + BitSize).addImm(0); 7526 MBB->addSuccessor(UpdateMBB); 7527 7528 // UpdateMBB: 7529 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7530 // [ %RotatedAltVal, UseAltMBB ] 7531 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7532 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7533 // JNE LoopMBB 7534 // # fall through to DoneMMB 7535 MBB = UpdateMBB; 7536 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7537 .addReg(RotatedOldVal).addMBB(LoopMBB) 7538 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7539 if (IsSubWord) 7540 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7541 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7542 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7543 .addReg(OldVal) 7544 .addReg(NewVal) 7545 .add(Base) 7546 .addImm(Disp); 7547 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7548 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7549 MBB->addSuccessor(LoopMBB); 7550 MBB->addSuccessor(DoneMBB); 7551 7552 MI.eraseFromParent(); 7553 return DoneMBB; 7554 } 7555 7556 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7557 // instruction MI. 7558 MachineBasicBlock * 7559 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7560 MachineBasicBlock *MBB) const { 7561 7562 MachineFunction &MF = *MBB->getParent(); 7563 const SystemZInstrInfo *TII = 7564 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7565 MachineRegisterInfo &MRI = MF.getRegInfo(); 7566 7567 // Extract the operands. Base can be a register or a frame index. 7568 Register Dest = MI.getOperand(0).getReg(); 7569 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7570 int64_t Disp = MI.getOperand(2).getImm(); 7571 Register OrigCmpVal = MI.getOperand(3).getReg(); 7572 Register OrigSwapVal = MI.getOperand(4).getReg(); 7573 Register BitShift = MI.getOperand(5).getReg(); 7574 Register NegBitShift = MI.getOperand(6).getReg(); 7575 int64_t BitSize = MI.getOperand(7).getImm(); 7576 DebugLoc DL = MI.getDebugLoc(); 7577 7578 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7579 7580 // Get the right opcodes for the displacement. 7581 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7582 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7583 assert(LOpcode && CSOpcode && "Displacement out of range"); 7584 7585 // Create virtual registers for temporary results. 7586 Register OrigOldVal = MRI.createVirtualRegister(RC); 7587 Register OldVal = MRI.createVirtualRegister(RC); 7588 Register CmpVal = MRI.createVirtualRegister(RC); 7589 Register SwapVal = MRI.createVirtualRegister(RC); 7590 Register StoreVal = MRI.createVirtualRegister(RC); 7591 Register RetryOldVal = MRI.createVirtualRegister(RC); 7592 Register RetryCmpVal = MRI.createVirtualRegister(RC); 7593 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7594 7595 // Insert 2 basic blocks for the loop. 7596 MachineBasicBlock *StartMBB = MBB; 7597 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7598 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7599 MachineBasicBlock *SetMBB = SystemZ::emitBlockAfter(LoopMBB); 7600 7601 // StartMBB: 7602 // ... 7603 // %OrigOldVal = L Disp(%Base) 7604 // # fall through to LoopMMB 7605 MBB = StartMBB; 7606 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7607 .add(Base) 7608 .addImm(Disp) 7609 .addReg(0); 7610 MBB->addSuccessor(LoopMBB); 7611 7612 // LoopMBB: 7613 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7614 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 7615 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7616 // %Dest = RLL %OldVal, BitSize(%BitShift) 7617 // ^^ The low BitSize bits contain the field 7618 // of interest. 7619 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 7620 // ^^ Replace the upper 32-BitSize bits of the 7621 // comparison value with those that we loaded, 7622 // so that we can use a full word comparison. 7623 // CR %Dest, %RetryCmpVal 7624 // JNE DoneMBB 7625 // # Fall through to SetMBB 7626 MBB = LoopMBB; 7627 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7628 .addReg(OrigOldVal).addMBB(StartMBB) 7629 .addReg(RetryOldVal).addMBB(SetMBB); 7630 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 7631 .addReg(OrigCmpVal).addMBB(StartMBB) 7632 .addReg(RetryCmpVal).addMBB(SetMBB); 7633 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7634 .addReg(OrigSwapVal).addMBB(StartMBB) 7635 .addReg(RetrySwapVal).addMBB(SetMBB); 7636 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 7637 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7638 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 7639 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7640 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7641 .addReg(Dest).addReg(RetryCmpVal); 7642 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7643 .addImm(SystemZ::CCMASK_ICMP) 7644 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7645 MBB->addSuccessor(DoneMBB); 7646 MBB->addSuccessor(SetMBB); 7647 7648 // SetMBB: 7649 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 7650 // ^^ Replace the upper 32-BitSize bits of the new 7651 // value with those that we loaded. 7652 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7653 // ^^ Rotate the new field to its proper position. 7654 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 7655 // JNE LoopMBB 7656 // # fall through to ExitMMB 7657 MBB = SetMBB; 7658 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7659 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7660 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7661 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7662 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7663 .addReg(OldVal) 7664 .addReg(StoreVal) 7665 .add(Base) 7666 .addImm(Disp); 7667 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7668 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7669 MBB->addSuccessor(LoopMBB); 7670 MBB->addSuccessor(DoneMBB); 7671 7672 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7673 // to the block after the loop. At this point, CC may have been defined 7674 // either by the CR in LoopMBB or by the CS in SetMBB. 7675 if (!MI.registerDefIsDead(SystemZ::CC)) 7676 DoneMBB->addLiveIn(SystemZ::CC); 7677 7678 MI.eraseFromParent(); 7679 return DoneMBB; 7680 } 7681 7682 // Emit a move from two GR64s to a GR128. 7683 MachineBasicBlock * 7684 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7685 MachineBasicBlock *MBB) const { 7686 MachineFunction &MF = *MBB->getParent(); 7687 const SystemZInstrInfo *TII = 7688 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7689 MachineRegisterInfo &MRI = MF.getRegInfo(); 7690 DebugLoc DL = MI.getDebugLoc(); 7691 7692 Register Dest = MI.getOperand(0).getReg(); 7693 Register Hi = MI.getOperand(1).getReg(); 7694 Register Lo = MI.getOperand(2).getReg(); 7695 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7696 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7697 7698 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7699 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7700 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7701 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7702 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7703 7704 MI.eraseFromParent(); 7705 return MBB; 7706 } 7707 7708 // Emit an extension from a GR64 to a GR128. ClearEven is true 7709 // if the high register of the GR128 value must be cleared or false if 7710 // it's "don't care". 7711 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7712 MachineBasicBlock *MBB, 7713 bool ClearEven) const { 7714 MachineFunction &MF = *MBB->getParent(); 7715 const SystemZInstrInfo *TII = 7716 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7717 MachineRegisterInfo &MRI = MF.getRegInfo(); 7718 DebugLoc DL = MI.getDebugLoc(); 7719 7720 Register Dest = MI.getOperand(0).getReg(); 7721 Register Src = MI.getOperand(1).getReg(); 7722 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7723 7724 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7725 if (ClearEven) { 7726 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7727 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7728 7729 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7730 .addImm(0); 7731 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7732 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7733 In128 = NewIn128; 7734 } 7735 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7736 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7737 7738 MI.eraseFromParent(); 7739 return MBB; 7740 } 7741 7742 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 7743 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7744 MachineFunction &MF = *MBB->getParent(); 7745 const SystemZInstrInfo *TII = 7746 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7747 MachineRegisterInfo &MRI = MF.getRegInfo(); 7748 DebugLoc DL = MI.getDebugLoc(); 7749 7750 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7751 uint64_t DestDisp = MI.getOperand(1).getImm(); 7752 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 7753 uint64_t SrcDisp = MI.getOperand(3).getImm(); 7754 uint64_t Length = MI.getOperand(4).getImm(); 7755 7756 // When generating more than one CLC, all but the last will need to 7757 // branch to the end when a difference is found. 7758 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 7759 SystemZ::splitBlockAfter(MI, MBB) : nullptr); 7760 7761 // Check for the loop form, in which operand 5 is the trip count. 7762 if (MI.getNumExplicitOperands() > 5) { 7763 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7764 7765 Register StartCountReg = MI.getOperand(5).getReg(); 7766 Register StartSrcReg = forceReg(MI, SrcBase, TII); 7767 Register StartDestReg = (HaveSingleBase ? StartSrcReg : 7768 forceReg(MI, DestBase, TII)); 7769 7770 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 7771 Register ThisSrcReg = MRI.createVirtualRegister(RC); 7772 Register ThisDestReg = (HaveSingleBase ? ThisSrcReg : 7773 MRI.createVirtualRegister(RC)); 7774 Register NextSrcReg = MRI.createVirtualRegister(RC); 7775 Register NextDestReg = (HaveSingleBase ? NextSrcReg : 7776 MRI.createVirtualRegister(RC)); 7777 7778 RC = &SystemZ::GR64BitRegClass; 7779 Register ThisCountReg = MRI.createVirtualRegister(RC); 7780 Register NextCountReg = MRI.createVirtualRegister(RC); 7781 7782 MachineBasicBlock *StartMBB = MBB; 7783 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7784 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7785 MachineBasicBlock *NextMBB = 7786 (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB); 7787 7788 // StartMBB: 7789 // # fall through to LoopMMB 7790 MBB->addSuccessor(LoopMBB); 7791 7792 // LoopMBB: 7793 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 7794 // [ %NextDestReg, NextMBB ] 7795 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 7796 // [ %NextSrcReg, NextMBB ] 7797 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 7798 // [ %NextCountReg, NextMBB ] 7799 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 7800 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 7801 // ( JLH EndMBB ) 7802 // 7803 // The prefetch is used only for MVC. The JLH is used only for CLC. 7804 MBB = LoopMBB; 7805 7806 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 7807 .addReg(StartDestReg).addMBB(StartMBB) 7808 .addReg(NextDestReg).addMBB(NextMBB); 7809 if (!HaveSingleBase) 7810 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 7811 .addReg(StartSrcReg).addMBB(StartMBB) 7812 .addReg(NextSrcReg).addMBB(NextMBB); 7813 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 7814 .addReg(StartCountReg).addMBB(StartMBB) 7815 .addReg(NextCountReg).addMBB(NextMBB); 7816 if (Opcode == SystemZ::MVC) 7817 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 7818 .addImm(SystemZ::PFD_WRITE) 7819 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 7820 BuildMI(MBB, DL, TII->get(Opcode)) 7821 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 7822 .addReg(ThisSrcReg).addImm(SrcDisp); 7823 if (EndMBB) { 7824 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7825 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7826 .addMBB(EndMBB); 7827 MBB->addSuccessor(EndMBB); 7828 MBB->addSuccessor(NextMBB); 7829 } 7830 7831 // NextMBB: 7832 // %NextDestReg = LA 256(%ThisDestReg) 7833 // %NextSrcReg = LA 256(%ThisSrcReg) 7834 // %NextCountReg = AGHI %ThisCountReg, -1 7835 // CGHI %NextCountReg, 0 7836 // JLH LoopMBB 7837 // # fall through to DoneMMB 7838 // 7839 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 7840 MBB = NextMBB; 7841 7842 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 7843 .addReg(ThisDestReg).addImm(256).addReg(0); 7844 if (!HaveSingleBase) 7845 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 7846 .addReg(ThisSrcReg).addImm(256).addReg(0); 7847 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7848 .addReg(ThisCountReg).addImm(-1); 7849 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7850 .addReg(NextCountReg).addImm(0); 7851 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7852 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7853 .addMBB(LoopMBB); 7854 MBB->addSuccessor(LoopMBB); 7855 MBB->addSuccessor(DoneMBB); 7856 7857 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7858 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7859 Length &= 255; 7860 if (EndMBB && !Length) 7861 // If the loop handled the whole CLC range, DoneMBB will be empty with 7862 // CC live-through into EndMBB, so add it as live-in. 7863 DoneMBB->addLiveIn(SystemZ::CC); 7864 MBB = DoneMBB; 7865 } 7866 // Handle any remaining bytes with straight-line code. 7867 while (Length > 0) { 7868 uint64_t ThisLength = std::min(Length, uint64_t(256)); 7869 // The previous iteration might have created out-of-range displacements. 7870 // Apply them using LAY if so. 7871 if (!isUInt<12>(DestDisp)) { 7872 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7873 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7874 .add(DestBase) 7875 .addImm(DestDisp) 7876 .addReg(0); 7877 DestBase = MachineOperand::CreateReg(Reg, false); 7878 DestDisp = 0; 7879 } 7880 if (!isUInt<12>(SrcDisp)) { 7881 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7882 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7883 .add(SrcBase) 7884 .addImm(SrcDisp) 7885 .addReg(0); 7886 SrcBase = MachineOperand::CreateReg(Reg, false); 7887 SrcDisp = 0; 7888 } 7889 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 7890 .add(DestBase) 7891 .addImm(DestDisp) 7892 .addImm(ThisLength) 7893 .add(SrcBase) 7894 .addImm(SrcDisp) 7895 .setMemRefs(MI.memoperands()); 7896 DestDisp += ThisLength; 7897 SrcDisp += ThisLength; 7898 Length -= ThisLength; 7899 // If there's another CLC to go, branch to the end if a difference 7900 // was found. 7901 if (EndMBB && Length > 0) { 7902 MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB); 7903 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7904 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7905 .addMBB(EndMBB); 7906 MBB->addSuccessor(EndMBB); 7907 MBB->addSuccessor(NextMBB); 7908 MBB = NextMBB; 7909 } 7910 } 7911 if (EndMBB) { 7912 MBB->addSuccessor(EndMBB); 7913 MBB = EndMBB; 7914 MBB->addLiveIn(SystemZ::CC); 7915 } 7916 7917 MI.eraseFromParent(); 7918 return MBB; 7919 } 7920 7921 // Decompose string pseudo-instruction MI into a loop that continually performs 7922 // Opcode until CC != 3. 7923 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7924 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7925 MachineFunction &MF = *MBB->getParent(); 7926 const SystemZInstrInfo *TII = 7927 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7928 MachineRegisterInfo &MRI = MF.getRegInfo(); 7929 DebugLoc DL = MI.getDebugLoc(); 7930 7931 uint64_t End1Reg = MI.getOperand(0).getReg(); 7932 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7933 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7934 uint64_t CharReg = MI.getOperand(3).getReg(); 7935 7936 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7937 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7938 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7939 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7940 7941 MachineBasicBlock *StartMBB = MBB; 7942 MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB); 7943 MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB); 7944 7945 // StartMBB: 7946 // # fall through to LoopMMB 7947 MBB->addSuccessor(LoopMBB); 7948 7949 // LoopMBB: 7950 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7951 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7952 // R0L = %CharReg 7953 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7954 // JO LoopMBB 7955 // # fall through to DoneMMB 7956 // 7957 // The load of R0L can be hoisted by post-RA LICM. 7958 MBB = LoopMBB; 7959 7960 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7961 .addReg(Start1Reg).addMBB(StartMBB) 7962 .addReg(End1Reg).addMBB(LoopMBB); 7963 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7964 .addReg(Start2Reg).addMBB(StartMBB) 7965 .addReg(End2Reg).addMBB(LoopMBB); 7966 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7967 BuildMI(MBB, DL, TII->get(Opcode)) 7968 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7969 .addReg(This1Reg).addReg(This2Reg); 7970 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7971 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7972 MBB->addSuccessor(LoopMBB); 7973 MBB->addSuccessor(DoneMBB); 7974 7975 DoneMBB->addLiveIn(SystemZ::CC); 7976 7977 MI.eraseFromParent(); 7978 return DoneMBB; 7979 } 7980 7981 // Update TBEGIN instruction with final opcode and register clobbers. 7982 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7983 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7984 bool NoFloat) const { 7985 MachineFunction &MF = *MBB->getParent(); 7986 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7987 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7988 7989 // Update opcode. 7990 MI.setDesc(TII->get(Opcode)); 7991 7992 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7993 // Make sure to add the corresponding GRSM bits if they are missing. 7994 uint64_t Control = MI.getOperand(2).getImm(); 7995 static const unsigned GPRControlBit[16] = { 7996 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7997 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7998 }; 7999 Control |= GPRControlBit[15]; 8000 if (TFI->hasFP(MF)) 8001 Control |= GPRControlBit[11]; 8002 MI.getOperand(2).setImm(Control); 8003 8004 // Add GPR clobbers. 8005 for (int I = 0; I < 16; I++) { 8006 if ((Control & GPRControlBit[I]) == 0) { 8007 unsigned Reg = SystemZMC::GR64Regs[I]; 8008 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8009 } 8010 } 8011 8012 // Add FPR/VR clobbers. 8013 if (!NoFloat && (Control & 4) != 0) { 8014 if (Subtarget.hasVector()) { 8015 for (int I = 0; I < 32; I++) { 8016 unsigned Reg = SystemZMC::VR128Regs[I]; 8017 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8018 } 8019 } else { 8020 for (int I = 0; I < 16; I++) { 8021 unsigned Reg = SystemZMC::FP64Regs[I]; 8022 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 8023 } 8024 } 8025 } 8026 8027 return MBB; 8028 } 8029 8030 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 8031 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 8032 MachineFunction &MF = *MBB->getParent(); 8033 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8034 const SystemZInstrInfo *TII = 8035 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8036 DebugLoc DL = MI.getDebugLoc(); 8037 8038 Register SrcReg = MI.getOperand(0).getReg(); 8039 8040 // Create new virtual register of the same class as source. 8041 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 8042 Register DstReg = MRI->createVirtualRegister(RC); 8043 8044 // Replace pseudo with a normal load-and-test that models the def as 8045 // well. 8046 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 8047 .addReg(SrcReg) 8048 .setMIFlags(MI.getFlags()); 8049 MI.eraseFromParent(); 8050 8051 return MBB; 8052 } 8053 8054 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca( 8055 MachineInstr &MI, MachineBasicBlock *MBB) const { 8056 MachineFunction &MF = *MBB->getParent(); 8057 MachineRegisterInfo *MRI = &MF.getRegInfo(); 8058 const SystemZInstrInfo *TII = 8059 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 8060 DebugLoc DL = MI.getDebugLoc(); 8061 const unsigned ProbeSize = getStackProbeSize(MF); 8062 Register DstReg = MI.getOperand(0).getReg(); 8063 Register SizeReg = MI.getOperand(2).getReg(); 8064 8065 MachineBasicBlock *StartMBB = MBB; 8066 MachineBasicBlock *DoneMBB = SystemZ::splitBlockAfter(MI, MBB); 8067 MachineBasicBlock *LoopTestMBB = SystemZ::emitBlockAfter(StartMBB); 8068 MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB); 8069 MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB); 8070 MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB); 8071 8072 MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(), 8073 MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1)); 8074 8075 Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8076 Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass); 8077 8078 // LoopTestMBB 8079 // BRC TailTestMBB 8080 // # fallthrough to LoopBodyMBB 8081 StartMBB->addSuccessor(LoopTestMBB); 8082 MBB = LoopTestMBB; 8083 BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg) 8084 .addReg(SizeReg) 8085 .addMBB(StartMBB) 8086 .addReg(IncReg) 8087 .addMBB(LoopBodyMBB); 8088 BuildMI(MBB, DL, TII->get(SystemZ::CLGFI)) 8089 .addReg(PHIReg) 8090 .addImm(ProbeSize); 8091 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8092 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT) 8093 .addMBB(TailTestMBB); 8094 MBB->addSuccessor(LoopBodyMBB); 8095 MBB->addSuccessor(TailTestMBB); 8096 8097 // LoopBodyMBB: Allocate and probe by means of a volatile compare. 8098 // J LoopTestMBB 8099 MBB = LoopBodyMBB; 8100 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg) 8101 .addReg(PHIReg) 8102 .addImm(ProbeSize); 8103 BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D) 8104 .addReg(SystemZ::R15D) 8105 .addImm(ProbeSize); 8106 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8107 .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0) 8108 .setMemRefs(VolLdMMO); 8109 BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB); 8110 MBB->addSuccessor(LoopTestMBB); 8111 8112 // TailTestMBB 8113 // BRC DoneMBB 8114 // # fallthrough to TailMBB 8115 MBB = TailTestMBB; 8116 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 8117 .addReg(PHIReg) 8118 .addImm(0); 8119 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 8120 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ) 8121 .addMBB(DoneMBB); 8122 MBB->addSuccessor(TailMBB); 8123 MBB->addSuccessor(DoneMBB); 8124 8125 // TailMBB 8126 // # fallthrough to DoneMBB 8127 MBB = TailMBB; 8128 BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D) 8129 .addReg(SystemZ::R15D) 8130 .addReg(PHIReg); 8131 BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D) 8132 .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg) 8133 .setMemRefs(VolLdMMO); 8134 MBB->addSuccessor(DoneMBB); 8135 8136 // DoneMBB 8137 MBB = DoneMBB; 8138 BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg) 8139 .addReg(SystemZ::R15D); 8140 8141 MI.eraseFromParent(); 8142 return DoneMBB; 8143 } 8144 8145 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 8146 MachineInstr &MI, MachineBasicBlock *MBB) const { 8147 switch (MI.getOpcode()) { 8148 case SystemZ::Select32: 8149 case SystemZ::Select64: 8150 case SystemZ::SelectF32: 8151 case SystemZ::SelectF64: 8152 case SystemZ::SelectF128: 8153 case SystemZ::SelectVR32: 8154 case SystemZ::SelectVR64: 8155 case SystemZ::SelectVR128: 8156 return emitSelect(MI, MBB); 8157 8158 case SystemZ::CondStore8Mux: 8159 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 8160 case SystemZ::CondStore8MuxInv: 8161 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 8162 case SystemZ::CondStore16Mux: 8163 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 8164 case SystemZ::CondStore16MuxInv: 8165 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 8166 case SystemZ::CondStore32Mux: 8167 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 8168 case SystemZ::CondStore32MuxInv: 8169 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 8170 case SystemZ::CondStore8: 8171 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 8172 case SystemZ::CondStore8Inv: 8173 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 8174 case SystemZ::CondStore16: 8175 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 8176 case SystemZ::CondStore16Inv: 8177 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 8178 case SystemZ::CondStore32: 8179 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 8180 case SystemZ::CondStore32Inv: 8181 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 8182 case SystemZ::CondStore64: 8183 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 8184 case SystemZ::CondStore64Inv: 8185 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 8186 case SystemZ::CondStoreF32: 8187 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 8188 case SystemZ::CondStoreF32Inv: 8189 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 8190 case SystemZ::CondStoreF64: 8191 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 8192 case SystemZ::CondStoreF64Inv: 8193 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 8194 8195 case SystemZ::PAIR128: 8196 return emitPair128(MI, MBB); 8197 case SystemZ::AEXT128: 8198 return emitExt128(MI, MBB, false); 8199 case SystemZ::ZEXT128: 8200 return emitExt128(MI, MBB, true); 8201 8202 case SystemZ::ATOMIC_SWAPW: 8203 return emitAtomicLoadBinary(MI, MBB, 0, 0); 8204 case SystemZ::ATOMIC_SWAP_32: 8205 return emitAtomicLoadBinary(MI, MBB, 0, 32); 8206 case SystemZ::ATOMIC_SWAP_64: 8207 return emitAtomicLoadBinary(MI, MBB, 0, 64); 8208 8209 case SystemZ::ATOMIC_LOADW_AR: 8210 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 8211 case SystemZ::ATOMIC_LOADW_AFI: 8212 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 8213 case SystemZ::ATOMIC_LOAD_AR: 8214 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 8215 case SystemZ::ATOMIC_LOAD_AHI: 8216 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 8217 case SystemZ::ATOMIC_LOAD_AFI: 8218 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 8219 case SystemZ::ATOMIC_LOAD_AGR: 8220 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 8221 case SystemZ::ATOMIC_LOAD_AGHI: 8222 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 8223 case SystemZ::ATOMIC_LOAD_AGFI: 8224 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 8225 8226 case SystemZ::ATOMIC_LOADW_SR: 8227 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 8228 case SystemZ::ATOMIC_LOAD_SR: 8229 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 8230 case SystemZ::ATOMIC_LOAD_SGR: 8231 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 8232 8233 case SystemZ::ATOMIC_LOADW_NR: 8234 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 8235 case SystemZ::ATOMIC_LOADW_NILH: 8236 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 8237 case SystemZ::ATOMIC_LOAD_NR: 8238 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 8239 case SystemZ::ATOMIC_LOAD_NILL: 8240 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 8241 case SystemZ::ATOMIC_LOAD_NILH: 8242 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 8243 case SystemZ::ATOMIC_LOAD_NILF: 8244 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 8245 case SystemZ::ATOMIC_LOAD_NGR: 8246 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 8247 case SystemZ::ATOMIC_LOAD_NILL64: 8248 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 8249 case SystemZ::ATOMIC_LOAD_NILH64: 8250 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 8251 case SystemZ::ATOMIC_LOAD_NIHL64: 8252 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 8253 case SystemZ::ATOMIC_LOAD_NIHH64: 8254 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 8255 case SystemZ::ATOMIC_LOAD_NILF64: 8256 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 8257 case SystemZ::ATOMIC_LOAD_NIHF64: 8258 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 8259 8260 case SystemZ::ATOMIC_LOADW_OR: 8261 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 8262 case SystemZ::ATOMIC_LOADW_OILH: 8263 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 8264 case SystemZ::ATOMIC_LOAD_OR: 8265 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 8266 case SystemZ::ATOMIC_LOAD_OILL: 8267 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 8268 case SystemZ::ATOMIC_LOAD_OILH: 8269 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 8270 case SystemZ::ATOMIC_LOAD_OILF: 8271 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 8272 case SystemZ::ATOMIC_LOAD_OGR: 8273 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 8274 case SystemZ::ATOMIC_LOAD_OILL64: 8275 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 8276 case SystemZ::ATOMIC_LOAD_OILH64: 8277 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 8278 case SystemZ::ATOMIC_LOAD_OIHL64: 8279 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 8280 case SystemZ::ATOMIC_LOAD_OIHH64: 8281 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 8282 case SystemZ::ATOMIC_LOAD_OILF64: 8283 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 8284 case SystemZ::ATOMIC_LOAD_OIHF64: 8285 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 8286 8287 case SystemZ::ATOMIC_LOADW_XR: 8288 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 8289 case SystemZ::ATOMIC_LOADW_XILF: 8290 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 8291 case SystemZ::ATOMIC_LOAD_XR: 8292 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 8293 case SystemZ::ATOMIC_LOAD_XILF: 8294 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 8295 case SystemZ::ATOMIC_LOAD_XGR: 8296 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 8297 case SystemZ::ATOMIC_LOAD_XILF64: 8298 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 8299 case SystemZ::ATOMIC_LOAD_XIHF64: 8300 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 8301 8302 case SystemZ::ATOMIC_LOADW_NRi: 8303 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 8304 case SystemZ::ATOMIC_LOADW_NILHi: 8305 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 8306 case SystemZ::ATOMIC_LOAD_NRi: 8307 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 8308 case SystemZ::ATOMIC_LOAD_NILLi: 8309 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 8310 case SystemZ::ATOMIC_LOAD_NILHi: 8311 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 8312 case SystemZ::ATOMIC_LOAD_NILFi: 8313 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 8314 case SystemZ::ATOMIC_LOAD_NGRi: 8315 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 8316 case SystemZ::ATOMIC_LOAD_NILL64i: 8317 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 8318 case SystemZ::ATOMIC_LOAD_NILH64i: 8319 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 8320 case SystemZ::ATOMIC_LOAD_NIHL64i: 8321 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 8322 case SystemZ::ATOMIC_LOAD_NIHH64i: 8323 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 8324 case SystemZ::ATOMIC_LOAD_NILF64i: 8325 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 8326 case SystemZ::ATOMIC_LOAD_NIHF64i: 8327 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 8328 8329 case SystemZ::ATOMIC_LOADW_MIN: 8330 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8331 SystemZ::CCMASK_CMP_LE, 0); 8332 case SystemZ::ATOMIC_LOAD_MIN_32: 8333 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8334 SystemZ::CCMASK_CMP_LE, 32); 8335 case SystemZ::ATOMIC_LOAD_MIN_64: 8336 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8337 SystemZ::CCMASK_CMP_LE, 64); 8338 8339 case SystemZ::ATOMIC_LOADW_MAX: 8340 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8341 SystemZ::CCMASK_CMP_GE, 0); 8342 case SystemZ::ATOMIC_LOAD_MAX_32: 8343 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8344 SystemZ::CCMASK_CMP_GE, 32); 8345 case SystemZ::ATOMIC_LOAD_MAX_64: 8346 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8347 SystemZ::CCMASK_CMP_GE, 64); 8348 8349 case SystemZ::ATOMIC_LOADW_UMIN: 8350 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8351 SystemZ::CCMASK_CMP_LE, 0); 8352 case SystemZ::ATOMIC_LOAD_UMIN_32: 8353 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8354 SystemZ::CCMASK_CMP_LE, 32); 8355 case SystemZ::ATOMIC_LOAD_UMIN_64: 8356 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8357 SystemZ::CCMASK_CMP_LE, 64); 8358 8359 case SystemZ::ATOMIC_LOADW_UMAX: 8360 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8361 SystemZ::CCMASK_CMP_GE, 0); 8362 case SystemZ::ATOMIC_LOAD_UMAX_32: 8363 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8364 SystemZ::CCMASK_CMP_GE, 32); 8365 case SystemZ::ATOMIC_LOAD_UMAX_64: 8366 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8367 SystemZ::CCMASK_CMP_GE, 64); 8368 8369 case SystemZ::ATOMIC_CMP_SWAPW: 8370 return emitAtomicCmpSwapW(MI, MBB); 8371 case SystemZ::MVCSequence: 8372 case SystemZ::MVCLoop: 8373 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 8374 case SystemZ::NCSequence: 8375 case SystemZ::NCLoop: 8376 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 8377 case SystemZ::OCSequence: 8378 case SystemZ::OCLoop: 8379 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 8380 case SystemZ::XCSequence: 8381 case SystemZ::XCLoop: 8382 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 8383 case SystemZ::CLCSequence: 8384 case SystemZ::CLCLoop: 8385 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 8386 case SystemZ::CLSTLoop: 8387 return emitStringWrapper(MI, MBB, SystemZ::CLST); 8388 case SystemZ::MVSTLoop: 8389 return emitStringWrapper(MI, MBB, SystemZ::MVST); 8390 case SystemZ::SRSTLoop: 8391 return emitStringWrapper(MI, MBB, SystemZ::SRST); 8392 case SystemZ::TBEGIN: 8393 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 8394 case SystemZ::TBEGIN_nofloat: 8395 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 8396 case SystemZ::TBEGINC: 8397 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 8398 case SystemZ::LTEBRCompare_VecPseudo: 8399 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 8400 case SystemZ::LTDBRCompare_VecPseudo: 8401 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 8402 case SystemZ::LTXBRCompare_VecPseudo: 8403 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 8404 8405 case SystemZ::PROBED_ALLOCA: 8406 return emitProbedAlloca(MI, MBB); 8407 8408 case TargetOpcode::STACKMAP: 8409 case TargetOpcode::PATCHPOINT: 8410 return emitPatchPoint(MI, MBB); 8411 8412 default: 8413 llvm_unreachable("Unexpected instr type to insert"); 8414 } 8415 } 8416 8417 // This is only used by the isel schedulers, and is needed only to prevent 8418 // compiler from crashing when list-ilp is used. 8419 const TargetRegisterClass * 8420 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 8421 if (VT == MVT::Untyped) 8422 return &SystemZ::ADDR128BitRegClass; 8423 return TargetLowering::getRepRegClassFor(VT); 8424 } 8425