1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/Intrinsics.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/Support/CommandLine.h" 25 #include "llvm/Support/KnownBits.h" 26 #include <cctype> 27 28 using namespace llvm; 29 30 #define DEBUG_TYPE "systemz-lower" 31 32 namespace { 33 // Represents information about a comparison. 34 struct Comparison { 35 Comparison(SDValue Op0In, SDValue Op1In) 36 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 37 38 // The operands to the comparison. 39 SDValue Op0, Op1; 40 41 // The opcode that should be used to compare Op0 and Op1. 42 unsigned Opcode; 43 44 // A SystemZICMP value. Only used for integer comparisons. 45 unsigned ICmpType; 46 47 // The mask of CC values that Opcode can produce. 48 unsigned CCValid; 49 50 // The mask of CC values for which the original condition is true. 51 unsigned CCMask; 52 }; 53 } // end anonymous namespace 54 55 // Classify VT as either 32 or 64 bit. 56 static bool is32Bit(EVT VT) { 57 switch (VT.getSimpleVT().SimpleTy) { 58 case MVT::i32: 59 return true; 60 case MVT::i64: 61 return false; 62 default: 63 llvm_unreachable("Unsupported type"); 64 } 65 } 66 67 // Return a version of MachineOperand that can be safely used before the 68 // final use. 69 static MachineOperand earlyUseOperand(MachineOperand Op) { 70 if (Op.isReg()) 71 Op.setIsKill(false); 72 return Op; 73 } 74 75 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 76 const SystemZSubtarget &STI) 77 : TargetLowering(TM), Subtarget(STI) { 78 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 79 80 // Set up the register classes. 81 if (Subtarget.hasHighWord()) 82 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 83 else 84 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 85 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 86 if (Subtarget.hasVector()) { 87 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 88 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 89 } else { 90 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 91 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 92 } 93 if (Subtarget.hasVectorEnhancements1()) 94 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 95 else 96 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 97 98 if (Subtarget.hasVector()) { 99 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 100 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 101 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 102 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 103 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 104 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 105 } 106 107 // Compute derived properties from the register classes 108 computeRegisterProperties(Subtarget.getRegisterInfo()); 109 110 // Set up special registers. 111 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 112 113 // TODO: It may be better to default to latency-oriented scheduling, however 114 // LLVM's current latency-oriented scheduler can't handle physreg definitions 115 // such as SystemZ has with CC, so set this to the register-pressure 116 // scheduler, because it can. 117 setSchedulingPreference(Sched::RegPressure); 118 119 setBooleanContents(ZeroOrOneBooleanContent); 120 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 121 122 // Instructions are strings of 2-byte aligned 2-byte values. 123 setMinFunctionAlignment(Align(2)); 124 // For performance reasons we prefer 16-byte alignment. 125 setPrefFunctionAlignment(Align(16)); 126 127 // Handle operations that are handled in a similar way for all types. 128 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 129 I <= MVT::LAST_FP_VALUETYPE; 130 ++I) { 131 MVT VT = MVT::SimpleValueType(I); 132 if (isTypeLegal(VT)) { 133 // Lower SET_CC into an IPM-based sequence. 134 setOperationAction(ISD::SETCC, VT, Custom); 135 136 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 137 setOperationAction(ISD::SELECT, VT, Expand); 138 139 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 140 setOperationAction(ISD::SELECT_CC, VT, Custom); 141 setOperationAction(ISD::BR_CC, VT, Custom); 142 } 143 } 144 145 // Expand jump table branches as address arithmetic followed by an 146 // indirect jump. 147 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 148 149 // Expand BRCOND into a BR_CC (see above). 150 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 151 152 // Handle integer types. 153 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 154 I <= MVT::LAST_INTEGER_VALUETYPE; 155 ++I) { 156 MVT VT = MVT::SimpleValueType(I); 157 if (isTypeLegal(VT)) { 158 // Expand individual DIV and REMs into DIVREMs. 159 setOperationAction(ISD::SDIV, VT, Expand); 160 setOperationAction(ISD::UDIV, VT, Expand); 161 setOperationAction(ISD::SREM, VT, Expand); 162 setOperationAction(ISD::UREM, VT, Expand); 163 setOperationAction(ISD::SDIVREM, VT, Custom); 164 setOperationAction(ISD::UDIVREM, VT, Custom); 165 166 // Support addition/subtraction with overflow. 167 setOperationAction(ISD::SADDO, VT, Custom); 168 setOperationAction(ISD::SSUBO, VT, Custom); 169 170 // Support addition/subtraction with carry. 171 setOperationAction(ISD::UADDO, VT, Custom); 172 setOperationAction(ISD::USUBO, VT, Custom); 173 174 // Support carry in as value rather than glue. 175 setOperationAction(ISD::ADDCARRY, VT, Custom); 176 setOperationAction(ISD::SUBCARRY, VT, Custom); 177 178 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 179 // stores, putting a serialization instruction after the stores. 180 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 181 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 182 183 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 184 // available, or if the operand is constant. 185 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 186 187 // Use POPCNT on z196 and above. 188 if (Subtarget.hasPopulationCount()) 189 setOperationAction(ISD::CTPOP, VT, Custom); 190 else 191 setOperationAction(ISD::CTPOP, VT, Expand); 192 193 // No special instructions for these. 194 setOperationAction(ISD::CTTZ, VT, Expand); 195 setOperationAction(ISD::ROTR, VT, Expand); 196 197 // Use *MUL_LOHI where possible instead of MULH*. 198 setOperationAction(ISD::MULHS, VT, Expand); 199 setOperationAction(ISD::MULHU, VT, Expand); 200 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 201 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 202 203 // Only z196 and above have native support for conversions to unsigned. 204 // On z10, promoting to i64 doesn't generate an inexact condition for 205 // values that are outside the i32 range but in the i64 range, so use 206 // the default expansion. 207 if (!Subtarget.hasFPExtension()) 208 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 209 210 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 211 // default to Expand, so need to be modified to Legal where appropriate. 212 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 213 if (Subtarget.hasFPExtension()) 214 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 215 } 216 } 217 218 // Type legalization will convert 8- and 16-bit atomic operations into 219 // forms that operate on i32s (but still keeping the original memory VT). 220 // Lower them into full i32 operations. 221 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 222 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 223 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 224 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 225 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 226 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 227 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 228 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 229 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 230 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 231 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 232 233 // Even though i128 is not a legal type, we still need to custom lower 234 // the atomic operations in order to exploit SystemZ instructions. 235 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 236 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 237 238 // We can use the CC result of compare-and-swap to implement 239 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 240 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 242 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 243 244 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 245 246 // Traps are legal, as we will convert them to "j .+2". 247 setOperationAction(ISD::TRAP, MVT::Other, Legal); 248 249 // z10 has instructions for signed but not unsigned FP conversion. 250 // Handle unsigned 32-bit types as signed 64-bit types. 251 if (!Subtarget.hasFPExtension()) { 252 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 253 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 254 } 255 256 // We have native support for a 64-bit CTLZ, via FLOGR. 257 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 258 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 259 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 260 261 // On z15 we have native support for a 64-bit CTPOP. 262 if (Subtarget.hasMiscellaneousExtensions3()) { 263 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 264 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 265 } 266 267 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 268 setOperationAction(ISD::OR, MVT::i64, Custom); 269 270 // FIXME: Can we support these natively? 271 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 272 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 273 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 274 275 // We have native instructions for i8, i16 and i32 extensions, but not i1. 276 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 277 for (MVT VT : MVT::integer_valuetypes()) { 278 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 279 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 280 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 281 } 282 283 // Handle the various types of symbolic address. 284 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 285 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 286 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 287 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 288 setOperationAction(ISD::JumpTable, PtrVT, Custom); 289 290 // We need to handle dynamic allocations specially because of the 291 // 160-byte area at the bottom of the stack. 292 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 293 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 294 295 // Use custom expanders so that we can force the function to use 296 // a frame pointer. 297 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 298 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 299 300 // Handle prefetches with PFD or PFDRL. 301 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 302 303 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 304 // Assume by default that all vector operations need to be expanded. 305 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 306 if (getOperationAction(Opcode, VT) == Legal) 307 setOperationAction(Opcode, VT, Expand); 308 309 // Likewise all truncating stores and extending loads. 310 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 311 setTruncStoreAction(VT, InnerVT, Expand); 312 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 313 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 314 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 315 } 316 317 if (isTypeLegal(VT)) { 318 // These operations are legal for anything that can be stored in a 319 // vector register, even if there is no native support for the format 320 // as such. In particular, we can do these for v4f32 even though there 321 // are no specific instructions for that format. 322 setOperationAction(ISD::LOAD, VT, Legal); 323 setOperationAction(ISD::STORE, VT, Legal); 324 setOperationAction(ISD::VSELECT, VT, Legal); 325 setOperationAction(ISD::BITCAST, VT, Legal); 326 setOperationAction(ISD::UNDEF, VT, Legal); 327 328 // Likewise, except that we need to replace the nodes with something 329 // more specific. 330 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 331 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 332 } 333 } 334 335 // Handle integer vector types. 336 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 337 if (isTypeLegal(VT)) { 338 // These operations have direct equivalents. 339 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 340 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 341 setOperationAction(ISD::ADD, VT, Legal); 342 setOperationAction(ISD::SUB, VT, Legal); 343 if (VT != MVT::v2i64) 344 setOperationAction(ISD::MUL, VT, Legal); 345 setOperationAction(ISD::AND, VT, Legal); 346 setOperationAction(ISD::OR, VT, Legal); 347 setOperationAction(ISD::XOR, VT, Legal); 348 if (Subtarget.hasVectorEnhancements1()) 349 setOperationAction(ISD::CTPOP, VT, Legal); 350 else 351 setOperationAction(ISD::CTPOP, VT, Custom); 352 setOperationAction(ISD::CTTZ, VT, Legal); 353 setOperationAction(ISD::CTLZ, VT, Legal); 354 355 // Convert a GPR scalar to a vector by inserting it into element 0. 356 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 357 358 // Use a series of unpacks for extensions. 359 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 360 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 361 362 // Detect shifts by a scalar amount and convert them into 363 // V*_BY_SCALAR. 364 setOperationAction(ISD::SHL, VT, Custom); 365 setOperationAction(ISD::SRA, VT, Custom); 366 setOperationAction(ISD::SRL, VT, Custom); 367 368 // At present ROTL isn't matched by DAGCombiner. ROTR should be 369 // converted into ROTL. 370 setOperationAction(ISD::ROTL, VT, Expand); 371 setOperationAction(ISD::ROTR, VT, Expand); 372 373 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 374 // and inverting the result as necessary. 375 setOperationAction(ISD::SETCC, VT, Custom); 376 } 377 } 378 379 if (Subtarget.hasVector()) { 380 // There should be no need to check for float types other than v2f64 381 // since <2 x f32> isn't a legal type. 382 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 383 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 384 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 385 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 386 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 387 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 388 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 389 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 390 391 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 392 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 393 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 394 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 395 } 396 397 if (Subtarget.hasVectorEnhancements2()) { 398 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 399 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 400 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 401 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 402 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 403 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 404 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 405 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 406 407 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 408 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 409 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 410 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 411 } 412 413 // Handle floating-point types. 414 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 415 I <= MVT::LAST_FP_VALUETYPE; 416 ++I) { 417 MVT VT = MVT::SimpleValueType(I); 418 if (isTypeLegal(VT)) { 419 // We can use FI for FRINT. 420 setOperationAction(ISD::FRINT, VT, Legal); 421 422 // We can use the extended form of FI for other rounding operations. 423 if (Subtarget.hasFPExtension()) { 424 setOperationAction(ISD::FNEARBYINT, VT, Legal); 425 setOperationAction(ISD::FFLOOR, VT, Legal); 426 setOperationAction(ISD::FCEIL, VT, Legal); 427 setOperationAction(ISD::FTRUNC, VT, Legal); 428 setOperationAction(ISD::FROUND, VT, Legal); 429 } 430 431 // No special instructions for these. 432 setOperationAction(ISD::FSIN, VT, Expand); 433 setOperationAction(ISD::FCOS, VT, Expand); 434 setOperationAction(ISD::FSINCOS, VT, Expand); 435 setOperationAction(ISD::FREM, VT, Expand); 436 setOperationAction(ISD::FPOW, VT, Expand); 437 438 // Handle constrained floating-point operations. 439 setOperationAction(ISD::STRICT_FADD, VT, Legal); 440 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 441 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 442 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 443 setOperationAction(ISD::STRICT_FMA, VT, Legal); 444 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 445 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 446 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 447 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 448 if (Subtarget.hasFPExtension()) { 449 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 450 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 451 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 452 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 453 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 454 } 455 } 456 } 457 458 // Handle floating-point vector types. 459 if (Subtarget.hasVector()) { 460 // Scalar-to-vector conversion is just a subreg. 461 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 462 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 463 464 // Some insertions and extractions can be done directly but others 465 // need to go via integers. 466 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 467 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 468 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 469 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 470 471 // These operations have direct equivalents. 472 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 473 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 474 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 475 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 476 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 477 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 478 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 479 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 480 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 481 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 482 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 483 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 484 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 485 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 486 487 // Handle constrained floating-point operations. 488 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 489 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 490 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 491 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 492 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 493 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 494 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 495 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 496 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 497 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 498 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 499 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 500 } 501 502 // The vector enhancements facility 1 has instructions for these. 503 if (Subtarget.hasVectorEnhancements1()) { 504 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 505 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 506 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 507 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 508 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 509 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 510 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 511 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 512 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 513 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 514 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 515 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 516 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 517 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 518 519 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 520 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 521 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 522 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 523 524 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 525 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 526 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 527 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 528 529 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 530 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 531 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 532 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 533 534 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 535 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 536 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 537 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 538 539 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 540 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 541 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 542 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 543 544 // Handle constrained floating-point operations. 545 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 546 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 547 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 548 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 549 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 550 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 551 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 552 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 553 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 554 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 555 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 556 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 557 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 558 MVT::v4f32, MVT::v2f64 }) { 559 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 560 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 561 } 562 } 563 564 // We have fused multiply-addition for f32 and f64 but not f128. 565 setOperationAction(ISD::FMA, MVT::f32, Legal); 566 setOperationAction(ISD::FMA, MVT::f64, Legal); 567 if (Subtarget.hasVectorEnhancements1()) 568 setOperationAction(ISD::FMA, MVT::f128, Legal); 569 else 570 setOperationAction(ISD::FMA, MVT::f128, Expand); 571 572 // We don't have a copysign instruction on vector registers. 573 if (Subtarget.hasVectorEnhancements1()) 574 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 575 576 // Needed so that we don't try to implement f128 constant loads using 577 // a load-and-extend of a f80 constant (in cases where the constant 578 // would fit in an f80). 579 for (MVT VT : MVT::fp_valuetypes()) 580 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 581 582 // We don't have extending load instruction on vector registers. 583 if (Subtarget.hasVectorEnhancements1()) { 584 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 585 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 586 } 587 588 // Floating-point truncation and stores need to be done separately. 589 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 590 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 591 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 592 593 // We have 64-bit FPR<->GPR moves, but need special handling for 594 // 32-bit forms. 595 if (!Subtarget.hasVector()) { 596 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 597 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 598 } 599 600 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 601 // structure, but VAEND is a no-op. 602 setOperationAction(ISD::VASTART, MVT::Other, Custom); 603 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 604 setOperationAction(ISD::VAEND, MVT::Other, Expand); 605 606 // Codes for which we want to perform some z-specific combinations. 607 setTargetDAGCombine(ISD::ZERO_EXTEND); 608 setTargetDAGCombine(ISD::SIGN_EXTEND); 609 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 610 setTargetDAGCombine(ISD::LOAD); 611 setTargetDAGCombine(ISD::STORE); 612 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 613 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 614 setTargetDAGCombine(ISD::FP_ROUND); 615 setTargetDAGCombine(ISD::FP_EXTEND); 616 setTargetDAGCombine(ISD::BSWAP); 617 setTargetDAGCombine(ISD::SDIV); 618 setTargetDAGCombine(ISD::UDIV); 619 setTargetDAGCombine(ISD::SREM); 620 setTargetDAGCombine(ISD::UREM); 621 622 // Handle intrinsics. 623 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 624 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 625 626 // We want to use MVC in preference to even a single load/store pair. 627 MaxStoresPerMemcpy = 0; 628 MaxStoresPerMemcpyOptSize = 0; 629 630 // The main memset sequence is a byte store followed by an MVC. 631 // Two STC or MV..I stores win over that, but the kind of fused stores 632 // generated by target-independent code don't when the byte value is 633 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 634 // than "STC;MVC". Handle the choice in target-specific code instead. 635 MaxStoresPerMemset = 0; 636 MaxStoresPerMemsetOptSize = 0; 637 638 // Default to having -disable-strictnode-mutation on 639 IsStrictFPEnabled = true; 640 } 641 642 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 643 LLVMContext &, EVT VT) const { 644 if (!VT.isVector()) 645 return MVT::i32; 646 return VT.changeVectorElementTypeToInteger(); 647 } 648 649 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 650 const MachineFunction &MF, EVT VT) const { 651 VT = VT.getScalarType(); 652 653 if (!VT.isSimple()) 654 return false; 655 656 switch (VT.getSimpleVT().SimpleTy) { 657 case MVT::f32: 658 case MVT::f64: 659 return true; 660 case MVT::f128: 661 return Subtarget.hasVectorEnhancements1(); 662 default: 663 break; 664 } 665 666 return false; 667 } 668 669 // Return true if the constant can be generated with a vector instruction, 670 // such as VGM, VGMB or VREPI. 671 bool SystemZVectorConstantInfo::isVectorConstantLegal( 672 const SystemZSubtarget &Subtarget) { 673 const SystemZInstrInfo *TII = 674 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 675 if (!Subtarget.hasVector() || 676 (isFP128 && !Subtarget.hasVectorEnhancements1())) 677 return false; 678 679 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 680 // preferred way of creating all-zero and all-one vectors so give it 681 // priority over other methods below. 682 unsigned Mask = 0; 683 unsigned I = 0; 684 for (; I < SystemZ::VectorBytes; ++I) { 685 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 686 if (Byte == 0xff) 687 Mask |= 1ULL << I; 688 else if (Byte != 0) 689 break; 690 } 691 if (I == SystemZ::VectorBytes) { 692 Opcode = SystemZISD::BYTE_MASK; 693 OpVals.push_back(Mask); 694 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 695 return true; 696 } 697 698 if (SplatBitSize > 64) 699 return false; 700 701 auto tryValue = [&](uint64_t Value) -> bool { 702 // Try VECTOR REPLICATE IMMEDIATE 703 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 704 if (isInt<16>(SignedValue)) { 705 OpVals.push_back(((unsigned) SignedValue)); 706 Opcode = SystemZISD::REPLICATE; 707 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 708 SystemZ::VectorBits / SplatBitSize); 709 return true; 710 } 711 // Try VECTOR GENERATE MASK 712 unsigned Start, End; 713 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 714 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 715 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 716 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 717 OpVals.push_back(Start - (64 - SplatBitSize)); 718 OpVals.push_back(End - (64 - SplatBitSize)); 719 Opcode = SystemZISD::ROTATE_MASK; 720 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 721 SystemZ::VectorBits / SplatBitSize); 722 return true; 723 } 724 return false; 725 }; 726 727 // First try assuming that any undefined bits above the highest set bit 728 // and below the lowest set bit are 1s. This increases the likelihood of 729 // being able to use a sign-extended element value in VECTOR REPLICATE 730 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 731 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 732 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 733 uint64_t Lower = 734 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 735 uint64_t Upper = 736 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 737 if (tryValue(SplatBitsZ | Upper | Lower)) 738 return true; 739 740 // Now try assuming that any undefined bits between the first and 741 // last defined set bits are set. This increases the chances of 742 // using a non-wraparound mask. 743 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 744 return tryValue(SplatBitsZ | Middle); 745 } 746 747 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 748 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 749 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 750 751 // Find the smallest splat. 752 SplatBits = FPImm.bitcastToAPInt(); 753 unsigned Width = SplatBits.getBitWidth(); 754 while (Width > 8) { 755 unsigned HalfSize = Width / 2; 756 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 757 APInt LowValue = SplatBits.trunc(HalfSize); 758 759 // If the two halves do not match, stop here. 760 if (HighValue != LowValue || 8 > HalfSize) 761 break; 762 763 SplatBits = HighValue; 764 Width = HalfSize; 765 } 766 SplatUndef = 0; 767 SplatBitSize = Width; 768 } 769 770 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 771 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 772 bool HasAnyUndefs; 773 774 // Get IntBits by finding the 128 bit splat. 775 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 776 true); 777 778 // Get SplatBits by finding the 8 bit or greater splat. 779 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 780 true); 781 } 782 783 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 784 bool ForCodeSize) const { 785 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 786 if (Imm.isZero() || Imm.isNegZero()) 787 return true; 788 789 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 790 } 791 792 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 793 // We can use CGFI or CLGFI. 794 return isInt<32>(Imm) || isUInt<32>(Imm); 795 } 796 797 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 798 // We can use ALGFI or SLGFI. 799 return isUInt<32>(Imm) || isUInt<32>(-Imm); 800 } 801 802 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 803 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const { 804 // Unaligned accesses should never be slower than the expanded version. 805 // We check specifically for aligned accesses in the few cases where 806 // they are required. 807 if (Fast) 808 *Fast = true; 809 return true; 810 } 811 812 // Information about the addressing mode for a memory access. 813 struct AddressingMode { 814 // True if a long displacement is supported. 815 bool LongDisplacement; 816 817 // True if use of index register is supported. 818 bool IndexReg; 819 820 AddressingMode(bool LongDispl, bool IdxReg) : 821 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 822 }; 823 824 // Return the desired addressing mode for a Load which has only one use (in 825 // the same block) which is a Store. 826 static AddressingMode getLoadStoreAddrMode(bool HasVector, 827 Type *Ty) { 828 // With vector support a Load->Store combination may be combined to either 829 // an MVC or vector operations and it seems to work best to allow the 830 // vector addressing mode. 831 if (HasVector) 832 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 833 834 // Otherwise only the MVC case is special. 835 bool MVC = Ty->isIntegerTy(8); 836 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 837 } 838 839 // Return the addressing mode which seems most desirable given an LLVM 840 // Instruction pointer. 841 static AddressingMode 842 supportedAddressingMode(Instruction *I, bool HasVector) { 843 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 844 switch (II->getIntrinsicID()) { 845 default: break; 846 case Intrinsic::memset: 847 case Intrinsic::memmove: 848 case Intrinsic::memcpy: 849 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 850 } 851 } 852 853 if (isa<LoadInst>(I) && I->hasOneUse()) { 854 auto *SingleUser = cast<Instruction>(*I->user_begin()); 855 if (SingleUser->getParent() == I->getParent()) { 856 if (isa<ICmpInst>(SingleUser)) { 857 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 858 if (C->getBitWidth() <= 64 && 859 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 860 // Comparison of memory with 16 bit signed / unsigned immediate 861 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 862 } else if (isa<StoreInst>(SingleUser)) 863 // Load->Store 864 return getLoadStoreAddrMode(HasVector, I->getType()); 865 } 866 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 867 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 868 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 869 // Load->Store 870 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 871 } 872 873 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 874 875 // * Use LDE instead of LE/LEY for z13 to avoid partial register 876 // dependencies (LDE only supports small offsets). 877 // * Utilize the vector registers to hold floating point 878 // values (vector load / store instructions only support small 879 // offsets). 880 881 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 882 I->getOperand(0)->getType()); 883 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 884 bool IsVectorAccess = MemAccessTy->isVectorTy(); 885 886 // A store of an extracted vector element will be combined into a VSTE type 887 // instruction. 888 if (!IsVectorAccess && isa<StoreInst>(I)) { 889 Value *DataOp = I->getOperand(0); 890 if (isa<ExtractElementInst>(DataOp)) 891 IsVectorAccess = true; 892 } 893 894 // A load which gets inserted into a vector element will be combined into a 895 // VLE type instruction. 896 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 897 User *LoadUser = *I->user_begin(); 898 if (isa<InsertElementInst>(LoadUser)) 899 IsVectorAccess = true; 900 } 901 902 if (IsFPAccess || IsVectorAccess) 903 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 904 } 905 906 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 907 } 908 909 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 910 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 911 // Punt on globals for now, although they can be used in limited 912 // RELATIVE LONG cases. 913 if (AM.BaseGV) 914 return false; 915 916 // Require a 20-bit signed offset. 917 if (!isInt<20>(AM.BaseOffs)) 918 return false; 919 920 AddressingMode SupportedAM(true, true); 921 if (I != nullptr) 922 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 923 924 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 925 return false; 926 927 if (!SupportedAM.IndexReg) 928 // No indexing allowed. 929 return AM.Scale == 0; 930 else 931 // Indexing is OK but no scale factor can be applied. 932 return AM.Scale == 0 || AM.Scale == 1; 933 } 934 935 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 936 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 937 return false; 938 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 939 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 940 return FromBits > ToBits; 941 } 942 943 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 944 if (!FromVT.isInteger() || !ToVT.isInteger()) 945 return false; 946 unsigned FromBits = FromVT.getSizeInBits(); 947 unsigned ToBits = ToVT.getSizeInBits(); 948 return FromBits > ToBits; 949 } 950 951 //===----------------------------------------------------------------------===// 952 // Inline asm support 953 //===----------------------------------------------------------------------===// 954 955 TargetLowering::ConstraintType 956 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 957 if (Constraint.size() == 1) { 958 switch (Constraint[0]) { 959 case 'a': // Address register 960 case 'd': // Data register (equivalent to 'r') 961 case 'f': // Floating-point register 962 case 'h': // High-part register 963 case 'r': // General-purpose register 964 case 'v': // Vector register 965 return C_RegisterClass; 966 967 case 'Q': // Memory with base and unsigned 12-bit displacement 968 case 'R': // Likewise, plus an index 969 case 'S': // Memory with base and signed 20-bit displacement 970 case 'T': // Likewise, plus an index 971 case 'm': // Equivalent to 'T'. 972 return C_Memory; 973 974 case 'I': // Unsigned 8-bit constant 975 case 'J': // Unsigned 12-bit constant 976 case 'K': // Signed 16-bit constant 977 case 'L': // Signed 20-bit displacement (on all targets we support) 978 case 'M': // 0x7fffffff 979 return C_Immediate; 980 981 default: 982 break; 983 } 984 } 985 return TargetLowering::getConstraintType(Constraint); 986 } 987 988 TargetLowering::ConstraintWeight SystemZTargetLowering:: 989 getSingleConstraintMatchWeight(AsmOperandInfo &info, 990 const char *constraint) const { 991 ConstraintWeight weight = CW_Invalid; 992 Value *CallOperandVal = info.CallOperandVal; 993 // If we don't have a value, we can't do a match, 994 // but allow it at the lowest weight. 995 if (!CallOperandVal) 996 return CW_Default; 997 Type *type = CallOperandVal->getType(); 998 // Look at the constraint type. 999 switch (*constraint) { 1000 default: 1001 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1002 break; 1003 1004 case 'a': // Address register 1005 case 'd': // Data register (equivalent to 'r') 1006 case 'h': // High-part register 1007 case 'r': // General-purpose register 1008 if (CallOperandVal->getType()->isIntegerTy()) 1009 weight = CW_Register; 1010 break; 1011 1012 case 'f': // Floating-point register 1013 if (type->isFloatingPointTy()) 1014 weight = CW_Register; 1015 break; 1016 1017 case 'v': // Vector register 1018 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1019 Subtarget.hasVector()) 1020 weight = CW_Register; 1021 break; 1022 1023 case 'I': // Unsigned 8-bit constant 1024 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1025 if (isUInt<8>(C->getZExtValue())) 1026 weight = CW_Constant; 1027 break; 1028 1029 case 'J': // Unsigned 12-bit constant 1030 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1031 if (isUInt<12>(C->getZExtValue())) 1032 weight = CW_Constant; 1033 break; 1034 1035 case 'K': // Signed 16-bit constant 1036 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1037 if (isInt<16>(C->getSExtValue())) 1038 weight = CW_Constant; 1039 break; 1040 1041 case 'L': // Signed 20-bit displacement (on all targets we support) 1042 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1043 if (isInt<20>(C->getSExtValue())) 1044 weight = CW_Constant; 1045 break; 1046 1047 case 'M': // 0x7fffffff 1048 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1049 if (C->getZExtValue() == 0x7fffffff) 1050 weight = CW_Constant; 1051 break; 1052 } 1053 return weight; 1054 } 1055 1056 // Parse a "{tNNN}" register constraint for which the register type "t" 1057 // has already been verified. MC is the class associated with "t" and 1058 // Map maps 0-based register numbers to LLVM register numbers. 1059 static std::pair<unsigned, const TargetRegisterClass *> 1060 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1061 const unsigned *Map, unsigned Size) { 1062 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1063 if (isdigit(Constraint[2])) { 1064 unsigned Index; 1065 bool Failed = 1066 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1067 if (!Failed && Index < Size && Map[Index]) 1068 return std::make_pair(Map[Index], RC); 1069 } 1070 return std::make_pair(0U, nullptr); 1071 } 1072 1073 std::pair<unsigned, const TargetRegisterClass *> 1074 SystemZTargetLowering::getRegForInlineAsmConstraint( 1075 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1076 if (Constraint.size() == 1) { 1077 // GCC Constraint Letters 1078 switch (Constraint[0]) { 1079 default: break; 1080 case 'd': // Data register (equivalent to 'r') 1081 case 'r': // General-purpose register 1082 if (VT == MVT::i64) 1083 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1084 else if (VT == MVT::i128) 1085 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1086 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1087 1088 case 'a': // Address register 1089 if (VT == MVT::i64) 1090 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1091 else if (VT == MVT::i128) 1092 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1093 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1094 1095 case 'h': // High-part register (an LLVM extension) 1096 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1097 1098 case 'f': // Floating-point register 1099 if (VT == MVT::f64) 1100 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1101 else if (VT == MVT::f128) 1102 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1103 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1104 1105 case 'v': // Vector register 1106 if (Subtarget.hasVector()) { 1107 if (VT == MVT::f32) 1108 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1109 if (VT == MVT::f64) 1110 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1111 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1112 } 1113 break; 1114 } 1115 } 1116 if (Constraint.size() > 0 && Constraint[0] == '{') { 1117 // We need to override the default register parsing for GPRs and FPRs 1118 // because the interpretation depends on VT. The internal names of 1119 // the registers are also different from the external names 1120 // (F0D and F0S instead of F0, etc.). 1121 if (Constraint[1] == 'r') { 1122 if (VT == MVT::i32) 1123 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1124 SystemZMC::GR32Regs, 16); 1125 if (VT == MVT::i128) 1126 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1127 SystemZMC::GR128Regs, 16); 1128 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1129 SystemZMC::GR64Regs, 16); 1130 } 1131 if (Constraint[1] == 'f') { 1132 if (VT == MVT::f32) 1133 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1134 SystemZMC::FP32Regs, 16); 1135 if (VT == MVT::f128) 1136 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1137 SystemZMC::FP128Regs, 16); 1138 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1139 SystemZMC::FP64Regs, 16); 1140 } 1141 if (Constraint[1] == 'v') { 1142 if (VT == MVT::f32) 1143 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1144 SystemZMC::VR32Regs, 32); 1145 if (VT == MVT::f64) 1146 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1147 SystemZMC::VR64Regs, 32); 1148 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1149 SystemZMC::VR128Regs, 32); 1150 } 1151 } 1152 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1153 } 1154 1155 void SystemZTargetLowering:: 1156 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1157 std::vector<SDValue> &Ops, 1158 SelectionDAG &DAG) const { 1159 // Only support length 1 constraints for now. 1160 if (Constraint.length() == 1) { 1161 switch (Constraint[0]) { 1162 case 'I': // Unsigned 8-bit constant 1163 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1164 if (isUInt<8>(C->getZExtValue())) 1165 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1166 Op.getValueType())); 1167 return; 1168 1169 case 'J': // Unsigned 12-bit constant 1170 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1171 if (isUInt<12>(C->getZExtValue())) 1172 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1173 Op.getValueType())); 1174 return; 1175 1176 case 'K': // Signed 16-bit constant 1177 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1178 if (isInt<16>(C->getSExtValue())) 1179 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1180 Op.getValueType())); 1181 return; 1182 1183 case 'L': // Signed 20-bit displacement (on all targets we support) 1184 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1185 if (isInt<20>(C->getSExtValue())) 1186 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1187 Op.getValueType())); 1188 return; 1189 1190 case 'M': // 0x7fffffff 1191 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1192 if (C->getZExtValue() == 0x7fffffff) 1193 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1194 Op.getValueType())); 1195 return; 1196 } 1197 } 1198 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1199 } 1200 1201 //===----------------------------------------------------------------------===// 1202 // Calling conventions 1203 //===----------------------------------------------------------------------===// 1204 1205 #include "SystemZGenCallingConv.inc" 1206 1207 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1208 CallingConv::ID) const { 1209 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1210 SystemZ::R14D, 0 }; 1211 return ScratchRegs; 1212 } 1213 1214 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1215 Type *ToType) const { 1216 return isTruncateFree(FromType, ToType); 1217 } 1218 1219 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1220 return CI->isTailCall(); 1221 } 1222 1223 // We do not yet support 128-bit single-element vector types. If the user 1224 // attempts to use such types as function argument or return type, prefer 1225 // to error out instead of emitting code violating the ABI. 1226 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1227 if (ArgVT.isVector() && !VT.isVector()) 1228 report_fatal_error("Unsupported vector argument or return type"); 1229 } 1230 1231 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1232 for (unsigned i = 0; i < Ins.size(); ++i) 1233 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1234 } 1235 1236 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1237 for (unsigned i = 0; i < Outs.size(); ++i) 1238 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1239 } 1240 1241 // Value is a value that has been passed to us in the location described by VA 1242 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1243 // any loads onto Chain. 1244 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1245 CCValAssign &VA, SDValue Chain, 1246 SDValue Value) { 1247 // If the argument has been promoted from a smaller type, insert an 1248 // assertion to capture this. 1249 if (VA.getLocInfo() == CCValAssign::SExt) 1250 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1251 DAG.getValueType(VA.getValVT())); 1252 else if (VA.getLocInfo() == CCValAssign::ZExt) 1253 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1254 DAG.getValueType(VA.getValVT())); 1255 1256 if (VA.isExtInLoc()) 1257 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1258 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1259 // If this is a short vector argument loaded from the stack, 1260 // extend from i64 to full vector size and then bitcast. 1261 assert(VA.getLocVT() == MVT::i64); 1262 assert(VA.getValVT().isVector()); 1263 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1264 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1265 } else 1266 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1267 return Value; 1268 } 1269 1270 // Value is a value of type VA.getValVT() that we need to copy into 1271 // the location described by VA. Return a copy of Value converted to 1272 // VA.getValVT(). The caller is responsible for handling indirect values. 1273 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1274 CCValAssign &VA, SDValue Value) { 1275 switch (VA.getLocInfo()) { 1276 case CCValAssign::SExt: 1277 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1278 case CCValAssign::ZExt: 1279 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1280 case CCValAssign::AExt: 1281 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1282 case CCValAssign::BCvt: 1283 // If this is a short vector argument to be stored to the stack, 1284 // bitcast to v2i64 and then extract first element. 1285 assert(VA.getLocVT() == MVT::i64); 1286 assert(VA.getValVT().isVector()); 1287 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1288 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1289 DAG.getConstant(0, DL, MVT::i32)); 1290 case CCValAssign::Full: 1291 return Value; 1292 default: 1293 llvm_unreachable("Unhandled getLocInfo()"); 1294 } 1295 } 1296 1297 SDValue SystemZTargetLowering::LowerFormalArguments( 1298 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1299 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1300 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1301 MachineFunction &MF = DAG.getMachineFunction(); 1302 MachineFrameInfo &MFI = MF.getFrameInfo(); 1303 MachineRegisterInfo &MRI = MF.getRegInfo(); 1304 SystemZMachineFunctionInfo *FuncInfo = 1305 MF.getInfo<SystemZMachineFunctionInfo>(); 1306 auto *TFL = 1307 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1308 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1309 1310 // Detect unsupported vector argument types. 1311 if (Subtarget.hasVector()) 1312 VerifyVectorTypes(Ins); 1313 1314 // Assign locations to all of the incoming arguments. 1315 SmallVector<CCValAssign, 16> ArgLocs; 1316 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1317 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1318 1319 unsigned NumFixedGPRs = 0; 1320 unsigned NumFixedFPRs = 0; 1321 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1322 SDValue ArgValue; 1323 CCValAssign &VA = ArgLocs[I]; 1324 EVT LocVT = VA.getLocVT(); 1325 if (VA.isRegLoc()) { 1326 // Arguments passed in registers 1327 const TargetRegisterClass *RC; 1328 switch (LocVT.getSimpleVT().SimpleTy) { 1329 default: 1330 // Integers smaller than i64 should be promoted to i64. 1331 llvm_unreachable("Unexpected argument type"); 1332 case MVT::i32: 1333 NumFixedGPRs += 1; 1334 RC = &SystemZ::GR32BitRegClass; 1335 break; 1336 case MVT::i64: 1337 NumFixedGPRs += 1; 1338 RC = &SystemZ::GR64BitRegClass; 1339 break; 1340 case MVT::f32: 1341 NumFixedFPRs += 1; 1342 RC = &SystemZ::FP32BitRegClass; 1343 break; 1344 case MVT::f64: 1345 NumFixedFPRs += 1; 1346 RC = &SystemZ::FP64BitRegClass; 1347 break; 1348 case MVT::v16i8: 1349 case MVT::v8i16: 1350 case MVT::v4i32: 1351 case MVT::v2i64: 1352 case MVT::v4f32: 1353 case MVT::v2f64: 1354 RC = &SystemZ::VR128BitRegClass; 1355 break; 1356 } 1357 1358 Register VReg = MRI.createVirtualRegister(RC); 1359 MRI.addLiveIn(VA.getLocReg(), VReg); 1360 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1361 } else { 1362 assert(VA.isMemLoc() && "Argument not register or memory"); 1363 1364 // Create the frame index object for this incoming parameter. 1365 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1366 VA.getLocMemOffset(), true); 1367 1368 // Create the SelectionDAG nodes corresponding to a load 1369 // from this parameter. Unpromoted ints and floats are 1370 // passed as right-justified 8-byte values. 1371 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1372 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1373 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1374 DAG.getIntPtrConstant(4, DL)); 1375 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1376 MachinePointerInfo::getFixedStack(MF, FI)); 1377 } 1378 1379 // Convert the value of the argument register into the value that's 1380 // being passed. 1381 if (VA.getLocInfo() == CCValAssign::Indirect) { 1382 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1383 MachinePointerInfo())); 1384 // If the original argument was split (e.g. i128), we need 1385 // to load all parts of it here (using the same address). 1386 unsigned ArgIndex = Ins[I].OrigArgIndex; 1387 assert (Ins[I].PartOffset == 0); 1388 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1389 CCValAssign &PartVA = ArgLocs[I + 1]; 1390 unsigned PartOffset = Ins[I + 1].PartOffset; 1391 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1392 DAG.getIntPtrConstant(PartOffset, DL)); 1393 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1394 MachinePointerInfo())); 1395 ++I; 1396 } 1397 } else 1398 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1399 } 1400 1401 if (IsVarArg) { 1402 // Save the number of non-varargs registers for later use by va_start, etc. 1403 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1404 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1405 1406 // Likewise the address (in the form of a frame index) of where the 1407 // first stack vararg would be. The 1-byte size here is arbitrary. 1408 int64_t StackSize = CCInfo.getNextStackOffset(); 1409 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1410 1411 // ...and a similar frame index for the caller-allocated save area 1412 // that will be used to store the incoming registers. 1413 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1414 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1415 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1416 1417 // Store the FPR varargs in the reserved frame slots. (We store the 1418 // GPRs as part of the prologue.) 1419 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1420 SDValue MemOps[SystemZ::NumArgFPRs]; 1421 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1422 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1423 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1424 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1425 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1426 &SystemZ::FP64BitRegClass); 1427 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1428 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1429 MachinePointerInfo::getFixedStack(MF, FI)); 1430 } 1431 // Join the stores, which are independent of one another. 1432 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1433 makeArrayRef(&MemOps[NumFixedFPRs], 1434 SystemZ::NumArgFPRs-NumFixedFPRs)); 1435 } 1436 } 1437 1438 return Chain; 1439 } 1440 1441 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1442 SmallVectorImpl<CCValAssign> &ArgLocs, 1443 SmallVectorImpl<ISD::OutputArg> &Outs) { 1444 // Punt if there are any indirect or stack arguments, or if the call 1445 // needs the callee-saved argument register R6, or if the call uses 1446 // the callee-saved register arguments SwiftSelf and SwiftError. 1447 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1448 CCValAssign &VA = ArgLocs[I]; 1449 if (VA.getLocInfo() == CCValAssign::Indirect) 1450 return false; 1451 if (!VA.isRegLoc()) 1452 return false; 1453 Register Reg = VA.getLocReg(); 1454 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1455 return false; 1456 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1457 return false; 1458 } 1459 return true; 1460 } 1461 1462 SDValue 1463 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1464 SmallVectorImpl<SDValue> &InVals) const { 1465 SelectionDAG &DAG = CLI.DAG; 1466 SDLoc &DL = CLI.DL; 1467 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1468 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1469 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1470 SDValue Chain = CLI.Chain; 1471 SDValue Callee = CLI.Callee; 1472 bool &IsTailCall = CLI.IsTailCall; 1473 CallingConv::ID CallConv = CLI.CallConv; 1474 bool IsVarArg = CLI.IsVarArg; 1475 MachineFunction &MF = DAG.getMachineFunction(); 1476 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1477 1478 // Detect unsupported vector argument and return types. 1479 if (Subtarget.hasVector()) { 1480 VerifyVectorTypes(Outs); 1481 VerifyVectorTypes(Ins); 1482 } 1483 1484 // Analyze the operands of the call, assigning locations to each operand. 1485 SmallVector<CCValAssign, 16> ArgLocs; 1486 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1487 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1488 1489 // We don't support GuaranteedTailCallOpt, only automatically-detected 1490 // sibling calls. 1491 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1492 IsTailCall = false; 1493 1494 // Get a count of how many bytes are to be pushed on the stack. 1495 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1496 1497 // Mark the start of the call. 1498 if (!IsTailCall) 1499 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1500 1501 // Copy argument values to their designated locations. 1502 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1503 SmallVector<SDValue, 8> MemOpChains; 1504 SDValue StackPtr; 1505 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1506 CCValAssign &VA = ArgLocs[I]; 1507 SDValue ArgValue = OutVals[I]; 1508 1509 if (VA.getLocInfo() == CCValAssign::Indirect) { 1510 // Store the argument in a stack slot and pass its address. 1511 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1512 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1513 MemOpChains.push_back( 1514 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1515 MachinePointerInfo::getFixedStack(MF, FI))); 1516 // If the original argument was split (e.g. i128), we need 1517 // to store all parts of it here (and pass just one address). 1518 unsigned ArgIndex = Outs[I].OrigArgIndex; 1519 assert (Outs[I].PartOffset == 0); 1520 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1521 SDValue PartValue = OutVals[I + 1]; 1522 unsigned PartOffset = Outs[I + 1].PartOffset; 1523 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1524 DAG.getIntPtrConstant(PartOffset, DL)); 1525 MemOpChains.push_back( 1526 DAG.getStore(Chain, DL, PartValue, Address, 1527 MachinePointerInfo::getFixedStack(MF, FI))); 1528 ++I; 1529 } 1530 ArgValue = SpillSlot; 1531 } else 1532 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1533 1534 if (VA.isRegLoc()) 1535 // Queue up the argument copies and emit them at the end. 1536 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1537 else { 1538 assert(VA.isMemLoc() && "Argument not register or memory"); 1539 1540 // Work out the address of the stack slot. Unpromoted ints and 1541 // floats are passed as right-justified 8-byte values. 1542 if (!StackPtr.getNode()) 1543 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1544 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1545 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1546 Offset += 4; 1547 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1548 DAG.getIntPtrConstant(Offset, DL)); 1549 1550 // Emit the store. 1551 MemOpChains.push_back( 1552 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1553 } 1554 } 1555 1556 // Join the stores, which are independent of one another. 1557 if (!MemOpChains.empty()) 1558 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1559 1560 // Accept direct calls by converting symbolic call addresses to the 1561 // associated Target* opcodes. Force %r1 to be used for indirect 1562 // tail calls. 1563 SDValue Glue; 1564 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1565 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1566 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1567 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1568 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1569 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1570 } else if (IsTailCall) { 1571 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1572 Glue = Chain.getValue(1); 1573 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1574 } 1575 1576 // Build a sequence of copy-to-reg nodes, chained and glued together. 1577 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1578 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1579 RegsToPass[I].second, Glue); 1580 Glue = Chain.getValue(1); 1581 } 1582 1583 // The first call operand is the chain and the second is the target address. 1584 SmallVector<SDValue, 8> Ops; 1585 Ops.push_back(Chain); 1586 Ops.push_back(Callee); 1587 1588 // Add argument registers to the end of the list so that they are 1589 // known live into the call. 1590 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1591 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1592 RegsToPass[I].second.getValueType())); 1593 1594 // Add a register mask operand representing the call-preserved registers. 1595 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1596 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1597 assert(Mask && "Missing call preserved mask for calling convention"); 1598 Ops.push_back(DAG.getRegisterMask(Mask)); 1599 1600 // Glue the call to the argument copies, if any. 1601 if (Glue.getNode()) 1602 Ops.push_back(Glue); 1603 1604 // Emit the call. 1605 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1606 if (IsTailCall) 1607 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1608 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1609 Glue = Chain.getValue(1); 1610 1611 // Mark the end of the call, which is glued to the call itself. 1612 Chain = DAG.getCALLSEQ_END(Chain, 1613 DAG.getConstant(NumBytes, DL, PtrVT, true), 1614 DAG.getConstant(0, DL, PtrVT, true), 1615 Glue, DL); 1616 Glue = Chain.getValue(1); 1617 1618 // Assign locations to each value returned by this call. 1619 SmallVector<CCValAssign, 16> RetLocs; 1620 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1621 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1622 1623 // Copy all of the result registers out of their specified physreg. 1624 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1625 CCValAssign &VA = RetLocs[I]; 1626 1627 // Copy the value out, gluing the copy to the end of the call sequence. 1628 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1629 VA.getLocVT(), Glue); 1630 Chain = RetValue.getValue(1); 1631 Glue = RetValue.getValue(2); 1632 1633 // Convert the value of the return register into the value that's 1634 // being returned. 1635 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1636 } 1637 1638 return Chain; 1639 } 1640 1641 bool SystemZTargetLowering:: 1642 CanLowerReturn(CallingConv::ID CallConv, 1643 MachineFunction &MF, bool isVarArg, 1644 const SmallVectorImpl<ISD::OutputArg> &Outs, 1645 LLVMContext &Context) const { 1646 // Detect unsupported vector return types. 1647 if (Subtarget.hasVector()) 1648 VerifyVectorTypes(Outs); 1649 1650 // Special case that we cannot easily detect in RetCC_SystemZ since 1651 // i128 is not a legal type. 1652 for (auto &Out : Outs) 1653 if (Out.ArgVT == MVT::i128) 1654 return false; 1655 1656 SmallVector<CCValAssign, 16> RetLocs; 1657 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1658 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1659 } 1660 1661 SDValue 1662 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1663 bool IsVarArg, 1664 const SmallVectorImpl<ISD::OutputArg> &Outs, 1665 const SmallVectorImpl<SDValue> &OutVals, 1666 const SDLoc &DL, SelectionDAG &DAG) const { 1667 MachineFunction &MF = DAG.getMachineFunction(); 1668 1669 // Detect unsupported vector return types. 1670 if (Subtarget.hasVector()) 1671 VerifyVectorTypes(Outs); 1672 1673 // Assign locations to each returned value. 1674 SmallVector<CCValAssign, 16> RetLocs; 1675 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1676 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1677 1678 // Quick exit for void returns 1679 if (RetLocs.empty()) 1680 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1681 1682 if (CallConv == CallingConv::GHC) 1683 report_fatal_error("GHC functions return void only"); 1684 1685 // Copy the result values into the output registers. 1686 SDValue Glue; 1687 SmallVector<SDValue, 4> RetOps; 1688 RetOps.push_back(Chain); 1689 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1690 CCValAssign &VA = RetLocs[I]; 1691 SDValue RetValue = OutVals[I]; 1692 1693 // Make the return register live on exit. 1694 assert(VA.isRegLoc() && "Can only return in registers!"); 1695 1696 // Promote the value as required. 1697 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1698 1699 // Chain and glue the copies together. 1700 Register Reg = VA.getLocReg(); 1701 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1702 Glue = Chain.getValue(1); 1703 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1704 } 1705 1706 // Update chain and glue. 1707 RetOps[0] = Chain; 1708 if (Glue.getNode()) 1709 RetOps.push_back(Glue); 1710 1711 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1712 } 1713 1714 // Return true if Op is an intrinsic node with chain that returns the CC value 1715 // as its only (other) argument. Provide the associated SystemZISD opcode and 1716 // the mask of valid CC values if so. 1717 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1718 unsigned &CCValid) { 1719 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1720 switch (Id) { 1721 case Intrinsic::s390_tbegin: 1722 Opcode = SystemZISD::TBEGIN; 1723 CCValid = SystemZ::CCMASK_TBEGIN; 1724 return true; 1725 1726 case Intrinsic::s390_tbegin_nofloat: 1727 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1728 CCValid = SystemZ::CCMASK_TBEGIN; 1729 return true; 1730 1731 case Intrinsic::s390_tend: 1732 Opcode = SystemZISD::TEND; 1733 CCValid = SystemZ::CCMASK_TEND; 1734 return true; 1735 1736 default: 1737 return false; 1738 } 1739 } 1740 1741 // Return true if Op is an intrinsic node without chain that returns the 1742 // CC value as its final argument. Provide the associated SystemZISD 1743 // opcode and the mask of valid CC values if so. 1744 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1745 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1746 switch (Id) { 1747 case Intrinsic::s390_vpkshs: 1748 case Intrinsic::s390_vpksfs: 1749 case Intrinsic::s390_vpksgs: 1750 Opcode = SystemZISD::PACKS_CC; 1751 CCValid = SystemZ::CCMASK_VCMP; 1752 return true; 1753 1754 case Intrinsic::s390_vpklshs: 1755 case Intrinsic::s390_vpklsfs: 1756 case Intrinsic::s390_vpklsgs: 1757 Opcode = SystemZISD::PACKLS_CC; 1758 CCValid = SystemZ::CCMASK_VCMP; 1759 return true; 1760 1761 case Intrinsic::s390_vceqbs: 1762 case Intrinsic::s390_vceqhs: 1763 case Intrinsic::s390_vceqfs: 1764 case Intrinsic::s390_vceqgs: 1765 Opcode = SystemZISD::VICMPES; 1766 CCValid = SystemZ::CCMASK_VCMP; 1767 return true; 1768 1769 case Intrinsic::s390_vchbs: 1770 case Intrinsic::s390_vchhs: 1771 case Intrinsic::s390_vchfs: 1772 case Intrinsic::s390_vchgs: 1773 Opcode = SystemZISD::VICMPHS; 1774 CCValid = SystemZ::CCMASK_VCMP; 1775 return true; 1776 1777 case Intrinsic::s390_vchlbs: 1778 case Intrinsic::s390_vchlhs: 1779 case Intrinsic::s390_vchlfs: 1780 case Intrinsic::s390_vchlgs: 1781 Opcode = SystemZISD::VICMPHLS; 1782 CCValid = SystemZ::CCMASK_VCMP; 1783 return true; 1784 1785 case Intrinsic::s390_vtm: 1786 Opcode = SystemZISD::VTM; 1787 CCValid = SystemZ::CCMASK_VCMP; 1788 return true; 1789 1790 case Intrinsic::s390_vfaebs: 1791 case Intrinsic::s390_vfaehs: 1792 case Intrinsic::s390_vfaefs: 1793 Opcode = SystemZISD::VFAE_CC; 1794 CCValid = SystemZ::CCMASK_ANY; 1795 return true; 1796 1797 case Intrinsic::s390_vfaezbs: 1798 case Intrinsic::s390_vfaezhs: 1799 case Intrinsic::s390_vfaezfs: 1800 Opcode = SystemZISD::VFAEZ_CC; 1801 CCValid = SystemZ::CCMASK_ANY; 1802 return true; 1803 1804 case Intrinsic::s390_vfeebs: 1805 case Intrinsic::s390_vfeehs: 1806 case Intrinsic::s390_vfeefs: 1807 Opcode = SystemZISD::VFEE_CC; 1808 CCValid = SystemZ::CCMASK_ANY; 1809 return true; 1810 1811 case Intrinsic::s390_vfeezbs: 1812 case Intrinsic::s390_vfeezhs: 1813 case Intrinsic::s390_vfeezfs: 1814 Opcode = SystemZISD::VFEEZ_CC; 1815 CCValid = SystemZ::CCMASK_ANY; 1816 return true; 1817 1818 case Intrinsic::s390_vfenebs: 1819 case Intrinsic::s390_vfenehs: 1820 case Intrinsic::s390_vfenefs: 1821 Opcode = SystemZISD::VFENE_CC; 1822 CCValid = SystemZ::CCMASK_ANY; 1823 return true; 1824 1825 case Intrinsic::s390_vfenezbs: 1826 case Intrinsic::s390_vfenezhs: 1827 case Intrinsic::s390_vfenezfs: 1828 Opcode = SystemZISD::VFENEZ_CC; 1829 CCValid = SystemZ::CCMASK_ANY; 1830 return true; 1831 1832 case Intrinsic::s390_vistrbs: 1833 case Intrinsic::s390_vistrhs: 1834 case Intrinsic::s390_vistrfs: 1835 Opcode = SystemZISD::VISTR_CC; 1836 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1837 return true; 1838 1839 case Intrinsic::s390_vstrcbs: 1840 case Intrinsic::s390_vstrchs: 1841 case Intrinsic::s390_vstrcfs: 1842 Opcode = SystemZISD::VSTRC_CC; 1843 CCValid = SystemZ::CCMASK_ANY; 1844 return true; 1845 1846 case Intrinsic::s390_vstrczbs: 1847 case Intrinsic::s390_vstrczhs: 1848 case Intrinsic::s390_vstrczfs: 1849 Opcode = SystemZISD::VSTRCZ_CC; 1850 CCValid = SystemZ::CCMASK_ANY; 1851 return true; 1852 1853 case Intrinsic::s390_vstrsb: 1854 case Intrinsic::s390_vstrsh: 1855 case Intrinsic::s390_vstrsf: 1856 Opcode = SystemZISD::VSTRS_CC; 1857 CCValid = SystemZ::CCMASK_ANY; 1858 return true; 1859 1860 case Intrinsic::s390_vstrszb: 1861 case Intrinsic::s390_vstrszh: 1862 case Intrinsic::s390_vstrszf: 1863 Opcode = SystemZISD::VSTRSZ_CC; 1864 CCValid = SystemZ::CCMASK_ANY; 1865 return true; 1866 1867 case Intrinsic::s390_vfcedbs: 1868 case Intrinsic::s390_vfcesbs: 1869 Opcode = SystemZISD::VFCMPES; 1870 CCValid = SystemZ::CCMASK_VCMP; 1871 return true; 1872 1873 case Intrinsic::s390_vfchdbs: 1874 case Intrinsic::s390_vfchsbs: 1875 Opcode = SystemZISD::VFCMPHS; 1876 CCValid = SystemZ::CCMASK_VCMP; 1877 return true; 1878 1879 case Intrinsic::s390_vfchedbs: 1880 case Intrinsic::s390_vfchesbs: 1881 Opcode = SystemZISD::VFCMPHES; 1882 CCValid = SystemZ::CCMASK_VCMP; 1883 return true; 1884 1885 case Intrinsic::s390_vftcidb: 1886 case Intrinsic::s390_vftcisb: 1887 Opcode = SystemZISD::VFTCI; 1888 CCValid = SystemZ::CCMASK_VCMP; 1889 return true; 1890 1891 case Intrinsic::s390_tdc: 1892 Opcode = SystemZISD::TDC; 1893 CCValid = SystemZ::CCMASK_TDC; 1894 return true; 1895 1896 default: 1897 return false; 1898 } 1899 } 1900 1901 // Emit an intrinsic with chain and an explicit CC register result. 1902 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1903 unsigned Opcode) { 1904 // Copy all operands except the intrinsic ID. 1905 unsigned NumOps = Op.getNumOperands(); 1906 SmallVector<SDValue, 6> Ops; 1907 Ops.reserve(NumOps - 1); 1908 Ops.push_back(Op.getOperand(0)); 1909 for (unsigned I = 2; I < NumOps; ++I) 1910 Ops.push_back(Op.getOperand(I)); 1911 1912 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1913 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1914 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1915 SDValue OldChain = SDValue(Op.getNode(), 1); 1916 SDValue NewChain = SDValue(Intr.getNode(), 1); 1917 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1918 return Intr.getNode(); 1919 } 1920 1921 // Emit an intrinsic with an explicit CC register result. 1922 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1923 unsigned Opcode) { 1924 // Copy all operands except the intrinsic ID. 1925 unsigned NumOps = Op.getNumOperands(); 1926 SmallVector<SDValue, 6> Ops; 1927 Ops.reserve(NumOps - 1); 1928 for (unsigned I = 1; I < NumOps; ++I) 1929 Ops.push_back(Op.getOperand(I)); 1930 1931 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1932 return Intr.getNode(); 1933 } 1934 1935 // CC is a comparison that will be implemented using an integer or 1936 // floating-point comparison. Return the condition code mask for 1937 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1938 // unsigned comparisons and clear for signed ones. In the floating-point 1939 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1940 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1941 #define CONV(X) \ 1942 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1943 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1944 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1945 1946 switch (CC) { 1947 default: 1948 llvm_unreachable("Invalid integer condition!"); 1949 1950 CONV(EQ); 1951 CONV(NE); 1952 CONV(GT); 1953 CONV(GE); 1954 CONV(LT); 1955 CONV(LE); 1956 1957 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1958 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1959 } 1960 #undef CONV 1961 } 1962 1963 // If C can be converted to a comparison against zero, adjust the operands 1964 // as necessary. 1965 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1966 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1967 return; 1968 1969 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1970 if (!ConstOp1) 1971 return; 1972 1973 int64_t Value = ConstOp1->getSExtValue(); 1974 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1975 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1976 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1977 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1978 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1979 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1980 } 1981 } 1982 1983 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1984 // adjust the operands as necessary. 1985 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1986 Comparison &C) { 1987 // For us to make any changes, it must a comparison between a single-use 1988 // load and a constant. 1989 if (!C.Op0.hasOneUse() || 1990 C.Op0.getOpcode() != ISD::LOAD || 1991 C.Op1.getOpcode() != ISD::Constant) 1992 return; 1993 1994 // We must have an 8- or 16-bit load. 1995 auto *Load = cast<LoadSDNode>(C.Op0); 1996 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1997 if (NumBits != 8 && NumBits != 16) 1998 return; 1999 2000 // The load must be an extending one and the constant must be within the 2001 // range of the unextended value. 2002 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2003 uint64_t Value = ConstOp1->getZExtValue(); 2004 uint64_t Mask = (1 << NumBits) - 1; 2005 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2006 // Make sure that ConstOp1 is in range of C.Op0. 2007 int64_t SignedValue = ConstOp1->getSExtValue(); 2008 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2009 return; 2010 if (C.ICmpType != SystemZICMP::SignedOnly) { 2011 // Unsigned comparison between two sign-extended values is equivalent 2012 // to unsigned comparison between two zero-extended values. 2013 Value &= Mask; 2014 } else if (NumBits == 8) { 2015 // Try to treat the comparison as unsigned, so that we can use CLI. 2016 // Adjust CCMask and Value as necessary. 2017 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2018 // Test whether the high bit of the byte is set. 2019 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2020 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2021 // Test whether the high bit of the byte is clear. 2022 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2023 else 2024 // No instruction exists for this combination. 2025 return; 2026 C.ICmpType = SystemZICMP::UnsignedOnly; 2027 } 2028 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2029 if (Value > Mask) 2030 return; 2031 // If the constant is in range, we can use any comparison. 2032 C.ICmpType = SystemZICMP::Any; 2033 } else 2034 return; 2035 2036 // Make sure that the first operand is an i32 of the right extension type. 2037 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2038 ISD::SEXTLOAD : 2039 ISD::ZEXTLOAD); 2040 if (C.Op0.getValueType() != MVT::i32 || 2041 Load->getExtensionType() != ExtType) { 2042 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2043 Load->getBasePtr(), Load->getPointerInfo(), 2044 Load->getMemoryVT(), Load->getAlignment(), 2045 Load->getMemOperand()->getFlags()); 2046 // Update the chain uses. 2047 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2048 } 2049 2050 // Make sure that the second operand is an i32 with the right value. 2051 if (C.Op1.getValueType() != MVT::i32 || 2052 Value != ConstOp1->getZExtValue()) 2053 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2054 } 2055 2056 // Return true if Op is either an unextended load, or a load suitable 2057 // for integer register-memory comparisons of type ICmpType. 2058 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2059 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2060 if (Load) { 2061 // There are no instructions to compare a register with a memory byte. 2062 if (Load->getMemoryVT() == MVT::i8) 2063 return false; 2064 // Otherwise decide on extension type. 2065 switch (Load->getExtensionType()) { 2066 case ISD::NON_EXTLOAD: 2067 return true; 2068 case ISD::SEXTLOAD: 2069 return ICmpType != SystemZICMP::UnsignedOnly; 2070 case ISD::ZEXTLOAD: 2071 return ICmpType != SystemZICMP::SignedOnly; 2072 default: 2073 break; 2074 } 2075 } 2076 return false; 2077 } 2078 2079 // Return true if it is better to swap the operands of C. 2080 static bool shouldSwapCmpOperands(const Comparison &C) { 2081 // Leave f128 comparisons alone, since they have no memory forms. 2082 if (C.Op0.getValueType() == MVT::f128) 2083 return false; 2084 2085 // Always keep a floating-point constant second, since comparisons with 2086 // zero can use LOAD TEST and comparisons with other constants make a 2087 // natural memory operand. 2088 if (isa<ConstantFPSDNode>(C.Op1)) 2089 return false; 2090 2091 // Never swap comparisons with zero since there are many ways to optimize 2092 // those later. 2093 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2094 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2095 return false; 2096 2097 // Also keep natural memory operands second if the loaded value is 2098 // only used here. Several comparisons have memory forms. 2099 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2100 return false; 2101 2102 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2103 // In that case we generally prefer the memory to be second. 2104 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2105 // The only exceptions are when the second operand is a constant and 2106 // we can use things like CHHSI. 2107 if (!ConstOp1) 2108 return true; 2109 // The unsigned memory-immediate instructions can handle 16-bit 2110 // unsigned integers. 2111 if (C.ICmpType != SystemZICMP::SignedOnly && 2112 isUInt<16>(ConstOp1->getZExtValue())) 2113 return false; 2114 // The signed memory-immediate instructions can handle 16-bit 2115 // signed integers. 2116 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2117 isInt<16>(ConstOp1->getSExtValue())) 2118 return false; 2119 return true; 2120 } 2121 2122 // Try to promote the use of CGFR and CLGFR. 2123 unsigned Opcode0 = C.Op0.getOpcode(); 2124 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2125 return true; 2126 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2127 return true; 2128 if (C.ICmpType != SystemZICMP::SignedOnly && 2129 Opcode0 == ISD::AND && 2130 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2131 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2132 return true; 2133 2134 return false; 2135 } 2136 2137 // Return a version of comparison CC mask CCMask in which the LT and GT 2138 // actions are swapped. 2139 static unsigned reverseCCMask(unsigned CCMask) { 2140 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 2141 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 2142 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 2143 (CCMask & SystemZ::CCMASK_CMP_UO)); 2144 } 2145 2146 // Check whether C tests for equality between X and Y and whether X - Y 2147 // or Y - X is also computed. In that case it's better to compare the 2148 // result of the subtraction against zero. 2149 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2150 Comparison &C) { 2151 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2152 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2153 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2154 SDNode *N = *I; 2155 if (N->getOpcode() == ISD::SUB && 2156 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2157 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2158 C.Op0 = SDValue(N, 0); 2159 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2160 return; 2161 } 2162 } 2163 } 2164 } 2165 2166 // Check whether C compares a floating-point value with zero and if that 2167 // floating-point value is also negated. In this case we can use the 2168 // negation to set CC, so avoiding separate LOAD AND TEST and 2169 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2170 static void adjustForFNeg(Comparison &C) { 2171 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2172 if (C1 && C1->isZero()) { 2173 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2174 SDNode *N = *I; 2175 if (N->getOpcode() == ISD::FNEG) { 2176 C.Op0 = SDValue(N, 0); 2177 C.CCMask = reverseCCMask(C.CCMask); 2178 return; 2179 } 2180 } 2181 } 2182 } 2183 2184 // Check whether C compares (shl X, 32) with 0 and whether X is 2185 // also sign-extended. In that case it is better to test the result 2186 // of the sign extension using LTGFR. 2187 // 2188 // This case is important because InstCombine transforms a comparison 2189 // with (sext (trunc X)) into a comparison with (shl X, 32). 2190 static void adjustForLTGFR(Comparison &C) { 2191 // Check for a comparison between (shl X, 32) and 0. 2192 if (C.Op0.getOpcode() == ISD::SHL && 2193 C.Op0.getValueType() == MVT::i64 && 2194 C.Op1.getOpcode() == ISD::Constant && 2195 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2196 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2197 if (C1 && C1->getZExtValue() == 32) { 2198 SDValue ShlOp0 = C.Op0.getOperand(0); 2199 // See whether X has any SIGN_EXTEND_INREG uses. 2200 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2201 SDNode *N = *I; 2202 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2203 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2204 C.Op0 = SDValue(N, 0); 2205 return; 2206 } 2207 } 2208 } 2209 } 2210 } 2211 2212 // If C compares the truncation of an extending load, try to compare 2213 // the untruncated value instead. This exposes more opportunities to 2214 // reuse CC. 2215 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2216 Comparison &C) { 2217 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2218 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2219 C.Op1.getOpcode() == ISD::Constant && 2220 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2221 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2222 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2223 unsigned Type = L->getExtensionType(); 2224 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2225 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2226 C.Op0 = C.Op0.getOperand(0); 2227 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2228 } 2229 } 2230 } 2231 } 2232 2233 // Return true if shift operation N has an in-range constant shift value. 2234 // Store it in ShiftVal if so. 2235 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2236 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2237 if (!Shift) 2238 return false; 2239 2240 uint64_t Amount = Shift->getZExtValue(); 2241 if (Amount >= N.getValueSizeInBits()) 2242 return false; 2243 2244 ShiftVal = Amount; 2245 return true; 2246 } 2247 2248 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2249 // instruction and whether the CC value is descriptive enough to handle 2250 // a comparison of type Opcode between the AND result and CmpVal. 2251 // CCMask says which comparison result is being tested and BitSize is 2252 // the number of bits in the operands. If TEST UNDER MASK can be used, 2253 // return the corresponding CC mask, otherwise return 0. 2254 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2255 uint64_t Mask, uint64_t CmpVal, 2256 unsigned ICmpType) { 2257 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2258 2259 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2260 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2261 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2262 return 0; 2263 2264 // Work out the masks for the lowest and highest bits. 2265 unsigned HighShift = 63 - countLeadingZeros(Mask); 2266 uint64_t High = uint64_t(1) << HighShift; 2267 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2268 2269 // Signed ordered comparisons are effectively unsigned if the sign 2270 // bit is dropped. 2271 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2272 2273 // Check for equality comparisons with 0, or the equivalent. 2274 if (CmpVal == 0) { 2275 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2276 return SystemZ::CCMASK_TM_ALL_0; 2277 if (CCMask == SystemZ::CCMASK_CMP_NE) 2278 return SystemZ::CCMASK_TM_SOME_1; 2279 } 2280 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2281 if (CCMask == SystemZ::CCMASK_CMP_LT) 2282 return SystemZ::CCMASK_TM_ALL_0; 2283 if (CCMask == SystemZ::CCMASK_CMP_GE) 2284 return SystemZ::CCMASK_TM_SOME_1; 2285 } 2286 if (EffectivelyUnsigned && CmpVal < Low) { 2287 if (CCMask == SystemZ::CCMASK_CMP_LE) 2288 return SystemZ::CCMASK_TM_ALL_0; 2289 if (CCMask == SystemZ::CCMASK_CMP_GT) 2290 return SystemZ::CCMASK_TM_SOME_1; 2291 } 2292 2293 // Check for equality comparisons with the mask, or the equivalent. 2294 if (CmpVal == Mask) { 2295 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2296 return SystemZ::CCMASK_TM_ALL_1; 2297 if (CCMask == SystemZ::CCMASK_CMP_NE) 2298 return SystemZ::CCMASK_TM_SOME_0; 2299 } 2300 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2301 if (CCMask == SystemZ::CCMASK_CMP_GT) 2302 return SystemZ::CCMASK_TM_ALL_1; 2303 if (CCMask == SystemZ::CCMASK_CMP_LE) 2304 return SystemZ::CCMASK_TM_SOME_0; 2305 } 2306 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2307 if (CCMask == SystemZ::CCMASK_CMP_GE) 2308 return SystemZ::CCMASK_TM_ALL_1; 2309 if (CCMask == SystemZ::CCMASK_CMP_LT) 2310 return SystemZ::CCMASK_TM_SOME_0; 2311 } 2312 2313 // Check for ordered comparisons with the top bit. 2314 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2315 if (CCMask == SystemZ::CCMASK_CMP_LE) 2316 return SystemZ::CCMASK_TM_MSB_0; 2317 if (CCMask == SystemZ::CCMASK_CMP_GT) 2318 return SystemZ::CCMASK_TM_MSB_1; 2319 } 2320 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2321 if (CCMask == SystemZ::CCMASK_CMP_LT) 2322 return SystemZ::CCMASK_TM_MSB_0; 2323 if (CCMask == SystemZ::CCMASK_CMP_GE) 2324 return SystemZ::CCMASK_TM_MSB_1; 2325 } 2326 2327 // If there are just two bits, we can do equality checks for Low and High 2328 // as well. 2329 if (Mask == Low + High) { 2330 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2331 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2332 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2333 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2334 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2335 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2336 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2337 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2338 } 2339 2340 // Looks like we've exhausted our options. 2341 return 0; 2342 } 2343 2344 // See whether C can be implemented as a TEST UNDER MASK instruction. 2345 // Update the arguments with the TM version if so. 2346 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2347 Comparison &C) { 2348 // Check that we have a comparison with a constant. 2349 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2350 if (!ConstOp1) 2351 return; 2352 uint64_t CmpVal = ConstOp1->getZExtValue(); 2353 2354 // Check whether the nonconstant input is an AND with a constant mask. 2355 Comparison NewC(C); 2356 uint64_t MaskVal; 2357 ConstantSDNode *Mask = nullptr; 2358 if (C.Op0.getOpcode() == ISD::AND) { 2359 NewC.Op0 = C.Op0.getOperand(0); 2360 NewC.Op1 = C.Op0.getOperand(1); 2361 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2362 if (!Mask) 2363 return; 2364 MaskVal = Mask->getZExtValue(); 2365 } else { 2366 // There is no instruction to compare with a 64-bit immediate 2367 // so use TMHH instead if possible. We need an unsigned ordered 2368 // comparison with an i64 immediate. 2369 if (NewC.Op0.getValueType() != MVT::i64 || 2370 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2371 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2372 NewC.ICmpType == SystemZICMP::SignedOnly) 2373 return; 2374 // Convert LE and GT comparisons into LT and GE. 2375 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2376 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2377 if (CmpVal == uint64_t(-1)) 2378 return; 2379 CmpVal += 1; 2380 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2381 } 2382 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2383 // be masked off without changing the result. 2384 MaskVal = -(CmpVal & -CmpVal); 2385 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2386 } 2387 if (!MaskVal) 2388 return; 2389 2390 // Check whether the combination of mask, comparison value and comparison 2391 // type are suitable. 2392 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2393 unsigned NewCCMask, ShiftVal; 2394 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2395 NewC.Op0.getOpcode() == ISD::SHL && 2396 isSimpleShift(NewC.Op0, ShiftVal) && 2397 (MaskVal >> ShiftVal != 0) && 2398 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2399 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2400 MaskVal >> ShiftVal, 2401 CmpVal >> ShiftVal, 2402 SystemZICMP::Any))) { 2403 NewC.Op0 = NewC.Op0.getOperand(0); 2404 MaskVal >>= ShiftVal; 2405 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2406 NewC.Op0.getOpcode() == ISD::SRL && 2407 isSimpleShift(NewC.Op0, ShiftVal) && 2408 (MaskVal << ShiftVal != 0) && 2409 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2410 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2411 MaskVal << ShiftVal, 2412 CmpVal << ShiftVal, 2413 SystemZICMP::UnsignedOnly))) { 2414 NewC.Op0 = NewC.Op0.getOperand(0); 2415 MaskVal <<= ShiftVal; 2416 } else { 2417 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2418 NewC.ICmpType); 2419 if (!NewCCMask) 2420 return; 2421 } 2422 2423 // Go ahead and make the change. 2424 C.Opcode = SystemZISD::TM; 2425 C.Op0 = NewC.Op0; 2426 if (Mask && Mask->getZExtValue() == MaskVal) 2427 C.Op1 = SDValue(Mask, 0); 2428 else 2429 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2430 C.CCValid = SystemZ::CCMASK_TM; 2431 C.CCMask = NewCCMask; 2432 } 2433 2434 // See whether the comparison argument contains a redundant AND 2435 // and remove it if so. This sometimes happens due to the generic 2436 // BRCOND expansion. 2437 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2438 Comparison &C) { 2439 if (C.Op0.getOpcode() != ISD::AND) 2440 return; 2441 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2442 if (!Mask) 2443 return; 2444 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2445 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2446 return; 2447 2448 C.Op0 = C.Op0.getOperand(0); 2449 } 2450 2451 // Return a Comparison that tests the condition-code result of intrinsic 2452 // node Call against constant integer CC using comparison code Cond. 2453 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2454 // and CCValid is the set of possible condition-code results. 2455 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2456 SDValue Call, unsigned CCValid, uint64_t CC, 2457 ISD::CondCode Cond) { 2458 Comparison C(Call, SDValue()); 2459 C.Opcode = Opcode; 2460 C.CCValid = CCValid; 2461 if (Cond == ISD::SETEQ) 2462 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2463 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2464 else if (Cond == ISD::SETNE) 2465 // ...and the inverse of that. 2466 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2467 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2468 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2469 // always true for CC>3. 2470 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2471 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2472 // ...and the inverse of that. 2473 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2474 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2475 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2476 // always true for CC>3. 2477 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2478 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2479 // ...and the inverse of that. 2480 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2481 else 2482 llvm_unreachable("Unexpected integer comparison type"); 2483 C.CCMask &= CCValid; 2484 return C; 2485 } 2486 2487 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2488 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2489 ISD::CondCode Cond, const SDLoc &DL) { 2490 if (CmpOp1.getOpcode() == ISD::Constant) { 2491 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2492 unsigned Opcode, CCValid; 2493 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2494 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2495 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2496 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2497 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2498 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2499 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2500 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2501 } 2502 Comparison C(CmpOp0, CmpOp1); 2503 C.CCMask = CCMaskForCondCode(Cond); 2504 if (C.Op0.getValueType().isFloatingPoint()) { 2505 C.CCValid = SystemZ::CCMASK_FCMP; 2506 C.Opcode = SystemZISD::FCMP; 2507 adjustForFNeg(C); 2508 } else { 2509 C.CCValid = SystemZ::CCMASK_ICMP; 2510 C.Opcode = SystemZISD::ICMP; 2511 // Choose the type of comparison. Equality and inequality tests can 2512 // use either signed or unsigned comparisons. The choice also doesn't 2513 // matter if both sign bits are known to be clear. In those cases we 2514 // want to give the main isel code the freedom to choose whichever 2515 // form fits best. 2516 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2517 C.CCMask == SystemZ::CCMASK_CMP_NE || 2518 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2519 C.ICmpType = SystemZICMP::Any; 2520 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2521 C.ICmpType = SystemZICMP::UnsignedOnly; 2522 else 2523 C.ICmpType = SystemZICMP::SignedOnly; 2524 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2525 adjustForRedundantAnd(DAG, DL, C); 2526 adjustZeroCmp(DAG, DL, C); 2527 adjustSubwordCmp(DAG, DL, C); 2528 adjustForSubtraction(DAG, DL, C); 2529 adjustForLTGFR(C); 2530 adjustICmpTruncate(DAG, DL, C); 2531 } 2532 2533 if (shouldSwapCmpOperands(C)) { 2534 std::swap(C.Op0, C.Op1); 2535 C.CCMask = reverseCCMask(C.CCMask); 2536 } 2537 2538 adjustForTestUnderMask(DAG, DL, C); 2539 return C; 2540 } 2541 2542 // Emit the comparison instruction described by C. 2543 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2544 if (!C.Op1.getNode()) { 2545 SDNode *Node; 2546 switch (C.Op0.getOpcode()) { 2547 case ISD::INTRINSIC_W_CHAIN: 2548 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2549 return SDValue(Node, 0); 2550 case ISD::INTRINSIC_WO_CHAIN: 2551 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2552 return SDValue(Node, Node->getNumValues() - 1); 2553 default: 2554 llvm_unreachable("Invalid comparison operands"); 2555 } 2556 } 2557 if (C.Opcode == SystemZISD::ICMP) 2558 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2559 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2560 if (C.Opcode == SystemZISD::TM) { 2561 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2562 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2563 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2564 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2565 } 2566 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2567 } 2568 2569 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2570 // 64 bits. Extend is the extension type to use. Store the high part 2571 // in Hi and the low part in Lo. 2572 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2573 SDValue Op0, SDValue Op1, SDValue &Hi, 2574 SDValue &Lo) { 2575 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2576 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2577 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2578 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2579 DAG.getConstant(32, DL, MVT::i64)); 2580 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2581 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2582 } 2583 2584 // Lower a binary operation that produces two VT results, one in each 2585 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2586 // and Opcode performs the GR128 operation. Store the even register result 2587 // in Even and the odd register result in Odd. 2588 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2589 unsigned Opcode, SDValue Op0, SDValue Op1, 2590 SDValue &Even, SDValue &Odd) { 2591 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2592 bool Is32Bit = is32Bit(VT); 2593 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2594 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2595 } 2596 2597 // Return an i32 value that is 1 if the CC value produced by CCReg is 2598 // in the mask CCMask and 0 otherwise. CC is known to have a value 2599 // in CCValid, so other values can be ignored. 2600 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2601 unsigned CCValid, unsigned CCMask) { 2602 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2603 DAG.getConstant(0, DL, MVT::i32), 2604 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2605 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2606 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2607 } 2608 2609 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2610 // be done directly. IsFP is true if CC is for a floating-point rather than 2611 // integer comparison. 2612 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2613 switch (CC) { 2614 case ISD::SETOEQ: 2615 case ISD::SETEQ: 2616 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2617 2618 case ISD::SETOGE: 2619 case ISD::SETGE: 2620 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2621 2622 case ISD::SETOGT: 2623 case ISD::SETGT: 2624 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2625 2626 case ISD::SETUGT: 2627 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2628 2629 default: 2630 return 0; 2631 } 2632 } 2633 2634 // Return the SystemZISD vector comparison operation for CC or its inverse, 2635 // or 0 if neither can be done directly. Indicate in Invert whether the 2636 // result is for the inverse of CC. IsFP is true if CC is for a 2637 // floating-point rather than integer comparison. 2638 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2639 bool &Invert) { 2640 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2641 Invert = false; 2642 return Opcode; 2643 } 2644 2645 CC = ISD::getSetCCInverse(CC, !IsFP); 2646 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2647 Invert = true; 2648 return Opcode; 2649 } 2650 2651 return 0; 2652 } 2653 2654 // Return a v2f64 that contains the extended form of elements Start and Start+1 2655 // of v4f32 value Op. 2656 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2657 SDValue Op) { 2658 int Mask[] = { Start, -1, Start + 1, -1 }; 2659 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2660 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2661 } 2662 2663 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2664 // producing a result of type VT. 2665 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2666 const SDLoc &DL, EVT VT, 2667 SDValue CmpOp0, 2668 SDValue CmpOp1) const { 2669 // There is no hardware support for v4f32 (unless we have the vector 2670 // enhancements facility 1), so extend the vector into two v2f64s 2671 // and compare those. 2672 if (CmpOp0.getValueType() == MVT::v4f32 && 2673 !Subtarget.hasVectorEnhancements1()) { 2674 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2675 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2676 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2677 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2678 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2679 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2680 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2681 } 2682 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2683 } 2684 2685 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2686 // an integer mask of type VT. 2687 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2688 const SDLoc &DL, EVT VT, 2689 ISD::CondCode CC, 2690 SDValue CmpOp0, 2691 SDValue CmpOp1) const { 2692 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2693 bool Invert = false; 2694 SDValue Cmp; 2695 switch (CC) { 2696 // Handle tests for order using (or (ogt y x) (oge x y)). 2697 case ISD::SETUO: 2698 Invert = true; 2699 LLVM_FALLTHROUGH; 2700 case ISD::SETO: { 2701 assert(IsFP && "Unexpected integer comparison"); 2702 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2703 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2704 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2705 break; 2706 } 2707 2708 // Handle <> tests using (or (ogt y x) (ogt x y)). 2709 case ISD::SETUEQ: 2710 Invert = true; 2711 LLVM_FALLTHROUGH; 2712 case ISD::SETONE: { 2713 assert(IsFP && "Unexpected integer comparison"); 2714 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2715 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2716 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2717 break; 2718 } 2719 2720 // Otherwise a single comparison is enough. It doesn't really 2721 // matter whether we try the inversion or the swap first, since 2722 // there are no cases where both work. 2723 default: 2724 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2725 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2726 else { 2727 CC = ISD::getSetCCSwappedOperands(CC); 2728 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2729 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2730 else 2731 llvm_unreachable("Unhandled comparison"); 2732 } 2733 break; 2734 } 2735 if (Invert) { 2736 SDValue Mask = 2737 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2738 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2739 } 2740 return Cmp; 2741 } 2742 2743 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2744 SelectionDAG &DAG) const { 2745 SDValue CmpOp0 = Op.getOperand(0); 2746 SDValue CmpOp1 = Op.getOperand(1); 2747 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2748 SDLoc DL(Op); 2749 EVT VT = Op.getValueType(); 2750 if (VT.isVector()) 2751 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2752 2753 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2754 SDValue CCReg = emitCmp(DAG, DL, C); 2755 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2756 } 2757 2758 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2759 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2760 SDValue CmpOp0 = Op.getOperand(2); 2761 SDValue CmpOp1 = Op.getOperand(3); 2762 SDValue Dest = Op.getOperand(4); 2763 SDLoc DL(Op); 2764 2765 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2766 SDValue CCReg = emitCmp(DAG, DL, C); 2767 return DAG.getNode( 2768 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 2769 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2770 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2771 } 2772 2773 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2774 // allowing Pos and Neg to be wider than CmpOp. 2775 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2776 return (Neg.getOpcode() == ISD::SUB && 2777 Neg.getOperand(0).getOpcode() == ISD::Constant && 2778 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2779 Neg.getOperand(1) == Pos && 2780 (Pos == CmpOp || 2781 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2782 Pos.getOperand(0) == CmpOp))); 2783 } 2784 2785 // Return the absolute or negative absolute of Op; IsNegative decides which. 2786 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2787 bool IsNegative) { 2788 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2789 if (IsNegative) 2790 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2791 DAG.getConstant(0, DL, Op.getValueType()), Op); 2792 return Op; 2793 } 2794 2795 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2796 SelectionDAG &DAG) const { 2797 SDValue CmpOp0 = Op.getOperand(0); 2798 SDValue CmpOp1 = Op.getOperand(1); 2799 SDValue TrueOp = Op.getOperand(2); 2800 SDValue FalseOp = Op.getOperand(3); 2801 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2802 SDLoc DL(Op); 2803 2804 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2805 2806 // Check for absolute and negative-absolute selections, including those 2807 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2808 // This check supplements the one in DAGCombiner. 2809 if (C.Opcode == SystemZISD::ICMP && 2810 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2811 C.CCMask != SystemZ::CCMASK_CMP_NE && 2812 C.Op1.getOpcode() == ISD::Constant && 2813 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2814 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2815 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2816 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2817 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2818 } 2819 2820 SDValue CCReg = emitCmp(DAG, DL, C); 2821 SDValue Ops[] = {TrueOp, FalseOp, 2822 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2823 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 2824 2825 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2826 } 2827 2828 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2829 SelectionDAG &DAG) const { 2830 SDLoc DL(Node); 2831 const GlobalValue *GV = Node->getGlobal(); 2832 int64_t Offset = Node->getOffset(); 2833 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2834 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2835 2836 SDValue Result; 2837 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2838 if (isInt<32>(Offset)) { 2839 // Assign anchors at 1<<12 byte boundaries. 2840 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2841 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2842 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2843 2844 // The offset can be folded into the address if it is aligned to a 2845 // halfword. 2846 Offset -= Anchor; 2847 if (Offset != 0 && (Offset & 1) == 0) { 2848 SDValue Full = 2849 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2850 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2851 Offset = 0; 2852 } 2853 } else { 2854 // Conservatively load a constant offset greater than 32 bits into a 2855 // register below. 2856 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 2857 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2858 } 2859 } else { 2860 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2861 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2862 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2863 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2864 } 2865 2866 // If there was a non-zero offset that we didn't fold, create an explicit 2867 // addition for it. 2868 if (Offset != 0) 2869 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2870 DAG.getConstant(Offset, DL, PtrVT)); 2871 2872 return Result; 2873 } 2874 2875 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2876 SelectionDAG &DAG, 2877 unsigned Opcode, 2878 SDValue GOTOffset) const { 2879 SDLoc DL(Node); 2880 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2881 SDValue Chain = DAG.getEntryNode(); 2882 SDValue Glue; 2883 2884 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2885 CallingConv::GHC) 2886 report_fatal_error("In GHC calling convention TLS is not supported"); 2887 2888 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2889 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2890 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2891 Glue = Chain.getValue(1); 2892 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2893 Glue = Chain.getValue(1); 2894 2895 // The first call operand is the chain and the second is the TLS symbol. 2896 SmallVector<SDValue, 8> Ops; 2897 Ops.push_back(Chain); 2898 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2899 Node->getValueType(0), 2900 0, 0)); 2901 2902 // Add argument registers to the end of the list so that they are 2903 // known live into the call. 2904 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2905 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2906 2907 // Add a register mask operand representing the call-preserved registers. 2908 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2909 const uint32_t *Mask = 2910 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2911 assert(Mask && "Missing call preserved mask for calling convention"); 2912 Ops.push_back(DAG.getRegisterMask(Mask)); 2913 2914 // Glue the call to the argument copies. 2915 Ops.push_back(Glue); 2916 2917 // Emit the call. 2918 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2919 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2920 Glue = Chain.getValue(1); 2921 2922 // Copy the return value from %r2. 2923 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2924 } 2925 2926 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2927 SelectionDAG &DAG) const { 2928 SDValue Chain = DAG.getEntryNode(); 2929 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2930 2931 // The high part of the thread pointer is in access register 0. 2932 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 2933 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2934 2935 // The low part of the thread pointer is in access register 1. 2936 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 2937 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2938 2939 // Merge them into a single 64-bit address. 2940 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2941 DAG.getConstant(32, DL, PtrVT)); 2942 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2943 } 2944 2945 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2946 SelectionDAG &DAG) const { 2947 if (DAG.getTarget().useEmulatedTLS()) 2948 return LowerToTLSEmulatedModel(Node, DAG); 2949 SDLoc DL(Node); 2950 const GlobalValue *GV = Node->getGlobal(); 2951 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2952 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2953 2954 if (DAG.getMachineFunction().getFunction().getCallingConv() == 2955 CallingConv::GHC) 2956 report_fatal_error("In GHC calling convention TLS is not supported"); 2957 2958 SDValue TP = lowerThreadPointer(DL, DAG); 2959 2960 // Get the offset of GA from the thread pointer, based on the TLS model. 2961 SDValue Offset; 2962 switch (model) { 2963 case TLSModel::GeneralDynamic: { 2964 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2965 SystemZConstantPoolValue *CPV = 2966 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2967 2968 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2969 Offset = DAG.getLoad( 2970 PtrVT, DL, DAG.getEntryNode(), Offset, 2971 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2972 2973 // Call __tls_get_offset to retrieve the offset. 2974 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2975 break; 2976 } 2977 2978 case TLSModel::LocalDynamic: { 2979 // Load the GOT offset of the module ID. 2980 SystemZConstantPoolValue *CPV = 2981 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2982 2983 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2984 Offset = DAG.getLoad( 2985 PtrVT, DL, DAG.getEntryNode(), Offset, 2986 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2987 2988 // Call __tls_get_offset to retrieve the module base offset. 2989 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2990 2991 // Note: The SystemZLDCleanupPass will remove redundant computations 2992 // of the module base offset. Count total number of local-dynamic 2993 // accesses to trigger execution of that pass. 2994 SystemZMachineFunctionInfo* MFI = 2995 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2996 MFI->incNumLocalDynamicTLSAccesses(); 2997 2998 // Add the per-symbol offset. 2999 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3000 3001 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 3002 DTPOffset = DAG.getLoad( 3003 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3004 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3005 3006 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3007 break; 3008 } 3009 3010 case TLSModel::InitialExec: { 3011 // Load the offset from the GOT. 3012 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3013 SystemZII::MO_INDNTPOFF); 3014 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3015 Offset = 3016 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3017 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3018 break; 3019 } 3020 3021 case TLSModel::LocalExec: { 3022 // Force the offset into the constant pool and load it from there. 3023 SystemZConstantPoolValue *CPV = 3024 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3025 3026 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3027 Offset = DAG.getLoad( 3028 PtrVT, DL, DAG.getEntryNode(), Offset, 3029 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3030 break; 3031 } 3032 } 3033 3034 // Add the base and offset together. 3035 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3036 } 3037 3038 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3039 SelectionDAG &DAG) const { 3040 SDLoc DL(Node); 3041 const BlockAddress *BA = Node->getBlockAddress(); 3042 int64_t Offset = Node->getOffset(); 3043 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3044 3045 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3046 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3047 return Result; 3048 } 3049 3050 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3051 SelectionDAG &DAG) const { 3052 SDLoc DL(JT); 3053 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3054 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3055 3056 // Use LARL to load the address of the table. 3057 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3058 } 3059 3060 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3061 SelectionDAG &DAG) const { 3062 SDLoc DL(CP); 3063 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3064 3065 SDValue Result; 3066 if (CP->isMachineConstantPoolEntry()) 3067 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 3068 CP->getAlignment()); 3069 else 3070 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 3071 CP->getAlignment(), CP->getOffset()); 3072 3073 // Use LARL to load the address of the constant pool entry. 3074 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3075 } 3076 3077 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3078 SelectionDAG &DAG) const { 3079 MachineFunction &MF = DAG.getMachineFunction(); 3080 MachineFrameInfo &MFI = MF.getFrameInfo(); 3081 MFI.setFrameAddressIsTaken(true); 3082 3083 SDLoc DL(Op); 3084 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3085 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3086 3087 // If the back chain frame index has not been allocated yet, do so. 3088 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 3089 int BackChainIdx = FI->getFramePointerSaveIndex(); 3090 if (!BackChainIdx) { 3091 // By definition, the frame address is the address of the back chain. 3092 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 3093 FI->setFramePointerSaveIndex(BackChainIdx); 3094 } 3095 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3096 3097 // FIXME The frontend should detect this case. 3098 if (Depth > 0) { 3099 report_fatal_error("Unsupported stack frame traversal count"); 3100 } 3101 3102 return BackChain; 3103 } 3104 3105 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3106 SelectionDAG &DAG) const { 3107 MachineFunction &MF = DAG.getMachineFunction(); 3108 MachineFrameInfo &MFI = MF.getFrameInfo(); 3109 MFI.setReturnAddressIsTaken(true); 3110 3111 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3112 return SDValue(); 3113 3114 SDLoc DL(Op); 3115 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3116 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3117 3118 // FIXME The frontend should detect this case. 3119 if (Depth > 0) { 3120 report_fatal_error("Unsupported stack frame traversal count"); 3121 } 3122 3123 // Return R14D, which has the return address. Mark it an implicit live-in. 3124 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3125 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3126 } 3127 3128 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3129 SelectionDAG &DAG) const { 3130 SDLoc DL(Op); 3131 SDValue In = Op.getOperand(0); 3132 EVT InVT = In.getValueType(); 3133 EVT ResVT = Op.getValueType(); 3134 3135 // Convert loads directly. This is normally done by DAGCombiner, 3136 // but we need this case for bitcasts that are created during lowering 3137 // and which are then lowered themselves. 3138 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3139 if (ISD::isNormalLoad(LoadN)) { 3140 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3141 LoadN->getBasePtr(), LoadN->getMemOperand()); 3142 // Update the chain uses. 3143 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3144 return NewLoad; 3145 } 3146 3147 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3148 SDValue In64; 3149 if (Subtarget.hasHighWord()) { 3150 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3151 MVT::i64); 3152 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3153 MVT::i64, SDValue(U64, 0), In); 3154 } else { 3155 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3156 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3157 DAG.getConstant(32, DL, MVT::i64)); 3158 } 3159 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3160 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3161 DL, MVT::f32, Out64); 3162 } 3163 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3164 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3165 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3166 MVT::f64, SDValue(U64, 0), In); 3167 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3168 if (Subtarget.hasHighWord()) 3169 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3170 MVT::i32, Out64); 3171 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3172 DAG.getConstant(32, DL, MVT::i64)); 3173 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3174 } 3175 llvm_unreachable("Unexpected bitcast combination"); 3176 } 3177 3178 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3179 SelectionDAG &DAG) const { 3180 MachineFunction &MF = DAG.getMachineFunction(); 3181 SystemZMachineFunctionInfo *FuncInfo = 3182 MF.getInfo<SystemZMachineFunctionInfo>(); 3183 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3184 3185 SDValue Chain = Op.getOperand(0); 3186 SDValue Addr = Op.getOperand(1); 3187 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3188 SDLoc DL(Op); 3189 3190 // The initial values of each field. 3191 const unsigned NumFields = 4; 3192 SDValue Fields[NumFields] = { 3193 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3194 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3195 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3196 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3197 }; 3198 3199 // Store each field into its respective slot. 3200 SDValue MemOps[NumFields]; 3201 unsigned Offset = 0; 3202 for (unsigned I = 0; I < NumFields; ++I) { 3203 SDValue FieldAddr = Addr; 3204 if (Offset != 0) 3205 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3206 DAG.getIntPtrConstant(Offset, DL)); 3207 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3208 MachinePointerInfo(SV, Offset)); 3209 Offset += 8; 3210 } 3211 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3212 } 3213 3214 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3215 SelectionDAG &DAG) const { 3216 SDValue Chain = Op.getOperand(0); 3217 SDValue DstPtr = Op.getOperand(1); 3218 SDValue SrcPtr = Op.getOperand(2); 3219 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3220 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3221 SDLoc DL(Op); 3222 3223 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3224 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 3225 /*isTailCall*/false, 3226 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 3227 } 3228 3229 SDValue SystemZTargetLowering:: 3230 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3231 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3232 MachineFunction &MF = DAG.getMachineFunction(); 3233 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3234 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3235 3236 SDValue Chain = Op.getOperand(0); 3237 SDValue Size = Op.getOperand(1); 3238 SDValue Align = Op.getOperand(2); 3239 SDLoc DL(Op); 3240 3241 // If user has set the no alignment function attribute, ignore 3242 // alloca alignments. 3243 uint64_t AlignVal = (RealignOpt ? 3244 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3245 3246 uint64_t StackAlign = TFI->getStackAlignment(); 3247 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3248 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3249 3250 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3251 SDValue NeededSpace = Size; 3252 3253 // Get a reference to the stack pointer. 3254 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3255 3256 // If we need a backchain, save it now. 3257 SDValue Backchain; 3258 if (StoreBackchain) 3259 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3260 3261 // Add extra space for alignment if needed. 3262 if (ExtraAlignSpace) 3263 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3264 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3265 3266 // Get the new stack pointer value. 3267 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3268 3269 // Copy the new stack pointer back. 3270 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3271 3272 // The allocated data lives above the 160 bytes allocated for the standard 3273 // frame, plus any outgoing stack arguments. We don't know how much that 3274 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3275 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3276 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3277 3278 // Dynamically realign if needed. 3279 if (RequiredAlign > StackAlign) { 3280 Result = 3281 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3282 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3283 Result = 3284 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3285 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3286 } 3287 3288 if (StoreBackchain) 3289 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3290 3291 SDValue Ops[2] = { Result, Chain }; 3292 return DAG.getMergeValues(Ops, DL); 3293 } 3294 3295 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3296 SDValue Op, SelectionDAG &DAG) const { 3297 SDLoc DL(Op); 3298 3299 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3300 } 3301 3302 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3303 SelectionDAG &DAG) const { 3304 EVT VT = Op.getValueType(); 3305 SDLoc DL(Op); 3306 SDValue Ops[2]; 3307 if (is32Bit(VT)) 3308 // Just do a normal 64-bit multiplication and extract the results. 3309 // We define this so that it can be used for constant division. 3310 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3311 Op.getOperand(1), Ops[1], Ops[0]); 3312 else if (Subtarget.hasMiscellaneousExtensions2()) 3313 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3314 // the high result in the even register. ISD::SMUL_LOHI is defined to 3315 // return the low half first, so the results are in reverse order. 3316 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3317 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3318 else { 3319 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3320 // 3321 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3322 // 3323 // but using the fact that the upper halves are either all zeros 3324 // or all ones: 3325 // 3326 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3327 // 3328 // and grouping the right terms together since they are quicker than the 3329 // multiplication: 3330 // 3331 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3332 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3333 SDValue LL = Op.getOperand(0); 3334 SDValue RL = Op.getOperand(1); 3335 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3336 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3337 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3338 // the high result in the even register. ISD::SMUL_LOHI is defined to 3339 // return the low half first, so the results are in reverse order. 3340 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3341 LL, RL, Ops[1], Ops[0]); 3342 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3343 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3344 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3345 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3346 } 3347 return DAG.getMergeValues(Ops, DL); 3348 } 3349 3350 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3351 SelectionDAG &DAG) const { 3352 EVT VT = Op.getValueType(); 3353 SDLoc DL(Op); 3354 SDValue Ops[2]; 3355 if (is32Bit(VT)) 3356 // Just do a normal 64-bit multiplication and extract the results. 3357 // We define this so that it can be used for constant division. 3358 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3359 Op.getOperand(1), Ops[1], Ops[0]); 3360 else 3361 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3362 // the high result in the even register. ISD::UMUL_LOHI is defined to 3363 // return the low half first, so the results are in reverse order. 3364 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3365 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3366 return DAG.getMergeValues(Ops, DL); 3367 } 3368 3369 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3370 SelectionDAG &DAG) const { 3371 SDValue Op0 = Op.getOperand(0); 3372 SDValue Op1 = Op.getOperand(1); 3373 EVT VT = Op.getValueType(); 3374 SDLoc DL(Op); 3375 3376 // We use DSGF for 32-bit division. This means the first operand must 3377 // always be 64-bit, and the second operand should be 32-bit whenever 3378 // that is possible, to improve performance. 3379 if (is32Bit(VT)) 3380 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3381 else if (DAG.ComputeNumSignBits(Op1) > 32) 3382 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3383 3384 // DSG(F) returns the remainder in the even register and the 3385 // quotient in the odd register. 3386 SDValue Ops[2]; 3387 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3388 return DAG.getMergeValues(Ops, DL); 3389 } 3390 3391 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3392 SelectionDAG &DAG) const { 3393 EVT VT = Op.getValueType(); 3394 SDLoc DL(Op); 3395 3396 // DL(G) returns the remainder in the even register and the 3397 // quotient in the odd register. 3398 SDValue Ops[2]; 3399 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3400 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3401 return DAG.getMergeValues(Ops, DL); 3402 } 3403 3404 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3405 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3406 3407 // Get the known-zero masks for each operand. 3408 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3409 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3410 DAG.computeKnownBits(Ops[1])}; 3411 3412 // See if the upper 32 bits of one operand and the lower 32 bits of the 3413 // other are known zero. They are the low and high operands respectively. 3414 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3415 Known[1].Zero.getZExtValue() }; 3416 unsigned High, Low; 3417 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3418 High = 1, Low = 0; 3419 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3420 High = 0, Low = 1; 3421 else 3422 return Op; 3423 3424 SDValue LowOp = Ops[Low]; 3425 SDValue HighOp = Ops[High]; 3426 3427 // If the high part is a constant, we're better off using IILH. 3428 if (HighOp.getOpcode() == ISD::Constant) 3429 return Op; 3430 3431 // If the low part is a constant that is outside the range of LHI, 3432 // then we're better off using IILF. 3433 if (LowOp.getOpcode() == ISD::Constant) { 3434 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3435 if (!isInt<16>(Value)) 3436 return Op; 3437 } 3438 3439 // Check whether the high part is an AND that doesn't change the 3440 // high 32 bits and just masks out low bits. We can skip it if so. 3441 if (HighOp.getOpcode() == ISD::AND && 3442 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3443 SDValue HighOp0 = HighOp.getOperand(0); 3444 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3445 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3446 HighOp = HighOp0; 3447 } 3448 3449 // Take advantage of the fact that all GR32 operations only change the 3450 // low 32 bits by truncating Low to an i32 and inserting it directly 3451 // using a subreg. The interesting cases are those where the truncation 3452 // can be folded. 3453 SDLoc DL(Op); 3454 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3455 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3456 MVT::i64, HighOp, Low32); 3457 } 3458 3459 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3460 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3461 SelectionDAG &DAG) const { 3462 SDNode *N = Op.getNode(); 3463 SDValue LHS = N->getOperand(0); 3464 SDValue RHS = N->getOperand(1); 3465 SDLoc DL(N); 3466 unsigned BaseOp = 0; 3467 unsigned CCValid = 0; 3468 unsigned CCMask = 0; 3469 3470 switch (Op.getOpcode()) { 3471 default: llvm_unreachable("Unknown instruction!"); 3472 case ISD::SADDO: 3473 BaseOp = SystemZISD::SADDO; 3474 CCValid = SystemZ::CCMASK_ARITH; 3475 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3476 break; 3477 case ISD::SSUBO: 3478 BaseOp = SystemZISD::SSUBO; 3479 CCValid = SystemZ::CCMASK_ARITH; 3480 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3481 break; 3482 case ISD::UADDO: 3483 BaseOp = SystemZISD::UADDO; 3484 CCValid = SystemZ::CCMASK_LOGICAL; 3485 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3486 break; 3487 case ISD::USUBO: 3488 BaseOp = SystemZISD::USUBO; 3489 CCValid = SystemZ::CCMASK_LOGICAL; 3490 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3491 break; 3492 } 3493 3494 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3495 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3496 3497 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3498 if (N->getValueType(1) == MVT::i1) 3499 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3500 3501 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3502 } 3503 3504 static bool isAddCarryChain(SDValue Carry) { 3505 while (Carry.getOpcode() == ISD::ADDCARRY) 3506 Carry = Carry.getOperand(2); 3507 return Carry.getOpcode() == ISD::UADDO; 3508 } 3509 3510 static bool isSubBorrowChain(SDValue Carry) { 3511 while (Carry.getOpcode() == ISD::SUBCARRY) 3512 Carry = Carry.getOperand(2); 3513 return Carry.getOpcode() == ISD::USUBO; 3514 } 3515 3516 // Lower ADDCARRY/SUBCARRY nodes. 3517 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3518 SelectionDAG &DAG) const { 3519 3520 SDNode *N = Op.getNode(); 3521 MVT VT = N->getSimpleValueType(0); 3522 3523 // Let legalize expand this if it isn't a legal type yet. 3524 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3525 return SDValue(); 3526 3527 SDValue LHS = N->getOperand(0); 3528 SDValue RHS = N->getOperand(1); 3529 SDValue Carry = Op.getOperand(2); 3530 SDLoc DL(N); 3531 unsigned BaseOp = 0; 3532 unsigned CCValid = 0; 3533 unsigned CCMask = 0; 3534 3535 switch (Op.getOpcode()) { 3536 default: llvm_unreachable("Unknown instruction!"); 3537 case ISD::ADDCARRY: 3538 if (!isAddCarryChain(Carry)) 3539 return SDValue(); 3540 3541 BaseOp = SystemZISD::ADDCARRY; 3542 CCValid = SystemZ::CCMASK_LOGICAL; 3543 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3544 break; 3545 case ISD::SUBCARRY: 3546 if (!isSubBorrowChain(Carry)) 3547 return SDValue(); 3548 3549 BaseOp = SystemZISD::SUBCARRY; 3550 CCValid = SystemZ::CCMASK_LOGICAL; 3551 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3552 break; 3553 } 3554 3555 // Set the condition code from the carry flag. 3556 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3557 DAG.getConstant(CCValid, DL, MVT::i32), 3558 DAG.getConstant(CCMask, DL, MVT::i32)); 3559 3560 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3561 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3562 3563 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3564 if (N->getValueType(1) == MVT::i1) 3565 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3566 3567 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3568 } 3569 3570 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3571 SelectionDAG &DAG) const { 3572 EVT VT = Op.getValueType(); 3573 SDLoc DL(Op); 3574 Op = Op.getOperand(0); 3575 3576 // Handle vector types via VPOPCT. 3577 if (VT.isVector()) { 3578 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3579 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3580 switch (VT.getScalarSizeInBits()) { 3581 case 8: 3582 break; 3583 case 16: { 3584 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3585 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3586 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3587 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3588 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3589 break; 3590 } 3591 case 32: { 3592 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3593 DAG.getConstant(0, DL, MVT::i32)); 3594 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3595 break; 3596 } 3597 case 64: { 3598 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3599 DAG.getConstant(0, DL, MVT::i32)); 3600 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3601 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3602 break; 3603 } 3604 default: 3605 llvm_unreachable("Unexpected type"); 3606 } 3607 return Op; 3608 } 3609 3610 // Get the known-zero mask for the operand. 3611 KnownBits Known = DAG.computeKnownBits(Op); 3612 unsigned NumSignificantBits = (~Known.Zero).getActiveBits(); 3613 if (NumSignificantBits == 0) 3614 return DAG.getConstant(0, DL, VT); 3615 3616 // Skip known-zero high parts of the operand. 3617 int64_t OrigBitSize = VT.getSizeInBits(); 3618 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3619 BitSize = std::min(BitSize, OrigBitSize); 3620 3621 // The POPCNT instruction counts the number of bits in each byte. 3622 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3623 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3624 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3625 3626 // Add up per-byte counts in a binary tree. All bits of Op at 3627 // position larger than BitSize remain zero throughout. 3628 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3629 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3630 if (BitSize != OrigBitSize) 3631 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3632 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3633 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3634 } 3635 3636 // Extract overall result from high byte. 3637 if (BitSize > 8) 3638 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3639 DAG.getConstant(BitSize - 8, DL, VT)); 3640 3641 return Op; 3642 } 3643 3644 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3645 SelectionDAG &DAG) const { 3646 SDLoc DL(Op); 3647 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3648 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3649 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3650 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3651 3652 // The only fence that needs an instruction is a sequentially-consistent 3653 // cross-thread fence. 3654 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3655 FenceSSID == SyncScope::System) { 3656 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3657 Op.getOperand(0)), 3658 0); 3659 } 3660 3661 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3662 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3663 } 3664 3665 // Op is an atomic load. Lower it into a normal volatile load. 3666 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3667 SelectionDAG &DAG) const { 3668 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3669 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3670 Node->getChain(), Node->getBasePtr(), 3671 Node->getMemoryVT(), Node->getMemOperand()); 3672 } 3673 3674 // Op is an atomic store. Lower it into a normal volatile store. 3675 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3676 SelectionDAG &DAG) const { 3677 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3678 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3679 Node->getBasePtr(), Node->getMemoryVT(), 3680 Node->getMemOperand()); 3681 // We have to enforce sequential consistency by performing a 3682 // serialization operation after the store. 3683 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3684 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3685 MVT::Other, Chain), 0); 3686 return Chain; 3687 } 3688 3689 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3690 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3691 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3692 SelectionDAG &DAG, 3693 unsigned Opcode) const { 3694 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3695 3696 // 32-bit operations need no code outside the main loop. 3697 EVT NarrowVT = Node->getMemoryVT(); 3698 EVT WideVT = MVT::i32; 3699 if (NarrowVT == WideVT) 3700 return Op; 3701 3702 int64_t BitSize = NarrowVT.getSizeInBits(); 3703 SDValue ChainIn = Node->getChain(); 3704 SDValue Addr = Node->getBasePtr(); 3705 SDValue Src2 = Node->getVal(); 3706 MachineMemOperand *MMO = Node->getMemOperand(); 3707 SDLoc DL(Node); 3708 EVT PtrVT = Addr.getValueType(); 3709 3710 // Convert atomic subtracts of constants into additions. 3711 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3712 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3713 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3714 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3715 } 3716 3717 // Get the address of the containing word. 3718 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3719 DAG.getConstant(-4, DL, PtrVT)); 3720 3721 // Get the number of bits that the word must be rotated left in order 3722 // to bring the field to the top bits of a GR32. 3723 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3724 DAG.getConstant(3, DL, PtrVT)); 3725 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3726 3727 // Get the complementing shift amount, for rotating a field in the top 3728 // bits back to its proper position. 3729 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3730 DAG.getConstant(0, DL, WideVT), BitShift); 3731 3732 // Extend the source operand to 32 bits and prepare it for the inner loop. 3733 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3734 // operations require the source to be shifted in advance. (This shift 3735 // can be folded if the source is constant.) For AND and NAND, the lower 3736 // bits must be set, while for other opcodes they should be left clear. 3737 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3738 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3739 DAG.getConstant(32 - BitSize, DL, WideVT)); 3740 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3741 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3742 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3743 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3744 3745 // Construct the ATOMIC_LOADW_* node. 3746 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3747 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3748 DAG.getConstant(BitSize, DL, WideVT) }; 3749 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3750 NarrowVT, MMO); 3751 3752 // Rotate the result of the final CS so that the field is in the lower 3753 // bits of a GR32, then truncate it. 3754 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3755 DAG.getConstant(BitSize, DL, WideVT)); 3756 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3757 3758 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3759 return DAG.getMergeValues(RetOps, DL); 3760 } 3761 3762 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3763 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3764 // operations into additions. 3765 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3766 SelectionDAG &DAG) const { 3767 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3768 EVT MemVT = Node->getMemoryVT(); 3769 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3770 // A full-width operation. 3771 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3772 SDValue Src2 = Node->getVal(); 3773 SDValue NegSrc2; 3774 SDLoc DL(Src2); 3775 3776 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3777 // Use an addition if the operand is constant and either LAA(G) is 3778 // available or the negative value is in the range of A(G)FHI. 3779 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3780 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3781 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3782 } else if (Subtarget.hasInterlockedAccess1()) 3783 // Use LAA(G) if available. 3784 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3785 Src2); 3786 3787 if (NegSrc2.getNode()) 3788 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3789 Node->getChain(), Node->getBasePtr(), NegSrc2, 3790 Node->getMemOperand()); 3791 3792 // Use the node as-is. 3793 return Op; 3794 } 3795 3796 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3797 } 3798 3799 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3800 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3801 SelectionDAG &DAG) const { 3802 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3803 SDValue ChainIn = Node->getOperand(0); 3804 SDValue Addr = Node->getOperand(1); 3805 SDValue CmpVal = Node->getOperand(2); 3806 SDValue SwapVal = Node->getOperand(3); 3807 MachineMemOperand *MMO = Node->getMemOperand(); 3808 SDLoc DL(Node); 3809 3810 // We have native support for 32-bit and 64-bit compare and swap, but we 3811 // still need to expand extracting the "success" result from the CC. 3812 EVT NarrowVT = Node->getMemoryVT(); 3813 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3814 if (NarrowVT == WideVT) { 3815 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3816 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3817 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3818 DL, Tys, Ops, NarrowVT, MMO); 3819 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3820 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3821 3822 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3823 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3824 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3825 return SDValue(); 3826 } 3827 3828 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3829 // via a fullword ATOMIC_CMP_SWAPW operation. 3830 int64_t BitSize = NarrowVT.getSizeInBits(); 3831 EVT PtrVT = Addr.getValueType(); 3832 3833 // Get the address of the containing word. 3834 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3835 DAG.getConstant(-4, DL, PtrVT)); 3836 3837 // Get the number of bits that the word must be rotated left in order 3838 // to bring the field to the top bits of a GR32. 3839 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3840 DAG.getConstant(3, DL, PtrVT)); 3841 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3842 3843 // Get the complementing shift amount, for rotating a field in the top 3844 // bits back to its proper position. 3845 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3846 DAG.getConstant(0, DL, WideVT), BitShift); 3847 3848 // Construct the ATOMIC_CMP_SWAPW node. 3849 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3850 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3851 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3852 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3853 VTList, Ops, NarrowVT, MMO); 3854 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3855 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 3856 3857 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3858 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3859 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3860 return SDValue(); 3861 } 3862 3863 MachineMemOperand::Flags 3864 SystemZTargetLowering::getMMOFlags(const Instruction &I) const { 3865 // Because of how we convert atomic_load and atomic_store to normal loads and 3866 // stores in the DAG, we need to ensure that the MMOs are marked volatile 3867 // since DAGCombine hasn't been updated to account for atomic, but non 3868 // volatile loads. (See D57601) 3869 if (auto *SI = dyn_cast<StoreInst>(&I)) 3870 if (SI->isAtomic()) 3871 return MachineMemOperand::MOVolatile; 3872 if (auto *LI = dyn_cast<LoadInst>(&I)) 3873 if (LI->isAtomic()) 3874 return MachineMemOperand::MOVolatile; 3875 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 3876 if (AI->isAtomic()) 3877 return MachineMemOperand::MOVolatile; 3878 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 3879 if (AI->isAtomic()) 3880 return MachineMemOperand::MOVolatile; 3881 return MachineMemOperand::MONone; 3882 } 3883 3884 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3885 SelectionDAG &DAG) const { 3886 MachineFunction &MF = DAG.getMachineFunction(); 3887 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3888 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 3889 report_fatal_error("Variable-sized stack allocations are not supported " 3890 "in GHC calling convention"); 3891 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3892 SystemZ::R15D, Op.getValueType()); 3893 } 3894 3895 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3896 SelectionDAG &DAG) const { 3897 MachineFunction &MF = DAG.getMachineFunction(); 3898 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3899 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3900 3901 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 3902 report_fatal_error("Variable-sized stack allocations are not supported " 3903 "in GHC calling convention"); 3904 3905 SDValue Chain = Op.getOperand(0); 3906 SDValue NewSP = Op.getOperand(1); 3907 SDValue Backchain; 3908 SDLoc DL(Op); 3909 3910 if (StoreBackchain) { 3911 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3912 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3913 } 3914 3915 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3916 3917 if (StoreBackchain) 3918 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3919 3920 return Chain; 3921 } 3922 3923 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3924 SelectionDAG &DAG) const { 3925 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3926 if (!IsData) 3927 // Just preserve the chain. 3928 return Op.getOperand(0); 3929 3930 SDLoc DL(Op); 3931 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3932 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3933 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3934 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 3935 Op.getOperand(1)}; 3936 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3937 Node->getVTList(), Ops, 3938 Node->getMemoryVT(), Node->getMemOperand()); 3939 } 3940 3941 // Convert condition code in CCReg to an i32 value. 3942 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 3943 SDLoc DL(CCReg); 3944 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 3945 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3946 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3947 } 3948 3949 SDValue 3950 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3951 SelectionDAG &DAG) const { 3952 unsigned Opcode, CCValid; 3953 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3954 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3955 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 3956 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 3957 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3958 return SDValue(); 3959 } 3960 3961 return SDValue(); 3962 } 3963 3964 SDValue 3965 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3966 SelectionDAG &DAG) const { 3967 unsigned Opcode, CCValid; 3968 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3969 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 3970 if (Op->getNumValues() == 1) 3971 return getCCResult(DAG, SDValue(Node, 0)); 3972 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3973 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 3974 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 3975 } 3976 3977 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3978 switch (Id) { 3979 case Intrinsic::thread_pointer: 3980 return lowerThreadPointer(SDLoc(Op), DAG); 3981 3982 case Intrinsic::s390_vpdi: 3983 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3984 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3985 3986 case Intrinsic::s390_vperm: 3987 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3988 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3989 3990 case Intrinsic::s390_vuphb: 3991 case Intrinsic::s390_vuphh: 3992 case Intrinsic::s390_vuphf: 3993 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3994 Op.getOperand(1)); 3995 3996 case Intrinsic::s390_vuplhb: 3997 case Intrinsic::s390_vuplhh: 3998 case Intrinsic::s390_vuplhf: 3999 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4000 Op.getOperand(1)); 4001 4002 case Intrinsic::s390_vuplb: 4003 case Intrinsic::s390_vuplhw: 4004 case Intrinsic::s390_vuplf: 4005 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4006 Op.getOperand(1)); 4007 4008 case Intrinsic::s390_vupllb: 4009 case Intrinsic::s390_vupllh: 4010 case Intrinsic::s390_vupllf: 4011 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4012 Op.getOperand(1)); 4013 4014 case Intrinsic::s390_vsumb: 4015 case Intrinsic::s390_vsumh: 4016 case Intrinsic::s390_vsumgh: 4017 case Intrinsic::s390_vsumgf: 4018 case Intrinsic::s390_vsumqf: 4019 case Intrinsic::s390_vsumqg: 4020 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4021 Op.getOperand(1), Op.getOperand(2)); 4022 } 4023 4024 return SDValue(); 4025 } 4026 4027 namespace { 4028 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4029 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4030 // Operand is the constant third operand, otherwise it is the number of 4031 // bytes in each element of the result. 4032 struct Permute { 4033 unsigned Opcode; 4034 unsigned Operand; 4035 unsigned char Bytes[SystemZ::VectorBytes]; 4036 }; 4037 } 4038 4039 static const Permute PermuteForms[] = { 4040 // VMRHG 4041 { SystemZISD::MERGE_HIGH, 8, 4042 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4043 // VMRHF 4044 { SystemZISD::MERGE_HIGH, 4, 4045 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4046 // VMRHH 4047 { SystemZISD::MERGE_HIGH, 2, 4048 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4049 // VMRHB 4050 { SystemZISD::MERGE_HIGH, 1, 4051 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4052 // VMRLG 4053 { SystemZISD::MERGE_LOW, 8, 4054 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4055 // VMRLF 4056 { SystemZISD::MERGE_LOW, 4, 4057 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4058 // VMRLH 4059 { SystemZISD::MERGE_LOW, 2, 4060 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4061 // VMRLB 4062 { SystemZISD::MERGE_LOW, 1, 4063 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4064 // VPKG 4065 { SystemZISD::PACK, 4, 4066 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4067 // VPKF 4068 { SystemZISD::PACK, 2, 4069 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4070 // VPKH 4071 { SystemZISD::PACK, 1, 4072 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4073 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4074 { SystemZISD::PERMUTE_DWORDS, 4, 4075 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4076 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4077 { SystemZISD::PERMUTE_DWORDS, 1, 4078 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4079 }; 4080 4081 // Called after matching a vector shuffle against a particular pattern. 4082 // Both the original shuffle and the pattern have two vector operands. 4083 // OpNos[0] is the operand of the original shuffle that should be used for 4084 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4085 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4086 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4087 // for operands 0 and 1 of the pattern. 4088 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4089 if (OpNos[0] < 0) { 4090 if (OpNos[1] < 0) 4091 return false; 4092 OpNo0 = OpNo1 = OpNos[1]; 4093 } else if (OpNos[1] < 0) { 4094 OpNo0 = OpNo1 = OpNos[0]; 4095 } else { 4096 OpNo0 = OpNos[0]; 4097 OpNo1 = OpNos[1]; 4098 } 4099 return true; 4100 } 4101 4102 // Bytes is a VPERM-like permute vector, except that -1 is used for 4103 // undefined bytes. Return true if the VPERM can be implemented using P. 4104 // When returning true set OpNo0 to the VPERM operand that should be 4105 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4106 // 4107 // For example, if swapping the VPERM operands allows P to match, OpNo0 4108 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4109 // operand, but rewriting it to use two duplicated operands allows it to 4110 // match P, then OpNo0 and OpNo1 will be the same. 4111 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4112 unsigned &OpNo0, unsigned &OpNo1) { 4113 int OpNos[] = { -1, -1 }; 4114 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4115 int Elt = Bytes[I]; 4116 if (Elt >= 0) { 4117 // Make sure that the two permute vectors use the same suboperand 4118 // byte number. Only the operand numbers (the high bits) are 4119 // allowed to differ. 4120 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4121 return false; 4122 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4123 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4124 // Make sure that the operand mappings are consistent with previous 4125 // elements. 4126 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4127 return false; 4128 OpNos[ModelOpNo] = RealOpNo; 4129 } 4130 } 4131 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4132 } 4133 4134 // As above, but search for a matching permute. 4135 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4136 unsigned &OpNo0, unsigned &OpNo1) { 4137 for (auto &P : PermuteForms) 4138 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4139 return &P; 4140 return nullptr; 4141 } 4142 4143 // Bytes is a VPERM-like permute vector, except that -1 is used for 4144 // undefined bytes. This permute is an operand of an outer permute. 4145 // See whether redistributing the -1 bytes gives a shuffle that can be 4146 // implemented using P. If so, set Transform to a VPERM-like permute vector 4147 // that, when applied to the result of P, gives the original permute in Bytes. 4148 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4149 const Permute &P, 4150 SmallVectorImpl<int> &Transform) { 4151 unsigned To = 0; 4152 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4153 int Elt = Bytes[From]; 4154 if (Elt < 0) 4155 // Byte number From of the result is undefined. 4156 Transform[From] = -1; 4157 else { 4158 while (P.Bytes[To] != Elt) { 4159 To += 1; 4160 if (To == SystemZ::VectorBytes) 4161 return false; 4162 } 4163 Transform[From] = To; 4164 } 4165 } 4166 return true; 4167 } 4168 4169 // As above, but search for a matching permute. 4170 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4171 SmallVectorImpl<int> &Transform) { 4172 for (auto &P : PermuteForms) 4173 if (matchDoublePermute(Bytes, P, Transform)) 4174 return &P; 4175 return nullptr; 4176 } 4177 4178 // Convert the mask of the given shuffle op into a byte-level mask, 4179 // as if it had type vNi8. 4180 static bool getVPermMask(SDValue ShuffleOp, 4181 SmallVectorImpl<int> &Bytes) { 4182 EVT VT = ShuffleOp.getValueType(); 4183 unsigned NumElements = VT.getVectorNumElements(); 4184 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4185 4186 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4187 Bytes.resize(NumElements * BytesPerElement, -1); 4188 for (unsigned I = 0; I < NumElements; ++I) { 4189 int Index = VSN->getMaskElt(I); 4190 if (Index >= 0) 4191 for (unsigned J = 0; J < BytesPerElement; ++J) 4192 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4193 } 4194 return true; 4195 } 4196 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4197 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4198 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4199 Bytes.resize(NumElements * BytesPerElement, -1); 4200 for (unsigned I = 0; I < NumElements; ++I) 4201 for (unsigned J = 0; J < BytesPerElement; ++J) 4202 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4203 return true; 4204 } 4205 return false; 4206 } 4207 4208 // Bytes is a VPERM-like permute vector, except that -1 is used for 4209 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4210 // the result come from a contiguous sequence of bytes from one input. 4211 // Set Base to the selector for the first byte if so. 4212 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4213 unsigned BytesPerElement, int &Base) { 4214 Base = -1; 4215 for (unsigned I = 0; I < BytesPerElement; ++I) { 4216 if (Bytes[Start + I] >= 0) { 4217 unsigned Elem = Bytes[Start + I]; 4218 if (Base < 0) { 4219 Base = Elem - I; 4220 // Make sure the bytes would come from one input operand. 4221 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4222 return false; 4223 } else if (unsigned(Base) != Elem - I) 4224 return false; 4225 } 4226 } 4227 return true; 4228 } 4229 4230 // Bytes is a VPERM-like permute vector, except that -1 is used for 4231 // undefined bytes. Return true if it can be performed using VSLDI. 4232 // When returning true, set StartIndex to the shift amount and OpNo0 4233 // and OpNo1 to the VPERM operands that should be used as the first 4234 // and second shift operand respectively. 4235 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4236 unsigned &StartIndex, unsigned &OpNo0, 4237 unsigned &OpNo1) { 4238 int OpNos[] = { -1, -1 }; 4239 int Shift = -1; 4240 for (unsigned I = 0; I < 16; ++I) { 4241 int Index = Bytes[I]; 4242 if (Index >= 0) { 4243 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4244 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4245 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4246 if (Shift < 0) 4247 Shift = ExpectedShift; 4248 else if (Shift != ExpectedShift) 4249 return false; 4250 // Make sure that the operand mappings are consistent with previous 4251 // elements. 4252 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4253 return false; 4254 OpNos[ModelOpNo] = RealOpNo; 4255 } 4256 } 4257 StartIndex = Shift; 4258 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4259 } 4260 4261 // Create a node that performs P on operands Op0 and Op1, casting the 4262 // operands to the appropriate type. The type of the result is determined by P. 4263 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4264 const Permute &P, SDValue Op0, SDValue Op1) { 4265 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4266 // elements of a PACK are twice as wide as the outputs. 4267 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4268 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4269 P.Operand); 4270 // Cast both operands to the appropriate type. 4271 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4272 SystemZ::VectorBytes / InBytes); 4273 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4274 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4275 SDValue Op; 4276 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4277 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4278 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4279 } else if (P.Opcode == SystemZISD::PACK) { 4280 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4281 SystemZ::VectorBytes / P.Operand); 4282 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4283 } else { 4284 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4285 } 4286 return Op; 4287 } 4288 4289 // Bytes is a VPERM-like permute vector, except that -1 is used for 4290 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4291 // VSLDI or VPERM. 4292 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4293 SDValue *Ops, 4294 const SmallVectorImpl<int> &Bytes) { 4295 for (unsigned I = 0; I < 2; ++I) 4296 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4297 4298 // First see whether VSLDI can be used. 4299 unsigned StartIndex, OpNo0, OpNo1; 4300 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4301 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4302 Ops[OpNo1], 4303 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4304 4305 // Fall back on VPERM. Construct an SDNode for the permute vector. 4306 SDValue IndexNodes[SystemZ::VectorBytes]; 4307 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4308 if (Bytes[I] >= 0) 4309 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4310 else 4311 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4312 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4313 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 4314 } 4315 4316 namespace { 4317 // Describes a general N-operand vector shuffle. 4318 struct GeneralShuffle { 4319 GeneralShuffle(EVT vt) : VT(vt) {} 4320 void addUndef(); 4321 bool add(SDValue, unsigned); 4322 SDValue getNode(SelectionDAG &, const SDLoc &); 4323 4324 // The operands of the shuffle. 4325 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4326 4327 // Index I is -1 if byte I of the result is undefined. Otherwise the 4328 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4329 // Bytes[I] / SystemZ::VectorBytes. 4330 SmallVector<int, SystemZ::VectorBytes> Bytes; 4331 4332 // The type of the shuffle result. 4333 EVT VT; 4334 }; 4335 } 4336 4337 // Add an extra undefined element to the shuffle. 4338 void GeneralShuffle::addUndef() { 4339 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4340 for (unsigned I = 0; I < BytesPerElement; ++I) 4341 Bytes.push_back(-1); 4342 } 4343 4344 // Add an extra element to the shuffle, taking it from element Elem of Op. 4345 // A null Op indicates a vector input whose value will be calculated later; 4346 // there is at most one such input per shuffle and it always has the same 4347 // type as the result. Aborts and returns false if the source vector elements 4348 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4349 // LLVM they become implicitly extended, but this is rare and not optimized. 4350 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4351 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4352 4353 // The source vector can have wider elements than the result, 4354 // either through an explicit TRUNCATE or because of type legalization. 4355 // We want the least significant part. 4356 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4357 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4358 4359 // Return false if the source elements are smaller than their destination 4360 // elements. 4361 if (FromBytesPerElement < BytesPerElement) 4362 return false; 4363 4364 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4365 (FromBytesPerElement - BytesPerElement)); 4366 4367 // Look through things like shuffles and bitcasts. 4368 while (Op.getNode()) { 4369 if (Op.getOpcode() == ISD::BITCAST) 4370 Op = Op.getOperand(0); 4371 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4372 // See whether the bytes we need come from a contiguous part of one 4373 // operand. 4374 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4375 if (!getVPermMask(Op, OpBytes)) 4376 break; 4377 int NewByte; 4378 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4379 break; 4380 if (NewByte < 0) { 4381 addUndef(); 4382 return true; 4383 } 4384 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4385 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4386 } else if (Op.isUndef()) { 4387 addUndef(); 4388 return true; 4389 } else 4390 break; 4391 } 4392 4393 // Make sure that the source of the extraction is in Ops. 4394 unsigned OpNo = 0; 4395 for (; OpNo < Ops.size(); ++OpNo) 4396 if (Ops[OpNo] == Op) 4397 break; 4398 if (OpNo == Ops.size()) 4399 Ops.push_back(Op); 4400 4401 // Add the element to Bytes. 4402 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4403 for (unsigned I = 0; I < BytesPerElement; ++I) 4404 Bytes.push_back(Base + I); 4405 4406 return true; 4407 } 4408 4409 // Return SDNodes for the completed shuffle. 4410 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4411 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4412 4413 if (Ops.size() == 0) 4414 return DAG.getUNDEF(VT); 4415 4416 // Make sure that there are at least two shuffle operands. 4417 if (Ops.size() == 1) 4418 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4419 4420 // Create a tree of shuffles, deferring root node until after the loop. 4421 // Try to redistribute the undefined elements of non-root nodes so that 4422 // the non-root shuffles match something like a pack or merge, then adjust 4423 // the parent node's permute vector to compensate for the new order. 4424 // Among other things, this copes with vectors like <2 x i16> that were 4425 // padded with undefined elements during type legalization. 4426 // 4427 // In the best case this redistribution will lead to the whole tree 4428 // using packs and merges. It should rarely be a loss in other cases. 4429 unsigned Stride = 1; 4430 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4431 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4432 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4433 4434 // Create a mask for just these two operands. 4435 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4436 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4437 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4438 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4439 if (OpNo == I) 4440 NewBytes[J] = Byte; 4441 else if (OpNo == I + Stride) 4442 NewBytes[J] = SystemZ::VectorBytes + Byte; 4443 else 4444 NewBytes[J] = -1; 4445 } 4446 // See if it would be better to reorganize NewMask to avoid using VPERM. 4447 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4448 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4449 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4450 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4451 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4452 if (NewBytes[J] >= 0) { 4453 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4454 "Invalid double permute"); 4455 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4456 } else 4457 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4458 } 4459 } else { 4460 // Just use NewBytes on the operands. 4461 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4462 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4463 if (NewBytes[J] >= 0) 4464 Bytes[J] = I * SystemZ::VectorBytes + J; 4465 } 4466 } 4467 } 4468 4469 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4470 if (Stride > 1) { 4471 Ops[1] = Ops[Stride]; 4472 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4473 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4474 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4475 } 4476 4477 // Look for an instruction that can do the permute without resorting 4478 // to VPERM. 4479 unsigned OpNo0, OpNo1; 4480 SDValue Op; 4481 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4482 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4483 else 4484 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4485 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4486 } 4487 4488 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4489 static bool isScalarToVector(SDValue Op) { 4490 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4491 if (!Op.getOperand(I).isUndef()) 4492 return false; 4493 return true; 4494 } 4495 4496 // Return a vector of type VT that contains Value in the first element. 4497 // The other elements don't matter. 4498 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4499 SDValue Value) { 4500 // If we have a constant, replicate it to all elements and let the 4501 // BUILD_VECTOR lowering take care of it. 4502 if (Value.getOpcode() == ISD::Constant || 4503 Value.getOpcode() == ISD::ConstantFP) { 4504 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4505 return DAG.getBuildVector(VT, DL, Ops); 4506 } 4507 if (Value.isUndef()) 4508 return DAG.getUNDEF(VT); 4509 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4510 } 4511 4512 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4513 // element 1. Used for cases in which replication is cheap. 4514 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4515 SDValue Op0, SDValue Op1) { 4516 if (Op0.isUndef()) { 4517 if (Op1.isUndef()) 4518 return DAG.getUNDEF(VT); 4519 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4520 } 4521 if (Op1.isUndef()) 4522 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4523 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4524 buildScalarToVector(DAG, DL, VT, Op0), 4525 buildScalarToVector(DAG, DL, VT, Op1)); 4526 } 4527 4528 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4529 // vector for them. 4530 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4531 SDValue Op1) { 4532 if (Op0.isUndef() && Op1.isUndef()) 4533 return DAG.getUNDEF(MVT::v2i64); 4534 // If one of the two inputs is undefined then replicate the other one, 4535 // in order to avoid using another register unnecessarily. 4536 if (Op0.isUndef()) 4537 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4538 else if (Op1.isUndef()) 4539 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4540 else { 4541 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4542 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4543 } 4544 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4545 } 4546 4547 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4548 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4549 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4550 // would benefit from this representation and return it if so. 4551 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4552 BuildVectorSDNode *BVN) { 4553 EVT VT = BVN->getValueType(0); 4554 unsigned NumElements = VT.getVectorNumElements(); 4555 4556 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4557 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4558 // need a BUILD_VECTOR, add an additional placeholder operand for that 4559 // BUILD_VECTOR and store its operands in ResidueOps. 4560 GeneralShuffle GS(VT); 4561 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4562 bool FoundOne = false; 4563 for (unsigned I = 0; I < NumElements; ++I) { 4564 SDValue Op = BVN->getOperand(I); 4565 if (Op.getOpcode() == ISD::TRUNCATE) 4566 Op = Op.getOperand(0); 4567 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4568 Op.getOperand(1).getOpcode() == ISD::Constant) { 4569 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4570 if (!GS.add(Op.getOperand(0), Elem)) 4571 return SDValue(); 4572 FoundOne = true; 4573 } else if (Op.isUndef()) { 4574 GS.addUndef(); 4575 } else { 4576 if (!GS.add(SDValue(), ResidueOps.size())) 4577 return SDValue(); 4578 ResidueOps.push_back(BVN->getOperand(I)); 4579 } 4580 } 4581 4582 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4583 if (!FoundOne) 4584 return SDValue(); 4585 4586 // Create the BUILD_VECTOR for the remaining elements, if any. 4587 if (!ResidueOps.empty()) { 4588 while (ResidueOps.size() < NumElements) 4589 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4590 for (auto &Op : GS.Ops) { 4591 if (!Op.getNode()) { 4592 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4593 break; 4594 } 4595 } 4596 } 4597 return GS.getNode(DAG, SDLoc(BVN)); 4598 } 4599 4600 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 4601 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 4602 return true; 4603 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 4604 return true; 4605 return false; 4606 } 4607 4608 // Combine GPR scalar values Elems into a vector of type VT. 4609 SDValue 4610 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4611 SmallVectorImpl<SDValue> &Elems) const { 4612 // See whether there is a single replicated value. 4613 SDValue Single; 4614 unsigned int NumElements = Elems.size(); 4615 unsigned int Count = 0; 4616 for (auto Elem : Elems) { 4617 if (!Elem.isUndef()) { 4618 if (!Single.getNode()) 4619 Single = Elem; 4620 else if (Elem != Single) { 4621 Single = SDValue(); 4622 break; 4623 } 4624 Count += 1; 4625 } 4626 } 4627 // There are three cases here: 4628 // 4629 // - if the only defined element is a loaded one, the best sequence 4630 // is a replicating load. 4631 // 4632 // - otherwise, if the only defined element is an i64 value, we will 4633 // end up with the same VLVGP sequence regardless of whether we short-cut 4634 // for replication or fall through to the later code. 4635 // 4636 // - otherwise, if the only defined element is an i32 or smaller value, 4637 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4638 // This is only a win if the single defined element is used more than once. 4639 // In other cases we're better off using a single VLVGx. 4640 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 4641 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4642 4643 // If all elements are loads, use VLREP/VLEs (below). 4644 bool AllLoads = true; 4645 for (auto Elem : Elems) 4646 if (!isVectorElementLoad(Elem)) { 4647 AllLoads = false; 4648 break; 4649 } 4650 4651 // The best way of building a v2i64 from two i64s is to use VLVGP. 4652 if (VT == MVT::v2i64 && !AllLoads) 4653 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4654 4655 // Use a 64-bit merge high to combine two doubles. 4656 if (VT == MVT::v2f64 && !AllLoads) 4657 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4658 4659 // Build v4f32 values directly from the FPRs: 4660 // 4661 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4662 // V V VMRHF 4663 // <ABxx> <CDxx> 4664 // V VMRHG 4665 // <ABCD> 4666 if (VT == MVT::v4f32 && !AllLoads) { 4667 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4668 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4669 // Avoid unnecessary undefs by reusing the other operand. 4670 if (Op01.isUndef()) 4671 Op01 = Op23; 4672 else if (Op23.isUndef()) 4673 Op23 = Op01; 4674 // Merging identical replications is a no-op. 4675 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4676 return Op01; 4677 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4678 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4679 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4680 DL, MVT::v2i64, Op01, Op23); 4681 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4682 } 4683 4684 // Collect the constant terms. 4685 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4686 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4687 4688 unsigned NumConstants = 0; 4689 for (unsigned I = 0; I < NumElements; ++I) { 4690 SDValue Elem = Elems[I]; 4691 if (Elem.getOpcode() == ISD::Constant || 4692 Elem.getOpcode() == ISD::ConstantFP) { 4693 NumConstants += 1; 4694 Constants[I] = Elem; 4695 Done[I] = true; 4696 } 4697 } 4698 // If there was at least one constant, fill in the other elements of 4699 // Constants with undefs to get a full vector constant and use that 4700 // as the starting point. 4701 SDValue Result; 4702 SDValue ReplicatedVal; 4703 if (NumConstants > 0) { 4704 for (unsigned I = 0; I < NumElements; ++I) 4705 if (!Constants[I].getNode()) 4706 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4707 Result = DAG.getBuildVector(VT, DL, Constants); 4708 } else { 4709 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4710 // avoid a false dependency on any previous contents of the vector 4711 // register. 4712 4713 // Use a VLREP if at least one element is a load. Make sure to replicate 4714 // the load with the most elements having its value. 4715 std::map<const SDNode*, unsigned> UseCounts; 4716 SDNode *LoadMaxUses = nullptr; 4717 for (unsigned I = 0; I < NumElements; ++I) 4718 if (isVectorElementLoad(Elems[I])) { 4719 SDNode *Ld = Elems[I].getNode(); 4720 UseCounts[Ld]++; 4721 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 4722 LoadMaxUses = Ld; 4723 } 4724 if (LoadMaxUses != nullptr) { 4725 ReplicatedVal = SDValue(LoadMaxUses, 0); 4726 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 4727 } else { 4728 // Try to use VLVGP. 4729 unsigned I1 = NumElements / 2 - 1; 4730 unsigned I2 = NumElements - 1; 4731 bool Def1 = !Elems[I1].isUndef(); 4732 bool Def2 = !Elems[I2].isUndef(); 4733 if (Def1 || Def2) { 4734 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4735 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4736 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4737 joinDwords(DAG, DL, Elem1, Elem2)); 4738 Done[I1] = true; 4739 Done[I2] = true; 4740 } else 4741 Result = DAG.getUNDEF(VT); 4742 } 4743 } 4744 4745 // Use VLVGx to insert the other elements. 4746 for (unsigned I = 0; I < NumElements; ++I) 4747 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 4748 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4749 DAG.getConstant(I, DL, MVT::i32)); 4750 return Result; 4751 } 4752 4753 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4754 SelectionDAG &DAG) const { 4755 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4756 SDLoc DL(Op); 4757 EVT VT = Op.getValueType(); 4758 4759 if (BVN->isConstant()) { 4760 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 4761 return Op; 4762 4763 // Fall back to loading it from memory. 4764 return SDValue(); 4765 } 4766 4767 // See if we should use shuffles to construct the vector from other vectors. 4768 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4769 return Res; 4770 4771 // Detect SCALAR_TO_VECTOR conversions. 4772 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4773 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4774 4775 // Otherwise use buildVector to build the vector up from GPRs. 4776 unsigned NumElements = Op.getNumOperands(); 4777 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4778 for (unsigned I = 0; I < NumElements; ++I) 4779 Ops[I] = Op.getOperand(I); 4780 return buildVector(DAG, DL, VT, Ops); 4781 } 4782 4783 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4784 SelectionDAG &DAG) const { 4785 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4786 SDLoc DL(Op); 4787 EVT VT = Op.getValueType(); 4788 unsigned NumElements = VT.getVectorNumElements(); 4789 4790 if (VSN->isSplat()) { 4791 SDValue Op0 = Op.getOperand(0); 4792 unsigned Index = VSN->getSplatIndex(); 4793 assert(Index < VT.getVectorNumElements() && 4794 "Splat index should be defined and in first operand"); 4795 // See whether the value we're splatting is directly available as a scalar. 4796 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4797 Op0.getOpcode() == ISD::BUILD_VECTOR) 4798 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4799 // Otherwise keep it as a vector-to-vector operation. 4800 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4801 DAG.getTargetConstant(Index, DL, MVT::i32)); 4802 } 4803 4804 GeneralShuffle GS(VT); 4805 for (unsigned I = 0; I < NumElements; ++I) { 4806 int Elt = VSN->getMaskElt(I); 4807 if (Elt < 0) 4808 GS.addUndef(); 4809 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4810 unsigned(Elt) % NumElements)) 4811 return SDValue(); 4812 } 4813 return GS.getNode(DAG, SDLoc(VSN)); 4814 } 4815 4816 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4817 SelectionDAG &DAG) const { 4818 SDLoc DL(Op); 4819 // Just insert the scalar into element 0 of an undefined vector. 4820 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4821 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4822 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4823 } 4824 4825 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4826 SelectionDAG &DAG) const { 4827 // Handle insertions of floating-point values. 4828 SDLoc DL(Op); 4829 SDValue Op0 = Op.getOperand(0); 4830 SDValue Op1 = Op.getOperand(1); 4831 SDValue Op2 = Op.getOperand(2); 4832 EVT VT = Op.getValueType(); 4833 4834 // Insertions into constant indices of a v2f64 can be done using VPDI. 4835 // However, if the inserted value is a bitcast or a constant then it's 4836 // better to use GPRs, as below. 4837 if (VT == MVT::v2f64 && 4838 Op1.getOpcode() != ISD::BITCAST && 4839 Op1.getOpcode() != ISD::ConstantFP && 4840 Op2.getOpcode() == ISD::Constant) { 4841 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 4842 unsigned Mask = VT.getVectorNumElements() - 1; 4843 if (Index <= Mask) 4844 return Op; 4845 } 4846 4847 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4848 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4849 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4850 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4851 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4852 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4853 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4854 } 4855 4856 SDValue 4857 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4858 SelectionDAG &DAG) const { 4859 // Handle extractions of floating-point values. 4860 SDLoc DL(Op); 4861 SDValue Op0 = Op.getOperand(0); 4862 SDValue Op1 = Op.getOperand(1); 4863 EVT VT = Op.getValueType(); 4864 EVT VecVT = Op0.getValueType(); 4865 4866 // Extractions of constant indices can be done directly. 4867 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4868 uint64_t Index = CIndexN->getZExtValue(); 4869 unsigned Mask = VecVT.getVectorNumElements() - 1; 4870 if (Index <= Mask) 4871 return Op; 4872 } 4873 4874 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4875 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4876 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4877 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4878 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4879 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4880 } 4881 4882 SDValue 4883 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4884 unsigned UnpackHigh) const { 4885 SDValue PackedOp = Op.getOperand(0); 4886 EVT OutVT = Op.getValueType(); 4887 EVT InVT = PackedOp.getValueType(); 4888 unsigned ToBits = OutVT.getScalarSizeInBits(); 4889 unsigned FromBits = InVT.getScalarSizeInBits(); 4890 do { 4891 FromBits *= 2; 4892 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4893 SystemZ::VectorBits / FromBits); 4894 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4895 } while (FromBits != ToBits); 4896 return PackedOp; 4897 } 4898 4899 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4900 unsigned ByScalar) const { 4901 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4902 SDValue Op0 = Op.getOperand(0); 4903 SDValue Op1 = Op.getOperand(1); 4904 SDLoc DL(Op); 4905 EVT VT = Op.getValueType(); 4906 unsigned ElemBitSize = VT.getScalarSizeInBits(); 4907 4908 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4909 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4910 APInt SplatBits, SplatUndef; 4911 unsigned SplatBitSize; 4912 bool HasAnyUndefs; 4913 // Check for constant splats. Use ElemBitSize as the minimum element 4914 // width and reject splats that need wider elements. 4915 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4916 ElemBitSize, true) && 4917 SplatBitSize == ElemBitSize) { 4918 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4919 DL, MVT::i32); 4920 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4921 } 4922 // Check for variable splats. 4923 BitVector UndefElements; 4924 SDValue Splat = BVN->getSplatValue(&UndefElements); 4925 if (Splat) { 4926 // Since i32 is the smallest legal type, we either need a no-op 4927 // or a truncation. 4928 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4929 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4930 } 4931 } 4932 4933 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4934 // and the shift amount is directly available in a GPR. 4935 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4936 if (VSN->isSplat()) { 4937 SDValue VSNOp0 = VSN->getOperand(0); 4938 unsigned Index = VSN->getSplatIndex(); 4939 assert(Index < VT.getVectorNumElements() && 4940 "Splat index should be defined and in first operand"); 4941 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4942 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4943 // Since i32 is the smallest legal type, we either need a no-op 4944 // or a truncation. 4945 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4946 VSNOp0.getOperand(Index)); 4947 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4948 } 4949 } 4950 } 4951 4952 // Otherwise just treat the current form as legal. 4953 return Op; 4954 } 4955 4956 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4957 SelectionDAG &DAG) const { 4958 switch (Op.getOpcode()) { 4959 case ISD::FRAMEADDR: 4960 return lowerFRAMEADDR(Op, DAG); 4961 case ISD::RETURNADDR: 4962 return lowerRETURNADDR(Op, DAG); 4963 case ISD::BR_CC: 4964 return lowerBR_CC(Op, DAG); 4965 case ISD::SELECT_CC: 4966 return lowerSELECT_CC(Op, DAG); 4967 case ISD::SETCC: 4968 return lowerSETCC(Op, DAG); 4969 case ISD::GlobalAddress: 4970 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4971 case ISD::GlobalTLSAddress: 4972 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4973 case ISD::BlockAddress: 4974 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4975 case ISD::JumpTable: 4976 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4977 case ISD::ConstantPool: 4978 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4979 case ISD::BITCAST: 4980 return lowerBITCAST(Op, DAG); 4981 case ISD::VASTART: 4982 return lowerVASTART(Op, DAG); 4983 case ISD::VACOPY: 4984 return lowerVACOPY(Op, DAG); 4985 case ISD::DYNAMIC_STACKALLOC: 4986 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4987 case ISD::GET_DYNAMIC_AREA_OFFSET: 4988 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4989 case ISD::SMUL_LOHI: 4990 return lowerSMUL_LOHI(Op, DAG); 4991 case ISD::UMUL_LOHI: 4992 return lowerUMUL_LOHI(Op, DAG); 4993 case ISD::SDIVREM: 4994 return lowerSDIVREM(Op, DAG); 4995 case ISD::UDIVREM: 4996 return lowerUDIVREM(Op, DAG); 4997 case ISD::SADDO: 4998 case ISD::SSUBO: 4999 case ISD::UADDO: 5000 case ISD::USUBO: 5001 return lowerXALUO(Op, DAG); 5002 case ISD::ADDCARRY: 5003 case ISD::SUBCARRY: 5004 return lowerADDSUBCARRY(Op, DAG); 5005 case ISD::OR: 5006 return lowerOR(Op, DAG); 5007 case ISD::CTPOP: 5008 return lowerCTPOP(Op, DAG); 5009 case ISD::ATOMIC_FENCE: 5010 return lowerATOMIC_FENCE(Op, DAG); 5011 case ISD::ATOMIC_SWAP: 5012 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5013 case ISD::ATOMIC_STORE: 5014 return lowerATOMIC_STORE(Op, DAG); 5015 case ISD::ATOMIC_LOAD: 5016 return lowerATOMIC_LOAD(Op, DAG); 5017 case ISD::ATOMIC_LOAD_ADD: 5018 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5019 case ISD::ATOMIC_LOAD_SUB: 5020 return lowerATOMIC_LOAD_SUB(Op, DAG); 5021 case ISD::ATOMIC_LOAD_AND: 5022 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5023 case ISD::ATOMIC_LOAD_OR: 5024 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5025 case ISD::ATOMIC_LOAD_XOR: 5026 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5027 case ISD::ATOMIC_LOAD_NAND: 5028 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5029 case ISD::ATOMIC_LOAD_MIN: 5030 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5031 case ISD::ATOMIC_LOAD_MAX: 5032 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5033 case ISD::ATOMIC_LOAD_UMIN: 5034 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5035 case ISD::ATOMIC_LOAD_UMAX: 5036 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5037 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5038 return lowerATOMIC_CMP_SWAP(Op, DAG); 5039 case ISD::STACKSAVE: 5040 return lowerSTACKSAVE(Op, DAG); 5041 case ISD::STACKRESTORE: 5042 return lowerSTACKRESTORE(Op, DAG); 5043 case ISD::PREFETCH: 5044 return lowerPREFETCH(Op, DAG); 5045 case ISD::INTRINSIC_W_CHAIN: 5046 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5047 case ISD::INTRINSIC_WO_CHAIN: 5048 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5049 case ISD::BUILD_VECTOR: 5050 return lowerBUILD_VECTOR(Op, DAG); 5051 case ISD::VECTOR_SHUFFLE: 5052 return lowerVECTOR_SHUFFLE(Op, DAG); 5053 case ISD::SCALAR_TO_VECTOR: 5054 return lowerSCALAR_TO_VECTOR(Op, DAG); 5055 case ISD::INSERT_VECTOR_ELT: 5056 return lowerINSERT_VECTOR_ELT(Op, DAG); 5057 case ISD::EXTRACT_VECTOR_ELT: 5058 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5059 case ISD::SIGN_EXTEND_VECTOR_INREG: 5060 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 5061 case ISD::ZERO_EXTEND_VECTOR_INREG: 5062 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 5063 case ISD::SHL: 5064 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5065 case ISD::SRL: 5066 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5067 case ISD::SRA: 5068 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5069 default: 5070 llvm_unreachable("Unexpected node to lower"); 5071 } 5072 } 5073 5074 // Lower operations with invalid operand or result types (currently used 5075 // only for 128-bit integer types). 5076 5077 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 5078 SDLoc DL(In); 5079 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5080 DAG.getIntPtrConstant(0, DL)); 5081 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5082 DAG.getIntPtrConstant(1, DL)); 5083 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 5084 MVT::Untyped, Hi, Lo); 5085 return SDValue(Pair, 0); 5086 } 5087 5088 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 5089 SDLoc DL(In); 5090 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5091 DL, MVT::i64, In); 5092 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5093 DL, MVT::i64, In); 5094 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 5095 } 5096 5097 void 5098 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5099 SmallVectorImpl<SDValue> &Results, 5100 SelectionDAG &DAG) const { 5101 switch (N->getOpcode()) { 5102 case ISD::ATOMIC_LOAD: { 5103 SDLoc DL(N); 5104 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5105 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5106 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5107 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5108 DL, Tys, Ops, MVT::i128, MMO); 5109 Results.push_back(lowerGR128ToI128(DAG, Res)); 5110 Results.push_back(Res.getValue(1)); 5111 break; 5112 } 5113 case ISD::ATOMIC_STORE: { 5114 SDLoc DL(N); 5115 SDVTList Tys = DAG.getVTList(MVT::Other); 5116 SDValue Ops[] = { N->getOperand(0), 5117 lowerI128ToGR128(DAG, N->getOperand(2)), 5118 N->getOperand(1) }; 5119 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5120 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5121 DL, Tys, Ops, MVT::i128, MMO); 5122 // We have to enforce sequential consistency by performing a 5123 // serialization operation after the store. 5124 if (cast<AtomicSDNode>(N)->getOrdering() == 5125 AtomicOrdering::SequentiallyConsistent) 5126 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5127 MVT::Other, Res), 0); 5128 Results.push_back(Res); 5129 break; 5130 } 5131 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5132 SDLoc DL(N); 5133 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5134 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5135 lowerI128ToGR128(DAG, N->getOperand(2)), 5136 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5137 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5138 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5139 DL, Tys, Ops, MVT::i128, MMO); 5140 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5141 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5142 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5143 Results.push_back(lowerGR128ToI128(DAG, Res)); 5144 Results.push_back(Success); 5145 Results.push_back(Res.getValue(2)); 5146 break; 5147 } 5148 default: 5149 llvm_unreachable("Unexpected node to lower"); 5150 } 5151 } 5152 5153 void 5154 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5155 SmallVectorImpl<SDValue> &Results, 5156 SelectionDAG &DAG) const { 5157 return LowerOperationWrapper(N, Results, DAG); 5158 } 5159 5160 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5161 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5162 switch ((SystemZISD::NodeType)Opcode) { 5163 case SystemZISD::FIRST_NUMBER: break; 5164 OPCODE(RET_FLAG); 5165 OPCODE(CALL); 5166 OPCODE(SIBCALL); 5167 OPCODE(TLS_GDCALL); 5168 OPCODE(TLS_LDCALL); 5169 OPCODE(PCREL_WRAPPER); 5170 OPCODE(PCREL_OFFSET); 5171 OPCODE(IABS); 5172 OPCODE(ICMP); 5173 OPCODE(FCMP); 5174 OPCODE(TM); 5175 OPCODE(BR_CCMASK); 5176 OPCODE(SELECT_CCMASK); 5177 OPCODE(ADJDYNALLOC); 5178 OPCODE(POPCNT); 5179 OPCODE(SMUL_LOHI); 5180 OPCODE(UMUL_LOHI); 5181 OPCODE(SDIVREM); 5182 OPCODE(UDIVREM); 5183 OPCODE(SADDO); 5184 OPCODE(SSUBO); 5185 OPCODE(UADDO); 5186 OPCODE(USUBO); 5187 OPCODE(ADDCARRY); 5188 OPCODE(SUBCARRY); 5189 OPCODE(GET_CCMASK); 5190 OPCODE(MVC); 5191 OPCODE(MVC_LOOP); 5192 OPCODE(NC); 5193 OPCODE(NC_LOOP); 5194 OPCODE(OC); 5195 OPCODE(OC_LOOP); 5196 OPCODE(XC); 5197 OPCODE(XC_LOOP); 5198 OPCODE(CLC); 5199 OPCODE(CLC_LOOP); 5200 OPCODE(STPCPY); 5201 OPCODE(STRCMP); 5202 OPCODE(SEARCH_STRING); 5203 OPCODE(IPM); 5204 OPCODE(MEMBARRIER); 5205 OPCODE(TBEGIN); 5206 OPCODE(TBEGIN_NOFLOAT); 5207 OPCODE(TEND); 5208 OPCODE(BYTE_MASK); 5209 OPCODE(ROTATE_MASK); 5210 OPCODE(REPLICATE); 5211 OPCODE(JOIN_DWORDS); 5212 OPCODE(SPLAT); 5213 OPCODE(MERGE_HIGH); 5214 OPCODE(MERGE_LOW); 5215 OPCODE(SHL_DOUBLE); 5216 OPCODE(PERMUTE_DWORDS); 5217 OPCODE(PERMUTE); 5218 OPCODE(PACK); 5219 OPCODE(PACKS_CC); 5220 OPCODE(PACKLS_CC); 5221 OPCODE(UNPACK_HIGH); 5222 OPCODE(UNPACKL_HIGH); 5223 OPCODE(UNPACK_LOW); 5224 OPCODE(UNPACKL_LOW); 5225 OPCODE(VSHL_BY_SCALAR); 5226 OPCODE(VSRL_BY_SCALAR); 5227 OPCODE(VSRA_BY_SCALAR); 5228 OPCODE(VSUM); 5229 OPCODE(VICMPE); 5230 OPCODE(VICMPH); 5231 OPCODE(VICMPHL); 5232 OPCODE(VICMPES); 5233 OPCODE(VICMPHS); 5234 OPCODE(VICMPHLS); 5235 OPCODE(VFCMPE); 5236 OPCODE(VFCMPH); 5237 OPCODE(VFCMPHE); 5238 OPCODE(VFCMPES); 5239 OPCODE(VFCMPHS); 5240 OPCODE(VFCMPHES); 5241 OPCODE(VFTCI); 5242 OPCODE(VEXTEND); 5243 OPCODE(VROUND); 5244 OPCODE(VTM); 5245 OPCODE(VFAE_CC); 5246 OPCODE(VFAEZ_CC); 5247 OPCODE(VFEE_CC); 5248 OPCODE(VFEEZ_CC); 5249 OPCODE(VFENE_CC); 5250 OPCODE(VFENEZ_CC); 5251 OPCODE(VISTR_CC); 5252 OPCODE(VSTRC_CC); 5253 OPCODE(VSTRCZ_CC); 5254 OPCODE(VSTRS_CC); 5255 OPCODE(VSTRSZ_CC); 5256 OPCODE(TDC); 5257 OPCODE(ATOMIC_SWAPW); 5258 OPCODE(ATOMIC_LOADW_ADD); 5259 OPCODE(ATOMIC_LOADW_SUB); 5260 OPCODE(ATOMIC_LOADW_AND); 5261 OPCODE(ATOMIC_LOADW_OR); 5262 OPCODE(ATOMIC_LOADW_XOR); 5263 OPCODE(ATOMIC_LOADW_NAND); 5264 OPCODE(ATOMIC_LOADW_MIN); 5265 OPCODE(ATOMIC_LOADW_MAX); 5266 OPCODE(ATOMIC_LOADW_UMIN); 5267 OPCODE(ATOMIC_LOADW_UMAX); 5268 OPCODE(ATOMIC_CMP_SWAPW); 5269 OPCODE(ATOMIC_CMP_SWAP); 5270 OPCODE(ATOMIC_LOAD_128); 5271 OPCODE(ATOMIC_STORE_128); 5272 OPCODE(ATOMIC_CMP_SWAP_128); 5273 OPCODE(LRV); 5274 OPCODE(STRV); 5275 OPCODE(VLER); 5276 OPCODE(VSTER); 5277 OPCODE(PREFETCH); 5278 } 5279 return nullptr; 5280 #undef OPCODE 5281 } 5282 5283 // Return true if VT is a vector whose elements are a whole number of bytes 5284 // in width. Also check for presence of vector support. 5285 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5286 if (!Subtarget.hasVector()) 5287 return false; 5288 5289 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5290 } 5291 5292 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5293 // producing a result of type ResVT. Op is a possibly bitcast version 5294 // of the input vector and Index is the index (based on type VecVT) that 5295 // should be extracted. Return the new extraction if a simplification 5296 // was possible or if Force is true. 5297 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5298 EVT VecVT, SDValue Op, 5299 unsigned Index, 5300 DAGCombinerInfo &DCI, 5301 bool Force) const { 5302 SelectionDAG &DAG = DCI.DAG; 5303 5304 // The number of bytes being extracted. 5305 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5306 5307 for (;;) { 5308 unsigned Opcode = Op.getOpcode(); 5309 if (Opcode == ISD::BITCAST) 5310 // Look through bitcasts. 5311 Op = Op.getOperand(0); 5312 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5313 canTreatAsByteVector(Op.getValueType())) { 5314 // Get a VPERM-like permute mask and see whether the bytes covered 5315 // by the extracted element are a contiguous sequence from one 5316 // source operand. 5317 SmallVector<int, SystemZ::VectorBytes> Bytes; 5318 if (!getVPermMask(Op, Bytes)) 5319 break; 5320 int First; 5321 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5322 BytesPerElement, First)) 5323 break; 5324 if (First < 0) 5325 return DAG.getUNDEF(ResVT); 5326 // Make sure the contiguous sequence starts at a multiple of the 5327 // original element size. 5328 unsigned Byte = unsigned(First) % Bytes.size(); 5329 if (Byte % BytesPerElement != 0) 5330 break; 5331 // We can get the extracted value directly from an input. 5332 Index = Byte / BytesPerElement; 5333 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5334 Force = true; 5335 } else if (Opcode == ISD::BUILD_VECTOR && 5336 canTreatAsByteVector(Op.getValueType())) { 5337 // We can only optimize this case if the BUILD_VECTOR elements are 5338 // at least as wide as the extracted value. 5339 EVT OpVT = Op.getValueType(); 5340 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5341 if (OpBytesPerElement < BytesPerElement) 5342 break; 5343 // Make sure that the least-significant bit of the extracted value 5344 // is the least significant bit of an input. 5345 unsigned End = (Index + 1) * BytesPerElement; 5346 if (End % OpBytesPerElement != 0) 5347 break; 5348 // We're extracting the low part of one operand of the BUILD_VECTOR. 5349 Op = Op.getOperand(End / OpBytesPerElement - 1); 5350 if (!Op.getValueType().isInteger()) { 5351 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5352 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5353 DCI.AddToWorklist(Op.getNode()); 5354 } 5355 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5356 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5357 if (VT != ResVT) { 5358 DCI.AddToWorklist(Op.getNode()); 5359 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5360 } 5361 return Op; 5362 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5363 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5364 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5365 canTreatAsByteVector(Op.getValueType()) && 5366 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5367 // Make sure that only the unextended bits are significant. 5368 EVT ExtVT = Op.getValueType(); 5369 EVT OpVT = Op.getOperand(0).getValueType(); 5370 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5371 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5372 unsigned Byte = Index * BytesPerElement; 5373 unsigned SubByte = Byte % ExtBytesPerElement; 5374 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5375 if (SubByte < MinSubByte || 5376 SubByte + BytesPerElement > ExtBytesPerElement) 5377 break; 5378 // Get the byte offset of the unextended element 5379 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5380 // ...then add the byte offset relative to that element. 5381 Byte += SubByte - MinSubByte; 5382 if (Byte % BytesPerElement != 0) 5383 break; 5384 Op = Op.getOperand(0); 5385 Index = Byte / BytesPerElement; 5386 Force = true; 5387 } else 5388 break; 5389 } 5390 if (Force) { 5391 if (Op.getValueType() != VecVT) { 5392 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5393 DCI.AddToWorklist(Op.getNode()); 5394 } 5395 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5396 DAG.getConstant(Index, DL, MVT::i32)); 5397 } 5398 return SDValue(); 5399 } 5400 5401 // Optimize vector operations in scalar value Op on the basis that Op 5402 // is truncated to TruncVT. 5403 SDValue SystemZTargetLowering::combineTruncateExtract( 5404 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5405 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5406 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5407 // of type TruncVT. 5408 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5409 TruncVT.getSizeInBits() % 8 == 0) { 5410 SDValue Vec = Op.getOperand(0); 5411 EVT VecVT = Vec.getValueType(); 5412 if (canTreatAsByteVector(VecVT)) { 5413 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5414 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5415 unsigned TruncBytes = TruncVT.getStoreSize(); 5416 if (BytesPerElement % TruncBytes == 0) { 5417 // Calculate the value of Y' in the above description. We are 5418 // splitting the original elements into Scale equal-sized pieces 5419 // and for truncation purposes want the last (least-significant) 5420 // of these pieces for IndexN. This is easiest to do by calculating 5421 // the start index of the following element and then subtracting 1. 5422 unsigned Scale = BytesPerElement / TruncBytes; 5423 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5424 5425 // Defer the creation of the bitcast from X to combineExtract, 5426 // which might be able to optimize the extraction. 5427 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5428 VecVT.getStoreSize() / TruncBytes); 5429 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5430 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5431 } 5432 } 5433 } 5434 } 5435 return SDValue(); 5436 } 5437 5438 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5439 SDNode *N, DAGCombinerInfo &DCI) const { 5440 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5441 SelectionDAG &DAG = DCI.DAG; 5442 SDValue N0 = N->getOperand(0); 5443 EVT VT = N->getValueType(0); 5444 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5445 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5446 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5447 if (TrueOp && FalseOp) { 5448 SDLoc DL(N0); 5449 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5450 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5451 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5452 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5453 // If N0 has multiple uses, change other uses as well. 5454 if (!N0.hasOneUse()) { 5455 SDValue TruncSelect = 5456 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5457 DCI.CombineTo(N0.getNode(), TruncSelect); 5458 } 5459 return NewSelect; 5460 } 5461 } 5462 return SDValue(); 5463 } 5464 5465 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5466 SDNode *N, DAGCombinerInfo &DCI) const { 5467 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5468 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5469 // into (select_cc LHS, RHS, -1, 0, COND) 5470 SelectionDAG &DAG = DCI.DAG; 5471 SDValue N0 = N->getOperand(0); 5472 EVT VT = N->getValueType(0); 5473 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5474 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5475 N0 = N0.getOperand(0); 5476 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5477 SDLoc DL(N0); 5478 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5479 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5480 N0.getOperand(2) }; 5481 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5482 } 5483 return SDValue(); 5484 } 5485 5486 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5487 SDNode *N, DAGCombinerInfo &DCI) const { 5488 // Convert (sext (ashr (shl X, C1), C2)) to 5489 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5490 // cheap as narrower ones. 5491 SelectionDAG &DAG = DCI.DAG; 5492 SDValue N0 = N->getOperand(0); 5493 EVT VT = N->getValueType(0); 5494 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5495 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5496 SDValue Inner = N0.getOperand(0); 5497 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5498 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5499 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5500 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5501 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5502 EVT ShiftVT = N0.getOperand(1).getValueType(); 5503 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5504 Inner.getOperand(0)); 5505 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5506 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5507 ShiftVT)); 5508 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5509 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5510 } 5511 } 5512 } 5513 return SDValue(); 5514 } 5515 5516 SDValue SystemZTargetLowering::combineMERGE( 5517 SDNode *N, DAGCombinerInfo &DCI) const { 5518 SelectionDAG &DAG = DCI.DAG; 5519 unsigned Opcode = N->getOpcode(); 5520 SDValue Op0 = N->getOperand(0); 5521 SDValue Op1 = N->getOperand(1); 5522 if (Op0.getOpcode() == ISD::BITCAST) 5523 Op0 = Op0.getOperand(0); 5524 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5525 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5526 // for v4f32. 5527 if (Op1 == N->getOperand(0)) 5528 return Op1; 5529 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5530 EVT VT = Op1.getValueType(); 5531 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5532 if (ElemBytes <= 4) { 5533 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5534 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5535 EVT InVT = VT.changeVectorElementTypeToInteger(); 5536 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5537 SystemZ::VectorBytes / ElemBytes / 2); 5538 if (VT != InVT) { 5539 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5540 DCI.AddToWorklist(Op1.getNode()); 5541 } 5542 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5543 DCI.AddToWorklist(Op.getNode()); 5544 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5545 } 5546 } 5547 return SDValue(); 5548 } 5549 5550 SDValue SystemZTargetLowering::combineLOAD( 5551 SDNode *N, DAGCombinerInfo &DCI) const { 5552 SelectionDAG &DAG = DCI.DAG; 5553 EVT LdVT = N->getValueType(0); 5554 if (LdVT.isVector() || LdVT.isInteger()) 5555 return SDValue(); 5556 // Transform a scalar load that is REPLICATEd as well as having other 5557 // use(s) to the form where the other use(s) use the first element of the 5558 // REPLICATE instead of the load. Otherwise instruction selection will not 5559 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5560 // point loads. 5561 5562 SDValue Replicate; 5563 SmallVector<SDNode*, 8> OtherUses; 5564 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5565 UI != UE; ++UI) { 5566 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5567 if (Replicate) 5568 return SDValue(); // Should never happen 5569 Replicate = SDValue(*UI, 0); 5570 } 5571 else if (UI.getUse().getResNo() == 0) 5572 OtherUses.push_back(*UI); 5573 } 5574 if (!Replicate || OtherUses.empty()) 5575 return SDValue(); 5576 5577 SDLoc DL(N); 5578 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5579 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5580 // Update uses of the loaded Value while preserving old chains. 5581 for (SDNode *U : OtherUses) { 5582 SmallVector<SDValue, 8> Ops; 5583 for (SDValue Op : U->ops()) 5584 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5585 DAG.UpdateNodeOperands(U, Ops); 5586 } 5587 return SDValue(N, 0); 5588 } 5589 5590 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 5591 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 5592 return true; 5593 if (Subtarget.hasVectorEnhancements2()) 5594 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 5595 return true; 5596 return false; 5597 } 5598 5599 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 5600 if (!VT.isVector() || !VT.isSimple() || 5601 VT.getSizeInBits() != 128 || 5602 VT.getScalarSizeInBits() % 8 != 0) 5603 return false; 5604 5605 unsigned NumElts = VT.getVectorNumElements(); 5606 for (unsigned i = 0; i < NumElts; ++i) { 5607 if (M[i] < 0) continue; // ignore UNDEF indices 5608 if ((unsigned) M[i] != NumElts - 1 - i) 5609 return false; 5610 } 5611 5612 return true; 5613 } 5614 5615 SDValue SystemZTargetLowering::combineSTORE( 5616 SDNode *N, DAGCombinerInfo &DCI) const { 5617 SelectionDAG &DAG = DCI.DAG; 5618 auto *SN = cast<StoreSDNode>(N); 5619 auto &Op1 = N->getOperand(1); 5620 EVT MemVT = SN->getMemoryVT(); 5621 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5622 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5623 // If X has wider elements then convert it to: 5624 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5625 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5626 if (SDValue Value = 5627 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5628 DCI.AddToWorklist(Value.getNode()); 5629 5630 // Rewrite the store with the new form of stored value. 5631 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5632 SN->getBasePtr(), SN->getMemoryVT(), 5633 SN->getMemOperand()); 5634 } 5635 } 5636 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 5637 if (!SN->isTruncatingStore() && 5638 Op1.getOpcode() == ISD::BSWAP && 5639 Op1.getNode()->hasOneUse() && 5640 canLoadStoreByteSwapped(Op1.getValueType())) { 5641 5642 SDValue BSwapOp = Op1.getOperand(0); 5643 5644 if (BSwapOp.getValueType() == MVT::i16) 5645 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5646 5647 SDValue Ops[] = { 5648 N->getOperand(0), BSwapOp, N->getOperand(2) 5649 }; 5650 5651 return 5652 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5653 Ops, MemVT, SN->getMemOperand()); 5654 } 5655 // Combine STORE (element-swap) into VSTER 5656 if (!SN->isTruncatingStore() && 5657 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 5658 Op1.getNode()->hasOneUse() && 5659 Subtarget.hasVectorEnhancements2()) { 5660 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 5661 ArrayRef<int> ShuffleMask = SVN->getMask(); 5662 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 5663 SDValue Ops[] = { 5664 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 5665 }; 5666 5667 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 5668 DAG.getVTList(MVT::Other), 5669 Ops, MemVT, SN->getMemOperand()); 5670 } 5671 } 5672 5673 return SDValue(); 5674 } 5675 5676 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 5677 SDNode *N, DAGCombinerInfo &DCI) const { 5678 SelectionDAG &DAG = DCI.DAG; 5679 // Combine element-swap (LOAD) into VLER 5680 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5681 N->getOperand(0).hasOneUse() && 5682 Subtarget.hasVectorEnhancements2()) { 5683 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 5684 ArrayRef<int> ShuffleMask = SVN->getMask(); 5685 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 5686 SDValue Load = N->getOperand(0); 5687 LoadSDNode *LD = cast<LoadSDNode>(Load); 5688 5689 // Create the element-swapping load. 5690 SDValue Ops[] = { 5691 LD->getChain(), // Chain 5692 LD->getBasePtr() // Ptr 5693 }; 5694 SDValue ESLoad = 5695 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 5696 DAG.getVTList(LD->getValueType(0), MVT::Other), 5697 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5698 5699 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 5700 // by the load dead. 5701 DCI.CombineTo(N, ESLoad); 5702 5703 // Next, combine the load away, we give it a bogus result value but a real 5704 // chain result. The result value is dead because the shuffle is dead. 5705 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 5706 5707 // Return N so it doesn't get rechecked! 5708 return SDValue(N, 0); 5709 } 5710 } 5711 5712 return SDValue(); 5713 } 5714 5715 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5716 SDNode *N, DAGCombinerInfo &DCI) const { 5717 SelectionDAG &DAG = DCI.DAG; 5718 5719 if (!Subtarget.hasVector()) 5720 return SDValue(); 5721 5722 // Look through bitcasts that retain the number of vector elements. 5723 SDValue Op = N->getOperand(0); 5724 if (Op.getOpcode() == ISD::BITCAST && 5725 Op.getValueType().isVector() && 5726 Op.getOperand(0).getValueType().isVector() && 5727 Op.getValueType().getVectorNumElements() == 5728 Op.getOperand(0).getValueType().getVectorNumElements()) 5729 Op = Op.getOperand(0); 5730 5731 // Pull BSWAP out of a vector extraction. 5732 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 5733 EVT VecVT = Op.getValueType(); 5734 EVT EltVT = VecVT.getVectorElementType(); 5735 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 5736 Op.getOperand(0), N->getOperand(1)); 5737 DCI.AddToWorklist(Op.getNode()); 5738 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 5739 if (EltVT != N->getValueType(0)) { 5740 DCI.AddToWorklist(Op.getNode()); 5741 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 5742 } 5743 return Op; 5744 } 5745 5746 // Try to simplify a vector extraction. 5747 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5748 SDValue Op0 = N->getOperand(0); 5749 EVT VecVT = Op0.getValueType(); 5750 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5751 IndexN->getZExtValue(), DCI, false); 5752 } 5753 return SDValue(); 5754 } 5755 5756 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5757 SDNode *N, DAGCombinerInfo &DCI) const { 5758 SelectionDAG &DAG = DCI.DAG; 5759 // (join_dwords X, X) == (replicate X) 5760 if (N->getOperand(0) == N->getOperand(1)) 5761 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5762 N->getOperand(0)); 5763 return SDValue(); 5764 } 5765 5766 SDValue SystemZTargetLowering::combineFP_ROUND( 5767 SDNode *N, DAGCombinerInfo &DCI) const { 5768 5769 if (!Subtarget.hasVector()) 5770 return SDValue(); 5771 5772 // (fpround (extract_vector_elt X 0)) 5773 // (fpround (extract_vector_elt X 1)) -> 5774 // (extract_vector_elt (VROUND X) 0) 5775 // (extract_vector_elt (VROUND X) 2) 5776 // 5777 // This is a special case since the target doesn't really support v2f32s. 5778 SelectionDAG &DAG = DCI.DAG; 5779 SDValue Op0 = N->getOperand(0); 5780 if (N->getValueType(0) == MVT::f32 && 5781 Op0.hasOneUse() && 5782 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5783 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5784 Op0.getOperand(1).getOpcode() == ISD::Constant && 5785 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5786 SDValue Vec = Op0.getOperand(0); 5787 for (auto *U : Vec->uses()) { 5788 if (U != Op0.getNode() && 5789 U->hasOneUse() && 5790 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5791 U->getOperand(0) == Vec && 5792 U->getOperand(1).getOpcode() == ISD::Constant && 5793 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5794 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5795 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5796 OtherRound.getOperand(0) == SDValue(U, 0) && 5797 OtherRound.getValueType() == MVT::f32) { 5798 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5799 MVT::v4f32, Vec); 5800 DCI.AddToWorklist(VRound.getNode()); 5801 SDValue Extract1 = 5802 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5803 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5804 DCI.AddToWorklist(Extract1.getNode()); 5805 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5806 SDValue Extract0 = 5807 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5808 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5809 return Extract0; 5810 } 5811 } 5812 } 5813 } 5814 return SDValue(); 5815 } 5816 5817 SDValue SystemZTargetLowering::combineFP_EXTEND( 5818 SDNode *N, DAGCombinerInfo &DCI) const { 5819 5820 if (!Subtarget.hasVector()) 5821 return SDValue(); 5822 5823 // (fpextend (extract_vector_elt X 0)) 5824 // (fpextend (extract_vector_elt X 2)) -> 5825 // (extract_vector_elt (VEXTEND X) 0) 5826 // (extract_vector_elt (VEXTEND X) 1) 5827 // 5828 // This is a special case since the target doesn't really support v2f32s. 5829 SelectionDAG &DAG = DCI.DAG; 5830 SDValue Op0 = N->getOperand(0); 5831 if (N->getValueType(0) == MVT::f64 && 5832 Op0.hasOneUse() && 5833 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5834 Op0.getOperand(0).getValueType() == MVT::v4f32 && 5835 Op0.getOperand(1).getOpcode() == ISD::Constant && 5836 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5837 SDValue Vec = Op0.getOperand(0); 5838 for (auto *U : Vec->uses()) { 5839 if (U != Op0.getNode() && 5840 U->hasOneUse() && 5841 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5842 U->getOperand(0) == Vec && 5843 U->getOperand(1).getOpcode() == ISD::Constant && 5844 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 5845 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 5846 if (OtherExtend.getOpcode() == ISD::FP_EXTEND && 5847 OtherExtend.getOperand(0) == SDValue(U, 0) && 5848 OtherExtend.getValueType() == MVT::f64) { 5849 SDValue VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 5850 MVT::v2f64, Vec); 5851 DCI.AddToWorklist(VExtend.getNode()); 5852 SDValue Extract1 = 5853 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 5854 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 5855 DCI.AddToWorklist(Extract1.getNode()); 5856 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 5857 SDValue Extract0 = 5858 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 5859 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5860 return Extract0; 5861 } 5862 } 5863 } 5864 } 5865 return SDValue(); 5866 } 5867 5868 SDValue SystemZTargetLowering::combineBSWAP( 5869 SDNode *N, DAGCombinerInfo &DCI) const { 5870 SelectionDAG &DAG = DCI.DAG; 5871 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 5872 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5873 N->getOperand(0).hasOneUse() && 5874 canLoadStoreByteSwapped(N->getValueType(0))) { 5875 SDValue Load = N->getOperand(0); 5876 LoadSDNode *LD = cast<LoadSDNode>(Load); 5877 5878 // Create the byte-swapping load. 5879 SDValue Ops[] = { 5880 LD->getChain(), // Chain 5881 LD->getBasePtr() // Ptr 5882 }; 5883 EVT LoadVT = N->getValueType(0); 5884 if (LoadVT == MVT::i16) 5885 LoadVT = MVT::i32; 5886 SDValue BSLoad = 5887 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 5888 DAG.getVTList(LoadVT, MVT::Other), 5889 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5890 5891 // If this is an i16 load, insert the truncate. 5892 SDValue ResVal = BSLoad; 5893 if (N->getValueType(0) == MVT::i16) 5894 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5895 5896 // First, combine the bswap away. This makes the value produced by the 5897 // load dead. 5898 DCI.CombineTo(N, ResVal); 5899 5900 // Next, combine the load away, we give it a bogus result value but a real 5901 // chain result. The result value is dead because the bswap is dead. 5902 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5903 5904 // Return N so it doesn't get rechecked! 5905 return SDValue(N, 0); 5906 } 5907 5908 // Look through bitcasts that retain the number of vector elements. 5909 SDValue Op = N->getOperand(0); 5910 if (Op.getOpcode() == ISD::BITCAST && 5911 Op.getValueType().isVector() && 5912 Op.getOperand(0).getValueType().isVector() && 5913 Op.getValueType().getVectorNumElements() == 5914 Op.getOperand(0).getValueType().getVectorNumElements()) 5915 Op = Op.getOperand(0); 5916 5917 // Push BSWAP into a vector insertion if at least one side then simplifies. 5918 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 5919 SDValue Vec = Op.getOperand(0); 5920 SDValue Elt = Op.getOperand(1); 5921 SDValue Idx = Op.getOperand(2); 5922 5923 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 5924 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 5925 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 5926 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 5927 (canLoadStoreByteSwapped(N->getValueType(0)) && 5928 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 5929 EVT VecVT = N->getValueType(0); 5930 EVT EltVT = N->getValueType(0).getVectorElementType(); 5931 if (VecVT != Vec.getValueType()) { 5932 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 5933 DCI.AddToWorklist(Vec.getNode()); 5934 } 5935 if (EltVT != Elt.getValueType()) { 5936 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 5937 DCI.AddToWorklist(Elt.getNode()); 5938 } 5939 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 5940 DCI.AddToWorklist(Vec.getNode()); 5941 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 5942 DCI.AddToWorklist(Elt.getNode()); 5943 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 5944 Vec, Elt, Idx); 5945 } 5946 } 5947 5948 // Push BSWAP into a vector shuffle if at least one side then simplifies. 5949 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 5950 if (SV && Op.hasOneUse()) { 5951 SDValue Op0 = Op.getOperand(0); 5952 SDValue Op1 = Op.getOperand(1); 5953 5954 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 5955 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 5956 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 5957 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 5958 EVT VecVT = N->getValueType(0); 5959 if (VecVT != Op0.getValueType()) { 5960 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 5961 DCI.AddToWorklist(Op0.getNode()); 5962 } 5963 if (VecVT != Op1.getValueType()) { 5964 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 5965 DCI.AddToWorklist(Op1.getNode()); 5966 } 5967 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 5968 DCI.AddToWorklist(Op0.getNode()); 5969 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 5970 DCI.AddToWorklist(Op1.getNode()); 5971 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 5972 } 5973 } 5974 5975 return SDValue(); 5976 } 5977 5978 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 5979 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 5980 // set by the CCReg instruction using the CCValid / CCMask masks, 5981 // If the CCReg instruction is itself a ICMP testing the condition 5982 // code set by some other instruction, see whether we can directly 5983 // use that condition code. 5984 5985 // Verify that we have an ICMP against some constant. 5986 if (CCValid != SystemZ::CCMASK_ICMP) 5987 return false; 5988 auto *ICmp = CCReg.getNode(); 5989 if (ICmp->getOpcode() != SystemZISD::ICMP) 5990 return false; 5991 auto *CompareLHS = ICmp->getOperand(0).getNode(); 5992 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 5993 if (!CompareRHS) 5994 return false; 5995 5996 // Optimize the case where CompareLHS is a SELECT_CCMASK. 5997 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 5998 // Verify that we have an appropriate mask for a EQ or NE comparison. 5999 bool Invert = false; 6000 if (CCMask == SystemZ::CCMASK_CMP_NE) 6001 Invert = !Invert; 6002 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6003 return false; 6004 6005 // Verify that the ICMP compares against one of select values. 6006 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6007 if (!TrueVal) 6008 return false; 6009 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6010 if (!FalseVal) 6011 return false; 6012 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6013 Invert = !Invert; 6014 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6015 return false; 6016 6017 // Compute the effective CC mask for the new branch or select. 6018 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6019 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6020 if (!NewCCValid || !NewCCMask) 6021 return false; 6022 CCValid = NewCCValid->getZExtValue(); 6023 CCMask = NewCCMask->getZExtValue(); 6024 if (Invert) 6025 CCMask ^= CCValid; 6026 6027 // Return the updated CCReg link. 6028 CCReg = CompareLHS->getOperand(4); 6029 return true; 6030 } 6031 6032 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6033 if (CompareLHS->getOpcode() == ISD::SRA) { 6034 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6035 if (!SRACount || SRACount->getZExtValue() != 30) 6036 return false; 6037 auto *SHL = CompareLHS->getOperand(0).getNode(); 6038 if (SHL->getOpcode() != ISD::SHL) 6039 return false; 6040 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6041 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6042 return false; 6043 auto *IPM = SHL->getOperand(0).getNode(); 6044 if (IPM->getOpcode() != SystemZISD::IPM) 6045 return false; 6046 6047 // Avoid introducing CC spills (because SRA would clobber CC). 6048 if (!CompareLHS->hasOneUse()) 6049 return false; 6050 // Verify that the ICMP compares against zero. 6051 if (CompareRHS->getZExtValue() != 0) 6052 return false; 6053 6054 // Compute the effective CC mask for the new branch or select. 6055 switch (CCMask) { 6056 case SystemZ::CCMASK_CMP_EQ: break; 6057 case SystemZ::CCMASK_CMP_NE: break; 6058 case SystemZ::CCMASK_CMP_LT: CCMask = SystemZ::CCMASK_CMP_GT; break; 6059 case SystemZ::CCMASK_CMP_GT: CCMask = SystemZ::CCMASK_CMP_LT; break; 6060 case SystemZ::CCMASK_CMP_LE: CCMask = SystemZ::CCMASK_CMP_GE; break; 6061 case SystemZ::CCMASK_CMP_GE: CCMask = SystemZ::CCMASK_CMP_LE; break; 6062 default: return false; 6063 } 6064 6065 // Return the updated CCReg link. 6066 CCReg = IPM->getOperand(0); 6067 return true; 6068 } 6069 6070 return false; 6071 } 6072 6073 SDValue SystemZTargetLowering::combineBR_CCMASK( 6074 SDNode *N, DAGCombinerInfo &DCI) const { 6075 SelectionDAG &DAG = DCI.DAG; 6076 6077 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6078 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6079 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6080 if (!CCValid || !CCMask) 6081 return SDValue(); 6082 6083 int CCValidVal = CCValid->getZExtValue(); 6084 int CCMaskVal = CCMask->getZExtValue(); 6085 SDValue Chain = N->getOperand(0); 6086 SDValue CCReg = N->getOperand(4); 6087 6088 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6089 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6090 Chain, 6091 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6092 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6093 N->getOperand(3), CCReg); 6094 return SDValue(); 6095 } 6096 6097 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6098 SDNode *N, DAGCombinerInfo &DCI) const { 6099 SelectionDAG &DAG = DCI.DAG; 6100 6101 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6102 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6103 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6104 if (!CCValid || !CCMask) 6105 return SDValue(); 6106 6107 int CCValidVal = CCValid->getZExtValue(); 6108 int CCMaskVal = CCMask->getZExtValue(); 6109 SDValue CCReg = N->getOperand(4); 6110 6111 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6112 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6113 N->getOperand(0), N->getOperand(1), 6114 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6115 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6116 CCReg); 6117 return SDValue(); 6118 } 6119 6120 6121 SDValue SystemZTargetLowering::combineGET_CCMASK( 6122 SDNode *N, DAGCombinerInfo &DCI) const { 6123 6124 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6125 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6126 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6127 if (!CCValid || !CCMask) 6128 return SDValue(); 6129 int CCValidVal = CCValid->getZExtValue(); 6130 int CCMaskVal = CCMask->getZExtValue(); 6131 6132 SDValue Select = N->getOperand(0); 6133 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6134 return SDValue(); 6135 6136 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6137 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6138 if (!SelectCCValid || !SelectCCMask) 6139 return SDValue(); 6140 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6141 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6142 6143 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6144 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6145 if (!TrueVal || !FalseVal) 6146 return SDValue(); 6147 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6148 ; 6149 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6150 SelectCCMaskVal ^= SelectCCValidVal; 6151 else 6152 return SDValue(); 6153 6154 if (SelectCCValidVal & ~CCValidVal) 6155 return SDValue(); 6156 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6157 return SDValue(); 6158 6159 return Select->getOperand(4); 6160 } 6161 6162 SDValue SystemZTargetLowering::combineIntDIVREM( 6163 SDNode *N, DAGCombinerInfo &DCI) const { 6164 SelectionDAG &DAG = DCI.DAG; 6165 EVT VT = N->getValueType(0); 6166 // In the case where the divisor is a vector of constants a cheaper 6167 // sequence of instructions can replace the divide. BuildSDIV is called to 6168 // do this during DAG combining, but it only succeeds when it can build a 6169 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6170 // since it is not Legal but Custom it can only happen before 6171 // legalization. Therefore we must scalarize this early before Combine 6172 // 1. For widened vectors, this is already the result of type legalization. 6173 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6174 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6175 return DAG.UnrollVectorOp(N); 6176 return SDValue(); 6177 } 6178 6179 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6180 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6181 return N->getOperand(0); 6182 return N; 6183 } 6184 6185 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6186 DAGCombinerInfo &DCI) const { 6187 switch(N->getOpcode()) { 6188 default: break; 6189 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6190 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6191 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6192 case SystemZISD::MERGE_HIGH: 6193 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6194 case ISD::LOAD: return combineLOAD(N, DCI); 6195 case ISD::STORE: return combineSTORE(N, DCI); 6196 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6197 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6198 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6199 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6200 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6201 case ISD::BSWAP: return combineBSWAP(N, DCI); 6202 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6203 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6204 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6205 case ISD::SDIV: 6206 case ISD::UDIV: 6207 case ISD::SREM: 6208 case ISD::UREM: return combineIntDIVREM(N, DCI); 6209 } 6210 6211 return SDValue(); 6212 } 6213 6214 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6215 // are for Op. 6216 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6217 unsigned OpNo) { 6218 EVT VT = Op.getValueType(); 6219 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6220 APInt SrcDemE; 6221 unsigned Opcode = Op.getOpcode(); 6222 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6223 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6224 switch (Id) { 6225 case Intrinsic::s390_vpksh: // PACKS 6226 case Intrinsic::s390_vpksf: 6227 case Intrinsic::s390_vpksg: 6228 case Intrinsic::s390_vpkshs: // PACKS_CC 6229 case Intrinsic::s390_vpksfs: 6230 case Intrinsic::s390_vpksgs: 6231 case Intrinsic::s390_vpklsh: // PACKLS 6232 case Intrinsic::s390_vpklsf: 6233 case Intrinsic::s390_vpklsg: 6234 case Intrinsic::s390_vpklshs: // PACKLS_CC 6235 case Intrinsic::s390_vpklsfs: 6236 case Intrinsic::s390_vpklsgs: 6237 // VECTOR PACK truncates the elements of two source vectors into one. 6238 SrcDemE = DemandedElts; 6239 if (OpNo == 2) 6240 SrcDemE.lshrInPlace(NumElts / 2); 6241 SrcDemE = SrcDemE.trunc(NumElts / 2); 6242 break; 6243 // VECTOR UNPACK extends half the elements of the source vector. 6244 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6245 case Intrinsic::s390_vuphh: 6246 case Intrinsic::s390_vuphf: 6247 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6248 case Intrinsic::s390_vuplhh: 6249 case Intrinsic::s390_vuplhf: 6250 SrcDemE = APInt(NumElts * 2, 0); 6251 SrcDemE.insertBits(DemandedElts, 0); 6252 break; 6253 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6254 case Intrinsic::s390_vuplhw: 6255 case Intrinsic::s390_vuplf: 6256 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6257 case Intrinsic::s390_vupllh: 6258 case Intrinsic::s390_vupllf: 6259 SrcDemE = APInt(NumElts * 2, 0); 6260 SrcDemE.insertBits(DemandedElts, NumElts); 6261 break; 6262 case Intrinsic::s390_vpdi: { 6263 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6264 SrcDemE = APInt(NumElts, 0); 6265 if (!DemandedElts[OpNo - 1]) 6266 break; 6267 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6268 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6269 // Demand input element 0 or 1, given by the mask bit value. 6270 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6271 break; 6272 } 6273 case Intrinsic::s390_vsldb: { 6274 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6275 assert(VT == MVT::v16i8 && "Unexpected type."); 6276 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6277 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6278 unsigned NumSrc0Els = 16 - FirstIdx; 6279 SrcDemE = APInt(NumElts, 0); 6280 if (OpNo == 1) { 6281 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6282 SrcDemE.insertBits(DemEls, FirstIdx); 6283 } else { 6284 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6285 SrcDemE.insertBits(DemEls, 0); 6286 } 6287 break; 6288 } 6289 case Intrinsic::s390_vperm: 6290 SrcDemE = APInt(NumElts, 1); 6291 break; 6292 default: 6293 llvm_unreachable("Unhandled intrinsic."); 6294 break; 6295 } 6296 } else { 6297 switch (Opcode) { 6298 case SystemZISD::JOIN_DWORDS: 6299 // Scalar operand. 6300 SrcDemE = APInt(1, 1); 6301 break; 6302 case SystemZISD::SELECT_CCMASK: 6303 SrcDemE = DemandedElts; 6304 break; 6305 default: 6306 llvm_unreachable("Unhandled opcode."); 6307 break; 6308 } 6309 } 6310 return SrcDemE; 6311 } 6312 6313 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6314 const APInt &DemandedElts, 6315 const SelectionDAG &DAG, unsigned Depth, 6316 unsigned OpNo) { 6317 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6318 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6319 KnownBits LHSKnown = 6320 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6321 KnownBits RHSKnown = 6322 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6323 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 6324 Known.One = LHSKnown.One & RHSKnown.One; 6325 } 6326 6327 void 6328 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6329 KnownBits &Known, 6330 const APInt &DemandedElts, 6331 const SelectionDAG &DAG, 6332 unsigned Depth) const { 6333 Known.resetAll(); 6334 6335 // Intrinsic CC result is returned in the two low bits. 6336 unsigned tmp0, tmp1; // not used 6337 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6338 Known.Zero.setBitsFrom(2); 6339 return; 6340 } 6341 EVT VT = Op.getValueType(); 6342 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6343 return; 6344 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6345 "KnownBits does not match VT in bitwidth"); 6346 assert ((!VT.isVector() || 6347 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6348 "DemandedElts does not match VT number of elements"); 6349 unsigned BitWidth = Known.getBitWidth(); 6350 unsigned Opcode = Op.getOpcode(); 6351 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6352 bool IsLogical = false; 6353 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6354 switch (Id) { 6355 case Intrinsic::s390_vpksh: // PACKS 6356 case Intrinsic::s390_vpksf: 6357 case Intrinsic::s390_vpksg: 6358 case Intrinsic::s390_vpkshs: // PACKS_CC 6359 case Intrinsic::s390_vpksfs: 6360 case Intrinsic::s390_vpksgs: 6361 case Intrinsic::s390_vpklsh: // PACKLS 6362 case Intrinsic::s390_vpklsf: 6363 case Intrinsic::s390_vpklsg: 6364 case Intrinsic::s390_vpklshs: // PACKLS_CC 6365 case Intrinsic::s390_vpklsfs: 6366 case Intrinsic::s390_vpklsgs: 6367 case Intrinsic::s390_vpdi: 6368 case Intrinsic::s390_vsldb: 6369 case Intrinsic::s390_vperm: 6370 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6371 break; 6372 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6373 case Intrinsic::s390_vuplhh: 6374 case Intrinsic::s390_vuplhf: 6375 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6376 case Intrinsic::s390_vupllh: 6377 case Intrinsic::s390_vupllf: 6378 IsLogical = true; 6379 LLVM_FALLTHROUGH; 6380 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6381 case Intrinsic::s390_vuphh: 6382 case Intrinsic::s390_vuphf: 6383 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6384 case Intrinsic::s390_vuplhw: 6385 case Intrinsic::s390_vuplf: { 6386 SDValue SrcOp = Op.getOperand(1); 6387 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6388 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6389 if (IsLogical) { 6390 Known = Known.zext(BitWidth, true); 6391 } else 6392 Known = Known.sext(BitWidth); 6393 break; 6394 } 6395 default: 6396 break; 6397 } 6398 } else { 6399 switch (Opcode) { 6400 case SystemZISD::JOIN_DWORDS: 6401 case SystemZISD::SELECT_CCMASK: 6402 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6403 break; 6404 case SystemZISD::REPLICATE: { 6405 SDValue SrcOp = Op.getOperand(0); 6406 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6407 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6408 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6409 break; 6410 } 6411 default: 6412 break; 6413 } 6414 } 6415 6416 // Known has the width of the source operand(s). Adjust if needed to match 6417 // the passed bitwidth. 6418 if (Known.getBitWidth() != BitWidth) 6419 Known = Known.zextOrTrunc(BitWidth, false); 6420 } 6421 6422 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6423 const SelectionDAG &DAG, unsigned Depth, 6424 unsigned OpNo) { 6425 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6426 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6427 if (LHS == 1) return 1; // Early out. 6428 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6429 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6430 if (RHS == 1) return 1; // Early out. 6431 unsigned Common = std::min(LHS, RHS); 6432 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6433 EVT VT = Op.getValueType(); 6434 unsigned VTBits = VT.getScalarSizeInBits(); 6435 if (SrcBitWidth > VTBits) { // PACK 6436 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6437 if (Common > SrcExtraBits) 6438 return (Common - SrcExtraBits); 6439 return 1; 6440 } 6441 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6442 return Common; 6443 } 6444 6445 unsigned 6446 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6447 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6448 unsigned Depth) const { 6449 if (Op.getResNo() != 0) 6450 return 1; 6451 unsigned Opcode = Op.getOpcode(); 6452 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6453 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6454 switch (Id) { 6455 case Intrinsic::s390_vpksh: // PACKS 6456 case Intrinsic::s390_vpksf: 6457 case Intrinsic::s390_vpksg: 6458 case Intrinsic::s390_vpkshs: // PACKS_CC 6459 case Intrinsic::s390_vpksfs: 6460 case Intrinsic::s390_vpksgs: 6461 case Intrinsic::s390_vpklsh: // PACKLS 6462 case Intrinsic::s390_vpklsf: 6463 case Intrinsic::s390_vpklsg: 6464 case Intrinsic::s390_vpklshs: // PACKLS_CC 6465 case Intrinsic::s390_vpklsfs: 6466 case Intrinsic::s390_vpklsgs: 6467 case Intrinsic::s390_vpdi: 6468 case Intrinsic::s390_vsldb: 6469 case Intrinsic::s390_vperm: 6470 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6471 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6472 case Intrinsic::s390_vuphh: 6473 case Intrinsic::s390_vuphf: 6474 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6475 case Intrinsic::s390_vuplhw: 6476 case Intrinsic::s390_vuplf: { 6477 SDValue PackedOp = Op.getOperand(1); 6478 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6479 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6480 EVT VT = Op.getValueType(); 6481 unsigned VTBits = VT.getScalarSizeInBits(); 6482 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6483 return Tmp; 6484 } 6485 default: 6486 break; 6487 } 6488 } else { 6489 switch (Opcode) { 6490 case SystemZISD::SELECT_CCMASK: 6491 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6492 default: 6493 break; 6494 } 6495 } 6496 6497 return 1; 6498 } 6499 6500 //===----------------------------------------------------------------------===// 6501 // Custom insertion 6502 //===----------------------------------------------------------------------===// 6503 6504 // Create a new basic block after MBB. 6505 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 6506 MachineFunction &MF = *MBB->getParent(); 6507 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 6508 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 6509 return NewMBB; 6510 } 6511 6512 // Split MBB after MI and return the new block (the one that contains 6513 // instructions after MI). 6514 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 6515 MachineBasicBlock *MBB) { 6516 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6517 NewMBB->splice(NewMBB->begin(), MBB, 6518 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6519 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6520 return NewMBB; 6521 } 6522 6523 // Split MBB before MI and return the new block (the one that contains MI). 6524 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6525 MachineBasicBlock *MBB) { 6526 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6527 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6528 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6529 return NewMBB; 6530 } 6531 6532 // Force base value Base into a register before MI. Return the register. 6533 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 6534 const SystemZInstrInfo *TII) { 6535 if (Base.isReg()) 6536 return Base.getReg(); 6537 6538 MachineBasicBlock *MBB = MI.getParent(); 6539 MachineFunction &MF = *MBB->getParent(); 6540 MachineRegisterInfo &MRI = MF.getRegInfo(); 6541 6542 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6543 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6544 .add(Base) 6545 .addImm(0) 6546 .addReg(0); 6547 return Reg; 6548 } 6549 6550 // The CC operand of MI might be missing a kill marker because there 6551 // were multiple uses of CC, and ISel didn't know which to mark. 6552 // Figure out whether MI should have had a kill marker. 6553 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6554 // Scan forward through BB for a use/def of CC. 6555 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6556 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6557 const MachineInstr& mi = *miI; 6558 if (mi.readsRegister(SystemZ::CC)) 6559 return false; 6560 if (mi.definesRegister(SystemZ::CC)) 6561 break; // Should have kill-flag - update below. 6562 } 6563 6564 // If we hit the end of the block, check whether CC is live into a 6565 // successor. 6566 if (miI == MBB->end()) { 6567 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6568 if ((*SI)->isLiveIn(SystemZ::CC)) 6569 return false; 6570 } 6571 6572 return true; 6573 } 6574 6575 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6576 // together with other Select pseudo-opcodes into a single basic-block with 6577 // a conditional jump around it. 6578 static bool isSelectPseudo(MachineInstr &MI) { 6579 switch (MI.getOpcode()) { 6580 case SystemZ::Select32: 6581 case SystemZ::Select64: 6582 case SystemZ::SelectF32: 6583 case SystemZ::SelectF64: 6584 case SystemZ::SelectF128: 6585 case SystemZ::SelectVR32: 6586 case SystemZ::SelectVR64: 6587 case SystemZ::SelectVR128: 6588 return true; 6589 6590 default: 6591 return false; 6592 } 6593 } 6594 6595 // Helper function, which inserts PHI functions into SinkMBB: 6596 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6597 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 6598 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 6599 MachineBasicBlock *TrueMBB, 6600 MachineBasicBlock *FalseMBB, 6601 MachineBasicBlock *SinkMBB) { 6602 MachineFunction *MF = TrueMBB->getParent(); 6603 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6604 6605 MachineInstr *FirstMI = Selects.front(); 6606 unsigned CCValid = FirstMI->getOperand(3).getImm(); 6607 unsigned CCMask = FirstMI->getOperand(4).getImm(); 6608 6609 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6610 6611 // As we are creating the PHIs, we have to be careful if there is more than 6612 // one. Later Selects may reference the results of earlier Selects, but later 6613 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6614 // That also means that PHI construction must work forward from earlier to 6615 // later, and that the code must maintain a mapping from earlier PHI's 6616 // destination registers, and the registers that went into the PHI. 6617 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6618 6619 for (auto MI : Selects) { 6620 Register DestReg = MI->getOperand(0).getReg(); 6621 Register TrueReg = MI->getOperand(1).getReg(); 6622 Register FalseReg = MI->getOperand(2).getReg(); 6623 6624 // If this Select we are generating is the opposite condition from 6625 // the jump we generated, then we have to swap the operands for the 6626 // PHI that is going to be generated. 6627 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 6628 std::swap(TrueReg, FalseReg); 6629 6630 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6631 TrueReg = RegRewriteTable[TrueReg].first; 6632 6633 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6634 FalseReg = RegRewriteTable[FalseReg].second; 6635 6636 DebugLoc DL = MI->getDebugLoc(); 6637 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6638 .addReg(TrueReg).addMBB(TrueMBB) 6639 .addReg(FalseReg).addMBB(FalseMBB); 6640 6641 // Add this PHI to the rewrite table. 6642 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6643 } 6644 6645 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6646 } 6647 6648 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6649 MachineBasicBlock * 6650 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6651 MachineBasicBlock *MBB) const { 6652 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 6653 const SystemZInstrInfo *TII = 6654 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6655 6656 unsigned CCValid = MI.getOperand(3).getImm(); 6657 unsigned CCMask = MI.getOperand(4).getImm(); 6658 6659 // If we have a sequence of Select* pseudo instructions using the 6660 // same condition code value, we want to expand all of them into 6661 // a single pair of basic blocks using the same condition. 6662 SmallVector<MachineInstr*, 8> Selects; 6663 SmallVector<MachineInstr*, 8> DbgValues; 6664 Selects.push_back(&MI); 6665 unsigned Count = 0; 6666 for (MachineBasicBlock::iterator NextMIIt = 6667 std::next(MachineBasicBlock::iterator(MI)); 6668 NextMIIt != MBB->end(); ++NextMIIt) { 6669 if (NextMIIt->definesRegister(SystemZ::CC)) 6670 break; 6671 if (isSelectPseudo(*NextMIIt)) { 6672 assert(NextMIIt->getOperand(3).getImm() == CCValid && 6673 "Bad CCValid operands since CC was not redefined."); 6674 if (NextMIIt->getOperand(4).getImm() == CCMask || 6675 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 6676 Selects.push_back(&*NextMIIt); 6677 continue; 6678 } 6679 break; 6680 } 6681 bool User = false; 6682 for (auto SelMI : Selects) 6683 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 6684 User = true; 6685 break; 6686 } 6687 if (NextMIIt->isDebugInstr()) { 6688 if (User) { 6689 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 6690 DbgValues.push_back(&*NextMIIt); 6691 } 6692 } 6693 else if (User || ++Count > 20) 6694 break; 6695 } 6696 6697 MachineInstr *LastMI = Selects.back(); 6698 bool CCKilled = 6699 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 6700 MachineBasicBlock *StartMBB = MBB; 6701 MachineBasicBlock *JoinMBB = splitBlockAfter(LastMI, MBB); 6702 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6703 6704 // Unless CC was killed in the last Select instruction, mark it as 6705 // live-in to both FalseMBB and JoinMBB. 6706 if (!CCKilled) { 6707 FalseMBB->addLiveIn(SystemZ::CC); 6708 JoinMBB->addLiveIn(SystemZ::CC); 6709 } 6710 6711 // StartMBB: 6712 // BRC CCMask, JoinMBB 6713 // # fallthrough to FalseMBB 6714 MBB = StartMBB; 6715 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 6716 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6717 MBB->addSuccessor(JoinMBB); 6718 MBB->addSuccessor(FalseMBB); 6719 6720 // FalseMBB: 6721 // # fallthrough to JoinMBB 6722 MBB = FalseMBB; 6723 MBB->addSuccessor(JoinMBB); 6724 6725 // JoinMBB: 6726 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 6727 // ... 6728 MBB = JoinMBB; 6729 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 6730 for (auto SelMI : Selects) 6731 SelMI->eraseFromParent(); 6732 6733 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 6734 for (auto DbgMI : DbgValues) 6735 MBB->splice(InsertPos, StartMBB, DbgMI); 6736 6737 return JoinMBB; 6738 } 6739 6740 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 6741 // StoreOpcode is the store to use and Invert says whether the store should 6742 // happen when the condition is false rather than true. If a STORE ON 6743 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 6744 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 6745 MachineBasicBlock *MBB, 6746 unsigned StoreOpcode, 6747 unsigned STOCOpcode, 6748 bool Invert) const { 6749 const SystemZInstrInfo *TII = 6750 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6751 6752 Register SrcReg = MI.getOperand(0).getReg(); 6753 MachineOperand Base = MI.getOperand(1); 6754 int64_t Disp = MI.getOperand(2).getImm(); 6755 Register IndexReg = MI.getOperand(3).getReg(); 6756 unsigned CCValid = MI.getOperand(4).getImm(); 6757 unsigned CCMask = MI.getOperand(5).getImm(); 6758 DebugLoc DL = MI.getDebugLoc(); 6759 6760 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 6761 6762 // Use STOCOpcode if possible. We could use different store patterns in 6763 // order to avoid matching the index register, but the performance trade-offs 6764 // might be more complicated in that case. 6765 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 6766 if (Invert) 6767 CCMask ^= CCValid; 6768 6769 // ISel pattern matching also adds a load memory operand of the same 6770 // address, so take special care to find the storing memory operand. 6771 MachineMemOperand *MMO = nullptr; 6772 for (auto *I : MI.memoperands()) 6773 if (I->isStore()) { 6774 MMO = I; 6775 break; 6776 } 6777 6778 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 6779 .addReg(SrcReg) 6780 .add(Base) 6781 .addImm(Disp) 6782 .addImm(CCValid) 6783 .addImm(CCMask) 6784 .addMemOperand(MMO); 6785 6786 MI.eraseFromParent(); 6787 return MBB; 6788 } 6789 6790 // Get the condition needed to branch around the store. 6791 if (!Invert) 6792 CCMask ^= CCValid; 6793 6794 MachineBasicBlock *StartMBB = MBB; 6795 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6796 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6797 6798 // Unless CC was killed in the CondStore instruction, mark it as 6799 // live-in to both FalseMBB and JoinMBB. 6800 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 6801 FalseMBB->addLiveIn(SystemZ::CC); 6802 JoinMBB->addLiveIn(SystemZ::CC); 6803 } 6804 6805 // StartMBB: 6806 // BRC CCMask, JoinMBB 6807 // # fallthrough to FalseMBB 6808 MBB = StartMBB; 6809 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6810 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6811 MBB->addSuccessor(JoinMBB); 6812 MBB->addSuccessor(FalseMBB); 6813 6814 // FalseMBB: 6815 // store %SrcReg, %Disp(%Index,%Base) 6816 // # fallthrough to JoinMBB 6817 MBB = FalseMBB; 6818 BuildMI(MBB, DL, TII->get(StoreOpcode)) 6819 .addReg(SrcReg) 6820 .add(Base) 6821 .addImm(Disp) 6822 .addReg(IndexReg); 6823 MBB->addSuccessor(JoinMBB); 6824 6825 MI.eraseFromParent(); 6826 return JoinMBB; 6827 } 6828 6829 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 6830 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 6831 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 6832 // BitSize is the width of the field in bits, or 0 if this is a partword 6833 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 6834 // is one of the operands. Invert says whether the field should be 6835 // inverted after performing BinOpcode (e.g. for NAND). 6836 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 6837 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 6838 unsigned BitSize, bool Invert) const { 6839 MachineFunction &MF = *MBB->getParent(); 6840 const SystemZInstrInfo *TII = 6841 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6842 MachineRegisterInfo &MRI = MF.getRegInfo(); 6843 bool IsSubWord = (BitSize < 32); 6844 6845 // Extract the operands. Base can be a register or a frame index. 6846 // Src2 can be a register or immediate. 6847 Register Dest = MI.getOperand(0).getReg(); 6848 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6849 int64_t Disp = MI.getOperand(2).getImm(); 6850 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 6851 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 6852 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 6853 DebugLoc DL = MI.getDebugLoc(); 6854 if (IsSubWord) 6855 BitSize = MI.getOperand(6).getImm(); 6856 6857 // Subword operations use 32-bit registers. 6858 const TargetRegisterClass *RC = (BitSize <= 32 ? 6859 &SystemZ::GR32BitRegClass : 6860 &SystemZ::GR64BitRegClass); 6861 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6862 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6863 6864 // Get the right opcodes for the displacement. 6865 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6866 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6867 assert(LOpcode && CSOpcode && "Displacement out of range"); 6868 6869 // Create virtual registers for temporary results. 6870 Register OrigVal = MRI.createVirtualRegister(RC); 6871 Register OldVal = MRI.createVirtualRegister(RC); 6872 Register NewVal = (BinOpcode || IsSubWord ? 6873 MRI.createVirtualRegister(RC) : Src2.getReg()); 6874 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6875 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6876 6877 // Insert a basic block for the main loop. 6878 MachineBasicBlock *StartMBB = MBB; 6879 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6880 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6881 6882 // StartMBB: 6883 // ... 6884 // %OrigVal = L Disp(%Base) 6885 // # fall through to LoopMMB 6886 MBB = StartMBB; 6887 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 6888 MBB->addSuccessor(LoopMBB); 6889 6890 // LoopMBB: 6891 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 6892 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 6893 // %RotatedNewVal = OP %RotatedOldVal, %Src2 6894 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 6895 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 6896 // JNE LoopMBB 6897 // # fall through to DoneMMB 6898 MBB = LoopMBB; 6899 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6900 .addReg(OrigVal).addMBB(StartMBB) 6901 .addReg(Dest).addMBB(LoopMBB); 6902 if (IsSubWord) 6903 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 6904 .addReg(OldVal).addReg(BitShift).addImm(0); 6905 if (Invert) { 6906 // Perform the operation normally and then invert every bit of the field. 6907 Register Tmp = MRI.createVirtualRegister(RC); 6908 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 6909 if (BitSize <= 32) 6910 // XILF with the upper BitSize bits set. 6911 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 6912 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 6913 else { 6914 // Use LCGR and add -1 to the result, which is more compact than 6915 // an XILF, XILH pair. 6916 Register Tmp2 = MRI.createVirtualRegister(RC); 6917 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 6918 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 6919 .addReg(Tmp2).addImm(-1); 6920 } 6921 } else if (BinOpcode) 6922 // A simply binary operation. 6923 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 6924 .addReg(RotatedOldVal) 6925 .add(Src2); 6926 else if (IsSubWord) 6927 // Use RISBG to rotate Src2 into position and use it to replace the 6928 // field in RotatedOldVal. 6929 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 6930 .addReg(RotatedOldVal).addReg(Src2.getReg()) 6931 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 6932 if (IsSubWord) 6933 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 6934 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 6935 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 6936 .addReg(OldVal) 6937 .addReg(NewVal) 6938 .add(Base) 6939 .addImm(Disp); 6940 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6941 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6942 MBB->addSuccessor(LoopMBB); 6943 MBB->addSuccessor(DoneMBB); 6944 6945 MI.eraseFromParent(); 6946 return DoneMBB; 6947 } 6948 6949 // Implement EmitInstrWithCustomInserter for pseudo 6950 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 6951 // instruction that should be used to compare the current field with the 6952 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 6953 // for when the current field should be kept. BitSize is the width of 6954 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 6955 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 6956 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 6957 unsigned KeepOldMask, unsigned BitSize) const { 6958 MachineFunction &MF = *MBB->getParent(); 6959 const SystemZInstrInfo *TII = 6960 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6961 MachineRegisterInfo &MRI = MF.getRegInfo(); 6962 bool IsSubWord = (BitSize < 32); 6963 6964 // Extract the operands. Base can be a register or a frame index. 6965 Register Dest = MI.getOperand(0).getReg(); 6966 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6967 int64_t Disp = MI.getOperand(2).getImm(); 6968 Register Src2 = MI.getOperand(3).getReg(); 6969 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 6970 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 6971 DebugLoc DL = MI.getDebugLoc(); 6972 if (IsSubWord) 6973 BitSize = MI.getOperand(6).getImm(); 6974 6975 // Subword operations use 32-bit registers. 6976 const TargetRegisterClass *RC = (BitSize <= 32 ? 6977 &SystemZ::GR32BitRegClass : 6978 &SystemZ::GR64BitRegClass); 6979 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6980 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6981 6982 // Get the right opcodes for the displacement. 6983 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6984 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6985 assert(LOpcode && CSOpcode && "Displacement out of range"); 6986 6987 // Create virtual registers for temporary results. 6988 Register OrigVal = MRI.createVirtualRegister(RC); 6989 Register OldVal = MRI.createVirtualRegister(RC); 6990 Register NewVal = MRI.createVirtualRegister(RC); 6991 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6992 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 6993 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6994 6995 // Insert 3 basic blocks for the loop. 6996 MachineBasicBlock *StartMBB = MBB; 6997 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6998 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6999 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 7000 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 7001 7002 // StartMBB: 7003 // ... 7004 // %OrigVal = L Disp(%Base) 7005 // # fall through to LoopMMB 7006 MBB = StartMBB; 7007 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7008 MBB->addSuccessor(LoopMBB); 7009 7010 // LoopMBB: 7011 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7012 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7013 // CompareOpcode %RotatedOldVal, %Src2 7014 // BRC KeepOldMask, UpdateMBB 7015 MBB = LoopMBB; 7016 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7017 .addReg(OrigVal).addMBB(StartMBB) 7018 .addReg(Dest).addMBB(UpdateMBB); 7019 if (IsSubWord) 7020 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7021 .addReg(OldVal).addReg(BitShift).addImm(0); 7022 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7023 .addReg(RotatedOldVal).addReg(Src2); 7024 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7025 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7026 MBB->addSuccessor(UpdateMBB); 7027 MBB->addSuccessor(UseAltMBB); 7028 7029 // UseAltMBB: 7030 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7031 // # fall through to UpdateMMB 7032 MBB = UseAltMBB; 7033 if (IsSubWord) 7034 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7035 .addReg(RotatedOldVal).addReg(Src2) 7036 .addImm(32).addImm(31 + BitSize).addImm(0); 7037 MBB->addSuccessor(UpdateMBB); 7038 7039 // UpdateMBB: 7040 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7041 // [ %RotatedAltVal, UseAltMBB ] 7042 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7043 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7044 // JNE LoopMBB 7045 // # fall through to DoneMMB 7046 MBB = UpdateMBB; 7047 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7048 .addReg(RotatedOldVal).addMBB(LoopMBB) 7049 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7050 if (IsSubWord) 7051 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7052 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7053 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7054 .addReg(OldVal) 7055 .addReg(NewVal) 7056 .add(Base) 7057 .addImm(Disp); 7058 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7059 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7060 MBB->addSuccessor(LoopMBB); 7061 MBB->addSuccessor(DoneMBB); 7062 7063 MI.eraseFromParent(); 7064 return DoneMBB; 7065 } 7066 7067 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7068 // instruction MI. 7069 MachineBasicBlock * 7070 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7071 MachineBasicBlock *MBB) const { 7072 7073 MachineFunction &MF = *MBB->getParent(); 7074 const SystemZInstrInfo *TII = 7075 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7076 MachineRegisterInfo &MRI = MF.getRegInfo(); 7077 7078 // Extract the operands. Base can be a register or a frame index. 7079 Register Dest = MI.getOperand(0).getReg(); 7080 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7081 int64_t Disp = MI.getOperand(2).getImm(); 7082 Register OrigCmpVal = MI.getOperand(3).getReg(); 7083 Register OrigSwapVal = MI.getOperand(4).getReg(); 7084 Register BitShift = MI.getOperand(5).getReg(); 7085 Register NegBitShift = MI.getOperand(6).getReg(); 7086 int64_t BitSize = MI.getOperand(7).getImm(); 7087 DebugLoc DL = MI.getDebugLoc(); 7088 7089 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7090 7091 // Get the right opcodes for the displacement. 7092 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7093 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7094 assert(LOpcode && CSOpcode && "Displacement out of range"); 7095 7096 // Create virtual registers for temporary results. 7097 Register OrigOldVal = MRI.createVirtualRegister(RC); 7098 Register OldVal = MRI.createVirtualRegister(RC); 7099 Register CmpVal = MRI.createVirtualRegister(RC); 7100 Register SwapVal = MRI.createVirtualRegister(RC); 7101 Register StoreVal = MRI.createVirtualRegister(RC); 7102 Register RetryOldVal = MRI.createVirtualRegister(RC); 7103 Register RetryCmpVal = MRI.createVirtualRegister(RC); 7104 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7105 7106 // Insert 2 basic blocks for the loop. 7107 MachineBasicBlock *StartMBB = MBB; 7108 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7109 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7110 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 7111 7112 // StartMBB: 7113 // ... 7114 // %OrigOldVal = L Disp(%Base) 7115 // # fall through to LoopMMB 7116 MBB = StartMBB; 7117 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7118 .add(Base) 7119 .addImm(Disp) 7120 .addReg(0); 7121 MBB->addSuccessor(LoopMBB); 7122 7123 // LoopMBB: 7124 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7125 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 7126 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7127 // %Dest = RLL %OldVal, BitSize(%BitShift) 7128 // ^^ The low BitSize bits contain the field 7129 // of interest. 7130 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 7131 // ^^ Replace the upper 32-BitSize bits of the 7132 // comparison value with those that we loaded, 7133 // so that we can use a full word comparison. 7134 // CR %Dest, %RetryCmpVal 7135 // JNE DoneMBB 7136 // # Fall through to SetMBB 7137 MBB = LoopMBB; 7138 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7139 .addReg(OrigOldVal).addMBB(StartMBB) 7140 .addReg(RetryOldVal).addMBB(SetMBB); 7141 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 7142 .addReg(OrigCmpVal).addMBB(StartMBB) 7143 .addReg(RetryCmpVal).addMBB(SetMBB); 7144 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7145 .addReg(OrigSwapVal).addMBB(StartMBB) 7146 .addReg(RetrySwapVal).addMBB(SetMBB); 7147 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 7148 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7149 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 7150 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7151 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7152 .addReg(Dest).addReg(RetryCmpVal); 7153 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7154 .addImm(SystemZ::CCMASK_ICMP) 7155 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7156 MBB->addSuccessor(DoneMBB); 7157 MBB->addSuccessor(SetMBB); 7158 7159 // SetMBB: 7160 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 7161 // ^^ Replace the upper 32-BitSize bits of the new 7162 // value with those that we loaded. 7163 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7164 // ^^ Rotate the new field to its proper position. 7165 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 7166 // JNE LoopMBB 7167 // # fall through to ExitMMB 7168 MBB = SetMBB; 7169 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7170 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7171 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7172 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7173 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7174 .addReg(OldVal) 7175 .addReg(StoreVal) 7176 .add(Base) 7177 .addImm(Disp); 7178 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7179 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7180 MBB->addSuccessor(LoopMBB); 7181 MBB->addSuccessor(DoneMBB); 7182 7183 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7184 // to the block after the loop. At this point, CC may have been defined 7185 // either by the CR in LoopMBB or by the CS in SetMBB. 7186 if (!MI.registerDefIsDead(SystemZ::CC)) 7187 DoneMBB->addLiveIn(SystemZ::CC); 7188 7189 MI.eraseFromParent(); 7190 return DoneMBB; 7191 } 7192 7193 // Emit a move from two GR64s to a GR128. 7194 MachineBasicBlock * 7195 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7196 MachineBasicBlock *MBB) const { 7197 MachineFunction &MF = *MBB->getParent(); 7198 const SystemZInstrInfo *TII = 7199 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7200 MachineRegisterInfo &MRI = MF.getRegInfo(); 7201 DebugLoc DL = MI.getDebugLoc(); 7202 7203 Register Dest = MI.getOperand(0).getReg(); 7204 Register Hi = MI.getOperand(1).getReg(); 7205 Register Lo = MI.getOperand(2).getReg(); 7206 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7207 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7208 7209 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7210 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7211 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7212 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7213 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7214 7215 MI.eraseFromParent(); 7216 return MBB; 7217 } 7218 7219 // Emit an extension from a GR64 to a GR128. ClearEven is true 7220 // if the high register of the GR128 value must be cleared or false if 7221 // it's "don't care". 7222 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7223 MachineBasicBlock *MBB, 7224 bool ClearEven) const { 7225 MachineFunction &MF = *MBB->getParent(); 7226 const SystemZInstrInfo *TII = 7227 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7228 MachineRegisterInfo &MRI = MF.getRegInfo(); 7229 DebugLoc DL = MI.getDebugLoc(); 7230 7231 Register Dest = MI.getOperand(0).getReg(); 7232 Register Src = MI.getOperand(1).getReg(); 7233 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7234 7235 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7236 if (ClearEven) { 7237 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7238 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7239 7240 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7241 .addImm(0); 7242 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7243 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7244 In128 = NewIn128; 7245 } 7246 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7247 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7248 7249 MI.eraseFromParent(); 7250 return MBB; 7251 } 7252 7253 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 7254 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7255 MachineFunction &MF = *MBB->getParent(); 7256 const SystemZInstrInfo *TII = 7257 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7258 MachineRegisterInfo &MRI = MF.getRegInfo(); 7259 DebugLoc DL = MI.getDebugLoc(); 7260 7261 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7262 uint64_t DestDisp = MI.getOperand(1).getImm(); 7263 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 7264 uint64_t SrcDisp = MI.getOperand(3).getImm(); 7265 uint64_t Length = MI.getOperand(4).getImm(); 7266 7267 // When generating more than one CLC, all but the last will need to 7268 // branch to the end when a difference is found. 7269 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 7270 splitBlockAfter(MI, MBB) : nullptr); 7271 7272 // Check for the loop form, in which operand 5 is the trip count. 7273 if (MI.getNumExplicitOperands() > 5) { 7274 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7275 7276 Register StartCountReg = MI.getOperand(5).getReg(); 7277 Register StartSrcReg = forceReg(MI, SrcBase, TII); 7278 Register StartDestReg = (HaveSingleBase ? StartSrcReg : 7279 forceReg(MI, DestBase, TII)); 7280 7281 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 7282 Register ThisSrcReg = MRI.createVirtualRegister(RC); 7283 Register ThisDestReg = (HaveSingleBase ? ThisSrcReg : 7284 MRI.createVirtualRegister(RC)); 7285 Register NextSrcReg = MRI.createVirtualRegister(RC); 7286 Register NextDestReg = (HaveSingleBase ? NextSrcReg : 7287 MRI.createVirtualRegister(RC)); 7288 7289 RC = &SystemZ::GR64BitRegClass; 7290 Register ThisCountReg = MRI.createVirtualRegister(RC); 7291 Register NextCountReg = MRI.createVirtualRegister(RC); 7292 7293 MachineBasicBlock *StartMBB = MBB; 7294 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7295 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7296 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 7297 7298 // StartMBB: 7299 // # fall through to LoopMMB 7300 MBB->addSuccessor(LoopMBB); 7301 7302 // LoopMBB: 7303 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 7304 // [ %NextDestReg, NextMBB ] 7305 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 7306 // [ %NextSrcReg, NextMBB ] 7307 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 7308 // [ %NextCountReg, NextMBB ] 7309 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 7310 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 7311 // ( JLH EndMBB ) 7312 // 7313 // The prefetch is used only for MVC. The JLH is used only for CLC. 7314 MBB = LoopMBB; 7315 7316 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 7317 .addReg(StartDestReg).addMBB(StartMBB) 7318 .addReg(NextDestReg).addMBB(NextMBB); 7319 if (!HaveSingleBase) 7320 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 7321 .addReg(StartSrcReg).addMBB(StartMBB) 7322 .addReg(NextSrcReg).addMBB(NextMBB); 7323 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 7324 .addReg(StartCountReg).addMBB(StartMBB) 7325 .addReg(NextCountReg).addMBB(NextMBB); 7326 if (Opcode == SystemZ::MVC) 7327 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 7328 .addImm(SystemZ::PFD_WRITE) 7329 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 7330 BuildMI(MBB, DL, TII->get(Opcode)) 7331 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 7332 .addReg(ThisSrcReg).addImm(SrcDisp); 7333 if (EndMBB) { 7334 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7335 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7336 .addMBB(EndMBB); 7337 MBB->addSuccessor(EndMBB); 7338 MBB->addSuccessor(NextMBB); 7339 } 7340 7341 // NextMBB: 7342 // %NextDestReg = LA 256(%ThisDestReg) 7343 // %NextSrcReg = LA 256(%ThisSrcReg) 7344 // %NextCountReg = AGHI %ThisCountReg, -1 7345 // CGHI %NextCountReg, 0 7346 // JLH LoopMBB 7347 // # fall through to DoneMMB 7348 // 7349 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 7350 MBB = NextMBB; 7351 7352 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 7353 .addReg(ThisDestReg).addImm(256).addReg(0); 7354 if (!HaveSingleBase) 7355 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 7356 .addReg(ThisSrcReg).addImm(256).addReg(0); 7357 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7358 .addReg(ThisCountReg).addImm(-1); 7359 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7360 .addReg(NextCountReg).addImm(0); 7361 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7362 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7363 .addMBB(LoopMBB); 7364 MBB->addSuccessor(LoopMBB); 7365 MBB->addSuccessor(DoneMBB); 7366 7367 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7368 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7369 Length &= 255; 7370 if (EndMBB && !Length) 7371 // If the loop handled the whole CLC range, DoneMBB will be empty with 7372 // CC live-through into EndMBB, so add it as live-in. 7373 DoneMBB->addLiveIn(SystemZ::CC); 7374 MBB = DoneMBB; 7375 } 7376 // Handle any remaining bytes with straight-line code. 7377 while (Length > 0) { 7378 uint64_t ThisLength = std::min(Length, uint64_t(256)); 7379 // The previous iteration might have created out-of-range displacements. 7380 // Apply them using LAY if so. 7381 if (!isUInt<12>(DestDisp)) { 7382 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7383 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7384 .add(DestBase) 7385 .addImm(DestDisp) 7386 .addReg(0); 7387 DestBase = MachineOperand::CreateReg(Reg, false); 7388 DestDisp = 0; 7389 } 7390 if (!isUInt<12>(SrcDisp)) { 7391 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7392 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7393 .add(SrcBase) 7394 .addImm(SrcDisp) 7395 .addReg(0); 7396 SrcBase = MachineOperand::CreateReg(Reg, false); 7397 SrcDisp = 0; 7398 } 7399 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 7400 .add(DestBase) 7401 .addImm(DestDisp) 7402 .addImm(ThisLength) 7403 .add(SrcBase) 7404 .addImm(SrcDisp) 7405 .setMemRefs(MI.memoperands()); 7406 DestDisp += ThisLength; 7407 SrcDisp += ThisLength; 7408 Length -= ThisLength; 7409 // If there's another CLC to go, branch to the end if a difference 7410 // was found. 7411 if (EndMBB && Length > 0) { 7412 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 7413 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7414 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7415 .addMBB(EndMBB); 7416 MBB->addSuccessor(EndMBB); 7417 MBB->addSuccessor(NextMBB); 7418 MBB = NextMBB; 7419 } 7420 } 7421 if (EndMBB) { 7422 MBB->addSuccessor(EndMBB); 7423 MBB = EndMBB; 7424 MBB->addLiveIn(SystemZ::CC); 7425 } 7426 7427 MI.eraseFromParent(); 7428 return MBB; 7429 } 7430 7431 // Decompose string pseudo-instruction MI into a loop that continually performs 7432 // Opcode until CC != 3. 7433 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7434 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7435 MachineFunction &MF = *MBB->getParent(); 7436 const SystemZInstrInfo *TII = 7437 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7438 MachineRegisterInfo &MRI = MF.getRegInfo(); 7439 DebugLoc DL = MI.getDebugLoc(); 7440 7441 uint64_t End1Reg = MI.getOperand(0).getReg(); 7442 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7443 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7444 uint64_t CharReg = MI.getOperand(3).getReg(); 7445 7446 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7447 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7448 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7449 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7450 7451 MachineBasicBlock *StartMBB = MBB; 7452 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7453 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7454 7455 // StartMBB: 7456 // # fall through to LoopMMB 7457 MBB->addSuccessor(LoopMBB); 7458 7459 // LoopMBB: 7460 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7461 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7462 // R0L = %CharReg 7463 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7464 // JO LoopMBB 7465 // # fall through to DoneMMB 7466 // 7467 // The load of R0L can be hoisted by post-RA LICM. 7468 MBB = LoopMBB; 7469 7470 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7471 .addReg(Start1Reg).addMBB(StartMBB) 7472 .addReg(End1Reg).addMBB(LoopMBB); 7473 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7474 .addReg(Start2Reg).addMBB(StartMBB) 7475 .addReg(End2Reg).addMBB(LoopMBB); 7476 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7477 BuildMI(MBB, DL, TII->get(Opcode)) 7478 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7479 .addReg(This1Reg).addReg(This2Reg); 7480 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7481 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7482 MBB->addSuccessor(LoopMBB); 7483 MBB->addSuccessor(DoneMBB); 7484 7485 DoneMBB->addLiveIn(SystemZ::CC); 7486 7487 MI.eraseFromParent(); 7488 return DoneMBB; 7489 } 7490 7491 // Update TBEGIN instruction with final opcode and register clobbers. 7492 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7493 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7494 bool NoFloat) const { 7495 MachineFunction &MF = *MBB->getParent(); 7496 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7497 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7498 7499 // Update opcode. 7500 MI.setDesc(TII->get(Opcode)); 7501 7502 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7503 // Make sure to add the corresponding GRSM bits if they are missing. 7504 uint64_t Control = MI.getOperand(2).getImm(); 7505 static const unsigned GPRControlBit[16] = { 7506 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7507 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7508 }; 7509 Control |= GPRControlBit[15]; 7510 if (TFI->hasFP(MF)) 7511 Control |= GPRControlBit[11]; 7512 MI.getOperand(2).setImm(Control); 7513 7514 // Add GPR clobbers. 7515 for (int I = 0; I < 16; I++) { 7516 if ((Control & GPRControlBit[I]) == 0) { 7517 unsigned Reg = SystemZMC::GR64Regs[I]; 7518 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7519 } 7520 } 7521 7522 // Add FPR/VR clobbers. 7523 if (!NoFloat && (Control & 4) != 0) { 7524 if (Subtarget.hasVector()) { 7525 for (int I = 0; I < 32; I++) { 7526 unsigned Reg = SystemZMC::VR128Regs[I]; 7527 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7528 } 7529 } else { 7530 for (int I = 0; I < 16; I++) { 7531 unsigned Reg = SystemZMC::FP64Regs[I]; 7532 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7533 } 7534 } 7535 } 7536 7537 return MBB; 7538 } 7539 7540 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 7541 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7542 MachineFunction &MF = *MBB->getParent(); 7543 MachineRegisterInfo *MRI = &MF.getRegInfo(); 7544 const SystemZInstrInfo *TII = 7545 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7546 DebugLoc DL = MI.getDebugLoc(); 7547 7548 Register SrcReg = MI.getOperand(0).getReg(); 7549 7550 // Create new virtual register of the same class as source. 7551 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7552 Register DstReg = MRI->createVirtualRegister(RC); 7553 7554 // Replace pseudo with a normal load-and-test that models the def as 7555 // well. 7556 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7557 .addReg(SrcReg); 7558 MI.eraseFromParent(); 7559 7560 return MBB; 7561 } 7562 7563 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7564 MachineInstr &MI, MachineBasicBlock *MBB) const { 7565 switch (MI.getOpcode()) { 7566 case SystemZ::Select32: 7567 case SystemZ::Select64: 7568 case SystemZ::SelectF32: 7569 case SystemZ::SelectF64: 7570 case SystemZ::SelectF128: 7571 case SystemZ::SelectVR32: 7572 case SystemZ::SelectVR64: 7573 case SystemZ::SelectVR128: 7574 return emitSelect(MI, MBB); 7575 7576 case SystemZ::CondStore8Mux: 7577 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7578 case SystemZ::CondStore8MuxInv: 7579 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7580 case SystemZ::CondStore16Mux: 7581 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7582 case SystemZ::CondStore16MuxInv: 7583 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7584 case SystemZ::CondStore32Mux: 7585 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7586 case SystemZ::CondStore32MuxInv: 7587 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7588 case SystemZ::CondStore8: 7589 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7590 case SystemZ::CondStore8Inv: 7591 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7592 case SystemZ::CondStore16: 7593 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7594 case SystemZ::CondStore16Inv: 7595 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7596 case SystemZ::CondStore32: 7597 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7598 case SystemZ::CondStore32Inv: 7599 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7600 case SystemZ::CondStore64: 7601 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7602 case SystemZ::CondStore64Inv: 7603 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7604 case SystemZ::CondStoreF32: 7605 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7606 case SystemZ::CondStoreF32Inv: 7607 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7608 case SystemZ::CondStoreF64: 7609 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7610 case SystemZ::CondStoreF64Inv: 7611 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7612 7613 case SystemZ::PAIR128: 7614 return emitPair128(MI, MBB); 7615 case SystemZ::AEXT128: 7616 return emitExt128(MI, MBB, false); 7617 case SystemZ::ZEXT128: 7618 return emitExt128(MI, MBB, true); 7619 7620 case SystemZ::ATOMIC_SWAPW: 7621 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7622 case SystemZ::ATOMIC_SWAP_32: 7623 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7624 case SystemZ::ATOMIC_SWAP_64: 7625 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7626 7627 case SystemZ::ATOMIC_LOADW_AR: 7628 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7629 case SystemZ::ATOMIC_LOADW_AFI: 7630 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7631 case SystemZ::ATOMIC_LOAD_AR: 7632 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7633 case SystemZ::ATOMIC_LOAD_AHI: 7634 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7635 case SystemZ::ATOMIC_LOAD_AFI: 7636 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7637 case SystemZ::ATOMIC_LOAD_AGR: 7638 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7639 case SystemZ::ATOMIC_LOAD_AGHI: 7640 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7641 case SystemZ::ATOMIC_LOAD_AGFI: 7642 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7643 7644 case SystemZ::ATOMIC_LOADW_SR: 7645 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7646 case SystemZ::ATOMIC_LOAD_SR: 7647 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7648 case SystemZ::ATOMIC_LOAD_SGR: 7649 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7650 7651 case SystemZ::ATOMIC_LOADW_NR: 7652 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7653 case SystemZ::ATOMIC_LOADW_NILH: 7654 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7655 case SystemZ::ATOMIC_LOAD_NR: 7656 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7657 case SystemZ::ATOMIC_LOAD_NILL: 7658 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7659 case SystemZ::ATOMIC_LOAD_NILH: 7660 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7661 case SystemZ::ATOMIC_LOAD_NILF: 7662 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7663 case SystemZ::ATOMIC_LOAD_NGR: 7664 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7665 case SystemZ::ATOMIC_LOAD_NILL64: 7666 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7667 case SystemZ::ATOMIC_LOAD_NILH64: 7668 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7669 case SystemZ::ATOMIC_LOAD_NIHL64: 7670 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 7671 case SystemZ::ATOMIC_LOAD_NIHH64: 7672 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 7673 case SystemZ::ATOMIC_LOAD_NILF64: 7674 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 7675 case SystemZ::ATOMIC_LOAD_NIHF64: 7676 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 7677 7678 case SystemZ::ATOMIC_LOADW_OR: 7679 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 7680 case SystemZ::ATOMIC_LOADW_OILH: 7681 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 7682 case SystemZ::ATOMIC_LOAD_OR: 7683 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 7684 case SystemZ::ATOMIC_LOAD_OILL: 7685 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 7686 case SystemZ::ATOMIC_LOAD_OILH: 7687 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 7688 case SystemZ::ATOMIC_LOAD_OILF: 7689 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 7690 case SystemZ::ATOMIC_LOAD_OGR: 7691 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 7692 case SystemZ::ATOMIC_LOAD_OILL64: 7693 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 7694 case SystemZ::ATOMIC_LOAD_OILH64: 7695 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 7696 case SystemZ::ATOMIC_LOAD_OIHL64: 7697 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 7698 case SystemZ::ATOMIC_LOAD_OIHH64: 7699 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 7700 case SystemZ::ATOMIC_LOAD_OILF64: 7701 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 7702 case SystemZ::ATOMIC_LOAD_OIHF64: 7703 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 7704 7705 case SystemZ::ATOMIC_LOADW_XR: 7706 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 7707 case SystemZ::ATOMIC_LOADW_XILF: 7708 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 7709 case SystemZ::ATOMIC_LOAD_XR: 7710 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 7711 case SystemZ::ATOMIC_LOAD_XILF: 7712 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 7713 case SystemZ::ATOMIC_LOAD_XGR: 7714 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 7715 case SystemZ::ATOMIC_LOAD_XILF64: 7716 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 7717 case SystemZ::ATOMIC_LOAD_XIHF64: 7718 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 7719 7720 case SystemZ::ATOMIC_LOADW_NRi: 7721 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 7722 case SystemZ::ATOMIC_LOADW_NILHi: 7723 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 7724 case SystemZ::ATOMIC_LOAD_NRi: 7725 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 7726 case SystemZ::ATOMIC_LOAD_NILLi: 7727 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 7728 case SystemZ::ATOMIC_LOAD_NILHi: 7729 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 7730 case SystemZ::ATOMIC_LOAD_NILFi: 7731 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 7732 case SystemZ::ATOMIC_LOAD_NGRi: 7733 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 7734 case SystemZ::ATOMIC_LOAD_NILL64i: 7735 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 7736 case SystemZ::ATOMIC_LOAD_NILH64i: 7737 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 7738 case SystemZ::ATOMIC_LOAD_NIHL64i: 7739 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 7740 case SystemZ::ATOMIC_LOAD_NIHH64i: 7741 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 7742 case SystemZ::ATOMIC_LOAD_NILF64i: 7743 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 7744 case SystemZ::ATOMIC_LOAD_NIHF64i: 7745 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 7746 7747 case SystemZ::ATOMIC_LOADW_MIN: 7748 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7749 SystemZ::CCMASK_CMP_LE, 0); 7750 case SystemZ::ATOMIC_LOAD_MIN_32: 7751 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7752 SystemZ::CCMASK_CMP_LE, 32); 7753 case SystemZ::ATOMIC_LOAD_MIN_64: 7754 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7755 SystemZ::CCMASK_CMP_LE, 64); 7756 7757 case SystemZ::ATOMIC_LOADW_MAX: 7758 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7759 SystemZ::CCMASK_CMP_GE, 0); 7760 case SystemZ::ATOMIC_LOAD_MAX_32: 7761 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7762 SystemZ::CCMASK_CMP_GE, 32); 7763 case SystemZ::ATOMIC_LOAD_MAX_64: 7764 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7765 SystemZ::CCMASK_CMP_GE, 64); 7766 7767 case SystemZ::ATOMIC_LOADW_UMIN: 7768 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7769 SystemZ::CCMASK_CMP_LE, 0); 7770 case SystemZ::ATOMIC_LOAD_UMIN_32: 7771 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7772 SystemZ::CCMASK_CMP_LE, 32); 7773 case SystemZ::ATOMIC_LOAD_UMIN_64: 7774 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7775 SystemZ::CCMASK_CMP_LE, 64); 7776 7777 case SystemZ::ATOMIC_LOADW_UMAX: 7778 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7779 SystemZ::CCMASK_CMP_GE, 0); 7780 case SystemZ::ATOMIC_LOAD_UMAX_32: 7781 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7782 SystemZ::CCMASK_CMP_GE, 32); 7783 case SystemZ::ATOMIC_LOAD_UMAX_64: 7784 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7785 SystemZ::CCMASK_CMP_GE, 64); 7786 7787 case SystemZ::ATOMIC_CMP_SWAPW: 7788 return emitAtomicCmpSwapW(MI, MBB); 7789 case SystemZ::MVCSequence: 7790 case SystemZ::MVCLoop: 7791 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 7792 case SystemZ::NCSequence: 7793 case SystemZ::NCLoop: 7794 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 7795 case SystemZ::OCSequence: 7796 case SystemZ::OCLoop: 7797 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 7798 case SystemZ::XCSequence: 7799 case SystemZ::XCLoop: 7800 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 7801 case SystemZ::CLCSequence: 7802 case SystemZ::CLCLoop: 7803 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 7804 case SystemZ::CLSTLoop: 7805 return emitStringWrapper(MI, MBB, SystemZ::CLST); 7806 case SystemZ::MVSTLoop: 7807 return emitStringWrapper(MI, MBB, SystemZ::MVST); 7808 case SystemZ::SRSTLoop: 7809 return emitStringWrapper(MI, MBB, SystemZ::SRST); 7810 case SystemZ::TBEGIN: 7811 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 7812 case SystemZ::TBEGIN_nofloat: 7813 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 7814 case SystemZ::TBEGINC: 7815 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 7816 case SystemZ::LTEBRCompare_VecPseudo: 7817 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 7818 case SystemZ::LTDBRCompare_VecPseudo: 7819 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 7820 case SystemZ::LTXBRCompare_VecPseudo: 7821 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 7822 7823 case TargetOpcode::STACKMAP: 7824 case TargetOpcode::PATCHPOINT: 7825 return emitPatchPoint(MI, MBB); 7826 7827 default: 7828 llvm_unreachable("Unexpected instr type to insert"); 7829 } 7830 } 7831 7832 // This is only used by the isel schedulers, and is needed only to prevent 7833 // compiler from crashing when list-ilp is used. 7834 const TargetRegisterClass * 7835 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 7836 if (VT == MVT::Untyped) 7837 return &SystemZ::ADDR128BitRegClass; 7838 return TargetLowering::getRepRegClassFor(VT); 7839 } 7840