1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include <cctype> 25 26 using namespace llvm; 27 28 #define DEBUG_TYPE "systemz-lower" 29 30 namespace { 31 // Represents a sequence for extracting a 0/1 value from an IPM result: 32 // (((X ^ XORValue) + AddValue) >> Bit) 33 struct IPMConversion { 34 IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) 35 : XORValue(xorValue), AddValue(addValue), Bit(bit) {} 36 37 int64_t XORValue; 38 int64_t AddValue; 39 unsigned Bit; 40 }; 41 42 // Represents information about a comparison. 43 struct Comparison { 44 Comparison(SDValue Op0In, SDValue Op1In) 45 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 46 47 // The operands to the comparison. 48 SDValue Op0, Op1; 49 50 // The opcode that should be used to compare Op0 and Op1. 51 unsigned Opcode; 52 53 // A SystemZICMP value. Only used for integer comparisons. 54 unsigned ICmpType; 55 56 // The mask of CC values that Opcode can produce. 57 unsigned CCValid; 58 59 // The mask of CC values for which the original condition is true. 60 unsigned CCMask; 61 }; 62 } // end anonymous namespace 63 64 // Classify VT as either 32 or 64 bit. 65 static bool is32Bit(EVT VT) { 66 switch (VT.getSimpleVT().SimpleTy) { 67 case MVT::i32: 68 return true; 69 case MVT::i64: 70 return false; 71 default: 72 llvm_unreachable("Unsupported type"); 73 } 74 } 75 76 // Return a version of MachineOperand that can be safely used before the 77 // final use. 78 static MachineOperand earlyUseOperand(MachineOperand Op) { 79 if (Op.isReg()) 80 Op.setIsKill(false); 81 return Op; 82 } 83 84 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 85 const SystemZSubtarget &STI) 86 : TargetLowering(TM), Subtarget(STI) { 87 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); 88 89 // Set up the register classes. 90 if (Subtarget.hasHighWord()) 91 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 92 else 93 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 94 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 95 if (Subtarget.hasVector()) { 96 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 98 } else { 99 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 100 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 101 } 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 113 // Compute derived properties from the register classes 114 computeRegisterProperties(Subtarget.getRegisterInfo()); 115 116 // Set up special registers. 117 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 118 119 // TODO: It may be better to default to latency-oriented scheduling, however 120 // LLVM's current latency-oriented scheduler can't handle physreg definitions 121 // such as SystemZ has with CC, so set this to the register-pressure 122 // scheduler, because it can. 123 setSchedulingPreference(Sched::RegPressure); 124 125 setBooleanContents(ZeroOrOneBooleanContent); 126 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 127 128 // Instructions are strings of 2-byte aligned 2-byte values. 129 setMinFunctionAlignment(2); 130 131 // Handle operations that are handled in a similar way for all types. 132 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 133 I <= MVT::LAST_FP_VALUETYPE; 134 ++I) { 135 MVT VT = MVT::SimpleValueType(I); 136 if (isTypeLegal(VT)) { 137 // Lower SET_CC into an IPM-based sequence. 138 setOperationAction(ISD::SETCC, VT, Custom); 139 140 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 141 setOperationAction(ISD::SELECT, VT, Expand); 142 143 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 144 setOperationAction(ISD::SELECT_CC, VT, Custom); 145 setOperationAction(ISD::BR_CC, VT, Custom); 146 } 147 } 148 149 // Expand jump table branches as address arithmetic followed by an 150 // indirect jump. 151 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 152 153 // Expand BRCOND into a BR_CC (see above). 154 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 155 156 // Handle integer types. 157 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 158 I <= MVT::LAST_INTEGER_VALUETYPE; 159 ++I) { 160 MVT VT = MVT::SimpleValueType(I); 161 if (isTypeLegal(VT)) { 162 // Expand individual DIV and REMs into DIVREMs. 163 setOperationAction(ISD::SDIV, VT, Expand); 164 setOperationAction(ISD::UDIV, VT, Expand); 165 setOperationAction(ISD::SREM, VT, Expand); 166 setOperationAction(ISD::UREM, VT, Expand); 167 setOperationAction(ISD::SDIVREM, VT, Custom); 168 setOperationAction(ISD::UDIVREM, VT, Custom); 169 170 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 171 // stores, putting a serialization instruction after the stores. 172 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 173 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 174 175 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 176 // available, or if the operand is constant. 177 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 178 179 // Use POPCNT on z196 and above. 180 if (Subtarget.hasPopulationCount()) 181 setOperationAction(ISD::CTPOP, VT, Custom); 182 else 183 setOperationAction(ISD::CTPOP, VT, Expand); 184 185 // No special instructions for these. 186 setOperationAction(ISD::CTTZ, VT, Expand); 187 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 188 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 189 setOperationAction(ISD::ROTR, VT, Expand); 190 191 // Use *MUL_LOHI where possible instead of MULH*. 192 setOperationAction(ISD::MULHS, VT, Expand); 193 setOperationAction(ISD::MULHU, VT, Expand); 194 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 195 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 196 197 // Only z196 and above have native support for conversions to unsigned. 198 if (!Subtarget.hasFPExtension()) 199 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 200 } 201 } 202 203 // Type legalization will convert 8- and 16-bit atomic operations into 204 // forms that operate on i32s (but still keeping the original memory VT). 205 // Lower them into full i32 operations. 206 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 207 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 208 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 209 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 210 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 211 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 212 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 213 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 214 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 215 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 216 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); 218 219 // z10 has instructions for signed but not unsigned FP conversion. 220 // Handle unsigned 32-bit types as signed 64-bit types. 221 if (!Subtarget.hasFPExtension()) { 222 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 223 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 224 } 225 226 // We have native support for a 64-bit CTLZ, via FLOGR. 227 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 228 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 229 230 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 231 setOperationAction(ISD::OR, MVT::i64, Custom); 232 233 // FIXME: Can we support these natively? 234 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 235 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 236 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 237 238 // We have native instructions for i8, i16 and i32 extensions, but not i1. 239 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 240 for (MVT VT : MVT::integer_valuetypes()) { 241 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 242 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 243 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 244 } 245 246 // Handle the various types of symbolic address. 247 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 248 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 249 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 250 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 251 setOperationAction(ISD::JumpTable, PtrVT, Custom); 252 253 // We need to handle dynamic allocations specially because of the 254 // 160-byte area at the bottom of the stack. 255 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 256 257 // Use custom expanders so that we can force the function to use 258 // a frame pointer. 259 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 260 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 261 262 // Handle prefetches with PFD or PFDRL. 263 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 264 265 for (MVT VT : MVT::vector_valuetypes()) { 266 // Assume by default that all vector operations need to be expanded. 267 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 268 if (getOperationAction(Opcode, VT) == Legal) 269 setOperationAction(Opcode, VT, Expand); 270 271 // Likewise all truncating stores and extending loads. 272 for (MVT InnerVT : MVT::vector_valuetypes()) { 273 setTruncStoreAction(VT, InnerVT, Expand); 274 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 275 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 276 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 277 } 278 279 if (isTypeLegal(VT)) { 280 // These operations are legal for anything that can be stored in a 281 // vector register, even if there is no native support for the format 282 // as such. In particular, we can do these for v4f32 even though there 283 // are no specific instructions for that format. 284 setOperationAction(ISD::LOAD, VT, Legal); 285 setOperationAction(ISD::STORE, VT, Legal); 286 setOperationAction(ISD::VSELECT, VT, Legal); 287 setOperationAction(ISD::BITCAST, VT, Legal); 288 setOperationAction(ISD::UNDEF, VT, Legal); 289 290 // Likewise, except that we need to replace the nodes with something 291 // more specific. 292 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 293 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 294 } 295 } 296 297 // Handle integer vector types. 298 for (MVT VT : MVT::integer_vector_valuetypes()) { 299 if (isTypeLegal(VT)) { 300 // These operations have direct equivalents. 301 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 302 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 303 setOperationAction(ISD::ADD, VT, Legal); 304 setOperationAction(ISD::SUB, VT, Legal); 305 if (VT != MVT::v2i64) 306 setOperationAction(ISD::MUL, VT, Legal); 307 setOperationAction(ISD::AND, VT, Legal); 308 setOperationAction(ISD::OR, VT, Legal); 309 setOperationAction(ISD::XOR, VT, Legal); 310 setOperationAction(ISD::CTPOP, VT, Custom); 311 setOperationAction(ISD::CTTZ, VT, Legal); 312 setOperationAction(ISD::CTLZ, VT, Legal); 313 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); 314 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); 315 316 // Convert a GPR scalar to a vector by inserting it into element 0. 317 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 318 319 // Use a series of unpacks for extensions. 320 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 321 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 322 323 // Detect shifts by a scalar amount and convert them into 324 // V*_BY_SCALAR. 325 setOperationAction(ISD::SHL, VT, Custom); 326 setOperationAction(ISD::SRA, VT, Custom); 327 setOperationAction(ISD::SRL, VT, Custom); 328 329 // At present ROTL isn't matched by DAGCombiner. ROTR should be 330 // converted into ROTL. 331 setOperationAction(ISD::ROTL, VT, Expand); 332 setOperationAction(ISD::ROTR, VT, Expand); 333 334 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 335 // and inverting the result as necessary. 336 setOperationAction(ISD::SETCC, VT, Custom); 337 } 338 } 339 340 if (Subtarget.hasVector()) { 341 // There should be no need to check for float types other than v2f64 342 // since <2 x f32> isn't a legal type. 343 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 344 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 345 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 346 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 347 } 348 349 // Handle floating-point types. 350 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 351 I <= MVT::LAST_FP_VALUETYPE; 352 ++I) { 353 MVT VT = MVT::SimpleValueType(I); 354 if (isTypeLegal(VT)) { 355 // We can use FI for FRINT. 356 setOperationAction(ISD::FRINT, VT, Legal); 357 358 // We can use the extended form of FI for other rounding operations. 359 if (Subtarget.hasFPExtension()) { 360 setOperationAction(ISD::FNEARBYINT, VT, Legal); 361 setOperationAction(ISD::FFLOOR, VT, Legal); 362 setOperationAction(ISD::FCEIL, VT, Legal); 363 setOperationAction(ISD::FTRUNC, VT, Legal); 364 setOperationAction(ISD::FROUND, VT, Legal); 365 } 366 367 // No special instructions for these. 368 setOperationAction(ISD::FSIN, VT, Expand); 369 setOperationAction(ISD::FCOS, VT, Expand); 370 setOperationAction(ISD::FSINCOS, VT, Expand); 371 setOperationAction(ISD::FREM, VT, Expand); 372 setOperationAction(ISD::FPOW, VT, Expand); 373 } 374 } 375 376 // Handle floating-point vector types. 377 if (Subtarget.hasVector()) { 378 // Scalar-to-vector conversion is just a subreg. 379 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 380 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 381 382 // Some insertions and extractions can be done directly but others 383 // need to go via integers. 384 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 385 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 386 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 387 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 388 389 // These operations have direct equivalents. 390 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 391 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 392 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 393 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 394 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 395 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 396 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 397 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 398 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 399 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 400 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 401 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 402 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 403 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 404 } 405 406 // We have fused multiply-addition for f32 and f64 but not f128. 407 setOperationAction(ISD::FMA, MVT::f32, Legal); 408 setOperationAction(ISD::FMA, MVT::f64, Legal); 409 setOperationAction(ISD::FMA, MVT::f128, Expand); 410 411 // Needed so that we don't try to implement f128 constant loads using 412 // a load-and-extend of a f80 constant (in cases where the constant 413 // would fit in an f80). 414 for (MVT VT : MVT::fp_valuetypes()) 415 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 416 417 // Floating-point truncation and stores need to be done separately. 418 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 419 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 420 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 421 422 // We have 64-bit FPR<->GPR moves, but need special handling for 423 // 32-bit forms. 424 if (!Subtarget.hasVector()) { 425 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 426 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 427 } 428 429 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 430 // structure, but VAEND is a no-op. 431 setOperationAction(ISD::VASTART, MVT::Other, Custom); 432 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 433 setOperationAction(ISD::VAEND, MVT::Other, Expand); 434 435 // Codes for which we want to perform some z-specific combinations. 436 setTargetDAGCombine(ISD::SIGN_EXTEND); 437 setTargetDAGCombine(ISD::STORE); 438 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 439 setTargetDAGCombine(ISD::FP_ROUND); 440 441 // Handle intrinsics. 442 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 443 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 444 445 // We want to use MVC in preference to even a single load/store pair. 446 MaxStoresPerMemcpy = 0; 447 MaxStoresPerMemcpyOptSize = 0; 448 449 // The main memset sequence is a byte store followed by an MVC. 450 // Two STC or MV..I stores win over that, but the kind of fused stores 451 // generated by target-independent code don't when the byte value is 452 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 453 // than "STC;MVC". Handle the choice in target-specific code instead. 454 MaxStoresPerMemset = 0; 455 MaxStoresPerMemsetOptSize = 0; 456 } 457 458 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 459 LLVMContext &, EVT VT) const { 460 if (!VT.isVector()) 461 return MVT::i32; 462 return VT.changeVectorElementTypeToInteger(); 463 } 464 465 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 466 VT = VT.getScalarType(); 467 468 if (!VT.isSimple()) 469 return false; 470 471 switch (VT.getSimpleVT().SimpleTy) { 472 case MVT::f32: 473 case MVT::f64: 474 return true; 475 case MVT::f128: 476 return false; 477 default: 478 break; 479 } 480 481 return false; 482 } 483 484 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 485 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 486 return Imm.isZero() || Imm.isNegZero(); 487 } 488 489 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 490 // We can use CGFI or CLGFI. 491 return isInt<32>(Imm) || isUInt<32>(Imm); 492 } 493 494 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 495 // We can use ALGFI or SLGFI. 496 return isUInt<32>(Imm) || isUInt<32>(-Imm); 497 } 498 499 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 500 unsigned, 501 unsigned, 502 bool *Fast) const { 503 // Unaligned accesses should never be slower than the expanded version. 504 // We check specifically for aligned accesses in the few cases where 505 // they are required. 506 if (Fast) 507 *Fast = true; 508 return true; 509 } 510 511 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 512 const AddrMode &AM, Type *Ty, 513 unsigned AS) const { 514 // Punt on globals for now, although they can be used in limited 515 // RELATIVE LONG cases. 516 if (AM.BaseGV) 517 return false; 518 519 // Require a 20-bit signed offset. 520 if (!isInt<20>(AM.BaseOffs)) 521 return false; 522 523 // Indexing is OK but no scale factor can be applied. 524 return AM.Scale == 0 || AM.Scale == 1; 525 } 526 527 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 528 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 529 return false; 530 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 531 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 532 return FromBits > ToBits; 533 } 534 535 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 536 if (!FromVT.isInteger() || !ToVT.isInteger()) 537 return false; 538 unsigned FromBits = FromVT.getSizeInBits(); 539 unsigned ToBits = ToVT.getSizeInBits(); 540 return FromBits > ToBits; 541 } 542 543 //===----------------------------------------------------------------------===// 544 // Inline asm support 545 //===----------------------------------------------------------------------===// 546 547 TargetLowering::ConstraintType 548 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 549 if (Constraint.size() == 1) { 550 switch (Constraint[0]) { 551 case 'a': // Address register 552 case 'd': // Data register (equivalent to 'r') 553 case 'f': // Floating-point register 554 case 'h': // High-part register 555 case 'r': // General-purpose register 556 return C_RegisterClass; 557 558 case 'Q': // Memory with base and unsigned 12-bit displacement 559 case 'R': // Likewise, plus an index 560 case 'S': // Memory with base and signed 20-bit displacement 561 case 'T': // Likewise, plus an index 562 case 'm': // Equivalent to 'T'. 563 return C_Memory; 564 565 case 'I': // Unsigned 8-bit constant 566 case 'J': // Unsigned 12-bit constant 567 case 'K': // Signed 16-bit constant 568 case 'L': // Signed 20-bit displacement (on all targets we support) 569 case 'M': // 0x7fffffff 570 return C_Other; 571 572 default: 573 break; 574 } 575 } 576 return TargetLowering::getConstraintType(Constraint); 577 } 578 579 TargetLowering::ConstraintWeight SystemZTargetLowering:: 580 getSingleConstraintMatchWeight(AsmOperandInfo &info, 581 const char *constraint) const { 582 ConstraintWeight weight = CW_Invalid; 583 Value *CallOperandVal = info.CallOperandVal; 584 // If we don't have a value, we can't do a match, 585 // but allow it at the lowest weight. 586 if (!CallOperandVal) 587 return CW_Default; 588 Type *type = CallOperandVal->getType(); 589 // Look at the constraint type. 590 switch (*constraint) { 591 default: 592 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 593 break; 594 595 case 'a': // Address register 596 case 'd': // Data register (equivalent to 'r') 597 case 'h': // High-part register 598 case 'r': // General-purpose register 599 if (CallOperandVal->getType()->isIntegerTy()) 600 weight = CW_Register; 601 break; 602 603 case 'f': // Floating-point register 604 if (type->isFloatingPointTy()) 605 weight = CW_Register; 606 break; 607 608 case 'I': // Unsigned 8-bit constant 609 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 610 if (isUInt<8>(C->getZExtValue())) 611 weight = CW_Constant; 612 break; 613 614 case 'J': // Unsigned 12-bit constant 615 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 616 if (isUInt<12>(C->getZExtValue())) 617 weight = CW_Constant; 618 break; 619 620 case 'K': // Signed 16-bit constant 621 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 622 if (isInt<16>(C->getSExtValue())) 623 weight = CW_Constant; 624 break; 625 626 case 'L': // Signed 20-bit displacement (on all targets we support) 627 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 628 if (isInt<20>(C->getSExtValue())) 629 weight = CW_Constant; 630 break; 631 632 case 'M': // 0x7fffffff 633 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 634 if (C->getZExtValue() == 0x7fffffff) 635 weight = CW_Constant; 636 break; 637 } 638 return weight; 639 } 640 641 // Parse a "{tNNN}" register constraint for which the register type "t" 642 // has already been verified. MC is the class associated with "t" and 643 // Map maps 0-based register numbers to LLVM register numbers. 644 static std::pair<unsigned, const TargetRegisterClass *> 645 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 646 const unsigned *Map) { 647 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 648 if (isdigit(Constraint[2])) { 649 unsigned Index; 650 bool Failed = 651 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 652 if (!Failed && Index < 16 && Map[Index]) 653 return std::make_pair(Map[Index], RC); 654 } 655 return std::make_pair(0U, nullptr); 656 } 657 658 std::pair<unsigned, const TargetRegisterClass *> 659 SystemZTargetLowering::getRegForInlineAsmConstraint( 660 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 661 if (Constraint.size() == 1) { 662 // GCC Constraint Letters 663 switch (Constraint[0]) { 664 default: break; 665 case 'd': // Data register (equivalent to 'r') 666 case 'r': // General-purpose register 667 if (VT == MVT::i64) 668 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 669 else if (VT == MVT::i128) 670 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 671 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 672 673 case 'a': // Address register 674 if (VT == MVT::i64) 675 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 676 else if (VT == MVT::i128) 677 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 678 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 679 680 case 'h': // High-part register (an LLVM extension) 681 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 682 683 case 'f': // Floating-point register 684 if (VT == MVT::f64) 685 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 686 else if (VT == MVT::f128) 687 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 688 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 689 } 690 } 691 if (Constraint.size() > 0 && Constraint[0] == '{') { 692 // We need to override the default register parsing for GPRs and FPRs 693 // because the interpretation depends on VT. The internal names of 694 // the registers are also different from the external names 695 // (F0D and F0S instead of F0, etc.). 696 if (Constraint[1] == 'r') { 697 if (VT == MVT::i32) 698 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 699 SystemZMC::GR32Regs); 700 if (VT == MVT::i128) 701 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 702 SystemZMC::GR128Regs); 703 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 704 SystemZMC::GR64Regs); 705 } 706 if (Constraint[1] == 'f') { 707 if (VT == MVT::f32) 708 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 709 SystemZMC::FP32Regs); 710 if (VT == MVT::f128) 711 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 712 SystemZMC::FP128Regs); 713 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 714 SystemZMC::FP64Regs); 715 } 716 } 717 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 718 } 719 720 void SystemZTargetLowering:: 721 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 722 std::vector<SDValue> &Ops, 723 SelectionDAG &DAG) const { 724 // Only support length 1 constraints for now. 725 if (Constraint.length() == 1) { 726 switch (Constraint[0]) { 727 case 'I': // Unsigned 8-bit constant 728 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 729 if (isUInt<8>(C->getZExtValue())) 730 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 731 Op.getValueType())); 732 return; 733 734 case 'J': // Unsigned 12-bit constant 735 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 736 if (isUInt<12>(C->getZExtValue())) 737 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 738 Op.getValueType())); 739 return; 740 741 case 'K': // Signed 16-bit constant 742 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 743 if (isInt<16>(C->getSExtValue())) 744 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 745 Op.getValueType())); 746 return; 747 748 case 'L': // Signed 20-bit displacement (on all targets we support) 749 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 750 if (isInt<20>(C->getSExtValue())) 751 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 752 Op.getValueType())); 753 return; 754 755 case 'M': // 0x7fffffff 756 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 757 if (C->getZExtValue() == 0x7fffffff) 758 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 759 Op.getValueType())); 760 return; 761 } 762 } 763 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 764 } 765 766 //===----------------------------------------------------------------------===// 767 // Calling conventions 768 //===----------------------------------------------------------------------===// 769 770 #include "SystemZGenCallingConv.inc" 771 772 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 773 Type *ToType) const { 774 return isTruncateFree(FromType, ToType); 775 } 776 777 bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 778 return CI->isTailCall(); 779 } 780 781 // We do not yet support 128-bit single-element vector types. If the user 782 // attempts to use such types as function argument or return type, prefer 783 // to error out instead of emitting code violating the ABI. 784 static void VerifyVectorType(MVT VT, EVT ArgVT) { 785 if (ArgVT.isVector() && !VT.isVector()) 786 report_fatal_error("Unsupported vector argument or return type"); 787 } 788 789 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 790 for (unsigned i = 0; i < Ins.size(); ++i) 791 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 792 } 793 794 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 795 for (unsigned i = 0; i < Outs.size(); ++i) 796 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 797 } 798 799 // Value is a value that has been passed to us in the location described by VA 800 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 801 // any loads onto Chain. 802 static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, 803 CCValAssign &VA, SDValue Chain, 804 SDValue Value) { 805 // If the argument has been promoted from a smaller type, insert an 806 // assertion to capture this. 807 if (VA.getLocInfo() == CCValAssign::SExt) 808 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 809 DAG.getValueType(VA.getValVT())); 810 else if (VA.getLocInfo() == CCValAssign::ZExt) 811 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 812 DAG.getValueType(VA.getValVT())); 813 814 if (VA.isExtInLoc()) 815 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 816 else if (VA.getLocInfo() == CCValAssign::BCvt) { 817 // If this is a short vector argument loaded from the stack, 818 // extend from i64 to full vector size and then bitcast. 819 assert(VA.getLocVT() == MVT::i64); 820 assert(VA.getValVT().isVector()); 821 Value = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i64, 822 Value, DAG.getUNDEF(MVT::i64)); 823 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 824 } else 825 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 826 return Value; 827 } 828 829 // Value is a value of type VA.getValVT() that we need to copy into 830 // the location described by VA. Return a copy of Value converted to 831 // VA.getValVT(). The caller is responsible for handling indirect values. 832 static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, 833 CCValAssign &VA, SDValue Value) { 834 switch (VA.getLocInfo()) { 835 case CCValAssign::SExt: 836 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 837 case CCValAssign::ZExt: 838 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 839 case CCValAssign::AExt: 840 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 841 case CCValAssign::BCvt: 842 // If this is a short vector argument to be stored to the stack, 843 // bitcast to v2i64 and then extract first element. 844 assert(VA.getLocVT() == MVT::i64); 845 assert(VA.getValVT().isVector()); 846 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 847 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 848 DAG.getConstant(0, DL, MVT::i32)); 849 case CCValAssign::Full: 850 return Value; 851 default: 852 llvm_unreachable("Unhandled getLocInfo()"); 853 } 854 } 855 856 SDValue SystemZTargetLowering:: 857 LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 858 const SmallVectorImpl<ISD::InputArg> &Ins, 859 SDLoc DL, SelectionDAG &DAG, 860 SmallVectorImpl<SDValue> &InVals) const { 861 MachineFunction &MF = DAG.getMachineFunction(); 862 MachineFrameInfo *MFI = MF.getFrameInfo(); 863 MachineRegisterInfo &MRI = MF.getRegInfo(); 864 SystemZMachineFunctionInfo *FuncInfo = 865 MF.getInfo<SystemZMachineFunctionInfo>(); 866 auto *TFL = 867 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 868 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 869 870 // Detect unsupported vector argument types. 871 if (Subtarget.hasVector()) 872 VerifyVectorTypes(Ins); 873 874 // Assign locations to all of the incoming arguments. 875 SmallVector<CCValAssign, 16> ArgLocs; 876 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 877 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 878 879 unsigned NumFixedGPRs = 0; 880 unsigned NumFixedFPRs = 0; 881 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 882 SDValue ArgValue; 883 CCValAssign &VA = ArgLocs[I]; 884 EVT LocVT = VA.getLocVT(); 885 if (VA.isRegLoc()) { 886 // Arguments passed in registers 887 const TargetRegisterClass *RC; 888 switch (LocVT.getSimpleVT().SimpleTy) { 889 default: 890 // Integers smaller than i64 should be promoted to i64. 891 llvm_unreachable("Unexpected argument type"); 892 case MVT::i32: 893 NumFixedGPRs += 1; 894 RC = &SystemZ::GR32BitRegClass; 895 break; 896 case MVT::i64: 897 NumFixedGPRs += 1; 898 RC = &SystemZ::GR64BitRegClass; 899 break; 900 case MVT::f32: 901 NumFixedFPRs += 1; 902 RC = &SystemZ::FP32BitRegClass; 903 break; 904 case MVT::f64: 905 NumFixedFPRs += 1; 906 RC = &SystemZ::FP64BitRegClass; 907 break; 908 case MVT::v16i8: 909 case MVT::v8i16: 910 case MVT::v4i32: 911 case MVT::v2i64: 912 case MVT::v4f32: 913 case MVT::v2f64: 914 RC = &SystemZ::VR128BitRegClass; 915 break; 916 } 917 918 unsigned VReg = MRI.createVirtualRegister(RC); 919 MRI.addLiveIn(VA.getLocReg(), VReg); 920 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 921 } else { 922 assert(VA.isMemLoc() && "Argument not register or memory"); 923 924 // Create the frame index object for this incoming parameter. 925 int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, 926 VA.getLocMemOffset(), true); 927 928 // Create the SelectionDAG nodes corresponding to a load 929 // from this parameter. Unpromoted ints and floats are 930 // passed as right-justified 8-byte values. 931 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 932 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 933 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 934 DAG.getIntPtrConstant(4, DL)); 935 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 936 MachinePointerInfo::getFixedStack(MF, FI), false, 937 false, false, 0); 938 } 939 940 // Convert the value of the argument register into the value that's 941 // being passed. 942 if (VA.getLocInfo() == CCValAssign::Indirect) { 943 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, 944 ArgValue, MachinePointerInfo(), 945 false, false, false, 0)); 946 // If the original argument was split (e.g. i128), we need 947 // to load all parts of it here (using the same address). 948 unsigned ArgIndex = Ins[I].OrigArgIndex; 949 assert (Ins[I].PartOffset == 0); 950 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 951 CCValAssign &PartVA = ArgLocs[I + 1]; 952 unsigned PartOffset = Ins[I + 1].PartOffset; 953 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 954 DAG.getIntPtrConstant(PartOffset, DL)); 955 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, 956 Address, MachinePointerInfo(), 957 false, false, false, 0)); 958 ++I; 959 } 960 } else 961 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 962 } 963 964 if (IsVarArg) { 965 // Save the number of non-varargs registers for later use by va_start, etc. 966 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 967 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 968 969 // Likewise the address (in the form of a frame index) of where the 970 // first stack vararg would be. The 1-byte size here is arbitrary. 971 int64_t StackSize = CCInfo.getNextStackOffset(); 972 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); 973 974 // ...and a similar frame index for the caller-allocated save area 975 // that will be used to store the incoming registers. 976 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 977 unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); 978 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 979 980 // Store the FPR varargs in the reserved frame slots. (We store the 981 // GPRs as part of the prologue.) 982 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 983 SDValue MemOps[SystemZ::NumArgFPRs]; 984 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 985 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 986 int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); 987 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 988 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 989 &SystemZ::FP64BitRegClass); 990 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 991 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 992 MachinePointerInfo::getFixedStack(MF, FI), 993 false, false, 0); 994 } 995 // Join the stores, which are independent of one another. 996 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 997 makeArrayRef(&MemOps[NumFixedFPRs], 998 SystemZ::NumArgFPRs-NumFixedFPRs)); 999 } 1000 } 1001 1002 return Chain; 1003 } 1004 1005 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1006 SmallVectorImpl<CCValAssign> &ArgLocs) { 1007 // Punt if there are any indirect or stack arguments, or if the call 1008 // needs the call-saved argument register R6. 1009 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1010 CCValAssign &VA = ArgLocs[I]; 1011 if (VA.getLocInfo() == CCValAssign::Indirect) 1012 return false; 1013 if (!VA.isRegLoc()) 1014 return false; 1015 unsigned Reg = VA.getLocReg(); 1016 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1017 return false; 1018 } 1019 return true; 1020 } 1021 1022 SDValue 1023 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1024 SmallVectorImpl<SDValue> &InVals) const { 1025 SelectionDAG &DAG = CLI.DAG; 1026 SDLoc &DL = CLI.DL; 1027 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1028 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1029 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1030 SDValue Chain = CLI.Chain; 1031 SDValue Callee = CLI.Callee; 1032 bool &IsTailCall = CLI.IsTailCall; 1033 CallingConv::ID CallConv = CLI.CallConv; 1034 bool IsVarArg = CLI.IsVarArg; 1035 MachineFunction &MF = DAG.getMachineFunction(); 1036 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1037 1038 // Detect unsupported vector argument and return types. 1039 if (Subtarget.hasVector()) { 1040 VerifyVectorTypes(Outs); 1041 VerifyVectorTypes(Ins); 1042 } 1043 1044 // Analyze the operands of the call, assigning locations to each operand. 1045 SmallVector<CCValAssign, 16> ArgLocs; 1046 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1047 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1048 1049 // We don't support GuaranteedTailCallOpt, only automatically-detected 1050 // sibling calls. 1051 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) 1052 IsTailCall = false; 1053 1054 // Get a count of how many bytes are to be pushed on the stack. 1055 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1056 1057 // Mark the start of the call. 1058 if (!IsTailCall) 1059 Chain = DAG.getCALLSEQ_START(Chain, 1060 DAG.getConstant(NumBytes, DL, PtrVT, true), 1061 DL); 1062 1063 // Copy argument values to their designated locations. 1064 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1065 SmallVector<SDValue, 8> MemOpChains; 1066 SDValue StackPtr; 1067 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1068 CCValAssign &VA = ArgLocs[I]; 1069 SDValue ArgValue = OutVals[I]; 1070 1071 if (VA.getLocInfo() == CCValAssign::Indirect) { 1072 // Store the argument in a stack slot and pass its address. 1073 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1074 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1075 MemOpChains.push_back(DAG.getStore( 1076 Chain, DL, ArgValue, SpillSlot, 1077 MachinePointerInfo::getFixedStack(MF, FI), false, false, 0)); 1078 // If the original argument was split (e.g. i128), we need 1079 // to store all parts of it here (and pass just one address). 1080 unsigned ArgIndex = Outs[I].OrigArgIndex; 1081 assert (Outs[I].PartOffset == 0); 1082 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1083 SDValue PartValue = OutVals[I + 1]; 1084 unsigned PartOffset = Outs[I + 1].PartOffset; 1085 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1086 DAG.getIntPtrConstant(PartOffset, DL)); 1087 MemOpChains.push_back(DAG.getStore( 1088 Chain, DL, PartValue, Address, 1089 MachinePointerInfo::getFixedStack(MF, FI), false, false, 0)); 1090 ++I; 1091 } 1092 ArgValue = SpillSlot; 1093 } else 1094 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1095 1096 if (VA.isRegLoc()) 1097 // Queue up the argument copies and emit them at the end. 1098 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1099 else { 1100 assert(VA.isMemLoc() && "Argument not register or memory"); 1101 1102 // Work out the address of the stack slot. Unpromoted ints and 1103 // floats are passed as right-justified 8-byte values. 1104 if (!StackPtr.getNode()) 1105 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1106 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1107 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1108 Offset += 4; 1109 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1110 DAG.getIntPtrConstant(Offset, DL)); 1111 1112 // Emit the store. 1113 MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, 1114 MachinePointerInfo(), 1115 false, false, 0)); 1116 } 1117 } 1118 1119 // Join the stores, which are independent of one another. 1120 if (!MemOpChains.empty()) 1121 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1122 1123 // Accept direct calls by converting symbolic call addresses to the 1124 // associated Target* opcodes. Force %r1 to be used for indirect 1125 // tail calls. 1126 SDValue Glue; 1127 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1128 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1129 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1130 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1131 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1132 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1133 } else if (IsTailCall) { 1134 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1135 Glue = Chain.getValue(1); 1136 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1137 } 1138 1139 // Build a sequence of copy-to-reg nodes, chained and glued together. 1140 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1141 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1142 RegsToPass[I].second, Glue); 1143 Glue = Chain.getValue(1); 1144 } 1145 1146 // The first call operand is the chain and the second is the target address. 1147 SmallVector<SDValue, 8> Ops; 1148 Ops.push_back(Chain); 1149 Ops.push_back(Callee); 1150 1151 // Add argument registers to the end of the list so that they are 1152 // known live into the call. 1153 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1154 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1155 RegsToPass[I].second.getValueType())); 1156 1157 // Add a register mask operand representing the call-preserved registers. 1158 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1159 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1160 assert(Mask && "Missing call preserved mask for calling convention"); 1161 Ops.push_back(DAG.getRegisterMask(Mask)); 1162 1163 // Glue the call to the argument copies, if any. 1164 if (Glue.getNode()) 1165 Ops.push_back(Glue); 1166 1167 // Emit the call. 1168 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1169 if (IsTailCall) 1170 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1171 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1172 Glue = Chain.getValue(1); 1173 1174 // Mark the end of the call, which is glued to the call itself. 1175 Chain = DAG.getCALLSEQ_END(Chain, 1176 DAG.getConstant(NumBytes, DL, PtrVT, true), 1177 DAG.getConstant(0, DL, PtrVT, true), 1178 Glue, DL); 1179 Glue = Chain.getValue(1); 1180 1181 // Assign locations to each value returned by this call. 1182 SmallVector<CCValAssign, 16> RetLocs; 1183 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1184 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1185 1186 // Copy all of the result registers out of their specified physreg. 1187 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1188 CCValAssign &VA = RetLocs[I]; 1189 1190 // Copy the value out, gluing the copy to the end of the call sequence. 1191 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1192 VA.getLocVT(), Glue); 1193 Chain = RetValue.getValue(1); 1194 Glue = RetValue.getValue(2); 1195 1196 // Convert the value of the return register into the value that's 1197 // being returned. 1198 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1199 } 1200 1201 return Chain; 1202 } 1203 1204 bool SystemZTargetLowering:: 1205 CanLowerReturn(CallingConv::ID CallConv, 1206 MachineFunction &MF, bool isVarArg, 1207 const SmallVectorImpl<ISD::OutputArg> &Outs, 1208 LLVMContext &Context) const { 1209 // Detect unsupported vector return types. 1210 if (Subtarget.hasVector()) 1211 VerifyVectorTypes(Outs); 1212 1213 // Special case that we cannot easily detect in RetCC_SystemZ since 1214 // i128 is not a legal type. 1215 for (auto &Out : Outs) 1216 if (Out.ArgVT == MVT::i128) 1217 return false; 1218 1219 SmallVector<CCValAssign, 16> RetLocs; 1220 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1221 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1222 } 1223 1224 SDValue 1225 SystemZTargetLowering::LowerReturn(SDValue Chain, 1226 CallingConv::ID CallConv, bool IsVarArg, 1227 const SmallVectorImpl<ISD::OutputArg> &Outs, 1228 const SmallVectorImpl<SDValue> &OutVals, 1229 SDLoc DL, SelectionDAG &DAG) const { 1230 MachineFunction &MF = DAG.getMachineFunction(); 1231 1232 // Detect unsupported vector return types. 1233 if (Subtarget.hasVector()) 1234 VerifyVectorTypes(Outs); 1235 1236 // Assign locations to each returned value. 1237 SmallVector<CCValAssign, 16> RetLocs; 1238 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1239 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1240 1241 // Quick exit for void returns 1242 if (RetLocs.empty()) 1243 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1244 1245 // Copy the result values into the output registers. 1246 SDValue Glue; 1247 SmallVector<SDValue, 4> RetOps; 1248 RetOps.push_back(Chain); 1249 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1250 CCValAssign &VA = RetLocs[I]; 1251 SDValue RetValue = OutVals[I]; 1252 1253 // Make the return register live on exit. 1254 assert(VA.isRegLoc() && "Can only return in registers!"); 1255 1256 // Promote the value as required. 1257 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1258 1259 // Chain and glue the copies together. 1260 unsigned Reg = VA.getLocReg(); 1261 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1262 Glue = Chain.getValue(1); 1263 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1264 } 1265 1266 // Update chain and glue. 1267 RetOps[0] = Chain; 1268 if (Glue.getNode()) 1269 RetOps.push_back(Glue); 1270 1271 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1272 } 1273 1274 SDValue SystemZTargetLowering:: 1275 prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { 1276 return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); 1277 } 1278 1279 // Return true if Op is an intrinsic node with chain that returns the CC value 1280 // as its only (other) argument. Provide the associated SystemZISD opcode and 1281 // the mask of valid CC values if so. 1282 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1283 unsigned &CCValid) { 1284 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1285 switch (Id) { 1286 case Intrinsic::s390_tbegin: 1287 Opcode = SystemZISD::TBEGIN; 1288 CCValid = SystemZ::CCMASK_TBEGIN; 1289 return true; 1290 1291 case Intrinsic::s390_tbegin_nofloat: 1292 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1293 CCValid = SystemZ::CCMASK_TBEGIN; 1294 return true; 1295 1296 case Intrinsic::s390_tend: 1297 Opcode = SystemZISD::TEND; 1298 CCValid = SystemZ::CCMASK_TEND; 1299 return true; 1300 1301 default: 1302 return false; 1303 } 1304 } 1305 1306 // Return true if Op is an intrinsic node without chain that returns the 1307 // CC value as its final argument. Provide the associated SystemZISD 1308 // opcode and the mask of valid CC values if so. 1309 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1310 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1311 switch (Id) { 1312 case Intrinsic::s390_vpkshs: 1313 case Intrinsic::s390_vpksfs: 1314 case Intrinsic::s390_vpksgs: 1315 Opcode = SystemZISD::PACKS_CC; 1316 CCValid = SystemZ::CCMASK_VCMP; 1317 return true; 1318 1319 case Intrinsic::s390_vpklshs: 1320 case Intrinsic::s390_vpklsfs: 1321 case Intrinsic::s390_vpklsgs: 1322 Opcode = SystemZISD::PACKLS_CC; 1323 CCValid = SystemZ::CCMASK_VCMP; 1324 return true; 1325 1326 case Intrinsic::s390_vceqbs: 1327 case Intrinsic::s390_vceqhs: 1328 case Intrinsic::s390_vceqfs: 1329 case Intrinsic::s390_vceqgs: 1330 Opcode = SystemZISD::VICMPES; 1331 CCValid = SystemZ::CCMASK_VCMP; 1332 return true; 1333 1334 case Intrinsic::s390_vchbs: 1335 case Intrinsic::s390_vchhs: 1336 case Intrinsic::s390_vchfs: 1337 case Intrinsic::s390_vchgs: 1338 Opcode = SystemZISD::VICMPHS; 1339 CCValid = SystemZ::CCMASK_VCMP; 1340 return true; 1341 1342 case Intrinsic::s390_vchlbs: 1343 case Intrinsic::s390_vchlhs: 1344 case Intrinsic::s390_vchlfs: 1345 case Intrinsic::s390_vchlgs: 1346 Opcode = SystemZISD::VICMPHLS; 1347 CCValid = SystemZ::CCMASK_VCMP; 1348 return true; 1349 1350 case Intrinsic::s390_vtm: 1351 Opcode = SystemZISD::VTM; 1352 CCValid = SystemZ::CCMASK_VCMP; 1353 return true; 1354 1355 case Intrinsic::s390_vfaebs: 1356 case Intrinsic::s390_vfaehs: 1357 case Intrinsic::s390_vfaefs: 1358 Opcode = SystemZISD::VFAE_CC; 1359 CCValid = SystemZ::CCMASK_ANY; 1360 return true; 1361 1362 case Intrinsic::s390_vfaezbs: 1363 case Intrinsic::s390_vfaezhs: 1364 case Intrinsic::s390_vfaezfs: 1365 Opcode = SystemZISD::VFAEZ_CC; 1366 CCValid = SystemZ::CCMASK_ANY; 1367 return true; 1368 1369 case Intrinsic::s390_vfeebs: 1370 case Intrinsic::s390_vfeehs: 1371 case Intrinsic::s390_vfeefs: 1372 Opcode = SystemZISD::VFEE_CC; 1373 CCValid = SystemZ::CCMASK_ANY; 1374 return true; 1375 1376 case Intrinsic::s390_vfeezbs: 1377 case Intrinsic::s390_vfeezhs: 1378 case Intrinsic::s390_vfeezfs: 1379 Opcode = SystemZISD::VFEEZ_CC; 1380 CCValid = SystemZ::CCMASK_ANY; 1381 return true; 1382 1383 case Intrinsic::s390_vfenebs: 1384 case Intrinsic::s390_vfenehs: 1385 case Intrinsic::s390_vfenefs: 1386 Opcode = SystemZISD::VFENE_CC; 1387 CCValid = SystemZ::CCMASK_ANY; 1388 return true; 1389 1390 case Intrinsic::s390_vfenezbs: 1391 case Intrinsic::s390_vfenezhs: 1392 case Intrinsic::s390_vfenezfs: 1393 Opcode = SystemZISD::VFENEZ_CC; 1394 CCValid = SystemZ::CCMASK_ANY; 1395 return true; 1396 1397 case Intrinsic::s390_vistrbs: 1398 case Intrinsic::s390_vistrhs: 1399 case Intrinsic::s390_vistrfs: 1400 Opcode = SystemZISD::VISTR_CC; 1401 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1402 return true; 1403 1404 case Intrinsic::s390_vstrcbs: 1405 case Intrinsic::s390_vstrchs: 1406 case Intrinsic::s390_vstrcfs: 1407 Opcode = SystemZISD::VSTRC_CC; 1408 CCValid = SystemZ::CCMASK_ANY; 1409 return true; 1410 1411 case Intrinsic::s390_vstrczbs: 1412 case Intrinsic::s390_vstrczhs: 1413 case Intrinsic::s390_vstrczfs: 1414 Opcode = SystemZISD::VSTRCZ_CC; 1415 CCValid = SystemZ::CCMASK_ANY; 1416 return true; 1417 1418 case Intrinsic::s390_vfcedbs: 1419 Opcode = SystemZISD::VFCMPES; 1420 CCValid = SystemZ::CCMASK_VCMP; 1421 return true; 1422 1423 case Intrinsic::s390_vfchdbs: 1424 Opcode = SystemZISD::VFCMPHS; 1425 CCValid = SystemZ::CCMASK_VCMP; 1426 return true; 1427 1428 case Intrinsic::s390_vfchedbs: 1429 Opcode = SystemZISD::VFCMPHES; 1430 CCValid = SystemZ::CCMASK_VCMP; 1431 return true; 1432 1433 case Intrinsic::s390_vftcidb: 1434 Opcode = SystemZISD::VFTCI; 1435 CCValid = SystemZ::CCMASK_VCMP; 1436 return true; 1437 1438 default: 1439 return false; 1440 } 1441 } 1442 1443 // Emit an intrinsic with chain with a glued value instead of its CC result. 1444 static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, 1445 unsigned Opcode) { 1446 // Copy all operands except the intrinsic ID. 1447 unsigned NumOps = Op.getNumOperands(); 1448 SmallVector<SDValue, 6> Ops; 1449 Ops.reserve(NumOps - 1); 1450 Ops.push_back(Op.getOperand(0)); 1451 for (unsigned I = 2; I < NumOps; ++I) 1452 Ops.push_back(Op.getOperand(I)); 1453 1454 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1455 SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); 1456 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1457 SDValue OldChain = SDValue(Op.getNode(), 1); 1458 SDValue NewChain = SDValue(Intr.getNode(), 0); 1459 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1460 return Intr; 1461 } 1462 1463 // Emit an intrinsic with a glued value instead of its CC result. 1464 static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, 1465 unsigned Opcode) { 1466 // Copy all operands except the intrinsic ID. 1467 unsigned NumOps = Op.getNumOperands(); 1468 SmallVector<SDValue, 6> Ops; 1469 Ops.reserve(NumOps - 1); 1470 for (unsigned I = 1; I < NumOps; ++I) 1471 Ops.push_back(Op.getOperand(I)); 1472 1473 if (Op->getNumValues() == 1) 1474 return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); 1475 assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); 1476 SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); 1477 return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1478 } 1479 1480 // CC is a comparison that will be implemented using an integer or 1481 // floating-point comparison. Return the condition code mask for 1482 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1483 // unsigned comparisons and clear for signed ones. In the floating-point 1484 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1485 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1486 #define CONV(X) \ 1487 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1488 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1489 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1490 1491 switch (CC) { 1492 default: 1493 llvm_unreachable("Invalid integer condition!"); 1494 1495 CONV(EQ); 1496 CONV(NE); 1497 CONV(GT); 1498 CONV(GE); 1499 CONV(LT); 1500 CONV(LE); 1501 1502 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1503 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1504 } 1505 #undef CONV 1506 } 1507 1508 // Return a sequence for getting a 1 from an IPM result when CC has a 1509 // value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. 1510 // The handling of CC values outside CCValid doesn't matter. 1511 static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { 1512 // Deal with cases where the result can be taken directly from a bit 1513 // of the IPM result. 1514 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) 1515 return IPMConversion(0, 0, SystemZ::IPM_CC); 1516 if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) 1517 return IPMConversion(0, 0, SystemZ::IPM_CC + 1); 1518 1519 // Deal with cases where we can add a value to force the sign bit 1520 // to contain the right value. Putting the bit in 31 means we can 1521 // use SRL rather than RISBG(L), and also makes it easier to get a 1522 // 0/-1 value, so it has priority over the other tests below. 1523 // 1524 // These sequences rely on the fact that the upper two bits of the 1525 // IPM result are zero. 1526 uint64_t TopBit = uint64_t(1) << 31; 1527 if (CCMask == (CCValid & SystemZ::CCMASK_0)) 1528 return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); 1529 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) 1530 return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); 1531 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1532 | SystemZ::CCMASK_1 1533 | SystemZ::CCMASK_2))) 1534 return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); 1535 if (CCMask == (CCValid & SystemZ::CCMASK_3)) 1536 return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); 1537 if (CCMask == (CCValid & (SystemZ::CCMASK_1 1538 | SystemZ::CCMASK_2 1539 | SystemZ::CCMASK_3))) 1540 return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); 1541 1542 // Next try inverting the value and testing a bit. 0/1 could be 1543 // handled this way too, but we dealt with that case above. 1544 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) 1545 return IPMConversion(-1, 0, SystemZ::IPM_CC); 1546 1547 // Handle cases where adding a value forces a non-sign bit to contain 1548 // the right value. 1549 if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) 1550 return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); 1551 if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) 1552 return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); 1553 1554 // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are 1555 // can be done by inverting the low CC bit and applying one of the 1556 // sign-based extractions above. 1557 if (CCMask == (CCValid & SystemZ::CCMASK_1)) 1558 return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); 1559 if (CCMask == (CCValid & SystemZ::CCMASK_2)) 1560 return IPMConversion(1 << SystemZ::IPM_CC, 1561 TopBit - (3 << SystemZ::IPM_CC), 31); 1562 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1563 | SystemZ::CCMASK_1 1564 | SystemZ::CCMASK_3))) 1565 return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); 1566 if (CCMask == (CCValid & (SystemZ::CCMASK_0 1567 | SystemZ::CCMASK_2 1568 | SystemZ::CCMASK_3))) 1569 return IPMConversion(1 << SystemZ::IPM_CC, 1570 TopBit - (1 << SystemZ::IPM_CC), 31); 1571 1572 llvm_unreachable("Unexpected CC combination"); 1573 } 1574 1575 // If C can be converted to a comparison against zero, adjust the operands 1576 // as necessary. 1577 static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1578 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1579 return; 1580 1581 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1582 if (!ConstOp1) 1583 return; 1584 1585 int64_t Value = ConstOp1->getSExtValue(); 1586 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1587 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1588 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1589 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1590 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1591 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1592 } 1593 } 1594 1595 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1596 // adjust the operands as necessary. 1597 static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1598 // For us to make any changes, it must a comparison between a single-use 1599 // load and a constant. 1600 if (!C.Op0.hasOneUse() || 1601 C.Op0.getOpcode() != ISD::LOAD || 1602 C.Op1.getOpcode() != ISD::Constant) 1603 return; 1604 1605 // We must have an 8- or 16-bit load. 1606 auto *Load = cast<LoadSDNode>(C.Op0); 1607 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1608 if (NumBits != 8 && NumBits != 16) 1609 return; 1610 1611 // The load must be an extending one and the constant must be within the 1612 // range of the unextended value. 1613 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1614 uint64_t Value = ConstOp1->getZExtValue(); 1615 uint64_t Mask = (1 << NumBits) - 1; 1616 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1617 // Make sure that ConstOp1 is in range of C.Op0. 1618 int64_t SignedValue = ConstOp1->getSExtValue(); 1619 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1620 return; 1621 if (C.ICmpType != SystemZICMP::SignedOnly) { 1622 // Unsigned comparison between two sign-extended values is equivalent 1623 // to unsigned comparison between two zero-extended values. 1624 Value &= Mask; 1625 } else if (NumBits == 8) { 1626 // Try to treat the comparison as unsigned, so that we can use CLI. 1627 // Adjust CCMask and Value as necessary. 1628 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1629 // Test whether the high bit of the byte is set. 1630 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1631 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1632 // Test whether the high bit of the byte is clear. 1633 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1634 else 1635 // No instruction exists for this combination. 1636 return; 1637 C.ICmpType = SystemZICMP::UnsignedOnly; 1638 } 1639 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1640 if (Value > Mask) 1641 return; 1642 // If the constant is in range, we can use any comparison. 1643 C.ICmpType = SystemZICMP::Any; 1644 } else 1645 return; 1646 1647 // Make sure that the first operand is an i32 of the right extension type. 1648 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1649 ISD::SEXTLOAD : 1650 ISD::ZEXTLOAD); 1651 if (C.Op0.getValueType() != MVT::i32 || 1652 Load->getExtensionType() != ExtType) 1653 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, 1654 Load->getChain(), Load->getBasePtr(), 1655 Load->getPointerInfo(), Load->getMemoryVT(), 1656 Load->isVolatile(), Load->isNonTemporal(), 1657 Load->isInvariant(), Load->getAlignment()); 1658 1659 // Make sure that the second operand is an i32 with the right value. 1660 if (C.Op1.getValueType() != MVT::i32 || 1661 Value != ConstOp1->getZExtValue()) 1662 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1663 } 1664 1665 // Return true if Op is either an unextended load, or a load suitable 1666 // for integer register-memory comparisons of type ICmpType. 1667 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1668 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1669 if (Load) { 1670 // There are no instructions to compare a register with a memory byte. 1671 if (Load->getMemoryVT() == MVT::i8) 1672 return false; 1673 // Otherwise decide on extension type. 1674 switch (Load->getExtensionType()) { 1675 case ISD::NON_EXTLOAD: 1676 return true; 1677 case ISD::SEXTLOAD: 1678 return ICmpType != SystemZICMP::UnsignedOnly; 1679 case ISD::ZEXTLOAD: 1680 return ICmpType != SystemZICMP::SignedOnly; 1681 default: 1682 break; 1683 } 1684 } 1685 return false; 1686 } 1687 1688 // Return true if it is better to swap the operands of C. 1689 static bool shouldSwapCmpOperands(const Comparison &C) { 1690 // Leave f128 comparisons alone, since they have no memory forms. 1691 if (C.Op0.getValueType() == MVT::f128) 1692 return false; 1693 1694 // Always keep a floating-point constant second, since comparisons with 1695 // zero can use LOAD TEST and comparisons with other constants make a 1696 // natural memory operand. 1697 if (isa<ConstantFPSDNode>(C.Op1)) 1698 return false; 1699 1700 // Never swap comparisons with zero since there are many ways to optimize 1701 // those later. 1702 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1703 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1704 return false; 1705 1706 // Also keep natural memory operands second if the loaded value is 1707 // only used here. Several comparisons have memory forms. 1708 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1709 return false; 1710 1711 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1712 // In that case we generally prefer the memory to be second. 1713 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1714 // The only exceptions are when the second operand is a constant and 1715 // we can use things like CHHSI. 1716 if (!ConstOp1) 1717 return true; 1718 // The unsigned memory-immediate instructions can handle 16-bit 1719 // unsigned integers. 1720 if (C.ICmpType != SystemZICMP::SignedOnly && 1721 isUInt<16>(ConstOp1->getZExtValue())) 1722 return false; 1723 // The signed memory-immediate instructions can handle 16-bit 1724 // signed integers. 1725 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1726 isInt<16>(ConstOp1->getSExtValue())) 1727 return false; 1728 return true; 1729 } 1730 1731 // Try to promote the use of CGFR and CLGFR. 1732 unsigned Opcode0 = C.Op0.getOpcode(); 1733 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1734 return true; 1735 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1736 return true; 1737 if (C.ICmpType != SystemZICMP::SignedOnly && 1738 Opcode0 == ISD::AND && 1739 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1740 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1741 return true; 1742 1743 return false; 1744 } 1745 1746 // Return a version of comparison CC mask CCMask in which the LT and GT 1747 // actions are swapped. 1748 static unsigned reverseCCMask(unsigned CCMask) { 1749 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1750 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1751 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1752 (CCMask & SystemZ::CCMASK_CMP_UO)); 1753 } 1754 1755 // Check whether C tests for equality between X and Y and whether X - Y 1756 // or Y - X is also computed. In that case it's better to compare the 1757 // result of the subtraction against zero. 1758 static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1759 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1760 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1761 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1762 SDNode *N = *I; 1763 if (N->getOpcode() == ISD::SUB && 1764 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1765 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1766 C.Op0 = SDValue(N, 0); 1767 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1768 return; 1769 } 1770 } 1771 } 1772 } 1773 1774 // Check whether C compares a floating-point value with zero and if that 1775 // floating-point value is also negated. In this case we can use the 1776 // negation to set CC, so avoiding separate LOAD AND TEST and 1777 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1778 static void adjustForFNeg(Comparison &C) { 1779 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1780 if (C1 && C1->isZero()) { 1781 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1782 SDNode *N = *I; 1783 if (N->getOpcode() == ISD::FNEG) { 1784 C.Op0 = SDValue(N, 0); 1785 C.CCMask = reverseCCMask(C.CCMask); 1786 return; 1787 } 1788 } 1789 } 1790 } 1791 1792 // Check whether C compares (shl X, 32) with 0 and whether X is 1793 // also sign-extended. In that case it is better to test the result 1794 // of the sign extension using LTGFR. 1795 // 1796 // This case is important because InstCombine transforms a comparison 1797 // with (sext (trunc X)) into a comparison with (shl X, 32). 1798 static void adjustForLTGFR(Comparison &C) { 1799 // Check for a comparison between (shl X, 32) and 0. 1800 if (C.Op0.getOpcode() == ISD::SHL && 1801 C.Op0.getValueType() == MVT::i64 && 1802 C.Op1.getOpcode() == ISD::Constant && 1803 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1804 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1805 if (C1 && C1->getZExtValue() == 32) { 1806 SDValue ShlOp0 = C.Op0.getOperand(0); 1807 // See whether X has any SIGN_EXTEND_INREG uses. 1808 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1809 SDNode *N = *I; 1810 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1811 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1812 C.Op0 = SDValue(N, 0); 1813 return; 1814 } 1815 } 1816 } 1817 } 1818 } 1819 1820 // If C compares the truncation of an extending load, try to compare 1821 // the untruncated value instead. This exposes more opportunities to 1822 // reuse CC. 1823 static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1824 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1825 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1826 C.Op1.getOpcode() == ISD::Constant && 1827 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1828 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1829 if (L->getMemoryVT().getStoreSizeInBits() 1830 <= C.Op0.getValueType().getSizeInBits()) { 1831 unsigned Type = L->getExtensionType(); 1832 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1833 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1834 C.Op0 = C.Op0.getOperand(0); 1835 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 1836 } 1837 } 1838 } 1839 } 1840 1841 // Return true if shift operation N has an in-range constant shift value. 1842 // Store it in ShiftVal if so. 1843 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 1844 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 1845 if (!Shift) 1846 return false; 1847 1848 uint64_t Amount = Shift->getZExtValue(); 1849 if (Amount >= N.getValueType().getSizeInBits()) 1850 return false; 1851 1852 ShiftVal = Amount; 1853 return true; 1854 } 1855 1856 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 1857 // instruction and whether the CC value is descriptive enough to handle 1858 // a comparison of type Opcode between the AND result and CmpVal. 1859 // CCMask says which comparison result is being tested and BitSize is 1860 // the number of bits in the operands. If TEST UNDER MASK can be used, 1861 // return the corresponding CC mask, otherwise return 0. 1862 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 1863 uint64_t Mask, uint64_t CmpVal, 1864 unsigned ICmpType) { 1865 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 1866 1867 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 1868 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 1869 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 1870 return 0; 1871 1872 // Work out the masks for the lowest and highest bits. 1873 unsigned HighShift = 63 - countLeadingZeros(Mask); 1874 uint64_t High = uint64_t(1) << HighShift; 1875 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 1876 1877 // Signed ordered comparisons are effectively unsigned if the sign 1878 // bit is dropped. 1879 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 1880 1881 // Check for equality comparisons with 0, or the equivalent. 1882 if (CmpVal == 0) { 1883 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1884 return SystemZ::CCMASK_TM_ALL_0; 1885 if (CCMask == SystemZ::CCMASK_CMP_NE) 1886 return SystemZ::CCMASK_TM_SOME_1; 1887 } 1888 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 1889 if (CCMask == SystemZ::CCMASK_CMP_LT) 1890 return SystemZ::CCMASK_TM_ALL_0; 1891 if (CCMask == SystemZ::CCMASK_CMP_GE) 1892 return SystemZ::CCMASK_TM_SOME_1; 1893 } 1894 if (EffectivelyUnsigned && CmpVal < Low) { 1895 if (CCMask == SystemZ::CCMASK_CMP_LE) 1896 return SystemZ::CCMASK_TM_ALL_0; 1897 if (CCMask == SystemZ::CCMASK_CMP_GT) 1898 return SystemZ::CCMASK_TM_SOME_1; 1899 } 1900 1901 // Check for equality comparisons with the mask, or the equivalent. 1902 if (CmpVal == Mask) { 1903 if (CCMask == SystemZ::CCMASK_CMP_EQ) 1904 return SystemZ::CCMASK_TM_ALL_1; 1905 if (CCMask == SystemZ::CCMASK_CMP_NE) 1906 return SystemZ::CCMASK_TM_SOME_0; 1907 } 1908 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 1909 if (CCMask == SystemZ::CCMASK_CMP_GT) 1910 return SystemZ::CCMASK_TM_ALL_1; 1911 if (CCMask == SystemZ::CCMASK_CMP_LE) 1912 return SystemZ::CCMASK_TM_SOME_0; 1913 } 1914 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 1915 if (CCMask == SystemZ::CCMASK_CMP_GE) 1916 return SystemZ::CCMASK_TM_ALL_1; 1917 if (CCMask == SystemZ::CCMASK_CMP_LT) 1918 return SystemZ::CCMASK_TM_SOME_0; 1919 } 1920 1921 // Check for ordered comparisons with the top bit. 1922 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 1923 if (CCMask == SystemZ::CCMASK_CMP_LE) 1924 return SystemZ::CCMASK_TM_MSB_0; 1925 if (CCMask == SystemZ::CCMASK_CMP_GT) 1926 return SystemZ::CCMASK_TM_MSB_1; 1927 } 1928 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 1929 if (CCMask == SystemZ::CCMASK_CMP_LT) 1930 return SystemZ::CCMASK_TM_MSB_0; 1931 if (CCMask == SystemZ::CCMASK_CMP_GE) 1932 return SystemZ::CCMASK_TM_MSB_1; 1933 } 1934 1935 // If there are just two bits, we can do equality checks for Low and High 1936 // as well. 1937 if (Mask == Low + High) { 1938 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 1939 return SystemZ::CCMASK_TM_MIXED_MSB_0; 1940 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 1941 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 1942 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 1943 return SystemZ::CCMASK_TM_MIXED_MSB_1; 1944 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 1945 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 1946 } 1947 1948 // Looks like we've exhausted our options. 1949 return 0; 1950 } 1951 1952 // See whether C can be implemented as a TEST UNDER MASK instruction. 1953 // Update the arguments with the TM version if so. 1954 static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 1955 // Check that we have a comparison with a constant. 1956 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1957 if (!ConstOp1) 1958 return; 1959 uint64_t CmpVal = ConstOp1->getZExtValue(); 1960 1961 // Check whether the nonconstant input is an AND with a constant mask. 1962 Comparison NewC(C); 1963 uint64_t MaskVal; 1964 ConstantSDNode *Mask = nullptr; 1965 if (C.Op0.getOpcode() == ISD::AND) { 1966 NewC.Op0 = C.Op0.getOperand(0); 1967 NewC.Op1 = C.Op0.getOperand(1); 1968 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 1969 if (!Mask) 1970 return; 1971 MaskVal = Mask->getZExtValue(); 1972 } else { 1973 // There is no instruction to compare with a 64-bit immediate 1974 // so use TMHH instead if possible. We need an unsigned ordered 1975 // comparison with an i64 immediate. 1976 if (NewC.Op0.getValueType() != MVT::i64 || 1977 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 1978 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 1979 NewC.ICmpType == SystemZICMP::SignedOnly) 1980 return; 1981 // Convert LE and GT comparisons into LT and GE. 1982 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 1983 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 1984 if (CmpVal == uint64_t(-1)) 1985 return; 1986 CmpVal += 1; 1987 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1988 } 1989 // If the low N bits of Op1 are zero than the low N bits of Op0 can 1990 // be masked off without changing the result. 1991 MaskVal = -(CmpVal & -CmpVal); 1992 NewC.ICmpType = SystemZICMP::UnsignedOnly; 1993 } 1994 if (!MaskVal) 1995 return; 1996 1997 // Check whether the combination of mask, comparison value and comparison 1998 // type are suitable. 1999 unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); 2000 unsigned NewCCMask, ShiftVal; 2001 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2002 NewC.Op0.getOpcode() == ISD::SHL && 2003 isSimpleShift(NewC.Op0, ShiftVal) && 2004 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2005 MaskVal >> ShiftVal, 2006 CmpVal >> ShiftVal, 2007 SystemZICMP::Any))) { 2008 NewC.Op0 = NewC.Op0.getOperand(0); 2009 MaskVal >>= ShiftVal; 2010 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2011 NewC.Op0.getOpcode() == ISD::SRL && 2012 isSimpleShift(NewC.Op0, ShiftVal) && 2013 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2014 MaskVal << ShiftVal, 2015 CmpVal << ShiftVal, 2016 SystemZICMP::UnsignedOnly))) { 2017 NewC.Op0 = NewC.Op0.getOperand(0); 2018 MaskVal <<= ShiftVal; 2019 } else { 2020 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2021 NewC.ICmpType); 2022 if (!NewCCMask) 2023 return; 2024 } 2025 2026 // Go ahead and make the change. 2027 C.Opcode = SystemZISD::TM; 2028 C.Op0 = NewC.Op0; 2029 if (Mask && Mask->getZExtValue() == MaskVal) 2030 C.Op1 = SDValue(Mask, 0); 2031 else 2032 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2033 C.CCValid = SystemZ::CCMASK_TM; 2034 C.CCMask = NewCCMask; 2035 } 2036 2037 // Return a Comparison that tests the condition-code result of intrinsic 2038 // node Call against constant integer CC using comparison code Cond. 2039 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2040 // and CCValid is the set of possible condition-code results. 2041 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2042 SDValue Call, unsigned CCValid, uint64_t CC, 2043 ISD::CondCode Cond) { 2044 Comparison C(Call, SDValue()); 2045 C.Opcode = Opcode; 2046 C.CCValid = CCValid; 2047 if (Cond == ISD::SETEQ) 2048 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2049 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2050 else if (Cond == ISD::SETNE) 2051 // ...and the inverse of that. 2052 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2053 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2054 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2055 // always true for CC>3. 2056 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2057 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2058 // ...and the inverse of that. 2059 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2060 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2061 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2062 // always true for CC>3. 2063 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2064 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2065 // ...and the inverse of that. 2066 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2067 else 2068 llvm_unreachable("Unexpected integer comparison type"); 2069 C.CCMask &= CCValid; 2070 return C; 2071 } 2072 2073 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2074 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2075 ISD::CondCode Cond, SDLoc DL) { 2076 if (CmpOp1.getOpcode() == ISD::Constant) { 2077 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2078 unsigned Opcode, CCValid; 2079 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2080 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2081 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2082 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2083 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2084 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2085 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2086 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2087 } 2088 Comparison C(CmpOp0, CmpOp1); 2089 C.CCMask = CCMaskForCondCode(Cond); 2090 if (C.Op0.getValueType().isFloatingPoint()) { 2091 C.CCValid = SystemZ::CCMASK_FCMP; 2092 C.Opcode = SystemZISD::FCMP; 2093 adjustForFNeg(C); 2094 } else { 2095 C.CCValid = SystemZ::CCMASK_ICMP; 2096 C.Opcode = SystemZISD::ICMP; 2097 // Choose the type of comparison. Equality and inequality tests can 2098 // use either signed or unsigned comparisons. The choice also doesn't 2099 // matter if both sign bits are known to be clear. In those cases we 2100 // want to give the main isel code the freedom to choose whichever 2101 // form fits best. 2102 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2103 C.CCMask == SystemZ::CCMASK_CMP_NE || 2104 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2105 C.ICmpType = SystemZICMP::Any; 2106 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2107 C.ICmpType = SystemZICMP::UnsignedOnly; 2108 else 2109 C.ICmpType = SystemZICMP::SignedOnly; 2110 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2111 adjustZeroCmp(DAG, DL, C); 2112 adjustSubwordCmp(DAG, DL, C); 2113 adjustForSubtraction(DAG, DL, C); 2114 adjustForLTGFR(C); 2115 adjustICmpTruncate(DAG, DL, C); 2116 } 2117 2118 if (shouldSwapCmpOperands(C)) { 2119 std::swap(C.Op0, C.Op1); 2120 C.CCMask = reverseCCMask(C.CCMask); 2121 } 2122 2123 adjustForTestUnderMask(DAG, DL, C); 2124 return C; 2125 } 2126 2127 // Emit the comparison instruction described by C. 2128 static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { 2129 if (!C.Op1.getNode()) { 2130 SDValue Op; 2131 switch (C.Op0.getOpcode()) { 2132 case ISD::INTRINSIC_W_CHAIN: 2133 Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); 2134 break; 2135 case ISD::INTRINSIC_WO_CHAIN: 2136 Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); 2137 break; 2138 default: 2139 llvm_unreachable("Invalid comparison operands"); 2140 } 2141 return SDValue(Op.getNode(), Op->getNumValues() - 1); 2142 } 2143 if (C.Opcode == SystemZISD::ICMP) 2144 return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, 2145 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2146 if (C.Opcode == SystemZISD::TM) { 2147 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2148 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2149 return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, 2150 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2151 } 2152 return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); 2153 } 2154 2155 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2156 // 64 bits. Extend is the extension type to use. Store the high part 2157 // in Hi and the low part in Lo. 2158 static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, 2159 unsigned Extend, SDValue Op0, SDValue Op1, 2160 SDValue &Hi, SDValue &Lo) { 2161 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2162 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2163 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2164 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2165 DAG.getConstant(32, DL, MVT::i64)); 2166 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2167 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2168 } 2169 2170 // Lower a binary operation that produces two VT results, one in each 2171 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2172 // Extend extends Op0 to a GR128, and Opcode performs the GR128 operation 2173 // on the extended Op0 and (unextended) Op1. Store the even register result 2174 // in Even and the odd register result in Odd. 2175 static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, 2176 unsigned Extend, unsigned Opcode, 2177 SDValue Op0, SDValue Op1, 2178 SDValue &Even, SDValue &Odd) { 2179 SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); 2180 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, 2181 SDValue(In128, 0), Op1); 2182 bool Is32Bit = is32Bit(VT); 2183 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2184 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2185 } 2186 2187 // Return an i32 value that is 1 if the CC value produced by Glue is 2188 // in the mask CCMask and 0 otherwise. CC is known to have a value 2189 // in CCValid, so other values can be ignored. 2190 static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue, 2191 unsigned CCValid, unsigned CCMask) { 2192 IPMConversion Conversion = getIPMConversion(CCValid, CCMask); 2193 SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 2194 2195 if (Conversion.XORValue) 2196 Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, 2197 DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); 2198 2199 if (Conversion.AddValue) 2200 Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, 2201 DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); 2202 2203 // The SHR/AND sequence should get optimized to an RISBG. 2204 Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, 2205 DAG.getConstant(Conversion.Bit, DL, MVT::i32)); 2206 if (Conversion.Bit != 31) 2207 Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, 2208 DAG.getConstant(1, DL, MVT::i32)); 2209 return Result; 2210 } 2211 2212 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2213 // be done directly. IsFP is true if CC is for a floating-point rather than 2214 // integer comparison. 2215 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2216 switch (CC) { 2217 case ISD::SETOEQ: 2218 case ISD::SETEQ: 2219 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2220 2221 case ISD::SETOGE: 2222 case ISD::SETGE: 2223 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2224 2225 case ISD::SETOGT: 2226 case ISD::SETGT: 2227 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2228 2229 case ISD::SETUGT: 2230 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2231 2232 default: 2233 return 0; 2234 } 2235 } 2236 2237 // Return the SystemZISD vector comparison operation for CC or its inverse, 2238 // or 0 if neither can be done directly. Indicate in Invert whether the 2239 // result is for the inverse of CC. IsFP is true if CC is for a 2240 // floating-point rather than integer comparison. 2241 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2242 bool &Invert) { 2243 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2244 Invert = false; 2245 return Opcode; 2246 } 2247 2248 CC = ISD::getSetCCInverse(CC, !IsFP); 2249 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2250 Invert = true; 2251 return Opcode; 2252 } 2253 2254 return 0; 2255 } 2256 2257 // Return a v2f64 that contains the extended form of elements Start and Start+1 2258 // of v4f32 value Op. 2259 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL, 2260 SDValue Op) { 2261 int Mask[] = { Start, -1, Start + 1, -1 }; 2262 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2263 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2264 } 2265 2266 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2267 // producing a result of type VT. 2268 static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL, 2269 EVT VT, SDValue CmpOp0, SDValue CmpOp1) { 2270 // There is no hardware support for v4f32, so extend the vector into 2271 // two v2f64s and compare those. 2272 if (CmpOp0.getValueType() == MVT::v4f32) { 2273 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2274 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2275 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2276 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2277 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2278 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2279 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2280 } 2281 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2282 } 2283 2284 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2285 // an integer mask of type VT. 2286 static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, 2287 ISD::CondCode CC, SDValue CmpOp0, 2288 SDValue CmpOp1) { 2289 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2290 bool Invert = false; 2291 SDValue Cmp; 2292 switch (CC) { 2293 // Handle tests for order using (or (ogt y x) (oge x y)). 2294 case ISD::SETUO: 2295 Invert = true; 2296 case ISD::SETO: { 2297 assert(IsFP && "Unexpected integer comparison"); 2298 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2299 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2300 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2301 break; 2302 } 2303 2304 // Handle <> tests using (or (ogt y x) (ogt x y)). 2305 case ISD::SETUEQ: 2306 Invert = true; 2307 case ISD::SETONE: { 2308 assert(IsFP && "Unexpected integer comparison"); 2309 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2310 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2311 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2312 break; 2313 } 2314 2315 // Otherwise a single comparison is enough. It doesn't really 2316 // matter whether we try the inversion or the swap first, since 2317 // there are no cases where both work. 2318 default: 2319 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2320 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2321 else { 2322 CC = ISD::getSetCCSwappedOperands(CC); 2323 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2324 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2325 else 2326 llvm_unreachable("Unhandled comparison"); 2327 } 2328 break; 2329 } 2330 if (Invert) { 2331 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2332 DAG.getConstant(65535, DL, MVT::i32)); 2333 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2334 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2335 } 2336 return Cmp; 2337 } 2338 2339 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2340 SelectionDAG &DAG) const { 2341 SDValue CmpOp0 = Op.getOperand(0); 2342 SDValue CmpOp1 = Op.getOperand(1); 2343 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2344 SDLoc DL(Op); 2345 EVT VT = Op.getValueType(); 2346 if (VT.isVector()) 2347 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2348 2349 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2350 SDValue Glue = emitCmp(DAG, DL, C); 2351 return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2352 } 2353 2354 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2355 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2356 SDValue CmpOp0 = Op.getOperand(2); 2357 SDValue CmpOp1 = Op.getOperand(3); 2358 SDValue Dest = Op.getOperand(4); 2359 SDLoc DL(Op); 2360 2361 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2362 SDValue Glue = emitCmp(DAG, DL, C); 2363 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2364 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2365 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); 2366 } 2367 2368 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2369 // allowing Pos and Neg to be wider than CmpOp. 2370 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2371 return (Neg.getOpcode() == ISD::SUB && 2372 Neg.getOperand(0).getOpcode() == ISD::Constant && 2373 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2374 Neg.getOperand(1) == Pos && 2375 (Pos == CmpOp || 2376 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2377 Pos.getOperand(0) == CmpOp))); 2378 } 2379 2380 // Return the absolute or negative absolute of Op; IsNegative decides which. 2381 static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op, 2382 bool IsNegative) { 2383 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2384 if (IsNegative) 2385 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2386 DAG.getConstant(0, DL, Op.getValueType()), Op); 2387 return Op; 2388 } 2389 2390 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2391 SelectionDAG &DAG) const { 2392 SDValue CmpOp0 = Op.getOperand(0); 2393 SDValue CmpOp1 = Op.getOperand(1); 2394 SDValue TrueOp = Op.getOperand(2); 2395 SDValue FalseOp = Op.getOperand(3); 2396 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2397 SDLoc DL(Op); 2398 2399 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2400 2401 // Check for absolute and negative-absolute selections, including those 2402 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2403 // This check supplements the one in DAGCombiner. 2404 if (C.Opcode == SystemZISD::ICMP && 2405 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2406 C.CCMask != SystemZ::CCMASK_CMP_NE && 2407 C.Op1.getOpcode() == ISD::Constant && 2408 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2409 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2410 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2411 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2412 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2413 } 2414 2415 SDValue Glue = emitCmp(DAG, DL, C); 2416 2417 // Special case for handling -1/0 results. The shifts we use here 2418 // should get optimized with the IPM conversion sequence. 2419 auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); 2420 auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); 2421 if (TrueC && FalseC) { 2422 int64_t TrueVal = TrueC->getSExtValue(); 2423 int64_t FalseVal = FalseC->getSExtValue(); 2424 if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { 2425 // Invert the condition if we want -1 on false. 2426 if (TrueVal == 0) 2427 C.CCMask ^= C.CCValid; 2428 SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); 2429 EVT VT = Op.getValueType(); 2430 // Extend the result to VT. Upper bits are ignored. 2431 if (!is32Bit(VT)) 2432 Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); 2433 // Sign-extend from the low bit. 2434 SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); 2435 SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); 2436 return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); 2437 } 2438 } 2439 2440 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2441 DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; 2442 2443 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); 2444 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); 2445 } 2446 2447 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2448 SelectionDAG &DAG) const { 2449 SDLoc DL(Node); 2450 const GlobalValue *GV = Node->getGlobal(); 2451 int64_t Offset = Node->getOffset(); 2452 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2453 Reloc::Model RM = DAG.getTarget().getRelocationModel(); 2454 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2455 2456 SDValue Result; 2457 if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { 2458 // Assign anchors at 1<<12 byte boundaries. 2459 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2460 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2461 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2462 2463 // The offset can be folded into the address if it is aligned to a halfword. 2464 Offset -= Anchor; 2465 if (Offset != 0 && (Offset & 1) == 0) { 2466 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2467 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2468 Offset = 0; 2469 } 2470 } else { 2471 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2472 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2473 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2474 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2475 false, false, false, 0); 2476 } 2477 2478 // If there was a non-zero offset that we didn't fold, create an explicit 2479 // addition for it. 2480 if (Offset != 0) 2481 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2482 DAG.getConstant(Offset, DL, PtrVT)); 2483 2484 return Result; 2485 } 2486 2487 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2488 SelectionDAG &DAG, 2489 unsigned Opcode, 2490 SDValue GOTOffset) const { 2491 SDLoc DL(Node); 2492 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2493 SDValue Chain = DAG.getEntryNode(); 2494 SDValue Glue; 2495 2496 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2497 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2498 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2499 Glue = Chain.getValue(1); 2500 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2501 Glue = Chain.getValue(1); 2502 2503 // The first call operand is the chain and the second is the TLS symbol. 2504 SmallVector<SDValue, 8> Ops; 2505 Ops.push_back(Chain); 2506 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2507 Node->getValueType(0), 2508 0, 0)); 2509 2510 // Add argument registers to the end of the list so that they are 2511 // known live into the call. 2512 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2513 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2514 2515 // Add a register mask operand representing the call-preserved registers. 2516 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2517 const uint32_t *Mask = 2518 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2519 assert(Mask && "Missing call preserved mask for calling convention"); 2520 Ops.push_back(DAG.getRegisterMask(Mask)); 2521 2522 // Glue the call to the argument copies. 2523 Ops.push_back(Glue); 2524 2525 // Emit the call. 2526 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2527 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2528 Glue = Chain.getValue(1); 2529 2530 // Copy the return value from %r2. 2531 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2532 } 2533 2534 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2535 SelectionDAG &DAG) const { 2536 if (DAG.getTarget().Options.EmulatedTLS) 2537 return LowerToTLSEmulatedModel(Node, DAG); 2538 SDLoc DL(Node); 2539 const GlobalValue *GV = Node->getGlobal(); 2540 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2541 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2542 2543 // The high part of the thread pointer is in access register 0. 2544 SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2545 DAG.getConstant(0, DL, MVT::i32)); 2546 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2547 2548 // The low part of the thread pointer is in access register 1. 2549 SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, 2550 DAG.getConstant(1, DL, MVT::i32)); 2551 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2552 2553 // Merge them into a single 64-bit address. 2554 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2555 DAG.getConstant(32, DL, PtrVT)); 2556 SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2557 2558 // Get the offset of GA from the thread pointer, based on the TLS model. 2559 SDValue Offset; 2560 switch (model) { 2561 case TLSModel::GeneralDynamic: { 2562 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2563 SystemZConstantPoolValue *CPV = 2564 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2565 2566 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2567 Offset = DAG.getLoad( 2568 PtrVT, DL, DAG.getEntryNode(), Offset, 2569 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2570 false, false, 0); 2571 2572 // Call __tls_get_offset to retrieve the offset. 2573 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2574 break; 2575 } 2576 2577 case TLSModel::LocalDynamic: { 2578 // Load the GOT offset of the module ID. 2579 SystemZConstantPoolValue *CPV = 2580 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2581 2582 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2583 Offset = DAG.getLoad( 2584 PtrVT, DL, DAG.getEntryNode(), Offset, 2585 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2586 false, false, 0); 2587 2588 // Call __tls_get_offset to retrieve the module base offset. 2589 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2590 2591 // Note: The SystemZLDCleanupPass will remove redundant computations 2592 // of the module base offset. Count total number of local-dynamic 2593 // accesses to trigger execution of that pass. 2594 SystemZMachineFunctionInfo* MFI = 2595 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2596 MFI->incNumLocalDynamicTLSAccesses(); 2597 2598 // Add the per-symbol offset. 2599 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2600 2601 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2602 DTPOffset = DAG.getLoad( 2603 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2604 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2605 false, false, 0); 2606 2607 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2608 break; 2609 } 2610 2611 case TLSModel::InitialExec: { 2612 // Load the offset from the GOT. 2613 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2614 SystemZII::MO_INDNTPOFF); 2615 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2616 Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2617 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2618 false, false, false, 0); 2619 break; 2620 } 2621 2622 case TLSModel::LocalExec: { 2623 // Force the offset into the constant pool and load it from there. 2624 SystemZConstantPoolValue *CPV = 2625 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2626 2627 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2628 Offset = DAG.getLoad( 2629 PtrVT, DL, DAG.getEntryNode(), Offset, 2630 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2631 false, false, 0); 2632 break; 2633 } 2634 } 2635 2636 // Add the base and offset together. 2637 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2638 } 2639 2640 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2641 SelectionDAG &DAG) const { 2642 SDLoc DL(Node); 2643 const BlockAddress *BA = Node->getBlockAddress(); 2644 int64_t Offset = Node->getOffset(); 2645 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2646 2647 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2648 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2649 return Result; 2650 } 2651 2652 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2653 SelectionDAG &DAG) const { 2654 SDLoc DL(JT); 2655 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2656 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2657 2658 // Use LARL to load the address of the table. 2659 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2660 } 2661 2662 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2663 SelectionDAG &DAG) const { 2664 SDLoc DL(CP); 2665 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2666 2667 SDValue Result; 2668 if (CP->isMachineConstantPoolEntry()) 2669 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2670 CP->getAlignment()); 2671 else 2672 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2673 CP->getAlignment(), CP->getOffset()); 2674 2675 // Use LARL to load the address of the constant pool entry. 2676 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2677 } 2678 2679 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2680 SelectionDAG &DAG) const { 2681 SDLoc DL(Op); 2682 SDValue In = Op.getOperand(0); 2683 EVT InVT = In.getValueType(); 2684 EVT ResVT = Op.getValueType(); 2685 2686 // Convert loads directly. This is normally done by DAGCombiner, 2687 // but we need this case for bitcasts that are created during lowering 2688 // and which are then lowered themselves. 2689 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2690 return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), 2691 LoadN->getMemOperand()); 2692 2693 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2694 SDValue In64; 2695 if (Subtarget.hasHighWord()) { 2696 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2697 MVT::i64); 2698 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2699 MVT::i64, SDValue(U64, 0), In); 2700 } else { 2701 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2702 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2703 DAG.getConstant(32, DL, MVT::i64)); 2704 } 2705 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2706 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2707 DL, MVT::f32, Out64); 2708 } 2709 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2710 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2711 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2712 MVT::f64, SDValue(U64, 0), In); 2713 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2714 if (Subtarget.hasHighWord()) 2715 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2716 MVT::i32, Out64); 2717 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2718 DAG.getConstant(32, DL, MVT::i64)); 2719 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2720 } 2721 llvm_unreachable("Unexpected bitcast combination"); 2722 } 2723 2724 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2725 SelectionDAG &DAG) const { 2726 MachineFunction &MF = DAG.getMachineFunction(); 2727 SystemZMachineFunctionInfo *FuncInfo = 2728 MF.getInfo<SystemZMachineFunctionInfo>(); 2729 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2730 2731 SDValue Chain = Op.getOperand(0); 2732 SDValue Addr = Op.getOperand(1); 2733 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2734 SDLoc DL(Op); 2735 2736 // The initial values of each field. 2737 const unsigned NumFields = 4; 2738 SDValue Fields[NumFields] = { 2739 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2740 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2741 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2742 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2743 }; 2744 2745 // Store each field into its respective slot. 2746 SDValue MemOps[NumFields]; 2747 unsigned Offset = 0; 2748 for (unsigned I = 0; I < NumFields; ++I) { 2749 SDValue FieldAddr = Addr; 2750 if (Offset != 0) 2751 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2752 DAG.getIntPtrConstant(Offset, DL)); 2753 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2754 MachinePointerInfo(SV, Offset), 2755 false, false, 0); 2756 Offset += 8; 2757 } 2758 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2759 } 2760 2761 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2762 SelectionDAG &DAG) const { 2763 SDValue Chain = Op.getOperand(0); 2764 SDValue DstPtr = Op.getOperand(1); 2765 SDValue SrcPtr = Op.getOperand(2); 2766 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2767 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2768 SDLoc DL(Op); 2769 2770 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2771 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2772 /*isTailCall*/false, 2773 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2774 } 2775 2776 SDValue SystemZTargetLowering:: 2777 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2778 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 2779 bool RealignOpt = !DAG.getMachineFunction().getFunction()-> 2780 hasFnAttribute("no-realign-stack"); 2781 2782 SDValue Chain = Op.getOperand(0); 2783 SDValue Size = Op.getOperand(1); 2784 SDValue Align = Op.getOperand(2); 2785 SDLoc DL(Op); 2786 2787 // If user has set the no alignment function attribute, ignore 2788 // alloca alignments. 2789 uint64_t AlignVal = (RealignOpt ? 2790 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 2791 2792 uint64_t StackAlign = TFI->getStackAlignment(); 2793 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 2794 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 2795 2796 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 2797 SDValue NeededSpace = Size; 2798 2799 // Get a reference to the stack pointer. 2800 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 2801 2802 // Add extra space for alignment if needed. 2803 if (ExtraAlignSpace) 2804 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 2805 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2806 2807 // Get the new stack pointer value. 2808 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 2809 2810 // Copy the new stack pointer back. 2811 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 2812 2813 // The allocated data lives above the 160 bytes allocated for the standard 2814 // frame, plus any outgoing stack arguments. We don't know how much that 2815 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 2816 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 2817 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 2818 2819 // Dynamically realign if needed. 2820 if (RequiredAlign > StackAlign) { 2821 Result = 2822 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 2823 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 2824 Result = 2825 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 2826 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 2827 } 2828 2829 SDValue Ops[2] = { Result, Chain }; 2830 return DAG.getMergeValues(Ops, DL); 2831 } 2832 2833 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 2834 SelectionDAG &DAG) const { 2835 EVT VT = Op.getValueType(); 2836 SDLoc DL(Op); 2837 SDValue Ops[2]; 2838 if (is32Bit(VT)) 2839 // Just do a normal 64-bit multiplication and extract the results. 2840 // We define this so that it can be used for constant division. 2841 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 2842 Op.getOperand(1), Ops[1], Ops[0]); 2843 else { 2844 // Do a full 128-bit multiplication based on UMUL_LOHI64: 2845 // 2846 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 2847 // 2848 // but using the fact that the upper halves are either all zeros 2849 // or all ones: 2850 // 2851 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 2852 // 2853 // and grouping the right terms together since they are quicker than the 2854 // multiplication: 2855 // 2856 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 2857 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 2858 SDValue LL = Op.getOperand(0); 2859 SDValue RL = Op.getOperand(1); 2860 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 2861 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 2862 // UMUL_LOHI64 returns the low result in the odd register and the high 2863 // result in the even register. SMUL_LOHI is defined to return the 2864 // low half first, so the results are in reverse order. 2865 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2866 LL, RL, Ops[1], Ops[0]); 2867 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 2868 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 2869 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 2870 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 2871 } 2872 return DAG.getMergeValues(Ops, DL); 2873 } 2874 2875 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 2876 SelectionDAG &DAG) const { 2877 EVT VT = Op.getValueType(); 2878 SDLoc DL(Op); 2879 SDValue Ops[2]; 2880 if (is32Bit(VT)) 2881 // Just do a normal 64-bit multiplication and extract the results. 2882 // We define this so that it can be used for constant division. 2883 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 2884 Op.getOperand(1), Ops[1], Ops[0]); 2885 else 2886 // UMUL_LOHI64 returns the low result in the odd register and the high 2887 // result in the even register. UMUL_LOHI is defined to return the 2888 // low half first, so the results are in reverse order. 2889 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, 2890 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2891 return DAG.getMergeValues(Ops, DL); 2892 } 2893 2894 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 2895 SelectionDAG &DAG) const { 2896 SDValue Op0 = Op.getOperand(0); 2897 SDValue Op1 = Op.getOperand(1); 2898 EVT VT = Op.getValueType(); 2899 SDLoc DL(Op); 2900 unsigned Opcode; 2901 2902 // We use DSGF for 32-bit division. 2903 if (is32Bit(VT)) { 2904 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 2905 Opcode = SystemZISD::SDIVREM32; 2906 } else if (DAG.ComputeNumSignBits(Op1) > 32) { 2907 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 2908 Opcode = SystemZISD::SDIVREM32; 2909 } else 2910 Opcode = SystemZISD::SDIVREM64; 2911 2912 // DSG(F) takes a 64-bit dividend, so the even register in the GR128 2913 // input is "don't care". The instruction returns the remainder in 2914 // the even register and the quotient in the odd register. 2915 SDValue Ops[2]; 2916 lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, 2917 Op0, Op1, Ops[1], Ops[0]); 2918 return DAG.getMergeValues(Ops, DL); 2919 } 2920 2921 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 2922 SelectionDAG &DAG) const { 2923 EVT VT = Op.getValueType(); 2924 SDLoc DL(Op); 2925 2926 // DL(G) uses a double-width dividend, so we need to clear the even 2927 // register in the GR128 input. The instruction returns the remainder 2928 // in the even register and the quotient in the odd register. 2929 SDValue Ops[2]; 2930 if (is32Bit(VT)) 2931 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, 2932 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2933 else 2934 lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, 2935 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 2936 return DAG.getMergeValues(Ops, DL); 2937 } 2938 2939 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 2940 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 2941 2942 // Get the known-zero masks for each operand. 2943 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 2944 APInt KnownZero[2], KnownOne[2]; 2945 DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); 2946 DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); 2947 2948 // See if the upper 32 bits of one operand and the lower 32 bits of the 2949 // other are known zero. They are the low and high operands respectively. 2950 uint64_t Masks[] = { KnownZero[0].getZExtValue(), 2951 KnownZero[1].getZExtValue() }; 2952 unsigned High, Low; 2953 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 2954 High = 1, Low = 0; 2955 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 2956 High = 0, Low = 1; 2957 else 2958 return Op; 2959 2960 SDValue LowOp = Ops[Low]; 2961 SDValue HighOp = Ops[High]; 2962 2963 // If the high part is a constant, we're better off using IILH. 2964 if (HighOp.getOpcode() == ISD::Constant) 2965 return Op; 2966 2967 // If the low part is a constant that is outside the range of LHI, 2968 // then we're better off using IILF. 2969 if (LowOp.getOpcode() == ISD::Constant) { 2970 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 2971 if (!isInt<16>(Value)) 2972 return Op; 2973 } 2974 2975 // Check whether the high part is an AND that doesn't change the 2976 // high 32 bits and just masks out low bits. We can skip it if so. 2977 if (HighOp.getOpcode() == ISD::AND && 2978 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 2979 SDValue HighOp0 = HighOp.getOperand(0); 2980 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 2981 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 2982 HighOp = HighOp0; 2983 } 2984 2985 // Take advantage of the fact that all GR32 operations only change the 2986 // low 32 bits by truncating Low to an i32 and inserting it directly 2987 // using a subreg. The interesting cases are those where the truncation 2988 // can be folded. 2989 SDLoc DL(Op); 2990 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 2991 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 2992 MVT::i64, HighOp, Low32); 2993 } 2994 2995 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 2996 SelectionDAG &DAG) const { 2997 EVT VT = Op.getValueType(); 2998 SDLoc DL(Op); 2999 Op = Op.getOperand(0); 3000 3001 // Handle vector types via VPOPCT. 3002 if (VT.isVector()) { 3003 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3004 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3005 switch (VT.getVectorElementType().getSizeInBits()) { 3006 case 8: 3007 break; 3008 case 16: { 3009 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3010 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3011 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3012 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3013 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3014 break; 3015 } 3016 case 32: { 3017 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3018 DAG.getConstant(0, DL, MVT::i32)); 3019 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3020 break; 3021 } 3022 case 64: { 3023 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3024 DAG.getConstant(0, DL, MVT::i32)); 3025 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3026 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3027 break; 3028 } 3029 default: 3030 llvm_unreachable("Unexpected type"); 3031 } 3032 return Op; 3033 } 3034 3035 // Get the known-zero mask for the operand. 3036 APInt KnownZero, KnownOne; 3037 DAG.computeKnownBits(Op, KnownZero, KnownOne); 3038 unsigned NumSignificantBits = (~KnownZero).getActiveBits(); 3039 if (NumSignificantBits == 0) 3040 return DAG.getConstant(0, DL, VT); 3041 3042 // Skip known-zero high parts of the operand. 3043 int64_t OrigBitSize = VT.getSizeInBits(); 3044 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3045 BitSize = std::min(BitSize, OrigBitSize); 3046 3047 // The POPCNT instruction counts the number of bits in each byte. 3048 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3049 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3050 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3051 3052 // Add up per-byte counts in a binary tree. All bits of Op at 3053 // position larger than BitSize remain zero throughout. 3054 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3055 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3056 if (BitSize != OrigBitSize) 3057 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3058 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3059 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3060 } 3061 3062 // Extract overall result from high byte. 3063 if (BitSize > 8) 3064 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3065 DAG.getConstant(BitSize - 8, DL, VT)); 3066 3067 return Op; 3068 } 3069 3070 // Op is an atomic load. Lower it into a normal volatile load. 3071 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3072 SelectionDAG &DAG) const { 3073 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3074 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3075 Node->getChain(), Node->getBasePtr(), 3076 Node->getMemoryVT(), Node->getMemOperand()); 3077 } 3078 3079 // Op is an atomic store. Lower it into a normal volatile store followed 3080 // by a serialization. 3081 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3082 SelectionDAG &DAG) const { 3083 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3084 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3085 Node->getBasePtr(), Node->getMemoryVT(), 3086 Node->getMemOperand()); 3087 return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, 3088 Chain), 0); 3089 } 3090 3091 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3092 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3093 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3094 SelectionDAG &DAG, 3095 unsigned Opcode) const { 3096 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3097 3098 // 32-bit operations need no code outside the main loop. 3099 EVT NarrowVT = Node->getMemoryVT(); 3100 EVT WideVT = MVT::i32; 3101 if (NarrowVT == WideVT) 3102 return Op; 3103 3104 int64_t BitSize = NarrowVT.getSizeInBits(); 3105 SDValue ChainIn = Node->getChain(); 3106 SDValue Addr = Node->getBasePtr(); 3107 SDValue Src2 = Node->getVal(); 3108 MachineMemOperand *MMO = Node->getMemOperand(); 3109 SDLoc DL(Node); 3110 EVT PtrVT = Addr.getValueType(); 3111 3112 // Convert atomic subtracts of constants into additions. 3113 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3114 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3115 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3116 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3117 } 3118 3119 // Get the address of the containing word. 3120 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3121 DAG.getConstant(-4, DL, PtrVT)); 3122 3123 // Get the number of bits that the word must be rotated left in order 3124 // to bring the field to the top bits of a GR32. 3125 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3126 DAG.getConstant(3, DL, PtrVT)); 3127 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3128 3129 // Get the complementing shift amount, for rotating a field in the top 3130 // bits back to its proper position. 3131 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3132 DAG.getConstant(0, DL, WideVT), BitShift); 3133 3134 // Extend the source operand to 32 bits and prepare it for the inner loop. 3135 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3136 // operations require the source to be shifted in advance. (This shift 3137 // can be folded if the source is constant.) For AND and NAND, the lower 3138 // bits must be set, while for other opcodes they should be left clear. 3139 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3140 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3141 DAG.getConstant(32 - BitSize, DL, WideVT)); 3142 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3143 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3144 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3145 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3146 3147 // Construct the ATOMIC_LOADW_* node. 3148 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3149 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3150 DAG.getConstant(BitSize, DL, WideVT) }; 3151 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3152 NarrowVT, MMO); 3153 3154 // Rotate the result of the final CS so that the field is in the lower 3155 // bits of a GR32, then truncate it. 3156 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3157 DAG.getConstant(BitSize, DL, WideVT)); 3158 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3159 3160 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3161 return DAG.getMergeValues(RetOps, DL); 3162 } 3163 3164 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3165 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3166 // operations into additions. 3167 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3168 SelectionDAG &DAG) const { 3169 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3170 EVT MemVT = Node->getMemoryVT(); 3171 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3172 // A full-width operation. 3173 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3174 SDValue Src2 = Node->getVal(); 3175 SDValue NegSrc2; 3176 SDLoc DL(Src2); 3177 3178 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3179 // Use an addition if the operand is constant and either LAA(G) is 3180 // available or the negative value is in the range of A(G)FHI. 3181 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3182 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3183 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3184 } else if (Subtarget.hasInterlockedAccess1()) 3185 // Use LAA(G) if available. 3186 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3187 Src2); 3188 3189 if (NegSrc2.getNode()) 3190 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3191 Node->getChain(), Node->getBasePtr(), NegSrc2, 3192 Node->getMemOperand(), Node->getOrdering(), 3193 Node->getSynchScope()); 3194 3195 // Use the node as-is. 3196 return Op; 3197 } 3198 3199 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3200 } 3201 3202 // Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two 3203 // into a fullword ATOMIC_CMP_SWAPW operation. 3204 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3205 SelectionDAG &DAG) const { 3206 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3207 3208 // We have native support for 32-bit compare and swap. 3209 EVT NarrowVT = Node->getMemoryVT(); 3210 EVT WideVT = MVT::i32; 3211 if (NarrowVT == WideVT) 3212 return Op; 3213 3214 int64_t BitSize = NarrowVT.getSizeInBits(); 3215 SDValue ChainIn = Node->getOperand(0); 3216 SDValue Addr = Node->getOperand(1); 3217 SDValue CmpVal = Node->getOperand(2); 3218 SDValue SwapVal = Node->getOperand(3); 3219 MachineMemOperand *MMO = Node->getMemOperand(); 3220 SDLoc DL(Node); 3221 EVT PtrVT = Addr.getValueType(); 3222 3223 // Get the address of the containing word. 3224 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3225 DAG.getConstant(-4, DL, PtrVT)); 3226 3227 // Get the number of bits that the word must be rotated left in order 3228 // to bring the field to the top bits of a GR32. 3229 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3230 DAG.getConstant(3, DL, PtrVT)); 3231 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3232 3233 // Get the complementing shift amount, for rotating a field in the top 3234 // bits back to its proper position. 3235 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3236 DAG.getConstant(0, DL, WideVT), BitShift); 3237 3238 // Construct the ATOMIC_CMP_SWAPW node. 3239 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3240 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3241 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3242 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3243 VTList, Ops, NarrowVT, MMO); 3244 return AtomicOp; 3245 } 3246 3247 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3248 SelectionDAG &DAG) const { 3249 MachineFunction &MF = DAG.getMachineFunction(); 3250 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3251 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3252 SystemZ::R15D, Op.getValueType()); 3253 } 3254 3255 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3256 SelectionDAG &DAG) const { 3257 MachineFunction &MF = DAG.getMachineFunction(); 3258 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3259 return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), 3260 SystemZ::R15D, Op.getOperand(1)); 3261 } 3262 3263 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3264 SelectionDAG &DAG) const { 3265 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3266 if (!IsData) 3267 // Just preserve the chain. 3268 return Op.getOperand(0); 3269 3270 SDLoc DL(Op); 3271 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3272 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3273 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3274 SDValue Ops[] = { 3275 Op.getOperand(0), 3276 DAG.getConstant(Code, DL, MVT::i32), 3277 Op.getOperand(1) 3278 }; 3279 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3280 Node->getVTList(), Ops, 3281 Node->getMemoryVT(), Node->getMemOperand()); 3282 } 3283 3284 // Return an i32 that contains the value of CC immediately after After, 3285 // whose final operand must be MVT::Glue. 3286 static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { 3287 SDLoc DL(After); 3288 SDValue Glue = SDValue(After, After->getNumValues() - 1); 3289 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); 3290 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3291 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3292 } 3293 3294 SDValue 3295 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3296 SelectionDAG &DAG) const { 3297 unsigned Opcode, CCValid; 3298 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3299 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3300 SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); 3301 SDValue CC = getCCResult(DAG, Glued.getNode()); 3302 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3303 return SDValue(); 3304 } 3305 3306 return SDValue(); 3307 } 3308 3309 SDValue 3310 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3311 SelectionDAG &DAG) const { 3312 unsigned Opcode, CCValid; 3313 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3314 SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); 3315 SDValue CC = getCCResult(DAG, Glued.getNode()); 3316 if (Op->getNumValues() == 1) 3317 return CC; 3318 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3319 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued, 3320 CC); 3321 } 3322 3323 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3324 switch (Id) { 3325 case Intrinsic::s390_vpdi: 3326 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3327 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3328 3329 case Intrinsic::s390_vperm: 3330 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3331 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3332 3333 case Intrinsic::s390_vuphb: 3334 case Intrinsic::s390_vuphh: 3335 case Intrinsic::s390_vuphf: 3336 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3337 Op.getOperand(1)); 3338 3339 case Intrinsic::s390_vuplhb: 3340 case Intrinsic::s390_vuplhh: 3341 case Intrinsic::s390_vuplhf: 3342 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3343 Op.getOperand(1)); 3344 3345 case Intrinsic::s390_vuplb: 3346 case Intrinsic::s390_vuplhw: 3347 case Intrinsic::s390_vuplf: 3348 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3349 Op.getOperand(1)); 3350 3351 case Intrinsic::s390_vupllb: 3352 case Intrinsic::s390_vupllh: 3353 case Intrinsic::s390_vupllf: 3354 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3355 Op.getOperand(1)); 3356 3357 case Intrinsic::s390_vsumb: 3358 case Intrinsic::s390_vsumh: 3359 case Intrinsic::s390_vsumgh: 3360 case Intrinsic::s390_vsumgf: 3361 case Intrinsic::s390_vsumqf: 3362 case Intrinsic::s390_vsumqg: 3363 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3364 Op.getOperand(1), Op.getOperand(2)); 3365 } 3366 3367 return SDValue(); 3368 } 3369 3370 namespace { 3371 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3372 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3373 // Operand is the constant third operand, otherwise it is the number of 3374 // bytes in each element of the result. 3375 struct Permute { 3376 unsigned Opcode; 3377 unsigned Operand; 3378 unsigned char Bytes[SystemZ::VectorBytes]; 3379 }; 3380 } 3381 3382 static const Permute PermuteForms[] = { 3383 // VMRHG 3384 { SystemZISD::MERGE_HIGH, 8, 3385 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3386 // VMRHF 3387 { SystemZISD::MERGE_HIGH, 4, 3388 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3389 // VMRHH 3390 { SystemZISD::MERGE_HIGH, 2, 3391 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3392 // VMRHB 3393 { SystemZISD::MERGE_HIGH, 1, 3394 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3395 // VMRLG 3396 { SystemZISD::MERGE_LOW, 8, 3397 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3398 // VMRLF 3399 { SystemZISD::MERGE_LOW, 4, 3400 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3401 // VMRLH 3402 { SystemZISD::MERGE_LOW, 2, 3403 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3404 // VMRLB 3405 { SystemZISD::MERGE_LOW, 1, 3406 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3407 // VPKG 3408 { SystemZISD::PACK, 4, 3409 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3410 // VPKF 3411 { SystemZISD::PACK, 2, 3412 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3413 // VPKH 3414 { SystemZISD::PACK, 1, 3415 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3416 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3417 { SystemZISD::PERMUTE_DWORDS, 4, 3418 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3419 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3420 { SystemZISD::PERMUTE_DWORDS, 1, 3421 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3422 }; 3423 3424 // Called after matching a vector shuffle against a particular pattern. 3425 // Both the original shuffle and the pattern have two vector operands. 3426 // OpNos[0] is the operand of the original shuffle that should be used for 3427 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3428 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3429 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3430 // for operands 0 and 1 of the pattern. 3431 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3432 if (OpNos[0] < 0) { 3433 if (OpNos[1] < 0) 3434 return false; 3435 OpNo0 = OpNo1 = OpNos[1]; 3436 } else if (OpNos[1] < 0) { 3437 OpNo0 = OpNo1 = OpNos[0]; 3438 } else { 3439 OpNo0 = OpNos[0]; 3440 OpNo1 = OpNos[1]; 3441 } 3442 return true; 3443 } 3444 3445 // Bytes is a VPERM-like permute vector, except that -1 is used for 3446 // undefined bytes. Return true if the VPERM can be implemented using P. 3447 // When returning true set OpNo0 to the VPERM operand that should be 3448 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3449 // 3450 // For example, if swapping the VPERM operands allows P to match, OpNo0 3451 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3452 // operand, but rewriting it to use two duplicated operands allows it to 3453 // match P, then OpNo0 and OpNo1 will be the same. 3454 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3455 unsigned &OpNo0, unsigned &OpNo1) { 3456 int OpNos[] = { -1, -1 }; 3457 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3458 int Elt = Bytes[I]; 3459 if (Elt >= 0) { 3460 // Make sure that the two permute vectors use the same suboperand 3461 // byte number. Only the operand numbers (the high bits) are 3462 // allowed to differ. 3463 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3464 return false; 3465 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3466 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3467 // Make sure that the operand mappings are consistent with previous 3468 // elements. 3469 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3470 return false; 3471 OpNos[ModelOpNo] = RealOpNo; 3472 } 3473 } 3474 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3475 } 3476 3477 // As above, but search for a matching permute. 3478 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3479 unsigned &OpNo0, unsigned &OpNo1) { 3480 for (auto &P : PermuteForms) 3481 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3482 return &P; 3483 return nullptr; 3484 } 3485 3486 // Bytes is a VPERM-like permute vector, except that -1 is used for 3487 // undefined bytes. This permute is an operand of an outer permute. 3488 // See whether redistributing the -1 bytes gives a shuffle that can be 3489 // implemented using P. If so, set Transform to a VPERM-like permute vector 3490 // that, when applied to the result of P, gives the original permute in Bytes. 3491 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3492 const Permute &P, 3493 SmallVectorImpl<int> &Transform) { 3494 unsigned To = 0; 3495 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3496 int Elt = Bytes[From]; 3497 if (Elt < 0) 3498 // Byte number From of the result is undefined. 3499 Transform[From] = -1; 3500 else { 3501 while (P.Bytes[To] != Elt) { 3502 To += 1; 3503 if (To == SystemZ::VectorBytes) 3504 return false; 3505 } 3506 Transform[From] = To; 3507 } 3508 } 3509 return true; 3510 } 3511 3512 // As above, but search for a matching permute. 3513 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3514 SmallVectorImpl<int> &Transform) { 3515 for (auto &P : PermuteForms) 3516 if (matchDoublePermute(Bytes, P, Transform)) 3517 return &P; 3518 return nullptr; 3519 } 3520 3521 // Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, 3522 // as if it had type vNi8. 3523 static void getVPermMask(ShuffleVectorSDNode *VSN, 3524 SmallVectorImpl<int> &Bytes) { 3525 EVT VT = VSN->getValueType(0); 3526 unsigned NumElements = VT.getVectorNumElements(); 3527 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3528 Bytes.resize(NumElements * BytesPerElement, -1); 3529 for (unsigned I = 0; I < NumElements; ++I) { 3530 int Index = VSN->getMaskElt(I); 3531 if (Index >= 0) 3532 for (unsigned J = 0; J < BytesPerElement; ++J) 3533 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3534 } 3535 } 3536 3537 // Bytes is a VPERM-like permute vector, except that -1 is used for 3538 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3539 // the result come from a contiguous sequence of bytes from one input. 3540 // Set Base to the selector for the first byte if so. 3541 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3542 unsigned BytesPerElement, int &Base) { 3543 Base = -1; 3544 for (unsigned I = 0; I < BytesPerElement; ++I) { 3545 if (Bytes[Start + I] >= 0) { 3546 unsigned Elem = Bytes[Start + I]; 3547 if (Base < 0) { 3548 Base = Elem - I; 3549 // Make sure the bytes would come from one input operand. 3550 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3551 return false; 3552 } else if (unsigned(Base) != Elem - I) 3553 return false; 3554 } 3555 } 3556 return true; 3557 } 3558 3559 // Bytes is a VPERM-like permute vector, except that -1 is used for 3560 // undefined bytes. Return true if it can be performed using VSLDI. 3561 // When returning true, set StartIndex to the shift amount and OpNo0 3562 // and OpNo1 to the VPERM operands that should be used as the first 3563 // and second shift operand respectively. 3564 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3565 unsigned &StartIndex, unsigned &OpNo0, 3566 unsigned &OpNo1) { 3567 int OpNos[] = { -1, -1 }; 3568 int Shift = -1; 3569 for (unsigned I = 0; I < 16; ++I) { 3570 int Index = Bytes[I]; 3571 if (Index >= 0) { 3572 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3573 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3574 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3575 if (Shift < 0) 3576 Shift = ExpectedShift; 3577 else if (Shift != ExpectedShift) 3578 return false; 3579 // Make sure that the operand mappings are consistent with previous 3580 // elements. 3581 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3582 return false; 3583 OpNos[ModelOpNo] = RealOpNo; 3584 } 3585 } 3586 StartIndex = Shift; 3587 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3588 } 3589 3590 // Create a node that performs P on operands Op0 and Op1, casting the 3591 // operands to the appropriate type. The type of the result is determined by P. 3592 static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL, 3593 const Permute &P, SDValue Op0, SDValue Op1) { 3594 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3595 // elements of a PACK are twice as wide as the outputs. 3596 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3597 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3598 P.Operand); 3599 // Cast both operands to the appropriate type. 3600 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3601 SystemZ::VectorBytes / InBytes); 3602 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3603 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3604 SDValue Op; 3605 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3606 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3607 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3608 } else if (P.Opcode == SystemZISD::PACK) { 3609 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3610 SystemZ::VectorBytes / P.Operand); 3611 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3612 } else { 3613 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3614 } 3615 return Op; 3616 } 3617 3618 // Bytes is a VPERM-like permute vector, except that -1 is used for 3619 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 3620 // VSLDI or VPERM. 3621 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops, 3622 const SmallVectorImpl<int> &Bytes) { 3623 for (unsigned I = 0; I < 2; ++I) 3624 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 3625 3626 // First see whether VSLDI can be used. 3627 unsigned StartIndex, OpNo0, OpNo1; 3628 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 3629 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 3630 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 3631 3632 // Fall back on VPERM. Construct an SDNode for the permute vector. 3633 SDValue IndexNodes[SystemZ::VectorBytes]; 3634 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3635 if (Bytes[I] >= 0) 3636 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 3637 else 3638 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 3639 SDValue Op2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, IndexNodes); 3640 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 3641 } 3642 3643 namespace { 3644 // Describes a general N-operand vector shuffle. 3645 struct GeneralShuffle { 3646 GeneralShuffle(EVT vt) : VT(vt) {} 3647 void addUndef(); 3648 void add(SDValue, unsigned); 3649 SDValue getNode(SelectionDAG &, SDLoc); 3650 3651 // The operands of the shuffle. 3652 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 3653 3654 // Index I is -1 if byte I of the result is undefined. Otherwise the 3655 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 3656 // Bytes[I] / SystemZ::VectorBytes. 3657 SmallVector<int, SystemZ::VectorBytes> Bytes; 3658 3659 // The type of the shuffle result. 3660 EVT VT; 3661 }; 3662 } 3663 3664 // Add an extra undefined element to the shuffle. 3665 void GeneralShuffle::addUndef() { 3666 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3667 for (unsigned I = 0; I < BytesPerElement; ++I) 3668 Bytes.push_back(-1); 3669 } 3670 3671 // Add an extra element to the shuffle, taking it from element Elem of Op. 3672 // A null Op indicates a vector input whose value will be calculated later; 3673 // there is at most one such input per shuffle and it always has the same 3674 // type as the result. 3675 void GeneralShuffle::add(SDValue Op, unsigned Elem) { 3676 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3677 3678 // The source vector can have wider elements than the result, 3679 // either through an explicit TRUNCATE or because of type legalization. 3680 // We want the least significant part. 3681 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 3682 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 3683 assert(FromBytesPerElement >= BytesPerElement && 3684 "Invalid EXTRACT_VECTOR_ELT"); 3685 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 3686 (FromBytesPerElement - BytesPerElement)); 3687 3688 // Look through things like shuffles and bitcasts. 3689 while (Op.getNode()) { 3690 if (Op.getOpcode() == ISD::BITCAST) 3691 Op = Op.getOperand(0); 3692 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 3693 // See whether the bytes we need come from a contiguous part of one 3694 // operand. 3695 SmallVector<int, SystemZ::VectorBytes> OpBytes; 3696 getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); 3697 int NewByte; 3698 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 3699 break; 3700 if (NewByte < 0) { 3701 addUndef(); 3702 return; 3703 } 3704 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 3705 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 3706 } else if (Op.getOpcode() == ISD::UNDEF) { 3707 addUndef(); 3708 return; 3709 } else 3710 break; 3711 } 3712 3713 // Make sure that the source of the extraction is in Ops. 3714 unsigned OpNo = 0; 3715 for (; OpNo < Ops.size(); ++OpNo) 3716 if (Ops[OpNo] == Op) 3717 break; 3718 if (OpNo == Ops.size()) 3719 Ops.push_back(Op); 3720 3721 // Add the element to Bytes. 3722 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 3723 for (unsigned I = 0; I < BytesPerElement; ++I) 3724 Bytes.push_back(Base + I); 3725 } 3726 3727 // Return SDNodes for the completed shuffle. 3728 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) { 3729 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 3730 3731 if (Ops.size() == 0) 3732 return DAG.getUNDEF(VT); 3733 3734 // Make sure that there are at least two shuffle operands. 3735 if (Ops.size() == 1) 3736 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 3737 3738 // Create a tree of shuffles, deferring root node until after the loop. 3739 // Try to redistribute the undefined elements of non-root nodes so that 3740 // the non-root shuffles match something like a pack or merge, then adjust 3741 // the parent node's permute vector to compensate for the new order. 3742 // Among other things, this copes with vectors like <2 x i16> that were 3743 // padded with undefined elements during type legalization. 3744 // 3745 // In the best case this redistribution will lead to the whole tree 3746 // using packs and merges. It should rarely be a loss in other cases. 3747 unsigned Stride = 1; 3748 for (; Stride * 2 < Ops.size(); Stride *= 2) { 3749 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 3750 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 3751 3752 // Create a mask for just these two operands. 3753 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 3754 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3755 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 3756 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 3757 if (OpNo == I) 3758 NewBytes[J] = Byte; 3759 else if (OpNo == I + Stride) 3760 NewBytes[J] = SystemZ::VectorBytes + Byte; 3761 else 3762 NewBytes[J] = -1; 3763 } 3764 // See if it would be better to reorganize NewMask to avoid using VPERM. 3765 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 3766 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 3767 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 3768 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 3769 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 3770 if (NewBytes[J] >= 0) { 3771 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 3772 "Invalid double permute"); 3773 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 3774 } else 3775 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 3776 } 3777 } else { 3778 // Just use NewBytes on the operands. 3779 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 3780 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 3781 if (NewBytes[J] >= 0) 3782 Bytes[J] = I * SystemZ::VectorBytes + J; 3783 } 3784 } 3785 } 3786 3787 // Now we just have 2 inputs. Put the second operand in Ops[1]. 3788 if (Stride > 1) { 3789 Ops[1] = Ops[Stride]; 3790 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 3791 if (Bytes[I] >= int(SystemZ::VectorBytes)) 3792 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 3793 } 3794 3795 // Look for an instruction that can do the permute without resorting 3796 // to VPERM. 3797 unsigned OpNo0, OpNo1; 3798 SDValue Op; 3799 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 3800 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 3801 else 3802 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 3803 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3804 } 3805 3806 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 3807 static bool isScalarToVector(SDValue Op) { 3808 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 3809 if (Op.getOperand(I).getOpcode() != ISD::UNDEF) 3810 return false; 3811 return true; 3812 } 3813 3814 // Return a vector of type VT that contains Value in the first element. 3815 // The other elements don't matter. 3816 static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3817 SDValue Value) { 3818 // If we have a constant, replicate it to all elements and let the 3819 // BUILD_VECTOR lowering take care of it. 3820 if (Value.getOpcode() == ISD::Constant || 3821 Value.getOpcode() == ISD::ConstantFP) { 3822 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 3823 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); 3824 } 3825 if (Value.getOpcode() == ISD::UNDEF) 3826 return DAG.getUNDEF(VT); 3827 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 3828 } 3829 3830 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 3831 // element 1. Used for cases in which replication is cheap. 3832 static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT, 3833 SDValue Op0, SDValue Op1) { 3834 if (Op0.getOpcode() == ISD::UNDEF) { 3835 if (Op1.getOpcode() == ISD::UNDEF) 3836 return DAG.getUNDEF(VT); 3837 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 3838 } 3839 if (Op1.getOpcode() == ISD::UNDEF) 3840 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 3841 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 3842 buildScalarToVector(DAG, DL, VT, Op0), 3843 buildScalarToVector(DAG, DL, VT, Op1)); 3844 } 3845 3846 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 3847 // vector for them. 3848 static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0, 3849 SDValue Op1) { 3850 if (Op0.getOpcode() == ISD::UNDEF && Op1.getOpcode() == ISD::UNDEF) 3851 return DAG.getUNDEF(MVT::v2i64); 3852 // If one of the two inputs is undefined then replicate the other one, 3853 // in order to avoid using another register unnecessarily. 3854 if (Op0.getOpcode() == ISD::UNDEF) 3855 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3856 else if (Op1.getOpcode() == ISD::UNDEF) 3857 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3858 else { 3859 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 3860 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 3861 } 3862 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 3863 } 3864 3865 // Try to represent constant BUILD_VECTOR node BVN using a 3866 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 3867 // on success. 3868 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 3869 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 3870 unsigned BytesPerElement = ElemVT.getStoreSize(); 3871 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 3872 SDValue Op = BVN->getOperand(I); 3873 if (Op.getOpcode() != ISD::UNDEF) { 3874 uint64_t Value; 3875 if (Op.getOpcode() == ISD::Constant) 3876 Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); 3877 else if (Op.getOpcode() == ISD::ConstantFP) 3878 Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 3879 .getZExtValue()); 3880 else 3881 return false; 3882 for (unsigned J = 0; J < BytesPerElement; ++J) { 3883 uint64_t Byte = (Value >> (J * 8)) & 0xff; 3884 if (Byte == 0xff) 3885 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 3886 else if (Byte != 0) 3887 return false; 3888 } 3889 } 3890 } 3891 return true; 3892 } 3893 3894 // Try to load a vector constant in which BitsPerElement-bit value Value 3895 // is replicated to fill the vector. VT is the type of the resulting 3896 // constant, which may have elements of a different size from BitsPerElement. 3897 // Return the SDValue of the constant on success, otherwise return 3898 // an empty value. 3899 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 3900 const SystemZInstrInfo *TII, 3901 SDLoc DL, EVT VT, uint64_t Value, 3902 unsigned BitsPerElement) { 3903 // Signed 16-bit values can be replicated using VREPI. 3904 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 3905 if (isInt<16>(SignedValue)) { 3906 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3907 SystemZ::VectorBits / BitsPerElement); 3908 SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, 3909 DAG.getConstant(SignedValue, DL, MVT::i32)); 3910 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3911 } 3912 // See whether rotating the constant left some N places gives a value that 3913 // is one less than a power of 2 (i.e. all zeros followed by all ones). 3914 // If so we can use VGM. 3915 unsigned Start, End; 3916 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 3917 // isRxSBGMask returns the bit numbers for a full 64-bit value, 3918 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 3919 // bit numbers for an BitsPerElement value, so that 0 denotes 3920 // 1 << (BitsPerElement-1). 3921 Start -= 64 - BitsPerElement; 3922 End -= 64 - BitsPerElement; 3923 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 3924 SystemZ::VectorBits / BitsPerElement); 3925 SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, 3926 DAG.getConstant(Start, DL, MVT::i32), 3927 DAG.getConstant(End, DL, MVT::i32)); 3928 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 3929 } 3930 return SDValue(); 3931 } 3932 3933 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 3934 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 3935 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 3936 // would benefit from this representation and return it if so. 3937 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 3938 BuildVectorSDNode *BVN) { 3939 EVT VT = BVN->getValueType(0); 3940 unsigned NumElements = VT.getVectorNumElements(); 3941 3942 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 3943 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 3944 // need a BUILD_VECTOR, add an additional placeholder operand for that 3945 // BUILD_VECTOR and store its operands in ResidueOps. 3946 GeneralShuffle GS(VT); 3947 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 3948 bool FoundOne = false; 3949 for (unsigned I = 0; I < NumElements; ++I) { 3950 SDValue Op = BVN->getOperand(I); 3951 if (Op.getOpcode() == ISD::TRUNCATE) 3952 Op = Op.getOperand(0); 3953 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 3954 Op.getOperand(1).getOpcode() == ISD::Constant) { 3955 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 3956 GS.add(Op.getOperand(0), Elem); 3957 FoundOne = true; 3958 } else if (Op.getOpcode() == ISD::UNDEF) { 3959 GS.addUndef(); 3960 } else { 3961 GS.add(SDValue(), ResidueOps.size()); 3962 ResidueOps.push_back(BVN->getOperand(I)); 3963 } 3964 } 3965 3966 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 3967 if (!FoundOne) 3968 return SDValue(); 3969 3970 // Create the BUILD_VECTOR for the remaining elements, if any. 3971 if (!ResidueOps.empty()) { 3972 while (ResidueOps.size() < NumElements) 3973 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 3974 for (auto &Op : GS.Ops) { 3975 if (!Op.getNode()) { 3976 Op = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BVN), VT, ResidueOps); 3977 break; 3978 } 3979 } 3980 } 3981 return GS.getNode(DAG, SDLoc(BVN)); 3982 } 3983 3984 // Combine GPR scalar values Elems into a vector of type VT. 3985 static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT, 3986 SmallVectorImpl<SDValue> &Elems) { 3987 // See whether there is a single replicated value. 3988 SDValue Single; 3989 unsigned int NumElements = Elems.size(); 3990 unsigned int Count = 0; 3991 for (auto Elem : Elems) { 3992 if (Elem.getOpcode() != ISD::UNDEF) { 3993 if (!Single.getNode()) 3994 Single = Elem; 3995 else if (Elem != Single) { 3996 Single = SDValue(); 3997 break; 3998 } 3999 Count += 1; 4000 } 4001 } 4002 // There are three cases here: 4003 // 4004 // - if the only defined element is a loaded one, the best sequence 4005 // is a replicating load. 4006 // 4007 // - otherwise, if the only defined element is an i64 value, we will 4008 // end up with the same VLVGP sequence regardless of whether we short-cut 4009 // for replication or fall through to the later code. 4010 // 4011 // - otherwise, if the only defined element is an i32 or smaller value, 4012 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4013 // This is only a win if the single defined element is used more than once. 4014 // In other cases we're better off using a single VLVGx. 4015 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4016 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4017 4018 // The best way of building a v2i64 from two i64s is to use VLVGP. 4019 if (VT == MVT::v2i64) 4020 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4021 4022 // Use a 64-bit merge high to combine two doubles. 4023 if (VT == MVT::v2f64) 4024 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4025 4026 // Build v4f32 values directly from the FPRs: 4027 // 4028 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4029 // V V VMRHF 4030 // <ABxx> <CDxx> 4031 // V VMRHG 4032 // <ABCD> 4033 if (VT == MVT::v4f32) { 4034 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4035 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4036 // Avoid unnecessary undefs by reusing the other operand. 4037 if (Op01.getOpcode() == ISD::UNDEF) 4038 Op01 = Op23; 4039 else if (Op23.getOpcode() == ISD::UNDEF) 4040 Op23 = Op01; 4041 // Merging identical replications is a no-op. 4042 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4043 return Op01; 4044 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4045 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4046 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4047 DL, MVT::v2i64, Op01, Op23); 4048 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4049 } 4050 4051 // Collect the constant terms. 4052 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4053 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4054 4055 unsigned NumConstants = 0; 4056 for (unsigned I = 0; I < NumElements; ++I) { 4057 SDValue Elem = Elems[I]; 4058 if (Elem.getOpcode() == ISD::Constant || 4059 Elem.getOpcode() == ISD::ConstantFP) { 4060 NumConstants += 1; 4061 Constants[I] = Elem; 4062 Done[I] = true; 4063 } 4064 } 4065 // If there was at least one constant, fill in the other elements of 4066 // Constants with undefs to get a full vector constant and use that 4067 // as the starting point. 4068 SDValue Result; 4069 if (NumConstants > 0) { 4070 for (unsigned I = 0; I < NumElements; ++I) 4071 if (!Constants[I].getNode()) 4072 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4073 Result = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Constants); 4074 } else { 4075 // Otherwise try to use VLVGP to start the sequence in order to 4076 // avoid a false dependency on any previous contents of the vector 4077 // register. This only makes sense if one of the associated elements 4078 // is defined. 4079 unsigned I1 = NumElements / 2 - 1; 4080 unsigned I2 = NumElements - 1; 4081 bool Def1 = (Elems[I1].getOpcode() != ISD::UNDEF); 4082 bool Def2 = (Elems[I2].getOpcode() != ISD::UNDEF); 4083 if (Def1 || Def2) { 4084 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4085 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4086 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4087 joinDwords(DAG, DL, Elem1, Elem2)); 4088 Done[I1] = true; 4089 Done[I2] = true; 4090 } else 4091 Result = DAG.getUNDEF(VT); 4092 } 4093 4094 // Use VLVGx to insert the other elements. 4095 for (unsigned I = 0; I < NumElements; ++I) 4096 if (!Done[I] && Elems[I].getOpcode() != ISD::UNDEF) 4097 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4098 DAG.getConstant(I, DL, MVT::i32)); 4099 return Result; 4100 } 4101 4102 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4103 SelectionDAG &DAG) const { 4104 const SystemZInstrInfo *TII = 4105 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4106 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4107 SDLoc DL(Op); 4108 EVT VT = Op.getValueType(); 4109 4110 if (BVN->isConstant()) { 4111 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4112 // preferred way of creating all-zero and all-one vectors so give it 4113 // priority over other methods below. 4114 uint64_t Mask = 0; 4115 if (tryBuildVectorByteMask(BVN, Mask)) { 4116 SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4117 DAG.getConstant(Mask, DL, MVT::i32)); 4118 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4119 } 4120 4121 // Try using some form of replication. 4122 APInt SplatBits, SplatUndef; 4123 unsigned SplatBitSize; 4124 bool HasAnyUndefs; 4125 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4126 8, true) && 4127 SplatBitSize <= 64) { 4128 // First try assuming that any undefined bits above the highest set bit 4129 // and below the lowest set bit are 1s. This increases the likelihood of 4130 // being able to use a sign-extended element value in VECTOR REPLICATE 4131 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4132 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4133 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4134 uint64_t Lower = (SplatUndefZ 4135 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4136 uint64_t Upper = (SplatUndefZ 4137 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4138 uint64_t Value = SplatBitsZ | Upper | Lower; 4139 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4140 SplatBitSize); 4141 if (Op.getNode()) 4142 return Op; 4143 4144 // Now try assuming that any undefined bits between the first and 4145 // last defined set bits are set. This increases the chances of 4146 // using a non-wraparound mask. 4147 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4148 Value = SplatBitsZ | Middle; 4149 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4150 if (Op.getNode()) 4151 return Op; 4152 } 4153 4154 // Fall back to loading it from memory. 4155 return SDValue(); 4156 } 4157 4158 // See if we should use shuffles to construct the vector from other vectors. 4159 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4160 return Res; 4161 4162 // Detect SCALAR_TO_VECTOR conversions. 4163 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4164 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4165 4166 // Otherwise use buildVector to build the vector up from GPRs. 4167 unsigned NumElements = Op.getNumOperands(); 4168 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4169 for (unsigned I = 0; I < NumElements; ++I) 4170 Ops[I] = Op.getOperand(I); 4171 return buildVector(DAG, DL, VT, Ops); 4172 } 4173 4174 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4175 SelectionDAG &DAG) const { 4176 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4177 SDLoc DL(Op); 4178 EVT VT = Op.getValueType(); 4179 unsigned NumElements = VT.getVectorNumElements(); 4180 4181 if (VSN->isSplat()) { 4182 SDValue Op0 = Op.getOperand(0); 4183 unsigned Index = VSN->getSplatIndex(); 4184 assert(Index < VT.getVectorNumElements() && 4185 "Splat index should be defined and in first operand"); 4186 // See whether the value we're splatting is directly available as a scalar. 4187 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4188 Op0.getOpcode() == ISD::BUILD_VECTOR) 4189 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4190 // Otherwise keep it as a vector-to-vector operation. 4191 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4192 DAG.getConstant(Index, DL, MVT::i32)); 4193 } 4194 4195 GeneralShuffle GS(VT); 4196 for (unsigned I = 0; I < NumElements; ++I) { 4197 int Elt = VSN->getMaskElt(I); 4198 if (Elt < 0) 4199 GS.addUndef(); 4200 else 4201 GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4202 unsigned(Elt) % NumElements); 4203 } 4204 return GS.getNode(DAG, SDLoc(VSN)); 4205 } 4206 4207 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4208 SelectionDAG &DAG) const { 4209 SDLoc DL(Op); 4210 // Just insert the scalar into element 0 of an undefined vector. 4211 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4212 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4213 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4214 } 4215 4216 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4217 SelectionDAG &DAG) const { 4218 // Handle insertions of floating-point values. 4219 SDLoc DL(Op); 4220 SDValue Op0 = Op.getOperand(0); 4221 SDValue Op1 = Op.getOperand(1); 4222 SDValue Op2 = Op.getOperand(2); 4223 EVT VT = Op.getValueType(); 4224 4225 // Insertions into constant indices of a v2f64 can be done using VPDI. 4226 // However, if the inserted value is a bitcast or a constant then it's 4227 // better to use GPRs, as below. 4228 if (VT == MVT::v2f64 && 4229 Op1.getOpcode() != ISD::BITCAST && 4230 Op1.getOpcode() != ISD::ConstantFP && 4231 Op2.getOpcode() == ISD::Constant) { 4232 uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); 4233 unsigned Mask = VT.getVectorNumElements() - 1; 4234 if (Index <= Mask) 4235 return Op; 4236 } 4237 4238 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4239 MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); 4240 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4241 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4242 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4243 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4244 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4245 } 4246 4247 SDValue 4248 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4249 SelectionDAG &DAG) const { 4250 // Handle extractions of floating-point values. 4251 SDLoc DL(Op); 4252 SDValue Op0 = Op.getOperand(0); 4253 SDValue Op1 = Op.getOperand(1); 4254 EVT VT = Op.getValueType(); 4255 EVT VecVT = Op0.getValueType(); 4256 4257 // Extractions of constant indices can be done directly. 4258 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4259 uint64_t Index = CIndexN->getZExtValue(); 4260 unsigned Mask = VecVT.getVectorNumElements() - 1; 4261 if (Index <= Mask) 4262 return Op; 4263 } 4264 4265 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4266 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4267 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4268 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4269 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4270 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4271 } 4272 4273 SDValue 4274 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4275 unsigned UnpackHigh) const { 4276 SDValue PackedOp = Op.getOperand(0); 4277 EVT OutVT = Op.getValueType(); 4278 EVT InVT = PackedOp.getValueType(); 4279 unsigned ToBits = OutVT.getVectorElementType().getSizeInBits(); 4280 unsigned FromBits = InVT.getVectorElementType().getSizeInBits(); 4281 do { 4282 FromBits *= 2; 4283 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4284 SystemZ::VectorBits / FromBits); 4285 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4286 } while (FromBits != ToBits); 4287 return PackedOp; 4288 } 4289 4290 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4291 unsigned ByScalar) const { 4292 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4293 SDValue Op0 = Op.getOperand(0); 4294 SDValue Op1 = Op.getOperand(1); 4295 SDLoc DL(Op); 4296 EVT VT = Op.getValueType(); 4297 unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits(); 4298 4299 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4300 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4301 APInt SplatBits, SplatUndef; 4302 unsigned SplatBitSize; 4303 bool HasAnyUndefs; 4304 // Check for constant splats. Use ElemBitSize as the minimum element 4305 // width and reject splats that need wider elements. 4306 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4307 ElemBitSize, true) && 4308 SplatBitSize == ElemBitSize) { 4309 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4310 DL, MVT::i32); 4311 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4312 } 4313 // Check for variable splats. 4314 BitVector UndefElements; 4315 SDValue Splat = BVN->getSplatValue(&UndefElements); 4316 if (Splat) { 4317 // Since i32 is the smallest legal type, we either need a no-op 4318 // or a truncation. 4319 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4320 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4321 } 4322 } 4323 4324 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4325 // and the shift amount is directly available in a GPR. 4326 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4327 if (VSN->isSplat()) { 4328 SDValue VSNOp0 = VSN->getOperand(0); 4329 unsigned Index = VSN->getSplatIndex(); 4330 assert(Index < VT.getVectorNumElements() && 4331 "Splat index should be defined and in first operand"); 4332 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4333 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4334 // Since i32 is the smallest legal type, we either need a no-op 4335 // or a truncation. 4336 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4337 VSNOp0.getOperand(Index)); 4338 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4339 } 4340 } 4341 } 4342 4343 // Otherwise just treat the current form as legal. 4344 return Op; 4345 } 4346 4347 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4348 SelectionDAG &DAG) const { 4349 switch (Op.getOpcode()) { 4350 case ISD::BR_CC: 4351 return lowerBR_CC(Op, DAG); 4352 case ISD::SELECT_CC: 4353 return lowerSELECT_CC(Op, DAG); 4354 case ISD::SETCC: 4355 return lowerSETCC(Op, DAG); 4356 case ISD::GlobalAddress: 4357 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4358 case ISD::GlobalTLSAddress: 4359 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4360 case ISD::BlockAddress: 4361 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4362 case ISD::JumpTable: 4363 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4364 case ISD::ConstantPool: 4365 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4366 case ISD::BITCAST: 4367 return lowerBITCAST(Op, DAG); 4368 case ISD::VASTART: 4369 return lowerVASTART(Op, DAG); 4370 case ISD::VACOPY: 4371 return lowerVACOPY(Op, DAG); 4372 case ISD::DYNAMIC_STACKALLOC: 4373 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4374 case ISD::SMUL_LOHI: 4375 return lowerSMUL_LOHI(Op, DAG); 4376 case ISD::UMUL_LOHI: 4377 return lowerUMUL_LOHI(Op, DAG); 4378 case ISD::SDIVREM: 4379 return lowerSDIVREM(Op, DAG); 4380 case ISD::UDIVREM: 4381 return lowerUDIVREM(Op, DAG); 4382 case ISD::OR: 4383 return lowerOR(Op, DAG); 4384 case ISD::CTPOP: 4385 return lowerCTPOP(Op, DAG); 4386 case ISD::CTLZ_ZERO_UNDEF: 4387 return DAG.getNode(ISD::CTLZ, SDLoc(Op), 4388 Op.getValueType(), Op.getOperand(0)); 4389 case ISD::CTTZ_ZERO_UNDEF: 4390 return DAG.getNode(ISD::CTTZ, SDLoc(Op), 4391 Op.getValueType(), Op.getOperand(0)); 4392 case ISD::ATOMIC_SWAP: 4393 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4394 case ISD::ATOMIC_STORE: 4395 return lowerATOMIC_STORE(Op, DAG); 4396 case ISD::ATOMIC_LOAD: 4397 return lowerATOMIC_LOAD(Op, DAG); 4398 case ISD::ATOMIC_LOAD_ADD: 4399 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4400 case ISD::ATOMIC_LOAD_SUB: 4401 return lowerATOMIC_LOAD_SUB(Op, DAG); 4402 case ISD::ATOMIC_LOAD_AND: 4403 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4404 case ISD::ATOMIC_LOAD_OR: 4405 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4406 case ISD::ATOMIC_LOAD_XOR: 4407 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4408 case ISD::ATOMIC_LOAD_NAND: 4409 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4410 case ISD::ATOMIC_LOAD_MIN: 4411 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4412 case ISD::ATOMIC_LOAD_MAX: 4413 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4414 case ISD::ATOMIC_LOAD_UMIN: 4415 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4416 case ISD::ATOMIC_LOAD_UMAX: 4417 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4418 case ISD::ATOMIC_CMP_SWAP: 4419 return lowerATOMIC_CMP_SWAP(Op, DAG); 4420 case ISD::STACKSAVE: 4421 return lowerSTACKSAVE(Op, DAG); 4422 case ISD::STACKRESTORE: 4423 return lowerSTACKRESTORE(Op, DAG); 4424 case ISD::PREFETCH: 4425 return lowerPREFETCH(Op, DAG); 4426 case ISD::INTRINSIC_W_CHAIN: 4427 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4428 case ISD::INTRINSIC_WO_CHAIN: 4429 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4430 case ISD::BUILD_VECTOR: 4431 return lowerBUILD_VECTOR(Op, DAG); 4432 case ISD::VECTOR_SHUFFLE: 4433 return lowerVECTOR_SHUFFLE(Op, DAG); 4434 case ISD::SCALAR_TO_VECTOR: 4435 return lowerSCALAR_TO_VECTOR(Op, DAG); 4436 case ISD::INSERT_VECTOR_ELT: 4437 return lowerINSERT_VECTOR_ELT(Op, DAG); 4438 case ISD::EXTRACT_VECTOR_ELT: 4439 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4440 case ISD::SIGN_EXTEND_VECTOR_INREG: 4441 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4442 case ISD::ZERO_EXTEND_VECTOR_INREG: 4443 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4444 case ISD::SHL: 4445 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4446 case ISD::SRL: 4447 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4448 case ISD::SRA: 4449 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4450 default: 4451 llvm_unreachable("Unexpected node to lower"); 4452 } 4453 } 4454 4455 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4456 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4457 switch ((SystemZISD::NodeType)Opcode) { 4458 case SystemZISD::FIRST_NUMBER: break; 4459 OPCODE(RET_FLAG); 4460 OPCODE(CALL); 4461 OPCODE(SIBCALL); 4462 OPCODE(TLS_GDCALL); 4463 OPCODE(TLS_LDCALL); 4464 OPCODE(PCREL_WRAPPER); 4465 OPCODE(PCREL_OFFSET); 4466 OPCODE(IABS); 4467 OPCODE(ICMP); 4468 OPCODE(FCMP); 4469 OPCODE(TM); 4470 OPCODE(BR_CCMASK); 4471 OPCODE(SELECT_CCMASK); 4472 OPCODE(ADJDYNALLOC); 4473 OPCODE(EXTRACT_ACCESS); 4474 OPCODE(POPCNT); 4475 OPCODE(UMUL_LOHI64); 4476 OPCODE(SDIVREM32); 4477 OPCODE(SDIVREM64); 4478 OPCODE(UDIVREM32); 4479 OPCODE(UDIVREM64); 4480 OPCODE(MVC); 4481 OPCODE(MVC_LOOP); 4482 OPCODE(NC); 4483 OPCODE(NC_LOOP); 4484 OPCODE(OC); 4485 OPCODE(OC_LOOP); 4486 OPCODE(XC); 4487 OPCODE(XC_LOOP); 4488 OPCODE(CLC); 4489 OPCODE(CLC_LOOP); 4490 OPCODE(STPCPY); 4491 OPCODE(STRCMP); 4492 OPCODE(SEARCH_STRING); 4493 OPCODE(IPM); 4494 OPCODE(SERIALIZE); 4495 OPCODE(TBEGIN); 4496 OPCODE(TBEGIN_NOFLOAT); 4497 OPCODE(TEND); 4498 OPCODE(BYTE_MASK); 4499 OPCODE(ROTATE_MASK); 4500 OPCODE(REPLICATE); 4501 OPCODE(JOIN_DWORDS); 4502 OPCODE(SPLAT); 4503 OPCODE(MERGE_HIGH); 4504 OPCODE(MERGE_LOW); 4505 OPCODE(SHL_DOUBLE); 4506 OPCODE(PERMUTE_DWORDS); 4507 OPCODE(PERMUTE); 4508 OPCODE(PACK); 4509 OPCODE(PACKS_CC); 4510 OPCODE(PACKLS_CC); 4511 OPCODE(UNPACK_HIGH); 4512 OPCODE(UNPACKL_HIGH); 4513 OPCODE(UNPACK_LOW); 4514 OPCODE(UNPACKL_LOW); 4515 OPCODE(VSHL_BY_SCALAR); 4516 OPCODE(VSRL_BY_SCALAR); 4517 OPCODE(VSRA_BY_SCALAR); 4518 OPCODE(VSUM); 4519 OPCODE(VICMPE); 4520 OPCODE(VICMPH); 4521 OPCODE(VICMPHL); 4522 OPCODE(VICMPES); 4523 OPCODE(VICMPHS); 4524 OPCODE(VICMPHLS); 4525 OPCODE(VFCMPE); 4526 OPCODE(VFCMPH); 4527 OPCODE(VFCMPHE); 4528 OPCODE(VFCMPES); 4529 OPCODE(VFCMPHS); 4530 OPCODE(VFCMPHES); 4531 OPCODE(VFTCI); 4532 OPCODE(VEXTEND); 4533 OPCODE(VROUND); 4534 OPCODE(VTM); 4535 OPCODE(VFAE_CC); 4536 OPCODE(VFAEZ_CC); 4537 OPCODE(VFEE_CC); 4538 OPCODE(VFEEZ_CC); 4539 OPCODE(VFENE_CC); 4540 OPCODE(VFENEZ_CC); 4541 OPCODE(VISTR_CC); 4542 OPCODE(VSTRC_CC); 4543 OPCODE(VSTRCZ_CC); 4544 OPCODE(ATOMIC_SWAPW); 4545 OPCODE(ATOMIC_LOADW_ADD); 4546 OPCODE(ATOMIC_LOADW_SUB); 4547 OPCODE(ATOMIC_LOADW_AND); 4548 OPCODE(ATOMIC_LOADW_OR); 4549 OPCODE(ATOMIC_LOADW_XOR); 4550 OPCODE(ATOMIC_LOADW_NAND); 4551 OPCODE(ATOMIC_LOADW_MIN); 4552 OPCODE(ATOMIC_LOADW_MAX); 4553 OPCODE(ATOMIC_LOADW_UMIN); 4554 OPCODE(ATOMIC_LOADW_UMAX); 4555 OPCODE(ATOMIC_CMP_SWAPW); 4556 OPCODE(PREFETCH); 4557 } 4558 return nullptr; 4559 #undef OPCODE 4560 } 4561 4562 // Return true if VT is a vector whose elements are a whole number of bytes 4563 // in width. 4564 static bool canTreatAsByteVector(EVT VT) { 4565 return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0; 4566 } 4567 4568 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 4569 // producing a result of type ResVT. Op is a possibly bitcast version 4570 // of the input vector and Index is the index (based on type VecVT) that 4571 // should be extracted. Return the new extraction if a simplification 4572 // was possible or if Force is true. 4573 SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT, 4574 SDValue Op, unsigned Index, 4575 DAGCombinerInfo &DCI, 4576 bool Force) const { 4577 SelectionDAG &DAG = DCI.DAG; 4578 4579 // The number of bytes being extracted. 4580 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4581 4582 for (;;) { 4583 unsigned Opcode = Op.getOpcode(); 4584 if (Opcode == ISD::BITCAST) 4585 // Look through bitcasts. 4586 Op = Op.getOperand(0); 4587 else if (Opcode == ISD::VECTOR_SHUFFLE && 4588 canTreatAsByteVector(Op.getValueType())) { 4589 // Get a VPERM-like permute mask and see whether the bytes covered 4590 // by the extracted element are a contiguous sequence from one 4591 // source operand. 4592 SmallVector<int, SystemZ::VectorBytes> Bytes; 4593 getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); 4594 int First; 4595 if (!getShuffleInput(Bytes, Index * BytesPerElement, 4596 BytesPerElement, First)) 4597 break; 4598 if (First < 0) 4599 return DAG.getUNDEF(ResVT); 4600 // Make sure the contiguous sequence starts at a multiple of the 4601 // original element size. 4602 unsigned Byte = unsigned(First) % Bytes.size(); 4603 if (Byte % BytesPerElement != 0) 4604 break; 4605 // We can get the extracted value directly from an input. 4606 Index = Byte / BytesPerElement; 4607 Op = Op.getOperand(unsigned(First) / Bytes.size()); 4608 Force = true; 4609 } else if (Opcode == ISD::BUILD_VECTOR && 4610 canTreatAsByteVector(Op.getValueType())) { 4611 // We can only optimize this case if the BUILD_VECTOR elements are 4612 // at least as wide as the extracted value. 4613 EVT OpVT = Op.getValueType(); 4614 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4615 if (OpBytesPerElement < BytesPerElement) 4616 break; 4617 // Make sure that the least-significant bit of the extracted value 4618 // is the least significant bit of an input. 4619 unsigned End = (Index + 1) * BytesPerElement; 4620 if (End % OpBytesPerElement != 0) 4621 break; 4622 // We're extracting the low part of one operand of the BUILD_VECTOR. 4623 Op = Op.getOperand(End / OpBytesPerElement - 1); 4624 if (!Op.getValueType().isInteger()) { 4625 EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()); 4626 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 4627 DCI.AddToWorklist(Op.getNode()); 4628 } 4629 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 4630 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 4631 if (VT != ResVT) { 4632 DCI.AddToWorklist(Op.getNode()); 4633 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 4634 } 4635 return Op; 4636 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 4637 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 4638 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 4639 canTreatAsByteVector(Op.getValueType()) && 4640 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 4641 // Make sure that only the unextended bits are significant. 4642 EVT ExtVT = Op.getValueType(); 4643 EVT OpVT = Op.getOperand(0).getValueType(); 4644 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 4645 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 4646 unsigned Byte = Index * BytesPerElement; 4647 unsigned SubByte = Byte % ExtBytesPerElement; 4648 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 4649 if (SubByte < MinSubByte || 4650 SubByte + BytesPerElement > ExtBytesPerElement) 4651 break; 4652 // Get the byte offset of the unextended element 4653 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 4654 // ...then add the byte offset relative to that element. 4655 Byte += SubByte - MinSubByte; 4656 if (Byte % BytesPerElement != 0) 4657 break; 4658 Op = Op.getOperand(0); 4659 Index = Byte / BytesPerElement; 4660 Force = true; 4661 } else 4662 break; 4663 } 4664 if (Force) { 4665 if (Op.getValueType() != VecVT) { 4666 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 4667 DCI.AddToWorklist(Op.getNode()); 4668 } 4669 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 4670 DAG.getConstant(Index, DL, MVT::i32)); 4671 } 4672 return SDValue(); 4673 } 4674 4675 // Optimize vector operations in scalar value Op on the basis that Op 4676 // is truncated to TruncVT. 4677 SDValue 4678 SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op, 4679 DAGCombinerInfo &DCI) const { 4680 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 4681 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 4682 // of type TruncVT. 4683 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4684 TruncVT.getSizeInBits() % 8 == 0) { 4685 SDValue Vec = Op.getOperand(0); 4686 EVT VecVT = Vec.getValueType(); 4687 if (canTreatAsByteVector(VecVT)) { 4688 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 4689 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 4690 unsigned TruncBytes = TruncVT.getStoreSize(); 4691 if (BytesPerElement % TruncBytes == 0) { 4692 // Calculate the value of Y' in the above description. We are 4693 // splitting the original elements into Scale equal-sized pieces 4694 // and for truncation purposes want the last (least-significant) 4695 // of these pieces for IndexN. This is easiest to do by calculating 4696 // the start index of the following element and then subtracting 1. 4697 unsigned Scale = BytesPerElement / TruncBytes; 4698 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 4699 4700 // Defer the creation of the bitcast from X to combineExtract, 4701 // which might be able to optimize the extraction. 4702 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 4703 VecVT.getStoreSize() / TruncBytes); 4704 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 4705 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 4706 } 4707 } 4708 } 4709 } 4710 return SDValue(); 4711 } 4712 4713 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 4714 DAGCombinerInfo &DCI) const { 4715 SelectionDAG &DAG = DCI.DAG; 4716 unsigned Opcode = N->getOpcode(); 4717 if (Opcode == ISD::SIGN_EXTEND) { 4718 // Convert (sext (ashr (shl X, C1), C2)) to 4719 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 4720 // cheap as narrower ones. 4721 SDValue N0 = N->getOperand(0); 4722 EVT VT = N->getValueType(0); 4723 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 4724 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 4725 SDValue Inner = N0.getOperand(0); 4726 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 4727 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 4728 unsigned Extra = (VT.getSizeInBits() - 4729 N0.getValueType().getSizeInBits()); 4730 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 4731 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 4732 EVT ShiftVT = N0.getOperand(1).getValueType(); 4733 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 4734 Inner.getOperand(0)); 4735 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 4736 DAG.getConstant(NewShlAmt, SDLoc(Inner), 4737 ShiftVT)); 4738 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 4739 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 4740 } 4741 } 4742 } 4743 } 4744 if (Opcode == SystemZISD::MERGE_HIGH || 4745 Opcode == SystemZISD::MERGE_LOW) { 4746 SDValue Op0 = N->getOperand(0); 4747 SDValue Op1 = N->getOperand(1); 4748 if (Op0.getOpcode() == ISD::BITCAST) 4749 Op0 = Op0.getOperand(0); 4750 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 4751 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 4752 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 4753 // for v4f32. 4754 if (Op1 == N->getOperand(0)) 4755 return Op1; 4756 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 4757 EVT VT = Op1.getValueType(); 4758 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 4759 if (ElemBytes <= 4) { 4760 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 4761 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 4762 EVT InVT = VT.changeVectorElementTypeToInteger(); 4763 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 4764 SystemZ::VectorBytes / ElemBytes / 2); 4765 if (VT != InVT) { 4766 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 4767 DCI.AddToWorklist(Op1.getNode()); 4768 } 4769 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 4770 DCI.AddToWorklist(Op.getNode()); 4771 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 4772 } 4773 } 4774 } 4775 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 4776 // for the extraction to be done on a vMiN value, so that we can use VSTE. 4777 // If X has wider elements then convert it to: 4778 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 4779 if (Opcode == ISD::STORE) { 4780 auto *SN = cast<StoreSDNode>(N); 4781 EVT MemVT = SN->getMemoryVT(); 4782 if (MemVT.isInteger()) { 4783 if (SDValue Value = 4784 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 4785 DCI.AddToWorklist(Value.getNode()); 4786 4787 // Rewrite the store with the new form of stored value. 4788 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 4789 SN->getBasePtr(), SN->getMemoryVT(), 4790 SN->getMemOperand()); 4791 } 4792 } 4793 } 4794 // Try to simplify a vector extraction. 4795 if (Opcode == ISD::EXTRACT_VECTOR_ELT) { 4796 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 4797 SDValue Op0 = N->getOperand(0); 4798 EVT VecVT = Op0.getValueType(); 4799 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 4800 IndexN->getZExtValue(), DCI, false); 4801 } 4802 } 4803 // (join_dwords X, X) == (replicate X) 4804 if (Opcode == SystemZISD::JOIN_DWORDS && 4805 N->getOperand(0) == N->getOperand(1)) 4806 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 4807 N->getOperand(0)); 4808 // (fround (extract_vector_elt X 0)) 4809 // (fround (extract_vector_elt X 1)) -> 4810 // (extract_vector_elt (VROUND X) 0) 4811 // (extract_vector_elt (VROUND X) 1) 4812 // 4813 // This is a special case since the target doesn't really support v2f32s. 4814 if (Opcode == ISD::FP_ROUND) { 4815 SDValue Op0 = N->getOperand(0); 4816 if (N->getValueType(0) == MVT::f32 && 4817 Op0.hasOneUse() && 4818 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4819 Op0.getOperand(0).getValueType() == MVT::v2f64 && 4820 Op0.getOperand(1).getOpcode() == ISD::Constant && 4821 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 4822 SDValue Vec = Op0.getOperand(0); 4823 for (auto *U : Vec->uses()) { 4824 if (U != Op0.getNode() && 4825 U->hasOneUse() && 4826 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4827 U->getOperand(0) == Vec && 4828 U->getOperand(1).getOpcode() == ISD::Constant && 4829 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 4830 SDValue OtherRound = SDValue(*U->use_begin(), 0); 4831 if (OtherRound.getOpcode() == ISD::FP_ROUND && 4832 OtherRound.getOperand(0) == SDValue(U, 0) && 4833 OtherRound.getValueType() == MVT::f32) { 4834 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 4835 MVT::v4f32, Vec); 4836 DCI.AddToWorklist(VRound.getNode()); 4837 SDValue Extract1 = 4838 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 4839 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 4840 DCI.AddToWorklist(Extract1.getNode()); 4841 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 4842 SDValue Extract0 = 4843 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 4844 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 4845 return Extract0; 4846 } 4847 } 4848 } 4849 } 4850 } 4851 return SDValue(); 4852 } 4853 4854 //===----------------------------------------------------------------------===// 4855 // Custom insertion 4856 //===----------------------------------------------------------------------===// 4857 4858 // Create a new basic block after MBB. 4859 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 4860 MachineFunction &MF = *MBB->getParent(); 4861 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 4862 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 4863 return NewMBB; 4864 } 4865 4866 // Split MBB after MI and return the new block (the one that contains 4867 // instructions after MI). 4868 static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, 4869 MachineBasicBlock *MBB) { 4870 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4871 NewMBB->splice(NewMBB->begin(), MBB, 4872 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 4873 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4874 return NewMBB; 4875 } 4876 4877 // Split MBB before MI and return the new block (the one that contains MI). 4878 static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, 4879 MachineBasicBlock *MBB) { 4880 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 4881 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 4882 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 4883 return NewMBB; 4884 } 4885 4886 // Force base value Base into a register before MI. Return the register. 4887 static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, 4888 const SystemZInstrInfo *TII) { 4889 if (Base.isReg()) 4890 return Base.getReg(); 4891 4892 MachineBasicBlock *MBB = MI->getParent(); 4893 MachineFunction &MF = *MBB->getParent(); 4894 MachineRegisterInfo &MRI = MF.getRegInfo(); 4895 4896 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 4897 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) 4898 .addOperand(Base).addImm(0).addReg(0); 4899 return Reg; 4900 } 4901 4902 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 4903 MachineBasicBlock * 4904 SystemZTargetLowering::emitSelect(MachineInstr *MI, 4905 MachineBasicBlock *MBB) const { 4906 const SystemZInstrInfo *TII = 4907 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4908 4909 unsigned DestReg = MI->getOperand(0).getReg(); 4910 unsigned TrueReg = MI->getOperand(1).getReg(); 4911 unsigned FalseReg = MI->getOperand(2).getReg(); 4912 unsigned CCValid = MI->getOperand(3).getImm(); 4913 unsigned CCMask = MI->getOperand(4).getImm(); 4914 DebugLoc DL = MI->getDebugLoc(); 4915 4916 MachineBasicBlock *StartMBB = MBB; 4917 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4918 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4919 4920 // StartMBB: 4921 // BRC CCMask, JoinMBB 4922 // # fallthrough to FalseMBB 4923 MBB = StartMBB; 4924 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4925 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4926 MBB->addSuccessor(JoinMBB); 4927 MBB->addSuccessor(FalseMBB); 4928 4929 // FalseMBB: 4930 // # fallthrough to JoinMBB 4931 MBB = FalseMBB; 4932 MBB->addSuccessor(JoinMBB); 4933 4934 // JoinMBB: 4935 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 4936 // ... 4937 MBB = JoinMBB; 4938 BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) 4939 .addReg(TrueReg).addMBB(StartMBB) 4940 .addReg(FalseReg).addMBB(FalseMBB); 4941 4942 MI->eraseFromParent(); 4943 return JoinMBB; 4944 } 4945 4946 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 4947 // StoreOpcode is the store to use and Invert says whether the store should 4948 // happen when the condition is false rather than true. If a STORE ON 4949 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 4950 MachineBasicBlock * 4951 SystemZTargetLowering::emitCondStore(MachineInstr *MI, 4952 MachineBasicBlock *MBB, 4953 unsigned StoreOpcode, unsigned STOCOpcode, 4954 bool Invert) const { 4955 const SystemZInstrInfo *TII = 4956 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4957 4958 unsigned SrcReg = MI->getOperand(0).getReg(); 4959 MachineOperand Base = MI->getOperand(1); 4960 int64_t Disp = MI->getOperand(2).getImm(); 4961 unsigned IndexReg = MI->getOperand(3).getReg(); 4962 unsigned CCValid = MI->getOperand(4).getImm(); 4963 unsigned CCMask = MI->getOperand(5).getImm(); 4964 DebugLoc DL = MI->getDebugLoc(); 4965 4966 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 4967 4968 // Use STOCOpcode if possible. We could use different store patterns in 4969 // order to avoid matching the index register, but the performance trade-offs 4970 // might be more complicated in that case. 4971 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 4972 if (Invert) 4973 CCMask ^= CCValid; 4974 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 4975 .addReg(SrcReg).addOperand(Base).addImm(Disp) 4976 .addImm(CCValid).addImm(CCMask); 4977 MI->eraseFromParent(); 4978 return MBB; 4979 } 4980 4981 // Get the condition needed to branch around the store. 4982 if (!Invert) 4983 CCMask ^= CCValid; 4984 4985 MachineBasicBlock *StartMBB = MBB; 4986 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 4987 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 4988 4989 // StartMBB: 4990 // BRC CCMask, JoinMBB 4991 // # fallthrough to FalseMBB 4992 MBB = StartMBB; 4993 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 4994 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 4995 MBB->addSuccessor(JoinMBB); 4996 MBB->addSuccessor(FalseMBB); 4997 4998 // FalseMBB: 4999 // store %SrcReg, %Disp(%Index,%Base) 5000 // # fallthrough to JoinMBB 5001 MBB = FalseMBB; 5002 BuildMI(MBB, DL, TII->get(StoreOpcode)) 5003 .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); 5004 MBB->addSuccessor(JoinMBB); 5005 5006 MI->eraseFromParent(); 5007 return JoinMBB; 5008 } 5009 5010 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 5011 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 5012 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 5013 // BitSize is the width of the field in bits, or 0 if this is a partword 5014 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 5015 // is one of the operands. Invert says whether the field should be 5016 // inverted after performing BinOpcode (e.g. for NAND). 5017 MachineBasicBlock * 5018 SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, 5019 MachineBasicBlock *MBB, 5020 unsigned BinOpcode, 5021 unsigned BitSize, 5022 bool Invert) const { 5023 MachineFunction &MF = *MBB->getParent(); 5024 const SystemZInstrInfo *TII = 5025 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5026 MachineRegisterInfo &MRI = MF.getRegInfo(); 5027 bool IsSubWord = (BitSize < 32); 5028 5029 // Extract the operands. Base can be a register or a frame index. 5030 // Src2 can be a register or immediate. 5031 unsigned Dest = MI->getOperand(0).getReg(); 5032 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5033 int64_t Disp = MI->getOperand(2).getImm(); 5034 MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); 5035 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5036 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5037 DebugLoc DL = MI->getDebugLoc(); 5038 if (IsSubWord) 5039 BitSize = MI->getOperand(6).getImm(); 5040 5041 // Subword operations use 32-bit registers. 5042 const TargetRegisterClass *RC = (BitSize <= 32 ? 5043 &SystemZ::GR32BitRegClass : 5044 &SystemZ::GR64BitRegClass); 5045 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5046 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5047 5048 // Get the right opcodes for the displacement. 5049 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5050 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5051 assert(LOpcode && CSOpcode && "Displacement out of range"); 5052 5053 // Create virtual registers for temporary results. 5054 unsigned OrigVal = MRI.createVirtualRegister(RC); 5055 unsigned OldVal = MRI.createVirtualRegister(RC); 5056 unsigned NewVal = (BinOpcode || IsSubWord ? 5057 MRI.createVirtualRegister(RC) : Src2.getReg()); 5058 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5059 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5060 5061 // Insert a basic block for the main loop. 5062 MachineBasicBlock *StartMBB = MBB; 5063 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5064 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5065 5066 // StartMBB: 5067 // ... 5068 // %OrigVal = L Disp(%Base) 5069 // # fall through to LoopMMB 5070 MBB = StartMBB; 5071 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5072 .addOperand(Base).addImm(Disp).addReg(0); 5073 MBB->addSuccessor(LoopMBB); 5074 5075 // LoopMBB: 5076 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 5077 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5078 // %RotatedNewVal = OP %RotatedOldVal, %Src2 5079 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5080 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5081 // JNE LoopMBB 5082 // # fall through to DoneMMB 5083 MBB = LoopMBB; 5084 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5085 .addReg(OrigVal).addMBB(StartMBB) 5086 .addReg(Dest).addMBB(LoopMBB); 5087 if (IsSubWord) 5088 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5089 .addReg(OldVal).addReg(BitShift).addImm(0); 5090 if (Invert) { 5091 // Perform the operation normally and then invert every bit of the field. 5092 unsigned Tmp = MRI.createVirtualRegister(RC); 5093 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) 5094 .addReg(RotatedOldVal).addOperand(Src2); 5095 if (BitSize <= 32) 5096 // XILF with the upper BitSize bits set. 5097 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 5098 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 5099 else { 5100 // Use LCGR and add -1 to the result, which is more compact than 5101 // an XILF, XILH pair. 5102 unsigned Tmp2 = MRI.createVirtualRegister(RC); 5103 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 5104 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 5105 .addReg(Tmp2).addImm(-1); 5106 } 5107 } else if (BinOpcode) 5108 // A simply binary operation. 5109 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 5110 .addReg(RotatedOldVal).addOperand(Src2); 5111 else if (IsSubWord) 5112 // Use RISBG to rotate Src2 into position and use it to replace the 5113 // field in RotatedOldVal. 5114 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 5115 .addReg(RotatedOldVal).addReg(Src2.getReg()) 5116 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 5117 if (IsSubWord) 5118 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5119 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5120 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5121 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5122 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5123 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5124 MBB->addSuccessor(LoopMBB); 5125 MBB->addSuccessor(DoneMBB); 5126 5127 MI->eraseFromParent(); 5128 return DoneMBB; 5129 } 5130 5131 // Implement EmitInstrWithCustomInserter for pseudo 5132 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 5133 // instruction that should be used to compare the current field with the 5134 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 5135 // for when the current field should be kept. BitSize is the width of 5136 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 5137 MachineBasicBlock * 5138 SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, 5139 MachineBasicBlock *MBB, 5140 unsigned CompareOpcode, 5141 unsigned KeepOldMask, 5142 unsigned BitSize) const { 5143 MachineFunction &MF = *MBB->getParent(); 5144 const SystemZInstrInfo *TII = 5145 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5146 MachineRegisterInfo &MRI = MF.getRegInfo(); 5147 bool IsSubWord = (BitSize < 32); 5148 5149 // Extract the operands. Base can be a register or a frame index. 5150 unsigned Dest = MI->getOperand(0).getReg(); 5151 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5152 int64_t Disp = MI->getOperand(2).getImm(); 5153 unsigned Src2 = MI->getOperand(3).getReg(); 5154 unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); 5155 unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); 5156 DebugLoc DL = MI->getDebugLoc(); 5157 if (IsSubWord) 5158 BitSize = MI->getOperand(6).getImm(); 5159 5160 // Subword operations use 32-bit registers. 5161 const TargetRegisterClass *RC = (BitSize <= 32 ? 5162 &SystemZ::GR32BitRegClass : 5163 &SystemZ::GR64BitRegClass); 5164 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 5165 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 5166 5167 // Get the right opcodes for the displacement. 5168 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 5169 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 5170 assert(LOpcode && CSOpcode && "Displacement out of range"); 5171 5172 // Create virtual registers for temporary results. 5173 unsigned OrigVal = MRI.createVirtualRegister(RC); 5174 unsigned OldVal = MRI.createVirtualRegister(RC); 5175 unsigned NewVal = MRI.createVirtualRegister(RC); 5176 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 5177 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 5178 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 5179 5180 // Insert 3 basic blocks for the loop. 5181 MachineBasicBlock *StartMBB = MBB; 5182 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5183 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5184 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 5185 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 5186 5187 // StartMBB: 5188 // ... 5189 // %OrigVal = L Disp(%Base) 5190 // # fall through to LoopMMB 5191 MBB = StartMBB; 5192 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) 5193 .addOperand(Base).addImm(Disp).addReg(0); 5194 MBB->addSuccessor(LoopMBB); 5195 5196 // LoopMBB: 5197 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 5198 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 5199 // CompareOpcode %RotatedOldVal, %Src2 5200 // BRC KeepOldMask, UpdateMBB 5201 MBB = LoopMBB; 5202 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5203 .addReg(OrigVal).addMBB(StartMBB) 5204 .addReg(Dest).addMBB(UpdateMBB); 5205 if (IsSubWord) 5206 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 5207 .addReg(OldVal).addReg(BitShift).addImm(0); 5208 BuildMI(MBB, DL, TII->get(CompareOpcode)) 5209 .addReg(RotatedOldVal).addReg(Src2); 5210 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5211 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 5212 MBB->addSuccessor(UpdateMBB); 5213 MBB->addSuccessor(UseAltMBB); 5214 5215 // UseAltMBB: 5216 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 5217 // # fall through to UpdateMMB 5218 MBB = UseAltMBB; 5219 if (IsSubWord) 5220 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 5221 .addReg(RotatedOldVal).addReg(Src2) 5222 .addImm(32).addImm(31 + BitSize).addImm(0); 5223 MBB->addSuccessor(UpdateMBB); 5224 5225 // UpdateMBB: 5226 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 5227 // [ %RotatedAltVal, UseAltMBB ] 5228 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 5229 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 5230 // JNE LoopMBB 5231 // # fall through to DoneMMB 5232 MBB = UpdateMBB; 5233 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 5234 .addReg(RotatedOldVal).addMBB(LoopMBB) 5235 .addReg(RotatedAltVal).addMBB(UseAltMBB); 5236 if (IsSubWord) 5237 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 5238 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 5239 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 5240 .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); 5241 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5242 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5243 MBB->addSuccessor(LoopMBB); 5244 MBB->addSuccessor(DoneMBB); 5245 5246 MI->eraseFromParent(); 5247 return DoneMBB; 5248 } 5249 5250 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 5251 // instruction MI. 5252 MachineBasicBlock * 5253 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, 5254 MachineBasicBlock *MBB) const { 5255 MachineFunction &MF = *MBB->getParent(); 5256 const SystemZInstrInfo *TII = 5257 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5258 MachineRegisterInfo &MRI = MF.getRegInfo(); 5259 5260 // Extract the operands. Base can be a register or a frame index. 5261 unsigned Dest = MI->getOperand(0).getReg(); 5262 MachineOperand Base = earlyUseOperand(MI->getOperand(1)); 5263 int64_t Disp = MI->getOperand(2).getImm(); 5264 unsigned OrigCmpVal = MI->getOperand(3).getReg(); 5265 unsigned OrigSwapVal = MI->getOperand(4).getReg(); 5266 unsigned BitShift = MI->getOperand(5).getReg(); 5267 unsigned NegBitShift = MI->getOperand(6).getReg(); 5268 int64_t BitSize = MI->getOperand(7).getImm(); 5269 DebugLoc DL = MI->getDebugLoc(); 5270 5271 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 5272 5273 // Get the right opcodes for the displacement. 5274 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 5275 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 5276 assert(LOpcode && CSOpcode && "Displacement out of range"); 5277 5278 // Create virtual registers for temporary results. 5279 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 5280 unsigned OldVal = MRI.createVirtualRegister(RC); 5281 unsigned CmpVal = MRI.createVirtualRegister(RC); 5282 unsigned SwapVal = MRI.createVirtualRegister(RC); 5283 unsigned StoreVal = MRI.createVirtualRegister(RC); 5284 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 5285 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 5286 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 5287 5288 // Insert 2 basic blocks for the loop. 5289 MachineBasicBlock *StartMBB = MBB; 5290 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5291 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5292 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 5293 5294 // StartMBB: 5295 // ... 5296 // %OrigOldVal = L Disp(%Base) 5297 // # fall through to LoopMMB 5298 MBB = StartMBB; 5299 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 5300 .addOperand(Base).addImm(Disp).addReg(0); 5301 MBB->addSuccessor(LoopMBB); 5302 5303 // LoopMBB: 5304 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 5305 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 5306 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 5307 // %Dest = RLL %OldVal, BitSize(%BitShift) 5308 // ^^ The low BitSize bits contain the field 5309 // of interest. 5310 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 5311 // ^^ Replace the upper 32-BitSize bits of the 5312 // comparison value with those that we loaded, 5313 // so that we can use a full word comparison. 5314 // CR %Dest, %RetryCmpVal 5315 // JNE DoneMBB 5316 // # Fall through to SetMBB 5317 MBB = LoopMBB; 5318 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 5319 .addReg(OrigOldVal).addMBB(StartMBB) 5320 .addReg(RetryOldVal).addMBB(SetMBB); 5321 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 5322 .addReg(OrigCmpVal).addMBB(StartMBB) 5323 .addReg(RetryCmpVal).addMBB(SetMBB); 5324 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 5325 .addReg(OrigSwapVal).addMBB(StartMBB) 5326 .addReg(RetrySwapVal).addMBB(SetMBB); 5327 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 5328 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 5329 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 5330 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5331 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 5332 .addReg(Dest).addReg(RetryCmpVal); 5333 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5334 .addImm(SystemZ::CCMASK_ICMP) 5335 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 5336 MBB->addSuccessor(DoneMBB); 5337 MBB->addSuccessor(SetMBB); 5338 5339 // SetMBB: 5340 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 5341 // ^^ Replace the upper 32-BitSize bits of the new 5342 // value with those that we loaded. 5343 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 5344 // ^^ Rotate the new field to its proper position. 5345 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 5346 // JNE LoopMBB 5347 // # fall through to ExitMMB 5348 MBB = SetMBB; 5349 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 5350 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 5351 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 5352 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 5353 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 5354 .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); 5355 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5356 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 5357 MBB->addSuccessor(LoopMBB); 5358 MBB->addSuccessor(DoneMBB); 5359 5360 MI->eraseFromParent(); 5361 return DoneMBB; 5362 } 5363 5364 // Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true 5365 // if the high register of the GR128 value must be cleared or false if 5366 // it's "don't care". SubReg is subreg_l32 when extending a GR32 5367 // and subreg_l64 when extending a GR64. 5368 MachineBasicBlock * 5369 SystemZTargetLowering::emitExt128(MachineInstr *MI, 5370 MachineBasicBlock *MBB, 5371 bool ClearEven, unsigned SubReg) const { 5372 MachineFunction &MF = *MBB->getParent(); 5373 const SystemZInstrInfo *TII = 5374 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5375 MachineRegisterInfo &MRI = MF.getRegInfo(); 5376 DebugLoc DL = MI->getDebugLoc(); 5377 5378 unsigned Dest = MI->getOperand(0).getReg(); 5379 unsigned Src = MI->getOperand(1).getReg(); 5380 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5381 5382 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 5383 if (ClearEven) { 5384 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 5385 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 5386 5387 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 5388 .addImm(0); 5389 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 5390 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 5391 In128 = NewIn128; 5392 } 5393 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 5394 .addReg(In128).addReg(Src).addImm(SubReg); 5395 5396 MI->eraseFromParent(); 5397 return MBB; 5398 } 5399 5400 MachineBasicBlock * 5401 SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, 5402 MachineBasicBlock *MBB, 5403 unsigned Opcode) const { 5404 MachineFunction &MF = *MBB->getParent(); 5405 const SystemZInstrInfo *TII = 5406 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5407 MachineRegisterInfo &MRI = MF.getRegInfo(); 5408 DebugLoc DL = MI->getDebugLoc(); 5409 5410 MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); 5411 uint64_t DestDisp = MI->getOperand(1).getImm(); 5412 MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); 5413 uint64_t SrcDisp = MI->getOperand(3).getImm(); 5414 uint64_t Length = MI->getOperand(4).getImm(); 5415 5416 // When generating more than one CLC, all but the last will need to 5417 // branch to the end when a difference is found. 5418 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 5419 splitBlockAfter(MI, MBB) : nullptr); 5420 5421 // Check for the loop form, in which operand 5 is the trip count. 5422 if (MI->getNumExplicitOperands() > 5) { 5423 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 5424 5425 uint64_t StartCountReg = MI->getOperand(5).getReg(); 5426 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 5427 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 5428 forceReg(MI, DestBase, TII)); 5429 5430 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 5431 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 5432 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 5433 MRI.createVirtualRegister(RC)); 5434 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 5435 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 5436 MRI.createVirtualRegister(RC)); 5437 5438 RC = &SystemZ::GR64BitRegClass; 5439 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 5440 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 5441 5442 MachineBasicBlock *StartMBB = MBB; 5443 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5444 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5445 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 5446 5447 // StartMBB: 5448 // # fall through to LoopMMB 5449 MBB->addSuccessor(LoopMBB); 5450 5451 // LoopMBB: 5452 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 5453 // [ %NextDestReg, NextMBB ] 5454 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 5455 // [ %NextSrcReg, NextMBB ] 5456 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 5457 // [ %NextCountReg, NextMBB ] 5458 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 5459 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 5460 // ( JLH EndMBB ) 5461 // 5462 // The prefetch is used only for MVC. The JLH is used only for CLC. 5463 MBB = LoopMBB; 5464 5465 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 5466 .addReg(StartDestReg).addMBB(StartMBB) 5467 .addReg(NextDestReg).addMBB(NextMBB); 5468 if (!HaveSingleBase) 5469 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 5470 .addReg(StartSrcReg).addMBB(StartMBB) 5471 .addReg(NextSrcReg).addMBB(NextMBB); 5472 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 5473 .addReg(StartCountReg).addMBB(StartMBB) 5474 .addReg(NextCountReg).addMBB(NextMBB); 5475 if (Opcode == SystemZ::MVC) 5476 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 5477 .addImm(SystemZ::PFD_WRITE) 5478 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 5479 BuildMI(MBB, DL, TII->get(Opcode)) 5480 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 5481 .addReg(ThisSrcReg).addImm(SrcDisp); 5482 if (EndMBB) { 5483 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5484 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5485 .addMBB(EndMBB); 5486 MBB->addSuccessor(EndMBB); 5487 MBB->addSuccessor(NextMBB); 5488 } 5489 5490 // NextMBB: 5491 // %NextDestReg = LA 256(%ThisDestReg) 5492 // %NextSrcReg = LA 256(%ThisSrcReg) 5493 // %NextCountReg = AGHI %ThisCountReg, -1 5494 // CGHI %NextCountReg, 0 5495 // JLH LoopMBB 5496 // # fall through to DoneMMB 5497 // 5498 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 5499 MBB = NextMBB; 5500 5501 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 5502 .addReg(ThisDestReg).addImm(256).addReg(0); 5503 if (!HaveSingleBase) 5504 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 5505 .addReg(ThisSrcReg).addImm(256).addReg(0); 5506 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 5507 .addReg(ThisCountReg).addImm(-1); 5508 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 5509 .addReg(NextCountReg).addImm(0); 5510 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5511 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5512 .addMBB(LoopMBB); 5513 MBB->addSuccessor(LoopMBB); 5514 MBB->addSuccessor(DoneMBB); 5515 5516 DestBase = MachineOperand::CreateReg(NextDestReg, false); 5517 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 5518 Length &= 255; 5519 MBB = DoneMBB; 5520 } 5521 // Handle any remaining bytes with straight-line code. 5522 while (Length > 0) { 5523 uint64_t ThisLength = std::min(Length, uint64_t(256)); 5524 // The previous iteration might have created out-of-range displacements. 5525 // Apply them using LAY if so. 5526 if (!isUInt<12>(DestDisp)) { 5527 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5528 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5529 .addOperand(DestBase).addImm(DestDisp).addReg(0); 5530 DestBase = MachineOperand::CreateReg(Reg, false); 5531 DestDisp = 0; 5532 } 5533 if (!isUInt<12>(SrcDisp)) { 5534 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 5535 BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) 5536 .addOperand(SrcBase).addImm(SrcDisp).addReg(0); 5537 SrcBase = MachineOperand::CreateReg(Reg, false); 5538 SrcDisp = 0; 5539 } 5540 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 5541 .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) 5542 .addOperand(SrcBase).addImm(SrcDisp); 5543 DestDisp += ThisLength; 5544 SrcDisp += ThisLength; 5545 Length -= ThisLength; 5546 // If there's another CLC to go, branch to the end if a difference 5547 // was found. 5548 if (EndMBB && Length > 0) { 5549 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 5550 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5551 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 5552 .addMBB(EndMBB); 5553 MBB->addSuccessor(EndMBB); 5554 MBB->addSuccessor(NextMBB); 5555 MBB = NextMBB; 5556 } 5557 } 5558 if (EndMBB) { 5559 MBB->addSuccessor(EndMBB); 5560 MBB = EndMBB; 5561 MBB->addLiveIn(SystemZ::CC); 5562 } 5563 5564 MI->eraseFromParent(); 5565 return MBB; 5566 } 5567 5568 // Decompose string pseudo-instruction MI into a loop that continually performs 5569 // Opcode until CC != 3. 5570 MachineBasicBlock * 5571 SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, 5572 MachineBasicBlock *MBB, 5573 unsigned Opcode) const { 5574 MachineFunction &MF = *MBB->getParent(); 5575 const SystemZInstrInfo *TII = 5576 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5577 MachineRegisterInfo &MRI = MF.getRegInfo(); 5578 DebugLoc DL = MI->getDebugLoc(); 5579 5580 uint64_t End1Reg = MI->getOperand(0).getReg(); 5581 uint64_t Start1Reg = MI->getOperand(1).getReg(); 5582 uint64_t Start2Reg = MI->getOperand(2).getReg(); 5583 uint64_t CharReg = MI->getOperand(3).getReg(); 5584 5585 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 5586 uint64_t This1Reg = MRI.createVirtualRegister(RC); 5587 uint64_t This2Reg = MRI.createVirtualRegister(RC); 5588 uint64_t End2Reg = MRI.createVirtualRegister(RC); 5589 5590 MachineBasicBlock *StartMBB = MBB; 5591 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 5592 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 5593 5594 // StartMBB: 5595 // # fall through to LoopMMB 5596 MBB->addSuccessor(LoopMBB); 5597 5598 // LoopMBB: 5599 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 5600 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 5601 // R0L = %CharReg 5602 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 5603 // JO LoopMBB 5604 // # fall through to DoneMMB 5605 // 5606 // The load of R0L can be hoisted by post-RA LICM. 5607 MBB = LoopMBB; 5608 5609 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 5610 .addReg(Start1Reg).addMBB(StartMBB) 5611 .addReg(End1Reg).addMBB(LoopMBB); 5612 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 5613 .addReg(Start2Reg).addMBB(StartMBB) 5614 .addReg(End2Reg).addMBB(LoopMBB); 5615 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 5616 BuildMI(MBB, DL, TII->get(Opcode)) 5617 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 5618 .addReg(This1Reg).addReg(This2Reg); 5619 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 5620 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 5621 MBB->addSuccessor(LoopMBB); 5622 MBB->addSuccessor(DoneMBB); 5623 5624 DoneMBB->addLiveIn(SystemZ::CC); 5625 5626 MI->eraseFromParent(); 5627 return DoneMBB; 5628 } 5629 5630 // Update TBEGIN instruction with final opcode and register clobbers. 5631 MachineBasicBlock * 5632 SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI, 5633 MachineBasicBlock *MBB, 5634 unsigned Opcode, 5635 bool NoFloat) const { 5636 MachineFunction &MF = *MBB->getParent(); 5637 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 5638 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 5639 5640 // Update opcode. 5641 MI->setDesc(TII->get(Opcode)); 5642 5643 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 5644 // Make sure to add the corresponding GRSM bits if they are missing. 5645 uint64_t Control = MI->getOperand(2).getImm(); 5646 static const unsigned GPRControlBit[16] = { 5647 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 5648 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 5649 }; 5650 Control |= GPRControlBit[15]; 5651 if (TFI->hasFP(MF)) 5652 Control |= GPRControlBit[11]; 5653 MI->getOperand(2).setImm(Control); 5654 5655 // Add GPR clobbers. 5656 for (int I = 0; I < 16; I++) { 5657 if ((Control & GPRControlBit[I]) == 0) { 5658 unsigned Reg = SystemZMC::GR64Regs[I]; 5659 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5660 } 5661 } 5662 5663 // Add FPR/VR clobbers. 5664 if (!NoFloat && (Control & 4) != 0) { 5665 if (Subtarget.hasVector()) { 5666 for (int I = 0; I < 32; I++) { 5667 unsigned Reg = SystemZMC::VR128Regs[I]; 5668 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5669 } 5670 } else { 5671 for (int I = 0; I < 16; I++) { 5672 unsigned Reg = SystemZMC::FP64Regs[I]; 5673 MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); 5674 } 5675 } 5676 } 5677 5678 return MBB; 5679 } 5680 5681 MachineBasicBlock * 5682 SystemZTargetLowering::emitLoadAndTestCmp0(MachineInstr *MI, 5683 MachineBasicBlock *MBB, 5684 unsigned Opcode) const { 5685 MachineFunction &MF = *MBB->getParent(); 5686 MachineRegisterInfo *MRI = &MF.getRegInfo(); 5687 const SystemZInstrInfo *TII = 5688 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 5689 DebugLoc DL = MI->getDebugLoc(); 5690 5691 unsigned SrcReg = MI->getOperand(0).getReg(); 5692 5693 // Create new virtual register of the same class as source. 5694 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 5695 unsigned DstReg = MRI->createVirtualRegister(RC); 5696 5697 // Replace pseudo with a normal load-and-test that models the def as 5698 // well. 5699 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 5700 .addReg(SrcReg); 5701 MI->eraseFromParent(); 5702 5703 return MBB; 5704 } 5705 5706 MachineBasicBlock *SystemZTargetLowering:: 5707 EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { 5708 switch (MI->getOpcode()) { 5709 case SystemZ::Select32Mux: 5710 case SystemZ::Select32: 5711 case SystemZ::SelectF32: 5712 case SystemZ::Select64: 5713 case SystemZ::SelectF64: 5714 case SystemZ::SelectF128: 5715 return emitSelect(MI, MBB); 5716 5717 case SystemZ::CondStore8Mux: 5718 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 5719 case SystemZ::CondStore8MuxInv: 5720 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 5721 case SystemZ::CondStore16Mux: 5722 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 5723 case SystemZ::CondStore16MuxInv: 5724 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 5725 case SystemZ::CondStore8: 5726 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 5727 case SystemZ::CondStore8Inv: 5728 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 5729 case SystemZ::CondStore16: 5730 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 5731 case SystemZ::CondStore16Inv: 5732 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 5733 case SystemZ::CondStore32: 5734 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 5735 case SystemZ::CondStore32Inv: 5736 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 5737 case SystemZ::CondStore64: 5738 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 5739 case SystemZ::CondStore64Inv: 5740 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 5741 case SystemZ::CondStoreF32: 5742 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 5743 case SystemZ::CondStoreF32Inv: 5744 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 5745 case SystemZ::CondStoreF64: 5746 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 5747 case SystemZ::CondStoreF64Inv: 5748 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 5749 5750 case SystemZ::AEXT128_64: 5751 return emitExt128(MI, MBB, false, SystemZ::subreg_l64); 5752 case SystemZ::ZEXT128_32: 5753 return emitExt128(MI, MBB, true, SystemZ::subreg_l32); 5754 case SystemZ::ZEXT128_64: 5755 return emitExt128(MI, MBB, true, SystemZ::subreg_l64); 5756 5757 case SystemZ::ATOMIC_SWAPW: 5758 return emitAtomicLoadBinary(MI, MBB, 0, 0); 5759 case SystemZ::ATOMIC_SWAP_32: 5760 return emitAtomicLoadBinary(MI, MBB, 0, 32); 5761 case SystemZ::ATOMIC_SWAP_64: 5762 return emitAtomicLoadBinary(MI, MBB, 0, 64); 5763 5764 case SystemZ::ATOMIC_LOADW_AR: 5765 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 5766 case SystemZ::ATOMIC_LOADW_AFI: 5767 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 5768 case SystemZ::ATOMIC_LOAD_AR: 5769 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 5770 case SystemZ::ATOMIC_LOAD_AHI: 5771 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 5772 case SystemZ::ATOMIC_LOAD_AFI: 5773 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 5774 case SystemZ::ATOMIC_LOAD_AGR: 5775 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 5776 case SystemZ::ATOMIC_LOAD_AGHI: 5777 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 5778 case SystemZ::ATOMIC_LOAD_AGFI: 5779 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 5780 5781 case SystemZ::ATOMIC_LOADW_SR: 5782 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 5783 case SystemZ::ATOMIC_LOAD_SR: 5784 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 5785 case SystemZ::ATOMIC_LOAD_SGR: 5786 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 5787 5788 case SystemZ::ATOMIC_LOADW_NR: 5789 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 5790 case SystemZ::ATOMIC_LOADW_NILH: 5791 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 5792 case SystemZ::ATOMIC_LOAD_NR: 5793 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 5794 case SystemZ::ATOMIC_LOAD_NILL: 5795 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 5796 case SystemZ::ATOMIC_LOAD_NILH: 5797 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 5798 case SystemZ::ATOMIC_LOAD_NILF: 5799 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 5800 case SystemZ::ATOMIC_LOAD_NGR: 5801 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 5802 case SystemZ::ATOMIC_LOAD_NILL64: 5803 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 5804 case SystemZ::ATOMIC_LOAD_NILH64: 5805 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 5806 case SystemZ::ATOMIC_LOAD_NIHL64: 5807 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 5808 case SystemZ::ATOMIC_LOAD_NIHH64: 5809 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 5810 case SystemZ::ATOMIC_LOAD_NILF64: 5811 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 5812 case SystemZ::ATOMIC_LOAD_NIHF64: 5813 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 5814 5815 case SystemZ::ATOMIC_LOADW_OR: 5816 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 5817 case SystemZ::ATOMIC_LOADW_OILH: 5818 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 5819 case SystemZ::ATOMIC_LOAD_OR: 5820 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 5821 case SystemZ::ATOMIC_LOAD_OILL: 5822 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 5823 case SystemZ::ATOMIC_LOAD_OILH: 5824 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 5825 case SystemZ::ATOMIC_LOAD_OILF: 5826 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 5827 case SystemZ::ATOMIC_LOAD_OGR: 5828 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 5829 case SystemZ::ATOMIC_LOAD_OILL64: 5830 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 5831 case SystemZ::ATOMIC_LOAD_OILH64: 5832 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 5833 case SystemZ::ATOMIC_LOAD_OIHL64: 5834 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 5835 case SystemZ::ATOMIC_LOAD_OIHH64: 5836 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 5837 case SystemZ::ATOMIC_LOAD_OILF64: 5838 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 5839 case SystemZ::ATOMIC_LOAD_OIHF64: 5840 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 5841 5842 case SystemZ::ATOMIC_LOADW_XR: 5843 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 5844 case SystemZ::ATOMIC_LOADW_XILF: 5845 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 5846 case SystemZ::ATOMIC_LOAD_XR: 5847 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 5848 case SystemZ::ATOMIC_LOAD_XILF: 5849 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 5850 case SystemZ::ATOMIC_LOAD_XGR: 5851 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 5852 case SystemZ::ATOMIC_LOAD_XILF64: 5853 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 5854 case SystemZ::ATOMIC_LOAD_XIHF64: 5855 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 5856 5857 case SystemZ::ATOMIC_LOADW_NRi: 5858 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 5859 case SystemZ::ATOMIC_LOADW_NILHi: 5860 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 5861 case SystemZ::ATOMIC_LOAD_NRi: 5862 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 5863 case SystemZ::ATOMIC_LOAD_NILLi: 5864 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 5865 case SystemZ::ATOMIC_LOAD_NILHi: 5866 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 5867 case SystemZ::ATOMIC_LOAD_NILFi: 5868 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 5869 case SystemZ::ATOMIC_LOAD_NGRi: 5870 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 5871 case SystemZ::ATOMIC_LOAD_NILL64i: 5872 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 5873 case SystemZ::ATOMIC_LOAD_NILH64i: 5874 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 5875 case SystemZ::ATOMIC_LOAD_NIHL64i: 5876 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 5877 case SystemZ::ATOMIC_LOAD_NIHH64i: 5878 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 5879 case SystemZ::ATOMIC_LOAD_NILF64i: 5880 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 5881 case SystemZ::ATOMIC_LOAD_NIHF64i: 5882 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 5883 5884 case SystemZ::ATOMIC_LOADW_MIN: 5885 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5886 SystemZ::CCMASK_CMP_LE, 0); 5887 case SystemZ::ATOMIC_LOAD_MIN_32: 5888 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5889 SystemZ::CCMASK_CMP_LE, 32); 5890 case SystemZ::ATOMIC_LOAD_MIN_64: 5891 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5892 SystemZ::CCMASK_CMP_LE, 64); 5893 5894 case SystemZ::ATOMIC_LOADW_MAX: 5895 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5896 SystemZ::CCMASK_CMP_GE, 0); 5897 case SystemZ::ATOMIC_LOAD_MAX_32: 5898 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 5899 SystemZ::CCMASK_CMP_GE, 32); 5900 case SystemZ::ATOMIC_LOAD_MAX_64: 5901 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 5902 SystemZ::CCMASK_CMP_GE, 64); 5903 5904 case SystemZ::ATOMIC_LOADW_UMIN: 5905 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5906 SystemZ::CCMASK_CMP_LE, 0); 5907 case SystemZ::ATOMIC_LOAD_UMIN_32: 5908 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5909 SystemZ::CCMASK_CMP_LE, 32); 5910 case SystemZ::ATOMIC_LOAD_UMIN_64: 5911 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5912 SystemZ::CCMASK_CMP_LE, 64); 5913 5914 case SystemZ::ATOMIC_LOADW_UMAX: 5915 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5916 SystemZ::CCMASK_CMP_GE, 0); 5917 case SystemZ::ATOMIC_LOAD_UMAX_32: 5918 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 5919 SystemZ::CCMASK_CMP_GE, 32); 5920 case SystemZ::ATOMIC_LOAD_UMAX_64: 5921 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 5922 SystemZ::CCMASK_CMP_GE, 64); 5923 5924 case SystemZ::ATOMIC_CMP_SWAPW: 5925 return emitAtomicCmpSwapW(MI, MBB); 5926 case SystemZ::MVCSequence: 5927 case SystemZ::MVCLoop: 5928 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 5929 case SystemZ::NCSequence: 5930 case SystemZ::NCLoop: 5931 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 5932 case SystemZ::OCSequence: 5933 case SystemZ::OCLoop: 5934 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 5935 case SystemZ::XCSequence: 5936 case SystemZ::XCLoop: 5937 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 5938 case SystemZ::CLCSequence: 5939 case SystemZ::CLCLoop: 5940 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 5941 case SystemZ::CLSTLoop: 5942 return emitStringWrapper(MI, MBB, SystemZ::CLST); 5943 case SystemZ::MVSTLoop: 5944 return emitStringWrapper(MI, MBB, SystemZ::MVST); 5945 case SystemZ::SRSTLoop: 5946 return emitStringWrapper(MI, MBB, SystemZ::SRST); 5947 case SystemZ::TBEGIN: 5948 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 5949 case SystemZ::TBEGIN_nofloat: 5950 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 5951 case SystemZ::TBEGINC: 5952 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 5953 case SystemZ::LTEBRCompare_VecPseudo: 5954 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 5955 case SystemZ::LTDBRCompare_VecPseudo: 5956 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 5957 case SystemZ::LTXBRCompare_VecPseudo: 5958 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 5959 5960 default: 5961 llvm_unreachable("Unexpected instr type to insert"); 5962 } 5963 } 5964