1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In) 37 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 38 39 // The operands to the comparison. 40 SDValue Op0, Op1; 41 42 // The opcode that should be used to compare Op0 and Op1. 43 unsigned Opcode; 44 45 // A SystemZICMP value. Only used for integer comparisons. 46 unsigned ICmpType; 47 48 // The mask of CC values that Opcode can produce. 49 unsigned CCValid; 50 51 // The mask of CC values for which the original condition is true. 52 unsigned CCMask; 53 }; 54 } // end anonymous namespace 55 56 // Classify VT as either 32 or 64 bit. 57 static bool is32Bit(EVT VT) { 58 switch (VT.getSimpleVT().SimpleTy) { 59 case MVT::i32: 60 return true; 61 case MVT::i64: 62 return false; 63 default: 64 llvm_unreachable("Unsupported type"); 65 } 66 } 67 68 // Return a version of MachineOperand that can be safely used before the 69 // final use. 70 static MachineOperand earlyUseOperand(MachineOperand Op) { 71 if (Op.isReg()) 72 Op.setIsKill(false); 73 return Op; 74 } 75 76 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 77 const SystemZSubtarget &STI) 78 : TargetLowering(TM), Subtarget(STI) { 79 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 80 81 // Set up the register classes. 82 if (Subtarget.hasHighWord()) 83 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 84 else 85 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 86 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 87 if (Subtarget.hasVector()) { 88 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 89 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 90 } else { 91 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 92 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 93 } 94 if (Subtarget.hasVectorEnhancements1()) 95 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 96 else 97 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 98 99 if (Subtarget.hasVector()) { 100 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 101 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 102 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 103 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 104 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 105 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 106 } 107 108 // Compute derived properties from the register classes 109 computeRegisterProperties(Subtarget.getRegisterInfo()); 110 111 // Set up special registers. 112 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 113 114 // TODO: It may be better to default to latency-oriented scheduling, however 115 // LLVM's current latency-oriented scheduler can't handle physreg definitions 116 // such as SystemZ has with CC, so set this to the register-pressure 117 // scheduler, because it can. 118 setSchedulingPreference(Sched::RegPressure); 119 120 setBooleanContents(ZeroOrOneBooleanContent); 121 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 122 123 // Instructions are strings of 2-byte aligned 2-byte values. 124 setMinFunctionAlignment(2); 125 // For performance reasons we prefer 16-byte alignment. 126 setPrefFunctionAlignment(4); 127 128 // Handle operations that are handled in a similar way for all types. 129 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 130 I <= MVT::LAST_FP_VALUETYPE; 131 ++I) { 132 MVT VT = MVT::SimpleValueType(I); 133 if (isTypeLegal(VT)) { 134 // Lower SET_CC into an IPM-based sequence. 135 setOperationAction(ISD::SETCC, VT, Custom); 136 137 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 138 setOperationAction(ISD::SELECT, VT, Expand); 139 140 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 141 setOperationAction(ISD::SELECT_CC, VT, Custom); 142 setOperationAction(ISD::BR_CC, VT, Custom); 143 } 144 } 145 146 // Expand jump table branches as address arithmetic followed by an 147 // indirect jump. 148 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 149 150 // Expand BRCOND into a BR_CC (see above). 151 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 152 153 // Handle integer types. 154 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 155 I <= MVT::LAST_INTEGER_VALUETYPE; 156 ++I) { 157 MVT VT = MVT::SimpleValueType(I); 158 if (isTypeLegal(VT)) { 159 // Expand individual DIV and REMs into DIVREMs. 160 setOperationAction(ISD::SDIV, VT, Expand); 161 setOperationAction(ISD::UDIV, VT, Expand); 162 setOperationAction(ISD::SREM, VT, Expand); 163 setOperationAction(ISD::UREM, VT, Expand); 164 setOperationAction(ISD::SDIVREM, VT, Custom); 165 setOperationAction(ISD::UDIVREM, VT, Custom); 166 167 // Support addition/subtraction with overflow. 168 setOperationAction(ISD::SADDO, VT, Custom); 169 setOperationAction(ISD::SSUBO, VT, Custom); 170 171 // Support addition/subtraction with carry. 172 setOperationAction(ISD::UADDO, VT, Custom); 173 setOperationAction(ISD::USUBO, VT, Custom); 174 175 // Support carry in as value rather than glue. 176 setOperationAction(ISD::ADDCARRY, VT, Custom); 177 setOperationAction(ISD::SUBCARRY, VT, Custom); 178 179 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 180 // stores, putting a serialization instruction after the stores. 181 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 182 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 183 184 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 185 // available, or if the operand is constant. 186 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 187 188 // Use POPCNT on z196 and above. 189 if (Subtarget.hasPopulationCount()) 190 setOperationAction(ISD::CTPOP, VT, Custom); 191 else 192 setOperationAction(ISD::CTPOP, VT, Expand); 193 194 // No special instructions for these. 195 setOperationAction(ISD::CTTZ, VT, Expand); 196 setOperationAction(ISD::ROTR, VT, Expand); 197 198 // Use *MUL_LOHI where possible instead of MULH*. 199 setOperationAction(ISD::MULHS, VT, Expand); 200 setOperationAction(ISD::MULHU, VT, Expand); 201 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 202 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 203 204 // Only z196 and above have native support for conversions to unsigned. 205 // On z10, promoting to i64 doesn't generate an inexact condition for 206 // values that are outside the i32 range but in the i64 range, so use 207 // the default expansion. 208 if (!Subtarget.hasFPExtension()) 209 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 210 } 211 } 212 213 // Type legalization will convert 8- and 16-bit atomic operations into 214 // forms that operate on i32s (but still keeping the original memory VT). 215 // Lower them into full i32 operations. 216 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 220 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 221 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 222 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 223 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 224 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 225 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 226 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 227 228 // Even though i128 is not a legal type, we still need to custom lower 229 // the atomic operations in order to exploit SystemZ instructions. 230 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 231 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 232 233 // We can use the CC result of compare-and-swap to implement 234 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 235 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 236 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 237 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 238 239 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 240 241 // Traps are legal, as we will convert them to "j .+2". 242 setOperationAction(ISD::TRAP, MVT::Other, Legal); 243 244 // z10 has instructions for signed but not unsigned FP conversion. 245 // Handle unsigned 32-bit types as signed 64-bit types. 246 if (!Subtarget.hasFPExtension()) { 247 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 248 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 249 } 250 251 // We have native support for a 64-bit CTLZ, via FLOGR. 252 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 253 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 254 255 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 256 setOperationAction(ISD::OR, MVT::i64, Custom); 257 258 // FIXME: Can we support these natively? 259 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 260 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 261 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 262 263 // We have native instructions for i8, i16 and i32 extensions, but not i1. 264 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 265 for (MVT VT : MVT::integer_valuetypes()) { 266 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 267 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 268 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 269 } 270 271 // Handle the various types of symbolic address. 272 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 273 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 274 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 275 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 276 setOperationAction(ISD::JumpTable, PtrVT, Custom); 277 278 // We need to handle dynamic allocations specially because of the 279 // 160-byte area at the bottom of the stack. 280 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 281 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 282 283 // Use custom expanders so that we can force the function to use 284 // a frame pointer. 285 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 286 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 287 288 // Handle prefetches with PFD or PFDRL. 289 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 290 291 for (MVT VT : MVT::vector_valuetypes()) { 292 // Assume by default that all vector operations need to be expanded. 293 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 294 if (getOperationAction(Opcode, VT) == Legal) 295 setOperationAction(Opcode, VT, Expand); 296 297 // Likewise all truncating stores and extending loads. 298 for (MVT InnerVT : MVT::vector_valuetypes()) { 299 setTruncStoreAction(VT, InnerVT, Expand); 300 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 301 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 302 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 303 } 304 305 if (isTypeLegal(VT)) { 306 // These operations are legal for anything that can be stored in a 307 // vector register, even if there is no native support for the format 308 // as such. In particular, we can do these for v4f32 even though there 309 // are no specific instructions for that format. 310 setOperationAction(ISD::LOAD, VT, Legal); 311 setOperationAction(ISD::STORE, VT, Legal); 312 setOperationAction(ISD::VSELECT, VT, Legal); 313 setOperationAction(ISD::BITCAST, VT, Legal); 314 setOperationAction(ISD::UNDEF, VT, Legal); 315 316 // Likewise, except that we need to replace the nodes with something 317 // more specific. 318 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 319 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 320 } 321 } 322 323 // Handle integer vector types. 324 for (MVT VT : MVT::integer_vector_valuetypes()) { 325 if (isTypeLegal(VT)) { 326 // These operations have direct equivalents. 327 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 328 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 329 setOperationAction(ISD::ADD, VT, Legal); 330 setOperationAction(ISD::SUB, VT, Legal); 331 if (VT != MVT::v2i64) 332 setOperationAction(ISD::MUL, VT, Legal); 333 setOperationAction(ISD::AND, VT, Legal); 334 setOperationAction(ISD::OR, VT, Legal); 335 setOperationAction(ISD::XOR, VT, Legal); 336 if (Subtarget.hasVectorEnhancements1()) 337 setOperationAction(ISD::CTPOP, VT, Legal); 338 else 339 setOperationAction(ISD::CTPOP, VT, Custom); 340 setOperationAction(ISD::CTTZ, VT, Legal); 341 setOperationAction(ISD::CTLZ, VT, Legal); 342 343 // Convert a GPR scalar to a vector by inserting it into element 0. 344 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 345 346 // Use a series of unpacks for extensions. 347 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 348 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 349 350 // Detect shifts by a scalar amount and convert them into 351 // V*_BY_SCALAR. 352 setOperationAction(ISD::SHL, VT, Custom); 353 setOperationAction(ISD::SRA, VT, Custom); 354 setOperationAction(ISD::SRL, VT, Custom); 355 356 // At present ROTL isn't matched by DAGCombiner. ROTR should be 357 // converted into ROTL. 358 setOperationAction(ISD::ROTL, VT, Expand); 359 setOperationAction(ISD::ROTR, VT, Expand); 360 361 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 362 // and inverting the result as necessary. 363 setOperationAction(ISD::SETCC, VT, Custom); 364 } 365 } 366 367 if (Subtarget.hasVector()) { 368 // There should be no need to check for float types other than v2f64 369 // since <2 x f32> isn't a legal type. 370 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 371 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 372 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 373 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 374 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 375 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 376 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 377 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 378 } 379 380 // Handle floating-point types. 381 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 382 I <= MVT::LAST_FP_VALUETYPE; 383 ++I) { 384 MVT VT = MVT::SimpleValueType(I); 385 if (isTypeLegal(VT)) { 386 // We can use FI for FRINT. 387 setOperationAction(ISD::FRINT, VT, Legal); 388 389 // We can use the extended form of FI for other rounding operations. 390 if (Subtarget.hasFPExtension()) { 391 setOperationAction(ISD::FNEARBYINT, VT, Legal); 392 setOperationAction(ISD::FFLOOR, VT, Legal); 393 setOperationAction(ISD::FCEIL, VT, Legal); 394 setOperationAction(ISD::FTRUNC, VT, Legal); 395 setOperationAction(ISD::FROUND, VT, Legal); 396 } 397 398 // No special instructions for these. 399 setOperationAction(ISD::FSIN, VT, Expand); 400 setOperationAction(ISD::FCOS, VT, Expand); 401 setOperationAction(ISD::FSINCOS, VT, Expand); 402 setOperationAction(ISD::FREM, VT, Expand); 403 setOperationAction(ISD::FPOW, VT, Expand); 404 } 405 } 406 407 // Handle floating-point vector types. 408 if (Subtarget.hasVector()) { 409 // Scalar-to-vector conversion is just a subreg. 410 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 411 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 412 413 // Some insertions and extractions can be done directly but others 414 // need to go via integers. 415 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 416 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 417 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 418 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 419 420 // These operations have direct equivalents. 421 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 422 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 423 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 424 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 425 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 426 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 427 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 428 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 429 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 430 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 431 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 432 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 433 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 434 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 435 } 436 437 // The vector enhancements facility 1 has instructions for these. 438 if (Subtarget.hasVectorEnhancements1()) { 439 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 440 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 441 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 442 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 443 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 444 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 445 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 446 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 447 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 448 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 449 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 450 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 451 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 452 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 453 454 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 455 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 456 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 457 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 458 459 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 460 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 461 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 462 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 463 464 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 465 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 466 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 467 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 468 469 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 470 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 471 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 472 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 473 474 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 475 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 476 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 477 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 478 } 479 480 // We have fused multiply-addition for f32 and f64 but not f128. 481 setOperationAction(ISD::FMA, MVT::f32, Legal); 482 setOperationAction(ISD::FMA, MVT::f64, Legal); 483 if (Subtarget.hasVectorEnhancements1()) 484 setOperationAction(ISD::FMA, MVT::f128, Legal); 485 else 486 setOperationAction(ISD::FMA, MVT::f128, Expand); 487 488 // We don't have a copysign instruction on vector registers. 489 if (Subtarget.hasVectorEnhancements1()) 490 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 491 492 // Needed so that we don't try to implement f128 constant loads using 493 // a load-and-extend of a f80 constant (in cases where the constant 494 // would fit in an f80). 495 for (MVT VT : MVT::fp_valuetypes()) 496 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 497 498 // We don't have extending load instruction on vector registers. 499 if (Subtarget.hasVectorEnhancements1()) { 500 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 501 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 502 } 503 504 // Floating-point truncation and stores need to be done separately. 505 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 506 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 507 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 508 509 // We have 64-bit FPR<->GPR moves, but need special handling for 510 // 32-bit forms. 511 if (!Subtarget.hasVector()) { 512 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 513 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 514 } 515 516 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 517 // structure, but VAEND is a no-op. 518 setOperationAction(ISD::VASTART, MVT::Other, Custom); 519 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 520 setOperationAction(ISD::VAEND, MVT::Other, Expand); 521 522 // Codes for which we want to perform some z-specific combinations. 523 setTargetDAGCombine(ISD::ZERO_EXTEND); 524 setTargetDAGCombine(ISD::SIGN_EXTEND); 525 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 526 setTargetDAGCombine(ISD::LOAD); 527 setTargetDAGCombine(ISD::STORE); 528 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 529 setTargetDAGCombine(ISD::FP_ROUND); 530 setTargetDAGCombine(ISD::BSWAP); 531 setTargetDAGCombine(ISD::SDIV); 532 setTargetDAGCombine(ISD::UDIV); 533 setTargetDAGCombine(ISD::SREM); 534 setTargetDAGCombine(ISD::UREM); 535 536 // Handle intrinsics. 537 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 538 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 539 540 // We want to use MVC in preference to even a single load/store pair. 541 MaxStoresPerMemcpy = 0; 542 MaxStoresPerMemcpyOptSize = 0; 543 544 // The main memset sequence is a byte store followed by an MVC. 545 // Two STC or MV..I stores win over that, but the kind of fused stores 546 // generated by target-independent code don't when the byte value is 547 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 548 // than "STC;MVC". Handle the choice in target-specific code instead. 549 MaxStoresPerMemset = 0; 550 MaxStoresPerMemsetOptSize = 0; 551 } 552 553 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 554 LLVMContext &, EVT VT) const { 555 if (!VT.isVector()) 556 return MVT::i32; 557 return VT.changeVectorElementTypeToInteger(); 558 } 559 560 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 561 VT = VT.getScalarType(); 562 563 if (!VT.isSimple()) 564 return false; 565 566 switch (VT.getSimpleVT().SimpleTy) { 567 case MVT::f32: 568 case MVT::f64: 569 return true; 570 case MVT::f128: 571 return Subtarget.hasVectorEnhancements1(); 572 default: 573 break; 574 } 575 576 return false; 577 } 578 579 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 580 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 581 return Imm.isZero() || Imm.isNegZero(); 582 } 583 584 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 585 // We can use CGFI or CLGFI. 586 return isInt<32>(Imm) || isUInt<32>(Imm); 587 } 588 589 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 590 // We can use ALGFI or SLGFI. 591 return isUInt<32>(Imm) || isUInt<32>(-Imm); 592 } 593 594 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 595 unsigned, 596 unsigned, 597 bool *Fast) const { 598 // Unaligned accesses should never be slower than the expanded version. 599 // We check specifically for aligned accesses in the few cases where 600 // they are required. 601 if (Fast) 602 *Fast = true; 603 return true; 604 } 605 606 // Information about the addressing mode for a memory access. 607 struct AddressingMode { 608 // True if a long displacement is supported. 609 bool LongDisplacement; 610 611 // True if use of index register is supported. 612 bool IndexReg; 613 614 AddressingMode(bool LongDispl, bool IdxReg) : 615 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 616 }; 617 618 // Return the desired addressing mode for a Load which has only one use (in 619 // the same block) which is a Store. 620 static AddressingMode getLoadStoreAddrMode(bool HasVector, 621 Type *Ty) { 622 // With vector support a Load->Store combination may be combined to either 623 // an MVC or vector operations and it seems to work best to allow the 624 // vector addressing mode. 625 if (HasVector) 626 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 627 628 // Otherwise only the MVC case is special. 629 bool MVC = Ty->isIntegerTy(8); 630 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 631 } 632 633 // Return the addressing mode which seems most desirable given an LLVM 634 // Instruction pointer. 635 static AddressingMode 636 supportedAddressingMode(Instruction *I, bool HasVector) { 637 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 638 switch (II->getIntrinsicID()) { 639 default: break; 640 case Intrinsic::memset: 641 case Intrinsic::memmove: 642 case Intrinsic::memcpy: 643 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 644 } 645 } 646 647 if (isa<LoadInst>(I) && I->hasOneUse()) { 648 auto *SingleUser = dyn_cast<Instruction>(*I->user_begin()); 649 if (SingleUser->getParent() == I->getParent()) { 650 if (isa<ICmpInst>(SingleUser)) { 651 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 652 if (C->getBitWidth() <= 64 && 653 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 654 // Comparison of memory with 16 bit signed / unsigned immediate 655 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 656 } else if (isa<StoreInst>(SingleUser)) 657 // Load->Store 658 return getLoadStoreAddrMode(HasVector, I->getType()); 659 } 660 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 661 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 662 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 663 // Load->Store 664 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 665 } 666 667 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 668 669 // * Use LDE instead of LE/LEY for z13 to avoid partial register 670 // dependencies (LDE only supports small offsets). 671 // * Utilize the vector registers to hold floating point 672 // values (vector load / store instructions only support small 673 // offsets). 674 675 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 676 I->getOperand(0)->getType()); 677 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 678 bool IsVectorAccess = MemAccessTy->isVectorTy(); 679 680 // A store of an extracted vector element will be combined into a VSTE type 681 // instruction. 682 if (!IsVectorAccess && isa<StoreInst>(I)) { 683 Value *DataOp = I->getOperand(0); 684 if (isa<ExtractElementInst>(DataOp)) 685 IsVectorAccess = true; 686 } 687 688 // A load which gets inserted into a vector element will be combined into a 689 // VLE type instruction. 690 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 691 User *LoadUser = *I->user_begin(); 692 if (isa<InsertElementInst>(LoadUser)) 693 IsVectorAccess = true; 694 } 695 696 if (IsFPAccess || IsVectorAccess) 697 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 698 } 699 700 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 701 } 702 703 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 704 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 705 // Punt on globals for now, although they can be used in limited 706 // RELATIVE LONG cases. 707 if (AM.BaseGV) 708 return false; 709 710 // Require a 20-bit signed offset. 711 if (!isInt<20>(AM.BaseOffs)) 712 return false; 713 714 AddressingMode SupportedAM(true, true); 715 if (I != nullptr) 716 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 717 718 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 719 return false; 720 721 if (!SupportedAM.IndexReg) 722 // No indexing allowed. 723 return AM.Scale == 0; 724 else 725 // Indexing is OK but no scale factor can be applied. 726 return AM.Scale == 0 || AM.Scale == 1; 727 } 728 729 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 730 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 731 return false; 732 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 733 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 734 return FromBits > ToBits; 735 } 736 737 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 738 if (!FromVT.isInteger() || !ToVT.isInteger()) 739 return false; 740 unsigned FromBits = FromVT.getSizeInBits(); 741 unsigned ToBits = ToVT.getSizeInBits(); 742 return FromBits > ToBits; 743 } 744 745 //===----------------------------------------------------------------------===// 746 // Inline asm support 747 //===----------------------------------------------------------------------===// 748 749 TargetLowering::ConstraintType 750 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 751 if (Constraint.size() == 1) { 752 switch (Constraint[0]) { 753 case 'a': // Address register 754 case 'd': // Data register (equivalent to 'r') 755 case 'f': // Floating-point register 756 case 'h': // High-part register 757 case 'r': // General-purpose register 758 case 'v': // Vector register 759 return C_RegisterClass; 760 761 case 'Q': // Memory with base and unsigned 12-bit displacement 762 case 'R': // Likewise, plus an index 763 case 'S': // Memory with base and signed 20-bit displacement 764 case 'T': // Likewise, plus an index 765 case 'm': // Equivalent to 'T'. 766 return C_Memory; 767 768 case 'I': // Unsigned 8-bit constant 769 case 'J': // Unsigned 12-bit constant 770 case 'K': // Signed 16-bit constant 771 case 'L': // Signed 20-bit displacement (on all targets we support) 772 case 'M': // 0x7fffffff 773 return C_Other; 774 775 default: 776 break; 777 } 778 } 779 return TargetLowering::getConstraintType(Constraint); 780 } 781 782 TargetLowering::ConstraintWeight SystemZTargetLowering:: 783 getSingleConstraintMatchWeight(AsmOperandInfo &info, 784 const char *constraint) const { 785 ConstraintWeight weight = CW_Invalid; 786 Value *CallOperandVal = info.CallOperandVal; 787 // If we don't have a value, we can't do a match, 788 // but allow it at the lowest weight. 789 if (!CallOperandVal) 790 return CW_Default; 791 Type *type = CallOperandVal->getType(); 792 // Look at the constraint type. 793 switch (*constraint) { 794 default: 795 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 796 break; 797 798 case 'a': // Address register 799 case 'd': // Data register (equivalent to 'r') 800 case 'h': // High-part register 801 case 'r': // General-purpose register 802 if (CallOperandVal->getType()->isIntegerTy()) 803 weight = CW_Register; 804 break; 805 806 case 'f': // Floating-point register 807 if (type->isFloatingPointTy()) 808 weight = CW_Register; 809 break; 810 811 case 'v': // Vector register 812 if ((type->isVectorTy() || type->isFloatingPointTy()) && 813 Subtarget.hasVector()) 814 weight = CW_Register; 815 break; 816 817 case 'I': // Unsigned 8-bit constant 818 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 819 if (isUInt<8>(C->getZExtValue())) 820 weight = CW_Constant; 821 break; 822 823 case 'J': // Unsigned 12-bit constant 824 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 825 if (isUInt<12>(C->getZExtValue())) 826 weight = CW_Constant; 827 break; 828 829 case 'K': // Signed 16-bit constant 830 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 831 if (isInt<16>(C->getSExtValue())) 832 weight = CW_Constant; 833 break; 834 835 case 'L': // Signed 20-bit displacement (on all targets we support) 836 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 837 if (isInt<20>(C->getSExtValue())) 838 weight = CW_Constant; 839 break; 840 841 case 'M': // 0x7fffffff 842 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 843 if (C->getZExtValue() == 0x7fffffff) 844 weight = CW_Constant; 845 break; 846 } 847 return weight; 848 } 849 850 // Parse a "{tNNN}" register constraint for which the register type "t" 851 // has already been verified. MC is the class associated with "t" and 852 // Map maps 0-based register numbers to LLVM register numbers. 853 static std::pair<unsigned, const TargetRegisterClass *> 854 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 855 const unsigned *Map, unsigned Size) { 856 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 857 if (isdigit(Constraint[2])) { 858 unsigned Index; 859 bool Failed = 860 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 861 if (!Failed && Index < Size && Map[Index]) 862 return std::make_pair(Map[Index], RC); 863 } 864 return std::make_pair(0U, nullptr); 865 } 866 867 std::pair<unsigned, const TargetRegisterClass *> 868 SystemZTargetLowering::getRegForInlineAsmConstraint( 869 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 870 if (Constraint.size() == 1) { 871 // GCC Constraint Letters 872 switch (Constraint[0]) { 873 default: break; 874 case 'd': // Data register (equivalent to 'r') 875 case 'r': // General-purpose register 876 if (VT == MVT::i64) 877 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 878 else if (VT == MVT::i128) 879 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 880 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 881 882 case 'a': // Address register 883 if (VT == MVT::i64) 884 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 885 else if (VT == MVT::i128) 886 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 887 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 888 889 case 'h': // High-part register (an LLVM extension) 890 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 891 892 case 'f': // Floating-point register 893 if (VT == MVT::f64) 894 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 895 else if (VT == MVT::f128) 896 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 897 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 898 899 case 'v': // Vector register 900 if (Subtarget.hasVector()) { 901 if (VT == MVT::f32) 902 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 903 if (VT == MVT::f64) 904 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 905 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 906 } 907 break; 908 } 909 } 910 if (Constraint.size() > 0 && Constraint[0] == '{') { 911 // We need to override the default register parsing for GPRs and FPRs 912 // because the interpretation depends on VT. The internal names of 913 // the registers are also different from the external names 914 // (F0D and F0S instead of F0, etc.). 915 if (Constraint[1] == 'r') { 916 if (VT == MVT::i32) 917 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 918 SystemZMC::GR32Regs, 16); 919 if (VT == MVT::i128) 920 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 921 SystemZMC::GR128Regs, 16); 922 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 923 SystemZMC::GR64Regs, 16); 924 } 925 if (Constraint[1] == 'f') { 926 if (VT == MVT::f32) 927 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 928 SystemZMC::FP32Regs, 16); 929 if (VT == MVT::f128) 930 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 931 SystemZMC::FP128Regs, 16); 932 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 933 SystemZMC::FP64Regs, 16); 934 } 935 if (Constraint[1] == 'v') { 936 if (VT == MVT::f32) 937 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 938 SystemZMC::VR32Regs, 32); 939 if (VT == MVT::f64) 940 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 941 SystemZMC::VR64Regs, 32); 942 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 943 SystemZMC::VR128Regs, 32); 944 } 945 } 946 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 947 } 948 949 void SystemZTargetLowering:: 950 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 951 std::vector<SDValue> &Ops, 952 SelectionDAG &DAG) const { 953 // Only support length 1 constraints for now. 954 if (Constraint.length() == 1) { 955 switch (Constraint[0]) { 956 case 'I': // Unsigned 8-bit constant 957 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 958 if (isUInt<8>(C->getZExtValue())) 959 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 960 Op.getValueType())); 961 return; 962 963 case 'J': // Unsigned 12-bit constant 964 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 965 if (isUInt<12>(C->getZExtValue())) 966 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 967 Op.getValueType())); 968 return; 969 970 case 'K': // Signed 16-bit constant 971 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 972 if (isInt<16>(C->getSExtValue())) 973 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 974 Op.getValueType())); 975 return; 976 977 case 'L': // Signed 20-bit displacement (on all targets we support) 978 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 979 if (isInt<20>(C->getSExtValue())) 980 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 981 Op.getValueType())); 982 return; 983 984 case 'M': // 0x7fffffff 985 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 986 if (C->getZExtValue() == 0x7fffffff) 987 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 988 Op.getValueType())); 989 return; 990 } 991 } 992 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 993 } 994 995 //===----------------------------------------------------------------------===// 996 // Calling conventions 997 //===----------------------------------------------------------------------===// 998 999 #include "SystemZGenCallingConv.inc" 1000 1001 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1002 CallingConv::ID) const { 1003 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1004 SystemZ::R14D, 0 }; 1005 return ScratchRegs; 1006 } 1007 1008 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1009 Type *ToType) const { 1010 return isTruncateFree(FromType, ToType); 1011 } 1012 1013 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1014 return CI->isTailCall(); 1015 } 1016 1017 // We do not yet support 128-bit single-element vector types. If the user 1018 // attempts to use such types as function argument or return type, prefer 1019 // to error out instead of emitting code violating the ABI. 1020 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1021 if (ArgVT.isVector() && !VT.isVector()) 1022 report_fatal_error("Unsupported vector argument or return type"); 1023 } 1024 1025 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1026 for (unsigned i = 0; i < Ins.size(); ++i) 1027 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1028 } 1029 1030 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1031 for (unsigned i = 0; i < Outs.size(); ++i) 1032 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1033 } 1034 1035 // Value is a value that has been passed to us in the location described by VA 1036 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1037 // any loads onto Chain. 1038 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1039 CCValAssign &VA, SDValue Chain, 1040 SDValue Value) { 1041 // If the argument has been promoted from a smaller type, insert an 1042 // assertion to capture this. 1043 if (VA.getLocInfo() == CCValAssign::SExt) 1044 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1045 DAG.getValueType(VA.getValVT())); 1046 else if (VA.getLocInfo() == CCValAssign::ZExt) 1047 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1048 DAG.getValueType(VA.getValVT())); 1049 1050 if (VA.isExtInLoc()) 1051 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1052 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1053 // If this is a short vector argument loaded from the stack, 1054 // extend from i64 to full vector size and then bitcast. 1055 assert(VA.getLocVT() == MVT::i64); 1056 assert(VA.getValVT().isVector()); 1057 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1058 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1059 } else 1060 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1061 return Value; 1062 } 1063 1064 // Value is a value of type VA.getValVT() that we need to copy into 1065 // the location described by VA. Return a copy of Value converted to 1066 // VA.getValVT(). The caller is responsible for handling indirect values. 1067 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1068 CCValAssign &VA, SDValue Value) { 1069 switch (VA.getLocInfo()) { 1070 case CCValAssign::SExt: 1071 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1072 case CCValAssign::ZExt: 1073 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1074 case CCValAssign::AExt: 1075 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1076 case CCValAssign::BCvt: 1077 // If this is a short vector argument to be stored to the stack, 1078 // bitcast to v2i64 and then extract first element. 1079 assert(VA.getLocVT() == MVT::i64); 1080 assert(VA.getValVT().isVector()); 1081 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1082 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1083 DAG.getConstant(0, DL, MVT::i32)); 1084 case CCValAssign::Full: 1085 return Value; 1086 default: 1087 llvm_unreachable("Unhandled getLocInfo()"); 1088 } 1089 } 1090 1091 SDValue SystemZTargetLowering::LowerFormalArguments( 1092 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1093 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1094 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1095 MachineFunction &MF = DAG.getMachineFunction(); 1096 MachineFrameInfo &MFI = MF.getFrameInfo(); 1097 MachineRegisterInfo &MRI = MF.getRegInfo(); 1098 SystemZMachineFunctionInfo *FuncInfo = 1099 MF.getInfo<SystemZMachineFunctionInfo>(); 1100 auto *TFL = 1101 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1102 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1103 1104 // Detect unsupported vector argument types. 1105 if (Subtarget.hasVector()) 1106 VerifyVectorTypes(Ins); 1107 1108 // Assign locations to all of the incoming arguments. 1109 SmallVector<CCValAssign, 16> ArgLocs; 1110 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1111 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1112 1113 unsigned NumFixedGPRs = 0; 1114 unsigned NumFixedFPRs = 0; 1115 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1116 SDValue ArgValue; 1117 CCValAssign &VA = ArgLocs[I]; 1118 EVT LocVT = VA.getLocVT(); 1119 if (VA.isRegLoc()) { 1120 // Arguments passed in registers 1121 const TargetRegisterClass *RC; 1122 switch (LocVT.getSimpleVT().SimpleTy) { 1123 default: 1124 // Integers smaller than i64 should be promoted to i64. 1125 llvm_unreachable("Unexpected argument type"); 1126 case MVT::i32: 1127 NumFixedGPRs += 1; 1128 RC = &SystemZ::GR32BitRegClass; 1129 break; 1130 case MVT::i64: 1131 NumFixedGPRs += 1; 1132 RC = &SystemZ::GR64BitRegClass; 1133 break; 1134 case MVT::f32: 1135 NumFixedFPRs += 1; 1136 RC = &SystemZ::FP32BitRegClass; 1137 break; 1138 case MVT::f64: 1139 NumFixedFPRs += 1; 1140 RC = &SystemZ::FP64BitRegClass; 1141 break; 1142 case MVT::v16i8: 1143 case MVT::v8i16: 1144 case MVT::v4i32: 1145 case MVT::v2i64: 1146 case MVT::v4f32: 1147 case MVT::v2f64: 1148 RC = &SystemZ::VR128BitRegClass; 1149 break; 1150 } 1151 1152 unsigned VReg = MRI.createVirtualRegister(RC); 1153 MRI.addLiveIn(VA.getLocReg(), VReg); 1154 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1155 } else { 1156 assert(VA.isMemLoc() && "Argument not register or memory"); 1157 1158 // Create the frame index object for this incoming parameter. 1159 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1160 VA.getLocMemOffset(), true); 1161 1162 // Create the SelectionDAG nodes corresponding to a load 1163 // from this parameter. Unpromoted ints and floats are 1164 // passed as right-justified 8-byte values. 1165 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1166 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1167 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1168 DAG.getIntPtrConstant(4, DL)); 1169 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1170 MachinePointerInfo::getFixedStack(MF, FI)); 1171 } 1172 1173 // Convert the value of the argument register into the value that's 1174 // being passed. 1175 if (VA.getLocInfo() == CCValAssign::Indirect) { 1176 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1177 MachinePointerInfo())); 1178 // If the original argument was split (e.g. i128), we need 1179 // to load all parts of it here (using the same address). 1180 unsigned ArgIndex = Ins[I].OrigArgIndex; 1181 assert (Ins[I].PartOffset == 0); 1182 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1183 CCValAssign &PartVA = ArgLocs[I + 1]; 1184 unsigned PartOffset = Ins[I + 1].PartOffset; 1185 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1186 DAG.getIntPtrConstant(PartOffset, DL)); 1187 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1188 MachinePointerInfo())); 1189 ++I; 1190 } 1191 } else 1192 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1193 } 1194 1195 if (IsVarArg) { 1196 // Save the number of non-varargs registers for later use by va_start, etc. 1197 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1198 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1199 1200 // Likewise the address (in the form of a frame index) of where the 1201 // first stack vararg would be. The 1-byte size here is arbitrary. 1202 int64_t StackSize = CCInfo.getNextStackOffset(); 1203 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1204 1205 // ...and a similar frame index for the caller-allocated save area 1206 // that will be used to store the incoming registers. 1207 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1208 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1209 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1210 1211 // Store the FPR varargs in the reserved frame slots. (We store the 1212 // GPRs as part of the prologue.) 1213 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1214 SDValue MemOps[SystemZ::NumArgFPRs]; 1215 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1216 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1217 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1218 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1219 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1220 &SystemZ::FP64BitRegClass); 1221 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1222 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1223 MachinePointerInfo::getFixedStack(MF, FI)); 1224 } 1225 // Join the stores, which are independent of one another. 1226 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1227 makeArrayRef(&MemOps[NumFixedFPRs], 1228 SystemZ::NumArgFPRs-NumFixedFPRs)); 1229 } 1230 } 1231 1232 return Chain; 1233 } 1234 1235 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1236 SmallVectorImpl<CCValAssign> &ArgLocs, 1237 SmallVectorImpl<ISD::OutputArg> &Outs) { 1238 // Punt if there are any indirect or stack arguments, or if the call 1239 // needs the callee-saved argument register R6, or if the call uses 1240 // the callee-saved register arguments SwiftSelf and SwiftError. 1241 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1242 CCValAssign &VA = ArgLocs[I]; 1243 if (VA.getLocInfo() == CCValAssign::Indirect) 1244 return false; 1245 if (!VA.isRegLoc()) 1246 return false; 1247 unsigned Reg = VA.getLocReg(); 1248 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1249 return false; 1250 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1251 return false; 1252 } 1253 return true; 1254 } 1255 1256 SDValue 1257 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1258 SmallVectorImpl<SDValue> &InVals) const { 1259 SelectionDAG &DAG = CLI.DAG; 1260 SDLoc &DL = CLI.DL; 1261 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1262 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1263 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1264 SDValue Chain = CLI.Chain; 1265 SDValue Callee = CLI.Callee; 1266 bool &IsTailCall = CLI.IsTailCall; 1267 CallingConv::ID CallConv = CLI.CallConv; 1268 bool IsVarArg = CLI.IsVarArg; 1269 MachineFunction &MF = DAG.getMachineFunction(); 1270 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1271 1272 // Detect unsupported vector argument and return types. 1273 if (Subtarget.hasVector()) { 1274 VerifyVectorTypes(Outs); 1275 VerifyVectorTypes(Ins); 1276 } 1277 1278 // Analyze the operands of the call, assigning locations to each operand. 1279 SmallVector<CCValAssign, 16> ArgLocs; 1280 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1281 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1282 1283 // We don't support GuaranteedTailCallOpt, only automatically-detected 1284 // sibling calls. 1285 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1286 IsTailCall = false; 1287 1288 // Get a count of how many bytes are to be pushed on the stack. 1289 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1290 1291 // Mark the start of the call. 1292 if (!IsTailCall) 1293 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1294 1295 // Copy argument values to their designated locations. 1296 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1297 SmallVector<SDValue, 8> MemOpChains; 1298 SDValue StackPtr; 1299 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1300 CCValAssign &VA = ArgLocs[I]; 1301 SDValue ArgValue = OutVals[I]; 1302 1303 if (VA.getLocInfo() == CCValAssign::Indirect) { 1304 // Store the argument in a stack slot and pass its address. 1305 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1306 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1307 MemOpChains.push_back( 1308 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1309 MachinePointerInfo::getFixedStack(MF, FI))); 1310 // If the original argument was split (e.g. i128), we need 1311 // to store all parts of it here (and pass just one address). 1312 unsigned ArgIndex = Outs[I].OrigArgIndex; 1313 assert (Outs[I].PartOffset == 0); 1314 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1315 SDValue PartValue = OutVals[I + 1]; 1316 unsigned PartOffset = Outs[I + 1].PartOffset; 1317 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1318 DAG.getIntPtrConstant(PartOffset, DL)); 1319 MemOpChains.push_back( 1320 DAG.getStore(Chain, DL, PartValue, Address, 1321 MachinePointerInfo::getFixedStack(MF, FI))); 1322 ++I; 1323 } 1324 ArgValue = SpillSlot; 1325 } else 1326 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1327 1328 if (VA.isRegLoc()) 1329 // Queue up the argument copies and emit them at the end. 1330 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1331 else { 1332 assert(VA.isMemLoc() && "Argument not register or memory"); 1333 1334 // Work out the address of the stack slot. Unpromoted ints and 1335 // floats are passed as right-justified 8-byte values. 1336 if (!StackPtr.getNode()) 1337 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1338 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1339 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1340 Offset += 4; 1341 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1342 DAG.getIntPtrConstant(Offset, DL)); 1343 1344 // Emit the store. 1345 MemOpChains.push_back( 1346 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1347 } 1348 } 1349 1350 // Join the stores, which are independent of one another. 1351 if (!MemOpChains.empty()) 1352 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1353 1354 // Accept direct calls by converting symbolic call addresses to the 1355 // associated Target* opcodes. Force %r1 to be used for indirect 1356 // tail calls. 1357 SDValue Glue; 1358 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1359 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1360 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1361 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1362 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1363 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1364 } else if (IsTailCall) { 1365 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1366 Glue = Chain.getValue(1); 1367 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1368 } 1369 1370 // Build a sequence of copy-to-reg nodes, chained and glued together. 1371 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1372 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1373 RegsToPass[I].second, Glue); 1374 Glue = Chain.getValue(1); 1375 } 1376 1377 // The first call operand is the chain and the second is the target address. 1378 SmallVector<SDValue, 8> Ops; 1379 Ops.push_back(Chain); 1380 Ops.push_back(Callee); 1381 1382 // Add argument registers to the end of the list so that they are 1383 // known live into the call. 1384 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1385 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1386 RegsToPass[I].second.getValueType())); 1387 1388 // Add a register mask operand representing the call-preserved registers. 1389 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1390 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1391 assert(Mask && "Missing call preserved mask for calling convention"); 1392 Ops.push_back(DAG.getRegisterMask(Mask)); 1393 1394 // Glue the call to the argument copies, if any. 1395 if (Glue.getNode()) 1396 Ops.push_back(Glue); 1397 1398 // Emit the call. 1399 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1400 if (IsTailCall) 1401 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1402 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1403 Glue = Chain.getValue(1); 1404 1405 // Mark the end of the call, which is glued to the call itself. 1406 Chain = DAG.getCALLSEQ_END(Chain, 1407 DAG.getConstant(NumBytes, DL, PtrVT, true), 1408 DAG.getConstant(0, DL, PtrVT, true), 1409 Glue, DL); 1410 Glue = Chain.getValue(1); 1411 1412 // Assign locations to each value returned by this call. 1413 SmallVector<CCValAssign, 16> RetLocs; 1414 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1415 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1416 1417 // Copy all of the result registers out of their specified physreg. 1418 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1419 CCValAssign &VA = RetLocs[I]; 1420 1421 // Copy the value out, gluing the copy to the end of the call sequence. 1422 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1423 VA.getLocVT(), Glue); 1424 Chain = RetValue.getValue(1); 1425 Glue = RetValue.getValue(2); 1426 1427 // Convert the value of the return register into the value that's 1428 // being returned. 1429 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1430 } 1431 1432 return Chain; 1433 } 1434 1435 bool SystemZTargetLowering:: 1436 CanLowerReturn(CallingConv::ID CallConv, 1437 MachineFunction &MF, bool isVarArg, 1438 const SmallVectorImpl<ISD::OutputArg> &Outs, 1439 LLVMContext &Context) const { 1440 // Detect unsupported vector return types. 1441 if (Subtarget.hasVector()) 1442 VerifyVectorTypes(Outs); 1443 1444 // Special case that we cannot easily detect in RetCC_SystemZ since 1445 // i128 is not a legal type. 1446 for (auto &Out : Outs) 1447 if (Out.ArgVT == MVT::i128) 1448 return false; 1449 1450 SmallVector<CCValAssign, 16> RetLocs; 1451 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1452 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1453 } 1454 1455 SDValue 1456 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1457 bool IsVarArg, 1458 const SmallVectorImpl<ISD::OutputArg> &Outs, 1459 const SmallVectorImpl<SDValue> &OutVals, 1460 const SDLoc &DL, SelectionDAG &DAG) const { 1461 MachineFunction &MF = DAG.getMachineFunction(); 1462 1463 // Detect unsupported vector return types. 1464 if (Subtarget.hasVector()) 1465 VerifyVectorTypes(Outs); 1466 1467 // Assign locations to each returned value. 1468 SmallVector<CCValAssign, 16> RetLocs; 1469 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1470 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1471 1472 // Quick exit for void returns 1473 if (RetLocs.empty()) 1474 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1475 1476 // Copy the result values into the output registers. 1477 SDValue Glue; 1478 SmallVector<SDValue, 4> RetOps; 1479 RetOps.push_back(Chain); 1480 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1481 CCValAssign &VA = RetLocs[I]; 1482 SDValue RetValue = OutVals[I]; 1483 1484 // Make the return register live on exit. 1485 assert(VA.isRegLoc() && "Can only return in registers!"); 1486 1487 // Promote the value as required. 1488 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1489 1490 // Chain and glue the copies together. 1491 unsigned Reg = VA.getLocReg(); 1492 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1493 Glue = Chain.getValue(1); 1494 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1495 } 1496 1497 // Update chain and glue. 1498 RetOps[0] = Chain; 1499 if (Glue.getNode()) 1500 RetOps.push_back(Glue); 1501 1502 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1503 } 1504 1505 // Return true if Op is an intrinsic node with chain that returns the CC value 1506 // as its only (other) argument. Provide the associated SystemZISD opcode and 1507 // the mask of valid CC values if so. 1508 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1509 unsigned &CCValid) { 1510 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1511 switch (Id) { 1512 case Intrinsic::s390_tbegin: 1513 Opcode = SystemZISD::TBEGIN; 1514 CCValid = SystemZ::CCMASK_TBEGIN; 1515 return true; 1516 1517 case Intrinsic::s390_tbegin_nofloat: 1518 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1519 CCValid = SystemZ::CCMASK_TBEGIN; 1520 return true; 1521 1522 case Intrinsic::s390_tend: 1523 Opcode = SystemZISD::TEND; 1524 CCValid = SystemZ::CCMASK_TEND; 1525 return true; 1526 1527 default: 1528 return false; 1529 } 1530 } 1531 1532 // Return true if Op is an intrinsic node without chain that returns the 1533 // CC value as its final argument. Provide the associated SystemZISD 1534 // opcode and the mask of valid CC values if so. 1535 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1536 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1537 switch (Id) { 1538 case Intrinsic::s390_vpkshs: 1539 case Intrinsic::s390_vpksfs: 1540 case Intrinsic::s390_vpksgs: 1541 Opcode = SystemZISD::PACKS_CC; 1542 CCValid = SystemZ::CCMASK_VCMP; 1543 return true; 1544 1545 case Intrinsic::s390_vpklshs: 1546 case Intrinsic::s390_vpklsfs: 1547 case Intrinsic::s390_vpklsgs: 1548 Opcode = SystemZISD::PACKLS_CC; 1549 CCValid = SystemZ::CCMASK_VCMP; 1550 return true; 1551 1552 case Intrinsic::s390_vceqbs: 1553 case Intrinsic::s390_vceqhs: 1554 case Intrinsic::s390_vceqfs: 1555 case Intrinsic::s390_vceqgs: 1556 Opcode = SystemZISD::VICMPES; 1557 CCValid = SystemZ::CCMASK_VCMP; 1558 return true; 1559 1560 case Intrinsic::s390_vchbs: 1561 case Intrinsic::s390_vchhs: 1562 case Intrinsic::s390_vchfs: 1563 case Intrinsic::s390_vchgs: 1564 Opcode = SystemZISD::VICMPHS; 1565 CCValid = SystemZ::CCMASK_VCMP; 1566 return true; 1567 1568 case Intrinsic::s390_vchlbs: 1569 case Intrinsic::s390_vchlhs: 1570 case Intrinsic::s390_vchlfs: 1571 case Intrinsic::s390_vchlgs: 1572 Opcode = SystemZISD::VICMPHLS; 1573 CCValid = SystemZ::CCMASK_VCMP; 1574 return true; 1575 1576 case Intrinsic::s390_vtm: 1577 Opcode = SystemZISD::VTM; 1578 CCValid = SystemZ::CCMASK_VCMP; 1579 return true; 1580 1581 case Intrinsic::s390_vfaebs: 1582 case Intrinsic::s390_vfaehs: 1583 case Intrinsic::s390_vfaefs: 1584 Opcode = SystemZISD::VFAE_CC; 1585 CCValid = SystemZ::CCMASK_ANY; 1586 return true; 1587 1588 case Intrinsic::s390_vfaezbs: 1589 case Intrinsic::s390_vfaezhs: 1590 case Intrinsic::s390_vfaezfs: 1591 Opcode = SystemZISD::VFAEZ_CC; 1592 CCValid = SystemZ::CCMASK_ANY; 1593 return true; 1594 1595 case Intrinsic::s390_vfeebs: 1596 case Intrinsic::s390_vfeehs: 1597 case Intrinsic::s390_vfeefs: 1598 Opcode = SystemZISD::VFEE_CC; 1599 CCValid = SystemZ::CCMASK_ANY; 1600 return true; 1601 1602 case Intrinsic::s390_vfeezbs: 1603 case Intrinsic::s390_vfeezhs: 1604 case Intrinsic::s390_vfeezfs: 1605 Opcode = SystemZISD::VFEEZ_CC; 1606 CCValid = SystemZ::CCMASK_ANY; 1607 return true; 1608 1609 case Intrinsic::s390_vfenebs: 1610 case Intrinsic::s390_vfenehs: 1611 case Intrinsic::s390_vfenefs: 1612 Opcode = SystemZISD::VFENE_CC; 1613 CCValid = SystemZ::CCMASK_ANY; 1614 return true; 1615 1616 case Intrinsic::s390_vfenezbs: 1617 case Intrinsic::s390_vfenezhs: 1618 case Intrinsic::s390_vfenezfs: 1619 Opcode = SystemZISD::VFENEZ_CC; 1620 CCValid = SystemZ::CCMASK_ANY; 1621 return true; 1622 1623 case Intrinsic::s390_vistrbs: 1624 case Intrinsic::s390_vistrhs: 1625 case Intrinsic::s390_vistrfs: 1626 Opcode = SystemZISD::VISTR_CC; 1627 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1628 return true; 1629 1630 case Intrinsic::s390_vstrcbs: 1631 case Intrinsic::s390_vstrchs: 1632 case Intrinsic::s390_vstrcfs: 1633 Opcode = SystemZISD::VSTRC_CC; 1634 CCValid = SystemZ::CCMASK_ANY; 1635 return true; 1636 1637 case Intrinsic::s390_vstrczbs: 1638 case Intrinsic::s390_vstrczhs: 1639 case Intrinsic::s390_vstrczfs: 1640 Opcode = SystemZISD::VSTRCZ_CC; 1641 CCValid = SystemZ::CCMASK_ANY; 1642 return true; 1643 1644 case Intrinsic::s390_vfcedbs: 1645 case Intrinsic::s390_vfcesbs: 1646 Opcode = SystemZISD::VFCMPES; 1647 CCValid = SystemZ::CCMASK_VCMP; 1648 return true; 1649 1650 case Intrinsic::s390_vfchdbs: 1651 case Intrinsic::s390_vfchsbs: 1652 Opcode = SystemZISD::VFCMPHS; 1653 CCValid = SystemZ::CCMASK_VCMP; 1654 return true; 1655 1656 case Intrinsic::s390_vfchedbs: 1657 case Intrinsic::s390_vfchesbs: 1658 Opcode = SystemZISD::VFCMPHES; 1659 CCValid = SystemZ::CCMASK_VCMP; 1660 return true; 1661 1662 case Intrinsic::s390_vftcidb: 1663 case Intrinsic::s390_vftcisb: 1664 Opcode = SystemZISD::VFTCI; 1665 CCValid = SystemZ::CCMASK_VCMP; 1666 return true; 1667 1668 case Intrinsic::s390_tdc: 1669 Opcode = SystemZISD::TDC; 1670 CCValid = SystemZ::CCMASK_TDC; 1671 return true; 1672 1673 default: 1674 return false; 1675 } 1676 } 1677 1678 // Emit an intrinsic with chain and an explicit CC register result. 1679 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1680 unsigned Opcode) { 1681 // Copy all operands except the intrinsic ID. 1682 unsigned NumOps = Op.getNumOperands(); 1683 SmallVector<SDValue, 6> Ops; 1684 Ops.reserve(NumOps - 1); 1685 Ops.push_back(Op.getOperand(0)); 1686 for (unsigned I = 2; I < NumOps; ++I) 1687 Ops.push_back(Op.getOperand(I)); 1688 1689 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1690 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1691 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1692 SDValue OldChain = SDValue(Op.getNode(), 1); 1693 SDValue NewChain = SDValue(Intr.getNode(), 1); 1694 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1695 return Intr.getNode(); 1696 } 1697 1698 // Emit an intrinsic with an explicit CC register result. 1699 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1700 unsigned Opcode) { 1701 // Copy all operands except the intrinsic ID. 1702 unsigned NumOps = Op.getNumOperands(); 1703 SmallVector<SDValue, 6> Ops; 1704 Ops.reserve(NumOps - 1); 1705 for (unsigned I = 1; I < NumOps; ++I) 1706 Ops.push_back(Op.getOperand(I)); 1707 1708 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1709 return Intr.getNode(); 1710 } 1711 1712 // CC is a comparison that will be implemented using an integer or 1713 // floating-point comparison. Return the condition code mask for 1714 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1715 // unsigned comparisons and clear for signed ones. In the floating-point 1716 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1717 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1718 #define CONV(X) \ 1719 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1720 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1721 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1722 1723 switch (CC) { 1724 default: 1725 llvm_unreachable("Invalid integer condition!"); 1726 1727 CONV(EQ); 1728 CONV(NE); 1729 CONV(GT); 1730 CONV(GE); 1731 CONV(LT); 1732 CONV(LE); 1733 1734 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1735 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1736 } 1737 #undef CONV 1738 } 1739 1740 // If C can be converted to a comparison against zero, adjust the operands 1741 // as necessary. 1742 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1743 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1744 return; 1745 1746 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1747 if (!ConstOp1) 1748 return; 1749 1750 int64_t Value = ConstOp1->getSExtValue(); 1751 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1752 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1753 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1754 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1755 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1756 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1757 } 1758 } 1759 1760 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1761 // adjust the operands as necessary. 1762 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1763 Comparison &C) { 1764 // For us to make any changes, it must a comparison between a single-use 1765 // load and a constant. 1766 if (!C.Op0.hasOneUse() || 1767 C.Op0.getOpcode() != ISD::LOAD || 1768 C.Op1.getOpcode() != ISD::Constant) 1769 return; 1770 1771 // We must have an 8- or 16-bit load. 1772 auto *Load = cast<LoadSDNode>(C.Op0); 1773 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1774 if (NumBits != 8 && NumBits != 16) 1775 return; 1776 1777 // The load must be an extending one and the constant must be within the 1778 // range of the unextended value. 1779 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1780 uint64_t Value = ConstOp1->getZExtValue(); 1781 uint64_t Mask = (1 << NumBits) - 1; 1782 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1783 // Make sure that ConstOp1 is in range of C.Op0. 1784 int64_t SignedValue = ConstOp1->getSExtValue(); 1785 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1786 return; 1787 if (C.ICmpType != SystemZICMP::SignedOnly) { 1788 // Unsigned comparison between two sign-extended values is equivalent 1789 // to unsigned comparison between two zero-extended values. 1790 Value &= Mask; 1791 } else if (NumBits == 8) { 1792 // Try to treat the comparison as unsigned, so that we can use CLI. 1793 // Adjust CCMask and Value as necessary. 1794 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1795 // Test whether the high bit of the byte is set. 1796 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1797 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1798 // Test whether the high bit of the byte is clear. 1799 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1800 else 1801 // No instruction exists for this combination. 1802 return; 1803 C.ICmpType = SystemZICMP::UnsignedOnly; 1804 } 1805 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1806 if (Value > Mask) 1807 return; 1808 // If the constant is in range, we can use any comparison. 1809 C.ICmpType = SystemZICMP::Any; 1810 } else 1811 return; 1812 1813 // Make sure that the first operand is an i32 of the right extension type. 1814 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1815 ISD::SEXTLOAD : 1816 ISD::ZEXTLOAD); 1817 if (C.Op0.getValueType() != MVT::i32 || 1818 Load->getExtensionType() != ExtType) { 1819 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 1820 Load->getBasePtr(), Load->getPointerInfo(), 1821 Load->getMemoryVT(), Load->getAlignment(), 1822 Load->getMemOperand()->getFlags()); 1823 // Update the chain uses. 1824 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 1825 } 1826 1827 // Make sure that the second operand is an i32 with the right value. 1828 if (C.Op1.getValueType() != MVT::i32 || 1829 Value != ConstOp1->getZExtValue()) 1830 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1831 } 1832 1833 // Return true if Op is either an unextended load, or a load suitable 1834 // for integer register-memory comparisons of type ICmpType. 1835 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1836 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1837 if (Load) { 1838 // There are no instructions to compare a register with a memory byte. 1839 if (Load->getMemoryVT() == MVT::i8) 1840 return false; 1841 // Otherwise decide on extension type. 1842 switch (Load->getExtensionType()) { 1843 case ISD::NON_EXTLOAD: 1844 return true; 1845 case ISD::SEXTLOAD: 1846 return ICmpType != SystemZICMP::UnsignedOnly; 1847 case ISD::ZEXTLOAD: 1848 return ICmpType != SystemZICMP::SignedOnly; 1849 default: 1850 break; 1851 } 1852 } 1853 return false; 1854 } 1855 1856 // Return true if it is better to swap the operands of C. 1857 static bool shouldSwapCmpOperands(const Comparison &C) { 1858 // Leave f128 comparisons alone, since they have no memory forms. 1859 if (C.Op0.getValueType() == MVT::f128) 1860 return false; 1861 1862 // Always keep a floating-point constant second, since comparisons with 1863 // zero can use LOAD TEST and comparisons with other constants make a 1864 // natural memory operand. 1865 if (isa<ConstantFPSDNode>(C.Op1)) 1866 return false; 1867 1868 // Never swap comparisons with zero since there are many ways to optimize 1869 // those later. 1870 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1871 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1872 return false; 1873 1874 // Also keep natural memory operands second if the loaded value is 1875 // only used here. Several comparisons have memory forms. 1876 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1877 return false; 1878 1879 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1880 // In that case we generally prefer the memory to be second. 1881 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1882 // The only exceptions are when the second operand is a constant and 1883 // we can use things like CHHSI. 1884 if (!ConstOp1) 1885 return true; 1886 // The unsigned memory-immediate instructions can handle 16-bit 1887 // unsigned integers. 1888 if (C.ICmpType != SystemZICMP::SignedOnly && 1889 isUInt<16>(ConstOp1->getZExtValue())) 1890 return false; 1891 // The signed memory-immediate instructions can handle 16-bit 1892 // signed integers. 1893 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1894 isInt<16>(ConstOp1->getSExtValue())) 1895 return false; 1896 return true; 1897 } 1898 1899 // Try to promote the use of CGFR and CLGFR. 1900 unsigned Opcode0 = C.Op0.getOpcode(); 1901 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1902 return true; 1903 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1904 return true; 1905 if (C.ICmpType != SystemZICMP::SignedOnly && 1906 Opcode0 == ISD::AND && 1907 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1908 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1909 return true; 1910 1911 return false; 1912 } 1913 1914 // Return a version of comparison CC mask CCMask in which the LT and GT 1915 // actions are swapped. 1916 static unsigned reverseCCMask(unsigned CCMask) { 1917 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1918 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1919 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1920 (CCMask & SystemZ::CCMASK_CMP_UO)); 1921 } 1922 1923 // Check whether C tests for equality between X and Y and whether X - Y 1924 // or Y - X is also computed. In that case it's better to compare the 1925 // result of the subtraction against zero. 1926 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 1927 Comparison &C) { 1928 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1929 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1930 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1931 SDNode *N = *I; 1932 if (N->getOpcode() == ISD::SUB && 1933 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1934 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1935 C.Op0 = SDValue(N, 0); 1936 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1937 return; 1938 } 1939 } 1940 } 1941 } 1942 1943 // Check whether C compares a floating-point value with zero and if that 1944 // floating-point value is also negated. In this case we can use the 1945 // negation to set CC, so avoiding separate LOAD AND TEST and 1946 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1947 static void adjustForFNeg(Comparison &C) { 1948 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1949 if (C1 && C1->isZero()) { 1950 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1951 SDNode *N = *I; 1952 if (N->getOpcode() == ISD::FNEG) { 1953 C.Op0 = SDValue(N, 0); 1954 C.CCMask = reverseCCMask(C.CCMask); 1955 return; 1956 } 1957 } 1958 } 1959 } 1960 1961 // Check whether C compares (shl X, 32) with 0 and whether X is 1962 // also sign-extended. In that case it is better to test the result 1963 // of the sign extension using LTGFR. 1964 // 1965 // This case is important because InstCombine transforms a comparison 1966 // with (sext (trunc X)) into a comparison with (shl X, 32). 1967 static void adjustForLTGFR(Comparison &C) { 1968 // Check for a comparison between (shl X, 32) and 0. 1969 if (C.Op0.getOpcode() == ISD::SHL && 1970 C.Op0.getValueType() == MVT::i64 && 1971 C.Op1.getOpcode() == ISD::Constant && 1972 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1973 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1974 if (C1 && C1->getZExtValue() == 32) { 1975 SDValue ShlOp0 = C.Op0.getOperand(0); 1976 // See whether X has any SIGN_EXTEND_INREG uses. 1977 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1978 SDNode *N = *I; 1979 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1980 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1981 C.Op0 = SDValue(N, 0); 1982 return; 1983 } 1984 } 1985 } 1986 } 1987 } 1988 1989 // If C compares the truncation of an extending load, try to compare 1990 // the untruncated value instead. This exposes more opportunities to 1991 // reuse CC. 1992 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 1993 Comparison &C) { 1994 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1995 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1996 C.Op1.getOpcode() == ISD::Constant && 1997 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1998 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1999 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2000 unsigned Type = L->getExtensionType(); 2001 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2002 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2003 C.Op0 = C.Op0.getOperand(0); 2004 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2005 } 2006 } 2007 } 2008 } 2009 2010 // Return true if shift operation N has an in-range constant shift value. 2011 // Store it in ShiftVal if so. 2012 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2013 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2014 if (!Shift) 2015 return false; 2016 2017 uint64_t Amount = Shift->getZExtValue(); 2018 if (Amount >= N.getValueSizeInBits()) 2019 return false; 2020 2021 ShiftVal = Amount; 2022 return true; 2023 } 2024 2025 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2026 // instruction and whether the CC value is descriptive enough to handle 2027 // a comparison of type Opcode between the AND result and CmpVal. 2028 // CCMask says which comparison result is being tested and BitSize is 2029 // the number of bits in the operands. If TEST UNDER MASK can be used, 2030 // return the corresponding CC mask, otherwise return 0. 2031 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2032 uint64_t Mask, uint64_t CmpVal, 2033 unsigned ICmpType) { 2034 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2035 2036 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2037 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2038 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2039 return 0; 2040 2041 // Work out the masks for the lowest and highest bits. 2042 unsigned HighShift = 63 - countLeadingZeros(Mask); 2043 uint64_t High = uint64_t(1) << HighShift; 2044 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2045 2046 // Signed ordered comparisons are effectively unsigned if the sign 2047 // bit is dropped. 2048 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2049 2050 // Check for equality comparisons with 0, or the equivalent. 2051 if (CmpVal == 0) { 2052 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2053 return SystemZ::CCMASK_TM_ALL_0; 2054 if (CCMask == SystemZ::CCMASK_CMP_NE) 2055 return SystemZ::CCMASK_TM_SOME_1; 2056 } 2057 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2058 if (CCMask == SystemZ::CCMASK_CMP_LT) 2059 return SystemZ::CCMASK_TM_ALL_0; 2060 if (CCMask == SystemZ::CCMASK_CMP_GE) 2061 return SystemZ::CCMASK_TM_SOME_1; 2062 } 2063 if (EffectivelyUnsigned && CmpVal < Low) { 2064 if (CCMask == SystemZ::CCMASK_CMP_LE) 2065 return SystemZ::CCMASK_TM_ALL_0; 2066 if (CCMask == SystemZ::CCMASK_CMP_GT) 2067 return SystemZ::CCMASK_TM_SOME_1; 2068 } 2069 2070 // Check for equality comparisons with the mask, or the equivalent. 2071 if (CmpVal == Mask) { 2072 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2073 return SystemZ::CCMASK_TM_ALL_1; 2074 if (CCMask == SystemZ::CCMASK_CMP_NE) 2075 return SystemZ::CCMASK_TM_SOME_0; 2076 } 2077 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2078 if (CCMask == SystemZ::CCMASK_CMP_GT) 2079 return SystemZ::CCMASK_TM_ALL_1; 2080 if (CCMask == SystemZ::CCMASK_CMP_LE) 2081 return SystemZ::CCMASK_TM_SOME_0; 2082 } 2083 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2084 if (CCMask == SystemZ::CCMASK_CMP_GE) 2085 return SystemZ::CCMASK_TM_ALL_1; 2086 if (CCMask == SystemZ::CCMASK_CMP_LT) 2087 return SystemZ::CCMASK_TM_SOME_0; 2088 } 2089 2090 // Check for ordered comparisons with the top bit. 2091 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2092 if (CCMask == SystemZ::CCMASK_CMP_LE) 2093 return SystemZ::CCMASK_TM_MSB_0; 2094 if (CCMask == SystemZ::CCMASK_CMP_GT) 2095 return SystemZ::CCMASK_TM_MSB_1; 2096 } 2097 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2098 if (CCMask == SystemZ::CCMASK_CMP_LT) 2099 return SystemZ::CCMASK_TM_MSB_0; 2100 if (CCMask == SystemZ::CCMASK_CMP_GE) 2101 return SystemZ::CCMASK_TM_MSB_1; 2102 } 2103 2104 // If there are just two bits, we can do equality checks for Low and High 2105 // as well. 2106 if (Mask == Low + High) { 2107 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2108 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2109 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2110 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2111 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2112 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2113 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2114 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2115 } 2116 2117 // Looks like we've exhausted our options. 2118 return 0; 2119 } 2120 2121 // See whether C can be implemented as a TEST UNDER MASK instruction. 2122 // Update the arguments with the TM version if so. 2123 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2124 Comparison &C) { 2125 // Check that we have a comparison with a constant. 2126 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2127 if (!ConstOp1) 2128 return; 2129 uint64_t CmpVal = ConstOp1->getZExtValue(); 2130 2131 // Check whether the nonconstant input is an AND with a constant mask. 2132 Comparison NewC(C); 2133 uint64_t MaskVal; 2134 ConstantSDNode *Mask = nullptr; 2135 if (C.Op0.getOpcode() == ISD::AND) { 2136 NewC.Op0 = C.Op0.getOperand(0); 2137 NewC.Op1 = C.Op0.getOperand(1); 2138 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2139 if (!Mask) 2140 return; 2141 MaskVal = Mask->getZExtValue(); 2142 } else { 2143 // There is no instruction to compare with a 64-bit immediate 2144 // so use TMHH instead if possible. We need an unsigned ordered 2145 // comparison with an i64 immediate. 2146 if (NewC.Op0.getValueType() != MVT::i64 || 2147 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2148 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2149 NewC.ICmpType == SystemZICMP::SignedOnly) 2150 return; 2151 // Convert LE and GT comparisons into LT and GE. 2152 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2153 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2154 if (CmpVal == uint64_t(-1)) 2155 return; 2156 CmpVal += 1; 2157 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2158 } 2159 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2160 // be masked off without changing the result. 2161 MaskVal = -(CmpVal & -CmpVal); 2162 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2163 } 2164 if (!MaskVal) 2165 return; 2166 2167 // Check whether the combination of mask, comparison value and comparison 2168 // type are suitable. 2169 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2170 unsigned NewCCMask, ShiftVal; 2171 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2172 NewC.Op0.getOpcode() == ISD::SHL && 2173 isSimpleShift(NewC.Op0, ShiftVal) && 2174 (MaskVal >> ShiftVal != 0) && 2175 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2176 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2177 MaskVal >> ShiftVal, 2178 CmpVal >> ShiftVal, 2179 SystemZICMP::Any))) { 2180 NewC.Op0 = NewC.Op0.getOperand(0); 2181 MaskVal >>= ShiftVal; 2182 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2183 NewC.Op0.getOpcode() == ISD::SRL && 2184 isSimpleShift(NewC.Op0, ShiftVal) && 2185 (MaskVal << ShiftVal != 0) && 2186 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2187 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2188 MaskVal << ShiftVal, 2189 CmpVal << ShiftVal, 2190 SystemZICMP::UnsignedOnly))) { 2191 NewC.Op0 = NewC.Op0.getOperand(0); 2192 MaskVal <<= ShiftVal; 2193 } else { 2194 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2195 NewC.ICmpType); 2196 if (!NewCCMask) 2197 return; 2198 } 2199 2200 // Go ahead and make the change. 2201 C.Opcode = SystemZISD::TM; 2202 C.Op0 = NewC.Op0; 2203 if (Mask && Mask->getZExtValue() == MaskVal) 2204 C.Op1 = SDValue(Mask, 0); 2205 else 2206 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2207 C.CCValid = SystemZ::CCMASK_TM; 2208 C.CCMask = NewCCMask; 2209 } 2210 2211 // See whether the comparison argument contains a redundant AND 2212 // and remove it if so. This sometimes happens due to the generic 2213 // BRCOND expansion. 2214 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2215 Comparison &C) { 2216 if (C.Op0.getOpcode() != ISD::AND) 2217 return; 2218 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2219 if (!Mask) 2220 return; 2221 KnownBits Known; 2222 DAG.computeKnownBits(C.Op0.getOperand(0), Known); 2223 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2224 return; 2225 2226 C.Op0 = C.Op0.getOperand(0); 2227 } 2228 2229 // Return a Comparison that tests the condition-code result of intrinsic 2230 // node Call against constant integer CC using comparison code Cond. 2231 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2232 // and CCValid is the set of possible condition-code results. 2233 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2234 SDValue Call, unsigned CCValid, uint64_t CC, 2235 ISD::CondCode Cond) { 2236 Comparison C(Call, SDValue()); 2237 C.Opcode = Opcode; 2238 C.CCValid = CCValid; 2239 if (Cond == ISD::SETEQ) 2240 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2241 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2242 else if (Cond == ISD::SETNE) 2243 // ...and the inverse of that. 2244 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2245 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2246 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2247 // always true for CC>3. 2248 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2249 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2250 // ...and the inverse of that. 2251 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2252 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2253 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2254 // always true for CC>3. 2255 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2256 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2257 // ...and the inverse of that. 2258 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2259 else 2260 llvm_unreachable("Unexpected integer comparison type"); 2261 C.CCMask &= CCValid; 2262 return C; 2263 } 2264 2265 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2266 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2267 ISD::CondCode Cond, const SDLoc &DL) { 2268 if (CmpOp1.getOpcode() == ISD::Constant) { 2269 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2270 unsigned Opcode, CCValid; 2271 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2272 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2273 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2274 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2275 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2276 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2277 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2278 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2279 } 2280 Comparison C(CmpOp0, CmpOp1); 2281 C.CCMask = CCMaskForCondCode(Cond); 2282 if (C.Op0.getValueType().isFloatingPoint()) { 2283 C.CCValid = SystemZ::CCMASK_FCMP; 2284 C.Opcode = SystemZISD::FCMP; 2285 adjustForFNeg(C); 2286 } else { 2287 C.CCValid = SystemZ::CCMASK_ICMP; 2288 C.Opcode = SystemZISD::ICMP; 2289 // Choose the type of comparison. Equality and inequality tests can 2290 // use either signed or unsigned comparisons. The choice also doesn't 2291 // matter if both sign bits are known to be clear. In those cases we 2292 // want to give the main isel code the freedom to choose whichever 2293 // form fits best. 2294 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2295 C.CCMask == SystemZ::CCMASK_CMP_NE || 2296 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2297 C.ICmpType = SystemZICMP::Any; 2298 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2299 C.ICmpType = SystemZICMP::UnsignedOnly; 2300 else 2301 C.ICmpType = SystemZICMP::SignedOnly; 2302 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2303 adjustForRedundantAnd(DAG, DL, C); 2304 adjustZeroCmp(DAG, DL, C); 2305 adjustSubwordCmp(DAG, DL, C); 2306 adjustForSubtraction(DAG, DL, C); 2307 adjustForLTGFR(C); 2308 adjustICmpTruncate(DAG, DL, C); 2309 } 2310 2311 if (shouldSwapCmpOperands(C)) { 2312 std::swap(C.Op0, C.Op1); 2313 C.CCMask = reverseCCMask(C.CCMask); 2314 } 2315 2316 adjustForTestUnderMask(DAG, DL, C); 2317 return C; 2318 } 2319 2320 // Emit the comparison instruction described by C. 2321 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2322 if (!C.Op1.getNode()) { 2323 SDNode *Node; 2324 switch (C.Op0.getOpcode()) { 2325 case ISD::INTRINSIC_W_CHAIN: 2326 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2327 return SDValue(Node, 0); 2328 case ISD::INTRINSIC_WO_CHAIN: 2329 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2330 return SDValue(Node, Node->getNumValues() - 1); 2331 default: 2332 llvm_unreachable("Invalid comparison operands"); 2333 } 2334 } 2335 if (C.Opcode == SystemZISD::ICMP) 2336 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2337 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2338 if (C.Opcode == SystemZISD::TM) { 2339 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2340 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2341 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2342 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2343 } 2344 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2345 } 2346 2347 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2348 // 64 bits. Extend is the extension type to use. Store the high part 2349 // in Hi and the low part in Lo. 2350 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2351 SDValue Op0, SDValue Op1, SDValue &Hi, 2352 SDValue &Lo) { 2353 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2354 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2355 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2356 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2357 DAG.getConstant(32, DL, MVT::i64)); 2358 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2359 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2360 } 2361 2362 // Lower a binary operation that produces two VT results, one in each 2363 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2364 // and Opcode performs the GR128 operation. Store the even register result 2365 // in Even and the odd register result in Odd. 2366 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2367 unsigned Opcode, SDValue Op0, SDValue Op1, 2368 SDValue &Even, SDValue &Odd) { 2369 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2370 bool Is32Bit = is32Bit(VT); 2371 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2372 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2373 } 2374 2375 // Return an i32 value that is 1 if the CC value produced by CCReg is 2376 // in the mask CCMask and 0 otherwise. CC is known to have a value 2377 // in CCValid, so other values can be ignored. 2378 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2379 unsigned CCValid, unsigned CCMask) { 2380 SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32), 2381 DAG.getConstant(0, DL, MVT::i32), 2382 DAG.getConstant(CCValid, DL, MVT::i32), 2383 DAG.getConstant(CCMask, DL, MVT::i32), CCReg }; 2384 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2385 } 2386 2387 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2388 // be done directly. IsFP is true if CC is for a floating-point rather than 2389 // integer comparison. 2390 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2391 switch (CC) { 2392 case ISD::SETOEQ: 2393 case ISD::SETEQ: 2394 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2395 2396 case ISD::SETOGE: 2397 case ISD::SETGE: 2398 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2399 2400 case ISD::SETOGT: 2401 case ISD::SETGT: 2402 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2403 2404 case ISD::SETUGT: 2405 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2406 2407 default: 2408 return 0; 2409 } 2410 } 2411 2412 // Return the SystemZISD vector comparison operation for CC or its inverse, 2413 // or 0 if neither can be done directly. Indicate in Invert whether the 2414 // result is for the inverse of CC. IsFP is true if CC is for a 2415 // floating-point rather than integer comparison. 2416 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2417 bool &Invert) { 2418 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2419 Invert = false; 2420 return Opcode; 2421 } 2422 2423 CC = ISD::getSetCCInverse(CC, !IsFP); 2424 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2425 Invert = true; 2426 return Opcode; 2427 } 2428 2429 return 0; 2430 } 2431 2432 // Return a v2f64 that contains the extended form of elements Start and Start+1 2433 // of v4f32 value Op. 2434 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2435 SDValue Op) { 2436 int Mask[] = { Start, -1, Start + 1, -1 }; 2437 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2438 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2439 } 2440 2441 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2442 // producing a result of type VT. 2443 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2444 const SDLoc &DL, EVT VT, 2445 SDValue CmpOp0, 2446 SDValue CmpOp1) const { 2447 // There is no hardware support for v4f32 (unless we have the vector 2448 // enhancements facility 1), so extend the vector into two v2f64s 2449 // and compare those. 2450 if (CmpOp0.getValueType() == MVT::v4f32 && 2451 !Subtarget.hasVectorEnhancements1()) { 2452 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2453 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2454 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2455 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2456 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2457 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2458 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2459 } 2460 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2461 } 2462 2463 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2464 // an integer mask of type VT. 2465 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2466 const SDLoc &DL, EVT VT, 2467 ISD::CondCode CC, 2468 SDValue CmpOp0, 2469 SDValue CmpOp1) const { 2470 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2471 bool Invert = false; 2472 SDValue Cmp; 2473 switch (CC) { 2474 // Handle tests for order using (or (ogt y x) (oge x y)). 2475 case ISD::SETUO: 2476 Invert = true; 2477 LLVM_FALLTHROUGH; 2478 case ISD::SETO: { 2479 assert(IsFP && "Unexpected integer comparison"); 2480 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2481 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2482 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2483 break; 2484 } 2485 2486 // Handle <> tests using (or (ogt y x) (ogt x y)). 2487 case ISD::SETUEQ: 2488 Invert = true; 2489 LLVM_FALLTHROUGH; 2490 case ISD::SETONE: { 2491 assert(IsFP && "Unexpected integer comparison"); 2492 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2493 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2494 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2495 break; 2496 } 2497 2498 // Otherwise a single comparison is enough. It doesn't really 2499 // matter whether we try the inversion or the swap first, since 2500 // there are no cases where both work. 2501 default: 2502 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2503 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2504 else { 2505 CC = ISD::getSetCCSwappedOperands(CC); 2506 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2507 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2508 else 2509 llvm_unreachable("Unhandled comparison"); 2510 } 2511 break; 2512 } 2513 if (Invert) { 2514 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2515 DAG.getConstant(65535, DL, MVT::i32)); 2516 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2517 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2518 } 2519 return Cmp; 2520 } 2521 2522 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2523 SelectionDAG &DAG) const { 2524 SDValue CmpOp0 = Op.getOperand(0); 2525 SDValue CmpOp1 = Op.getOperand(1); 2526 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2527 SDLoc DL(Op); 2528 EVT VT = Op.getValueType(); 2529 if (VT.isVector()) 2530 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2531 2532 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2533 SDValue CCReg = emitCmp(DAG, DL, C); 2534 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2535 } 2536 2537 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2538 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2539 SDValue CmpOp0 = Op.getOperand(2); 2540 SDValue CmpOp1 = Op.getOperand(3); 2541 SDValue Dest = Op.getOperand(4); 2542 SDLoc DL(Op); 2543 2544 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2545 SDValue CCReg = emitCmp(DAG, DL, C); 2546 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2547 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2548 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2549 } 2550 2551 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2552 // allowing Pos and Neg to be wider than CmpOp. 2553 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2554 return (Neg.getOpcode() == ISD::SUB && 2555 Neg.getOperand(0).getOpcode() == ISD::Constant && 2556 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2557 Neg.getOperand(1) == Pos && 2558 (Pos == CmpOp || 2559 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2560 Pos.getOperand(0) == CmpOp))); 2561 } 2562 2563 // Return the absolute or negative absolute of Op; IsNegative decides which. 2564 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2565 bool IsNegative) { 2566 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2567 if (IsNegative) 2568 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2569 DAG.getConstant(0, DL, Op.getValueType()), Op); 2570 return Op; 2571 } 2572 2573 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2574 SelectionDAG &DAG) const { 2575 SDValue CmpOp0 = Op.getOperand(0); 2576 SDValue CmpOp1 = Op.getOperand(1); 2577 SDValue TrueOp = Op.getOperand(2); 2578 SDValue FalseOp = Op.getOperand(3); 2579 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2580 SDLoc DL(Op); 2581 2582 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2583 2584 // Check for absolute and negative-absolute selections, including those 2585 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2586 // This check supplements the one in DAGCombiner. 2587 if (C.Opcode == SystemZISD::ICMP && 2588 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2589 C.CCMask != SystemZ::CCMASK_CMP_NE && 2590 C.Op1.getOpcode() == ISD::Constant && 2591 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2592 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2593 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2594 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2595 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2596 } 2597 2598 SDValue CCReg = emitCmp(DAG, DL, C); 2599 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2600 DAG.getConstant(C.CCMask, DL, MVT::i32), CCReg}; 2601 2602 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2603 } 2604 2605 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2606 SelectionDAG &DAG) const { 2607 SDLoc DL(Node); 2608 const GlobalValue *GV = Node->getGlobal(); 2609 int64_t Offset = Node->getOffset(); 2610 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2611 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2612 2613 SDValue Result; 2614 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2615 // Assign anchors at 1<<12 byte boundaries. 2616 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2617 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2618 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2619 2620 // The offset can be folded into the address if it is aligned to a halfword. 2621 Offset -= Anchor; 2622 if (Offset != 0 && (Offset & 1) == 0) { 2623 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2624 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2625 Offset = 0; 2626 } 2627 } else { 2628 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2629 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2630 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2631 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2632 } 2633 2634 // If there was a non-zero offset that we didn't fold, create an explicit 2635 // addition for it. 2636 if (Offset != 0) 2637 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2638 DAG.getConstant(Offset, DL, PtrVT)); 2639 2640 return Result; 2641 } 2642 2643 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2644 SelectionDAG &DAG, 2645 unsigned Opcode, 2646 SDValue GOTOffset) const { 2647 SDLoc DL(Node); 2648 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2649 SDValue Chain = DAG.getEntryNode(); 2650 SDValue Glue; 2651 2652 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2653 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2654 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2655 Glue = Chain.getValue(1); 2656 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2657 Glue = Chain.getValue(1); 2658 2659 // The first call operand is the chain and the second is the TLS symbol. 2660 SmallVector<SDValue, 8> Ops; 2661 Ops.push_back(Chain); 2662 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2663 Node->getValueType(0), 2664 0, 0)); 2665 2666 // Add argument registers to the end of the list so that they are 2667 // known live into the call. 2668 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2669 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2670 2671 // Add a register mask operand representing the call-preserved registers. 2672 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2673 const uint32_t *Mask = 2674 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2675 assert(Mask && "Missing call preserved mask for calling convention"); 2676 Ops.push_back(DAG.getRegisterMask(Mask)); 2677 2678 // Glue the call to the argument copies. 2679 Ops.push_back(Glue); 2680 2681 // Emit the call. 2682 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2683 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2684 Glue = Chain.getValue(1); 2685 2686 // Copy the return value from %r2. 2687 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2688 } 2689 2690 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2691 SelectionDAG &DAG) const { 2692 SDValue Chain = DAG.getEntryNode(); 2693 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2694 2695 // The high part of the thread pointer is in access register 0. 2696 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 2697 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2698 2699 // The low part of the thread pointer is in access register 1. 2700 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 2701 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2702 2703 // Merge them into a single 64-bit address. 2704 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2705 DAG.getConstant(32, DL, PtrVT)); 2706 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2707 } 2708 2709 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2710 SelectionDAG &DAG) const { 2711 if (DAG.getTarget().useEmulatedTLS()) 2712 return LowerToTLSEmulatedModel(Node, DAG); 2713 SDLoc DL(Node); 2714 const GlobalValue *GV = Node->getGlobal(); 2715 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2716 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2717 2718 SDValue TP = lowerThreadPointer(DL, DAG); 2719 2720 // Get the offset of GA from the thread pointer, based on the TLS model. 2721 SDValue Offset; 2722 switch (model) { 2723 case TLSModel::GeneralDynamic: { 2724 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2725 SystemZConstantPoolValue *CPV = 2726 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2727 2728 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2729 Offset = DAG.getLoad( 2730 PtrVT, DL, DAG.getEntryNode(), Offset, 2731 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2732 2733 // Call __tls_get_offset to retrieve the offset. 2734 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2735 break; 2736 } 2737 2738 case TLSModel::LocalDynamic: { 2739 // Load the GOT offset of the module ID. 2740 SystemZConstantPoolValue *CPV = 2741 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2742 2743 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2744 Offset = DAG.getLoad( 2745 PtrVT, DL, DAG.getEntryNode(), Offset, 2746 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2747 2748 // Call __tls_get_offset to retrieve the module base offset. 2749 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2750 2751 // Note: The SystemZLDCleanupPass will remove redundant computations 2752 // of the module base offset. Count total number of local-dynamic 2753 // accesses to trigger execution of that pass. 2754 SystemZMachineFunctionInfo* MFI = 2755 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2756 MFI->incNumLocalDynamicTLSAccesses(); 2757 2758 // Add the per-symbol offset. 2759 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2760 2761 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2762 DTPOffset = DAG.getLoad( 2763 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2764 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2765 2766 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2767 break; 2768 } 2769 2770 case TLSModel::InitialExec: { 2771 // Load the offset from the GOT. 2772 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2773 SystemZII::MO_INDNTPOFF); 2774 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2775 Offset = 2776 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2777 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2778 break; 2779 } 2780 2781 case TLSModel::LocalExec: { 2782 // Force the offset into the constant pool and load it from there. 2783 SystemZConstantPoolValue *CPV = 2784 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2785 2786 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2787 Offset = DAG.getLoad( 2788 PtrVT, DL, DAG.getEntryNode(), Offset, 2789 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2790 break; 2791 } 2792 } 2793 2794 // Add the base and offset together. 2795 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2796 } 2797 2798 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2799 SelectionDAG &DAG) const { 2800 SDLoc DL(Node); 2801 const BlockAddress *BA = Node->getBlockAddress(); 2802 int64_t Offset = Node->getOffset(); 2803 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2804 2805 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2806 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2807 return Result; 2808 } 2809 2810 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2811 SelectionDAG &DAG) const { 2812 SDLoc DL(JT); 2813 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2814 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2815 2816 // Use LARL to load the address of the table. 2817 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2818 } 2819 2820 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2821 SelectionDAG &DAG) const { 2822 SDLoc DL(CP); 2823 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2824 2825 SDValue Result; 2826 if (CP->isMachineConstantPoolEntry()) 2827 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2828 CP->getAlignment()); 2829 else 2830 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2831 CP->getAlignment(), CP->getOffset()); 2832 2833 // Use LARL to load the address of the constant pool entry. 2834 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2835 } 2836 2837 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 2838 SelectionDAG &DAG) const { 2839 MachineFunction &MF = DAG.getMachineFunction(); 2840 MachineFrameInfo &MFI = MF.getFrameInfo(); 2841 MFI.setFrameAddressIsTaken(true); 2842 2843 SDLoc DL(Op); 2844 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2845 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2846 2847 // If the back chain frame index has not been allocated yet, do so. 2848 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 2849 int BackChainIdx = FI->getFramePointerSaveIndex(); 2850 if (!BackChainIdx) { 2851 // By definition, the frame address is the address of the back chain. 2852 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 2853 FI->setFramePointerSaveIndex(BackChainIdx); 2854 } 2855 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 2856 2857 // FIXME The frontend should detect this case. 2858 if (Depth > 0) { 2859 report_fatal_error("Unsupported stack frame traversal count"); 2860 } 2861 2862 return BackChain; 2863 } 2864 2865 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 2866 SelectionDAG &DAG) const { 2867 MachineFunction &MF = DAG.getMachineFunction(); 2868 MachineFrameInfo &MFI = MF.getFrameInfo(); 2869 MFI.setReturnAddressIsTaken(true); 2870 2871 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2872 return SDValue(); 2873 2874 SDLoc DL(Op); 2875 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2876 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2877 2878 // FIXME The frontend should detect this case. 2879 if (Depth > 0) { 2880 report_fatal_error("Unsupported stack frame traversal count"); 2881 } 2882 2883 // Return R14D, which has the return address. Mark it an implicit live-in. 2884 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 2885 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 2886 } 2887 2888 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2889 SelectionDAG &DAG) const { 2890 SDLoc DL(Op); 2891 SDValue In = Op.getOperand(0); 2892 EVT InVT = In.getValueType(); 2893 EVT ResVT = Op.getValueType(); 2894 2895 // Convert loads directly. This is normally done by DAGCombiner, 2896 // but we need this case for bitcasts that are created during lowering 2897 // and which are then lowered themselves. 2898 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2899 if (ISD::isNormalLoad(LoadN)) { 2900 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 2901 LoadN->getBasePtr(), LoadN->getMemOperand()); 2902 // Update the chain uses. 2903 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 2904 return NewLoad; 2905 } 2906 2907 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2908 SDValue In64; 2909 if (Subtarget.hasHighWord()) { 2910 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2911 MVT::i64); 2912 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2913 MVT::i64, SDValue(U64, 0), In); 2914 } else { 2915 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2916 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2917 DAG.getConstant(32, DL, MVT::i64)); 2918 } 2919 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2920 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 2921 DL, MVT::f32, Out64); 2922 } 2923 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2924 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2925 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2926 MVT::f64, SDValue(U64, 0), In); 2927 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2928 if (Subtarget.hasHighWord()) 2929 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2930 MVT::i32, Out64); 2931 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2932 DAG.getConstant(32, DL, MVT::i64)); 2933 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2934 } 2935 llvm_unreachable("Unexpected bitcast combination"); 2936 } 2937 2938 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2939 SelectionDAG &DAG) const { 2940 MachineFunction &MF = DAG.getMachineFunction(); 2941 SystemZMachineFunctionInfo *FuncInfo = 2942 MF.getInfo<SystemZMachineFunctionInfo>(); 2943 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2944 2945 SDValue Chain = Op.getOperand(0); 2946 SDValue Addr = Op.getOperand(1); 2947 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2948 SDLoc DL(Op); 2949 2950 // The initial values of each field. 2951 const unsigned NumFields = 4; 2952 SDValue Fields[NumFields] = { 2953 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2954 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2955 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2956 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2957 }; 2958 2959 // Store each field into its respective slot. 2960 SDValue MemOps[NumFields]; 2961 unsigned Offset = 0; 2962 for (unsigned I = 0; I < NumFields; ++I) { 2963 SDValue FieldAddr = Addr; 2964 if (Offset != 0) 2965 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2966 DAG.getIntPtrConstant(Offset, DL)); 2967 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2968 MachinePointerInfo(SV, Offset)); 2969 Offset += 8; 2970 } 2971 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2972 } 2973 2974 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2975 SelectionDAG &DAG) const { 2976 SDValue Chain = Op.getOperand(0); 2977 SDValue DstPtr = Op.getOperand(1); 2978 SDValue SrcPtr = Op.getOperand(2); 2979 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2980 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2981 SDLoc DL(Op); 2982 2983 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2984 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2985 /*isTailCall*/false, 2986 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2987 } 2988 2989 SDValue SystemZTargetLowering:: 2990 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2991 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 2992 MachineFunction &MF = DAG.getMachineFunction(); 2993 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 2994 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 2995 2996 SDValue Chain = Op.getOperand(0); 2997 SDValue Size = Op.getOperand(1); 2998 SDValue Align = Op.getOperand(2); 2999 SDLoc DL(Op); 3000 3001 // If user has set the no alignment function attribute, ignore 3002 // alloca alignments. 3003 uint64_t AlignVal = (RealignOpt ? 3004 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3005 3006 uint64_t StackAlign = TFI->getStackAlignment(); 3007 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3008 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3009 3010 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3011 SDValue NeededSpace = Size; 3012 3013 // Get a reference to the stack pointer. 3014 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3015 3016 // If we need a backchain, save it now. 3017 SDValue Backchain; 3018 if (StoreBackchain) 3019 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3020 3021 // Add extra space for alignment if needed. 3022 if (ExtraAlignSpace) 3023 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3024 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3025 3026 // Get the new stack pointer value. 3027 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3028 3029 // Copy the new stack pointer back. 3030 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3031 3032 // The allocated data lives above the 160 bytes allocated for the standard 3033 // frame, plus any outgoing stack arguments. We don't know how much that 3034 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3035 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3036 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3037 3038 // Dynamically realign if needed. 3039 if (RequiredAlign > StackAlign) { 3040 Result = 3041 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3042 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3043 Result = 3044 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3045 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3046 } 3047 3048 if (StoreBackchain) 3049 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3050 3051 SDValue Ops[2] = { Result, Chain }; 3052 return DAG.getMergeValues(Ops, DL); 3053 } 3054 3055 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3056 SDValue Op, SelectionDAG &DAG) const { 3057 SDLoc DL(Op); 3058 3059 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3060 } 3061 3062 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3063 SelectionDAG &DAG) const { 3064 EVT VT = Op.getValueType(); 3065 SDLoc DL(Op); 3066 SDValue Ops[2]; 3067 if (is32Bit(VT)) 3068 // Just do a normal 64-bit multiplication and extract the results. 3069 // We define this so that it can be used for constant division. 3070 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3071 Op.getOperand(1), Ops[1], Ops[0]); 3072 else if (Subtarget.hasMiscellaneousExtensions2()) 3073 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3074 // the high result in the even register. ISD::SMUL_LOHI is defined to 3075 // return the low half first, so the results are in reverse order. 3076 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3077 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3078 else { 3079 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3080 // 3081 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3082 // 3083 // but using the fact that the upper halves are either all zeros 3084 // or all ones: 3085 // 3086 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3087 // 3088 // and grouping the right terms together since they are quicker than the 3089 // multiplication: 3090 // 3091 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3092 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3093 SDValue LL = Op.getOperand(0); 3094 SDValue RL = Op.getOperand(1); 3095 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3096 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3097 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3098 // the high result in the even register. ISD::SMUL_LOHI is defined to 3099 // return the low half first, so the results are in reverse order. 3100 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3101 LL, RL, Ops[1], Ops[0]); 3102 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3103 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3104 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3105 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3106 } 3107 return DAG.getMergeValues(Ops, DL); 3108 } 3109 3110 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3111 SelectionDAG &DAG) const { 3112 EVT VT = Op.getValueType(); 3113 SDLoc DL(Op); 3114 SDValue Ops[2]; 3115 if (is32Bit(VT)) 3116 // Just do a normal 64-bit multiplication and extract the results. 3117 // We define this so that it can be used for constant division. 3118 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3119 Op.getOperand(1), Ops[1], Ops[0]); 3120 else 3121 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3122 // the high result in the even register. ISD::UMUL_LOHI is defined to 3123 // return the low half first, so the results are in reverse order. 3124 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3125 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3126 return DAG.getMergeValues(Ops, DL); 3127 } 3128 3129 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3130 SelectionDAG &DAG) const { 3131 SDValue Op0 = Op.getOperand(0); 3132 SDValue Op1 = Op.getOperand(1); 3133 EVT VT = Op.getValueType(); 3134 SDLoc DL(Op); 3135 3136 // We use DSGF for 32-bit division. This means the first operand must 3137 // always be 64-bit, and the second operand should be 32-bit whenever 3138 // that is possible, to improve performance. 3139 if (is32Bit(VT)) 3140 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3141 else if (DAG.ComputeNumSignBits(Op1) > 32) 3142 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3143 3144 // DSG(F) returns the remainder in the even register and the 3145 // quotient in the odd register. 3146 SDValue Ops[2]; 3147 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3148 return DAG.getMergeValues(Ops, DL); 3149 } 3150 3151 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3152 SelectionDAG &DAG) const { 3153 EVT VT = Op.getValueType(); 3154 SDLoc DL(Op); 3155 3156 // DL(G) returns the remainder in the even register and the 3157 // quotient in the odd register. 3158 SDValue Ops[2]; 3159 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3160 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3161 return DAG.getMergeValues(Ops, DL); 3162 } 3163 3164 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3165 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3166 3167 // Get the known-zero masks for each operand. 3168 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 3169 KnownBits Known[2]; 3170 DAG.computeKnownBits(Ops[0], Known[0]); 3171 DAG.computeKnownBits(Ops[1], Known[1]); 3172 3173 // See if the upper 32 bits of one operand and the lower 32 bits of the 3174 // other are known zero. They are the low and high operands respectively. 3175 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3176 Known[1].Zero.getZExtValue() }; 3177 unsigned High, Low; 3178 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3179 High = 1, Low = 0; 3180 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3181 High = 0, Low = 1; 3182 else 3183 return Op; 3184 3185 SDValue LowOp = Ops[Low]; 3186 SDValue HighOp = Ops[High]; 3187 3188 // If the high part is a constant, we're better off using IILH. 3189 if (HighOp.getOpcode() == ISD::Constant) 3190 return Op; 3191 3192 // If the low part is a constant that is outside the range of LHI, 3193 // then we're better off using IILF. 3194 if (LowOp.getOpcode() == ISD::Constant) { 3195 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3196 if (!isInt<16>(Value)) 3197 return Op; 3198 } 3199 3200 // Check whether the high part is an AND that doesn't change the 3201 // high 32 bits and just masks out low bits. We can skip it if so. 3202 if (HighOp.getOpcode() == ISD::AND && 3203 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3204 SDValue HighOp0 = HighOp.getOperand(0); 3205 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3206 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3207 HighOp = HighOp0; 3208 } 3209 3210 // Take advantage of the fact that all GR32 operations only change the 3211 // low 32 bits by truncating Low to an i32 and inserting it directly 3212 // using a subreg. The interesting cases are those where the truncation 3213 // can be folded. 3214 SDLoc DL(Op); 3215 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3216 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3217 MVT::i64, HighOp, Low32); 3218 } 3219 3220 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3221 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3222 SelectionDAG &DAG) const { 3223 SDNode *N = Op.getNode(); 3224 SDValue LHS = N->getOperand(0); 3225 SDValue RHS = N->getOperand(1); 3226 SDLoc DL(N); 3227 unsigned BaseOp = 0; 3228 unsigned CCValid = 0; 3229 unsigned CCMask = 0; 3230 3231 switch (Op.getOpcode()) { 3232 default: llvm_unreachable("Unknown instruction!"); 3233 case ISD::SADDO: 3234 BaseOp = SystemZISD::SADDO; 3235 CCValid = SystemZ::CCMASK_ARITH; 3236 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3237 break; 3238 case ISD::SSUBO: 3239 BaseOp = SystemZISD::SSUBO; 3240 CCValid = SystemZ::CCMASK_ARITH; 3241 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3242 break; 3243 case ISD::UADDO: 3244 BaseOp = SystemZISD::UADDO; 3245 CCValid = SystemZ::CCMASK_LOGICAL; 3246 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3247 break; 3248 case ISD::USUBO: 3249 BaseOp = SystemZISD::USUBO; 3250 CCValid = SystemZ::CCMASK_LOGICAL; 3251 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3252 break; 3253 } 3254 3255 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3256 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3257 3258 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3259 if (N->getValueType(1) == MVT::i1) 3260 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3261 3262 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3263 } 3264 3265 // Lower ADDCARRY/SUBCARRY nodes. 3266 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3267 SelectionDAG &DAG) const { 3268 3269 SDNode *N = Op.getNode(); 3270 MVT VT = N->getSimpleValueType(0); 3271 3272 // Let legalize expand this if it isn't a legal type yet. 3273 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3274 return SDValue(); 3275 3276 SDValue LHS = N->getOperand(0); 3277 SDValue RHS = N->getOperand(1); 3278 SDValue Carry = Op.getOperand(2); 3279 SDLoc DL(N); 3280 unsigned BaseOp = 0; 3281 unsigned CCValid = 0; 3282 unsigned CCMask = 0; 3283 3284 switch (Op.getOpcode()) { 3285 default: llvm_unreachable("Unknown instruction!"); 3286 case ISD::ADDCARRY: 3287 BaseOp = SystemZISD::ADDCARRY; 3288 CCValid = SystemZ::CCMASK_LOGICAL; 3289 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3290 break; 3291 case ISD::SUBCARRY: 3292 BaseOp = SystemZISD::SUBCARRY; 3293 CCValid = SystemZ::CCMASK_LOGICAL; 3294 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3295 break; 3296 } 3297 3298 // Set the condition code from the carry flag. 3299 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3300 DAG.getConstant(CCValid, DL, MVT::i32), 3301 DAG.getConstant(CCMask, DL, MVT::i32)); 3302 3303 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3304 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3305 3306 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3307 if (N->getValueType(1) == MVT::i1) 3308 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3309 3310 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3311 } 3312 3313 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3314 SelectionDAG &DAG) const { 3315 EVT VT = Op.getValueType(); 3316 SDLoc DL(Op); 3317 Op = Op.getOperand(0); 3318 3319 // Handle vector types via VPOPCT. 3320 if (VT.isVector()) { 3321 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3322 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3323 switch (VT.getScalarSizeInBits()) { 3324 case 8: 3325 break; 3326 case 16: { 3327 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3328 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3329 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3330 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3331 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3332 break; 3333 } 3334 case 32: { 3335 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3336 DAG.getConstant(0, DL, MVT::i32)); 3337 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3338 break; 3339 } 3340 case 64: { 3341 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3342 DAG.getConstant(0, DL, MVT::i32)); 3343 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3344 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3345 break; 3346 } 3347 default: 3348 llvm_unreachable("Unexpected type"); 3349 } 3350 return Op; 3351 } 3352 3353 // Get the known-zero mask for the operand. 3354 KnownBits Known; 3355 DAG.computeKnownBits(Op, Known); 3356 unsigned NumSignificantBits = (~Known.Zero).getActiveBits(); 3357 if (NumSignificantBits == 0) 3358 return DAG.getConstant(0, DL, VT); 3359 3360 // Skip known-zero high parts of the operand. 3361 int64_t OrigBitSize = VT.getSizeInBits(); 3362 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3363 BitSize = std::min(BitSize, OrigBitSize); 3364 3365 // The POPCNT instruction counts the number of bits in each byte. 3366 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3367 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3368 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3369 3370 // Add up per-byte counts in a binary tree. All bits of Op at 3371 // position larger than BitSize remain zero throughout. 3372 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3373 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3374 if (BitSize != OrigBitSize) 3375 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3376 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3377 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3378 } 3379 3380 // Extract overall result from high byte. 3381 if (BitSize > 8) 3382 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3383 DAG.getConstant(BitSize - 8, DL, VT)); 3384 3385 return Op; 3386 } 3387 3388 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3389 SelectionDAG &DAG) const { 3390 SDLoc DL(Op); 3391 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3392 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3393 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3394 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3395 3396 // The only fence that needs an instruction is a sequentially-consistent 3397 // cross-thread fence. 3398 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3399 FenceSSID == SyncScope::System) { 3400 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3401 Op.getOperand(0)), 3402 0); 3403 } 3404 3405 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3406 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3407 } 3408 3409 // Op is an atomic load. Lower it into a normal volatile load. 3410 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3411 SelectionDAG &DAG) const { 3412 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3413 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3414 Node->getChain(), Node->getBasePtr(), 3415 Node->getMemoryVT(), Node->getMemOperand()); 3416 } 3417 3418 // Op is an atomic store. Lower it into a normal volatile store. 3419 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3420 SelectionDAG &DAG) const { 3421 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3422 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3423 Node->getBasePtr(), Node->getMemoryVT(), 3424 Node->getMemOperand()); 3425 // We have to enforce sequential consistency by performing a 3426 // serialization operation after the store. 3427 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3428 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3429 MVT::Other, Chain), 0); 3430 return Chain; 3431 } 3432 3433 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3434 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3435 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3436 SelectionDAG &DAG, 3437 unsigned Opcode) const { 3438 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3439 3440 // 32-bit operations need no code outside the main loop. 3441 EVT NarrowVT = Node->getMemoryVT(); 3442 EVT WideVT = MVT::i32; 3443 if (NarrowVT == WideVT) 3444 return Op; 3445 3446 int64_t BitSize = NarrowVT.getSizeInBits(); 3447 SDValue ChainIn = Node->getChain(); 3448 SDValue Addr = Node->getBasePtr(); 3449 SDValue Src2 = Node->getVal(); 3450 MachineMemOperand *MMO = Node->getMemOperand(); 3451 SDLoc DL(Node); 3452 EVT PtrVT = Addr.getValueType(); 3453 3454 // Convert atomic subtracts of constants into additions. 3455 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3456 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3457 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3458 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3459 } 3460 3461 // Get the address of the containing word. 3462 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3463 DAG.getConstant(-4, DL, PtrVT)); 3464 3465 // Get the number of bits that the word must be rotated left in order 3466 // to bring the field to the top bits of a GR32. 3467 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3468 DAG.getConstant(3, DL, PtrVT)); 3469 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3470 3471 // Get the complementing shift amount, for rotating a field in the top 3472 // bits back to its proper position. 3473 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3474 DAG.getConstant(0, DL, WideVT), BitShift); 3475 3476 // Extend the source operand to 32 bits and prepare it for the inner loop. 3477 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3478 // operations require the source to be shifted in advance. (This shift 3479 // can be folded if the source is constant.) For AND and NAND, the lower 3480 // bits must be set, while for other opcodes they should be left clear. 3481 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3482 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3483 DAG.getConstant(32 - BitSize, DL, WideVT)); 3484 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3485 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3486 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3487 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3488 3489 // Construct the ATOMIC_LOADW_* node. 3490 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3491 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3492 DAG.getConstant(BitSize, DL, WideVT) }; 3493 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3494 NarrowVT, MMO); 3495 3496 // Rotate the result of the final CS so that the field is in the lower 3497 // bits of a GR32, then truncate it. 3498 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3499 DAG.getConstant(BitSize, DL, WideVT)); 3500 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3501 3502 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3503 return DAG.getMergeValues(RetOps, DL); 3504 } 3505 3506 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3507 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3508 // operations into additions. 3509 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3510 SelectionDAG &DAG) const { 3511 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3512 EVT MemVT = Node->getMemoryVT(); 3513 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3514 // A full-width operation. 3515 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3516 SDValue Src2 = Node->getVal(); 3517 SDValue NegSrc2; 3518 SDLoc DL(Src2); 3519 3520 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3521 // Use an addition if the operand is constant and either LAA(G) is 3522 // available or the negative value is in the range of A(G)FHI. 3523 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3524 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3525 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3526 } else if (Subtarget.hasInterlockedAccess1()) 3527 // Use LAA(G) if available. 3528 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3529 Src2); 3530 3531 if (NegSrc2.getNode()) 3532 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3533 Node->getChain(), Node->getBasePtr(), NegSrc2, 3534 Node->getMemOperand()); 3535 3536 // Use the node as-is. 3537 return Op; 3538 } 3539 3540 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3541 } 3542 3543 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3544 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3545 SelectionDAG &DAG) const { 3546 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3547 SDValue ChainIn = Node->getOperand(0); 3548 SDValue Addr = Node->getOperand(1); 3549 SDValue CmpVal = Node->getOperand(2); 3550 SDValue SwapVal = Node->getOperand(3); 3551 MachineMemOperand *MMO = Node->getMemOperand(); 3552 SDLoc DL(Node); 3553 3554 // We have native support for 32-bit and 64-bit compare and swap, but we 3555 // still need to expand extracting the "success" result from the CC. 3556 EVT NarrowVT = Node->getMemoryVT(); 3557 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3558 if (NarrowVT == WideVT) { 3559 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3560 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3561 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3562 DL, Tys, Ops, NarrowVT, MMO); 3563 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3564 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3565 3566 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3567 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3568 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3569 return SDValue(); 3570 } 3571 3572 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3573 // via a fullword ATOMIC_CMP_SWAPW operation. 3574 int64_t BitSize = NarrowVT.getSizeInBits(); 3575 EVT PtrVT = Addr.getValueType(); 3576 3577 // Get the address of the containing word. 3578 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3579 DAG.getConstant(-4, DL, PtrVT)); 3580 3581 // Get the number of bits that the word must be rotated left in order 3582 // to bring the field to the top bits of a GR32. 3583 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3584 DAG.getConstant(3, DL, PtrVT)); 3585 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3586 3587 // Get the complementing shift amount, for rotating a field in the top 3588 // bits back to its proper position. 3589 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3590 DAG.getConstant(0, DL, WideVT), BitShift); 3591 3592 // Construct the ATOMIC_CMP_SWAPW node. 3593 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3594 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3595 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3596 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3597 VTList, Ops, NarrowVT, MMO); 3598 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3599 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 3600 3601 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3602 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3603 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3604 return SDValue(); 3605 } 3606 3607 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3608 SelectionDAG &DAG) const { 3609 MachineFunction &MF = DAG.getMachineFunction(); 3610 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3611 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3612 SystemZ::R15D, Op.getValueType()); 3613 } 3614 3615 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3616 SelectionDAG &DAG) const { 3617 MachineFunction &MF = DAG.getMachineFunction(); 3618 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3619 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3620 3621 SDValue Chain = Op.getOperand(0); 3622 SDValue NewSP = Op.getOperand(1); 3623 SDValue Backchain; 3624 SDLoc DL(Op); 3625 3626 if (StoreBackchain) { 3627 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3628 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3629 } 3630 3631 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3632 3633 if (StoreBackchain) 3634 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3635 3636 return Chain; 3637 } 3638 3639 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3640 SelectionDAG &DAG) const { 3641 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3642 if (!IsData) 3643 // Just preserve the chain. 3644 return Op.getOperand(0); 3645 3646 SDLoc DL(Op); 3647 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3648 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3649 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3650 SDValue Ops[] = { 3651 Op.getOperand(0), 3652 DAG.getConstant(Code, DL, MVT::i32), 3653 Op.getOperand(1) 3654 }; 3655 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3656 Node->getVTList(), Ops, 3657 Node->getMemoryVT(), Node->getMemOperand()); 3658 } 3659 3660 // Convert condition code in CCReg to an i32 value. 3661 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 3662 SDLoc DL(CCReg); 3663 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 3664 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3665 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3666 } 3667 3668 SDValue 3669 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3670 SelectionDAG &DAG) const { 3671 unsigned Opcode, CCValid; 3672 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3673 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3674 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 3675 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 3676 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3677 return SDValue(); 3678 } 3679 3680 return SDValue(); 3681 } 3682 3683 SDValue 3684 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3685 SelectionDAG &DAG) const { 3686 unsigned Opcode, CCValid; 3687 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3688 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 3689 if (Op->getNumValues() == 1) 3690 return getCCResult(DAG, SDValue(Node, 0)); 3691 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3692 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 3693 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 3694 } 3695 3696 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3697 switch (Id) { 3698 case Intrinsic::thread_pointer: 3699 return lowerThreadPointer(SDLoc(Op), DAG); 3700 3701 case Intrinsic::s390_vpdi: 3702 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3703 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3704 3705 case Intrinsic::s390_vperm: 3706 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3707 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3708 3709 case Intrinsic::s390_vuphb: 3710 case Intrinsic::s390_vuphh: 3711 case Intrinsic::s390_vuphf: 3712 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3713 Op.getOperand(1)); 3714 3715 case Intrinsic::s390_vuplhb: 3716 case Intrinsic::s390_vuplhh: 3717 case Intrinsic::s390_vuplhf: 3718 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3719 Op.getOperand(1)); 3720 3721 case Intrinsic::s390_vuplb: 3722 case Intrinsic::s390_vuplhw: 3723 case Intrinsic::s390_vuplf: 3724 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3725 Op.getOperand(1)); 3726 3727 case Intrinsic::s390_vupllb: 3728 case Intrinsic::s390_vupllh: 3729 case Intrinsic::s390_vupllf: 3730 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3731 Op.getOperand(1)); 3732 3733 case Intrinsic::s390_vsumb: 3734 case Intrinsic::s390_vsumh: 3735 case Intrinsic::s390_vsumgh: 3736 case Intrinsic::s390_vsumgf: 3737 case Intrinsic::s390_vsumqf: 3738 case Intrinsic::s390_vsumqg: 3739 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3740 Op.getOperand(1), Op.getOperand(2)); 3741 } 3742 3743 return SDValue(); 3744 } 3745 3746 namespace { 3747 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3748 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3749 // Operand is the constant third operand, otherwise it is the number of 3750 // bytes in each element of the result. 3751 struct Permute { 3752 unsigned Opcode; 3753 unsigned Operand; 3754 unsigned char Bytes[SystemZ::VectorBytes]; 3755 }; 3756 } 3757 3758 static const Permute PermuteForms[] = { 3759 // VMRHG 3760 { SystemZISD::MERGE_HIGH, 8, 3761 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3762 // VMRHF 3763 { SystemZISD::MERGE_HIGH, 4, 3764 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3765 // VMRHH 3766 { SystemZISD::MERGE_HIGH, 2, 3767 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3768 // VMRHB 3769 { SystemZISD::MERGE_HIGH, 1, 3770 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3771 // VMRLG 3772 { SystemZISD::MERGE_LOW, 8, 3773 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3774 // VMRLF 3775 { SystemZISD::MERGE_LOW, 4, 3776 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3777 // VMRLH 3778 { SystemZISD::MERGE_LOW, 2, 3779 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3780 // VMRLB 3781 { SystemZISD::MERGE_LOW, 1, 3782 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3783 // VPKG 3784 { SystemZISD::PACK, 4, 3785 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3786 // VPKF 3787 { SystemZISD::PACK, 2, 3788 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3789 // VPKH 3790 { SystemZISD::PACK, 1, 3791 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3792 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3793 { SystemZISD::PERMUTE_DWORDS, 4, 3794 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3795 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3796 { SystemZISD::PERMUTE_DWORDS, 1, 3797 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3798 }; 3799 3800 // Called after matching a vector shuffle against a particular pattern. 3801 // Both the original shuffle and the pattern have two vector operands. 3802 // OpNos[0] is the operand of the original shuffle that should be used for 3803 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3804 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3805 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3806 // for operands 0 and 1 of the pattern. 3807 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3808 if (OpNos[0] < 0) { 3809 if (OpNos[1] < 0) 3810 return false; 3811 OpNo0 = OpNo1 = OpNos[1]; 3812 } else if (OpNos[1] < 0) { 3813 OpNo0 = OpNo1 = OpNos[0]; 3814 } else { 3815 OpNo0 = OpNos[0]; 3816 OpNo1 = OpNos[1]; 3817 } 3818 return true; 3819 } 3820 3821 // Bytes is a VPERM-like permute vector, except that -1 is used for 3822 // undefined bytes. Return true if the VPERM can be implemented using P. 3823 // When returning true set OpNo0 to the VPERM operand that should be 3824 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3825 // 3826 // For example, if swapping the VPERM operands allows P to match, OpNo0 3827 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3828 // operand, but rewriting it to use two duplicated operands allows it to 3829 // match P, then OpNo0 and OpNo1 will be the same. 3830 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3831 unsigned &OpNo0, unsigned &OpNo1) { 3832 int OpNos[] = { -1, -1 }; 3833 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3834 int Elt = Bytes[I]; 3835 if (Elt >= 0) { 3836 // Make sure that the two permute vectors use the same suboperand 3837 // byte number. Only the operand numbers (the high bits) are 3838 // allowed to differ. 3839 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3840 return false; 3841 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3842 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3843 // Make sure that the operand mappings are consistent with previous 3844 // elements. 3845 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3846 return false; 3847 OpNos[ModelOpNo] = RealOpNo; 3848 } 3849 } 3850 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3851 } 3852 3853 // As above, but search for a matching permute. 3854 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3855 unsigned &OpNo0, unsigned &OpNo1) { 3856 for (auto &P : PermuteForms) 3857 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3858 return &P; 3859 return nullptr; 3860 } 3861 3862 // Bytes is a VPERM-like permute vector, except that -1 is used for 3863 // undefined bytes. This permute is an operand of an outer permute. 3864 // See whether redistributing the -1 bytes gives a shuffle that can be 3865 // implemented using P. If so, set Transform to a VPERM-like permute vector 3866 // that, when applied to the result of P, gives the original permute in Bytes. 3867 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3868 const Permute &P, 3869 SmallVectorImpl<int> &Transform) { 3870 unsigned To = 0; 3871 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3872 int Elt = Bytes[From]; 3873 if (Elt < 0) 3874 // Byte number From of the result is undefined. 3875 Transform[From] = -1; 3876 else { 3877 while (P.Bytes[To] != Elt) { 3878 To += 1; 3879 if (To == SystemZ::VectorBytes) 3880 return false; 3881 } 3882 Transform[From] = To; 3883 } 3884 } 3885 return true; 3886 } 3887 3888 // As above, but search for a matching permute. 3889 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3890 SmallVectorImpl<int> &Transform) { 3891 for (auto &P : PermuteForms) 3892 if (matchDoublePermute(Bytes, P, Transform)) 3893 return &P; 3894 return nullptr; 3895 } 3896 3897 // Convert the mask of the given shuffle op into a byte-level mask, 3898 // as if it had type vNi8. 3899 static bool getVPermMask(SDValue ShuffleOp, 3900 SmallVectorImpl<int> &Bytes) { 3901 EVT VT = ShuffleOp.getValueType(); 3902 unsigned NumElements = VT.getVectorNumElements(); 3903 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3904 3905 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 3906 Bytes.resize(NumElements * BytesPerElement, -1); 3907 for (unsigned I = 0; I < NumElements; ++I) { 3908 int Index = VSN->getMaskElt(I); 3909 if (Index >= 0) 3910 for (unsigned J = 0; J < BytesPerElement; ++J) 3911 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3912 } 3913 return true; 3914 } 3915 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 3916 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 3917 unsigned Index = ShuffleOp.getConstantOperandVal(1); 3918 Bytes.resize(NumElements * BytesPerElement, -1); 3919 for (unsigned I = 0; I < NumElements; ++I) 3920 for (unsigned J = 0; J < BytesPerElement; ++J) 3921 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3922 return true; 3923 } 3924 return false; 3925 } 3926 3927 // Bytes is a VPERM-like permute vector, except that -1 is used for 3928 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3929 // the result come from a contiguous sequence of bytes from one input. 3930 // Set Base to the selector for the first byte if so. 3931 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3932 unsigned BytesPerElement, int &Base) { 3933 Base = -1; 3934 for (unsigned I = 0; I < BytesPerElement; ++I) { 3935 if (Bytes[Start + I] >= 0) { 3936 unsigned Elem = Bytes[Start + I]; 3937 if (Base < 0) { 3938 Base = Elem - I; 3939 // Make sure the bytes would come from one input operand. 3940 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3941 return false; 3942 } else if (unsigned(Base) != Elem - I) 3943 return false; 3944 } 3945 } 3946 return true; 3947 } 3948 3949 // Bytes is a VPERM-like permute vector, except that -1 is used for 3950 // undefined bytes. Return true if it can be performed using VSLDI. 3951 // When returning true, set StartIndex to the shift amount and OpNo0 3952 // and OpNo1 to the VPERM operands that should be used as the first 3953 // and second shift operand respectively. 3954 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3955 unsigned &StartIndex, unsigned &OpNo0, 3956 unsigned &OpNo1) { 3957 int OpNos[] = { -1, -1 }; 3958 int Shift = -1; 3959 for (unsigned I = 0; I < 16; ++I) { 3960 int Index = Bytes[I]; 3961 if (Index >= 0) { 3962 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3963 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3964 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3965 if (Shift < 0) 3966 Shift = ExpectedShift; 3967 else if (Shift != ExpectedShift) 3968 return false; 3969 // Make sure that the operand mappings are consistent with previous 3970 // elements. 3971 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3972 return false; 3973 OpNos[ModelOpNo] = RealOpNo; 3974 } 3975 } 3976 StartIndex = Shift; 3977 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3978 } 3979 3980 // Create a node that performs P on operands Op0 and Op1, casting the 3981 // operands to the appropriate type. The type of the result is determined by P. 3982 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3983 const Permute &P, SDValue Op0, SDValue Op1) { 3984 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3985 // elements of a PACK are twice as wide as the outputs. 3986 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3987 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3988 P.Operand); 3989 // Cast both operands to the appropriate type. 3990 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3991 SystemZ::VectorBytes / InBytes); 3992 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3993 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3994 SDValue Op; 3995 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3996 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3997 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3998 } else if (P.Opcode == SystemZISD::PACK) { 3999 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4000 SystemZ::VectorBytes / P.Operand); 4001 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4002 } else { 4003 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4004 } 4005 return Op; 4006 } 4007 4008 // Bytes is a VPERM-like permute vector, except that -1 is used for 4009 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4010 // VSLDI or VPERM. 4011 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4012 SDValue *Ops, 4013 const SmallVectorImpl<int> &Bytes) { 4014 for (unsigned I = 0; I < 2; ++I) 4015 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4016 4017 // First see whether VSLDI can be used. 4018 unsigned StartIndex, OpNo0, OpNo1; 4019 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4020 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4021 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 4022 4023 // Fall back on VPERM. Construct an SDNode for the permute vector. 4024 SDValue IndexNodes[SystemZ::VectorBytes]; 4025 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4026 if (Bytes[I] >= 0) 4027 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4028 else 4029 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4030 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4031 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 4032 } 4033 4034 namespace { 4035 // Describes a general N-operand vector shuffle. 4036 struct GeneralShuffle { 4037 GeneralShuffle(EVT vt) : VT(vt) {} 4038 void addUndef(); 4039 bool add(SDValue, unsigned); 4040 SDValue getNode(SelectionDAG &, const SDLoc &); 4041 4042 // The operands of the shuffle. 4043 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4044 4045 // Index I is -1 if byte I of the result is undefined. Otherwise the 4046 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4047 // Bytes[I] / SystemZ::VectorBytes. 4048 SmallVector<int, SystemZ::VectorBytes> Bytes; 4049 4050 // The type of the shuffle result. 4051 EVT VT; 4052 }; 4053 } 4054 4055 // Add an extra undefined element to the shuffle. 4056 void GeneralShuffle::addUndef() { 4057 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4058 for (unsigned I = 0; I < BytesPerElement; ++I) 4059 Bytes.push_back(-1); 4060 } 4061 4062 // Add an extra element to the shuffle, taking it from element Elem of Op. 4063 // A null Op indicates a vector input whose value will be calculated later; 4064 // there is at most one such input per shuffle and it always has the same 4065 // type as the result. Aborts and returns false if the source vector elements 4066 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4067 // LLVM they become implicitly extended, but this is rare and not optimized. 4068 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4069 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4070 4071 // The source vector can have wider elements than the result, 4072 // either through an explicit TRUNCATE or because of type legalization. 4073 // We want the least significant part. 4074 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4075 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4076 4077 // Return false if the source elements are smaller than their destination 4078 // elements. 4079 if (FromBytesPerElement < BytesPerElement) 4080 return false; 4081 4082 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4083 (FromBytesPerElement - BytesPerElement)); 4084 4085 // Look through things like shuffles and bitcasts. 4086 while (Op.getNode()) { 4087 if (Op.getOpcode() == ISD::BITCAST) 4088 Op = Op.getOperand(0); 4089 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4090 // See whether the bytes we need come from a contiguous part of one 4091 // operand. 4092 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4093 if (!getVPermMask(Op, OpBytes)) 4094 break; 4095 int NewByte; 4096 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4097 break; 4098 if (NewByte < 0) { 4099 addUndef(); 4100 return true; 4101 } 4102 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4103 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4104 } else if (Op.isUndef()) { 4105 addUndef(); 4106 return true; 4107 } else 4108 break; 4109 } 4110 4111 // Make sure that the source of the extraction is in Ops. 4112 unsigned OpNo = 0; 4113 for (; OpNo < Ops.size(); ++OpNo) 4114 if (Ops[OpNo] == Op) 4115 break; 4116 if (OpNo == Ops.size()) 4117 Ops.push_back(Op); 4118 4119 // Add the element to Bytes. 4120 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4121 for (unsigned I = 0; I < BytesPerElement; ++I) 4122 Bytes.push_back(Base + I); 4123 4124 return true; 4125 } 4126 4127 // Return SDNodes for the completed shuffle. 4128 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4129 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4130 4131 if (Ops.size() == 0) 4132 return DAG.getUNDEF(VT); 4133 4134 // Make sure that there are at least two shuffle operands. 4135 if (Ops.size() == 1) 4136 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4137 4138 // Create a tree of shuffles, deferring root node until after the loop. 4139 // Try to redistribute the undefined elements of non-root nodes so that 4140 // the non-root shuffles match something like a pack or merge, then adjust 4141 // the parent node's permute vector to compensate for the new order. 4142 // Among other things, this copes with vectors like <2 x i16> that were 4143 // padded with undefined elements during type legalization. 4144 // 4145 // In the best case this redistribution will lead to the whole tree 4146 // using packs and merges. It should rarely be a loss in other cases. 4147 unsigned Stride = 1; 4148 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4149 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4150 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4151 4152 // Create a mask for just these two operands. 4153 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4154 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4155 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4156 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4157 if (OpNo == I) 4158 NewBytes[J] = Byte; 4159 else if (OpNo == I + Stride) 4160 NewBytes[J] = SystemZ::VectorBytes + Byte; 4161 else 4162 NewBytes[J] = -1; 4163 } 4164 // See if it would be better to reorganize NewMask to avoid using VPERM. 4165 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4166 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4167 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4168 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4169 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4170 if (NewBytes[J] >= 0) { 4171 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4172 "Invalid double permute"); 4173 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4174 } else 4175 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4176 } 4177 } else { 4178 // Just use NewBytes on the operands. 4179 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4180 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4181 if (NewBytes[J] >= 0) 4182 Bytes[J] = I * SystemZ::VectorBytes + J; 4183 } 4184 } 4185 } 4186 4187 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4188 if (Stride > 1) { 4189 Ops[1] = Ops[Stride]; 4190 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4191 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4192 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4193 } 4194 4195 // Look for an instruction that can do the permute without resorting 4196 // to VPERM. 4197 unsigned OpNo0, OpNo1; 4198 SDValue Op; 4199 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4200 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4201 else 4202 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4203 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4204 } 4205 4206 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4207 static bool isScalarToVector(SDValue Op) { 4208 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4209 if (!Op.getOperand(I).isUndef()) 4210 return false; 4211 return true; 4212 } 4213 4214 // Return a vector of type VT that contains Value in the first element. 4215 // The other elements don't matter. 4216 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4217 SDValue Value) { 4218 // If we have a constant, replicate it to all elements and let the 4219 // BUILD_VECTOR lowering take care of it. 4220 if (Value.getOpcode() == ISD::Constant || 4221 Value.getOpcode() == ISD::ConstantFP) { 4222 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4223 return DAG.getBuildVector(VT, DL, Ops); 4224 } 4225 if (Value.isUndef()) 4226 return DAG.getUNDEF(VT); 4227 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4228 } 4229 4230 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4231 // element 1. Used for cases in which replication is cheap. 4232 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4233 SDValue Op0, SDValue Op1) { 4234 if (Op0.isUndef()) { 4235 if (Op1.isUndef()) 4236 return DAG.getUNDEF(VT); 4237 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4238 } 4239 if (Op1.isUndef()) 4240 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4241 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4242 buildScalarToVector(DAG, DL, VT, Op0), 4243 buildScalarToVector(DAG, DL, VT, Op1)); 4244 } 4245 4246 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4247 // vector for them. 4248 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4249 SDValue Op1) { 4250 if (Op0.isUndef() && Op1.isUndef()) 4251 return DAG.getUNDEF(MVT::v2i64); 4252 // If one of the two inputs is undefined then replicate the other one, 4253 // in order to avoid using another register unnecessarily. 4254 if (Op0.isUndef()) 4255 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4256 else if (Op1.isUndef()) 4257 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4258 else { 4259 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4260 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4261 } 4262 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4263 } 4264 4265 // Try to represent constant BUILD_VECTOR node BVN using a 4266 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 4267 // on success. 4268 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 4269 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 4270 unsigned BytesPerElement = ElemVT.getStoreSize(); 4271 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 4272 SDValue Op = BVN->getOperand(I); 4273 if (!Op.isUndef()) { 4274 uint64_t Value; 4275 if (Op.getOpcode() == ISD::Constant) 4276 Value = cast<ConstantSDNode>(Op)->getZExtValue(); 4277 else if (Op.getOpcode() == ISD::ConstantFP) 4278 Value = (cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 4279 .getZExtValue()); 4280 else 4281 return false; 4282 for (unsigned J = 0; J < BytesPerElement; ++J) { 4283 uint64_t Byte = (Value >> (J * 8)) & 0xff; 4284 if (Byte == 0xff) 4285 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 4286 else if (Byte != 0) 4287 return false; 4288 } 4289 } 4290 } 4291 return true; 4292 } 4293 4294 // Try to load a vector constant in which BitsPerElement-bit value Value 4295 // is replicated to fill the vector. VT is the type of the resulting 4296 // constant, which may have elements of a different size from BitsPerElement. 4297 // Return the SDValue of the constant on success, otherwise return 4298 // an empty value. 4299 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 4300 const SystemZInstrInfo *TII, 4301 const SDLoc &DL, EVT VT, uint64_t Value, 4302 unsigned BitsPerElement) { 4303 // Signed 16-bit values can be replicated using VREPI. 4304 // Mark the constants as opaque or DAGCombiner will convert back to 4305 // BUILD_VECTOR. 4306 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 4307 if (isInt<16>(SignedValue)) { 4308 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4309 SystemZ::VectorBits / BitsPerElement); 4310 SDValue Op = DAG.getNode( 4311 SystemZISD::REPLICATE, DL, VecVT, 4312 DAG.getConstant(SignedValue, DL, MVT::i32, false, true /*isOpaque*/)); 4313 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4314 } 4315 // See whether rotating the constant left some N places gives a value that 4316 // is one less than a power of 2 (i.e. all zeros followed by all ones). 4317 // If so we can use VGM. 4318 unsigned Start, End; 4319 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 4320 // isRxSBGMask returns the bit numbers for a full 64-bit value, 4321 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 4322 // bit numbers for an BitsPerElement value, so that 0 denotes 4323 // 1 << (BitsPerElement-1). 4324 Start -= 64 - BitsPerElement; 4325 End -= 64 - BitsPerElement; 4326 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4327 SystemZ::VectorBits / BitsPerElement); 4328 SDValue Op = DAG.getNode( 4329 SystemZISD::ROTATE_MASK, DL, VecVT, 4330 DAG.getConstant(Start, DL, MVT::i32, false, true /*isOpaque*/), 4331 DAG.getConstant(End, DL, MVT::i32, false, true /*isOpaque*/)); 4332 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4333 } 4334 return SDValue(); 4335 } 4336 4337 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4338 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4339 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4340 // would benefit from this representation and return it if so. 4341 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4342 BuildVectorSDNode *BVN) { 4343 EVT VT = BVN->getValueType(0); 4344 unsigned NumElements = VT.getVectorNumElements(); 4345 4346 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4347 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4348 // need a BUILD_VECTOR, add an additional placeholder operand for that 4349 // BUILD_VECTOR and store its operands in ResidueOps. 4350 GeneralShuffle GS(VT); 4351 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4352 bool FoundOne = false; 4353 for (unsigned I = 0; I < NumElements; ++I) { 4354 SDValue Op = BVN->getOperand(I); 4355 if (Op.getOpcode() == ISD::TRUNCATE) 4356 Op = Op.getOperand(0); 4357 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4358 Op.getOperand(1).getOpcode() == ISD::Constant) { 4359 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4360 if (!GS.add(Op.getOperand(0), Elem)) 4361 return SDValue(); 4362 FoundOne = true; 4363 } else if (Op.isUndef()) { 4364 GS.addUndef(); 4365 } else { 4366 if (!GS.add(SDValue(), ResidueOps.size())) 4367 return SDValue(); 4368 ResidueOps.push_back(BVN->getOperand(I)); 4369 } 4370 } 4371 4372 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4373 if (!FoundOne) 4374 return SDValue(); 4375 4376 // Create the BUILD_VECTOR for the remaining elements, if any. 4377 if (!ResidueOps.empty()) { 4378 while (ResidueOps.size() < NumElements) 4379 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4380 for (auto &Op : GS.Ops) { 4381 if (!Op.getNode()) { 4382 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4383 break; 4384 } 4385 } 4386 } 4387 return GS.getNode(DAG, SDLoc(BVN)); 4388 } 4389 4390 // Combine GPR scalar values Elems into a vector of type VT. 4391 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4392 SmallVectorImpl<SDValue> &Elems) { 4393 // See whether there is a single replicated value. 4394 SDValue Single; 4395 unsigned int NumElements = Elems.size(); 4396 unsigned int Count = 0; 4397 for (auto Elem : Elems) { 4398 if (!Elem.isUndef()) { 4399 if (!Single.getNode()) 4400 Single = Elem; 4401 else if (Elem != Single) { 4402 Single = SDValue(); 4403 break; 4404 } 4405 Count += 1; 4406 } 4407 } 4408 // There are three cases here: 4409 // 4410 // - if the only defined element is a loaded one, the best sequence 4411 // is a replicating load. 4412 // 4413 // - otherwise, if the only defined element is an i64 value, we will 4414 // end up with the same VLVGP sequence regardless of whether we short-cut 4415 // for replication or fall through to the later code. 4416 // 4417 // - otherwise, if the only defined element is an i32 or smaller value, 4418 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4419 // This is only a win if the single defined element is used more than once. 4420 // In other cases we're better off using a single VLVGx. 4421 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4422 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4423 4424 // If all elements are loads, use VLREP/VLEs (below). 4425 bool AllLoads = true; 4426 for (auto Elem : Elems) 4427 if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) { 4428 AllLoads = false; 4429 break; 4430 } 4431 4432 // The best way of building a v2i64 from two i64s is to use VLVGP. 4433 if (VT == MVT::v2i64 && !AllLoads) 4434 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4435 4436 // Use a 64-bit merge high to combine two doubles. 4437 if (VT == MVT::v2f64 && !AllLoads) 4438 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4439 4440 // Build v4f32 values directly from the FPRs: 4441 // 4442 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4443 // V V VMRHF 4444 // <ABxx> <CDxx> 4445 // V VMRHG 4446 // <ABCD> 4447 if (VT == MVT::v4f32 && !AllLoads) { 4448 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4449 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4450 // Avoid unnecessary undefs by reusing the other operand. 4451 if (Op01.isUndef()) 4452 Op01 = Op23; 4453 else if (Op23.isUndef()) 4454 Op23 = Op01; 4455 // Merging identical replications is a no-op. 4456 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4457 return Op01; 4458 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4459 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4460 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4461 DL, MVT::v2i64, Op01, Op23); 4462 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4463 } 4464 4465 // Collect the constant terms. 4466 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4467 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4468 4469 unsigned NumConstants = 0; 4470 for (unsigned I = 0; I < NumElements; ++I) { 4471 SDValue Elem = Elems[I]; 4472 if (Elem.getOpcode() == ISD::Constant || 4473 Elem.getOpcode() == ISD::ConstantFP) { 4474 NumConstants += 1; 4475 Constants[I] = Elem; 4476 Done[I] = true; 4477 } 4478 } 4479 // If there was at least one constant, fill in the other elements of 4480 // Constants with undefs to get a full vector constant and use that 4481 // as the starting point. 4482 SDValue Result; 4483 SDValue ReplicatedVal; 4484 if (NumConstants > 0) { 4485 for (unsigned I = 0; I < NumElements; ++I) 4486 if (!Constants[I].getNode()) 4487 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4488 Result = DAG.getBuildVector(VT, DL, Constants); 4489 } else { 4490 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4491 // avoid a false dependency on any previous contents of the vector 4492 // register. 4493 4494 // Use a VLREP if at least one element is a load. Make sure to replicate 4495 // the load with the most elements having its value. 4496 std::map<const SDNode*, unsigned> UseCounts; 4497 SDNode *LoadMaxUses = nullptr; 4498 for (unsigned I = 0; I < NumElements; ++I) 4499 if (Elems[I].getOpcode() == ISD::LOAD && 4500 cast<LoadSDNode>(Elems[I])->isUnindexed()) { 4501 SDNode *Ld = Elems[I].getNode(); 4502 UseCounts[Ld]++; 4503 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 4504 LoadMaxUses = Ld; 4505 } 4506 if (LoadMaxUses != nullptr) { 4507 ReplicatedVal = SDValue(LoadMaxUses, 0); 4508 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 4509 } else { 4510 // Try to use VLVGP. 4511 unsigned I1 = NumElements / 2 - 1; 4512 unsigned I2 = NumElements - 1; 4513 bool Def1 = !Elems[I1].isUndef(); 4514 bool Def2 = !Elems[I2].isUndef(); 4515 if (Def1 || Def2) { 4516 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4517 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4518 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4519 joinDwords(DAG, DL, Elem1, Elem2)); 4520 Done[I1] = true; 4521 Done[I2] = true; 4522 } else 4523 Result = DAG.getUNDEF(VT); 4524 } 4525 } 4526 4527 // Use VLVGx to insert the other elements. 4528 for (unsigned I = 0; I < NumElements; ++I) 4529 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 4530 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4531 DAG.getConstant(I, DL, MVT::i32)); 4532 return Result; 4533 } 4534 4535 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4536 SelectionDAG &DAG) const { 4537 const SystemZInstrInfo *TII = 4538 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4539 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4540 SDLoc DL(Op); 4541 EVT VT = Op.getValueType(); 4542 4543 if (BVN->isConstant()) { 4544 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4545 // preferred way of creating all-zero and all-one vectors so give it 4546 // priority over other methods below. 4547 uint64_t Mask = 0; 4548 if (tryBuildVectorByteMask(BVN, Mask)) { 4549 SDValue Op = DAG.getNode( 4550 SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4551 DAG.getConstant(Mask, DL, MVT::i32, false, true /*isOpaque*/)); 4552 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4553 } 4554 4555 // Try using some form of replication. 4556 APInt SplatBits, SplatUndef; 4557 unsigned SplatBitSize; 4558 bool HasAnyUndefs; 4559 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4560 8, true) && 4561 SplatBitSize <= 64) { 4562 // First try assuming that any undefined bits above the highest set bit 4563 // and below the lowest set bit are 1s. This increases the likelihood of 4564 // being able to use a sign-extended element value in VECTOR REPLICATE 4565 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4566 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4567 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4568 uint64_t Lower = (SplatUndefZ 4569 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4570 uint64_t Upper = (SplatUndefZ 4571 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4572 uint64_t Value = SplatBitsZ | Upper | Lower; 4573 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4574 SplatBitSize); 4575 if (Op.getNode()) 4576 return Op; 4577 4578 // Now try assuming that any undefined bits between the first and 4579 // last defined set bits are set. This increases the chances of 4580 // using a non-wraparound mask. 4581 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4582 Value = SplatBitsZ | Middle; 4583 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4584 if (Op.getNode()) 4585 return Op; 4586 } 4587 4588 // Fall back to loading it from memory. 4589 return SDValue(); 4590 } 4591 4592 // See if we should use shuffles to construct the vector from other vectors. 4593 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4594 return Res; 4595 4596 // Detect SCALAR_TO_VECTOR conversions. 4597 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4598 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4599 4600 // Otherwise use buildVector to build the vector up from GPRs. 4601 unsigned NumElements = Op.getNumOperands(); 4602 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4603 for (unsigned I = 0; I < NumElements; ++I) 4604 Ops[I] = Op.getOperand(I); 4605 return buildVector(DAG, DL, VT, Ops); 4606 } 4607 4608 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4609 SelectionDAG &DAG) const { 4610 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4611 SDLoc DL(Op); 4612 EVT VT = Op.getValueType(); 4613 unsigned NumElements = VT.getVectorNumElements(); 4614 4615 if (VSN->isSplat()) { 4616 SDValue Op0 = Op.getOperand(0); 4617 unsigned Index = VSN->getSplatIndex(); 4618 assert(Index < VT.getVectorNumElements() && 4619 "Splat index should be defined and in first operand"); 4620 // See whether the value we're splatting is directly available as a scalar. 4621 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4622 Op0.getOpcode() == ISD::BUILD_VECTOR) 4623 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4624 // Otherwise keep it as a vector-to-vector operation. 4625 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4626 DAG.getConstant(Index, DL, MVT::i32)); 4627 } 4628 4629 GeneralShuffle GS(VT); 4630 for (unsigned I = 0; I < NumElements; ++I) { 4631 int Elt = VSN->getMaskElt(I); 4632 if (Elt < 0) 4633 GS.addUndef(); 4634 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4635 unsigned(Elt) % NumElements)) 4636 return SDValue(); 4637 } 4638 return GS.getNode(DAG, SDLoc(VSN)); 4639 } 4640 4641 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4642 SelectionDAG &DAG) const { 4643 SDLoc DL(Op); 4644 // Just insert the scalar into element 0 of an undefined vector. 4645 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4646 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4647 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4648 } 4649 4650 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4651 SelectionDAG &DAG) const { 4652 // Handle insertions of floating-point values. 4653 SDLoc DL(Op); 4654 SDValue Op0 = Op.getOperand(0); 4655 SDValue Op1 = Op.getOperand(1); 4656 SDValue Op2 = Op.getOperand(2); 4657 EVT VT = Op.getValueType(); 4658 4659 // Insertions into constant indices of a v2f64 can be done using VPDI. 4660 // However, if the inserted value is a bitcast or a constant then it's 4661 // better to use GPRs, as below. 4662 if (VT == MVT::v2f64 && 4663 Op1.getOpcode() != ISD::BITCAST && 4664 Op1.getOpcode() != ISD::ConstantFP && 4665 Op2.getOpcode() == ISD::Constant) { 4666 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 4667 unsigned Mask = VT.getVectorNumElements() - 1; 4668 if (Index <= Mask) 4669 return Op; 4670 } 4671 4672 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4673 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4674 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4675 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4676 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4677 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4678 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4679 } 4680 4681 SDValue 4682 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4683 SelectionDAG &DAG) const { 4684 // Handle extractions of floating-point values. 4685 SDLoc DL(Op); 4686 SDValue Op0 = Op.getOperand(0); 4687 SDValue Op1 = Op.getOperand(1); 4688 EVT VT = Op.getValueType(); 4689 EVT VecVT = Op0.getValueType(); 4690 4691 // Extractions of constant indices can be done directly. 4692 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4693 uint64_t Index = CIndexN->getZExtValue(); 4694 unsigned Mask = VecVT.getVectorNumElements() - 1; 4695 if (Index <= Mask) 4696 return Op; 4697 } 4698 4699 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4700 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4701 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4702 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4703 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4704 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4705 } 4706 4707 SDValue 4708 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4709 unsigned UnpackHigh) const { 4710 SDValue PackedOp = Op.getOperand(0); 4711 EVT OutVT = Op.getValueType(); 4712 EVT InVT = PackedOp.getValueType(); 4713 unsigned ToBits = OutVT.getScalarSizeInBits(); 4714 unsigned FromBits = InVT.getScalarSizeInBits(); 4715 do { 4716 FromBits *= 2; 4717 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4718 SystemZ::VectorBits / FromBits); 4719 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4720 } while (FromBits != ToBits); 4721 return PackedOp; 4722 } 4723 4724 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4725 unsigned ByScalar) const { 4726 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4727 SDValue Op0 = Op.getOperand(0); 4728 SDValue Op1 = Op.getOperand(1); 4729 SDLoc DL(Op); 4730 EVT VT = Op.getValueType(); 4731 unsigned ElemBitSize = VT.getScalarSizeInBits(); 4732 4733 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4734 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4735 APInt SplatBits, SplatUndef; 4736 unsigned SplatBitSize; 4737 bool HasAnyUndefs; 4738 // Check for constant splats. Use ElemBitSize as the minimum element 4739 // width and reject splats that need wider elements. 4740 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4741 ElemBitSize, true) && 4742 SplatBitSize == ElemBitSize) { 4743 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4744 DL, MVT::i32); 4745 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4746 } 4747 // Check for variable splats. 4748 BitVector UndefElements; 4749 SDValue Splat = BVN->getSplatValue(&UndefElements); 4750 if (Splat) { 4751 // Since i32 is the smallest legal type, we either need a no-op 4752 // or a truncation. 4753 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4754 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4755 } 4756 } 4757 4758 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4759 // and the shift amount is directly available in a GPR. 4760 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4761 if (VSN->isSplat()) { 4762 SDValue VSNOp0 = VSN->getOperand(0); 4763 unsigned Index = VSN->getSplatIndex(); 4764 assert(Index < VT.getVectorNumElements() && 4765 "Splat index should be defined and in first operand"); 4766 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4767 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4768 // Since i32 is the smallest legal type, we either need a no-op 4769 // or a truncation. 4770 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4771 VSNOp0.getOperand(Index)); 4772 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4773 } 4774 } 4775 } 4776 4777 // Otherwise just treat the current form as legal. 4778 return Op; 4779 } 4780 4781 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4782 SelectionDAG &DAG) const { 4783 switch (Op.getOpcode()) { 4784 case ISD::FRAMEADDR: 4785 return lowerFRAMEADDR(Op, DAG); 4786 case ISD::RETURNADDR: 4787 return lowerRETURNADDR(Op, DAG); 4788 case ISD::BR_CC: 4789 return lowerBR_CC(Op, DAG); 4790 case ISD::SELECT_CC: 4791 return lowerSELECT_CC(Op, DAG); 4792 case ISD::SETCC: 4793 return lowerSETCC(Op, DAG); 4794 case ISD::GlobalAddress: 4795 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4796 case ISD::GlobalTLSAddress: 4797 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4798 case ISD::BlockAddress: 4799 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4800 case ISD::JumpTable: 4801 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4802 case ISD::ConstantPool: 4803 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4804 case ISD::BITCAST: 4805 return lowerBITCAST(Op, DAG); 4806 case ISD::VASTART: 4807 return lowerVASTART(Op, DAG); 4808 case ISD::VACOPY: 4809 return lowerVACOPY(Op, DAG); 4810 case ISD::DYNAMIC_STACKALLOC: 4811 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4812 case ISD::GET_DYNAMIC_AREA_OFFSET: 4813 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4814 case ISD::SMUL_LOHI: 4815 return lowerSMUL_LOHI(Op, DAG); 4816 case ISD::UMUL_LOHI: 4817 return lowerUMUL_LOHI(Op, DAG); 4818 case ISD::SDIVREM: 4819 return lowerSDIVREM(Op, DAG); 4820 case ISD::UDIVREM: 4821 return lowerUDIVREM(Op, DAG); 4822 case ISD::SADDO: 4823 case ISD::SSUBO: 4824 case ISD::UADDO: 4825 case ISD::USUBO: 4826 return lowerXALUO(Op, DAG); 4827 case ISD::ADDCARRY: 4828 case ISD::SUBCARRY: 4829 return lowerADDSUBCARRY(Op, DAG); 4830 case ISD::OR: 4831 return lowerOR(Op, DAG); 4832 case ISD::CTPOP: 4833 return lowerCTPOP(Op, DAG); 4834 case ISD::ATOMIC_FENCE: 4835 return lowerATOMIC_FENCE(Op, DAG); 4836 case ISD::ATOMIC_SWAP: 4837 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4838 case ISD::ATOMIC_STORE: 4839 return lowerATOMIC_STORE(Op, DAG); 4840 case ISD::ATOMIC_LOAD: 4841 return lowerATOMIC_LOAD(Op, DAG); 4842 case ISD::ATOMIC_LOAD_ADD: 4843 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4844 case ISD::ATOMIC_LOAD_SUB: 4845 return lowerATOMIC_LOAD_SUB(Op, DAG); 4846 case ISD::ATOMIC_LOAD_AND: 4847 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4848 case ISD::ATOMIC_LOAD_OR: 4849 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4850 case ISD::ATOMIC_LOAD_XOR: 4851 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4852 case ISD::ATOMIC_LOAD_NAND: 4853 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4854 case ISD::ATOMIC_LOAD_MIN: 4855 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4856 case ISD::ATOMIC_LOAD_MAX: 4857 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4858 case ISD::ATOMIC_LOAD_UMIN: 4859 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4860 case ISD::ATOMIC_LOAD_UMAX: 4861 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4862 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4863 return lowerATOMIC_CMP_SWAP(Op, DAG); 4864 case ISD::STACKSAVE: 4865 return lowerSTACKSAVE(Op, DAG); 4866 case ISD::STACKRESTORE: 4867 return lowerSTACKRESTORE(Op, DAG); 4868 case ISD::PREFETCH: 4869 return lowerPREFETCH(Op, DAG); 4870 case ISD::INTRINSIC_W_CHAIN: 4871 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4872 case ISD::INTRINSIC_WO_CHAIN: 4873 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4874 case ISD::BUILD_VECTOR: 4875 return lowerBUILD_VECTOR(Op, DAG); 4876 case ISD::VECTOR_SHUFFLE: 4877 return lowerVECTOR_SHUFFLE(Op, DAG); 4878 case ISD::SCALAR_TO_VECTOR: 4879 return lowerSCALAR_TO_VECTOR(Op, DAG); 4880 case ISD::INSERT_VECTOR_ELT: 4881 return lowerINSERT_VECTOR_ELT(Op, DAG); 4882 case ISD::EXTRACT_VECTOR_ELT: 4883 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4884 case ISD::SIGN_EXTEND_VECTOR_INREG: 4885 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4886 case ISD::ZERO_EXTEND_VECTOR_INREG: 4887 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4888 case ISD::SHL: 4889 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4890 case ISD::SRL: 4891 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4892 case ISD::SRA: 4893 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4894 default: 4895 llvm_unreachable("Unexpected node to lower"); 4896 } 4897 } 4898 4899 // Lower operations with invalid operand or result types (currently used 4900 // only for 128-bit integer types). 4901 4902 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 4903 SDLoc DL(In); 4904 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 4905 DAG.getIntPtrConstant(0, DL)); 4906 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 4907 DAG.getIntPtrConstant(1, DL)); 4908 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 4909 MVT::Untyped, Hi, Lo); 4910 return SDValue(Pair, 0); 4911 } 4912 4913 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 4914 SDLoc DL(In); 4915 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 4916 DL, MVT::i64, In); 4917 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 4918 DL, MVT::i64, In); 4919 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 4920 } 4921 4922 void 4923 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 4924 SmallVectorImpl<SDValue> &Results, 4925 SelectionDAG &DAG) const { 4926 switch (N->getOpcode()) { 4927 case ISD::ATOMIC_LOAD: { 4928 SDLoc DL(N); 4929 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 4930 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 4931 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4932 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 4933 DL, Tys, Ops, MVT::i128, MMO); 4934 Results.push_back(lowerGR128ToI128(DAG, Res)); 4935 Results.push_back(Res.getValue(1)); 4936 break; 4937 } 4938 case ISD::ATOMIC_STORE: { 4939 SDLoc DL(N); 4940 SDVTList Tys = DAG.getVTList(MVT::Other); 4941 SDValue Ops[] = { N->getOperand(0), 4942 lowerI128ToGR128(DAG, N->getOperand(2)), 4943 N->getOperand(1) }; 4944 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4945 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 4946 DL, Tys, Ops, MVT::i128, MMO); 4947 // We have to enforce sequential consistency by performing a 4948 // serialization operation after the store. 4949 if (cast<AtomicSDNode>(N)->getOrdering() == 4950 AtomicOrdering::SequentiallyConsistent) 4951 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 4952 MVT::Other, Res), 0); 4953 Results.push_back(Res); 4954 break; 4955 } 4956 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 4957 SDLoc DL(N); 4958 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 4959 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 4960 lowerI128ToGR128(DAG, N->getOperand(2)), 4961 lowerI128ToGR128(DAG, N->getOperand(3)) }; 4962 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4963 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 4964 DL, Tys, Ops, MVT::i128, MMO); 4965 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 4966 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4967 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 4968 Results.push_back(lowerGR128ToI128(DAG, Res)); 4969 Results.push_back(Success); 4970 Results.push_back(Res.getValue(2)); 4971 break; 4972 } 4973 default: 4974 llvm_unreachable("Unexpected node to lower"); 4975 } 4976 } 4977 4978 void 4979 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 4980 SmallVectorImpl<SDValue> &Results, 4981 SelectionDAG &DAG) const { 4982 return LowerOperationWrapper(N, Results, DAG); 4983 } 4984 4985 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4986 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4987 switch ((SystemZISD::NodeType)Opcode) { 4988 case SystemZISD::FIRST_NUMBER: break; 4989 OPCODE(RET_FLAG); 4990 OPCODE(CALL); 4991 OPCODE(SIBCALL); 4992 OPCODE(TLS_GDCALL); 4993 OPCODE(TLS_LDCALL); 4994 OPCODE(PCREL_WRAPPER); 4995 OPCODE(PCREL_OFFSET); 4996 OPCODE(IABS); 4997 OPCODE(ICMP); 4998 OPCODE(FCMP); 4999 OPCODE(TM); 5000 OPCODE(BR_CCMASK); 5001 OPCODE(SELECT_CCMASK); 5002 OPCODE(ADJDYNALLOC); 5003 OPCODE(POPCNT); 5004 OPCODE(SMUL_LOHI); 5005 OPCODE(UMUL_LOHI); 5006 OPCODE(SDIVREM); 5007 OPCODE(UDIVREM); 5008 OPCODE(SADDO); 5009 OPCODE(SSUBO); 5010 OPCODE(UADDO); 5011 OPCODE(USUBO); 5012 OPCODE(ADDCARRY); 5013 OPCODE(SUBCARRY); 5014 OPCODE(GET_CCMASK); 5015 OPCODE(MVC); 5016 OPCODE(MVC_LOOP); 5017 OPCODE(NC); 5018 OPCODE(NC_LOOP); 5019 OPCODE(OC); 5020 OPCODE(OC_LOOP); 5021 OPCODE(XC); 5022 OPCODE(XC_LOOP); 5023 OPCODE(CLC); 5024 OPCODE(CLC_LOOP); 5025 OPCODE(STPCPY); 5026 OPCODE(STRCMP); 5027 OPCODE(SEARCH_STRING); 5028 OPCODE(IPM); 5029 OPCODE(MEMBARRIER); 5030 OPCODE(TBEGIN); 5031 OPCODE(TBEGIN_NOFLOAT); 5032 OPCODE(TEND); 5033 OPCODE(BYTE_MASK); 5034 OPCODE(ROTATE_MASK); 5035 OPCODE(REPLICATE); 5036 OPCODE(JOIN_DWORDS); 5037 OPCODE(SPLAT); 5038 OPCODE(MERGE_HIGH); 5039 OPCODE(MERGE_LOW); 5040 OPCODE(SHL_DOUBLE); 5041 OPCODE(PERMUTE_DWORDS); 5042 OPCODE(PERMUTE); 5043 OPCODE(PACK); 5044 OPCODE(PACKS_CC); 5045 OPCODE(PACKLS_CC); 5046 OPCODE(UNPACK_HIGH); 5047 OPCODE(UNPACKL_HIGH); 5048 OPCODE(UNPACK_LOW); 5049 OPCODE(UNPACKL_LOW); 5050 OPCODE(VSHL_BY_SCALAR); 5051 OPCODE(VSRL_BY_SCALAR); 5052 OPCODE(VSRA_BY_SCALAR); 5053 OPCODE(VSUM); 5054 OPCODE(VICMPE); 5055 OPCODE(VICMPH); 5056 OPCODE(VICMPHL); 5057 OPCODE(VICMPES); 5058 OPCODE(VICMPHS); 5059 OPCODE(VICMPHLS); 5060 OPCODE(VFCMPE); 5061 OPCODE(VFCMPH); 5062 OPCODE(VFCMPHE); 5063 OPCODE(VFCMPES); 5064 OPCODE(VFCMPHS); 5065 OPCODE(VFCMPHES); 5066 OPCODE(VFTCI); 5067 OPCODE(VEXTEND); 5068 OPCODE(VROUND); 5069 OPCODE(VTM); 5070 OPCODE(VFAE_CC); 5071 OPCODE(VFAEZ_CC); 5072 OPCODE(VFEE_CC); 5073 OPCODE(VFEEZ_CC); 5074 OPCODE(VFENE_CC); 5075 OPCODE(VFENEZ_CC); 5076 OPCODE(VISTR_CC); 5077 OPCODE(VSTRC_CC); 5078 OPCODE(VSTRCZ_CC); 5079 OPCODE(TDC); 5080 OPCODE(ATOMIC_SWAPW); 5081 OPCODE(ATOMIC_LOADW_ADD); 5082 OPCODE(ATOMIC_LOADW_SUB); 5083 OPCODE(ATOMIC_LOADW_AND); 5084 OPCODE(ATOMIC_LOADW_OR); 5085 OPCODE(ATOMIC_LOADW_XOR); 5086 OPCODE(ATOMIC_LOADW_NAND); 5087 OPCODE(ATOMIC_LOADW_MIN); 5088 OPCODE(ATOMIC_LOADW_MAX); 5089 OPCODE(ATOMIC_LOADW_UMIN); 5090 OPCODE(ATOMIC_LOADW_UMAX); 5091 OPCODE(ATOMIC_CMP_SWAPW); 5092 OPCODE(ATOMIC_CMP_SWAP); 5093 OPCODE(ATOMIC_LOAD_128); 5094 OPCODE(ATOMIC_STORE_128); 5095 OPCODE(ATOMIC_CMP_SWAP_128); 5096 OPCODE(LRV); 5097 OPCODE(STRV); 5098 OPCODE(PREFETCH); 5099 } 5100 return nullptr; 5101 #undef OPCODE 5102 } 5103 5104 // Return true if VT is a vector whose elements are a whole number of bytes 5105 // in width. Also check for presence of vector support. 5106 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5107 if (!Subtarget.hasVector()) 5108 return false; 5109 5110 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5111 } 5112 5113 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5114 // producing a result of type ResVT. Op is a possibly bitcast version 5115 // of the input vector and Index is the index (based on type VecVT) that 5116 // should be extracted. Return the new extraction if a simplification 5117 // was possible or if Force is true. 5118 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5119 EVT VecVT, SDValue Op, 5120 unsigned Index, 5121 DAGCombinerInfo &DCI, 5122 bool Force) const { 5123 SelectionDAG &DAG = DCI.DAG; 5124 5125 // The number of bytes being extracted. 5126 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5127 5128 for (;;) { 5129 unsigned Opcode = Op.getOpcode(); 5130 if (Opcode == ISD::BITCAST) 5131 // Look through bitcasts. 5132 Op = Op.getOperand(0); 5133 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5134 canTreatAsByteVector(Op.getValueType())) { 5135 // Get a VPERM-like permute mask and see whether the bytes covered 5136 // by the extracted element are a contiguous sequence from one 5137 // source operand. 5138 SmallVector<int, SystemZ::VectorBytes> Bytes; 5139 if (!getVPermMask(Op, Bytes)) 5140 break; 5141 int First; 5142 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5143 BytesPerElement, First)) 5144 break; 5145 if (First < 0) 5146 return DAG.getUNDEF(ResVT); 5147 // Make sure the contiguous sequence starts at a multiple of the 5148 // original element size. 5149 unsigned Byte = unsigned(First) % Bytes.size(); 5150 if (Byte % BytesPerElement != 0) 5151 break; 5152 // We can get the extracted value directly from an input. 5153 Index = Byte / BytesPerElement; 5154 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5155 Force = true; 5156 } else if (Opcode == ISD::BUILD_VECTOR && 5157 canTreatAsByteVector(Op.getValueType())) { 5158 // We can only optimize this case if the BUILD_VECTOR elements are 5159 // at least as wide as the extracted value. 5160 EVT OpVT = Op.getValueType(); 5161 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5162 if (OpBytesPerElement < BytesPerElement) 5163 break; 5164 // Make sure that the least-significant bit of the extracted value 5165 // is the least significant bit of an input. 5166 unsigned End = (Index + 1) * BytesPerElement; 5167 if (End % OpBytesPerElement != 0) 5168 break; 5169 // We're extracting the low part of one operand of the BUILD_VECTOR. 5170 Op = Op.getOperand(End / OpBytesPerElement - 1); 5171 if (!Op.getValueType().isInteger()) { 5172 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5173 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5174 DCI.AddToWorklist(Op.getNode()); 5175 } 5176 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5177 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5178 if (VT != ResVT) { 5179 DCI.AddToWorklist(Op.getNode()); 5180 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5181 } 5182 return Op; 5183 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5184 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5185 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5186 canTreatAsByteVector(Op.getValueType()) && 5187 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5188 // Make sure that only the unextended bits are significant. 5189 EVT ExtVT = Op.getValueType(); 5190 EVT OpVT = Op.getOperand(0).getValueType(); 5191 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5192 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5193 unsigned Byte = Index * BytesPerElement; 5194 unsigned SubByte = Byte % ExtBytesPerElement; 5195 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5196 if (SubByte < MinSubByte || 5197 SubByte + BytesPerElement > ExtBytesPerElement) 5198 break; 5199 // Get the byte offset of the unextended element 5200 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5201 // ...then add the byte offset relative to that element. 5202 Byte += SubByte - MinSubByte; 5203 if (Byte % BytesPerElement != 0) 5204 break; 5205 Op = Op.getOperand(0); 5206 Index = Byte / BytesPerElement; 5207 Force = true; 5208 } else 5209 break; 5210 } 5211 if (Force) { 5212 if (Op.getValueType() != VecVT) { 5213 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5214 DCI.AddToWorklist(Op.getNode()); 5215 } 5216 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5217 DAG.getConstant(Index, DL, MVT::i32)); 5218 } 5219 return SDValue(); 5220 } 5221 5222 // Optimize vector operations in scalar value Op on the basis that Op 5223 // is truncated to TruncVT. 5224 SDValue SystemZTargetLowering::combineTruncateExtract( 5225 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5226 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5227 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5228 // of type TruncVT. 5229 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5230 TruncVT.getSizeInBits() % 8 == 0) { 5231 SDValue Vec = Op.getOperand(0); 5232 EVT VecVT = Vec.getValueType(); 5233 if (canTreatAsByteVector(VecVT)) { 5234 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5235 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5236 unsigned TruncBytes = TruncVT.getStoreSize(); 5237 if (BytesPerElement % TruncBytes == 0) { 5238 // Calculate the value of Y' in the above description. We are 5239 // splitting the original elements into Scale equal-sized pieces 5240 // and for truncation purposes want the last (least-significant) 5241 // of these pieces for IndexN. This is easiest to do by calculating 5242 // the start index of the following element and then subtracting 1. 5243 unsigned Scale = BytesPerElement / TruncBytes; 5244 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5245 5246 // Defer the creation of the bitcast from X to combineExtract, 5247 // which might be able to optimize the extraction. 5248 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5249 VecVT.getStoreSize() / TruncBytes); 5250 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5251 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5252 } 5253 } 5254 } 5255 } 5256 return SDValue(); 5257 } 5258 5259 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5260 SDNode *N, DAGCombinerInfo &DCI) const { 5261 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5262 SelectionDAG &DAG = DCI.DAG; 5263 SDValue N0 = N->getOperand(0); 5264 EVT VT = N->getValueType(0); 5265 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5266 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5267 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5268 if (TrueOp && FalseOp) { 5269 SDLoc DL(N0); 5270 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5271 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5272 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5273 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5274 // If N0 has multiple uses, change other uses as well. 5275 if (!N0.hasOneUse()) { 5276 SDValue TruncSelect = 5277 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5278 DCI.CombineTo(N0.getNode(), TruncSelect); 5279 } 5280 return NewSelect; 5281 } 5282 } 5283 return SDValue(); 5284 } 5285 5286 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5287 SDNode *N, DAGCombinerInfo &DCI) const { 5288 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5289 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5290 // into (select_cc LHS, RHS, -1, 0, COND) 5291 SelectionDAG &DAG = DCI.DAG; 5292 SDValue N0 = N->getOperand(0); 5293 EVT VT = N->getValueType(0); 5294 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5295 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5296 N0 = N0.getOperand(0); 5297 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5298 SDLoc DL(N0); 5299 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5300 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5301 N0.getOperand(2) }; 5302 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5303 } 5304 return SDValue(); 5305 } 5306 5307 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5308 SDNode *N, DAGCombinerInfo &DCI) const { 5309 // Convert (sext (ashr (shl X, C1), C2)) to 5310 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5311 // cheap as narrower ones. 5312 SelectionDAG &DAG = DCI.DAG; 5313 SDValue N0 = N->getOperand(0); 5314 EVT VT = N->getValueType(0); 5315 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5316 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5317 SDValue Inner = N0.getOperand(0); 5318 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5319 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5320 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5321 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5322 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5323 EVT ShiftVT = N0.getOperand(1).getValueType(); 5324 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5325 Inner.getOperand(0)); 5326 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5327 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5328 ShiftVT)); 5329 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5330 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5331 } 5332 } 5333 } 5334 return SDValue(); 5335 } 5336 5337 SDValue SystemZTargetLowering::combineMERGE( 5338 SDNode *N, DAGCombinerInfo &DCI) const { 5339 SelectionDAG &DAG = DCI.DAG; 5340 unsigned Opcode = N->getOpcode(); 5341 SDValue Op0 = N->getOperand(0); 5342 SDValue Op1 = N->getOperand(1); 5343 if (Op0.getOpcode() == ISD::BITCAST) 5344 Op0 = Op0.getOperand(0); 5345 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 5346 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 5347 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5348 // for v4f32. 5349 if (Op1 == N->getOperand(0)) 5350 return Op1; 5351 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5352 EVT VT = Op1.getValueType(); 5353 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5354 if (ElemBytes <= 4) { 5355 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5356 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5357 EVT InVT = VT.changeVectorElementTypeToInteger(); 5358 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5359 SystemZ::VectorBytes / ElemBytes / 2); 5360 if (VT != InVT) { 5361 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5362 DCI.AddToWorklist(Op1.getNode()); 5363 } 5364 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5365 DCI.AddToWorklist(Op.getNode()); 5366 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5367 } 5368 } 5369 return SDValue(); 5370 } 5371 5372 SDValue SystemZTargetLowering::combineLOAD( 5373 SDNode *N, DAGCombinerInfo &DCI) const { 5374 SelectionDAG &DAG = DCI.DAG; 5375 EVT LdVT = N->getValueType(0); 5376 if (LdVT.isVector() || LdVT.isInteger()) 5377 return SDValue(); 5378 // Transform a scalar load that is REPLICATEd as well as having other 5379 // use(s) to the form where the other use(s) use the first element of the 5380 // REPLICATE instead of the load. Otherwise instruction selection will not 5381 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5382 // point loads. 5383 5384 SDValue Replicate; 5385 SmallVector<SDNode*, 8> OtherUses; 5386 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5387 UI != UE; ++UI) { 5388 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5389 if (Replicate) 5390 return SDValue(); // Should never happen 5391 Replicate = SDValue(*UI, 0); 5392 } 5393 else if (UI.getUse().getResNo() == 0) 5394 OtherUses.push_back(*UI); 5395 } 5396 if (!Replicate || OtherUses.empty()) 5397 return SDValue(); 5398 5399 SDLoc DL(N); 5400 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5401 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5402 // Update uses of the loaded Value while preserving old chains. 5403 for (SDNode *U : OtherUses) { 5404 SmallVector<SDValue, 8> Ops; 5405 for (SDValue Op : U->ops()) 5406 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5407 DAG.UpdateNodeOperands(U, Ops); 5408 } 5409 return SDValue(N, 0); 5410 } 5411 5412 SDValue SystemZTargetLowering::combineSTORE( 5413 SDNode *N, DAGCombinerInfo &DCI) const { 5414 SelectionDAG &DAG = DCI.DAG; 5415 auto *SN = cast<StoreSDNode>(N); 5416 auto &Op1 = N->getOperand(1); 5417 EVT MemVT = SN->getMemoryVT(); 5418 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5419 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5420 // If X has wider elements then convert it to: 5421 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5422 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5423 if (SDValue Value = 5424 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5425 DCI.AddToWorklist(Value.getNode()); 5426 5427 // Rewrite the store with the new form of stored value. 5428 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5429 SN->getBasePtr(), SN->getMemoryVT(), 5430 SN->getMemOperand()); 5431 } 5432 } 5433 // Combine STORE (BSWAP) into STRVH/STRV/STRVG 5434 if (!SN->isTruncatingStore() && 5435 Op1.getOpcode() == ISD::BSWAP && 5436 Op1.getNode()->hasOneUse() && 5437 (Op1.getValueType() == MVT::i16 || 5438 Op1.getValueType() == MVT::i32 || 5439 Op1.getValueType() == MVT::i64)) { 5440 5441 SDValue BSwapOp = Op1.getOperand(0); 5442 5443 if (BSwapOp.getValueType() == MVT::i16) 5444 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5445 5446 SDValue Ops[] = { 5447 N->getOperand(0), BSwapOp, N->getOperand(2) 5448 }; 5449 5450 return 5451 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5452 Ops, MemVT, SN->getMemOperand()); 5453 } 5454 return SDValue(); 5455 } 5456 5457 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5458 SDNode *N, DAGCombinerInfo &DCI) const { 5459 5460 if (!Subtarget.hasVector()) 5461 return SDValue(); 5462 5463 // Try to simplify a vector extraction. 5464 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5465 SDValue Op0 = N->getOperand(0); 5466 EVT VecVT = Op0.getValueType(); 5467 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5468 IndexN->getZExtValue(), DCI, false); 5469 } 5470 return SDValue(); 5471 } 5472 5473 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5474 SDNode *N, DAGCombinerInfo &DCI) const { 5475 SelectionDAG &DAG = DCI.DAG; 5476 // (join_dwords X, X) == (replicate X) 5477 if (N->getOperand(0) == N->getOperand(1)) 5478 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5479 N->getOperand(0)); 5480 return SDValue(); 5481 } 5482 5483 SDValue SystemZTargetLowering::combineFP_ROUND( 5484 SDNode *N, DAGCombinerInfo &DCI) const { 5485 // (fpround (extract_vector_elt X 0)) 5486 // (fpround (extract_vector_elt X 1)) -> 5487 // (extract_vector_elt (VROUND X) 0) 5488 // (extract_vector_elt (VROUND X) 1) 5489 // 5490 // This is a special case since the target doesn't really support v2f32s. 5491 SelectionDAG &DAG = DCI.DAG; 5492 SDValue Op0 = N->getOperand(0); 5493 if (N->getValueType(0) == MVT::f32 && 5494 Op0.hasOneUse() && 5495 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5496 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5497 Op0.getOperand(1).getOpcode() == ISD::Constant && 5498 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5499 SDValue Vec = Op0.getOperand(0); 5500 for (auto *U : Vec->uses()) { 5501 if (U != Op0.getNode() && 5502 U->hasOneUse() && 5503 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5504 U->getOperand(0) == Vec && 5505 U->getOperand(1).getOpcode() == ISD::Constant && 5506 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5507 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5508 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5509 OtherRound.getOperand(0) == SDValue(U, 0) && 5510 OtherRound.getValueType() == MVT::f32) { 5511 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5512 MVT::v4f32, Vec); 5513 DCI.AddToWorklist(VRound.getNode()); 5514 SDValue Extract1 = 5515 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5516 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5517 DCI.AddToWorklist(Extract1.getNode()); 5518 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5519 SDValue Extract0 = 5520 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5521 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5522 return Extract0; 5523 } 5524 } 5525 } 5526 } 5527 return SDValue(); 5528 } 5529 5530 SDValue SystemZTargetLowering::combineBSWAP( 5531 SDNode *N, DAGCombinerInfo &DCI) const { 5532 SelectionDAG &DAG = DCI.DAG; 5533 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG 5534 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5535 N->getOperand(0).hasOneUse() && 5536 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 || 5537 N->getValueType(0) == MVT::i64)) { 5538 SDValue Load = N->getOperand(0); 5539 LoadSDNode *LD = cast<LoadSDNode>(Load); 5540 5541 // Create the byte-swapping load. 5542 SDValue Ops[] = { 5543 LD->getChain(), // Chain 5544 LD->getBasePtr() // Ptr 5545 }; 5546 EVT LoadVT = N->getValueType(0); 5547 if (LoadVT == MVT::i16) 5548 LoadVT = MVT::i32; 5549 SDValue BSLoad = 5550 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 5551 DAG.getVTList(LoadVT, MVT::Other), 5552 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5553 5554 // If this is an i16 load, insert the truncate. 5555 SDValue ResVal = BSLoad; 5556 if (N->getValueType(0) == MVT::i16) 5557 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5558 5559 // First, combine the bswap away. This makes the value produced by the 5560 // load dead. 5561 DCI.CombineTo(N, ResVal); 5562 5563 // Next, combine the load away, we give it a bogus result value but a real 5564 // chain result. The result value is dead because the bswap is dead. 5565 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5566 5567 // Return N so it doesn't get rechecked! 5568 return SDValue(N, 0); 5569 } 5570 return SDValue(); 5571 } 5572 5573 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 5574 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 5575 // set by the CCReg instruction using the CCValid / CCMask masks, 5576 // If the CCReg instruction is itself a (ICMP (SELECT_CCMASK)) testing 5577 // the condition code set by some other instruction, see whether we 5578 // can directly use that condition code. 5579 bool Invert = false; 5580 5581 // Verify that we have an appropriate mask for a EQ or NE comparison. 5582 if (CCValid != SystemZ::CCMASK_ICMP) 5583 return false; 5584 if (CCMask == SystemZ::CCMASK_CMP_NE) 5585 Invert = !Invert; 5586 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 5587 return false; 5588 5589 // Verify that we have an ICMP that is the user of a SELECT_CCMASK. 5590 SDNode *ICmp = CCReg.getNode(); 5591 if (ICmp->getOpcode() != SystemZISD::ICMP) 5592 return false; 5593 SDNode *Select = ICmp->getOperand(0).getNode(); 5594 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 5595 return false; 5596 5597 // Verify that the ICMP compares against one of select values. 5598 auto *CompareVal = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 5599 if (!CompareVal) 5600 return false; 5601 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 5602 if (!TrueVal) 5603 return false; 5604 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 5605 if (!FalseVal) 5606 return false; 5607 if (CompareVal->getZExtValue() == FalseVal->getZExtValue()) 5608 Invert = !Invert; 5609 else if (CompareVal->getZExtValue() != TrueVal->getZExtValue()) 5610 return false; 5611 5612 // Compute the effective CC mask for the new branch or select. 5613 auto *NewCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 5614 auto *NewCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 5615 if (!NewCCValid || !NewCCMask) 5616 return false; 5617 CCValid = NewCCValid->getZExtValue(); 5618 CCMask = NewCCMask->getZExtValue(); 5619 if (Invert) 5620 CCMask ^= CCValid; 5621 5622 // Return the updated CCReg link. 5623 CCReg = Select->getOperand(4); 5624 return true; 5625 } 5626 5627 SDValue SystemZTargetLowering::combineBR_CCMASK( 5628 SDNode *N, DAGCombinerInfo &DCI) const { 5629 SelectionDAG &DAG = DCI.DAG; 5630 5631 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 5632 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5633 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5634 if (!CCValid || !CCMask) 5635 return SDValue(); 5636 5637 int CCValidVal = CCValid->getZExtValue(); 5638 int CCMaskVal = CCMask->getZExtValue(); 5639 SDValue Chain = N->getOperand(0); 5640 SDValue CCReg = N->getOperand(4); 5641 5642 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 5643 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 5644 Chain, 5645 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32), 5646 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32), 5647 N->getOperand(3), CCReg); 5648 return SDValue(); 5649 } 5650 5651 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 5652 SDNode *N, DAGCombinerInfo &DCI) const { 5653 SelectionDAG &DAG = DCI.DAG; 5654 5655 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 5656 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5657 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 5658 if (!CCValid || !CCMask) 5659 return SDValue(); 5660 5661 int CCValidVal = CCValid->getZExtValue(); 5662 int CCMaskVal = CCMask->getZExtValue(); 5663 SDValue CCReg = N->getOperand(4); 5664 5665 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 5666 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 5667 N->getOperand(0), 5668 N->getOperand(1), 5669 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32), 5670 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32), 5671 CCReg); 5672 return SDValue(); 5673 } 5674 5675 5676 SDValue SystemZTargetLowering::combineGET_CCMASK( 5677 SDNode *N, DAGCombinerInfo &DCI) const { 5678 5679 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 5680 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5681 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5682 if (!CCValid || !CCMask) 5683 return SDValue(); 5684 int CCValidVal = CCValid->getZExtValue(); 5685 int CCMaskVal = CCMask->getZExtValue(); 5686 5687 SDValue Select = N->getOperand(0); 5688 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 5689 return SDValue(); 5690 5691 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 5692 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 5693 if (!SelectCCValid || !SelectCCMask) 5694 return SDValue(); 5695 int SelectCCValidVal = SelectCCValid->getZExtValue(); 5696 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 5697 5698 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 5699 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 5700 if (!TrueVal || !FalseVal) 5701 return SDValue(); 5702 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 5703 ; 5704 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 5705 SelectCCMaskVal ^= SelectCCValidVal; 5706 else 5707 return SDValue(); 5708 5709 if (SelectCCValidVal & ~CCValidVal) 5710 return SDValue(); 5711 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 5712 return SDValue(); 5713 5714 return Select->getOperand(4); 5715 } 5716 5717 SDValue SystemZTargetLowering::combineIntDIVREM( 5718 SDNode *N, DAGCombinerInfo &DCI) const { 5719 SelectionDAG &DAG = DCI.DAG; 5720 EVT VT = N->getValueType(0); 5721 // In the case where the divisor is a vector of constants a cheaper 5722 // sequence of instructions can replace the divide. BuildSDIV is called to 5723 // do this during DAG combining, but it only succeeds when it can build a 5724 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 5725 // since it is not Legal but Custom it can only happen before 5726 // legalization. Therefore we must scalarize this early before Combine 5727 // 1. For widened vectors, this is already the result of type legalization. 5728 if (VT.isVector() && isTypeLegal(VT) && 5729 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 5730 return DAG.UnrollVectorOp(N); 5731 return SDValue(); 5732 } 5733 5734 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 5735 DAGCombinerInfo &DCI) const { 5736 switch(N->getOpcode()) { 5737 default: break; 5738 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 5739 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 5740 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 5741 case SystemZISD::MERGE_HIGH: 5742 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 5743 case ISD::LOAD: return combineLOAD(N, DCI); 5744 case ISD::STORE: return combineSTORE(N, DCI); 5745 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 5746 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 5747 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 5748 case ISD::BSWAP: return combineBSWAP(N, DCI); 5749 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 5750 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 5751 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 5752 case ISD::SDIV: 5753 case ISD::UDIV: 5754 case ISD::SREM: 5755 case ISD::UREM: return combineIntDIVREM(N, DCI); 5756 } 5757 5758 return SDValue(); 5759 } 5760 5761 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 5762 // are for Op. 5763 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 5764 unsigned OpNo) { 5765 EVT VT = Op.getValueType(); 5766 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 5767 APInt SrcDemE; 5768 unsigned Opcode = Op.getOpcode(); 5769 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 5770 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5771 switch (Id) { 5772 case Intrinsic::s390_vpksh: // PACKS 5773 case Intrinsic::s390_vpksf: 5774 case Intrinsic::s390_vpksg: 5775 case Intrinsic::s390_vpkshs: // PACKS_CC 5776 case Intrinsic::s390_vpksfs: 5777 case Intrinsic::s390_vpksgs: 5778 case Intrinsic::s390_vpklsh: // PACKLS 5779 case Intrinsic::s390_vpklsf: 5780 case Intrinsic::s390_vpklsg: 5781 case Intrinsic::s390_vpklshs: // PACKLS_CC 5782 case Intrinsic::s390_vpklsfs: 5783 case Intrinsic::s390_vpklsgs: 5784 // VECTOR PACK truncates the elements of two source vectors into one. 5785 SrcDemE = DemandedElts; 5786 if (OpNo == 2) 5787 SrcDemE.lshrInPlace(NumElts / 2); 5788 SrcDemE = SrcDemE.trunc(NumElts / 2); 5789 break; 5790 // VECTOR UNPACK extends half the elements of the source vector. 5791 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 5792 case Intrinsic::s390_vuphh: 5793 case Intrinsic::s390_vuphf: 5794 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 5795 case Intrinsic::s390_vuplhh: 5796 case Intrinsic::s390_vuplhf: 5797 SrcDemE = APInt(NumElts * 2, 0); 5798 SrcDemE.insertBits(DemandedElts, 0); 5799 break; 5800 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 5801 case Intrinsic::s390_vuplhw: 5802 case Intrinsic::s390_vuplf: 5803 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 5804 case Intrinsic::s390_vupllh: 5805 case Intrinsic::s390_vupllf: 5806 SrcDemE = APInt(NumElts * 2, 0); 5807 SrcDemE.insertBits(DemandedElts, NumElts); 5808 break; 5809 case Intrinsic::s390_vpdi: { 5810 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 5811 SrcDemE = APInt(NumElts, 0); 5812 if (!DemandedElts[OpNo - 1]) 5813 break; 5814 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 5815 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 5816 // Demand input element 0 or 1, given by the mask bit value. 5817 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 5818 break; 5819 } 5820 case Intrinsic::s390_vsldb: { 5821 // VECTOR SHIFT LEFT DOUBLE BY BYTE 5822 assert(VT == MVT::v16i8 && "Unexpected type."); 5823 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 5824 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 5825 unsigned NumSrc0Els = 16 - FirstIdx; 5826 SrcDemE = APInt(NumElts, 0); 5827 if (OpNo == 1) { 5828 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 5829 SrcDemE.insertBits(DemEls, FirstIdx); 5830 } else { 5831 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 5832 SrcDemE.insertBits(DemEls, 0); 5833 } 5834 break; 5835 } 5836 case Intrinsic::s390_vperm: 5837 SrcDemE = APInt(NumElts, 1); 5838 break; 5839 default: 5840 llvm_unreachable("Unhandled intrinsic."); 5841 break; 5842 } 5843 } else { 5844 switch (Opcode) { 5845 case SystemZISD::JOIN_DWORDS: 5846 // Scalar operand. 5847 SrcDemE = APInt(1, 1); 5848 break; 5849 case SystemZISD::SELECT_CCMASK: 5850 SrcDemE = DemandedElts; 5851 break; 5852 default: 5853 llvm_unreachable("Unhandled opcode."); 5854 break; 5855 } 5856 } 5857 return SrcDemE; 5858 } 5859 5860 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 5861 const APInt &DemandedElts, 5862 const SelectionDAG &DAG, unsigned Depth, 5863 unsigned OpNo) { 5864 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 5865 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 5866 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 5867 KnownBits LHSKnown(SrcBitWidth), RHSKnown(SrcBitWidth); 5868 DAG.computeKnownBits(Op.getOperand(OpNo), LHSKnown, Src0DemE, Depth + 1); 5869 DAG.computeKnownBits(Op.getOperand(OpNo + 1), RHSKnown, Src1DemE, Depth + 1); 5870 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 5871 Known.One = LHSKnown.One & RHSKnown.One; 5872 } 5873 5874 void 5875 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 5876 KnownBits &Known, 5877 const APInt &DemandedElts, 5878 const SelectionDAG &DAG, 5879 unsigned Depth) const { 5880 Known.resetAll(); 5881 5882 // Intrinsic CC result is returned in the two low bits. 5883 unsigned tmp0, tmp1; // not used 5884 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 5885 Known.Zero.setBitsFrom(2); 5886 return; 5887 } 5888 EVT VT = Op.getValueType(); 5889 if (Op.getResNo() != 0 || VT == MVT::Untyped) 5890 return; 5891 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 5892 "KnownBits does not match VT in bitwidth"); 5893 assert ((!VT.isVector() || 5894 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 5895 "DemandedElts does not match VT number of elements"); 5896 unsigned BitWidth = Known.getBitWidth(); 5897 unsigned Opcode = Op.getOpcode(); 5898 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 5899 bool IsLogical = false; 5900 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5901 switch (Id) { 5902 case Intrinsic::s390_vpksh: // PACKS 5903 case Intrinsic::s390_vpksf: 5904 case Intrinsic::s390_vpksg: 5905 case Intrinsic::s390_vpkshs: // PACKS_CC 5906 case Intrinsic::s390_vpksfs: 5907 case Intrinsic::s390_vpksgs: 5908 case Intrinsic::s390_vpklsh: // PACKLS 5909 case Intrinsic::s390_vpklsf: 5910 case Intrinsic::s390_vpklsg: 5911 case Intrinsic::s390_vpklshs: // PACKLS_CC 5912 case Intrinsic::s390_vpklsfs: 5913 case Intrinsic::s390_vpklsgs: 5914 case Intrinsic::s390_vpdi: 5915 case Intrinsic::s390_vsldb: 5916 case Intrinsic::s390_vperm: 5917 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 5918 break; 5919 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 5920 case Intrinsic::s390_vuplhh: 5921 case Intrinsic::s390_vuplhf: 5922 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 5923 case Intrinsic::s390_vupllh: 5924 case Intrinsic::s390_vupllf: 5925 IsLogical = true; 5926 LLVM_FALLTHROUGH; 5927 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 5928 case Intrinsic::s390_vuphh: 5929 case Intrinsic::s390_vuphf: 5930 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 5931 case Intrinsic::s390_vuplhw: 5932 case Intrinsic::s390_vuplf: { 5933 SDValue SrcOp = Op.getOperand(1); 5934 unsigned SrcBitWidth = SrcOp.getScalarValueSizeInBits(); 5935 Known = KnownBits(SrcBitWidth); 5936 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 5937 DAG.computeKnownBits(SrcOp, Known, SrcDemE, Depth + 1); 5938 if (IsLogical) { 5939 Known = Known.zext(BitWidth); 5940 Known.Zero.setBitsFrom(SrcBitWidth); 5941 } else 5942 Known = Known.sext(BitWidth); 5943 break; 5944 } 5945 default: 5946 break; 5947 } 5948 } else { 5949 switch (Opcode) { 5950 case SystemZISD::JOIN_DWORDS: 5951 case SystemZISD::SELECT_CCMASK: 5952 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 5953 break; 5954 case SystemZISD::REPLICATE: { 5955 SDValue SrcOp = Op.getOperand(0); 5956 DAG.computeKnownBits(SrcOp, Known, Depth + 1); 5957 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 5958 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 5959 break; 5960 } 5961 default: 5962 break; 5963 } 5964 } 5965 5966 // Known has the width of the source operand(s). Adjust if needed to match 5967 // the passed bitwidth. 5968 if (Known.getBitWidth() != BitWidth) 5969 Known = Known.zextOrTrunc(BitWidth); 5970 } 5971 5972 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 5973 const SelectionDAG &DAG, unsigned Depth, 5974 unsigned OpNo) { 5975 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 5976 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 5977 if (LHS == 1) return 1; // Early out. 5978 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 5979 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 5980 if (RHS == 1) return 1; // Early out. 5981 unsigned Common = std::min(LHS, RHS); 5982 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 5983 EVT VT = Op.getValueType(); 5984 unsigned VTBits = VT.getScalarSizeInBits(); 5985 if (SrcBitWidth > VTBits) { // PACK 5986 unsigned SrcExtraBits = SrcBitWidth - VTBits; 5987 if (Common > SrcExtraBits) 5988 return (Common - SrcExtraBits); 5989 return 1; 5990 } 5991 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 5992 return Common; 5993 } 5994 5995 unsigned 5996 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 5997 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 5998 unsigned Depth) const { 5999 if (Op.getResNo() != 0) 6000 return 1; 6001 unsigned Opcode = Op.getOpcode(); 6002 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6003 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6004 switch (Id) { 6005 case Intrinsic::s390_vpksh: // PACKS 6006 case Intrinsic::s390_vpksf: 6007 case Intrinsic::s390_vpksg: 6008 case Intrinsic::s390_vpkshs: // PACKS_CC 6009 case Intrinsic::s390_vpksfs: 6010 case Intrinsic::s390_vpksgs: 6011 case Intrinsic::s390_vpklsh: // PACKLS 6012 case Intrinsic::s390_vpklsf: 6013 case Intrinsic::s390_vpklsg: 6014 case Intrinsic::s390_vpklshs: // PACKLS_CC 6015 case Intrinsic::s390_vpklsfs: 6016 case Intrinsic::s390_vpklsgs: 6017 case Intrinsic::s390_vpdi: 6018 case Intrinsic::s390_vsldb: 6019 case Intrinsic::s390_vperm: 6020 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6021 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6022 case Intrinsic::s390_vuphh: 6023 case Intrinsic::s390_vuphf: 6024 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6025 case Intrinsic::s390_vuplhw: 6026 case Intrinsic::s390_vuplf: { 6027 SDValue PackedOp = Op.getOperand(1); 6028 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6029 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6030 EVT VT = Op.getValueType(); 6031 unsigned VTBits = VT.getScalarSizeInBits(); 6032 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6033 return Tmp; 6034 } 6035 default: 6036 break; 6037 } 6038 } else { 6039 switch (Opcode) { 6040 case SystemZISD::SELECT_CCMASK: 6041 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6042 default: 6043 break; 6044 } 6045 } 6046 6047 return 1; 6048 } 6049 6050 //===----------------------------------------------------------------------===// 6051 // Custom insertion 6052 //===----------------------------------------------------------------------===// 6053 6054 // Create a new basic block after MBB. 6055 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 6056 MachineFunction &MF = *MBB->getParent(); 6057 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 6058 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 6059 return NewMBB; 6060 } 6061 6062 // Split MBB after MI and return the new block (the one that contains 6063 // instructions after MI). 6064 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 6065 MachineBasicBlock *MBB) { 6066 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6067 NewMBB->splice(NewMBB->begin(), MBB, 6068 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6069 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6070 return NewMBB; 6071 } 6072 6073 // Split MBB before MI and return the new block (the one that contains MI). 6074 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6075 MachineBasicBlock *MBB) { 6076 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6077 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6078 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6079 return NewMBB; 6080 } 6081 6082 // Force base value Base into a register before MI. Return the register. 6083 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base, 6084 const SystemZInstrInfo *TII) { 6085 if (Base.isReg()) 6086 return Base.getReg(); 6087 6088 MachineBasicBlock *MBB = MI.getParent(); 6089 MachineFunction &MF = *MBB->getParent(); 6090 MachineRegisterInfo &MRI = MF.getRegInfo(); 6091 6092 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6093 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6094 .add(Base) 6095 .addImm(0) 6096 .addReg(0); 6097 return Reg; 6098 } 6099 6100 // The CC operand of MI might be missing a kill marker because there 6101 // were multiple uses of CC, and ISel didn't know which to mark. 6102 // Figure out whether MI should have had a kill marker. 6103 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6104 // Scan forward through BB for a use/def of CC. 6105 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6106 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6107 const MachineInstr& mi = *miI; 6108 if (mi.readsRegister(SystemZ::CC)) 6109 return false; 6110 if (mi.definesRegister(SystemZ::CC)) 6111 break; // Should have kill-flag - update below. 6112 } 6113 6114 // If we hit the end of the block, check whether CC is live into a 6115 // successor. 6116 if (miI == MBB->end()) { 6117 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6118 if ((*SI)->isLiveIn(SystemZ::CC)) 6119 return false; 6120 } 6121 6122 return true; 6123 } 6124 6125 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6126 // together with other Select pseudo-opcodes into a single basic-block with 6127 // a conditional jump around it. 6128 static bool isSelectPseudo(MachineInstr &MI) { 6129 switch (MI.getOpcode()) { 6130 case SystemZ::Select32: 6131 case SystemZ::Select64: 6132 case SystemZ::SelectF32: 6133 case SystemZ::SelectF64: 6134 case SystemZ::SelectF128: 6135 case SystemZ::SelectVR32: 6136 case SystemZ::SelectVR64: 6137 case SystemZ::SelectVR128: 6138 return true; 6139 6140 default: 6141 return false; 6142 } 6143 } 6144 6145 // Helper function, which inserts PHI functions into SinkMBB: 6146 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6147 // where %FalseValue(i) and %TrueValue(i) are taken from the consequent Selects 6148 // in [MIItBegin, MIItEnd) range. 6149 static void createPHIsForSelects(MachineBasicBlock::iterator MIItBegin, 6150 MachineBasicBlock::iterator MIItEnd, 6151 MachineBasicBlock *TrueMBB, 6152 MachineBasicBlock *FalseMBB, 6153 MachineBasicBlock *SinkMBB) { 6154 MachineFunction *MF = TrueMBB->getParent(); 6155 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6156 6157 unsigned CCValid = MIItBegin->getOperand(3).getImm(); 6158 unsigned CCMask = MIItBegin->getOperand(4).getImm(); 6159 DebugLoc DL = MIItBegin->getDebugLoc(); 6160 6161 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6162 6163 // As we are creating the PHIs, we have to be careful if there is more than 6164 // one. Later Selects may reference the results of earlier Selects, but later 6165 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6166 // That also means that PHI construction must work forward from earlier to 6167 // later, and that the code must maintain a mapping from earlier PHI's 6168 // destination registers, and the registers that went into the PHI. 6169 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6170 6171 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) { 6172 unsigned DestReg = MIIt->getOperand(0).getReg(); 6173 unsigned TrueReg = MIIt->getOperand(1).getReg(); 6174 unsigned FalseReg = MIIt->getOperand(2).getReg(); 6175 6176 // If this Select we are generating is the opposite condition from 6177 // the jump we generated, then we have to swap the operands for the 6178 // PHI that is going to be generated. 6179 if (MIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) 6180 std::swap(TrueReg, FalseReg); 6181 6182 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6183 TrueReg = RegRewriteTable[TrueReg].first; 6184 6185 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6186 FalseReg = RegRewriteTable[FalseReg].second; 6187 6188 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6189 .addReg(TrueReg).addMBB(TrueMBB) 6190 .addReg(FalseReg).addMBB(FalseMBB); 6191 6192 // Add this PHI to the rewrite table. 6193 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6194 } 6195 } 6196 6197 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6198 MachineBasicBlock * 6199 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6200 MachineBasicBlock *MBB) const { 6201 const SystemZInstrInfo *TII = 6202 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6203 6204 unsigned CCValid = MI.getOperand(3).getImm(); 6205 unsigned CCMask = MI.getOperand(4).getImm(); 6206 DebugLoc DL = MI.getDebugLoc(); 6207 6208 // If we have a sequence of Select* pseudo instructions using the 6209 // same condition code value, we want to expand all of them into 6210 // a single pair of basic blocks using the same condition. 6211 MachineInstr *LastMI = &MI; 6212 MachineBasicBlock::iterator NextMIIt = 6213 std::next(MachineBasicBlock::iterator(MI)); 6214 6215 if (isSelectPseudo(MI)) 6216 while (NextMIIt != MBB->end() && isSelectPseudo(*NextMIIt) && 6217 NextMIIt->getOperand(3).getImm() == CCValid && 6218 (NextMIIt->getOperand(4).getImm() == CCMask || 6219 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask))) { 6220 LastMI = &*NextMIIt; 6221 ++NextMIIt; 6222 } 6223 6224 MachineBasicBlock *StartMBB = MBB; 6225 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6226 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6227 6228 // Unless CC was killed in the last Select instruction, mark it as 6229 // live-in to both FalseMBB and JoinMBB. 6230 if (!LastMI->killsRegister(SystemZ::CC) && !checkCCKill(*LastMI, JoinMBB)) { 6231 FalseMBB->addLiveIn(SystemZ::CC); 6232 JoinMBB->addLiveIn(SystemZ::CC); 6233 } 6234 6235 // StartMBB: 6236 // BRC CCMask, JoinMBB 6237 // # fallthrough to FalseMBB 6238 MBB = StartMBB; 6239 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6240 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6241 MBB->addSuccessor(JoinMBB); 6242 MBB->addSuccessor(FalseMBB); 6243 6244 // FalseMBB: 6245 // # fallthrough to JoinMBB 6246 MBB = FalseMBB; 6247 MBB->addSuccessor(JoinMBB); 6248 6249 // JoinMBB: 6250 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 6251 // ... 6252 MBB = JoinMBB; 6253 MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); 6254 MachineBasicBlock::iterator MIItEnd = 6255 std::next(MachineBasicBlock::iterator(LastMI)); 6256 createPHIsForSelects(MIItBegin, MIItEnd, StartMBB, FalseMBB, MBB); 6257 6258 StartMBB->erase(MIItBegin, MIItEnd); 6259 return JoinMBB; 6260 } 6261 6262 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 6263 // StoreOpcode is the store to use and Invert says whether the store should 6264 // happen when the condition is false rather than true. If a STORE ON 6265 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 6266 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 6267 MachineBasicBlock *MBB, 6268 unsigned StoreOpcode, 6269 unsigned STOCOpcode, 6270 bool Invert) const { 6271 const SystemZInstrInfo *TII = 6272 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6273 6274 unsigned SrcReg = MI.getOperand(0).getReg(); 6275 MachineOperand Base = MI.getOperand(1); 6276 int64_t Disp = MI.getOperand(2).getImm(); 6277 unsigned IndexReg = MI.getOperand(3).getReg(); 6278 unsigned CCValid = MI.getOperand(4).getImm(); 6279 unsigned CCMask = MI.getOperand(5).getImm(); 6280 DebugLoc DL = MI.getDebugLoc(); 6281 6282 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 6283 6284 // Use STOCOpcode if possible. We could use different store patterns in 6285 // order to avoid matching the index register, but the performance trade-offs 6286 // might be more complicated in that case. 6287 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 6288 if (Invert) 6289 CCMask ^= CCValid; 6290 6291 // ISel pattern matching also adds a load memory operand of the same 6292 // address, so take special care to find the storing memory operand. 6293 MachineMemOperand *MMO = nullptr; 6294 for (auto *I : MI.memoperands()) 6295 if (I->isStore()) { 6296 MMO = I; 6297 break; 6298 } 6299 6300 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 6301 .addReg(SrcReg) 6302 .add(Base) 6303 .addImm(Disp) 6304 .addImm(CCValid) 6305 .addImm(CCMask) 6306 .addMemOperand(MMO); 6307 6308 MI.eraseFromParent(); 6309 return MBB; 6310 } 6311 6312 // Get the condition needed to branch around the store. 6313 if (!Invert) 6314 CCMask ^= CCValid; 6315 6316 MachineBasicBlock *StartMBB = MBB; 6317 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6318 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6319 6320 // Unless CC was killed in the CondStore instruction, mark it as 6321 // live-in to both FalseMBB and JoinMBB. 6322 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 6323 FalseMBB->addLiveIn(SystemZ::CC); 6324 JoinMBB->addLiveIn(SystemZ::CC); 6325 } 6326 6327 // StartMBB: 6328 // BRC CCMask, JoinMBB 6329 // # fallthrough to FalseMBB 6330 MBB = StartMBB; 6331 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6332 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6333 MBB->addSuccessor(JoinMBB); 6334 MBB->addSuccessor(FalseMBB); 6335 6336 // FalseMBB: 6337 // store %SrcReg, %Disp(%Index,%Base) 6338 // # fallthrough to JoinMBB 6339 MBB = FalseMBB; 6340 BuildMI(MBB, DL, TII->get(StoreOpcode)) 6341 .addReg(SrcReg) 6342 .add(Base) 6343 .addImm(Disp) 6344 .addReg(IndexReg); 6345 MBB->addSuccessor(JoinMBB); 6346 6347 MI.eraseFromParent(); 6348 return JoinMBB; 6349 } 6350 6351 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 6352 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 6353 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 6354 // BitSize is the width of the field in bits, or 0 if this is a partword 6355 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 6356 // is one of the operands. Invert says whether the field should be 6357 // inverted after performing BinOpcode (e.g. for NAND). 6358 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 6359 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 6360 unsigned BitSize, bool Invert) const { 6361 MachineFunction &MF = *MBB->getParent(); 6362 const SystemZInstrInfo *TII = 6363 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6364 MachineRegisterInfo &MRI = MF.getRegInfo(); 6365 bool IsSubWord = (BitSize < 32); 6366 6367 // Extract the operands. Base can be a register or a frame index. 6368 // Src2 can be a register or immediate. 6369 unsigned Dest = MI.getOperand(0).getReg(); 6370 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6371 int64_t Disp = MI.getOperand(2).getImm(); 6372 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 6373 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 6374 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 6375 DebugLoc DL = MI.getDebugLoc(); 6376 if (IsSubWord) 6377 BitSize = MI.getOperand(6).getImm(); 6378 6379 // Subword operations use 32-bit registers. 6380 const TargetRegisterClass *RC = (BitSize <= 32 ? 6381 &SystemZ::GR32BitRegClass : 6382 &SystemZ::GR64BitRegClass); 6383 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6384 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6385 6386 // Get the right opcodes for the displacement. 6387 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6388 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6389 assert(LOpcode && CSOpcode && "Displacement out of range"); 6390 6391 // Create virtual registers for temporary results. 6392 unsigned OrigVal = MRI.createVirtualRegister(RC); 6393 unsigned OldVal = MRI.createVirtualRegister(RC); 6394 unsigned NewVal = (BinOpcode || IsSubWord ? 6395 MRI.createVirtualRegister(RC) : Src2.getReg()); 6396 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6397 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6398 6399 // Insert a basic block for the main loop. 6400 MachineBasicBlock *StartMBB = MBB; 6401 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6402 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6403 6404 // StartMBB: 6405 // ... 6406 // %OrigVal = L Disp(%Base) 6407 // # fall through to LoopMMB 6408 MBB = StartMBB; 6409 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 6410 MBB->addSuccessor(LoopMBB); 6411 6412 // LoopMBB: 6413 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 6414 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 6415 // %RotatedNewVal = OP %RotatedOldVal, %Src2 6416 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 6417 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 6418 // JNE LoopMBB 6419 // # fall through to DoneMMB 6420 MBB = LoopMBB; 6421 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6422 .addReg(OrigVal).addMBB(StartMBB) 6423 .addReg(Dest).addMBB(LoopMBB); 6424 if (IsSubWord) 6425 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 6426 .addReg(OldVal).addReg(BitShift).addImm(0); 6427 if (Invert) { 6428 // Perform the operation normally and then invert every bit of the field. 6429 unsigned Tmp = MRI.createVirtualRegister(RC); 6430 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 6431 if (BitSize <= 32) 6432 // XILF with the upper BitSize bits set. 6433 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 6434 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 6435 else { 6436 // Use LCGR and add -1 to the result, which is more compact than 6437 // an XILF, XILH pair. 6438 unsigned Tmp2 = MRI.createVirtualRegister(RC); 6439 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 6440 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 6441 .addReg(Tmp2).addImm(-1); 6442 } 6443 } else if (BinOpcode) 6444 // A simply binary operation. 6445 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 6446 .addReg(RotatedOldVal) 6447 .add(Src2); 6448 else if (IsSubWord) 6449 // Use RISBG to rotate Src2 into position and use it to replace the 6450 // field in RotatedOldVal. 6451 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 6452 .addReg(RotatedOldVal).addReg(Src2.getReg()) 6453 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 6454 if (IsSubWord) 6455 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 6456 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 6457 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 6458 .addReg(OldVal) 6459 .addReg(NewVal) 6460 .add(Base) 6461 .addImm(Disp); 6462 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6463 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6464 MBB->addSuccessor(LoopMBB); 6465 MBB->addSuccessor(DoneMBB); 6466 6467 MI.eraseFromParent(); 6468 return DoneMBB; 6469 } 6470 6471 // Implement EmitInstrWithCustomInserter for pseudo 6472 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 6473 // instruction that should be used to compare the current field with the 6474 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 6475 // for when the current field should be kept. BitSize is the width of 6476 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 6477 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 6478 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 6479 unsigned KeepOldMask, unsigned BitSize) const { 6480 MachineFunction &MF = *MBB->getParent(); 6481 const SystemZInstrInfo *TII = 6482 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6483 MachineRegisterInfo &MRI = MF.getRegInfo(); 6484 bool IsSubWord = (BitSize < 32); 6485 6486 // Extract the operands. Base can be a register or a frame index. 6487 unsigned Dest = MI.getOperand(0).getReg(); 6488 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6489 int64_t Disp = MI.getOperand(2).getImm(); 6490 unsigned Src2 = MI.getOperand(3).getReg(); 6491 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 6492 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 6493 DebugLoc DL = MI.getDebugLoc(); 6494 if (IsSubWord) 6495 BitSize = MI.getOperand(6).getImm(); 6496 6497 // Subword operations use 32-bit registers. 6498 const TargetRegisterClass *RC = (BitSize <= 32 ? 6499 &SystemZ::GR32BitRegClass : 6500 &SystemZ::GR64BitRegClass); 6501 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6502 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6503 6504 // Get the right opcodes for the displacement. 6505 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6506 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6507 assert(LOpcode && CSOpcode && "Displacement out of range"); 6508 6509 // Create virtual registers for temporary results. 6510 unsigned OrigVal = MRI.createVirtualRegister(RC); 6511 unsigned OldVal = MRI.createVirtualRegister(RC); 6512 unsigned NewVal = MRI.createVirtualRegister(RC); 6513 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6514 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 6515 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6516 6517 // Insert 3 basic blocks for the loop. 6518 MachineBasicBlock *StartMBB = MBB; 6519 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6520 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6521 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 6522 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 6523 6524 // StartMBB: 6525 // ... 6526 // %OrigVal = L Disp(%Base) 6527 // # fall through to LoopMMB 6528 MBB = StartMBB; 6529 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 6530 MBB->addSuccessor(LoopMBB); 6531 6532 // LoopMBB: 6533 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 6534 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 6535 // CompareOpcode %RotatedOldVal, %Src2 6536 // BRC KeepOldMask, UpdateMBB 6537 MBB = LoopMBB; 6538 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6539 .addReg(OrigVal).addMBB(StartMBB) 6540 .addReg(Dest).addMBB(UpdateMBB); 6541 if (IsSubWord) 6542 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 6543 .addReg(OldVal).addReg(BitShift).addImm(0); 6544 BuildMI(MBB, DL, TII->get(CompareOpcode)) 6545 .addReg(RotatedOldVal).addReg(Src2); 6546 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6547 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 6548 MBB->addSuccessor(UpdateMBB); 6549 MBB->addSuccessor(UseAltMBB); 6550 6551 // UseAltMBB: 6552 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 6553 // # fall through to UpdateMMB 6554 MBB = UseAltMBB; 6555 if (IsSubWord) 6556 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 6557 .addReg(RotatedOldVal).addReg(Src2) 6558 .addImm(32).addImm(31 + BitSize).addImm(0); 6559 MBB->addSuccessor(UpdateMBB); 6560 6561 // UpdateMBB: 6562 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 6563 // [ %RotatedAltVal, UseAltMBB ] 6564 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 6565 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 6566 // JNE LoopMBB 6567 // # fall through to DoneMMB 6568 MBB = UpdateMBB; 6569 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 6570 .addReg(RotatedOldVal).addMBB(LoopMBB) 6571 .addReg(RotatedAltVal).addMBB(UseAltMBB); 6572 if (IsSubWord) 6573 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 6574 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 6575 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 6576 .addReg(OldVal) 6577 .addReg(NewVal) 6578 .add(Base) 6579 .addImm(Disp); 6580 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6581 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6582 MBB->addSuccessor(LoopMBB); 6583 MBB->addSuccessor(DoneMBB); 6584 6585 MI.eraseFromParent(); 6586 return DoneMBB; 6587 } 6588 6589 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 6590 // instruction MI. 6591 MachineBasicBlock * 6592 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 6593 MachineBasicBlock *MBB) const { 6594 6595 MachineFunction &MF = *MBB->getParent(); 6596 const SystemZInstrInfo *TII = 6597 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6598 MachineRegisterInfo &MRI = MF.getRegInfo(); 6599 6600 // Extract the operands. Base can be a register or a frame index. 6601 unsigned Dest = MI.getOperand(0).getReg(); 6602 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6603 int64_t Disp = MI.getOperand(2).getImm(); 6604 unsigned OrigCmpVal = MI.getOperand(3).getReg(); 6605 unsigned OrigSwapVal = MI.getOperand(4).getReg(); 6606 unsigned BitShift = MI.getOperand(5).getReg(); 6607 unsigned NegBitShift = MI.getOperand(6).getReg(); 6608 int64_t BitSize = MI.getOperand(7).getImm(); 6609 DebugLoc DL = MI.getDebugLoc(); 6610 6611 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 6612 6613 // Get the right opcodes for the displacement. 6614 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 6615 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 6616 assert(LOpcode && CSOpcode && "Displacement out of range"); 6617 6618 // Create virtual registers for temporary results. 6619 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 6620 unsigned OldVal = MRI.createVirtualRegister(RC); 6621 unsigned CmpVal = MRI.createVirtualRegister(RC); 6622 unsigned SwapVal = MRI.createVirtualRegister(RC); 6623 unsigned StoreVal = MRI.createVirtualRegister(RC); 6624 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 6625 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 6626 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 6627 6628 // Insert 2 basic blocks for the loop. 6629 MachineBasicBlock *StartMBB = MBB; 6630 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6631 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6632 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 6633 6634 // StartMBB: 6635 // ... 6636 // %OrigOldVal = L Disp(%Base) 6637 // # fall through to LoopMMB 6638 MBB = StartMBB; 6639 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 6640 .add(Base) 6641 .addImm(Disp) 6642 .addReg(0); 6643 MBB->addSuccessor(LoopMBB); 6644 6645 // LoopMBB: 6646 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 6647 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 6648 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 6649 // %Dest = RLL %OldVal, BitSize(%BitShift) 6650 // ^^ The low BitSize bits contain the field 6651 // of interest. 6652 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 6653 // ^^ Replace the upper 32-BitSize bits of the 6654 // comparison value with those that we loaded, 6655 // so that we can use a full word comparison. 6656 // CR %Dest, %RetryCmpVal 6657 // JNE DoneMBB 6658 // # Fall through to SetMBB 6659 MBB = LoopMBB; 6660 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6661 .addReg(OrigOldVal).addMBB(StartMBB) 6662 .addReg(RetryOldVal).addMBB(SetMBB); 6663 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 6664 .addReg(OrigCmpVal).addMBB(StartMBB) 6665 .addReg(RetryCmpVal).addMBB(SetMBB); 6666 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 6667 .addReg(OrigSwapVal).addMBB(StartMBB) 6668 .addReg(RetrySwapVal).addMBB(SetMBB); 6669 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 6670 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 6671 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 6672 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 6673 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 6674 .addReg(Dest).addReg(RetryCmpVal); 6675 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6676 .addImm(SystemZ::CCMASK_ICMP) 6677 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 6678 MBB->addSuccessor(DoneMBB); 6679 MBB->addSuccessor(SetMBB); 6680 6681 // SetMBB: 6682 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 6683 // ^^ Replace the upper 32-BitSize bits of the new 6684 // value with those that we loaded. 6685 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 6686 // ^^ Rotate the new field to its proper position. 6687 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 6688 // JNE LoopMBB 6689 // # fall through to ExitMMB 6690 MBB = SetMBB; 6691 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 6692 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 6693 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 6694 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 6695 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 6696 .addReg(OldVal) 6697 .addReg(StoreVal) 6698 .add(Base) 6699 .addImm(Disp); 6700 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6701 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6702 MBB->addSuccessor(LoopMBB); 6703 MBB->addSuccessor(DoneMBB); 6704 6705 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 6706 // to the block after the loop. At this point, CC may have been defined 6707 // either by the CR in LoopMBB or by the CS in SetMBB. 6708 if (!MI.registerDefIsDead(SystemZ::CC)) 6709 DoneMBB->addLiveIn(SystemZ::CC); 6710 6711 MI.eraseFromParent(); 6712 return DoneMBB; 6713 } 6714 6715 // Emit a move from two GR64s to a GR128. 6716 MachineBasicBlock * 6717 SystemZTargetLowering::emitPair128(MachineInstr &MI, 6718 MachineBasicBlock *MBB) const { 6719 MachineFunction &MF = *MBB->getParent(); 6720 const SystemZInstrInfo *TII = 6721 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6722 MachineRegisterInfo &MRI = MF.getRegInfo(); 6723 DebugLoc DL = MI.getDebugLoc(); 6724 6725 unsigned Dest = MI.getOperand(0).getReg(); 6726 unsigned Hi = MI.getOperand(1).getReg(); 6727 unsigned Lo = MI.getOperand(2).getReg(); 6728 unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6729 unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6730 6731 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 6732 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 6733 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 6734 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 6735 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 6736 6737 MI.eraseFromParent(); 6738 return MBB; 6739 } 6740 6741 // Emit an extension from a GR64 to a GR128. ClearEven is true 6742 // if the high register of the GR128 value must be cleared or false if 6743 // it's "don't care". 6744 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 6745 MachineBasicBlock *MBB, 6746 bool ClearEven) const { 6747 MachineFunction &MF = *MBB->getParent(); 6748 const SystemZInstrInfo *TII = 6749 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6750 MachineRegisterInfo &MRI = MF.getRegInfo(); 6751 DebugLoc DL = MI.getDebugLoc(); 6752 6753 unsigned Dest = MI.getOperand(0).getReg(); 6754 unsigned Src = MI.getOperand(1).getReg(); 6755 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6756 6757 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 6758 if (ClearEven) { 6759 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6760 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 6761 6762 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 6763 .addImm(0); 6764 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 6765 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 6766 In128 = NewIn128; 6767 } 6768 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 6769 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 6770 6771 MI.eraseFromParent(); 6772 return MBB; 6773 } 6774 6775 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 6776 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6777 MachineFunction &MF = *MBB->getParent(); 6778 const SystemZInstrInfo *TII = 6779 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6780 MachineRegisterInfo &MRI = MF.getRegInfo(); 6781 DebugLoc DL = MI.getDebugLoc(); 6782 6783 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 6784 uint64_t DestDisp = MI.getOperand(1).getImm(); 6785 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 6786 uint64_t SrcDisp = MI.getOperand(3).getImm(); 6787 uint64_t Length = MI.getOperand(4).getImm(); 6788 6789 // When generating more than one CLC, all but the last will need to 6790 // branch to the end when a difference is found. 6791 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 6792 splitBlockAfter(MI, MBB) : nullptr); 6793 6794 // Check for the loop form, in which operand 5 is the trip count. 6795 if (MI.getNumExplicitOperands() > 5) { 6796 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 6797 6798 uint64_t StartCountReg = MI.getOperand(5).getReg(); 6799 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 6800 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 6801 forceReg(MI, DestBase, TII)); 6802 6803 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 6804 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 6805 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 6806 MRI.createVirtualRegister(RC)); 6807 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 6808 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 6809 MRI.createVirtualRegister(RC)); 6810 6811 RC = &SystemZ::GR64BitRegClass; 6812 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 6813 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 6814 6815 MachineBasicBlock *StartMBB = MBB; 6816 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6817 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6818 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 6819 6820 // StartMBB: 6821 // # fall through to LoopMMB 6822 MBB->addSuccessor(LoopMBB); 6823 6824 // LoopMBB: 6825 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 6826 // [ %NextDestReg, NextMBB ] 6827 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 6828 // [ %NextSrcReg, NextMBB ] 6829 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 6830 // [ %NextCountReg, NextMBB ] 6831 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 6832 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 6833 // ( JLH EndMBB ) 6834 // 6835 // The prefetch is used only for MVC. The JLH is used only for CLC. 6836 MBB = LoopMBB; 6837 6838 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 6839 .addReg(StartDestReg).addMBB(StartMBB) 6840 .addReg(NextDestReg).addMBB(NextMBB); 6841 if (!HaveSingleBase) 6842 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 6843 .addReg(StartSrcReg).addMBB(StartMBB) 6844 .addReg(NextSrcReg).addMBB(NextMBB); 6845 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 6846 .addReg(StartCountReg).addMBB(StartMBB) 6847 .addReg(NextCountReg).addMBB(NextMBB); 6848 if (Opcode == SystemZ::MVC) 6849 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 6850 .addImm(SystemZ::PFD_WRITE) 6851 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 6852 BuildMI(MBB, DL, TII->get(Opcode)) 6853 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 6854 .addReg(ThisSrcReg).addImm(SrcDisp); 6855 if (EndMBB) { 6856 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6857 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6858 .addMBB(EndMBB); 6859 MBB->addSuccessor(EndMBB); 6860 MBB->addSuccessor(NextMBB); 6861 } 6862 6863 // NextMBB: 6864 // %NextDestReg = LA 256(%ThisDestReg) 6865 // %NextSrcReg = LA 256(%ThisSrcReg) 6866 // %NextCountReg = AGHI %ThisCountReg, -1 6867 // CGHI %NextCountReg, 0 6868 // JLH LoopMBB 6869 // # fall through to DoneMMB 6870 // 6871 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 6872 MBB = NextMBB; 6873 6874 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 6875 .addReg(ThisDestReg).addImm(256).addReg(0); 6876 if (!HaveSingleBase) 6877 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 6878 .addReg(ThisSrcReg).addImm(256).addReg(0); 6879 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 6880 .addReg(ThisCountReg).addImm(-1); 6881 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 6882 .addReg(NextCountReg).addImm(0); 6883 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6884 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6885 .addMBB(LoopMBB); 6886 MBB->addSuccessor(LoopMBB); 6887 MBB->addSuccessor(DoneMBB); 6888 6889 DestBase = MachineOperand::CreateReg(NextDestReg, false); 6890 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 6891 Length &= 255; 6892 if (EndMBB && !Length) 6893 // If the loop handled the whole CLC range, DoneMBB will be empty with 6894 // CC live-through into EndMBB, so add it as live-in. 6895 DoneMBB->addLiveIn(SystemZ::CC); 6896 MBB = DoneMBB; 6897 } 6898 // Handle any remaining bytes with straight-line code. 6899 while (Length > 0) { 6900 uint64_t ThisLength = std::min(Length, uint64_t(256)); 6901 // The previous iteration might have created out-of-range displacements. 6902 // Apply them using LAY if so. 6903 if (!isUInt<12>(DestDisp)) { 6904 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6905 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 6906 .add(DestBase) 6907 .addImm(DestDisp) 6908 .addReg(0); 6909 DestBase = MachineOperand::CreateReg(Reg, false); 6910 DestDisp = 0; 6911 } 6912 if (!isUInt<12>(SrcDisp)) { 6913 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6914 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 6915 .add(SrcBase) 6916 .addImm(SrcDisp) 6917 .addReg(0); 6918 SrcBase = MachineOperand::CreateReg(Reg, false); 6919 SrcDisp = 0; 6920 } 6921 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 6922 .add(DestBase) 6923 .addImm(DestDisp) 6924 .addImm(ThisLength) 6925 .add(SrcBase) 6926 .addImm(SrcDisp) 6927 .setMemRefs(MI.memoperands()); 6928 DestDisp += ThisLength; 6929 SrcDisp += ThisLength; 6930 Length -= ThisLength; 6931 // If there's another CLC to go, branch to the end if a difference 6932 // was found. 6933 if (EndMBB && Length > 0) { 6934 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 6935 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6936 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6937 .addMBB(EndMBB); 6938 MBB->addSuccessor(EndMBB); 6939 MBB->addSuccessor(NextMBB); 6940 MBB = NextMBB; 6941 } 6942 } 6943 if (EndMBB) { 6944 MBB->addSuccessor(EndMBB); 6945 MBB = EndMBB; 6946 MBB->addLiveIn(SystemZ::CC); 6947 } 6948 6949 MI.eraseFromParent(); 6950 return MBB; 6951 } 6952 6953 // Decompose string pseudo-instruction MI into a loop that continually performs 6954 // Opcode until CC != 3. 6955 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 6956 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6957 MachineFunction &MF = *MBB->getParent(); 6958 const SystemZInstrInfo *TII = 6959 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6960 MachineRegisterInfo &MRI = MF.getRegInfo(); 6961 DebugLoc DL = MI.getDebugLoc(); 6962 6963 uint64_t End1Reg = MI.getOperand(0).getReg(); 6964 uint64_t Start1Reg = MI.getOperand(1).getReg(); 6965 uint64_t Start2Reg = MI.getOperand(2).getReg(); 6966 uint64_t CharReg = MI.getOperand(3).getReg(); 6967 6968 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 6969 uint64_t This1Reg = MRI.createVirtualRegister(RC); 6970 uint64_t This2Reg = MRI.createVirtualRegister(RC); 6971 uint64_t End2Reg = MRI.createVirtualRegister(RC); 6972 6973 MachineBasicBlock *StartMBB = MBB; 6974 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6975 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6976 6977 // StartMBB: 6978 // # fall through to LoopMMB 6979 MBB->addSuccessor(LoopMBB); 6980 6981 // LoopMBB: 6982 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 6983 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 6984 // R0L = %CharReg 6985 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 6986 // JO LoopMBB 6987 // # fall through to DoneMMB 6988 // 6989 // The load of R0L can be hoisted by post-RA LICM. 6990 MBB = LoopMBB; 6991 6992 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 6993 .addReg(Start1Reg).addMBB(StartMBB) 6994 .addReg(End1Reg).addMBB(LoopMBB); 6995 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 6996 .addReg(Start2Reg).addMBB(StartMBB) 6997 .addReg(End2Reg).addMBB(LoopMBB); 6998 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 6999 BuildMI(MBB, DL, TII->get(Opcode)) 7000 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7001 .addReg(This1Reg).addReg(This2Reg); 7002 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7003 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7004 MBB->addSuccessor(LoopMBB); 7005 MBB->addSuccessor(DoneMBB); 7006 7007 DoneMBB->addLiveIn(SystemZ::CC); 7008 7009 MI.eraseFromParent(); 7010 return DoneMBB; 7011 } 7012 7013 // Update TBEGIN instruction with final opcode and register clobbers. 7014 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7015 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7016 bool NoFloat) const { 7017 MachineFunction &MF = *MBB->getParent(); 7018 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7019 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7020 7021 // Update opcode. 7022 MI.setDesc(TII->get(Opcode)); 7023 7024 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7025 // Make sure to add the corresponding GRSM bits if they are missing. 7026 uint64_t Control = MI.getOperand(2).getImm(); 7027 static const unsigned GPRControlBit[16] = { 7028 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7029 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7030 }; 7031 Control |= GPRControlBit[15]; 7032 if (TFI->hasFP(MF)) 7033 Control |= GPRControlBit[11]; 7034 MI.getOperand(2).setImm(Control); 7035 7036 // Add GPR clobbers. 7037 for (int I = 0; I < 16; I++) { 7038 if ((Control & GPRControlBit[I]) == 0) { 7039 unsigned Reg = SystemZMC::GR64Regs[I]; 7040 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7041 } 7042 } 7043 7044 // Add FPR/VR clobbers. 7045 if (!NoFloat && (Control & 4) != 0) { 7046 if (Subtarget.hasVector()) { 7047 for (int I = 0; I < 32; I++) { 7048 unsigned Reg = SystemZMC::VR128Regs[I]; 7049 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7050 } 7051 } else { 7052 for (int I = 0; I < 16; I++) { 7053 unsigned Reg = SystemZMC::FP64Regs[I]; 7054 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7055 } 7056 } 7057 } 7058 7059 return MBB; 7060 } 7061 7062 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 7063 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7064 MachineFunction &MF = *MBB->getParent(); 7065 MachineRegisterInfo *MRI = &MF.getRegInfo(); 7066 const SystemZInstrInfo *TII = 7067 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7068 DebugLoc DL = MI.getDebugLoc(); 7069 7070 unsigned SrcReg = MI.getOperand(0).getReg(); 7071 7072 // Create new virtual register of the same class as source. 7073 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7074 unsigned DstReg = MRI->createVirtualRegister(RC); 7075 7076 // Replace pseudo with a normal load-and-test that models the def as 7077 // well. 7078 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7079 .addReg(SrcReg); 7080 MI.eraseFromParent(); 7081 7082 return MBB; 7083 } 7084 7085 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7086 MachineInstr &MI, MachineBasicBlock *MBB) const { 7087 switch (MI.getOpcode()) { 7088 case SystemZ::Select32: 7089 case SystemZ::Select64: 7090 case SystemZ::SelectF32: 7091 case SystemZ::SelectF64: 7092 case SystemZ::SelectF128: 7093 case SystemZ::SelectVR32: 7094 case SystemZ::SelectVR64: 7095 case SystemZ::SelectVR128: 7096 return emitSelect(MI, MBB); 7097 7098 case SystemZ::CondStore8Mux: 7099 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7100 case SystemZ::CondStore8MuxInv: 7101 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7102 case SystemZ::CondStore16Mux: 7103 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7104 case SystemZ::CondStore16MuxInv: 7105 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7106 case SystemZ::CondStore32Mux: 7107 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7108 case SystemZ::CondStore32MuxInv: 7109 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7110 case SystemZ::CondStore8: 7111 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7112 case SystemZ::CondStore8Inv: 7113 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7114 case SystemZ::CondStore16: 7115 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7116 case SystemZ::CondStore16Inv: 7117 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7118 case SystemZ::CondStore32: 7119 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7120 case SystemZ::CondStore32Inv: 7121 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7122 case SystemZ::CondStore64: 7123 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7124 case SystemZ::CondStore64Inv: 7125 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7126 case SystemZ::CondStoreF32: 7127 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7128 case SystemZ::CondStoreF32Inv: 7129 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7130 case SystemZ::CondStoreF64: 7131 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7132 case SystemZ::CondStoreF64Inv: 7133 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7134 7135 case SystemZ::PAIR128: 7136 return emitPair128(MI, MBB); 7137 case SystemZ::AEXT128: 7138 return emitExt128(MI, MBB, false); 7139 case SystemZ::ZEXT128: 7140 return emitExt128(MI, MBB, true); 7141 7142 case SystemZ::ATOMIC_SWAPW: 7143 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7144 case SystemZ::ATOMIC_SWAP_32: 7145 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7146 case SystemZ::ATOMIC_SWAP_64: 7147 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7148 7149 case SystemZ::ATOMIC_LOADW_AR: 7150 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7151 case SystemZ::ATOMIC_LOADW_AFI: 7152 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7153 case SystemZ::ATOMIC_LOAD_AR: 7154 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7155 case SystemZ::ATOMIC_LOAD_AHI: 7156 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7157 case SystemZ::ATOMIC_LOAD_AFI: 7158 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7159 case SystemZ::ATOMIC_LOAD_AGR: 7160 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7161 case SystemZ::ATOMIC_LOAD_AGHI: 7162 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7163 case SystemZ::ATOMIC_LOAD_AGFI: 7164 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7165 7166 case SystemZ::ATOMIC_LOADW_SR: 7167 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7168 case SystemZ::ATOMIC_LOAD_SR: 7169 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7170 case SystemZ::ATOMIC_LOAD_SGR: 7171 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7172 7173 case SystemZ::ATOMIC_LOADW_NR: 7174 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7175 case SystemZ::ATOMIC_LOADW_NILH: 7176 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7177 case SystemZ::ATOMIC_LOAD_NR: 7178 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7179 case SystemZ::ATOMIC_LOAD_NILL: 7180 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7181 case SystemZ::ATOMIC_LOAD_NILH: 7182 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7183 case SystemZ::ATOMIC_LOAD_NILF: 7184 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7185 case SystemZ::ATOMIC_LOAD_NGR: 7186 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7187 case SystemZ::ATOMIC_LOAD_NILL64: 7188 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7189 case SystemZ::ATOMIC_LOAD_NILH64: 7190 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7191 case SystemZ::ATOMIC_LOAD_NIHL64: 7192 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 7193 case SystemZ::ATOMIC_LOAD_NIHH64: 7194 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 7195 case SystemZ::ATOMIC_LOAD_NILF64: 7196 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 7197 case SystemZ::ATOMIC_LOAD_NIHF64: 7198 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 7199 7200 case SystemZ::ATOMIC_LOADW_OR: 7201 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 7202 case SystemZ::ATOMIC_LOADW_OILH: 7203 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 7204 case SystemZ::ATOMIC_LOAD_OR: 7205 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 7206 case SystemZ::ATOMIC_LOAD_OILL: 7207 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 7208 case SystemZ::ATOMIC_LOAD_OILH: 7209 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 7210 case SystemZ::ATOMIC_LOAD_OILF: 7211 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 7212 case SystemZ::ATOMIC_LOAD_OGR: 7213 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 7214 case SystemZ::ATOMIC_LOAD_OILL64: 7215 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 7216 case SystemZ::ATOMIC_LOAD_OILH64: 7217 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 7218 case SystemZ::ATOMIC_LOAD_OIHL64: 7219 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 7220 case SystemZ::ATOMIC_LOAD_OIHH64: 7221 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 7222 case SystemZ::ATOMIC_LOAD_OILF64: 7223 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 7224 case SystemZ::ATOMIC_LOAD_OIHF64: 7225 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 7226 7227 case SystemZ::ATOMIC_LOADW_XR: 7228 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 7229 case SystemZ::ATOMIC_LOADW_XILF: 7230 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 7231 case SystemZ::ATOMIC_LOAD_XR: 7232 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 7233 case SystemZ::ATOMIC_LOAD_XILF: 7234 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 7235 case SystemZ::ATOMIC_LOAD_XGR: 7236 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 7237 case SystemZ::ATOMIC_LOAD_XILF64: 7238 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 7239 case SystemZ::ATOMIC_LOAD_XIHF64: 7240 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 7241 7242 case SystemZ::ATOMIC_LOADW_NRi: 7243 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 7244 case SystemZ::ATOMIC_LOADW_NILHi: 7245 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 7246 case SystemZ::ATOMIC_LOAD_NRi: 7247 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 7248 case SystemZ::ATOMIC_LOAD_NILLi: 7249 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 7250 case SystemZ::ATOMIC_LOAD_NILHi: 7251 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 7252 case SystemZ::ATOMIC_LOAD_NILFi: 7253 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 7254 case SystemZ::ATOMIC_LOAD_NGRi: 7255 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 7256 case SystemZ::ATOMIC_LOAD_NILL64i: 7257 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 7258 case SystemZ::ATOMIC_LOAD_NILH64i: 7259 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 7260 case SystemZ::ATOMIC_LOAD_NIHL64i: 7261 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 7262 case SystemZ::ATOMIC_LOAD_NIHH64i: 7263 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 7264 case SystemZ::ATOMIC_LOAD_NILF64i: 7265 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 7266 case SystemZ::ATOMIC_LOAD_NIHF64i: 7267 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 7268 7269 case SystemZ::ATOMIC_LOADW_MIN: 7270 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7271 SystemZ::CCMASK_CMP_LE, 0); 7272 case SystemZ::ATOMIC_LOAD_MIN_32: 7273 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7274 SystemZ::CCMASK_CMP_LE, 32); 7275 case SystemZ::ATOMIC_LOAD_MIN_64: 7276 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7277 SystemZ::CCMASK_CMP_LE, 64); 7278 7279 case SystemZ::ATOMIC_LOADW_MAX: 7280 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7281 SystemZ::CCMASK_CMP_GE, 0); 7282 case SystemZ::ATOMIC_LOAD_MAX_32: 7283 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7284 SystemZ::CCMASK_CMP_GE, 32); 7285 case SystemZ::ATOMIC_LOAD_MAX_64: 7286 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7287 SystemZ::CCMASK_CMP_GE, 64); 7288 7289 case SystemZ::ATOMIC_LOADW_UMIN: 7290 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7291 SystemZ::CCMASK_CMP_LE, 0); 7292 case SystemZ::ATOMIC_LOAD_UMIN_32: 7293 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7294 SystemZ::CCMASK_CMP_LE, 32); 7295 case SystemZ::ATOMIC_LOAD_UMIN_64: 7296 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7297 SystemZ::CCMASK_CMP_LE, 64); 7298 7299 case SystemZ::ATOMIC_LOADW_UMAX: 7300 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7301 SystemZ::CCMASK_CMP_GE, 0); 7302 case SystemZ::ATOMIC_LOAD_UMAX_32: 7303 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7304 SystemZ::CCMASK_CMP_GE, 32); 7305 case SystemZ::ATOMIC_LOAD_UMAX_64: 7306 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7307 SystemZ::CCMASK_CMP_GE, 64); 7308 7309 case SystemZ::ATOMIC_CMP_SWAPW: 7310 return emitAtomicCmpSwapW(MI, MBB); 7311 case SystemZ::MVCSequence: 7312 case SystemZ::MVCLoop: 7313 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 7314 case SystemZ::NCSequence: 7315 case SystemZ::NCLoop: 7316 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 7317 case SystemZ::OCSequence: 7318 case SystemZ::OCLoop: 7319 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 7320 case SystemZ::XCSequence: 7321 case SystemZ::XCLoop: 7322 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 7323 case SystemZ::CLCSequence: 7324 case SystemZ::CLCLoop: 7325 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 7326 case SystemZ::CLSTLoop: 7327 return emitStringWrapper(MI, MBB, SystemZ::CLST); 7328 case SystemZ::MVSTLoop: 7329 return emitStringWrapper(MI, MBB, SystemZ::MVST); 7330 case SystemZ::SRSTLoop: 7331 return emitStringWrapper(MI, MBB, SystemZ::SRST); 7332 case SystemZ::TBEGIN: 7333 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 7334 case SystemZ::TBEGIN_nofloat: 7335 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 7336 case SystemZ::TBEGINC: 7337 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 7338 case SystemZ::LTEBRCompare_VecPseudo: 7339 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 7340 case SystemZ::LTDBRCompare_VecPseudo: 7341 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 7342 case SystemZ::LTXBRCompare_VecPseudo: 7343 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 7344 7345 case TargetOpcode::STACKMAP: 7346 case TargetOpcode::PATCHPOINT: 7347 return emitPatchPoint(MI, MBB); 7348 7349 default: 7350 llvm_unreachable("Unexpected instr type to insert"); 7351 } 7352 } 7353 7354 // This is only used by the isel schedulers, and is needed only to prevent 7355 // compiler from crashing when list-ilp is used. 7356 const TargetRegisterClass * 7357 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 7358 if (VT == MVT::Untyped) 7359 return &SystemZ::ADDR128BitRegClass; 7360 return TargetLowering::getRepRegClassFor(VT); 7361 } 7362