1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In) 37 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 38 39 // The operands to the comparison. 40 SDValue Op0, Op1; 41 42 // The opcode that should be used to compare Op0 and Op1. 43 unsigned Opcode; 44 45 // A SystemZICMP value. Only used for integer comparisons. 46 unsigned ICmpType; 47 48 // The mask of CC values that Opcode can produce. 49 unsigned CCValid; 50 51 // The mask of CC values for which the original condition is true. 52 unsigned CCMask; 53 }; 54 } // end anonymous namespace 55 56 // Classify VT as either 32 or 64 bit. 57 static bool is32Bit(EVT VT) { 58 switch (VT.getSimpleVT().SimpleTy) { 59 case MVT::i32: 60 return true; 61 case MVT::i64: 62 return false; 63 default: 64 llvm_unreachable("Unsupported type"); 65 } 66 } 67 68 // Return a version of MachineOperand that can be safely used before the 69 // final use. 70 static MachineOperand earlyUseOperand(MachineOperand Op) { 71 if (Op.isReg()) 72 Op.setIsKill(false); 73 return Op; 74 } 75 76 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 77 const SystemZSubtarget &STI) 78 : TargetLowering(TM), Subtarget(STI) { 79 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 80 81 // Set up the register classes. 82 if (Subtarget.hasHighWord()) 83 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 84 else 85 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 86 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 87 if (Subtarget.hasVector()) { 88 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 89 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 90 } else { 91 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 92 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 93 } 94 if (Subtarget.hasVectorEnhancements1()) 95 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 96 else 97 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 98 99 if (Subtarget.hasVector()) { 100 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 101 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 102 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 103 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 104 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 105 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 106 } 107 108 // Compute derived properties from the register classes 109 computeRegisterProperties(Subtarget.getRegisterInfo()); 110 111 // Set up special registers. 112 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 113 114 // TODO: It may be better to default to latency-oriented scheduling, however 115 // LLVM's current latency-oriented scheduler can't handle physreg definitions 116 // such as SystemZ has with CC, so set this to the register-pressure 117 // scheduler, because it can. 118 setSchedulingPreference(Sched::RegPressure); 119 120 setBooleanContents(ZeroOrOneBooleanContent); 121 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 122 123 // Instructions are strings of 2-byte aligned 2-byte values. 124 setMinFunctionAlignment(2); 125 // For performance reasons we prefer 16-byte alignment. 126 setPrefFunctionAlignment(4); 127 128 // Handle operations that are handled in a similar way for all types. 129 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 130 I <= MVT::LAST_FP_VALUETYPE; 131 ++I) { 132 MVT VT = MVT::SimpleValueType(I); 133 if (isTypeLegal(VT)) { 134 // Lower SET_CC into an IPM-based sequence. 135 setOperationAction(ISD::SETCC, VT, Custom); 136 137 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 138 setOperationAction(ISD::SELECT, VT, Expand); 139 140 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 141 setOperationAction(ISD::SELECT_CC, VT, Custom); 142 setOperationAction(ISD::BR_CC, VT, Custom); 143 } 144 } 145 146 // Expand jump table branches as address arithmetic followed by an 147 // indirect jump. 148 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 149 150 // Expand BRCOND into a BR_CC (see above). 151 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 152 153 // Handle integer types. 154 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 155 I <= MVT::LAST_INTEGER_VALUETYPE; 156 ++I) { 157 MVT VT = MVT::SimpleValueType(I); 158 if (isTypeLegal(VT)) { 159 // Expand individual DIV and REMs into DIVREMs. 160 setOperationAction(ISD::SDIV, VT, Expand); 161 setOperationAction(ISD::UDIV, VT, Expand); 162 setOperationAction(ISD::SREM, VT, Expand); 163 setOperationAction(ISD::UREM, VT, Expand); 164 setOperationAction(ISD::SDIVREM, VT, Custom); 165 setOperationAction(ISD::UDIVREM, VT, Custom); 166 167 // Support addition/subtraction with overflow. 168 setOperationAction(ISD::SADDO, VT, Custom); 169 setOperationAction(ISD::SSUBO, VT, Custom); 170 171 // Support addition/subtraction with carry. 172 setOperationAction(ISD::UADDO, VT, Custom); 173 setOperationAction(ISD::USUBO, VT, Custom); 174 175 // Support carry in as value rather than glue. 176 setOperationAction(ISD::ADDCARRY, VT, Custom); 177 setOperationAction(ISD::SUBCARRY, VT, Custom); 178 179 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 180 // stores, putting a serialization instruction after the stores. 181 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 182 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 183 184 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 185 // available, or if the operand is constant. 186 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 187 188 // Use POPCNT on z196 and above. 189 if (Subtarget.hasPopulationCount()) 190 setOperationAction(ISD::CTPOP, VT, Custom); 191 else 192 setOperationAction(ISD::CTPOP, VT, Expand); 193 194 // No special instructions for these. 195 setOperationAction(ISD::CTTZ, VT, Expand); 196 setOperationAction(ISD::ROTR, VT, Expand); 197 198 // Use *MUL_LOHI where possible instead of MULH*. 199 setOperationAction(ISD::MULHS, VT, Expand); 200 setOperationAction(ISD::MULHU, VT, Expand); 201 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 202 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 203 204 // Only z196 and above have native support for conversions to unsigned. 205 // On z10, promoting to i64 doesn't generate an inexact condition for 206 // values that are outside the i32 range but in the i64 range, so use 207 // the default expansion. 208 if (!Subtarget.hasFPExtension()) 209 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 210 } 211 } 212 213 // Type legalization will convert 8- and 16-bit atomic operations into 214 // forms that operate on i32s (but still keeping the original memory VT). 215 // Lower them into full i32 operations. 216 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 220 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 221 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 222 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 223 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 224 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 225 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 226 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 227 228 // Even though i128 is not a legal type, we still need to custom lower 229 // the atomic operations in order to exploit SystemZ instructions. 230 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 231 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 232 233 // We can use the CC result of compare-and-swap to implement 234 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 235 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 236 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 237 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 238 239 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 240 241 // Traps are legal, as we will convert them to "j .+2". 242 setOperationAction(ISD::TRAP, MVT::Other, Legal); 243 244 // z10 has instructions for signed but not unsigned FP conversion. 245 // Handle unsigned 32-bit types as signed 64-bit types. 246 if (!Subtarget.hasFPExtension()) { 247 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 248 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 249 } 250 251 // We have native support for a 64-bit CTLZ, via FLOGR. 252 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 253 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 254 255 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 256 setOperationAction(ISD::OR, MVT::i64, Custom); 257 258 // FIXME: Can we support these natively? 259 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 260 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 261 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 262 263 // We have native instructions for i8, i16 and i32 extensions, but not i1. 264 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 265 for (MVT VT : MVT::integer_valuetypes()) { 266 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 267 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 268 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 269 } 270 271 // Handle the various types of symbolic address. 272 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 273 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 274 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 275 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 276 setOperationAction(ISD::JumpTable, PtrVT, Custom); 277 278 // We need to handle dynamic allocations specially because of the 279 // 160-byte area at the bottom of the stack. 280 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 281 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 282 283 // Use custom expanders so that we can force the function to use 284 // a frame pointer. 285 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 286 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 287 288 // Handle prefetches with PFD or PFDRL. 289 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 290 291 for (MVT VT : MVT::vector_valuetypes()) { 292 // Assume by default that all vector operations need to be expanded. 293 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 294 if (getOperationAction(Opcode, VT) == Legal) 295 setOperationAction(Opcode, VT, Expand); 296 297 // Likewise all truncating stores and extending loads. 298 for (MVT InnerVT : MVT::vector_valuetypes()) { 299 setTruncStoreAction(VT, InnerVT, Expand); 300 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 301 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 302 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 303 } 304 305 if (isTypeLegal(VT)) { 306 // These operations are legal for anything that can be stored in a 307 // vector register, even if there is no native support for the format 308 // as such. In particular, we can do these for v4f32 even though there 309 // are no specific instructions for that format. 310 setOperationAction(ISD::LOAD, VT, Legal); 311 setOperationAction(ISD::STORE, VT, Legal); 312 setOperationAction(ISD::VSELECT, VT, Legal); 313 setOperationAction(ISD::BITCAST, VT, Legal); 314 setOperationAction(ISD::UNDEF, VT, Legal); 315 316 // Likewise, except that we need to replace the nodes with something 317 // more specific. 318 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 319 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 320 } 321 } 322 323 // Handle integer vector types. 324 for (MVT VT : MVT::integer_vector_valuetypes()) { 325 if (isTypeLegal(VT)) { 326 // These operations have direct equivalents. 327 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 328 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 329 setOperationAction(ISD::ADD, VT, Legal); 330 setOperationAction(ISD::SUB, VT, Legal); 331 if (VT != MVT::v2i64) 332 setOperationAction(ISD::MUL, VT, Legal); 333 setOperationAction(ISD::AND, VT, Legal); 334 setOperationAction(ISD::OR, VT, Legal); 335 setOperationAction(ISD::XOR, VT, Legal); 336 if (Subtarget.hasVectorEnhancements1()) 337 setOperationAction(ISD::CTPOP, VT, Legal); 338 else 339 setOperationAction(ISD::CTPOP, VT, Custom); 340 setOperationAction(ISD::CTTZ, VT, Legal); 341 setOperationAction(ISD::CTLZ, VT, Legal); 342 343 // Convert a GPR scalar to a vector by inserting it into element 0. 344 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 345 346 // Use a series of unpacks for extensions. 347 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 348 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 349 350 // Detect shifts by a scalar amount and convert them into 351 // V*_BY_SCALAR. 352 setOperationAction(ISD::SHL, VT, Custom); 353 setOperationAction(ISD::SRA, VT, Custom); 354 setOperationAction(ISD::SRL, VT, Custom); 355 356 // At present ROTL isn't matched by DAGCombiner. ROTR should be 357 // converted into ROTL. 358 setOperationAction(ISD::ROTL, VT, Expand); 359 setOperationAction(ISD::ROTR, VT, Expand); 360 361 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 362 // and inverting the result as necessary. 363 setOperationAction(ISD::SETCC, VT, Custom); 364 } 365 } 366 367 if (Subtarget.hasVector()) { 368 // There should be no need to check for float types other than v2f64 369 // since <2 x f32> isn't a legal type. 370 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 371 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 372 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 373 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 374 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 375 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 376 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 377 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 378 } 379 380 // Handle floating-point types. 381 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 382 I <= MVT::LAST_FP_VALUETYPE; 383 ++I) { 384 MVT VT = MVT::SimpleValueType(I); 385 if (isTypeLegal(VT)) { 386 // We can use FI for FRINT. 387 setOperationAction(ISD::FRINT, VT, Legal); 388 389 // We can use the extended form of FI for other rounding operations. 390 if (Subtarget.hasFPExtension()) { 391 setOperationAction(ISD::FNEARBYINT, VT, Legal); 392 setOperationAction(ISD::FFLOOR, VT, Legal); 393 setOperationAction(ISD::FCEIL, VT, Legal); 394 setOperationAction(ISD::FTRUNC, VT, Legal); 395 setOperationAction(ISD::FROUND, VT, Legal); 396 } 397 398 // No special instructions for these. 399 setOperationAction(ISD::FSIN, VT, Expand); 400 setOperationAction(ISD::FCOS, VT, Expand); 401 setOperationAction(ISD::FSINCOS, VT, Expand); 402 setOperationAction(ISD::FREM, VT, Expand); 403 setOperationAction(ISD::FPOW, VT, Expand); 404 } 405 } 406 407 // Handle floating-point vector types. 408 if (Subtarget.hasVector()) { 409 // Scalar-to-vector conversion is just a subreg. 410 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 411 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 412 413 // Some insertions and extractions can be done directly but others 414 // need to go via integers. 415 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 416 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 417 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 418 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 419 420 // These operations have direct equivalents. 421 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 422 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 423 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 424 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 425 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 426 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 427 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 428 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 429 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 430 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 431 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 432 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 433 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 434 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 435 } 436 437 // The vector enhancements facility 1 has instructions for these. 438 if (Subtarget.hasVectorEnhancements1()) { 439 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 440 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 441 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 442 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 443 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 444 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 445 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 446 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 447 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 448 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 449 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 450 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 451 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 452 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 453 454 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 455 setOperationAction(ISD::FMAXNAN, MVT::f64, Legal); 456 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 457 setOperationAction(ISD::FMINNAN, MVT::f64, Legal); 458 459 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 460 setOperationAction(ISD::FMAXNAN, MVT::v2f64, Legal); 461 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 462 setOperationAction(ISD::FMINNAN, MVT::v2f64, Legal); 463 464 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 465 setOperationAction(ISD::FMAXNAN, MVT::f32, Legal); 466 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 467 setOperationAction(ISD::FMINNAN, MVT::f32, Legal); 468 469 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 470 setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal); 471 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 472 setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal); 473 474 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 475 setOperationAction(ISD::FMAXNAN, MVT::f128, Legal); 476 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 477 setOperationAction(ISD::FMINNAN, MVT::f128, Legal); 478 } 479 480 // We have fused multiply-addition for f32 and f64 but not f128. 481 setOperationAction(ISD::FMA, MVT::f32, Legal); 482 setOperationAction(ISD::FMA, MVT::f64, Legal); 483 if (Subtarget.hasVectorEnhancements1()) 484 setOperationAction(ISD::FMA, MVT::f128, Legal); 485 else 486 setOperationAction(ISD::FMA, MVT::f128, Expand); 487 488 // We don't have a copysign instruction on vector registers. 489 if (Subtarget.hasVectorEnhancements1()) 490 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 491 492 // Needed so that we don't try to implement f128 constant loads using 493 // a load-and-extend of a f80 constant (in cases where the constant 494 // would fit in an f80). 495 for (MVT VT : MVT::fp_valuetypes()) 496 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 497 498 // We don't have extending load instruction on vector registers. 499 if (Subtarget.hasVectorEnhancements1()) { 500 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 501 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 502 } 503 504 // Floating-point truncation and stores need to be done separately. 505 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 506 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 507 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 508 509 // We have 64-bit FPR<->GPR moves, but need special handling for 510 // 32-bit forms. 511 if (!Subtarget.hasVector()) { 512 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 513 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 514 } 515 516 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 517 // structure, but VAEND is a no-op. 518 setOperationAction(ISD::VASTART, MVT::Other, Custom); 519 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 520 setOperationAction(ISD::VAEND, MVT::Other, Expand); 521 522 // Codes for which we want to perform some z-specific combinations. 523 setTargetDAGCombine(ISD::ZERO_EXTEND); 524 setTargetDAGCombine(ISD::SIGN_EXTEND); 525 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 526 setTargetDAGCombine(ISD::STORE); 527 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 528 setTargetDAGCombine(ISD::FP_ROUND); 529 setTargetDAGCombine(ISD::BSWAP); 530 setTargetDAGCombine(ISD::SHL); 531 setTargetDAGCombine(ISD::SRA); 532 setTargetDAGCombine(ISD::SRL); 533 setTargetDAGCombine(ISD::ROTL); 534 535 // Handle intrinsics. 536 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 537 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 538 539 // We want to use MVC in preference to even a single load/store pair. 540 MaxStoresPerMemcpy = 0; 541 MaxStoresPerMemcpyOptSize = 0; 542 543 // The main memset sequence is a byte store followed by an MVC. 544 // Two STC or MV..I stores win over that, but the kind of fused stores 545 // generated by target-independent code don't when the byte value is 546 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 547 // than "STC;MVC". Handle the choice in target-specific code instead. 548 MaxStoresPerMemset = 0; 549 MaxStoresPerMemsetOptSize = 0; 550 } 551 552 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 553 LLVMContext &, EVT VT) const { 554 if (!VT.isVector()) 555 return MVT::i32; 556 return VT.changeVectorElementTypeToInteger(); 557 } 558 559 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 560 VT = VT.getScalarType(); 561 562 if (!VT.isSimple()) 563 return false; 564 565 switch (VT.getSimpleVT().SimpleTy) { 566 case MVT::f32: 567 case MVT::f64: 568 return true; 569 case MVT::f128: 570 return Subtarget.hasVectorEnhancements1(); 571 default: 572 break; 573 } 574 575 return false; 576 } 577 578 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 579 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 580 return Imm.isZero() || Imm.isNegZero(); 581 } 582 583 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 584 // We can use CGFI or CLGFI. 585 return isInt<32>(Imm) || isUInt<32>(Imm); 586 } 587 588 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 589 // We can use ALGFI or SLGFI. 590 return isUInt<32>(Imm) || isUInt<32>(-Imm); 591 } 592 593 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 594 unsigned, 595 unsigned, 596 bool *Fast) const { 597 // Unaligned accesses should never be slower than the expanded version. 598 // We check specifically for aligned accesses in the few cases where 599 // they are required. 600 if (Fast) 601 *Fast = true; 602 return true; 603 } 604 605 // Information about the addressing mode for a memory access. 606 struct AddressingMode { 607 // True if a long displacement is supported. 608 bool LongDisplacement; 609 610 // True if use of index register is supported. 611 bool IndexReg; 612 613 AddressingMode(bool LongDispl, bool IdxReg) : 614 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 615 }; 616 617 // Return the desired addressing mode for a Load which has only one use (in 618 // the same block) which is a Store. 619 static AddressingMode getLoadStoreAddrMode(bool HasVector, 620 Type *Ty) { 621 // With vector support a Load->Store combination may be combined to either 622 // an MVC or vector operations and it seems to work best to allow the 623 // vector addressing mode. 624 if (HasVector) 625 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 626 627 // Otherwise only the MVC case is special. 628 bool MVC = Ty->isIntegerTy(8); 629 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 630 } 631 632 // Return the addressing mode which seems most desirable given an LLVM 633 // Instruction pointer. 634 static AddressingMode 635 supportedAddressingMode(Instruction *I, bool HasVector) { 636 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 637 switch (II->getIntrinsicID()) { 638 default: break; 639 case Intrinsic::memset: 640 case Intrinsic::memmove: 641 case Intrinsic::memcpy: 642 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 643 } 644 } 645 646 if (isa<LoadInst>(I) && I->hasOneUse()) { 647 auto *SingleUser = dyn_cast<Instruction>(*I->user_begin()); 648 if (SingleUser->getParent() == I->getParent()) { 649 if (isa<ICmpInst>(SingleUser)) { 650 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 651 if (C->getBitWidth() <= 64 && 652 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 653 // Comparison of memory with 16 bit signed / unsigned immediate 654 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 655 } else if (isa<StoreInst>(SingleUser)) 656 // Load->Store 657 return getLoadStoreAddrMode(HasVector, I->getType()); 658 } 659 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 660 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 661 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 662 // Load->Store 663 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 664 } 665 666 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 667 668 // * Use LDE instead of LE/LEY for z13 to avoid partial register 669 // dependencies (LDE only supports small offsets). 670 // * Utilize the vector registers to hold floating point 671 // values (vector load / store instructions only support small 672 // offsets). 673 674 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 675 I->getOperand(0)->getType()); 676 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 677 bool IsVectorAccess = MemAccessTy->isVectorTy(); 678 679 // A store of an extracted vector element will be combined into a VSTE type 680 // instruction. 681 if (!IsVectorAccess && isa<StoreInst>(I)) { 682 Value *DataOp = I->getOperand(0); 683 if (isa<ExtractElementInst>(DataOp)) 684 IsVectorAccess = true; 685 } 686 687 // A load which gets inserted into a vector element will be combined into a 688 // VLE type instruction. 689 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 690 User *LoadUser = *I->user_begin(); 691 if (isa<InsertElementInst>(LoadUser)) 692 IsVectorAccess = true; 693 } 694 695 if (IsFPAccess || IsVectorAccess) 696 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 697 } 698 699 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 700 } 701 702 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 703 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 704 // Punt on globals for now, although they can be used in limited 705 // RELATIVE LONG cases. 706 if (AM.BaseGV) 707 return false; 708 709 // Require a 20-bit signed offset. 710 if (!isInt<20>(AM.BaseOffs)) 711 return false; 712 713 AddressingMode SupportedAM(true, true); 714 if (I != nullptr) 715 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 716 717 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 718 return false; 719 720 if (!SupportedAM.IndexReg) 721 // No indexing allowed. 722 return AM.Scale == 0; 723 else 724 // Indexing is OK but no scale factor can be applied. 725 return AM.Scale == 0 || AM.Scale == 1; 726 } 727 728 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 729 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 730 return false; 731 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 732 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 733 return FromBits > ToBits; 734 } 735 736 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 737 if (!FromVT.isInteger() || !ToVT.isInteger()) 738 return false; 739 unsigned FromBits = FromVT.getSizeInBits(); 740 unsigned ToBits = ToVT.getSizeInBits(); 741 return FromBits > ToBits; 742 } 743 744 //===----------------------------------------------------------------------===// 745 // Inline asm support 746 //===----------------------------------------------------------------------===// 747 748 TargetLowering::ConstraintType 749 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 750 if (Constraint.size() == 1) { 751 switch (Constraint[0]) { 752 case 'a': // Address register 753 case 'd': // Data register (equivalent to 'r') 754 case 'f': // Floating-point register 755 case 'h': // High-part register 756 case 'r': // General-purpose register 757 case 'v': // Vector register 758 return C_RegisterClass; 759 760 case 'Q': // Memory with base and unsigned 12-bit displacement 761 case 'R': // Likewise, plus an index 762 case 'S': // Memory with base and signed 20-bit displacement 763 case 'T': // Likewise, plus an index 764 case 'm': // Equivalent to 'T'. 765 return C_Memory; 766 767 case 'I': // Unsigned 8-bit constant 768 case 'J': // Unsigned 12-bit constant 769 case 'K': // Signed 16-bit constant 770 case 'L': // Signed 20-bit displacement (on all targets we support) 771 case 'M': // 0x7fffffff 772 return C_Other; 773 774 default: 775 break; 776 } 777 } 778 return TargetLowering::getConstraintType(Constraint); 779 } 780 781 TargetLowering::ConstraintWeight SystemZTargetLowering:: 782 getSingleConstraintMatchWeight(AsmOperandInfo &info, 783 const char *constraint) const { 784 ConstraintWeight weight = CW_Invalid; 785 Value *CallOperandVal = info.CallOperandVal; 786 // If we don't have a value, we can't do a match, 787 // but allow it at the lowest weight. 788 if (!CallOperandVal) 789 return CW_Default; 790 Type *type = CallOperandVal->getType(); 791 // Look at the constraint type. 792 switch (*constraint) { 793 default: 794 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 795 break; 796 797 case 'a': // Address register 798 case 'd': // Data register (equivalent to 'r') 799 case 'h': // High-part register 800 case 'r': // General-purpose register 801 if (CallOperandVal->getType()->isIntegerTy()) 802 weight = CW_Register; 803 break; 804 805 case 'f': // Floating-point register 806 if (type->isFloatingPointTy()) 807 weight = CW_Register; 808 break; 809 810 case 'v': // Vector register 811 if ((type->isVectorTy() || type->isFloatingPointTy()) && 812 Subtarget.hasVector()) 813 weight = CW_Register; 814 break; 815 816 case 'I': // Unsigned 8-bit constant 817 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 818 if (isUInt<8>(C->getZExtValue())) 819 weight = CW_Constant; 820 break; 821 822 case 'J': // Unsigned 12-bit constant 823 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 824 if (isUInt<12>(C->getZExtValue())) 825 weight = CW_Constant; 826 break; 827 828 case 'K': // Signed 16-bit constant 829 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 830 if (isInt<16>(C->getSExtValue())) 831 weight = CW_Constant; 832 break; 833 834 case 'L': // Signed 20-bit displacement (on all targets we support) 835 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 836 if (isInt<20>(C->getSExtValue())) 837 weight = CW_Constant; 838 break; 839 840 case 'M': // 0x7fffffff 841 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 842 if (C->getZExtValue() == 0x7fffffff) 843 weight = CW_Constant; 844 break; 845 } 846 return weight; 847 } 848 849 // Parse a "{tNNN}" register constraint for which the register type "t" 850 // has already been verified. MC is the class associated with "t" and 851 // Map maps 0-based register numbers to LLVM register numbers. 852 static std::pair<unsigned, const TargetRegisterClass *> 853 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 854 const unsigned *Map, unsigned Size) { 855 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 856 if (isdigit(Constraint[2])) { 857 unsigned Index; 858 bool Failed = 859 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 860 if (!Failed && Index < Size && Map[Index]) 861 return std::make_pair(Map[Index], RC); 862 } 863 return std::make_pair(0U, nullptr); 864 } 865 866 std::pair<unsigned, const TargetRegisterClass *> 867 SystemZTargetLowering::getRegForInlineAsmConstraint( 868 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 869 if (Constraint.size() == 1) { 870 // GCC Constraint Letters 871 switch (Constraint[0]) { 872 default: break; 873 case 'd': // Data register (equivalent to 'r') 874 case 'r': // General-purpose register 875 if (VT == MVT::i64) 876 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 877 else if (VT == MVT::i128) 878 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 879 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 880 881 case 'a': // Address register 882 if (VT == MVT::i64) 883 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 884 else if (VT == MVT::i128) 885 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 886 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 887 888 case 'h': // High-part register (an LLVM extension) 889 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 890 891 case 'f': // Floating-point register 892 if (VT == MVT::f64) 893 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 894 else if (VT == MVT::f128) 895 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 896 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 897 898 case 'v': // Vector register 899 if (Subtarget.hasVector()) { 900 if (VT == MVT::f32) 901 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 902 if (VT == MVT::f64) 903 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 904 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 905 } 906 break; 907 } 908 } 909 if (Constraint.size() > 0 && Constraint[0] == '{') { 910 // We need to override the default register parsing for GPRs and FPRs 911 // because the interpretation depends on VT. The internal names of 912 // the registers are also different from the external names 913 // (F0D and F0S instead of F0, etc.). 914 if (Constraint[1] == 'r') { 915 if (VT == MVT::i32) 916 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 917 SystemZMC::GR32Regs, 16); 918 if (VT == MVT::i128) 919 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 920 SystemZMC::GR128Regs, 16); 921 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 922 SystemZMC::GR64Regs, 16); 923 } 924 if (Constraint[1] == 'f') { 925 if (VT == MVT::f32) 926 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 927 SystemZMC::FP32Regs, 16); 928 if (VT == MVT::f128) 929 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 930 SystemZMC::FP128Regs, 16); 931 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 932 SystemZMC::FP64Regs, 16); 933 } 934 if (Constraint[1] == 'v') { 935 if (VT == MVT::f32) 936 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 937 SystemZMC::VR32Regs, 32); 938 if (VT == MVT::f64) 939 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 940 SystemZMC::VR64Regs, 32); 941 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 942 SystemZMC::VR128Regs, 32); 943 } 944 } 945 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 946 } 947 948 void SystemZTargetLowering:: 949 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 950 std::vector<SDValue> &Ops, 951 SelectionDAG &DAG) const { 952 // Only support length 1 constraints for now. 953 if (Constraint.length() == 1) { 954 switch (Constraint[0]) { 955 case 'I': // Unsigned 8-bit constant 956 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 957 if (isUInt<8>(C->getZExtValue())) 958 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 959 Op.getValueType())); 960 return; 961 962 case 'J': // Unsigned 12-bit constant 963 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 964 if (isUInt<12>(C->getZExtValue())) 965 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 966 Op.getValueType())); 967 return; 968 969 case 'K': // Signed 16-bit constant 970 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 971 if (isInt<16>(C->getSExtValue())) 972 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 973 Op.getValueType())); 974 return; 975 976 case 'L': // Signed 20-bit displacement (on all targets we support) 977 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 978 if (isInt<20>(C->getSExtValue())) 979 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 980 Op.getValueType())); 981 return; 982 983 case 'M': // 0x7fffffff 984 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 985 if (C->getZExtValue() == 0x7fffffff) 986 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 987 Op.getValueType())); 988 return; 989 } 990 } 991 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 992 } 993 994 //===----------------------------------------------------------------------===// 995 // Calling conventions 996 //===----------------------------------------------------------------------===// 997 998 #include "SystemZGenCallingConv.inc" 999 1000 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1001 CallingConv::ID) const { 1002 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1003 SystemZ::R14D, 0 }; 1004 return ScratchRegs; 1005 } 1006 1007 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1008 Type *ToType) const { 1009 return isTruncateFree(FromType, ToType); 1010 } 1011 1012 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1013 return CI->isTailCall(); 1014 } 1015 1016 // We do not yet support 128-bit single-element vector types. If the user 1017 // attempts to use such types as function argument or return type, prefer 1018 // to error out instead of emitting code violating the ABI. 1019 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1020 if (ArgVT.isVector() && !VT.isVector()) 1021 report_fatal_error("Unsupported vector argument or return type"); 1022 } 1023 1024 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1025 for (unsigned i = 0; i < Ins.size(); ++i) 1026 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1027 } 1028 1029 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1030 for (unsigned i = 0; i < Outs.size(); ++i) 1031 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1032 } 1033 1034 // Value is a value that has been passed to us in the location described by VA 1035 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1036 // any loads onto Chain. 1037 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1038 CCValAssign &VA, SDValue Chain, 1039 SDValue Value) { 1040 // If the argument has been promoted from a smaller type, insert an 1041 // assertion to capture this. 1042 if (VA.getLocInfo() == CCValAssign::SExt) 1043 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1044 DAG.getValueType(VA.getValVT())); 1045 else if (VA.getLocInfo() == CCValAssign::ZExt) 1046 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1047 DAG.getValueType(VA.getValVT())); 1048 1049 if (VA.isExtInLoc()) 1050 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1051 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1052 // If this is a short vector argument loaded from the stack, 1053 // extend from i64 to full vector size and then bitcast. 1054 assert(VA.getLocVT() == MVT::i64); 1055 assert(VA.getValVT().isVector()); 1056 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1057 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1058 } else 1059 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1060 return Value; 1061 } 1062 1063 // Value is a value of type VA.getValVT() that we need to copy into 1064 // the location described by VA. Return a copy of Value converted to 1065 // VA.getValVT(). The caller is responsible for handling indirect values. 1066 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1067 CCValAssign &VA, SDValue Value) { 1068 switch (VA.getLocInfo()) { 1069 case CCValAssign::SExt: 1070 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1071 case CCValAssign::ZExt: 1072 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1073 case CCValAssign::AExt: 1074 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1075 case CCValAssign::BCvt: 1076 // If this is a short vector argument to be stored to the stack, 1077 // bitcast to v2i64 and then extract first element. 1078 assert(VA.getLocVT() == MVT::i64); 1079 assert(VA.getValVT().isVector()); 1080 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1081 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1082 DAG.getConstant(0, DL, MVT::i32)); 1083 case CCValAssign::Full: 1084 return Value; 1085 default: 1086 llvm_unreachable("Unhandled getLocInfo()"); 1087 } 1088 } 1089 1090 SDValue SystemZTargetLowering::LowerFormalArguments( 1091 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1092 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1093 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1094 MachineFunction &MF = DAG.getMachineFunction(); 1095 MachineFrameInfo &MFI = MF.getFrameInfo(); 1096 MachineRegisterInfo &MRI = MF.getRegInfo(); 1097 SystemZMachineFunctionInfo *FuncInfo = 1098 MF.getInfo<SystemZMachineFunctionInfo>(); 1099 auto *TFL = 1100 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1101 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1102 1103 // Detect unsupported vector argument types. 1104 if (Subtarget.hasVector()) 1105 VerifyVectorTypes(Ins); 1106 1107 // Assign locations to all of the incoming arguments. 1108 SmallVector<CCValAssign, 16> ArgLocs; 1109 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1110 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1111 1112 unsigned NumFixedGPRs = 0; 1113 unsigned NumFixedFPRs = 0; 1114 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1115 SDValue ArgValue; 1116 CCValAssign &VA = ArgLocs[I]; 1117 EVT LocVT = VA.getLocVT(); 1118 if (VA.isRegLoc()) { 1119 // Arguments passed in registers 1120 const TargetRegisterClass *RC; 1121 switch (LocVT.getSimpleVT().SimpleTy) { 1122 default: 1123 // Integers smaller than i64 should be promoted to i64. 1124 llvm_unreachable("Unexpected argument type"); 1125 case MVT::i32: 1126 NumFixedGPRs += 1; 1127 RC = &SystemZ::GR32BitRegClass; 1128 break; 1129 case MVT::i64: 1130 NumFixedGPRs += 1; 1131 RC = &SystemZ::GR64BitRegClass; 1132 break; 1133 case MVT::f32: 1134 NumFixedFPRs += 1; 1135 RC = &SystemZ::FP32BitRegClass; 1136 break; 1137 case MVT::f64: 1138 NumFixedFPRs += 1; 1139 RC = &SystemZ::FP64BitRegClass; 1140 break; 1141 case MVT::v16i8: 1142 case MVT::v8i16: 1143 case MVT::v4i32: 1144 case MVT::v2i64: 1145 case MVT::v4f32: 1146 case MVT::v2f64: 1147 RC = &SystemZ::VR128BitRegClass; 1148 break; 1149 } 1150 1151 unsigned VReg = MRI.createVirtualRegister(RC); 1152 MRI.addLiveIn(VA.getLocReg(), VReg); 1153 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1154 } else { 1155 assert(VA.isMemLoc() && "Argument not register or memory"); 1156 1157 // Create the frame index object for this incoming parameter. 1158 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1159 VA.getLocMemOffset(), true); 1160 1161 // Create the SelectionDAG nodes corresponding to a load 1162 // from this parameter. Unpromoted ints and floats are 1163 // passed as right-justified 8-byte values. 1164 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1165 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1166 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1167 DAG.getIntPtrConstant(4, DL)); 1168 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1169 MachinePointerInfo::getFixedStack(MF, FI)); 1170 } 1171 1172 // Convert the value of the argument register into the value that's 1173 // being passed. 1174 if (VA.getLocInfo() == CCValAssign::Indirect) { 1175 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1176 MachinePointerInfo())); 1177 // If the original argument was split (e.g. i128), we need 1178 // to load all parts of it here (using the same address). 1179 unsigned ArgIndex = Ins[I].OrigArgIndex; 1180 assert (Ins[I].PartOffset == 0); 1181 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1182 CCValAssign &PartVA = ArgLocs[I + 1]; 1183 unsigned PartOffset = Ins[I + 1].PartOffset; 1184 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1185 DAG.getIntPtrConstant(PartOffset, DL)); 1186 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1187 MachinePointerInfo())); 1188 ++I; 1189 } 1190 } else 1191 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1192 } 1193 1194 if (IsVarArg) { 1195 // Save the number of non-varargs registers for later use by va_start, etc. 1196 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1197 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1198 1199 // Likewise the address (in the form of a frame index) of where the 1200 // first stack vararg would be. The 1-byte size here is arbitrary. 1201 int64_t StackSize = CCInfo.getNextStackOffset(); 1202 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1203 1204 // ...and a similar frame index for the caller-allocated save area 1205 // that will be used to store the incoming registers. 1206 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1207 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1208 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1209 1210 // Store the FPR varargs in the reserved frame slots. (We store the 1211 // GPRs as part of the prologue.) 1212 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1213 SDValue MemOps[SystemZ::NumArgFPRs]; 1214 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1215 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1216 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1217 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1218 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1219 &SystemZ::FP64BitRegClass); 1220 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1221 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1222 MachinePointerInfo::getFixedStack(MF, FI)); 1223 } 1224 // Join the stores, which are independent of one another. 1225 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1226 makeArrayRef(&MemOps[NumFixedFPRs], 1227 SystemZ::NumArgFPRs-NumFixedFPRs)); 1228 } 1229 } 1230 1231 return Chain; 1232 } 1233 1234 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1235 SmallVectorImpl<CCValAssign> &ArgLocs, 1236 SmallVectorImpl<ISD::OutputArg> &Outs) { 1237 // Punt if there are any indirect or stack arguments, or if the call 1238 // needs the callee-saved argument register R6, or if the call uses 1239 // the callee-saved register arguments SwiftSelf and SwiftError. 1240 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1241 CCValAssign &VA = ArgLocs[I]; 1242 if (VA.getLocInfo() == CCValAssign::Indirect) 1243 return false; 1244 if (!VA.isRegLoc()) 1245 return false; 1246 unsigned Reg = VA.getLocReg(); 1247 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1248 return false; 1249 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1250 return false; 1251 } 1252 return true; 1253 } 1254 1255 SDValue 1256 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1257 SmallVectorImpl<SDValue> &InVals) const { 1258 SelectionDAG &DAG = CLI.DAG; 1259 SDLoc &DL = CLI.DL; 1260 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1261 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1262 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1263 SDValue Chain = CLI.Chain; 1264 SDValue Callee = CLI.Callee; 1265 bool &IsTailCall = CLI.IsTailCall; 1266 CallingConv::ID CallConv = CLI.CallConv; 1267 bool IsVarArg = CLI.IsVarArg; 1268 MachineFunction &MF = DAG.getMachineFunction(); 1269 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1270 1271 // Detect unsupported vector argument and return types. 1272 if (Subtarget.hasVector()) { 1273 VerifyVectorTypes(Outs); 1274 VerifyVectorTypes(Ins); 1275 } 1276 1277 // Analyze the operands of the call, assigning locations to each operand. 1278 SmallVector<CCValAssign, 16> ArgLocs; 1279 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1280 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1281 1282 // We don't support GuaranteedTailCallOpt, only automatically-detected 1283 // sibling calls. 1284 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1285 IsTailCall = false; 1286 1287 // Get a count of how many bytes are to be pushed on the stack. 1288 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1289 1290 // Mark the start of the call. 1291 if (!IsTailCall) 1292 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1293 1294 // Copy argument values to their designated locations. 1295 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1296 SmallVector<SDValue, 8> MemOpChains; 1297 SDValue StackPtr; 1298 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1299 CCValAssign &VA = ArgLocs[I]; 1300 SDValue ArgValue = OutVals[I]; 1301 1302 if (VA.getLocInfo() == CCValAssign::Indirect) { 1303 // Store the argument in a stack slot and pass its address. 1304 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1305 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1306 MemOpChains.push_back( 1307 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1308 MachinePointerInfo::getFixedStack(MF, FI))); 1309 // If the original argument was split (e.g. i128), we need 1310 // to store all parts of it here (and pass just one address). 1311 unsigned ArgIndex = Outs[I].OrigArgIndex; 1312 assert (Outs[I].PartOffset == 0); 1313 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1314 SDValue PartValue = OutVals[I + 1]; 1315 unsigned PartOffset = Outs[I + 1].PartOffset; 1316 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1317 DAG.getIntPtrConstant(PartOffset, DL)); 1318 MemOpChains.push_back( 1319 DAG.getStore(Chain, DL, PartValue, Address, 1320 MachinePointerInfo::getFixedStack(MF, FI))); 1321 ++I; 1322 } 1323 ArgValue = SpillSlot; 1324 } else 1325 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1326 1327 if (VA.isRegLoc()) 1328 // Queue up the argument copies and emit them at the end. 1329 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1330 else { 1331 assert(VA.isMemLoc() && "Argument not register or memory"); 1332 1333 // Work out the address of the stack slot. Unpromoted ints and 1334 // floats are passed as right-justified 8-byte values. 1335 if (!StackPtr.getNode()) 1336 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1337 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1338 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1339 Offset += 4; 1340 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1341 DAG.getIntPtrConstant(Offset, DL)); 1342 1343 // Emit the store. 1344 MemOpChains.push_back( 1345 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1346 } 1347 } 1348 1349 // Join the stores, which are independent of one another. 1350 if (!MemOpChains.empty()) 1351 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1352 1353 // Accept direct calls by converting symbolic call addresses to the 1354 // associated Target* opcodes. Force %r1 to be used for indirect 1355 // tail calls. 1356 SDValue Glue; 1357 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1358 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1359 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1360 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1361 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1362 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1363 } else if (IsTailCall) { 1364 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1365 Glue = Chain.getValue(1); 1366 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1367 } 1368 1369 // Build a sequence of copy-to-reg nodes, chained and glued together. 1370 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1371 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1372 RegsToPass[I].second, Glue); 1373 Glue = Chain.getValue(1); 1374 } 1375 1376 // The first call operand is the chain and the second is the target address. 1377 SmallVector<SDValue, 8> Ops; 1378 Ops.push_back(Chain); 1379 Ops.push_back(Callee); 1380 1381 // Add argument registers to the end of the list so that they are 1382 // known live into the call. 1383 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1384 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1385 RegsToPass[I].second.getValueType())); 1386 1387 // Add a register mask operand representing the call-preserved registers. 1388 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1389 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1390 assert(Mask && "Missing call preserved mask for calling convention"); 1391 Ops.push_back(DAG.getRegisterMask(Mask)); 1392 1393 // Glue the call to the argument copies, if any. 1394 if (Glue.getNode()) 1395 Ops.push_back(Glue); 1396 1397 // Emit the call. 1398 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1399 if (IsTailCall) 1400 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1401 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1402 Glue = Chain.getValue(1); 1403 1404 // Mark the end of the call, which is glued to the call itself. 1405 Chain = DAG.getCALLSEQ_END(Chain, 1406 DAG.getConstant(NumBytes, DL, PtrVT, true), 1407 DAG.getConstant(0, DL, PtrVT, true), 1408 Glue, DL); 1409 Glue = Chain.getValue(1); 1410 1411 // Assign locations to each value returned by this call. 1412 SmallVector<CCValAssign, 16> RetLocs; 1413 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1414 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1415 1416 // Copy all of the result registers out of their specified physreg. 1417 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1418 CCValAssign &VA = RetLocs[I]; 1419 1420 // Copy the value out, gluing the copy to the end of the call sequence. 1421 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1422 VA.getLocVT(), Glue); 1423 Chain = RetValue.getValue(1); 1424 Glue = RetValue.getValue(2); 1425 1426 // Convert the value of the return register into the value that's 1427 // being returned. 1428 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1429 } 1430 1431 return Chain; 1432 } 1433 1434 bool SystemZTargetLowering:: 1435 CanLowerReturn(CallingConv::ID CallConv, 1436 MachineFunction &MF, bool isVarArg, 1437 const SmallVectorImpl<ISD::OutputArg> &Outs, 1438 LLVMContext &Context) const { 1439 // Detect unsupported vector return types. 1440 if (Subtarget.hasVector()) 1441 VerifyVectorTypes(Outs); 1442 1443 // Special case that we cannot easily detect in RetCC_SystemZ since 1444 // i128 is not a legal type. 1445 for (auto &Out : Outs) 1446 if (Out.ArgVT == MVT::i128) 1447 return false; 1448 1449 SmallVector<CCValAssign, 16> RetLocs; 1450 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1451 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1452 } 1453 1454 SDValue 1455 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1456 bool IsVarArg, 1457 const SmallVectorImpl<ISD::OutputArg> &Outs, 1458 const SmallVectorImpl<SDValue> &OutVals, 1459 const SDLoc &DL, SelectionDAG &DAG) const { 1460 MachineFunction &MF = DAG.getMachineFunction(); 1461 1462 // Detect unsupported vector return types. 1463 if (Subtarget.hasVector()) 1464 VerifyVectorTypes(Outs); 1465 1466 // Assign locations to each returned value. 1467 SmallVector<CCValAssign, 16> RetLocs; 1468 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1469 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1470 1471 // Quick exit for void returns 1472 if (RetLocs.empty()) 1473 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1474 1475 // Copy the result values into the output registers. 1476 SDValue Glue; 1477 SmallVector<SDValue, 4> RetOps; 1478 RetOps.push_back(Chain); 1479 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1480 CCValAssign &VA = RetLocs[I]; 1481 SDValue RetValue = OutVals[I]; 1482 1483 // Make the return register live on exit. 1484 assert(VA.isRegLoc() && "Can only return in registers!"); 1485 1486 // Promote the value as required. 1487 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1488 1489 // Chain and glue the copies together. 1490 unsigned Reg = VA.getLocReg(); 1491 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1492 Glue = Chain.getValue(1); 1493 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1494 } 1495 1496 // Update chain and glue. 1497 RetOps[0] = Chain; 1498 if (Glue.getNode()) 1499 RetOps.push_back(Glue); 1500 1501 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1502 } 1503 1504 // Return true if Op is an intrinsic node with chain that returns the CC value 1505 // as its only (other) argument. Provide the associated SystemZISD opcode and 1506 // the mask of valid CC values if so. 1507 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1508 unsigned &CCValid) { 1509 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1510 switch (Id) { 1511 case Intrinsic::s390_tbegin: 1512 Opcode = SystemZISD::TBEGIN; 1513 CCValid = SystemZ::CCMASK_TBEGIN; 1514 return true; 1515 1516 case Intrinsic::s390_tbegin_nofloat: 1517 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1518 CCValid = SystemZ::CCMASK_TBEGIN; 1519 return true; 1520 1521 case Intrinsic::s390_tend: 1522 Opcode = SystemZISD::TEND; 1523 CCValid = SystemZ::CCMASK_TEND; 1524 return true; 1525 1526 default: 1527 return false; 1528 } 1529 } 1530 1531 // Return true if Op is an intrinsic node without chain that returns the 1532 // CC value as its final argument. Provide the associated SystemZISD 1533 // opcode and the mask of valid CC values if so. 1534 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1535 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1536 switch (Id) { 1537 case Intrinsic::s390_vpkshs: 1538 case Intrinsic::s390_vpksfs: 1539 case Intrinsic::s390_vpksgs: 1540 Opcode = SystemZISD::PACKS_CC; 1541 CCValid = SystemZ::CCMASK_VCMP; 1542 return true; 1543 1544 case Intrinsic::s390_vpklshs: 1545 case Intrinsic::s390_vpklsfs: 1546 case Intrinsic::s390_vpklsgs: 1547 Opcode = SystemZISD::PACKLS_CC; 1548 CCValid = SystemZ::CCMASK_VCMP; 1549 return true; 1550 1551 case Intrinsic::s390_vceqbs: 1552 case Intrinsic::s390_vceqhs: 1553 case Intrinsic::s390_vceqfs: 1554 case Intrinsic::s390_vceqgs: 1555 Opcode = SystemZISD::VICMPES; 1556 CCValid = SystemZ::CCMASK_VCMP; 1557 return true; 1558 1559 case Intrinsic::s390_vchbs: 1560 case Intrinsic::s390_vchhs: 1561 case Intrinsic::s390_vchfs: 1562 case Intrinsic::s390_vchgs: 1563 Opcode = SystemZISD::VICMPHS; 1564 CCValid = SystemZ::CCMASK_VCMP; 1565 return true; 1566 1567 case Intrinsic::s390_vchlbs: 1568 case Intrinsic::s390_vchlhs: 1569 case Intrinsic::s390_vchlfs: 1570 case Intrinsic::s390_vchlgs: 1571 Opcode = SystemZISD::VICMPHLS; 1572 CCValid = SystemZ::CCMASK_VCMP; 1573 return true; 1574 1575 case Intrinsic::s390_vtm: 1576 Opcode = SystemZISD::VTM; 1577 CCValid = SystemZ::CCMASK_VCMP; 1578 return true; 1579 1580 case Intrinsic::s390_vfaebs: 1581 case Intrinsic::s390_vfaehs: 1582 case Intrinsic::s390_vfaefs: 1583 Opcode = SystemZISD::VFAE_CC; 1584 CCValid = SystemZ::CCMASK_ANY; 1585 return true; 1586 1587 case Intrinsic::s390_vfaezbs: 1588 case Intrinsic::s390_vfaezhs: 1589 case Intrinsic::s390_vfaezfs: 1590 Opcode = SystemZISD::VFAEZ_CC; 1591 CCValid = SystemZ::CCMASK_ANY; 1592 return true; 1593 1594 case Intrinsic::s390_vfeebs: 1595 case Intrinsic::s390_vfeehs: 1596 case Intrinsic::s390_vfeefs: 1597 Opcode = SystemZISD::VFEE_CC; 1598 CCValid = SystemZ::CCMASK_ANY; 1599 return true; 1600 1601 case Intrinsic::s390_vfeezbs: 1602 case Intrinsic::s390_vfeezhs: 1603 case Intrinsic::s390_vfeezfs: 1604 Opcode = SystemZISD::VFEEZ_CC; 1605 CCValid = SystemZ::CCMASK_ANY; 1606 return true; 1607 1608 case Intrinsic::s390_vfenebs: 1609 case Intrinsic::s390_vfenehs: 1610 case Intrinsic::s390_vfenefs: 1611 Opcode = SystemZISD::VFENE_CC; 1612 CCValid = SystemZ::CCMASK_ANY; 1613 return true; 1614 1615 case Intrinsic::s390_vfenezbs: 1616 case Intrinsic::s390_vfenezhs: 1617 case Intrinsic::s390_vfenezfs: 1618 Opcode = SystemZISD::VFENEZ_CC; 1619 CCValid = SystemZ::CCMASK_ANY; 1620 return true; 1621 1622 case Intrinsic::s390_vistrbs: 1623 case Intrinsic::s390_vistrhs: 1624 case Intrinsic::s390_vistrfs: 1625 Opcode = SystemZISD::VISTR_CC; 1626 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1627 return true; 1628 1629 case Intrinsic::s390_vstrcbs: 1630 case Intrinsic::s390_vstrchs: 1631 case Intrinsic::s390_vstrcfs: 1632 Opcode = SystemZISD::VSTRC_CC; 1633 CCValid = SystemZ::CCMASK_ANY; 1634 return true; 1635 1636 case Intrinsic::s390_vstrczbs: 1637 case Intrinsic::s390_vstrczhs: 1638 case Intrinsic::s390_vstrczfs: 1639 Opcode = SystemZISD::VSTRCZ_CC; 1640 CCValid = SystemZ::CCMASK_ANY; 1641 return true; 1642 1643 case Intrinsic::s390_vfcedbs: 1644 case Intrinsic::s390_vfcesbs: 1645 Opcode = SystemZISD::VFCMPES; 1646 CCValid = SystemZ::CCMASK_VCMP; 1647 return true; 1648 1649 case Intrinsic::s390_vfchdbs: 1650 case Intrinsic::s390_vfchsbs: 1651 Opcode = SystemZISD::VFCMPHS; 1652 CCValid = SystemZ::CCMASK_VCMP; 1653 return true; 1654 1655 case Intrinsic::s390_vfchedbs: 1656 case Intrinsic::s390_vfchesbs: 1657 Opcode = SystemZISD::VFCMPHES; 1658 CCValid = SystemZ::CCMASK_VCMP; 1659 return true; 1660 1661 case Intrinsic::s390_vftcidb: 1662 case Intrinsic::s390_vftcisb: 1663 Opcode = SystemZISD::VFTCI; 1664 CCValid = SystemZ::CCMASK_VCMP; 1665 return true; 1666 1667 case Intrinsic::s390_tdc: 1668 Opcode = SystemZISD::TDC; 1669 CCValid = SystemZ::CCMASK_TDC; 1670 return true; 1671 1672 default: 1673 return false; 1674 } 1675 } 1676 1677 // Emit an intrinsic with chain and an explicit CC register result. 1678 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1679 unsigned Opcode) { 1680 // Copy all operands except the intrinsic ID. 1681 unsigned NumOps = Op.getNumOperands(); 1682 SmallVector<SDValue, 6> Ops; 1683 Ops.reserve(NumOps - 1); 1684 Ops.push_back(Op.getOperand(0)); 1685 for (unsigned I = 2; I < NumOps; ++I) 1686 Ops.push_back(Op.getOperand(I)); 1687 1688 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1689 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1690 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1691 SDValue OldChain = SDValue(Op.getNode(), 1); 1692 SDValue NewChain = SDValue(Intr.getNode(), 1); 1693 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1694 return Intr.getNode(); 1695 } 1696 1697 // Emit an intrinsic with an explicit CC register result. 1698 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1699 unsigned Opcode) { 1700 // Copy all operands except the intrinsic ID. 1701 unsigned NumOps = Op.getNumOperands(); 1702 SmallVector<SDValue, 6> Ops; 1703 Ops.reserve(NumOps - 1); 1704 for (unsigned I = 1; I < NumOps; ++I) 1705 Ops.push_back(Op.getOperand(I)); 1706 1707 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1708 return Intr.getNode(); 1709 } 1710 1711 // CC is a comparison that will be implemented using an integer or 1712 // floating-point comparison. Return the condition code mask for 1713 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1714 // unsigned comparisons and clear for signed ones. In the floating-point 1715 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1716 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1717 #define CONV(X) \ 1718 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1719 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1720 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1721 1722 switch (CC) { 1723 default: 1724 llvm_unreachable("Invalid integer condition!"); 1725 1726 CONV(EQ); 1727 CONV(NE); 1728 CONV(GT); 1729 CONV(GE); 1730 CONV(LT); 1731 CONV(LE); 1732 1733 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1734 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1735 } 1736 #undef CONV 1737 } 1738 1739 // If C can be converted to a comparison against zero, adjust the operands 1740 // as necessary. 1741 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1742 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1743 return; 1744 1745 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1746 if (!ConstOp1) 1747 return; 1748 1749 int64_t Value = ConstOp1->getSExtValue(); 1750 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1751 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1752 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1753 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1754 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1755 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1756 } 1757 } 1758 1759 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1760 // adjust the operands as necessary. 1761 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1762 Comparison &C) { 1763 // For us to make any changes, it must a comparison between a single-use 1764 // load and a constant. 1765 if (!C.Op0.hasOneUse() || 1766 C.Op0.getOpcode() != ISD::LOAD || 1767 C.Op1.getOpcode() != ISD::Constant) 1768 return; 1769 1770 // We must have an 8- or 16-bit load. 1771 auto *Load = cast<LoadSDNode>(C.Op0); 1772 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1773 if (NumBits != 8 && NumBits != 16) 1774 return; 1775 1776 // The load must be an extending one and the constant must be within the 1777 // range of the unextended value. 1778 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1779 uint64_t Value = ConstOp1->getZExtValue(); 1780 uint64_t Mask = (1 << NumBits) - 1; 1781 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1782 // Make sure that ConstOp1 is in range of C.Op0. 1783 int64_t SignedValue = ConstOp1->getSExtValue(); 1784 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1785 return; 1786 if (C.ICmpType != SystemZICMP::SignedOnly) { 1787 // Unsigned comparison between two sign-extended values is equivalent 1788 // to unsigned comparison between two zero-extended values. 1789 Value &= Mask; 1790 } else if (NumBits == 8) { 1791 // Try to treat the comparison as unsigned, so that we can use CLI. 1792 // Adjust CCMask and Value as necessary. 1793 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1794 // Test whether the high bit of the byte is set. 1795 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1796 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1797 // Test whether the high bit of the byte is clear. 1798 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1799 else 1800 // No instruction exists for this combination. 1801 return; 1802 C.ICmpType = SystemZICMP::UnsignedOnly; 1803 } 1804 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1805 if (Value > Mask) 1806 return; 1807 // If the constant is in range, we can use any comparison. 1808 C.ICmpType = SystemZICMP::Any; 1809 } else 1810 return; 1811 1812 // Make sure that the first operand is an i32 of the right extension type. 1813 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1814 ISD::SEXTLOAD : 1815 ISD::ZEXTLOAD); 1816 if (C.Op0.getValueType() != MVT::i32 || 1817 Load->getExtensionType() != ExtType) { 1818 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 1819 Load->getBasePtr(), Load->getPointerInfo(), 1820 Load->getMemoryVT(), Load->getAlignment(), 1821 Load->getMemOperand()->getFlags()); 1822 // Update the chain uses. 1823 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 1824 } 1825 1826 // Make sure that the second operand is an i32 with the right value. 1827 if (C.Op1.getValueType() != MVT::i32 || 1828 Value != ConstOp1->getZExtValue()) 1829 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1830 } 1831 1832 // Return true if Op is either an unextended load, or a load suitable 1833 // for integer register-memory comparisons of type ICmpType. 1834 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1835 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1836 if (Load) { 1837 // There are no instructions to compare a register with a memory byte. 1838 if (Load->getMemoryVT() == MVT::i8) 1839 return false; 1840 // Otherwise decide on extension type. 1841 switch (Load->getExtensionType()) { 1842 case ISD::NON_EXTLOAD: 1843 return true; 1844 case ISD::SEXTLOAD: 1845 return ICmpType != SystemZICMP::UnsignedOnly; 1846 case ISD::ZEXTLOAD: 1847 return ICmpType != SystemZICMP::SignedOnly; 1848 default: 1849 break; 1850 } 1851 } 1852 return false; 1853 } 1854 1855 // Return true if it is better to swap the operands of C. 1856 static bool shouldSwapCmpOperands(const Comparison &C) { 1857 // Leave f128 comparisons alone, since they have no memory forms. 1858 if (C.Op0.getValueType() == MVT::f128) 1859 return false; 1860 1861 // Always keep a floating-point constant second, since comparisons with 1862 // zero can use LOAD TEST and comparisons with other constants make a 1863 // natural memory operand. 1864 if (isa<ConstantFPSDNode>(C.Op1)) 1865 return false; 1866 1867 // Never swap comparisons with zero since there are many ways to optimize 1868 // those later. 1869 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1870 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1871 return false; 1872 1873 // Also keep natural memory operands second if the loaded value is 1874 // only used here. Several comparisons have memory forms. 1875 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1876 return false; 1877 1878 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1879 // In that case we generally prefer the memory to be second. 1880 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1881 // The only exceptions are when the second operand is a constant and 1882 // we can use things like CHHSI. 1883 if (!ConstOp1) 1884 return true; 1885 // The unsigned memory-immediate instructions can handle 16-bit 1886 // unsigned integers. 1887 if (C.ICmpType != SystemZICMP::SignedOnly && 1888 isUInt<16>(ConstOp1->getZExtValue())) 1889 return false; 1890 // The signed memory-immediate instructions can handle 16-bit 1891 // signed integers. 1892 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1893 isInt<16>(ConstOp1->getSExtValue())) 1894 return false; 1895 return true; 1896 } 1897 1898 // Try to promote the use of CGFR and CLGFR. 1899 unsigned Opcode0 = C.Op0.getOpcode(); 1900 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1901 return true; 1902 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1903 return true; 1904 if (C.ICmpType != SystemZICMP::SignedOnly && 1905 Opcode0 == ISD::AND && 1906 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1907 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1908 return true; 1909 1910 return false; 1911 } 1912 1913 // Return a version of comparison CC mask CCMask in which the LT and GT 1914 // actions are swapped. 1915 static unsigned reverseCCMask(unsigned CCMask) { 1916 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1917 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1918 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1919 (CCMask & SystemZ::CCMASK_CMP_UO)); 1920 } 1921 1922 // Check whether C tests for equality between X and Y and whether X - Y 1923 // or Y - X is also computed. In that case it's better to compare the 1924 // result of the subtraction against zero. 1925 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 1926 Comparison &C) { 1927 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1928 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1929 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1930 SDNode *N = *I; 1931 if (N->getOpcode() == ISD::SUB && 1932 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1933 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1934 C.Op0 = SDValue(N, 0); 1935 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1936 return; 1937 } 1938 } 1939 } 1940 } 1941 1942 // Check whether C compares a floating-point value with zero and if that 1943 // floating-point value is also negated. In this case we can use the 1944 // negation to set CC, so avoiding separate LOAD AND TEST and 1945 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1946 static void adjustForFNeg(Comparison &C) { 1947 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1948 if (C1 && C1->isZero()) { 1949 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1950 SDNode *N = *I; 1951 if (N->getOpcode() == ISD::FNEG) { 1952 C.Op0 = SDValue(N, 0); 1953 C.CCMask = reverseCCMask(C.CCMask); 1954 return; 1955 } 1956 } 1957 } 1958 } 1959 1960 // Check whether C compares (shl X, 32) with 0 and whether X is 1961 // also sign-extended. In that case it is better to test the result 1962 // of the sign extension using LTGFR. 1963 // 1964 // This case is important because InstCombine transforms a comparison 1965 // with (sext (trunc X)) into a comparison with (shl X, 32). 1966 static void adjustForLTGFR(Comparison &C) { 1967 // Check for a comparison between (shl X, 32) and 0. 1968 if (C.Op0.getOpcode() == ISD::SHL && 1969 C.Op0.getValueType() == MVT::i64 && 1970 C.Op1.getOpcode() == ISD::Constant && 1971 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1972 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1973 if (C1 && C1->getZExtValue() == 32) { 1974 SDValue ShlOp0 = C.Op0.getOperand(0); 1975 // See whether X has any SIGN_EXTEND_INREG uses. 1976 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1977 SDNode *N = *I; 1978 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1979 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1980 C.Op0 = SDValue(N, 0); 1981 return; 1982 } 1983 } 1984 } 1985 } 1986 } 1987 1988 // If C compares the truncation of an extending load, try to compare 1989 // the untruncated value instead. This exposes more opportunities to 1990 // reuse CC. 1991 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 1992 Comparison &C) { 1993 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1994 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1995 C.Op1.getOpcode() == ISD::Constant && 1996 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1997 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1998 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 1999 unsigned Type = L->getExtensionType(); 2000 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2001 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2002 C.Op0 = C.Op0.getOperand(0); 2003 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2004 } 2005 } 2006 } 2007 } 2008 2009 // Return true if shift operation N has an in-range constant shift value. 2010 // Store it in ShiftVal if so. 2011 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2012 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2013 if (!Shift) 2014 return false; 2015 2016 uint64_t Amount = Shift->getZExtValue(); 2017 if (Amount >= N.getValueSizeInBits()) 2018 return false; 2019 2020 ShiftVal = Amount; 2021 return true; 2022 } 2023 2024 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2025 // instruction and whether the CC value is descriptive enough to handle 2026 // a comparison of type Opcode between the AND result and CmpVal. 2027 // CCMask says which comparison result is being tested and BitSize is 2028 // the number of bits in the operands. If TEST UNDER MASK can be used, 2029 // return the corresponding CC mask, otherwise return 0. 2030 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2031 uint64_t Mask, uint64_t CmpVal, 2032 unsigned ICmpType) { 2033 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2034 2035 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2036 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2037 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2038 return 0; 2039 2040 // Work out the masks for the lowest and highest bits. 2041 unsigned HighShift = 63 - countLeadingZeros(Mask); 2042 uint64_t High = uint64_t(1) << HighShift; 2043 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2044 2045 // Signed ordered comparisons are effectively unsigned if the sign 2046 // bit is dropped. 2047 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2048 2049 // Check for equality comparisons with 0, or the equivalent. 2050 if (CmpVal == 0) { 2051 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2052 return SystemZ::CCMASK_TM_ALL_0; 2053 if (CCMask == SystemZ::CCMASK_CMP_NE) 2054 return SystemZ::CCMASK_TM_SOME_1; 2055 } 2056 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2057 if (CCMask == SystemZ::CCMASK_CMP_LT) 2058 return SystemZ::CCMASK_TM_ALL_0; 2059 if (CCMask == SystemZ::CCMASK_CMP_GE) 2060 return SystemZ::CCMASK_TM_SOME_1; 2061 } 2062 if (EffectivelyUnsigned && CmpVal < Low) { 2063 if (CCMask == SystemZ::CCMASK_CMP_LE) 2064 return SystemZ::CCMASK_TM_ALL_0; 2065 if (CCMask == SystemZ::CCMASK_CMP_GT) 2066 return SystemZ::CCMASK_TM_SOME_1; 2067 } 2068 2069 // Check for equality comparisons with the mask, or the equivalent. 2070 if (CmpVal == Mask) { 2071 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2072 return SystemZ::CCMASK_TM_ALL_1; 2073 if (CCMask == SystemZ::CCMASK_CMP_NE) 2074 return SystemZ::CCMASK_TM_SOME_0; 2075 } 2076 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2077 if (CCMask == SystemZ::CCMASK_CMP_GT) 2078 return SystemZ::CCMASK_TM_ALL_1; 2079 if (CCMask == SystemZ::CCMASK_CMP_LE) 2080 return SystemZ::CCMASK_TM_SOME_0; 2081 } 2082 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2083 if (CCMask == SystemZ::CCMASK_CMP_GE) 2084 return SystemZ::CCMASK_TM_ALL_1; 2085 if (CCMask == SystemZ::CCMASK_CMP_LT) 2086 return SystemZ::CCMASK_TM_SOME_0; 2087 } 2088 2089 // Check for ordered comparisons with the top bit. 2090 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2091 if (CCMask == SystemZ::CCMASK_CMP_LE) 2092 return SystemZ::CCMASK_TM_MSB_0; 2093 if (CCMask == SystemZ::CCMASK_CMP_GT) 2094 return SystemZ::CCMASK_TM_MSB_1; 2095 } 2096 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2097 if (CCMask == SystemZ::CCMASK_CMP_LT) 2098 return SystemZ::CCMASK_TM_MSB_0; 2099 if (CCMask == SystemZ::CCMASK_CMP_GE) 2100 return SystemZ::CCMASK_TM_MSB_1; 2101 } 2102 2103 // If there are just two bits, we can do equality checks for Low and High 2104 // as well. 2105 if (Mask == Low + High) { 2106 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2107 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2108 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2109 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2110 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2111 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2112 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2113 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2114 } 2115 2116 // Looks like we've exhausted our options. 2117 return 0; 2118 } 2119 2120 // See whether C can be implemented as a TEST UNDER MASK instruction. 2121 // Update the arguments with the TM version if so. 2122 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2123 Comparison &C) { 2124 // Check that we have a comparison with a constant. 2125 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2126 if (!ConstOp1) 2127 return; 2128 uint64_t CmpVal = ConstOp1->getZExtValue(); 2129 2130 // Check whether the nonconstant input is an AND with a constant mask. 2131 Comparison NewC(C); 2132 uint64_t MaskVal; 2133 ConstantSDNode *Mask = nullptr; 2134 if (C.Op0.getOpcode() == ISD::AND) { 2135 NewC.Op0 = C.Op0.getOperand(0); 2136 NewC.Op1 = C.Op0.getOperand(1); 2137 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2138 if (!Mask) 2139 return; 2140 MaskVal = Mask->getZExtValue(); 2141 } else { 2142 // There is no instruction to compare with a 64-bit immediate 2143 // so use TMHH instead if possible. We need an unsigned ordered 2144 // comparison with an i64 immediate. 2145 if (NewC.Op0.getValueType() != MVT::i64 || 2146 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2147 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2148 NewC.ICmpType == SystemZICMP::SignedOnly) 2149 return; 2150 // Convert LE and GT comparisons into LT and GE. 2151 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2152 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2153 if (CmpVal == uint64_t(-1)) 2154 return; 2155 CmpVal += 1; 2156 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2157 } 2158 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2159 // be masked off without changing the result. 2160 MaskVal = -(CmpVal & -CmpVal); 2161 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2162 } 2163 if (!MaskVal) 2164 return; 2165 2166 // Check whether the combination of mask, comparison value and comparison 2167 // type are suitable. 2168 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2169 unsigned NewCCMask, ShiftVal; 2170 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2171 NewC.Op0.getOpcode() == ISD::SHL && 2172 isSimpleShift(NewC.Op0, ShiftVal) && 2173 (MaskVal >> ShiftVal != 0) && 2174 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2175 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2176 MaskVal >> ShiftVal, 2177 CmpVal >> ShiftVal, 2178 SystemZICMP::Any))) { 2179 NewC.Op0 = NewC.Op0.getOperand(0); 2180 MaskVal >>= ShiftVal; 2181 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2182 NewC.Op0.getOpcode() == ISD::SRL && 2183 isSimpleShift(NewC.Op0, ShiftVal) && 2184 (MaskVal << ShiftVal != 0) && 2185 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2186 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2187 MaskVal << ShiftVal, 2188 CmpVal << ShiftVal, 2189 SystemZICMP::UnsignedOnly))) { 2190 NewC.Op0 = NewC.Op0.getOperand(0); 2191 MaskVal <<= ShiftVal; 2192 } else { 2193 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2194 NewC.ICmpType); 2195 if (!NewCCMask) 2196 return; 2197 } 2198 2199 // Go ahead and make the change. 2200 C.Opcode = SystemZISD::TM; 2201 C.Op0 = NewC.Op0; 2202 if (Mask && Mask->getZExtValue() == MaskVal) 2203 C.Op1 = SDValue(Mask, 0); 2204 else 2205 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2206 C.CCValid = SystemZ::CCMASK_TM; 2207 C.CCMask = NewCCMask; 2208 } 2209 2210 // See whether the comparison argument contains a redundant AND 2211 // and remove it if so. This sometimes happens due to the generic 2212 // BRCOND expansion. 2213 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2214 Comparison &C) { 2215 if (C.Op0.getOpcode() != ISD::AND) 2216 return; 2217 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2218 if (!Mask) 2219 return; 2220 KnownBits Known; 2221 DAG.computeKnownBits(C.Op0.getOperand(0), Known); 2222 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2223 return; 2224 2225 C.Op0 = C.Op0.getOperand(0); 2226 } 2227 2228 // Return a Comparison that tests the condition-code result of intrinsic 2229 // node Call against constant integer CC using comparison code Cond. 2230 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2231 // and CCValid is the set of possible condition-code results. 2232 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2233 SDValue Call, unsigned CCValid, uint64_t CC, 2234 ISD::CondCode Cond) { 2235 Comparison C(Call, SDValue()); 2236 C.Opcode = Opcode; 2237 C.CCValid = CCValid; 2238 if (Cond == ISD::SETEQ) 2239 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2240 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2241 else if (Cond == ISD::SETNE) 2242 // ...and the inverse of that. 2243 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2244 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2245 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2246 // always true for CC>3. 2247 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2248 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2249 // ...and the inverse of that. 2250 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2251 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2252 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2253 // always true for CC>3. 2254 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2255 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2256 // ...and the inverse of that. 2257 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2258 else 2259 llvm_unreachable("Unexpected integer comparison type"); 2260 C.CCMask &= CCValid; 2261 return C; 2262 } 2263 2264 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2265 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2266 ISD::CondCode Cond, const SDLoc &DL) { 2267 if (CmpOp1.getOpcode() == ISD::Constant) { 2268 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2269 unsigned Opcode, CCValid; 2270 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2271 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2272 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2273 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2274 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2275 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2276 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2277 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2278 } 2279 Comparison C(CmpOp0, CmpOp1); 2280 C.CCMask = CCMaskForCondCode(Cond); 2281 if (C.Op0.getValueType().isFloatingPoint()) { 2282 C.CCValid = SystemZ::CCMASK_FCMP; 2283 C.Opcode = SystemZISD::FCMP; 2284 adjustForFNeg(C); 2285 } else { 2286 C.CCValid = SystemZ::CCMASK_ICMP; 2287 C.Opcode = SystemZISD::ICMP; 2288 // Choose the type of comparison. Equality and inequality tests can 2289 // use either signed or unsigned comparisons. The choice also doesn't 2290 // matter if both sign bits are known to be clear. In those cases we 2291 // want to give the main isel code the freedom to choose whichever 2292 // form fits best. 2293 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2294 C.CCMask == SystemZ::CCMASK_CMP_NE || 2295 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2296 C.ICmpType = SystemZICMP::Any; 2297 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2298 C.ICmpType = SystemZICMP::UnsignedOnly; 2299 else 2300 C.ICmpType = SystemZICMP::SignedOnly; 2301 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2302 adjustForRedundantAnd(DAG, DL, C); 2303 adjustZeroCmp(DAG, DL, C); 2304 adjustSubwordCmp(DAG, DL, C); 2305 adjustForSubtraction(DAG, DL, C); 2306 adjustForLTGFR(C); 2307 adjustICmpTruncate(DAG, DL, C); 2308 } 2309 2310 if (shouldSwapCmpOperands(C)) { 2311 std::swap(C.Op0, C.Op1); 2312 C.CCMask = reverseCCMask(C.CCMask); 2313 } 2314 2315 adjustForTestUnderMask(DAG, DL, C); 2316 return C; 2317 } 2318 2319 // Emit the comparison instruction described by C. 2320 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2321 if (!C.Op1.getNode()) { 2322 SDNode *Node; 2323 switch (C.Op0.getOpcode()) { 2324 case ISD::INTRINSIC_W_CHAIN: 2325 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2326 return SDValue(Node, 0); 2327 case ISD::INTRINSIC_WO_CHAIN: 2328 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2329 return SDValue(Node, Node->getNumValues() - 1); 2330 default: 2331 llvm_unreachable("Invalid comparison operands"); 2332 } 2333 } 2334 if (C.Opcode == SystemZISD::ICMP) 2335 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2336 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2337 if (C.Opcode == SystemZISD::TM) { 2338 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2339 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2340 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2341 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2342 } 2343 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2344 } 2345 2346 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2347 // 64 bits. Extend is the extension type to use. Store the high part 2348 // in Hi and the low part in Lo. 2349 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2350 SDValue Op0, SDValue Op1, SDValue &Hi, 2351 SDValue &Lo) { 2352 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2353 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2354 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2355 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2356 DAG.getConstant(32, DL, MVT::i64)); 2357 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2358 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2359 } 2360 2361 // Lower a binary operation that produces two VT results, one in each 2362 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2363 // and Opcode performs the GR128 operation. Store the even register result 2364 // in Even and the odd register result in Odd. 2365 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2366 unsigned Opcode, SDValue Op0, SDValue Op1, 2367 SDValue &Even, SDValue &Odd) { 2368 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2369 bool Is32Bit = is32Bit(VT); 2370 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2371 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2372 } 2373 2374 // Return an i32 value that is 1 if the CC value produced by CCReg is 2375 // in the mask CCMask and 0 otherwise. CC is known to have a value 2376 // in CCValid, so other values can be ignored. 2377 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2378 unsigned CCValid, unsigned CCMask) { 2379 SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32), 2380 DAG.getConstant(0, DL, MVT::i32), 2381 DAG.getConstant(CCValid, DL, MVT::i32), 2382 DAG.getConstant(CCMask, DL, MVT::i32), CCReg }; 2383 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2384 } 2385 2386 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2387 // be done directly. IsFP is true if CC is for a floating-point rather than 2388 // integer comparison. 2389 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2390 switch (CC) { 2391 case ISD::SETOEQ: 2392 case ISD::SETEQ: 2393 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2394 2395 case ISD::SETOGE: 2396 case ISD::SETGE: 2397 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2398 2399 case ISD::SETOGT: 2400 case ISD::SETGT: 2401 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2402 2403 case ISD::SETUGT: 2404 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2405 2406 default: 2407 return 0; 2408 } 2409 } 2410 2411 // Return the SystemZISD vector comparison operation for CC or its inverse, 2412 // or 0 if neither can be done directly. Indicate in Invert whether the 2413 // result is for the inverse of CC. IsFP is true if CC is for a 2414 // floating-point rather than integer comparison. 2415 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2416 bool &Invert) { 2417 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2418 Invert = false; 2419 return Opcode; 2420 } 2421 2422 CC = ISD::getSetCCInverse(CC, !IsFP); 2423 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2424 Invert = true; 2425 return Opcode; 2426 } 2427 2428 return 0; 2429 } 2430 2431 // Return a v2f64 that contains the extended form of elements Start and Start+1 2432 // of v4f32 value Op. 2433 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2434 SDValue Op) { 2435 int Mask[] = { Start, -1, Start + 1, -1 }; 2436 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2437 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2438 } 2439 2440 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2441 // producing a result of type VT. 2442 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2443 const SDLoc &DL, EVT VT, 2444 SDValue CmpOp0, 2445 SDValue CmpOp1) const { 2446 // There is no hardware support for v4f32 (unless we have the vector 2447 // enhancements facility 1), so extend the vector into two v2f64s 2448 // and compare those. 2449 if (CmpOp0.getValueType() == MVT::v4f32 && 2450 !Subtarget.hasVectorEnhancements1()) { 2451 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2452 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2453 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2454 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2455 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2456 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2457 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2458 } 2459 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2460 } 2461 2462 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2463 // an integer mask of type VT. 2464 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2465 const SDLoc &DL, EVT VT, 2466 ISD::CondCode CC, 2467 SDValue CmpOp0, 2468 SDValue CmpOp1) const { 2469 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2470 bool Invert = false; 2471 SDValue Cmp; 2472 switch (CC) { 2473 // Handle tests for order using (or (ogt y x) (oge x y)). 2474 case ISD::SETUO: 2475 Invert = true; 2476 LLVM_FALLTHROUGH; 2477 case ISD::SETO: { 2478 assert(IsFP && "Unexpected integer comparison"); 2479 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2480 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2481 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2482 break; 2483 } 2484 2485 // Handle <> tests using (or (ogt y x) (ogt x y)). 2486 case ISD::SETUEQ: 2487 Invert = true; 2488 LLVM_FALLTHROUGH; 2489 case ISD::SETONE: { 2490 assert(IsFP && "Unexpected integer comparison"); 2491 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2492 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2493 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2494 break; 2495 } 2496 2497 // Otherwise a single comparison is enough. It doesn't really 2498 // matter whether we try the inversion or the swap first, since 2499 // there are no cases where both work. 2500 default: 2501 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2502 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2503 else { 2504 CC = ISD::getSetCCSwappedOperands(CC); 2505 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2506 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2507 else 2508 llvm_unreachable("Unhandled comparison"); 2509 } 2510 break; 2511 } 2512 if (Invert) { 2513 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2514 DAG.getConstant(65535, DL, MVT::i32)); 2515 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2516 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2517 } 2518 return Cmp; 2519 } 2520 2521 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2522 SelectionDAG &DAG) const { 2523 SDValue CmpOp0 = Op.getOperand(0); 2524 SDValue CmpOp1 = Op.getOperand(1); 2525 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2526 SDLoc DL(Op); 2527 EVT VT = Op.getValueType(); 2528 if (VT.isVector()) 2529 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2530 2531 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2532 SDValue CCReg = emitCmp(DAG, DL, C); 2533 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2534 } 2535 2536 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2537 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2538 SDValue CmpOp0 = Op.getOperand(2); 2539 SDValue CmpOp1 = Op.getOperand(3); 2540 SDValue Dest = Op.getOperand(4); 2541 SDLoc DL(Op); 2542 2543 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2544 SDValue CCReg = emitCmp(DAG, DL, C); 2545 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2546 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2547 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2548 } 2549 2550 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2551 // allowing Pos and Neg to be wider than CmpOp. 2552 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2553 return (Neg.getOpcode() == ISD::SUB && 2554 Neg.getOperand(0).getOpcode() == ISD::Constant && 2555 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2556 Neg.getOperand(1) == Pos && 2557 (Pos == CmpOp || 2558 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2559 Pos.getOperand(0) == CmpOp))); 2560 } 2561 2562 // Return the absolute or negative absolute of Op; IsNegative decides which. 2563 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2564 bool IsNegative) { 2565 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2566 if (IsNegative) 2567 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2568 DAG.getConstant(0, DL, Op.getValueType()), Op); 2569 return Op; 2570 } 2571 2572 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2573 SelectionDAG &DAG) const { 2574 SDValue CmpOp0 = Op.getOperand(0); 2575 SDValue CmpOp1 = Op.getOperand(1); 2576 SDValue TrueOp = Op.getOperand(2); 2577 SDValue FalseOp = Op.getOperand(3); 2578 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2579 SDLoc DL(Op); 2580 2581 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2582 2583 // Check for absolute and negative-absolute selections, including those 2584 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2585 // This check supplements the one in DAGCombiner. 2586 if (C.Opcode == SystemZISD::ICMP && 2587 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2588 C.CCMask != SystemZ::CCMASK_CMP_NE && 2589 C.Op1.getOpcode() == ISD::Constant && 2590 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2591 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2592 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2593 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2594 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2595 } 2596 2597 SDValue CCReg = emitCmp(DAG, DL, C); 2598 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2599 DAG.getConstant(C.CCMask, DL, MVT::i32), CCReg}; 2600 2601 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2602 } 2603 2604 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2605 SelectionDAG &DAG) const { 2606 SDLoc DL(Node); 2607 const GlobalValue *GV = Node->getGlobal(); 2608 int64_t Offset = Node->getOffset(); 2609 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2610 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2611 2612 SDValue Result; 2613 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2614 // Assign anchors at 1<<12 byte boundaries. 2615 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2616 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2617 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2618 2619 // The offset can be folded into the address if it is aligned to a halfword. 2620 Offset -= Anchor; 2621 if (Offset != 0 && (Offset & 1) == 0) { 2622 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2623 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2624 Offset = 0; 2625 } 2626 } else { 2627 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2628 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2629 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2630 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2631 } 2632 2633 // If there was a non-zero offset that we didn't fold, create an explicit 2634 // addition for it. 2635 if (Offset != 0) 2636 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2637 DAG.getConstant(Offset, DL, PtrVT)); 2638 2639 return Result; 2640 } 2641 2642 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2643 SelectionDAG &DAG, 2644 unsigned Opcode, 2645 SDValue GOTOffset) const { 2646 SDLoc DL(Node); 2647 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2648 SDValue Chain = DAG.getEntryNode(); 2649 SDValue Glue; 2650 2651 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2652 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2653 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2654 Glue = Chain.getValue(1); 2655 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2656 Glue = Chain.getValue(1); 2657 2658 // The first call operand is the chain and the second is the TLS symbol. 2659 SmallVector<SDValue, 8> Ops; 2660 Ops.push_back(Chain); 2661 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2662 Node->getValueType(0), 2663 0, 0)); 2664 2665 // Add argument registers to the end of the list so that they are 2666 // known live into the call. 2667 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2668 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2669 2670 // Add a register mask operand representing the call-preserved registers. 2671 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2672 const uint32_t *Mask = 2673 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2674 assert(Mask && "Missing call preserved mask for calling convention"); 2675 Ops.push_back(DAG.getRegisterMask(Mask)); 2676 2677 // Glue the call to the argument copies. 2678 Ops.push_back(Glue); 2679 2680 // Emit the call. 2681 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2682 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2683 Glue = Chain.getValue(1); 2684 2685 // Copy the return value from %r2. 2686 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2687 } 2688 2689 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2690 SelectionDAG &DAG) const { 2691 SDValue Chain = DAG.getEntryNode(); 2692 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2693 2694 // The high part of the thread pointer is in access register 0. 2695 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 2696 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2697 2698 // The low part of the thread pointer is in access register 1. 2699 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 2700 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2701 2702 // Merge them into a single 64-bit address. 2703 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2704 DAG.getConstant(32, DL, PtrVT)); 2705 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2706 } 2707 2708 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2709 SelectionDAG &DAG) const { 2710 if (DAG.getTarget().useEmulatedTLS()) 2711 return LowerToTLSEmulatedModel(Node, DAG); 2712 SDLoc DL(Node); 2713 const GlobalValue *GV = Node->getGlobal(); 2714 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2715 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2716 2717 SDValue TP = lowerThreadPointer(DL, DAG); 2718 2719 // Get the offset of GA from the thread pointer, based on the TLS model. 2720 SDValue Offset; 2721 switch (model) { 2722 case TLSModel::GeneralDynamic: { 2723 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2724 SystemZConstantPoolValue *CPV = 2725 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2726 2727 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2728 Offset = DAG.getLoad( 2729 PtrVT, DL, DAG.getEntryNode(), Offset, 2730 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2731 2732 // Call __tls_get_offset to retrieve the offset. 2733 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2734 break; 2735 } 2736 2737 case TLSModel::LocalDynamic: { 2738 // Load the GOT offset of the module ID. 2739 SystemZConstantPoolValue *CPV = 2740 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2741 2742 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2743 Offset = DAG.getLoad( 2744 PtrVT, DL, DAG.getEntryNode(), Offset, 2745 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2746 2747 // Call __tls_get_offset to retrieve the module base offset. 2748 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2749 2750 // Note: The SystemZLDCleanupPass will remove redundant computations 2751 // of the module base offset. Count total number of local-dynamic 2752 // accesses to trigger execution of that pass. 2753 SystemZMachineFunctionInfo* MFI = 2754 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2755 MFI->incNumLocalDynamicTLSAccesses(); 2756 2757 // Add the per-symbol offset. 2758 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2759 2760 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2761 DTPOffset = DAG.getLoad( 2762 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2763 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2764 2765 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2766 break; 2767 } 2768 2769 case TLSModel::InitialExec: { 2770 // Load the offset from the GOT. 2771 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2772 SystemZII::MO_INDNTPOFF); 2773 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2774 Offset = 2775 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2776 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2777 break; 2778 } 2779 2780 case TLSModel::LocalExec: { 2781 // Force the offset into the constant pool and load it from there. 2782 SystemZConstantPoolValue *CPV = 2783 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2784 2785 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2786 Offset = DAG.getLoad( 2787 PtrVT, DL, DAG.getEntryNode(), Offset, 2788 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2789 break; 2790 } 2791 } 2792 2793 // Add the base and offset together. 2794 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2795 } 2796 2797 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2798 SelectionDAG &DAG) const { 2799 SDLoc DL(Node); 2800 const BlockAddress *BA = Node->getBlockAddress(); 2801 int64_t Offset = Node->getOffset(); 2802 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2803 2804 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2805 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2806 return Result; 2807 } 2808 2809 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2810 SelectionDAG &DAG) const { 2811 SDLoc DL(JT); 2812 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2813 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2814 2815 // Use LARL to load the address of the table. 2816 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2817 } 2818 2819 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2820 SelectionDAG &DAG) const { 2821 SDLoc DL(CP); 2822 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2823 2824 SDValue Result; 2825 if (CP->isMachineConstantPoolEntry()) 2826 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2827 CP->getAlignment()); 2828 else 2829 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2830 CP->getAlignment(), CP->getOffset()); 2831 2832 // Use LARL to load the address of the constant pool entry. 2833 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2834 } 2835 2836 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 2837 SelectionDAG &DAG) const { 2838 MachineFunction &MF = DAG.getMachineFunction(); 2839 MachineFrameInfo &MFI = MF.getFrameInfo(); 2840 MFI.setFrameAddressIsTaken(true); 2841 2842 SDLoc DL(Op); 2843 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2844 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2845 2846 // If the back chain frame index has not been allocated yet, do so. 2847 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 2848 int BackChainIdx = FI->getFramePointerSaveIndex(); 2849 if (!BackChainIdx) { 2850 // By definition, the frame address is the address of the back chain. 2851 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 2852 FI->setFramePointerSaveIndex(BackChainIdx); 2853 } 2854 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 2855 2856 // FIXME The frontend should detect this case. 2857 if (Depth > 0) { 2858 report_fatal_error("Unsupported stack frame traversal count"); 2859 } 2860 2861 return BackChain; 2862 } 2863 2864 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 2865 SelectionDAG &DAG) const { 2866 MachineFunction &MF = DAG.getMachineFunction(); 2867 MachineFrameInfo &MFI = MF.getFrameInfo(); 2868 MFI.setReturnAddressIsTaken(true); 2869 2870 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2871 return SDValue(); 2872 2873 SDLoc DL(Op); 2874 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2875 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2876 2877 // FIXME The frontend should detect this case. 2878 if (Depth > 0) { 2879 report_fatal_error("Unsupported stack frame traversal count"); 2880 } 2881 2882 // Return R14D, which has the return address. Mark it an implicit live-in. 2883 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 2884 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 2885 } 2886 2887 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2888 SelectionDAG &DAG) const { 2889 SDLoc DL(Op); 2890 SDValue In = Op.getOperand(0); 2891 EVT InVT = In.getValueType(); 2892 EVT ResVT = Op.getValueType(); 2893 2894 // Convert loads directly. This is normally done by DAGCombiner, 2895 // but we need this case for bitcasts that are created during lowering 2896 // and which are then lowered themselves. 2897 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2898 if (ISD::isNormalLoad(LoadN)) { 2899 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 2900 LoadN->getBasePtr(), LoadN->getMemOperand()); 2901 // Update the chain uses. 2902 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 2903 return NewLoad; 2904 } 2905 2906 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2907 SDValue In64; 2908 if (Subtarget.hasHighWord()) { 2909 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2910 MVT::i64); 2911 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2912 MVT::i64, SDValue(U64, 0), In); 2913 } else { 2914 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2915 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2916 DAG.getConstant(32, DL, MVT::i64)); 2917 } 2918 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2919 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2920 DL, MVT::f32, Out64); 2921 } 2922 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2923 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2924 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2925 MVT::f64, SDValue(U64, 0), In); 2926 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2927 if (Subtarget.hasHighWord()) 2928 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2929 MVT::i32, Out64); 2930 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2931 DAG.getConstant(32, DL, MVT::i64)); 2932 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2933 } 2934 llvm_unreachable("Unexpected bitcast combination"); 2935 } 2936 2937 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2938 SelectionDAG &DAG) const { 2939 MachineFunction &MF = DAG.getMachineFunction(); 2940 SystemZMachineFunctionInfo *FuncInfo = 2941 MF.getInfo<SystemZMachineFunctionInfo>(); 2942 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2943 2944 SDValue Chain = Op.getOperand(0); 2945 SDValue Addr = Op.getOperand(1); 2946 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2947 SDLoc DL(Op); 2948 2949 // The initial values of each field. 2950 const unsigned NumFields = 4; 2951 SDValue Fields[NumFields] = { 2952 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2953 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2954 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2955 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2956 }; 2957 2958 // Store each field into its respective slot. 2959 SDValue MemOps[NumFields]; 2960 unsigned Offset = 0; 2961 for (unsigned I = 0; I < NumFields; ++I) { 2962 SDValue FieldAddr = Addr; 2963 if (Offset != 0) 2964 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2965 DAG.getIntPtrConstant(Offset, DL)); 2966 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2967 MachinePointerInfo(SV, Offset)); 2968 Offset += 8; 2969 } 2970 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2971 } 2972 2973 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2974 SelectionDAG &DAG) const { 2975 SDValue Chain = Op.getOperand(0); 2976 SDValue DstPtr = Op.getOperand(1); 2977 SDValue SrcPtr = Op.getOperand(2); 2978 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2979 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2980 SDLoc DL(Op); 2981 2982 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2983 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2984 /*isTailCall*/false, 2985 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2986 } 2987 2988 SDValue SystemZTargetLowering:: 2989 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2990 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 2991 MachineFunction &MF = DAG.getMachineFunction(); 2992 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 2993 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 2994 2995 SDValue Chain = Op.getOperand(0); 2996 SDValue Size = Op.getOperand(1); 2997 SDValue Align = Op.getOperand(2); 2998 SDLoc DL(Op); 2999 3000 // If user has set the no alignment function attribute, ignore 3001 // alloca alignments. 3002 uint64_t AlignVal = (RealignOpt ? 3003 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3004 3005 uint64_t StackAlign = TFI->getStackAlignment(); 3006 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3007 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3008 3009 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3010 SDValue NeededSpace = Size; 3011 3012 // Get a reference to the stack pointer. 3013 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3014 3015 // If we need a backchain, save it now. 3016 SDValue Backchain; 3017 if (StoreBackchain) 3018 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3019 3020 // Add extra space for alignment if needed. 3021 if (ExtraAlignSpace) 3022 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3023 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3024 3025 // Get the new stack pointer value. 3026 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3027 3028 // Copy the new stack pointer back. 3029 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3030 3031 // The allocated data lives above the 160 bytes allocated for the standard 3032 // frame, plus any outgoing stack arguments. We don't know how much that 3033 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3034 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3035 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3036 3037 // Dynamically realign if needed. 3038 if (RequiredAlign > StackAlign) { 3039 Result = 3040 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3041 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3042 Result = 3043 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3044 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3045 } 3046 3047 if (StoreBackchain) 3048 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3049 3050 SDValue Ops[2] = { Result, Chain }; 3051 return DAG.getMergeValues(Ops, DL); 3052 } 3053 3054 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3055 SDValue Op, SelectionDAG &DAG) const { 3056 SDLoc DL(Op); 3057 3058 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3059 } 3060 3061 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3062 SelectionDAG &DAG) const { 3063 EVT VT = Op.getValueType(); 3064 SDLoc DL(Op); 3065 SDValue Ops[2]; 3066 if (is32Bit(VT)) 3067 // Just do a normal 64-bit multiplication and extract the results. 3068 // We define this so that it can be used for constant division. 3069 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3070 Op.getOperand(1), Ops[1], Ops[0]); 3071 else if (Subtarget.hasMiscellaneousExtensions2()) 3072 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3073 // the high result in the even register. ISD::SMUL_LOHI is defined to 3074 // return the low half first, so the results are in reverse order. 3075 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3076 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3077 else { 3078 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3079 // 3080 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3081 // 3082 // but using the fact that the upper halves are either all zeros 3083 // or all ones: 3084 // 3085 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3086 // 3087 // and grouping the right terms together since they are quicker than the 3088 // multiplication: 3089 // 3090 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3091 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3092 SDValue LL = Op.getOperand(0); 3093 SDValue RL = Op.getOperand(1); 3094 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3095 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3096 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3097 // the high result in the even register. ISD::SMUL_LOHI is defined to 3098 // return the low half first, so the results are in reverse order. 3099 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3100 LL, RL, Ops[1], Ops[0]); 3101 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3102 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3103 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3104 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3105 } 3106 return DAG.getMergeValues(Ops, DL); 3107 } 3108 3109 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3110 SelectionDAG &DAG) const { 3111 EVT VT = Op.getValueType(); 3112 SDLoc DL(Op); 3113 SDValue Ops[2]; 3114 if (is32Bit(VT)) 3115 // Just do a normal 64-bit multiplication and extract the results. 3116 // We define this so that it can be used for constant division. 3117 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3118 Op.getOperand(1), Ops[1], Ops[0]); 3119 else 3120 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3121 // the high result in the even register. ISD::UMUL_LOHI is defined to 3122 // return the low half first, so the results are in reverse order. 3123 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3124 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3125 return DAG.getMergeValues(Ops, DL); 3126 } 3127 3128 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3129 SelectionDAG &DAG) const { 3130 SDValue Op0 = Op.getOperand(0); 3131 SDValue Op1 = Op.getOperand(1); 3132 EVT VT = Op.getValueType(); 3133 SDLoc DL(Op); 3134 3135 // We use DSGF for 32-bit division. This means the first operand must 3136 // always be 64-bit, and the second operand should be 32-bit whenever 3137 // that is possible, to improve performance. 3138 if (is32Bit(VT)) 3139 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3140 else if (DAG.ComputeNumSignBits(Op1) > 32) 3141 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3142 3143 // DSG(F) returns the remainder in the even register and the 3144 // quotient in the odd register. 3145 SDValue Ops[2]; 3146 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3147 return DAG.getMergeValues(Ops, DL); 3148 } 3149 3150 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3151 SelectionDAG &DAG) const { 3152 EVT VT = Op.getValueType(); 3153 SDLoc DL(Op); 3154 3155 // DL(G) returns the remainder in the even register and the 3156 // quotient in the odd register. 3157 SDValue Ops[2]; 3158 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3159 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3160 return DAG.getMergeValues(Ops, DL); 3161 } 3162 3163 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3164 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3165 3166 // Get the known-zero masks for each operand. 3167 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 3168 KnownBits Known[2]; 3169 DAG.computeKnownBits(Ops[0], Known[0]); 3170 DAG.computeKnownBits(Ops[1], Known[1]); 3171 3172 // See if the upper 32 bits of one operand and the lower 32 bits of the 3173 // other are known zero. They are the low and high operands respectively. 3174 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3175 Known[1].Zero.getZExtValue() }; 3176 unsigned High, Low; 3177 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3178 High = 1, Low = 0; 3179 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3180 High = 0, Low = 1; 3181 else 3182 return Op; 3183 3184 SDValue LowOp = Ops[Low]; 3185 SDValue HighOp = Ops[High]; 3186 3187 // If the high part is a constant, we're better off using IILH. 3188 if (HighOp.getOpcode() == ISD::Constant) 3189 return Op; 3190 3191 // If the low part is a constant that is outside the range of LHI, 3192 // then we're better off using IILF. 3193 if (LowOp.getOpcode() == ISD::Constant) { 3194 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3195 if (!isInt<16>(Value)) 3196 return Op; 3197 } 3198 3199 // Check whether the high part is an AND that doesn't change the 3200 // high 32 bits and just masks out low bits. We can skip it if so. 3201 if (HighOp.getOpcode() == ISD::AND && 3202 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3203 SDValue HighOp0 = HighOp.getOperand(0); 3204 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3205 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3206 HighOp = HighOp0; 3207 } 3208 3209 // Take advantage of the fact that all GR32 operations only change the 3210 // low 32 bits by truncating Low to an i32 and inserting it directly 3211 // using a subreg. The interesting cases are those where the truncation 3212 // can be folded. 3213 SDLoc DL(Op); 3214 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3215 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3216 MVT::i64, HighOp, Low32); 3217 } 3218 3219 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3220 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3221 SelectionDAG &DAG) const { 3222 SDNode *N = Op.getNode(); 3223 SDValue LHS = N->getOperand(0); 3224 SDValue RHS = N->getOperand(1); 3225 SDLoc DL(N); 3226 unsigned BaseOp = 0; 3227 unsigned CCValid = 0; 3228 unsigned CCMask = 0; 3229 3230 switch (Op.getOpcode()) { 3231 default: llvm_unreachable("Unknown instruction!"); 3232 case ISD::SADDO: 3233 BaseOp = SystemZISD::SADDO; 3234 CCValid = SystemZ::CCMASK_ARITH; 3235 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3236 break; 3237 case ISD::SSUBO: 3238 BaseOp = SystemZISD::SSUBO; 3239 CCValid = SystemZ::CCMASK_ARITH; 3240 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3241 break; 3242 case ISD::UADDO: 3243 BaseOp = SystemZISD::UADDO; 3244 CCValid = SystemZ::CCMASK_LOGICAL; 3245 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3246 break; 3247 case ISD::USUBO: 3248 BaseOp = SystemZISD::USUBO; 3249 CCValid = SystemZ::CCMASK_LOGICAL; 3250 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3251 break; 3252 } 3253 3254 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3255 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3256 3257 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3258 if (N->getValueType(1) == MVT::i1) 3259 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3260 3261 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3262 } 3263 3264 // Lower ADDCARRY/SUBCARRY nodes. 3265 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3266 SelectionDAG &DAG) const { 3267 3268 SDNode *N = Op.getNode(); 3269 MVT VT = N->getSimpleValueType(0); 3270 3271 // Let legalize expand this if it isn't a legal type yet. 3272 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3273 return SDValue(); 3274 3275 SDValue LHS = N->getOperand(0); 3276 SDValue RHS = N->getOperand(1); 3277 SDValue Carry = Op.getOperand(2); 3278 SDLoc DL(N); 3279 unsigned BaseOp = 0; 3280 unsigned CCValid = 0; 3281 unsigned CCMask = 0; 3282 3283 switch (Op.getOpcode()) { 3284 default: llvm_unreachable("Unknown instruction!"); 3285 case ISD::ADDCARRY: 3286 BaseOp = SystemZISD::ADDCARRY; 3287 CCValid = SystemZ::CCMASK_LOGICAL; 3288 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3289 break; 3290 case ISD::SUBCARRY: 3291 BaseOp = SystemZISD::SUBCARRY; 3292 CCValid = SystemZ::CCMASK_LOGICAL; 3293 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3294 break; 3295 } 3296 3297 // Set the condition code from the carry flag. 3298 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3299 DAG.getConstant(CCValid, DL, MVT::i32), 3300 DAG.getConstant(CCMask, DL, MVT::i32)); 3301 3302 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3303 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3304 3305 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3306 if (N->getValueType(1) == MVT::i1) 3307 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3308 3309 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3310 } 3311 3312 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3313 SelectionDAG &DAG) const { 3314 EVT VT = Op.getValueType(); 3315 SDLoc DL(Op); 3316 Op = Op.getOperand(0); 3317 3318 // Handle vector types via VPOPCT. 3319 if (VT.isVector()) { 3320 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3321 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3322 switch (VT.getScalarSizeInBits()) { 3323 case 8: 3324 break; 3325 case 16: { 3326 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3327 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3328 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3329 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3330 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3331 break; 3332 } 3333 case 32: { 3334 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3335 DAG.getConstant(0, DL, MVT::i32)); 3336 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3337 break; 3338 } 3339 case 64: { 3340 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3341 DAG.getConstant(0, DL, MVT::i32)); 3342 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3343 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3344 break; 3345 } 3346 default: 3347 llvm_unreachable("Unexpected type"); 3348 } 3349 return Op; 3350 } 3351 3352 // Get the known-zero mask for the operand. 3353 KnownBits Known; 3354 DAG.computeKnownBits(Op, Known); 3355 unsigned NumSignificantBits = (~Known.Zero).getActiveBits(); 3356 if (NumSignificantBits == 0) 3357 return DAG.getConstant(0, DL, VT); 3358 3359 // Skip known-zero high parts of the operand. 3360 int64_t OrigBitSize = VT.getSizeInBits(); 3361 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3362 BitSize = std::min(BitSize, OrigBitSize); 3363 3364 // The POPCNT instruction counts the number of bits in each byte. 3365 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3366 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3367 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3368 3369 // Add up per-byte counts in a binary tree. All bits of Op at 3370 // position larger than BitSize remain zero throughout. 3371 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3372 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3373 if (BitSize != OrigBitSize) 3374 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3375 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3376 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3377 } 3378 3379 // Extract overall result from high byte. 3380 if (BitSize > 8) 3381 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3382 DAG.getConstant(BitSize - 8, DL, VT)); 3383 3384 return Op; 3385 } 3386 3387 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3388 SelectionDAG &DAG) const { 3389 SDLoc DL(Op); 3390 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3391 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3392 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3393 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3394 3395 // The only fence that needs an instruction is a sequentially-consistent 3396 // cross-thread fence. 3397 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3398 FenceSSID == SyncScope::System) { 3399 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3400 Op.getOperand(0)), 3401 0); 3402 } 3403 3404 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3405 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3406 } 3407 3408 // Op is an atomic load. Lower it into a normal volatile load. 3409 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3410 SelectionDAG &DAG) const { 3411 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3412 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3413 Node->getChain(), Node->getBasePtr(), 3414 Node->getMemoryVT(), Node->getMemOperand()); 3415 } 3416 3417 // Op is an atomic store. Lower it into a normal volatile store. 3418 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3419 SelectionDAG &DAG) const { 3420 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3421 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3422 Node->getBasePtr(), Node->getMemoryVT(), 3423 Node->getMemOperand()); 3424 // We have to enforce sequential consistency by performing a 3425 // serialization operation after the store. 3426 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3427 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3428 MVT::Other, Chain), 0); 3429 return Chain; 3430 } 3431 3432 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3433 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3434 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3435 SelectionDAG &DAG, 3436 unsigned Opcode) const { 3437 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3438 3439 // 32-bit operations need no code outside the main loop. 3440 EVT NarrowVT = Node->getMemoryVT(); 3441 EVT WideVT = MVT::i32; 3442 if (NarrowVT == WideVT) 3443 return Op; 3444 3445 int64_t BitSize = NarrowVT.getSizeInBits(); 3446 SDValue ChainIn = Node->getChain(); 3447 SDValue Addr = Node->getBasePtr(); 3448 SDValue Src2 = Node->getVal(); 3449 MachineMemOperand *MMO = Node->getMemOperand(); 3450 SDLoc DL(Node); 3451 EVT PtrVT = Addr.getValueType(); 3452 3453 // Convert atomic subtracts of constants into additions. 3454 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3455 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3456 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3457 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3458 } 3459 3460 // Get the address of the containing word. 3461 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3462 DAG.getConstant(-4, DL, PtrVT)); 3463 3464 // Get the number of bits that the word must be rotated left in order 3465 // to bring the field to the top bits of a GR32. 3466 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3467 DAG.getConstant(3, DL, PtrVT)); 3468 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3469 3470 // Get the complementing shift amount, for rotating a field in the top 3471 // bits back to its proper position. 3472 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3473 DAG.getConstant(0, DL, WideVT), BitShift); 3474 3475 // Extend the source operand to 32 bits and prepare it for the inner loop. 3476 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3477 // operations require the source to be shifted in advance. (This shift 3478 // can be folded if the source is constant.) For AND and NAND, the lower 3479 // bits must be set, while for other opcodes they should be left clear. 3480 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3481 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3482 DAG.getConstant(32 - BitSize, DL, WideVT)); 3483 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3484 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3485 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3486 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3487 3488 // Construct the ATOMIC_LOADW_* node. 3489 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3490 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3491 DAG.getConstant(BitSize, DL, WideVT) }; 3492 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3493 NarrowVT, MMO); 3494 3495 // Rotate the result of the final CS so that the field is in the lower 3496 // bits of a GR32, then truncate it. 3497 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3498 DAG.getConstant(BitSize, DL, WideVT)); 3499 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3500 3501 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3502 return DAG.getMergeValues(RetOps, DL); 3503 } 3504 3505 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3506 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3507 // operations into additions. 3508 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3509 SelectionDAG &DAG) const { 3510 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3511 EVT MemVT = Node->getMemoryVT(); 3512 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3513 // A full-width operation. 3514 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3515 SDValue Src2 = Node->getVal(); 3516 SDValue NegSrc2; 3517 SDLoc DL(Src2); 3518 3519 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3520 // Use an addition if the operand is constant and either LAA(G) is 3521 // available or the negative value is in the range of A(G)FHI. 3522 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3523 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3524 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3525 } else if (Subtarget.hasInterlockedAccess1()) 3526 // Use LAA(G) if available. 3527 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3528 Src2); 3529 3530 if (NegSrc2.getNode()) 3531 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3532 Node->getChain(), Node->getBasePtr(), NegSrc2, 3533 Node->getMemOperand()); 3534 3535 // Use the node as-is. 3536 return Op; 3537 } 3538 3539 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3540 } 3541 3542 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3543 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3544 SelectionDAG &DAG) const { 3545 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3546 SDValue ChainIn = Node->getOperand(0); 3547 SDValue Addr = Node->getOperand(1); 3548 SDValue CmpVal = Node->getOperand(2); 3549 SDValue SwapVal = Node->getOperand(3); 3550 MachineMemOperand *MMO = Node->getMemOperand(); 3551 SDLoc DL(Node); 3552 3553 // We have native support for 32-bit and 64-bit compare and swap, but we 3554 // still need to expand extracting the "success" result from the CC. 3555 EVT NarrowVT = Node->getMemoryVT(); 3556 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3557 if (NarrowVT == WideVT) { 3558 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3559 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3560 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3561 DL, Tys, Ops, NarrowVT, MMO); 3562 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3563 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3564 3565 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3566 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3567 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3568 return SDValue(); 3569 } 3570 3571 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3572 // via a fullword ATOMIC_CMP_SWAPW operation. 3573 int64_t BitSize = NarrowVT.getSizeInBits(); 3574 EVT PtrVT = Addr.getValueType(); 3575 3576 // Get the address of the containing word. 3577 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3578 DAG.getConstant(-4, DL, PtrVT)); 3579 3580 // Get the number of bits that the word must be rotated left in order 3581 // to bring the field to the top bits of a GR32. 3582 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3583 DAG.getConstant(3, DL, PtrVT)); 3584 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3585 3586 // Get the complementing shift amount, for rotating a field in the top 3587 // bits back to its proper position. 3588 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3589 DAG.getConstant(0, DL, WideVT), BitShift); 3590 3591 // Construct the ATOMIC_CMP_SWAPW node. 3592 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3593 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3594 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3595 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3596 VTList, Ops, NarrowVT, MMO); 3597 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3598 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 3599 3600 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3601 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3602 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3603 return SDValue(); 3604 } 3605 3606 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3607 SelectionDAG &DAG) const { 3608 MachineFunction &MF = DAG.getMachineFunction(); 3609 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3610 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3611 SystemZ::R15D, Op.getValueType()); 3612 } 3613 3614 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3615 SelectionDAG &DAG) const { 3616 MachineFunction &MF = DAG.getMachineFunction(); 3617 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3618 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3619 3620 SDValue Chain = Op.getOperand(0); 3621 SDValue NewSP = Op.getOperand(1); 3622 SDValue Backchain; 3623 SDLoc DL(Op); 3624 3625 if (StoreBackchain) { 3626 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3627 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3628 } 3629 3630 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3631 3632 if (StoreBackchain) 3633 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3634 3635 return Chain; 3636 } 3637 3638 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3639 SelectionDAG &DAG) const { 3640 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3641 if (!IsData) 3642 // Just preserve the chain. 3643 return Op.getOperand(0); 3644 3645 SDLoc DL(Op); 3646 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3647 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3648 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3649 SDValue Ops[] = { 3650 Op.getOperand(0), 3651 DAG.getConstant(Code, DL, MVT::i32), 3652 Op.getOperand(1) 3653 }; 3654 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3655 Node->getVTList(), Ops, 3656 Node->getMemoryVT(), Node->getMemOperand()); 3657 } 3658 3659 // Convert condition code in CCReg to an i32 value. 3660 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 3661 SDLoc DL(CCReg); 3662 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 3663 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3664 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3665 } 3666 3667 SDValue 3668 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3669 SelectionDAG &DAG) const { 3670 unsigned Opcode, CCValid; 3671 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3672 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3673 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 3674 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 3675 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3676 return SDValue(); 3677 } 3678 3679 return SDValue(); 3680 } 3681 3682 SDValue 3683 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3684 SelectionDAG &DAG) const { 3685 unsigned Opcode, CCValid; 3686 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3687 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 3688 if (Op->getNumValues() == 1) 3689 return getCCResult(DAG, SDValue(Node, 0)); 3690 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3691 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 3692 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 3693 } 3694 3695 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3696 switch (Id) { 3697 case Intrinsic::thread_pointer: 3698 return lowerThreadPointer(SDLoc(Op), DAG); 3699 3700 case Intrinsic::s390_vpdi: 3701 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3702 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3703 3704 case Intrinsic::s390_vperm: 3705 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3706 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3707 3708 case Intrinsic::s390_vuphb: 3709 case Intrinsic::s390_vuphh: 3710 case Intrinsic::s390_vuphf: 3711 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3712 Op.getOperand(1)); 3713 3714 case Intrinsic::s390_vuplhb: 3715 case Intrinsic::s390_vuplhh: 3716 case Intrinsic::s390_vuplhf: 3717 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3718 Op.getOperand(1)); 3719 3720 case Intrinsic::s390_vuplb: 3721 case Intrinsic::s390_vuplhw: 3722 case Intrinsic::s390_vuplf: 3723 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3724 Op.getOperand(1)); 3725 3726 case Intrinsic::s390_vupllb: 3727 case Intrinsic::s390_vupllh: 3728 case Intrinsic::s390_vupllf: 3729 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3730 Op.getOperand(1)); 3731 3732 case Intrinsic::s390_vsumb: 3733 case Intrinsic::s390_vsumh: 3734 case Intrinsic::s390_vsumgh: 3735 case Intrinsic::s390_vsumgf: 3736 case Intrinsic::s390_vsumqf: 3737 case Intrinsic::s390_vsumqg: 3738 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3739 Op.getOperand(1), Op.getOperand(2)); 3740 } 3741 3742 return SDValue(); 3743 } 3744 3745 namespace { 3746 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3747 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3748 // Operand is the constant third operand, otherwise it is the number of 3749 // bytes in each element of the result. 3750 struct Permute { 3751 unsigned Opcode; 3752 unsigned Operand; 3753 unsigned char Bytes[SystemZ::VectorBytes]; 3754 }; 3755 } 3756 3757 static const Permute PermuteForms[] = { 3758 // VMRHG 3759 { SystemZISD::MERGE_HIGH, 8, 3760 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3761 // VMRHF 3762 { SystemZISD::MERGE_HIGH, 4, 3763 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3764 // VMRHH 3765 { SystemZISD::MERGE_HIGH, 2, 3766 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3767 // VMRHB 3768 { SystemZISD::MERGE_HIGH, 1, 3769 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3770 // VMRLG 3771 { SystemZISD::MERGE_LOW, 8, 3772 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3773 // VMRLF 3774 { SystemZISD::MERGE_LOW, 4, 3775 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3776 // VMRLH 3777 { SystemZISD::MERGE_LOW, 2, 3778 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3779 // VMRLB 3780 { SystemZISD::MERGE_LOW, 1, 3781 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3782 // VPKG 3783 { SystemZISD::PACK, 4, 3784 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3785 // VPKF 3786 { SystemZISD::PACK, 2, 3787 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3788 // VPKH 3789 { SystemZISD::PACK, 1, 3790 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3791 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3792 { SystemZISD::PERMUTE_DWORDS, 4, 3793 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3794 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3795 { SystemZISD::PERMUTE_DWORDS, 1, 3796 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3797 }; 3798 3799 // Called after matching a vector shuffle against a particular pattern. 3800 // Both the original shuffle and the pattern have two vector operands. 3801 // OpNos[0] is the operand of the original shuffle that should be used for 3802 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3803 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3804 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3805 // for operands 0 and 1 of the pattern. 3806 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3807 if (OpNos[0] < 0) { 3808 if (OpNos[1] < 0) 3809 return false; 3810 OpNo0 = OpNo1 = OpNos[1]; 3811 } else if (OpNos[1] < 0) { 3812 OpNo0 = OpNo1 = OpNos[0]; 3813 } else { 3814 OpNo0 = OpNos[0]; 3815 OpNo1 = OpNos[1]; 3816 } 3817 return true; 3818 } 3819 3820 // Bytes is a VPERM-like permute vector, except that -1 is used for 3821 // undefined bytes. Return true if the VPERM can be implemented using P. 3822 // When returning true set OpNo0 to the VPERM operand that should be 3823 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3824 // 3825 // For example, if swapping the VPERM operands allows P to match, OpNo0 3826 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3827 // operand, but rewriting it to use two duplicated operands allows it to 3828 // match P, then OpNo0 and OpNo1 will be the same. 3829 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3830 unsigned &OpNo0, unsigned &OpNo1) { 3831 int OpNos[] = { -1, -1 }; 3832 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3833 int Elt = Bytes[I]; 3834 if (Elt >= 0) { 3835 // Make sure that the two permute vectors use the same suboperand 3836 // byte number. Only the operand numbers (the high bits) are 3837 // allowed to differ. 3838 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3839 return false; 3840 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3841 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3842 // Make sure that the operand mappings are consistent with previous 3843 // elements. 3844 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3845 return false; 3846 OpNos[ModelOpNo] = RealOpNo; 3847 } 3848 } 3849 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3850 } 3851 3852 // As above, but search for a matching permute. 3853 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3854 unsigned &OpNo0, unsigned &OpNo1) { 3855 for (auto &P : PermuteForms) 3856 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3857 return &P; 3858 return nullptr; 3859 } 3860 3861 // Bytes is a VPERM-like permute vector, except that -1 is used for 3862 // undefined bytes. This permute is an operand of an outer permute. 3863 // See whether redistributing the -1 bytes gives a shuffle that can be 3864 // implemented using P. If so, set Transform to a VPERM-like permute vector 3865 // that, when applied to the result of P, gives the original permute in Bytes. 3866 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3867 const Permute &P, 3868 SmallVectorImpl<int> &Transform) { 3869 unsigned To = 0; 3870 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3871 int Elt = Bytes[From]; 3872 if (Elt < 0) 3873 // Byte number From of the result is undefined. 3874 Transform[From] = -1; 3875 else { 3876 while (P.Bytes[To] != Elt) { 3877 To += 1; 3878 if (To == SystemZ::VectorBytes) 3879 return false; 3880 } 3881 Transform[From] = To; 3882 } 3883 } 3884 return true; 3885 } 3886 3887 // As above, but search for a matching permute. 3888 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3889 SmallVectorImpl<int> &Transform) { 3890 for (auto &P : PermuteForms) 3891 if (matchDoublePermute(Bytes, P, Transform)) 3892 return &P; 3893 return nullptr; 3894 } 3895 3896 // Convert the mask of the given shuffle op into a byte-level mask, 3897 // as if it had type vNi8. 3898 static bool getVPermMask(SDValue ShuffleOp, 3899 SmallVectorImpl<int> &Bytes) { 3900 EVT VT = ShuffleOp.getValueType(); 3901 unsigned NumElements = VT.getVectorNumElements(); 3902 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3903 3904 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 3905 Bytes.resize(NumElements * BytesPerElement, -1); 3906 for (unsigned I = 0; I < NumElements; ++I) { 3907 int Index = VSN->getMaskElt(I); 3908 if (Index >= 0) 3909 for (unsigned J = 0; J < BytesPerElement; ++J) 3910 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3911 } 3912 return true; 3913 } 3914 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 3915 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 3916 unsigned Index = ShuffleOp.getConstantOperandVal(1); 3917 Bytes.resize(NumElements * BytesPerElement, -1); 3918 for (unsigned I = 0; I < NumElements; ++I) 3919 for (unsigned J = 0; J < BytesPerElement; ++J) 3920 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3921 return true; 3922 } 3923 return false; 3924 } 3925 3926 // Bytes is a VPERM-like permute vector, except that -1 is used for 3927 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3928 // the result come from a contiguous sequence of bytes from one input. 3929 // Set Base to the selector for the first byte if so. 3930 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3931 unsigned BytesPerElement, int &Base) { 3932 Base = -1; 3933 for (unsigned I = 0; I < BytesPerElement; ++I) { 3934 if (Bytes[Start + I] >= 0) { 3935 unsigned Elem = Bytes[Start + I]; 3936 if (Base < 0) { 3937 Base = Elem - I; 3938 // Make sure the bytes would come from one input operand. 3939 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3940 return false; 3941 } else if (unsigned(Base) != Elem - I) 3942 return false; 3943 } 3944 } 3945 return true; 3946 } 3947 3948 // Bytes is a VPERM-like permute vector, except that -1 is used for 3949 // undefined bytes. Return true if it can be performed using VSLDI. 3950 // When returning true, set StartIndex to the shift amount and OpNo0 3951 // and OpNo1 to the VPERM operands that should be used as the first 3952 // and second shift operand respectively. 3953 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3954 unsigned &StartIndex, unsigned &OpNo0, 3955 unsigned &OpNo1) { 3956 int OpNos[] = { -1, -1 }; 3957 int Shift = -1; 3958 for (unsigned I = 0; I < 16; ++I) { 3959 int Index = Bytes[I]; 3960 if (Index >= 0) { 3961 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3962 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3963 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3964 if (Shift < 0) 3965 Shift = ExpectedShift; 3966 else if (Shift != ExpectedShift) 3967 return false; 3968 // Make sure that the operand mappings are consistent with previous 3969 // elements. 3970 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3971 return false; 3972 OpNos[ModelOpNo] = RealOpNo; 3973 } 3974 } 3975 StartIndex = Shift; 3976 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3977 } 3978 3979 // Create a node that performs P on operands Op0 and Op1, casting the 3980 // operands to the appropriate type. The type of the result is determined by P. 3981 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3982 const Permute &P, SDValue Op0, SDValue Op1) { 3983 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3984 // elements of a PACK are twice as wide as the outputs. 3985 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3986 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3987 P.Operand); 3988 // Cast both operands to the appropriate type. 3989 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3990 SystemZ::VectorBytes / InBytes); 3991 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3992 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3993 SDValue Op; 3994 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3995 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3996 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3997 } else if (P.Opcode == SystemZISD::PACK) { 3998 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3999 SystemZ::VectorBytes / P.Operand); 4000 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4001 } else { 4002 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4003 } 4004 return Op; 4005 } 4006 4007 // Bytes is a VPERM-like permute vector, except that -1 is used for 4008 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4009 // VSLDI or VPERM. 4010 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4011 SDValue *Ops, 4012 const SmallVectorImpl<int> &Bytes) { 4013 for (unsigned I = 0; I < 2; ++I) 4014 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4015 4016 // First see whether VSLDI can be used. 4017 unsigned StartIndex, OpNo0, OpNo1; 4018 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4019 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4020 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 4021 4022 // Fall back on VPERM. Construct an SDNode for the permute vector. 4023 SDValue IndexNodes[SystemZ::VectorBytes]; 4024 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4025 if (Bytes[I] >= 0) 4026 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4027 else 4028 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4029 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4030 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 4031 } 4032 4033 namespace { 4034 // Describes a general N-operand vector shuffle. 4035 struct GeneralShuffle { 4036 GeneralShuffle(EVT vt) : VT(vt) {} 4037 void addUndef(); 4038 bool add(SDValue, unsigned); 4039 SDValue getNode(SelectionDAG &, const SDLoc &); 4040 4041 // The operands of the shuffle. 4042 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4043 4044 // Index I is -1 if byte I of the result is undefined. Otherwise the 4045 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4046 // Bytes[I] / SystemZ::VectorBytes. 4047 SmallVector<int, SystemZ::VectorBytes> Bytes; 4048 4049 // The type of the shuffle result. 4050 EVT VT; 4051 }; 4052 } 4053 4054 // Add an extra undefined element to the shuffle. 4055 void GeneralShuffle::addUndef() { 4056 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4057 for (unsigned I = 0; I < BytesPerElement; ++I) 4058 Bytes.push_back(-1); 4059 } 4060 4061 // Add an extra element to the shuffle, taking it from element Elem of Op. 4062 // A null Op indicates a vector input whose value will be calculated later; 4063 // there is at most one such input per shuffle and it always has the same 4064 // type as the result. Aborts and returns false if the source vector elements 4065 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4066 // LLVM they become implicitly extended, but this is rare and not optimized. 4067 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4068 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4069 4070 // The source vector can have wider elements than the result, 4071 // either through an explicit TRUNCATE or because of type legalization. 4072 // We want the least significant part. 4073 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4074 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4075 4076 // Return false if the source elements are smaller than their destination 4077 // elements. 4078 if (FromBytesPerElement < BytesPerElement) 4079 return false; 4080 4081 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4082 (FromBytesPerElement - BytesPerElement)); 4083 4084 // Look through things like shuffles and bitcasts. 4085 while (Op.getNode()) { 4086 if (Op.getOpcode() == ISD::BITCAST) 4087 Op = Op.getOperand(0); 4088 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4089 // See whether the bytes we need come from a contiguous part of one 4090 // operand. 4091 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4092 if (!getVPermMask(Op, OpBytes)) 4093 break; 4094 int NewByte; 4095 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4096 break; 4097 if (NewByte < 0) { 4098 addUndef(); 4099 return true; 4100 } 4101 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4102 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4103 } else if (Op.isUndef()) { 4104 addUndef(); 4105 return true; 4106 } else 4107 break; 4108 } 4109 4110 // Make sure that the source of the extraction is in Ops. 4111 unsigned OpNo = 0; 4112 for (; OpNo < Ops.size(); ++OpNo) 4113 if (Ops[OpNo] == Op) 4114 break; 4115 if (OpNo == Ops.size()) 4116 Ops.push_back(Op); 4117 4118 // Add the element to Bytes. 4119 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4120 for (unsigned I = 0; I < BytesPerElement; ++I) 4121 Bytes.push_back(Base + I); 4122 4123 return true; 4124 } 4125 4126 // Return SDNodes for the completed shuffle. 4127 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4128 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4129 4130 if (Ops.size() == 0) 4131 return DAG.getUNDEF(VT); 4132 4133 // Make sure that there are at least two shuffle operands. 4134 if (Ops.size() == 1) 4135 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4136 4137 // Create a tree of shuffles, deferring root node until after the loop. 4138 // Try to redistribute the undefined elements of non-root nodes so that 4139 // the non-root shuffles match something like a pack or merge, then adjust 4140 // the parent node's permute vector to compensate for the new order. 4141 // Among other things, this copes with vectors like <2 x i16> that were 4142 // padded with undefined elements during type legalization. 4143 // 4144 // In the best case this redistribution will lead to the whole tree 4145 // using packs and merges. It should rarely be a loss in other cases. 4146 unsigned Stride = 1; 4147 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4148 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4149 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4150 4151 // Create a mask for just these two operands. 4152 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4153 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4154 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4155 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4156 if (OpNo == I) 4157 NewBytes[J] = Byte; 4158 else if (OpNo == I + Stride) 4159 NewBytes[J] = SystemZ::VectorBytes + Byte; 4160 else 4161 NewBytes[J] = -1; 4162 } 4163 // See if it would be better to reorganize NewMask to avoid using VPERM. 4164 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4165 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4166 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4167 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4168 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4169 if (NewBytes[J] >= 0) { 4170 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4171 "Invalid double permute"); 4172 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4173 } else 4174 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4175 } 4176 } else { 4177 // Just use NewBytes on the operands. 4178 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4179 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4180 if (NewBytes[J] >= 0) 4181 Bytes[J] = I * SystemZ::VectorBytes + J; 4182 } 4183 } 4184 } 4185 4186 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4187 if (Stride > 1) { 4188 Ops[1] = Ops[Stride]; 4189 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4190 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4191 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4192 } 4193 4194 // Look for an instruction that can do the permute without resorting 4195 // to VPERM. 4196 unsigned OpNo0, OpNo1; 4197 SDValue Op; 4198 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4199 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4200 else 4201 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4202 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4203 } 4204 4205 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4206 static bool isScalarToVector(SDValue Op) { 4207 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4208 if (!Op.getOperand(I).isUndef()) 4209 return false; 4210 return true; 4211 } 4212 4213 // Return a vector of type VT that contains Value in the first element. 4214 // The other elements don't matter. 4215 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4216 SDValue Value) { 4217 // If we have a constant, replicate it to all elements and let the 4218 // BUILD_VECTOR lowering take care of it. 4219 if (Value.getOpcode() == ISD::Constant || 4220 Value.getOpcode() == ISD::ConstantFP) { 4221 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4222 return DAG.getBuildVector(VT, DL, Ops); 4223 } 4224 if (Value.isUndef()) 4225 return DAG.getUNDEF(VT); 4226 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4227 } 4228 4229 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4230 // element 1. Used for cases in which replication is cheap. 4231 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4232 SDValue Op0, SDValue Op1) { 4233 if (Op0.isUndef()) { 4234 if (Op1.isUndef()) 4235 return DAG.getUNDEF(VT); 4236 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4237 } 4238 if (Op1.isUndef()) 4239 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4240 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4241 buildScalarToVector(DAG, DL, VT, Op0), 4242 buildScalarToVector(DAG, DL, VT, Op1)); 4243 } 4244 4245 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4246 // vector for them. 4247 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4248 SDValue Op1) { 4249 if (Op0.isUndef() && Op1.isUndef()) 4250 return DAG.getUNDEF(MVT::v2i64); 4251 // If one of the two inputs is undefined then replicate the other one, 4252 // in order to avoid using another register unnecessarily. 4253 if (Op0.isUndef()) 4254 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4255 else if (Op1.isUndef()) 4256 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4257 else { 4258 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4259 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4260 } 4261 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4262 } 4263 4264 // Try to represent constant BUILD_VECTOR node BVN using a 4265 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 4266 // on success. 4267 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 4268 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 4269 unsigned BytesPerElement = ElemVT.getStoreSize(); 4270 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 4271 SDValue Op = BVN->getOperand(I); 4272 if (!Op.isUndef()) { 4273 uint64_t Value; 4274 if (Op.getOpcode() == ISD::Constant) 4275 Value = cast<ConstantSDNode>(Op)->getZExtValue(); 4276 else if (Op.getOpcode() == ISD::ConstantFP) 4277 Value = (cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 4278 .getZExtValue()); 4279 else 4280 return false; 4281 for (unsigned J = 0; J < BytesPerElement; ++J) { 4282 uint64_t Byte = (Value >> (J * 8)) & 0xff; 4283 if (Byte == 0xff) 4284 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 4285 else if (Byte != 0) 4286 return false; 4287 } 4288 } 4289 } 4290 return true; 4291 } 4292 4293 // Try to load a vector constant in which BitsPerElement-bit value Value 4294 // is replicated to fill the vector. VT is the type of the resulting 4295 // constant, which may have elements of a different size from BitsPerElement. 4296 // Return the SDValue of the constant on success, otherwise return 4297 // an empty value. 4298 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 4299 const SystemZInstrInfo *TII, 4300 const SDLoc &DL, EVT VT, uint64_t Value, 4301 unsigned BitsPerElement) { 4302 // Signed 16-bit values can be replicated using VREPI. 4303 // Mark the constants as opaque or DAGCombiner will convert back to 4304 // BUILD_VECTOR. 4305 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 4306 if (isInt<16>(SignedValue)) { 4307 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4308 SystemZ::VectorBits / BitsPerElement); 4309 SDValue Op = DAG.getNode( 4310 SystemZISD::REPLICATE, DL, VecVT, 4311 DAG.getConstant(SignedValue, DL, MVT::i32, false, true /*isOpaque*/)); 4312 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4313 } 4314 // See whether rotating the constant left some N places gives a value that 4315 // is one less than a power of 2 (i.e. all zeros followed by all ones). 4316 // If so we can use VGM. 4317 unsigned Start, End; 4318 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 4319 // isRxSBGMask returns the bit numbers for a full 64-bit value, 4320 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 4321 // bit numbers for an BitsPerElement value, so that 0 denotes 4322 // 1 << (BitsPerElement-1). 4323 Start -= 64 - BitsPerElement; 4324 End -= 64 - BitsPerElement; 4325 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4326 SystemZ::VectorBits / BitsPerElement); 4327 SDValue Op = DAG.getNode( 4328 SystemZISD::ROTATE_MASK, DL, VecVT, 4329 DAG.getConstant(Start, DL, MVT::i32, false, true /*isOpaque*/), 4330 DAG.getConstant(End, DL, MVT::i32, false, true /*isOpaque*/)); 4331 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4332 } 4333 return SDValue(); 4334 } 4335 4336 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4337 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4338 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4339 // would benefit from this representation and return it if so. 4340 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4341 BuildVectorSDNode *BVN) { 4342 EVT VT = BVN->getValueType(0); 4343 unsigned NumElements = VT.getVectorNumElements(); 4344 4345 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4346 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4347 // need a BUILD_VECTOR, add an additional placeholder operand for that 4348 // BUILD_VECTOR and store its operands in ResidueOps. 4349 GeneralShuffle GS(VT); 4350 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4351 bool FoundOne = false; 4352 for (unsigned I = 0; I < NumElements; ++I) { 4353 SDValue Op = BVN->getOperand(I); 4354 if (Op.getOpcode() == ISD::TRUNCATE) 4355 Op = Op.getOperand(0); 4356 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4357 Op.getOperand(1).getOpcode() == ISD::Constant) { 4358 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4359 if (!GS.add(Op.getOperand(0), Elem)) 4360 return SDValue(); 4361 FoundOne = true; 4362 } else if (Op.isUndef()) { 4363 GS.addUndef(); 4364 } else { 4365 if (!GS.add(SDValue(), ResidueOps.size())) 4366 return SDValue(); 4367 ResidueOps.push_back(BVN->getOperand(I)); 4368 } 4369 } 4370 4371 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4372 if (!FoundOne) 4373 return SDValue(); 4374 4375 // Create the BUILD_VECTOR for the remaining elements, if any. 4376 if (!ResidueOps.empty()) { 4377 while (ResidueOps.size() < NumElements) 4378 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4379 for (auto &Op : GS.Ops) { 4380 if (!Op.getNode()) { 4381 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4382 break; 4383 } 4384 } 4385 } 4386 return GS.getNode(DAG, SDLoc(BVN)); 4387 } 4388 4389 // Combine GPR scalar values Elems into a vector of type VT. 4390 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4391 SmallVectorImpl<SDValue> &Elems) { 4392 // See whether there is a single replicated value. 4393 SDValue Single; 4394 unsigned int NumElements = Elems.size(); 4395 unsigned int Count = 0; 4396 for (auto Elem : Elems) { 4397 if (!Elem.isUndef()) { 4398 if (!Single.getNode()) 4399 Single = Elem; 4400 else if (Elem != Single) { 4401 Single = SDValue(); 4402 break; 4403 } 4404 Count += 1; 4405 } 4406 } 4407 // There are three cases here: 4408 // 4409 // - if the only defined element is a loaded one, the best sequence 4410 // is a replicating load. 4411 // 4412 // - otherwise, if the only defined element is an i64 value, we will 4413 // end up with the same VLVGP sequence regardless of whether we short-cut 4414 // for replication or fall through to the later code. 4415 // 4416 // - otherwise, if the only defined element is an i32 or smaller value, 4417 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4418 // This is only a win if the single defined element is used more than once. 4419 // In other cases we're better off using a single VLVGx. 4420 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4421 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4422 4423 // If all elements are loads, use VLREP/VLEs (below). 4424 bool AllLoads = true; 4425 for (auto Elem : Elems) 4426 if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) { 4427 AllLoads = false; 4428 break; 4429 } 4430 4431 // The best way of building a v2i64 from two i64s is to use VLVGP. 4432 if (VT == MVT::v2i64 && !AllLoads) 4433 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4434 4435 // Use a 64-bit merge high to combine two doubles. 4436 if (VT == MVT::v2f64 && !AllLoads) 4437 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4438 4439 // Build v4f32 values directly from the FPRs: 4440 // 4441 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4442 // V V VMRHF 4443 // <ABxx> <CDxx> 4444 // V VMRHG 4445 // <ABCD> 4446 if (VT == MVT::v4f32 && !AllLoads) { 4447 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4448 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4449 // Avoid unnecessary undefs by reusing the other operand. 4450 if (Op01.isUndef()) 4451 Op01 = Op23; 4452 else if (Op23.isUndef()) 4453 Op23 = Op01; 4454 // Merging identical replications is a no-op. 4455 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4456 return Op01; 4457 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4458 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4459 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4460 DL, MVT::v2i64, Op01, Op23); 4461 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4462 } 4463 4464 // Collect the constant terms. 4465 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4466 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4467 4468 unsigned NumConstants = 0; 4469 for (unsigned I = 0; I < NumElements; ++I) { 4470 SDValue Elem = Elems[I]; 4471 if (Elem.getOpcode() == ISD::Constant || 4472 Elem.getOpcode() == ISD::ConstantFP) { 4473 NumConstants += 1; 4474 Constants[I] = Elem; 4475 Done[I] = true; 4476 } 4477 } 4478 // If there was at least one constant, fill in the other elements of 4479 // Constants with undefs to get a full vector constant and use that 4480 // as the starting point. 4481 SDValue Result; 4482 if (NumConstants > 0) { 4483 for (unsigned I = 0; I < NumElements; ++I) 4484 if (!Constants[I].getNode()) 4485 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4486 Result = DAG.getBuildVector(VT, DL, Constants); 4487 } else { 4488 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4489 // avoid a false dependency on any previous contents of the vector 4490 // register. 4491 4492 // Use a VLREP if at least one element is a load. 4493 unsigned LoadElIdx = UINT_MAX; 4494 for (unsigned I = 0; I < NumElements; ++I) 4495 if (Elems[I].getOpcode() == ISD::LOAD && 4496 cast<LoadSDNode>(Elems[I])->isUnindexed()) { 4497 LoadElIdx = I; 4498 break; 4499 } 4500 if (LoadElIdx != UINT_MAX) { 4501 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, Elems[LoadElIdx]); 4502 Done[LoadElIdx] = true; 4503 } else { 4504 // Try to use VLVGP. 4505 unsigned I1 = NumElements / 2 - 1; 4506 unsigned I2 = NumElements - 1; 4507 bool Def1 = !Elems[I1].isUndef(); 4508 bool Def2 = !Elems[I2].isUndef(); 4509 if (Def1 || Def2) { 4510 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4511 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4512 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4513 joinDwords(DAG, DL, Elem1, Elem2)); 4514 Done[I1] = true; 4515 Done[I2] = true; 4516 } else 4517 Result = DAG.getUNDEF(VT); 4518 } 4519 } 4520 4521 // Use VLVGx to insert the other elements. 4522 for (unsigned I = 0; I < NumElements; ++I) 4523 if (!Done[I] && !Elems[I].isUndef()) 4524 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4525 DAG.getConstant(I, DL, MVT::i32)); 4526 return Result; 4527 } 4528 4529 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4530 SelectionDAG &DAG) const { 4531 const SystemZInstrInfo *TII = 4532 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4533 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4534 SDLoc DL(Op); 4535 EVT VT = Op.getValueType(); 4536 4537 if (BVN->isConstant()) { 4538 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4539 // preferred way of creating all-zero and all-one vectors so give it 4540 // priority over other methods below. 4541 uint64_t Mask = 0; 4542 if (tryBuildVectorByteMask(BVN, Mask)) { 4543 SDValue Op = DAG.getNode( 4544 SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4545 DAG.getConstant(Mask, DL, MVT::i32, false, true /*isOpaque*/)); 4546 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4547 } 4548 4549 // Try using some form of replication. 4550 APInt SplatBits, SplatUndef; 4551 unsigned SplatBitSize; 4552 bool HasAnyUndefs; 4553 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4554 8, true) && 4555 SplatBitSize <= 64) { 4556 // First try assuming that any undefined bits above the highest set bit 4557 // and below the lowest set bit are 1s. This increases the likelihood of 4558 // being able to use a sign-extended element value in VECTOR REPLICATE 4559 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4560 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4561 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4562 uint64_t Lower = (SplatUndefZ 4563 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4564 uint64_t Upper = (SplatUndefZ 4565 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4566 uint64_t Value = SplatBitsZ | Upper | Lower; 4567 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4568 SplatBitSize); 4569 if (Op.getNode()) 4570 return Op; 4571 4572 // Now try assuming that any undefined bits between the first and 4573 // last defined set bits are set. This increases the chances of 4574 // using a non-wraparound mask. 4575 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4576 Value = SplatBitsZ | Middle; 4577 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4578 if (Op.getNode()) 4579 return Op; 4580 } 4581 4582 // Fall back to loading it from memory. 4583 return SDValue(); 4584 } 4585 4586 // See if we should use shuffles to construct the vector from other vectors. 4587 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4588 return Res; 4589 4590 // Detect SCALAR_TO_VECTOR conversions. 4591 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4592 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4593 4594 // Otherwise use buildVector to build the vector up from GPRs. 4595 unsigned NumElements = Op.getNumOperands(); 4596 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4597 for (unsigned I = 0; I < NumElements; ++I) 4598 Ops[I] = Op.getOperand(I); 4599 return buildVector(DAG, DL, VT, Ops); 4600 } 4601 4602 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4603 SelectionDAG &DAG) const { 4604 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4605 SDLoc DL(Op); 4606 EVT VT = Op.getValueType(); 4607 unsigned NumElements = VT.getVectorNumElements(); 4608 4609 if (VSN->isSplat()) { 4610 SDValue Op0 = Op.getOperand(0); 4611 unsigned Index = VSN->getSplatIndex(); 4612 assert(Index < VT.getVectorNumElements() && 4613 "Splat index should be defined and in first operand"); 4614 // See whether the value we're splatting is directly available as a scalar. 4615 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4616 Op0.getOpcode() == ISD::BUILD_VECTOR) 4617 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4618 // Otherwise keep it as a vector-to-vector operation. 4619 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4620 DAG.getConstant(Index, DL, MVT::i32)); 4621 } 4622 4623 GeneralShuffle GS(VT); 4624 for (unsigned I = 0; I < NumElements; ++I) { 4625 int Elt = VSN->getMaskElt(I); 4626 if (Elt < 0) 4627 GS.addUndef(); 4628 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4629 unsigned(Elt) % NumElements)) 4630 return SDValue(); 4631 } 4632 return GS.getNode(DAG, SDLoc(VSN)); 4633 } 4634 4635 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4636 SelectionDAG &DAG) const { 4637 SDLoc DL(Op); 4638 // Just insert the scalar into element 0 of an undefined vector. 4639 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4640 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4641 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4642 } 4643 4644 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4645 SelectionDAG &DAG) const { 4646 // Handle insertions of floating-point values. 4647 SDLoc DL(Op); 4648 SDValue Op0 = Op.getOperand(0); 4649 SDValue Op1 = Op.getOperand(1); 4650 SDValue Op2 = Op.getOperand(2); 4651 EVT VT = Op.getValueType(); 4652 4653 // Insertions into constant indices of a v2f64 can be done using VPDI. 4654 // However, if the inserted value is a bitcast or a constant then it's 4655 // better to use GPRs, as below. 4656 if (VT == MVT::v2f64 && 4657 Op1.getOpcode() != ISD::BITCAST && 4658 Op1.getOpcode() != ISD::ConstantFP && 4659 Op2.getOpcode() == ISD::Constant) { 4660 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 4661 unsigned Mask = VT.getVectorNumElements() - 1; 4662 if (Index <= Mask) 4663 return Op; 4664 } 4665 4666 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4667 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4668 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4669 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4670 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4671 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4672 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4673 } 4674 4675 SDValue 4676 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4677 SelectionDAG &DAG) const { 4678 // Handle extractions of floating-point values. 4679 SDLoc DL(Op); 4680 SDValue Op0 = Op.getOperand(0); 4681 SDValue Op1 = Op.getOperand(1); 4682 EVT VT = Op.getValueType(); 4683 EVT VecVT = Op0.getValueType(); 4684 4685 // Extractions of constant indices can be done directly. 4686 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4687 uint64_t Index = CIndexN->getZExtValue(); 4688 unsigned Mask = VecVT.getVectorNumElements() - 1; 4689 if (Index <= Mask) 4690 return Op; 4691 } 4692 4693 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4694 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4695 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4696 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4697 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4698 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4699 } 4700 4701 SDValue 4702 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4703 unsigned UnpackHigh) const { 4704 SDValue PackedOp = Op.getOperand(0); 4705 EVT OutVT = Op.getValueType(); 4706 EVT InVT = PackedOp.getValueType(); 4707 unsigned ToBits = OutVT.getScalarSizeInBits(); 4708 unsigned FromBits = InVT.getScalarSizeInBits(); 4709 do { 4710 FromBits *= 2; 4711 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4712 SystemZ::VectorBits / FromBits); 4713 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4714 } while (FromBits != ToBits); 4715 return PackedOp; 4716 } 4717 4718 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4719 unsigned ByScalar) const { 4720 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4721 SDValue Op0 = Op.getOperand(0); 4722 SDValue Op1 = Op.getOperand(1); 4723 SDLoc DL(Op); 4724 EVT VT = Op.getValueType(); 4725 unsigned ElemBitSize = VT.getScalarSizeInBits(); 4726 4727 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4728 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4729 APInt SplatBits, SplatUndef; 4730 unsigned SplatBitSize; 4731 bool HasAnyUndefs; 4732 // Check for constant splats. Use ElemBitSize as the minimum element 4733 // width and reject splats that need wider elements. 4734 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4735 ElemBitSize, true) && 4736 SplatBitSize == ElemBitSize) { 4737 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4738 DL, MVT::i32); 4739 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4740 } 4741 // Check for variable splats. 4742 BitVector UndefElements; 4743 SDValue Splat = BVN->getSplatValue(&UndefElements); 4744 if (Splat) { 4745 // Since i32 is the smallest legal type, we either need a no-op 4746 // or a truncation. 4747 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4748 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4749 } 4750 } 4751 4752 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4753 // and the shift amount is directly available in a GPR. 4754 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4755 if (VSN->isSplat()) { 4756 SDValue VSNOp0 = VSN->getOperand(0); 4757 unsigned Index = VSN->getSplatIndex(); 4758 assert(Index < VT.getVectorNumElements() && 4759 "Splat index should be defined and in first operand"); 4760 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4761 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4762 // Since i32 is the smallest legal type, we either need a no-op 4763 // or a truncation. 4764 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4765 VSNOp0.getOperand(Index)); 4766 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4767 } 4768 } 4769 } 4770 4771 // Otherwise just treat the current form as legal. 4772 return Op; 4773 } 4774 4775 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4776 SelectionDAG &DAG) const { 4777 switch (Op.getOpcode()) { 4778 case ISD::FRAMEADDR: 4779 return lowerFRAMEADDR(Op, DAG); 4780 case ISD::RETURNADDR: 4781 return lowerRETURNADDR(Op, DAG); 4782 case ISD::BR_CC: 4783 return lowerBR_CC(Op, DAG); 4784 case ISD::SELECT_CC: 4785 return lowerSELECT_CC(Op, DAG); 4786 case ISD::SETCC: 4787 return lowerSETCC(Op, DAG); 4788 case ISD::GlobalAddress: 4789 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4790 case ISD::GlobalTLSAddress: 4791 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4792 case ISD::BlockAddress: 4793 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4794 case ISD::JumpTable: 4795 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4796 case ISD::ConstantPool: 4797 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4798 case ISD::BITCAST: 4799 return lowerBITCAST(Op, DAG); 4800 case ISD::VASTART: 4801 return lowerVASTART(Op, DAG); 4802 case ISD::VACOPY: 4803 return lowerVACOPY(Op, DAG); 4804 case ISD::DYNAMIC_STACKALLOC: 4805 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4806 case ISD::GET_DYNAMIC_AREA_OFFSET: 4807 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4808 case ISD::SMUL_LOHI: 4809 return lowerSMUL_LOHI(Op, DAG); 4810 case ISD::UMUL_LOHI: 4811 return lowerUMUL_LOHI(Op, DAG); 4812 case ISD::SDIVREM: 4813 return lowerSDIVREM(Op, DAG); 4814 case ISD::UDIVREM: 4815 return lowerUDIVREM(Op, DAG); 4816 case ISD::SADDO: 4817 case ISD::SSUBO: 4818 case ISD::UADDO: 4819 case ISD::USUBO: 4820 return lowerXALUO(Op, DAG); 4821 case ISD::ADDCARRY: 4822 case ISD::SUBCARRY: 4823 return lowerADDSUBCARRY(Op, DAG); 4824 case ISD::OR: 4825 return lowerOR(Op, DAG); 4826 case ISD::CTPOP: 4827 return lowerCTPOP(Op, DAG); 4828 case ISD::ATOMIC_FENCE: 4829 return lowerATOMIC_FENCE(Op, DAG); 4830 case ISD::ATOMIC_SWAP: 4831 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4832 case ISD::ATOMIC_STORE: 4833 return lowerATOMIC_STORE(Op, DAG); 4834 case ISD::ATOMIC_LOAD: 4835 return lowerATOMIC_LOAD(Op, DAG); 4836 case ISD::ATOMIC_LOAD_ADD: 4837 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4838 case ISD::ATOMIC_LOAD_SUB: 4839 return lowerATOMIC_LOAD_SUB(Op, DAG); 4840 case ISD::ATOMIC_LOAD_AND: 4841 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4842 case ISD::ATOMIC_LOAD_OR: 4843 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4844 case ISD::ATOMIC_LOAD_XOR: 4845 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4846 case ISD::ATOMIC_LOAD_NAND: 4847 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4848 case ISD::ATOMIC_LOAD_MIN: 4849 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4850 case ISD::ATOMIC_LOAD_MAX: 4851 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4852 case ISD::ATOMIC_LOAD_UMIN: 4853 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4854 case ISD::ATOMIC_LOAD_UMAX: 4855 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4856 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4857 return lowerATOMIC_CMP_SWAP(Op, DAG); 4858 case ISD::STACKSAVE: 4859 return lowerSTACKSAVE(Op, DAG); 4860 case ISD::STACKRESTORE: 4861 return lowerSTACKRESTORE(Op, DAG); 4862 case ISD::PREFETCH: 4863 return lowerPREFETCH(Op, DAG); 4864 case ISD::INTRINSIC_W_CHAIN: 4865 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4866 case ISD::INTRINSIC_WO_CHAIN: 4867 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4868 case ISD::BUILD_VECTOR: 4869 return lowerBUILD_VECTOR(Op, DAG); 4870 case ISD::VECTOR_SHUFFLE: 4871 return lowerVECTOR_SHUFFLE(Op, DAG); 4872 case ISD::SCALAR_TO_VECTOR: 4873 return lowerSCALAR_TO_VECTOR(Op, DAG); 4874 case ISD::INSERT_VECTOR_ELT: 4875 return lowerINSERT_VECTOR_ELT(Op, DAG); 4876 case ISD::EXTRACT_VECTOR_ELT: 4877 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4878 case ISD::SIGN_EXTEND_VECTOR_INREG: 4879 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4880 case ISD::ZERO_EXTEND_VECTOR_INREG: 4881 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4882 case ISD::SHL: 4883 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4884 case ISD::SRL: 4885 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4886 case ISD::SRA: 4887 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4888 default: 4889 llvm_unreachable("Unexpected node to lower"); 4890 } 4891 } 4892 4893 // Lower operations with invalid operand or result types (currently used 4894 // only for 128-bit integer types). 4895 4896 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 4897 SDLoc DL(In); 4898 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 4899 DAG.getIntPtrConstant(0, DL)); 4900 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 4901 DAG.getIntPtrConstant(1, DL)); 4902 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 4903 MVT::Untyped, Hi, Lo); 4904 return SDValue(Pair, 0); 4905 } 4906 4907 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 4908 SDLoc DL(In); 4909 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 4910 DL, MVT::i64, In); 4911 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 4912 DL, MVT::i64, In); 4913 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 4914 } 4915 4916 void 4917 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 4918 SmallVectorImpl<SDValue> &Results, 4919 SelectionDAG &DAG) const { 4920 switch (N->getOpcode()) { 4921 case ISD::ATOMIC_LOAD: { 4922 SDLoc DL(N); 4923 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 4924 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 4925 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4926 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 4927 DL, Tys, Ops, MVT::i128, MMO); 4928 Results.push_back(lowerGR128ToI128(DAG, Res)); 4929 Results.push_back(Res.getValue(1)); 4930 break; 4931 } 4932 case ISD::ATOMIC_STORE: { 4933 SDLoc DL(N); 4934 SDVTList Tys = DAG.getVTList(MVT::Other); 4935 SDValue Ops[] = { N->getOperand(0), 4936 lowerI128ToGR128(DAG, N->getOperand(2)), 4937 N->getOperand(1) }; 4938 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4939 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 4940 DL, Tys, Ops, MVT::i128, MMO); 4941 // We have to enforce sequential consistency by performing a 4942 // serialization operation after the store. 4943 if (cast<AtomicSDNode>(N)->getOrdering() == 4944 AtomicOrdering::SequentiallyConsistent) 4945 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 4946 MVT::Other, Res), 0); 4947 Results.push_back(Res); 4948 break; 4949 } 4950 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 4951 SDLoc DL(N); 4952 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 4953 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 4954 lowerI128ToGR128(DAG, N->getOperand(2)), 4955 lowerI128ToGR128(DAG, N->getOperand(3)) }; 4956 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4957 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 4958 DL, Tys, Ops, MVT::i128, MMO); 4959 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 4960 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4961 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 4962 Results.push_back(lowerGR128ToI128(DAG, Res)); 4963 Results.push_back(Success); 4964 Results.push_back(Res.getValue(2)); 4965 break; 4966 } 4967 default: 4968 llvm_unreachable("Unexpected node to lower"); 4969 } 4970 } 4971 4972 void 4973 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 4974 SmallVectorImpl<SDValue> &Results, 4975 SelectionDAG &DAG) const { 4976 return LowerOperationWrapper(N, Results, DAG); 4977 } 4978 4979 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4980 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4981 switch ((SystemZISD::NodeType)Opcode) { 4982 case SystemZISD::FIRST_NUMBER: break; 4983 OPCODE(RET_FLAG); 4984 OPCODE(CALL); 4985 OPCODE(SIBCALL); 4986 OPCODE(TLS_GDCALL); 4987 OPCODE(TLS_LDCALL); 4988 OPCODE(PCREL_WRAPPER); 4989 OPCODE(PCREL_OFFSET); 4990 OPCODE(IABS); 4991 OPCODE(ICMP); 4992 OPCODE(FCMP); 4993 OPCODE(TM); 4994 OPCODE(BR_CCMASK); 4995 OPCODE(SELECT_CCMASK); 4996 OPCODE(ADJDYNALLOC); 4997 OPCODE(POPCNT); 4998 OPCODE(SMUL_LOHI); 4999 OPCODE(UMUL_LOHI); 5000 OPCODE(SDIVREM); 5001 OPCODE(UDIVREM); 5002 OPCODE(SADDO); 5003 OPCODE(SSUBO); 5004 OPCODE(UADDO); 5005 OPCODE(USUBO); 5006 OPCODE(ADDCARRY); 5007 OPCODE(SUBCARRY); 5008 OPCODE(GET_CCMASK); 5009 OPCODE(MVC); 5010 OPCODE(MVC_LOOP); 5011 OPCODE(NC); 5012 OPCODE(NC_LOOP); 5013 OPCODE(OC); 5014 OPCODE(OC_LOOP); 5015 OPCODE(XC); 5016 OPCODE(XC_LOOP); 5017 OPCODE(CLC); 5018 OPCODE(CLC_LOOP); 5019 OPCODE(STPCPY); 5020 OPCODE(STRCMP); 5021 OPCODE(SEARCH_STRING); 5022 OPCODE(IPM); 5023 OPCODE(MEMBARRIER); 5024 OPCODE(TBEGIN); 5025 OPCODE(TBEGIN_NOFLOAT); 5026 OPCODE(TEND); 5027 OPCODE(BYTE_MASK); 5028 OPCODE(ROTATE_MASK); 5029 OPCODE(REPLICATE); 5030 OPCODE(JOIN_DWORDS); 5031 OPCODE(SPLAT); 5032 OPCODE(MERGE_HIGH); 5033 OPCODE(MERGE_LOW); 5034 OPCODE(SHL_DOUBLE); 5035 OPCODE(PERMUTE_DWORDS); 5036 OPCODE(PERMUTE); 5037 OPCODE(PACK); 5038 OPCODE(PACKS_CC); 5039 OPCODE(PACKLS_CC); 5040 OPCODE(UNPACK_HIGH); 5041 OPCODE(UNPACKL_HIGH); 5042 OPCODE(UNPACK_LOW); 5043 OPCODE(UNPACKL_LOW); 5044 OPCODE(VSHL_BY_SCALAR); 5045 OPCODE(VSRL_BY_SCALAR); 5046 OPCODE(VSRA_BY_SCALAR); 5047 OPCODE(VSUM); 5048 OPCODE(VICMPE); 5049 OPCODE(VICMPH); 5050 OPCODE(VICMPHL); 5051 OPCODE(VICMPES); 5052 OPCODE(VICMPHS); 5053 OPCODE(VICMPHLS); 5054 OPCODE(VFCMPE); 5055 OPCODE(VFCMPH); 5056 OPCODE(VFCMPHE); 5057 OPCODE(VFCMPES); 5058 OPCODE(VFCMPHS); 5059 OPCODE(VFCMPHES); 5060 OPCODE(VFTCI); 5061 OPCODE(VEXTEND); 5062 OPCODE(VROUND); 5063 OPCODE(VTM); 5064 OPCODE(VFAE_CC); 5065 OPCODE(VFAEZ_CC); 5066 OPCODE(VFEE_CC); 5067 OPCODE(VFEEZ_CC); 5068 OPCODE(VFENE_CC); 5069 OPCODE(VFENEZ_CC); 5070 OPCODE(VISTR_CC); 5071 OPCODE(VSTRC_CC); 5072 OPCODE(VSTRCZ_CC); 5073 OPCODE(TDC); 5074 OPCODE(ATOMIC_SWAPW); 5075 OPCODE(ATOMIC_LOADW_ADD); 5076 OPCODE(ATOMIC_LOADW_SUB); 5077 OPCODE(ATOMIC_LOADW_AND); 5078 OPCODE(ATOMIC_LOADW_OR); 5079 OPCODE(ATOMIC_LOADW_XOR); 5080 OPCODE(ATOMIC_LOADW_NAND); 5081 OPCODE(ATOMIC_LOADW_MIN); 5082 OPCODE(ATOMIC_LOADW_MAX); 5083 OPCODE(ATOMIC_LOADW_UMIN); 5084 OPCODE(ATOMIC_LOADW_UMAX); 5085 OPCODE(ATOMIC_CMP_SWAPW); 5086 OPCODE(ATOMIC_CMP_SWAP); 5087 OPCODE(ATOMIC_LOAD_128); 5088 OPCODE(ATOMIC_STORE_128); 5089 OPCODE(ATOMIC_CMP_SWAP_128); 5090 OPCODE(LRV); 5091 OPCODE(STRV); 5092 OPCODE(PREFETCH); 5093 } 5094 return nullptr; 5095 #undef OPCODE 5096 } 5097 5098 // Return true if VT is a vector whose elements are a whole number of bytes 5099 // in width. Also check for presence of vector support. 5100 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5101 if (!Subtarget.hasVector()) 5102 return false; 5103 5104 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5105 } 5106 5107 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5108 // producing a result of type ResVT. Op is a possibly bitcast version 5109 // of the input vector and Index is the index (based on type VecVT) that 5110 // should be extracted. Return the new extraction if a simplification 5111 // was possible or if Force is true. 5112 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5113 EVT VecVT, SDValue Op, 5114 unsigned Index, 5115 DAGCombinerInfo &DCI, 5116 bool Force) const { 5117 SelectionDAG &DAG = DCI.DAG; 5118 5119 // The number of bytes being extracted. 5120 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5121 5122 for (;;) { 5123 unsigned Opcode = Op.getOpcode(); 5124 if (Opcode == ISD::BITCAST) 5125 // Look through bitcasts. 5126 Op = Op.getOperand(0); 5127 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5128 canTreatAsByteVector(Op.getValueType())) { 5129 // Get a VPERM-like permute mask and see whether the bytes covered 5130 // by the extracted element are a contiguous sequence from one 5131 // source operand. 5132 SmallVector<int, SystemZ::VectorBytes> Bytes; 5133 if (!getVPermMask(Op, Bytes)) 5134 break; 5135 int First; 5136 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5137 BytesPerElement, First)) 5138 break; 5139 if (First < 0) 5140 return DAG.getUNDEF(ResVT); 5141 // Make sure the contiguous sequence starts at a multiple of the 5142 // original element size. 5143 unsigned Byte = unsigned(First) % Bytes.size(); 5144 if (Byte % BytesPerElement != 0) 5145 break; 5146 // We can get the extracted value directly from an input. 5147 Index = Byte / BytesPerElement; 5148 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5149 Force = true; 5150 } else if (Opcode == ISD::BUILD_VECTOR && 5151 canTreatAsByteVector(Op.getValueType())) { 5152 // We can only optimize this case if the BUILD_VECTOR elements are 5153 // at least as wide as the extracted value. 5154 EVT OpVT = Op.getValueType(); 5155 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5156 if (OpBytesPerElement < BytesPerElement) 5157 break; 5158 // Make sure that the least-significant bit of the extracted value 5159 // is the least significant bit of an input. 5160 unsigned End = (Index + 1) * BytesPerElement; 5161 if (End % OpBytesPerElement != 0) 5162 break; 5163 // We're extracting the low part of one operand of the BUILD_VECTOR. 5164 Op = Op.getOperand(End / OpBytesPerElement - 1); 5165 if (!Op.getValueType().isInteger()) { 5166 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5167 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5168 DCI.AddToWorklist(Op.getNode()); 5169 } 5170 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5171 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5172 if (VT != ResVT) { 5173 DCI.AddToWorklist(Op.getNode()); 5174 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5175 } 5176 return Op; 5177 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5178 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5179 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5180 canTreatAsByteVector(Op.getValueType()) && 5181 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5182 // Make sure that only the unextended bits are significant. 5183 EVT ExtVT = Op.getValueType(); 5184 EVT OpVT = Op.getOperand(0).getValueType(); 5185 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5186 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5187 unsigned Byte = Index * BytesPerElement; 5188 unsigned SubByte = Byte % ExtBytesPerElement; 5189 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5190 if (SubByte < MinSubByte || 5191 SubByte + BytesPerElement > ExtBytesPerElement) 5192 break; 5193 // Get the byte offset of the unextended element 5194 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5195 // ...then add the byte offset relative to that element. 5196 Byte += SubByte - MinSubByte; 5197 if (Byte % BytesPerElement != 0) 5198 break; 5199 Op = Op.getOperand(0); 5200 Index = Byte / BytesPerElement; 5201 Force = true; 5202 } else 5203 break; 5204 } 5205 if (Force) { 5206 if (Op.getValueType() != VecVT) { 5207 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5208 DCI.AddToWorklist(Op.getNode()); 5209 } 5210 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5211 DAG.getConstant(Index, DL, MVT::i32)); 5212 } 5213 return SDValue(); 5214 } 5215 5216 // Optimize vector operations in scalar value Op on the basis that Op 5217 // is truncated to TruncVT. 5218 SDValue SystemZTargetLowering::combineTruncateExtract( 5219 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5220 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5221 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5222 // of type TruncVT. 5223 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5224 TruncVT.getSizeInBits() % 8 == 0) { 5225 SDValue Vec = Op.getOperand(0); 5226 EVT VecVT = Vec.getValueType(); 5227 if (canTreatAsByteVector(VecVT)) { 5228 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5229 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5230 unsigned TruncBytes = TruncVT.getStoreSize(); 5231 if (BytesPerElement % TruncBytes == 0) { 5232 // Calculate the value of Y' in the above description. We are 5233 // splitting the original elements into Scale equal-sized pieces 5234 // and for truncation purposes want the last (least-significant) 5235 // of these pieces for IndexN. This is easiest to do by calculating 5236 // the start index of the following element and then subtracting 1. 5237 unsigned Scale = BytesPerElement / TruncBytes; 5238 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5239 5240 // Defer the creation of the bitcast from X to combineExtract, 5241 // which might be able to optimize the extraction. 5242 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5243 VecVT.getStoreSize() / TruncBytes); 5244 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5245 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5246 } 5247 } 5248 } 5249 } 5250 return SDValue(); 5251 } 5252 5253 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5254 SDNode *N, DAGCombinerInfo &DCI) const { 5255 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5256 SelectionDAG &DAG = DCI.DAG; 5257 SDValue N0 = N->getOperand(0); 5258 EVT VT = N->getValueType(0); 5259 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5260 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5261 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5262 if (TrueOp && FalseOp) { 5263 SDLoc DL(N0); 5264 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5265 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5266 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5267 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5268 // If N0 has multiple uses, change other uses as well. 5269 if (!N0.hasOneUse()) { 5270 SDValue TruncSelect = 5271 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5272 DCI.CombineTo(N0.getNode(), TruncSelect); 5273 } 5274 return NewSelect; 5275 } 5276 } 5277 return SDValue(); 5278 } 5279 5280 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5281 SDNode *N, DAGCombinerInfo &DCI) const { 5282 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5283 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5284 // into (select_cc LHS, RHS, -1, 0, COND) 5285 SelectionDAG &DAG = DCI.DAG; 5286 SDValue N0 = N->getOperand(0); 5287 EVT VT = N->getValueType(0); 5288 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5289 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5290 N0 = N0.getOperand(0); 5291 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5292 SDLoc DL(N0); 5293 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5294 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5295 N0.getOperand(2) }; 5296 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5297 } 5298 return SDValue(); 5299 } 5300 5301 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5302 SDNode *N, DAGCombinerInfo &DCI) const { 5303 // Convert (sext (ashr (shl X, C1), C2)) to 5304 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5305 // cheap as narrower ones. 5306 SelectionDAG &DAG = DCI.DAG; 5307 SDValue N0 = N->getOperand(0); 5308 EVT VT = N->getValueType(0); 5309 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5310 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5311 SDValue Inner = N0.getOperand(0); 5312 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5313 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5314 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5315 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5316 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5317 EVT ShiftVT = N0.getOperand(1).getValueType(); 5318 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5319 Inner.getOperand(0)); 5320 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5321 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5322 ShiftVT)); 5323 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5324 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5325 } 5326 } 5327 } 5328 return SDValue(); 5329 } 5330 5331 SDValue SystemZTargetLowering::combineMERGE( 5332 SDNode *N, DAGCombinerInfo &DCI) const { 5333 SelectionDAG &DAG = DCI.DAG; 5334 unsigned Opcode = N->getOpcode(); 5335 SDValue Op0 = N->getOperand(0); 5336 SDValue Op1 = N->getOperand(1); 5337 if (Op0.getOpcode() == ISD::BITCAST) 5338 Op0 = Op0.getOperand(0); 5339 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 5340 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 5341 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5342 // for v4f32. 5343 if (Op1 == N->getOperand(0)) 5344 return Op1; 5345 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5346 EVT VT = Op1.getValueType(); 5347 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5348 if (ElemBytes <= 4) { 5349 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5350 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5351 EVT InVT = VT.changeVectorElementTypeToInteger(); 5352 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5353 SystemZ::VectorBytes / ElemBytes / 2); 5354 if (VT != InVT) { 5355 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5356 DCI.AddToWorklist(Op1.getNode()); 5357 } 5358 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5359 DCI.AddToWorklist(Op.getNode()); 5360 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5361 } 5362 } 5363 return SDValue(); 5364 } 5365 5366 SDValue SystemZTargetLowering::combineSTORE( 5367 SDNode *N, DAGCombinerInfo &DCI) const { 5368 SelectionDAG &DAG = DCI.DAG; 5369 auto *SN = cast<StoreSDNode>(N); 5370 auto &Op1 = N->getOperand(1); 5371 EVT MemVT = SN->getMemoryVT(); 5372 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5373 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5374 // If X has wider elements then convert it to: 5375 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5376 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5377 if (SDValue Value = 5378 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5379 DCI.AddToWorklist(Value.getNode()); 5380 5381 // Rewrite the store with the new form of stored value. 5382 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5383 SN->getBasePtr(), SN->getMemoryVT(), 5384 SN->getMemOperand()); 5385 } 5386 } 5387 // Combine STORE (BSWAP) into STRVH/STRV/STRVG 5388 if (!SN->isTruncatingStore() && 5389 Op1.getOpcode() == ISD::BSWAP && 5390 Op1.getNode()->hasOneUse() && 5391 (Op1.getValueType() == MVT::i16 || 5392 Op1.getValueType() == MVT::i32 || 5393 Op1.getValueType() == MVT::i64)) { 5394 5395 SDValue BSwapOp = Op1.getOperand(0); 5396 5397 if (BSwapOp.getValueType() == MVT::i16) 5398 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5399 5400 SDValue Ops[] = { 5401 N->getOperand(0), BSwapOp, N->getOperand(2), 5402 DAG.getValueType(Op1.getValueType()) 5403 }; 5404 5405 return 5406 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5407 Ops, MemVT, SN->getMemOperand()); 5408 } 5409 return SDValue(); 5410 } 5411 5412 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5413 SDNode *N, DAGCombinerInfo &DCI) const { 5414 5415 if (!Subtarget.hasVector()) 5416 return SDValue(); 5417 5418 // Try to simplify a vector extraction. 5419 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5420 SDValue Op0 = N->getOperand(0); 5421 EVT VecVT = Op0.getValueType(); 5422 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5423 IndexN->getZExtValue(), DCI, false); 5424 } 5425 return SDValue(); 5426 } 5427 5428 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5429 SDNode *N, DAGCombinerInfo &DCI) const { 5430 SelectionDAG &DAG = DCI.DAG; 5431 // (join_dwords X, X) == (replicate X) 5432 if (N->getOperand(0) == N->getOperand(1)) 5433 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5434 N->getOperand(0)); 5435 return SDValue(); 5436 } 5437 5438 SDValue SystemZTargetLowering::combineFP_ROUND( 5439 SDNode *N, DAGCombinerInfo &DCI) const { 5440 // (fpround (extract_vector_elt X 0)) 5441 // (fpround (extract_vector_elt X 1)) -> 5442 // (extract_vector_elt (VROUND X) 0) 5443 // (extract_vector_elt (VROUND X) 1) 5444 // 5445 // This is a special case since the target doesn't really support v2f32s. 5446 SelectionDAG &DAG = DCI.DAG; 5447 SDValue Op0 = N->getOperand(0); 5448 if (N->getValueType(0) == MVT::f32 && 5449 Op0.hasOneUse() && 5450 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5451 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5452 Op0.getOperand(1).getOpcode() == ISD::Constant && 5453 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5454 SDValue Vec = Op0.getOperand(0); 5455 for (auto *U : Vec->uses()) { 5456 if (U != Op0.getNode() && 5457 U->hasOneUse() && 5458 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5459 U->getOperand(0) == Vec && 5460 U->getOperand(1).getOpcode() == ISD::Constant && 5461 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5462 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5463 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5464 OtherRound.getOperand(0) == SDValue(U, 0) && 5465 OtherRound.getValueType() == MVT::f32) { 5466 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5467 MVT::v4f32, Vec); 5468 DCI.AddToWorklist(VRound.getNode()); 5469 SDValue Extract1 = 5470 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5471 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5472 DCI.AddToWorklist(Extract1.getNode()); 5473 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5474 SDValue Extract0 = 5475 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5476 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5477 return Extract0; 5478 } 5479 } 5480 } 5481 } 5482 return SDValue(); 5483 } 5484 5485 SDValue SystemZTargetLowering::combineBSWAP( 5486 SDNode *N, DAGCombinerInfo &DCI) const { 5487 SelectionDAG &DAG = DCI.DAG; 5488 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG 5489 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5490 N->getOperand(0).hasOneUse() && 5491 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 || 5492 N->getValueType(0) == MVT::i64)) { 5493 SDValue Load = N->getOperand(0); 5494 LoadSDNode *LD = cast<LoadSDNode>(Load); 5495 5496 // Create the byte-swapping load. 5497 SDValue Ops[] = { 5498 LD->getChain(), // Chain 5499 LD->getBasePtr(), // Ptr 5500 DAG.getValueType(N->getValueType(0)) // VT 5501 }; 5502 SDValue BSLoad = 5503 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 5504 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 5505 MVT::i64 : MVT::i32, MVT::Other), 5506 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5507 5508 // If this is an i16 load, insert the truncate. 5509 SDValue ResVal = BSLoad; 5510 if (N->getValueType(0) == MVT::i16) 5511 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5512 5513 // First, combine the bswap away. This makes the value produced by the 5514 // load dead. 5515 DCI.CombineTo(N, ResVal); 5516 5517 // Next, combine the load away, we give it a bogus result value but a real 5518 // chain result. The result value is dead because the bswap is dead. 5519 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5520 5521 // Return N so it doesn't get rechecked! 5522 return SDValue(N, 0); 5523 } 5524 return SDValue(); 5525 } 5526 5527 SDValue SystemZTargetLowering::combineSHIFTROT( 5528 SDNode *N, DAGCombinerInfo &DCI) const { 5529 5530 SelectionDAG &DAG = DCI.DAG; 5531 5532 // Shift/rotate instructions only use the last 6 bits of the second operand 5533 // register. If the second operand is the result of an AND with an immediate 5534 // value that has its last 6 bits set, we can safely remove the AND operation. 5535 // 5536 // If the AND operation doesn't have the last 6 bits set, we can't remove it 5537 // entirely, but we can still truncate it to a 16-bit value. This prevents 5538 // us from ending up with a NILL with a signed operand, which will cause the 5539 // instruction printer to abort. 5540 SDValue N1 = N->getOperand(1); 5541 if (N1.getOpcode() == ISD::AND) { 5542 SDValue AndMaskOp = N1->getOperand(1); 5543 auto *AndMask = dyn_cast<ConstantSDNode>(AndMaskOp); 5544 5545 // The AND mask is constant 5546 if (AndMask) { 5547 auto AmtVal = AndMask->getZExtValue(); 5548 5549 // Bottom 6 bits are set 5550 if ((AmtVal & 0x3f) == 0x3f) { 5551 SDValue AndOp = N1->getOperand(0); 5552 5553 // This is the only use, so remove the node 5554 if (N1.hasOneUse()) { 5555 // Combine the AND away 5556 DCI.CombineTo(N1.getNode(), AndOp); 5557 5558 // Return N so it isn't rechecked 5559 return SDValue(N, 0); 5560 5561 // The node will be reused, so create a new node for this one use 5562 } else { 5563 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), 5564 N->getValueType(0), N->getOperand(0), 5565 AndOp); 5566 DCI.AddToWorklist(Replace.getNode()); 5567 5568 return Replace; 5569 } 5570 5571 // We can't remove the AND, but we can use NILL here (normally we would 5572 // use NILF). Only keep the last 16 bits of the mask. The actual 5573 // transformation will be handled by .td definitions. 5574 } else if (AmtVal >> 16 != 0) { 5575 SDValue AndOp = N1->getOperand(0); 5576 5577 auto NewMask = DAG.getConstant(AndMask->getZExtValue() & 0x0000ffff, 5578 SDLoc(AndMaskOp), 5579 AndMaskOp.getValueType()); 5580 5581 auto NewAnd = DAG.getNode(N1.getOpcode(), SDLoc(N1), N1.getValueType(), 5582 AndOp, NewMask); 5583 5584 SDValue Replace = DAG.getNode(N->getOpcode(), SDLoc(N), 5585 N->getValueType(0), N->getOperand(0), 5586 NewAnd); 5587 DCI.AddToWorklist(Replace.getNode()); 5588 5589 return Replace; 5590 } 5591 } 5592 } 5593 5594 return SDValue(); 5595 } 5596 5597 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 5598 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 5599 // set by the CCReg instruction using the CCValid / CCMask masks, 5600 // If the CCReg instruction is itself a (ICMP (SELECT_CCMASK)) testing 5601 // the condition code set by some other instruction, see whether we 5602 // can directly use that condition code. 5603 bool Invert = false; 5604 5605 // Verify that we have an appropriate mask for a EQ or NE comparison. 5606 if (CCValid != SystemZ::CCMASK_ICMP) 5607 return false; 5608 if (CCMask == SystemZ::CCMASK_CMP_NE) 5609 Invert = !Invert; 5610 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 5611 return false; 5612 5613 // Verify that we have an ICMP that is the user of a SELECT_CCMASK. 5614 SDNode *ICmp = CCReg.getNode(); 5615 if (ICmp->getOpcode() != SystemZISD::ICMP) 5616 return false; 5617 SDNode *Select = ICmp->getOperand(0).getNode(); 5618 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 5619 return false; 5620 5621 // Verify that the ICMP compares against one of select values. 5622 auto *CompareVal = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 5623 if (!CompareVal) 5624 return false; 5625 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 5626 if (!TrueVal) 5627 return false; 5628 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 5629 if (!FalseVal) 5630 return false; 5631 if (CompareVal->getZExtValue() == FalseVal->getZExtValue()) 5632 Invert = !Invert; 5633 else if (CompareVal->getZExtValue() != TrueVal->getZExtValue()) 5634 return false; 5635 5636 // Compute the effective CC mask for the new branch or select. 5637 auto *NewCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 5638 auto *NewCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 5639 if (!NewCCValid || !NewCCMask) 5640 return false; 5641 CCValid = NewCCValid->getZExtValue(); 5642 CCMask = NewCCMask->getZExtValue(); 5643 if (Invert) 5644 CCMask ^= CCValid; 5645 5646 // Return the updated CCReg link. 5647 CCReg = Select->getOperand(4); 5648 return true; 5649 } 5650 5651 SDValue SystemZTargetLowering::combineBR_CCMASK( 5652 SDNode *N, DAGCombinerInfo &DCI) const { 5653 SelectionDAG &DAG = DCI.DAG; 5654 5655 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 5656 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5657 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5658 if (!CCValid || !CCMask) 5659 return SDValue(); 5660 5661 int CCValidVal = CCValid->getZExtValue(); 5662 int CCMaskVal = CCMask->getZExtValue(); 5663 SDValue Chain = N->getOperand(0); 5664 SDValue CCReg = N->getOperand(4); 5665 5666 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 5667 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 5668 Chain, 5669 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32), 5670 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32), 5671 N->getOperand(3), CCReg); 5672 return SDValue(); 5673 } 5674 5675 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 5676 SDNode *N, DAGCombinerInfo &DCI) const { 5677 SelectionDAG &DAG = DCI.DAG; 5678 5679 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 5680 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5681 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 5682 if (!CCValid || !CCMask) 5683 return SDValue(); 5684 5685 int CCValidVal = CCValid->getZExtValue(); 5686 int CCMaskVal = CCMask->getZExtValue(); 5687 SDValue CCReg = N->getOperand(4); 5688 5689 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 5690 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 5691 N->getOperand(0), 5692 N->getOperand(1), 5693 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32), 5694 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32), 5695 CCReg); 5696 return SDValue(); 5697 } 5698 5699 5700 SDValue SystemZTargetLowering::combineGET_CCMASK( 5701 SDNode *N, DAGCombinerInfo &DCI) const { 5702 5703 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 5704 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5705 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5706 if (!CCValid || !CCMask) 5707 return SDValue(); 5708 int CCValidVal = CCValid->getZExtValue(); 5709 int CCMaskVal = CCMask->getZExtValue(); 5710 5711 SDValue Select = N->getOperand(0); 5712 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 5713 return SDValue(); 5714 5715 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 5716 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 5717 if (!SelectCCValid || !SelectCCMask) 5718 return SDValue(); 5719 int SelectCCValidVal = SelectCCValid->getZExtValue(); 5720 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 5721 5722 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 5723 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 5724 if (!TrueVal || !FalseVal) 5725 return SDValue(); 5726 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 5727 ; 5728 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 5729 SelectCCMaskVal ^= SelectCCValidVal; 5730 else 5731 return SDValue(); 5732 5733 if (SelectCCValidVal & ~CCValidVal) 5734 return SDValue(); 5735 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 5736 return SDValue(); 5737 5738 return Select->getOperand(4); 5739 } 5740 5741 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 5742 DAGCombinerInfo &DCI) const { 5743 switch(N->getOpcode()) { 5744 default: break; 5745 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 5746 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 5747 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 5748 case SystemZISD::MERGE_HIGH: 5749 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 5750 case ISD::STORE: return combineSTORE(N, DCI); 5751 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 5752 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 5753 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 5754 case ISD::BSWAP: return combineBSWAP(N, DCI); 5755 case ISD::SHL: 5756 case ISD::SRA: 5757 case ISD::SRL: 5758 case ISD::ROTL: return combineSHIFTROT(N, DCI); 5759 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 5760 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 5761 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 5762 } 5763 5764 return SDValue(); 5765 } 5766 5767 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 5768 // are for Op. 5769 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 5770 unsigned OpNo) { 5771 EVT VT = Op.getValueType(); 5772 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 5773 APInt SrcDemE; 5774 unsigned Opcode = Op.getOpcode(); 5775 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 5776 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5777 switch (Id) { 5778 case Intrinsic::s390_vpksh: // PACKS 5779 case Intrinsic::s390_vpksf: 5780 case Intrinsic::s390_vpksg: 5781 case Intrinsic::s390_vpkshs: // PACKS_CC 5782 case Intrinsic::s390_vpksfs: 5783 case Intrinsic::s390_vpksgs: 5784 case Intrinsic::s390_vpklsh: // PACKLS 5785 case Intrinsic::s390_vpklsf: 5786 case Intrinsic::s390_vpklsg: 5787 case Intrinsic::s390_vpklshs: // PACKLS_CC 5788 case Intrinsic::s390_vpklsfs: 5789 case Intrinsic::s390_vpklsgs: 5790 // VECTOR PACK truncates the elements of two source vectors into one. 5791 SrcDemE = DemandedElts; 5792 if (OpNo == 2) 5793 SrcDemE.lshrInPlace(NumElts / 2); 5794 SrcDemE = SrcDemE.trunc(NumElts / 2); 5795 break; 5796 // VECTOR UNPACK extends half the elements of the source vector. 5797 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 5798 case Intrinsic::s390_vuphh: 5799 case Intrinsic::s390_vuphf: 5800 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 5801 case Intrinsic::s390_vuplhh: 5802 case Intrinsic::s390_vuplhf: 5803 SrcDemE = APInt(NumElts * 2, 0); 5804 SrcDemE.insertBits(DemandedElts, 0); 5805 break; 5806 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 5807 case Intrinsic::s390_vuplhw: 5808 case Intrinsic::s390_vuplf: 5809 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 5810 case Intrinsic::s390_vupllh: 5811 case Intrinsic::s390_vupllf: 5812 SrcDemE = APInt(NumElts * 2, 0); 5813 SrcDemE.insertBits(DemandedElts, NumElts); 5814 break; 5815 case Intrinsic::s390_vpdi: { 5816 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 5817 SrcDemE = APInt(NumElts, 0); 5818 if (!DemandedElts[OpNo - 1]) 5819 break; 5820 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 5821 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 5822 // Demand input element 0 or 1, given by the mask bit value. 5823 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 5824 break; 5825 } 5826 case Intrinsic::s390_vsldb: { 5827 // VECTOR SHIFT LEFT DOUBLE BY BYTE 5828 assert(VT == MVT::v16i8 && "Unexpected type."); 5829 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 5830 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 5831 unsigned NumSrc0Els = 16 - FirstIdx; 5832 SrcDemE = APInt(NumElts, 0); 5833 if (OpNo == 1) { 5834 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 5835 SrcDemE.insertBits(DemEls, FirstIdx); 5836 } else { 5837 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 5838 SrcDemE.insertBits(DemEls, 0); 5839 } 5840 break; 5841 } 5842 case Intrinsic::s390_vperm: 5843 SrcDemE = APInt(NumElts, 1); 5844 break; 5845 default: 5846 llvm_unreachable("Unhandled intrinsic."); 5847 break; 5848 } 5849 } else { 5850 switch (Opcode) { 5851 case SystemZISD::JOIN_DWORDS: 5852 // Scalar operand. 5853 SrcDemE = APInt(1, 1); 5854 break; 5855 case SystemZISD::SELECT_CCMASK: 5856 SrcDemE = DemandedElts; 5857 break; 5858 default: 5859 llvm_unreachable("Unhandled opcode."); 5860 break; 5861 } 5862 } 5863 return SrcDemE; 5864 } 5865 5866 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 5867 const APInt &DemandedElts, 5868 const SelectionDAG &DAG, unsigned Depth, 5869 unsigned OpNo) { 5870 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 5871 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 5872 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 5873 KnownBits LHSKnown(SrcBitWidth), RHSKnown(SrcBitWidth); 5874 DAG.computeKnownBits(Op.getOperand(OpNo), LHSKnown, Src0DemE, Depth + 1); 5875 DAG.computeKnownBits(Op.getOperand(OpNo + 1), RHSKnown, Src1DemE, Depth + 1); 5876 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 5877 Known.One = LHSKnown.One & RHSKnown.One; 5878 } 5879 5880 void 5881 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 5882 KnownBits &Known, 5883 const APInt &DemandedElts, 5884 const SelectionDAG &DAG, 5885 unsigned Depth) const { 5886 Known.resetAll(); 5887 5888 // Intrinsic CC result is returned in the two low bits. 5889 unsigned tmp0, tmp1; // not used 5890 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 5891 Known.Zero.setBitsFrom(2); 5892 return; 5893 } 5894 EVT VT = Op.getValueType(); 5895 if (Op.getResNo() != 0 || VT == MVT::Untyped) 5896 return; 5897 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 5898 "KnownBits does not match VT in bitwidth"); 5899 assert ((!VT.isVector() || 5900 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 5901 "DemandedElts does not match VT number of elements"); 5902 unsigned BitWidth = Known.getBitWidth(); 5903 unsigned Opcode = Op.getOpcode(); 5904 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 5905 bool IsLogical = false; 5906 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5907 switch (Id) { 5908 case Intrinsic::s390_vpksh: // PACKS 5909 case Intrinsic::s390_vpksf: 5910 case Intrinsic::s390_vpksg: 5911 case Intrinsic::s390_vpkshs: // PACKS_CC 5912 case Intrinsic::s390_vpksfs: 5913 case Intrinsic::s390_vpksgs: 5914 case Intrinsic::s390_vpklsh: // PACKLS 5915 case Intrinsic::s390_vpklsf: 5916 case Intrinsic::s390_vpklsg: 5917 case Intrinsic::s390_vpklshs: // PACKLS_CC 5918 case Intrinsic::s390_vpklsfs: 5919 case Intrinsic::s390_vpklsgs: 5920 case Intrinsic::s390_vpdi: 5921 case Intrinsic::s390_vsldb: 5922 case Intrinsic::s390_vperm: 5923 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 5924 break; 5925 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 5926 case Intrinsic::s390_vuplhh: 5927 case Intrinsic::s390_vuplhf: 5928 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 5929 case Intrinsic::s390_vupllh: 5930 case Intrinsic::s390_vupllf: 5931 IsLogical = true; 5932 LLVM_FALLTHROUGH; 5933 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 5934 case Intrinsic::s390_vuphh: 5935 case Intrinsic::s390_vuphf: 5936 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 5937 case Intrinsic::s390_vuplhw: 5938 case Intrinsic::s390_vuplf: { 5939 SDValue SrcOp = Op.getOperand(1); 5940 unsigned SrcBitWidth = SrcOp.getScalarValueSizeInBits(); 5941 Known = KnownBits(SrcBitWidth); 5942 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 5943 DAG.computeKnownBits(SrcOp, Known, SrcDemE, Depth + 1); 5944 if (IsLogical) { 5945 Known = Known.zext(BitWidth); 5946 Known.Zero.setBitsFrom(SrcBitWidth); 5947 } else 5948 Known = Known.sext(BitWidth); 5949 break; 5950 } 5951 default: 5952 break; 5953 } 5954 } else { 5955 switch (Opcode) { 5956 case SystemZISD::JOIN_DWORDS: 5957 case SystemZISD::SELECT_CCMASK: 5958 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 5959 break; 5960 case SystemZISD::REPLICATE: { 5961 SDValue SrcOp = Op.getOperand(0); 5962 DAG.computeKnownBits(SrcOp, Known, Depth + 1); 5963 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 5964 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 5965 break; 5966 } 5967 default: 5968 break; 5969 } 5970 } 5971 5972 // Known has the width of the source operand(s). Adjust if needed to match 5973 // the passed bitwidth. 5974 if (Known.getBitWidth() != BitWidth) 5975 Known = Known.zextOrTrunc(BitWidth); 5976 } 5977 5978 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 5979 const SelectionDAG &DAG, unsigned Depth, 5980 unsigned OpNo) { 5981 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 5982 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 5983 if (LHS == 1) return 1; // Early out. 5984 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 5985 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 5986 if (RHS == 1) return 1; // Early out. 5987 unsigned Common = std::min(LHS, RHS); 5988 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 5989 EVT VT = Op.getValueType(); 5990 unsigned VTBits = VT.getScalarSizeInBits(); 5991 if (SrcBitWidth > VTBits) { // PACK 5992 unsigned SrcExtraBits = SrcBitWidth - VTBits; 5993 if (Common > SrcExtraBits) 5994 return (Common - SrcExtraBits); 5995 return 1; 5996 } 5997 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 5998 return Common; 5999 } 6000 6001 unsigned 6002 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6003 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6004 unsigned Depth) const { 6005 if (Op.getResNo() != 0) 6006 return 1; 6007 unsigned Opcode = Op.getOpcode(); 6008 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6009 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6010 switch (Id) { 6011 case Intrinsic::s390_vpksh: // PACKS 6012 case Intrinsic::s390_vpksf: 6013 case Intrinsic::s390_vpksg: 6014 case Intrinsic::s390_vpkshs: // PACKS_CC 6015 case Intrinsic::s390_vpksfs: 6016 case Intrinsic::s390_vpksgs: 6017 case Intrinsic::s390_vpklsh: // PACKLS 6018 case Intrinsic::s390_vpklsf: 6019 case Intrinsic::s390_vpklsg: 6020 case Intrinsic::s390_vpklshs: // PACKLS_CC 6021 case Intrinsic::s390_vpklsfs: 6022 case Intrinsic::s390_vpklsgs: 6023 case Intrinsic::s390_vpdi: 6024 case Intrinsic::s390_vsldb: 6025 case Intrinsic::s390_vperm: 6026 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6027 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6028 case Intrinsic::s390_vuphh: 6029 case Intrinsic::s390_vuphf: 6030 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6031 case Intrinsic::s390_vuplhw: 6032 case Intrinsic::s390_vuplf: { 6033 SDValue PackedOp = Op.getOperand(1); 6034 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6035 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6036 EVT VT = Op.getValueType(); 6037 unsigned VTBits = VT.getScalarSizeInBits(); 6038 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6039 return Tmp; 6040 } 6041 default: 6042 break; 6043 } 6044 } else { 6045 switch (Opcode) { 6046 case SystemZISD::SELECT_CCMASK: 6047 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6048 default: 6049 break; 6050 } 6051 } 6052 6053 return 1; 6054 } 6055 6056 //===----------------------------------------------------------------------===// 6057 // Custom insertion 6058 //===----------------------------------------------------------------------===// 6059 6060 // Create a new basic block after MBB. 6061 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 6062 MachineFunction &MF = *MBB->getParent(); 6063 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 6064 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 6065 return NewMBB; 6066 } 6067 6068 // Split MBB after MI and return the new block (the one that contains 6069 // instructions after MI). 6070 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 6071 MachineBasicBlock *MBB) { 6072 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6073 NewMBB->splice(NewMBB->begin(), MBB, 6074 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6075 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6076 return NewMBB; 6077 } 6078 6079 // Split MBB before MI and return the new block (the one that contains MI). 6080 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6081 MachineBasicBlock *MBB) { 6082 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6083 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6084 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6085 return NewMBB; 6086 } 6087 6088 // Force base value Base into a register before MI. Return the register. 6089 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base, 6090 const SystemZInstrInfo *TII) { 6091 if (Base.isReg()) 6092 return Base.getReg(); 6093 6094 MachineBasicBlock *MBB = MI.getParent(); 6095 MachineFunction &MF = *MBB->getParent(); 6096 MachineRegisterInfo &MRI = MF.getRegInfo(); 6097 6098 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6099 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6100 .add(Base) 6101 .addImm(0) 6102 .addReg(0); 6103 return Reg; 6104 } 6105 6106 // The CC operand of MI might be missing a kill marker because there 6107 // were multiple uses of CC, and ISel didn't know which to mark. 6108 // Figure out whether MI should have had a kill marker. 6109 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6110 // Scan forward through BB for a use/def of CC. 6111 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6112 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6113 const MachineInstr& mi = *miI; 6114 if (mi.readsRegister(SystemZ::CC)) 6115 return false; 6116 if (mi.definesRegister(SystemZ::CC)) 6117 break; // Should have kill-flag - update below. 6118 } 6119 6120 // If we hit the end of the block, check whether CC is live into a 6121 // successor. 6122 if (miI == MBB->end()) { 6123 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6124 if ((*SI)->isLiveIn(SystemZ::CC)) 6125 return false; 6126 } 6127 6128 return true; 6129 } 6130 6131 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6132 // together with other Select pseudo-opcodes into a single basic-block with 6133 // a conditional jump around it. 6134 static bool isSelectPseudo(MachineInstr &MI) { 6135 switch (MI.getOpcode()) { 6136 case SystemZ::Select32: 6137 case SystemZ::Select64: 6138 case SystemZ::SelectF32: 6139 case SystemZ::SelectF64: 6140 case SystemZ::SelectF128: 6141 case SystemZ::SelectVR32: 6142 case SystemZ::SelectVR64: 6143 case SystemZ::SelectVR128: 6144 return true; 6145 6146 default: 6147 return false; 6148 } 6149 } 6150 6151 // Helper function, which inserts PHI functions into SinkMBB: 6152 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6153 // where %FalseValue(i) and %TrueValue(i) are taken from the consequent Selects 6154 // in [MIItBegin, MIItEnd) range. 6155 static void createPHIsForSelects(MachineBasicBlock::iterator MIItBegin, 6156 MachineBasicBlock::iterator MIItEnd, 6157 MachineBasicBlock *TrueMBB, 6158 MachineBasicBlock *FalseMBB, 6159 MachineBasicBlock *SinkMBB) { 6160 MachineFunction *MF = TrueMBB->getParent(); 6161 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6162 6163 unsigned CCValid = MIItBegin->getOperand(3).getImm(); 6164 unsigned CCMask = MIItBegin->getOperand(4).getImm(); 6165 DebugLoc DL = MIItBegin->getDebugLoc(); 6166 6167 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6168 6169 // As we are creating the PHIs, we have to be careful if there is more than 6170 // one. Later Selects may reference the results of earlier Selects, but later 6171 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6172 // That also means that PHI construction must work forward from earlier to 6173 // later, and that the code must maintain a mapping from earlier PHI's 6174 // destination registers, and the registers that went into the PHI. 6175 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6176 6177 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) { 6178 unsigned DestReg = MIIt->getOperand(0).getReg(); 6179 unsigned TrueReg = MIIt->getOperand(1).getReg(); 6180 unsigned FalseReg = MIIt->getOperand(2).getReg(); 6181 6182 // If this Select we are generating is the opposite condition from 6183 // the jump we generated, then we have to swap the operands for the 6184 // PHI that is going to be generated. 6185 if (MIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) 6186 std::swap(TrueReg, FalseReg); 6187 6188 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6189 TrueReg = RegRewriteTable[TrueReg].first; 6190 6191 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6192 FalseReg = RegRewriteTable[FalseReg].second; 6193 6194 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6195 .addReg(TrueReg).addMBB(TrueMBB) 6196 .addReg(FalseReg).addMBB(FalseMBB); 6197 6198 // Add this PHI to the rewrite table. 6199 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6200 } 6201 } 6202 6203 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6204 MachineBasicBlock * 6205 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6206 MachineBasicBlock *MBB) const { 6207 const SystemZInstrInfo *TII = 6208 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6209 6210 unsigned CCValid = MI.getOperand(3).getImm(); 6211 unsigned CCMask = MI.getOperand(4).getImm(); 6212 DebugLoc DL = MI.getDebugLoc(); 6213 6214 // If we have a sequence of Select* pseudo instructions using the 6215 // same condition code value, we want to expand all of them into 6216 // a single pair of basic blocks using the same condition. 6217 MachineInstr *LastMI = &MI; 6218 MachineBasicBlock::iterator NextMIIt = 6219 std::next(MachineBasicBlock::iterator(MI)); 6220 6221 if (isSelectPseudo(MI)) 6222 while (NextMIIt != MBB->end() && isSelectPseudo(*NextMIIt) && 6223 NextMIIt->getOperand(3).getImm() == CCValid && 6224 (NextMIIt->getOperand(4).getImm() == CCMask || 6225 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask))) { 6226 LastMI = &*NextMIIt; 6227 ++NextMIIt; 6228 } 6229 6230 MachineBasicBlock *StartMBB = MBB; 6231 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6232 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6233 6234 // Unless CC was killed in the last Select instruction, mark it as 6235 // live-in to both FalseMBB and JoinMBB. 6236 if (!LastMI->killsRegister(SystemZ::CC) && !checkCCKill(*LastMI, JoinMBB)) { 6237 FalseMBB->addLiveIn(SystemZ::CC); 6238 JoinMBB->addLiveIn(SystemZ::CC); 6239 } 6240 6241 // StartMBB: 6242 // BRC CCMask, JoinMBB 6243 // # fallthrough to FalseMBB 6244 MBB = StartMBB; 6245 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6246 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6247 MBB->addSuccessor(JoinMBB); 6248 MBB->addSuccessor(FalseMBB); 6249 6250 // FalseMBB: 6251 // # fallthrough to JoinMBB 6252 MBB = FalseMBB; 6253 MBB->addSuccessor(JoinMBB); 6254 6255 // JoinMBB: 6256 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 6257 // ... 6258 MBB = JoinMBB; 6259 MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); 6260 MachineBasicBlock::iterator MIItEnd = 6261 std::next(MachineBasicBlock::iterator(LastMI)); 6262 createPHIsForSelects(MIItBegin, MIItEnd, StartMBB, FalseMBB, MBB); 6263 6264 StartMBB->erase(MIItBegin, MIItEnd); 6265 return JoinMBB; 6266 } 6267 6268 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 6269 // StoreOpcode is the store to use and Invert says whether the store should 6270 // happen when the condition is false rather than true. If a STORE ON 6271 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 6272 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 6273 MachineBasicBlock *MBB, 6274 unsigned StoreOpcode, 6275 unsigned STOCOpcode, 6276 bool Invert) const { 6277 const SystemZInstrInfo *TII = 6278 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6279 6280 unsigned SrcReg = MI.getOperand(0).getReg(); 6281 MachineOperand Base = MI.getOperand(1); 6282 int64_t Disp = MI.getOperand(2).getImm(); 6283 unsigned IndexReg = MI.getOperand(3).getReg(); 6284 unsigned CCValid = MI.getOperand(4).getImm(); 6285 unsigned CCMask = MI.getOperand(5).getImm(); 6286 DebugLoc DL = MI.getDebugLoc(); 6287 6288 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 6289 6290 // Use STOCOpcode if possible. We could use different store patterns in 6291 // order to avoid matching the index register, but the performance trade-offs 6292 // might be more complicated in that case. 6293 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 6294 if (Invert) 6295 CCMask ^= CCValid; 6296 6297 // ISel pattern matching also adds a load memory operand of the same 6298 // address, so take special care to find the storing memory operand. 6299 MachineMemOperand *MMO = nullptr; 6300 for (auto *I : MI.memoperands()) 6301 if (I->isStore()) { 6302 MMO = I; 6303 break; 6304 } 6305 6306 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 6307 .addReg(SrcReg) 6308 .add(Base) 6309 .addImm(Disp) 6310 .addImm(CCValid) 6311 .addImm(CCMask) 6312 .addMemOperand(MMO); 6313 6314 MI.eraseFromParent(); 6315 return MBB; 6316 } 6317 6318 // Get the condition needed to branch around the store. 6319 if (!Invert) 6320 CCMask ^= CCValid; 6321 6322 MachineBasicBlock *StartMBB = MBB; 6323 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6324 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6325 6326 // Unless CC was killed in the CondStore instruction, mark it as 6327 // live-in to both FalseMBB and JoinMBB. 6328 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 6329 FalseMBB->addLiveIn(SystemZ::CC); 6330 JoinMBB->addLiveIn(SystemZ::CC); 6331 } 6332 6333 // StartMBB: 6334 // BRC CCMask, JoinMBB 6335 // # fallthrough to FalseMBB 6336 MBB = StartMBB; 6337 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6338 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6339 MBB->addSuccessor(JoinMBB); 6340 MBB->addSuccessor(FalseMBB); 6341 6342 // FalseMBB: 6343 // store %SrcReg, %Disp(%Index,%Base) 6344 // # fallthrough to JoinMBB 6345 MBB = FalseMBB; 6346 BuildMI(MBB, DL, TII->get(StoreOpcode)) 6347 .addReg(SrcReg) 6348 .add(Base) 6349 .addImm(Disp) 6350 .addReg(IndexReg); 6351 MBB->addSuccessor(JoinMBB); 6352 6353 MI.eraseFromParent(); 6354 return JoinMBB; 6355 } 6356 6357 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 6358 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 6359 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 6360 // BitSize is the width of the field in bits, or 0 if this is a partword 6361 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 6362 // is one of the operands. Invert says whether the field should be 6363 // inverted after performing BinOpcode (e.g. for NAND). 6364 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 6365 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 6366 unsigned BitSize, bool Invert) const { 6367 MachineFunction &MF = *MBB->getParent(); 6368 const SystemZInstrInfo *TII = 6369 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6370 MachineRegisterInfo &MRI = MF.getRegInfo(); 6371 bool IsSubWord = (BitSize < 32); 6372 6373 // Extract the operands. Base can be a register or a frame index. 6374 // Src2 can be a register or immediate. 6375 unsigned Dest = MI.getOperand(0).getReg(); 6376 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6377 int64_t Disp = MI.getOperand(2).getImm(); 6378 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 6379 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 6380 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 6381 DebugLoc DL = MI.getDebugLoc(); 6382 if (IsSubWord) 6383 BitSize = MI.getOperand(6).getImm(); 6384 6385 // Subword operations use 32-bit registers. 6386 const TargetRegisterClass *RC = (BitSize <= 32 ? 6387 &SystemZ::GR32BitRegClass : 6388 &SystemZ::GR64BitRegClass); 6389 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6390 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6391 6392 // Get the right opcodes for the displacement. 6393 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6394 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6395 assert(LOpcode && CSOpcode && "Displacement out of range"); 6396 6397 // Create virtual registers for temporary results. 6398 unsigned OrigVal = MRI.createVirtualRegister(RC); 6399 unsigned OldVal = MRI.createVirtualRegister(RC); 6400 unsigned NewVal = (BinOpcode || IsSubWord ? 6401 MRI.createVirtualRegister(RC) : Src2.getReg()); 6402 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6403 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6404 6405 // Insert a basic block for the main loop. 6406 MachineBasicBlock *StartMBB = MBB; 6407 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6408 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6409 6410 // StartMBB: 6411 // ... 6412 // %OrigVal = L Disp(%Base) 6413 // # fall through to LoopMMB 6414 MBB = StartMBB; 6415 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 6416 MBB->addSuccessor(LoopMBB); 6417 6418 // LoopMBB: 6419 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 6420 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 6421 // %RotatedNewVal = OP %RotatedOldVal, %Src2 6422 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 6423 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 6424 // JNE LoopMBB 6425 // # fall through to DoneMMB 6426 MBB = LoopMBB; 6427 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6428 .addReg(OrigVal).addMBB(StartMBB) 6429 .addReg(Dest).addMBB(LoopMBB); 6430 if (IsSubWord) 6431 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 6432 .addReg(OldVal).addReg(BitShift).addImm(0); 6433 if (Invert) { 6434 // Perform the operation normally and then invert every bit of the field. 6435 unsigned Tmp = MRI.createVirtualRegister(RC); 6436 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 6437 if (BitSize <= 32) 6438 // XILF with the upper BitSize bits set. 6439 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 6440 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 6441 else { 6442 // Use LCGR and add -1 to the result, which is more compact than 6443 // an XILF, XILH pair. 6444 unsigned Tmp2 = MRI.createVirtualRegister(RC); 6445 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 6446 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 6447 .addReg(Tmp2).addImm(-1); 6448 } 6449 } else if (BinOpcode) 6450 // A simply binary operation. 6451 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 6452 .addReg(RotatedOldVal) 6453 .add(Src2); 6454 else if (IsSubWord) 6455 // Use RISBG to rotate Src2 into position and use it to replace the 6456 // field in RotatedOldVal. 6457 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 6458 .addReg(RotatedOldVal).addReg(Src2.getReg()) 6459 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 6460 if (IsSubWord) 6461 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 6462 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 6463 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 6464 .addReg(OldVal) 6465 .addReg(NewVal) 6466 .add(Base) 6467 .addImm(Disp); 6468 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6469 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6470 MBB->addSuccessor(LoopMBB); 6471 MBB->addSuccessor(DoneMBB); 6472 6473 MI.eraseFromParent(); 6474 return DoneMBB; 6475 } 6476 6477 // Implement EmitInstrWithCustomInserter for pseudo 6478 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 6479 // instruction that should be used to compare the current field with the 6480 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 6481 // for when the current field should be kept. BitSize is the width of 6482 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 6483 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 6484 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 6485 unsigned KeepOldMask, unsigned BitSize) const { 6486 MachineFunction &MF = *MBB->getParent(); 6487 const SystemZInstrInfo *TII = 6488 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6489 MachineRegisterInfo &MRI = MF.getRegInfo(); 6490 bool IsSubWord = (BitSize < 32); 6491 6492 // Extract the operands. Base can be a register or a frame index. 6493 unsigned Dest = MI.getOperand(0).getReg(); 6494 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6495 int64_t Disp = MI.getOperand(2).getImm(); 6496 unsigned Src2 = MI.getOperand(3).getReg(); 6497 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 6498 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 6499 DebugLoc DL = MI.getDebugLoc(); 6500 if (IsSubWord) 6501 BitSize = MI.getOperand(6).getImm(); 6502 6503 // Subword operations use 32-bit registers. 6504 const TargetRegisterClass *RC = (BitSize <= 32 ? 6505 &SystemZ::GR32BitRegClass : 6506 &SystemZ::GR64BitRegClass); 6507 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6508 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6509 6510 // Get the right opcodes for the displacement. 6511 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6512 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6513 assert(LOpcode && CSOpcode && "Displacement out of range"); 6514 6515 // Create virtual registers for temporary results. 6516 unsigned OrigVal = MRI.createVirtualRegister(RC); 6517 unsigned OldVal = MRI.createVirtualRegister(RC); 6518 unsigned NewVal = MRI.createVirtualRegister(RC); 6519 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6520 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 6521 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6522 6523 // Insert 3 basic blocks for the loop. 6524 MachineBasicBlock *StartMBB = MBB; 6525 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6526 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6527 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 6528 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 6529 6530 // StartMBB: 6531 // ... 6532 // %OrigVal = L Disp(%Base) 6533 // # fall through to LoopMMB 6534 MBB = StartMBB; 6535 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 6536 MBB->addSuccessor(LoopMBB); 6537 6538 // LoopMBB: 6539 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 6540 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 6541 // CompareOpcode %RotatedOldVal, %Src2 6542 // BRC KeepOldMask, UpdateMBB 6543 MBB = LoopMBB; 6544 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6545 .addReg(OrigVal).addMBB(StartMBB) 6546 .addReg(Dest).addMBB(UpdateMBB); 6547 if (IsSubWord) 6548 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 6549 .addReg(OldVal).addReg(BitShift).addImm(0); 6550 BuildMI(MBB, DL, TII->get(CompareOpcode)) 6551 .addReg(RotatedOldVal).addReg(Src2); 6552 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6553 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 6554 MBB->addSuccessor(UpdateMBB); 6555 MBB->addSuccessor(UseAltMBB); 6556 6557 // UseAltMBB: 6558 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 6559 // # fall through to UpdateMMB 6560 MBB = UseAltMBB; 6561 if (IsSubWord) 6562 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 6563 .addReg(RotatedOldVal).addReg(Src2) 6564 .addImm(32).addImm(31 + BitSize).addImm(0); 6565 MBB->addSuccessor(UpdateMBB); 6566 6567 // UpdateMBB: 6568 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 6569 // [ %RotatedAltVal, UseAltMBB ] 6570 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 6571 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 6572 // JNE LoopMBB 6573 // # fall through to DoneMMB 6574 MBB = UpdateMBB; 6575 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 6576 .addReg(RotatedOldVal).addMBB(LoopMBB) 6577 .addReg(RotatedAltVal).addMBB(UseAltMBB); 6578 if (IsSubWord) 6579 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 6580 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 6581 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 6582 .addReg(OldVal) 6583 .addReg(NewVal) 6584 .add(Base) 6585 .addImm(Disp); 6586 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6587 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6588 MBB->addSuccessor(LoopMBB); 6589 MBB->addSuccessor(DoneMBB); 6590 6591 MI.eraseFromParent(); 6592 return DoneMBB; 6593 } 6594 6595 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 6596 // instruction MI. 6597 MachineBasicBlock * 6598 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 6599 MachineBasicBlock *MBB) const { 6600 6601 MachineFunction &MF = *MBB->getParent(); 6602 const SystemZInstrInfo *TII = 6603 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6604 MachineRegisterInfo &MRI = MF.getRegInfo(); 6605 6606 // Extract the operands. Base can be a register or a frame index. 6607 unsigned Dest = MI.getOperand(0).getReg(); 6608 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6609 int64_t Disp = MI.getOperand(2).getImm(); 6610 unsigned OrigCmpVal = MI.getOperand(3).getReg(); 6611 unsigned OrigSwapVal = MI.getOperand(4).getReg(); 6612 unsigned BitShift = MI.getOperand(5).getReg(); 6613 unsigned NegBitShift = MI.getOperand(6).getReg(); 6614 int64_t BitSize = MI.getOperand(7).getImm(); 6615 DebugLoc DL = MI.getDebugLoc(); 6616 6617 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 6618 6619 // Get the right opcodes for the displacement. 6620 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 6621 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 6622 assert(LOpcode && CSOpcode && "Displacement out of range"); 6623 6624 // Create virtual registers for temporary results. 6625 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 6626 unsigned OldVal = MRI.createVirtualRegister(RC); 6627 unsigned CmpVal = MRI.createVirtualRegister(RC); 6628 unsigned SwapVal = MRI.createVirtualRegister(RC); 6629 unsigned StoreVal = MRI.createVirtualRegister(RC); 6630 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 6631 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 6632 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 6633 6634 // Insert 2 basic blocks for the loop. 6635 MachineBasicBlock *StartMBB = MBB; 6636 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6637 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6638 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 6639 6640 // StartMBB: 6641 // ... 6642 // %OrigOldVal = L Disp(%Base) 6643 // # fall through to LoopMMB 6644 MBB = StartMBB; 6645 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 6646 .add(Base) 6647 .addImm(Disp) 6648 .addReg(0); 6649 MBB->addSuccessor(LoopMBB); 6650 6651 // LoopMBB: 6652 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 6653 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 6654 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 6655 // %Dest = RLL %OldVal, BitSize(%BitShift) 6656 // ^^ The low BitSize bits contain the field 6657 // of interest. 6658 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 6659 // ^^ Replace the upper 32-BitSize bits of the 6660 // comparison value with those that we loaded, 6661 // so that we can use a full word comparison. 6662 // CR %Dest, %RetryCmpVal 6663 // JNE DoneMBB 6664 // # Fall through to SetMBB 6665 MBB = LoopMBB; 6666 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6667 .addReg(OrigOldVal).addMBB(StartMBB) 6668 .addReg(RetryOldVal).addMBB(SetMBB); 6669 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 6670 .addReg(OrigCmpVal).addMBB(StartMBB) 6671 .addReg(RetryCmpVal).addMBB(SetMBB); 6672 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 6673 .addReg(OrigSwapVal).addMBB(StartMBB) 6674 .addReg(RetrySwapVal).addMBB(SetMBB); 6675 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 6676 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 6677 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 6678 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 6679 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 6680 .addReg(Dest).addReg(RetryCmpVal); 6681 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6682 .addImm(SystemZ::CCMASK_ICMP) 6683 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 6684 MBB->addSuccessor(DoneMBB); 6685 MBB->addSuccessor(SetMBB); 6686 6687 // SetMBB: 6688 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 6689 // ^^ Replace the upper 32-BitSize bits of the new 6690 // value with those that we loaded. 6691 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 6692 // ^^ Rotate the new field to its proper position. 6693 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 6694 // JNE LoopMBB 6695 // # fall through to ExitMMB 6696 MBB = SetMBB; 6697 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 6698 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 6699 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 6700 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 6701 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 6702 .addReg(OldVal) 6703 .addReg(StoreVal) 6704 .add(Base) 6705 .addImm(Disp); 6706 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6707 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6708 MBB->addSuccessor(LoopMBB); 6709 MBB->addSuccessor(DoneMBB); 6710 6711 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 6712 // to the block after the loop. At this point, CC may have been defined 6713 // either by the CR in LoopMBB or by the CS in SetMBB. 6714 if (!MI.registerDefIsDead(SystemZ::CC)) 6715 DoneMBB->addLiveIn(SystemZ::CC); 6716 6717 MI.eraseFromParent(); 6718 return DoneMBB; 6719 } 6720 6721 // Emit a move from two GR64s to a GR128. 6722 MachineBasicBlock * 6723 SystemZTargetLowering::emitPair128(MachineInstr &MI, 6724 MachineBasicBlock *MBB) const { 6725 MachineFunction &MF = *MBB->getParent(); 6726 const SystemZInstrInfo *TII = 6727 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6728 MachineRegisterInfo &MRI = MF.getRegInfo(); 6729 DebugLoc DL = MI.getDebugLoc(); 6730 6731 unsigned Dest = MI.getOperand(0).getReg(); 6732 unsigned Hi = MI.getOperand(1).getReg(); 6733 unsigned Lo = MI.getOperand(2).getReg(); 6734 unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6735 unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6736 6737 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 6738 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 6739 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 6740 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 6741 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 6742 6743 MI.eraseFromParent(); 6744 return MBB; 6745 } 6746 6747 // Emit an extension from a GR64 to a GR128. ClearEven is true 6748 // if the high register of the GR128 value must be cleared or false if 6749 // it's "don't care". 6750 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 6751 MachineBasicBlock *MBB, 6752 bool ClearEven) const { 6753 MachineFunction &MF = *MBB->getParent(); 6754 const SystemZInstrInfo *TII = 6755 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6756 MachineRegisterInfo &MRI = MF.getRegInfo(); 6757 DebugLoc DL = MI.getDebugLoc(); 6758 6759 unsigned Dest = MI.getOperand(0).getReg(); 6760 unsigned Src = MI.getOperand(1).getReg(); 6761 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6762 6763 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 6764 if (ClearEven) { 6765 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6766 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 6767 6768 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 6769 .addImm(0); 6770 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 6771 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 6772 In128 = NewIn128; 6773 } 6774 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 6775 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 6776 6777 MI.eraseFromParent(); 6778 return MBB; 6779 } 6780 6781 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 6782 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6783 MachineFunction &MF = *MBB->getParent(); 6784 const SystemZInstrInfo *TII = 6785 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6786 MachineRegisterInfo &MRI = MF.getRegInfo(); 6787 DebugLoc DL = MI.getDebugLoc(); 6788 6789 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 6790 uint64_t DestDisp = MI.getOperand(1).getImm(); 6791 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 6792 uint64_t SrcDisp = MI.getOperand(3).getImm(); 6793 uint64_t Length = MI.getOperand(4).getImm(); 6794 6795 // When generating more than one CLC, all but the last will need to 6796 // branch to the end when a difference is found. 6797 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 6798 splitBlockAfter(MI, MBB) : nullptr); 6799 6800 // Check for the loop form, in which operand 5 is the trip count. 6801 if (MI.getNumExplicitOperands() > 5) { 6802 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 6803 6804 uint64_t StartCountReg = MI.getOperand(5).getReg(); 6805 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 6806 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 6807 forceReg(MI, DestBase, TII)); 6808 6809 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 6810 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 6811 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 6812 MRI.createVirtualRegister(RC)); 6813 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 6814 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 6815 MRI.createVirtualRegister(RC)); 6816 6817 RC = &SystemZ::GR64BitRegClass; 6818 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 6819 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 6820 6821 MachineBasicBlock *StartMBB = MBB; 6822 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6823 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6824 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 6825 6826 // StartMBB: 6827 // # fall through to LoopMMB 6828 MBB->addSuccessor(LoopMBB); 6829 6830 // LoopMBB: 6831 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 6832 // [ %NextDestReg, NextMBB ] 6833 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 6834 // [ %NextSrcReg, NextMBB ] 6835 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 6836 // [ %NextCountReg, NextMBB ] 6837 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 6838 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 6839 // ( JLH EndMBB ) 6840 // 6841 // The prefetch is used only for MVC. The JLH is used only for CLC. 6842 MBB = LoopMBB; 6843 6844 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 6845 .addReg(StartDestReg).addMBB(StartMBB) 6846 .addReg(NextDestReg).addMBB(NextMBB); 6847 if (!HaveSingleBase) 6848 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 6849 .addReg(StartSrcReg).addMBB(StartMBB) 6850 .addReg(NextSrcReg).addMBB(NextMBB); 6851 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 6852 .addReg(StartCountReg).addMBB(StartMBB) 6853 .addReg(NextCountReg).addMBB(NextMBB); 6854 if (Opcode == SystemZ::MVC) 6855 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 6856 .addImm(SystemZ::PFD_WRITE) 6857 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 6858 BuildMI(MBB, DL, TII->get(Opcode)) 6859 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 6860 .addReg(ThisSrcReg).addImm(SrcDisp); 6861 if (EndMBB) { 6862 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6863 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6864 .addMBB(EndMBB); 6865 MBB->addSuccessor(EndMBB); 6866 MBB->addSuccessor(NextMBB); 6867 } 6868 6869 // NextMBB: 6870 // %NextDestReg = LA 256(%ThisDestReg) 6871 // %NextSrcReg = LA 256(%ThisSrcReg) 6872 // %NextCountReg = AGHI %ThisCountReg, -1 6873 // CGHI %NextCountReg, 0 6874 // JLH LoopMBB 6875 // # fall through to DoneMMB 6876 // 6877 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 6878 MBB = NextMBB; 6879 6880 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 6881 .addReg(ThisDestReg).addImm(256).addReg(0); 6882 if (!HaveSingleBase) 6883 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 6884 .addReg(ThisSrcReg).addImm(256).addReg(0); 6885 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 6886 .addReg(ThisCountReg).addImm(-1); 6887 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 6888 .addReg(NextCountReg).addImm(0); 6889 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6890 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6891 .addMBB(LoopMBB); 6892 MBB->addSuccessor(LoopMBB); 6893 MBB->addSuccessor(DoneMBB); 6894 6895 DestBase = MachineOperand::CreateReg(NextDestReg, false); 6896 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 6897 Length &= 255; 6898 if (EndMBB && !Length) 6899 // If the loop handled the whole CLC range, DoneMBB will be empty with 6900 // CC live-through into EndMBB, so add it as live-in. 6901 DoneMBB->addLiveIn(SystemZ::CC); 6902 MBB = DoneMBB; 6903 } 6904 // Handle any remaining bytes with straight-line code. 6905 while (Length > 0) { 6906 uint64_t ThisLength = std::min(Length, uint64_t(256)); 6907 // The previous iteration might have created out-of-range displacements. 6908 // Apply them using LAY if so. 6909 if (!isUInt<12>(DestDisp)) { 6910 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6911 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 6912 .add(DestBase) 6913 .addImm(DestDisp) 6914 .addReg(0); 6915 DestBase = MachineOperand::CreateReg(Reg, false); 6916 DestDisp = 0; 6917 } 6918 if (!isUInt<12>(SrcDisp)) { 6919 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6920 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 6921 .add(SrcBase) 6922 .addImm(SrcDisp) 6923 .addReg(0); 6924 SrcBase = MachineOperand::CreateReg(Reg, false); 6925 SrcDisp = 0; 6926 } 6927 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 6928 .add(DestBase) 6929 .addImm(DestDisp) 6930 .addImm(ThisLength) 6931 .add(SrcBase) 6932 .addImm(SrcDisp) 6933 ->setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); 6934 DestDisp += ThisLength; 6935 SrcDisp += ThisLength; 6936 Length -= ThisLength; 6937 // If there's another CLC to go, branch to the end if a difference 6938 // was found. 6939 if (EndMBB && Length > 0) { 6940 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 6941 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6942 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6943 .addMBB(EndMBB); 6944 MBB->addSuccessor(EndMBB); 6945 MBB->addSuccessor(NextMBB); 6946 MBB = NextMBB; 6947 } 6948 } 6949 if (EndMBB) { 6950 MBB->addSuccessor(EndMBB); 6951 MBB = EndMBB; 6952 MBB->addLiveIn(SystemZ::CC); 6953 } 6954 6955 MI.eraseFromParent(); 6956 return MBB; 6957 } 6958 6959 // Decompose string pseudo-instruction MI into a loop that continually performs 6960 // Opcode until CC != 3. 6961 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 6962 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6963 MachineFunction &MF = *MBB->getParent(); 6964 const SystemZInstrInfo *TII = 6965 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6966 MachineRegisterInfo &MRI = MF.getRegInfo(); 6967 DebugLoc DL = MI.getDebugLoc(); 6968 6969 uint64_t End1Reg = MI.getOperand(0).getReg(); 6970 uint64_t Start1Reg = MI.getOperand(1).getReg(); 6971 uint64_t Start2Reg = MI.getOperand(2).getReg(); 6972 uint64_t CharReg = MI.getOperand(3).getReg(); 6973 6974 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 6975 uint64_t This1Reg = MRI.createVirtualRegister(RC); 6976 uint64_t This2Reg = MRI.createVirtualRegister(RC); 6977 uint64_t End2Reg = MRI.createVirtualRegister(RC); 6978 6979 MachineBasicBlock *StartMBB = MBB; 6980 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6981 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6982 6983 // StartMBB: 6984 // # fall through to LoopMMB 6985 MBB->addSuccessor(LoopMBB); 6986 6987 // LoopMBB: 6988 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 6989 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 6990 // R0L = %CharReg 6991 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 6992 // JO LoopMBB 6993 // # fall through to DoneMMB 6994 // 6995 // The load of R0L can be hoisted by post-RA LICM. 6996 MBB = LoopMBB; 6997 6998 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 6999 .addReg(Start1Reg).addMBB(StartMBB) 7000 .addReg(End1Reg).addMBB(LoopMBB); 7001 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7002 .addReg(Start2Reg).addMBB(StartMBB) 7003 .addReg(End2Reg).addMBB(LoopMBB); 7004 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7005 BuildMI(MBB, DL, TII->get(Opcode)) 7006 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7007 .addReg(This1Reg).addReg(This2Reg); 7008 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7009 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7010 MBB->addSuccessor(LoopMBB); 7011 MBB->addSuccessor(DoneMBB); 7012 7013 DoneMBB->addLiveIn(SystemZ::CC); 7014 7015 MI.eraseFromParent(); 7016 return DoneMBB; 7017 } 7018 7019 // Update TBEGIN instruction with final opcode and register clobbers. 7020 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7021 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7022 bool NoFloat) const { 7023 MachineFunction &MF = *MBB->getParent(); 7024 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7025 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7026 7027 // Update opcode. 7028 MI.setDesc(TII->get(Opcode)); 7029 7030 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7031 // Make sure to add the corresponding GRSM bits if they are missing. 7032 uint64_t Control = MI.getOperand(2).getImm(); 7033 static const unsigned GPRControlBit[16] = { 7034 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7035 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7036 }; 7037 Control |= GPRControlBit[15]; 7038 if (TFI->hasFP(MF)) 7039 Control |= GPRControlBit[11]; 7040 MI.getOperand(2).setImm(Control); 7041 7042 // Add GPR clobbers. 7043 for (int I = 0; I < 16; I++) { 7044 if ((Control & GPRControlBit[I]) == 0) { 7045 unsigned Reg = SystemZMC::GR64Regs[I]; 7046 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7047 } 7048 } 7049 7050 // Add FPR/VR clobbers. 7051 if (!NoFloat && (Control & 4) != 0) { 7052 if (Subtarget.hasVector()) { 7053 for (int I = 0; I < 32; I++) { 7054 unsigned Reg = SystemZMC::VR128Regs[I]; 7055 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7056 } 7057 } else { 7058 for (int I = 0; I < 16; I++) { 7059 unsigned Reg = SystemZMC::FP64Regs[I]; 7060 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7061 } 7062 } 7063 } 7064 7065 return MBB; 7066 } 7067 7068 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 7069 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7070 MachineFunction &MF = *MBB->getParent(); 7071 MachineRegisterInfo *MRI = &MF.getRegInfo(); 7072 const SystemZInstrInfo *TII = 7073 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7074 DebugLoc DL = MI.getDebugLoc(); 7075 7076 unsigned SrcReg = MI.getOperand(0).getReg(); 7077 7078 // Create new virtual register of the same class as source. 7079 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7080 unsigned DstReg = MRI->createVirtualRegister(RC); 7081 7082 // Replace pseudo with a normal load-and-test that models the def as 7083 // well. 7084 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7085 .addReg(SrcReg); 7086 MI.eraseFromParent(); 7087 7088 return MBB; 7089 } 7090 7091 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7092 MachineInstr &MI, MachineBasicBlock *MBB) const { 7093 switch (MI.getOpcode()) { 7094 case SystemZ::Select32: 7095 case SystemZ::Select64: 7096 case SystemZ::SelectF32: 7097 case SystemZ::SelectF64: 7098 case SystemZ::SelectF128: 7099 case SystemZ::SelectVR32: 7100 case SystemZ::SelectVR64: 7101 case SystemZ::SelectVR128: 7102 return emitSelect(MI, MBB); 7103 7104 case SystemZ::CondStore8Mux: 7105 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7106 case SystemZ::CondStore8MuxInv: 7107 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7108 case SystemZ::CondStore16Mux: 7109 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7110 case SystemZ::CondStore16MuxInv: 7111 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7112 case SystemZ::CondStore32Mux: 7113 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7114 case SystemZ::CondStore32MuxInv: 7115 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7116 case SystemZ::CondStore8: 7117 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7118 case SystemZ::CondStore8Inv: 7119 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7120 case SystemZ::CondStore16: 7121 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7122 case SystemZ::CondStore16Inv: 7123 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7124 case SystemZ::CondStore32: 7125 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7126 case SystemZ::CondStore32Inv: 7127 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7128 case SystemZ::CondStore64: 7129 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7130 case SystemZ::CondStore64Inv: 7131 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7132 case SystemZ::CondStoreF32: 7133 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7134 case SystemZ::CondStoreF32Inv: 7135 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7136 case SystemZ::CondStoreF64: 7137 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7138 case SystemZ::CondStoreF64Inv: 7139 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7140 7141 case SystemZ::PAIR128: 7142 return emitPair128(MI, MBB); 7143 case SystemZ::AEXT128: 7144 return emitExt128(MI, MBB, false); 7145 case SystemZ::ZEXT128: 7146 return emitExt128(MI, MBB, true); 7147 7148 case SystemZ::ATOMIC_SWAPW: 7149 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7150 case SystemZ::ATOMIC_SWAP_32: 7151 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7152 case SystemZ::ATOMIC_SWAP_64: 7153 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7154 7155 case SystemZ::ATOMIC_LOADW_AR: 7156 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7157 case SystemZ::ATOMIC_LOADW_AFI: 7158 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7159 case SystemZ::ATOMIC_LOAD_AR: 7160 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7161 case SystemZ::ATOMIC_LOAD_AHI: 7162 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7163 case SystemZ::ATOMIC_LOAD_AFI: 7164 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7165 case SystemZ::ATOMIC_LOAD_AGR: 7166 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7167 case SystemZ::ATOMIC_LOAD_AGHI: 7168 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7169 case SystemZ::ATOMIC_LOAD_AGFI: 7170 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7171 7172 case SystemZ::ATOMIC_LOADW_SR: 7173 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7174 case SystemZ::ATOMIC_LOAD_SR: 7175 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7176 case SystemZ::ATOMIC_LOAD_SGR: 7177 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7178 7179 case SystemZ::ATOMIC_LOADW_NR: 7180 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7181 case SystemZ::ATOMIC_LOADW_NILH: 7182 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7183 case SystemZ::ATOMIC_LOAD_NR: 7184 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7185 case SystemZ::ATOMIC_LOAD_NILL: 7186 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7187 case SystemZ::ATOMIC_LOAD_NILH: 7188 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7189 case SystemZ::ATOMIC_LOAD_NILF: 7190 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7191 case SystemZ::ATOMIC_LOAD_NGR: 7192 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7193 case SystemZ::ATOMIC_LOAD_NILL64: 7194 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7195 case SystemZ::ATOMIC_LOAD_NILH64: 7196 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7197 case SystemZ::ATOMIC_LOAD_NIHL64: 7198 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 7199 case SystemZ::ATOMIC_LOAD_NIHH64: 7200 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 7201 case SystemZ::ATOMIC_LOAD_NILF64: 7202 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 7203 case SystemZ::ATOMIC_LOAD_NIHF64: 7204 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 7205 7206 case SystemZ::ATOMIC_LOADW_OR: 7207 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 7208 case SystemZ::ATOMIC_LOADW_OILH: 7209 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 7210 case SystemZ::ATOMIC_LOAD_OR: 7211 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 7212 case SystemZ::ATOMIC_LOAD_OILL: 7213 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 7214 case SystemZ::ATOMIC_LOAD_OILH: 7215 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 7216 case SystemZ::ATOMIC_LOAD_OILF: 7217 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 7218 case SystemZ::ATOMIC_LOAD_OGR: 7219 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 7220 case SystemZ::ATOMIC_LOAD_OILL64: 7221 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 7222 case SystemZ::ATOMIC_LOAD_OILH64: 7223 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 7224 case SystemZ::ATOMIC_LOAD_OIHL64: 7225 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 7226 case SystemZ::ATOMIC_LOAD_OIHH64: 7227 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 7228 case SystemZ::ATOMIC_LOAD_OILF64: 7229 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 7230 case SystemZ::ATOMIC_LOAD_OIHF64: 7231 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 7232 7233 case SystemZ::ATOMIC_LOADW_XR: 7234 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 7235 case SystemZ::ATOMIC_LOADW_XILF: 7236 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 7237 case SystemZ::ATOMIC_LOAD_XR: 7238 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 7239 case SystemZ::ATOMIC_LOAD_XILF: 7240 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 7241 case SystemZ::ATOMIC_LOAD_XGR: 7242 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 7243 case SystemZ::ATOMIC_LOAD_XILF64: 7244 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 7245 case SystemZ::ATOMIC_LOAD_XIHF64: 7246 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 7247 7248 case SystemZ::ATOMIC_LOADW_NRi: 7249 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 7250 case SystemZ::ATOMIC_LOADW_NILHi: 7251 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 7252 case SystemZ::ATOMIC_LOAD_NRi: 7253 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 7254 case SystemZ::ATOMIC_LOAD_NILLi: 7255 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 7256 case SystemZ::ATOMIC_LOAD_NILHi: 7257 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 7258 case SystemZ::ATOMIC_LOAD_NILFi: 7259 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 7260 case SystemZ::ATOMIC_LOAD_NGRi: 7261 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 7262 case SystemZ::ATOMIC_LOAD_NILL64i: 7263 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 7264 case SystemZ::ATOMIC_LOAD_NILH64i: 7265 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 7266 case SystemZ::ATOMIC_LOAD_NIHL64i: 7267 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 7268 case SystemZ::ATOMIC_LOAD_NIHH64i: 7269 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 7270 case SystemZ::ATOMIC_LOAD_NILF64i: 7271 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 7272 case SystemZ::ATOMIC_LOAD_NIHF64i: 7273 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 7274 7275 case SystemZ::ATOMIC_LOADW_MIN: 7276 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7277 SystemZ::CCMASK_CMP_LE, 0); 7278 case SystemZ::ATOMIC_LOAD_MIN_32: 7279 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7280 SystemZ::CCMASK_CMP_LE, 32); 7281 case SystemZ::ATOMIC_LOAD_MIN_64: 7282 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7283 SystemZ::CCMASK_CMP_LE, 64); 7284 7285 case SystemZ::ATOMIC_LOADW_MAX: 7286 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7287 SystemZ::CCMASK_CMP_GE, 0); 7288 case SystemZ::ATOMIC_LOAD_MAX_32: 7289 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7290 SystemZ::CCMASK_CMP_GE, 32); 7291 case SystemZ::ATOMIC_LOAD_MAX_64: 7292 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7293 SystemZ::CCMASK_CMP_GE, 64); 7294 7295 case SystemZ::ATOMIC_LOADW_UMIN: 7296 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7297 SystemZ::CCMASK_CMP_LE, 0); 7298 case SystemZ::ATOMIC_LOAD_UMIN_32: 7299 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7300 SystemZ::CCMASK_CMP_LE, 32); 7301 case SystemZ::ATOMIC_LOAD_UMIN_64: 7302 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7303 SystemZ::CCMASK_CMP_LE, 64); 7304 7305 case SystemZ::ATOMIC_LOADW_UMAX: 7306 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7307 SystemZ::CCMASK_CMP_GE, 0); 7308 case SystemZ::ATOMIC_LOAD_UMAX_32: 7309 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7310 SystemZ::CCMASK_CMP_GE, 32); 7311 case SystemZ::ATOMIC_LOAD_UMAX_64: 7312 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7313 SystemZ::CCMASK_CMP_GE, 64); 7314 7315 case SystemZ::ATOMIC_CMP_SWAPW: 7316 return emitAtomicCmpSwapW(MI, MBB); 7317 case SystemZ::MVCSequence: 7318 case SystemZ::MVCLoop: 7319 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 7320 case SystemZ::NCSequence: 7321 case SystemZ::NCLoop: 7322 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 7323 case SystemZ::OCSequence: 7324 case SystemZ::OCLoop: 7325 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 7326 case SystemZ::XCSequence: 7327 case SystemZ::XCLoop: 7328 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 7329 case SystemZ::CLCSequence: 7330 case SystemZ::CLCLoop: 7331 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 7332 case SystemZ::CLSTLoop: 7333 return emitStringWrapper(MI, MBB, SystemZ::CLST); 7334 case SystemZ::MVSTLoop: 7335 return emitStringWrapper(MI, MBB, SystemZ::MVST); 7336 case SystemZ::SRSTLoop: 7337 return emitStringWrapper(MI, MBB, SystemZ::SRST); 7338 case SystemZ::TBEGIN: 7339 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 7340 case SystemZ::TBEGIN_nofloat: 7341 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 7342 case SystemZ::TBEGINC: 7343 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 7344 case SystemZ::LTEBRCompare_VecPseudo: 7345 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 7346 case SystemZ::LTDBRCompare_VecPseudo: 7347 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 7348 case SystemZ::LTXBRCompare_VecPseudo: 7349 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 7350 7351 case TargetOpcode::STACKMAP: 7352 case TargetOpcode::PATCHPOINT: 7353 return emitPatchPoint(MI, MBB); 7354 7355 default: 7356 llvm_unreachable("Unexpected instr type to insert"); 7357 } 7358 } 7359 7360 // This is only used by the isel schedulers, and is needed only to prevent 7361 // compiler from crashing when list-ilp is used. 7362 const TargetRegisterClass * 7363 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 7364 if (VT == MVT::Untyped) 7365 return &SystemZ::ADDR128BitRegClass; 7366 return TargetLowering::getRepRegClassFor(VT); 7367 } 7368