1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the SystemZTargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SystemZISelLowering.h" 14 #include "SystemZCallingConv.h" 15 #include "SystemZConstantPoolValue.h" 16 #include "SystemZMachineFunctionInfo.h" 17 #include "SystemZTargetMachine.h" 18 #include "llvm/CodeGen/CallingConvLower.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicsS390.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn) 37 : Op0(Op0In), Op1(Op1In), Chain(ChainIn), 38 Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 39 40 // The operands to the comparison. 41 SDValue Op0, Op1; 42 43 // Chain if this is a strict floating-point comparison. 44 SDValue Chain; 45 46 // The opcode that should be used to compare Op0 and Op1. 47 unsigned Opcode; 48 49 // A SystemZICMP value. Only used for integer comparisons. 50 unsigned ICmpType; 51 52 // The mask of CC values that Opcode can produce. 53 unsigned CCValid; 54 55 // The mask of CC values for which the original condition is true. 56 unsigned CCMask; 57 }; 58 } // end anonymous namespace 59 60 // Classify VT as either 32 or 64 bit. 61 static bool is32Bit(EVT VT) { 62 switch (VT.getSimpleVT().SimpleTy) { 63 case MVT::i32: 64 return true; 65 case MVT::i64: 66 return false; 67 default: 68 llvm_unreachable("Unsupported type"); 69 } 70 } 71 72 // Return a version of MachineOperand that can be safely used before the 73 // final use. 74 static MachineOperand earlyUseOperand(MachineOperand Op) { 75 if (Op.isReg()) 76 Op.setIsKill(false); 77 return Op; 78 } 79 80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 81 const SystemZSubtarget &STI) 82 : TargetLowering(TM), Subtarget(STI) { 83 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 84 85 // Set up the register classes. 86 if (Subtarget.hasHighWord()) 87 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 88 else 89 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 90 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 91 if (!useSoftFloat()) { 92 if (Subtarget.hasVector()) { 93 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 94 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 95 } else { 96 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 97 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 98 } 99 if (Subtarget.hasVectorEnhancements1()) 100 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 101 else 102 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 103 104 if (Subtarget.hasVector()) { 105 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 106 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 107 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 108 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 109 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 110 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 111 } 112 } 113 114 // Compute derived properties from the register classes 115 computeRegisterProperties(Subtarget.getRegisterInfo()); 116 117 // Set up special registers. 118 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 119 120 // TODO: It may be better to default to latency-oriented scheduling, however 121 // LLVM's current latency-oriented scheduler can't handle physreg definitions 122 // such as SystemZ has with CC, so set this to the register-pressure 123 // scheduler, because it can. 124 setSchedulingPreference(Sched::RegPressure); 125 126 setBooleanContents(ZeroOrOneBooleanContent); 127 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 128 129 // Instructions are strings of 2-byte aligned 2-byte values. 130 setMinFunctionAlignment(Align(2)); 131 // For performance reasons we prefer 16-byte alignment. 132 setPrefFunctionAlignment(Align(16)); 133 134 // Handle operations that are handled in a similar way for all types. 135 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 136 I <= MVT::LAST_FP_VALUETYPE; 137 ++I) { 138 MVT VT = MVT::SimpleValueType(I); 139 if (isTypeLegal(VT)) { 140 // Lower SET_CC into an IPM-based sequence. 141 setOperationAction(ISD::SETCC, VT, Custom); 142 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 143 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 144 145 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 146 setOperationAction(ISD::SELECT, VT, Expand); 147 148 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 149 setOperationAction(ISD::SELECT_CC, VT, Custom); 150 setOperationAction(ISD::BR_CC, VT, Custom); 151 } 152 } 153 154 // Expand jump table branches as address arithmetic followed by an 155 // indirect jump. 156 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 157 158 // Expand BRCOND into a BR_CC (see above). 159 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 160 161 // Handle integer types. 162 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 163 I <= MVT::LAST_INTEGER_VALUETYPE; 164 ++I) { 165 MVT VT = MVT::SimpleValueType(I); 166 if (isTypeLegal(VT)) { 167 // Expand individual DIV and REMs into DIVREMs. 168 setOperationAction(ISD::SDIV, VT, Expand); 169 setOperationAction(ISD::UDIV, VT, Expand); 170 setOperationAction(ISD::SREM, VT, Expand); 171 setOperationAction(ISD::UREM, VT, Expand); 172 setOperationAction(ISD::SDIVREM, VT, Custom); 173 setOperationAction(ISD::UDIVREM, VT, Custom); 174 175 // Support addition/subtraction with overflow. 176 setOperationAction(ISD::SADDO, VT, Custom); 177 setOperationAction(ISD::SSUBO, VT, Custom); 178 179 // Support addition/subtraction with carry. 180 setOperationAction(ISD::UADDO, VT, Custom); 181 setOperationAction(ISD::USUBO, VT, Custom); 182 183 // Support carry in as value rather than glue. 184 setOperationAction(ISD::ADDCARRY, VT, Custom); 185 setOperationAction(ISD::SUBCARRY, VT, Custom); 186 187 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 188 // stores, putting a serialization instruction after the stores. 189 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 190 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 191 192 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 193 // available, or if the operand is constant. 194 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 195 196 // Use POPCNT on z196 and above. 197 if (Subtarget.hasPopulationCount()) 198 setOperationAction(ISD::CTPOP, VT, Custom); 199 else 200 setOperationAction(ISD::CTPOP, VT, Expand); 201 202 // No special instructions for these. 203 setOperationAction(ISD::CTTZ, VT, Expand); 204 setOperationAction(ISD::ROTR, VT, Expand); 205 206 // Use *MUL_LOHI where possible instead of MULH*. 207 setOperationAction(ISD::MULHS, VT, Expand); 208 setOperationAction(ISD::MULHU, VT, Expand); 209 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 210 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 211 212 // Only z196 and above have native support for conversions to unsigned. 213 // On z10, promoting to i64 doesn't generate an inexact condition for 214 // values that are outside the i32 range but in the i64 range, so use 215 // the default expansion. 216 if (!Subtarget.hasFPExtension()) 217 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 218 219 // Mirror those settings for STRICT_FP_TO_[SU]INT. Note that these all 220 // default to Expand, so need to be modified to Legal where appropriate. 221 setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal); 222 if (Subtarget.hasFPExtension()) 223 setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal); 224 225 // And similarly for STRICT_[SU]INT_TO_FP. 226 setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal); 227 if (Subtarget.hasFPExtension()) 228 setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal); 229 } 230 } 231 232 // Type legalization will convert 8- and 16-bit atomic operations into 233 // forms that operate on i32s (but still keeping the original memory VT). 234 // Lower them into full i32 operations. 235 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 236 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 237 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 238 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 239 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 240 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 241 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 242 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 243 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 244 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 245 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 246 247 // Even though i128 is not a legal type, we still need to custom lower 248 // the atomic operations in order to exploit SystemZ instructions. 249 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 250 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 251 252 // We can use the CC result of compare-and-swap to implement 253 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 254 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 255 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 256 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 257 258 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 259 260 // Traps are legal, as we will convert them to "j .+2". 261 setOperationAction(ISD::TRAP, MVT::Other, Legal); 262 263 // z10 has instructions for signed but not unsigned FP conversion. 264 // Handle unsigned 32-bit types as signed 64-bit types. 265 if (!Subtarget.hasFPExtension()) { 266 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 267 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 268 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote); 269 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); 270 } 271 272 // We have native support for a 64-bit CTLZ, via FLOGR. 273 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 274 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote); 275 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 276 277 // On z15 we have native support for a 64-bit CTPOP. 278 if (Subtarget.hasMiscellaneousExtensions3()) { 279 setOperationAction(ISD::CTPOP, MVT::i32, Promote); 280 setOperationAction(ISD::CTPOP, MVT::i64, Legal); 281 } 282 283 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 284 setOperationAction(ISD::OR, MVT::i64, Custom); 285 286 // FIXME: Can we support these natively? 287 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 288 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 289 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 290 291 // We have native instructions for i8, i16 and i32 extensions, but not i1. 292 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 293 for (MVT VT : MVT::integer_valuetypes()) { 294 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 295 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 296 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 297 } 298 299 // Handle the various types of symbolic address. 300 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 301 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 302 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 303 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 304 setOperationAction(ISD::JumpTable, PtrVT, Custom); 305 306 // We need to handle dynamic allocations specially because of the 307 // 160-byte area at the bottom of the stack. 308 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 309 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 310 311 // Use custom expanders so that we can force the function to use 312 // a frame pointer. 313 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 314 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 315 316 // Handle prefetches with PFD or PFDRL. 317 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 318 319 for (MVT VT : MVT::fixedlen_vector_valuetypes()) { 320 // Assume by default that all vector operations need to be expanded. 321 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 322 if (getOperationAction(Opcode, VT) == Legal) 323 setOperationAction(Opcode, VT, Expand); 324 325 // Likewise all truncating stores and extending loads. 326 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { 327 setTruncStoreAction(VT, InnerVT, Expand); 328 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 329 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 330 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 331 } 332 333 if (isTypeLegal(VT)) { 334 // These operations are legal for anything that can be stored in a 335 // vector register, even if there is no native support for the format 336 // as such. In particular, we can do these for v4f32 even though there 337 // are no specific instructions for that format. 338 setOperationAction(ISD::LOAD, VT, Legal); 339 setOperationAction(ISD::STORE, VT, Legal); 340 setOperationAction(ISD::VSELECT, VT, Legal); 341 setOperationAction(ISD::BITCAST, VT, Legal); 342 setOperationAction(ISD::UNDEF, VT, Legal); 343 344 // Likewise, except that we need to replace the nodes with something 345 // more specific. 346 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 347 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 348 } 349 } 350 351 // Handle integer vector types. 352 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { 353 if (isTypeLegal(VT)) { 354 // These operations have direct equivalents. 355 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 356 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 357 setOperationAction(ISD::ADD, VT, Legal); 358 setOperationAction(ISD::SUB, VT, Legal); 359 if (VT != MVT::v2i64) 360 setOperationAction(ISD::MUL, VT, Legal); 361 setOperationAction(ISD::AND, VT, Legal); 362 setOperationAction(ISD::OR, VT, Legal); 363 setOperationAction(ISD::XOR, VT, Legal); 364 if (Subtarget.hasVectorEnhancements1()) 365 setOperationAction(ISD::CTPOP, VT, Legal); 366 else 367 setOperationAction(ISD::CTPOP, VT, Custom); 368 setOperationAction(ISD::CTTZ, VT, Legal); 369 setOperationAction(ISD::CTLZ, VT, Legal); 370 371 // Convert a GPR scalar to a vector by inserting it into element 0. 372 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 373 374 // Use a series of unpacks for extensions. 375 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 376 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 377 378 // Detect shifts by a scalar amount and convert them into 379 // V*_BY_SCALAR. 380 setOperationAction(ISD::SHL, VT, Custom); 381 setOperationAction(ISD::SRA, VT, Custom); 382 setOperationAction(ISD::SRL, VT, Custom); 383 384 // At present ROTL isn't matched by DAGCombiner. ROTR should be 385 // converted into ROTL. 386 setOperationAction(ISD::ROTL, VT, Expand); 387 setOperationAction(ISD::ROTR, VT, Expand); 388 389 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 390 // and inverting the result as necessary. 391 setOperationAction(ISD::SETCC, VT, Custom); 392 setOperationAction(ISD::STRICT_FSETCC, VT, Custom); 393 if (Subtarget.hasVectorEnhancements1()) 394 setOperationAction(ISD::STRICT_FSETCCS, VT, Custom); 395 } 396 } 397 398 if (Subtarget.hasVector()) { 399 // There should be no need to check for float types other than v2f64 400 // since <2 x f32> isn't a legal type. 401 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 402 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 403 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 404 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 405 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 406 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 407 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 408 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 409 410 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); 411 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal); 412 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); 413 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal); 414 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); 415 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal); 416 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); 417 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal); 418 } 419 420 if (Subtarget.hasVectorEnhancements2()) { 421 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); 422 setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal); 423 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); 424 setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal); 425 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); 426 setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal); 427 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); 428 setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal); 429 430 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); 431 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal); 432 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); 433 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal); 434 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); 435 setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal); 436 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); 437 setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal); 438 } 439 440 // Handle floating-point types. 441 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 442 I <= MVT::LAST_FP_VALUETYPE; 443 ++I) { 444 MVT VT = MVT::SimpleValueType(I); 445 if (isTypeLegal(VT)) { 446 // We can use FI for FRINT. 447 setOperationAction(ISD::FRINT, VT, Legal); 448 449 // We can use the extended form of FI for other rounding operations. 450 if (Subtarget.hasFPExtension()) { 451 setOperationAction(ISD::FNEARBYINT, VT, Legal); 452 setOperationAction(ISD::FFLOOR, VT, Legal); 453 setOperationAction(ISD::FCEIL, VT, Legal); 454 setOperationAction(ISD::FTRUNC, VT, Legal); 455 setOperationAction(ISD::FROUND, VT, Legal); 456 } 457 458 // No special instructions for these. 459 setOperationAction(ISD::FSIN, VT, Expand); 460 setOperationAction(ISD::FCOS, VT, Expand); 461 setOperationAction(ISD::FSINCOS, VT, Expand); 462 setOperationAction(ISD::FREM, VT, Expand); 463 setOperationAction(ISD::FPOW, VT, Expand); 464 465 // Handle constrained floating-point operations. 466 setOperationAction(ISD::STRICT_FADD, VT, Legal); 467 setOperationAction(ISD::STRICT_FSUB, VT, Legal); 468 setOperationAction(ISD::STRICT_FMUL, VT, Legal); 469 setOperationAction(ISD::STRICT_FDIV, VT, Legal); 470 setOperationAction(ISD::STRICT_FMA, VT, Legal); 471 setOperationAction(ISD::STRICT_FSQRT, VT, Legal); 472 setOperationAction(ISD::STRICT_FRINT, VT, Legal); 473 setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); 474 setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); 475 if (Subtarget.hasFPExtension()) { 476 setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal); 477 setOperationAction(ISD::STRICT_FFLOOR, VT, Legal); 478 setOperationAction(ISD::STRICT_FCEIL, VT, Legal); 479 setOperationAction(ISD::STRICT_FROUND, VT, Legal); 480 setOperationAction(ISD::STRICT_FTRUNC, VT, Legal); 481 } 482 } 483 } 484 485 // Handle floating-point vector types. 486 if (Subtarget.hasVector()) { 487 // Scalar-to-vector conversion is just a subreg. 488 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 489 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 490 491 // Some insertions and extractions can be done directly but others 492 // need to go via integers. 493 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 494 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 495 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 496 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 497 498 // These operations have direct equivalents. 499 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 500 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 501 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 502 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 503 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 504 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 505 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 506 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 507 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 508 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 509 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 510 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 511 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 512 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 513 514 // Handle constrained floating-point operations. 515 setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); 516 setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); 517 setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); 518 setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); 519 setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); 520 setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); 521 setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); 522 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal); 523 setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); 524 setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); 525 setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); 526 setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); 527 } 528 529 // The vector enhancements facility 1 has instructions for these. 530 if (Subtarget.hasVectorEnhancements1()) { 531 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 532 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 533 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 534 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 535 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 536 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 537 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 538 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 539 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 540 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 541 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 542 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 543 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 544 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 545 546 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 547 setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal); 548 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 549 setOperationAction(ISD::FMINIMUM, MVT::f64, Legal); 550 551 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 552 setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal); 553 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 554 setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal); 555 556 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 557 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal); 558 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 559 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal); 560 561 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 562 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal); 563 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 564 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal); 565 566 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 567 setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal); 568 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 569 setOperationAction(ISD::FMINIMUM, MVT::f128, Legal); 570 571 // Handle constrained floating-point operations. 572 setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); 573 setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); 574 setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); 575 setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); 576 setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); 577 setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); 578 setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); 579 setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal); 580 setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); 581 setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); 582 setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); 583 setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); 584 for (auto VT : { MVT::f32, MVT::f64, MVT::f128, 585 MVT::v4f32, MVT::v2f64 }) { 586 setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal); 587 setOperationAction(ISD::STRICT_FMINNUM, VT, Legal); 588 setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal); 589 setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal); 590 } 591 } 592 593 // We only have fused f128 multiply-addition on vector registers. 594 if (!Subtarget.hasVectorEnhancements1()) { 595 setOperationAction(ISD::FMA, MVT::f128, Expand); 596 setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand); 597 } 598 599 // We don't have a copysign instruction on vector registers. 600 if (Subtarget.hasVectorEnhancements1()) 601 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 602 603 // Needed so that we don't try to implement f128 constant loads using 604 // a load-and-extend of a f80 constant (in cases where the constant 605 // would fit in an f80). 606 for (MVT VT : MVT::fp_valuetypes()) 607 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 608 609 // We don't have extending load instruction on vector registers. 610 if (Subtarget.hasVectorEnhancements1()) { 611 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 612 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 613 } 614 615 // Floating-point truncation and stores need to be done separately. 616 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 617 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 618 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 619 620 // We have 64-bit FPR<->GPR moves, but need special handling for 621 // 32-bit forms. 622 if (!Subtarget.hasVector()) { 623 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 624 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 625 } 626 627 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 628 // structure, but VAEND is a no-op. 629 setOperationAction(ISD::VASTART, MVT::Other, Custom); 630 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 631 setOperationAction(ISD::VAEND, MVT::Other, Expand); 632 633 // Codes for which we want to perform some z-specific combinations. 634 setTargetDAGCombine(ISD::ZERO_EXTEND); 635 setTargetDAGCombine(ISD::SIGN_EXTEND); 636 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 637 setTargetDAGCombine(ISD::LOAD); 638 setTargetDAGCombine(ISD::STORE); 639 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 640 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 641 setTargetDAGCombine(ISD::FP_ROUND); 642 setTargetDAGCombine(ISD::STRICT_FP_ROUND); 643 setTargetDAGCombine(ISD::FP_EXTEND); 644 setTargetDAGCombine(ISD::SINT_TO_FP); 645 setTargetDAGCombine(ISD::UINT_TO_FP); 646 setTargetDAGCombine(ISD::STRICT_FP_EXTEND); 647 setTargetDAGCombine(ISD::BSWAP); 648 setTargetDAGCombine(ISD::SDIV); 649 setTargetDAGCombine(ISD::UDIV); 650 setTargetDAGCombine(ISD::SREM); 651 setTargetDAGCombine(ISD::UREM); 652 653 // Handle intrinsics. 654 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 655 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 656 657 // We want to use MVC in preference to even a single load/store pair. 658 MaxStoresPerMemcpy = 0; 659 MaxStoresPerMemcpyOptSize = 0; 660 661 // The main memset sequence is a byte store followed by an MVC. 662 // Two STC or MV..I stores win over that, but the kind of fused stores 663 // generated by target-independent code don't when the byte value is 664 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 665 // than "STC;MVC". Handle the choice in target-specific code instead. 666 MaxStoresPerMemset = 0; 667 MaxStoresPerMemsetOptSize = 0; 668 669 // Default to having -disable-strictnode-mutation on 670 IsStrictFPEnabled = true; 671 } 672 673 bool SystemZTargetLowering::useSoftFloat() const { 674 return Subtarget.hasSoftFloat(); 675 } 676 677 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 678 LLVMContext &, EVT VT) const { 679 if (!VT.isVector()) 680 return MVT::i32; 681 return VT.changeVectorElementTypeToInteger(); 682 } 683 684 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd( 685 const MachineFunction &MF, EVT VT) const { 686 VT = VT.getScalarType(); 687 688 if (!VT.isSimple()) 689 return false; 690 691 switch (VT.getSimpleVT().SimpleTy) { 692 case MVT::f32: 693 case MVT::f64: 694 return true; 695 case MVT::f128: 696 return Subtarget.hasVectorEnhancements1(); 697 default: 698 break; 699 } 700 701 return false; 702 } 703 704 // Return true if the constant can be generated with a vector instruction, 705 // such as VGM, VGMB or VREPI. 706 bool SystemZVectorConstantInfo::isVectorConstantLegal( 707 const SystemZSubtarget &Subtarget) { 708 const SystemZInstrInfo *TII = 709 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 710 if (!Subtarget.hasVector() || 711 (isFP128 && !Subtarget.hasVectorEnhancements1())) 712 return false; 713 714 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 715 // preferred way of creating all-zero and all-one vectors so give it 716 // priority over other methods below. 717 unsigned Mask = 0; 718 unsigned I = 0; 719 for (; I < SystemZ::VectorBytes; ++I) { 720 uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue(); 721 if (Byte == 0xff) 722 Mask |= 1ULL << I; 723 else if (Byte != 0) 724 break; 725 } 726 if (I == SystemZ::VectorBytes) { 727 Opcode = SystemZISD::BYTE_MASK; 728 OpVals.push_back(Mask); 729 VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16); 730 return true; 731 } 732 733 if (SplatBitSize > 64) 734 return false; 735 736 auto tryValue = [&](uint64_t Value) -> bool { 737 // Try VECTOR REPLICATE IMMEDIATE 738 int64_t SignedValue = SignExtend64(Value, SplatBitSize); 739 if (isInt<16>(SignedValue)) { 740 OpVals.push_back(((unsigned) SignedValue)); 741 Opcode = SystemZISD::REPLICATE; 742 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 743 SystemZ::VectorBits / SplatBitSize); 744 return true; 745 } 746 // Try VECTOR GENERATE MASK 747 unsigned Start, End; 748 if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) { 749 // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0 750 // denoting 1 << 63 and 63 denoting 1. Convert them to bit numbers for 751 // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1). 752 OpVals.push_back(Start - (64 - SplatBitSize)); 753 OpVals.push_back(End - (64 - SplatBitSize)); 754 Opcode = SystemZISD::ROTATE_MASK; 755 VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize), 756 SystemZ::VectorBits / SplatBitSize); 757 return true; 758 } 759 return false; 760 }; 761 762 // First try assuming that any undefined bits above the highest set bit 763 // and below the lowest set bit are 1s. This increases the likelihood of 764 // being able to use a sign-extended element value in VECTOR REPLICATE 765 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 766 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 767 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 768 uint64_t Lower = 769 (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 770 uint64_t Upper = 771 (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 772 if (tryValue(SplatBitsZ | Upper | Lower)) 773 return true; 774 775 // Now try assuming that any undefined bits between the first and 776 // last defined set bits are set. This increases the chances of 777 // using a non-wraparound mask. 778 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 779 return tryValue(SplatBitsZ | Middle); 780 } 781 782 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APFloat FPImm) { 783 IntBits = FPImm.bitcastToAPInt().zextOrSelf(128); 784 isFP128 = (&FPImm.getSemantics() == &APFloat::IEEEquad()); 785 786 // Find the smallest splat. 787 SplatBits = FPImm.bitcastToAPInt(); 788 unsigned Width = SplatBits.getBitWidth(); 789 while (Width > 8) { 790 unsigned HalfSize = Width / 2; 791 APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize); 792 APInt LowValue = SplatBits.trunc(HalfSize); 793 794 // If the two halves do not match, stop here. 795 if (HighValue != LowValue || 8 > HalfSize) 796 break; 797 798 SplatBits = HighValue; 799 Width = HalfSize; 800 } 801 SplatUndef = 0; 802 SplatBitSize = Width; 803 } 804 805 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) { 806 assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR"); 807 bool HasAnyUndefs; 808 809 // Get IntBits by finding the 128 bit splat. 810 BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128, 811 true); 812 813 // Get SplatBits by finding the 8 bit or greater splat. 814 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8, 815 true); 816 } 817 818 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, 819 bool ForCodeSize) const { 820 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 821 if (Imm.isZero() || Imm.isNegZero()) 822 return true; 823 824 return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget); 825 } 826 827 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 828 // We can use CGFI or CLGFI. 829 return isInt<32>(Imm) || isUInt<32>(Imm); 830 } 831 832 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 833 // We can use ALGFI or SLGFI. 834 return isUInt<32>(Imm) || isUInt<32>(-Imm); 835 } 836 837 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses( 838 EVT VT, unsigned, unsigned, MachineMemOperand::Flags, bool *Fast) const { 839 // Unaligned accesses should never be slower than the expanded version. 840 // We check specifically for aligned accesses in the few cases where 841 // they are required. 842 if (Fast) 843 *Fast = true; 844 return true; 845 } 846 847 // Information about the addressing mode for a memory access. 848 struct AddressingMode { 849 // True if a long displacement is supported. 850 bool LongDisplacement; 851 852 // True if use of index register is supported. 853 bool IndexReg; 854 855 AddressingMode(bool LongDispl, bool IdxReg) : 856 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 857 }; 858 859 // Return the desired addressing mode for a Load which has only one use (in 860 // the same block) which is a Store. 861 static AddressingMode getLoadStoreAddrMode(bool HasVector, 862 Type *Ty) { 863 // With vector support a Load->Store combination may be combined to either 864 // an MVC or vector operations and it seems to work best to allow the 865 // vector addressing mode. 866 if (HasVector) 867 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 868 869 // Otherwise only the MVC case is special. 870 bool MVC = Ty->isIntegerTy(8); 871 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 872 } 873 874 // Return the addressing mode which seems most desirable given an LLVM 875 // Instruction pointer. 876 static AddressingMode 877 supportedAddressingMode(Instruction *I, bool HasVector) { 878 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 879 switch (II->getIntrinsicID()) { 880 default: break; 881 case Intrinsic::memset: 882 case Intrinsic::memmove: 883 case Intrinsic::memcpy: 884 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 885 } 886 } 887 888 if (isa<LoadInst>(I) && I->hasOneUse()) { 889 auto *SingleUser = cast<Instruction>(*I->user_begin()); 890 if (SingleUser->getParent() == I->getParent()) { 891 if (isa<ICmpInst>(SingleUser)) { 892 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 893 if (C->getBitWidth() <= 64 && 894 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 895 // Comparison of memory with 16 bit signed / unsigned immediate 896 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 897 } else if (isa<StoreInst>(SingleUser)) 898 // Load->Store 899 return getLoadStoreAddrMode(HasVector, I->getType()); 900 } 901 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 902 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 903 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 904 // Load->Store 905 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 906 } 907 908 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 909 910 // * Use LDE instead of LE/LEY for z13 to avoid partial register 911 // dependencies (LDE only supports small offsets). 912 // * Utilize the vector registers to hold floating point 913 // values (vector load / store instructions only support small 914 // offsets). 915 916 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 917 I->getOperand(0)->getType()); 918 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 919 bool IsVectorAccess = MemAccessTy->isVectorTy(); 920 921 // A store of an extracted vector element will be combined into a VSTE type 922 // instruction. 923 if (!IsVectorAccess && isa<StoreInst>(I)) { 924 Value *DataOp = I->getOperand(0); 925 if (isa<ExtractElementInst>(DataOp)) 926 IsVectorAccess = true; 927 } 928 929 // A load which gets inserted into a vector element will be combined into a 930 // VLE type instruction. 931 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 932 User *LoadUser = *I->user_begin(); 933 if (isa<InsertElementInst>(LoadUser)) 934 IsVectorAccess = true; 935 } 936 937 if (IsFPAccess || IsVectorAccess) 938 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 939 } 940 941 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 942 } 943 944 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 945 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 946 // Punt on globals for now, although they can be used in limited 947 // RELATIVE LONG cases. 948 if (AM.BaseGV) 949 return false; 950 951 // Require a 20-bit signed offset. 952 if (!isInt<20>(AM.BaseOffs)) 953 return false; 954 955 AddressingMode SupportedAM(true, true); 956 if (I != nullptr) 957 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 958 959 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 960 return false; 961 962 if (!SupportedAM.IndexReg) 963 // No indexing allowed. 964 return AM.Scale == 0; 965 else 966 // Indexing is OK but no scale factor can be applied. 967 return AM.Scale == 0 || AM.Scale == 1; 968 } 969 970 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 971 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 972 return false; 973 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 974 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 975 return FromBits > ToBits; 976 } 977 978 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 979 if (!FromVT.isInteger() || !ToVT.isInteger()) 980 return false; 981 unsigned FromBits = FromVT.getSizeInBits(); 982 unsigned ToBits = ToVT.getSizeInBits(); 983 return FromBits > ToBits; 984 } 985 986 //===----------------------------------------------------------------------===// 987 // Inline asm support 988 //===----------------------------------------------------------------------===// 989 990 TargetLowering::ConstraintType 991 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 992 if (Constraint.size() == 1) { 993 switch (Constraint[0]) { 994 case 'a': // Address register 995 case 'd': // Data register (equivalent to 'r') 996 case 'f': // Floating-point register 997 case 'h': // High-part register 998 case 'r': // General-purpose register 999 case 'v': // Vector register 1000 return C_RegisterClass; 1001 1002 case 'Q': // Memory with base and unsigned 12-bit displacement 1003 case 'R': // Likewise, plus an index 1004 case 'S': // Memory with base and signed 20-bit displacement 1005 case 'T': // Likewise, plus an index 1006 case 'm': // Equivalent to 'T'. 1007 return C_Memory; 1008 1009 case 'I': // Unsigned 8-bit constant 1010 case 'J': // Unsigned 12-bit constant 1011 case 'K': // Signed 16-bit constant 1012 case 'L': // Signed 20-bit displacement (on all targets we support) 1013 case 'M': // 0x7fffffff 1014 return C_Immediate; 1015 1016 default: 1017 break; 1018 } 1019 } 1020 return TargetLowering::getConstraintType(Constraint); 1021 } 1022 1023 TargetLowering::ConstraintWeight SystemZTargetLowering:: 1024 getSingleConstraintMatchWeight(AsmOperandInfo &info, 1025 const char *constraint) const { 1026 ConstraintWeight weight = CW_Invalid; 1027 Value *CallOperandVal = info.CallOperandVal; 1028 // If we don't have a value, we can't do a match, 1029 // but allow it at the lowest weight. 1030 if (!CallOperandVal) 1031 return CW_Default; 1032 Type *type = CallOperandVal->getType(); 1033 // Look at the constraint type. 1034 switch (*constraint) { 1035 default: 1036 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 1037 break; 1038 1039 case 'a': // Address register 1040 case 'd': // Data register (equivalent to 'r') 1041 case 'h': // High-part register 1042 case 'r': // General-purpose register 1043 if (CallOperandVal->getType()->isIntegerTy()) 1044 weight = CW_Register; 1045 break; 1046 1047 case 'f': // Floating-point register 1048 if (type->isFloatingPointTy()) 1049 weight = CW_Register; 1050 break; 1051 1052 case 'v': // Vector register 1053 if ((type->isVectorTy() || type->isFloatingPointTy()) && 1054 Subtarget.hasVector()) 1055 weight = CW_Register; 1056 break; 1057 1058 case 'I': // Unsigned 8-bit constant 1059 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1060 if (isUInt<8>(C->getZExtValue())) 1061 weight = CW_Constant; 1062 break; 1063 1064 case 'J': // Unsigned 12-bit constant 1065 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1066 if (isUInt<12>(C->getZExtValue())) 1067 weight = CW_Constant; 1068 break; 1069 1070 case 'K': // Signed 16-bit constant 1071 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1072 if (isInt<16>(C->getSExtValue())) 1073 weight = CW_Constant; 1074 break; 1075 1076 case 'L': // Signed 20-bit displacement (on all targets we support) 1077 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1078 if (isInt<20>(C->getSExtValue())) 1079 weight = CW_Constant; 1080 break; 1081 1082 case 'M': // 0x7fffffff 1083 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 1084 if (C->getZExtValue() == 0x7fffffff) 1085 weight = CW_Constant; 1086 break; 1087 } 1088 return weight; 1089 } 1090 1091 // Parse a "{tNNN}" register constraint for which the register type "t" 1092 // has already been verified. MC is the class associated with "t" and 1093 // Map maps 0-based register numbers to LLVM register numbers. 1094 static std::pair<unsigned, const TargetRegisterClass *> 1095 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 1096 const unsigned *Map, unsigned Size) { 1097 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 1098 if (isdigit(Constraint[2])) { 1099 unsigned Index; 1100 bool Failed = 1101 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 1102 if (!Failed && Index < Size && Map[Index]) 1103 return std::make_pair(Map[Index], RC); 1104 } 1105 return std::make_pair(0U, nullptr); 1106 } 1107 1108 std::pair<unsigned, const TargetRegisterClass *> 1109 SystemZTargetLowering::getRegForInlineAsmConstraint( 1110 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 1111 if (Constraint.size() == 1) { 1112 // GCC Constraint Letters 1113 switch (Constraint[0]) { 1114 default: break; 1115 case 'd': // Data register (equivalent to 'r') 1116 case 'r': // General-purpose register 1117 if (VT == MVT::i64) 1118 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 1119 else if (VT == MVT::i128) 1120 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 1121 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 1122 1123 case 'a': // Address register 1124 if (VT == MVT::i64) 1125 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 1126 else if (VT == MVT::i128) 1127 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 1128 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 1129 1130 case 'h': // High-part register (an LLVM extension) 1131 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 1132 1133 case 'f': // Floating-point register 1134 if (!useSoftFloat()) { 1135 if (VT == MVT::f64) 1136 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 1137 else if (VT == MVT::f128) 1138 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 1139 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 1140 } 1141 break; 1142 case 'v': // Vector register 1143 if (Subtarget.hasVector()) { 1144 if (VT == MVT::f32) 1145 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 1146 if (VT == MVT::f64) 1147 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 1148 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 1149 } 1150 break; 1151 } 1152 } 1153 if (Constraint.size() > 0 && Constraint[0] == '{') { 1154 // We need to override the default register parsing for GPRs and FPRs 1155 // because the interpretation depends on VT. The internal names of 1156 // the registers are also different from the external names 1157 // (F0D and F0S instead of F0, etc.). 1158 if (Constraint[1] == 'r') { 1159 if (VT == MVT::i32) 1160 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 1161 SystemZMC::GR32Regs, 16); 1162 if (VT == MVT::i128) 1163 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 1164 SystemZMC::GR128Regs, 16); 1165 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 1166 SystemZMC::GR64Regs, 16); 1167 } 1168 if (Constraint[1] == 'f') { 1169 if (useSoftFloat()) 1170 return std::make_pair( 1171 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1172 if (VT == MVT::f32) 1173 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 1174 SystemZMC::FP32Regs, 16); 1175 if (VT == MVT::f128) 1176 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 1177 SystemZMC::FP128Regs, 16); 1178 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 1179 SystemZMC::FP64Regs, 16); 1180 } 1181 if (Constraint[1] == 'v') { 1182 if (!Subtarget.hasVector()) 1183 return std::make_pair( 1184 0u, static_cast<const TargetRegisterClass *>(nullptr)); 1185 if (VT == MVT::f32) 1186 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 1187 SystemZMC::VR32Regs, 32); 1188 if (VT == MVT::f64) 1189 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 1190 SystemZMC::VR64Regs, 32); 1191 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 1192 SystemZMC::VR128Regs, 32); 1193 } 1194 } 1195 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 1196 } 1197 1198 // FIXME? Maybe this could be a TableGen attribute on some registers and 1199 // this table could be generated automatically from RegInfo. 1200 Register SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT, 1201 const MachineFunction &MF) const { 1202 1203 Register Reg = StringSwitch<Register>(RegName) 1204 .Case("r15", SystemZ::R15D) 1205 .Default(0); 1206 if (Reg) 1207 return Reg; 1208 report_fatal_error("Invalid register name global variable"); 1209 } 1210 1211 void SystemZTargetLowering:: 1212 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 1213 std::vector<SDValue> &Ops, 1214 SelectionDAG &DAG) const { 1215 // Only support length 1 constraints for now. 1216 if (Constraint.length() == 1) { 1217 switch (Constraint[0]) { 1218 case 'I': // Unsigned 8-bit constant 1219 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1220 if (isUInt<8>(C->getZExtValue())) 1221 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1222 Op.getValueType())); 1223 return; 1224 1225 case 'J': // Unsigned 12-bit constant 1226 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1227 if (isUInt<12>(C->getZExtValue())) 1228 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1229 Op.getValueType())); 1230 return; 1231 1232 case 'K': // Signed 16-bit constant 1233 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1234 if (isInt<16>(C->getSExtValue())) 1235 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1236 Op.getValueType())); 1237 return; 1238 1239 case 'L': // Signed 20-bit displacement (on all targets we support) 1240 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1241 if (isInt<20>(C->getSExtValue())) 1242 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 1243 Op.getValueType())); 1244 return; 1245 1246 case 'M': // 0x7fffffff 1247 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 1248 if (C->getZExtValue() == 0x7fffffff) 1249 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 1250 Op.getValueType())); 1251 return; 1252 } 1253 } 1254 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 1255 } 1256 1257 //===----------------------------------------------------------------------===// 1258 // Calling conventions 1259 //===----------------------------------------------------------------------===// 1260 1261 #include "SystemZGenCallingConv.inc" 1262 1263 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 1264 CallingConv::ID) const { 1265 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 1266 SystemZ::R14D, 0 }; 1267 return ScratchRegs; 1268 } 1269 1270 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1271 Type *ToType) const { 1272 return isTruncateFree(FromType, ToType); 1273 } 1274 1275 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1276 return CI->isTailCall(); 1277 } 1278 1279 // We do not yet support 128-bit single-element vector types. If the user 1280 // attempts to use such types as function argument or return type, prefer 1281 // to error out instead of emitting code violating the ABI. 1282 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1283 if (ArgVT.isVector() && !VT.isVector()) 1284 report_fatal_error("Unsupported vector argument or return type"); 1285 } 1286 1287 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1288 for (unsigned i = 0; i < Ins.size(); ++i) 1289 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1290 } 1291 1292 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1293 for (unsigned i = 0; i < Outs.size(); ++i) 1294 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1295 } 1296 1297 // Value is a value that has been passed to us in the location described by VA 1298 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1299 // any loads onto Chain. 1300 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1301 CCValAssign &VA, SDValue Chain, 1302 SDValue Value) { 1303 // If the argument has been promoted from a smaller type, insert an 1304 // assertion to capture this. 1305 if (VA.getLocInfo() == CCValAssign::SExt) 1306 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1307 DAG.getValueType(VA.getValVT())); 1308 else if (VA.getLocInfo() == CCValAssign::ZExt) 1309 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1310 DAG.getValueType(VA.getValVT())); 1311 1312 if (VA.isExtInLoc()) 1313 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1314 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1315 // If this is a short vector argument loaded from the stack, 1316 // extend from i64 to full vector size and then bitcast. 1317 assert(VA.getLocVT() == MVT::i64); 1318 assert(VA.getValVT().isVector()); 1319 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1320 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1321 } else 1322 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1323 return Value; 1324 } 1325 1326 // Value is a value of type VA.getValVT() that we need to copy into 1327 // the location described by VA. Return a copy of Value converted to 1328 // VA.getValVT(). The caller is responsible for handling indirect values. 1329 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1330 CCValAssign &VA, SDValue Value) { 1331 switch (VA.getLocInfo()) { 1332 case CCValAssign::SExt: 1333 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1334 case CCValAssign::ZExt: 1335 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1336 case CCValAssign::AExt: 1337 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1338 case CCValAssign::BCvt: 1339 // If this is a short vector argument to be stored to the stack, 1340 // bitcast to v2i64 and then extract first element. 1341 assert(VA.getLocVT() == MVT::i64); 1342 assert(VA.getValVT().isVector()); 1343 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1344 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1345 DAG.getConstant(0, DL, MVT::i32)); 1346 case CCValAssign::Full: 1347 return Value; 1348 default: 1349 llvm_unreachable("Unhandled getLocInfo()"); 1350 } 1351 } 1352 1353 SDValue SystemZTargetLowering::LowerFormalArguments( 1354 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1355 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1356 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1357 MachineFunction &MF = DAG.getMachineFunction(); 1358 MachineFrameInfo &MFI = MF.getFrameInfo(); 1359 MachineRegisterInfo &MRI = MF.getRegInfo(); 1360 SystemZMachineFunctionInfo *FuncInfo = 1361 MF.getInfo<SystemZMachineFunctionInfo>(); 1362 auto *TFL = 1363 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1364 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1365 1366 // Detect unsupported vector argument types. 1367 if (Subtarget.hasVector()) 1368 VerifyVectorTypes(Ins); 1369 1370 // Assign locations to all of the incoming arguments. 1371 SmallVector<CCValAssign, 16> ArgLocs; 1372 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1373 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1374 1375 unsigned NumFixedGPRs = 0; 1376 unsigned NumFixedFPRs = 0; 1377 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1378 SDValue ArgValue; 1379 CCValAssign &VA = ArgLocs[I]; 1380 EVT LocVT = VA.getLocVT(); 1381 if (VA.isRegLoc()) { 1382 // Arguments passed in registers 1383 const TargetRegisterClass *RC; 1384 switch (LocVT.getSimpleVT().SimpleTy) { 1385 default: 1386 // Integers smaller than i64 should be promoted to i64. 1387 llvm_unreachable("Unexpected argument type"); 1388 case MVT::i32: 1389 NumFixedGPRs += 1; 1390 RC = &SystemZ::GR32BitRegClass; 1391 break; 1392 case MVT::i64: 1393 NumFixedGPRs += 1; 1394 RC = &SystemZ::GR64BitRegClass; 1395 break; 1396 case MVT::f32: 1397 NumFixedFPRs += 1; 1398 RC = &SystemZ::FP32BitRegClass; 1399 break; 1400 case MVT::f64: 1401 NumFixedFPRs += 1; 1402 RC = &SystemZ::FP64BitRegClass; 1403 break; 1404 case MVT::v16i8: 1405 case MVT::v8i16: 1406 case MVT::v4i32: 1407 case MVT::v2i64: 1408 case MVT::v4f32: 1409 case MVT::v2f64: 1410 RC = &SystemZ::VR128BitRegClass; 1411 break; 1412 } 1413 1414 Register VReg = MRI.createVirtualRegister(RC); 1415 MRI.addLiveIn(VA.getLocReg(), VReg); 1416 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1417 } else { 1418 assert(VA.isMemLoc() && "Argument not register or memory"); 1419 1420 // Create the frame index object for this incoming parameter. 1421 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1422 VA.getLocMemOffset(), true); 1423 1424 // Create the SelectionDAG nodes corresponding to a load 1425 // from this parameter. Unpromoted ints and floats are 1426 // passed as right-justified 8-byte values. 1427 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1428 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1429 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1430 DAG.getIntPtrConstant(4, DL)); 1431 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1432 MachinePointerInfo::getFixedStack(MF, FI)); 1433 } 1434 1435 // Convert the value of the argument register into the value that's 1436 // being passed. 1437 if (VA.getLocInfo() == CCValAssign::Indirect) { 1438 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1439 MachinePointerInfo())); 1440 // If the original argument was split (e.g. i128), we need 1441 // to load all parts of it here (using the same address). 1442 unsigned ArgIndex = Ins[I].OrigArgIndex; 1443 assert (Ins[I].PartOffset == 0); 1444 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1445 CCValAssign &PartVA = ArgLocs[I + 1]; 1446 unsigned PartOffset = Ins[I + 1].PartOffset; 1447 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1448 DAG.getIntPtrConstant(PartOffset, DL)); 1449 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1450 MachinePointerInfo())); 1451 ++I; 1452 } 1453 } else 1454 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1455 } 1456 1457 if (IsVarArg) { 1458 // Save the number of non-varargs registers for later use by va_start, etc. 1459 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1460 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1461 1462 // Likewise the address (in the form of a frame index) of where the 1463 // first stack vararg would be. The 1-byte size here is arbitrary. 1464 int64_t StackSize = CCInfo.getNextStackOffset(); 1465 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1466 1467 // ...and a similar frame index for the caller-allocated save area 1468 // that will be used to store the incoming registers. 1469 int64_t RegSaveOffset = 1470 -SystemZMC::CallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16; 1471 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1472 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1473 1474 // Store the FPR varargs in the reserved frame slots. (We store the 1475 // GPRs as part of the prologue.) 1476 if (NumFixedFPRs < SystemZ::NumArgFPRs && !useSoftFloat()) { 1477 SDValue MemOps[SystemZ::NumArgFPRs]; 1478 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1479 unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ArgFPRs[I]); 1480 int FI = 1481 MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize + Offset, true); 1482 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1483 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1484 &SystemZ::FP64BitRegClass); 1485 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1486 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1487 MachinePointerInfo::getFixedStack(MF, FI)); 1488 } 1489 // Join the stores, which are independent of one another. 1490 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1491 makeArrayRef(&MemOps[NumFixedFPRs], 1492 SystemZ::NumArgFPRs-NumFixedFPRs)); 1493 } 1494 } 1495 1496 return Chain; 1497 } 1498 1499 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1500 SmallVectorImpl<CCValAssign> &ArgLocs, 1501 SmallVectorImpl<ISD::OutputArg> &Outs) { 1502 // Punt if there are any indirect or stack arguments, or if the call 1503 // needs the callee-saved argument register R6, or if the call uses 1504 // the callee-saved register arguments SwiftSelf and SwiftError. 1505 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1506 CCValAssign &VA = ArgLocs[I]; 1507 if (VA.getLocInfo() == CCValAssign::Indirect) 1508 return false; 1509 if (!VA.isRegLoc()) 1510 return false; 1511 Register Reg = VA.getLocReg(); 1512 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1513 return false; 1514 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1515 return false; 1516 } 1517 return true; 1518 } 1519 1520 SDValue 1521 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1522 SmallVectorImpl<SDValue> &InVals) const { 1523 SelectionDAG &DAG = CLI.DAG; 1524 SDLoc &DL = CLI.DL; 1525 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1526 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1527 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1528 SDValue Chain = CLI.Chain; 1529 SDValue Callee = CLI.Callee; 1530 bool &IsTailCall = CLI.IsTailCall; 1531 CallingConv::ID CallConv = CLI.CallConv; 1532 bool IsVarArg = CLI.IsVarArg; 1533 MachineFunction &MF = DAG.getMachineFunction(); 1534 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1535 1536 // Detect unsupported vector argument and return types. 1537 if (Subtarget.hasVector()) { 1538 VerifyVectorTypes(Outs); 1539 VerifyVectorTypes(Ins); 1540 } 1541 1542 // Analyze the operands of the call, assigning locations to each operand. 1543 SmallVector<CCValAssign, 16> ArgLocs; 1544 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1545 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1546 1547 // We don't support GuaranteedTailCallOpt, only automatically-detected 1548 // sibling calls. 1549 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1550 IsTailCall = false; 1551 1552 // Get a count of how many bytes are to be pushed on the stack. 1553 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1554 1555 // Mark the start of the call. 1556 if (!IsTailCall) 1557 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1558 1559 // Copy argument values to their designated locations. 1560 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1561 SmallVector<SDValue, 8> MemOpChains; 1562 SDValue StackPtr; 1563 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1564 CCValAssign &VA = ArgLocs[I]; 1565 SDValue ArgValue = OutVals[I]; 1566 1567 if (VA.getLocInfo() == CCValAssign::Indirect) { 1568 // Store the argument in a stack slot and pass its address. 1569 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1570 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1571 MemOpChains.push_back( 1572 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1573 MachinePointerInfo::getFixedStack(MF, FI))); 1574 // If the original argument was split (e.g. i128), we need 1575 // to store all parts of it here (and pass just one address). 1576 unsigned ArgIndex = Outs[I].OrigArgIndex; 1577 assert (Outs[I].PartOffset == 0); 1578 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1579 SDValue PartValue = OutVals[I + 1]; 1580 unsigned PartOffset = Outs[I + 1].PartOffset; 1581 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1582 DAG.getIntPtrConstant(PartOffset, DL)); 1583 MemOpChains.push_back( 1584 DAG.getStore(Chain, DL, PartValue, Address, 1585 MachinePointerInfo::getFixedStack(MF, FI))); 1586 ++I; 1587 } 1588 ArgValue = SpillSlot; 1589 } else 1590 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1591 1592 if (VA.isRegLoc()) 1593 // Queue up the argument copies and emit them at the end. 1594 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1595 else { 1596 assert(VA.isMemLoc() && "Argument not register or memory"); 1597 1598 // Work out the address of the stack slot. Unpromoted ints and 1599 // floats are passed as right-justified 8-byte values. 1600 if (!StackPtr.getNode()) 1601 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1602 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1603 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1604 Offset += 4; 1605 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1606 DAG.getIntPtrConstant(Offset, DL)); 1607 1608 // Emit the store. 1609 MemOpChains.push_back( 1610 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1611 } 1612 } 1613 1614 // Join the stores, which are independent of one another. 1615 if (!MemOpChains.empty()) 1616 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1617 1618 // Accept direct calls by converting symbolic call addresses to the 1619 // associated Target* opcodes. Force %r1 to be used for indirect 1620 // tail calls. 1621 SDValue Glue; 1622 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1623 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1624 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1625 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1626 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1627 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1628 } else if (IsTailCall) { 1629 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1630 Glue = Chain.getValue(1); 1631 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1632 } 1633 1634 // Build a sequence of copy-to-reg nodes, chained and glued together. 1635 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1636 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1637 RegsToPass[I].second, Glue); 1638 Glue = Chain.getValue(1); 1639 } 1640 1641 // The first call operand is the chain and the second is the target address. 1642 SmallVector<SDValue, 8> Ops; 1643 Ops.push_back(Chain); 1644 Ops.push_back(Callee); 1645 1646 // Add argument registers to the end of the list so that they are 1647 // known live into the call. 1648 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1649 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1650 RegsToPass[I].second.getValueType())); 1651 1652 // Add a register mask operand representing the call-preserved registers. 1653 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1654 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1655 assert(Mask && "Missing call preserved mask for calling convention"); 1656 Ops.push_back(DAG.getRegisterMask(Mask)); 1657 1658 // Glue the call to the argument copies, if any. 1659 if (Glue.getNode()) 1660 Ops.push_back(Glue); 1661 1662 // Emit the call. 1663 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1664 if (IsTailCall) 1665 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1666 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1667 Glue = Chain.getValue(1); 1668 1669 // Mark the end of the call, which is glued to the call itself. 1670 Chain = DAG.getCALLSEQ_END(Chain, 1671 DAG.getConstant(NumBytes, DL, PtrVT, true), 1672 DAG.getConstant(0, DL, PtrVT, true), 1673 Glue, DL); 1674 Glue = Chain.getValue(1); 1675 1676 // Assign locations to each value returned by this call. 1677 SmallVector<CCValAssign, 16> RetLocs; 1678 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1679 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1680 1681 // Copy all of the result registers out of their specified physreg. 1682 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1683 CCValAssign &VA = RetLocs[I]; 1684 1685 // Copy the value out, gluing the copy to the end of the call sequence. 1686 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1687 VA.getLocVT(), Glue); 1688 Chain = RetValue.getValue(1); 1689 Glue = RetValue.getValue(2); 1690 1691 // Convert the value of the return register into the value that's 1692 // being returned. 1693 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1694 } 1695 1696 return Chain; 1697 } 1698 1699 bool SystemZTargetLowering:: 1700 CanLowerReturn(CallingConv::ID CallConv, 1701 MachineFunction &MF, bool isVarArg, 1702 const SmallVectorImpl<ISD::OutputArg> &Outs, 1703 LLVMContext &Context) const { 1704 // Detect unsupported vector return types. 1705 if (Subtarget.hasVector()) 1706 VerifyVectorTypes(Outs); 1707 1708 // Special case that we cannot easily detect in RetCC_SystemZ since 1709 // i128 is not a legal type. 1710 for (auto &Out : Outs) 1711 if (Out.ArgVT == MVT::i128) 1712 return false; 1713 1714 SmallVector<CCValAssign, 16> RetLocs; 1715 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1716 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1717 } 1718 1719 SDValue 1720 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1721 bool IsVarArg, 1722 const SmallVectorImpl<ISD::OutputArg> &Outs, 1723 const SmallVectorImpl<SDValue> &OutVals, 1724 const SDLoc &DL, SelectionDAG &DAG) const { 1725 MachineFunction &MF = DAG.getMachineFunction(); 1726 1727 // Detect unsupported vector return types. 1728 if (Subtarget.hasVector()) 1729 VerifyVectorTypes(Outs); 1730 1731 // Assign locations to each returned value. 1732 SmallVector<CCValAssign, 16> RetLocs; 1733 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1734 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1735 1736 // Quick exit for void returns 1737 if (RetLocs.empty()) 1738 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1739 1740 if (CallConv == CallingConv::GHC) 1741 report_fatal_error("GHC functions return void only"); 1742 1743 // Copy the result values into the output registers. 1744 SDValue Glue; 1745 SmallVector<SDValue, 4> RetOps; 1746 RetOps.push_back(Chain); 1747 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1748 CCValAssign &VA = RetLocs[I]; 1749 SDValue RetValue = OutVals[I]; 1750 1751 // Make the return register live on exit. 1752 assert(VA.isRegLoc() && "Can only return in registers!"); 1753 1754 // Promote the value as required. 1755 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1756 1757 // Chain and glue the copies together. 1758 Register Reg = VA.getLocReg(); 1759 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1760 Glue = Chain.getValue(1); 1761 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1762 } 1763 1764 // Update chain and glue. 1765 RetOps[0] = Chain; 1766 if (Glue.getNode()) 1767 RetOps.push_back(Glue); 1768 1769 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1770 } 1771 1772 // Return true if Op is an intrinsic node with chain that returns the CC value 1773 // as its only (other) argument. Provide the associated SystemZISD opcode and 1774 // the mask of valid CC values if so. 1775 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1776 unsigned &CCValid) { 1777 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1778 switch (Id) { 1779 case Intrinsic::s390_tbegin: 1780 Opcode = SystemZISD::TBEGIN; 1781 CCValid = SystemZ::CCMASK_TBEGIN; 1782 return true; 1783 1784 case Intrinsic::s390_tbegin_nofloat: 1785 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1786 CCValid = SystemZ::CCMASK_TBEGIN; 1787 return true; 1788 1789 case Intrinsic::s390_tend: 1790 Opcode = SystemZISD::TEND; 1791 CCValid = SystemZ::CCMASK_TEND; 1792 return true; 1793 1794 default: 1795 return false; 1796 } 1797 } 1798 1799 // Return true if Op is an intrinsic node without chain that returns the 1800 // CC value as its final argument. Provide the associated SystemZISD 1801 // opcode and the mask of valid CC values if so. 1802 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1803 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1804 switch (Id) { 1805 case Intrinsic::s390_vpkshs: 1806 case Intrinsic::s390_vpksfs: 1807 case Intrinsic::s390_vpksgs: 1808 Opcode = SystemZISD::PACKS_CC; 1809 CCValid = SystemZ::CCMASK_VCMP; 1810 return true; 1811 1812 case Intrinsic::s390_vpklshs: 1813 case Intrinsic::s390_vpklsfs: 1814 case Intrinsic::s390_vpklsgs: 1815 Opcode = SystemZISD::PACKLS_CC; 1816 CCValid = SystemZ::CCMASK_VCMP; 1817 return true; 1818 1819 case Intrinsic::s390_vceqbs: 1820 case Intrinsic::s390_vceqhs: 1821 case Intrinsic::s390_vceqfs: 1822 case Intrinsic::s390_vceqgs: 1823 Opcode = SystemZISD::VICMPES; 1824 CCValid = SystemZ::CCMASK_VCMP; 1825 return true; 1826 1827 case Intrinsic::s390_vchbs: 1828 case Intrinsic::s390_vchhs: 1829 case Intrinsic::s390_vchfs: 1830 case Intrinsic::s390_vchgs: 1831 Opcode = SystemZISD::VICMPHS; 1832 CCValid = SystemZ::CCMASK_VCMP; 1833 return true; 1834 1835 case Intrinsic::s390_vchlbs: 1836 case Intrinsic::s390_vchlhs: 1837 case Intrinsic::s390_vchlfs: 1838 case Intrinsic::s390_vchlgs: 1839 Opcode = SystemZISD::VICMPHLS; 1840 CCValid = SystemZ::CCMASK_VCMP; 1841 return true; 1842 1843 case Intrinsic::s390_vtm: 1844 Opcode = SystemZISD::VTM; 1845 CCValid = SystemZ::CCMASK_VCMP; 1846 return true; 1847 1848 case Intrinsic::s390_vfaebs: 1849 case Intrinsic::s390_vfaehs: 1850 case Intrinsic::s390_vfaefs: 1851 Opcode = SystemZISD::VFAE_CC; 1852 CCValid = SystemZ::CCMASK_ANY; 1853 return true; 1854 1855 case Intrinsic::s390_vfaezbs: 1856 case Intrinsic::s390_vfaezhs: 1857 case Intrinsic::s390_vfaezfs: 1858 Opcode = SystemZISD::VFAEZ_CC; 1859 CCValid = SystemZ::CCMASK_ANY; 1860 return true; 1861 1862 case Intrinsic::s390_vfeebs: 1863 case Intrinsic::s390_vfeehs: 1864 case Intrinsic::s390_vfeefs: 1865 Opcode = SystemZISD::VFEE_CC; 1866 CCValid = SystemZ::CCMASK_ANY; 1867 return true; 1868 1869 case Intrinsic::s390_vfeezbs: 1870 case Intrinsic::s390_vfeezhs: 1871 case Intrinsic::s390_vfeezfs: 1872 Opcode = SystemZISD::VFEEZ_CC; 1873 CCValid = SystemZ::CCMASK_ANY; 1874 return true; 1875 1876 case Intrinsic::s390_vfenebs: 1877 case Intrinsic::s390_vfenehs: 1878 case Intrinsic::s390_vfenefs: 1879 Opcode = SystemZISD::VFENE_CC; 1880 CCValid = SystemZ::CCMASK_ANY; 1881 return true; 1882 1883 case Intrinsic::s390_vfenezbs: 1884 case Intrinsic::s390_vfenezhs: 1885 case Intrinsic::s390_vfenezfs: 1886 Opcode = SystemZISD::VFENEZ_CC; 1887 CCValid = SystemZ::CCMASK_ANY; 1888 return true; 1889 1890 case Intrinsic::s390_vistrbs: 1891 case Intrinsic::s390_vistrhs: 1892 case Intrinsic::s390_vistrfs: 1893 Opcode = SystemZISD::VISTR_CC; 1894 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1895 return true; 1896 1897 case Intrinsic::s390_vstrcbs: 1898 case Intrinsic::s390_vstrchs: 1899 case Intrinsic::s390_vstrcfs: 1900 Opcode = SystemZISD::VSTRC_CC; 1901 CCValid = SystemZ::CCMASK_ANY; 1902 return true; 1903 1904 case Intrinsic::s390_vstrczbs: 1905 case Intrinsic::s390_vstrczhs: 1906 case Intrinsic::s390_vstrczfs: 1907 Opcode = SystemZISD::VSTRCZ_CC; 1908 CCValid = SystemZ::CCMASK_ANY; 1909 return true; 1910 1911 case Intrinsic::s390_vstrsb: 1912 case Intrinsic::s390_vstrsh: 1913 case Intrinsic::s390_vstrsf: 1914 Opcode = SystemZISD::VSTRS_CC; 1915 CCValid = SystemZ::CCMASK_ANY; 1916 return true; 1917 1918 case Intrinsic::s390_vstrszb: 1919 case Intrinsic::s390_vstrszh: 1920 case Intrinsic::s390_vstrszf: 1921 Opcode = SystemZISD::VSTRSZ_CC; 1922 CCValid = SystemZ::CCMASK_ANY; 1923 return true; 1924 1925 case Intrinsic::s390_vfcedbs: 1926 case Intrinsic::s390_vfcesbs: 1927 Opcode = SystemZISD::VFCMPES; 1928 CCValid = SystemZ::CCMASK_VCMP; 1929 return true; 1930 1931 case Intrinsic::s390_vfchdbs: 1932 case Intrinsic::s390_vfchsbs: 1933 Opcode = SystemZISD::VFCMPHS; 1934 CCValid = SystemZ::CCMASK_VCMP; 1935 return true; 1936 1937 case Intrinsic::s390_vfchedbs: 1938 case Intrinsic::s390_vfchesbs: 1939 Opcode = SystemZISD::VFCMPHES; 1940 CCValid = SystemZ::CCMASK_VCMP; 1941 return true; 1942 1943 case Intrinsic::s390_vftcidb: 1944 case Intrinsic::s390_vftcisb: 1945 Opcode = SystemZISD::VFTCI; 1946 CCValid = SystemZ::CCMASK_VCMP; 1947 return true; 1948 1949 case Intrinsic::s390_tdc: 1950 Opcode = SystemZISD::TDC; 1951 CCValid = SystemZ::CCMASK_TDC; 1952 return true; 1953 1954 default: 1955 return false; 1956 } 1957 } 1958 1959 // Emit an intrinsic with chain and an explicit CC register result. 1960 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1961 unsigned Opcode) { 1962 // Copy all operands except the intrinsic ID. 1963 unsigned NumOps = Op.getNumOperands(); 1964 SmallVector<SDValue, 6> Ops; 1965 Ops.reserve(NumOps - 1); 1966 Ops.push_back(Op.getOperand(0)); 1967 for (unsigned I = 2; I < NumOps; ++I) 1968 Ops.push_back(Op.getOperand(I)); 1969 1970 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1971 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1972 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1973 SDValue OldChain = SDValue(Op.getNode(), 1); 1974 SDValue NewChain = SDValue(Intr.getNode(), 1); 1975 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1976 return Intr.getNode(); 1977 } 1978 1979 // Emit an intrinsic with an explicit CC register result. 1980 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1981 unsigned Opcode) { 1982 // Copy all operands except the intrinsic ID. 1983 unsigned NumOps = Op.getNumOperands(); 1984 SmallVector<SDValue, 6> Ops; 1985 Ops.reserve(NumOps - 1); 1986 for (unsigned I = 1; I < NumOps; ++I) 1987 Ops.push_back(Op.getOperand(I)); 1988 1989 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1990 return Intr.getNode(); 1991 } 1992 1993 // CC is a comparison that will be implemented using an integer or 1994 // floating-point comparison. Return the condition code mask for 1995 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1996 // unsigned comparisons and clear for signed ones. In the floating-point 1997 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1998 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1999 #define CONV(X) \ 2000 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 2001 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 2002 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 2003 2004 switch (CC) { 2005 default: 2006 llvm_unreachable("Invalid integer condition!"); 2007 2008 CONV(EQ); 2009 CONV(NE); 2010 CONV(GT); 2011 CONV(GE); 2012 CONV(LT); 2013 CONV(LE); 2014 2015 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 2016 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 2017 } 2018 #undef CONV 2019 } 2020 2021 // If C can be converted to a comparison against zero, adjust the operands 2022 // as necessary. 2023 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2024 if (C.ICmpType == SystemZICMP::UnsignedOnly) 2025 return; 2026 2027 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 2028 if (!ConstOp1) 2029 return; 2030 2031 int64_t Value = ConstOp1->getSExtValue(); 2032 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 2033 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 2034 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 2035 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 2036 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2037 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 2038 } 2039 } 2040 2041 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 2042 // adjust the operands as necessary. 2043 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 2044 Comparison &C) { 2045 // For us to make any changes, it must a comparison between a single-use 2046 // load and a constant. 2047 if (!C.Op0.hasOneUse() || 2048 C.Op0.getOpcode() != ISD::LOAD || 2049 C.Op1.getOpcode() != ISD::Constant) 2050 return; 2051 2052 // We must have an 8- or 16-bit load. 2053 auto *Load = cast<LoadSDNode>(C.Op0); 2054 unsigned NumBits = Load->getMemoryVT().getSizeInBits(); 2055 if ((NumBits != 8 && NumBits != 16) || 2056 NumBits != Load->getMemoryVT().getStoreSizeInBits()) 2057 return; 2058 2059 // The load must be an extending one and the constant must be within the 2060 // range of the unextended value. 2061 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 2062 uint64_t Value = ConstOp1->getZExtValue(); 2063 uint64_t Mask = (1 << NumBits) - 1; 2064 if (Load->getExtensionType() == ISD::SEXTLOAD) { 2065 // Make sure that ConstOp1 is in range of C.Op0. 2066 int64_t SignedValue = ConstOp1->getSExtValue(); 2067 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 2068 return; 2069 if (C.ICmpType != SystemZICMP::SignedOnly) { 2070 // Unsigned comparison between two sign-extended values is equivalent 2071 // to unsigned comparison between two zero-extended values. 2072 Value &= Mask; 2073 } else if (NumBits == 8) { 2074 // Try to treat the comparison as unsigned, so that we can use CLI. 2075 // Adjust CCMask and Value as necessary. 2076 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 2077 // Test whether the high bit of the byte is set. 2078 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 2079 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 2080 // Test whether the high bit of the byte is clear. 2081 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 2082 else 2083 // No instruction exists for this combination. 2084 return; 2085 C.ICmpType = SystemZICMP::UnsignedOnly; 2086 } 2087 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 2088 if (Value > Mask) 2089 return; 2090 // If the constant is in range, we can use any comparison. 2091 C.ICmpType = SystemZICMP::Any; 2092 } else 2093 return; 2094 2095 // Make sure that the first operand is an i32 of the right extension type. 2096 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 2097 ISD::SEXTLOAD : 2098 ISD::ZEXTLOAD); 2099 if (C.Op0.getValueType() != MVT::i32 || 2100 Load->getExtensionType() != ExtType) { 2101 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 2102 Load->getBasePtr(), Load->getPointerInfo(), 2103 Load->getMemoryVT(), Load->getAlignment(), 2104 Load->getMemOperand()->getFlags()); 2105 // Update the chain uses. 2106 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 2107 } 2108 2109 // Make sure that the second operand is an i32 with the right value. 2110 if (C.Op1.getValueType() != MVT::i32 || 2111 Value != ConstOp1->getZExtValue()) 2112 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 2113 } 2114 2115 // Return true if Op is either an unextended load, or a load suitable 2116 // for integer register-memory comparisons of type ICmpType. 2117 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 2118 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 2119 if (Load) { 2120 // There are no instructions to compare a register with a memory byte. 2121 if (Load->getMemoryVT() == MVT::i8) 2122 return false; 2123 // Otherwise decide on extension type. 2124 switch (Load->getExtensionType()) { 2125 case ISD::NON_EXTLOAD: 2126 return true; 2127 case ISD::SEXTLOAD: 2128 return ICmpType != SystemZICMP::UnsignedOnly; 2129 case ISD::ZEXTLOAD: 2130 return ICmpType != SystemZICMP::SignedOnly; 2131 default: 2132 break; 2133 } 2134 } 2135 return false; 2136 } 2137 2138 // Return true if it is better to swap the operands of C. 2139 static bool shouldSwapCmpOperands(const Comparison &C) { 2140 // Leave f128 comparisons alone, since they have no memory forms. 2141 if (C.Op0.getValueType() == MVT::f128) 2142 return false; 2143 2144 // Always keep a floating-point constant second, since comparisons with 2145 // zero can use LOAD TEST and comparisons with other constants make a 2146 // natural memory operand. 2147 if (isa<ConstantFPSDNode>(C.Op1)) 2148 return false; 2149 2150 // Never swap comparisons with zero since there are many ways to optimize 2151 // those later. 2152 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2153 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 2154 return false; 2155 2156 // Also keep natural memory operands second if the loaded value is 2157 // only used here. Several comparisons have memory forms. 2158 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 2159 return false; 2160 2161 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 2162 // In that case we generally prefer the memory to be second. 2163 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 2164 // The only exceptions are when the second operand is a constant and 2165 // we can use things like CHHSI. 2166 if (!ConstOp1) 2167 return true; 2168 // The unsigned memory-immediate instructions can handle 16-bit 2169 // unsigned integers. 2170 if (C.ICmpType != SystemZICMP::SignedOnly && 2171 isUInt<16>(ConstOp1->getZExtValue())) 2172 return false; 2173 // The signed memory-immediate instructions can handle 16-bit 2174 // signed integers. 2175 if (C.ICmpType != SystemZICMP::UnsignedOnly && 2176 isInt<16>(ConstOp1->getSExtValue())) 2177 return false; 2178 return true; 2179 } 2180 2181 // Try to promote the use of CGFR and CLGFR. 2182 unsigned Opcode0 = C.Op0.getOpcode(); 2183 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 2184 return true; 2185 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 2186 return true; 2187 if (C.ICmpType != SystemZICMP::SignedOnly && 2188 Opcode0 == ISD::AND && 2189 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 2190 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 2191 return true; 2192 2193 return false; 2194 } 2195 2196 // Check whether C tests for equality between X and Y and whether X - Y 2197 // or Y - X is also computed. In that case it's better to compare the 2198 // result of the subtraction against zero. 2199 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 2200 Comparison &C) { 2201 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2202 C.CCMask == SystemZ::CCMASK_CMP_NE) { 2203 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2204 SDNode *N = *I; 2205 if (N->getOpcode() == ISD::SUB && 2206 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 2207 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 2208 C.Op0 = SDValue(N, 0); 2209 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 2210 return; 2211 } 2212 } 2213 } 2214 } 2215 2216 // Check whether C compares a floating-point value with zero and if that 2217 // floating-point value is also negated. In this case we can use the 2218 // negation to set CC, so avoiding separate LOAD AND TEST and 2219 // LOAD (NEGATIVE/COMPLEMENT) instructions. 2220 static void adjustForFNeg(Comparison &C) { 2221 // This optimization is invalid for strict comparisons, since FNEG 2222 // does not raise any exceptions. 2223 if (C.Chain) 2224 return; 2225 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 2226 if (C1 && C1->isZero()) { 2227 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 2228 SDNode *N = *I; 2229 if (N->getOpcode() == ISD::FNEG) { 2230 C.Op0 = SDValue(N, 0); 2231 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2232 return; 2233 } 2234 } 2235 } 2236 } 2237 2238 // Check whether C compares (shl X, 32) with 0 and whether X is 2239 // also sign-extended. In that case it is better to test the result 2240 // of the sign extension using LTGFR. 2241 // 2242 // This case is important because InstCombine transforms a comparison 2243 // with (sext (trunc X)) into a comparison with (shl X, 32). 2244 static void adjustForLTGFR(Comparison &C) { 2245 // Check for a comparison between (shl X, 32) and 0. 2246 if (C.Op0.getOpcode() == ISD::SHL && 2247 C.Op0.getValueType() == MVT::i64 && 2248 C.Op1.getOpcode() == ISD::Constant && 2249 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2250 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2251 if (C1 && C1->getZExtValue() == 32) { 2252 SDValue ShlOp0 = C.Op0.getOperand(0); 2253 // See whether X has any SIGN_EXTEND_INREG uses. 2254 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 2255 SDNode *N = *I; 2256 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 2257 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 2258 C.Op0 = SDValue(N, 0); 2259 return; 2260 } 2261 } 2262 } 2263 } 2264 } 2265 2266 // If C compares the truncation of an extending load, try to compare 2267 // the untruncated value instead. This exposes more opportunities to 2268 // reuse CC. 2269 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 2270 Comparison &C) { 2271 if (C.Op0.getOpcode() == ISD::TRUNCATE && 2272 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 2273 C.Op1.getOpcode() == ISD::Constant && 2274 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2275 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 2276 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 2277 unsigned Type = L->getExtensionType(); 2278 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 2279 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 2280 C.Op0 = C.Op0.getOperand(0); 2281 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2282 } 2283 } 2284 } 2285 } 2286 2287 // Return true if shift operation N has an in-range constant shift value. 2288 // Store it in ShiftVal if so. 2289 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2290 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2291 if (!Shift) 2292 return false; 2293 2294 uint64_t Amount = Shift->getZExtValue(); 2295 if (Amount >= N.getValueSizeInBits()) 2296 return false; 2297 2298 ShiftVal = Amount; 2299 return true; 2300 } 2301 2302 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2303 // instruction and whether the CC value is descriptive enough to handle 2304 // a comparison of type Opcode between the AND result and CmpVal. 2305 // CCMask says which comparison result is being tested and BitSize is 2306 // the number of bits in the operands. If TEST UNDER MASK can be used, 2307 // return the corresponding CC mask, otherwise return 0. 2308 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2309 uint64_t Mask, uint64_t CmpVal, 2310 unsigned ICmpType) { 2311 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2312 2313 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2314 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2315 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2316 return 0; 2317 2318 // Work out the masks for the lowest and highest bits. 2319 unsigned HighShift = 63 - countLeadingZeros(Mask); 2320 uint64_t High = uint64_t(1) << HighShift; 2321 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2322 2323 // Signed ordered comparisons are effectively unsigned if the sign 2324 // bit is dropped. 2325 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2326 2327 // Check for equality comparisons with 0, or the equivalent. 2328 if (CmpVal == 0) { 2329 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2330 return SystemZ::CCMASK_TM_ALL_0; 2331 if (CCMask == SystemZ::CCMASK_CMP_NE) 2332 return SystemZ::CCMASK_TM_SOME_1; 2333 } 2334 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2335 if (CCMask == SystemZ::CCMASK_CMP_LT) 2336 return SystemZ::CCMASK_TM_ALL_0; 2337 if (CCMask == SystemZ::CCMASK_CMP_GE) 2338 return SystemZ::CCMASK_TM_SOME_1; 2339 } 2340 if (EffectivelyUnsigned && CmpVal < Low) { 2341 if (CCMask == SystemZ::CCMASK_CMP_LE) 2342 return SystemZ::CCMASK_TM_ALL_0; 2343 if (CCMask == SystemZ::CCMASK_CMP_GT) 2344 return SystemZ::CCMASK_TM_SOME_1; 2345 } 2346 2347 // Check for equality comparisons with the mask, or the equivalent. 2348 if (CmpVal == Mask) { 2349 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2350 return SystemZ::CCMASK_TM_ALL_1; 2351 if (CCMask == SystemZ::CCMASK_CMP_NE) 2352 return SystemZ::CCMASK_TM_SOME_0; 2353 } 2354 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2355 if (CCMask == SystemZ::CCMASK_CMP_GT) 2356 return SystemZ::CCMASK_TM_ALL_1; 2357 if (CCMask == SystemZ::CCMASK_CMP_LE) 2358 return SystemZ::CCMASK_TM_SOME_0; 2359 } 2360 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2361 if (CCMask == SystemZ::CCMASK_CMP_GE) 2362 return SystemZ::CCMASK_TM_ALL_1; 2363 if (CCMask == SystemZ::CCMASK_CMP_LT) 2364 return SystemZ::CCMASK_TM_SOME_0; 2365 } 2366 2367 // Check for ordered comparisons with the top bit. 2368 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2369 if (CCMask == SystemZ::CCMASK_CMP_LE) 2370 return SystemZ::CCMASK_TM_MSB_0; 2371 if (CCMask == SystemZ::CCMASK_CMP_GT) 2372 return SystemZ::CCMASK_TM_MSB_1; 2373 } 2374 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2375 if (CCMask == SystemZ::CCMASK_CMP_LT) 2376 return SystemZ::CCMASK_TM_MSB_0; 2377 if (CCMask == SystemZ::CCMASK_CMP_GE) 2378 return SystemZ::CCMASK_TM_MSB_1; 2379 } 2380 2381 // If there are just two bits, we can do equality checks for Low and High 2382 // as well. 2383 if (Mask == Low + High) { 2384 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2385 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2386 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2387 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2388 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2389 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2390 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2391 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2392 } 2393 2394 // Looks like we've exhausted our options. 2395 return 0; 2396 } 2397 2398 // See whether C can be implemented as a TEST UNDER MASK instruction. 2399 // Update the arguments with the TM version if so. 2400 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2401 Comparison &C) { 2402 // Check that we have a comparison with a constant. 2403 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2404 if (!ConstOp1) 2405 return; 2406 uint64_t CmpVal = ConstOp1->getZExtValue(); 2407 2408 // Check whether the nonconstant input is an AND with a constant mask. 2409 Comparison NewC(C); 2410 uint64_t MaskVal; 2411 ConstantSDNode *Mask = nullptr; 2412 if (C.Op0.getOpcode() == ISD::AND) { 2413 NewC.Op0 = C.Op0.getOperand(0); 2414 NewC.Op1 = C.Op0.getOperand(1); 2415 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2416 if (!Mask) 2417 return; 2418 MaskVal = Mask->getZExtValue(); 2419 } else { 2420 // There is no instruction to compare with a 64-bit immediate 2421 // so use TMHH instead if possible. We need an unsigned ordered 2422 // comparison with an i64 immediate. 2423 if (NewC.Op0.getValueType() != MVT::i64 || 2424 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2425 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2426 NewC.ICmpType == SystemZICMP::SignedOnly) 2427 return; 2428 // Convert LE and GT comparisons into LT and GE. 2429 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2430 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2431 if (CmpVal == uint64_t(-1)) 2432 return; 2433 CmpVal += 1; 2434 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2435 } 2436 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2437 // be masked off without changing the result. 2438 MaskVal = -(CmpVal & -CmpVal); 2439 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2440 } 2441 if (!MaskVal) 2442 return; 2443 2444 // Check whether the combination of mask, comparison value and comparison 2445 // type are suitable. 2446 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2447 unsigned NewCCMask, ShiftVal; 2448 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2449 NewC.Op0.getOpcode() == ISD::SHL && 2450 isSimpleShift(NewC.Op0, ShiftVal) && 2451 (MaskVal >> ShiftVal != 0) && 2452 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2453 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2454 MaskVal >> ShiftVal, 2455 CmpVal >> ShiftVal, 2456 SystemZICMP::Any))) { 2457 NewC.Op0 = NewC.Op0.getOperand(0); 2458 MaskVal >>= ShiftVal; 2459 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2460 NewC.Op0.getOpcode() == ISD::SRL && 2461 isSimpleShift(NewC.Op0, ShiftVal) && 2462 (MaskVal << ShiftVal != 0) && 2463 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2464 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2465 MaskVal << ShiftVal, 2466 CmpVal << ShiftVal, 2467 SystemZICMP::UnsignedOnly))) { 2468 NewC.Op0 = NewC.Op0.getOperand(0); 2469 MaskVal <<= ShiftVal; 2470 } else { 2471 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2472 NewC.ICmpType); 2473 if (!NewCCMask) 2474 return; 2475 } 2476 2477 // Go ahead and make the change. 2478 C.Opcode = SystemZISD::TM; 2479 C.Op0 = NewC.Op0; 2480 if (Mask && Mask->getZExtValue() == MaskVal) 2481 C.Op1 = SDValue(Mask, 0); 2482 else 2483 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2484 C.CCValid = SystemZ::CCMASK_TM; 2485 C.CCMask = NewCCMask; 2486 } 2487 2488 // See whether the comparison argument contains a redundant AND 2489 // and remove it if so. This sometimes happens due to the generic 2490 // BRCOND expansion. 2491 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2492 Comparison &C) { 2493 if (C.Op0.getOpcode() != ISD::AND) 2494 return; 2495 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2496 if (!Mask) 2497 return; 2498 KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0)); 2499 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2500 return; 2501 2502 C.Op0 = C.Op0.getOperand(0); 2503 } 2504 2505 // Return a Comparison that tests the condition-code result of intrinsic 2506 // node Call against constant integer CC using comparison code Cond. 2507 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2508 // and CCValid is the set of possible condition-code results. 2509 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2510 SDValue Call, unsigned CCValid, uint64_t CC, 2511 ISD::CondCode Cond) { 2512 Comparison C(Call, SDValue(), SDValue()); 2513 C.Opcode = Opcode; 2514 C.CCValid = CCValid; 2515 if (Cond == ISD::SETEQ) 2516 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2517 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2518 else if (Cond == ISD::SETNE) 2519 // ...and the inverse of that. 2520 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2521 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2522 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2523 // always true for CC>3. 2524 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2525 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2526 // ...and the inverse of that. 2527 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2528 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2529 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2530 // always true for CC>3. 2531 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2532 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2533 // ...and the inverse of that. 2534 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2535 else 2536 llvm_unreachable("Unexpected integer comparison type"); 2537 C.CCMask &= CCValid; 2538 return C; 2539 } 2540 2541 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2542 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2543 ISD::CondCode Cond, const SDLoc &DL, 2544 SDValue Chain = SDValue(), 2545 bool IsSignaling = false) { 2546 if (CmpOp1.getOpcode() == ISD::Constant) { 2547 assert(!Chain); 2548 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2549 unsigned Opcode, CCValid; 2550 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2551 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2552 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2553 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2554 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2555 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2556 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2557 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2558 } 2559 Comparison C(CmpOp0, CmpOp1, Chain); 2560 C.CCMask = CCMaskForCondCode(Cond); 2561 if (C.Op0.getValueType().isFloatingPoint()) { 2562 C.CCValid = SystemZ::CCMASK_FCMP; 2563 if (!C.Chain) 2564 C.Opcode = SystemZISD::FCMP; 2565 else if (!IsSignaling) 2566 C.Opcode = SystemZISD::STRICT_FCMP; 2567 else 2568 C.Opcode = SystemZISD::STRICT_FCMPS; 2569 adjustForFNeg(C); 2570 } else { 2571 assert(!C.Chain); 2572 C.CCValid = SystemZ::CCMASK_ICMP; 2573 C.Opcode = SystemZISD::ICMP; 2574 // Choose the type of comparison. Equality and inequality tests can 2575 // use either signed or unsigned comparisons. The choice also doesn't 2576 // matter if both sign bits are known to be clear. In those cases we 2577 // want to give the main isel code the freedom to choose whichever 2578 // form fits best. 2579 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2580 C.CCMask == SystemZ::CCMASK_CMP_NE || 2581 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2582 C.ICmpType = SystemZICMP::Any; 2583 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2584 C.ICmpType = SystemZICMP::UnsignedOnly; 2585 else 2586 C.ICmpType = SystemZICMP::SignedOnly; 2587 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2588 adjustForRedundantAnd(DAG, DL, C); 2589 adjustZeroCmp(DAG, DL, C); 2590 adjustSubwordCmp(DAG, DL, C); 2591 adjustForSubtraction(DAG, DL, C); 2592 adjustForLTGFR(C); 2593 adjustICmpTruncate(DAG, DL, C); 2594 } 2595 2596 if (shouldSwapCmpOperands(C)) { 2597 std::swap(C.Op0, C.Op1); 2598 C.CCMask = SystemZ::reverseCCMask(C.CCMask); 2599 } 2600 2601 adjustForTestUnderMask(DAG, DL, C); 2602 return C; 2603 } 2604 2605 // Emit the comparison instruction described by C. 2606 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2607 if (!C.Op1.getNode()) { 2608 SDNode *Node; 2609 switch (C.Op0.getOpcode()) { 2610 case ISD::INTRINSIC_W_CHAIN: 2611 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2612 return SDValue(Node, 0); 2613 case ISD::INTRINSIC_WO_CHAIN: 2614 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2615 return SDValue(Node, Node->getNumValues() - 1); 2616 default: 2617 llvm_unreachable("Invalid comparison operands"); 2618 } 2619 } 2620 if (C.Opcode == SystemZISD::ICMP) 2621 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2622 DAG.getTargetConstant(C.ICmpType, DL, MVT::i32)); 2623 if (C.Opcode == SystemZISD::TM) { 2624 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2625 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2626 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2627 DAG.getTargetConstant(RegisterOnly, DL, MVT::i32)); 2628 } 2629 if (C.Chain) { 2630 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 2631 return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1); 2632 } 2633 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2634 } 2635 2636 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2637 // 64 bits. Extend is the extension type to use. Store the high part 2638 // in Hi and the low part in Lo. 2639 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2640 SDValue Op0, SDValue Op1, SDValue &Hi, 2641 SDValue &Lo) { 2642 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2643 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2644 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2645 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2646 DAG.getConstant(32, DL, MVT::i64)); 2647 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2648 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2649 } 2650 2651 // Lower a binary operation that produces two VT results, one in each 2652 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2653 // and Opcode performs the GR128 operation. Store the even register result 2654 // in Even and the odd register result in Odd. 2655 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2656 unsigned Opcode, SDValue Op0, SDValue Op1, 2657 SDValue &Even, SDValue &Odd) { 2658 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2659 bool Is32Bit = is32Bit(VT); 2660 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2661 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2662 } 2663 2664 // Return an i32 value that is 1 if the CC value produced by CCReg is 2665 // in the mask CCMask and 0 otherwise. CC is known to have a value 2666 // in CCValid, so other values can be ignored. 2667 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2668 unsigned CCValid, unsigned CCMask) { 2669 SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32), 2670 DAG.getConstant(0, DL, MVT::i32), 2671 DAG.getTargetConstant(CCValid, DL, MVT::i32), 2672 DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg}; 2673 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2674 } 2675 2676 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2677 // be done directly. Mode is CmpMode::Int for integer comparisons, CmpMode::FP 2678 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet) 2679 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling 2680 // floating-point comparisons. 2681 enum class CmpMode { Int, FP, StrictFP, SignalingFP }; 2682 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) { 2683 switch (CC) { 2684 case ISD::SETOEQ: 2685 case ISD::SETEQ: 2686 switch (Mode) { 2687 case CmpMode::Int: return SystemZISD::VICMPE; 2688 case CmpMode::FP: return SystemZISD::VFCMPE; 2689 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPE; 2690 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES; 2691 } 2692 llvm_unreachable("Bad mode"); 2693 2694 case ISD::SETOGE: 2695 case ISD::SETGE: 2696 switch (Mode) { 2697 case CmpMode::Int: return 0; 2698 case CmpMode::FP: return SystemZISD::VFCMPHE; 2699 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPHE; 2700 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES; 2701 } 2702 llvm_unreachable("Bad mode"); 2703 2704 case ISD::SETOGT: 2705 case ISD::SETGT: 2706 switch (Mode) { 2707 case CmpMode::Int: return SystemZISD::VICMPH; 2708 case CmpMode::FP: return SystemZISD::VFCMPH; 2709 case CmpMode::StrictFP: return SystemZISD::STRICT_VFCMPH; 2710 case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS; 2711 } 2712 llvm_unreachable("Bad mode"); 2713 2714 case ISD::SETUGT: 2715 switch (Mode) { 2716 case CmpMode::Int: return SystemZISD::VICMPHL; 2717 case CmpMode::FP: return 0; 2718 case CmpMode::StrictFP: return 0; 2719 case CmpMode::SignalingFP: return 0; 2720 } 2721 llvm_unreachable("Bad mode"); 2722 2723 default: 2724 return 0; 2725 } 2726 } 2727 2728 // Return the SystemZISD vector comparison operation for CC or its inverse, 2729 // or 0 if neither can be done directly. Indicate in Invert whether the 2730 // result is for the inverse of CC. Mode is as above. 2731 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode, 2732 bool &Invert) { 2733 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2734 Invert = false; 2735 return Opcode; 2736 } 2737 2738 CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32); 2739 if (unsigned Opcode = getVectorComparison(CC, Mode)) { 2740 Invert = true; 2741 return Opcode; 2742 } 2743 2744 return 0; 2745 } 2746 2747 // Return a v2f64 that contains the extended form of elements Start and Start+1 2748 // of v4f32 value Op. If Chain is nonnull, return the strict form. 2749 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2750 SDValue Op, SDValue Chain) { 2751 int Mask[] = { Start, -1, Start + 1, -1 }; 2752 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2753 if (Chain) { 2754 SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other); 2755 return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op); 2756 } 2757 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2758 } 2759 2760 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2761 // producing a result of type VT. If Chain is nonnull, return the strict form. 2762 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2763 const SDLoc &DL, EVT VT, 2764 SDValue CmpOp0, 2765 SDValue CmpOp1, 2766 SDValue Chain) const { 2767 // There is no hardware support for v4f32 (unless we have the vector 2768 // enhancements facility 1), so extend the vector into two v2f64s 2769 // and compare those. 2770 if (CmpOp0.getValueType() == MVT::v4f32 && 2771 !Subtarget.hasVectorEnhancements1()) { 2772 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain); 2773 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain); 2774 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain); 2775 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain); 2776 if (Chain) { 2777 SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other); 2778 SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1); 2779 SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1); 2780 SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2781 SDValue Chains[6] = { H0.getValue(1), L0.getValue(1), 2782 H1.getValue(1), L1.getValue(1), 2783 HRes.getValue(1), LRes.getValue(1) }; 2784 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 2785 SDValue Ops[2] = { Res, NewChain }; 2786 return DAG.getMergeValues(Ops, DL); 2787 } 2788 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2789 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2790 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2791 } 2792 if (Chain) { 2793 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 2794 return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1); 2795 } 2796 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2797 } 2798 2799 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2800 // an integer mask of type VT. If Chain is nonnull, we have a strict 2801 // floating-point comparison. If in addition IsSignaling is true, we have 2802 // a strict signaling floating-point comparison. 2803 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2804 const SDLoc &DL, EVT VT, 2805 ISD::CondCode CC, 2806 SDValue CmpOp0, 2807 SDValue CmpOp1, 2808 SDValue Chain, 2809 bool IsSignaling) const { 2810 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2811 assert (!Chain || IsFP); 2812 assert (!IsSignaling || Chain); 2813 CmpMode Mode = IsSignaling ? CmpMode::SignalingFP : 2814 Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int; 2815 bool Invert = false; 2816 SDValue Cmp; 2817 switch (CC) { 2818 // Handle tests for order using (or (ogt y x) (oge x y)). 2819 case ISD::SETUO: 2820 Invert = true; 2821 LLVM_FALLTHROUGH; 2822 case ISD::SETO: { 2823 assert(IsFP && "Unexpected integer comparison"); 2824 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2825 DL, VT, CmpOp1, CmpOp0, Chain); 2826 SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode), 2827 DL, VT, CmpOp0, CmpOp1, Chain); 2828 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2829 if (Chain) 2830 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2831 LT.getValue(1), GE.getValue(1)); 2832 break; 2833 } 2834 2835 // Handle <> tests using (or (ogt y x) (ogt x y)). 2836 case ISD::SETUEQ: 2837 Invert = true; 2838 LLVM_FALLTHROUGH; 2839 case ISD::SETONE: { 2840 assert(IsFP && "Unexpected integer comparison"); 2841 SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2842 DL, VT, CmpOp1, CmpOp0, Chain); 2843 SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode), 2844 DL, VT, CmpOp0, CmpOp1, Chain); 2845 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2846 if (Chain) 2847 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 2848 LT.getValue(1), GT.getValue(1)); 2849 break; 2850 } 2851 2852 // Otherwise a single comparison is enough. It doesn't really 2853 // matter whether we try the inversion or the swap first, since 2854 // there are no cases where both work. 2855 default: 2856 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2857 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain); 2858 else { 2859 CC = ISD::getSetCCSwappedOperands(CC); 2860 if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert)) 2861 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain); 2862 else 2863 llvm_unreachable("Unhandled comparison"); 2864 } 2865 if (Chain) 2866 Chain = Cmp.getValue(1); 2867 break; 2868 } 2869 if (Invert) { 2870 SDValue Mask = 2871 DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64)); 2872 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2873 } 2874 if (Chain && Chain.getNode() != Cmp.getNode()) { 2875 SDValue Ops[2] = { Cmp, Chain }; 2876 Cmp = DAG.getMergeValues(Ops, DL); 2877 } 2878 return Cmp; 2879 } 2880 2881 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2882 SelectionDAG &DAG) const { 2883 SDValue CmpOp0 = Op.getOperand(0); 2884 SDValue CmpOp1 = Op.getOperand(1); 2885 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2886 SDLoc DL(Op); 2887 EVT VT = Op.getValueType(); 2888 if (VT.isVector()) 2889 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2890 2891 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2892 SDValue CCReg = emitCmp(DAG, DL, C); 2893 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2894 } 2895 2896 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op, 2897 SelectionDAG &DAG, 2898 bool IsSignaling) const { 2899 SDValue Chain = Op.getOperand(0); 2900 SDValue CmpOp0 = Op.getOperand(1); 2901 SDValue CmpOp1 = Op.getOperand(2); 2902 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get(); 2903 SDLoc DL(Op); 2904 EVT VT = Op.getNode()->getValueType(0); 2905 if (VT.isVector()) { 2906 SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1, 2907 Chain, IsSignaling); 2908 return Res.getValue(Op.getResNo()); 2909 } 2910 2911 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling)); 2912 SDValue CCReg = emitCmp(DAG, DL, C); 2913 CCReg->setFlags(Op->getFlags()); 2914 SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2915 SDValue Ops[2] = { Result, CCReg.getValue(1) }; 2916 return DAG.getMergeValues(Ops, DL); 2917 } 2918 2919 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2920 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2921 SDValue CmpOp0 = Op.getOperand(2); 2922 SDValue CmpOp1 = Op.getOperand(3); 2923 SDValue Dest = Op.getOperand(4); 2924 SDLoc DL(Op); 2925 2926 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2927 SDValue CCReg = emitCmp(DAG, DL, C); 2928 return DAG.getNode( 2929 SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0), 2930 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2931 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2932 } 2933 2934 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2935 // allowing Pos and Neg to be wider than CmpOp. 2936 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2937 return (Neg.getOpcode() == ISD::SUB && 2938 Neg.getOperand(0).getOpcode() == ISD::Constant && 2939 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2940 Neg.getOperand(1) == Pos && 2941 (Pos == CmpOp || 2942 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2943 Pos.getOperand(0) == CmpOp))); 2944 } 2945 2946 // Return the absolute or negative absolute of Op; IsNegative decides which. 2947 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2948 bool IsNegative) { 2949 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2950 if (IsNegative) 2951 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2952 DAG.getConstant(0, DL, Op.getValueType()), Op); 2953 return Op; 2954 } 2955 2956 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2957 SelectionDAG &DAG) const { 2958 SDValue CmpOp0 = Op.getOperand(0); 2959 SDValue CmpOp1 = Op.getOperand(1); 2960 SDValue TrueOp = Op.getOperand(2); 2961 SDValue FalseOp = Op.getOperand(3); 2962 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2963 SDLoc DL(Op); 2964 2965 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2966 2967 // Check for absolute and negative-absolute selections, including those 2968 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2969 // This check supplements the one in DAGCombiner. 2970 if (C.Opcode == SystemZISD::ICMP && 2971 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2972 C.CCMask != SystemZ::CCMASK_CMP_NE && 2973 C.Op1.getOpcode() == ISD::Constant && 2974 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2975 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2976 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2977 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2978 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2979 } 2980 2981 SDValue CCReg = emitCmp(DAG, DL, C); 2982 SDValue Ops[] = {TrueOp, FalseOp, 2983 DAG.getTargetConstant(C.CCValid, DL, MVT::i32), 2984 DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg}; 2985 2986 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2987 } 2988 2989 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2990 SelectionDAG &DAG) const { 2991 SDLoc DL(Node); 2992 const GlobalValue *GV = Node->getGlobal(); 2993 int64_t Offset = Node->getOffset(); 2994 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2995 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2996 2997 SDValue Result; 2998 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2999 if (isInt<32>(Offset)) { 3000 // Assign anchors at 1<<12 byte boundaries. 3001 uint64_t Anchor = Offset & ~uint64_t(0xfff); 3002 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 3003 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3004 3005 // The offset can be folded into the address if it is aligned to a 3006 // halfword. 3007 Offset -= Anchor; 3008 if (Offset != 0 && (Offset & 1) == 0) { 3009 SDValue Full = 3010 DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 3011 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 3012 Offset = 0; 3013 } 3014 } else { 3015 // Conservatively load a constant offset greater than 32 bits into a 3016 // register below. 3017 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT); 3018 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3019 } 3020 } else { 3021 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 3022 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3023 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 3024 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3025 } 3026 3027 // If there was a non-zero offset that we didn't fold, create an explicit 3028 // addition for it. 3029 if (Offset != 0) 3030 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 3031 DAG.getConstant(Offset, DL, PtrVT)); 3032 3033 return Result; 3034 } 3035 3036 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 3037 SelectionDAG &DAG, 3038 unsigned Opcode, 3039 SDValue GOTOffset) const { 3040 SDLoc DL(Node); 3041 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3042 SDValue Chain = DAG.getEntryNode(); 3043 SDValue Glue; 3044 3045 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3046 CallingConv::GHC) 3047 report_fatal_error("In GHC calling convention TLS is not supported"); 3048 3049 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 3050 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 3051 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 3052 Glue = Chain.getValue(1); 3053 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 3054 Glue = Chain.getValue(1); 3055 3056 // The first call operand is the chain and the second is the TLS symbol. 3057 SmallVector<SDValue, 8> Ops; 3058 Ops.push_back(Chain); 3059 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 3060 Node->getValueType(0), 3061 0, 0)); 3062 3063 // Add argument registers to the end of the list so that they are 3064 // known live into the call. 3065 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 3066 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 3067 3068 // Add a register mask operand representing the call-preserved registers. 3069 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 3070 const uint32_t *Mask = 3071 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 3072 assert(Mask && "Missing call preserved mask for calling convention"); 3073 Ops.push_back(DAG.getRegisterMask(Mask)); 3074 3075 // Glue the call to the argument copies. 3076 Ops.push_back(Glue); 3077 3078 // Emit the call. 3079 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 3080 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 3081 Glue = Chain.getValue(1); 3082 3083 // Copy the return value from %r2. 3084 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 3085 } 3086 3087 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 3088 SelectionDAG &DAG) const { 3089 SDValue Chain = DAG.getEntryNode(); 3090 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3091 3092 // The high part of the thread pointer is in access register 0. 3093 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 3094 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 3095 3096 // The low part of the thread pointer is in access register 1. 3097 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 3098 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 3099 3100 // Merge them into a single 64-bit address. 3101 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 3102 DAG.getConstant(32, DL, PtrVT)); 3103 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 3104 } 3105 3106 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 3107 SelectionDAG &DAG) const { 3108 if (DAG.getTarget().useEmulatedTLS()) 3109 return LowerToTLSEmulatedModel(Node, DAG); 3110 SDLoc DL(Node); 3111 const GlobalValue *GV = Node->getGlobal(); 3112 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3113 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 3114 3115 if (DAG.getMachineFunction().getFunction().getCallingConv() == 3116 CallingConv::GHC) 3117 report_fatal_error("In GHC calling convention TLS is not supported"); 3118 3119 SDValue TP = lowerThreadPointer(DL, DAG); 3120 3121 // Get the offset of GA from the thread pointer, based on the TLS model. 3122 SDValue Offset; 3123 switch (model) { 3124 case TLSModel::GeneralDynamic: { 3125 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 3126 SystemZConstantPoolValue *CPV = 3127 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 3128 3129 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3130 Offset = DAG.getLoad( 3131 PtrVT, DL, DAG.getEntryNode(), Offset, 3132 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3133 3134 // Call __tls_get_offset to retrieve the offset. 3135 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 3136 break; 3137 } 3138 3139 case TLSModel::LocalDynamic: { 3140 // Load the GOT offset of the module ID. 3141 SystemZConstantPoolValue *CPV = 3142 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 3143 3144 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3145 Offset = DAG.getLoad( 3146 PtrVT, DL, DAG.getEntryNode(), Offset, 3147 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3148 3149 // Call __tls_get_offset to retrieve the module base offset. 3150 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 3151 3152 // Note: The SystemZLDCleanupPass will remove redundant computations 3153 // of the module base offset. Count total number of local-dynamic 3154 // accesses to trigger execution of that pass. 3155 SystemZMachineFunctionInfo* MFI = 3156 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 3157 MFI->incNumLocalDynamicTLSAccesses(); 3158 3159 // Add the per-symbol offset. 3160 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 3161 3162 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 3163 DTPOffset = DAG.getLoad( 3164 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 3165 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3166 3167 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 3168 break; 3169 } 3170 3171 case TLSModel::InitialExec: { 3172 // Load the offset from the GOT. 3173 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 3174 SystemZII::MO_INDNTPOFF); 3175 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 3176 Offset = 3177 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 3178 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 3179 break; 3180 } 3181 3182 case TLSModel::LocalExec: { 3183 // Force the offset into the constant pool and load it from there. 3184 SystemZConstantPoolValue *CPV = 3185 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 3186 3187 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 3188 Offset = DAG.getLoad( 3189 PtrVT, DL, DAG.getEntryNode(), Offset, 3190 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 3191 break; 3192 } 3193 } 3194 3195 // Add the base and offset together. 3196 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 3197 } 3198 3199 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 3200 SelectionDAG &DAG) const { 3201 SDLoc DL(Node); 3202 const BlockAddress *BA = Node->getBlockAddress(); 3203 int64_t Offset = Node->getOffset(); 3204 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3205 3206 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 3207 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3208 return Result; 3209 } 3210 3211 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 3212 SelectionDAG &DAG) const { 3213 SDLoc DL(JT); 3214 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3215 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 3216 3217 // Use LARL to load the address of the table. 3218 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3219 } 3220 3221 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 3222 SelectionDAG &DAG) const { 3223 SDLoc DL(CP); 3224 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3225 3226 SDValue Result; 3227 if (CP->isMachineConstantPoolEntry()) 3228 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 3229 CP->getAlignment()); 3230 else 3231 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 3232 CP->getAlignment(), CP->getOffset()); 3233 3234 // Use LARL to load the address of the constant pool entry. 3235 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 3236 } 3237 3238 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 3239 SelectionDAG &DAG) const { 3240 auto *TFL = 3241 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 3242 MachineFunction &MF = DAG.getMachineFunction(); 3243 MachineFrameInfo &MFI = MF.getFrameInfo(); 3244 MFI.setFrameAddressIsTaken(true); 3245 3246 SDLoc DL(Op); 3247 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3248 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3249 3250 // Return null if the back chain is not present. 3251 bool HasBackChain = MF.getFunction().hasFnAttribute("backchain"); 3252 if (TFL->usePackedStack(MF) && !HasBackChain) 3253 return DAG.getConstant(0, DL, PtrVT); 3254 3255 // By definition, the frame address is the address of the back chain. 3256 int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF); 3257 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 3258 3259 // FIXME The frontend should detect this case. 3260 if (Depth > 0) { 3261 report_fatal_error("Unsupported stack frame traversal count"); 3262 } 3263 3264 return BackChain; 3265 } 3266 3267 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 3268 SelectionDAG &DAG) const { 3269 MachineFunction &MF = DAG.getMachineFunction(); 3270 MachineFrameInfo &MFI = MF.getFrameInfo(); 3271 MFI.setReturnAddressIsTaken(true); 3272 3273 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 3274 return SDValue(); 3275 3276 SDLoc DL(Op); 3277 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3278 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3279 3280 // FIXME The frontend should detect this case. 3281 if (Depth > 0) { 3282 report_fatal_error("Unsupported stack frame traversal count"); 3283 } 3284 3285 // Return R14D, which has the return address. Mark it an implicit live-in. 3286 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 3287 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 3288 } 3289 3290 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 3291 SelectionDAG &DAG) const { 3292 SDLoc DL(Op); 3293 SDValue In = Op.getOperand(0); 3294 EVT InVT = In.getValueType(); 3295 EVT ResVT = Op.getValueType(); 3296 3297 // Convert loads directly. This is normally done by DAGCombiner, 3298 // but we need this case for bitcasts that are created during lowering 3299 // and which are then lowered themselves. 3300 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 3301 if (ISD::isNormalLoad(LoadN)) { 3302 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 3303 LoadN->getBasePtr(), LoadN->getMemOperand()); 3304 // Update the chain uses. 3305 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 3306 return NewLoad; 3307 } 3308 3309 if (InVT == MVT::i32 && ResVT == MVT::f32) { 3310 SDValue In64; 3311 if (Subtarget.hasHighWord()) { 3312 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 3313 MVT::i64); 3314 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3315 MVT::i64, SDValue(U64, 0), In); 3316 } else { 3317 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 3318 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 3319 DAG.getConstant(32, DL, MVT::i64)); 3320 } 3321 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 3322 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, 3323 DL, MVT::f32, Out64); 3324 } 3325 if (InVT == MVT::f32 && ResVT == MVT::i32) { 3326 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 3327 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 3328 MVT::f64, SDValue(U64, 0), In); 3329 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 3330 if (Subtarget.hasHighWord()) 3331 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 3332 MVT::i32, Out64); 3333 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 3334 DAG.getConstant(32, DL, MVT::i64)); 3335 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 3336 } 3337 llvm_unreachable("Unexpected bitcast combination"); 3338 } 3339 3340 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 3341 SelectionDAG &DAG) const { 3342 MachineFunction &MF = DAG.getMachineFunction(); 3343 SystemZMachineFunctionInfo *FuncInfo = 3344 MF.getInfo<SystemZMachineFunctionInfo>(); 3345 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3346 3347 SDValue Chain = Op.getOperand(0); 3348 SDValue Addr = Op.getOperand(1); 3349 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 3350 SDLoc DL(Op); 3351 3352 // The initial values of each field. 3353 const unsigned NumFields = 4; 3354 SDValue Fields[NumFields] = { 3355 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 3356 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 3357 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 3358 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 3359 }; 3360 3361 // Store each field into its respective slot. 3362 SDValue MemOps[NumFields]; 3363 unsigned Offset = 0; 3364 for (unsigned I = 0; I < NumFields; ++I) { 3365 SDValue FieldAddr = Addr; 3366 if (Offset != 0) 3367 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 3368 DAG.getIntPtrConstant(Offset, DL)); 3369 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 3370 MachinePointerInfo(SV, Offset)); 3371 Offset += 8; 3372 } 3373 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 3374 } 3375 3376 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 3377 SelectionDAG &DAG) const { 3378 SDValue Chain = Op.getOperand(0); 3379 SDValue DstPtr = Op.getOperand(1); 3380 SDValue SrcPtr = Op.getOperand(2); 3381 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 3382 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 3383 SDLoc DL(Op); 3384 3385 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 3386 Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false, 3387 /*isTailCall*/ false, MachinePointerInfo(DstSV), 3388 MachinePointerInfo(SrcSV)); 3389 } 3390 3391 SDValue SystemZTargetLowering:: 3392 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 3393 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 3394 MachineFunction &MF = DAG.getMachineFunction(); 3395 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 3396 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3397 3398 SDValue Chain = Op.getOperand(0); 3399 SDValue Size = Op.getOperand(1); 3400 SDValue Align = Op.getOperand(2); 3401 SDLoc DL(Op); 3402 3403 // If user has set the no alignment function attribute, ignore 3404 // alloca alignments. 3405 uint64_t AlignVal = (RealignOpt ? 3406 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3407 3408 uint64_t StackAlign = TFI->getStackAlignment(); 3409 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3410 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3411 3412 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3413 SDValue NeededSpace = Size; 3414 3415 // Get a reference to the stack pointer. 3416 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3417 3418 // If we need a backchain, save it now. 3419 SDValue Backchain; 3420 if (StoreBackchain) 3421 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3422 3423 // Add extra space for alignment if needed. 3424 if (ExtraAlignSpace) 3425 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3426 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3427 3428 // Get the new stack pointer value. 3429 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3430 3431 // Copy the new stack pointer back. 3432 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3433 3434 // The allocated data lives above the 160 bytes allocated for the standard 3435 // frame, plus any outgoing stack arguments. We don't know how much that 3436 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3437 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3438 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3439 3440 // Dynamically realign if needed. 3441 if (RequiredAlign > StackAlign) { 3442 Result = 3443 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3444 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3445 Result = 3446 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3447 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3448 } 3449 3450 if (StoreBackchain) 3451 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3452 3453 SDValue Ops[2] = { Result, Chain }; 3454 return DAG.getMergeValues(Ops, DL); 3455 } 3456 3457 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3458 SDValue Op, SelectionDAG &DAG) const { 3459 SDLoc DL(Op); 3460 3461 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3462 } 3463 3464 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3465 SelectionDAG &DAG) const { 3466 EVT VT = Op.getValueType(); 3467 SDLoc DL(Op); 3468 SDValue Ops[2]; 3469 if (is32Bit(VT)) 3470 // Just do a normal 64-bit multiplication and extract the results. 3471 // We define this so that it can be used for constant division. 3472 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3473 Op.getOperand(1), Ops[1], Ops[0]); 3474 else if (Subtarget.hasMiscellaneousExtensions2()) 3475 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3476 // the high result in the even register. ISD::SMUL_LOHI is defined to 3477 // return the low half first, so the results are in reverse order. 3478 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3479 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3480 else { 3481 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3482 // 3483 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3484 // 3485 // but using the fact that the upper halves are either all zeros 3486 // or all ones: 3487 // 3488 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3489 // 3490 // and grouping the right terms together since they are quicker than the 3491 // multiplication: 3492 // 3493 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3494 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3495 SDValue LL = Op.getOperand(0); 3496 SDValue RL = Op.getOperand(1); 3497 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3498 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3499 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3500 // the high result in the even register. ISD::SMUL_LOHI is defined to 3501 // return the low half first, so the results are in reverse order. 3502 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3503 LL, RL, Ops[1], Ops[0]); 3504 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3505 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3506 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3507 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3508 } 3509 return DAG.getMergeValues(Ops, DL); 3510 } 3511 3512 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3513 SelectionDAG &DAG) const { 3514 EVT VT = Op.getValueType(); 3515 SDLoc DL(Op); 3516 SDValue Ops[2]; 3517 if (is32Bit(VT)) 3518 // Just do a normal 64-bit multiplication and extract the results. 3519 // We define this so that it can be used for constant division. 3520 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3521 Op.getOperand(1), Ops[1], Ops[0]); 3522 else 3523 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3524 // the high result in the even register. ISD::UMUL_LOHI is defined to 3525 // return the low half first, so the results are in reverse order. 3526 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3527 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3528 return DAG.getMergeValues(Ops, DL); 3529 } 3530 3531 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3532 SelectionDAG &DAG) const { 3533 SDValue Op0 = Op.getOperand(0); 3534 SDValue Op1 = Op.getOperand(1); 3535 EVT VT = Op.getValueType(); 3536 SDLoc DL(Op); 3537 3538 // We use DSGF for 32-bit division. This means the first operand must 3539 // always be 64-bit, and the second operand should be 32-bit whenever 3540 // that is possible, to improve performance. 3541 if (is32Bit(VT)) 3542 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3543 else if (DAG.ComputeNumSignBits(Op1) > 32) 3544 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3545 3546 // DSG(F) returns the remainder in the even register and the 3547 // quotient in the odd register. 3548 SDValue Ops[2]; 3549 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3550 return DAG.getMergeValues(Ops, DL); 3551 } 3552 3553 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3554 SelectionDAG &DAG) const { 3555 EVT VT = Op.getValueType(); 3556 SDLoc DL(Op); 3557 3558 // DL(G) returns the remainder in the even register and the 3559 // quotient in the odd register. 3560 SDValue Ops[2]; 3561 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3562 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3563 return DAG.getMergeValues(Ops, DL); 3564 } 3565 3566 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3567 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3568 3569 // Get the known-zero masks for each operand. 3570 SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)}; 3571 KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]), 3572 DAG.computeKnownBits(Ops[1])}; 3573 3574 // See if the upper 32 bits of one operand and the lower 32 bits of the 3575 // other are known zero. They are the low and high operands respectively. 3576 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3577 Known[1].Zero.getZExtValue() }; 3578 unsigned High, Low; 3579 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3580 High = 1, Low = 0; 3581 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3582 High = 0, Low = 1; 3583 else 3584 return Op; 3585 3586 SDValue LowOp = Ops[Low]; 3587 SDValue HighOp = Ops[High]; 3588 3589 // If the high part is a constant, we're better off using IILH. 3590 if (HighOp.getOpcode() == ISD::Constant) 3591 return Op; 3592 3593 // If the low part is a constant that is outside the range of LHI, 3594 // then we're better off using IILF. 3595 if (LowOp.getOpcode() == ISD::Constant) { 3596 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3597 if (!isInt<16>(Value)) 3598 return Op; 3599 } 3600 3601 // Check whether the high part is an AND that doesn't change the 3602 // high 32 bits and just masks out low bits. We can skip it if so. 3603 if (HighOp.getOpcode() == ISD::AND && 3604 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3605 SDValue HighOp0 = HighOp.getOperand(0); 3606 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3607 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3608 HighOp = HighOp0; 3609 } 3610 3611 // Take advantage of the fact that all GR32 operations only change the 3612 // low 32 bits by truncating Low to an i32 and inserting it directly 3613 // using a subreg. The interesting cases are those where the truncation 3614 // can be folded. 3615 SDLoc DL(Op); 3616 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3617 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3618 MVT::i64, HighOp, Low32); 3619 } 3620 3621 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3622 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3623 SelectionDAG &DAG) const { 3624 SDNode *N = Op.getNode(); 3625 SDValue LHS = N->getOperand(0); 3626 SDValue RHS = N->getOperand(1); 3627 SDLoc DL(N); 3628 unsigned BaseOp = 0; 3629 unsigned CCValid = 0; 3630 unsigned CCMask = 0; 3631 3632 switch (Op.getOpcode()) { 3633 default: llvm_unreachable("Unknown instruction!"); 3634 case ISD::SADDO: 3635 BaseOp = SystemZISD::SADDO; 3636 CCValid = SystemZ::CCMASK_ARITH; 3637 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3638 break; 3639 case ISD::SSUBO: 3640 BaseOp = SystemZISD::SSUBO; 3641 CCValid = SystemZ::CCMASK_ARITH; 3642 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3643 break; 3644 case ISD::UADDO: 3645 BaseOp = SystemZISD::UADDO; 3646 CCValid = SystemZ::CCMASK_LOGICAL; 3647 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3648 break; 3649 case ISD::USUBO: 3650 BaseOp = SystemZISD::USUBO; 3651 CCValid = SystemZ::CCMASK_LOGICAL; 3652 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3653 break; 3654 } 3655 3656 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3657 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3658 3659 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3660 if (N->getValueType(1) == MVT::i1) 3661 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3662 3663 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3664 } 3665 3666 static bool isAddCarryChain(SDValue Carry) { 3667 while (Carry.getOpcode() == ISD::ADDCARRY) 3668 Carry = Carry.getOperand(2); 3669 return Carry.getOpcode() == ISD::UADDO; 3670 } 3671 3672 static bool isSubBorrowChain(SDValue Carry) { 3673 while (Carry.getOpcode() == ISD::SUBCARRY) 3674 Carry = Carry.getOperand(2); 3675 return Carry.getOpcode() == ISD::USUBO; 3676 } 3677 3678 // Lower ADDCARRY/SUBCARRY nodes. 3679 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3680 SelectionDAG &DAG) const { 3681 3682 SDNode *N = Op.getNode(); 3683 MVT VT = N->getSimpleValueType(0); 3684 3685 // Let legalize expand this if it isn't a legal type yet. 3686 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3687 return SDValue(); 3688 3689 SDValue LHS = N->getOperand(0); 3690 SDValue RHS = N->getOperand(1); 3691 SDValue Carry = Op.getOperand(2); 3692 SDLoc DL(N); 3693 unsigned BaseOp = 0; 3694 unsigned CCValid = 0; 3695 unsigned CCMask = 0; 3696 3697 switch (Op.getOpcode()) { 3698 default: llvm_unreachable("Unknown instruction!"); 3699 case ISD::ADDCARRY: 3700 if (!isAddCarryChain(Carry)) 3701 return SDValue(); 3702 3703 BaseOp = SystemZISD::ADDCARRY; 3704 CCValid = SystemZ::CCMASK_LOGICAL; 3705 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3706 break; 3707 case ISD::SUBCARRY: 3708 if (!isSubBorrowChain(Carry)) 3709 return SDValue(); 3710 3711 BaseOp = SystemZISD::SUBCARRY; 3712 CCValid = SystemZ::CCMASK_LOGICAL; 3713 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3714 break; 3715 } 3716 3717 // Set the condition code from the carry flag. 3718 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3719 DAG.getConstant(CCValid, DL, MVT::i32), 3720 DAG.getConstant(CCMask, DL, MVT::i32)); 3721 3722 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3723 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3724 3725 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3726 if (N->getValueType(1) == MVT::i1) 3727 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3728 3729 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3730 } 3731 3732 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3733 SelectionDAG &DAG) const { 3734 EVT VT = Op.getValueType(); 3735 SDLoc DL(Op); 3736 Op = Op.getOperand(0); 3737 3738 // Handle vector types via VPOPCT. 3739 if (VT.isVector()) { 3740 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3741 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3742 switch (VT.getScalarSizeInBits()) { 3743 case 8: 3744 break; 3745 case 16: { 3746 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3747 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3748 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3749 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3750 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3751 break; 3752 } 3753 case 32: { 3754 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3755 DAG.getConstant(0, DL, MVT::i32)); 3756 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3757 break; 3758 } 3759 case 64: { 3760 SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL, 3761 DAG.getConstant(0, DL, MVT::i32)); 3762 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3763 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3764 break; 3765 } 3766 default: 3767 llvm_unreachable("Unexpected type"); 3768 } 3769 return Op; 3770 } 3771 3772 // Get the known-zero mask for the operand. 3773 KnownBits Known = DAG.computeKnownBits(Op); 3774 unsigned NumSignificantBits = Known.getMaxValue().getActiveBits(); 3775 if (NumSignificantBits == 0) 3776 return DAG.getConstant(0, DL, VT); 3777 3778 // Skip known-zero high parts of the operand. 3779 int64_t OrigBitSize = VT.getSizeInBits(); 3780 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3781 BitSize = std::min(BitSize, OrigBitSize); 3782 3783 // The POPCNT instruction counts the number of bits in each byte. 3784 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3785 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3786 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3787 3788 // Add up per-byte counts in a binary tree. All bits of Op at 3789 // position larger than BitSize remain zero throughout. 3790 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3791 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3792 if (BitSize != OrigBitSize) 3793 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3794 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3795 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3796 } 3797 3798 // Extract overall result from high byte. 3799 if (BitSize > 8) 3800 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3801 DAG.getConstant(BitSize - 8, DL, VT)); 3802 3803 return Op; 3804 } 3805 3806 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3807 SelectionDAG &DAG) const { 3808 SDLoc DL(Op); 3809 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3810 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3811 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3812 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3813 3814 // The only fence that needs an instruction is a sequentially-consistent 3815 // cross-thread fence. 3816 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3817 FenceSSID == SyncScope::System) { 3818 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3819 Op.getOperand(0)), 3820 0); 3821 } 3822 3823 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3824 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3825 } 3826 3827 // Op is an atomic load. Lower it into a normal volatile load. 3828 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3829 SelectionDAG &DAG) const { 3830 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3831 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3832 Node->getChain(), Node->getBasePtr(), 3833 Node->getMemoryVT(), Node->getMemOperand()); 3834 } 3835 3836 // Op is an atomic store. Lower it into a normal volatile store. 3837 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3838 SelectionDAG &DAG) const { 3839 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3840 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3841 Node->getBasePtr(), Node->getMemoryVT(), 3842 Node->getMemOperand()); 3843 // We have to enforce sequential consistency by performing a 3844 // serialization operation after the store. 3845 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3846 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3847 MVT::Other, Chain), 0); 3848 return Chain; 3849 } 3850 3851 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3852 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3853 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3854 SelectionDAG &DAG, 3855 unsigned Opcode) const { 3856 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3857 3858 // 32-bit operations need no code outside the main loop. 3859 EVT NarrowVT = Node->getMemoryVT(); 3860 EVT WideVT = MVT::i32; 3861 if (NarrowVT == WideVT) 3862 return Op; 3863 3864 int64_t BitSize = NarrowVT.getSizeInBits(); 3865 SDValue ChainIn = Node->getChain(); 3866 SDValue Addr = Node->getBasePtr(); 3867 SDValue Src2 = Node->getVal(); 3868 MachineMemOperand *MMO = Node->getMemOperand(); 3869 SDLoc DL(Node); 3870 EVT PtrVT = Addr.getValueType(); 3871 3872 // Convert atomic subtracts of constants into additions. 3873 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3874 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3875 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3876 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3877 } 3878 3879 // Get the address of the containing word. 3880 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3881 DAG.getConstant(-4, DL, PtrVT)); 3882 3883 // Get the number of bits that the word must be rotated left in order 3884 // to bring the field to the top bits of a GR32. 3885 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3886 DAG.getConstant(3, DL, PtrVT)); 3887 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3888 3889 // Get the complementing shift amount, for rotating a field in the top 3890 // bits back to its proper position. 3891 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3892 DAG.getConstant(0, DL, WideVT), BitShift); 3893 3894 // Extend the source operand to 32 bits and prepare it for the inner loop. 3895 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3896 // operations require the source to be shifted in advance. (This shift 3897 // can be folded if the source is constant.) For AND and NAND, the lower 3898 // bits must be set, while for other opcodes they should be left clear. 3899 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3900 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3901 DAG.getConstant(32 - BitSize, DL, WideVT)); 3902 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3903 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3904 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3905 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3906 3907 // Construct the ATOMIC_LOADW_* node. 3908 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3909 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3910 DAG.getConstant(BitSize, DL, WideVT) }; 3911 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3912 NarrowVT, MMO); 3913 3914 // Rotate the result of the final CS so that the field is in the lower 3915 // bits of a GR32, then truncate it. 3916 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3917 DAG.getConstant(BitSize, DL, WideVT)); 3918 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3919 3920 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3921 return DAG.getMergeValues(RetOps, DL); 3922 } 3923 3924 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3925 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3926 // operations into additions. 3927 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3928 SelectionDAG &DAG) const { 3929 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3930 EVT MemVT = Node->getMemoryVT(); 3931 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3932 // A full-width operation. 3933 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3934 SDValue Src2 = Node->getVal(); 3935 SDValue NegSrc2; 3936 SDLoc DL(Src2); 3937 3938 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3939 // Use an addition if the operand is constant and either LAA(G) is 3940 // available or the negative value is in the range of A(G)FHI. 3941 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3942 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3943 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3944 } else if (Subtarget.hasInterlockedAccess1()) 3945 // Use LAA(G) if available. 3946 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3947 Src2); 3948 3949 if (NegSrc2.getNode()) 3950 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3951 Node->getChain(), Node->getBasePtr(), NegSrc2, 3952 Node->getMemOperand()); 3953 3954 // Use the node as-is. 3955 return Op; 3956 } 3957 3958 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3959 } 3960 3961 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3962 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3963 SelectionDAG &DAG) const { 3964 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3965 SDValue ChainIn = Node->getOperand(0); 3966 SDValue Addr = Node->getOperand(1); 3967 SDValue CmpVal = Node->getOperand(2); 3968 SDValue SwapVal = Node->getOperand(3); 3969 MachineMemOperand *MMO = Node->getMemOperand(); 3970 SDLoc DL(Node); 3971 3972 // We have native support for 32-bit and 64-bit compare and swap, but we 3973 // still need to expand extracting the "success" result from the CC. 3974 EVT NarrowVT = Node->getMemoryVT(); 3975 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3976 if (NarrowVT == WideVT) { 3977 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3978 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3979 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3980 DL, Tys, Ops, NarrowVT, MMO); 3981 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3982 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3983 3984 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3985 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3986 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3987 return SDValue(); 3988 } 3989 3990 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3991 // via a fullword ATOMIC_CMP_SWAPW operation. 3992 int64_t BitSize = NarrowVT.getSizeInBits(); 3993 EVT PtrVT = Addr.getValueType(); 3994 3995 // Get the address of the containing word. 3996 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3997 DAG.getConstant(-4, DL, PtrVT)); 3998 3999 // Get the number of bits that the word must be rotated left in order 4000 // to bring the field to the top bits of a GR32. 4001 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 4002 DAG.getConstant(3, DL, PtrVT)); 4003 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 4004 4005 // Get the complementing shift amount, for rotating a field in the top 4006 // bits back to its proper position. 4007 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 4008 DAG.getConstant(0, DL, WideVT), BitShift); 4009 4010 // Construct the ATOMIC_CMP_SWAPW node. 4011 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 4012 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 4013 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 4014 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 4015 VTList, Ops, NarrowVT, MMO); 4016 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 4017 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 4018 4019 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 4020 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 4021 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 4022 return SDValue(); 4023 } 4024 4025 MachineMemOperand::Flags 4026 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const { 4027 // Because of how we convert atomic_load and atomic_store to normal loads and 4028 // stores in the DAG, we need to ensure that the MMOs are marked volatile 4029 // since DAGCombine hasn't been updated to account for atomic, but non 4030 // volatile loads. (See D57601) 4031 if (auto *SI = dyn_cast<StoreInst>(&I)) 4032 if (SI->isAtomic()) 4033 return MachineMemOperand::MOVolatile; 4034 if (auto *LI = dyn_cast<LoadInst>(&I)) 4035 if (LI->isAtomic()) 4036 return MachineMemOperand::MOVolatile; 4037 if (auto *AI = dyn_cast<AtomicRMWInst>(&I)) 4038 if (AI->isAtomic()) 4039 return MachineMemOperand::MOVolatile; 4040 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I)) 4041 if (AI->isAtomic()) 4042 return MachineMemOperand::MOVolatile; 4043 return MachineMemOperand::MONone; 4044 } 4045 4046 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 4047 SelectionDAG &DAG) const { 4048 MachineFunction &MF = DAG.getMachineFunction(); 4049 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4050 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4051 report_fatal_error("Variable-sized stack allocations are not supported " 4052 "in GHC calling convention"); 4053 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 4054 SystemZ::R15D, Op.getValueType()); 4055 } 4056 4057 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 4058 SelectionDAG &DAG) const { 4059 MachineFunction &MF = DAG.getMachineFunction(); 4060 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 4061 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 4062 4063 if (MF.getFunction().getCallingConv() == CallingConv::GHC) 4064 report_fatal_error("Variable-sized stack allocations are not supported " 4065 "in GHC calling convention"); 4066 4067 SDValue Chain = Op.getOperand(0); 4068 SDValue NewSP = Op.getOperand(1); 4069 SDValue Backchain; 4070 SDLoc DL(Op); 4071 4072 if (StoreBackchain) { 4073 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 4074 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 4075 } 4076 4077 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 4078 4079 if (StoreBackchain) 4080 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 4081 4082 return Chain; 4083 } 4084 4085 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 4086 SelectionDAG &DAG) const { 4087 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 4088 if (!IsData) 4089 // Just preserve the chain. 4090 return Op.getOperand(0); 4091 4092 SDLoc DL(Op); 4093 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 4094 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 4095 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 4096 SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32), 4097 Op.getOperand(1)}; 4098 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 4099 Node->getVTList(), Ops, 4100 Node->getMemoryVT(), Node->getMemOperand()); 4101 } 4102 4103 // Convert condition code in CCReg to an i32 value. 4104 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 4105 SDLoc DL(CCReg); 4106 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 4107 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 4108 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 4109 } 4110 4111 SDValue 4112 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 4113 SelectionDAG &DAG) const { 4114 unsigned Opcode, CCValid; 4115 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 4116 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 4117 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 4118 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 4119 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 4120 return SDValue(); 4121 } 4122 4123 return SDValue(); 4124 } 4125 4126 SDValue 4127 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 4128 SelectionDAG &DAG) const { 4129 unsigned Opcode, CCValid; 4130 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 4131 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 4132 if (Op->getNumValues() == 1) 4133 return getCCResult(DAG, SDValue(Node, 0)); 4134 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 4135 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 4136 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 4137 } 4138 4139 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4140 switch (Id) { 4141 case Intrinsic::thread_pointer: 4142 return lowerThreadPointer(SDLoc(Op), DAG); 4143 4144 case Intrinsic::s390_vpdi: 4145 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 4146 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4147 4148 case Intrinsic::s390_vperm: 4149 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 4150 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 4151 4152 case Intrinsic::s390_vuphb: 4153 case Intrinsic::s390_vuphh: 4154 case Intrinsic::s390_vuphf: 4155 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 4156 Op.getOperand(1)); 4157 4158 case Intrinsic::s390_vuplhb: 4159 case Intrinsic::s390_vuplhh: 4160 case Intrinsic::s390_vuplhf: 4161 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 4162 Op.getOperand(1)); 4163 4164 case Intrinsic::s390_vuplb: 4165 case Intrinsic::s390_vuplhw: 4166 case Intrinsic::s390_vuplf: 4167 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 4168 Op.getOperand(1)); 4169 4170 case Intrinsic::s390_vupllb: 4171 case Intrinsic::s390_vupllh: 4172 case Intrinsic::s390_vupllf: 4173 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 4174 Op.getOperand(1)); 4175 4176 case Intrinsic::s390_vsumb: 4177 case Intrinsic::s390_vsumh: 4178 case Intrinsic::s390_vsumgh: 4179 case Intrinsic::s390_vsumgf: 4180 case Intrinsic::s390_vsumqf: 4181 case Intrinsic::s390_vsumqg: 4182 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 4183 Op.getOperand(1), Op.getOperand(2)); 4184 } 4185 4186 return SDValue(); 4187 } 4188 4189 namespace { 4190 // Says that SystemZISD operation Opcode can be used to perform the equivalent 4191 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 4192 // Operand is the constant third operand, otherwise it is the number of 4193 // bytes in each element of the result. 4194 struct Permute { 4195 unsigned Opcode; 4196 unsigned Operand; 4197 unsigned char Bytes[SystemZ::VectorBytes]; 4198 }; 4199 } 4200 4201 static const Permute PermuteForms[] = { 4202 // VMRHG 4203 { SystemZISD::MERGE_HIGH, 8, 4204 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4205 // VMRHF 4206 { SystemZISD::MERGE_HIGH, 4, 4207 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 4208 // VMRHH 4209 { SystemZISD::MERGE_HIGH, 2, 4210 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 4211 // VMRHB 4212 { SystemZISD::MERGE_HIGH, 1, 4213 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 4214 // VMRLG 4215 { SystemZISD::MERGE_LOW, 8, 4216 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 4217 // VMRLF 4218 { SystemZISD::MERGE_LOW, 4, 4219 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 4220 // VMRLH 4221 { SystemZISD::MERGE_LOW, 2, 4222 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 4223 // VMRLB 4224 { SystemZISD::MERGE_LOW, 1, 4225 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 4226 // VPKG 4227 { SystemZISD::PACK, 4, 4228 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 4229 // VPKF 4230 { SystemZISD::PACK, 2, 4231 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 4232 // VPKH 4233 { SystemZISD::PACK, 1, 4234 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 4235 // VPDI V1, V2, 4 (low half of V1, high half of V2) 4236 { SystemZISD::PERMUTE_DWORDS, 4, 4237 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 4238 // VPDI V1, V2, 1 (high half of V1, low half of V2) 4239 { SystemZISD::PERMUTE_DWORDS, 1, 4240 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 4241 }; 4242 4243 // Called after matching a vector shuffle against a particular pattern. 4244 // Both the original shuffle and the pattern have two vector operands. 4245 // OpNos[0] is the operand of the original shuffle that should be used for 4246 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 4247 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 4248 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 4249 // for operands 0 and 1 of the pattern. 4250 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 4251 if (OpNos[0] < 0) { 4252 if (OpNos[1] < 0) 4253 return false; 4254 OpNo0 = OpNo1 = OpNos[1]; 4255 } else if (OpNos[1] < 0) { 4256 OpNo0 = OpNo1 = OpNos[0]; 4257 } else { 4258 OpNo0 = OpNos[0]; 4259 OpNo1 = OpNos[1]; 4260 } 4261 return true; 4262 } 4263 4264 // Bytes is a VPERM-like permute vector, except that -1 is used for 4265 // undefined bytes. Return true if the VPERM can be implemented using P. 4266 // When returning true set OpNo0 to the VPERM operand that should be 4267 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 4268 // 4269 // For example, if swapping the VPERM operands allows P to match, OpNo0 4270 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 4271 // operand, but rewriting it to use two duplicated operands allows it to 4272 // match P, then OpNo0 and OpNo1 will be the same. 4273 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 4274 unsigned &OpNo0, unsigned &OpNo1) { 4275 int OpNos[] = { -1, -1 }; 4276 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 4277 int Elt = Bytes[I]; 4278 if (Elt >= 0) { 4279 // Make sure that the two permute vectors use the same suboperand 4280 // byte number. Only the operand numbers (the high bits) are 4281 // allowed to differ. 4282 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 4283 return false; 4284 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 4285 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 4286 // Make sure that the operand mappings are consistent with previous 4287 // elements. 4288 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4289 return false; 4290 OpNos[ModelOpNo] = RealOpNo; 4291 } 4292 } 4293 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4294 } 4295 4296 // As above, but search for a matching permute. 4297 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 4298 unsigned &OpNo0, unsigned &OpNo1) { 4299 for (auto &P : PermuteForms) 4300 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 4301 return &P; 4302 return nullptr; 4303 } 4304 4305 // Bytes is a VPERM-like permute vector, except that -1 is used for 4306 // undefined bytes. This permute is an operand of an outer permute. 4307 // See whether redistributing the -1 bytes gives a shuffle that can be 4308 // implemented using P. If so, set Transform to a VPERM-like permute vector 4309 // that, when applied to the result of P, gives the original permute in Bytes. 4310 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4311 const Permute &P, 4312 SmallVectorImpl<int> &Transform) { 4313 unsigned To = 0; 4314 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 4315 int Elt = Bytes[From]; 4316 if (Elt < 0) 4317 // Byte number From of the result is undefined. 4318 Transform[From] = -1; 4319 else { 4320 while (P.Bytes[To] != Elt) { 4321 To += 1; 4322 if (To == SystemZ::VectorBytes) 4323 return false; 4324 } 4325 Transform[From] = To; 4326 } 4327 } 4328 return true; 4329 } 4330 4331 // As above, but search for a matching permute. 4332 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 4333 SmallVectorImpl<int> &Transform) { 4334 for (auto &P : PermuteForms) 4335 if (matchDoublePermute(Bytes, P, Transform)) 4336 return &P; 4337 return nullptr; 4338 } 4339 4340 // Convert the mask of the given shuffle op into a byte-level mask, 4341 // as if it had type vNi8. 4342 static bool getVPermMask(SDValue ShuffleOp, 4343 SmallVectorImpl<int> &Bytes) { 4344 EVT VT = ShuffleOp.getValueType(); 4345 unsigned NumElements = VT.getVectorNumElements(); 4346 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4347 4348 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 4349 Bytes.resize(NumElements * BytesPerElement, -1); 4350 for (unsigned I = 0; I < NumElements; ++I) { 4351 int Index = VSN->getMaskElt(I); 4352 if (Index >= 0) 4353 for (unsigned J = 0; J < BytesPerElement; ++J) 4354 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4355 } 4356 return true; 4357 } 4358 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 4359 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 4360 unsigned Index = ShuffleOp.getConstantOperandVal(1); 4361 Bytes.resize(NumElements * BytesPerElement, -1); 4362 for (unsigned I = 0; I < NumElements; ++I) 4363 for (unsigned J = 0; J < BytesPerElement; ++J) 4364 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 4365 return true; 4366 } 4367 return false; 4368 } 4369 4370 // Bytes is a VPERM-like permute vector, except that -1 is used for 4371 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 4372 // the result come from a contiguous sequence of bytes from one input. 4373 // Set Base to the selector for the first byte if so. 4374 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 4375 unsigned BytesPerElement, int &Base) { 4376 Base = -1; 4377 for (unsigned I = 0; I < BytesPerElement; ++I) { 4378 if (Bytes[Start + I] >= 0) { 4379 unsigned Elem = Bytes[Start + I]; 4380 if (Base < 0) { 4381 Base = Elem - I; 4382 // Make sure the bytes would come from one input operand. 4383 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 4384 return false; 4385 } else if (unsigned(Base) != Elem - I) 4386 return false; 4387 } 4388 } 4389 return true; 4390 } 4391 4392 // Bytes is a VPERM-like permute vector, except that -1 is used for 4393 // undefined bytes. Return true if it can be performed using VSLDB. 4394 // When returning true, set StartIndex to the shift amount and OpNo0 4395 // and OpNo1 to the VPERM operands that should be used as the first 4396 // and second shift operand respectively. 4397 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 4398 unsigned &StartIndex, unsigned &OpNo0, 4399 unsigned &OpNo1) { 4400 int OpNos[] = { -1, -1 }; 4401 int Shift = -1; 4402 for (unsigned I = 0; I < 16; ++I) { 4403 int Index = Bytes[I]; 4404 if (Index >= 0) { 4405 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 4406 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 4407 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 4408 if (Shift < 0) 4409 Shift = ExpectedShift; 4410 else if (Shift != ExpectedShift) 4411 return false; 4412 // Make sure that the operand mappings are consistent with previous 4413 // elements. 4414 if (OpNos[ModelOpNo] == 1 - RealOpNo) 4415 return false; 4416 OpNos[ModelOpNo] = RealOpNo; 4417 } 4418 } 4419 StartIndex = Shift; 4420 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 4421 } 4422 4423 // Create a node that performs P on operands Op0 and Op1, casting the 4424 // operands to the appropriate type. The type of the result is determined by P. 4425 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4426 const Permute &P, SDValue Op0, SDValue Op1) { 4427 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 4428 // elements of a PACK are twice as wide as the outputs. 4429 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 4430 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 4431 P.Operand); 4432 // Cast both operands to the appropriate type. 4433 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 4434 SystemZ::VectorBytes / InBytes); 4435 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 4436 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 4437 SDValue Op; 4438 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 4439 SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32); 4440 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 4441 } else if (P.Opcode == SystemZISD::PACK) { 4442 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 4443 SystemZ::VectorBytes / P.Operand); 4444 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 4445 } else { 4446 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 4447 } 4448 return Op; 4449 } 4450 4451 // Bytes is a VPERM-like permute vector, except that -1 is used for 4452 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4453 // VSLDB or VPERM. 4454 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4455 SDValue *Ops, 4456 const SmallVectorImpl<int> &Bytes) { 4457 for (unsigned I = 0; I < 2; ++I) 4458 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4459 4460 // First see whether VSLDB can be used. 4461 unsigned StartIndex, OpNo0, OpNo1; 4462 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4463 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4464 Ops[OpNo1], 4465 DAG.getTargetConstant(StartIndex, DL, MVT::i32)); 4466 4467 // Fall back on VPERM. Construct an SDNode for the permute vector. 4468 SDValue IndexNodes[SystemZ::VectorBytes]; 4469 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4470 if (Bytes[I] >= 0) 4471 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4472 else 4473 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4474 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4475 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 4476 } 4477 4478 namespace { 4479 // Describes a general N-operand vector shuffle. 4480 struct GeneralShuffle { 4481 GeneralShuffle(EVT vt) : VT(vt) {} 4482 void addUndef(); 4483 bool add(SDValue, unsigned); 4484 SDValue getNode(SelectionDAG &, const SDLoc &); 4485 4486 // The operands of the shuffle. 4487 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4488 4489 // Index I is -1 if byte I of the result is undefined. Otherwise the 4490 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4491 // Bytes[I] / SystemZ::VectorBytes. 4492 SmallVector<int, SystemZ::VectorBytes> Bytes; 4493 4494 // The type of the shuffle result. 4495 EVT VT; 4496 }; 4497 } 4498 4499 // Add an extra undefined element to the shuffle. 4500 void GeneralShuffle::addUndef() { 4501 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4502 for (unsigned I = 0; I < BytesPerElement; ++I) 4503 Bytes.push_back(-1); 4504 } 4505 4506 // Add an extra element to the shuffle, taking it from element Elem of Op. 4507 // A null Op indicates a vector input whose value will be calculated later; 4508 // there is at most one such input per shuffle and it always has the same 4509 // type as the result. Aborts and returns false if the source vector elements 4510 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4511 // LLVM they become implicitly extended, but this is rare and not optimized. 4512 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4513 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4514 4515 // The source vector can have wider elements than the result, 4516 // either through an explicit TRUNCATE or because of type legalization. 4517 // We want the least significant part. 4518 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4519 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4520 4521 // Return false if the source elements are smaller than their destination 4522 // elements. 4523 if (FromBytesPerElement < BytesPerElement) 4524 return false; 4525 4526 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4527 (FromBytesPerElement - BytesPerElement)); 4528 4529 // Look through things like shuffles and bitcasts. 4530 while (Op.getNode()) { 4531 if (Op.getOpcode() == ISD::BITCAST) 4532 Op = Op.getOperand(0); 4533 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4534 // See whether the bytes we need come from a contiguous part of one 4535 // operand. 4536 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4537 if (!getVPermMask(Op, OpBytes)) 4538 break; 4539 int NewByte; 4540 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4541 break; 4542 if (NewByte < 0) { 4543 addUndef(); 4544 return true; 4545 } 4546 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4547 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4548 } else if (Op.isUndef()) { 4549 addUndef(); 4550 return true; 4551 } else 4552 break; 4553 } 4554 4555 // Make sure that the source of the extraction is in Ops. 4556 unsigned OpNo = 0; 4557 for (; OpNo < Ops.size(); ++OpNo) 4558 if (Ops[OpNo] == Op) 4559 break; 4560 if (OpNo == Ops.size()) 4561 Ops.push_back(Op); 4562 4563 // Add the element to Bytes. 4564 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4565 for (unsigned I = 0; I < BytesPerElement; ++I) 4566 Bytes.push_back(Base + I); 4567 4568 return true; 4569 } 4570 4571 // Return SDNodes for the completed shuffle. 4572 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4573 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4574 4575 if (Ops.size() == 0) 4576 return DAG.getUNDEF(VT); 4577 4578 // Make sure that there are at least two shuffle operands. 4579 if (Ops.size() == 1) 4580 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4581 4582 // Create a tree of shuffles, deferring root node until after the loop. 4583 // Try to redistribute the undefined elements of non-root nodes so that 4584 // the non-root shuffles match something like a pack or merge, then adjust 4585 // the parent node's permute vector to compensate for the new order. 4586 // Among other things, this copes with vectors like <2 x i16> that were 4587 // padded with undefined elements during type legalization. 4588 // 4589 // In the best case this redistribution will lead to the whole tree 4590 // using packs and merges. It should rarely be a loss in other cases. 4591 unsigned Stride = 1; 4592 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4593 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4594 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4595 4596 // Create a mask for just these two operands. 4597 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4598 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4599 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4600 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4601 if (OpNo == I) 4602 NewBytes[J] = Byte; 4603 else if (OpNo == I + Stride) 4604 NewBytes[J] = SystemZ::VectorBytes + Byte; 4605 else 4606 NewBytes[J] = -1; 4607 } 4608 // See if it would be better to reorganize NewMask to avoid using VPERM. 4609 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4610 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4611 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4612 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4613 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4614 if (NewBytes[J] >= 0) { 4615 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4616 "Invalid double permute"); 4617 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4618 } else 4619 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4620 } 4621 } else { 4622 // Just use NewBytes on the operands. 4623 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4624 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4625 if (NewBytes[J] >= 0) 4626 Bytes[J] = I * SystemZ::VectorBytes + J; 4627 } 4628 } 4629 } 4630 4631 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4632 if (Stride > 1) { 4633 Ops[1] = Ops[Stride]; 4634 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4635 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4636 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4637 } 4638 4639 // Look for an instruction that can do the permute without resorting 4640 // to VPERM. 4641 unsigned OpNo0, OpNo1; 4642 SDValue Op; 4643 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4644 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4645 else 4646 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4647 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4648 } 4649 4650 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4651 static bool isScalarToVector(SDValue Op) { 4652 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4653 if (!Op.getOperand(I).isUndef()) 4654 return false; 4655 return true; 4656 } 4657 4658 // Return a vector of type VT that contains Value in the first element. 4659 // The other elements don't matter. 4660 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4661 SDValue Value) { 4662 // If we have a constant, replicate it to all elements and let the 4663 // BUILD_VECTOR lowering take care of it. 4664 if (Value.getOpcode() == ISD::Constant || 4665 Value.getOpcode() == ISD::ConstantFP) { 4666 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4667 return DAG.getBuildVector(VT, DL, Ops); 4668 } 4669 if (Value.isUndef()) 4670 return DAG.getUNDEF(VT); 4671 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4672 } 4673 4674 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4675 // element 1. Used for cases in which replication is cheap. 4676 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4677 SDValue Op0, SDValue Op1) { 4678 if (Op0.isUndef()) { 4679 if (Op1.isUndef()) 4680 return DAG.getUNDEF(VT); 4681 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4682 } 4683 if (Op1.isUndef()) 4684 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4685 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4686 buildScalarToVector(DAG, DL, VT, Op0), 4687 buildScalarToVector(DAG, DL, VT, Op1)); 4688 } 4689 4690 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4691 // vector for them. 4692 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4693 SDValue Op1) { 4694 if (Op0.isUndef() && Op1.isUndef()) 4695 return DAG.getUNDEF(MVT::v2i64); 4696 // If one of the two inputs is undefined then replicate the other one, 4697 // in order to avoid using another register unnecessarily. 4698 if (Op0.isUndef()) 4699 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4700 else if (Op1.isUndef()) 4701 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4702 else { 4703 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4704 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4705 } 4706 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4707 } 4708 4709 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4710 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4711 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4712 // would benefit from this representation and return it if so. 4713 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4714 BuildVectorSDNode *BVN) { 4715 EVT VT = BVN->getValueType(0); 4716 unsigned NumElements = VT.getVectorNumElements(); 4717 4718 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4719 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4720 // need a BUILD_VECTOR, add an additional placeholder operand for that 4721 // BUILD_VECTOR and store its operands in ResidueOps. 4722 GeneralShuffle GS(VT); 4723 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4724 bool FoundOne = false; 4725 for (unsigned I = 0; I < NumElements; ++I) { 4726 SDValue Op = BVN->getOperand(I); 4727 if (Op.getOpcode() == ISD::TRUNCATE) 4728 Op = Op.getOperand(0); 4729 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4730 Op.getOperand(1).getOpcode() == ISD::Constant) { 4731 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4732 if (!GS.add(Op.getOperand(0), Elem)) 4733 return SDValue(); 4734 FoundOne = true; 4735 } else if (Op.isUndef()) { 4736 GS.addUndef(); 4737 } else { 4738 if (!GS.add(SDValue(), ResidueOps.size())) 4739 return SDValue(); 4740 ResidueOps.push_back(BVN->getOperand(I)); 4741 } 4742 } 4743 4744 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4745 if (!FoundOne) 4746 return SDValue(); 4747 4748 // Create the BUILD_VECTOR for the remaining elements, if any. 4749 if (!ResidueOps.empty()) { 4750 while (ResidueOps.size() < NumElements) 4751 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4752 for (auto &Op : GS.Ops) { 4753 if (!Op.getNode()) { 4754 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4755 break; 4756 } 4757 } 4758 } 4759 return GS.getNode(DAG, SDLoc(BVN)); 4760 } 4761 4762 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const { 4763 if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed()) 4764 return true; 4765 if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV) 4766 return true; 4767 return false; 4768 } 4769 4770 // Combine GPR scalar values Elems into a vector of type VT. 4771 SDValue 4772 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4773 SmallVectorImpl<SDValue> &Elems) const { 4774 // See whether there is a single replicated value. 4775 SDValue Single; 4776 unsigned int NumElements = Elems.size(); 4777 unsigned int Count = 0; 4778 for (auto Elem : Elems) { 4779 if (!Elem.isUndef()) { 4780 if (!Single.getNode()) 4781 Single = Elem; 4782 else if (Elem != Single) { 4783 Single = SDValue(); 4784 break; 4785 } 4786 Count += 1; 4787 } 4788 } 4789 // There are three cases here: 4790 // 4791 // - if the only defined element is a loaded one, the best sequence 4792 // is a replicating load. 4793 // 4794 // - otherwise, if the only defined element is an i64 value, we will 4795 // end up with the same VLVGP sequence regardless of whether we short-cut 4796 // for replication or fall through to the later code. 4797 // 4798 // - otherwise, if the only defined element is an i32 or smaller value, 4799 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4800 // This is only a win if the single defined element is used more than once. 4801 // In other cases we're better off using a single VLVGx. 4802 if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single))) 4803 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4804 4805 // If all elements are loads, use VLREP/VLEs (below). 4806 bool AllLoads = true; 4807 for (auto Elem : Elems) 4808 if (!isVectorElementLoad(Elem)) { 4809 AllLoads = false; 4810 break; 4811 } 4812 4813 // The best way of building a v2i64 from two i64s is to use VLVGP. 4814 if (VT == MVT::v2i64 && !AllLoads) 4815 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4816 4817 // Use a 64-bit merge high to combine two doubles. 4818 if (VT == MVT::v2f64 && !AllLoads) 4819 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4820 4821 // Build v4f32 values directly from the FPRs: 4822 // 4823 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4824 // V V VMRHF 4825 // <ABxx> <CDxx> 4826 // V VMRHG 4827 // <ABCD> 4828 if (VT == MVT::v4f32 && !AllLoads) { 4829 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4830 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4831 // Avoid unnecessary undefs by reusing the other operand. 4832 if (Op01.isUndef()) 4833 Op01 = Op23; 4834 else if (Op23.isUndef()) 4835 Op23 = Op01; 4836 // Merging identical replications is a no-op. 4837 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4838 return Op01; 4839 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4840 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4841 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4842 DL, MVT::v2i64, Op01, Op23); 4843 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4844 } 4845 4846 // Collect the constant terms. 4847 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4848 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4849 4850 unsigned NumConstants = 0; 4851 for (unsigned I = 0; I < NumElements; ++I) { 4852 SDValue Elem = Elems[I]; 4853 if (Elem.getOpcode() == ISD::Constant || 4854 Elem.getOpcode() == ISD::ConstantFP) { 4855 NumConstants += 1; 4856 Constants[I] = Elem; 4857 Done[I] = true; 4858 } 4859 } 4860 // If there was at least one constant, fill in the other elements of 4861 // Constants with undefs to get a full vector constant and use that 4862 // as the starting point. 4863 SDValue Result; 4864 SDValue ReplicatedVal; 4865 if (NumConstants > 0) { 4866 for (unsigned I = 0; I < NumElements; ++I) 4867 if (!Constants[I].getNode()) 4868 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4869 Result = DAG.getBuildVector(VT, DL, Constants); 4870 } else { 4871 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4872 // avoid a false dependency on any previous contents of the vector 4873 // register. 4874 4875 // Use a VLREP if at least one element is a load. Make sure to replicate 4876 // the load with the most elements having its value. 4877 std::map<const SDNode*, unsigned> UseCounts; 4878 SDNode *LoadMaxUses = nullptr; 4879 for (unsigned I = 0; I < NumElements; ++I) 4880 if (isVectorElementLoad(Elems[I])) { 4881 SDNode *Ld = Elems[I].getNode(); 4882 UseCounts[Ld]++; 4883 if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld]) 4884 LoadMaxUses = Ld; 4885 } 4886 if (LoadMaxUses != nullptr) { 4887 ReplicatedVal = SDValue(LoadMaxUses, 0); 4888 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal); 4889 } else { 4890 // Try to use VLVGP. 4891 unsigned I1 = NumElements / 2 - 1; 4892 unsigned I2 = NumElements - 1; 4893 bool Def1 = !Elems[I1].isUndef(); 4894 bool Def2 = !Elems[I2].isUndef(); 4895 if (Def1 || Def2) { 4896 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4897 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4898 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4899 joinDwords(DAG, DL, Elem1, Elem2)); 4900 Done[I1] = true; 4901 Done[I2] = true; 4902 } else 4903 Result = DAG.getUNDEF(VT); 4904 } 4905 } 4906 4907 // Use VLVGx to insert the other elements. 4908 for (unsigned I = 0; I < NumElements; ++I) 4909 if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal) 4910 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4911 DAG.getConstant(I, DL, MVT::i32)); 4912 return Result; 4913 } 4914 4915 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4916 SelectionDAG &DAG) const { 4917 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4918 SDLoc DL(Op); 4919 EVT VT = Op.getValueType(); 4920 4921 if (BVN->isConstant()) { 4922 if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget)) 4923 return Op; 4924 4925 // Fall back to loading it from memory. 4926 return SDValue(); 4927 } 4928 4929 // See if we should use shuffles to construct the vector from other vectors. 4930 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4931 return Res; 4932 4933 // Detect SCALAR_TO_VECTOR conversions. 4934 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4935 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4936 4937 // Otherwise use buildVector to build the vector up from GPRs. 4938 unsigned NumElements = Op.getNumOperands(); 4939 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4940 for (unsigned I = 0; I < NumElements; ++I) 4941 Ops[I] = Op.getOperand(I); 4942 return buildVector(DAG, DL, VT, Ops); 4943 } 4944 4945 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4946 SelectionDAG &DAG) const { 4947 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4948 SDLoc DL(Op); 4949 EVT VT = Op.getValueType(); 4950 unsigned NumElements = VT.getVectorNumElements(); 4951 4952 if (VSN->isSplat()) { 4953 SDValue Op0 = Op.getOperand(0); 4954 unsigned Index = VSN->getSplatIndex(); 4955 assert(Index < VT.getVectorNumElements() && 4956 "Splat index should be defined and in first operand"); 4957 // See whether the value we're splatting is directly available as a scalar. 4958 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4959 Op0.getOpcode() == ISD::BUILD_VECTOR) 4960 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4961 // Otherwise keep it as a vector-to-vector operation. 4962 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4963 DAG.getTargetConstant(Index, DL, MVT::i32)); 4964 } 4965 4966 GeneralShuffle GS(VT); 4967 for (unsigned I = 0; I < NumElements; ++I) { 4968 int Elt = VSN->getMaskElt(I); 4969 if (Elt < 0) 4970 GS.addUndef(); 4971 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4972 unsigned(Elt) % NumElements)) 4973 return SDValue(); 4974 } 4975 return GS.getNode(DAG, SDLoc(VSN)); 4976 } 4977 4978 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4979 SelectionDAG &DAG) const { 4980 SDLoc DL(Op); 4981 // Just insert the scalar into element 0 of an undefined vector. 4982 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4983 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4984 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4985 } 4986 4987 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4988 SelectionDAG &DAG) const { 4989 // Handle insertions of floating-point values. 4990 SDLoc DL(Op); 4991 SDValue Op0 = Op.getOperand(0); 4992 SDValue Op1 = Op.getOperand(1); 4993 SDValue Op2 = Op.getOperand(2); 4994 EVT VT = Op.getValueType(); 4995 4996 // Insertions into constant indices of a v2f64 can be done using VPDI. 4997 // However, if the inserted value is a bitcast or a constant then it's 4998 // better to use GPRs, as below. 4999 if (VT == MVT::v2f64 && 5000 Op1.getOpcode() != ISD::BITCAST && 5001 Op1.getOpcode() != ISD::ConstantFP && 5002 Op2.getOpcode() == ISD::Constant) { 5003 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 5004 unsigned Mask = VT.getVectorNumElements() - 1; 5005 if (Index <= Mask) 5006 return Op; 5007 } 5008 5009 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 5010 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 5011 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 5012 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 5013 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 5014 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 5015 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5016 } 5017 5018 SDValue 5019 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 5020 SelectionDAG &DAG) const { 5021 // Handle extractions of floating-point values. 5022 SDLoc DL(Op); 5023 SDValue Op0 = Op.getOperand(0); 5024 SDValue Op1 = Op.getOperand(1); 5025 EVT VT = Op.getValueType(); 5026 EVT VecVT = Op0.getValueType(); 5027 5028 // Extractions of constant indices can be done directly. 5029 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 5030 uint64_t Index = CIndexN->getZExtValue(); 5031 unsigned Mask = VecVT.getVectorNumElements() - 1; 5032 if (Index <= Mask) 5033 return Op; 5034 } 5035 5036 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 5037 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 5038 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 5039 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 5040 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 5041 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 5042 } 5043 5044 SDValue 5045 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 5046 unsigned UnpackHigh) const { 5047 SDValue PackedOp = Op.getOperand(0); 5048 EVT OutVT = Op.getValueType(); 5049 EVT InVT = PackedOp.getValueType(); 5050 unsigned ToBits = OutVT.getScalarSizeInBits(); 5051 unsigned FromBits = InVT.getScalarSizeInBits(); 5052 do { 5053 FromBits *= 2; 5054 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 5055 SystemZ::VectorBits / FromBits); 5056 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 5057 } while (FromBits != ToBits); 5058 return PackedOp; 5059 } 5060 5061 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 5062 unsigned ByScalar) const { 5063 // Look for cases where a vector shift can use the *_BY_SCALAR form. 5064 SDValue Op0 = Op.getOperand(0); 5065 SDValue Op1 = Op.getOperand(1); 5066 SDLoc DL(Op); 5067 EVT VT = Op.getValueType(); 5068 unsigned ElemBitSize = VT.getScalarSizeInBits(); 5069 5070 // See whether the shift vector is a splat represented as BUILD_VECTOR. 5071 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 5072 APInt SplatBits, SplatUndef; 5073 unsigned SplatBitSize; 5074 bool HasAnyUndefs; 5075 // Check for constant splats. Use ElemBitSize as the minimum element 5076 // width and reject splats that need wider elements. 5077 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 5078 ElemBitSize, true) && 5079 SplatBitSize == ElemBitSize) { 5080 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 5081 DL, MVT::i32); 5082 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5083 } 5084 // Check for variable splats. 5085 BitVector UndefElements; 5086 SDValue Splat = BVN->getSplatValue(&UndefElements); 5087 if (Splat) { 5088 // Since i32 is the smallest legal type, we either need a no-op 5089 // or a truncation. 5090 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 5091 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5092 } 5093 } 5094 5095 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 5096 // and the shift amount is directly available in a GPR. 5097 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 5098 if (VSN->isSplat()) { 5099 SDValue VSNOp0 = VSN->getOperand(0); 5100 unsigned Index = VSN->getSplatIndex(); 5101 assert(Index < VT.getVectorNumElements() && 5102 "Splat index should be defined and in first operand"); 5103 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 5104 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 5105 // Since i32 is the smallest legal type, we either need a no-op 5106 // or a truncation. 5107 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 5108 VSNOp0.getOperand(Index)); 5109 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 5110 } 5111 } 5112 } 5113 5114 // Otherwise just treat the current form as legal. 5115 return Op; 5116 } 5117 5118 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 5119 SelectionDAG &DAG) const { 5120 switch (Op.getOpcode()) { 5121 case ISD::FRAMEADDR: 5122 return lowerFRAMEADDR(Op, DAG); 5123 case ISD::RETURNADDR: 5124 return lowerRETURNADDR(Op, DAG); 5125 case ISD::BR_CC: 5126 return lowerBR_CC(Op, DAG); 5127 case ISD::SELECT_CC: 5128 return lowerSELECT_CC(Op, DAG); 5129 case ISD::SETCC: 5130 return lowerSETCC(Op, DAG); 5131 case ISD::STRICT_FSETCC: 5132 return lowerSTRICT_FSETCC(Op, DAG, false); 5133 case ISD::STRICT_FSETCCS: 5134 return lowerSTRICT_FSETCC(Op, DAG, true); 5135 case ISD::GlobalAddress: 5136 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 5137 case ISD::GlobalTLSAddress: 5138 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 5139 case ISD::BlockAddress: 5140 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 5141 case ISD::JumpTable: 5142 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 5143 case ISD::ConstantPool: 5144 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 5145 case ISD::BITCAST: 5146 return lowerBITCAST(Op, DAG); 5147 case ISD::VASTART: 5148 return lowerVASTART(Op, DAG); 5149 case ISD::VACOPY: 5150 return lowerVACOPY(Op, DAG); 5151 case ISD::DYNAMIC_STACKALLOC: 5152 return lowerDYNAMIC_STACKALLOC(Op, DAG); 5153 case ISD::GET_DYNAMIC_AREA_OFFSET: 5154 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 5155 case ISD::SMUL_LOHI: 5156 return lowerSMUL_LOHI(Op, DAG); 5157 case ISD::UMUL_LOHI: 5158 return lowerUMUL_LOHI(Op, DAG); 5159 case ISD::SDIVREM: 5160 return lowerSDIVREM(Op, DAG); 5161 case ISD::UDIVREM: 5162 return lowerUDIVREM(Op, DAG); 5163 case ISD::SADDO: 5164 case ISD::SSUBO: 5165 case ISD::UADDO: 5166 case ISD::USUBO: 5167 return lowerXALUO(Op, DAG); 5168 case ISD::ADDCARRY: 5169 case ISD::SUBCARRY: 5170 return lowerADDSUBCARRY(Op, DAG); 5171 case ISD::OR: 5172 return lowerOR(Op, DAG); 5173 case ISD::CTPOP: 5174 return lowerCTPOP(Op, DAG); 5175 case ISD::ATOMIC_FENCE: 5176 return lowerATOMIC_FENCE(Op, DAG); 5177 case ISD::ATOMIC_SWAP: 5178 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 5179 case ISD::ATOMIC_STORE: 5180 return lowerATOMIC_STORE(Op, DAG); 5181 case ISD::ATOMIC_LOAD: 5182 return lowerATOMIC_LOAD(Op, DAG); 5183 case ISD::ATOMIC_LOAD_ADD: 5184 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 5185 case ISD::ATOMIC_LOAD_SUB: 5186 return lowerATOMIC_LOAD_SUB(Op, DAG); 5187 case ISD::ATOMIC_LOAD_AND: 5188 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 5189 case ISD::ATOMIC_LOAD_OR: 5190 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 5191 case ISD::ATOMIC_LOAD_XOR: 5192 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 5193 case ISD::ATOMIC_LOAD_NAND: 5194 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 5195 case ISD::ATOMIC_LOAD_MIN: 5196 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 5197 case ISD::ATOMIC_LOAD_MAX: 5198 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 5199 case ISD::ATOMIC_LOAD_UMIN: 5200 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 5201 case ISD::ATOMIC_LOAD_UMAX: 5202 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 5203 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 5204 return lowerATOMIC_CMP_SWAP(Op, DAG); 5205 case ISD::STACKSAVE: 5206 return lowerSTACKSAVE(Op, DAG); 5207 case ISD::STACKRESTORE: 5208 return lowerSTACKRESTORE(Op, DAG); 5209 case ISD::PREFETCH: 5210 return lowerPREFETCH(Op, DAG); 5211 case ISD::INTRINSIC_W_CHAIN: 5212 return lowerINTRINSIC_W_CHAIN(Op, DAG); 5213 case ISD::INTRINSIC_WO_CHAIN: 5214 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 5215 case ISD::BUILD_VECTOR: 5216 return lowerBUILD_VECTOR(Op, DAG); 5217 case ISD::VECTOR_SHUFFLE: 5218 return lowerVECTOR_SHUFFLE(Op, DAG); 5219 case ISD::SCALAR_TO_VECTOR: 5220 return lowerSCALAR_TO_VECTOR(Op, DAG); 5221 case ISD::INSERT_VECTOR_ELT: 5222 return lowerINSERT_VECTOR_ELT(Op, DAG); 5223 case ISD::EXTRACT_VECTOR_ELT: 5224 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 5225 case ISD::SIGN_EXTEND_VECTOR_INREG: 5226 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 5227 case ISD::ZERO_EXTEND_VECTOR_INREG: 5228 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 5229 case ISD::SHL: 5230 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 5231 case ISD::SRL: 5232 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 5233 case ISD::SRA: 5234 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 5235 default: 5236 llvm_unreachable("Unexpected node to lower"); 5237 } 5238 } 5239 5240 // Lower operations with invalid operand or result types (currently used 5241 // only for 128-bit integer types). 5242 5243 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 5244 SDLoc DL(In); 5245 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5246 DAG.getIntPtrConstant(0, DL)); 5247 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 5248 DAG.getIntPtrConstant(1, DL)); 5249 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 5250 MVT::Untyped, Hi, Lo); 5251 return SDValue(Pair, 0); 5252 } 5253 5254 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 5255 SDLoc DL(In); 5256 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 5257 DL, MVT::i64, In); 5258 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 5259 DL, MVT::i64, In); 5260 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 5261 } 5262 5263 void 5264 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 5265 SmallVectorImpl<SDValue> &Results, 5266 SelectionDAG &DAG) const { 5267 switch (N->getOpcode()) { 5268 case ISD::ATOMIC_LOAD: { 5269 SDLoc DL(N); 5270 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 5271 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 5272 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5273 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 5274 DL, Tys, Ops, MVT::i128, MMO); 5275 Results.push_back(lowerGR128ToI128(DAG, Res)); 5276 Results.push_back(Res.getValue(1)); 5277 break; 5278 } 5279 case ISD::ATOMIC_STORE: { 5280 SDLoc DL(N); 5281 SDVTList Tys = DAG.getVTList(MVT::Other); 5282 SDValue Ops[] = { N->getOperand(0), 5283 lowerI128ToGR128(DAG, N->getOperand(2)), 5284 N->getOperand(1) }; 5285 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5286 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 5287 DL, Tys, Ops, MVT::i128, MMO); 5288 // We have to enforce sequential consistency by performing a 5289 // serialization operation after the store. 5290 if (cast<AtomicSDNode>(N)->getOrdering() == 5291 AtomicOrdering::SequentiallyConsistent) 5292 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 5293 MVT::Other, Res), 0); 5294 Results.push_back(Res); 5295 break; 5296 } 5297 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 5298 SDLoc DL(N); 5299 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 5300 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 5301 lowerI128ToGR128(DAG, N->getOperand(2)), 5302 lowerI128ToGR128(DAG, N->getOperand(3)) }; 5303 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 5304 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 5305 DL, Tys, Ops, MVT::i128, MMO); 5306 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 5307 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 5308 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 5309 Results.push_back(lowerGR128ToI128(DAG, Res)); 5310 Results.push_back(Success); 5311 Results.push_back(Res.getValue(2)); 5312 break; 5313 } 5314 default: 5315 llvm_unreachable("Unexpected node to lower"); 5316 } 5317 } 5318 5319 void 5320 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 5321 SmallVectorImpl<SDValue> &Results, 5322 SelectionDAG &DAG) const { 5323 return LowerOperationWrapper(N, Results, DAG); 5324 } 5325 5326 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 5327 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 5328 switch ((SystemZISD::NodeType)Opcode) { 5329 case SystemZISD::FIRST_NUMBER: break; 5330 OPCODE(RET_FLAG); 5331 OPCODE(CALL); 5332 OPCODE(SIBCALL); 5333 OPCODE(TLS_GDCALL); 5334 OPCODE(TLS_LDCALL); 5335 OPCODE(PCREL_WRAPPER); 5336 OPCODE(PCREL_OFFSET); 5337 OPCODE(IABS); 5338 OPCODE(ICMP); 5339 OPCODE(FCMP); 5340 OPCODE(STRICT_FCMP); 5341 OPCODE(STRICT_FCMPS); 5342 OPCODE(TM); 5343 OPCODE(BR_CCMASK); 5344 OPCODE(SELECT_CCMASK); 5345 OPCODE(ADJDYNALLOC); 5346 OPCODE(POPCNT); 5347 OPCODE(SMUL_LOHI); 5348 OPCODE(UMUL_LOHI); 5349 OPCODE(SDIVREM); 5350 OPCODE(UDIVREM); 5351 OPCODE(SADDO); 5352 OPCODE(SSUBO); 5353 OPCODE(UADDO); 5354 OPCODE(USUBO); 5355 OPCODE(ADDCARRY); 5356 OPCODE(SUBCARRY); 5357 OPCODE(GET_CCMASK); 5358 OPCODE(MVC); 5359 OPCODE(MVC_LOOP); 5360 OPCODE(NC); 5361 OPCODE(NC_LOOP); 5362 OPCODE(OC); 5363 OPCODE(OC_LOOP); 5364 OPCODE(XC); 5365 OPCODE(XC_LOOP); 5366 OPCODE(CLC); 5367 OPCODE(CLC_LOOP); 5368 OPCODE(STPCPY); 5369 OPCODE(STRCMP); 5370 OPCODE(SEARCH_STRING); 5371 OPCODE(IPM); 5372 OPCODE(MEMBARRIER); 5373 OPCODE(TBEGIN); 5374 OPCODE(TBEGIN_NOFLOAT); 5375 OPCODE(TEND); 5376 OPCODE(BYTE_MASK); 5377 OPCODE(ROTATE_MASK); 5378 OPCODE(REPLICATE); 5379 OPCODE(JOIN_DWORDS); 5380 OPCODE(SPLAT); 5381 OPCODE(MERGE_HIGH); 5382 OPCODE(MERGE_LOW); 5383 OPCODE(SHL_DOUBLE); 5384 OPCODE(PERMUTE_DWORDS); 5385 OPCODE(PERMUTE); 5386 OPCODE(PACK); 5387 OPCODE(PACKS_CC); 5388 OPCODE(PACKLS_CC); 5389 OPCODE(UNPACK_HIGH); 5390 OPCODE(UNPACKL_HIGH); 5391 OPCODE(UNPACK_LOW); 5392 OPCODE(UNPACKL_LOW); 5393 OPCODE(VSHL_BY_SCALAR); 5394 OPCODE(VSRL_BY_SCALAR); 5395 OPCODE(VSRA_BY_SCALAR); 5396 OPCODE(VSUM); 5397 OPCODE(VICMPE); 5398 OPCODE(VICMPH); 5399 OPCODE(VICMPHL); 5400 OPCODE(VICMPES); 5401 OPCODE(VICMPHS); 5402 OPCODE(VICMPHLS); 5403 OPCODE(VFCMPE); 5404 OPCODE(STRICT_VFCMPE); 5405 OPCODE(STRICT_VFCMPES); 5406 OPCODE(VFCMPH); 5407 OPCODE(STRICT_VFCMPH); 5408 OPCODE(STRICT_VFCMPHS); 5409 OPCODE(VFCMPHE); 5410 OPCODE(STRICT_VFCMPHE); 5411 OPCODE(STRICT_VFCMPHES); 5412 OPCODE(VFCMPES); 5413 OPCODE(VFCMPHS); 5414 OPCODE(VFCMPHES); 5415 OPCODE(VFTCI); 5416 OPCODE(VEXTEND); 5417 OPCODE(STRICT_VEXTEND); 5418 OPCODE(VROUND); 5419 OPCODE(STRICT_VROUND); 5420 OPCODE(VTM); 5421 OPCODE(VFAE_CC); 5422 OPCODE(VFAEZ_CC); 5423 OPCODE(VFEE_CC); 5424 OPCODE(VFEEZ_CC); 5425 OPCODE(VFENE_CC); 5426 OPCODE(VFENEZ_CC); 5427 OPCODE(VISTR_CC); 5428 OPCODE(VSTRC_CC); 5429 OPCODE(VSTRCZ_CC); 5430 OPCODE(VSTRS_CC); 5431 OPCODE(VSTRSZ_CC); 5432 OPCODE(TDC); 5433 OPCODE(ATOMIC_SWAPW); 5434 OPCODE(ATOMIC_LOADW_ADD); 5435 OPCODE(ATOMIC_LOADW_SUB); 5436 OPCODE(ATOMIC_LOADW_AND); 5437 OPCODE(ATOMIC_LOADW_OR); 5438 OPCODE(ATOMIC_LOADW_XOR); 5439 OPCODE(ATOMIC_LOADW_NAND); 5440 OPCODE(ATOMIC_LOADW_MIN); 5441 OPCODE(ATOMIC_LOADW_MAX); 5442 OPCODE(ATOMIC_LOADW_UMIN); 5443 OPCODE(ATOMIC_LOADW_UMAX); 5444 OPCODE(ATOMIC_CMP_SWAPW); 5445 OPCODE(ATOMIC_CMP_SWAP); 5446 OPCODE(ATOMIC_LOAD_128); 5447 OPCODE(ATOMIC_STORE_128); 5448 OPCODE(ATOMIC_CMP_SWAP_128); 5449 OPCODE(LRV); 5450 OPCODE(STRV); 5451 OPCODE(VLER); 5452 OPCODE(VSTER); 5453 OPCODE(PREFETCH); 5454 } 5455 return nullptr; 5456 #undef OPCODE 5457 } 5458 5459 // Return true if VT is a vector whose elements are a whole number of bytes 5460 // in width. Also check for presence of vector support. 5461 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5462 if (!Subtarget.hasVector()) 5463 return false; 5464 5465 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5466 } 5467 5468 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5469 // producing a result of type ResVT. Op is a possibly bitcast version 5470 // of the input vector and Index is the index (based on type VecVT) that 5471 // should be extracted. Return the new extraction if a simplification 5472 // was possible or if Force is true. 5473 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5474 EVT VecVT, SDValue Op, 5475 unsigned Index, 5476 DAGCombinerInfo &DCI, 5477 bool Force) const { 5478 SelectionDAG &DAG = DCI.DAG; 5479 5480 // The number of bytes being extracted. 5481 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5482 5483 for (;;) { 5484 unsigned Opcode = Op.getOpcode(); 5485 if (Opcode == ISD::BITCAST) 5486 // Look through bitcasts. 5487 Op = Op.getOperand(0); 5488 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5489 canTreatAsByteVector(Op.getValueType())) { 5490 // Get a VPERM-like permute mask and see whether the bytes covered 5491 // by the extracted element are a contiguous sequence from one 5492 // source operand. 5493 SmallVector<int, SystemZ::VectorBytes> Bytes; 5494 if (!getVPermMask(Op, Bytes)) 5495 break; 5496 int First; 5497 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5498 BytesPerElement, First)) 5499 break; 5500 if (First < 0) 5501 return DAG.getUNDEF(ResVT); 5502 // Make sure the contiguous sequence starts at a multiple of the 5503 // original element size. 5504 unsigned Byte = unsigned(First) % Bytes.size(); 5505 if (Byte % BytesPerElement != 0) 5506 break; 5507 // We can get the extracted value directly from an input. 5508 Index = Byte / BytesPerElement; 5509 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5510 Force = true; 5511 } else if (Opcode == ISD::BUILD_VECTOR && 5512 canTreatAsByteVector(Op.getValueType())) { 5513 // We can only optimize this case if the BUILD_VECTOR elements are 5514 // at least as wide as the extracted value. 5515 EVT OpVT = Op.getValueType(); 5516 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5517 if (OpBytesPerElement < BytesPerElement) 5518 break; 5519 // Make sure that the least-significant bit of the extracted value 5520 // is the least significant bit of an input. 5521 unsigned End = (Index + 1) * BytesPerElement; 5522 if (End % OpBytesPerElement != 0) 5523 break; 5524 // We're extracting the low part of one operand of the BUILD_VECTOR. 5525 Op = Op.getOperand(End / OpBytesPerElement - 1); 5526 if (!Op.getValueType().isInteger()) { 5527 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5528 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5529 DCI.AddToWorklist(Op.getNode()); 5530 } 5531 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5532 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5533 if (VT != ResVT) { 5534 DCI.AddToWorklist(Op.getNode()); 5535 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5536 } 5537 return Op; 5538 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5539 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5540 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5541 canTreatAsByteVector(Op.getValueType()) && 5542 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5543 // Make sure that only the unextended bits are significant. 5544 EVT ExtVT = Op.getValueType(); 5545 EVT OpVT = Op.getOperand(0).getValueType(); 5546 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5547 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5548 unsigned Byte = Index * BytesPerElement; 5549 unsigned SubByte = Byte % ExtBytesPerElement; 5550 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5551 if (SubByte < MinSubByte || 5552 SubByte + BytesPerElement > ExtBytesPerElement) 5553 break; 5554 // Get the byte offset of the unextended element 5555 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5556 // ...then add the byte offset relative to that element. 5557 Byte += SubByte - MinSubByte; 5558 if (Byte % BytesPerElement != 0) 5559 break; 5560 Op = Op.getOperand(0); 5561 Index = Byte / BytesPerElement; 5562 Force = true; 5563 } else 5564 break; 5565 } 5566 if (Force) { 5567 if (Op.getValueType() != VecVT) { 5568 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5569 DCI.AddToWorklist(Op.getNode()); 5570 } 5571 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5572 DAG.getConstant(Index, DL, MVT::i32)); 5573 } 5574 return SDValue(); 5575 } 5576 5577 // Optimize vector operations in scalar value Op on the basis that Op 5578 // is truncated to TruncVT. 5579 SDValue SystemZTargetLowering::combineTruncateExtract( 5580 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5581 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5582 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5583 // of type TruncVT. 5584 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5585 TruncVT.getSizeInBits() % 8 == 0) { 5586 SDValue Vec = Op.getOperand(0); 5587 EVT VecVT = Vec.getValueType(); 5588 if (canTreatAsByteVector(VecVT)) { 5589 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5590 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5591 unsigned TruncBytes = TruncVT.getStoreSize(); 5592 if (BytesPerElement % TruncBytes == 0) { 5593 // Calculate the value of Y' in the above description. We are 5594 // splitting the original elements into Scale equal-sized pieces 5595 // and for truncation purposes want the last (least-significant) 5596 // of these pieces for IndexN. This is easiest to do by calculating 5597 // the start index of the following element and then subtracting 1. 5598 unsigned Scale = BytesPerElement / TruncBytes; 5599 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5600 5601 // Defer the creation of the bitcast from X to combineExtract, 5602 // which might be able to optimize the extraction. 5603 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5604 VecVT.getStoreSize() / TruncBytes); 5605 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5606 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5607 } 5608 } 5609 } 5610 } 5611 return SDValue(); 5612 } 5613 5614 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5615 SDNode *N, DAGCombinerInfo &DCI) const { 5616 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5617 SelectionDAG &DAG = DCI.DAG; 5618 SDValue N0 = N->getOperand(0); 5619 EVT VT = N->getValueType(0); 5620 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5621 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5622 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5623 if (TrueOp && FalseOp) { 5624 SDLoc DL(N0); 5625 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5626 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5627 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5628 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5629 // If N0 has multiple uses, change other uses as well. 5630 if (!N0.hasOneUse()) { 5631 SDValue TruncSelect = 5632 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5633 DCI.CombineTo(N0.getNode(), TruncSelect); 5634 } 5635 return NewSelect; 5636 } 5637 } 5638 return SDValue(); 5639 } 5640 5641 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5642 SDNode *N, DAGCombinerInfo &DCI) const { 5643 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5644 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5645 // into (select_cc LHS, RHS, -1, 0, COND) 5646 SelectionDAG &DAG = DCI.DAG; 5647 SDValue N0 = N->getOperand(0); 5648 EVT VT = N->getValueType(0); 5649 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5650 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5651 N0 = N0.getOperand(0); 5652 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5653 SDLoc DL(N0); 5654 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5655 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5656 N0.getOperand(2) }; 5657 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5658 } 5659 return SDValue(); 5660 } 5661 5662 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5663 SDNode *N, DAGCombinerInfo &DCI) const { 5664 // Convert (sext (ashr (shl X, C1), C2)) to 5665 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5666 // cheap as narrower ones. 5667 SelectionDAG &DAG = DCI.DAG; 5668 SDValue N0 = N->getOperand(0); 5669 EVT VT = N->getValueType(0); 5670 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5671 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5672 SDValue Inner = N0.getOperand(0); 5673 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5674 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5675 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5676 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5677 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5678 EVT ShiftVT = N0.getOperand(1).getValueType(); 5679 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5680 Inner.getOperand(0)); 5681 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5682 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5683 ShiftVT)); 5684 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5685 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5686 } 5687 } 5688 } 5689 return SDValue(); 5690 } 5691 5692 SDValue SystemZTargetLowering::combineMERGE( 5693 SDNode *N, DAGCombinerInfo &DCI) const { 5694 SelectionDAG &DAG = DCI.DAG; 5695 unsigned Opcode = N->getOpcode(); 5696 SDValue Op0 = N->getOperand(0); 5697 SDValue Op1 = N->getOperand(1); 5698 if (Op0.getOpcode() == ISD::BITCAST) 5699 Op0 = Op0.getOperand(0); 5700 if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 5701 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5702 // for v4f32. 5703 if (Op1 == N->getOperand(0)) 5704 return Op1; 5705 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5706 EVT VT = Op1.getValueType(); 5707 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5708 if (ElemBytes <= 4) { 5709 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5710 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5711 EVT InVT = VT.changeVectorElementTypeToInteger(); 5712 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5713 SystemZ::VectorBytes / ElemBytes / 2); 5714 if (VT != InVT) { 5715 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5716 DCI.AddToWorklist(Op1.getNode()); 5717 } 5718 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5719 DCI.AddToWorklist(Op.getNode()); 5720 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5721 } 5722 } 5723 return SDValue(); 5724 } 5725 5726 SDValue SystemZTargetLowering::combineLOAD( 5727 SDNode *N, DAGCombinerInfo &DCI) const { 5728 SelectionDAG &DAG = DCI.DAG; 5729 EVT LdVT = N->getValueType(0); 5730 if (LdVT.isVector() || LdVT.isInteger()) 5731 return SDValue(); 5732 // Transform a scalar load that is REPLICATEd as well as having other 5733 // use(s) to the form where the other use(s) use the first element of the 5734 // REPLICATE instead of the load. Otherwise instruction selection will not 5735 // produce a VLREP. Avoid extracting to a GPR, so only do this for floating 5736 // point loads. 5737 5738 SDValue Replicate; 5739 SmallVector<SDNode*, 8> OtherUses; 5740 for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end(); 5741 UI != UE; ++UI) { 5742 if (UI->getOpcode() == SystemZISD::REPLICATE) { 5743 if (Replicate) 5744 return SDValue(); // Should never happen 5745 Replicate = SDValue(*UI, 0); 5746 } 5747 else if (UI.getUse().getResNo() == 0) 5748 OtherUses.push_back(*UI); 5749 } 5750 if (!Replicate || OtherUses.empty()) 5751 return SDValue(); 5752 5753 SDLoc DL(N); 5754 SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT, 5755 Replicate, DAG.getConstant(0, DL, MVT::i32)); 5756 // Update uses of the loaded Value while preserving old chains. 5757 for (SDNode *U : OtherUses) { 5758 SmallVector<SDValue, 8> Ops; 5759 for (SDValue Op : U->ops()) 5760 Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op); 5761 DAG.UpdateNodeOperands(U, Ops); 5762 } 5763 return SDValue(N, 0); 5764 } 5765 5766 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const { 5767 if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64) 5768 return true; 5769 if (Subtarget.hasVectorEnhancements2()) 5770 if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64) 5771 return true; 5772 return false; 5773 } 5774 5775 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) { 5776 if (!VT.isVector() || !VT.isSimple() || 5777 VT.getSizeInBits() != 128 || 5778 VT.getScalarSizeInBits() % 8 != 0) 5779 return false; 5780 5781 unsigned NumElts = VT.getVectorNumElements(); 5782 for (unsigned i = 0; i < NumElts; ++i) { 5783 if (M[i] < 0) continue; // ignore UNDEF indices 5784 if ((unsigned) M[i] != NumElts - 1 - i) 5785 return false; 5786 } 5787 5788 return true; 5789 } 5790 5791 SDValue SystemZTargetLowering::combineSTORE( 5792 SDNode *N, DAGCombinerInfo &DCI) const { 5793 SelectionDAG &DAG = DCI.DAG; 5794 auto *SN = cast<StoreSDNode>(N); 5795 auto &Op1 = N->getOperand(1); 5796 EVT MemVT = SN->getMemoryVT(); 5797 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5798 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5799 // If X has wider elements then convert it to: 5800 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5801 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5802 if (SDValue Value = 5803 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5804 DCI.AddToWorklist(Value.getNode()); 5805 5806 // Rewrite the store with the new form of stored value. 5807 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5808 SN->getBasePtr(), SN->getMemoryVT(), 5809 SN->getMemOperand()); 5810 } 5811 } 5812 // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR 5813 if (!SN->isTruncatingStore() && 5814 Op1.getOpcode() == ISD::BSWAP && 5815 Op1.getNode()->hasOneUse() && 5816 canLoadStoreByteSwapped(Op1.getValueType())) { 5817 5818 SDValue BSwapOp = Op1.getOperand(0); 5819 5820 if (BSwapOp.getValueType() == MVT::i16) 5821 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5822 5823 SDValue Ops[] = { 5824 N->getOperand(0), BSwapOp, N->getOperand(2) 5825 }; 5826 5827 return 5828 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5829 Ops, MemVT, SN->getMemOperand()); 5830 } 5831 // Combine STORE (element-swap) into VSTER 5832 if (!SN->isTruncatingStore() && 5833 Op1.getOpcode() == ISD::VECTOR_SHUFFLE && 5834 Op1.getNode()->hasOneUse() && 5835 Subtarget.hasVectorEnhancements2()) { 5836 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode()); 5837 ArrayRef<int> ShuffleMask = SVN->getMask(); 5838 if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) { 5839 SDValue Ops[] = { 5840 N->getOperand(0), Op1.getOperand(0), N->getOperand(2) 5841 }; 5842 5843 return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N), 5844 DAG.getVTList(MVT::Other), 5845 Ops, MemVT, SN->getMemOperand()); 5846 } 5847 } 5848 5849 return SDValue(); 5850 } 5851 5852 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE( 5853 SDNode *N, DAGCombinerInfo &DCI) const { 5854 SelectionDAG &DAG = DCI.DAG; 5855 // Combine element-swap (LOAD) into VLER 5856 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5857 N->getOperand(0).hasOneUse() && 5858 Subtarget.hasVectorEnhancements2()) { 5859 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 5860 ArrayRef<int> ShuffleMask = SVN->getMask(); 5861 if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) { 5862 SDValue Load = N->getOperand(0); 5863 LoadSDNode *LD = cast<LoadSDNode>(Load); 5864 5865 // Create the element-swapping load. 5866 SDValue Ops[] = { 5867 LD->getChain(), // Chain 5868 LD->getBasePtr() // Ptr 5869 }; 5870 SDValue ESLoad = 5871 DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N), 5872 DAG.getVTList(LD->getValueType(0), MVT::Other), 5873 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5874 5875 // First, combine the VECTOR_SHUFFLE away. This makes the value produced 5876 // by the load dead. 5877 DCI.CombineTo(N, ESLoad); 5878 5879 // Next, combine the load away, we give it a bogus result value but a real 5880 // chain result. The result value is dead because the shuffle is dead. 5881 DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1)); 5882 5883 // Return N so it doesn't get rechecked! 5884 return SDValue(N, 0); 5885 } 5886 } 5887 5888 return SDValue(); 5889 } 5890 5891 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5892 SDNode *N, DAGCombinerInfo &DCI) const { 5893 SelectionDAG &DAG = DCI.DAG; 5894 5895 if (!Subtarget.hasVector()) 5896 return SDValue(); 5897 5898 // Look through bitcasts that retain the number of vector elements. 5899 SDValue Op = N->getOperand(0); 5900 if (Op.getOpcode() == ISD::BITCAST && 5901 Op.getValueType().isVector() && 5902 Op.getOperand(0).getValueType().isVector() && 5903 Op.getValueType().getVectorNumElements() == 5904 Op.getOperand(0).getValueType().getVectorNumElements()) 5905 Op = Op.getOperand(0); 5906 5907 // Pull BSWAP out of a vector extraction. 5908 if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) { 5909 EVT VecVT = Op.getValueType(); 5910 EVT EltVT = VecVT.getVectorElementType(); 5911 Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT, 5912 Op.getOperand(0), N->getOperand(1)); 5913 DCI.AddToWorklist(Op.getNode()); 5914 Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op); 5915 if (EltVT != N->getValueType(0)) { 5916 DCI.AddToWorklist(Op.getNode()); 5917 Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op); 5918 } 5919 return Op; 5920 } 5921 5922 // Try to simplify a vector extraction. 5923 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5924 SDValue Op0 = N->getOperand(0); 5925 EVT VecVT = Op0.getValueType(); 5926 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5927 IndexN->getZExtValue(), DCI, false); 5928 } 5929 return SDValue(); 5930 } 5931 5932 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5933 SDNode *N, DAGCombinerInfo &DCI) const { 5934 SelectionDAG &DAG = DCI.DAG; 5935 // (join_dwords X, X) == (replicate X) 5936 if (N->getOperand(0) == N->getOperand(1)) 5937 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5938 N->getOperand(0)); 5939 return SDValue(); 5940 } 5941 5942 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) { 5943 SDValue Chain1 = N1->getOperand(0); 5944 SDValue Chain2 = N2->getOperand(0); 5945 5946 // Trivial case: both nodes take the same chain. 5947 if (Chain1 == Chain2) 5948 return Chain1; 5949 5950 // FIXME - we could handle more complex cases via TokenFactor, 5951 // assuming we can verify that this would not create a cycle. 5952 return SDValue(); 5953 } 5954 5955 SDValue SystemZTargetLowering::combineFP_ROUND( 5956 SDNode *N, DAGCombinerInfo &DCI) const { 5957 5958 if (!Subtarget.hasVector()) 5959 return SDValue(); 5960 5961 // (fpround (extract_vector_elt X 0)) 5962 // (fpround (extract_vector_elt X 1)) -> 5963 // (extract_vector_elt (VROUND X) 0) 5964 // (extract_vector_elt (VROUND X) 2) 5965 // 5966 // This is a special case since the target doesn't really support v2f32s. 5967 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 5968 SelectionDAG &DAG = DCI.DAG; 5969 SDValue Op0 = N->getOperand(OpNo); 5970 if (N->getValueType(0) == MVT::f32 && 5971 Op0.hasOneUse() && 5972 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5973 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5974 Op0.getOperand(1).getOpcode() == ISD::Constant && 5975 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5976 SDValue Vec = Op0.getOperand(0); 5977 for (auto *U : Vec->uses()) { 5978 if (U != Op0.getNode() && 5979 U->hasOneUse() && 5980 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5981 U->getOperand(0) == Vec && 5982 U->getOperand(1).getOpcode() == ISD::Constant && 5983 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5984 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5985 if (OtherRound.getOpcode() == N->getOpcode() && 5986 OtherRound.getOperand(OpNo) == SDValue(U, 0) && 5987 OtherRound.getValueType() == MVT::f32) { 5988 SDValue VRound, Chain; 5989 if (N->isStrictFPOpcode()) { 5990 Chain = MergeInputChains(N, OtherRound.getNode()); 5991 if (!Chain) 5992 continue; 5993 VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N), 5994 {MVT::v4f32, MVT::Other}, {Chain, Vec}); 5995 Chain = VRound.getValue(1); 5996 } else 5997 VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5998 MVT::v4f32, Vec); 5999 DCI.AddToWorklist(VRound.getNode()); 6000 SDValue Extract1 = 6001 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 6002 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 6003 DCI.AddToWorklist(Extract1.getNode()); 6004 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 6005 if (Chain) 6006 DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain); 6007 SDValue Extract0 = 6008 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 6009 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6010 if (Chain) 6011 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6012 N->getVTList(), Extract0, Chain); 6013 return Extract0; 6014 } 6015 } 6016 } 6017 } 6018 return SDValue(); 6019 } 6020 6021 SDValue SystemZTargetLowering::combineFP_EXTEND( 6022 SDNode *N, DAGCombinerInfo &DCI) const { 6023 6024 if (!Subtarget.hasVector()) 6025 return SDValue(); 6026 6027 // (fpextend (extract_vector_elt X 0)) 6028 // (fpextend (extract_vector_elt X 2)) -> 6029 // (extract_vector_elt (VEXTEND X) 0) 6030 // (extract_vector_elt (VEXTEND X) 1) 6031 // 6032 // This is a special case since the target doesn't really support v2f32s. 6033 unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0; 6034 SelectionDAG &DAG = DCI.DAG; 6035 SDValue Op0 = N->getOperand(OpNo); 6036 if (N->getValueType(0) == MVT::f64 && 6037 Op0.hasOneUse() && 6038 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6039 Op0.getOperand(0).getValueType() == MVT::v4f32 && 6040 Op0.getOperand(1).getOpcode() == ISD::Constant && 6041 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 6042 SDValue Vec = Op0.getOperand(0); 6043 for (auto *U : Vec->uses()) { 6044 if (U != Op0.getNode() && 6045 U->hasOneUse() && 6046 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 6047 U->getOperand(0) == Vec && 6048 U->getOperand(1).getOpcode() == ISD::Constant && 6049 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) { 6050 SDValue OtherExtend = SDValue(*U->use_begin(), 0); 6051 if (OtherExtend.getOpcode() == N->getOpcode() && 6052 OtherExtend.getOperand(OpNo) == SDValue(U, 0) && 6053 OtherExtend.getValueType() == MVT::f64) { 6054 SDValue VExtend, Chain; 6055 if (N->isStrictFPOpcode()) { 6056 Chain = MergeInputChains(N, OtherExtend.getNode()); 6057 if (!Chain) 6058 continue; 6059 VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N), 6060 {MVT::v2f64, MVT::Other}, {Chain, Vec}); 6061 Chain = VExtend.getValue(1); 6062 } else 6063 VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N), 6064 MVT::v2f64, Vec); 6065 DCI.AddToWorklist(VExtend.getNode()); 6066 SDValue Extract1 = 6067 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64, 6068 VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32)); 6069 DCI.AddToWorklist(Extract1.getNode()); 6070 DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1); 6071 if (Chain) 6072 DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain); 6073 SDValue Extract0 = 6074 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64, 6075 VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 6076 if (Chain) 6077 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0), 6078 N->getVTList(), Extract0, Chain); 6079 return Extract0; 6080 } 6081 } 6082 } 6083 } 6084 return SDValue(); 6085 } 6086 6087 SDValue SystemZTargetLowering::combineINT_TO_FP( 6088 SDNode *N, DAGCombinerInfo &DCI) const { 6089 if (DCI.Level != BeforeLegalizeTypes) 6090 return SDValue(); 6091 unsigned Opcode = N->getOpcode(); 6092 EVT OutVT = N->getValueType(0); 6093 SelectionDAG &DAG = DCI.DAG; 6094 SDValue Op = N->getOperand(0); 6095 unsigned OutScalarBits = OutVT.getScalarSizeInBits(); 6096 unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits(); 6097 6098 // Insert an extension before type-legalization to avoid scalarization, e.g.: 6099 // v2f64 = uint_to_fp v2i16 6100 // => 6101 // v2f64 = uint_to_fp (v2i64 zero_extend v2i16) 6102 if (OutVT.isVector() && OutScalarBits > InScalarBits) { 6103 MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(OutVT.getScalarSizeInBits()), 6104 OutVT.getVectorNumElements()); 6105 unsigned ExtOpcode = 6106 (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND); 6107 SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op); 6108 return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp); 6109 } 6110 return SDValue(); 6111 } 6112 6113 SDValue SystemZTargetLowering::combineBSWAP( 6114 SDNode *N, DAGCombinerInfo &DCI) const { 6115 SelectionDAG &DAG = DCI.DAG; 6116 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR 6117 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 6118 N->getOperand(0).hasOneUse() && 6119 canLoadStoreByteSwapped(N->getValueType(0))) { 6120 SDValue Load = N->getOperand(0); 6121 LoadSDNode *LD = cast<LoadSDNode>(Load); 6122 6123 // Create the byte-swapping load. 6124 SDValue Ops[] = { 6125 LD->getChain(), // Chain 6126 LD->getBasePtr() // Ptr 6127 }; 6128 EVT LoadVT = N->getValueType(0); 6129 if (LoadVT == MVT::i16) 6130 LoadVT = MVT::i32; 6131 SDValue BSLoad = 6132 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 6133 DAG.getVTList(LoadVT, MVT::Other), 6134 Ops, LD->getMemoryVT(), LD->getMemOperand()); 6135 6136 // If this is an i16 load, insert the truncate. 6137 SDValue ResVal = BSLoad; 6138 if (N->getValueType(0) == MVT::i16) 6139 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 6140 6141 // First, combine the bswap away. This makes the value produced by the 6142 // load dead. 6143 DCI.CombineTo(N, ResVal); 6144 6145 // Next, combine the load away, we give it a bogus result value but a real 6146 // chain result. The result value is dead because the bswap is dead. 6147 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 6148 6149 // Return N so it doesn't get rechecked! 6150 return SDValue(N, 0); 6151 } 6152 6153 // Look through bitcasts that retain the number of vector elements. 6154 SDValue Op = N->getOperand(0); 6155 if (Op.getOpcode() == ISD::BITCAST && 6156 Op.getValueType().isVector() && 6157 Op.getOperand(0).getValueType().isVector() && 6158 Op.getValueType().getVectorNumElements() == 6159 Op.getOperand(0).getValueType().getVectorNumElements()) 6160 Op = Op.getOperand(0); 6161 6162 // Push BSWAP into a vector insertion if at least one side then simplifies. 6163 if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) { 6164 SDValue Vec = Op.getOperand(0); 6165 SDValue Elt = Op.getOperand(1); 6166 SDValue Idx = Op.getOperand(2); 6167 6168 if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) || 6169 Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() || 6170 DAG.isConstantIntBuildVectorOrConstantInt(Elt) || 6171 Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() || 6172 (canLoadStoreByteSwapped(N->getValueType(0)) && 6173 ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) { 6174 EVT VecVT = N->getValueType(0); 6175 EVT EltVT = N->getValueType(0).getVectorElementType(); 6176 if (VecVT != Vec.getValueType()) { 6177 Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec); 6178 DCI.AddToWorklist(Vec.getNode()); 6179 } 6180 if (EltVT != Elt.getValueType()) { 6181 Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt); 6182 DCI.AddToWorklist(Elt.getNode()); 6183 } 6184 Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec); 6185 DCI.AddToWorklist(Vec.getNode()); 6186 Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt); 6187 DCI.AddToWorklist(Elt.getNode()); 6188 return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT, 6189 Vec, Elt, Idx); 6190 } 6191 } 6192 6193 // Push BSWAP into a vector shuffle if at least one side then simplifies. 6194 ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op); 6195 if (SV && Op.hasOneUse()) { 6196 SDValue Op0 = Op.getOperand(0); 6197 SDValue Op1 = Op.getOperand(1); 6198 6199 if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) || 6200 Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() || 6201 DAG.isConstantIntBuildVectorOrConstantInt(Op1) || 6202 Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) { 6203 EVT VecVT = N->getValueType(0); 6204 if (VecVT != Op0.getValueType()) { 6205 Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0); 6206 DCI.AddToWorklist(Op0.getNode()); 6207 } 6208 if (VecVT != Op1.getValueType()) { 6209 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1); 6210 DCI.AddToWorklist(Op1.getNode()); 6211 } 6212 Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0); 6213 DCI.AddToWorklist(Op0.getNode()); 6214 Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1); 6215 DCI.AddToWorklist(Op1.getNode()); 6216 return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask()); 6217 } 6218 } 6219 6220 return SDValue(); 6221 } 6222 6223 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 6224 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 6225 // set by the CCReg instruction using the CCValid / CCMask masks, 6226 // If the CCReg instruction is itself a ICMP testing the condition 6227 // code set by some other instruction, see whether we can directly 6228 // use that condition code. 6229 6230 // Verify that we have an ICMP against some constant. 6231 if (CCValid != SystemZ::CCMASK_ICMP) 6232 return false; 6233 auto *ICmp = CCReg.getNode(); 6234 if (ICmp->getOpcode() != SystemZISD::ICMP) 6235 return false; 6236 auto *CompareLHS = ICmp->getOperand(0).getNode(); 6237 auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 6238 if (!CompareRHS) 6239 return false; 6240 6241 // Optimize the case where CompareLHS is a SELECT_CCMASK. 6242 if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) { 6243 // Verify that we have an appropriate mask for a EQ or NE comparison. 6244 bool Invert = false; 6245 if (CCMask == SystemZ::CCMASK_CMP_NE) 6246 Invert = !Invert; 6247 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 6248 return false; 6249 6250 // Verify that the ICMP compares against one of select values. 6251 auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0)); 6252 if (!TrueVal) 6253 return false; 6254 auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6255 if (!FalseVal) 6256 return false; 6257 if (CompareRHS->getZExtValue() == FalseVal->getZExtValue()) 6258 Invert = !Invert; 6259 else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue()) 6260 return false; 6261 6262 // Compute the effective CC mask for the new branch or select. 6263 auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2)); 6264 auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3)); 6265 if (!NewCCValid || !NewCCMask) 6266 return false; 6267 CCValid = NewCCValid->getZExtValue(); 6268 CCMask = NewCCMask->getZExtValue(); 6269 if (Invert) 6270 CCMask ^= CCValid; 6271 6272 // Return the updated CCReg link. 6273 CCReg = CompareLHS->getOperand(4); 6274 return true; 6275 } 6276 6277 // Optimize the case where CompareRHS is (SRA (SHL (IPM))). 6278 if (CompareLHS->getOpcode() == ISD::SRA) { 6279 auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1)); 6280 if (!SRACount || SRACount->getZExtValue() != 30) 6281 return false; 6282 auto *SHL = CompareLHS->getOperand(0).getNode(); 6283 if (SHL->getOpcode() != ISD::SHL) 6284 return false; 6285 auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1)); 6286 if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC) 6287 return false; 6288 auto *IPM = SHL->getOperand(0).getNode(); 6289 if (IPM->getOpcode() != SystemZISD::IPM) 6290 return false; 6291 6292 // Avoid introducing CC spills (because SRA would clobber CC). 6293 if (!CompareLHS->hasOneUse()) 6294 return false; 6295 // Verify that the ICMP compares against zero. 6296 if (CompareRHS->getZExtValue() != 0) 6297 return false; 6298 6299 // Compute the effective CC mask for the new branch or select. 6300 CCMask = SystemZ::reverseCCMask(CCMask); 6301 6302 // Return the updated CCReg link. 6303 CCReg = IPM->getOperand(0); 6304 return true; 6305 } 6306 6307 return false; 6308 } 6309 6310 SDValue SystemZTargetLowering::combineBR_CCMASK( 6311 SDNode *N, DAGCombinerInfo &DCI) const { 6312 SelectionDAG &DAG = DCI.DAG; 6313 6314 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 6315 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6316 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6317 if (!CCValid || !CCMask) 6318 return SDValue(); 6319 6320 int CCValidVal = CCValid->getZExtValue(); 6321 int CCMaskVal = CCMask->getZExtValue(); 6322 SDValue Chain = N->getOperand(0); 6323 SDValue CCReg = N->getOperand(4); 6324 6325 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6326 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 6327 Chain, 6328 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6329 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6330 N->getOperand(3), CCReg); 6331 return SDValue(); 6332 } 6333 6334 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 6335 SDNode *N, DAGCombinerInfo &DCI) const { 6336 SelectionDAG &DAG = DCI.DAG; 6337 6338 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 6339 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6340 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 6341 if (!CCValid || !CCMask) 6342 return SDValue(); 6343 6344 int CCValidVal = CCValid->getZExtValue(); 6345 int CCMaskVal = CCMask->getZExtValue(); 6346 SDValue CCReg = N->getOperand(4); 6347 6348 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 6349 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 6350 N->getOperand(0), N->getOperand(1), 6351 DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32), 6352 DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32), 6353 CCReg); 6354 return SDValue(); 6355 } 6356 6357 6358 SDValue SystemZTargetLowering::combineGET_CCMASK( 6359 SDNode *N, DAGCombinerInfo &DCI) const { 6360 6361 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 6362 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 6363 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 6364 if (!CCValid || !CCMask) 6365 return SDValue(); 6366 int CCValidVal = CCValid->getZExtValue(); 6367 int CCMaskVal = CCMask->getZExtValue(); 6368 6369 SDValue Select = N->getOperand(0); 6370 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 6371 return SDValue(); 6372 6373 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 6374 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 6375 if (!SelectCCValid || !SelectCCMask) 6376 return SDValue(); 6377 int SelectCCValidVal = SelectCCValid->getZExtValue(); 6378 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 6379 6380 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 6381 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 6382 if (!TrueVal || !FalseVal) 6383 return SDValue(); 6384 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 6385 ; 6386 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 6387 SelectCCMaskVal ^= SelectCCValidVal; 6388 else 6389 return SDValue(); 6390 6391 if (SelectCCValidVal & ~CCValidVal) 6392 return SDValue(); 6393 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 6394 return SDValue(); 6395 6396 return Select->getOperand(4); 6397 } 6398 6399 SDValue SystemZTargetLowering::combineIntDIVREM( 6400 SDNode *N, DAGCombinerInfo &DCI) const { 6401 SelectionDAG &DAG = DCI.DAG; 6402 EVT VT = N->getValueType(0); 6403 // In the case where the divisor is a vector of constants a cheaper 6404 // sequence of instructions can replace the divide. BuildSDIV is called to 6405 // do this during DAG combining, but it only succeeds when it can build a 6406 // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and 6407 // since it is not Legal but Custom it can only happen before 6408 // legalization. Therefore we must scalarize this early before Combine 6409 // 1. For widened vectors, this is already the result of type legalization. 6410 if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) && 6411 DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1))) 6412 return DAG.UnrollVectorOp(N); 6413 return SDValue(); 6414 } 6415 6416 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const { 6417 if (N->getOpcode() == SystemZISD::PCREL_WRAPPER) 6418 return N->getOperand(0); 6419 return N; 6420 } 6421 6422 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 6423 DAGCombinerInfo &DCI) const { 6424 switch(N->getOpcode()) { 6425 default: break; 6426 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 6427 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 6428 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 6429 case SystemZISD::MERGE_HIGH: 6430 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 6431 case ISD::LOAD: return combineLOAD(N, DCI); 6432 case ISD::STORE: return combineSTORE(N, DCI); 6433 case ISD::VECTOR_SHUFFLE: return combineVECTOR_SHUFFLE(N, DCI); 6434 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 6435 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 6436 case ISD::STRICT_FP_ROUND: 6437 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 6438 case ISD::STRICT_FP_EXTEND: 6439 case ISD::FP_EXTEND: return combineFP_EXTEND(N, DCI); 6440 case ISD::SINT_TO_FP: 6441 case ISD::UINT_TO_FP: return combineINT_TO_FP(N, DCI); 6442 case ISD::BSWAP: return combineBSWAP(N, DCI); 6443 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 6444 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 6445 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 6446 case ISD::SDIV: 6447 case ISD::UDIV: 6448 case ISD::SREM: 6449 case ISD::UREM: return combineIntDIVREM(N, DCI); 6450 } 6451 6452 return SDValue(); 6453 } 6454 6455 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 6456 // are for Op. 6457 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 6458 unsigned OpNo) { 6459 EVT VT = Op.getValueType(); 6460 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 6461 APInt SrcDemE; 6462 unsigned Opcode = Op.getOpcode(); 6463 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6464 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6465 switch (Id) { 6466 case Intrinsic::s390_vpksh: // PACKS 6467 case Intrinsic::s390_vpksf: 6468 case Intrinsic::s390_vpksg: 6469 case Intrinsic::s390_vpkshs: // PACKS_CC 6470 case Intrinsic::s390_vpksfs: 6471 case Intrinsic::s390_vpksgs: 6472 case Intrinsic::s390_vpklsh: // PACKLS 6473 case Intrinsic::s390_vpklsf: 6474 case Intrinsic::s390_vpklsg: 6475 case Intrinsic::s390_vpklshs: // PACKLS_CC 6476 case Intrinsic::s390_vpklsfs: 6477 case Intrinsic::s390_vpklsgs: 6478 // VECTOR PACK truncates the elements of two source vectors into one. 6479 SrcDemE = DemandedElts; 6480 if (OpNo == 2) 6481 SrcDemE.lshrInPlace(NumElts / 2); 6482 SrcDemE = SrcDemE.trunc(NumElts / 2); 6483 break; 6484 // VECTOR UNPACK extends half the elements of the source vector. 6485 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6486 case Intrinsic::s390_vuphh: 6487 case Intrinsic::s390_vuphf: 6488 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6489 case Intrinsic::s390_vuplhh: 6490 case Intrinsic::s390_vuplhf: 6491 SrcDemE = APInt(NumElts * 2, 0); 6492 SrcDemE.insertBits(DemandedElts, 0); 6493 break; 6494 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6495 case Intrinsic::s390_vuplhw: 6496 case Intrinsic::s390_vuplf: 6497 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6498 case Intrinsic::s390_vupllh: 6499 case Intrinsic::s390_vupllf: 6500 SrcDemE = APInt(NumElts * 2, 0); 6501 SrcDemE.insertBits(DemandedElts, NumElts); 6502 break; 6503 case Intrinsic::s390_vpdi: { 6504 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 6505 SrcDemE = APInt(NumElts, 0); 6506 if (!DemandedElts[OpNo - 1]) 6507 break; 6508 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6509 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 6510 // Demand input element 0 or 1, given by the mask bit value. 6511 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 6512 break; 6513 } 6514 case Intrinsic::s390_vsldb: { 6515 // VECTOR SHIFT LEFT DOUBLE BY BYTE 6516 assert(VT == MVT::v16i8 && "Unexpected type."); 6517 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 6518 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 6519 unsigned NumSrc0Els = 16 - FirstIdx; 6520 SrcDemE = APInt(NumElts, 0); 6521 if (OpNo == 1) { 6522 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 6523 SrcDemE.insertBits(DemEls, FirstIdx); 6524 } else { 6525 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 6526 SrcDemE.insertBits(DemEls, 0); 6527 } 6528 break; 6529 } 6530 case Intrinsic::s390_vperm: 6531 SrcDemE = APInt(NumElts, 1); 6532 break; 6533 default: 6534 llvm_unreachable("Unhandled intrinsic."); 6535 break; 6536 } 6537 } else { 6538 switch (Opcode) { 6539 case SystemZISD::JOIN_DWORDS: 6540 // Scalar operand. 6541 SrcDemE = APInt(1, 1); 6542 break; 6543 case SystemZISD::SELECT_CCMASK: 6544 SrcDemE = DemandedElts; 6545 break; 6546 default: 6547 llvm_unreachable("Unhandled opcode."); 6548 break; 6549 } 6550 } 6551 return SrcDemE; 6552 } 6553 6554 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 6555 const APInt &DemandedElts, 6556 const SelectionDAG &DAG, unsigned Depth, 6557 unsigned OpNo) { 6558 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6559 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6560 KnownBits LHSKnown = 6561 DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6562 KnownBits RHSKnown = 6563 DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6564 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 6565 Known.One = LHSKnown.One & RHSKnown.One; 6566 } 6567 6568 void 6569 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 6570 KnownBits &Known, 6571 const APInt &DemandedElts, 6572 const SelectionDAG &DAG, 6573 unsigned Depth) const { 6574 Known.resetAll(); 6575 6576 // Intrinsic CC result is returned in the two low bits. 6577 unsigned tmp0, tmp1; // not used 6578 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 6579 Known.Zero.setBitsFrom(2); 6580 return; 6581 } 6582 EVT VT = Op.getValueType(); 6583 if (Op.getResNo() != 0 || VT == MVT::Untyped) 6584 return; 6585 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 6586 "KnownBits does not match VT in bitwidth"); 6587 assert ((!VT.isVector() || 6588 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 6589 "DemandedElts does not match VT number of elements"); 6590 unsigned BitWidth = Known.getBitWidth(); 6591 unsigned Opcode = Op.getOpcode(); 6592 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6593 bool IsLogical = false; 6594 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6595 switch (Id) { 6596 case Intrinsic::s390_vpksh: // PACKS 6597 case Intrinsic::s390_vpksf: 6598 case Intrinsic::s390_vpksg: 6599 case Intrinsic::s390_vpkshs: // PACKS_CC 6600 case Intrinsic::s390_vpksfs: 6601 case Intrinsic::s390_vpksgs: 6602 case Intrinsic::s390_vpklsh: // PACKLS 6603 case Intrinsic::s390_vpklsf: 6604 case Intrinsic::s390_vpklsg: 6605 case Intrinsic::s390_vpklshs: // PACKLS_CC 6606 case Intrinsic::s390_vpklsfs: 6607 case Intrinsic::s390_vpklsgs: 6608 case Intrinsic::s390_vpdi: 6609 case Intrinsic::s390_vsldb: 6610 case Intrinsic::s390_vperm: 6611 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 6612 break; 6613 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 6614 case Intrinsic::s390_vuplhh: 6615 case Intrinsic::s390_vuplhf: 6616 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 6617 case Intrinsic::s390_vupllh: 6618 case Intrinsic::s390_vupllf: 6619 IsLogical = true; 6620 LLVM_FALLTHROUGH; 6621 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6622 case Intrinsic::s390_vuphh: 6623 case Intrinsic::s390_vuphf: 6624 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6625 case Intrinsic::s390_vuplhw: 6626 case Intrinsic::s390_vuplf: { 6627 SDValue SrcOp = Op.getOperand(1); 6628 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 6629 Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1); 6630 if (IsLogical) { 6631 Known = Known.zext(BitWidth); 6632 } else 6633 Known = Known.sext(BitWidth); 6634 break; 6635 } 6636 default: 6637 break; 6638 } 6639 } else { 6640 switch (Opcode) { 6641 case SystemZISD::JOIN_DWORDS: 6642 case SystemZISD::SELECT_CCMASK: 6643 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 6644 break; 6645 case SystemZISD::REPLICATE: { 6646 SDValue SrcOp = Op.getOperand(0); 6647 Known = DAG.computeKnownBits(SrcOp, Depth + 1); 6648 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 6649 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 6650 break; 6651 } 6652 default: 6653 break; 6654 } 6655 } 6656 6657 // Known has the width of the source operand(s). Adjust if needed to match 6658 // the passed bitwidth. 6659 if (Known.getBitWidth() != BitWidth) 6660 Known = Known.anyextOrTrunc(BitWidth); 6661 } 6662 6663 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 6664 const SelectionDAG &DAG, unsigned Depth, 6665 unsigned OpNo) { 6666 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 6667 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 6668 if (LHS == 1) return 1; // Early out. 6669 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 6670 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 6671 if (RHS == 1) return 1; // Early out. 6672 unsigned Common = std::min(LHS, RHS); 6673 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 6674 EVT VT = Op.getValueType(); 6675 unsigned VTBits = VT.getScalarSizeInBits(); 6676 if (SrcBitWidth > VTBits) { // PACK 6677 unsigned SrcExtraBits = SrcBitWidth - VTBits; 6678 if (Common > SrcExtraBits) 6679 return (Common - SrcExtraBits); 6680 return 1; 6681 } 6682 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 6683 return Common; 6684 } 6685 6686 unsigned 6687 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 6688 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 6689 unsigned Depth) const { 6690 if (Op.getResNo() != 0) 6691 return 1; 6692 unsigned Opcode = Op.getOpcode(); 6693 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 6694 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 6695 switch (Id) { 6696 case Intrinsic::s390_vpksh: // PACKS 6697 case Intrinsic::s390_vpksf: 6698 case Intrinsic::s390_vpksg: 6699 case Intrinsic::s390_vpkshs: // PACKS_CC 6700 case Intrinsic::s390_vpksfs: 6701 case Intrinsic::s390_vpksgs: 6702 case Intrinsic::s390_vpklsh: // PACKLS 6703 case Intrinsic::s390_vpklsf: 6704 case Intrinsic::s390_vpklsg: 6705 case Intrinsic::s390_vpklshs: // PACKLS_CC 6706 case Intrinsic::s390_vpklsfs: 6707 case Intrinsic::s390_vpklsgs: 6708 case Intrinsic::s390_vpdi: 6709 case Intrinsic::s390_vsldb: 6710 case Intrinsic::s390_vperm: 6711 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 6712 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 6713 case Intrinsic::s390_vuphh: 6714 case Intrinsic::s390_vuphf: 6715 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 6716 case Intrinsic::s390_vuplhw: 6717 case Intrinsic::s390_vuplf: { 6718 SDValue PackedOp = Op.getOperand(1); 6719 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 6720 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 6721 EVT VT = Op.getValueType(); 6722 unsigned VTBits = VT.getScalarSizeInBits(); 6723 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 6724 return Tmp; 6725 } 6726 default: 6727 break; 6728 } 6729 } else { 6730 switch (Opcode) { 6731 case SystemZISD::SELECT_CCMASK: 6732 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 6733 default: 6734 break; 6735 } 6736 } 6737 6738 return 1; 6739 } 6740 6741 //===----------------------------------------------------------------------===// 6742 // Custom insertion 6743 //===----------------------------------------------------------------------===// 6744 6745 // Create a new basic block after MBB. 6746 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 6747 MachineFunction &MF = *MBB->getParent(); 6748 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 6749 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 6750 return NewMBB; 6751 } 6752 6753 // Split MBB after MI and return the new block (the one that contains 6754 // instructions after MI). 6755 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 6756 MachineBasicBlock *MBB) { 6757 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6758 NewMBB->splice(NewMBB->begin(), MBB, 6759 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 6760 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6761 return NewMBB; 6762 } 6763 6764 // Split MBB before MI and return the new block (the one that contains MI). 6765 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6766 MachineBasicBlock *MBB) { 6767 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6768 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6769 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6770 return NewMBB; 6771 } 6772 6773 // Force base value Base into a register before MI. Return the register. 6774 static Register forceReg(MachineInstr &MI, MachineOperand &Base, 6775 const SystemZInstrInfo *TII) { 6776 if (Base.isReg()) 6777 return Base.getReg(); 6778 6779 MachineBasicBlock *MBB = MI.getParent(); 6780 MachineFunction &MF = *MBB->getParent(); 6781 MachineRegisterInfo &MRI = MF.getRegInfo(); 6782 6783 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6784 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6785 .add(Base) 6786 .addImm(0) 6787 .addReg(0); 6788 return Reg; 6789 } 6790 6791 // The CC operand of MI might be missing a kill marker because there 6792 // were multiple uses of CC, and ISel didn't know which to mark. 6793 // Figure out whether MI should have had a kill marker. 6794 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6795 // Scan forward through BB for a use/def of CC. 6796 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6797 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6798 const MachineInstr& mi = *miI; 6799 if (mi.readsRegister(SystemZ::CC)) 6800 return false; 6801 if (mi.definesRegister(SystemZ::CC)) 6802 break; // Should have kill-flag - update below. 6803 } 6804 6805 // If we hit the end of the block, check whether CC is live into a 6806 // successor. 6807 if (miI == MBB->end()) { 6808 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6809 if ((*SI)->isLiveIn(SystemZ::CC)) 6810 return false; 6811 } 6812 6813 return true; 6814 } 6815 6816 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6817 // together with other Select pseudo-opcodes into a single basic-block with 6818 // a conditional jump around it. 6819 static bool isSelectPseudo(MachineInstr &MI) { 6820 switch (MI.getOpcode()) { 6821 case SystemZ::Select32: 6822 case SystemZ::Select64: 6823 case SystemZ::SelectF32: 6824 case SystemZ::SelectF64: 6825 case SystemZ::SelectF128: 6826 case SystemZ::SelectVR32: 6827 case SystemZ::SelectVR64: 6828 case SystemZ::SelectVR128: 6829 return true; 6830 6831 default: 6832 return false; 6833 } 6834 } 6835 6836 // Helper function, which inserts PHI functions into SinkMBB: 6837 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6838 // where %FalseValue(i) and %TrueValue(i) are taken from Selects. 6839 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects, 6840 MachineBasicBlock *TrueMBB, 6841 MachineBasicBlock *FalseMBB, 6842 MachineBasicBlock *SinkMBB) { 6843 MachineFunction *MF = TrueMBB->getParent(); 6844 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6845 6846 MachineInstr *FirstMI = Selects.front(); 6847 unsigned CCValid = FirstMI->getOperand(3).getImm(); 6848 unsigned CCMask = FirstMI->getOperand(4).getImm(); 6849 6850 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6851 6852 // As we are creating the PHIs, we have to be careful if there is more than 6853 // one. Later Selects may reference the results of earlier Selects, but later 6854 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6855 // That also means that PHI construction must work forward from earlier to 6856 // later, and that the code must maintain a mapping from earlier PHI's 6857 // destination registers, and the registers that went into the PHI. 6858 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6859 6860 for (auto MI : Selects) { 6861 Register DestReg = MI->getOperand(0).getReg(); 6862 Register TrueReg = MI->getOperand(1).getReg(); 6863 Register FalseReg = MI->getOperand(2).getReg(); 6864 6865 // If this Select we are generating is the opposite condition from 6866 // the jump we generated, then we have to swap the operands for the 6867 // PHI that is going to be generated. 6868 if (MI->getOperand(4).getImm() == (CCValid ^ CCMask)) 6869 std::swap(TrueReg, FalseReg); 6870 6871 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6872 TrueReg = RegRewriteTable[TrueReg].first; 6873 6874 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6875 FalseReg = RegRewriteTable[FalseReg].second; 6876 6877 DebugLoc DL = MI->getDebugLoc(); 6878 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6879 .addReg(TrueReg).addMBB(TrueMBB) 6880 .addReg(FalseReg).addMBB(FalseMBB); 6881 6882 // Add this PHI to the rewrite table. 6883 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6884 } 6885 6886 MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs); 6887 } 6888 6889 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6890 MachineBasicBlock * 6891 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6892 MachineBasicBlock *MBB) const { 6893 assert(isSelectPseudo(MI) && "Bad call to emitSelect()"); 6894 const SystemZInstrInfo *TII = 6895 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6896 6897 unsigned CCValid = MI.getOperand(3).getImm(); 6898 unsigned CCMask = MI.getOperand(4).getImm(); 6899 6900 // If we have a sequence of Select* pseudo instructions using the 6901 // same condition code value, we want to expand all of them into 6902 // a single pair of basic blocks using the same condition. 6903 SmallVector<MachineInstr*, 8> Selects; 6904 SmallVector<MachineInstr*, 8> DbgValues; 6905 Selects.push_back(&MI); 6906 unsigned Count = 0; 6907 for (MachineBasicBlock::iterator NextMIIt = 6908 std::next(MachineBasicBlock::iterator(MI)); 6909 NextMIIt != MBB->end(); ++NextMIIt) { 6910 if (isSelectPseudo(*NextMIIt)) { 6911 assert(NextMIIt->getOperand(3).getImm() == CCValid && 6912 "Bad CCValid operands since CC was not redefined."); 6913 if (NextMIIt->getOperand(4).getImm() == CCMask || 6914 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) { 6915 Selects.push_back(&*NextMIIt); 6916 continue; 6917 } 6918 break; 6919 } 6920 if (NextMIIt->definesRegister(SystemZ::CC) || 6921 NextMIIt->usesCustomInsertionHook()) 6922 break; 6923 bool User = false; 6924 for (auto SelMI : Selects) 6925 if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) { 6926 User = true; 6927 break; 6928 } 6929 if (NextMIIt->isDebugInstr()) { 6930 if (User) { 6931 assert(NextMIIt->isDebugValue() && "Unhandled debug opcode."); 6932 DbgValues.push_back(&*NextMIIt); 6933 } 6934 } 6935 else if (User || ++Count > 20) 6936 break; 6937 } 6938 6939 MachineInstr *LastMI = Selects.back(); 6940 bool CCKilled = 6941 (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB)); 6942 MachineBasicBlock *StartMBB = MBB; 6943 MachineBasicBlock *JoinMBB = splitBlockAfter(LastMI, MBB); 6944 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6945 6946 // Unless CC was killed in the last Select instruction, mark it as 6947 // live-in to both FalseMBB and JoinMBB. 6948 if (!CCKilled) { 6949 FalseMBB->addLiveIn(SystemZ::CC); 6950 JoinMBB->addLiveIn(SystemZ::CC); 6951 } 6952 6953 // StartMBB: 6954 // BRC CCMask, JoinMBB 6955 // # fallthrough to FalseMBB 6956 MBB = StartMBB; 6957 BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC)) 6958 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6959 MBB->addSuccessor(JoinMBB); 6960 MBB->addSuccessor(FalseMBB); 6961 6962 // FalseMBB: 6963 // # fallthrough to JoinMBB 6964 MBB = FalseMBB; 6965 MBB->addSuccessor(JoinMBB); 6966 6967 // JoinMBB: 6968 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 6969 // ... 6970 MBB = JoinMBB; 6971 createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB); 6972 for (auto SelMI : Selects) 6973 SelMI->eraseFromParent(); 6974 6975 MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI(); 6976 for (auto DbgMI : DbgValues) 6977 MBB->splice(InsertPos, StartMBB, DbgMI); 6978 6979 return JoinMBB; 6980 } 6981 6982 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 6983 // StoreOpcode is the store to use and Invert says whether the store should 6984 // happen when the condition is false rather than true. If a STORE ON 6985 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 6986 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 6987 MachineBasicBlock *MBB, 6988 unsigned StoreOpcode, 6989 unsigned STOCOpcode, 6990 bool Invert) const { 6991 const SystemZInstrInfo *TII = 6992 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6993 6994 Register SrcReg = MI.getOperand(0).getReg(); 6995 MachineOperand Base = MI.getOperand(1); 6996 int64_t Disp = MI.getOperand(2).getImm(); 6997 Register IndexReg = MI.getOperand(3).getReg(); 6998 unsigned CCValid = MI.getOperand(4).getImm(); 6999 unsigned CCMask = MI.getOperand(5).getImm(); 7000 DebugLoc DL = MI.getDebugLoc(); 7001 7002 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 7003 7004 // Use STOCOpcode if possible. We could use different store patterns in 7005 // order to avoid matching the index register, but the performance trade-offs 7006 // might be more complicated in that case. 7007 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 7008 if (Invert) 7009 CCMask ^= CCValid; 7010 7011 // ISel pattern matching also adds a load memory operand of the same 7012 // address, so take special care to find the storing memory operand. 7013 MachineMemOperand *MMO = nullptr; 7014 for (auto *I : MI.memoperands()) 7015 if (I->isStore()) { 7016 MMO = I; 7017 break; 7018 } 7019 7020 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 7021 .addReg(SrcReg) 7022 .add(Base) 7023 .addImm(Disp) 7024 .addImm(CCValid) 7025 .addImm(CCMask) 7026 .addMemOperand(MMO); 7027 7028 MI.eraseFromParent(); 7029 return MBB; 7030 } 7031 7032 // Get the condition needed to branch around the store. 7033 if (!Invert) 7034 CCMask ^= CCValid; 7035 7036 MachineBasicBlock *StartMBB = MBB; 7037 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 7038 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 7039 7040 // Unless CC was killed in the CondStore instruction, mark it as 7041 // live-in to both FalseMBB and JoinMBB. 7042 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 7043 FalseMBB->addLiveIn(SystemZ::CC); 7044 JoinMBB->addLiveIn(SystemZ::CC); 7045 } 7046 7047 // StartMBB: 7048 // BRC CCMask, JoinMBB 7049 // # fallthrough to FalseMBB 7050 MBB = StartMBB; 7051 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7052 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 7053 MBB->addSuccessor(JoinMBB); 7054 MBB->addSuccessor(FalseMBB); 7055 7056 // FalseMBB: 7057 // store %SrcReg, %Disp(%Index,%Base) 7058 // # fallthrough to JoinMBB 7059 MBB = FalseMBB; 7060 BuildMI(MBB, DL, TII->get(StoreOpcode)) 7061 .addReg(SrcReg) 7062 .add(Base) 7063 .addImm(Disp) 7064 .addReg(IndexReg); 7065 MBB->addSuccessor(JoinMBB); 7066 7067 MI.eraseFromParent(); 7068 return JoinMBB; 7069 } 7070 7071 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 7072 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 7073 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 7074 // BitSize is the width of the field in bits, or 0 if this is a partword 7075 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 7076 // is one of the operands. Invert says whether the field should be 7077 // inverted after performing BinOpcode (e.g. for NAND). 7078 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 7079 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 7080 unsigned BitSize, bool Invert) const { 7081 MachineFunction &MF = *MBB->getParent(); 7082 const SystemZInstrInfo *TII = 7083 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7084 MachineRegisterInfo &MRI = MF.getRegInfo(); 7085 bool IsSubWord = (BitSize < 32); 7086 7087 // Extract the operands. Base can be a register or a frame index. 7088 // Src2 can be a register or immediate. 7089 Register Dest = MI.getOperand(0).getReg(); 7090 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7091 int64_t Disp = MI.getOperand(2).getImm(); 7092 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 7093 Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register(); 7094 Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register(); 7095 DebugLoc DL = MI.getDebugLoc(); 7096 if (IsSubWord) 7097 BitSize = MI.getOperand(6).getImm(); 7098 7099 // Subword operations use 32-bit registers. 7100 const TargetRegisterClass *RC = (BitSize <= 32 ? 7101 &SystemZ::GR32BitRegClass : 7102 &SystemZ::GR64BitRegClass); 7103 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7104 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7105 7106 // Get the right opcodes for the displacement. 7107 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7108 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7109 assert(LOpcode && CSOpcode && "Displacement out of range"); 7110 7111 // Create virtual registers for temporary results. 7112 Register OrigVal = MRI.createVirtualRegister(RC); 7113 Register OldVal = MRI.createVirtualRegister(RC); 7114 Register NewVal = (BinOpcode || IsSubWord ? 7115 MRI.createVirtualRegister(RC) : Src2.getReg()); 7116 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7117 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7118 7119 // Insert a basic block for the main loop. 7120 MachineBasicBlock *StartMBB = MBB; 7121 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7122 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7123 7124 // StartMBB: 7125 // ... 7126 // %OrigVal = L Disp(%Base) 7127 // # fall through to LoopMMB 7128 MBB = StartMBB; 7129 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7130 MBB->addSuccessor(LoopMBB); 7131 7132 // LoopMBB: 7133 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 7134 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7135 // %RotatedNewVal = OP %RotatedOldVal, %Src2 7136 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7137 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7138 // JNE LoopMBB 7139 // # fall through to DoneMMB 7140 MBB = LoopMBB; 7141 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7142 .addReg(OrigVal).addMBB(StartMBB) 7143 .addReg(Dest).addMBB(LoopMBB); 7144 if (IsSubWord) 7145 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7146 .addReg(OldVal).addReg(BitShift).addImm(0); 7147 if (Invert) { 7148 // Perform the operation normally and then invert every bit of the field. 7149 Register Tmp = MRI.createVirtualRegister(RC); 7150 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 7151 if (BitSize <= 32) 7152 // XILF with the upper BitSize bits set. 7153 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 7154 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 7155 else { 7156 // Use LCGR and add -1 to the result, which is more compact than 7157 // an XILF, XILH pair. 7158 Register Tmp2 = MRI.createVirtualRegister(RC); 7159 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 7160 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 7161 .addReg(Tmp2).addImm(-1); 7162 } 7163 } else if (BinOpcode) 7164 // A simply binary operation. 7165 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 7166 .addReg(RotatedOldVal) 7167 .add(Src2); 7168 else if (IsSubWord) 7169 // Use RISBG to rotate Src2 into position and use it to replace the 7170 // field in RotatedOldVal. 7171 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 7172 .addReg(RotatedOldVal).addReg(Src2.getReg()) 7173 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 7174 if (IsSubWord) 7175 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7176 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7177 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7178 .addReg(OldVal) 7179 .addReg(NewVal) 7180 .add(Base) 7181 .addImm(Disp); 7182 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7183 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7184 MBB->addSuccessor(LoopMBB); 7185 MBB->addSuccessor(DoneMBB); 7186 7187 MI.eraseFromParent(); 7188 return DoneMBB; 7189 } 7190 7191 // Implement EmitInstrWithCustomInserter for pseudo 7192 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 7193 // instruction that should be used to compare the current field with the 7194 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 7195 // for when the current field should be kept. BitSize is the width of 7196 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 7197 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 7198 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 7199 unsigned KeepOldMask, unsigned BitSize) const { 7200 MachineFunction &MF = *MBB->getParent(); 7201 const SystemZInstrInfo *TII = 7202 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7203 MachineRegisterInfo &MRI = MF.getRegInfo(); 7204 bool IsSubWord = (BitSize < 32); 7205 7206 // Extract the operands. Base can be a register or a frame index. 7207 Register Dest = MI.getOperand(0).getReg(); 7208 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7209 int64_t Disp = MI.getOperand(2).getImm(); 7210 Register Src2 = MI.getOperand(3).getReg(); 7211 Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register()); 7212 Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register()); 7213 DebugLoc DL = MI.getDebugLoc(); 7214 if (IsSubWord) 7215 BitSize = MI.getOperand(6).getImm(); 7216 7217 // Subword operations use 32-bit registers. 7218 const TargetRegisterClass *RC = (BitSize <= 32 ? 7219 &SystemZ::GR32BitRegClass : 7220 &SystemZ::GR64BitRegClass); 7221 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 7222 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 7223 7224 // Get the right opcodes for the displacement. 7225 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 7226 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 7227 assert(LOpcode && CSOpcode && "Displacement out of range"); 7228 7229 // Create virtual registers for temporary results. 7230 Register OrigVal = MRI.createVirtualRegister(RC); 7231 Register OldVal = MRI.createVirtualRegister(RC); 7232 Register NewVal = MRI.createVirtualRegister(RC); 7233 Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 7234 Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 7235 Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 7236 7237 // Insert 3 basic blocks for the loop. 7238 MachineBasicBlock *StartMBB = MBB; 7239 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7240 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7241 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 7242 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 7243 7244 // StartMBB: 7245 // ... 7246 // %OrigVal = L Disp(%Base) 7247 // # fall through to LoopMMB 7248 MBB = StartMBB; 7249 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 7250 MBB->addSuccessor(LoopMBB); 7251 7252 // LoopMBB: 7253 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 7254 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 7255 // CompareOpcode %RotatedOldVal, %Src2 7256 // BRC KeepOldMask, UpdateMBB 7257 MBB = LoopMBB; 7258 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7259 .addReg(OrigVal).addMBB(StartMBB) 7260 .addReg(Dest).addMBB(UpdateMBB); 7261 if (IsSubWord) 7262 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 7263 .addReg(OldVal).addReg(BitShift).addImm(0); 7264 BuildMI(MBB, DL, TII->get(CompareOpcode)) 7265 .addReg(RotatedOldVal).addReg(Src2); 7266 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7267 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 7268 MBB->addSuccessor(UpdateMBB); 7269 MBB->addSuccessor(UseAltMBB); 7270 7271 // UseAltMBB: 7272 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 7273 // # fall through to UpdateMMB 7274 MBB = UseAltMBB; 7275 if (IsSubWord) 7276 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 7277 .addReg(RotatedOldVal).addReg(Src2) 7278 .addImm(32).addImm(31 + BitSize).addImm(0); 7279 MBB->addSuccessor(UpdateMBB); 7280 7281 // UpdateMBB: 7282 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 7283 // [ %RotatedAltVal, UseAltMBB ] 7284 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 7285 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 7286 // JNE LoopMBB 7287 // # fall through to DoneMMB 7288 MBB = UpdateMBB; 7289 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 7290 .addReg(RotatedOldVal).addMBB(LoopMBB) 7291 .addReg(RotatedAltVal).addMBB(UseAltMBB); 7292 if (IsSubWord) 7293 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 7294 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 7295 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 7296 .addReg(OldVal) 7297 .addReg(NewVal) 7298 .add(Base) 7299 .addImm(Disp); 7300 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7301 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7302 MBB->addSuccessor(LoopMBB); 7303 MBB->addSuccessor(DoneMBB); 7304 7305 MI.eraseFromParent(); 7306 return DoneMBB; 7307 } 7308 7309 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 7310 // instruction MI. 7311 MachineBasicBlock * 7312 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 7313 MachineBasicBlock *MBB) const { 7314 7315 MachineFunction &MF = *MBB->getParent(); 7316 const SystemZInstrInfo *TII = 7317 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7318 MachineRegisterInfo &MRI = MF.getRegInfo(); 7319 7320 // Extract the operands. Base can be a register or a frame index. 7321 Register Dest = MI.getOperand(0).getReg(); 7322 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 7323 int64_t Disp = MI.getOperand(2).getImm(); 7324 Register OrigCmpVal = MI.getOperand(3).getReg(); 7325 Register OrigSwapVal = MI.getOperand(4).getReg(); 7326 Register BitShift = MI.getOperand(5).getReg(); 7327 Register NegBitShift = MI.getOperand(6).getReg(); 7328 int64_t BitSize = MI.getOperand(7).getImm(); 7329 DebugLoc DL = MI.getDebugLoc(); 7330 7331 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 7332 7333 // Get the right opcodes for the displacement. 7334 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 7335 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 7336 assert(LOpcode && CSOpcode && "Displacement out of range"); 7337 7338 // Create virtual registers for temporary results. 7339 Register OrigOldVal = MRI.createVirtualRegister(RC); 7340 Register OldVal = MRI.createVirtualRegister(RC); 7341 Register CmpVal = MRI.createVirtualRegister(RC); 7342 Register SwapVal = MRI.createVirtualRegister(RC); 7343 Register StoreVal = MRI.createVirtualRegister(RC); 7344 Register RetryOldVal = MRI.createVirtualRegister(RC); 7345 Register RetryCmpVal = MRI.createVirtualRegister(RC); 7346 Register RetrySwapVal = MRI.createVirtualRegister(RC); 7347 7348 // Insert 2 basic blocks for the loop. 7349 MachineBasicBlock *StartMBB = MBB; 7350 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7351 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7352 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 7353 7354 // StartMBB: 7355 // ... 7356 // %OrigOldVal = L Disp(%Base) 7357 // # fall through to LoopMMB 7358 MBB = StartMBB; 7359 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 7360 .add(Base) 7361 .addImm(Disp) 7362 .addReg(0); 7363 MBB->addSuccessor(LoopMBB); 7364 7365 // LoopMBB: 7366 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 7367 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 7368 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 7369 // %Dest = RLL %OldVal, BitSize(%BitShift) 7370 // ^^ The low BitSize bits contain the field 7371 // of interest. 7372 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 7373 // ^^ Replace the upper 32-BitSize bits of the 7374 // comparison value with those that we loaded, 7375 // so that we can use a full word comparison. 7376 // CR %Dest, %RetryCmpVal 7377 // JNE DoneMBB 7378 // # Fall through to SetMBB 7379 MBB = LoopMBB; 7380 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 7381 .addReg(OrigOldVal).addMBB(StartMBB) 7382 .addReg(RetryOldVal).addMBB(SetMBB); 7383 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 7384 .addReg(OrigCmpVal).addMBB(StartMBB) 7385 .addReg(RetryCmpVal).addMBB(SetMBB); 7386 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 7387 .addReg(OrigSwapVal).addMBB(StartMBB) 7388 .addReg(RetrySwapVal).addMBB(SetMBB); 7389 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 7390 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 7391 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 7392 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7393 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 7394 .addReg(Dest).addReg(RetryCmpVal); 7395 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7396 .addImm(SystemZ::CCMASK_ICMP) 7397 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 7398 MBB->addSuccessor(DoneMBB); 7399 MBB->addSuccessor(SetMBB); 7400 7401 // SetMBB: 7402 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 7403 // ^^ Replace the upper 32-BitSize bits of the new 7404 // value with those that we loaded. 7405 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 7406 // ^^ Rotate the new field to its proper position. 7407 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 7408 // JNE LoopMBB 7409 // # fall through to ExitMMB 7410 MBB = SetMBB; 7411 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 7412 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 7413 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 7414 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 7415 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 7416 .addReg(OldVal) 7417 .addReg(StoreVal) 7418 .add(Base) 7419 .addImm(Disp); 7420 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7421 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 7422 MBB->addSuccessor(LoopMBB); 7423 MBB->addSuccessor(DoneMBB); 7424 7425 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 7426 // to the block after the loop. At this point, CC may have been defined 7427 // either by the CR in LoopMBB or by the CS in SetMBB. 7428 if (!MI.registerDefIsDead(SystemZ::CC)) 7429 DoneMBB->addLiveIn(SystemZ::CC); 7430 7431 MI.eraseFromParent(); 7432 return DoneMBB; 7433 } 7434 7435 // Emit a move from two GR64s to a GR128. 7436 MachineBasicBlock * 7437 SystemZTargetLowering::emitPair128(MachineInstr &MI, 7438 MachineBasicBlock *MBB) const { 7439 MachineFunction &MF = *MBB->getParent(); 7440 const SystemZInstrInfo *TII = 7441 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7442 MachineRegisterInfo &MRI = MF.getRegInfo(); 7443 DebugLoc DL = MI.getDebugLoc(); 7444 7445 Register Dest = MI.getOperand(0).getReg(); 7446 Register Hi = MI.getOperand(1).getReg(); 7447 Register Lo = MI.getOperand(2).getReg(); 7448 Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7449 Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7450 7451 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 7452 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 7453 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 7454 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7455 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 7456 7457 MI.eraseFromParent(); 7458 return MBB; 7459 } 7460 7461 // Emit an extension from a GR64 to a GR128. ClearEven is true 7462 // if the high register of the GR128 value must be cleared or false if 7463 // it's "don't care". 7464 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 7465 MachineBasicBlock *MBB, 7466 bool ClearEven) const { 7467 MachineFunction &MF = *MBB->getParent(); 7468 const SystemZInstrInfo *TII = 7469 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7470 MachineRegisterInfo &MRI = MF.getRegInfo(); 7471 DebugLoc DL = MI.getDebugLoc(); 7472 7473 Register Dest = MI.getOperand(0).getReg(); 7474 Register Src = MI.getOperand(1).getReg(); 7475 Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7476 7477 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 7478 if (ClearEven) { 7479 Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 7480 Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 7481 7482 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 7483 .addImm(0); 7484 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 7485 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 7486 In128 = NewIn128; 7487 } 7488 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 7489 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 7490 7491 MI.eraseFromParent(); 7492 return MBB; 7493 } 7494 7495 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 7496 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7497 MachineFunction &MF = *MBB->getParent(); 7498 const SystemZInstrInfo *TII = 7499 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7500 MachineRegisterInfo &MRI = MF.getRegInfo(); 7501 DebugLoc DL = MI.getDebugLoc(); 7502 7503 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 7504 uint64_t DestDisp = MI.getOperand(1).getImm(); 7505 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 7506 uint64_t SrcDisp = MI.getOperand(3).getImm(); 7507 uint64_t Length = MI.getOperand(4).getImm(); 7508 7509 // When generating more than one CLC, all but the last will need to 7510 // branch to the end when a difference is found. 7511 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 7512 splitBlockAfter(MI, MBB) : nullptr); 7513 7514 // Check for the loop form, in which operand 5 is the trip count. 7515 if (MI.getNumExplicitOperands() > 5) { 7516 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 7517 7518 Register StartCountReg = MI.getOperand(5).getReg(); 7519 Register StartSrcReg = forceReg(MI, SrcBase, TII); 7520 Register StartDestReg = (HaveSingleBase ? StartSrcReg : 7521 forceReg(MI, DestBase, TII)); 7522 7523 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 7524 Register ThisSrcReg = MRI.createVirtualRegister(RC); 7525 Register ThisDestReg = (HaveSingleBase ? ThisSrcReg : 7526 MRI.createVirtualRegister(RC)); 7527 Register NextSrcReg = MRI.createVirtualRegister(RC); 7528 Register NextDestReg = (HaveSingleBase ? NextSrcReg : 7529 MRI.createVirtualRegister(RC)); 7530 7531 RC = &SystemZ::GR64BitRegClass; 7532 Register ThisCountReg = MRI.createVirtualRegister(RC); 7533 Register NextCountReg = MRI.createVirtualRegister(RC); 7534 7535 MachineBasicBlock *StartMBB = MBB; 7536 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7537 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7538 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 7539 7540 // StartMBB: 7541 // # fall through to LoopMMB 7542 MBB->addSuccessor(LoopMBB); 7543 7544 // LoopMBB: 7545 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 7546 // [ %NextDestReg, NextMBB ] 7547 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 7548 // [ %NextSrcReg, NextMBB ] 7549 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 7550 // [ %NextCountReg, NextMBB ] 7551 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 7552 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 7553 // ( JLH EndMBB ) 7554 // 7555 // The prefetch is used only for MVC. The JLH is used only for CLC. 7556 MBB = LoopMBB; 7557 7558 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 7559 .addReg(StartDestReg).addMBB(StartMBB) 7560 .addReg(NextDestReg).addMBB(NextMBB); 7561 if (!HaveSingleBase) 7562 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 7563 .addReg(StartSrcReg).addMBB(StartMBB) 7564 .addReg(NextSrcReg).addMBB(NextMBB); 7565 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 7566 .addReg(StartCountReg).addMBB(StartMBB) 7567 .addReg(NextCountReg).addMBB(NextMBB); 7568 if (Opcode == SystemZ::MVC) 7569 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 7570 .addImm(SystemZ::PFD_WRITE) 7571 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 7572 BuildMI(MBB, DL, TII->get(Opcode)) 7573 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 7574 .addReg(ThisSrcReg).addImm(SrcDisp); 7575 if (EndMBB) { 7576 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7577 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7578 .addMBB(EndMBB); 7579 MBB->addSuccessor(EndMBB); 7580 MBB->addSuccessor(NextMBB); 7581 } 7582 7583 // NextMBB: 7584 // %NextDestReg = LA 256(%ThisDestReg) 7585 // %NextSrcReg = LA 256(%ThisSrcReg) 7586 // %NextCountReg = AGHI %ThisCountReg, -1 7587 // CGHI %NextCountReg, 0 7588 // JLH LoopMBB 7589 // # fall through to DoneMMB 7590 // 7591 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 7592 MBB = NextMBB; 7593 7594 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 7595 .addReg(ThisDestReg).addImm(256).addReg(0); 7596 if (!HaveSingleBase) 7597 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 7598 .addReg(ThisSrcReg).addImm(256).addReg(0); 7599 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 7600 .addReg(ThisCountReg).addImm(-1); 7601 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 7602 .addReg(NextCountReg).addImm(0); 7603 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7604 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7605 .addMBB(LoopMBB); 7606 MBB->addSuccessor(LoopMBB); 7607 MBB->addSuccessor(DoneMBB); 7608 7609 DestBase = MachineOperand::CreateReg(NextDestReg, false); 7610 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 7611 Length &= 255; 7612 if (EndMBB && !Length) 7613 // If the loop handled the whole CLC range, DoneMBB will be empty with 7614 // CC live-through into EndMBB, so add it as live-in. 7615 DoneMBB->addLiveIn(SystemZ::CC); 7616 MBB = DoneMBB; 7617 } 7618 // Handle any remaining bytes with straight-line code. 7619 while (Length > 0) { 7620 uint64_t ThisLength = std::min(Length, uint64_t(256)); 7621 // The previous iteration might have created out-of-range displacements. 7622 // Apply them using LAY if so. 7623 if (!isUInt<12>(DestDisp)) { 7624 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7625 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7626 .add(DestBase) 7627 .addImm(DestDisp) 7628 .addReg(0); 7629 DestBase = MachineOperand::CreateReg(Reg, false); 7630 DestDisp = 0; 7631 } 7632 if (!isUInt<12>(SrcDisp)) { 7633 Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 7634 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 7635 .add(SrcBase) 7636 .addImm(SrcDisp) 7637 .addReg(0); 7638 SrcBase = MachineOperand::CreateReg(Reg, false); 7639 SrcDisp = 0; 7640 } 7641 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 7642 .add(DestBase) 7643 .addImm(DestDisp) 7644 .addImm(ThisLength) 7645 .add(SrcBase) 7646 .addImm(SrcDisp) 7647 .setMemRefs(MI.memoperands()); 7648 DestDisp += ThisLength; 7649 SrcDisp += ThisLength; 7650 Length -= ThisLength; 7651 // If there's another CLC to go, branch to the end if a difference 7652 // was found. 7653 if (EndMBB && Length > 0) { 7654 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 7655 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7656 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 7657 .addMBB(EndMBB); 7658 MBB->addSuccessor(EndMBB); 7659 MBB->addSuccessor(NextMBB); 7660 MBB = NextMBB; 7661 } 7662 } 7663 if (EndMBB) { 7664 MBB->addSuccessor(EndMBB); 7665 MBB = EndMBB; 7666 MBB->addLiveIn(SystemZ::CC); 7667 } 7668 7669 MI.eraseFromParent(); 7670 return MBB; 7671 } 7672 7673 // Decompose string pseudo-instruction MI into a loop that continually performs 7674 // Opcode until CC != 3. 7675 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 7676 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7677 MachineFunction &MF = *MBB->getParent(); 7678 const SystemZInstrInfo *TII = 7679 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7680 MachineRegisterInfo &MRI = MF.getRegInfo(); 7681 DebugLoc DL = MI.getDebugLoc(); 7682 7683 uint64_t End1Reg = MI.getOperand(0).getReg(); 7684 uint64_t Start1Reg = MI.getOperand(1).getReg(); 7685 uint64_t Start2Reg = MI.getOperand(2).getReg(); 7686 uint64_t CharReg = MI.getOperand(3).getReg(); 7687 7688 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 7689 uint64_t This1Reg = MRI.createVirtualRegister(RC); 7690 uint64_t This2Reg = MRI.createVirtualRegister(RC); 7691 uint64_t End2Reg = MRI.createVirtualRegister(RC); 7692 7693 MachineBasicBlock *StartMBB = MBB; 7694 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 7695 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 7696 7697 // StartMBB: 7698 // # fall through to LoopMMB 7699 MBB->addSuccessor(LoopMBB); 7700 7701 // LoopMBB: 7702 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 7703 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 7704 // R0L = %CharReg 7705 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 7706 // JO LoopMBB 7707 // # fall through to DoneMMB 7708 // 7709 // The load of R0L can be hoisted by post-RA LICM. 7710 MBB = LoopMBB; 7711 7712 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 7713 .addReg(Start1Reg).addMBB(StartMBB) 7714 .addReg(End1Reg).addMBB(LoopMBB); 7715 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 7716 .addReg(Start2Reg).addMBB(StartMBB) 7717 .addReg(End2Reg).addMBB(LoopMBB); 7718 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 7719 BuildMI(MBB, DL, TII->get(Opcode)) 7720 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 7721 .addReg(This1Reg).addReg(This2Reg); 7722 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 7723 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 7724 MBB->addSuccessor(LoopMBB); 7725 MBB->addSuccessor(DoneMBB); 7726 7727 DoneMBB->addLiveIn(SystemZ::CC); 7728 7729 MI.eraseFromParent(); 7730 return DoneMBB; 7731 } 7732 7733 // Update TBEGIN instruction with final opcode and register clobbers. 7734 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 7735 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 7736 bool NoFloat) const { 7737 MachineFunction &MF = *MBB->getParent(); 7738 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 7739 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 7740 7741 // Update opcode. 7742 MI.setDesc(TII->get(Opcode)); 7743 7744 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 7745 // Make sure to add the corresponding GRSM bits if they are missing. 7746 uint64_t Control = MI.getOperand(2).getImm(); 7747 static const unsigned GPRControlBit[16] = { 7748 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 7749 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 7750 }; 7751 Control |= GPRControlBit[15]; 7752 if (TFI->hasFP(MF)) 7753 Control |= GPRControlBit[11]; 7754 MI.getOperand(2).setImm(Control); 7755 7756 // Add GPR clobbers. 7757 for (int I = 0; I < 16; I++) { 7758 if ((Control & GPRControlBit[I]) == 0) { 7759 unsigned Reg = SystemZMC::GR64Regs[I]; 7760 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7761 } 7762 } 7763 7764 // Add FPR/VR clobbers. 7765 if (!NoFloat && (Control & 4) != 0) { 7766 if (Subtarget.hasVector()) { 7767 for (int I = 0; I < 32; I++) { 7768 unsigned Reg = SystemZMC::VR128Regs[I]; 7769 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7770 } 7771 } else { 7772 for (int I = 0; I < 16; I++) { 7773 unsigned Reg = SystemZMC::FP64Regs[I]; 7774 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 7775 } 7776 } 7777 } 7778 7779 return MBB; 7780 } 7781 7782 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 7783 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 7784 MachineFunction &MF = *MBB->getParent(); 7785 MachineRegisterInfo *MRI = &MF.getRegInfo(); 7786 const SystemZInstrInfo *TII = 7787 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 7788 DebugLoc DL = MI.getDebugLoc(); 7789 7790 Register SrcReg = MI.getOperand(0).getReg(); 7791 7792 // Create new virtual register of the same class as source. 7793 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7794 Register DstReg = MRI->createVirtualRegister(RC); 7795 7796 // Replace pseudo with a normal load-and-test that models the def as 7797 // well. 7798 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7799 .addReg(SrcReg) 7800 .setMIFlags(MI.getFlags()); 7801 MI.eraseFromParent(); 7802 7803 return MBB; 7804 } 7805 7806 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7807 MachineInstr &MI, MachineBasicBlock *MBB) const { 7808 switch (MI.getOpcode()) { 7809 case SystemZ::Select32: 7810 case SystemZ::Select64: 7811 case SystemZ::SelectF32: 7812 case SystemZ::SelectF64: 7813 case SystemZ::SelectF128: 7814 case SystemZ::SelectVR32: 7815 case SystemZ::SelectVR64: 7816 case SystemZ::SelectVR128: 7817 return emitSelect(MI, MBB); 7818 7819 case SystemZ::CondStore8Mux: 7820 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7821 case SystemZ::CondStore8MuxInv: 7822 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7823 case SystemZ::CondStore16Mux: 7824 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7825 case SystemZ::CondStore16MuxInv: 7826 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7827 case SystemZ::CondStore32Mux: 7828 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7829 case SystemZ::CondStore32MuxInv: 7830 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7831 case SystemZ::CondStore8: 7832 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7833 case SystemZ::CondStore8Inv: 7834 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7835 case SystemZ::CondStore16: 7836 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7837 case SystemZ::CondStore16Inv: 7838 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7839 case SystemZ::CondStore32: 7840 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7841 case SystemZ::CondStore32Inv: 7842 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7843 case SystemZ::CondStore64: 7844 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7845 case SystemZ::CondStore64Inv: 7846 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7847 case SystemZ::CondStoreF32: 7848 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7849 case SystemZ::CondStoreF32Inv: 7850 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7851 case SystemZ::CondStoreF64: 7852 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7853 case SystemZ::CondStoreF64Inv: 7854 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7855 7856 case SystemZ::PAIR128: 7857 return emitPair128(MI, MBB); 7858 case SystemZ::AEXT128: 7859 return emitExt128(MI, MBB, false); 7860 case SystemZ::ZEXT128: 7861 return emitExt128(MI, MBB, true); 7862 7863 case SystemZ::ATOMIC_SWAPW: 7864 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7865 case SystemZ::ATOMIC_SWAP_32: 7866 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7867 case SystemZ::ATOMIC_SWAP_64: 7868 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7869 7870 case SystemZ::ATOMIC_LOADW_AR: 7871 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7872 case SystemZ::ATOMIC_LOADW_AFI: 7873 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7874 case SystemZ::ATOMIC_LOAD_AR: 7875 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7876 case SystemZ::ATOMIC_LOAD_AHI: 7877 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7878 case SystemZ::ATOMIC_LOAD_AFI: 7879 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7880 case SystemZ::ATOMIC_LOAD_AGR: 7881 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7882 case SystemZ::ATOMIC_LOAD_AGHI: 7883 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7884 case SystemZ::ATOMIC_LOAD_AGFI: 7885 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7886 7887 case SystemZ::ATOMIC_LOADW_SR: 7888 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7889 case SystemZ::ATOMIC_LOAD_SR: 7890 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7891 case SystemZ::ATOMIC_LOAD_SGR: 7892 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7893 7894 case SystemZ::ATOMIC_LOADW_NR: 7895 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7896 case SystemZ::ATOMIC_LOADW_NILH: 7897 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7898 case SystemZ::ATOMIC_LOAD_NR: 7899 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7900 case SystemZ::ATOMIC_LOAD_NILL: 7901 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7902 case SystemZ::ATOMIC_LOAD_NILH: 7903 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7904 case SystemZ::ATOMIC_LOAD_NILF: 7905 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7906 case SystemZ::ATOMIC_LOAD_NGR: 7907 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7908 case SystemZ::ATOMIC_LOAD_NILL64: 7909 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7910 case SystemZ::ATOMIC_LOAD_NILH64: 7911 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7912 case SystemZ::ATOMIC_LOAD_NIHL64: 7913 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 7914 case SystemZ::ATOMIC_LOAD_NIHH64: 7915 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 7916 case SystemZ::ATOMIC_LOAD_NILF64: 7917 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 7918 case SystemZ::ATOMIC_LOAD_NIHF64: 7919 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 7920 7921 case SystemZ::ATOMIC_LOADW_OR: 7922 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 7923 case SystemZ::ATOMIC_LOADW_OILH: 7924 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 7925 case SystemZ::ATOMIC_LOAD_OR: 7926 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 7927 case SystemZ::ATOMIC_LOAD_OILL: 7928 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 7929 case SystemZ::ATOMIC_LOAD_OILH: 7930 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 7931 case SystemZ::ATOMIC_LOAD_OILF: 7932 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 7933 case SystemZ::ATOMIC_LOAD_OGR: 7934 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 7935 case SystemZ::ATOMIC_LOAD_OILL64: 7936 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 7937 case SystemZ::ATOMIC_LOAD_OILH64: 7938 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 7939 case SystemZ::ATOMIC_LOAD_OIHL64: 7940 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 7941 case SystemZ::ATOMIC_LOAD_OIHH64: 7942 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 7943 case SystemZ::ATOMIC_LOAD_OILF64: 7944 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 7945 case SystemZ::ATOMIC_LOAD_OIHF64: 7946 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 7947 7948 case SystemZ::ATOMIC_LOADW_XR: 7949 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 7950 case SystemZ::ATOMIC_LOADW_XILF: 7951 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 7952 case SystemZ::ATOMIC_LOAD_XR: 7953 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 7954 case SystemZ::ATOMIC_LOAD_XILF: 7955 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 7956 case SystemZ::ATOMIC_LOAD_XGR: 7957 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 7958 case SystemZ::ATOMIC_LOAD_XILF64: 7959 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 7960 case SystemZ::ATOMIC_LOAD_XIHF64: 7961 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 7962 7963 case SystemZ::ATOMIC_LOADW_NRi: 7964 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 7965 case SystemZ::ATOMIC_LOADW_NILHi: 7966 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 7967 case SystemZ::ATOMIC_LOAD_NRi: 7968 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 7969 case SystemZ::ATOMIC_LOAD_NILLi: 7970 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 7971 case SystemZ::ATOMIC_LOAD_NILHi: 7972 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 7973 case SystemZ::ATOMIC_LOAD_NILFi: 7974 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 7975 case SystemZ::ATOMIC_LOAD_NGRi: 7976 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 7977 case SystemZ::ATOMIC_LOAD_NILL64i: 7978 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 7979 case SystemZ::ATOMIC_LOAD_NILH64i: 7980 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 7981 case SystemZ::ATOMIC_LOAD_NIHL64i: 7982 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 7983 case SystemZ::ATOMIC_LOAD_NIHH64i: 7984 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 7985 case SystemZ::ATOMIC_LOAD_NILF64i: 7986 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 7987 case SystemZ::ATOMIC_LOAD_NIHF64i: 7988 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 7989 7990 case SystemZ::ATOMIC_LOADW_MIN: 7991 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7992 SystemZ::CCMASK_CMP_LE, 0); 7993 case SystemZ::ATOMIC_LOAD_MIN_32: 7994 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7995 SystemZ::CCMASK_CMP_LE, 32); 7996 case SystemZ::ATOMIC_LOAD_MIN_64: 7997 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7998 SystemZ::CCMASK_CMP_LE, 64); 7999 8000 case SystemZ::ATOMIC_LOADW_MAX: 8001 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8002 SystemZ::CCMASK_CMP_GE, 0); 8003 case SystemZ::ATOMIC_LOAD_MAX_32: 8004 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 8005 SystemZ::CCMASK_CMP_GE, 32); 8006 case SystemZ::ATOMIC_LOAD_MAX_64: 8007 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 8008 SystemZ::CCMASK_CMP_GE, 64); 8009 8010 case SystemZ::ATOMIC_LOADW_UMIN: 8011 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8012 SystemZ::CCMASK_CMP_LE, 0); 8013 case SystemZ::ATOMIC_LOAD_UMIN_32: 8014 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8015 SystemZ::CCMASK_CMP_LE, 32); 8016 case SystemZ::ATOMIC_LOAD_UMIN_64: 8017 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8018 SystemZ::CCMASK_CMP_LE, 64); 8019 8020 case SystemZ::ATOMIC_LOADW_UMAX: 8021 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8022 SystemZ::CCMASK_CMP_GE, 0); 8023 case SystemZ::ATOMIC_LOAD_UMAX_32: 8024 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 8025 SystemZ::CCMASK_CMP_GE, 32); 8026 case SystemZ::ATOMIC_LOAD_UMAX_64: 8027 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 8028 SystemZ::CCMASK_CMP_GE, 64); 8029 8030 case SystemZ::ATOMIC_CMP_SWAPW: 8031 return emitAtomicCmpSwapW(MI, MBB); 8032 case SystemZ::MVCSequence: 8033 case SystemZ::MVCLoop: 8034 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 8035 case SystemZ::NCSequence: 8036 case SystemZ::NCLoop: 8037 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 8038 case SystemZ::OCSequence: 8039 case SystemZ::OCLoop: 8040 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 8041 case SystemZ::XCSequence: 8042 case SystemZ::XCLoop: 8043 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 8044 case SystemZ::CLCSequence: 8045 case SystemZ::CLCLoop: 8046 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 8047 case SystemZ::CLSTLoop: 8048 return emitStringWrapper(MI, MBB, SystemZ::CLST); 8049 case SystemZ::MVSTLoop: 8050 return emitStringWrapper(MI, MBB, SystemZ::MVST); 8051 case SystemZ::SRSTLoop: 8052 return emitStringWrapper(MI, MBB, SystemZ::SRST); 8053 case SystemZ::TBEGIN: 8054 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 8055 case SystemZ::TBEGIN_nofloat: 8056 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 8057 case SystemZ::TBEGINC: 8058 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 8059 case SystemZ::LTEBRCompare_VecPseudo: 8060 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 8061 case SystemZ::LTDBRCompare_VecPseudo: 8062 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 8063 case SystemZ::LTXBRCompare_VecPseudo: 8064 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 8065 8066 case TargetOpcode::STACKMAP: 8067 case TargetOpcode::PATCHPOINT: 8068 return emitPatchPoint(MI, MBB); 8069 8070 default: 8071 llvm_unreachable("Unexpected instr type to insert"); 8072 } 8073 } 8074 8075 // This is only used by the isel schedulers, and is needed only to prevent 8076 // compiler from crashing when list-ilp is used. 8077 const TargetRegisterClass * 8078 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 8079 if (VT == MVT::Untyped) 8080 return &SystemZ::ADDR128BitRegClass; 8081 return TargetLowering::getRepRegClassFor(VT); 8082 } 8083