1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the SystemZTargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SystemZISelLowering.h"
14 #include "SystemZCallingConv.h"
15 #include "SystemZConstantPoolValue.h"
16 #include "SystemZMachineFunctionInfo.h"
17 #include "SystemZTargetMachine.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineInstrBuilder.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/Intrinsics.h"
24 #include "llvm/IR/IntrinsicsS390.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/KnownBits.h"
27 #include <cctype>
28 
29 using namespace llvm;
30 
31 #define DEBUG_TYPE "systemz-lower"
32 
33 namespace {
34 // Represents information about a comparison.
35 struct Comparison {
36   Comparison(SDValue Op0In, SDValue Op1In, SDValue ChainIn)
37     : Op0(Op0In), Op1(Op1In), Chain(ChainIn),
38       Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {}
39 
40   // The operands to the comparison.
41   SDValue Op0, Op1;
42 
43   // Chain if this is a strict floating-point comparison.
44   SDValue Chain;
45 
46   // The opcode that should be used to compare Op0 and Op1.
47   unsigned Opcode;
48 
49   // A SystemZICMP value.  Only used for integer comparisons.
50   unsigned ICmpType;
51 
52   // The mask of CC values that Opcode can produce.
53   unsigned CCValid;
54 
55   // The mask of CC values for which the original condition is true.
56   unsigned CCMask;
57 };
58 } // end anonymous namespace
59 
60 // Classify VT as either 32 or 64 bit.
61 static bool is32Bit(EVT VT) {
62   switch (VT.getSimpleVT().SimpleTy) {
63   case MVT::i32:
64     return true;
65   case MVT::i64:
66     return false;
67   default:
68     llvm_unreachable("Unsupported type");
69   }
70 }
71 
72 // Return a version of MachineOperand that can be safely used before the
73 // final use.
74 static MachineOperand earlyUseOperand(MachineOperand Op) {
75   if (Op.isReg())
76     Op.setIsKill(false);
77   return Op;
78 }
79 
80 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM,
81                                              const SystemZSubtarget &STI)
82     : TargetLowering(TM), Subtarget(STI) {
83   MVT PtrVT = MVT::getIntegerVT(TM.getPointerSizeInBits(0));
84 
85   auto *Regs = STI.getSpecialRegisters();
86 
87   // Set up the register classes.
88   if (Subtarget.hasHighWord())
89     addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass);
90   else
91     addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass);
92   addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass);
93   if (!useSoftFloat()) {
94     if (Subtarget.hasVector()) {
95       addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass);
96       addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass);
97     } else {
98       addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass);
99       addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass);
100     }
101     if (Subtarget.hasVectorEnhancements1())
102       addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass);
103     else
104       addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass);
105 
106     if (Subtarget.hasVector()) {
107       addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass);
108       addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass);
109       addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass);
110       addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass);
111       addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass);
112       addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass);
113     }
114   }
115 
116   // Compute derived properties from the register classes
117   computeRegisterProperties(Subtarget.getRegisterInfo());
118 
119   // Set up special registers.
120   setStackPointerRegisterToSaveRestore(Regs->getStackPointerRegister());
121 
122   // TODO: It may be better to default to latency-oriented scheduling, however
123   // LLVM's current latency-oriented scheduler can't handle physreg definitions
124   // such as SystemZ has with CC, so set this to the register-pressure
125   // scheduler, because it can.
126   setSchedulingPreference(Sched::RegPressure);
127 
128   setBooleanContents(ZeroOrOneBooleanContent);
129   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
130 
131   // Instructions are strings of 2-byte aligned 2-byte values.
132   setMinFunctionAlignment(Align(2));
133   // For performance reasons we prefer 16-byte alignment.
134   setPrefFunctionAlignment(Align(16));
135 
136   // Handle operations that are handled in a similar way for all types.
137   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
138        I <= MVT::LAST_FP_VALUETYPE;
139        ++I) {
140     MVT VT = MVT::SimpleValueType(I);
141     if (isTypeLegal(VT)) {
142       // Lower SET_CC into an IPM-based sequence.
143       setOperationAction(ISD::SETCC, VT, Custom);
144       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
145       setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
146 
147       // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE).
148       setOperationAction(ISD::SELECT, VT, Expand);
149 
150       // Lower SELECT_CC and BR_CC into separate comparisons and branches.
151       setOperationAction(ISD::SELECT_CC, VT, Custom);
152       setOperationAction(ISD::BR_CC,     VT, Custom);
153     }
154   }
155 
156   // Expand jump table branches as address arithmetic followed by an
157   // indirect jump.
158   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
159 
160   // Expand BRCOND into a BR_CC (see above).
161   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
162 
163   // Handle integer types.
164   for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE;
165        I <= MVT::LAST_INTEGER_VALUETYPE;
166        ++I) {
167     MVT VT = MVT::SimpleValueType(I);
168     if (isTypeLegal(VT)) {
169       setOperationAction(ISD::ABS, VT, Legal);
170 
171       // Expand individual DIV and REMs into DIVREMs.
172       setOperationAction(ISD::SDIV, VT, Expand);
173       setOperationAction(ISD::UDIV, VT, Expand);
174       setOperationAction(ISD::SREM, VT, Expand);
175       setOperationAction(ISD::UREM, VT, Expand);
176       setOperationAction(ISD::SDIVREM, VT, Custom);
177       setOperationAction(ISD::UDIVREM, VT, Custom);
178 
179       // Support addition/subtraction with overflow.
180       setOperationAction(ISD::SADDO, VT, Custom);
181       setOperationAction(ISD::SSUBO, VT, Custom);
182 
183       // Support addition/subtraction with carry.
184       setOperationAction(ISD::UADDO, VT, Custom);
185       setOperationAction(ISD::USUBO, VT, Custom);
186 
187       // Support carry in as value rather than glue.
188       setOperationAction(ISD::ADDCARRY, VT, Custom);
189       setOperationAction(ISD::SUBCARRY, VT, Custom);
190 
191       // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and
192       // stores, putting a serialization instruction after the stores.
193       setOperationAction(ISD::ATOMIC_LOAD,  VT, Custom);
194       setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
195 
196       // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are
197       // available, or if the operand is constant.
198       setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
199 
200       // Use POPCNT on z196 and above.
201       if (Subtarget.hasPopulationCount())
202         setOperationAction(ISD::CTPOP, VT, Custom);
203       else
204         setOperationAction(ISD::CTPOP, VT, Expand);
205 
206       // No special instructions for these.
207       setOperationAction(ISD::CTTZ,            VT, Expand);
208       setOperationAction(ISD::ROTR,            VT, Expand);
209 
210       // Use *MUL_LOHI where possible instead of MULH*.
211       setOperationAction(ISD::MULHS, VT, Expand);
212       setOperationAction(ISD::MULHU, VT, Expand);
213       setOperationAction(ISD::SMUL_LOHI, VT, Custom);
214       setOperationAction(ISD::UMUL_LOHI, VT, Custom);
215 
216       // Only z196 and above have native support for conversions to unsigned.
217       // On z10, promoting to i64 doesn't generate an inexact condition for
218       // values that are outside the i32 range but in the i64 range, so use
219       // the default expansion.
220       if (!Subtarget.hasFPExtension())
221         setOperationAction(ISD::FP_TO_UINT, VT, Expand);
222 
223       // Mirror those settings for STRICT_FP_TO_[SU]INT.  Note that these all
224       // default to Expand, so need to be modified to Legal where appropriate.
225       setOperationAction(ISD::STRICT_FP_TO_SINT, VT, Legal);
226       if (Subtarget.hasFPExtension())
227         setOperationAction(ISD::STRICT_FP_TO_UINT, VT, Legal);
228 
229       // And similarly for STRICT_[SU]INT_TO_FP.
230       setOperationAction(ISD::STRICT_SINT_TO_FP, VT, Legal);
231       if (Subtarget.hasFPExtension())
232         setOperationAction(ISD::STRICT_UINT_TO_FP, VT, Legal);
233     }
234   }
235 
236   // Type legalization will convert 8- and 16-bit atomic operations into
237   // forms that operate on i32s (but still keeping the original memory VT).
238   // Lower them into full i32 operations.
239   setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Custom);
240   setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Custom);
241   setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Custom);
242   setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Custom);
243   setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Custom);
244   setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Custom);
245   setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom);
246   setOperationAction(ISD::ATOMIC_LOAD_MIN,  MVT::i32, Custom);
247   setOperationAction(ISD::ATOMIC_LOAD_MAX,  MVT::i32, Custom);
248   setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom);
249   setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom);
250 
251   // Even though i128 is not a legal type, we still need to custom lower
252   // the atomic operations in order to exploit SystemZ instructions.
253   setOperationAction(ISD::ATOMIC_LOAD,     MVT::i128, Custom);
254   setOperationAction(ISD::ATOMIC_STORE,    MVT::i128, Custom);
255 
256   // We can use the CC result of compare-and-swap to implement
257   // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS.
258   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom);
259   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom);
260   setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
261 
262   setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
263 
264   // Traps are legal, as we will convert them to "j .+2".
265   setOperationAction(ISD::TRAP, MVT::Other, Legal);
266 
267   // z10 has instructions for signed but not unsigned FP conversion.
268   // Handle unsigned 32-bit types as signed 64-bit types.
269   if (!Subtarget.hasFPExtension()) {
270     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote);
271     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
272     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Promote);
273     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
274   }
275 
276   // We have native support for a 64-bit CTLZ, via FLOGR.
277   setOperationAction(ISD::CTLZ, MVT::i32, Promote);
278   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Promote);
279   setOperationAction(ISD::CTLZ, MVT::i64, Legal);
280 
281   // On z15 we have native support for a 64-bit CTPOP.
282   if (Subtarget.hasMiscellaneousExtensions3()) {
283     setOperationAction(ISD::CTPOP, MVT::i32, Promote);
284     setOperationAction(ISD::CTPOP, MVT::i64, Legal);
285   }
286 
287   // Give LowerOperation the chance to replace 64-bit ORs with subregs.
288   setOperationAction(ISD::OR, MVT::i64, Custom);
289 
290   // Expand 128 bit shifts without using a libcall.
291   setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
292   setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
293   setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
294   setLibcallName(RTLIB::SRL_I128, nullptr);
295   setLibcallName(RTLIB::SHL_I128, nullptr);
296   setLibcallName(RTLIB::SRA_I128, nullptr);
297 
298   // Handle bitcast from fp128 to i128.
299   setOperationAction(ISD::BITCAST, MVT::i128, Custom);
300 
301   // We have native instructions for i8, i16 and i32 extensions, but not i1.
302   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
303   for (MVT VT : MVT::integer_valuetypes()) {
304     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
305     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
306     setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i1, Promote);
307   }
308 
309   // Handle the various types of symbolic address.
310   setOperationAction(ISD::ConstantPool,     PtrVT, Custom);
311   setOperationAction(ISD::GlobalAddress,    PtrVT, Custom);
312   setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom);
313   setOperationAction(ISD::BlockAddress,     PtrVT, Custom);
314   setOperationAction(ISD::JumpTable,        PtrVT, Custom);
315 
316   // We need to handle dynamic allocations specially because of the
317   // 160-byte area at the bottom of the stack.
318   setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
319   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom);
320 
321   setOperationAction(ISD::STACKSAVE,    MVT::Other, Custom);
322   setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom);
323 
324   // Handle prefetches with PFD or PFDRL.
325   setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
326 
327   for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
328     // Assume by default that all vector operations need to be expanded.
329     for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode)
330       if (getOperationAction(Opcode, VT) == Legal)
331         setOperationAction(Opcode, VT, Expand);
332 
333     // Likewise all truncating stores and extending loads.
334     for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
335       setTruncStoreAction(VT, InnerVT, Expand);
336       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
337       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
338       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
339     }
340 
341     if (isTypeLegal(VT)) {
342       // These operations are legal for anything that can be stored in a
343       // vector register, even if there is no native support for the format
344       // as such.  In particular, we can do these for v4f32 even though there
345       // are no specific instructions for that format.
346       setOperationAction(ISD::LOAD, VT, Legal);
347       setOperationAction(ISD::STORE, VT, Legal);
348       setOperationAction(ISD::VSELECT, VT, Legal);
349       setOperationAction(ISD::BITCAST, VT, Legal);
350       setOperationAction(ISD::UNDEF, VT, Legal);
351 
352       // Likewise, except that we need to replace the nodes with something
353       // more specific.
354       setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
355       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
356     }
357   }
358 
359   // Handle integer vector types.
360   for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
361     if (isTypeLegal(VT)) {
362       // These operations have direct equivalents.
363       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal);
364       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal);
365       setOperationAction(ISD::ADD, VT, Legal);
366       setOperationAction(ISD::SUB, VT, Legal);
367       if (VT != MVT::v2i64)
368         setOperationAction(ISD::MUL, VT, Legal);
369       setOperationAction(ISD::ABS, VT, Legal);
370       setOperationAction(ISD::AND, VT, Legal);
371       setOperationAction(ISD::OR, VT, Legal);
372       setOperationAction(ISD::XOR, VT, Legal);
373       if (Subtarget.hasVectorEnhancements1())
374         setOperationAction(ISD::CTPOP, VT, Legal);
375       else
376         setOperationAction(ISD::CTPOP, VT, Custom);
377       setOperationAction(ISD::CTTZ, VT, Legal);
378       setOperationAction(ISD::CTLZ, VT, Legal);
379 
380       // Convert a GPR scalar to a vector by inserting it into element 0.
381       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
382 
383       // Use a series of unpacks for extensions.
384       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom);
385       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom);
386 
387       // Detect shifts by a scalar amount and convert them into
388       // V*_BY_SCALAR.
389       setOperationAction(ISD::SHL, VT, Custom);
390       setOperationAction(ISD::SRA, VT, Custom);
391       setOperationAction(ISD::SRL, VT, Custom);
392 
393       // At present ROTL isn't matched by DAGCombiner.  ROTR should be
394       // converted into ROTL.
395       setOperationAction(ISD::ROTL, VT, Expand);
396       setOperationAction(ISD::ROTR, VT, Expand);
397 
398       // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands
399       // and inverting the result as necessary.
400       setOperationAction(ISD::SETCC, VT, Custom);
401       setOperationAction(ISD::STRICT_FSETCC, VT, Custom);
402       if (Subtarget.hasVectorEnhancements1())
403         setOperationAction(ISD::STRICT_FSETCCS, VT, Custom);
404     }
405   }
406 
407   if (Subtarget.hasVector()) {
408     // There should be no need to check for float types other than v2f64
409     // since <2 x f32> isn't a legal type.
410     setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
411     setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal);
412     setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
413     setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal);
414     setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
415     setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal);
416     setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
417     setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal);
418 
419     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
420     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2f64, Legal);
421     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
422     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2f64, Legal);
423     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
424     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2f64, Legal);
425     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
426     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2f64, Legal);
427   }
428 
429   if (Subtarget.hasVectorEnhancements2()) {
430     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
431     setOperationAction(ISD::FP_TO_SINT, MVT::v4f32, Legal);
432     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
433     setOperationAction(ISD::FP_TO_UINT, MVT::v4f32, Legal);
434     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
435     setOperationAction(ISD::SINT_TO_FP, MVT::v4f32, Legal);
436     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
437     setOperationAction(ISD::UINT_TO_FP, MVT::v4f32, Legal);
438 
439     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
440     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4f32, Legal);
441     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
442     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4f32, Legal);
443     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
444     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4f32, Legal);
445     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
446     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4f32, Legal);
447   }
448 
449   // Handle floating-point types.
450   for (unsigned I = MVT::FIRST_FP_VALUETYPE;
451        I <= MVT::LAST_FP_VALUETYPE;
452        ++I) {
453     MVT VT = MVT::SimpleValueType(I);
454     if (isTypeLegal(VT)) {
455       // We can use FI for FRINT.
456       setOperationAction(ISD::FRINT, VT, Legal);
457 
458       // We can use the extended form of FI for other rounding operations.
459       if (Subtarget.hasFPExtension()) {
460         setOperationAction(ISD::FNEARBYINT, VT, Legal);
461         setOperationAction(ISD::FFLOOR, VT, Legal);
462         setOperationAction(ISD::FCEIL, VT, Legal);
463         setOperationAction(ISD::FTRUNC, VT, Legal);
464         setOperationAction(ISD::FROUND, VT, Legal);
465       }
466 
467       // No special instructions for these.
468       setOperationAction(ISD::FSIN, VT, Expand);
469       setOperationAction(ISD::FCOS, VT, Expand);
470       setOperationAction(ISD::FSINCOS, VT, Expand);
471       setOperationAction(ISD::FREM, VT, Expand);
472       setOperationAction(ISD::FPOW, VT, Expand);
473 
474       // Special treatment.
475       setOperationAction(ISD::IS_FPCLASS, VT, Custom);
476 
477       // Handle constrained floating-point operations.
478       setOperationAction(ISD::STRICT_FADD, VT, Legal);
479       setOperationAction(ISD::STRICT_FSUB, VT, Legal);
480       setOperationAction(ISD::STRICT_FMUL, VT, Legal);
481       setOperationAction(ISD::STRICT_FDIV, VT, Legal);
482       setOperationAction(ISD::STRICT_FMA, VT, Legal);
483       setOperationAction(ISD::STRICT_FSQRT, VT, Legal);
484       setOperationAction(ISD::STRICT_FRINT, VT, Legal);
485       setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal);
486       setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal);
487       if (Subtarget.hasFPExtension()) {
488         setOperationAction(ISD::STRICT_FNEARBYINT, VT, Legal);
489         setOperationAction(ISD::STRICT_FFLOOR, VT, Legal);
490         setOperationAction(ISD::STRICT_FCEIL, VT, Legal);
491         setOperationAction(ISD::STRICT_FROUND, VT, Legal);
492         setOperationAction(ISD::STRICT_FTRUNC, VT, Legal);
493       }
494     }
495   }
496 
497   // Handle floating-point vector types.
498   if (Subtarget.hasVector()) {
499     // Scalar-to-vector conversion is just a subreg.
500     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
501     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
502 
503     // Some insertions and extractions can be done directly but others
504     // need to go via integers.
505     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
506     setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
507     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
508     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
509 
510     // These operations have direct equivalents.
511     setOperationAction(ISD::FADD, MVT::v2f64, Legal);
512     setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
513     setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
514     setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
515     setOperationAction(ISD::FMA, MVT::v2f64, Legal);
516     setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
517     setOperationAction(ISD::FABS, MVT::v2f64, Legal);
518     setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
519     setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
520     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
521     setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
522     setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
523     setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
524     setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
525 
526     // Handle constrained floating-point operations.
527     setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
528     setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
529     setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
530     setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
531     setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
532     setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
533     setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
534     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v2f64, Legal);
535     setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
536     setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal);
537     setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
538     setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
539   }
540 
541   // The vector enhancements facility 1 has instructions for these.
542   if (Subtarget.hasVectorEnhancements1()) {
543     setOperationAction(ISD::FADD, MVT::v4f32, Legal);
544     setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
545     setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
546     setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
547     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
548     setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
549     setOperationAction(ISD::FABS, MVT::v4f32, Legal);
550     setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
551     setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
552     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
553     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
554     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
555     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
556     setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
557 
558     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
559     setOperationAction(ISD::FMAXIMUM, MVT::f64, Legal);
560     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
561     setOperationAction(ISD::FMINIMUM, MVT::f64, Legal);
562 
563     setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal);
564     setOperationAction(ISD::FMAXIMUM, MVT::v2f64, Legal);
565     setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal);
566     setOperationAction(ISD::FMINIMUM, MVT::v2f64, Legal);
567 
568     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
569     setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
570     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
571     setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
572 
573     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
574     setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
575     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
576     setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
577 
578     setOperationAction(ISD::FMAXNUM, MVT::f128, Legal);
579     setOperationAction(ISD::FMAXIMUM, MVT::f128, Legal);
580     setOperationAction(ISD::FMINNUM, MVT::f128, Legal);
581     setOperationAction(ISD::FMINIMUM, MVT::f128, Legal);
582 
583     // Handle constrained floating-point operations.
584     setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
585     setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
586     setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
587     setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
588     setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
589     setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
590     setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
591     setOperationAction(ISD::STRICT_FNEARBYINT, MVT::v4f32, Legal);
592     setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
593     setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal);
594     setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
595     setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
596     for (auto VT : { MVT::f32, MVT::f64, MVT::f128,
597                      MVT::v4f32, MVT::v2f64 }) {
598       setOperationAction(ISD::STRICT_FMAXNUM, VT, Legal);
599       setOperationAction(ISD::STRICT_FMINNUM, VT, Legal);
600       setOperationAction(ISD::STRICT_FMAXIMUM, VT, Legal);
601       setOperationAction(ISD::STRICT_FMINIMUM, VT, Legal);
602     }
603   }
604 
605   // We only have fused f128 multiply-addition on vector registers.
606   if (!Subtarget.hasVectorEnhancements1()) {
607     setOperationAction(ISD::FMA, MVT::f128, Expand);
608     setOperationAction(ISD::STRICT_FMA, MVT::f128, Expand);
609   }
610 
611   // We don't have a copysign instruction on vector registers.
612   if (Subtarget.hasVectorEnhancements1())
613     setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
614 
615   // Needed so that we don't try to implement f128 constant loads using
616   // a load-and-extend of a f80 constant (in cases where the constant
617   // would fit in an f80).
618   for (MVT VT : MVT::fp_valuetypes())
619     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand);
620 
621   // We don't have extending load instruction on vector registers.
622   if (Subtarget.hasVectorEnhancements1()) {
623     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand);
624     setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand);
625   }
626 
627   // Floating-point truncation and stores need to be done separately.
628   setTruncStoreAction(MVT::f64,  MVT::f32, Expand);
629   setTruncStoreAction(MVT::f128, MVT::f32, Expand);
630   setTruncStoreAction(MVT::f128, MVT::f64, Expand);
631 
632   // We have 64-bit FPR<->GPR moves, but need special handling for
633   // 32-bit forms.
634   if (!Subtarget.hasVector()) {
635     setOperationAction(ISD::BITCAST, MVT::i32, Custom);
636     setOperationAction(ISD::BITCAST, MVT::f32, Custom);
637   }
638 
639   // VASTART and VACOPY need to deal with the SystemZ-specific varargs
640   // structure, but VAEND is a no-op.
641   setOperationAction(ISD::VASTART, MVT::Other, Custom);
642   setOperationAction(ISD::VACOPY,  MVT::Other, Custom);
643   setOperationAction(ISD::VAEND,   MVT::Other, Expand);
644 
645   // Codes for which we want to perform some z-specific combinations.
646   setTargetDAGCombine({ISD::ZERO_EXTEND,
647                        ISD::SIGN_EXTEND,
648                        ISD::SIGN_EXTEND_INREG,
649                        ISD::LOAD,
650                        ISD::STORE,
651                        ISD::VECTOR_SHUFFLE,
652                        ISD::EXTRACT_VECTOR_ELT,
653                        ISD::FP_ROUND,
654                        ISD::STRICT_FP_ROUND,
655                        ISD::FP_EXTEND,
656                        ISD::SINT_TO_FP,
657                        ISD::UINT_TO_FP,
658                        ISD::STRICT_FP_EXTEND,
659                        ISD::BSWAP,
660                        ISD::SDIV,
661                        ISD::UDIV,
662                        ISD::SREM,
663                        ISD::UREM,
664                        ISD::INTRINSIC_VOID,
665                        ISD::INTRINSIC_W_CHAIN});
666 
667   // Handle intrinsics.
668   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
669   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
670 
671   // We want to use MVC in preference to even a single load/store pair.
672   MaxStoresPerMemcpy = Subtarget.hasVector() ? 2 : 0;
673   MaxStoresPerMemcpyOptSize = 0;
674 
675   // The main memset sequence is a byte store followed by an MVC.
676   // Two STC or MV..I stores win over that, but the kind of fused stores
677   // generated by target-independent code don't when the byte value is
678   // variable.  E.g.  "STC <reg>;MHI <reg>,257;STH <reg>" is not better
679   // than "STC;MVC".  Handle the choice in target-specific code instead.
680   MaxStoresPerMemset = Subtarget.hasVector() ? 2 : 0;
681   MaxStoresPerMemsetOptSize = 0;
682 
683   // Default to having -disable-strictnode-mutation on
684   IsStrictFPEnabled = true;
685 }
686 
687 bool SystemZTargetLowering::useSoftFloat() const {
688   return Subtarget.hasSoftFloat();
689 }
690 
691 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL,
692                                               LLVMContext &, EVT VT) const {
693   if (!VT.isVector())
694     return MVT::i32;
695   return VT.changeVectorElementTypeToInteger();
696 }
697 
698 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(
699     const MachineFunction &MF, EVT VT) const {
700   VT = VT.getScalarType();
701 
702   if (!VT.isSimple())
703     return false;
704 
705   switch (VT.getSimpleVT().SimpleTy) {
706   case MVT::f32:
707   case MVT::f64:
708     return true;
709   case MVT::f128:
710     return Subtarget.hasVectorEnhancements1();
711   default:
712     break;
713   }
714 
715   return false;
716 }
717 
718 // Return true if the constant can be generated with a vector instruction,
719 // such as VGM, VGMB or VREPI.
720 bool SystemZVectorConstantInfo::isVectorConstantLegal(
721     const SystemZSubtarget &Subtarget) {
722   const SystemZInstrInfo *TII =
723       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
724   if (!Subtarget.hasVector() ||
725       (isFP128 && !Subtarget.hasVectorEnhancements1()))
726     return false;
727 
728   // Try using VECTOR GENERATE BYTE MASK.  This is the architecturally-
729   // preferred way of creating all-zero and all-one vectors so give it
730   // priority over other methods below.
731   unsigned Mask = 0;
732   unsigned I = 0;
733   for (; I < SystemZ::VectorBytes; ++I) {
734     uint64_t Byte = IntBits.lshr(I * 8).trunc(8).getZExtValue();
735     if (Byte == 0xff)
736       Mask |= 1ULL << I;
737     else if (Byte != 0)
738       break;
739   }
740   if (I == SystemZ::VectorBytes) {
741     Opcode = SystemZISD::BYTE_MASK;
742     OpVals.push_back(Mask);
743     VecVT = MVT::getVectorVT(MVT::getIntegerVT(8), 16);
744     return true;
745   }
746 
747   if (SplatBitSize > 64)
748     return false;
749 
750   auto tryValue = [&](uint64_t Value) -> bool {
751     // Try VECTOR REPLICATE IMMEDIATE
752     int64_t SignedValue = SignExtend64(Value, SplatBitSize);
753     if (isInt<16>(SignedValue)) {
754       OpVals.push_back(((unsigned) SignedValue));
755       Opcode = SystemZISD::REPLICATE;
756       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
757                                SystemZ::VectorBits / SplatBitSize);
758       return true;
759     }
760     // Try VECTOR GENERATE MASK
761     unsigned Start, End;
762     if (TII->isRxSBGMask(Value, SplatBitSize, Start, End)) {
763       // isRxSBGMask returns the bit numbers for a full 64-bit value, with 0
764       // denoting 1 << 63 and 63 denoting 1.  Convert them to bit numbers for
765       // an SplatBitSize value, so that 0 denotes 1 << (SplatBitSize-1).
766       OpVals.push_back(Start - (64 - SplatBitSize));
767       OpVals.push_back(End - (64 - SplatBitSize));
768       Opcode = SystemZISD::ROTATE_MASK;
769       VecVT = MVT::getVectorVT(MVT::getIntegerVT(SplatBitSize),
770                                SystemZ::VectorBits / SplatBitSize);
771       return true;
772     }
773     return false;
774   };
775 
776   // First try assuming that any undefined bits above the highest set bit
777   // and below the lowest set bit are 1s.  This increases the likelihood of
778   // being able to use a sign-extended element value in VECTOR REPLICATE
779   // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK.
780   uint64_t SplatBitsZ = SplatBits.getZExtValue();
781   uint64_t SplatUndefZ = SplatUndef.getZExtValue();
782   uint64_t Lower =
783       (SplatUndefZ & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1));
784   uint64_t Upper =
785       (SplatUndefZ & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1));
786   if (tryValue(SplatBitsZ | Upper | Lower))
787     return true;
788 
789   // Now try assuming that any undefined bits between the first and
790   // last defined set bits are set.  This increases the chances of
791   // using a non-wraparound mask.
792   uint64_t Middle = SplatUndefZ & ~Upper & ~Lower;
793   return tryValue(SplatBitsZ | Middle);
794 }
795 
796 SystemZVectorConstantInfo::SystemZVectorConstantInfo(APInt IntImm) {
797   if (IntImm.isSingleWord()) {
798     IntBits = APInt(128, IntImm.getZExtValue());
799     IntBits <<= (SystemZ::VectorBits - IntImm.getBitWidth());
800   } else
801     IntBits = IntImm;
802   assert(IntBits.getBitWidth() == 128 && "Unsupported APInt.");
803 
804   // Find the smallest splat.
805   SplatBits = IntImm;
806   unsigned Width = SplatBits.getBitWidth();
807   while (Width > 8) {
808     unsigned HalfSize = Width / 2;
809     APInt HighValue = SplatBits.lshr(HalfSize).trunc(HalfSize);
810     APInt LowValue = SplatBits.trunc(HalfSize);
811 
812     // If the two halves do not match, stop here.
813     if (HighValue != LowValue || 8 > HalfSize)
814       break;
815 
816     SplatBits = HighValue;
817     Width = HalfSize;
818   }
819   SplatUndef = 0;
820   SplatBitSize = Width;
821 }
822 
823 SystemZVectorConstantInfo::SystemZVectorConstantInfo(BuildVectorSDNode *BVN) {
824   assert(BVN->isConstant() && "Expected a constant BUILD_VECTOR");
825   bool HasAnyUndefs;
826 
827   // Get IntBits by finding the 128 bit splat.
828   BVN->isConstantSplat(IntBits, SplatUndef, SplatBitSize, HasAnyUndefs, 128,
829                        true);
830 
831   // Get SplatBits by finding the 8 bit or greater splat.
832   BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 8,
833                        true);
834 }
835 
836 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
837                                          bool ForCodeSize) const {
838   // We can load zero using LZ?R and negative zero using LZ?R;LC?BR.
839   if (Imm.isZero() || Imm.isNegZero())
840     return true;
841 
842   return SystemZVectorConstantInfo(Imm).isVectorConstantLegal(Subtarget);
843 }
844 
845 /// Returns true if stack probing through inline assembly is requested.
846 bool SystemZTargetLowering::hasInlineStackProbe(MachineFunction &MF) const {
847   // If the function specifically requests inline stack probes, emit them.
848   if (MF.getFunction().hasFnAttribute("probe-stack"))
849     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
850            "inline-asm";
851   return false;
852 }
853 
854 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
855   // We can use CGFI or CLGFI.
856   return isInt<32>(Imm) || isUInt<32>(Imm);
857 }
858 
859 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const {
860   // We can use ALGFI or SLGFI.
861   return isUInt<32>(Imm) || isUInt<32>(-Imm);
862 }
863 
864 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(
865     EVT VT, unsigned, Align, MachineMemOperand::Flags, bool *Fast) const {
866   // Unaligned accesses should never be slower than the expanded version.
867   // We check specifically for aligned accesses in the few cases where
868   // they are required.
869   if (Fast)
870     *Fast = true;
871   return true;
872 }
873 
874 // Information about the addressing mode for a memory access.
875 struct AddressingMode {
876   // True if a long displacement is supported.
877   bool LongDisplacement;
878 
879   // True if use of index register is supported.
880   bool IndexReg;
881 
882   AddressingMode(bool LongDispl, bool IdxReg) :
883     LongDisplacement(LongDispl), IndexReg(IdxReg) {}
884 };
885 
886 // Return the desired addressing mode for a Load which has only one use (in
887 // the same block) which is a Store.
888 static AddressingMode getLoadStoreAddrMode(bool HasVector,
889                                           Type *Ty) {
890   // With vector support a Load->Store combination may be combined to either
891   // an MVC or vector operations and it seems to work best to allow the
892   // vector addressing mode.
893   if (HasVector)
894     return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
895 
896   // Otherwise only the MVC case is special.
897   bool MVC = Ty->isIntegerTy(8);
898   return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/);
899 }
900 
901 // Return the addressing mode which seems most desirable given an LLVM
902 // Instruction pointer.
903 static AddressingMode
904 supportedAddressingMode(Instruction *I, bool HasVector) {
905   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
906     switch (II->getIntrinsicID()) {
907     default: break;
908     case Intrinsic::memset:
909     case Intrinsic::memmove:
910     case Intrinsic::memcpy:
911       return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
912     }
913   }
914 
915   if (isa<LoadInst>(I) && I->hasOneUse()) {
916     auto *SingleUser = cast<Instruction>(*I->user_begin());
917     if (SingleUser->getParent() == I->getParent()) {
918       if (isa<ICmpInst>(SingleUser)) {
919         if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1)))
920           if (C->getBitWidth() <= 64 &&
921               (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue())))
922             // Comparison of memory with 16 bit signed / unsigned immediate
923             return AddressingMode(false/*LongDispl*/, false/*IdxReg*/);
924       } else if (isa<StoreInst>(SingleUser))
925         // Load->Store
926         return getLoadStoreAddrMode(HasVector, I->getType());
927     }
928   } else if (auto *StoreI = dyn_cast<StoreInst>(I)) {
929     if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand()))
930       if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent())
931         // Load->Store
932         return getLoadStoreAddrMode(HasVector, LoadI->getType());
933   }
934 
935   if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) {
936 
937     // * Use LDE instead of LE/LEY for z13 to avoid partial register
938     //   dependencies (LDE only supports small offsets).
939     // * Utilize the vector registers to hold floating point
940     //   values (vector load / store instructions only support small
941     //   offsets).
942 
943     Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() :
944                          I->getOperand(0)->getType());
945     bool IsFPAccess = MemAccessTy->isFloatingPointTy();
946     bool IsVectorAccess = MemAccessTy->isVectorTy();
947 
948     // A store of an extracted vector element will be combined into a VSTE type
949     // instruction.
950     if (!IsVectorAccess && isa<StoreInst>(I)) {
951       Value *DataOp = I->getOperand(0);
952       if (isa<ExtractElementInst>(DataOp))
953         IsVectorAccess = true;
954     }
955 
956     // A load which gets inserted into a vector element will be combined into a
957     // VLE type instruction.
958     if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) {
959       User *LoadUser = *I->user_begin();
960       if (isa<InsertElementInst>(LoadUser))
961         IsVectorAccess = true;
962     }
963 
964     if (IsFPAccess || IsVectorAccess)
965       return AddressingMode(false/*LongDispl*/, true/*IdxReg*/);
966   }
967 
968   return AddressingMode(true/*LongDispl*/, true/*IdxReg*/);
969 }
970 
971 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL,
972        const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const {
973   // Punt on globals for now, although they can be used in limited
974   // RELATIVE LONG cases.
975   if (AM.BaseGV)
976     return false;
977 
978   // Require a 20-bit signed offset.
979   if (!isInt<20>(AM.BaseOffs))
980     return false;
981 
982   bool RequireD12 = Subtarget.hasVector() && Ty->isVectorTy();
983   AddressingMode SupportedAM(!RequireD12, true);
984   if (I != nullptr)
985     SupportedAM = supportedAddressingMode(I, Subtarget.hasVector());
986 
987   if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs))
988     return false;
989 
990   if (!SupportedAM.IndexReg)
991     // No indexing allowed.
992     return AM.Scale == 0;
993   else
994     // Indexing is OK but no scale factor can be applied.
995     return AM.Scale == 0 || AM.Scale == 1;
996 }
997 
998 bool SystemZTargetLowering::findOptimalMemOpLowering(
999     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
1000     unsigned SrcAS, const AttributeList &FuncAttributes) const {
1001   const int MVCFastLen = 16;
1002 
1003   if (Limit != ~unsigned(0)) {
1004     // Don't expand Op into scalar loads/stores in these cases:
1005     if (Op.isMemcpy() && Op.allowOverlap() && Op.size() <= MVCFastLen)
1006       return false; // Small memcpy: Use MVC
1007     if (Op.isMemset() && Op.size() - 1 <= MVCFastLen)
1008       return false; // Small memset (first byte with STC/MVI): Use MVC
1009     if (Op.isZeroMemset())
1010       return false; // Memset zero: Use XC
1011   }
1012 
1013   return TargetLowering::findOptimalMemOpLowering(MemOps, Limit, Op, DstAS,
1014                                                   SrcAS, FuncAttributes);
1015 }
1016 
1017 EVT SystemZTargetLowering::getOptimalMemOpType(const MemOp &Op,
1018                                    const AttributeList &FuncAttributes) const {
1019   return Subtarget.hasVector() ? MVT::v2i64 : MVT::Other;
1020 }
1021 
1022 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const {
1023   if (!FromType->isIntegerTy() || !ToType->isIntegerTy())
1024     return false;
1025   unsigned FromBits = FromType->getPrimitiveSizeInBits().getFixedSize();
1026   unsigned ToBits = ToType->getPrimitiveSizeInBits().getFixedSize();
1027   return FromBits > ToBits;
1028 }
1029 
1030 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const {
1031   if (!FromVT.isInteger() || !ToVT.isInteger())
1032     return false;
1033   unsigned FromBits = FromVT.getFixedSizeInBits();
1034   unsigned ToBits = ToVT.getFixedSizeInBits();
1035   return FromBits > ToBits;
1036 }
1037 
1038 //===----------------------------------------------------------------------===//
1039 // Inline asm support
1040 //===----------------------------------------------------------------------===//
1041 
1042 TargetLowering::ConstraintType
1043 SystemZTargetLowering::getConstraintType(StringRef Constraint) const {
1044   if (Constraint.size() == 1) {
1045     switch (Constraint[0]) {
1046     case 'a': // Address register
1047     case 'd': // Data register (equivalent to 'r')
1048     case 'f': // Floating-point register
1049     case 'h': // High-part register
1050     case 'r': // General-purpose register
1051     case 'v': // Vector register
1052       return C_RegisterClass;
1053 
1054     case 'Q': // Memory with base and unsigned 12-bit displacement
1055     case 'R': // Likewise, plus an index
1056     case 'S': // Memory with base and signed 20-bit displacement
1057     case 'T': // Likewise, plus an index
1058     case 'm': // Equivalent to 'T'.
1059       return C_Memory;
1060 
1061     case 'I': // Unsigned 8-bit constant
1062     case 'J': // Unsigned 12-bit constant
1063     case 'K': // Signed 16-bit constant
1064     case 'L': // Signed 20-bit displacement (on all targets we support)
1065     case 'M': // 0x7fffffff
1066       return C_Immediate;
1067 
1068     default:
1069       break;
1070     }
1071   } else if (Constraint.size() == 2 && Constraint[0] == 'Z') {
1072     switch (Constraint[1]) {
1073     case 'Q': // Address with base and unsigned 12-bit displacement
1074     case 'R': // Likewise, plus an index
1075     case 'S': // Address with base and signed 20-bit displacement
1076     case 'T': // Likewise, plus an index
1077       return C_Address;
1078 
1079     default:
1080       break;
1081     }
1082   }
1083   return TargetLowering::getConstraintType(Constraint);
1084 }
1085 
1086 TargetLowering::ConstraintWeight SystemZTargetLowering::
1087 getSingleConstraintMatchWeight(AsmOperandInfo &info,
1088                                const char *constraint) const {
1089   ConstraintWeight weight = CW_Invalid;
1090   Value *CallOperandVal = info.CallOperandVal;
1091   // If we don't have a value, we can't do a match,
1092   // but allow it at the lowest weight.
1093   if (!CallOperandVal)
1094     return CW_Default;
1095   Type *type = CallOperandVal->getType();
1096   // Look at the constraint type.
1097   switch (*constraint) {
1098   default:
1099     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1100     break;
1101 
1102   case 'a': // Address register
1103   case 'd': // Data register (equivalent to 'r')
1104   case 'h': // High-part register
1105   case 'r': // General-purpose register
1106     if (CallOperandVal->getType()->isIntegerTy())
1107       weight = CW_Register;
1108     break;
1109 
1110   case 'f': // Floating-point register
1111     if (type->isFloatingPointTy())
1112       weight = CW_Register;
1113     break;
1114 
1115   case 'v': // Vector register
1116     if ((type->isVectorTy() || type->isFloatingPointTy()) &&
1117         Subtarget.hasVector())
1118       weight = CW_Register;
1119     break;
1120 
1121   case 'I': // Unsigned 8-bit constant
1122     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1123       if (isUInt<8>(C->getZExtValue()))
1124         weight = CW_Constant;
1125     break;
1126 
1127   case 'J': // Unsigned 12-bit constant
1128     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1129       if (isUInt<12>(C->getZExtValue()))
1130         weight = CW_Constant;
1131     break;
1132 
1133   case 'K': // Signed 16-bit constant
1134     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1135       if (isInt<16>(C->getSExtValue()))
1136         weight = CW_Constant;
1137     break;
1138 
1139   case 'L': // Signed 20-bit displacement (on all targets we support)
1140     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1141       if (isInt<20>(C->getSExtValue()))
1142         weight = CW_Constant;
1143     break;
1144 
1145   case 'M': // 0x7fffffff
1146     if (auto *C = dyn_cast<ConstantInt>(CallOperandVal))
1147       if (C->getZExtValue() == 0x7fffffff)
1148         weight = CW_Constant;
1149     break;
1150   }
1151   return weight;
1152 }
1153 
1154 // Parse a "{tNNN}" register constraint for which the register type "t"
1155 // has already been verified.  MC is the class associated with "t" and
1156 // Map maps 0-based register numbers to LLVM register numbers.
1157 static std::pair<unsigned, const TargetRegisterClass *>
1158 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC,
1159                     const unsigned *Map, unsigned Size) {
1160   assert(*(Constraint.end()-1) == '}' && "Missing '}'");
1161   if (isdigit(Constraint[2])) {
1162     unsigned Index;
1163     bool Failed =
1164         Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index);
1165     if (!Failed && Index < Size && Map[Index])
1166       return std::make_pair(Map[Index], RC);
1167   }
1168   return std::make_pair(0U, nullptr);
1169 }
1170 
1171 std::pair<unsigned, const TargetRegisterClass *>
1172 SystemZTargetLowering::getRegForInlineAsmConstraint(
1173     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
1174   if (Constraint.size() == 1) {
1175     // GCC Constraint Letters
1176     switch (Constraint[0]) {
1177     default: break;
1178     case 'd': // Data register (equivalent to 'r')
1179     case 'r': // General-purpose register
1180       if (VT == MVT::i64)
1181         return std::make_pair(0U, &SystemZ::GR64BitRegClass);
1182       else if (VT == MVT::i128)
1183         return std::make_pair(0U, &SystemZ::GR128BitRegClass);
1184       return std::make_pair(0U, &SystemZ::GR32BitRegClass);
1185 
1186     case 'a': // Address register
1187       if (VT == MVT::i64)
1188         return std::make_pair(0U, &SystemZ::ADDR64BitRegClass);
1189       else if (VT == MVT::i128)
1190         return std::make_pair(0U, &SystemZ::ADDR128BitRegClass);
1191       return std::make_pair(0U, &SystemZ::ADDR32BitRegClass);
1192 
1193     case 'h': // High-part register (an LLVM extension)
1194       return std::make_pair(0U, &SystemZ::GRH32BitRegClass);
1195 
1196     case 'f': // Floating-point register
1197       if (!useSoftFloat()) {
1198         if (VT == MVT::f64)
1199           return std::make_pair(0U, &SystemZ::FP64BitRegClass);
1200         else if (VT == MVT::f128)
1201           return std::make_pair(0U, &SystemZ::FP128BitRegClass);
1202         return std::make_pair(0U, &SystemZ::FP32BitRegClass);
1203       }
1204       break;
1205     case 'v': // Vector register
1206       if (Subtarget.hasVector()) {
1207         if (VT == MVT::f32)
1208           return std::make_pair(0U, &SystemZ::VR32BitRegClass);
1209         if (VT == MVT::f64)
1210           return std::make_pair(0U, &SystemZ::VR64BitRegClass);
1211         return std::make_pair(0U, &SystemZ::VR128BitRegClass);
1212       }
1213       break;
1214     }
1215   }
1216   if (Constraint.size() > 0 && Constraint[0] == '{') {
1217     // We need to override the default register parsing for GPRs and FPRs
1218     // because the interpretation depends on VT.  The internal names of
1219     // the registers are also different from the external names
1220     // (F0D and F0S instead of F0, etc.).
1221     if (Constraint[1] == 'r') {
1222       if (VT == MVT::i32)
1223         return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass,
1224                                    SystemZMC::GR32Regs, 16);
1225       if (VT == MVT::i128)
1226         return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass,
1227                                    SystemZMC::GR128Regs, 16);
1228       return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass,
1229                                  SystemZMC::GR64Regs, 16);
1230     }
1231     if (Constraint[1] == 'f') {
1232       if (useSoftFloat())
1233         return std::make_pair(
1234             0u, static_cast<const TargetRegisterClass *>(nullptr));
1235       if (VT == MVT::f32)
1236         return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass,
1237                                    SystemZMC::FP32Regs, 16);
1238       if (VT == MVT::f128)
1239         return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass,
1240                                    SystemZMC::FP128Regs, 16);
1241       return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass,
1242                                  SystemZMC::FP64Regs, 16);
1243     }
1244     if (Constraint[1] == 'v') {
1245       if (!Subtarget.hasVector())
1246         return std::make_pair(
1247             0u, static_cast<const TargetRegisterClass *>(nullptr));
1248       if (VT == MVT::f32)
1249         return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass,
1250                                    SystemZMC::VR32Regs, 32);
1251       if (VT == MVT::f64)
1252         return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass,
1253                                    SystemZMC::VR64Regs, 32);
1254       return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass,
1255                                  SystemZMC::VR128Regs, 32);
1256     }
1257   }
1258   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
1259 }
1260 
1261 // FIXME? Maybe this could be a TableGen attribute on some registers and
1262 // this table could be generated automatically from RegInfo.
1263 Register
1264 SystemZTargetLowering::getRegisterByName(const char *RegName, LLT VT,
1265                                          const MachineFunction &MF) const {
1266   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
1267 
1268   Register Reg =
1269       StringSwitch<Register>(RegName)
1270           .Case("r4", Subtarget->isTargetXPLINK64() ? SystemZ::R4D : 0)
1271           .Case("r15", Subtarget->isTargetELF() ? SystemZ::R15D : 0)
1272           .Default(0);
1273 
1274   if (Reg)
1275     return Reg;
1276   report_fatal_error("Invalid register name global variable");
1277 }
1278 
1279 void SystemZTargetLowering::
1280 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
1281                              std::vector<SDValue> &Ops,
1282                              SelectionDAG &DAG) const {
1283   // Only support length 1 constraints for now.
1284   if (Constraint.length() == 1) {
1285     switch (Constraint[0]) {
1286     case 'I': // Unsigned 8-bit constant
1287       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1288         if (isUInt<8>(C->getZExtValue()))
1289           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1290                                               Op.getValueType()));
1291       return;
1292 
1293     case 'J': // Unsigned 12-bit constant
1294       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1295         if (isUInt<12>(C->getZExtValue()))
1296           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1297                                               Op.getValueType()));
1298       return;
1299 
1300     case 'K': // Signed 16-bit constant
1301       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1302         if (isInt<16>(C->getSExtValue()))
1303           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1304                                               Op.getValueType()));
1305       return;
1306 
1307     case 'L': // Signed 20-bit displacement (on all targets we support)
1308       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1309         if (isInt<20>(C->getSExtValue()))
1310           Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
1311                                               Op.getValueType()));
1312       return;
1313 
1314     case 'M': // 0x7fffffff
1315       if (auto *C = dyn_cast<ConstantSDNode>(Op))
1316         if (C->getZExtValue() == 0x7fffffff)
1317           Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
1318                                               Op.getValueType()));
1319       return;
1320     }
1321   }
1322   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
1323 }
1324 
1325 //===----------------------------------------------------------------------===//
1326 // Calling conventions
1327 //===----------------------------------------------------------------------===//
1328 
1329 #include "SystemZGenCallingConv.inc"
1330 
1331 const MCPhysReg *SystemZTargetLowering::getScratchRegisters(
1332   CallingConv::ID) const {
1333   static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D,
1334                                            SystemZ::R14D, 0 };
1335   return ScratchRegs;
1336 }
1337 
1338 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType,
1339                                                      Type *ToType) const {
1340   return isTruncateFree(FromType, ToType);
1341 }
1342 
1343 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
1344   return CI->isTailCall();
1345 }
1346 
1347 // We do not yet support 128-bit single-element vector types.  If the user
1348 // attempts to use such types as function argument or return type, prefer
1349 // to error out instead of emitting code violating the ABI.
1350 static void VerifyVectorType(MVT VT, EVT ArgVT) {
1351   if (ArgVT.isVector() && !VT.isVector())
1352     report_fatal_error("Unsupported vector argument or return type");
1353 }
1354 
1355 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) {
1356   for (unsigned i = 0; i < Ins.size(); ++i)
1357     VerifyVectorType(Ins[i].VT, Ins[i].ArgVT);
1358 }
1359 
1360 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1361   for (unsigned i = 0; i < Outs.size(); ++i)
1362     VerifyVectorType(Outs[i].VT, Outs[i].ArgVT);
1363 }
1364 
1365 // Value is a value that has been passed to us in the location described by VA
1366 // (and so has type VA.getLocVT()).  Convert Value to VA.getValVT(), chaining
1367 // any loads onto Chain.
1368 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL,
1369                                    CCValAssign &VA, SDValue Chain,
1370                                    SDValue Value) {
1371   // If the argument has been promoted from a smaller type, insert an
1372   // assertion to capture this.
1373   if (VA.getLocInfo() == CCValAssign::SExt)
1374     Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value,
1375                         DAG.getValueType(VA.getValVT()));
1376   else if (VA.getLocInfo() == CCValAssign::ZExt)
1377     Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value,
1378                         DAG.getValueType(VA.getValVT()));
1379 
1380   if (VA.isExtInLoc())
1381     Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value);
1382   else if (VA.getLocInfo() == CCValAssign::BCvt) {
1383     // If this is a short vector argument loaded from the stack,
1384     // extend from i64 to full vector size and then bitcast.
1385     assert(VA.getLocVT() == MVT::i64);
1386     assert(VA.getValVT().isVector());
1387     Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)});
1388     Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value);
1389   } else
1390     assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo");
1391   return Value;
1392 }
1393 
1394 // Value is a value of type VA.getValVT() that we need to copy into
1395 // the location described by VA.  Return a copy of Value converted to
1396 // VA.getValVT().  The caller is responsible for handling indirect values.
1397 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL,
1398                                    CCValAssign &VA, SDValue Value) {
1399   switch (VA.getLocInfo()) {
1400   case CCValAssign::SExt:
1401     return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value);
1402   case CCValAssign::ZExt:
1403     return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value);
1404   case CCValAssign::AExt:
1405     return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value);
1406   case CCValAssign::BCvt: {
1407     assert(VA.getLocVT() == MVT::i64 || VA.getLocVT() == MVT::i128);
1408     assert(VA.getValVT().isVector() || VA.getValVT() == MVT::f64 ||
1409            VA.getValVT() == MVT::f128);
1410     MVT BitCastToType = VA.getValVT().isVector() && VA.getLocVT() == MVT::i64
1411                             ? MVT::v2i64
1412                             : VA.getLocVT();
1413     Value = DAG.getNode(ISD::BITCAST, DL, BitCastToType, Value);
1414     // For ELF, this is a short vector argument to be stored to the stack,
1415     // bitcast to v2i64 and then extract first element.
1416     if (BitCastToType == MVT::v2i64)
1417       return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value,
1418                          DAG.getConstant(0, DL, MVT::i32));
1419     return Value;
1420   }
1421   case CCValAssign::Full:
1422     return Value;
1423   default:
1424     llvm_unreachable("Unhandled getLocInfo()");
1425   }
1426 }
1427 
1428 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) {
1429   SDLoc DL(In);
1430   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1431                            DAG.getIntPtrConstant(0, DL));
1432   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In,
1433                            DAG.getIntPtrConstant(1, DL));
1434   SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL,
1435                                     MVT::Untyped, Hi, Lo);
1436   return SDValue(Pair, 0);
1437 }
1438 
1439 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) {
1440   SDLoc DL(In);
1441   SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
1442                                           DL, MVT::i64, In);
1443   SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
1444                                           DL, MVT::i64, In);
1445   return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi);
1446 }
1447 
1448 bool SystemZTargetLowering::splitValueIntoRegisterParts(
1449     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
1450     unsigned NumParts, MVT PartVT, Optional<CallingConv::ID> CC) const {
1451   EVT ValueVT = Val.getValueType();
1452   assert((ValueVT != MVT::i128 ||
1453           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1454            (NumParts == 2 && PartVT == MVT::i64))) &&
1455          "Unknown handling of i128 value.");
1456   if (ValueVT == MVT::i128 && NumParts == 1) {
1457     // Inline assembly operand.
1458     Parts[0] = lowerI128ToGR128(DAG, Val);
1459     return true;
1460   }
1461   return false;
1462 }
1463 
1464 SDValue SystemZTargetLowering::joinRegisterPartsIntoValue(
1465     SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
1466     MVT PartVT, EVT ValueVT, Optional<CallingConv::ID> CC) const {
1467   assert((ValueVT != MVT::i128 ||
1468           ((NumParts == 1 && PartVT == MVT::Untyped) ||
1469            (NumParts == 2 && PartVT == MVT::i64))) &&
1470          "Unknown handling of i128 value.");
1471   if (ValueVT == MVT::i128 && NumParts == 1)
1472     // Inline assembly operand.
1473     return lowerGR128ToI128(DAG, Parts[0]);
1474   return SDValue();
1475 }
1476 
1477 SDValue SystemZTargetLowering::LowerFormalArguments(
1478     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
1479     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
1480     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1481   MachineFunction &MF = DAG.getMachineFunction();
1482   MachineFrameInfo &MFI = MF.getFrameInfo();
1483   MachineRegisterInfo &MRI = MF.getRegInfo();
1484   SystemZMachineFunctionInfo *FuncInfo =
1485       MF.getInfo<SystemZMachineFunctionInfo>();
1486   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
1487   EVT PtrVT = getPointerTy(DAG.getDataLayout());
1488 
1489   // Detect unsupported vector argument types.
1490   if (Subtarget.hasVector())
1491     VerifyVectorTypes(Ins);
1492 
1493   // Assign locations to all of the incoming arguments.
1494   SmallVector<CCValAssign, 16> ArgLocs;
1495   SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
1496   CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
1497 
1498   unsigned NumFixedGPRs = 0;
1499   unsigned NumFixedFPRs = 0;
1500   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1501     SDValue ArgValue;
1502     CCValAssign &VA = ArgLocs[I];
1503     EVT LocVT = VA.getLocVT();
1504     if (VA.isRegLoc()) {
1505       // Arguments passed in registers
1506       const TargetRegisterClass *RC;
1507       switch (LocVT.getSimpleVT().SimpleTy) {
1508       default:
1509         // Integers smaller than i64 should be promoted to i64.
1510         llvm_unreachable("Unexpected argument type");
1511       case MVT::i32:
1512         NumFixedGPRs += 1;
1513         RC = &SystemZ::GR32BitRegClass;
1514         break;
1515       case MVT::i64:
1516         NumFixedGPRs += 1;
1517         RC = &SystemZ::GR64BitRegClass;
1518         break;
1519       case MVT::f32:
1520         NumFixedFPRs += 1;
1521         RC = &SystemZ::FP32BitRegClass;
1522         break;
1523       case MVT::f64:
1524         NumFixedFPRs += 1;
1525         RC = &SystemZ::FP64BitRegClass;
1526         break;
1527       case MVT::f128:
1528         NumFixedFPRs += 2;
1529         RC = &SystemZ::FP128BitRegClass;
1530         break;
1531       case MVT::v16i8:
1532       case MVT::v8i16:
1533       case MVT::v4i32:
1534       case MVT::v2i64:
1535       case MVT::v4f32:
1536       case MVT::v2f64:
1537         RC = &SystemZ::VR128BitRegClass;
1538         break;
1539       }
1540 
1541       Register VReg = MRI.createVirtualRegister(RC);
1542       MRI.addLiveIn(VA.getLocReg(), VReg);
1543       ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
1544     } else {
1545       assert(VA.isMemLoc() && "Argument not register or memory");
1546 
1547       // Create the frame index object for this incoming parameter.
1548       // FIXME: Pre-include call frame size in the offset, should not
1549       // need to manually add it here.
1550       int64_t ArgSPOffset = VA.getLocMemOffset();
1551       if (Subtarget.isTargetXPLINK64()) {
1552         auto &XPRegs =
1553             Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
1554         ArgSPOffset += XPRegs.getCallFrameSize();
1555       }
1556       int FI =
1557           MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, ArgSPOffset, true);
1558 
1559       // Create the SelectionDAG nodes corresponding to a load
1560       // from this parameter.  Unpromoted ints and floats are
1561       // passed as right-justified 8-byte values.
1562       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1563       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1564         FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN,
1565                           DAG.getIntPtrConstant(4, DL));
1566       ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN,
1567                              MachinePointerInfo::getFixedStack(MF, FI));
1568     }
1569 
1570     // Convert the value of the argument register into the value that's
1571     // being passed.
1572     if (VA.getLocInfo() == CCValAssign::Indirect) {
1573       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
1574                                    MachinePointerInfo()));
1575       // If the original argument was split (e.g. i128), we need
1576       // to load all parts of it here (using the same address).
1577       unsigned ArgIndex = Ins[I].OrigArgIndex;
1578       assert (Ins[I].PartOffset == 0);
1579       while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) {
1580         CCValAssign &PartVA = ArgLocs[I + 1];
1581         unsigned PartOffset = Ins[I + 1].PartOffset;
1582         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
1583                                       DAG.getIntPtrConstant(PartOffset, DL));
1584         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
1585                                      MachinePointerInfo()));
1586         ++I;
1587       }
1588     } else
1589       InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue));
1590   }
1591 
1592   // FIXME: Add support for lowering varargs for XPLINK64 in a later patch.
1593   if (IsVarArg && Subtarget.isTargetELF()) {
1594     // Save the number of non-varargs registers for later use by va_start, etc.
1595     FuncInfo->setVarArgsFirstGPR(NumFixedGPRs);
1596     FuncInfo->setVarArgsFirstFPR(NumFixedFPRs);
1597 
1598     // Likewise the address (in the form of a frame index) of where the
1599     // first stack vararg would be.  The 1-byte size here is arbitrary.
1600     int64_t StackSize = CCInfo.getNextStackOffset();
1601     FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true));
1602 
1603     // ...and a similar frame index for the caller-allocated save area
1604     // that will be used to store the incoming registers.
1605     int64_t RegSaveOffset =
1606       -SystemZMC::ELFCallFrameSize + TFL->getRegSpillOffset(MF, SystemZ::R2D) - 16;
1607     unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true);
1608     FuncInfo->setRegSaveFrameIndex(RegSaveIndex);
1609 
1610     // Store the FPR varargs in the reserved frame slots.  (We store the
1611     // GPRs as part of the prologue.)
1612     if (NumFixedFPRs < SystemZ::ELFNumArgFPRs && !useSoftFloat()) {
1613       SDValue MemOps[SystemZ::ELFNumArgFPRs];
1614       for (unsigned I = NumFixedFPRs; I < SystemZ::ELFNumArgFPRs; ++I) {
1615         unsigned Offset = TFL->getRegSpillOffset(MF, SystemZ::ELFArgFPRs[I]);
1616         int FI =
1617           MFI.CreateFixedObject(8, -SystemZMC::ELFCallFrameSize + Offset, true);
1618         SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
1619         Register VReg = MF.addLiveIn(SystemZ::ELFArgFPRs[I],
1620                                      &SystemZ::FP64BitRegClass);
1621         SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64);
1622         MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN,
1623                                  MachinePointerInfo::getFixedStack(MF, FI));
1624       }
1625       // Join the stores, which are independent of one another.
1626       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1627                           makeArrayRef(&MemOps[NumFixedFPRs],
1628                                        SystemZ::ELFNumArgFPRs-NumFixedFPRs));
1629     }
1630   }
1631 
1632   // FIXME: For XPLINK64, Add in support for handling incoming "ADA" special
1633   // register (R5)
1634   return Chain;
1635 }
1636 
1637 static bool canUseSiblingCall(const CCState &ArgCCInfo,
1638                               SmallVectorImpl<CCValAssign> &ArgLocs,
1639                               SmallVectorImpl<ISD::OutputArg> &Outs) {
1640   // Punt if there are any indirect or stack arguments, or if the call
1641   // needs the callee-saved argument register R6, or if the call uses
1642   // the callee-saved register arguments SwiftSelf and SwiftError.
1643   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1644     CCValAssign &VA = ArgLocs[I];
1645     if (VA.getLocInfo() == CCValAssign::Indirect)
1646       return false;
1647     if (!VA.isRegLoc())
1648       return false;
1649     Register Reg = VA.getLocReg();
1650     if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D)
1651       return false;
1652     if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError())
1653       return false;
1654   }
1655   return true;
1656 }
1657 
1658 SDValue
1659 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI,
1660                                  SmallVectorImpl<SDValue> &InVals) const {
1661   SelectionDAG &DAG = CLI.DAG;
1662   SDLoc &DL = CLI.DL;
1663   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1664   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1665   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1666   SDValue Chain = CLI.Chain;
1667   SDValue Callee = CLI.Callee;
1668   bool &IsTailCall = CLI.IsTailCall;
1669   CallingConv::ID CallConv = CLI.CallConv;
1670   bool IsVarArg = CLI.IsVarArg;
1671   MachineFunction &MF = DAG.getMachineFunction();
1672   EVT PtrVT = getPointerTy(MF.getDataLayout());
1673   LLVMContext &Ctx = *DAG.getContext();
1674   SystemZCallingConventionRegisters *Regs = Subtarget.getSpecialRegisters();
1675 
1676   // FIXME: z/OS support to be added in later.
1677   if (Subtarget.isTargetXPLINK64())
1678     IsTailCall = false;
1679 
1680   // Detect unsupported vector argument and return types.
1681   if (Subtarget.hasVector()) {
1682     VerifyVectorTypes(Outs);
1683     VerifyVectorTypes(Ins);
1684   }
1685 
1686   // Analyze the operands of the call, assigning locations to each operand.
1687   SmallVector<CCValAssign, 16> ArgLocs;
1688   SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, Ctx);
1689   ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
1690 
1691   // We don't support GuaranteedTailCallOpt, only automatically-detected
1692   // sibling calls.
1693   if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs))
1694     IsTailCall = false;
1695 
1696   // Get a count of how many bytes are to be pushed on the stack.
1697   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
1698 
1699   if (Subtarget.isTargetXPLINK64())
1700     // Although the XPLINK specifications for AMODE64 state that minimum size
1701     // of the param area is minimum 32 bytes and no rounding is otherwise
1702     // specified, we round this area in 64 bytes increments to be compatible
1703     // with existing compilers.
1704     NumBytes = std::max(64U, (unsigned)alignTo(NumBytes, 64));
1705 
1706   // Mark the start of the call.
1707   if (!IsTailCall)
1708     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1709 
1710   // Copy argument values to their designated locations.
1711   SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass;
1712   SmallVector<SDValue, 8> MemOpChains;
1713   SDValue StackPtr;
1714   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
1715     CCValAssign &VA = ArgLocs[I];
1716     SDValue ArgValue = OutVals[I];
1717 
1718     if (VA.getLocInfo() == CCValAssign::Indirect) {
1719       // Store the argument in a stack slot and pass its address.
1720       unsigned ArgIndex = Outs[I].OrigArgIndex;
1721       EVT SlotVT;
1722       if (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1723         // Allocate the full stack space for a promoted (and split) argument.
1724         Type *OrigArgType = CLI.Args[Outs[I].OrigArgIndex].Ty;
1725         EVT OrigArgVT = getValueType(MF.getDataLayout(), OrigArgType);
1726         MVT PartVT = getRegisterTypeForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1727         unsigned N = getNumRegistersForCallingConv(Ctx, CLI.CallConv, OrigArgVT);
1728         SlotVT = EVT::getIntegerVT(Ctx, PartVT.getSizeInBits() * N);
1729       } else {
1730         SlotVT = Outs[I].ArgVT;
1731       }
1732       SDValue SpillSlot = DAG.CreateStackTemporary(SlotVT);
1733       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
1734       MemOpChains.push_back(
1735           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
1736                        MachinePointerInfo::getFixedStack(MF, FI)));
1737       // If the original argument was split (e.g. i128), we need
1738       // to store all parts of it here (and pass just one address).
1739       assert (Outs[I].PartOffset == 0);
1740       while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) {
1741         SDValue PartValue = OutVals[I + 1];
1742         unsigned PartOffset = Outs[I + 1].PartOffset;
1743         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
1744                                       DAG.getIntPtrConstant(PartOffset, DL));
1745         MemOpChains.push_back(
1746             DAG.getStore(Chain, DL, PartValue, Address,
1747                          MachinePointerInfo::getFixedStack(MF, FI)));
1748         assert((PartOffset + PartValue.getValueType().getStoreSize() <=
1749                 SlotVT.getStoreSize()) && "Not enough space for argument part!");
1750         ++I;
1751       }
1752       ArgValue = SpillSlot;
1753     } else
1754       ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue);
1755 
1756     if (VA.isRegLoc()) {
1757       // In XPLINK64, for the 128-bit vararg case, ArgValue is bitcasted to a
1758       // MVT::i128 type. We decompose the 128-bit type to a pair of its high
1759       // and low values.
1760       if (VA.getLocVT() == MVT::i128)
1761         ArgValue = lowerI128ToGR128(DAG, ArgValue);
1762       // Queue up the argument copies and emit them at the end.
1763       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
1764     } else {
1765       assert(VA.isMemLoc() && "Argument not register or memory");
1766 
1767       // Work out the address of the stack slot.  Unpromoted ints and
1768       // floats are passed as right-justified 8-byte values.
1769       if (!StackPtr.getNode())
1770         StackPtr = DAG.getCopyFromReg(Chain, DL,
1771                                       Regs->getStackPointerRegister(), PtrVT);
1772       unsigned Offset = Regs->getStackPointerBias() + Regs->getCallFrameSize() +
1773                         VA.getLocMemOffset();
1774       if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32)
1775         Offset += 4;
1776       SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
1777                                     DAG.getIntPtrConstant(Offset, DL));
1778 
1779       // Emit the store.
1780       MemOpChains.push_back(
1781           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
1782 
1783       // Although long doubles or vectors are passed through the stack when
1784       // they are vararg (non-fixed arguments), if a long double or vector
1785       // occupies the third and fourth slot of the argument list GPR3 should
1786       // still shadow the third slot of the argument list.
1787       if (Subtarget.isTargetXPLINK64() && VA.needsCustom()) {
1788         SDValue ShadowArgValue =
1789             DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, ArgValue,
1790                         DAG.getIntPtrConstant(1, DL));
1791         RegsToPass.push_back(std::make_pair(SystemZ::R3D, ShadowArgValue));
1792       }
1793     }
1794   }
1795 
1796   // Join the stores, which are independent of one another.
1797   if (!MemOpChains.empty())
1798     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1799 
1800   // Accept direct calls by converting symbolic call addresses to the
1801   // associated Target* opcodes.  Force %r1 to be used for indirect
1802   // tail calls.
1803   SDValue Glue;
1804   // FIXME: Add support for XPLINK using the ADA register.
1805   if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1806     Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT);
1807     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1808   } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
1809     Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT);
1810     Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee);
1811   } else if (IsTailCall) {
1812     Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue);
1813     Glue = Chain.getValue(1);
1814     Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType());
1815   }
1816 
1817   // Build a sequence of copy-to-reg nodes, chained and glued together.
1818   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
1819     Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
1820                              RegsToPass[I].second, Glue);
1821     Glue = Chain.getValue(1);
1822   }
1823 
1824   // The first call operand is the chain and the second is the target address.
1825   SmallVector<SDValue, 8> Ops;
1826   Ops.push_back(Chain);
1827   Ops.push_back(Callee);
1828 
1829   // Add argument registers to the end of the list so that they are
1830   // known live into the call.
1831   for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
1832     Ops.push_back(DAG.getRegister(RegsToPass[I].first,
1833                                   RegsToPass[I].second.getValueType()));
1834 
1835   // Add a register mask operand representing the call-preserved registers.
1836   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1837   const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
1838   assert(Mask && "Missing call preserved mask for calling convention");
1839   Ops.push_back(DAG.getRegisterMask(Mask));
1840 
1841   // Glue the call to the argument copies, if any.
1842   if (Glue.getNode())
1843     Ops.push_back(Glue);
1844 
1845   // Emit the call.
1846   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1847   if (IsTailCall)
1848     return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops);
1849   Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops);
1850   DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
1851   Glue = Chain.getValue(1);
1852 
1853   // Mark the end of the call, which is glued to the call itself.
1854   Chain = DAG.getCALLSEQ_END(Chain,
1855                              DAG.getConstant(NumBytes, DL, PtrVT, true),
1856                              DAG.getConstant(0, DL, PtrVT, true),
1857                              Glue, DL);
1858   Glue = Chain.getValue(1);
1859 
1860   // Assign locations to each value returned by this call.
1861   SmallVector<CCValAssign, 16> RetLocs;
1862   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, Ctx);
1863   RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
1864 
1865   // Copy all of the result registers out of their specified physreg.
1866   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1867     CCValAssign &VA = RetLocs[I];
1868 
1869     // Copy the value out, gluing the copy to the end of the call sequence.
1870     SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
1871                                           VA.getLocVT(), Glue);
1872     Chain = RetValue.getValue(1);
1873     Glue = RetValue.getValue(2);
1874 
1875     // Convert the value of the return register into the value that's
1876     // being returned.
1877     InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue));
1878   }
1879 
1880   return Chain;
1881 }
1882 
1883 // Generate a call taking the given operands as arguments and returning a
1884 // result of type RetVT.
1885 std::pair<SDValue, SDValue> SystemZTargetLowering::makeExternalCall(
1886     SDValue Chain, SelectionDAG &DAG, const char *CalleeName, EVT RetVT,
1887     ArrayRef<SDValue> Ops, CallingConv::ID CallConv, bool IsSigned, SDLoc DL,
1888     bool DoesNotReturn, bool IsReturnValueUsed) const {
1889   TargetLowering::ArgListTy Args;
1890   Args.reserve(Ops.size());
1891 
1892   TargetLowering::ArgListEntry Entry;
1893   for (SDValue Op : Ops) {
1894     Entry.Node = Op;
1895     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1896     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
1897     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), IsSigned);
1898     Args.push_back(Entry);
1899   }
1900 
1901   SDValue Callee =
1902       DAG.getExternalSymbol(CalleeName, getPointerTy(DAG.getDataLayout()));
1903 
1904   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1905   TargetLowering::CallLoweringInfo CLI(DAG);
1906   bool SignExtend = shouldSignExtendTypeInLibCall(RetVT, IsSigned);
1907   CLI.setDebugLoc(DL)
1908       .setChain(Chain)
1909       .setCallee(CallConv, RetTy, Callee, std::move(Args))
1910       .setNoReturn(DoesNotReturn)
1911       .setDiscardResult(!IsReturnValueUsed)
1912       .setSExtResult(SignExtend)
1913       .setZExtResult(!SignExtend);
1914   return LowerCallTo(CLI);
1915 }
1916 
1917 bool SystemZTargetLowering::
1918 CanLowerReturn(CallingConv::ID CallConv,
1919                MachineFunction &MF, bool isVarArg,
1920                const SmallVectorImpl<ISD::OutputArg> &Outs,
1921                LLVMContext &Context) const {
1922   // Detect unsupported vector return types.
1923   if (Subtarget.hasVector())
1924     VerifyVectorTypes(Outs);
1925 
1926   // Special case that we cannot easily detect in RetCC_SystemZ since
1927   // i128 is not a legal type.
1928   for (auto &Out : Outs)
1929     if (Out.ArgVT == MVT::i128)
1930       return false;
1931 
1932   SmallVector<CCValAssign, 16> RetLocs;
1933   CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context);
1934   return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ);
1935 }
1936 
1937 SDValue
1938 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1939                                    bool IsVarArg,
1940                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
1941                                    const SmallVectorImpl<SDValue> &OutVals,
1942                                    const SDLoc &DL, SelectionDAG &DAG) const {
1943   MachineFunction &MF = DAG.getMachineFunction();
1944 
1945   // Detect unsupported vector return types.
1946   if (Subtarget.hasVector())
1947     VerifyVectorTypes(Outs);
1948 
1949   // Assign locations to each returned value.
1950   SmallVector<CCValAssign, 16> RetLocs;
1951   CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext());
1952   RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
1953 
1954   // Quick exit for void returns
1955   if (RetLocs.empty())
1956     return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain);
1957 
1958   if (CallConv == CallingConv::GHC)
1959     report_fatal_error("GHC functions return void only");
1960 
1961   // Copy the result values into the output registers.
1962   SDValue Glue;
1963   SmallVector<SDValue, 4> RetOps;
1964   RetOps.push_back(Chain);
1965   for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) {
1966     CCValAssign &VA = RetLocs[I];
1967     SDValue RetValue = OutVals[I];
1968 
1969     // Make the return register live on exit.
1970     assert(VA.isRegLoc() && "Can only return in registers!");
1971 
1972     // Promote the value as required.
1973     RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue);
1974 
1975     // Chain and glue the copies together.
1976     Register Reg = VA.getLocReg();
1977     Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue);
1978     Glue = Chain.getValue(1);
1979     RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT()));
1980   }
1981 
1982   // Update chain and glue.
1983   RetOps[0] = Chain;
1984   if (Glue.getNode())
1985     RetOps.push_back(Glue);
1986 
1987   return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps);
1988 }
1989 
1990 // Return true if Op is an intrinsic node with chain that returns the CC value
1991 // as its only (other) argument.  Provide the associated SystemZISD opcode and
1992 // the mask of valid CC values if so.
1993 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode,
1994                                       unsigned &CCValid) {
1995   unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1996   switch (Id) {
1997   case Intrinsic::s390_tbegin:
1998     Opcode = SystemZISD::TBEGIN;
1999     CCValid = SystemZ::CCMASK_TBEGIN;
2000     return true;
2001 
2002   case Intrinsic::s390_tbegin_nofloat:
2003     Opcode = SystemZISD::TBEGIN_NOFLOAT;
2004     CCValid = SystemZ::CCMASK_TBEGIN;
2005     return true;
2006 
2007   case Intrinsic::s390_tend:
2008     Opcode = SystemZISD::TEND;
2009     CCValid = SystemZ::CCMASK_TEND;
2010     return true;
2011 
2012   default:
2013     return false;
2014   }
2015 }
2016 
2017 // Return true if Op is an intrinsic node without chain that returns the
2018 // CC value as its final argument.  Provide the associated SystemZISD
2019 // opcode and the mask of valid CC values if so.
2020 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) {
2021   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2022   switch (Id) {
2023   case Intrinsic::s390_vpkshs:
2024   case Intrinsic::s390_vpksfs:
2025   case Intrinsic::s390_vpksgs:
2026     Opcode = SystemZISD::PACKS_CC;
2027     CCValid = SystemZ::CCMASK_VCMP;
2028     return true;
2029 
2030   case Intrinsic::s390_vpklshs:
2031   case Intrinsic::s390_vpklsfs:
2032   case Intrinsic::s390_vpklsgs:
2033     Opcode = SystemZISD::PACKLS_CC;
2034     CCValid = SystemZ::CCMASK_VCMP;
2035     return true;
2036 
2037   case Intrinsic::s390_vceqbs:
2038   case Intrinsic::s390_vceqhs:
2039   case Intrinsic::s390_vceqfs:
2040   case Intrinsic::s390_vceqgs:
2041     Opcode = SystemZISD::VICMPES;
2042     CCValid = SystemZ::CCMASK_VCMP;
2043     return true;
2044 
2045   case Intrinsic::s390_vchbs:
2046   case Intrinsic::s390_vchhs:
2047   case Intrinsic::s390_vchfs:
2048   case Intrinsic::s390_vchgs:
2049     Opcode = SystemZISD::VICMPHS;
2050     CCValid = SystemZ::CCMASK_VCMP;
2051     return true;
2052 
2053   case Intrinsic::s390_vchlbs:
2054   case Intrinsic::s390_vchlhs:
2055   case Intrinsic::s390_vchlfs:
2056   case Intrinsic::s390_vchlgs:
2057     Opcode = SystemZISD::VICMPHLS;
2058     CCValid = SystemZ::CCMASK_VCMP;
2059     return true;
2060 
2061   case Intrinsic::s390_vtm:
2062     Opcode = SystemZISD::VTM;
2063     CCValid = SystemZ::CCMASK_VCMP;
2064     return true;
2065 
2066   case Intrinsic::s390_vfaebs:
2067   case Intrinsic::s390_vfaehs:
2068   case Intrinsic::s390_vfaefs:
2069     Opcode = SystemZISD::VFAE_CC;
2070     CCValid = SystemZ::CCMASK_ANY;
2071     return true;
2072 
2073   case Intrinsic::s390_vfaezbs:
2074   case Intrinsic::s390_vfaezhs:
2075   case Intrinsic::s390_vfaezfs:
2076     Opcode = SystemZISD::VFAEZ_CC;
2077     CCValid = SystemZ::CCMASK_ANY;
2078     return true;
2079 
2080   case Intrinsic::s390_vfeebs:
2081   case Intrinsic::s390_vfeehs:
2082   case Intrinsic::s390_vfeefs:
2083     Opcode = SystemZISD::VFEE_CC;
2084     CCValid = SystemZ::CCMASK_ANY;
2085     return true;
2086 
2087   case Intrinsic::s390_vfeezbs:
2088   case Intrinsic::s390_vfeezhs:
2089   case Intrinsic::s390_vfeezfs:
2090     Opcode = SystemZISD::VFEEZ_CC;
2091     CCValid = SystemZ::CCMASK_ANY;
2092     return true;
2093 
2094   case Intrinsic::s390_vfenebs:
2095   case Intrinsic::s390_vfenehs:
2096   case Intrinsic::s390_vfenefs:
2097     Opcode = SystemZISD::VFENE_CC;
2098     CCValid = SystemZ::CCMASK_ANY;
2099     return true;
2100 
2101   case Intrinsic::s390_vfenezbs:
2102   case Intrinsic::s390_vfenezhs:
2103   case Intrinsic::s390_vfenezfs:
2104     Opcode = SystemZISD::VFENEZ_CC;
2105     CCValid = SystemZ::CCMASK_ANY;
2106     return true;
2107 
2108   case Intrinsic::s390_vistrbs:
2109   case Intrinsic::s390_vistrhs:
2110   case Intrinsic::s390_vistrfs:
2111     Opcode = SystemZISD::VISTR_CC;
2112     CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3;
2113     return true;
2114 
2115   case Intrinsic::s390_vstrcbs:
2116   case Intrinsic::s390_vstrchs:
2117   case Intrinsic::s390_vstrcfs:
2118     Opcode = SystemZISD::VSTRC_CC;
2119     CCValid = SystemZ::CCMASK_ANY;
2120     return true;
2121 
2122   case Intrinsic::s390_vstrczbs:
2123   case Intrinsic::s390_vstrczhs:
2124   case Intrinsic::s390_vstrczfs:
2125     Opcode = SystemZISD::VSTRCZ_CC;
2126     CCValid = SystemZ::CCMASK_ANY;
2127     return true;
2128 
2129   case Intrinsic::s390_vstrsb:
2130   case Intrinsic::s390_vstrsh:
2131   case Intrinsic::s390_vstrsf:
2132     Opcode = SystemZISD::VSTRS_CC;
2133     CCValid = SystemZ::CCMASK_ANY;
2134     return true;
2135 
2136   case Intrinsic::s390_vstrszb:
2137   case Intrinsic::s390_vstrszh:
2138   case Intrinsic::s390_vstrszf:
2139     Opcode = SystemZISD::VSTRSZ_CC;
2140     CCValid = SystemZ::CCMASK_ANY;
2141     return true;
2142 
2143   case Intrinsic::s390_vfcedbs:
2144   case Intrinsic::s390_vfcesbs:
2145     Opcode = SystemZISD::VFCMPES;
2146     CCValid = SystemZ::CCMASK_VCMP;
2147     return true;
2148 
2149   case Intrinsic::s390_vfchdbs:
2150   case Intrinsic::s390_vfchsbs:
2151     Opcode = SystemZISD::VFCMPHS;
2152     CCValid = SystemZ::CCMASK_VCMP;
2153     return true;
2154 
2155   case Intrinsic::s390_vfchedbs:
2156   case Intrinsic::s390_vfchesbs:
2157     Opcode = SystemZISD::VFCMPHES;
2158     CCValid = SystemZ::CCMASK_VCMP;
2159     return true;
2160 
2161   case Intrinsic::s390_vftcidb:
2162   case Intrinsic::s390_vftcisb:
2163     Opcode = SystemZISD::VFTCI;
2164     CCValid = SystemZ::CCMASK_VCMP;
2165     return true;
2166 
2167   case Intrinsic::s390_tdc:
2168     Opcode = SystemZISD::TDC;
2169     CCValid = SystemZ::CCMASK_TDC;
2170     return true;
2171 
2172   default:
2173     return false;
2174   }
2175 }
2176 
2177 // Emit an intrinsic with chain and an explicit CC register result.
2178 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op,
2179                                            unsigned Opcode) {
2180   // Copy all operands except the intrinsic ID.
2181   unsigned NumOps = Op.getNumOperands();
2182   SmallVector<SDValue, 6> Ops;
2183   Ops.reserve(NumOps - 1);
2184   Ops.push_back(Op.getOperand(0));
2185   for (unsigned I = 2; I < NumOps; ++I)
2186     Ops.push_back(Op.getOperand(I));
2187 
2188   assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
2189   SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other);
2190   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops);
2191   SDValue OldChain = SDValue(Op.getNode(), 1);
2192   SDValue NewChain = SDValue(Intr.getNode(), 1);
2193   DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain);
2194   return Intr.getNode();
2195 }
2196 
2197 // Emit an intrinsic with an explicit CC register result.
2198 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op,
2199                                    unsigned Opcode) {
2200   // Copy all operands except the intrinsic ID.
2201   unsigned NumOps = Op.getNumOperands();
2202   SmallVector<SDValue, 6> Ops;
2203   Ops.reserve(NumOps - 1);
2204   for (unsigned I = 1; I < NumOps; ++I)
2205     Ops.push_back(Op.getOperand(I));
2206 
2207   SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops);
2208   return Intr.getNode();
2209 }
2210 
2211 // CC is a comparison that will be implemented using an integer or
2212 // floating-point comparison.  Return the condition code mask for
2213 // a branch on true.  In the integer case, CCMASK_CMP_UO is set for
2214 // unsigned comparisons and clear for signed ones.  In the floating-point
2215 // case, CCMASK_CMP_UO has its normal mask meaning (unordered).
2216 static unsigned CCMaskForCondCode(ISD::CondCode CC) {
2217 #define CONV(X) \
2218   case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \
2219   case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \
2220   case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X
2221 
2222   switch (CC) {
2223   default:
2224     llvm_unreachable("Invalid integer condition!");
2225 
2226   CONV(EQ);
2227   CONV(NE);
2228   CONV(GT);
2229   CONV(GE);
2230   CONV(LT);
2231   CONV(LE);
2232 
2233   case ISD::SETO:  return SystemZ::CCMASK_CMP_O;
2234   case ISD::SETUO: return SystemZ::CCMASK_CMP_UO;
2235   }
2236 #undef CONV
2237 }
2238 
2239 // If C can be converted to a comparison against zero, adjust the operands
2240 // as necessary.
2241 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2242   if (C.ICmpType == SystemZICMP::UnsignedOnly)
2243     return;
2244 
2245   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode());
2246   if (!ConstOp1)
2247     return;
2248 
2249   int64_t Value = ConstOp1->getSExtValue();
2250   if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) ||
2251       (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) ||
2252       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) ||
2253       (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) {
2254     C.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2255     C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType());
2256   }
2257 }
2258 
2259 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI,
2260 // adjust the operands as necessary.
2261 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL,
2262                              Comparison &C) {
2263   // For us to make any changes, it must a comparison between a single-use
2264   // load and a constant.
2265   if (!C.Op0.hasOneUse() ||
2266       C.Op0.getOpcode() != ISD::LOAD ||
2267       C.Op1.getOpcode() != ISD::Constant)
2268     return;
2269 
2270   // We must have an 8- or 16-bit load.
2271   auto *Load = cast<LoadSDNode>(C.Op0);
2272   unsigned NumBits = Load->getMemoryVT().getSizeInBits();
2273   if ((NumBits != 8 && NumBits != 16) ||
2274       NumBits != Load->getMemoryVT().getStoreSizeInBits())
2275     return;
2276 
2277   // The load must be an extending one and the constant must be within the
2278   // range of the unextended value.
2279   auto *ConstOp1 = cast<ConstantSDNode>(C.Op1);
2280   uint64_t Value = ConstOp1->getZExtValue();
2281   uint64_t Mask = (1 << NumBits) - 1;
2282   if (Load->getExtensionType() == ISD::SEXTLOAD) {
2283     // Make sure that ConstOp1 is in range of C.Op0.
2284     int64_t SignedValue = ConstOp1->getSExtValue();
2285     if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask)
2286       return;
2287     if (C.ICmpType != SystemZICMP::SignedOnly) {
2288       // Unsigned comparison between two sign-extended values is equivalent
2289       // to unsigned comparison between two zero-extended values.
2290       Value &= Mask;
2291     } else if (NumBits == 8) {
2292       // Try to treat the comparison as unsigned, so that we can use CLI.
2293       // Adjust CCMask and Value as necessary.
2294       if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT)
2295         // Test whether the high bit of the byte is set.
2296         Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT;
2297       else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE)
2298         // Test whether the high bit of the byte is clear.
2299         Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT;
2300       else
2301         // No instruction exists for this combination.
2302         return;
2303       C.ICmpType = SystemZICMP::UnsignedOnly;
2304     }
2305   } else if (Load->getExtensionType() == ISD::ZEXTLOAD) {
2306     if (Value > Mask)
2307       return;
2308     // If the constant is in range, we can use any comparison.
2309     C.ICmpType = SystemZICMP::Any;
2310   } else
2311     return;
2312 
2313   // Make sure that the first operand is an i32 of the right extension type.
2314   ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ?
2315                               ISD::SEXTLOAD :
2316                               ISD::ZEXTLOAD);
2317   if (C.Op0.getValueType() != MVT::i32 ||
2318       Load->getExtensionType() != ExtType) {
2319     C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(),
2320                            Load->getBasePtr(), Load->getPointerInfo(),
2321                            Load->getMemoryVT(), Load->getAlign(),
2322                            Load->getMemOperand()->getFlags());
2323     // Update the chain uses.
2324     DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1));
2325   }
2326 
2327   // Make sure that the second operand is an i32 with the right value.
2328   if (C.Op1.getValueType() != MVT::i32 ||
2329       Value != ConstOp1->getZExtValue())
2330     C.Op1 = DAG.getConstant(Value, DL, MVT::i32);
2331 }
2332 
2333 // Return true if Op is either an unextended load, or a load suitable
2334 // for integer register-memory comparisons of type ICmpType.
2335 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) {
2336   auto *Load = dyn_cast<LoadSDNode>(Op.getNode());
2337   if (Load) {
2338     // There are no instructions to compare a register with a memory byte.
2339     if (Load->getMemoryVT() == MVT::i8)
2340       return false;
2341     // Otherwise decide on extension type.
2342     switch (Load->getExtensionType()) {
2343     case ISD::NON_EXTLOAD:
2344       return true;
2345     case ISD::SEXTLOAD:
2346       return ICmpType != SystemZICMP::UnsignedOnly;
2347     case ISD::ZEXTLOAD:
2348       return ICmpType != SystemZICMP::SignedOnly;
2349     default:
2350       break;
2351     }
2352   }
2353   return false;
2354 }
2355 
2356 // Return true if it is better to swap the operands of C.
2357 static bool shouldSwapCmpOperands(const Comparison &C) {
2358   // Leave f128 comparisons alone, since they have no memory forms.
2359   if (C.Op0.getValueType() == MVT::f128)
2360     return false;
2361 
2362   // Always keep a floating-point constant second, since comparisons with
2363   // zero can use LOAD TEST and comparisons with other constants make a
2364   // natural memory operand.
2365   if (isa<ConstantFPSDNode>(C.Op1))
2366     return false;
2367 
2368   // Never swap comparisons with zero since there are many ways to optimize
2369   // those later.
2370   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2371   if (ConstOp1 && ConstOp1->getZExtValue() == 0)
2372     return false;
2373 
2374   // Also keep natural memory operands second if the loaded value is
2375   // only used here.  Several comparisons have memory forms.
2376   if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse())
2377     return false;
2378 
2379   // Look for cases where Cmp0 is a single-use load and Cmp1 isn't.
2380   // In that case we generally prefer the memory to be second.
2381   if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) {
2382     // The only exceptions are when the second operand is a constant and
2383     // we can use things like CHHSI.
2384     if (!ConstOp1)
2385       return true;
2386     // The unsigned memory-immediate instructions can handle 16-bit
2387     // unsigned integers.
2388     if (C.ICmpType != SystemZICMP::SignedOnly &&
2389         isUInt<16>(ConstOp1->getZExtValue()))
2390       return false;
2391     // The signed memory-immediate instructions can handle 16-bit
2392     // signed integers.
2393     if (C.ICmpType != SystemZICMP::UnsignedOnly &&
2394         isInt<16>(ConstOp1->getSExtValue()))
2395       return false;
2396     return true;
2397   }
2398 
2399   // Try to promote the use of CGFR and CLGFR.
2400   unsigned Opcode0 = C.Op0.getOpcode();
2401   if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND)
2402     return true;
2403   if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND)
2404     return true;
2405   if (C.ICmpType != SystemZICMP::SignedOnly &&
2406       Opcode0 == ISD::AND &&
2407       C.Op0.getOperand(1).getOpcode() == ISD::Constant &&
2408       cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff)
2409     return true;
2410 
2411   return false;
2412 }
2413 
2414 // Check whether C tests for equality between X and Y and whether X - Y
2415 // or Y - X is also computed.  In that case it's better to compare the
2416 // result of the subtraction against zero.
2417 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL,
2418                                  Comparison &C) {
2419   if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2420       C.CCMask == SystemZ::CCMASK_CMP_NE) {
2421     for (SDNode *N : C.Op0->uses()) {
2422       if (N->getOpcode() == ISD::SUB &&
2423           ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) ||
2424            (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) {
2425         C.Op0 = SDValue(N, 0);
2426         C.Op1 = DAG.getConstant(0, DL, N->getValueType(0));
2427         return;
2428       }
2429     }
2430   }
2431 }
2432 
2433 // Check whether C compares a floating-point value with zero and if that
2434 // floating-point value is also negated.  In this case we can use the
2435 // negation to set CC, so avoiding separate LOAD AND TEST and
2436 // LOAD (NEGATIVE/COMPLEMENT) instructions.
2437 static void adjustForFNeg(Comparison &C) {
2438   // This optimization is invalid for strict comparisons, since FNEG
2439   // does not raise any exceptions.
2440   if (C.Chain)
2441     return;
2442   auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1);
2443   if (C1 && C1->isZero()) {
2444     for (SDNode *N : C.Op0->uses()) {
2445       if (N->getOpcode() == ISD::FNEG) {
2446         C.Op0 = SDValue(N, 0);
2447         C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2448         return;
2449       }
2450     }
2451   }
2452 }
2453 
2454 // Check whether C compares (shl X, 32) with 0 and whether X is
2455 // also sign-extended.  In that case it is better to test the result
2456 // of the sign extension using LTGFR.
2457 //
2458 // This case is important because InstCombine transforms a comparison
2459 // with (sext (trunc X)) into a comparison with (shl X, 32).
2460 static void adjustForLTGFR(Comparison &C) {
2461   // Check for a comparison between (shl X, 32) and 0.
2462   if (C.Op0.getOpcode() == ISD::SHL &&
2463       C.Op0.getValueType() == MVT::i64 &&
2464       C.Op1.getOpcode() == ISD::Constant &&
2465       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2466     auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2467     if (C1 && C1->getZExtValue() == 32) {
2468       SDValue ShlOp0 = C.Op0.getOperand(0);
2469       // See whether X has any SIGN_EXTEND_INREG uses.
2470       for (SDNode *N : ShlOp0->uses()) {
2471         if (N->getOpcode() == ISD::SIGN_EXTEND_INREG &&
2472             cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) {
2473           C.Op0 = SDValue(N, 0);
2474           return;
2475         }
2476       }
2477     }
2478   }
2479 }
2480 
2481 // If C compares the truncation of an extending load, try to compare
2482 // the untruncated value instead.  This exposes more opportunities to
2483 // reuse CC.
2484 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL,
2485                                Comparison &C) {
2486   if (C.Op0.getOpcode() == ISD::TRUNCATE &&
2487       C.Op0.getOperand(0).getOpcode() == ISD::LOAD &&
2488       C.Op1.getOpcode() == ISD::Constant &&
2489       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
2490     auto *L = cast<LoadSDNode>(C.Op0.getOperand(0));
2491     if (L->getMemoryVT().getStoreSizeInBits().getFixedSize() <=
2492         C.Op0.getValueSizeInBits().getFixedSize()) {
2493       unsigned Type = L->getExtensionType();
2494       if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) ||
2495           (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) {
2496         C.Op0 = C.Op0.getOperand(0);
2497         C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType());
2498       }
2499     }
2500   }
2501 }
2502 
2503 // Return true if shift operation N has an in-range constant shift value.
2504 // Store it in ShiftVal if so.
2505 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) {
2506   auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1));
2507   if (!Shift)
2508     return false;
2509 
2510   uint64_t Amount = Shift->getZExtValue();
2511   if (Amount >= N.getValueSizeInBits())
2512     return false;
2513 
2514   ShiftVal = Amount;
2515   return true;
2516 }
2517 
2518 // Check whether an AND with Mask is suitable for a TEST UNDER MASK
2519 // instruction and whether the CC value is descriptive enough to handle
2520 // a comparison of type Opcode between the AND result and CmpVal.
2521 // CCMask says which comparison result is being tested and BitSize is
2522 // the number of bits in the operands.  If TEST UNDER MASK can be used,
2523 // return the corresponding CC mask, otherwise return 0.
2524 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask,
2525                                      uint64_t Mask, uint64_t CmpVal,
2526                                      unsigned ICmpType) {
2527   assert(Mask != 0 && "ANDs with zero should have been removed by now");
2528 
2529   // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL.
2530   if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) &&
2531       !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask))
2532     return 0;
2533 
2534   // Work out the masks for the lowest and highest bits.
2535   unsigned HighShift = 63 - countLeadingZeros(Mask);
2536   uint64_t High = uint64_t(1) << HighShift;
2537   uint64_t Low = uint64_t(1) << countTrailingZeros(Mask);
2538 
2539   // Signed ordered comparisons are effectively unsigned if the sign
2540   // bit is dropped.
2541   bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly);
2542 
2543   // Check for equality comparisons with 0, or the equivalent.
2544   if (CmpVal == 0) {
2545     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2546       return SystemZ::CCMASK_TM_ALL_0;
2547     if (CCMask == SystemZ::CCMASK_CMP_NE)
2548       return SystemZ::CCMASK_TM_SOME_1;
2549   }
2550   if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) {
2551     if (CCMask == SystemZ::CCMASK_CMP_LT)
2552       return SystemZ::CCMASK_TM_ALL_0;
2553     if (CCMask == SystemZ::CCMASK_CMP_GE)
2554       return SystemZ::CCMASK_TM_SOME_1;
2555   }
2556   if (EffectivelyUnsigned && CmpVal < Low) {
2557     if (CCMask == SystemZ::CCMASK_CMP_LE)
2558       return SystemZ::CCMASK_TM_ALL_0;
2559     if (CCMask == SystemZ::CCMASK_CMP_GT)
2560       return SystemZ::CCMASK_TM_SOME_1;
2561   }
2562 
2563   // Check for equality comparisons with the mask, or the equivalent.
2564   if (CmpVal == Mask) {
2565     if (CCMask == SystemZ::CCMASK_CMP_EQ)
2566       return SystemZ::CCMASK_TM_ALL_1;
2567     if (CCMask == SystemZ::CCMASK_CMP_NE)
2568       return SystemZ::CCMASK_TM_SOME_0;
2569   }
2570   if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) {
2571     if (CCMask == SystemZ::CCMASK_CMP_GT)
2572       return SystemZ::CCMASK_TM_ALL_1;
2573     if (CCMask == SystemZ::CCMASK_CMP_LE)
2574       return SystemZ::CCMASK_TM_SOME_0;
2575   }
2576   if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) {
2577     if (CCMask == SystemZ::CCMASK_CMP_GE)
2578       return SystemZ::CCMASK_TM_ALL_1;
2579     if (CCMask == SystemZ::CCMASK_CMP_LT)
2580       return SystemZ::CCMASK_TM_SOME_0;
2581   }
2582 
2583   // Check for ordered comparisons with the top bit.
2584   if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) {
2585     if (CCMask == SystemZ::CCMASK_CMP_LE)
2586       return SystemZ::CCMASK_TM_MSB_0;
2587     if (CCMask == SystemZ::CCMASK_CMP_GT)
2588       return SystemZ::CCMASK_TM_MSB_1;
2589   }
2590   if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) {
2591     if (CCMask == SystemZ::CCMASK_CMP_LT)
2592       return SystemZ::CCMASK_TM_MSB_0;
2593     if (CCMask == SystemZ::CCMASK_CMP_GE)
2594       return SystemZ::CCMASK_TM_MSB_1;
2595   }
2596 
2597   // If there are just two bits, we can do equality checks for Low and High
2598   // as well.
2599   if (Mask == Low + High) {
2600     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low)
2601       return SystemZ::CCMASK_TM_MIXED_MSB_0;
2602     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low)
2603       return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY;
2604     if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High)
2605       return SystemZ::CCMASK_TM_MIXED_MSB_1;
2606     if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High)
2607       return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY;
2608   }
2609 
2610   // Looks like we've exhausted our options.
2611   return 0;
2612 }
2613 
2614 // See whether C can be implemented as a TEST UNDER MASK instruction.
2615 // Update the arguments with the TM version if so.
2616 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL,
2617                                    Comparison &C) {
2618   // Check that we have a comparison with a constant.
2619   auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1);
2620   if (!ConstOp1)
2621     return;
2622   uint64_t CmpVal = ConstOp1->getZExtValue();
2623 
2624   // Check whether the nonconstant input is an AND with a constant mask.
2625   Comparison NewC(C);
2626   uint64_t MaskVal;
2627   ConstantSDNode *Mask = nullptr;
2628   if (C.Op0.getOpcode() == ISD::AND) {
2629     NewC.Op0 = C.Op0.getOperand(0);
2630     NewC.Op1 = C.Op0.getOperand(1);
2631     Mask = dyn_cast<ConstantSDNode>(NewC.Op1);
2632     if (!Mask)
2633       return;
2634     MaskVal = Mask->getZExtValue();
2635   } else {
2636     // There is no instruction to compare with a 64-bit immediate
2637     // so use TMHH instead if possible.  We need an unsigned ordered
2638     // comparison with an i64 immediate.
2639     if (NewC.Op0.getValueType() != MVT::i64 ||
2640         NewC.CCMask == SystemZ::CCMASK_CMP_EQ ||
2641         NewC.CCMask == SystemZ::CCMASK_CMP_NE ||
2642         NewC.ICmpType == SystemZICMP::SignedOnly)
2643       return;
2644     // Convert LE and GT comparisons into LT and GE.
2645     if (NewC.CCMask == SystemZ::CCMASK_CMP_LE ||
2646         NewC.CCMask == SystemZ::CCMASK_CMP_GT) {
2647       if (CmpVal == uint64_t(-1))
2648         return;
2649       CmpVal += 1;
2650       NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ;
2651     }
2652     // If the low N bits of Op1 are zero than the low N bits of Op0 can
2653     // be masked off without changing the result.
2654     MaskVal = -(CmpVal & -CmpVal);
2655     NewC.ICmpType = SystemZICMP::UnsignedOnly;
2656   }
2657   if (!MaskVal)
2658     return;
2659 
2660   // Check whether the combination of mask, comparison value and comparison
2661   // type are suitable.
2662   unsigned BitSize = NewC.Op0.getValueSizeInBits();
2663   unsigned NewCCMask, ShiftVal;
2664   if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2665       NewC.Op0.getOpcode() == ISD::SHL &&
2666       isSimpleShift(NewC.Op0, ShiftVal) &&
2667       (MaskVal >> ShiftVal != 0) &&
2668       ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal &&
2669       (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2670                                         MaskVal >> ShiftVal,
2671                                         CmpVal >> ShiftVal,
2672                                         SystemZICMP::Any))) {
2673     NewC.Op0 = NewC.Op0.getOperand(0);
2674     MaskVal >>= ShiftVal;
2675   } else if (NewC.ICmpType != SystemZICMP::SignedOnly &&
2676              NewC.Op0.getOpcode() == ISD::SRL &&
2677              isSimpleShift(NewC.Op0, ShiftVal) &&
2678              (MaskVal << ShiftVal != 0) &&
2679              ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal &&
2680              (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask,
2681                                                MaskVal << ShiftVal,
2682                                                CmpVal << ShiftVal,
2683                                                SystemZICMP::UnsignedOnly))) {
2684     NewC.Op0 = NewC.Op0.getOperand(0);
2685     MaskVal <<= ShiftVal;
2686   } else {
2687     NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal,
2688                                      NewC.ICmpType);
2689     if (!NewCCMask)
2690       return;
2691   }
2692 
2693   // Go ahead and make the change.
2694   C.Opcode = SystemZISD::TM;
2695   C.Op0 = NewC.Op0;
2696   if (Mask && Mask->getZExtValue() == MaskVal)
2697     C.Op1 = SDValue(Mask, 0);
2698   else
2699     C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType());
2700   C.CCValid = SystemZ::CCMASK_TM;
2701   C.CCMask = NewCCMask;
2702 }
2703 
2704 // See whether the comparison argument contains a redundant AND
2705 // and remove it if so.  This sometimes happens due to the generic
2706 // BRCOND expansion.
2707 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL,
2708                                   Comparison &C) {
2709   if (C.Op0.getOpcode() != ISD::AND)
2710     return;
2711   auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1));
2712   if (!Mask)
2713     return;
2714   KnownBits Known = DAG.computeKnownBits(C.Op0.getOperand(0));
2715   if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue())
2716     return;
2717 
2718   C.Op0 = C.Op0.getOperand(0);
2719 }
2720 
2721 // Return a Comparison that tests the condition-code result of intrinsic
2722 // node Call against constant integer CC using comparison code Cond.
2723 // Opcode is the opcode of the SystemZISD operation for the intrinsic
2724 // and CCValid is the set of possible condition-code results.
2725 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode,
2726                                   SDValue Call, unsigned CCValid, uint64_t CC,
2727                                   ISD::CondCode Cond) {
2728   Comparison C(Call, SDValue(), SDValue());
2729   C.Opcode = Opcode;
2730   C.CCValid = CCValid;
2731   if (Cond == ISD::SETEQ)
2732     // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3.
2733     C.CCMask = CC < 4 ? 1 << (3 - CC) : 0;
2734   else if (Cond == ISD::SETNE)
2735     // ...and the inverse of that.
2736     C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1;
2737   else if (Cond == ISD::SETLT || Cond == ISD::SETULT)
2738     // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3,
2739     // always true for CC>3.
2740     C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1;
2741   else if (Cond == ISD::SETGE || Cond == ISD::SETUGE)
2742     // ...and the inverse of that.
2743     C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0;
2744   else if (Cond == ISD::SETLE || Cond == ISD::SETULE)
2745     // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true),
2746     // always true for CC>3.
2747     C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1;
2748   else if (Cond == ISD::SETGT || Cond == ISD::SETUGT)
2749     // ...and the inverse of that.
2750     C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0;
2751   else
2752     llvm_unreachable("Unexpected integer comparison type");
2753   C.CCMask &= CCValid;
2754   return C;
2755 }
2756 
2757 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1.
2758 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1,
2759                          ISD::CondCode Cond, const SDLoc &DL,
2760                          SDValue Chain = SDValue(),
2761                          bool IsSignaling = false) {
2762   if (CmpOp1.getOpcode() == ISD::Constant) {
2763     assert(!Chain);
2764     uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue();
2765     unsigned Opcode, CCValid;
2766     if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
2767         CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) &&
2768         isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid))
2769       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2770     if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2771         CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 &&
2772         isIntrinsicWithCC(CmpOp0, Opcode, CCValid))
2773       return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond);
2774   }
2775   Comparison C(CmpOp0, CmpOp1, Chain);
2776   C.CCMask = CCMaskForCondCode(Cond);
2777   if (C.Op0.getValueType().isFloatingPoint()) {
2778     C.CCValid = SystemZ::CCMASK_FCMP;
2779     if (!C.Chain)
2780       C.Opcode = SystemZISD::FCMP;
2781     else if (!IsSignaling)
2782       C.Opcode = SystemZISD::STRICT_FCMP;
2783     else
2784       C.Opcode = SystemZISD::STRICT_FCMPS;
2785     adjustForFNeg(C);
2786   } else {
2787     assert(!C.Chain);
2788     C.CCValid = SystemZ::CCMASK_ICMP;
2789     C.Opcode = SystemZISD::ICMP;
2790     // Choose the type of comparison.  Equality and inequality tests can
2791     // use either signed or unsigned comparisons.  The choice also doesn't
2792     // matter if both sign bits are known to be clear.  In those cases we
2793     // want to give the main isel code the freedom to choose whichever
2794     // form fits best.
2795     if (C.CCMask == SystemZ::CCMASK_CMP_EQ ||
2796         C.CCMask == SystemZ::CCMASK_CMP_NE ||
2797         (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1)))
2798       C.ICmpType = SystemZICMP::Any;
2799     else if (C.CCMask & SystemZ::CCMASK_CMP_UO)
2800       C.ICmpType = SystemZICMP::UnsignedOnly;
2801     else
2802       C.ICmpType = SystemZICMP::SignedOnly;
2803     C.CCMask &= ~SystemZ::CCMASK_CMP_UO;
2804     adjustForRedundantAnd(DAG, DL, C);
2805     adjustZeroCmp(DAG, DL, C);
2806     adjustSubwordCmp(DAG, DL, C);
2807     adjustForSubtraction(DAG, DL, C);
2808     adjustForLTGFR(C);
2809     adjustICmpTruncate(DAG, DL, C);
2810   }
2811 
2812   if (shouldSwapCmpOperands(C)) {
2813     std::swap(C.Op0, C.Op1);
2814     C.CCMask = SystemZ::reverseCCMask(C.CCMask);
2815   }
2816 
2817   adjustForTestUnderMask(DAG, DL, C);
2818   return C;
2819 }
2820 
2821 // Emit the comparison instruction described by C.
2822 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) {
2823   if (!C.Op1.getNode()) {
2824     SDNode *Node;
2825     switch (C.Op0.getOpcode()) {
2826     case ISD::INTRINSIC_W_CHAIN:
2827       Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode);
2828       return SDValue(Node, 0);
2829     case ISD::INTRINSIC_WO_CHAIN:
2830       Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode);
2831       return SDValue(Node, Node->getNumValues() - 1);
2832     default:
2833       llvm_unreachable("Invalid comparison operands");
2834     }
2835   }
2836   if (C.Opcode == SystemZISD::ICMP)
2837     return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1,
2838                        DAG.getTargetConstant(C.ICmpType, DL, MVT::i32));
2839   if (C.Opcode == SystemZISD::TM) {
2840     bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) !=
2841                          bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1));
2842     return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1,
2843                        DAG.getTargetConstant(RegisterOnly, DL, MVT::i32));
2844   }
2845   if (C.Chain) {
2846     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
2847     return DAG.getNode(C.Opcode, DL, VTs, C.Chain, C.Op0, C.Op1);
2848   }
2849   return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1);
2850 }
2851 
2852 // Implement a 32-bit *MUL_LOHI operation by extending both operands to
2853 // 64 bits.  Extend is the extension type to use.  Store the high part
2854 // in Hi and the low part in Lo.
2855 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend,
2856                             SDValue Op0, SDValue Op1, SDValue &Hi,
2857                             SDValue &Lo) {
2858   Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0);
2859   Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1);
2860   SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1);
2861   Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul,
2862                    DAG.getConstant(32, DL, MVT::i64));
2863   Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi);
2864   Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul);
2865 }
2866 
2867 // Lower a binary operation that produces two VT results, one in each
2868 // half of a GR128 pair.  Op0 and Op1 are the VT operands to the operation,
2869 // and Opcode performs the GR128 operation.  Store the even register result
2870 // in Even and the odd register result in Odd.
2871 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
2872                              unsigned Opcode, SDValue Op0, SDValue Op1,
2873                              SDValue &Even, SDValue &Odd) {
2874   SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1);
2875   bool Is32Bit = is32Bit(VT);
2876   Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result);
2877   Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result);
2878 }
2879 
2880 // Return an i32 value that is 1 if the CC value produced by CCReg is
2881 // in the mask CCMask and 0 otherwise.  CC is known to have a value
2882 // in CCValid, so other values can be ignored.
2883 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg,
2884                          unsigned CCValid, unsigned CCMask) {
2885   SDValue Ops[] = {DAG.getConstant(1, DL, MVT::i32),
2886                    DAG.getConstant(0, DL, MVT::i32),
2887                    DAG.getTargetConstant(CCValid, DL, MVT::i32),
2888                    DAG.getTargetConstant(CCMask, DL, MVT::i32), CCReg};
2889   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops);
2890 }
2891 
2892 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot
2893 // be done directly.  Mode is CmpMode::Int for integer comparisons, CmpMode::FP
2894 // for regular floating-point comparisons, CmpMode::StrictFP for strict (quiet)
2895 // floating-point comparisons, and CmpMode::SignalingFP for strict signaling
2896 // floating-point comparisons.
2897 enum class CmpMode { Int, FP, StrictFP, SignalingFP };
2898 static unsigned getVectorComparison(ISD::CondCode CC, CmpMode Mode) {
2899   switch (CC) {
2900   case ISD::SETOEQ:
2901   case ISD::SETEQ:
2902     switch (Mode) {
2903     case CmpMode::Int:         return SystemZISD::VICMPE;
2904     case CmpMode::FP:          return SystemZISD::VFCMPE;
2905     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPE;
2906     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPES;
2907     }
2908     llvm_unreachable("Bad mode");
2909 
2910   case ISD::SETOGE:
2911   case ISD::SETGE:
2912     switch (Mode) {
2913     case CmpMode::Int:         return 0;
2914     case CmpMode::FP:          return SystemZISD::VFCMPHE;
2915     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPHE;
2916     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHES;
2917     }
2918     llvm_unreachable("Bad mode");
2919 
2920   case ISD::SETOGT:
2921   case ISD::SETGT:
2922     switch (Mode) {
2923     case CmpMode::Int:         return SystemZISD::VICMPH;
2924     case CmpMode::FP:          return SystemZISD::VFCMPH;
2925     case CmpMode::StrictFP:    return SystemZISD::STRICT_VFCMPH;
2926     case CmpMode::SignalingFP: return SystemZISD::STRICT_VFCMPHS;
2927     }
2928     llvm_unreachable("Bad mode");
2929 
2930   case ISD::SETUGT:
2931     switch (Mode) {
2932     case CmpMode::Int:         return SystemZISD::VICMPHL;
2933     case CmpMode::FP:          return 0;
2934     case CmpMode::StrictFP:    return 0;
2935     case CmpMode::SignalingFP: return 0;
2936     }
2937     llvm_unreachable("Bad mode");
2938 
2939   default:
2940     return 0;
2941   }
2942 }
2943 
2944 // Return the SystemZISD vector comparison operation for CC or its inverse,
2945 // or 0 if neither can be done directly.  Indicate in Invert whether the
2946 // result is for the inverse of CC.  Mode is as above.
2947 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, CmpMode Mode,
2948                                             bool &Invert) {
2949   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2950     Invert = false;
2951     return Opcode;
2952   }
2953 
2954   CC = ISD::getSetCCInverse(CC, Mode == CmpMode::Int ? MVT::i32 : MVT::f32);
2955   if (unsigned Opcode = getVectorComparison(CC, Mode)) {
2956     Invert = true;
2957     return Opcode;
2958   }
2959 
2960   return 0;
2961 }
2962 
2963 // Return a v2f64 that contains the extended form of elements Start and Start+1
2964 // of v4f32 value Op.  If Chain is nonnull, return the strict form.
2965 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL,
2966                                   SDValue Op, SDValue Chain) {
2967   int Mask[] = { Start, -1, Start + 1, -1 };
2968   Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask);
2969   if (Chain) {
2970     SDVTList VTs = DAG.getVTList(MVT::v2f64, MVT::Other);
2971     return DAG.getNode(SystemZISD::STRICT_VEXTEND, DL, VTs, Chain, Op);
2972   }
2973   return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op);
2974 }
2975 
2976 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode,
2977 // producing a result of type VT.  If Chain is nonnull, return the strict form.
2978 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
2979                                             const SDLoc &DL, EVT VT,
2980                                             SDValue CmpOp0,
2981                                             SDValue CmpOp1,
2982                                             SDValue Chain) const {
2983   // There is no hardware support for v4f32 (unless we have the vector
2984   // enhancements facility 1), so extend the vector into two v2f64s
2985   // and compare those.
2986   if (CmpOp0.getValueType() == MVT::v4f32 &&
2987       !Subtarget.hasVectorEnhancements1()) {
2988     SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0, Chain);
2989     SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0, Chain);
2990     SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1, Chain);
2991     SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1, Chain);
2992     if (Chain) {
2993       SDVTList VTs = DAG.getVTList(MVT::v2i64, MVT::Other);
2994       SDValue HRes = DAG.getNode(Opcode, DL, VTs, Chain, H0, H1);
2995       SDValue LRes = DAG.getNode(Opcode, DL, VTs, Chain, L0, L1);
2996       SDValue Res = DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
2997       SDValue Chains[6] = { H0.getValue(1), L0.getValue(1),
2998                             H1.getValue(1), L1.getValue(1),
2999                             HRes.getValue(1), LRes.getValue(1) };
3000       SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
3001       SDValue Ops[2] = { Res, NewChain };
3002       return DAG.getMergeValues(Ops, DL);
3003     }
3004     SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1);
3005     SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1);
3006     return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes);
3007   }
3008   if (Chain) {
3009     SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3010     return DAG.getNode(Opcode, DL, VTs, Chain, CmpOp0, CmpOp1);
3011   }
3012   return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1);
3013 }
3014 
3015 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing
3016 // an integer mask of type VT.  If Chain is nonnull, we have a strict
3017 // floating-point comparison.  If in addition IsSignaling is true, we have
3018 // a strict signaling floating-point comparison.
3019 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG,
3020                                                 const SDLoc &DL, EVT VT,
3021                                                 ISD::CondCode CC,
3022                                                 SDValue CmpOp0,
3023                                                 SDValue CmpOp1,
3024                                                 SDValue Chain,
3025                                                 bool IsSignaling) const {
3026   bool IsFP = CmpOp0.getValueType().isFloatingPoint();
3027   assert (!Chain || IsFP);
3028   assert (!IsSignaling || Chain);
3029   CmpMode Mode = IsSignaling ? CmpMode::SignalingFP :
3030                  Chain ? CmpMode::StrictFP : IsFP ? CmpMode::FP : CmpMode::Int;
3031   bool Invert = false;
3032   SDValue Cmp;
3033   switch (CC) {
3034     // Handle tests for order using (or (ogt y x) (oge x y)).
3035   case ISD::SETUO:
3036     Invert = true;
3037     LLVM_FALLTHROUGH;
3038   case ISD::SETO: {
3039     assert(IsFP && "Unexpected integer comparison");
3040     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3041                               DL, VT, CmpOp1, CmpOp0, Chain);
3042     SDValue GE = getVectorCmp(DAG, getVectorComparison(ISD::SETOGE, Mode),
3043                               DL, VT, CmpOp0, CmpOp1, Chain);
3044     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE);
3045     if (Chain)
3046       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3047                           LT.getValue(1), GE.getValue(1));
3048     break;
3049   }
3050 
3051     // Handle <> tests using (or (ogt y x) (ogt x y)).
3052   case ISD::SETUEQ:
3053     Invert = true;
3054     LLVM_FALLTHROUGH;
3055   case ISD::SETONE: {
3056     assert(IsFP && "Unexpected integer comparison");
3057     SDValue LT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3058                               DL, VT, CmpOp1, CmpOp0, Chain);
3059     SDValue GT = getVectorCmp(DAG, getVectorComparison(ISD::SETOGT, Mode),
3060                               DL, VT, CmpOp0, CmpOp1, Chain);
3061     Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT);
3062     if (Chain)
3063       Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
3064                           LT.getValue(1), GT.getValue(1));
3065     break;
3066   }
3067 
3068     // Otherwise a single comparison is enough.  It doesn't really
3069     // matter whether we try the inversion or the swap first, since
3070     // there are no cases where both work.
3071   default:
3072     if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3073       Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1, Chain);
3074     else {
3075       CC = ISD::getSetCCSwappedOperands(CC);
3076       if (unsigned Opcode = getVectorComparisonOrInvert(CC, Mode, Invert))
3077         Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0, Chain);
3078       else
3079         llvm_unreachable("Unhandled comparison");
3080     }
3081     if (Chain)
3082       Chain = Cmp.getValue(1);
3083     break;
3084   }
3085   if (Invert) {
3086     SDValue Mask =
3087       DAG.getSplatBuildVector(VT, DL, DAG.getConstant(-1, DL, MVT::i64));
3088     Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask);
3089   }
3090   if (Chain && Chain.getNode() != Cmp.getNode()) {
3091     SDValue Ops[2] = { Cmp, Chain };
3092     Cmp = DAG.getMergeValues(Ops, DL);
3093   }
3094   return Cmp;
3095 }
3096 
3097 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op,
3098                                           SelectionDAG &DAG) const {
3099   SDValue CmpOp0   = Op.getOperand(0);
3100   SDValue CmpOp1   = Op.getOperand(1);
3101   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3102   SDLoc DL(Op);
3103   EVT VT = Op.getValueType();
3104   if (VT.isVector())
3105     return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1);
3106 
3107   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3108   SDValue CCReg = emitCmp(DAG, DL, C);
3109   return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3110 }
3111 
3112 SDValue SystemZTargetLowering::lowerSTRICT_FSETCC(SDValue Op,
3113                                                   SelectionDAG &DAG,
3114                                                   bool IsSignaling) const {
3115   SDValue Chain    = Op.getOperand(0);
3116   SDValue CmpOp0   = Op.getOperand(1);
3117   SDValue CmpOp1   = Op.getOperand(2);
3118   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
3119   SDLoc DL(Op);
3120   EVT VT = Op.getNode()->getValueType(0);
3121   if (VT.isVector()) {
3122     SDValue Res = lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1,
3123                                    Chain, IsSignaling);
3124     return Res.getValue(Op.getResNo());
3125   }
3126 
3127   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL, Chain, IsSignaling));
3128   SDValue CCReg = emitCmp(DAG, DL, C);
3129   CCReg->setFlags(Op->getFlags());
3130   SDValue Result = emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask);
3131   SDValue Ops[2] = { Result, CCReg.getValue(1) };
3132   return DAG.getMergeValues(Ops, DL);
3133 }
3134 
3135 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
3136   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
3137   SDValue CmpOp0   = Op.getOperand(2);
3138   SDValue CmpOp1   = Op.getOperand(3);
3139   SDValue Dest     = Op.getOperand(4);
3140   SDLoc DL(Op);
3141 
3142   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3143   SDValue CCReg = emitCmp(DAG, DL, C);
3144   return DAG.getNode(
3145       SystemZISD::BR_CCMASK, DL, Op.getValueType(), Op.getOperand(0),
3146       DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3147       DAG.getTargetConstant(C.CCMask, DL, MVT::i32), Dest, CCReg);
3148 }
3149 
3150 // Return true if Pos is CmpOp and Neg is the negative of CmpOp,
3151 // allowing Pos and Neg to be wider than CmpOp.
3152 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) {
3153   return (Neg.getOpcode() == ISD::SUB &&
3154           Neg.getOperand(0).getOpcode() == ISD::Constant &&
3155           cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 &&
3156           Neg.getOperand(1) == Pos &&
3157           (Pos == CmpOp ||
3158            (Pos.getOpcode() == ISD::SIGN_EXTEND &&
3159             Pos.getOperand(0) == CmpOp)));
3160 }
3161 
3162 // Return the absolute or negative absolute of Op; IsNegative decides which.
3163 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op,
3164                            bool IsNegative) {
3165   Op = DAG.getNode(ISD::ABS, DL, Op.getValueType(), Op);
3166   if (IsNegative)
3167     Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(),
3168                      DAG.getConstant(0, DL, Op.getValueType()), Op);
3169   return Op;
3170 }
3171 
3172 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op,
3173                                               SelectionDAG &DAG) const {
3174   SDValue CmpOp0   = Op.getOperand(0);
3175   SDValue CmpOp1   = Op.getOperand(1);
3176   SDValue TrueOp   = Op.getOperand(2);
3177   SDValue FalseOp  = Op.getOperand(3);
3178   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3179   SDLoc DL(Op);
3180 
3181   Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL));
3182 
3183   // Check for absolute and negative-absolute selections, including those
3184   // where the comparison value is sign-extended (for LPGFR and LNGFR).
3185   // This check supplements the one in DAGCombiner.
3186   if (C.Opcode == SystemZISD::ICMP &&
3187       C.CCMask != SystemZ::CCMASK_CMP_EQ &&
3188       C.CCMask != SystemZ::CCMASK_CMP_NE &&
3189       C.Op1.getOpcode() == ISD::Constant &&
3190       cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) {
3191     if (isAbsolute(C.Op0, TrueOp, FalseOp))
3192       return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT);
3193     if (isAbsolute(C.Op0, FalseOp, TrueOp))
3194       return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT);
3195   }
3196 
3197   SDValue CCReg = emitCmp(DAG, DL, C);
3198   SDValue Ops[] = {TrueOp, FalseOp,
3199                    DAG.getTargetConstant(C.CCValid, DL, MVT::i32),
3200                    DAG.getTargetConstant(C.CCMask, DL, MVT::i32), CCReg};
3201 
3202   return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops);
3203 }
3204 
3205 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node,
3206                                                   SelectionDAG &DAG) const {
3207   SDLoc DL(Node);
3208   const GlobalValue *GV = Node->getGlobal();
3209   int64_t Offset = Node->getOffset();
3210   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3211   CodeModel::Model CM = DAG.getTarget().getCodeModel();
3212 
3213   SDValue Result;
3214   if (Subtarget.isPC32DBLSymbol(GV, CM)) {
3215     if (isInt<32>(Offset)) {
3216       // Assign anchors at 1<<12 byte boundaries.
3217       uint64_t Anchor = Offset & ~uint64_t(0xfff);
3218       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor);
3219       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3220 
3221       // The offset can be folded into the address if it is aligned to a
3222       // halfword.
3223       Offset -= Anchor;
3224       if (Offset != 0 && (Offset & 1) == 0) {
3225         SDValue Full =
3226           DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset);
3227         Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result);
3228         Offset = 0;
3229       }
3230     } else {
3231       // Conservatively load a constant offset greater than 32 bits into a
3232       // register below.
3233       Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT);
3234       Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3235     }
3236   } else {
3237     Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT);
3238     Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3239     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3240                          MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3241   }
3242 
3243   // If there was a non-zero offset that we didn't fold, create an explicit
3244   // addition for it.
3245   if (Offset != 0)
3246     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3247                          DAG.getConstant(Offset, DL, PtrVT));
3248 
3249   return Result;
3250 }
3251 
3252 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node,
3253                                                  SelectionDAG &DAG,
3254                                                  unsigned Opcode,
3255                                                  SDValue GOTOffset) const {
3256   SDLoc DL(Node);
3257   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3258   SDValue Chain = DAG.getEntryNode();
3259   SDValue Glue;
3260 
3261   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3262       CallingConv::GHC)
3263     report_fatal_error("In GHC calling convention TLS is not supported");
3264 
3265   // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12.
3266   SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
3267   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue);
3268   Glue = Chain.getValue(1);
3269   Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue);
3270   Glue = Chain.getValue(1);
3271 
3272   // The first call operand is the chain and the second is the TLS symbol.
3273   SmallVector<SDValue, 8> Ops;
3274   Ops.push_back(Chain);
3275   Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL,
3276                                            Node->getValueType(0),
3277                                            0, 0));
3278 
3279   // Add argument registers to the end of the list so that they are
3280   // known live into the call.
3281   Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT));
3282   Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT));
3283 
3284   // Add a register mask operand representing the call-preserved registers.
3285   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
3286   const uint32_t *Mask =
3287       TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3288   assert(Mask && "Missing call preserved mask for calling convention");
3289   Ops.push_back(DAG.getRegisterMask(Mask));
3290 
3291   // Glue the call to the argument copies.
3292   Ops.push_back(Glue);
3293 
3294   // Emit the call.
3295   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
3296   Chain = DAG.getNode(Opcode, DL, NodeTys, Ops);
3297   Glue = Chain.getValue(1);
3298 
3299   // Copy the return value from %r2.
3300   return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue);
3301 }
3302 
3303 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL,
3304                                                   SelectionDAG &DAG) const {
3305   SDValue Chain = DAG.getEntryNode();
3306   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3307 
3308   // The high part of the thread pointer is in access register 0.
3309   SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32);
3310   TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi);
3311 
3312   // The low part of the thread pointer is in access register 1.
3313   SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32);
3314   TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo);
3315 
3316   // Merge them into a single 64-bit address.
3317   SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi,
3318                                     DAG.getConstant(32, DL, PtrVT));
3319   return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo);
3320 }
3321 
3322 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
3323                                                      SelectionDAG &DAG) const {
3324   if (DAG.getTarget().useEmulatedTLS())
3325     return LowerToTLSEmulatedModel(Node, DAG);
3326   SDLoc DL(Node);
3327   const GlobalValue *GV = Node->getGlobal();
3328   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3329   TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
3330 
3331   if (DAG.getMachineFunction().getFunction().getCallingConv() ==
3332       CallingConv::GHC)
3333     report_fatal_error("In GHC calling convention TLS is not supported");
3334 
3335   SDValue TP = lowerThreadPointer(DL, DAG);
3336 
3337   // Get the offset of GA from the thread pointer, based on the TLS model.
3338   SDValue Offset;
3339   switch (model) {
3340     case TLSModel::GeneralDynamic: {
3341       // Load the GOT offset of the tls_index (module ID / per-symbol offset).
3342       SystemZConstantPoolValue *CPV =
3343         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD);
3344 
3345       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3346       Offset = DAG.getLoad(
3347           PtrVT, DL, DAG.getEntryNode(), Offset,
3348           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3349 
3350       // Call __tls_get_offset to retrieve the offset.
3351       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset);
3352       break;
3353     }
3354 
3355     case TLSModel::LocalDynamic: {
3356       // Load the GOT offset of the module ID.
3357       SystemZConstantPoolValue *CPV =
3358         SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM);
3359 
3360       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3361       Offset = DAG.getLoad(
3362           PtrVT, DL, DAG.getEntryNode(), Offset,
3363           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3364 
3365       // Call __tls_get_offset to retrieve the module base offset.
3366       Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset);
3367 
3368       // Note: The SystemZLDCleanupPass will remove redundant computations
3369       // of the module base offset.  Count total number of local-dynamic
3370       // accesses to trigger execution of that pass.
3371       SystemZMachineFunctionInfo* MFI =
3372         DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>();
3373       MFI->incNumLocalDynamicTLSAccesses();
3374 
3375       // Add the per-symbol offset.
3376       CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF);
3377 
3378       SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3379       DTPOffset = DAG.getLoad(
3380           PtrVT, DL, DAG.getEntryNode(), DTPOffset,
3381           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3382 
3383       Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset);
3384       break;
3385     }
3386 
3387     case TLSModel::InitialExec: {
3388       // Load the offset from the GOT.
3389       Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
3390                                           SystemZII::MO_INDNTPOFF);
3391       Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset);
3392       Offset =
3393           DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset,
3394                       MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3395       break;
3396     }
3397 
3398     case TLSModel::LocalExec: {
3399       // Force the offset into the constant pool and load it from there.
3400       SystemZConstantPoolValue *CPV =
3401         SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF);
3402 
3403       Offset = DAG.getConstantPool(CPV, PtrVT, Align(8));
3404       Offset = DAG.getLoad(
3405           PtrVT, DL, DAG.getEntryNode(), Offset,
3406           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3407       break;
3408     }
3409   }
3410 
3411   // Add the base and offset together.
3412   return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset);
3413 }
3414 
3415 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node,
3416                                                  SelectionDAG &DAG) const {
3417   SDLoc DL(Node);
3418   const BlockAddress *BA = Node->getBlockAddress();
3419   int64_t Offset = Node->getOffset();
3420   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3421 
3422   SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset);
3423   Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3424   return Result;
3425 }
3426 
3427 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT,
3428                                               SelectionDAG &DAG) const {
3429   SDLoc DL(JT);
3430   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3431   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3432 
3433   // Use LARL to load the address of the table.
3434   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3435 }
3436 
3437 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP,
3438                                                  SelectionDAG &DAG) const {
3439   SDLoc DL(CP);
3440   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3441 
3442   SDValue Result;
3443   if (CP->isMachineConstantPoolEntry())
3444     Result =
3445         DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CP->getAlign());
3446   else
3447     Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CP->getAlign(),
3448                                        CP->getOffset());
3449 
3450   // Use LARL to load the address of the constant pool entry.
3451   return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result);
3452 }
3453 
3454 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op,
3455                                               SelectionDAG &DAG) const {
3456   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
3457   MachineFunction &MF = DAG.getMachineFunction();
3458   MachineFrameInfo &MFI = MF.getFrameInfo();
3459   MFI.setFrameAddressIsTaken(true);
3460 
3461   SDLoc DL(Op);
3462   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3463   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3464 
3465   // By definition, the frame address is the address of the back chain.  (In
3466   // the case of packed stack without backchain, return the address where the
3467   // backchain would have been stored. This will either be an unused space or
3468   // contain a saved register).
3469   int BackChainIdx = TFL->getOrCreateFramePointerSaveIndex(MF);
3470   SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT);
3471 
3472   // FIXME The frontend should detect this case.
3473   if (Depth > 0) {
3474     report_fatal_error("Unsupported stack frame traversal count");
3475   }
3476 
3477   return BackChain;
3478 }
3479 
3480 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op,
3481                                                SelectionDAG &DAG) const {
3482   MachineFunction &MF = DAG.getMachineFunction();
3483   MachineFrameInfo &MFI = MF.getFrameInfo();
3484   MFI.setReturnAddressIsTaken(true);
3485 
3486   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
3487     return SDValue();
3488 
3489   SDLoc DL(Op);
3490   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3491   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3492 
3493   // FIXME The frontend should detect this case.
3494   if (Depth > 0) {
3495     report_fatal_error("Unsupported stack frame traversal count");
3496   }
3497 
3498   // Return R14D, which has the return address. Mark it an implicit live-in.
3499   Register LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass);
3500   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT);
3501 }
3502 
3503 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op,
3504                                             SelectionDAG &DAG) const {
3505   SDLoc DL(Op);
3506   SDValue In = Op.getOperand(0);
3507   EVT InVT = In.getValueType();
3508   EVT ResVT = Op.getValueType();
3509 
3510   // Convert loads directly.  This is normally done by DAGCombiner,
3511   // but we need this case for bitcasts that are created during lowering
3512   // and which are then lowered themselves.
3513   if (auto *LoadN = dyn_cast<LoadSDNode>(In))
3514     if (ISD::isNormalLoad(LoadN)) {
3515       SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(),
3516                                     LoadN->getBasePtr(), LoadN->getMemOperand());
3517       // Update the chain uses.
3518       DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1));
3519       return NewLoad;
3520     }
3521 
3522   if (InVT == MVT::i32 && ResVT == MVT::f32) {
3523     SDValue In64;
3524     if (Subtarget.hasHighWord()) {
3525       SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL,
3526                                        MVT::i64);
3527       In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3528                                        MVT::i64, SDValue(U64, 0), In);
3529     } else {
3530       In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In);
3531       In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64,
3532                          DAG.getConstant(32, DL, MVT::i64));
3533     }
3534     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64);
3535     return DAG.getTargetExtractSubreg(SystemZ::subreg_h32,
3536                                       DL, MVT::f32, Out64);
3537   }
3538   if (InVT == MVT::f32 && ResVT == MVT::i32) {
3539     SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64);
3540     SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL,
3541                                              MVT::f64, SDValue(U64, 0), In);
3542     SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64);
3543     if (Subtarget.hasHighWord())
3544       return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL,
3545                                         MVT::i32, Out64);
3546     SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64,
3547                                 DAG.getConstant(32, DL, MVT::i64));
3548     return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift);
3549   }
3550   llvm_unreachable("Unexpected bitcast combination");
3551 }
3552 
3553 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op,
3554                                             SelectionDAG &DAG) const {
3555 
3556   if (Subtarget.isTargetXPLINK64())
3557     return lowerVASTART_XPLINK(Op, DAG);
3558   else
3559     return lowerVASTART_ELF(Op, DAG);
3560 }
3561 
3562 SDValue SystemZTargetLowering::lowerVASTART_XPLINK(SDValue Op,
3563                                                    SelectionDAG &DAG) const {
3564   MachineFunction &MF = DAG.getMachineFunction();
3565   SystemZMachineFunctionInfo *FuncInfo =
3566       MF.getInfo<SystemZMachineFunctionInfo>();
3567 
3568   SDLoc DL(Op);
3569 
3570   // vastart just stores the address of the VarArgsFrameIndex slot into the
3571   // memory location argument.
3572   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3573   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3574   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3575   return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
3576                       MachinePointerInfo(SV));
3577 }
3578 
3579 SDValue SystemZTargetLowering::lowerVASTART_ELF(SDValue Op,
3580                                                 SelectionDAG &DAG) const {
3581   MachineFunction &MF = DAG.getMachineFunction();
3582   SystemZMachineFunctionInfo *FuncInfo =
3583     MF.getInfo<SystemZMachineFunctionInfo>();
3584   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3585 
3586   SDValue Chain   = Op.getOperand(0);
3587   SDValue Addr    = Op.getOperand(1);
3588   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3589   SDLoc DL(Op);
3590 
3591   // The initial values of each field.
3592   const unsigned NumFields = 4;
3593   SDValue Fields[NumFields] = {
3594     DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT),
3595     DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT),
3596     DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT),
3597     DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT)
3598   };
3599 
3600   // Store each field into its respective slot.
3601   SDValue MemOps[NumFields];
3602   unsigned Offset = 0;
3603   for (unsigned I = 0; I < NumFields; ++I) {
3604     SDValue FieldAddr = Addr;
3605     if (Offset != 0)
3606       FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr,
3607                               DAG.getIntPtrConstant(Offset, DL));
3608     MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr,
3609                              MachinePointerInfo(SV, Offset));
3610     Offset += 8;
3611   }
3612   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
3613 }
3614 
3615 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op,
3616                                            SelectionDAG &DAG) const {
3617   SDValue Chain      = Op.getOperand(0);
3618   SDValue DstPtr     = Op.getOperand(1);
3619   SDValue SrcPtr     = Op.getOperand(2);
3620   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
3621   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
3622   SDLoc DL(Op);
3623 
3624   uint32_t Sz =
3625       Subtarget.isTargetXPLINK64() ? getTargetMachine().getPointerSize(0) : 32;
3626   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(Sz, DL),
3627                        Align(8), /*isVolatile*/ false, /*AlwaysInline*/ false,
3628                        /*isTailCall*/ false, MachinePointerInfo(DstSV),
3629                        MachinePointerInfo(SrcSV));
3630 }
3631 
3632 SDValue
3633 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC(SDValue Op,
3634                                                SelectionDAG &DAG) const {
3635   if (Subtarget.isTargetXPLINK64())
3636     return lowerDYNAMIC_STACKALLOC_XPLINK(Op, DAG);
3637   else
3638     return lowerDYNAMIC_STACKALLOC_ELF(Op, DAG);
3639 }
3640 
3641 SDValue
3642 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_XPLINK(SDValue Op,
3643                                                       SelectionDAG &DAG) const {
3644   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3645   MachineFunction &MF = DAG.getMachineFunction();
3646   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3647   SDValue Chain = Op.getOperand(0);
3648   SDValue Size = Op.getOperand(1);
3649   SDValue Align = Op.getOperand(2);
3650   SDLoc DL(Op);
3651 
3652   // If user has set the no alignment function attribute, ignore
3653   // alloca alignments.
3654   uint64_t AlignVal =
3655       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3656 
3657   uint64_t StackAlign = TFI->getStackAlignment();
3658   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3659   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3660 
3661   SDValue NeededSpace = Size;
3662 
3663   // Add extra space for alignment if needed.
3664   EVT PtrVT = getPointerTy(MF.getDataLayout());
3665   if (ExtraAlignSpace)
3666     NeededSpace = DAG.getNode(ISD::ADD, DL, PtrVT, NeededSpace,
3667                               DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3668 
3669   bool IsSigned = false;
3670   bool DoesNotReturn = false;
3671   bool IsReturnValueUsed = false;
3672   EVT VT = Op.getValueType();
3673   SDValue AllocaCall =
3674       makeExternalCall(Chain, DAG, "@@ALCAXP", VT, makeArrayRef(NeededSpace),
3675                        CallingConv::C, IsSigned, DL, DoesNotReturn,
3676                        IsReturnValueUsed)
3677           .first;
3678 
3679   // Perform a CopyFromReg from %GPR4 (stack pointer register). Chain and Glue
3680   // to end of call in order to ensure it isn't broken up from the call
3681   // sequence.
3682   auto &Regs = Subtarget.getSpecialRegisters<SystemZXPLINK64Registers>();
3683   Register SPReg = Regs.getStackPointerRegister();
3684   Chain = AllocaCall.getValue(1);
3685   SDValue Glue = AllocaCall.getValue(2);
3686   SDValue NewSPRegNode = DAG.getCopyFromReg(Chain, DL, SPReg, PtrVT, Glue);
3687   Chain = NewSPRegNode.getValue(1);
3688 
3689   MVT PtrMVT = getPointerMemTy(MF.getDataLayout());
3690   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, PtrMVT);
3691   SDValue Result = DAG.getNode(ISD::ADD, DL, PtrMVT, NewSPRegNode, ArgAdjust);
3692 
3693   // Dynamically realign if needed.
3694   if (ExtraAlignSpace) {
3695     Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result,
3696                          DAG.getConstant(ExtraAlignSpace, DL, PtrVT));
3697     Result = DAG.getNode(ISD::AND, DL, PtrVT, Result,
3698                          DAG.getConstant(~(RequiredAlign - 1), DL, PtrVT));
3699   }
3700 
3701   SDValue Ops[2] = {Result, Chain};
3702   return DAG.getMergeValues(Ops, DL);
3703 }
3704 
3705 SDValue
3706 SystemZTargetLowering::lowerDYNAMIC_STACKALLOC_ELF(SDValue Op,
3707                                                    SelectionDAG &DAG) const {
3708   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
3709   MachineFunction &MF = DAG.getMachineFunction();
3710   bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack");
3711   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
3712 
3713   SDValue Chain = Op.getOperand(0);
3714   SDValue Size  = Op.getOperand(1);
3715   SDValue Align = Op.getOperand(2);
3716   SDLoc DL(Op);
3717 
3718   // If user has set the no alignment function attribute, ignore
3719   // alloca alignments.
3720   uint64_t AlignVal =
3721       (RealignOpt ? cast<ConstantSDNode>(Align)->getZExtValue() : 0);
3722 
3723   uint64_t StackAlign = TFI->getStackAlignment();
3724   uint64_t RequiredAlign = std::max(AlignVal, StackAlign);
3725   uint64_t ExtraAlignSpace = RequiredAlign - StackAlign;
3726 
3727   Register SPReg = getStackPointerRegisterToSaveRestore();
3728   SDValue NeededSpace = Size;
3729 
3730   // Get a reference to the stack pointer.
3731   SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64);
3732 
3733   // If we need a backchain, save it now.
3734   SDValue Backchain;
3735   if (StoreBackchain)
3736     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
3737                             MachinePointerInfo());
3738 
3739   // Add extra space for alignment if needed.
3740   if (ExtraAlignSpace)
3741     NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace,
3742                               DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3743 
3744   // Get the new stack pointer value.
3745   SDValue NewSP;
3746   if (hasInlineStackProbe(MF)) {
3747     NewSP = DAG.getNode(SystemZISD::PROBED_ALLOCA, DL,
3748                 DAG.getVTList(MVT::i64, MVT::Other), Chain, OldSP, NeededSpace);
3749     Chain = NewSP.getValue(1);
3750   }
3751   else {
3752     NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace);
3753     // Copy the new stack pointer back.
3754     Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP);
3755   }
3756 
3757   // The allocated data lives above the 160 bytes allocated for the standard
3758   // frame, plus any outgoing stack arguments.  We don't know how much that
3759   // amounts to yet, so emit a special ADJDYNALLOC placeholder.
3760   SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3761   SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust);
3762 
3763   // Dynamically realign if needed.
3764   if (RequiredAlign > StackAlign) {
3765     Result =
3766       DAG.getNode(ISD::ADD, DL, MVT::i64, Result,
3767                   DAG.getConstant(ExtraAlignSpace, DL, MVT::i64));
3768     Result =
3769       DAG.getNode(ISD::AND, DL, MVT::i64, Result,
3770                   DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64));
3771   }
3772 
3773   if (StoreBackchain)
3774     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
3775                          MachinePointerInfo());
3776 
3777   SDValue Ops[2] = { Result, Chain };
3778   return DAG.getMergeValues(Ops, DL);
3779 }
3780 
3781 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET(
3782     SDValue Op, SelectionDAG &DAG) const {
3783   SDLoc DL(Op);
3784 
3785   return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64);
3786 }
3787 
3788 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op,
3789                                               SelectionDAG &DAG) const {
3790   EVT VT = Op.getValueType();
3791   SDLoc DL(Op);
3792   SDValue Ops[2];
3793   if (is32Bit(VT))
3794     // Just do a normal 64-bit multiplication and extract the results.
3795     // We define this so that it can be used for constant division.
3796     lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0),
3797                     Op.getOperand(1), Ops[1], Ops[0]);
3798   else if (Subtarget.hasMiscellaneousExtensions2())
3799     // SystemZISD::SMUL_LOHI returns the low result in the odd register and
3800     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3801     // return the low half first, so the results are in reverse order.
3802     lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI,
3803                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3804   else {
3805     // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI:
3806     //
3807     //   (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64)
3808     //
3809     // but using the fact that the upper halves are either all zeros
3810     // or all ones:
3811     //
3812     //   (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64)
3813     //
3814     // and grouping the right terms together since they are quicker than the
3815     // multiplication:
3816     //
3817     //   (ll * rl) - (((lh & rl) + (ll & rh)) << 64)
3818     SDValue C63 = DAG.getConstant(63, DL, MVT::i64);
3819     SDValue LL = Op.getOperand(0);
3820     SDValue RL = Op.getOperand(1);
3821     SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63);
3822     SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63);
3823     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3824     // the high result in the even register.  ISD::SMUL_LOHI is defined to
3825     // return the low half first, so the results are in reverse order.
3826     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3827                      LL, RL, Ops[1], Ops[0]);
3828     SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH);
3829     SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL);
3830     SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL);
3831     Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum);
3832   }
3833   return DAG.getMergeValues(Ops, DL);
3834 }
3835 
3836 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op,
3837                                               SelectionDAG &DAG) const {
3838   EVT VT = Op.getValueType();
3839   SDLoc DL(Op);
3840   SDValue Ops[2];
3841   if (is32Bit(VT))
3842     // Just do a normal 64-bit multiplication and extract the results.
3843     // We define this so that it can be used for constant division.
3844     lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0),
3845                     Op.getOperand(1), Ops[1], Ops[0]);
3846   else
3847     // SystemZISD::UMUL_LOHI returns the low result in the odd register and
3848     // the high result in the even register.  ISD::UMUL_LOHI is defined to
3849     // return the low half first, so the results are in reverse order.
3850     lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI,
3851                      Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3852   return DAG.getMergeValues(Ops, DL);
3853 }
3854 
3855 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op,
3856                                             SelectionDAG &DAG) const {
3857   SDValue Op0 = Op.getOperand(0);
3858   SDValue Op1 = Op.getOperand(1);
3859   EVT VT = Op.getValueType();
3860   SDLoc DL(Op);
3861 
3862   // We use DSGF for 32-bit division.  This means the first operand must
3863   // always be 64-bit, and the second operand should be 32-bit whenever
3864   // that is possible, to improve performance.
3865   if (is32Bit(VT))
3866     Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0);
3867   else if (DAG.ComputeNumSignBits(Op1) > 32)
3868     Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1);
3869 
3870   // DSG(F) returns the remainder in the even register and the
3871   // quotient in the odd register.
3872   SDValue Ops[2];
3873   lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]);
3874   return DAG.getMergeValues(Ops, DL);
3875 }
3876 
3877 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op,
3878                                             SelectionDAG &DAG) const {
3879   EVT VT = Op.getValueType();
3880   SDLoc DL(Op);
3881 
3882   // DL(G) returns the remainder in the even register and the
3883   // quotient in the odd register.
3884   SDValue Ops[2];
3885   lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM,
3886                    Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]);
3887   return DAG.getMergeValues(Ops, DL);
3888 }
3889 
3890 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const {
3891   assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation");
3892 
3893   // Get the known-zero masks for each operand.
3894   SDValue Ops[] = {Op.getOperand(0), Op.getOperand(1)};
3895   KnownBits Known[2] = {DAG.computeKnownBits(Ops[0]),
3896                         DAG.computeKnownBits(Ops[1])};
3897 
3898   // See if the upper 32 bits of one operand and the lower 32 bits of the
3899   // other are known zero.  They are the low and high operands respectively.
3900   uint64_t Masks[] = { Known[0].Zero.getZExtValue(),
3901                        Known[1].Zero.getZExtValue() };
3902   unsigned High, Low;
3903   if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff)
3904     High = 1, Low = 0;
3905   else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff)
3906     High = 0, Low = 1;
3907   else
3908     return Op;
3909 
3910   SDValue LowOp = Ops[Low];
3911   SDValue HighOp = Ops[High];
3912 
3913   // If the high part is a constant, we're better off using IILH.
3914   if (HighOp.getOpcode() == ISD::Constant)
3915     return Op;
3916 
3917   // If the low part is a constant that is outside the range of LHI,
3918   // then we're better off using IILF.
3919   if (LowOp.getOpcode() == ISD::Constant) {
3920     int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue());
3921     if (!isInt<16>(Value))
3922       return Op;
3923   }
3924 
3925   // Check whether the high part is an AND that doesn't change the
3926   // high 32 bits and just masks out low bits.  We can skip it if so.
3927   if (HighOp.getOpcode() == ISD::AND &&
3928       HighOp.getOperand(1).getOpcode() == ISD::Constant) {
3929     SDValue HighOp0 = HighOp.getOperand(0);
3930     uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue();
3931     if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff))))
3932       HighOp = HighOp0;
3933   }
3934 
3935   // Take advantage of the fact that all GR32 operations only change the
3936   // low 32 bits by truncating Low to an i32 and inserting it directly
3937   // using a subreg.  The interesting cases are those where the truncation
3938   // can be folded.
3939   SDLoc DL(Op);
3940   SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp);
3941   return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL,
3942                                    MVT::i64, HighOp, Low32);
3943 }
3944 
3945 // Lower SADDO/SSUBO/UADDO/USUBO nodes.
3946 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op,
3947                                           SelectionDAG &DAG) const {
3948   SDNode *N = Op.getNode();
3949   SDValue LHS = N->getOperand(0);
3950   SDValue RHS = N->getOperand(1);
3951   SDLoc DL(N);
3952   unsigned BaseOp = 0;
3953   unsigned CCValid = 0;
3954   unsigned CCMask = 0;
3955 
3956   switch (Op.getOpcode()) {
3957   default: llvm_unreachable("Unknown instruction!");
3958   case ISD::SADDO:
3959     BaseOp = SystemZISD::SADDO;
3960     CCValid = SystemZ::CCMASK_ARITH;
3961     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3962     break;
3963   case ISD::SSUBO:
3964     BaseOp = SystemZISD::SSUBO;
3965     CCValid = SystemZ::CCMASK_ARITH;
3966     CCMask = SystemZ::CCMASK_ARITH_OVERFLOW;
3967     break;
3968   case ISD::UADDO:
3969     BaseOp = SystemZISD::UADDO;
3970     CCValid = SystemZ::CCMASK_LOGICAL;
3971     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
3972     break;
3973   case ISD::USUBO:
3974     BaseOp = SystemZISD::USUBO;
3975     CCValid = SystemZ::CCMASK_LOGICAL;
3976     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
3977     break;
3978   }
3979 
3980   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
3981   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
3982 
3983   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
3984   if (N->getValueType(1) == MVT::i1)
3985     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
3986 
3987   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
3988 }
3989 
3990 static bool isAddCarryChain(SDValue Carry) {
3991   while (Carry.getOpcode() == ISD::ADDCARRY)
3992     Carry = Carry.getOperand(2);
3993   return Carry.getOpcode() == ISD::UADDO;
3994 }
3995 
3996 static bool isSubBorrowChain(SDValue Carry) {
3997   while (Carry.getOpcode() == ISD::SUBCARRY)
3998     Carry = Carry.getOperand(2);
3999   return Carry.getOpcode() == ISD::USUBO;
4000 }
4001 
4002 // Lower ADDCARRY/SUBCARRY nodes.
4003 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op,
4004                                                 SelectionDAG &DAG) const {
4005 
4006   SDNode *N = Op.getNode();
4007   MVT VT = N->getSimpleValueType(0);
4008 
4009   // Let legalize expand this if it isn't a legal type yet.
4010   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
4011     return SDValue();
4012 
4013   SDValue LHS = N->getOperand(0);
4014   SDValue RHS = N->getOperand(1);
4015   SDValue Carry = Op.getOperand(2);
4016   SDLoc DL(N);
4017   unsigned BaseOp = 0;
4018   unsigned CCValid = 0;
4019   unsigned CCMask = 0;
4020 
4021   switch (Op.getOpcode()) {
4022   default: llvm_unreachable("Unknown instruction!");
4023   case ISD::ADDCARRY:
4024     if (!isAddCarryChain(Carry))
4025       return SDValue();
4026 
4027     BaseOp = SystemZISD::ADDCARRY;
4028     CCValid = SystemZ::CCMASK_LOGICAL;
4029     CCMask = SystemZ::CCMASK_LOGICAL_CARRY;
4030     break;
4031   case ISD::SUBCARRY:
4032     if (!isSubBorrowChain(Carry))
4033       return SDValue();
4034 
4035     BaseOp = SystemZISD::SUBCARRY;
4036     CCValid = SystemZ::CCMASK_LOGICAL;
4037     CCMask = SystemZ::CCMASK_LOGICAL_BORROW;
4038     break;
4039   }
4040 
4041   // Set the condition code from the carry flag.
4042   Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry,
4043                       DAG.getConstant(CCValid, DL, MVT::i32),
4044                       DAG.getConstant(CCMask, DL, MVT::i32));
4045 
4046   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4047   SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry);
4048 
4049   SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask);
4050   if (N->getValueType(1) == MVT::i1)
4051     SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
4052 
4053   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC);
4054 }
4055 
4056 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op,
4057                                           SelectionDAG &DAG) const {
4058   EVT VT = Op.getValueType();
4059   SDLoc DL(Op);
4060   Op = Op.getOperand(0);
4061 
4062   // Handle vector types via VPOPCT.
4063   if (VT.isVector()) {
4064     Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op);
4065     Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op);
4066     switch (VT.getScalarSizeInBits()) {
4067     case 8:
4068       break;
4069     case 16: {
4070       Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
4071       SDValue Shift = DAG.getConstant(8, DL, MVT::i32);
4072       SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift);
4073       Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4074       Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift);
4075       break;
4076     }
4077     case 32: {
4078       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4079                                             DAG.getConstant(0, DL, MVT::i32));
4080       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4081       break;
4082     }
4083     case 64: {
4084       SDValue Tmp = DAG.getSplatBuildVector(MVT::v16i8, DL,
4085                                             DAG.getConstant(0, DL, MVT::i32));
4086       Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp);
4087       Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp);
4088       break;
4089     }
4090     default:
4091       llvm_unreachable("Unexpected type");
4092     }
4093     return Op;
4094   }
4095 
4096   // Get the known-zero mask for the operand.
4097   KnownBits Known = DAG.computeKnownBits(Op);
4098   unsigned NumSignificantBits = Known.getMaxValue().getActiveBits();
4099   if (NumSignificantBits == 0)
4100     return DAG.getConstant(0, DL, VT);
4101 
4102   // Skip known-zero high parts of the operand.
4103   int64_t OrigBitSize = VT.getSizeInBits();
4104   int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits);
4105   BitSize = std::min(BitSize, OrigBitSize);
4106 
4107   // The POPCNT instruction counts the number of bits in each byte.
4108   Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op);
4109   Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op);
4110   Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
4111 
4112   // Add up per-byte counts in a binary tree.  All bits of Op at
4113   // position larger than BitSize remain zero throughout.
4114   for (int64_t I = BitSize / 2; I >= 8; I = I / 2) {
4115     SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT));
4116     if (BitSize != OrigBitSize)
4117       Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp,
4118                         DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT));
4119     Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp);
4120   }
4121 
4122   // Extract overall result from high byte.
4123   if (BitSize > 8)
4124     Op = DAG.getNode(ISD::SRL, DL, VT, Op,
4125                      DAG.getConstant(BitSize - 8, DL, VT));
4126 
4127   return Op;
4128 }
4129 
4130 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op,
4131                                                  SelectionDAG &DAG) const {
4132   SDLoc DL(Op);
4133   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
4134     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
4135   SyncScope::ID FenceSSID = static_cast<SyncScope::ID>(
4136     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
4137 
4138   // The only fence that needs an instruction is a sequentially-consistent
4139   // cross-thread fence.
4140   if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
4141       FenceSSID == SyncScope::System) {
4142     return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other,
4143                                       Op.getOperand(0)),
4144                    0);
4145   }
4146 
4147   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
4148   return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0));
4149 }
4150 
4151 // Op is an atomic load.  Lower it into a normal volatile load.
4152 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op,
4153                                                 SelectionDAG &DAG) const {
4154   auto *Node = cast<AtomicSDNode>(Op.getNode());
4155   return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(),
4156                         Node->getChain(), Node->getBasePtr(),
4157                         Node->getMemoryVT(), Node->getMemOperand());
4158 }
4159 
4160 // Op is an atomic store.  Lower it into a normal volatile store.
4161 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op,
4162                                                  SelectionDAG &DAG) const {
4163   auto *Node = cast<AtomicSDNode>(Op.getNode());
4164   SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(),
4165                                     Node->getBasePtr(), Node->getMemoryVT(),
4166                                     Node->getMemOperand());
4167   // We have to enforce sequential consistency by performing a
4168   // serialization operation after the store.
4169   if (Node->getSuccessOrdering() == AtomicOrdering::SequentiallyConsistent)
4170     Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op),
4171                                        MVT::Other, Chain), 0);
4172   return Chain;
4173 }
4174 
4175 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation.  Lower the first
4176 // two into the fullword ATOMIC_LOADW_* operation given by Opcode.
4177 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op,
4178                                                    SelectionDAG &DAG,
4179                                                    unsigned Opcode) const {
4180   auto *Node = cast<AtomicSDNode>(Op.getNode());
4181 
4182   // 32-bit operations need no code outside the main loop.
4183   EVT NarrowVT = Node->getMemoryVT();
4184   EVT WideVT = MVT::i32;
4185   if (NarrowVT == WideVT)
4186     return Op;
4187 
4188   int64_t BitSize = NarrowVT.getSizeInBits();
4189   SDValue ChainIn = Node->getChain();
4190   SDValue Addr = Node->getBasePtr();
4191   SDValue Src2 = Node->getVal();
4192   MachineMemOperand *MMO = Node->getMemOperand();
4193   SDLoc DL(Node);
4194   EVT PtrVT = Addr.getValueType();
4195 
4196   // Convert atomic subtracts of constants into additions.
4197   if (Opcode == SystemZISD::ATOMIC_LOADW_SUB)
4198     if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) {
4199       Opcode = SystemZISD::ATOMIC_LOADW_ADD;
4200       Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType());
4201     }
4202 
4203   // Get the address of the containing word.
4204   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4205                                     DAG.getConstant(-4, DL, PtrVT));
4206 
4207   // Get the number of bits that the word must be rotated left in order
4208   // to bring the field to the top bits of a GR32.
4209   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4210                                  DAG.getConstant(3, DL, PtrVT));
4211   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4212 
4213   // Get the complementing shift amount, for rotating a field in the top
4214   // bits back to its proper position.
4215   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4216                                     DAG.getConstant(0, DL, WideVT), BitShift);
4217 
4218   // Extend the source operand to 32 bits and prepare it for the inner loop.
4219   // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other
4220   // operations require the source to be shifted in advance.  (This shift
4221   // can be folded if the source is constant.)  For AND and NAND, the lower
4222   // bits must be set, while for other opcodes they should be left clear.
4223   if (Opcode != SystemZISD::ATOMIC_SWAPW)
4224     Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2,
4225                        DAG.getConstant(32 - BitSize, DL, WideVT));
4226   if (Opcode == SystemZISD::ATOMIC_LOADW_AND ||
4227       Opcode == SystemZISD::ATOMIC_LOADW_NAND)
4228     Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2,
4229                        DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT));
4230 
4231   // Construct the ATOMIC_LOADW_* node.
4232   SDVTList VTList = DAG.getVTList(WideVT, MVT::Other);
4233   SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift,
4234                     DAG.getConstant(BitSize, DL, WideVT) };
4235   SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops,
4236                                              NarrowVT, MMO);
4237 
4238   // Rotate the result of the final CS so that the field is in the lower
4239   // bits of a GR32, then truncate it.
4240   SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift,
4241                                     DAG.getConstant(BitSize, DL, WideVT));
4242   SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift);
4243 
4244   SDValue RetOps[2] = { Result, AtomicOp.getValue(1) };
4245   return DAG.getMergeValues(RetOps, DL);
4246 }
4247 
4248 // Op is an ATOMIC_LOAD_SUB operation.  Lower 8- and 16-bit operations
4249 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit
4250 // operations into additions.
4251 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op,
4252                                                     SelectionDAG &DAG) const {
4253   auto *Node = cast<AtomicSDNode>(Op.getNode());
4254   EVT MemVT = Node->getMemoryVT();
4255   if (MemVT == MVT::i32 || MemVT == MVT::i64) {
4256     // A full-width operation.
4257     assert(Op.getValueType() == MemVT && "Mismatched VTs");
4258     SDValue Src2 = Node->getVal();
4259     SDValue NegSrc2;
4260     SDLoc DL(Src2);
4261 
4262     if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) {
4263       // Use an addition if the operand is constant and either LAA(G) is
4264       // available or the negative value is in the range of A(G)FHI.
4265       int64_t Value = (-Op2->getAPIntValue()).getSExtValue();
4266       if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1())
4267         NegSrc2 = DAG.getConstant(Value, DL, MemVT);
4268     } else if (Subtarget.hasInterlockedAccess1())
4269       // Use LAA(G) if available.
4270       NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT),
4271                             Src2);
4272 
4273     if (NegSrc2.getNode())
4274       return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT,
4275                            Node->getChain(), Node->getBasePtr(), NegSrc2,
4276                            Node->getMemOperand());
4277 
4278     // Use the node as-is.
4279     return Op;
4280   }
4281 
4282   return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB);
4283 }
4284 
4285 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node.
4286 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op,
4287                                                     SelectionDAG &DAG) const {
4288   auto *Node = cast<AtomicSDNode>(Op.getNode());
4289   SDValue ChainIn = Node->getOperand(0);
4290   SDValue Addr = Node->getOperand(1);
4291   SDValue CmpVal = Node->getOperand(2);
4292   SDValue SwapVal = Node->getOperand(3);
4293   MachineMemOperand *MMO = Node->getMemOperand();
4294   SDLoc DL(Node);
4295 
4296   // We have native support for 32-bit and 64-bit compare and swap, but we
4297   // still need to expand extracting the "success" result from the CC.
4298   EVT NarrowVT = Node->getMemoryVT();
4299   EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32;
4300   if (NarrowVT == WideVT) {
4301     SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4302     SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal };
4303     SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP,
4304                                                DL, Tys, Ops, NarrowVT, MMO);
4305     SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4306                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
4307 
4308     DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0));
4309     DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4310     DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4311     return SDValue();
4312   }
4313 
4314   // Convert 8-bit and 16-bit compare and swap to a loop, implemented
4315   // via a fullword ATOMIC_CMP_SWAPW operation.
4316   int64_t BitSize = NarrowVT.getSizeInBits();
4317   EVT PtrVT = Addr.getValueType();
4318 
4319   // Get the address of the containing word.
4320   SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr,
4321                                     DAG.getConstant(-4, DL, PtrVT));
4322 
4323   // Get the number of bits that the word must be rotated left in order
4324   // to bring the field to the top bits of a GR32.
4325   SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr,
4326                                  DAG.getConstant(3, DL, PtrVT));
4327   BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift);
4328 
4329   // Get the complementing shift amount, for rotating a field in the top
4330   // bits back to its proper position.
4331   SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT,
4332                                     DAG.getConstant(0, DL, WideVT), BitShift);
4333 
4334   // Construct the ATOMIC_CMP_SWAPW node.
4335   SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other);
4336   SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift,
4337                     NegBitShift, DAG.getConstant(BitSize, DL, WideVT) };
4338   SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL,
4339                                              VTList, Ops, NarrowVT, MMO);
4340   SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1),
4341                               SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ);
4342 
4343   // emitAtomicCmpSwapW() will zero extend the result (original value).
4344   SDValue OrigVal = DAG.getNode(ISD::AssertZext, DL, WideVT, AtomicOp.getValue(0),
4345                                 DAG.getValueType(NarrowVT));
4346   DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), OrigVal);
4347   DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
4348   DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2));
4349   return SDValue();
4350 }
4351 
4352 MachineMemOperand::Flags
4353 SystemZTargetLowering::getTargetMMOFlags(const Instruction &I) const {
4354   // Because of how we convert atomic_load and atomic_store to normal loads and
4355   // stores in the DAG, we need to ensure that the MMOs are marked volatile
4356   // since DAGCombine hasn't been updated to account for atomic, but non
4357   // volatile loads.  (See D57601)
4358   if (auto *SI = dyn_cast<StoreInst>(&I))
4359     if (SI->isAtomic())
4360       return MachineMemOperand::MOVolatile;
4361   if (auto *LI = dyn_cast<LoadInst>(&I))
4362     if (LI->isAtomic())
4363       return MachineMemOperand::MOVolatile;
4364   if (auto *AI = dyn_cast<AtomicRMWInst>(&I))
4365     if (AI->isAtomic())
4366       return MachineMemOperand::MOVolatile;
4367   if (auto *AI = dyn_cast<AtomicCmpXchgInst>(&I))
4368     if (AI->isAtomic())
4369       return MachineMemOperand::MOVolatile;
4370   return MachineMemOperand::MONone;
4371 }
4372 
4373 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op,
4374                                               SelectionDAG &DAG) const {
4375   MachineFunction &MF = DAG.getMachineFunction();
4376   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4377   auto *Regs = Subtarget->getSpecialRegisters();
4378   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4379     report_fatal_error("Variable-sized stack allocations are not supported "
4380                        "in GHC calling convention");
4381   return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op),
4382                             Regs->getStackPointerRegister(), Op.getValueType());
4383 }
4384 
4385 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op,
4386                                                  SelectionDAG &DAG) const {
4387   MachineFunction &MF = DAG.getMachineFunction();
4388   const SystemZSubtarget *Subtarget = &MF.getSubtarget<SystemZSubtarget>();
4389   auto *Regs = Subtarget->getSpecialRegisters();
4390   bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain");
4391 
4392   if (MF.getFunction().getCallingConv() == CallingConv::GHC)
4393     report_fatal_error("Variable-sized stack allocations are not supported "
4394                        "in GHC calling convention");
4395 
4396   SDValue Chain = Op.getOperand(0);
4397   SDValue NewSP = Op.getOperand(1);
4398   SDValue Backchain;
4399   SDLoc DL(Op);
4400 
4401   if (StoreBackchain) {
4402     SDValue OldSP = DAG.getCopyFromReg(
4403         Chain, DL, Regs->getStackPointerRegister(), MVT::i64);
4404     Backchain = DAG.getLoad(MVT::i64, DL, Chain, getBackchainAddress(OldSP, DAG),
4405                             MachinePointerInfo());
4406   }
4407 
4408   Chain = DAG.getCopyToReg(Chain, DL, Regs->getStackPointerRegister(), NewSP);
4409 
4410   if (StoreBackchain)
4411     Chain = DAG.getStore(Chain, DL, Backchain, getBackchainAddress(NewSP, DAG),
4412                          MachinePointerInfo());
4413 
4414   return Chain;
4415 }
4416 
4417 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op,
4418                                              SelectionDAG &DAG) const {
4419   bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4420   if (!IsData)
4421     // Just preserve the chain.
4422     return Op.getOperand(0);
4423 
4424   SDLoc DL(Op);
4425   bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
4426   unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ;
4427   auto *Node = cast<MemIntrinsicSDNode>(Op.getNode());
4428   SDValue Ops[] = {Op.getOperand(0), DAG.getTargetConstant(Code, DL, MVT::i32),
4429                    Op.getOperand(1)};
4430   return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL,
4431                                  Node->getVTList(), Ops,
4432                                  Node->getMemoryVT(), Node->getMemOperand());
4433 }
4434 
4435 // Convert condition code in CCReg to an i32 value.
4436 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) {
4437   SDLoc DL(CCReg);
4438   SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg);
4439   return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM,
4440                      DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32));
4441 }
4442 
4443 SDValue
4444 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op,
4445                                               SelectionDAG &DAG) const {
4446   unsigned Opcode, CCValid;
4447   if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) {
4448     assert(Op->getNumValues() == 2 && "Expected only CC result and chain");
4449     SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode);
4450     SDValue CC = getCCResult(DAG, SDValue(Node, 0));
4451     DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC);
4452     return SDValue();
4453   }
4454 
4455   return SDValue();
4456 }
4457 
4458 SDValue
4459 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op,
4460                                                SelectionDAG &DAG) const {
4461   unsigned Opcode, CCValid;
4462   if (isIntrinsicWithCC(Op, Opcode, CCValid)) {
4463     SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode);
4464     if (Op->getNumValues() == 1)
4465       return getCCResult(DAG, SDValue(Node, 0));
4466     assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result");
4467     return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(),
4468                        SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1)));
4469   }
4470 
4471   unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4472   switch (Id) {
4473   case Intrinsic::thread_pointer:
4474     return lowerThreadPointer(SDLoc(Op), DAG);
4475 
4476   case Intrinsic::s390_vpdi:
4477     return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(),
4478                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4479 
4480   case Intrinsic::s390_vperm:
4481     return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(),
4482                        Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4483 
4484   case Intrinsic::s390_vuphb:
4485   case Intrinsic::s390_vuphh:
4486   case Intrinsic::s390_vuphf:
4487     return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(),
4488                        Op.getOperand(1));
4489 
4490   case Intrinsic::s390_vuplhb:
4491   case Intrinsic::s390_vuplhh:
4492   case Intrinsic::s390_vuplhf:
4493     return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(),
4494                        Op.getOperand(1));
4495 
4496   case Intrinsic::s390_vuplb:
4497   case Intrinsic::s390_vuplhw:
4498   case Intrinsic::s390_vuplf:
4499     return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(),
4500                        Op.getOperand(1));
4501 
4502   case Intrinsic::s390_vupllb:
4503   case Intrinsic::s390_vupllh:
4504   case Intrinsic::s390_vupllf:
4505     return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(),
4506                        Op.getOperand(1));
4507 
4508   case Intrinsic::s390_vsumb:
4509   case Intrinsic::s390_vsumh:
4510   case Intrinsic::s390_vsumgh:
4511   case Intrinsic::s390_vsumgf:
4512   case Intrinsic::s390_vsumqf:
4513   case Intrinsic::s390_vsumqg:
4514     return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(),
4515                        Op.getOperand(1), Op.getOperand(2));
4516   }
4517 
4518   return SDValue();
4519 }
4520 
4521 namespace {
4522 // Says that SystemZISD operation Opcode can be used to perform the equivalent
4523 // of a VPERM with permute vector Bytes.  If Opcode takes three operands,
4524 // Operand is the constant third operand, otherwise it is the number of
4525 // bytes in each element of the result.
4526 struct Permute {
4527   unsigned Opcode;
4528   unsigned Operand;
4529   unsigned char Bytes[SystemZ::VectorBytes];
4530 };
4531 }
4532 
4533 static const Permute PermuteForms[] = {
4534   // VMRHG
4535   { SystemZISD::MERGE_HIGH, 8,
4536     { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } },
4537   // VMRHF
4538   { SystemZISD::MERGE_HIGH, 4,
4539     { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } },
4540   // VMRHH
4541   { SystemZISD::MERGE_HIGH, 2,
4542     { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } },
4543   // VMRHB
4544   { SystemZISD::MERGE_HIGH, 1,
4545     { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } },
4546   // VMRLG
4547   { SystemZISD::MERGE_LOW, 8,
4548     { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } },
4549   // VMRLF
4550   { SystemZISD::MERGE_LOW, 4,
4551     { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } },
4552   // VMRLH
4553   { SystemZISD::MERGE_LOW, 2,
4554     { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } },
4555   // VMRLB
4556   { SystemZISD::MERGE_LOW, 1,
4557     { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } },
4558   // VPKG
4559   { SystemZISD::PACK, 4,
4560     { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } },
4561   // VPKF
4562   { SystemZISD::PACK, 2,
4563     { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } },
4564   // VPKH
4565   { SystemZISD::PACK, 1,
4566     { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } },
4567   // VPDI V1, V2, 4  (low half of V1, high half of V2)
4568   { SystemZISD::PERMUTE_DWORDS, 4,
4569     { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } },
4570   // VPDI V1, V2, 1  (high half of V1, low half of V2)
4571   { SystemZISD::PERMUTE_DWORDS, 1,
4572     { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } }
4573 };
4574 
4575 // Called after matching a vector shuffle against a particular pattern.
4576 // Both the original shuffle and the pattern have two vector operands.
4577 // OpNos[0] is the operand of the original shuffle that should be used for
4578 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything.
4579 // OpNos[1] is the same for operand 1 of the pattern.  Resolve these -1s and
4580 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used
4581 // for operands 0 and 1 of the pattern.
4582 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) {
4583   if (OpNos[0] < 0) {
4584     if (OpNos[1] < 0)
4585       return false;
4586     OpNo0 = OpNo1 = OpNos[1];
4587   } else if (OpNos[1] < 0) {
4588     OpNo0 = OpNo1 = OpNos[0];
4589   } else {
4590     OpNo0 = OpNos[0];
4591     OpNo1 = OpNos[1];
4592   }
4593   return true;
4594 }
4595 
4596 // Bytes is a VPERM-like permute vector, except that -1 is used for
4597 // undefined bytes.  Return true if the VPERM can be implemented using P.
4598 // When returning true set OpNo0 to the VPERM operand that should be
4599 // used for operand 0 of P and likewise OpNo1 for operand 1 of P.
4600 //
4601 // For example, if swapping the VPERM operands allows P to match, OpNo0
4602 // will be 1 and OpNo1 will be 0.  If instead Bytes only refers to one
4603 // operand, but rewriting it to use two duplicated operands allows it to
4604 // match P, then OpNo0 and OpNo1 will be the same.
4605 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P,
4606                          unsigned &OpNo0, unsigned &OpNo1) {
4607   int OpNos[] = { -1, -1 };
4608   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4609     int Elt = Bytes[I];
4610     if (Elt >= 0) {
4611       // Make sure that the two permute vectors use the same suboperand
4612       // byte number.  Only the operand numbers (the high bits) are
4613       // allowed to differ.
4614       if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1))
4615         return false;
4616       int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes;
4617       int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes;
4618       // Make sure that the operand mappings are consistent with previous
4619       // elements.
4620       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4621         return false;
4622       OpNos[ModelOpNo] = RealOpNo;
4623     }
4624   }
4625   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4626 }
4627 
4628 // As above, but search for a matching permute.
4629 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes,
4630                                    unsigned &OpNo0, unsigned &OpNo1) {
4631   for (auto &P : PermuteForms)
4632     if (matchPermute(Bytes, P, OpNo0, OpNo1))
4633       return &P;
4634   return nullptr;
4635 }
4636 
4637 // Bytes is a VPERM-like permute vector, except that -1 is used for
4638 // undefined bytes.  This permute is an operand of an outer permute.
4639 // See whether redistributing the -1 bytes gives a shuffle that can be
4640 // implemented using P.  If so, set Transform to a VPERM-like permute vector
4641 // that, when applied to the result of P, gives the original permute in Bytes.
4642 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4643                                const Permute &P,
4644                                SmallVectorImpl<int> &Transform) {
4645   unsigned To = 0;
4646   for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) {
4647     int Elt = Bytes[From];
4648     if (Elt < 0)
4649       // Byte number From of the result is undefined.
4650       Transform[From] = -1;
4651     else {
4652       while (P.Bytes[To] != Elt) {
4653         To += 1;
4654         if (To == SystemZ::VectorBytes)
4655           return false;
4656       }
4657       Transform[From] = To;
4658     }
4659   }
4660   return true;
4661 }
4662 
4663 // As above, but search for a matching permute.
4664 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes,
4665                                          SmallVectorImpl<int> &Transform) {
4666   for (auto &P : PermuteForms)
4667     if (matchDoublePermute(Bytes, P, Transform))
4668       return &P;
4669   return nullptr;
4670 }
4671 
4672 // Convert the mask of the given shuffle op into a byte-level mask,
4673 // as if it had type vNi8.
4674 static bool getVPermMask(SDValue ShuffleOp,
4675                          SmallVectorImpl<int> &Bytes) {
4676   EVT VT = ShuffleOp.getValueType();
4677   unsigned NumElements = VT.getVectorNumElements();
4678   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4679 
4680   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) {
4681     Bytes.resize(NumElements * BytesPerElement, -1);
4682     for (unsigned I = 0; I < NumElements; ++I) {
4683       int Index = VSN->getMaskElt(I);
4684       if (Index >= 0)
4685         for (unsigned J = 0; J < BytesPerElement; ++J)
4686           Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4687     }
4688     return true;
4689   }
4690   if (SystemZISD::SPLAT == ShuffleOp.getOpcode() &&
4691       isa<ConstantSDNode>(ShuffleOp.getOperand(1))) {
4692     unsigned Index = ShuffleOp.getConstantOperandVal(1);
4693     Bytes.resize(NumElements * BytesPerElement, -1);
4694     for (unsigned I = 0; I < NumElements; ++I)
4695       for (unsigned J = 0; J < BytesPerElement; ++J)
4696         Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J;
4697     return true;
4698   }
4699   return false;
4700 }
4701 
4702 // Bytes is a VPERM-like permute vector, except that -1 is used for
4703 // undefined bytes.  See whether bytes [Start, Start + BytesPerElement) of
4704 // the result come from a contiguous sequence of bytes from one input.
4705 // Set Base to the selector for the first byte if so.
4706 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start,
4707                             unsigned BytesPerElement, int &Base) {
4708   Base = -1;
4709   for (unsigned I = 0; I < BytesPerElement; ++I) {
4710     if (Bytes[Start + I] >= 0) {
4711       unsigned Elem = Bytes[Start + I];
4712       if (Base < 0) {
4713         Base = Elem - I;
4714         // Make sure the bytes would come from one input operand.
4715         if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size())
4716           return false;
4717       } else if (unsigned(Base) != Elem - I)
4718         return false;
4719     }
4720   }
4721   return true;
4722 }
4723 
4724 // Bytes is a VPERM-like permute vector, except that -1 is used for
4725 // undefined bytes.  Return true if it can be performed using VSLDB.
4726 // When returning true, set StartIndex to the shift amount and OpNo0
4727 // and OpNo1 to the VPERM operands that should be used as the first
4728 // and second shift operand respectively.
4729 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes,
4730                                unsigned &StartIndex, unsigned &OpNo0,
4731                                unsigned &OpNo1) {
4732   int OpNos[] = { -1, -1 };
4733   int Shift = -1;
4734   for (unsigned I = 0; I < 16; ++I) {
4735     int Index = Bytes[I];
4736     if (Index >= 0) {
4737       int ExpectedShift = (Index - I) % SystemZ::VectorBytes;
4738       int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes;
4739       int RealOpNo = unsigned(Index) / SystemZ::VectorBytes;
4740       if (Shift < 0)
4741         Shift = ExpectedShift;
4742       else if (Shift != ExpectedShift)
4743         return false;
4744       // Make sure that the operand mappings are consistent with previous
4745       // elements.
4746       if (OpNos[ModelOpNo] == 1 - RealOpNo)
4747         return false;
4748       OpNos[ModelOpNo] = RealOpNo;
4749     }
4750   }
4751   StartIndex = Shift;
4752   return chooseShuffleOpNos(OpNos, OpNo0, OpNo1);
4753 }
4754 
4755 // Create a node that performs P on operands Op0 and Op1, casting the
4756 // operands to the appropriate type.  The type of the result is determined by P.
4757 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4758                               const Permute &P, SDValue Op0, SDValue Op1) {
4759   // VPDI (PERMUTE_DWORDS) always operates on v2i64s.  The input
4760   // elements of a PACK are twice as wide as the outputs.
4761   unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 :
4762                       P.Opcode == SystemZISD::PACK ? P.Operand * 2 :
4763                       P.Operand);
4764   // Cast both operands to the appropriate type.
4765   MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8),
4766                               SystemZ::VectorBytes / InBytes);
4767   Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0);
4768   Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1);
4769   SDValue Op;
4770   if (P.Opcode == SystemZISD::PERMUTE_DWORDS) {
4771     SDValue Op2 = DAG.getTargetConstant(P.Operand, DL, MVT::i32);
4772     Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2);
4773   } else if (P.Opcode == SystemZISD::PACK) {
4774     MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8),
4775                                  SystemZ::VectorBytes / P.Operand);
4776     Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1);
4777   } else {
4778     Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1);
4779   }
4780   return Op;
4781 }
4782 
4783 static bool isZeroVector(SDValue N) {
4784   if (N->getOpcode() == ISD::BITCAST)
4785     N = N->getOperand(0);
4786   if (N->getOpcode() == ISD::SPLAT_VECTOR)
4787     if (auto *Op = dyn_cast<ConstantSDNode>(N->getOperand(0)))
4788       return Op->getZExtValue() == 0;
4789   return ISD::isBuildVectorAllZeros(N.getNode());
4790 }
4791 
4792 // Return the index of the zero/undef vector, or UINT32_MAX if not found.
4793 static uint32_t findZeroVectorIdx(SDValue *Ops, unsigned Num) {
4794   for (unsigned I = 0; I < Num ; I++)
4795     if (isZeroVector(Ops[I]))
4796       return I;
4797   return UINT32_MAX;
4798 }
4799 
4800 // Bytes is a VPERM-like permute vector, except that -1 is used for
4801 // undefined bytes.  Implement it on operands Ops[0] and Ops[1] using
4802 // VSLDB or VPERM.
4803 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL,
4804                                      SDValue *Ops,
4805                                      const SmallVectorImpl<int> &Bytes) {
4806   for (unsigned I = 0; I < 2; ++I)
4807     Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]);
4808 
4809   // First see whether VSLDB can be used.
4810   unsigned StartIndex, OpNo0, OpNo1;
4811   if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1))
4812     return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0],
4813                        Ops[OpNo1],
4814                        DAG.getTargetConstant(StartIndex, DL, MVT::i32));
4815 
4816   // Fall back on VPERM.  Construct an SDNode for the permute vector.  Try to
4817   // eliminate a zero vector by reusing any zero index in the permute vector.
4818   unsigned ZeroVecIdx = findZeroVectorIdx(&Ops[0], 2);
4819   if (ZeroVecIdx != UINT32_MAX) {
4820     bool MaskFirst = true;
4821     int ZeroIdx = -1;
4822     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4823       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4824       unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4825       if (OpNo == ZeroVecIdx && I == 0) {
4826         // If the first byte is zero, use mask as first operand.
4827         ZeroIdx = 0;
4828         break;
4829       }
4830       if (OpNo != ZeroVecIdx && Byte == 0) {
4831         // If mask contains a zero, use it by placing that vector first.
4832         ZeroIdx = I + SystemZ::VectorBytes;
4833         MaskFirst = false;
4834         break;
4835       }
4836     }
4837     if (ZeroIdx != -1) {
4838       SDValue IndexNodes[SystemZ::VectorBytes];
4839       for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) {
4840         if (Bytes[I] >= 0) {
4841           unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
4842           unsigned Byte = unsigned(Bytes[I]) % SystemZ::VectorBytes;
4843           if (OpNo == ZeroVecIdx)
4844             IndexNodes[I] = DAG.getConstant(ZeroIdx, DL, MVT::i32);
4845           else {
4846             unsigned BIdx = MaskFirst ? Byte + SystemZ::VectorBytes : Byte;
4847             IndexNodes[I] = DAG.getConstant(BIdx, DL, MVT::i32);
4848           }
4849         } else
4850           IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4851       }
4852       SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4853       SDValue Src = ZeroVecIdx == 0 ? Ops[1] : Ops[0];
4854       if (MaskFirst)
4855         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Mask, Src,
4856                            Mask);
4857       else
4858         return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Src, Mask,
4859                            Mask);
4860     }
4861   }
4862 
4863   SDValue IndexNodes[SystemZ::VectorBytes];
4864   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
4865     if (Bytes[I] >= 0)
4866       IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32);
4867     else
4868       IndexNodes[I] = DAG.getUNDEF(MVT::i32);
4869   SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes);
4870   return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0],
4871                      (!Ops[1].isUndef() ? Ops[1] : Ops[0]), Op2);
4872 }
4873 
4874 namespace {
4875 // Describes a general N-operand vector shuffle.
4876 struct GeneralShuffle {
4877   GeneralShuffle(EVT vt) : VT(vt), UnpackFromEltSize(UINT_MAX) {}
4878   void addUndef();
4879   bool add(SDValue, unsigned);
4880   SDValue getNode(SelectionDAG &, const SDLoc &);
4881   void tryPrepareForUnpack();
4882   bool unpackWasPrepared() { return UnpackFromEltSize <= 4; }
4883   SDValue insertUnpackIfPrepared(SelectionDAG &DAG, const SDLoc &DL, SDValue Op);
4884 
4885   // The operands of the shuffle.
4886   SmallVector<SDValue, SystemZ::VectorBytes> Ops;
4887 
4888   // Index I is -1 if byte I of the result is undefined.  Otherwise the
4889   // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand
4890   // Bytes[I] / SystemZ::VectorBytes.
4891   SmallVector<int, SystemZ::VectorBytes> Bytes;
4892 
4893   // The type of the shuffle result.
4894   EVT VT;
4895 
4896   // Holds a value of 1, 2 or 4 if a final unpack has been prepared for.
4897   unsigned UnpackFromEltSize;
4898 };
4899 }
4900 
4901 // Add an extra undefined element to the shuffle.
4902 void GeneralShuffle::addUndef() {
4903   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4904   for (unsigned I = 0; I < BytesPerElement; ++I)
4905     Bytes.push_back(-1);
4906 }
4907 
4908 // Add an extra element to the shuffle, taking it from element Elem of Op.
4909 // A null Op indicates a vector input whose value will be calculated later;
4910 // there is at most one such input per shuffle and it always has the same
4911 // type as the result. Aborts and returns false if the source vector elements
4912 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per
4913 // LLVM they become implicitly extended, but this is rare and not optimized.
4914 bool GeneralShuffle::add(SDValue Op, unsigned Elem) {
4915   unsigned BytesPerElement = VT.getVectorElementType().getStoreSize();
4916 
4917   // The source vector can have wider elements than the result,
4918   // either through an explicit TRUNCATE or because of type legalization.
4919   // We want the least significant part.
4920   EVT FromVT = Op.getNode() ? Op.getValueType() : VT;
4921   unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize();
4922 
4923   // Return false if the source elements are smaller than their destination
4924   // elements.
4925   if (FromBytesPerElement < BytesPerElement)
4926     return false;
4927 
4928   unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes +
4929                    (FromBytesPerElement - BytesPerElement));
4930 
4931   // Look through things like shuffles and bitcasts.
4932   while (Op.getNode()) {
4933     if (Op.getOpcode() == ISD::BITCAST)
4934       Op = Op.getOperand(0);
4935     else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) {
4936       // See whether the bytes we need come from a contiguous part of one
4937       // operand.
4938       SmallVector<int, SystemZ::VectorBytes> OpBytes;
4939       if (!getVPermMask(Op, OpBytes))
4940         break;
4941       int NewByte;
4942       if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte))
4943         break;
4944       if (NewByte < 0) {
4945         addUndef();
4946         return true;
4947       }
4948       Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes);
4949       Byte = unsigned(NewByte) % SystemZ::VectorBytes;
4950     } else if (Op.isUndef()) {
4951       addUndef();
4952       return true;
4953     } else
4954       break;
4955   }
4956 
4957   // Make sure that the source of the extraction is in Ops.
4958   unsigned OpNo = 0;
4959   for (; OpNo < Ops.size(); ++OpNo)
4960     if (Ops[OpNo] == Op)
4961       break;
4962   if (OpNo == Ops.size())
4963     Ops.push_back(Op);
4964 
4965   // Add the element to Bytes.
4966   unsigned Base = OpNo * SystemZ::VectorBytes + Byte;
4967   for (unsigned I = 0; I < BytesPerElement; ++I)
4968     Bytes.push_back(Base + I);
4969 
4970   return true;
4971 }
4972 
4973 // Return SDNodes for the completed shuffle.
4974 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) {
4975   assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector");
4976 
4977   if (Ops.size() == 0)
4978     return DAG.getUNDEF(VT);
4979 
4980   // Use a single unpack if possible as the last operation.
4981   tryPrepareForUnpack();
4982 
4983   // Make sure that there are at least two shuffle operands.
4984   if (Ops.size() == 1)
4985     Ops.push_back(DAG.getUNDEF(MVT::v16i8));
4986 
4987   // Create a tree of shuffles, deferring root node until after the loop.
4988   // Try to redistribute the undefined elements of non-root nodes so that
4989   // the non-root shuffles match something like a pack or merge, then adjust
4990   // the parent node's permute vector to compensate for the new order.
4991   // Among other things, this copes with vectors like <2 x i16> that were
4992   // padded with undefined elements during type legalization.
4993   //
4994   // In the best case this redistribution will lead to the whole tree
4995   // using packs and merges.  It should rarely be a loss in other cases.
4996   unsigned Stride = 1;
4997   for (; Stride * 2 < Ops.size(); Stride *= 2) {
4998     for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) {
4999       SDValue SubOps[] = { Ops[I], Ops[I + Stride] };
5000 
5001       // Create a mask for just these two operands.
5002       SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes);
5003       for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5004         unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes;
5005         unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes;
5006         if (OpNo == I)
5007           NewBytes[J] = Byte;
5008         else if (OpNo == I + Stride)
5009           NewBytes[J] = SystemZ::VectorBytes + Byte;
5010         else
5011           NewBytes[J] = -1;
5012       }
5013       // See if it would be better to reorganize NewMask to avoid using VPERM.
5014       SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes);
5015       if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) {
5016         Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]);
5017         // Applying NewBytesMap to Ops[I] gets back to NewBytes.
5018         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) {
5019           if (NewBytes[J] >= 0) {
5020             assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes &&
5021                    "Invalid double permute");
5022             Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J];
5023           } else
5024             assert(NewBytesMap[J] < 0 && "Invalid double permute");
5025         }
5026       } else {
5027         // Just use NewBytes on the operands.
5028         Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes);
5029         for (unsigned J = 0; J < SystemZ::VectorBytes; ++J)
5030           if (NewBytes[J] >= 0)
5031             Bytes[J] = I * SystemZ::VectorBytes + J;
5032       }
5033     }
5034   }
5035 
5036   // Now we just have 2 inputs.  Put the second operand in Ops[1].
5037   if (Stride > 1) {
5038     Ops[1] = Ops[Stride];
5039     for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5040       if (Bytes[I] >= int(SystemZ::VectorBytes))
5041         Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes;
5042   }
5043 
5044   // Look for an instruction that can do the permute without resorting
5045   // to VPERM.
5046   unsigned OpNo0, OpNo1;
5047   SDValue Op;
5048   if (unpackWasPrepared() && Ops[1].isUndef())
5049     Op = Ops[0];
5050   else if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1))
5051     Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]);
5052   else
5053     Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes);
5054 
5055   Op = insertUnpackIfPrepared(DAG, DL, Op);
5056 
5057   return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5058 }
5059 
5060 #ifndef NDEBUG
5061 static void dumpBytes(const SmallVectorImpl<int> &Bytes, std::string Msg) {
5062   dbgs() << Msg.c_str() << " { ";
5063   for (unsigned i = 0; i < Bytes.size(); i++)
5064     dbgs() << Bytes[i] << " ";
5065   dbgs() << "}\n";
5066 }
5067 #endif
5068 
5069 // If the Bytes vector matches an unpack operation, prepare to do the unpack
5070 // after all else by removing the zero vector and the effect of the unpack on
5071 // Bytes.
5072 void GeneralShuffle::tryPrepareForUnpack() {
5073   uint32_t ZeroVecOpNo = findZeroVectorIdx(&Ops[0], Ops.size());
5074   if (ZeroVecOpNo == UINT32_MAX || Ops.size() == 1)
5075     return;
5076 
5077   // Only do this if removing the zero vector reduces the depth, otherwise
5078   // the critical path will increase with the final unpack.
5079   if (Ops.size() > 2 &&
5080       Log2_32_Ceil(Ops.size()) == Log2_32_Ceil(Ops.size() - 1))
5081     return;
5082 
5083   // Find an unpack that would allow removing the zero vector from Ops.
5084   UnpackFromEltSize = 1;
5085   for (; UnpackFromEltSize <= 4; UnpackFromEltSize *= 2) {
5086     bool MatchUnpack = true;
5087     SmallVector<int, SystemZ::VectorBytes> SrcBytes;
5088     for (unsigned Elt = 0; Elt < SystemZ::VectorBytes; Elt++) {
5089       unsigned ToEltSize = UnpackFromEltSize * 2;
5090       bool IsZextByte = (Elt % ToEltSize) < UnpackFromEltSize;
5091       if (!IsZextByte)
5092         SrcBytes.push_back(Bytes[Elt]);
5093       if (Bytes[Elt] != -1) {
5094         unsigned OpNo = unsigned(Bytes[Elt]) / SystemZ::VectorBytes;
5095         if (IsZextByte != (OpNo == ZeroVecOpNo)) {
5096           MatchUnpack = false;
5097           break;
5098         }
5099       }
5100     }
5101     if (MatchUnpack) {
5102       if (Ops.size() == 2) {
5103         // Don't use unpack if a single source operand needs rearrangement.
5104         for (unsigned i = 0; i < SystemZ::VectorBytes / 2; i++)
5105           if (SrcBytes[i] != -1 && SrcBytes[i] % 16 != int(i)) {
5106             UnpackFromEltSize = UINT_MAX;
5107             return;
5108           }
5109       }
5110       break;
5111     }
5112   }
5113   if (UnpackFromEltSize > 4)
5114     return;
5115 
5116   LLVM_DEBUG(dbgs() << "Preparing for final unpack of element size "
5117              << UnpackFromEltSize << ". Zero vector is Op#" << ZeroVecOpNo
5118              << ".\n";
5119              dumpBytes(Bytes, "Original Bytes vector:"););
5120 
5121   // Apply the unpack in reverse to the Bytes array.
5122   unsigned B = 0;
5123   for (unsigned Elt = 0; Elt < SystemZ::VectorBytes;) {
5124     Elt += UnpackFromEltSize;
5125     for (unsigned i = 0; i < UnpackFromEltSize; i++, Elt++, B++)
5126       Bytes[B] = Bytes[Elt];
5127   }
5128   while (B < SystemZ::VectorBytes)
5129     Bytes[B++] = -1;
5130 
5131   // Remove the zero vector from Ops
5132   Ops.erase(&Ops[ZeroVecOpNo]);
5133   for (unsigned I = 0; I < SystemZ::VectorBytes; ++I)
5134     if (Bytes[I] >= 0) {
5135       unsigned OpNo = unsigned(Bytes[I]) / SystemZ::VectorBytes;
5136       if (OpNo > ZeroVecOpNo)
5137         Bytes[I] -= SystemZ::VectorBytes;
5138     }
5139 
5140   LLVM_DEBUG(dumpBytes(Bytes, "Resulting Bytes vector, zero vector removed:");
5141              dbgs() << "\n";);
5142 }
5143 
5144 SDValue GeneralShuffle::insertUnpackIfPrepared(SelectionDAG &DAG,
5145                                                const SDLoc &DL,
5146                                                SDValue Op) {
5147   if (!unpackWasPrepared())
5148     return Op;
5149   unsigned InBits = UnpackFromEltSize * 8;
5150   EVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBits),
5151                                 SystemZ::VectorBits / InBits);
5152   SDValue PackedOp = DAG.getNode(ISD::BITCAST, DL, InVT, Op);
5153   unsigned OutBits = InBits * 2;
5154   EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(OutBits),
5155                                SystemZ::VectorBits / OutBits);
5156   return DAG.getNode(SystemZISD::UNPACKL_HIGH, DL, OutVT, PackedOp);
5157 }
5158 
5159 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion.
5160 static bool isScalarToVector(SDValue Op) {
5161   for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I)
5162     if (!Op.getOperand(I).isUndef())
5163       return false;
5164   return true;
5165 }
5166 
5167 // Return a vector of type VT that contains Value in the first element.
5168 // The other elements don't matter.
5169 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5170                                    SDValue Value) {
5171   // If we have a constant, replicate it to all elements and let the
5172   // BUILD_VECTOR lowering take care of it.
5173   if (Value.getOpcode() == ISD::Constant ||
5174       Value.getOpcode() == ISD::ConstantFP) {
5175     SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value);
5176     return DAG.getBuildVector(VT, DL, Ops);
5177   }
5178   if (Value.isUndef())
5179     return DAG.getUNDEF(VT);
5180   return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value);
5181 }
5182 
5183 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in
5184 // element 1.  Used for cases in which replication is cheap.
5185 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5186                                  SDValue Op0, SDValue Op1) {
5187   if (Op0.isUndef()) {
5188     if (Op1.isUndef())
5189       return DAG.getUNDEF(VT);
5190     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1);
5191   }
5192   if (Op1.isUndef())
5193     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0);
5194   return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT,
5195                      buildScalarToVector(DAG, DL, VT, Op0),
5196                      buildScalarToVector(DAG, DL, VT, Op1));
5197 }
5198 
5199 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64
5200 // vector for them.
5201 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0,
5202                           SDValue Op1) {
5203   if (Op0.isUndef() && Op1.isUndef())
5204     return DAG.getUNDEF(MVT::v2i64);
5205   // If one of the two inputs is undefined then replicate the other one,
5206   // in order to avoid using another register unnecessarily.
5207   if (Op0.isUndef())
5208     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5209   else if (Op1.isUndef())
5210     Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5211   else {
5212     Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0);
5213     Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1);
5214   }
5215   return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1);
5216 }
5217 
5218 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually
5219 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for
5220 // the non-EXTRACT_VECTOR_ELT elements.  See if the given BUILD_VECTOR
5221 // would benefit from this representation and return it if so.
5222 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG,
5223                                      BuildVectorSDNode *BVN) {
5224   EVT VT = BVN->getValueType(0);
5225   unsigned NumElements = VT.getVectorNumElements();
5226 
5227   // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation
5228   // on byte vectors.  If there are non-EXTRACT_VECTOR_ELT elements that still
5229   // need a BUILD_VECTOR, add an additional placeholder operand for that
5230   // BUILD_VECTOR and store its operands in ResidueOps.
5231   GeneralShuffle GS(VT);
5232   SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps;
5233   bool FoundOne = false;
5234   for (unsigned I = 0; I < NumElements; ++I) {
5235     SDValue Op = BVN->getOperand(I);
5236     if (Op.getOpcode() == ISD::TRUNCATE)
5237       Op = Op.getOperand(0);
5238     if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
5239         Op.getOperand(1).getOpcode() == ISD::Constant) {
5240       unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
5241       if (!GS.add(Op.getOperand(0), Elem))
5242         return SDValue();
5243       FoundOne = true;
5244     } else if (Op.isUndef()) {
5245       GS.addUndef();
5246     } else {
5247       if (!GS.add(SDValue(), ResidueOps.size()))
5248         return SDValue();
5249       ResidueOps.push_back(BVN->getOperand(I));
5250     }
5251   }
5252 
5253   // Nothing to do if there are no EXTRACT_VECTOR_ELTs.
5254   if (!FoundOne)
5255     return SDValue();
5256 
5257   // Create the BUILD_VECTOR for the remaining elements, if any.
5258   if (!ResidueOps.empty()) {
5259     while (ResidueOps.size() < NumElements)
5260       ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType()));
5261     for (auto &Op : GS.Ops) {
5262       if (!Op.getNode()) {
5263         Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps);
5264         break;
5265       }
5266     }
5267   }
5268   return GS.getNode(DAG, SDLoc(BVN));
5269 }
5270 
5271 bool SystemZTargetLowering::isVectorElementLoad(SDValue Op) const {
5272   if (Op.getOpcode() == ISD::LOAD && cast<LoadSDNode>(Op)->isUnindexed())
5273     return true;
5274   if (Subtarget.hasVectorEnhancements2() && Op.getOpcode() == SystemZISD::LRV)
5275     return true;
5276   return false;
5277 }
5278 
5279 // Combine GPR scalar values Elems into a vector of type VT.
5280 SDValue
5281 SystemZTargetLowering::buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
5282                                    SmallVectorImpl<SDValue> &Elems) const {
5283   // See whether there is a single replicated value.
5284   SDValue Single;
5285   unsigned int NumElements = Elems.size();
5286   unsigned int Count = 0;
5287   for (auto Elem : Elems) {
5288     if (!Elem.isUndef()) {
5289       if (!Single.getNode())
5290         Single = Elem;
5291       else if (Elem != Single) {
5292         Single = SDValue();
5293         break;
5294       }
5295       Count += 1;
5296     }
5297   }
5298   // There are three cases here:
5299   //
5300   // - if the only defined element is a loaded one, the best sequence
5301   //   is a replicating load.
5302   //
5303   // - otherwise, if the only defined element is an i64 value, we will
5304   //   end up with the same VLVGP sequence regardless of whether we short-cut
5305   //   for replication or fall through to the later code.
5306   //
5307   // - otherwise, if the only defined element is an i32 or smaller value,
5308   //   we would need 2 instructions to replicate it: VLVGP followed by VREPx.
5309   //   This is only a win if the single defined element is used more than once.
5310   //   In other cases we're better off using a single VLVGx.
5311   if (Single.getNode() && (Count > 1 || isVectorElementLoad(Single)))
5312     return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single);
5313 
5314   // If all elements are loads, use VLREP/VLEs (below).
5315   bool AllLoads = true;
5316   for (auto Elem : Elems)
5317     if (!isVectorElementLoad(Elem)) {
5318       AllLoads = false;
5319       break;
5320     }
5321 
5322   // The best way of building a v2i64 from two i64s is to use VLVGP.
5323   if (VT == MVT::v2i64 && !AllLoads)
5324     return joinDwords(DAG, DL, Elems[0], Elems[1]);
5325 
5326   // Use a 64-bit merge high to combine two doubles.
5327   if (VT == MVT::v2f64 && !AllLoads)
5328     return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5329 
5330   // Build v4f32 values directly from the FPRs:
5331   //
5332   //   <Axxx> <Bxxx> <Cxxxx> <Dxxx>
5333   //         V              V         VMRHF
5334   //      <ABxx>         <CDxx>
5335   //                V                 VMRHG
5336   //              <ABCD>
5337   if (VT == MVT::v4f32 && !AllLoads) {
5338     SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]);
5339     SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]);
5340     // Avoid unnecessary undefs by reusing the other operand.
5341     if (Op01.isUndef())
5342       Op01 = Op23;
5343     else if (Op23.isUndef())
5344       Op23 = Op01;
5345     // Merging identical replications is a no-op.
5346     if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23)
5347       return Op01;
5348     Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01);
5349     Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23);
5350     SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH,
5351                              DL, MVT::v2i64, Op01, Op23);
5352     return DAG.getNode(ISD::BITCAST, DL, VT, Op);
5353   }
5354 
5355   // Collect the constant terms.
5356   SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue());
5357   SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false);
5358 
5359   unsigned NumConstants = 0;
5360   for (unsigned I = 0; I < NumElements; ++I) {
5361     SDValue Elem = Elems[I];
5362     if (Elem.getOpcode() == ISD::Constant ||
5363         Elem.getOpcode() == ISD::ConstantFP) {
5364       NumConstants += 1;
5365       Constants[I] = Elem;
5366       Done[I] = true;
5367     }
5368   }
5369   // If there was at least one constant, fill in the other elements of
5370   // Constants with undefs to get a full vector constant and use that
5371   // as the starting point.
5372   SDValue Result;
5373   SDValue ReplicatedVal;
5374   if (NumConstants > 0) {
5375     for (unsigned I = 0; I < NumElements; ++I)
5376       if (!Constants[I].getNode())
5377         Constants[I] = DAG.getUNDEF(Elems[I].getValueType());
5378     Result = DAG.getBuildVector(VT, DL, Constants);
5379   } else {
5380     // Otherwise try to use VLREP or VLVGP to start the sequence in order to
5381     // avoid a false dependency on any previous contents of the vector
5382     // register.
5383 
5384     // Use a VLREP if at least one element is a load. Make sure to replicate
5385     // the load with the most elements having its value.
5386     std::map<const SDNode*, unsigned> UseCounts;
5387     SDNode *LoadMaxUses = nullptr;
5388     for (unsigned I = 0; I < NumElements; ++I)
5389       if (isVectorElementLoad(Elems[I])) {
5390         SDNode *Ld = Elems[I].getNode();
5391         UseCounts[Ld]++;
5392         if (LoadMaxUses == nullptr || UseCounts[LoadMaxUses] < UseCounts[Ld])
5393           LoadMaxUses = Ld;
5394       }
5395     if (LoadMaxUses != nullptr) {
5396       ReplicatedVal = SDValue(LoadMaxUses, 0);
5397       Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, ReplicatedVal);
5398     } else {
5399       // Try to use VLVGP.
5400       unsigned I1 = NumElements / 2 - 1;
5401       unsigned I2 = NumElements - 1;
5402       bool Def1 = !Elems[I1].isUndef();
5403       bool Def2 = !Elems[I2].isUndef();
5404       if (Def1 || Def2) {
5405         SDValue Elem1 = Elems[Def1 ? I1 : I2];
5406         SDValue Elem2 = Elems[Def2 ? I2 : I1];
5407         Result = DAG.getNode(ISD::BITCAST, DL, VT,
5408                              joinDwords(DAG, DL, Elem1, Elem2));
5409         Done[I1] = true;
5410         Done[I2] = true;
5411       } else
5412         Result = DAG.getUNDEF(VT);
5413     }
5414   }
5415 
5416   // Use VLVGx to insert the other elements.
5417   for (unsigned I = 0; I < NumElements; ++I)
5418     if (!Done[I] && !Elems[I].isUndef() && Elems[I] != ReplicatedVal)
5419       Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I],
5420                            DAG.getConstant(I, DL, MVT::i32));
5421   return Result;
5422 }
5423 
5424 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op,
5425                                                  SelectionDAG &DAG) const {
5426   auto *BVN = cast<BuildVectorSDNode>(Op.getNode());
5427   SDLoc DL(Op);
5428   EVT VT = Op.getValueType();
5429 
5430   if (BVN->isConstant()) {
5431     if (SystemZVectorConstantInfo(BVN).isVectorConstantLegal(Subtarget))
5432       return Op;
5433 
5434     // Fall back to loading it from memory.
5435     return SDValue();
5436   }
5437 
5438   // See if we should use shuffles to construct the vector from other vectors.
5439   if (SDValue Res = tryBuildVectorShuffle(DAG, BVN))
5440     return Res;
5441 
5442   // Detect SCALAR_TO_VECTOR conversions.
5443   if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op))
5444     return buildScalarToVector(DAG, DL, VT, Op.getOperand(0));
5445 
5446   // Otherwise use buildVector to build the vector up from GPRs.
5447   unsigned NumElements = Op.getNumOperands();
5448   SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements);
5449   for (unsigned I = 0; I < NumElements; ++I)
5450     Ops[I] = Op.getOperand(I);
5451   return buildVector(DAG, DL, VT, Ops);
5452 }
5453 
5454 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
5455                                                    SelectionDAG &DAG) const {
5456   auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode());
5457   SDLoc DL(Op);
5458   EVT VT = Op.getValueType();
5459   unsigned NumElements = VT.getVectorNumElements();
5460 
5461   if (VSN->isSplat()) {
5462     SDValue Op0 = Op.getOperand(0);
5463     unsigned Index = VSN->getSplatIndex();
5464     assert(Index < VT.getVectorNumElements() &&
5465            "Splat index should be defined and in first operand");
5466     // See whether the value we're splatting is directly available as a scalar.
5467     if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5468         Op0.getOpcode() == ISD::BUILD_VECTOR)
5469       return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index));
5470     // Otherwise keep it as a vector-to-vector operation.
5471     return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0),
5472                        DAG.getTargetConstant(Index, DL, MVT::i32));
5473   }
5474 
5475   GeneralShuffle GS(VT);
5476   for (unsigned I = 0; I < NumElements; ++I) {
5477     int Elt = VSN->getMaskElt(I);
5478     if (Elt < 0)
5479       GS.addUndef();
5480     else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements),
5481                      unsigned(Elt) % NumElements))
5482       return SDValue();
5483   }
5484   return GS.getNode(DAG, SDLoc(VSN));
5485 }
5486 
5487 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op,
5488                                                      SelectionDAG &DAG) const {
5489   SDLoc DL(Op);
5490   // Just insert the scalar into element 0 of an undefined vector.
5491   return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL,
5492                      Op.getValueType(), DAG.getUNDEF(Op.getValueType()),
5493                      Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32));
5494 }
5495 
5496 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
5497                                                       SelectionDAG &DAG) const {
5498   // Handle insertions of floating-point values.
5499   SDLoc DL(Op);
5500   SDValue Op0 = Op.getOperand(0);
5501   SDValue Op1 = Op.getOperand(1);
5502   SDValue Op2 = Op.getOperand(2);
5503   EVT VT = Op.getValueType();
5504 
5505   // Insertions into constant indices of a v2f64 can be done using VPDI.
5506   // However, if the inserted value is a bitcast or a constant then it's
5507   // better to use GPRs, as below.
5508   if (VT == MVT::v2f64 &&
5509       Op1.getOpcode() != ISD::BITCAST &&
5510       Op1.getOpcode() != ISD::ConstantFP &&
5511       Op2.getOpcode() == ISD::Constant) {
5512     uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue();
5513     unsigned Mask = VT.getVectorNumElements() - 1;
5514     if (Index <= Mask)
5515       return Op;
5516   }
5517 
5518   // Otherwise bitcast to the equivalent integer form and insert via a GPR.
5519   MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
5520   MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements());
5521   SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT,
5522                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0),
5523                             DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2);
5524   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5525 }
5526 
5527 SDValue
5528 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
5529                                                SelectionDAG &DAG) const {
5530   // Handle extractions of floating-point values.
5531   SDLoc DL(Op);
5532   SDValue Op0 = Op.getOperand(0);
5533   SDValue Op1 = Op.getOperand(1);
5534   EVT VT = Op.getValueType();
5535   EVT VecVT = Op0.getValueType();
5536 
5537   // Extractions of constant indices can be done directly.
5538   if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) {
5539     uint64_t Index = CIndexN->getZExtValue();
5540     unsigned Mask = VecVT.getVectorNumElements() - 1;
5541     if (Index <= Mask)
5542       return Op;
5543   }
5544 
5545   // Otherwise bitcast to the equivalent integer form and extract via a GPR.
5546   MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits());
5547   MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements());
5548   SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT,
5549                             DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1);
5550   return DAG.getNode(ISD::BITCAST, DL, VT, Res);
5551 }
5552 
5553 SDValue SystemZTargetLowering::
5554 lowerSIGN_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5555   SDValue PackedOp = Op.getOperand(0);
5556   EVT OutVT = Op.getValueType();
5557   EVT InVT = PackedOp.getValueType();
5558   unsigned ToBits = OutVT.getScalarSizeInBits();
5559   unsigned FromBits = InVT.getScalarSizeInBits();
5560   do {
5561     FromBits *= 2;
5562     EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits),
5563                                  SystemZ::VectorBits / FromBits);
5564     PackedOp =
5565       DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(PackedOp), OutVT, PackedOp);
5566   } while (FromBits != ToBits);
5567   return PackedOp;
5568 }
5569 
5570 // Lower a ZERO_EXTEND_VECTOR_INREG to a vector shuffle with a zero vector.
5571 SDValue SystemZTargetLowering::
5572 lowerZERO_EXTEND_VECTOR_INREG(SDValue Op, SelectionDAG &DAG) const {
5573   SDValue PackedOp = Op.getOperand(0);
5574   SDLoc DL(Op);
5575   EVT OutVT = Op.getValueType();
5576   EVT InVT = PackedOp.getValueType();
5577   unsigned InNumElts = InVT.getVectorNumElements();
5578   unsigned OutNumElts = OutVT.getVectorNumElements();
5579   unsigned NumInPerOut = InNumElts / OutNumElts;
5580 
5581   SDValue ZeroVec =
5582     DAG.getSplatVector(InVT, DL, DAG.getConstant(0, DL, InVT.getScalarType()));
5583 
5584   SmallVector<int, 16> Mask(InNumElts);
5585   unsigned ZeroVecElt = InNumElts;
5586   for (unsigned PackedElt = 0; PackedElt < OutNumElts; PackedElt++) {
5587     unsigned MaskElt = PackedElt * NumInPerOut;
5588     unsigned End = MaskElt + NumInPerOut - 1;
5589     for (; MaskElt < End; MaskElt++)
5590       Mask[MaskElt] = ZeroVecElt++;
5591     Mask[MaskElt] = PackedElt;
5592   }
5593   SDValue Shuf = DAG.getVectorShuffle(InVT, DL, PackedOp, ZeroVec, Mask);
5594   return DAG.getNode(ISD::BITCAST, DL, OutVT, Shuf);
5595 }
5596 
5597 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG,
5598                                           unsigned ByScalar) const {
5599   // Look for cases where a vector shift can use the *_BY_SCALAR form.
5600   SDValue Op0 = Op.getOperand(0);
5601   SDValue Op1 = Op.getOperand(1);
5602   SDLoc DL(Op);
5603   EVT VT = Op.getValueType();
5604   unsigned ElemBitSize = VT.getScalarSizeInBits();
5605 
5606   // See whether the shift vector is a splat represented as BUILD_VECTOR.
5607   if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) {
5608     APInt SplatBits, SplatUndef;
5609     unsigned SplatBitSize;
5610     bool HasAnyUndefs;
5611     // Check for constant splats.  Use ElemBitSize as the minimum element
5612     // width and reject splats that need wider elements.
5613     if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
5614                              ElemBitSize, true) &&
5615         SplatBitSize == ElemBitSize) {
5616       SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff,
5617                                       DL, MVT::i32);
5618       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5619     }
5620     // Check for variable splats.
5621     BitVector UndefElements;
5622     SDValue Splat = BVN->getSplatValue(&UndefElements);
5623     if (Splat) {
5624       // Since i32 is the smallest legal type, we either need a no-op
5625       // or a truncation.
5626       SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat);
5627       return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5628     }
5629   }
5630 
5631   // See whether the shift vector is a splat represented as SHUFFLE_VECTOR,
5632   // and the shift amount is directly available in a GPR.
5633   if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) {
5634     if (VSN->isSplat()) {
5635       SDValue VSNOp0 = VSN->getOperand(0);
5636       unsigned Index = VSN->getSplatIndex();
5637       assert(Index < VT.getVectorNumElements() &&
5638              "Splat index should be defined and in first operand");
5639       if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) ||
5640           VSNOp0.getOpcode() == ISD::BUILD_VECTOR) {
5641         // Since i32 is the smallest legal type, we either need a no-op
5642         // or a truncation.
5643         SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32,
5644                                     VSNOp0.getOperand(Index));
5645         return DAG.getNode(ByScalar, DL, VT, Op0, Shift);
5646       }
5647     }
5648   }
5649 
5650   // Otherwise just treat the current form as legal.
5651   return Op;
5652 }
5653 
5654 SDValue SystemZTargetLowering::lowerIS_FPCLASS(SDValue Op,
5655                                                SelectionDAG &DAG) const {
5656   SDLoc DL(Op);
5657   MVT ResultVT = Op.getSimpleValueType();
5658   SDValue Arg = Op.getOperand(0);
5659   auto CNode = cast<ConstantSDNode>(Op.getOperand(1));
5660   unsigned Check = CNode->getZExtValue();
5661 
5662   unsigned TDCMask = 0;
5663   if (Check & fcSNan)
5664     TDCMask |= SystemZ::TDCMASK_SNAN_PLUS | SystemZ::TDCMASK_SNAN_MINUS;
5665   if (Check & fcQNan)
5666     TDCMask |= SystemZ::TDCMASK_QNAN_PLUS | SystemZ::TDCMASK_QNAN_MINUS;
5667   if (Check & fcPosInf)
5668     TDCMask |= SystemZ::TDCMASK_INFINITY_PLUS;
5669   if (Check & fcNegInf)
5670     TDCMask |= SystemZ::TDCMASK_INFINITY_MINUS;
5671   if (Check & fcPosNormal)
5672     TDCMask |= SystemZ::TDCMASK_NORMAL_PLUS;
5673   if (Check & fcNegNormal)
5674     TDCMask |= SystemZ::TDCMASK_NORMAL_MINUS;
5675   if (Check & fcPosSubnormal)
5676     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_PLUS;
5677   if (Check & fcNegSubnormal)
5678     TDCMask |= SystemZ::TDCMASK_SUBNORMAL_MINUS;
5679   if (Check & fcPosZero)
5680     TDCMask |= SystemZ::TDCMASK_ZERO_PLUS;
5681   if (Check & fcNegZero)
5682     TDCMask |= SystemZ::TDCMASK_ZERO_MINUS;
5683   SDValue TDCMaskV = DAG.getConstant(TDCMask, DL, MVT::i64);
5684 
5685   SDValue Intr = DAG.getNode(SystemZISD::TDC, DL, ResultVT, Arg, TDCMaskV);
5686   return getCCResult(DAG, Intr);
5687 }
5688 
5689 SDValue SystemZTargetLowering::LowerOperation(SDValue Op,
5690                                               SelectionDAG &DAG) const {
5691   switch (Op.getOpcode()) {
5692   case ISD::FRAMEADDR:
5693     return lowerFRAMEADDR(Op, DAG);
5694   case ISD::RETURNADDR:
5695     return lowerRETURNADDR(Op, DAG);
5696   case ISD::BR_CC:
5697     return lowerBR_CC(Op, DAG);
5698   case ISD::SELECT_CC:
5699     return lowerSELECT_CC(Op, DAG);
5700   case ISD::SETCC:
5701     return lowerSETCC(Op, DAG);
5702   case ISD::STRICT_FSETCC:
5703     return lowerSTRICT_FSETCC(Op, DAG, false);
5704   case ISD::STRICT_FSETCCS:
5705     return lowerSTRICT_FSETCC(Op, DAG, true);
5706   case ISD::GlobalAddress:
5707     return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG);
5708   case ISD::GlobalTLSAddress:
5709     return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG);
5710   case ISD::BlockAddress:
5711     return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG);
5712   case ISD::JumpTable:
5713     return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG);
5714   case ISD::ConstantPool:
5715     return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG);
5716   case ISD::BITCAST:
5717     return lowerBITCAST(Op, DAG);
5718   case ISD::VASTART:
5719     return lowerVASTART(Op, DAG);
5720   case ISD::VACOPY:
5721     return lowerVACOPY(Op, DAG);
5722   case ISD::DYNAMIC_STACKALLOC:
5723     return lowerDYNAMIC_STACKALLOC(Op, DAG);
5724   case ISD::GET_DYNAMIC_AREA_OFFSET:
5725     return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
5726   case ISD::SMUL_LOHI:
5727     return lowerSMUL_LOHI(Op, DAG);
5728   case ISD::UMUL_LOHI:
5729     return lowerUMUL_LOHI(Op, DAG);
5730   case ISD::SDIVREM:
5731     return lowerSDIVREM(Op, DAG);
5732   case ISD::UDIVREM:
5733     return lowerUDIVREM(Op, DAG);
5734   case ISD::SADDO:
5735   case ISD::SSUBO:
5736   case ISD::UADDO:
5737   case ISD::USUBO:
5738     return lowerXALUO(Op, DAG);
5739   case ISD::ADDCARRY:
5740   case ISD::SUBCARRY:
5741     return lowerADDSUBCARRY(Op, DAG);
5742   case ISD::OR:
5743     return lowerOR(Op, DAG);
5744   case ISD::CTPOP:
5745     return lowerCTPOP(Op, DAG);
5746   case ISD::ATOMIC_FENCE:
5747     return lowerATOMIC_FENCE(Op, DAG);
5748   case ISD::ATOMIC_SWAP:
5749     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW);
5750   case ISD::ATOMIC_STORE:
5751     return lowerATOMIC_STORE(Op, DAG);
5752   case ISD::ATOMIC_LOAD:
5753     return lowerATOMIC_LOAD(Op, DAG);
5754   case ISD::ATOMIC_LOAD_ADD:
5755     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD);
5756   case ISD::ATOMIC_LOAD_SUB:
5757     return lowerATOMIC_LOAD_SUB(Op, DAG);
5758   case ISD::ATOMIC_LOAD_AND:
5759     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND);
5760   case ISD::ATOMIC_LOAD_OR:
5761     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR);
5762   case ISD::ATOMIC_LOAD_XOR:
5763     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR);
5764   case ISD::ATOMIC_LOAD_NAND:
5765     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND);
5766   case ISD::ATOMIC_LOAD_MIN:
5767     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN);
5768   case ISD::ATOMIC_LOAD_MAX:
5769     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX);
5770   case ISD::ATOMIC_LOAD_UMIN:
5771     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN);
5772   case ISD::ATOMIC_LOAD_UMAX:
5773     return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX);
5774   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
5775     return lowerATOMIC_CMP_SWAP(Op, DAG);
5776   case ISD::STACKSAVE:
5777     return lowerSTACKSAVE(Op, DAG);
5778   case ISD::STACKRESTORE:
5779     return lowerSTACKRESTORE(Op, DAG);
5780   case ISD::PREFETCH:
5781     return lowerPREFETCH(Op, DAG);
5782   case ISD::INTRINSIC_W_CHAIN:
5783     return lowerINTRINSIC_W_CHAIN(Op, DAG);
5784   case ISD::INTRINSIC_WO_CHAIN:
5785     return lowerINTRINSIC_WO_CHAIN(Op, DAG);
5786   case ISD::BUILD_VECTOR:
5787     return lowerBUILD_VECTOR(Op, DAG);
5788   case ISD::VECTOR_SHUFFLE:
5789     return lowerVECTOR_SHUFFLE(Op, DAG);
5790   case ISD::SCALAR_TO_VECTOR:
5791     return lowerSCALAR_TO_VECTOR(Op, DAG);
5792   case ISD::INSERT_VECTOR_ELT:
5793     return lowerINSERT_VECTOR_ELT(Op, DAG);
5794   case ISD::EXTRACT_VECTOR_ELT:
5795     return lowerEXTRACT_VECTOR_ELT(Op, DAG);
5796   case ISD::SIGN_EXTEND_VECTOR_INREG:
5797     return lowerSIGN_EXTEND_VECTOR_INREG(Op, DAG);
5798   case ISD::ZERO_EXTEND_VECTOR_INREG:
5799     return lowerZERO_EXTEND_VECTOR_INREG(Op, DAG);
5800   case ISD::SHL:
5801     return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR);
5802   case ISD::SRL:
5803     return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR);
5804   case ISD::SRA:
5805     return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR);
5806   case ISD::IS_FPCLASS:
5807     return lowerIS_FPCLASS(Op, DAG);
5808   default:
5809     llvm_unreachable("Unexpected node to lower");
5810   }
5811 }
5812 
5813 // Lower operations with invalid operand or result types (currently used
5814 // only for 128-bit integer types).
5815 void
5816 SystemZTargetLowering::LowerOperationWrapper(SDNode *N,
5817                                              SmallVectorImpl<SDValue> &Results,
5818                                              SelectionDAG &DAG) const {
5819   switch (N->getOpcode()) {
5820   case ISD::ATOMIC_LOAD: {
5821     SDLoc DL(N);
5822     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other);
5823     SDValue Ops[] = { N->getOperand(0), N->getOperand(1) };
5824     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5825     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128,
5826                                           DL, Tys, Ops, MVT::i128, MMO);
5827     Results.push_back(lowerGR128ToI128(DAG, Res));
5828     Results.push_back(Res.getValue(1));
5829     break;
5830   }
5831   case ISD::ATOMIC_STORE: {
5832     SDLoc DL(N);
5833     SDVTList Tys = DAG.getVTList(MVT::Other);
5834     SDValue Ops[] = { N->getOperand(0),
5835                       lowerI128ToGR128(DAG, N->getOperand(2)),
5836                       N->getOperand(1) };
5837     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5838     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128,
5839                                           DL, Tys, Ops, MVT::i128, MMO);
5840     // We have to enforce sequential consistency by performing a
5841     // serialization operation after the store.
5842     if (cast<AtomicSDNode>(N)->getSuccessOrdering() ==
5843         AtomicOrdering::SequentiallyConsistent)
5844       Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL,
5845                                        MVT::Other, Res), 0);
5846     Results.push_back(Res);
5847     break;
5848   }
5849   case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
5850     SDLoc DL(N);
5851     SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other);
5852     SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
5853                       lowerI128ToGR128(DAG, N->getOperand(2)),
5854                       lowerI128ToGR128(DAG, N->getOperand(3)) };
5855     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
5856     SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128,
5857                                           DL, Tys, Ops, MVT::i128, MMO);
5858     SDValue Success = emitSETCC(DAG, DL, Res.getValue(1),
5859                                 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ);
5860     Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1));
5861     Results.push_back(lowerGR128ToI128(DAG, Res));
5862     Results.push_back(Success);
5863     Results.push_back(Res.getValue(2));
5864     break;
5865   }
5866   case ISD::BITCAST: {
5867     SDValue Src = N->getOperand(0);
5868     if (N->getValueType(0) == MVT::i128 && Src.getValueType() == MVT::f128 &&
5869         !useSoftFloat()) {
5870       SDLoc DL(N);
5871       SDValue Lo, Hi;
5872       if (getRepRegClassFor(MVT::f128) == &SystemZ::VR128BitRegClass) {
5873         SDValue VecBC = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Src);
5874         Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5875                          DAG.getConstant(1, DL, MVT::i32));
5876         Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i64, VecBC,
5877                          DAG.getConstant(0, DL, MVT::i32));
5878       } else {
5879         assert(getRepRegClassFor(MVT::f128) == &SystemZ::FP128BitRegClass &&
5880                "Unrecognized register class for f128.");
5881         SDValue LoFP = DAG.getTargetExtractSubreg(SystemZ::subreg_l64,
5882                                                   DL, MVT::f64, Src);
5883         SDValue HiFP = DAG.getTargetExtractSubreg(SystemZ::subreg_h64,
5884                                                   DL, MVT::f64, Src);
5885         Lo = DAG.getNode(ISD::BITCAST, DL, MVT::i64, LoFP);
5886         Hi = DAG.getNode(ISD::BITCAST, DL, MVT::i64, HiFP);
5887       }
5888       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi));
5889     }
5890     break;
5891   }
5892   default:
5893     llvm_unreachable("Unexpected node to lower");
5894   }
5895 }
5896 
5897 void
5898 SystemZTargetLowering::ReplaceNodeResults(SDNode *N,
5899                                           SmallVectorImpl<SDValue> &Results,
5900                                           SelectionDAG &DAG) const {
5901   return LowerOperationWrapper(N, Results, DAG);
5902 }
5903 
5904 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
5905 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME
5906   switch ((SystemZISD::NodeType)Opcode) {
5907     case SystemZISD::FIRST_NUMBER: break;
5908     OPCODE(RET_FLAG);
5909     OPCODE(CALL);
5910     OPCODE(SIBCALL);
5911     OPCODE(TLS_GDCALL);
5912     OPCODE(TLS_LDCALL);
5913     OPCODE(PCREL_WRAPPER);
5914     OPCODE(PCREL_OFFSET);
5915     OPCODE(ICMP);
5916     OPCODE(FCMP);
5917     OPCODE(STRICT_FCMP);
5918     OPCODE(STRICT_FCMPS);
5919     OPCODE(TM);
5920     OPCODE(BR_CCMASK);
5921     OPCODE(SELECT_CCMASK);
5922     OPCODE(ADJDYNALLOC);
5923     OPCODE(PROBED_ALLOCA);
5924     OPCODE(POPCNT);
5925     OPCODE(SMUL_LOHI);
5926     OPCODE(UMUL_LOHI);
5927     OPCODE(SDIVREM);
5928     OPCODE(UDIVREM);
5929     OPCODE(SADDO);
5930     OPCODE(SSUBO);
5931     OPCODE(UADDO);
5932     OPCODE(USUBO);
5933     OPCODE(ADDCARRY);
5934     OPCODE(SUBCARRY);
5935     OPCODE(GET_CCMASK);
5936     OPCODE(MVC);
5937     OPCODE(NC);
5938     OPCODE(OC);
5939     OPCODE(XC);
5940     OPCODE(CLC);
5941     OPCODE(MEMSET_MVC);
5942     OPCODE(STPCPY);
5943     OPCODE(STRCMP);
5944     OPCODE(SEARCH_STRING);
5945     OPCODE(IPM);
5946     OPCODE(MEMBARRIER);
5947     OPCODE(TBEGIN);
5948     OPCODE(TBEGIN_NOFLOAT);
5949     OPCODE(TEND);
5950     OPCODE(BYTE_MASK);
5951     OPCODE(ROTATE_MASK);
5952     OPCODE(REPLICATE);
5953     OPCODE(JOIN_DWORDS);
5954     OPCODE(SPLAT);
5955     OPCODE(MERGE_HIGH);
5956     OPCODE(MERGE_LOW);
5957     OPCODE(SHL_DOUBLE);
5958     OPCODE(PERMUTE_DWORDS);
5959     OPCODE(PERMUTE);
5960     OPCODE(PACK);
5961     OPCODE(PACKS_CC);
5962     OPCODE(PACKLS_CC);
5963     OPCODE(UNPACK_HIGH);
5964     OPCODE(UNPACKL_HIGH);
5965     OPCODE(UNPACK_LOW);
5966     OPCODE(UNPACKL_LOW);
5967     OPCODE(VSHL_BY_SCALAR);
5968     OPCODE(VSRL_BY_SCALAR);
5969     OPCODE(VSRA_BY_SCALAR);
5970     OPCODE(VSUM);
5971     OPCODE(VICMPE);
5972     OPCODE(VICMPH);
5973     OPCODE(VICMPHL);
5974     OPCODE(VICMPES);
5975     OPCODE(VICMPHS);
5976     OPCODE(VICMPHLS);
5977     OPCODE(VFCMPE);
5978     OPCODE(STRICT_VFCMPE);
5979     OPCODE(STRICT_VFCMPES);
5980     OPCODE(VFCMPH);
5981     OPCODE(STRICT_VFCMPH);
5982     OPCODE(STRICT_VFCMPHS);
5983     OPCODE(VFCMPHE);
5984     OPCODE(STRICT_VFCMPHE);
5985     OPCODE(STRICT_VFCMPHES);
5986     OPCODE(VFCMPES);
5987     OPCODE(VFCMPHS);
5988     OPCODE(VFCMPHES);
5989     OPCODE(VFTCI);
5990     OPCODE(VEXTEND);
5991     OPCODE(STRICT_VEXTEND);
5992     OPCODE(VROUND);
5993     OPCODE(STRICT_VROUND);
5994     OPCODE(VTM);
5995     OPCODE(VFAE_CC);
5996     OPCODE(VFAEZ_CC);
5997     OPCODE(VFEE_CC);
5998     OPCODE(VFEEZ_CC);
5999     OPCODE(VFENE_CC);
6000     OPCODE(VFENEZ_CC);
6001     OPCODE(VISTR_CC);
6002     OPCODE(VSTRC_CC);
6003     OPCODE(VSTRCZ_CC);
6004     OPCODE(VSTRS_CC);
6005     OPCODE(VSTRSZ_CC);
6006     OPCODE(TDC);
6007     OPCODE(ATOMIC_SWAPW);
6008     OPCODE(ATOMIC_LOADW_ADD);
6009     OPCODE(ATOMIC_LOADW_SUB);
6010     OPCODE(ATOMIC_LOADW_AND);
6011     OPCODE(ATOMIC_LOADW_OR);
6012     OPCODE(ATOMIC_LOADW_XOR);
6013     OPCODE(ATOMIC_LOADW_NAND);
6014     OPCODE(ATOMIC_LOADW_MIN);
6015     OPCODE(ATOMIC_LOADW_MAX);
6016     OPCODE(ATOMIC_LOADW_UMIN);
6017     OPCODE(ATOMIC_LOADW_UMAX);
6018     OPCODE(ATOMIC_CMP_SWAPW);
6019     OPCODE(ATOMIC_CMP_SWAP);
6020     OPCODE(ATOMIC_LOAD_128);
6021     OPCODE(ATOMIC_STORE_128);
6022     OPCODE(ATOMIC_CMP_SWAP_128);
6023     OPCODE(LRV);
6024     OPCODE(STRV);
6025     OPCODE(VLER);
6026     OPCODE(VSTER);
6027     OPCODE(PREFETCH);
6028   }
6029   return nullptr;
6030 #undef OPCODE
6031 }
6032 
6033 // Return true if VT is a vector whose elements are a whole number of bytes
6034 // in width. Also check for presence of vector support.
6035 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const {
6036   if (!Subtarget.hasVector())
6037     return false;
6038 
6039   return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple();
6040 }
6041 
6042 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT
6043 // producing a result of type ResVT.  Op is a possibly bitcast version
6044 // of the input vector and Index is the index (based on type VecVT) that
6045 // should be extracted.  Return the new extraction if a simplification
6046 // was possible or if Force is true.
6047 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT,
6048                                               EVT VecVT, SDValue Op,
6049                                               unsigned Index,
6050                                               DAGCombinerInfo &DCI,
6051                                               bool Force) const {
6052   SelectionDAG &DAG = DCI.DAG;
6053 
6054   // The number of bytes being extracted.
6055   unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6056 
6057   for (;;) {
6058     unsigned Opcode = Op.getOpcode();
6059     if (Opcode == ISD::BITCAST)
6060       // Look through bitcasts.
6061       Op = Op.getOperand(0);
6062     else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) &&
6063              canTreatAsByteVector(Op.getValueType())) {
6064       // Get a VPERM-like permute mask and see whether the bytes covered
6065       // by the extracted element are a contiguous sequence from one
6066       // source operand.
6067       SmallVector<int, SystemZ::VectorBytes> Bytes;
6068       if (!getVPermMask(Op, Bytes))
6069         break;
6070       int First;
6071       if (!getShuffleInput(Bytes, Index * BytesPerElement,
6072                            BytesPerElement, First))
6073         break;
6074       if (First < 0)
6075         return DAG.getUNDEF(ResVT);
6076       // Make sure the contiguous sequence starts at a multiple of the
6077       // original element size.
6078       unsigned Byte = unsigned(First) % Bytes.size();
6079       if (Byte % BytesPerElement != 0)
6080         break;
6081       // We can get the extracted value directly from an input.
6082       Index = Byte / BytesPerElement;
6083       Op = Op.getOperand(unsigned(First) / Bytes.size());
6084       Force = true;
6085     } else if (Opcode == ISD::BUILD_VECTOR &&
6086                canTreatAsByteVector(Op.getValueType())) {
6087       // We can only optimize this case if the BUILD_VECTOR elements are
6088       // at least as wide as the extracted value.
6089       EVT OpVT = Op.getValueType();
6090       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6091       if (OpBytesPerElement < BytesPerElement)
6092         break;
6093       // Make sure that the least-significant bit of the extracted value
6094       // is the least significant bit of an input.
6095       unsigned End = (Index + 1) * BytesPerElement;
6096       if (End % OpBytesPerElement != 0)
6097         break;
6098       // We're extracting the low part of one operand of the BUILD_VECTOR.
6099       Op = Op.getOperand(End / OpBytesPerElement - 1);
6100       if (!Op.getValueType().isInteger()) {
6101         EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits());
6102         Op = DAG.getNode(ISD::BITCAST, DL, VT, Op);
6103         DCI.AddToWorklist(Op.getNode());
6104       }
6105       EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits());
6106       Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
6107       if (VT != ResVT) {
6108         DCI.AddToWorklist(Op.getNode());
6109         Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op);
6110       }
6111       return Op;
6112     } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
6113                 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG ||
6114                 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) &&
6115                canTreatAsByteVector(Op.getValueType()) &&
6116                canTreatAsByteVector(Op.getOperand(0).getValueType())) {
6117       // Make sure that only the unextended bits are significant.
6118       EVT ExtVT = Op.getValueType();
6119       EVT OpVT = Op.getOperand(0).getValueType();
6120       unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize();
6121       unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize();
6122       unsigned Byte = Index * BytesPerElement;
6123       unsigned SubByte = Byte % ExtBytesPerElement;
6124       unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement;
6125       if (SubByte < MinSubByte ||
6126           SubByte + BytesPerElement > ExtBytesPerElement)
6127         break;
6128       // Get the byte offset of the unextended element
6129       Byte = Byte / ExtBytesPerElement * OpBytesPerElement;
6130       // ...then add the byte offset relative to that element.
6131       Byte += SubByte - MinSubByte;
6132       if (Byte % BytesPerElement != 0)
6133         break;
6134       Op = Op.getOperand(0);
6135       Index = Byte / BytesPerElement;
6136       Force = true;
6137     } else
6138       break;
6139   }
6140   if (Force) {
6141     if (Op.getValueType() != VecVT) {
6142       Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op);
6143       DCI.AddToWorklist(Op.getNode());
6144     }
6145     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op,
6146                        DAG.getConstant(Index, DL, MVT::i32));
6147   }
6148   return SDValue();
6149 }
6150 
6151 // Optimize vector operations in scalar value Op on the basis that Op
6152 // is truncated to TruncVT.
6153 SDValue SystemZTargetLowering::combineTruncateExtract(
6154     const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const {
6155   // If we have (trunc (extract_vector_elt X, Y)), try to turn it into
6156   // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements
6157   // of type TruncVT.
6158   if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6159       TruncVT.getSizeInBits() % 8 == 0) {
6160     SDValue Vec = Op.getOperand(0);
6161     EVT VecVT = Vec.getValueType();
6162     if (canTreatAsByteVector(VecVT)) {
6163       if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6164         unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize();
6165         unsigned TruncBytes = TruncVT.getStoreSize();
6166         if (BytesPerElement % TruncBytes == 0) {
6167           // Calculate the value of Y' in the above description.  We are
6168           // splitting the original elements into Scale equal-sized pieces
6169           // and for truncation purposes want the last (least-significant)
6170           // of these pieces for IndexN.  This is easiest to do by calculating
6171           // the start index of the following element and then subtracting 1.
6172           unsigned Scale = BytesPerElement / TruncBytes;
6173           unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1;
6174 
6175           // Defer the creation of the bitcast from X to combineExtract,
6176           // which might be able to optimize the extraction.
6177           VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8),
6178                                    VecVT.getStoreSize() / TruncBytes);
6179           EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT);
6180           return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true);
6181         }
6182       }
6183     }
6184   }
6185   return SDValue();
6186 }
6187 
6188 SDValue SystemZTargetLowering::combineZERO_EXTEND(
6189     SDNode *N, DAGCombinerInfo &DCI) const {
6190   // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2')
6191   SelectionDAG &DAG = DCI.DAG;
6192   SDValue N0 = N->getOperand(0);
6193   EVT VT = N->getValueType(0);
6194   if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) {
6195     auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0));
6196     auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6197     if (TrueOp && FalseOp) {
6198       SDLoc DL(N0);
6199       SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT),
6200                         DAG.getConstant(FalseOp->getZExtValue(), DL, VT),
6201                         N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) };
6202       SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops);
6203       // If N0 has multiple uses, change other uses as well.
6204       if (!N0.hasOneUse()) {
6205         SDValue TruncSelect =
6206           DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect);
6207         DCI.CombineTo(N0.getNode(), TruncSelect);
6208       }
6209       return NewSelect;
6210     }
6211   }
6212   return SDValue();
6213 }
6214 
6215 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG(
6216     SDNode *N, DAGCombinerInfo &DCI) const {
6217   // Convert (sext_in_reg (setcc LHS, RHS, COND), i1)
6218   // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1)
6219   // into (select_cc LHS, RHS, -1, 0, COND)
6220   SelectionDAG &DAG = DCI.DAG;
6221   SDValue N0 = N->getOperand(0);
6222   EVT VT = N->getValueType(0);
6223   EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT();
6224   if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND)
6225     N0 = N0.getOperand(0);
6226   if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) {
6227     SDLoc DL(N0);
6228     SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1),
6229                       DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT),
6230                       N0.getOperand(2) };
6231     return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops);
6232   }
6233   return SDValue();
6234 }
6235 
6236 SDValue SystemZTargetLowering::combineSIGN_EXTEND(
6237     SDNode *N, DAGCombinerInfo &DCI) const {
6238   // Convert (sext (ashr (shl X, C1), C2)) to
6239   // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as
6240   // cheap as narrower ones.
6241   SelectionDAG &DAG = DCI.DAG;
6242   SDValue N0 = N->getOperand(0);
6243   EVT VT = N->getValueType(0);
6244   if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) {
6245     auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1));
6246     SDValue Inner = N0.getOperand(0);
6247     if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) {
6248       if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) {
6249         unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits());
6250         unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra;
6251         unsigned NewSraAmt = SraAmt->getZExtValue() + Extra;
6252         EVT ShiftVT = N0.getOperand(1).getValueType();
6253         SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT,
6254                                   Inner.getOperand(0));
6255         SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext,
6256                                   DAG.getConstant(NewShlAmt, SDLoc(Inner),
6257                                                   ShiftVT));
6258         return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl,
6259                            DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT));
6260       }
6261     }
6262   }
6263   return SDValue();
6264 }
6265 
6266 SDValue SystemZTargetLowering::combineMERGE(
6267     SDNode *N, DAGCombinerInfo &DCI) const {
6268   SelectionDAG &DAG = DCI.DAG;
6269   unsigned Opcode = N->getOpcode();
6270   SDValue Op0 = N->getOperand(0);
6271   SDValue Op1 = N->getOperand(1);
6272   if (Op0.getOpcode() == ISD::BITCAST)
6273     Op0 = Op0.getOperand(0);
6274   if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6275     // (z_merge_* 0, 0) -> 0.  This is mostly useful for using VLLEZF
6276     // for v4f32.
6277     if (Op1 == N->getOperand(0))
6278       return Op1;
6279     // (z_merge_? 0, X) -> (z_unpackl_? 0, X).
6280     EVT VT = Op1.getValueType();
6281     unsigned ElemBytes = VT.getVectorElementType().getStoreSize();
6282     if (ElemBytes <= 4) {
6283       Opcode = (Opcode == SystemZISD::MERGE_HIGH ?
6284                 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW);
6285       EVT InVT = VT.changeVectorElementTypeToInteger();
6286       EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16),
6287                                    SystemZ::VectorBytes / ElemBytes / 2);
6288       if (VT != InVT) {
6289         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1);
6290         DCI.AddToWorklist(Op1.getNode());
6291       }
6292       SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1);
6293       DCI.AddToWorklist(Op.getNode());
6294       return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
6295     }
6296   }
6297   return SDValue();
6298 }
6299 
6300 SDValue SystemZTargetLowering::combineLOAD(
6301     SDNode *N, DAGCombinerInfo &DCI) const {
6302   SelectionDAG &DAG = DCI.DAG;
6303   EVT LdVT = N->getValueType(0);
6304   if (LdVT.isVector() || LdVT.isInteger())
6305     return SDValue();
6306   // Transform a scalar load that is REPLICATEd as well as having other
6307   // use(s) to the form where the other use(s) use the first element of the
6308   // REPLICATE instead of the load. Otherwise instruction selection will not
6309   // produce a VLREP. Avoid extracting to a GPR, so only do this for floating
6310   // point loads.
6311 
6312   SDValue Replicate;
6313   SmallVector<SDNode*, 8> OtherUses;
6314   for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
6315        UI != UE; ++UI) {
6316     if (UI->getOpcode() == SystemZISD::REPLICATE) {
6317       if (Replicate)
6318         return SDValue(); // Should never happen
6319       Replicate = SDValue(*UI, 0);
6320     }
6321     else if (UI.getUse().getResNo() == 0)
6322       OtherUses.push_back(*UI);
6323   }
6324   if (!Replicate || OtherUses.empty())
6325     return SDValue();
6326 
6327   SDLoc DL(N);
6328   SDValue Extract0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, LdVT,
6329                               Replicate, DAG.getConstant(0, DL, MVT::i32));
6330   // Update uses of the loaded Value while preserving old chains.
6331   for (SDNode *U : OtherUses) {
6332     SmallVector<SDValue, 8> Ops;
6333     for (SDValue Op : U->ops())
6334       Ops.push_back((Op.getNode() == N && Op.getResNo() == 0) ? Extract0 : Op);
6335     DAG.UpdateNodeOperands(U, Ops);
6336   }
6337   return SDValue(N, 0);
6338 }
6339 
6340 bool SystemZTargetLowering::canLoadStoreByteSwapped(EVT VT) const {
6341   if (VT == MVT::i16 || VT == MVT::i32 || VT == MVT::i64)
6342     return true;
6343   if (Subtarget.hasVectorEnhancements2())
6344     if (VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64)
6345       return true;
6346   return false;
6347 }
6348 
6349 static bool isVectorElementSwap(ArrayRef<int> M, EVT VT) {
6350   if (!VT.isVector() || !VT.isSimple() ||
6351       VT.getSizeInBits() != 128 ||
6352       VT.getScalarSizeInBits() % 8 != 0)
6353     return false;
6354 
6355   unsigned NumElts = VT.getVectorNumElements();
6356   for (unsigned i = 0; i < NumElts; ++i) {
6357     if (M[i] < 0) continue; // ignore UNDEF indices
6358     if ((unsigned) M[i] != NumElts - 1 - i)
6359       return false;
6360   }
6361 
6362   return true;
6363 }
6364 
6365 static bool isOnlyUsedByStores(SDValue StoredVal, SelectionDAG &DAG) {
6366   for (auto *U : StoredVal->uses()) {
6367     if (StoreSDNode *ST = dyn_cast<StoreSDNode>(U)) {
6368       EVT CurrMemVT = ST->getMemoryVT().getScalarType();
6369       if (CurrMemVT.isRound() && CurrMemVT.getStoreSize() <= 16)
6370         continue;
6371     } else if (isa<BuildVectorSDNode>(U)) {
6372       SDValue BuildVector = SDValue(U, 0);
6373       if (DAG.isSplatValue(BuildVector, true/*AllowUndefs*/) &&
6374           isOnlyUsedByStores(BuildVector, DAG))
6375         continue;
6376     }
6377     return false;
6378   }
6379   return true;
6380 }
6381 
6382 SDValue SystemZTargetLowering::combineSTORE(
6383     SDNode *N, DAGCombinerInfo &DCI) const {
6384   SelectionDAG &DAG = DCI.DAG;
6385   auto *SN = cast<StoreSDNode>(N);
6386   auto &Op1 = N->getOperand(1);
6387   EVT MemVT = SN->getMemoryVT();
6388   // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better
6389   // for the extraction to be done on a vMiN value, so that we can use VSTE.
6390   // If X has wider elements then convert it to:
6391   // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z).
6392   if (MemVT.isInteger() && SN->isTruncatingStore()) {
6393     if (SDValue Value =
6394             combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) {
6395       DCI.AddToWorklist(Value.getNode());
6396 
6397       // Rewrite the store with the new form of stored value.
6398       return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value,
6399                                SN->getBasePtr(), SN->getMemoryVT(),
6400                                SN->getMemOperand());
6401     }
6402   }
6403   // Combine STORE (BSWAP) into STRVH/STRV/STRVG/VSTBR
6404   if (!SN->isTruncatingStore() &&
6405       Op1.getOpcode() == ISD::BSWAP &&
6406       Op1.getNode()->hasOneUse() &&
6407       canLoadStoreByteSwapped(Op1.getValueType())) {
6408 
6409       SDValue BSwapOp = Op1.getOperand(0);
6410 
6411       if (BSwapOp.getValueType() == MVT::i16)
6412         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp);
6413 
6414       SDValue Ops[] = {
6415         N->getOperand(0), BSwapOp, N->getOperand(2)
6416       };
6417 
6418       return
6419         DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other),
6420                                 Ops, MemVT, SN->getMemOperand());
6421     }
6422   // Combine STORE (element-swap) into VSTER
6423   if (!SN->isTruncatingStore() &&
6424       Op1.getOpcode() == ISD::VECTOR_SHUFFLE &&
6425       Op1.getNode()->hasOneUse() &&
6426       Subtarget.hasVectorEnhancements2()) {
6427     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op1.getNode());
6428     ArrayRef<int> ShuffleMask = SVN->getMask();
6429     if (isVectorElementSwap(ShuffleMask, Op1.getValueType())) {
6430       SDValue Ops[] = {
6431         N->getOperand(0), Op1.getOperand(0), N->getOperand(2)
6432       };
6433 
6434       return DAG.getMemIntrinsicNode(SystemZISD::VSTER, SDLoc(N),
6435                                      DAG.getVTList(MVT::Other),
6436                                      Ops, MemVT, SN->getMemOperand());
6437     }
6438   }
6439 
6440   // Replicate a reg or immediate with VREP instead of scalar multiply or
6441   // immediate load. It seems best to do this during the first DAGCombine as
6442   // it is straight-forward to handle the zero-extend node in the initial
6443   // DAG, and also not worry about the keeping the new MemVT legal (e.g. when
6444   // extracting an i16 element from a v16i8 vector).
6445   if (Subtarget.hasVector() && DCI.Level == BeforeLegalizeTypes &&
6446       isOnlyUsedByStores(Op1, DAG)) {
6447     SDValue Word = SDValue();
6448     EVT WordVT;
6449 
6450     // Find a replicated immediate and return it if found in Word and its
6451     // type in WordVT.
6452     auto FindReplicatedImm = [&](ConstantSDNode *C, unsigned TotBytes) {
6453       // Some constants are better handled with a scalar store.
6454       if (C->getAPIntValue().getBitWidth() > 64 || C->isAllOnes() ||
6455           isInt<16>(C->getSExtValue()) || MemVT.getStoreSize() <= 2)
6456         return;
6457       SystemZVectorConstantInfo VCI(APInt(TotBytes * 8, C->getZExtValue()));
6458       if (VCI.isVectorConstantLegal(Subtarget) &&
6459           VCI.Opcode == SystemZISD::REPLICATE) {
6460         Word = DAG.getConstant(VCI.OpVals[0], SDLoc(SN), MVT::i32);
6461         WordVT = VCI.VecVT.getScalarType();
6462       }
6463     };
6464 
6465     // Find a replicated register and return it if found in Word and its type
6466     // in WordVT.
6467     auto FindReplicatedReg = [&](SDValue MulOp) {
6468       EVT MulVT = MulOp.getValueType();
6469       if (MulOp->getOpcode() == ISD::MUL &&
6470           (MulVT == MVT::i16 || MulVT == MVT::i32 || MulVT == MVT::i64)) {
6471         // Find a zero extended value and its type.
6472         SDValue LHS = MulOp->getOperand(0);
6473         if (LHS->getOpcode() == ISD::ZERO_EXTEND)
6474           WordVT = LHS->getOperand(0).getValueType();
6475         else if (LHS->getOpcode() == ISD::AssertZext)
6476           WordVT = cast<VTSDNode>(LHS->getOperand(1))->getVT();
6477         else
6478           return;
6479         // Find a replicating constant, e.g. 0x00010001.
6480         if (auto *C = dyn_cast<ConstantSDNode>(MulOp->getOperand(1))) {
6481           SystemZVectorConstantInfo VCI(
6482               APInt(MulVT.getSizeInBits(), C->getZExtValue()));
6483           if (VCI.isVectorConstantLegal(Subtarget) &&
6484               VCI.Opcode == SystemZISD::REPLICATE && VCI.OpVals[0] == 1 &&
6485               WordVT == VCI.VecVT.getScalarType())
6486             Word = DAG.getZExtOrTrunc(LHS->getOperand(0), SDLoc(SN), WordVT);
6487         }
6488       }
6489     };
6490 
6491     if (isa<BuildVectorSDNode>(Op1) &&
6492         DAG.isSplatValue(Op1, true/*AllowUndefs*/)) {
6493       SDValue SplatVal = Op1->getOperand(0);
6494       if (auto *C = dyn_cast<ConstantSDNode>(SplatVal))
6495         FindReplicatedImm(C, SplatVal.getValueType().getStoreSize());
6496       else
6497         FindReplicatedReg(SplatVal);
6498     } else {
6499       if (auto *C = dyn_cast<ConstantSDNode>(Op1))
6500         FindReplicatedImm(C, MemVT.getStoreSize());
6501       else
6502         FindReplicatedReg(Op1);
6503     }
6504 
6505     if (Word != SDValue()) {
6506       assert(MemVT.getSizeInBits() % WordVT.getSizeInBits() == 0 &&
6507              "Bad type handling");
6508       unsigned NumElts = MemVT.getSizeInBits() / WordVT.getSizeInBits();
6509       EVT SplatVT = EVT::getVectorVT(*DAG.getContext(), WordVT, NumElts);
6510       SDValue SplatVal = DAG.getSplatVector(SplatVT, SDLoc(SN), Word);
6511       return DAG.getStore(SN->getChain(), SDLoc(SN), SplatVal,
6512                           SN->getBasePtr(), SN->getMemOperand());
6513     }
6514   }
6515 
6516   return SDValue();
6517 }
6518 
6519 SDValue SystemZTargetLowering::combineVECTOR_SHUFFLE(
6520     SDNode *N, DAGCombinerInfo &DCI) const {
6521   SelectionDAG &DAG = DCI.DAG;
6522   // Combine element-swap (LOAD) into VLER
6523   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6524       N->getOperand(0).hasOneUse() &&
6525       Subtarget.hasVectorEnhancements2()) {
6526     ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
6527     ArrayRef<int> ShuffleMask = SVN->getMask();
6528     if (isVectorElementSwap(ShuffleMask, N->getValueType(0))) {
6529       SDValue Load = N->getOperand(0);
6530       LoadSDNode *LD = cast<LoadSDNode>(Load);
6531 
6532       // Create the element-swapping load.
6533       SDValue Ops[] = {
6534         LD->getChain(),    // Chain
6535         LD->getBasePtr()   // Ptr
6536       };
6537       SDValue ESLoad =
6538         DAG.getMemIntrinsicNode(SystemZISD::VLER, SDLoc(N),
6539                                 DAG.getVTList(LD->getValueType(0), MVT::Other),
6540                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6541 
6542       // First, combine the VECTOR_SHUFFLE away.  This makes the value produced
6543       // by the load dead.
6544       DCI.CombineTo(N, ESLoad);
6545 
6546       // Next, combine the load away, we give it a bogus result value but a real
6547       // chain result.  The result value is dead because the shuffle is dead.
6548       DCI.CombineTo(Load.getNode(), ESLoad, ESLoad.getValue(1));
6549 
6550       // Return N so it doesn't get rechecked!
6551       return SDValue(N, 0);
6552     }
6553   }
6554 
6555   return SDValue();
6556 }
6557 
6558 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT(
6559     SDNode *N, DAGCombinerInfo &DCI) const {
6560   SelectionDAG &DAG = DCI.DAG;
6561 
6562   if (!Subtarget.hasVector())
6563     return SDValue();
6564 
6565   // Look through bitcasts that retain the number of vector elements.
6566   SDValue Op = N->getOperand(0);
6567   if (Op.getOpcode() == ISD::BITCAST &&
6568       Op.getValueType().isVector() &&
6569       Op.getOperand(0).getValueType().isVector() &&
6570       Op.getValueType().getVectorNumElements() ==
6571       Op.getOperand(0).getValueType().getVectorNumElements())
6572     Op = Op.getOperand(0);
6573 
6574   // Pull BSWAP out of a vector extraction.
6575   if (Op.getOpcode() == ISD::BSWAP && Op.hasOneUse()) {
6576     EVT VecVT = Op.getValueType();
6577     EVT EltVT = VecVT.getVectorElementType();
6578     Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(N), EltVT,
6579                      Op.getOperand(0), N->getOperand(1));
6580     DCI.AddToWorklist(Op.getNode());
6581     Op = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Op);
6582     if (EltVT != N->getValueType(0)) {
6583       DCI.AddToWorklist(Op.getNode());
6584       Op = DAG.getNode(ISD::BITCAST, SDLoc(N), N->getValueType(0), Op);
6585     }
6586     return Op;
6587   }
6588 
6589   // Try to simplify a vector extraction.
6590   if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
6591     SDValue Op0 = N->getOperand(0);
6592     EVT VecVT = Op0.getValueType();
6593     return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0,
6594                           IndexN->getZExtValue(), DCI, false);
6595   }
6596   return SDValue();
6597 }
6598 
6599 SDValue SystemZTargetLowering::combineJOIN_DWORDS(
6600     SDNode *N, DAGCombinerInfo &DCI) const {
6601   SelectionDAG &DAG = DCI.DAG;
6602   // (join_dwords X, X) == (replicate X)
6603   if (N->getOperand(0) == N->getOperand(1))
6604     return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0),
6605                        N->getOperand(0));
6606   return SDValue();
6607 }
6608 
6609 static SDValue MergeInputChains(SDNode *N1, SDNode *N2) {
6610   SDValue Chain1 = N1->getOperand(0);
6611   SDValue Chain2 = N2->getOperand(0);
6612 
6613   // Trivial case: both nodes take the same chain.
6614   if (Chain1 == Chain2)
6615     return Chain1;
6616 
6617   // FIXME - we could handle more complex cases via TokenFactor,
6618   // assuming we can verify that this would not create a cycle.
6619   return SDValue();
6620 }
6621 
6622 SDValue SystemZTargetLowering::combineFP_ROUND(
6623     SDNode *N, DAGCombinerInfo &DCI) const {
6624 
6625   if (!Subtarget.hasVector())
6626     return SDValue();
6627 
6628   // (fpround (extract_vector_elt X 0))
6629   // (fpround (extract_vector_elt X 1)) ->
6630   // (extract_vector_elt (VROUND X) 0)
6631   // (extract_vector_elt (VROUND X) 2)
6632   //
6633   // This is a special case since the target doesn't really support v2f32s.
6634   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6635   SelectionDAG &DAG = DCI.DAG;
6636   SDValue Op0 = N->getOperand(OpNo);
6637   if (N->getValueType(0) == MVT::f32 &&
6638       Op0.hasOneUse() &&
6639       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6640       Op0.getOperand(0).getValueType() == MVT::v2f64 &&
6641       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6642       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6643     SDValue Vec = Op0.getOperand(0);
6644     for (auto *U : Vec->uses()) {
6645       if (U != Op0.getNode() &&
6646           U->hasOneUse() &&
6647           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6648           U->getOperand(0) == Vec &&
6649           U->getOperand(1).getOpcode() == ISD::Constant &&
6650           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) {
6651         SDValue OtherRound = SDValue(*U->use_begin(), 0);
6652         if (OtherRound.getOpcode() == N->getOpcode() &&
6653             OtherRound.getOperand(OpNo) == SDValue(U, 0) &&
6654             OtherRound.getValueType() == MVT::f32) {
6655           SDValue VRound, Chain;
6656           if (N->isStrictFPOpcode()) {
6657             Chain = MergeInputChains(N, OtherRound.getNode());
6658             if (!Chain)
6659               continue;
6660             VRound = DAG.getNode(SystemZISD::STRICT_VROUND, SDLoc(N),
6661                                  {MVT::v4f32, MVT::Other}, {Chain, Vec});
6662             Chain = VRound.getValue(1);
6663           } else
6664             VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N),
6665                                  MVT::v4f32, Vec);
6666           DCI.AddToWorklist(VRound.getNode());
6667           SDValue Extract1 =
6668             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32,
6669                         VRound, DAG.getConstant(2, SDLoc(U), MVT::i32));
6670           DCI.AddToWorklist(Extract1.getNode());
6671           DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1);
6672           if (Chain)
6673             DAG.ReplaceAllUsesOfValueWith(OtherRound.getValue(1), Chain);
6674           SDValue Extract0 =
6675             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32,
6676                         VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6677           if (Chain)
6678             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6679                                N->getVTList(), Extract0, Chain);
6680           return Extract0;
6681         }
6682       }
6683     }
6684   }
6685   return SDValue();
6686 }
6687 
6688 SDValue SystemZTargetLowering::combineFP_EXTEND(
6689     SDNode *N, DAGCombinerInfo &DCI) const {
6690 
6691   if (!Subtarget.hasVector())
6692     return SDValue();
6693 
6694   // (fpextend (extract_vector_elt X 0))
6695   // (fpextend (extract_vector_elt X 2)) ->
6696   // (extract_vector_elt (VEXTEND X) 0)
6697   // (extract_vector_elt (VEXTEND X) 1)
6698   //
6699   // This is a special case since the target doesn't really support v2f32s.
6700   unsigned OpNo = N->isStrictFPOpcode() ? 1 : 0;
6701   SelectionDAG &DAG = DCI.DAG;
6702   SDValue Op0 = N->getOperand(OpNo);
6703   if (N->getValueType(0) == MVT::f64 &&
6704       Op0.hasOneUse() &&
6705       Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6706       Op0.getOperand(0).getValueType() == MVT::v4f32 &&
6707       Op0.getOperand(1).getOpcode() == ISD::Constant &&
6708       cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) {
6709     SDValue Vec = Op0.getOperand(0);
6710     for (auto *U : Vec->uses()) {
6711       if (U != Op0.getNode() &&
6712           U->hasOneUse() &&
6713           U->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
6714           U->getOperand(0) == Vec &&
6715           U->getOperand(1).getOpcode() == ISD::Constant &&
6716           cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 2) {
6717         SDValue OtherExtend = SDValue(*U->use_begin(), 0);
6718         if (OtherExtend.getOpcode() == N->getOpcode() &&
6719             OtherExtend.getOperand(OpNo) == SDValue(U, 0) &&
6720             OtherExtend.getValueType() == MVT::f64) {
6721           SDValue VExtend, Chain;
6722           if (N->isStrictFPOpcode()) {
6723             Chain = MergeInputChains(N, OtherExtend.getNode());
6724             if (!Chain)
6725               continue;
6726             VExtend = DAG.getNode(SystemZISD::STRICT_VEXTEND, SDLoc(N),
6727                                   {MVT::v2f64, MVT::Other}, {Chain, Vec});
6728             Chain = VExtend.getValue(1);
6729           } else
6730             VExtend = DAG.getNode(SystemZISD::VEXTEND, SDLoc(N),
6731                                   MVT::v2f64, Vec);
6732           DCI.AddToWorklist(VExtend.getNode());
6733           SDValue Extract1 =
6734             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f64,
6735                         VExtend, DAG.getConstant(1, SDLoc(U), MVT::i32));
6736           DCI.AddToWorklist(Extract1.getNode());
6737           DAG.ReplaceAllUsesOfValueWith(OtherExtend, Extract1);
6738           if (Chain)
6739             DAG.ReplaceAllUsesOfValueWith(OtherExtend.getValue(1), Chain);
6740           SDValue Extract0 =
6741             DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f64,
6742                         VExtend, DAG.getConstant(0, SDLoc(Op0), MVT::i32));
6743           if (Chain)
6744             return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op0),
6745                                N->getVTList(), Extract0, Chain);
6746           return Extract0;
6747         }
6748       }
6749     }
6750   }
6751   return SDValue();
6752 }
6753 
6754 SDValue SystemZTargetLowering::combineINT_TO_FP(
6755     SDNode *N, DAGCombinerInfo &DCI) const {
6756   if (DCI.Level != BeforeLegalizeTypes)
6757     return SDValue();
6758   SelectionDAG &DAG = DCI.DAG;
6759   LLVMContext &Ctx = *DAG.getContext();
6760   unsigned Opcode = N->getOpcode();
6761   EVT OutVT = N->getValueType(0);
6762   Type *OutLLVMTy = OutVT.getTypeForEVT(Ctx);
6763   SDValue Op = N->getOperand(0);
6764   unsigned OutScalarBits = OutLLVMTy->getScalarSizeInBits();
6765   unsigned InScalarBits = Op->getValueType(0).getScalarSizeInBits();
6766 
6767   // Insert an extension before type-legalization to avoid scalarization, e.g.:
6768   // v2f64 = uint_to_fp v2i16
6769   // =>
6770   // v2f64 = uint_to_fp (v2i64 zero_extend v2i16)
6771   if (OutLLVMTy->isVectorTy() && OutScalarBits > InScalarBits &&
6772       OutScalarBits <= 64) {
6773     unsigned NumElts = cast<FixedVectorType>(OutLLVMTy)->getNumElements();
6774     EVT ExtVT = EVT::getVectorVT(
6775         Ctx, EVT::getIntegerVT(Ctx, OutLLVMTy->getScalarSizeInBits()), NumElts);
6776     unsigned ExtOpcode =
6777         (Opcode == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND);
6778     SDValue ExtOp = DAG.getNode(ExtOpcode, SDLoc(N), ExtVT, Op);
6779     return DAG.getNode(Opcode, SDLoc(N), OutVT, ExtOp);
6780   }
6781   return SDValue();
6782 }
6783 
6784 SDValue SystemZTargetLowering::combineBSWAP(
6785     SDNode *N, DAGCombinerInfo &DCI) const {
6786   SelectionDAG &DAG = DCI.DAG;
6787   // Combine BSWAP (LOAD) into LRVH/LRV/LRVG/VLBR
6788   if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6789       N->getOperand(0).hasOneUse() &&
6790       canLoadStoreByteSwapped(N->getValueType(0))) {
6791       SDValue Load = N->getOperand(0);
6792       LoadSDNode *LD = cast<LoadSDNode>(Load);
6793 
6794       // Create the byte-swapping load.
6795       SDValue Ops[] = {
6796         LD->getChain(),    // Chain
6797         LD->getBasePtr()   // Ptr
6798       };
6799       EVT LoadVT = N->getValueType(0);
6800       if (LoadVT == MVT::i16)
6801         LoadVT = MVT::i32;
6802       SDValue BSLoad =
6803         DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N),
6804                                 DAG.getVTList(LoadVT, MVT::Other),
6805                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
6806 
6807       // If this is an i16 load, insert the truncate.
6808       SDValue ResVal = BSLoad;
6809       if (N->getValueType(0) == MVT::i16)
6810         ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad);
6811 
6812       // First, combine the bswap away.  This makes the value produced by the
6813       // load dead.
6814       DCI.CombineTo(N, ResVal);
6815 
6816       // Next, combine the load away, we give it a bogus result value but a real
6817       // chain result.  The result value is dead because the bswap is dead.
6818       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6819 
6820       // Return N so it doesn't get rechecked!
6821       return SDValue(N, 0);
6822     }
6823 
6824   // Look through bitcasts that retain the number of vector elements.
6825   SDValue Op = N->getOperand(0);
6826   if (Op.getOpcode() == ISD::BITCAST &&
6827       Op.getValueType().isVector() &&
6828       Op.getOperand(0).getValueType().isVector() &&
6829       Op.getValueType().getVectorNumElements() ==
6830       Op.getOperand(0).getValueType().getVectorNumElements())
6831     Op = Op.getOperand(0);
6832 
6833   // Push BSWAP into a vector insertion if at least one side then simplifies.
6834   if (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && Op.hasOneUse()) {
6835     SDValue Vec = Op.getOperand(0);
6836     SDValue Elt = Op.getOperand(1);
6837     SDValue Idx = Op.getOperand(2);
6838 
6839     if (DAG.isConstantIntBuildVectorOrConstantInt(Vec) ||
6840         Vec.getOpcode() == ISD::BSWAP || Vec.isUndef() ||
6841         DAG.isConstantIntBuildVectorOrConstantInt(Elt) ||
6842         Elt.getOpcode() == ISD::BSWAP || Elt.isUndef() ||
6843         (canLoadStoreByteSwapped(N->getValueType(0)) &&
6844          ISD::isNON_EXTLoad(Elt.getNode()) && Elt.hasOneUse())) {
6845       EVT VecVT = N->getValueType(0);
6846       EVT EltVT = N->getValueType(0).getVectorElementType();
6847       if (VecVT != Vec.getValueType()) {
6848         Vec = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Vec);
6849         DCI.AddToWorklist(Vec.getNode());
6850       }
6851       if (EltVT != Elt.getValueType()) {
6852         Elt = DAG.getNode(ISD::BITCAST, SDLoc(N), EltVT, Elt);
6853         DCI.AddToWorklist(Elt.getNode());
6854       }
6855       Vec = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Vec);
6856       DCI.AddToWorklist(Vec.getNode());
6857       Elt = DAG.getNode(ISD::BSWAP, SDLoc(N), EltVT, Elt);
6858       DCI.AddToWorklist(Elt.getNode());
6859       return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(N), VecVT,
6860                          Vec, Elt, Idx);
6861     }
6862   }
6863 
6864   // Push BSWAP into a vector shuffle if at least one side then simplifies.
6865   ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(Op);
6866   if (SV && Op.hasOneUse()) {
6867     SDValue Op0 = Op.getOperand(0);
6868     SDValue Op1 = Op.getOperand(1);
6869 
6870     if (DAG.isConstantIntBuildVectorOrConstantInt(Op0) ||
6871         Op0.getOpcode() == ISD::BSWAP || Op0.isUndef() ||
6872         DAG.isConstantIntBuildVectorOrConstantInt(Op1) ||
6873         Op1.getOpcode() == ISD::BSWAP || Op1.isUndef()) {
6874       EVT VecVT = N->getValueType(0);
6875       if (VecVT != Op0.getValueType()) {
6876         Op0 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op0);
6877         DCI.AddToWorklist(Op0.getNode());
6878       }
6879       if (VecVT != Op1.getValueType()) {
6880         Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), VecVT, Op1);
6881         DCI.AddToWorklist(Op1.getNode());
6882       }
6883       Op0 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op0);
6884       DCI.AddToWorklist(Op0.getNode());
6885       Op1 = DAG.getNode(ISD::BSWAP, SDLoc(N), VecVT, Op1);
6886       DCI.AddToWorklist(Op1.getNode());
6887       return DAG.getVectorShuffle(VecVT, SDLoc(N), Op0, Op1, SV->getMask());
6888     }
6889   }
6890 
6891   return SDValue();
6892 }
6893 
6894 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) {
6895   // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code
6896   // set by the CCReg instruction using the CCValid / CCMask masks,
6897   // If the CCReg instruction is itself a ICMP testing the condition
6898   // code set by some other instruction, see whether we can directly
6899   // use that condition code.
6900 
6901   // Verify that we have an ICMP against some constant.
6902   if (CCValid != SystemZ::CCMASK_ICMP)
6903     return false;
6904   auto *ICmp = CCReg.getNode();
6905   if (ICmp->getOpcode() != SystemZISD::ICMP)
6906     return false;
6907   auto *CompareLHS = ICmp->getOperand(0).getNode();
6908   auto *CompareRHS = dyn_cast<ConstantSDNode>(ICmp->getOperand(1));
6909   if (!CompareRHS)
6910     return false;
6911 
6912   // Optimize the case where CompareLHS is a SELECT_CCMASK.
6913   if (CompareLHS->getOpcode() == SystemZISD::SELECT_CCMASK) {
6914     // Verify that we have an appropriate mask for a EQ or NE comparison.
6915     bool Invert = false;
6916     if (CCMask == SystemZ::CCMASK_CMP_NE)
6917       Invert = !Invert;
6918     else if (CCMask != SystemZ::CCMASK_CMP_EQ)
6919       return false;
6920 
6921     // Verify that the ICMP compares against one of select values.
6922     auto *TrueVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(0));
6923     if (!TrueVal)
6924       return false;
6925     auto *FalseVal = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6926     if (!FalseVal)
6927       return false;
6928     if (CompareRHS->getZExtValue() == FalseVal->getZExtValue())
6929       Invert = !Invert;
6930     else if (CompareRHS->getZExtValue() != TrueVal->getZExtValue())
6931       return false;
6932 
6933     // Compute the effective CC mask for the new branch or select.
6934     auto *NewCCValid = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(2));
6935     auto *NewCCMask = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(3));
6936     if (!NewCCValid || !NewCCMask)
6937       return false;
6938     CCValid = NewCCValid->getZExtValue();
6939     CCMask = NewCCMask->getZExtValue();
6940     if (Invert)
6941       CCMask ^= CCValid;
6942 
6943     // Return the updated CCReg link.
6944     CCReg = CompareLHS->getOperand(4);
6945     return true;
6946   }
6947 
6948   // Optimize the case where CompareRHS is (SRA (SHL (IPM))).
6949   if (CompareLHS->getOpcode() == ISD::SRA) {
6950     auto *SRACount = dyn_cast<ConstantSDNode>(CompareLHS->getOperand(1));
6951     if (!SRACount || SRACount->getZExtValue() != 30)
6952       return false;
6953     auto *SHL = CompareLHS->getOperand(0).getNode();
6954     if (SHL->getOpcode() != ISD::SHL)
6955       return false;
6956     auto *SHLCount = dyn_cast<ConstantSDNode>(SHL->getOperand(1));
6957     if (!SHLCount || SHLCount->getZExtValue() != 30 - SystemZ::IPM_CC)
6958       return false;
6959     auto *IPM = SHL->getOperand(0).getNode();
6960     if (IPM->getOpcode() != SystemZISD::IPM)
6961       return false;
6962 
6963     // Avoid introducing CC spills (because SRA would clobber CC).
6964     if (!CompareLHS->hasOneUse())
6965       return false;
6966     // Verify that the ICMP compares against zero.
6967     if (CompareRHS->getZExtValue() != 0)
6968       return false;
6969 
6970     // Compute the effective CC mask for the new branch or select.
6971     CCMask = SystemZ::reverseCCMask(CCMask);
6972 
6973     // Return the updated CCReg link.
6974     CCReg = IPM->getOperand(0);
6975     return true;
6976   }
6977 
6978   return false;
6979 }
6980 
6981 SDValue SystemZTargetLowering::combineBR_CCMASK(
6982     SDNode *N, DAGCombinerInfo &DCI) const {
6983   SelectionDAG &DAG = DCI.DAG;
6984 
6985   // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK.
6986   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
6987   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
6988   if (!CCValid || !CCMask)
6989     return SDValue();
6990 
6991   int CCValidVal = CCValid->getZExtValue();
6992   int CCMaskVal = CCMask->getZExtValue();
6993   SDValue Chain = N->getOperand(0);
6994   SDValue CCReg = N->getOperand(4);
6995 
6996   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
6997     return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0),
6998                        Chain,
6999                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7000                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7001                        N->getOperand(3), CCReg);
7002   return SDValue();
7003 }
7004 
7005 SDValue SystemZTargetLowering::combineSELECT_CCMASK(
7006     SDNode *N, DAGCombinerInfo &DCI) const {
7007   SelectionDAG &DAG = DCI.DAG;
7008 
7009   // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK.
7010   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2));
7011   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3));
7012   if (!CCValid || !CCMask)
7013     return SDValue();
7014 
7015   int CCValidVal = CCValid->getZExtValue();
7016   int CCMaskVal = CCMask->getZExtValue();
7017   SDValue CCReg = N->getOperand(4);
7018 
7019   if (combineCCMask(CCReg, CCValidVal, CCMaskVal))
7020     return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0),
7021                        N->getOperand(0), N->getOperand(1),
7022                        DAG.getTargetConstant(CCValidVal, SDLoc(N), MVT::i32),
7023                        DAG.getTargetConstant(CCMaskVal, SDLoc(N), MVT::i32),
7024                        CCReg);
7025   return SDValue();
7026 }
7027 
7028 
7029 SDValue SystemZTargetLowering::combineGET_CCMASK(
7030     SDNode *N, DAGCombinerInfo &DCI) const {
7031 
7032   // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible
7033   auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1));
7034   auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2));
7035   if (!CCValid || !CCMask)
7036     return SDValue();
7037   int CCValidVal = CCValid->getZExtValue();
7038   int CCMaskVal = CCMask->getZExtValue();
7039 
7040   SDValue Select = N->getOperand(0);
7041   if (Select->getOpcode() != SystemZISD::SELECT_CCMASK)
7042     return SDValue();
7043 
7044   auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2));
7045   auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3));
7046   if (!SelectCCValid || !SelectCCMask)
7047     return SDValue();
7048   int SelectCCValidVal = SelectCCValid->getZExtValue();
7049   int SelectCCMaskVal = SelectCCMask->getZExtValue();
7050 
7051   auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0));
7052   auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1));
7053   if (!TrueVal || !FalseVal)
7054     return SDValue();
7055   if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0)
7056     ;
7057   else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0)
7058     SelectCCMaskVal ^= SelectCCValidVal;
7059   else
7060     return SDValue();
7061 
7062   if (SelectCCValidVal & ~CCValidVal)
7063     return SDValue();
7064   if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal))
7065     return SDValue();
7066 
7067   return Select->getOperand(4);
7068 }
7069 
7070 SDValue SystemZTargetLowering::combineIntDIVREM(
7071     SDNode *N, DAGCombinerInfo &DCI) const {
7072   SelectionDAG &DAG = DCI.DAG;
7073   EVT VT = N->getValueType(0);
7074   // In the case where the divisor is a vector of constants a cheaper
7075   // sequence of instructions can replace the divide. BuildSDIV is called to
7076   // do this during DAG combining, but it only succeeds when it can build a
7077   // multiplication node. The only option for SystemZ is ISD::SMUL_LOHI, and
7078   // since it is not Legal but Custom it can only happen before
7079   // legalization. Therefore we must scalarize this early before Combine
7080   // 1. For widened vectors, this is already the result of type legalization.
7081   if (DCI.Level == BeforeLegalizeTypes && VT.isVector() && isTypeLegal(VT) &&
7082       DAG.isConstantIntBuildVectorOrConstantInt(N->getOperand(1)))
7083     return DAG.UnrollVectorOp(N);
7084   return SDValue();
7085 }
7086 
7087 SDValue SystemZTargetLowering::combineINTRINSIC(
7088     SDNode *N, DAGCombinerInfo &DCI) const {
7089   SelectionDAG &DAG = DCI.DAG;
7090 
7091   unsigned Id = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
7092   switch (Id) {
7093   // VECTOR LOAD (RIGHTMOST) WITH LENGTH with a length operand of 15
7094   // or larger is simply a vector load.
7095   case Intrinsic::s390_vll:
7096   case Intrinsic::s390_vlrl:
7097     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
7098       if (C->getZExtValue() >= 15)
7099         return DAG.getLoad(N->getValueType(0), SDLoc(N), N->getOperand(0),
7100                            N->getOperand(3), MachinePointerInfo());
7101     break;
7102   // Likewise for VECTOR STORE (RIGHTMOST) WITH LENGTH.
7103   case Intrinsic::s390_vstl:
7104   case Intrinsic::s390_vstrl:
7105     if (auto *C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
7106       if (C->getZExtValue() >= 15)
7107         return DAG.getStore(N->getOperand(0), SDLoc(N), N->getOperand(2),
7108                             N->getOperand(4), MachinePointerInfo());
7109     break;
7110   }
7111 
7112   return SDValue();
7113 }
7114 
7115 SDValue SystemZTargetLowering::unwrapAddress(SDValue N) const {
7116   if (N->getOpcode() == SystemZISD::PCREL_WRAPPER)
7117     return N->getOperand(0);
7118   return N;
7119 }
7120 
7121 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N,
7122                                                  DAGCombinerInfo &DCI) const {
7123   switch(N->getOpcode()) {
7124   default: break;
7125   case ISD::ZERO_EXTEND:        return combineZERO_EXTEND(N, DCI);
7126   case ISD::SIGN_EXTEND:        return combineSIGN_EXTEND(N, DCI);
7127   case ISD::SIGN_EXTEND_INREG:  return combineSIGN_EXTEND_INREG(N, DCI);
7128   case SystemZISD::MERGE_HIGH:
7129   case SystemZISD::MERGE_LOW:   return combineMERGE(N, DCI);
7130   case ISD::LOAD:               return combineLOAD(N, DCI);
7131   case ISD::STORE:              return combineSTORE(N, DCI);
7132   case ISD::VECTOR_SHUFFLE:     return combineVECTOR_SHUFFLE(N, DCI);
7133   case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI);
7134   case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI);
7135   case ISD::STRICT_FP_ROUND:
7136   case ISD::FP_ROUND:           return combineFP_ROUND(N, DCI);
7137   case ISD::STRICT_FP_EXTEND:
7138   case ISD::FP_EXTEND:          return combineFP_EXTEND(N, DCI);
7139   case ISD::SINT_TO_FP:
7140   case ISD::UINT_TO_FP:         return combineINT_TO_FP(N, DCI);
7141   case ISD::BSWAP:              return combineBSWAP(N, DCI);
7142   case SystemZISD::BR_CCMASK:   return combineBR_CCMASK(N, DCI);
7143   case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI);
7144   case SystemZISD::GET_CCMASK:  return combineGET_CCMASK(N, DCI);
7145   case ISD::SDIV:
7146   case ISD::UDIV:
7147   case ISD::SREM:
7148   case ISD::UREM:               return combineIntDIVREM(N, DCI);
7149   case ISD::INTRINSIC_W_CHAIN:
7150   case ISD::INTRINSIC_VOID:     return combineINTRINSIC(N, DCI);
7151   }
7152 
7153   return SDValue();
7154 }
7155 
7156 // Return the demanded elements for the OpNo source operand of Op. DemandedElts
7157 // are for Op.
7158 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts,
7159                                     unsigned OpNo) {
7160   EVT VT = Op.getValueType();
7161   unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1);
7162   APInt SrcDemE;
7163   unsigned Opcode = Op.getOpcode();
7164   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7165     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7166     switch (Id) {
7167     case Intrinsic::s390_vpksh:   // PACKS
7168     case Intrinsic::s390_vpksf:
7169     case Intrinsic::s390_vpksg:
7170     case Intrinsic::s390_vpkshs:  // PACKS_CC
7171     case Intrinsic::s390_vpksfs:
7172     case Intrinsic::s390_vpksgs:
7173     case Intrinsic::s390_vpklsh:  // PACKLS
7174     case Intrinsic::s390_vpklsf:
7175     case Intrinsic::s390_vpklsg:
7176     case Intrinsic::s390_vpklshs: // PACKLS_CC
7177     case Intrinsic::s390_vpklsfs:
7178     case Intrinsic::s390_vpklsgs:
7179       // VECTOR PACK truncates the elements of two source vectors into one.
7180       SrcDemE = DemandedElts;
7181       if (OpNo == 2)
7182         SrcDemE.lshrInPlace(NumElts / 2);
7183       SrcDemE = SrcDemE.trunc(NumElts / 2);
7184       break;
7185       // VECTOR UNPACK extends half the elements of the source vector.
7186     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7187     case Intrinsic::s390_vuphh:
7188     case Intrinsic::s390_vuphf:
7189     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7190     case Intrinsic::s390_vuplhh:
7191     case Intrinsic::s390_vuplhf:
7192       SrcDemE = APInt(NumElts * 2, 0);
7193       SrcDemE.insertBits(DemandedElts, 0);
7194       break;
7195     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7196     case Intrinsic::s390_vuplhw:
7197     case Intrinsic::s390_vuplf:
7198     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7199     case Intrinsic::s390_vupllh:
7200     case Intrinsic::s390_vupllf:
7201       SrcDemE = APInt(NumElts * 2, 0);
7202       SrcDemE.insertBits(DemandedElts, NumElts);
7203       break;
7204     case Intrinsic::s390_vpdi: {
7205       // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source.
7206       SrcDemE = APInt(NumElts, 0);
7207       if (!DemandedElts[OpNo - 1])
7208         break;
7209       unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7210       unsigned MaskBit = ((OpNo - 1) ? 1 : 4);
7211       // Demand input element 0 or 1, given by the mask bit value.
7212       SrcDemE.setBit((Mask & MaskBit)? 1 : 0);
7213       break;
7214     }
7215     case Intrinsic::s390_vsldb: {
7216       // VECTOR SHIFT LEFT DOUBLE BY BYTE
7217       assert(VT == MVT::v16i8 && "Unexpected type.");
7218       unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
7219       assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand.");
7220       unsigned NumSrc0Els = 16 - FirstIdx;
7221       SrcDemE = APInt(NumElts, 0);
7222       if (OpNo == 1) {
7223         APInt DemEls = DemandedElts.trunc(NumSrc0Els);
7224         SrcDemE.insertBits(DemEls, FirstIdx);
7225       } else {
7226         APInt DemEls = DemandedElts.lshr(NumSrc0Els);
7227         SrcDemE.insertBits(DemEls, 0);
7228       }
7229       break;
7230     }
7231     case Intrinsic::s390_vperm:
7232       SrcDemE = APInt(NumElts, 1);
7233       break;
7234     default:
7235       llvm_unreachable("Unhandled intrinsic.");
7236       break;
7237     }
7238   } else {
7239     switch (Opcode) {
7240     case SystemZISD::JOIN_DWORDS:
7241       // Scalar operand.
7242       SrcDemE = APInt(1, 1);
7243       break;
7244     case SystemZISD::SELECT_CCMASK:
7245       SrcDemE = DemandedElts;
7246       break;
7247     default:
7248       llvm_unreachable("Unhandled opcode.");
7249       break;
7250     }
7251   }
7252   return SrcDemE;
7253 }
7254 
7255 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known,
7256                                   const APInt &DemandedElts,
7257                                   const SelectionDAG &DAG, unsigned Depth,
7258                                   unsigned OpNo) {
7259   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7260   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7261   KnownBits LHSKnown =
7262       DAG.computeKnownBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7263   KnownBits RHSKnown =
7264       DAG.computeKnownBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7265   Known = KnownBits::commonBits(LHSKnown, RHSKnown);
7266 }
7267 
7268 void
7269 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
7270                                                      KnownBits &Known,
7271                                                      const APInt &DemandedElts,
7272                                                      const SelectionDAG &DAG,
7273                                                      unsigned Depth) const {
7274   Known.resetAll();
7275 
7276   // Intrinsic CC result is returned in the two low bits.
7277   unsigned tmp0, tmp1; // not used
7278   if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) {
7279     Known.Zero.setBitsFrom(2);
7280     return;
7281   }
7282   EVT VT = Op.getValueType();
7283   if (Op.getResNo() != 0 || VT == MVT::Untyped)
7284     return;
7285   assert (Known.getBitWidth() == VT.getScalarSizeInBits() &&
7286           "KnownBits does not match VT in bitwidth");
7287   assert ((!VT.isVector() ||
7288            (DemandedElts.getBitWidth() == VT.getVectorNumElements())) &&
7289           "DemandedElts does not match VT number of elements");
7290   unsigned BitWidth = Known.getBitWidth();
7291   unsigned Opcode = Op.getOpcode();
7292   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7293     bool IsLogical = false;
7294     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7295     switch (Id) {
7296     case Intrinsic::s390_vpksh:   // PACKS
7297     case Intrinsic::s390_vpksf:
7298     case Intrinsic::s390_vpksg:
7299     case Intrinsic::s390_vpkshs:  // PACKS_CC
7300     case Intrinsic::s390_vpksfs:
7301     case Intrinsic::s390_vpksgs:
7302     case Intrinsic::s390_vpklsh:  // PACKLS
7303     case Intrinsic::s390_vpklsf:
7304     case Intrinsic::s390_vpklsg:
7305     case Intrinsic::s390_vpklshs: // PACKLS_CC
7306     case Intrinsic::s390_vpklsfs:
7307     case Intrinsic::s390_vpklsgs:
7308     case Intrinsic::s390_vpdi:
7309     case Intrinsic::s390_vsldb:
7310     case Intrinsic::s390_vperm:
7311       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1);
7312       break;
7313     case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH
7314     case Intrinsic::s390_vuplhh:
7315     case Intrinsic::s390_vuplhf:
7316     case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW
7317     case Intrinsic::s390_vupllh:
7318     case Intrinsic::s390_vupllf:
7319       IsLogical = true;
7320       LLVM_FALLTHROUGH;
7321     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7322     case Intrinsic::s390_vuphh:
7323     case Intrinsic::s390_vuphf:
7324     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7325     case Intrinsic::s390_vuplhw:
7326     case Intrinsic::s390_vuplf: {
7327       SDValue SrcOp = Op.getOperand(1);
7328       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0);
7329       Known = DAG.computeKnownBits(SrcOp, SrcDemE, Depth + 1);
7330       if (IsLogical) {
7331         Known = Known.zext(BitWidth);
7332       } else
7333         Known = Known.sext(BitWidth);
7334       break;
7335     }
7336     default:
7337       break;
7338     }
7339   } else {
7340     switch (Opcode) {
7341     case SystemZISD::JOIN_DWORDS:
7342     case SystemZISD::SELECT_CCMASK:
7343       computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0);
7344       break;
7345     case SystemZISD::REPLICATE: {
7346       SDValue SrcOp = Op.getOperand(0);
7347       Known = DAG.computeKnownBits(SrcOp, Depth + 1);
7348       if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp))
7349         Known = Known.sext(BitWidth); // VREPI sign extends the immedate.
7350       break;
7351     }
7352     default:
7353       break;
7354     }
7355   }
7356 
7357   // Known has the width of the source operand(s). Adjust if needed to match
7358   // the passed bitwidth.
7359   if (Known.getBitWidth() != BitWidth)
7360     Known = Known.anyextOrTrunc(BitWidth);
7361 }
7362 
7363 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts,
7364                                         const SelectionDAG &DAG, unsigned Depth,
7365                                         unsigned OpNo) {
7366   APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo);
7367   unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1);
7368   if (LHS == 1) return 1; // Early out.
7369   APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1);
7370   unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1);
7371   if (RHS == 1) return 1; // Early out.
7372   unsigned Common = std::min(LHS, RHS);
7373   unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits();
7374   EVT VT = Op.getValueType();
7375   unsigned VTBits = VT.getScalarSizeInBits();
7376   if (SrcBitWidth > VTBits) { // PACK
7377     unsigned SrcExtraBits = SrcBitWidth - VTBits;
7378     if (Common > SrcExtraBits)
7379       return (Common - SrcExtraBits);
7380     return 1;
7381   }
7382   assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth.");
7383   return Common;
7384 }
7385 
7386 unsigned
7387 SystemZTargetLowering::ComputeNumSignBitsForTargetNode(
7388     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
7389     unsigned Depth) const {
7390   if (Op.getResNo() != 0)
7391     return 1;
7392   unsigned Opcode = Op.getOpcode();
7393   if (Opcode == ISD::INTRINSIC_WO_CHAIN) {
7394     unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7395     switch (Id) {
7396     case Intrinsic::s390_vpksh:   // PACKS
7397     case Intrinsic::s390_vpksf:
7398     case Intrinsic::s390_vpksg:
7399     case Intrinsic::s390_vpkshs:  // PACKS_CC
7400     case Intrinsic::s390_vpksfs:
7401     case Intrinsic::s390_vpksgs:
7402     case Intrinsic::s390_vpklsh:  // PACKLS
7403     case Intrinsic::s390_vpklsf:
7404     case Intrinsic::s390_vpklsg:
7405     case Intrinsic::s390_vpklshs: // PACKLS_CC
7406     case Intrinsic::s390_vpklsfs:
7407     case Intrinsic::s390_vpklsgs:
7408     case Intrinsic::s390_vpdi:
7409     case Intrinsic::s390_vsldb:
7410     case Intrinsic::s390_vperm:
7411       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1);
7412     case Intrinsic::s390_vuphb:  // VECTOR UNPACK HIGH
7413     case Intrinsic::s390_vuphh:
7414     case Intrinsic::s390_vuphf:
7415     case Intrinsic::s390_vuplb:  // VECTOR UNPACK LOW
7416     case Intrinsic::s390_vuplhw:
7417     case Intrinsic::s390_vuplf: {
7418       SDValue PackedOp = Op.getOperand(1);
7419       APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1);
7420       unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1);
7421       EVT VT = Op.getValueType();
7422       unsigned VTBits = VT.getScalarSizeInBits();
7423       Tmp += VTBits - PackedOp.getScalarValueSizeInBits();
7424       return Tmp;
7425     }
7426     default:
7427       break;
7428     }
7429   } else {
7430     switch (Opcode) {
7431     case SystemZISD::SELECT_CCMASK:
7432       return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0);
7433     default:
7434       break;
7435     }
7436   }
7437 
7438   return 1;
7439 }
7440 
7441 unsigned
7442 SystemZTargetLowering::getStackProbeSize(MachineFunction &MF) const {
7443   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
7444   unsigned StackAlign = TFI->getStackAlignment();
7445   assert(StackAlign >=1 && isPowerOf2_32(StackAlign) &&
7446          "Unexpected stack alignment");
7447   // The default stack probe size is 4096 if the function has no
7448   // stack-probe-size attribute.
7449   unsigned StackProbeSize = 4096;
7450   const Function &Fn = MF.getFunction();
7451   if (Fn.hasFnAttribute("stack-probe-size"))
7452     Fn.getFnAttribute("stack-probe-size")
7453         .getValueAsString()
7454         .getAsInteger(0, StackProbeSize);
7455   // Round down to the stack alignment.
7456   StackProbeSize &= ~(StackAlign - 1);
7457   return StackProbeSize ? StackProbeSize : StackAlign;
7458 }
7459 
7460 //===----------------------------------------------------------------------===//
7461 // Custom insertion
7462 //===----------------------------------------------------------------------===//
7463 
7464 // Force base value Base into a register before MI.  Return the register.
7465 static Register forceReg(MachineInstr &MI, MachineOperand &Base,
7466                          const SystemZInstrInfo *TII) {
7467   MachineBasicBlock *MBB = MI.getParent();
7468   MachineFunction &MF = *MBB->getParent();
7469   MachineRegisterInfo &MRI = MF.getRegInfo();
7470 
7471   if (Base.isReg()) {
7472     // Copy Base into a new virtual register to help register coalescing in
7473     // cases with multiple uses.
7474     Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7475     BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::COPY), Reg)
7476       .add(Base);
7477     return Reg;
7478   }
7479 
7480   Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
7481   BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg)
7482       .add(Base)
7483       .addImm(0)
7484       .addReg(0);
7485   return Reg;
7486 }
7487 
7488 // The CC operand of MI might be missing a kill marker because there
7489 // were multiple uses of CC, and ISel didn't know which to mark.
7490 // Figure out whether MI should have had a kill marker.
7491 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) {
7492   // Scan forward through BB for a use/def of CC.
7493   MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI)));
7494   for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) {
7495     const MachineInstr& mi = *miI;
7496     if (mi.readsRegister(SystemZ::CC))
7497       return false;
7498     if (mi.definesRegister(SystemZ::CC))
7499       break; // Should have kill-flag - update below.
7500   }
7501 
7502   // If we hit the end of the block, check whether CC is live into a
7503   // successor.
7504   if (miI == MBB->end()) {
7505     for (const MachineBasicBlock *Succ : MBB->successors())
7506       if (Succ->isLiveIn(SystemZ::CC))
7507         return false;
7508   }
7509 
7510   return true;
7511 }
7512 
7513 // Return true if it is OK for this Select pseudo-opcode to be cascaded
7514 // together with other Select pseudo-opcodes into a single basic-block with
7515 // a conditional jump around it.
7516 static bool isSelectPseudo(MachineInstr &MI) {
7517   switch (MI.getOpcode()) {
7518   case SystemZ::Select32:
7519   case SystemZ::Select64:
7520   case SystemZ::SelectF32:
7521   case SystemZ::SelectF64:
7522   case SystemZ::SelectF128:
7523   case SystemZ::SelectVR32:
7524   case SystemZ::SelectVR64:
7525   case SystemZ::SelectVR128:
7526     return true;
7527 
7528   default:
7529     return false;
7530   }
7531 }
7532 
7533 // Helper function, which inserts PHI functions into SinkMBB:
7534 //   %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ],
7535 // where %FalseValue(i) and %TrueValue(i) are taken from Selects.
7536 static void createPHIsForSelects(SmallVector<MachineInstr*, 8> &Selects,
7537                                  MachineBasicBlock *TrueMBB,
7538                                  MachineBasicBlock *FalseMBB,
7539                                  MachineBasicBlock *SinkMBB) {
7540   MachineFunction *MF = TrueMBB->getParent();
7541   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
7542 
7543   MachineInstr *FirstMI = Selects.front();
7544   unsigned CCValid = FirstMI->getOperand(3).getImm();
7545   unsigned CCMask = FirstMI->getOperand(4).getImm();
7546 
7547   MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin();
7548 
7549   // As we are creating the PHIs, we have to be careful if there is more than
7550   // one.  Later Selects may reference the results of earlier Selects, but later
7551   // PHIs have to reference the individual true/false inputs from earlier PHIs.
7552   // That also means that PHI construction must work forward from earlier to
7553   // later, and that the code must maintain a mapping from earlier PHI's
7554   // destination registers, and the registers that went into the PHI.
7555   DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
7556 
7557   for (auto MI : Selects) {
7558     Register DestReg = MI->getOperand(0).getReg();
7559     Register TrueReg = MI->getOperand(1).getReg();
7560     Register FalseReg = MI->getOperand(2).getReg();
7561 
7562     // If this Select we are generating is the opposite condition from
7563     // the jump we generated, then we have to swap the operands for the
7564     // PHI that is going to be generated.
7565     if (MI->getOperand(4).getImm() == (CCValid ^ CCMask))
7566       std::swap(TrueReg, FalseReg);
7567 
7568     if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end())
7569       TrueReg = RegRewriteTable[TrueReg].first;
7570 
7571     if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end())
7572       FalseReg = RegRewriteTable[FalseReg].second;
7573 
7574     DebugLoc DL = MI->getDebugLoc();
7575     BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg)
7576       .addReg(TrueReg).addMBB(TrueMBB)
7577       .addReg(FalseReg).addMBB(FalseMBB);
7578 
7579     // Add this PHI to the rewrite table.
7580     RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg);
7581   }
7582 
7583   MF->getProperties().reset(MachineFunctionProperties::Property::NoPHIs);
7584 }
7585 
7586 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI.
7587 MachineBasicBlock *
7588 SystemZTargetLowering::emitSelect(MachineInstr &MI,
7589                                   MachineBasicBlock *MBB) const {
7590   assert(isSelectPseudo(MI) && "Bad call to emitSelect()");
7591   const SystemZInstrInfo *TII =
7592       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7593 
7594   unsigned CCValid = MI.getOperand(3).getImm();
7595   unsigned CCMask = MI.getOperand(4).getImm();
7596 
7597   // If we have a sequence of Select* pseudo instructions using the
7598   // same condition code value, we want to expand all of them into
7599   // a single pair of basic blocks using the same condition.
7600   SmallVector<MachineInstr*, 8> Selects;
7601   SmallVector<MachineInstr*, 8> DbgValues;
7602   Selects.push_back(&MI);
7603   unsigned Count = 0;
7604   for (MachineBasicBlock::iterator NextMIIt =
7605          std::next(MachineBasicBlock::iterator(MI));
7606        NextMIIt != MBB->end(); ++NextMIIt) {
7607     if (isSelectPseudo(*NextMIIt)) {
7608       assert(NextMIIt->getOperand(3).getImm() == CCValid &&
7609              "Bad CCValid operands since CC was not redefined.");
7610       if (NextMIIt->getOperand(4).getImm() == CCMask ||
7611           NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) {
7612         Selects.push_back(&*NextMIIt);
7613         continue;
7614       }
7615       break;
7616     }
7617     if (NextMIIt->definesRegister(SystemZ::CC) ||
7618         NextMIIt->usesCustomInsertionHook())
7619       break;
7620     bool User = false;
7621     for (auto SelMI : Selects)
7622       if (NextMIIt->readsVirtualRegister(SelMI->getOperand(0).getReg())) {
7623         User = true;
7624         break;
7625       }
7626     if (NextMIIt->isDebugInstr()) {
7627       if (User) {
7628         assert(NextMIIt->isDebugValue() && "Unhandled debug opcode.");
7629         DbgValues.push_back(&*NextMIIt);
7630       }
7631     }
7632     else if (User || ++Count > 20)
7633       break;
7634   }
7635 
7636   MachineInstr *LastMI = Selects.back();
7637   bool CCKilled =
7638       (LastMI->killsRegister(SystemZ::CC) || checkCCKill(*LastMI, MBB));
7639   MachineBasicBlock *StartMBB = MBB;
7640   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockAfter(LastMI, MBB);
7641   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7642 
7643   // Unless CC was killed in the last Select instruction, mark it as
7644   // live-in to both FalseMBB and JoinMBB.
7645   if (!CCKilled) {
7646     FalseMBB->addLiveIn(SystemZ::CC);
7647     JoinMBB->addLiveIn(SystemZ::CC);
7648   }
7649 
7650   //  StartMBB:
7651   //   BRC CCMask, JoinMBB
7652   //   # fallthrough to FalseMBB
7653   MBB = StartMBB;
7654   BuildMI(MBB, MI.getDebugLoc(), TII->get(SystemZ::BRC))
7655     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7656   MBB->addSuccessor(JoinMBB);
7657   MBB->addSuccessor(FalseMBB);
7658 
7659   //  FalseMBB:
7660   //   # fallthrough to JoinMBB
7661   MBB = FalseMBB;
7662   MBB->addSuccessor(JoinMBB);
7663 
7664   //  JoinMBB:
7665   //   %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ]
7666   //  ...
7667   MBB = JoinMBB;
7668   createPHIsForSelects(Selects, StartMBB, FalseMBB, MBB);
7669   for (auto SelMI : Selects)
7670     SelMI->eraseFromParent();
7671 
7672   MachineBasicBlock::iterator InsertPos = MBB->getFirstNonPHI();
7673   for (auto DbgMI : DbgValues)
7674     MBB->splice(InsertPos, StartMBB, DbgMI);
7675 
7676   return JoinMBB;
7677 }
7678 
7679 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI.
7680 // StoreOpcode is the store to use and Invert says whether the store should
7681 // happen when the condition is false rather than true.  If a STORE ON
7682 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0.
7683 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI,
7684                                                         MachineBasicBlock *MBB,
7685                                                         unsigned StoreOpcode,
7686                                                         unsigned STOCOpcode,
7687                                                         bool Invert) const {
7688   const SystemZInstrInfo *TII =
7689       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7690 
7691   Register SrcReg = MI.getOperand(0).getReg();
7692   MachineOperand Base = MI.getOperand(1);
7693   int64_t Disp = MI.getOperand(2).getImm();
7694   Register IndexReg = MI.getOperand(3).getReg();
7695   unsigned CCValid = MI.getOperand(4).getImm();
7696   unsigned CCMask = MI.getOperand(5).getImm();
7697   DebugLoc DL = MI.getDebugLoc();
7698 
7699   StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp);
7700 
7701   // ISel pattern matching also adds a load memory operand of the same
7702   // address, so take special care to find the storing memory operand.
7703   MachineMemOperand *MMO = nullptr;
7704   for (auto *I : MI.memoperands())
7705     if (I->isStore()) {
7706       MMO = I;
7707       break;
7708     }
7709 
7710   // Use STOCOpcode if possible.  We could use different store patterns in
7711   // order to avoid matching the index register, but the performance trade-offs
7712   // might be more complicated in that case.
7713   if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) {
7714     if (Invert)
7715       CCMask ^= CCValid;
7716 
7717     BuildMI(*MBB, MI, DL, TII->get(STOCOpcode))
7718       .addReg(SrcReg)
7719       .add(Base)
7720       .addImm(Disp)
7721       .addImm(CCValid)
7722       .addImm(CCMask)
7723       .addMemOperand(MMO);
7724 
7725     MI.eraseFromParent();
7726     return MBB;
7727   }
7728 
7729   // Get the condition needed to branch around the store.
7730   if (!Invert)
7731     CCMask ^= CCValid;
7732 
7733   MachineBasicBlock *StartMBB = MBB;
7734   MachineBasicBlock *JoinMBB  = SystemZ::splitBlockBefore(MI, MBB);
7735   MachineBasicBlock *FalseMBB = SystemZ::emitBlockAfter(StartMBB);
7736 
7737   // Unless CC was killed in the CondStore instruction, mark it as
7738   // live-in to both FalseMBB and JoinMBB.
7739   if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) {
7740     FalseMBB->addLiveIn(SystemZ::CC);
7741     JoinMBB->addLiveIn(SystemZ::CC);
7742   }
7743 
7744   //  StartMBB:
7745   //   BRC CCMask, JoinMBB
7746   //   # fallthrough to FalseMBB
7747   MBB = StartMBB;
7748   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7749     .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB);
7750   MBB->addSuccessor(JoinMBB);
7751   MBB->addSuccessor(FalseMBB);
7752 
7753   //  FalseMBB:
7754   //   store %SrcReg, %Disp(%Index,%Base)
7755   //   # fallthrough to JoinMBB
7756   MBB = FalseMBB;
7757   BuildMI(MBB, DL, TII->get(StoreOpcode))
7758       .addReg(SrcReg)
7759       .add(Base)
7760       .addImm(Disp)
7761       .addReg(IndexReg)
7762       .addMemOperand(MMO);
7763   MBB->addSuccessor(JoinMBB);
7764 
7765   MI.eraseFromParent();
7766   return JoinMBB;
7767 }
7768 
7769 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_*
7770 // or ATOMIC_SWAP{,W} instruction MI.  BinOpcode is the instruction that
7771 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}.
7772 // BitSize is the width of the field in bits, or 0 if this is a partword
7773 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize
7774 // is one of the operands.  Invert says whether the field should be
7775 // inverted after performing BinOpcode (e.g. for NAND).
7776 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary(
7777     MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode,
7778     unsigned BitSize, bool Invert) const {
7779   MachineFunction &MF = *MBB->getParent();
7780   const SystemZInstrInfo *TII =
7781       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7782   MachineRegisterInfo &MRI = MF.getRegInfo();
7783   bool IsSubWord = (BitSize < 32);
7784 
7785   // Extract the operands.  Base can be a register or a frame index.
7786   // Src2 can be a register or immediate.
7787   Register Dest = MI.getOperand(0).getReg();
7788   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7789   int64_t Disp = MI.getOperand(2).getImm();
7790   MachineOperand Src2 = earlyUseOperand(MI.getOperand(3));
7791   Register BitShift = IsSubWord ? MI.getOperand(4).getReg() : Register();
7792   Register NegBitShift = IsSubWord ? MI.getOperand(5).getReg() : Register();
7793   DebugLoc DL = MI.getDebugLoc();
7794   if (IsSubWord)
7795     BitSize = MI.getOperand(6).getImm();
7796 
7797   // Subword operations use 32-bit registers.
7798   const TargetRegisterClass *RC = (BitSize <= 32 ?
7799                                    &SystemZ::GR32BitRegClass :
7800                                    &SystemZ::GR64BitRegClass);
7801   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7802   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7803 
7804   // Get the right opcodes for the displacement.
7805   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7806   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7807   assert(LOpcode && CSOpcode && "Displacement out of range");
7808 
7809   // Create virtual registers for temporary results.
7810   Register OrigVal       = MRI.createVirtualRegister(RC);
7811   Register OldVal        = MRI.createVirtualRegister(RC);
7812   Register NewVal        = (BinOpcode || IsSubWord ?
7813                             MRI.createVirtualRegister(RC) : Src2.getReg());
7814   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7815   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7816 
7817   // Insert a basic block for the main loop.
7818   MachineBasicBlock *StartMBB = MBB;
7819   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
7820   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
7821 
7822   //  StartMBB:
7823   //   ...
7824   //   %OrigVal = L Disp(%Base)
7825   //   # fall through to LoopMBB
7826   MBB = StartMBB;
7827   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7828   MBB->addSuccessor(LoopMBB);
7829 
7830   //  LoopMBB:
7831   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ]
7832   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7833   //   %RotatedNewVal = OP %RotatedOldVal, %Src2
7834   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7835   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7836   //   JNE LoopMBB
7837   //   # fall through to DoneMBB
7838   MBB = LoopMBB;
7839   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7840     .addReg(OrigVal).addMBB(StartMBB)
7841     .addReg(Dest).addMBB(LoopMBB);
7842   if (IsSubWord)
7843     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7844       .addReg(OldVal).addReg(BitShift).addImm(0);
7845   if (Invert) {
7846     // Perform the operation normally and then invert every bit of the field.
7847     Register Tmp = MRI.createVirtualRegister(RC);
7848     BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2);
7849     if (BitSize <= 32)
7850       // XILF with the upper BitSize bits set.
7851       BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal)
7852         .addReg(Tmp).addImm(-1U << (32 - BitSize));
7853     else {
7854       // Use LCGR and add -1 to the result, which is more compact than
7855       // an XILF, XILH pair.
7856       Register Tmp2 = MRI.createVirtualRegister(RC);
7857       BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp);
7858       BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal)
7859         .addReg(Tmp2).addImm(-1);
7860     }
7861   } else if (BinOpcode)
7862     // A simply binary operation.
7863     BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal)
7864         .addReg(RotatedOldVal)
7865         .add(Src2);
7866   else if (IsSubWord)
7867     // Use RISBG to rotate Src2 into position and use it to replace the
7868     // field in RotatedOldVal.
7869     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal)
7870       .addReg(RotatedOldVal).addReg(Src2.getReg())
7871       .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize);
7872   if (IsSubWord)
7873     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7874       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7875   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7876       .addReg(OldVal)
7877       .addReg(NewVal)
7878       .add(Base)
7879       .addImm(Disp);
7880   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7881     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
7882   MBB->addSuccessor(LoopMBB);
7883   MBB->addSuccessor(DoneMBB);
7884 
7885   MI.eraseFromParent();
7886   return DoneMBB;
7887 }
7888 
7889 // Implement EmitInstrWithCustomInserter for pseudo
7890 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI.  CompareOpcode is the
7891 // instruction that should be used to compare the current field with the
7892 // minimum or maximum value.  KeepOldMask is the BRC condition-code mask
7893 // for when the current field should be kept.  BitSize is the width of
7894 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction.
7895 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax(
7896     MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode,
7897     unsigned KeepOldMask, unsigned BitSize) const {
7898   MachineFunction &MF = *MBB->getParent();
7899   const SystemZInstrInfo *TII =
7900       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
7901   MachineRegisterInfo &MRI = MF.getRegInfo();
7902   bool IsSubWord = (BitSize < 32);
7903 
7904   // Extract the operands.  Base can be a register or a frame index.
7905   Register Dest = MI.getOperand(0).getReg();
7906   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
7907   int64_t Disp = MI.getOperand(2).getImm();
7908   Register Src2 = MI.getOperand(3).getReg();
7909   Register BitShift = (IsSubWord ? MI.getOperand(4).getReg() : Register());
7910   Register NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : Register());
7911   DebugLoc DL = MI.getDebugLoc();
7912   if (IsSubWord)
7913     BitSize = MI.getOperand(6).getImm();
7914 
7915   // Subword operations use 32-bit registers.
7916   const TargetRegisterClass *RC = (BitSize <= 32 ?
7917                                    &SystemZ::GR32BitRegClass :
7918                                    &SystemZ::GR64BitRegClass);
7919   unsigned LOpcode  = BitSize <= 32 ? SystemZ::L  : SystemZ::LG;
7920   unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG;
7921 
7922   // Get the right opcodes for the displacement.
7923   LOpcode  = TII->getOpcodeForOffset(LOpcode,  Disp);
7924   CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp);
7925   assert(LOpcode && CSOpcode && "Displacement out of range");
7926 
7927   // Create virtual registers for temporary results.
7928   Register OrigVal       = MRI.createVirtualRegister(RC);
7929   Register OldVal        = MRI.createVirtualRegister(RC);
7930   Register NewVal        = MRI.createVirtualRegister(RC);
7931   Register RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal);
7932   Register RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2);
7933   Register RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal);
7934 
7935   // Insert 3 basic blocks for the loop.
7936   MachineBasicBlock *StartMBB  = MBB;
7937   MachineBasicBlock *DoneMBB   = SystemZ::splitBlockBefore(MI, MBB);
7938   MachineBasicBlock *LoopMBB   = SystemZ::emitBlockAfter(StartMBB);
7939   MachineBasicBlock *UseAltMBB = SystemZ::emitBlockAfter(LoopMBB);
7940   MachineBasicBlock *UpdateMBB = SystemZ::emitBlockAfter(UseAltMBB);
7941 
7942   //  StartMBB:
7943   //   ...
7944   //   %OrigVal     = L Disp(%Base)
7945   //   # fall through to LoopMBB
7946   MBB = StartMBB;
7947   BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0);
7948   MBB->addSuccessor(LoopMBB);
7949 
7950   //  LoopMBB:
7951   //   %OldVal        = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ]
7952   //   %RotatedOldVal = RLL %OldVal, 0(%BitShift)
7953   //   CompareOpcode %RotatedOldVal, %Src2
7954   //   BRC KeepOldMask, UpdateMBB
7955   MBB = LoopMBB;
7956   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
7957     .addReg(OrigVal).addMBB(StartMBB)
7958     .addReg(Dest).addMBB(UpdateMBB);
7959   if (IsSubWord)
7960     BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal)
7961       .addReg(OldVal).addReg(BitShift).addImm(0);
7962   BuildMI(MBB, DL, TII->get(CompareOpcode))
7963     .addReg(RotatedOldVal).addReg(Src2);
7964   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7965     .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB);
7966   MBB->addSuccessor(UpdateMBB);
7967   MBB->addSuccessor(UseAltMBB);
7968 
7969   //  UseAltMBB:
7970   //   %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0
7971   //   # fall through to UpdateMBB
7972   MBB = UseAltMBB;
7973   if (IsSubWord)
7974     BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal)
7975       .addReg(RotatedOldVal).addReg(Src2)
7976       .addImm(32).addImm(31 + BitSize).addImm(0);
7977   MBB->addSuccessor(UpdateMBB);
7978 
7979   //  UpdateMBB:
7980   //   %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ],
7981   //                        [ %RotatedAltVal, UseAltMBB ]
7982   //   %NewVal        = RLL %RotatedNewVal, 0(%NegBitShift)
7983   //   %Dest          = CS %OldVal, %NewVal, Disp(%Base)
7984   //   JNE LoopMBB
7985   //   # fall through to DoneMBB
7986   MBB = UpdateMBB;
7987   BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal)
7988     .addReg(RotatedOldVal).addMBB(LoopMBB)
7989     .addReg(RotatedAltVal).addMBB(UseAltMBB);
7990   if (IsSubWord)
7991     BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal)
7992       .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0);
7993   BuildMI(MBB, DL, TII->get(CSOpcode), Dest)
7994       .addReg(OldVal)
7995       .addReg(NewVal)
7996       .add(Base)
7997       .addImm(Disp);
7998   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
7999     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8000   MBB->addSuccessor(LoopMBB);
8001   MBB->addSuccessor(DoneMBB);
8002 
8003   MI.eraseFromParent();
8004   return DoneMBB;
8005 }
8006 
8007 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW
8008 // instruction MI.
8009 MachineBasicBlock *
8010 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI,
8011                                           MachineBasicBlock *MBB) const {
8012   MachineFunction &MF = *MBB->getParent();
8013   const SystemZInstrInfo *TII =
8014       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8015   MachineRegisterInfo &MRI = MF.getRegInfo();
8016 
8017   // Extract the operands.  Base can be a register or a frame index.
8018   Register Dest = MI.getOperand(0).getReg();
8019   MachineOperand Base = earlyUseOperand(MI.getOperand(1));
8020   int64_t Disp = MI.getOperand(2).getImm();
8021   Register CmpVal = MI.getOperand(3).getReg();
8022   Register OrigSwapVal = MI.getOperand(4).getReg();
8023   Register BitShift = MI.getOperand(5).getReg();
8024   Register NegBitShift = MI.getOperand(6).getReg();
8025   int64_t BitSize = MI.getOperand(7).getImm();
8026   DebugLoc DL = MI.getDebugLoc();
8027 
8028   const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass;
8029 
8030   // Get the right opcodes for the displacement and zero-extension.
8031   unsigned LOpcode  = TII->getOpcodeForOffset(SystemZ::L,  Disp);
8032   unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp);
8033   unsigned ZExtOpcode  = BitSize == 8 ? SystemZ::LLCR : SystemZ::LLHR;
8034   assert(LOpcode && CSOpcode && "Displacement out of range");
8035 
8036   // Create virtual registers for temporary results.
8037   Register OrigOldVal = MRI.createVirtualRegister(RC);
8038   Register OldVal = MRI.createVirtualRegister(RC);
8039   Register SwapVal = MRI.createVirtualRegister(RC);
8040   Register StoreVal = MRI.createVirtualRegister(RC);
8041   Register OldValRot = MRI.createVirtualRegister(RC);
8042   Register RetryOldVal = MRI.createVirtualRegister(RC);
8043   Register RetrySwapVal = MRI.createVirtualRegister(RC);
8044 
8045   // Insert 2 basic blocks for the loop.
8046   MachineBasicBlock *StartMBB = MBB;
8047   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockBefore(MI, MBB);
8048   MachineBasicBlock *LoopMBB  = SystemZ::emitBlockAfter(StartMBB);
8049   MachineBasicBlock *SetMBB   = SystemZ::emitBlockAfter(LoopMBB);
8050 
8051   //  StartMBB:
8052   //   ...
8053   //   %OrigOldVal     = L Disp(%Base)
8054   //   # fall through to LoopMBB
8055   MBB = StartMBB;
8056   BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal)
8057       .add(Base)
8058       .addImm(Disp)
8059       .addReg(0);
8060   MBB->addSuccessor(LoopMBB);
8061 
8062   //  LoopMBB:
8063   //   %OldVal        = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ]
8064   //   %SwapVal       = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ]
8065   //   %OldValRot     = RLL %OldVal, BitSize(%BitShift)
8066   //                      ^^ The low BitSize bits contain the field
8067   //                         of interest.
8068   //   %RetrySwapVal = RISBG32 %SwapVal, %OldValRot, 32, 63-BitSize, 0
8069   //                      ^^ Replace the upper 32-BitSize bits of the
8070   //                         swap value with those that we loaded and rotated.
8071   //   %Dest = LL[CH] %OldValRot
8072   //   CR %Dest, %CmpVal
8073   //   JNE DoneMBB
8074   //   # Fall through to SetMBB
8075   MBB = LoopMBB;
8076   BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal)
8077     .addReg(OrigOldVal).addMBB(StartMBB)
8078     .addReg(RetryOldVal).addMBB(SetMBB);
8079   BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal)
8080     .addReg(OrigSwapVal).addMBB(StartMBB)
8081     .addReg(RetrySwapVal).addMBB(SetMBB);
8082   BuildMI(MBB, DL, TII->get(SystemZ::RLL), OldValRot)
8083     .addReg(OldVal).addReg(BitShift).addImm(BitSize);
8084   BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal)
8085     .addReg(SwapVal).addReg(OldValRot).addImm(32).addImm(63 - BitSize).addImm(0);
8086   BuildMI(MBB, DL, TII->get(ZExtOpcode), Dest)
8087     .addReg(OldValRot);
8088   BuildMI(MBB, DL, TII->get(SystemZ::CR))
8089     .addReg(Dest).addReg(CmpVal);
8090   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8091     .addImm(SystemZ::CCMASK_ICMP)
8092     .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB);
8093   MBB->addSuccessor(DoneMBB);
8094   MBB->addSuccessor(SetMBB);
8095 
8096   //  SetMBB:
8097   //   %StoreVal     = RLL %RetrySwapVal, -BitSize(%NegBitShift)
8098   //                      ^^ Rotate the new field to its proper position.
8099   //   %RetryOldVal  = CS %OldVal, %StoreVal, Disp(%Base)
8100   //   JNE LoopMBB
8101   //   # fall through to ExitMBB
8102   MBB = SetMBB;
8103   BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal)
8104     .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize);
8105   BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal)
8106       .addReg(OldVal)
8107       .addReg(StoreVal)
8108       .add(Base)
8109       .addImm(Disp);
8110   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8111     .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB);
8112   MBB->addSuccessor(LoopMBB);
8113   MBB->addSuccessor(DoneMBB);
8114 
8115   // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in
8116   // to the block after the loop.  At this point, CC may have been defined
8117   // either by the CR in LoopMBB or by the CS in SetMBB.
8118   if (!MI.registerDefIsDead(SystemZ::CC))
8119     DoneMBB->addLiveIn(SystemZ::CC);
8120 
8121   MI.eraseFromParent();
8122   return DoneMBB;
8123 }
8124 
8125 // Emit a move from two GR64s to a GR128.
8126 MachineBasicBlock *
8127 SystemZTargetLowering::emitPair128(MachineInstr &MI,
8128                                    MachineBasicBlock *MBB) const {
8129   MachineFunction &MF = *MBB->getParent();
8130   const SystemZInstrInfo *TII =
8131       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8132   MachineRegisterInfo &MRI = MF.getRegInfo();
8133   DebugLoc DL = MI.getDebugLoc();
8134 
8135   Register Dest = MI.getOperand(0).getReg();
8136   Register Hi = MI.getOperand(1).getReg();
8137   Register Lo = MI.getOperand(2).getReg();
8138   Register Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8139   Register Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8140 
8141   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1);
8142   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2)
8143     .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64);
8144   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8145     .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64);
8146 
8147   MI.eraseFromParent();
8148   return MBB;
8149 }
8150 
8151 // Emit an extension from a GR64 to a GR128.  ClearEven is true
8152 // if the high register of the GR128 value must be cleared or false if
8153 // it's "don't care".
8154 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI,
8155                                                      MachineBasicBlock *MBB,
8156                                                      bool ClearEven) const {
8157   MachineFunction &MF = *MBB->getParent();
8158   const SystemZInstrInfo *TII =
8159       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8160   MachineRegisterInfo &MRI = MF.getRegInfo();
8161   DebugLoc DL = MI.getDebugLoc();
8162 
8163   Register Dest = MI.getOperand(0).getReg();
8164   Register Src = MI.getOperand(1).getReg();
8165   Register In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8166 
8167   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128);
8168   if (ClearEven) {
8169     Register NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass);
8170     Register Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8171 
8172     BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64)
8173       .addImm(0);
8174     BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128)
8175       .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64);
8176     In128 = NewIn128;
8177   }
8178   BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest)
8179     .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64);
8180 
8181   MI.eraseFromParent();
8182   return MBB;
8183 }
8184 
8185 MachineBasicBlock *
8186 SystemZTargetLowering::emitMemMemWrapper(MachineInstr &MI,
8187                                          MachineBasicBlock *MBB,
8188                                          unsigned Opcode, bool IsMemset) const {
8189   MachineFunction &MF = *MBB->getParent();
8190   const SystemZInstrInfo *TII =
8191       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8192   MachineRegisterInfo &MRI = MF.getRegInfo();
8193   DebugLoc DL = MI.getDebugLoc();
8194 
8195   MachineOperand DestBase = earlyUseOperand(MI.getOperand(0));
8196   uint64_t DestDisp = MI.getOperand(1).getImm();
8197   MachineOperand SrcBase = MachineOperand::CreateReg(0U, false);
8198   uint64_t SrcDisp;
8199 
8200   // Fold the displacement Disp if it is out of range.
8201   auto foldDisplIfNeeded = [&](MachineOperand &Base, uint64_t &Disp) -> void {
8202     if (!isUInt<12>(Disp)) {
8203       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8204       unsigned Opcode = TII->getOpcodeForOffset(SystemZ::LA, Disp);
8205       BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), TII->get(Opcode), Reg)
8206         .add(Base).addImm(Disp).addReg(0);
8207       Base = MachineOperand::CreateReg(Reg, false);
8208       Disp = 0;
8209     }
8210   };
8211 
8212   if (!IsMemset) {
8213     SrcBase = earlyUseOperand(MI.getOperand(2));
8214     SrcDisp = MI.getOperand(3).getImm();
8215   } else {
8216     SrcBase = DestBase;
8217     SrcDisp = DestDisp++;
8218     foldDisplIfNeeded(DestBase, DestDisp);
8219   }
8220 
8221   MachineOperand &LengthMO = MI.getOperand(IsMemset ? 2 : 4);
8222   bool IsImmForm = LengthMO.isImm();
8223   bool IsRegForm = !IsImmForm;
8224 
8225   // Build and insert one Opcode of Length, with special treatment for memset.
8226   auto insertMemMemOp = [&](MachineBasicBlock *InsMBB,
8227                             MachineBasicBlock::iterator InsPos,
8228                             MachineOperand DBase, uint64_t DDisp,
8229                             MachineOperand SBase, uint64_t SDisp,
8230                             unsigned Length) -> void {
8231     assert(Length > 0 && Length <= 256 && "Building memory op with bad length.");
8232     if (IsMemset) {
8233       MachineOperand ByteMO = earlyUseOperand(MI.getOperand(3));
8234       if (ByteMO.isImm())
8235         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::MVI))
8236           .add(SBase).addImm(SDisp).add(ByteMO);
8237       else
8238         BuildMI(*InsMBB, InsPos, DL, TII->get(SystemZ::STC))
8239           .add(ByteMO).add(SBase).addImm(SDisp).addReg(0);
8240       if (--Length == 0)
8241         return;
8242     }
8243     BuildMI(*MBB, InsPos, DL, TII->get(Opcode))
8244       .add(DBase).addImm(DDisp).addImm(Length)
8245       .add(SBase).addImm(SDisp)
8246       .setMemRefs(MI.memoperands());
8247   };
8248 
8249   bool NeedsLoop = false;
8250   uint64_t ImmLength = 0;
8251   Register LenAdjReg = SystemZ::NoRegister;
8252   if (IsImmForm) {
8253     ImmLength = LengthMO.getImm();
8254     ImmLength += IsMemset ? 2 : 1; // Add back the subtracted adjustment.
8255     if (ImmLength == 0) {
8256       MI.eraseFromParent();
8257       return MBB;
8258     }
8259     if (Opcode == SystemZ::CLC) {
8260       if (ImmLength > 3 * 256)
8261         // A two-CLC sequence is a clear win over a loop, not least because
8262         // it needs only one branch.  A three-CLC sequence needs the same
8263         // number of branches as a loop (i.e. 2), but is shorter.  That
8264         // brings us to lengths greater than 768 bytes.  It seems relatively
8265         // likely that a difference will be found within the first 768 bytes,
8266         // so we just optimize for the smallest number of branch
8267         // instructions, in order to avoid polluting the prediction buffer
8268         // too much.
8269         NeedsLoop = true;
8270     } else if (ImmLength > 6 * 256)
8271       // The heuristic we use is to prefer loops for anything that would
8272       // require 7 or more MVCs.  With these kinds of sizes there isn't much
8273       // to choose between straight-line code and looping code, since the
8274       // time will be dominated by the MVCs themselves.
8275       NeedsLoop = true;
8276   } else {
8277     NeedsLoop = true;
8278     LenAdjReg = LengthMO.getReg();
8279   }
8280 
8281   // When generating more than one CLC, all but the last will need to
8282   // branch to the end when a difference is found.
8283   MachineBasicBlock *EndMBB =
8284       (Opcode == SystemZ::CLC && (ImmLength > 256 || NeedsLoop)
8285            ? SystemZ::splitBlockAfter(MI, MBB)
8286            : nullptr);
8287 
8288   if (NeedsLoop) {
8289     Register StartCountReg =
8290       MRI.createVirtualRegister(&SystemZ::GR64BitRegClass);
8291     if (IsImmForm) {
8292       TII->loadImmediate(*MBB, MI, StartCountReg, ImmLength / 256);
8293       ImmLength &= 255;
8294     } else {
8295       BuildMI(*MBB, MI, DL, TII->get(SystemZ::SRLG), StartCountReg)
8296         .addReg(LenAdjReg)
8297         .addReg(0)
8298         .addImm(8);
8299     }
8300 
8301     bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase);
8302     auto loadZeroAddress = [&]() -> MachineOperand {
8303       Register Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8304       BuildMI(*MBB, MI, DL, TII->get(SystemZ::LGHI), Reg).addImm(0);
8305       return MachineOperand::CreateReg(Reg, false);
8306     };
8307     if (DestBase.isReg() && DestBase.getReg() == SystemZ::NoRegister)
8308       DestBase = loadZeroAddress();
8309     if (SrcBase.isReg() && SrcBase.getReg() == SystemZ::NoRegister)
8310       SrcBase = HaveSingleBase ? DestBase : loadZeroAddress();
8311 
8312     MachineBasicBlock *StartMBB = nullptr;
8313     MachineBasicBlock *LoopMBB = nullptr;
8314     MachineBasicBlock *NextMBB = nullptr;
8315     MachineBasicBlock *DoneMBB = nullptr;
8316     MachineBasicBlock *AllDoneMBB = nullptr;
8317 
8318     Register StartSrcReg = forceReg(MI, SrcBase, TII);
8319     Register StartDestReg =
8320         (HaveSingleBase ? StartSrcReg : forceReg(MI, DestBase, TII));
8321 
8322     const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass;
8323     Register ThisSrcReg  = MRI.createVirtualRegister(RC);
8324     Register ThisDestReg =
8325         (HaveSingleBase ? ThisSrcReg : MRI.createVirtualRegister(RC));
8326     Register NextSrcReg  = MRI.createVirtualRegister(RC);
8327     Register NextDestReg =
8328         (HaveSingleBase ? NextSrcReg : MRI.createVirtualRegister(RC));
8329     RC = &SystemZ::GR64BitRegClass;
8330     Register ThisCountReg = MRI.createVirtualRegister(RC);
8331     Register NextCountReg = MRI.createVirtualRegister(RC);
8332 
8333     if (IsRegForm) {
8334       AllDoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8335       StartMBB = SystemZ::emitBlockAfter(MBB);
8336       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8337       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8338       DoneMBB = SystemZ::emitBlockAfter(NextMBB);
8339 
8340       //  MBB:
8341       //   # Jump to AllDoneMBB if LenAdjReg means 0, or fall thru to StartMBB.
8342       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8343         .addReg(LenAdjReg).addImm(IsMemset ? -2 : -1);
8344       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8345         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8346         .addMBB(AllDoneMBB);
8347       MBB->addSuccessor(AllDoneMBB);
8348       if (!IsMemset)
8349         MBB->addSuccessor(StartMBB);
8350       else {
8351         // MemsetOneCheckMBB:
8352         // # Jump to MemsetOneMBB for a memset of length 1, or
8353         // # fall thru to StartMBB.
8354         MachineBasicBlock *MemsetOneCheckMBB = SystemZ::emitBlockAfter(MBB);
8355         MachineBasicBlock *MemsetOneMBB = SystemZ::emitBlockAfter(&*MF.rbegin());
8356         MBB->addSuccessor(MemsetOneCheckMBB);
8357         MBB = MemsetOneCheckMBB;
8358         BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8359           .addReg(LenAdjReg).addImm(-1);
8360         BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8361           .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8362           .addMBB(MemsetOneMBB);
8363         MBB->addSuccessor(MemsetOneMBB, {10, 100});
8364         MBB->addSuccessor(StartMBB, {90, 100});
8365 
8366         // MemsetOneMBB:
8367         // # Jump back to AllDoneMBB after a single MVI or STC.
8368         MBB = MemsetOneMBB;
8369         insertMemMemOp(MBB, MBB->end(),
8370                        MachineOperand::CreateReg(StartDestReg, false), DestDisp,
8371                        MachineOperand::CreateReg(StartSrcReg, false), SrcDisp,
8372                        1);
8373         BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(AllDoneMBB);
8374         MBB->addSuccessor(AllDoneMBB);
8375       }
8376 
8377       // StartMBB:
8378       // # Jump to DoneMBB if %StartCountReg is zero, or fall through to LoopMBB.
8379       MBB = StartMBB;
8380       BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8381         .addReg(StartCountReg).addImm(0);
8382       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8383         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8384         .addMBB(DoneMBB);
8385       MBB->addSuccessor(DoneMBB);
8386       MBB->addSuccessor(LoopMBB);
8387     }
8388     else {
8389       StartMBB = MBB;
8390       DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8391       LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8392       NextMBB = (EndMBB ? SystemZ::emitBlockAfter(LoopMBB) : LoopMBB);
8393 
8394       //  StartMBB:
8395       //   # fall through to LoopMBB
8396       MBB->addSuccessor(LoopMBB);
8397 
8398       DestBase = MachineOperand::CreateReg(NextDestReg, false);
8399       SrcBase = MachineOperand::CreateReg(NextSrcReg, false);
8400       if (EndMBB && !ImmLength)
8401         // If the loop handled the whole CLC range, DoneMBB will be empty with
8402         // CC live-through into EndMBB, so add it as live-in.
8403         DoneMBB->addLiveIn(SystemZ::CC);
8404     }
8405 
8406     //  LoopMBB:
8407     //   %ThisDestReg = phi [ %StartDestReg, StartMBB ],
8408     //                      [ %NextDestReg, NextMBB ]
8409     //   %ThisSrcReg = phi [ %StartSrcReg, StartMBB ],
8410     //                     [ %NextSrcReg, NextMBB ]
8411     //   %ThisCountReg = phi [ %StartCountReg, StartMBB ],
8412     //                       [ %NextCountReg, NextMBB ]
8413     //   ( PFD 2, 768+DestDisp(%ThisDestReg) )
8414     //   Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg)
8415     //   ( JLH EndMBB )
8416     //
8417     // The prefetch is used only for MVC.  The JLH is used only for CLC.
8418     MBB = LoopMBB;
8419     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg)
8420       .addReg(StartDestReg).addMBB(StartMBB)
8421       .addReg(NextDestReg).addMBB(NextMBB);
8422     if (!HaveSingleBase)
8423       BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg)
8424         .addReg(StartSrcReg).addMBB(StartMBB)
8425         .addReg(NextSrcReg).addMBB(NextMBB);
8426     BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg)
8427       .addReg(StartCountReg).addMBB(StartMBB)
8428       .addReg(NextCountReg).addMBB(NextMBB);
8429     if (Opcode == SystemZ::MVC)
8430       BuildMI(MBB, DL, TII->get(SystemZ::PFD))
8431         .addImm(SystemZ::PFD_WRITE)
8432         .addReg(ThisDestReg).addImm(DestDisp - IsMemset + 768).addReg(0);
8433     insertMemMemOp(MBB, MBB->end(),
8434                    MachineOperand::CreateReg(ThisDestReg, false), DestDisp,
8435                    MachineOperand::CreateReg(ThisSrcReg, false), SrcDisp, 256);
8436     if (EndMBB) {
8437       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8438         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8439         .addMBB(EndMBB);
8440       MBB->addSuccessor(EndMBB);
8441       MBB->addSuccessor(NextMBB);
8442     }
8443 
8444     // NextMBB:
8445     //   %NextDestReg = LA 256(%ThisDestReg)
8446     //   %NextSrcReg = LA 256(%ThisSrcReg)
8447     //   %NextCountReg = AGHI %ThisCountReg, -1
8448     //   CGHI %NextCountReg, 0
8449     //   JLH LoopMBB
8450     //   # fall through to DoneMBB
8451     //
8452     // The AGHI, CGHI and JLH should be converted to BRCTG by later passes.
8453     MBB = NextMBB;
8454     BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg)
8455       .addReg(ThisDestReg).addImm(256).addReg(0);
8456     if (!HaveSingleBase)
8457       BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg)
8458         .addReg(ThisSrcReg).addImm(256).addReg(0);
8459     BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg)
8460       .addReg(ThisCountReg).addImm(-1);
8461     BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8462       .addReg(NextCountReg).addImm(0);
8463     BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8464       .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8465       .addMBB(LoopMBB);
8466     MBB->addSuccessor(LoopMBB);
8467     MBB->addSuccessor(DoneMBB);
8468 
8469     MBB = DoneMBB;
8470     if (IsRegForm) {
8471       // DoneMBB:
8472       // # Make PHIs for RemDestReg/RemSrcReg as the loop may or may not run.
8473       // # Use EXecute Relative Long for the remainder of the bytes. The target
8474       //   instruction of the EXRL will have a length field of 1 since 0 is an
8475       //   illegal value. The number of bytes processed becomes (%LenAdjReg &
8476       //   0xff) + 1.
8477       // # Fall through to AllDoneMBB.
8478       Register RemSrcReg  = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8479       Register RemDestReg = HaveSingleBase ? RemSrcReg
8480         : MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8481       BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemDestReg)
8482         .addReg(StartDestReg).addMBB(StartMBB)
8483         .addReg(NextDestReg).addMBB(NextMBB);
8484       if (!HaveSingleBase)
8485         BuildMI(MBB, DL, TII->get(SystemZ::PHI), RemSrcReg)
8486           .addReg(StartSrcReg).addMBB(StartMBB)
8487           .addReg(NextSrcReg).addMBB(NextMBB);
8488       if (IsMemset)
8489         insertMemMemOp(MBB, MBB->end(),
8490                        MachineOperand::CreateReg(RemDestReg, false), DestDisp,
8491                        MachineOperand::CreateReg(RemSrcReg, false), SrcDisp, 1);
8492       MachineInstrBuilder EXRL_MIB =
8493         BuildMI(MBB, DL, TII->get(SystemZ::EXRL_Pseudo))
8494           .addImm(Opcode)
8495           .addReg(LenAdjReg)
8496           .addReg(RemDestReg).addImm(DestDisp)
8497           .addReg(RemSrcReg).addImm(SrcDisp);
8498       MBB->addSuccessor(AllDoneMBB);
8499       MBB = AllDoneMBB;
8500       if (EndMBB) {
8501         EXRL_MIB.addReg(SystemZ::CC, RegState::ImplicitDefine);
8502         MBB->addLiveIn(SystemZ::CC);
8503       }
8504     }
8505   }
8506 
8507   // Handle any remaining bytes with straight-line code.
8508   while (ImmLength > 0) {
8509     uint64_t ThisLength = std::min(ImmLength, uint64_t(256));
8510     // The previous iteration might have created out-of-range displacements.
8511     // Apply them using LA/LAY if so.
8512     foldDisplIfNeeded(DestBase, DestDisp);
8513     foldDisplIfNeeded(SrcBase, SrcDisp);
8514     insertMemMemOp(MBB, MI, DestBase, DestDisp, SrcBase, SrcDisp, ThisLength);
8515     DestDisp += ThisLength;
8516     SrcDisp += ThisLength;
8517     ImmLength -= ThisLength;
8518     // If there's another CLC to go, branch to the end if a difference
8519     // was found.
8520     if (EndMBB && ImmLength > 0) {
8521       MachineBasicBlock *NextMBB = SystemZ::splitBlockBefore(MI, MBB);
8522       BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8523         .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE)
8524         .addMBB(EndMBB);
8525       MBB->addSuccessor(EndMBB);
8526       MBB->addSuccessor(NextMBB);
8527       MBB = NextMBB;
8528     }
8529   }
8530   if (EndMBB) {
8531     MBB->addSuccessor(EndMBB);
8532     MBB = EndMBB;
8533     MBB->addLiveIn(SystemZ::CC);
8534   }
8535 
8536   MI.eraseFromParent();
8537   return MBB;
8538 }
8539 
8540 // Decompose string pseudo-instruction MI into a loop that continually performs
8541 // Opcode until CC != 3.
8542 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper(
8543     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8544   MachineFunction &MF = *MBB->getParent();
8545   const SystemZInstrInfo *TII =
8546       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8547   MachineRegisterInfo &MRI = MF.getRegInfo();
8548   DebugLoc DL = MI.getDebugLoc();
8549 
8550   uint64_t End1Reg = MI.getOperand(0).getReg();
8551   uint64_t Start1Reg = MI.getOperand(1).getReg();
8552   uint64_t Start2Reg = MI.getOperand(2).getReg();
8553   uint64_t CharReg = MI.getOperand(3).getReg();
8554 
8555   const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass;
8556   uint64_t This1Reg = MRI.createVirtualRegister(RC);
8557   uint64_t This2Reg = MRI.createVirtualRegister(RC);
8558   uint64_t End2Reg  = MRI.createVirtualRegister(RC);
8559 
8560   MachineBasicBlock *StartMBB = MBB;
8561   MachineBasicBlock *DoneMBB = SystemZ::splitBlockBefore(MI, MBB);
8562   MachineBasicBlock *LoopMBB = SystemZ::emitBlockAfter(StartMBB);
8563 
8564   //  StartMBB:
8565   //   # fall through to LoopMBB
8566   MBB->addSuccessor(LoopMBB);
8567 
8568   //  LoopMBB:
8569   //   %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ]
8570   //   %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ]
8571   //   R0L = %CharReg
8572   //   %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L
8573   //   JO LoopMBB
8574   //   # fall through to DoneMBB
8575   //
8576   // The load of R0L can be hoisted by post-RA LICM.
8577   MBB = LoopMBB;
8578 
8579   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg)
8580     .addReg(Start1Reg).addMBB(StartMBB)
8581     .addReg(End1Reg).addMBB(LoopMBB);
8582   BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg)
8583     .addReg(Start2Reg).addMBB(StartMBB)
8584     .addReg(End2Reg).addMBB(LoopMBB);
8585   BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg);
8586   BuildMI(MBB, DL, TII->get(Opcode))
8587     .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define)
8588     .addReg(This1Reg).addReg(This2Reg);
8589   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8590     .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB);
8591   MBB->addSuccessor(LoopMBB);
8592   MBB->addSuccessor(DoneMBB);
8593 
8594   DoneMBB->addLiveIn(SystemZ::CC);
8595 
8596   MI.eraseFromParent();
8597   return DoneMBB;
8598 }
8599 
8600 // Update TBEGIN instruction with final opcode and register clobbers.
8601 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin(
8602     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode,
8603     bool NoFloat) const {
8604   MachineFunction &MF = *MBB->getParent();
8605   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
8606   const SystemZInstrInfo *TII = Subtarget.getInstrInfo();
8607 
8608   // Update opcode.
8609   MI.setDesc(TII->get(Opcode));
8610 
8611   // We cannot handle a TBEGIN that clobbers the stack or frame pointer.
8612   // Make sure to add the corresponding GRSM bits if they are missing.
8613   uint64_t Control = MI.getOperand(2).getImm();
8614   static const unsigned GPRControlBit[16] = {
8615     0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000,
8616     0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100
8617   };
8618   Control |= GPRControlBit[15];
8619   if (TFI->hasFP(MF))
8620     Control |= GPRControlBit[11];
8621   MI.getOperand(2).setImm(Control);
8622 
8623   // Add GPR clobbers.
8624   for (int I = 0; I < 16; I++) {
8625     if ((Control & GPRControlBit[I]) == 0) {
8626       unsigned Reg = SystemZMC::GR64Regs[I];
8627       MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8628     }
8629   }
8630 
8631   // Add FPR/VR clobbers.
8632   if (!NoFloat && (Control & 4) != 0) {
8633     if (Subtarget.hasVector()) {
8634       for (unsigned Reg : SystemZMC::VR128Regs) {
8635         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8636       }
8637     } else {
8638       for (unsigned Reg : SystemZMC::FP64Regs) {
8639         MI.addOperand(MachineOperand::CreateReg(Reg, true, true));
8640       }
8641     }
8642   }
8643 
8644   return MBB;
8645 }
8646 
8647 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0(
8648     MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const {
8649   MachineFunction &MF = *MBB->getParent();
8650   MachineRegisterInfo *MRI = &MF.getRegInfo();
8651   const SystemZInstrInfo *TII =
8652       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8653   DebugLoc DL = MI.getDebugLoc();
8654 
8655   Register SrcReg = MI.getOperand(0).getReg();
8656 
8657   // Create new virtual register of the same class as source.
8658   const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
8659   Register DstReg = MRI->createVirtualRegister(RC);
8660 
8661   // Replace pseudo with a normal load-and-test that models the def as
8662   // well.
8663   BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg)
8664     .addReg(SrcReg)
8665     .setMIFlags(MI.getFlags());
8666   MI.eraseFromParent();
8667 
8668   return MBB;
8669 }
8670 
8671 MachineBasicBlock *SystemZTargetLowering::emitProbedAlloca(
8672     MachineInstr &MI, MachineBasicBlock *MBB) const {
8673   MachineFunction &MF = *MBB->getParent();
8674   MachineRegisterInfo *MRI = &MF.getRegInfo();
8675   const SystemZInstrInfo *TII =
8676       static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo());
8677   DebugLoc DL = MI.getDebugLoc();
8678   const unsigned ProbeSize = getStackProbeSize(MF);
8679   Register DstReg = MI.getOperand(0).getReg();
8680   Register SizeReg = MI.getOperand(2).getReg();
8681 
8682   MachineBasicBlock *StartMBB = MBB;
8683   MachineBasicBlock *DoneMBB  = SystemZ::splitBlockAfter(MI, MBB);
8684   MachineBasicBlock *LoopTestMBB  = SystemZ::emitBlockAfter(StartMBB);
8685   MachineBasicBlock *LoopBodyMBB = SystemZ::emitBlockAfter(LoopTestMBB);
8686   MachineBasicBlock *TailTestMBB = SystemZ::emitBlockAfter(LoopBodyMBB);
8687   MachineBasicBlock *TailMBB = SystemZ::emitBlockAfter(TailTestMBB);
8688 
8689   MachineMemOperand *VolLdMMO = MF.getMachineMemOperand(MachinePointerInfo(),
8690     MachineMemOperand::MOVolatile | MachineMemOperand::MOLoad, 8, Align(1));
8691 
8692   Register PHIReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8693   Register IncReg = MRI->createVirtualRegister(&SystemZ::ADDR64BitRegClass);
8694 
8695   //  LoopTestMBB
8696   //  BRC TailTestMBB
8697   //  # fallthrough to LoopBodyMBB
8698   StartMBB->addSuccessor(LoopTestMBB);
8699   MBB = LoopTestMBB;
8700   BuildMI(MBB, DL, TII->get(SystemZ::PHI), PHIReg)
8701     .addReg(SizeReg)
8702     .addMBB(StartMBB)
8703     .addReg(IncReg)
8704     .addMBB(LoopBodyMBB);
8705   BuildMI(MBB, DL, TII->get(SystemZ::CLGFI))
8706     .addReg(PHIReg)
8707     .addImm(ProbeSize);
8708   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8709     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_LT)
8710     .addMBB(TailTestMBB);
8711   MBB->addSuccessor(LoopBodyMBB);
8712   MBB->addSuccessor(TailTestMBB);
8713 
8714   //  LoopBodyMBB: Allocate and probe by means of a volatile compare.
8715   //  J LoopTestMBB
8716   MBB = LoopBodyMBB;
8717   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), IncReg)
8718     .addReg(PHIReg)
8719     .addImm(ProbeSize);
8720   BuildMI(MBB, DL, TII->get(SystemZ::SLGFI), SystemZ::R15D)
8721     .addReg(SystemZ::R15D)
8722     .addImm(ProbeSize);
8723   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8724     .addReg(SystemZ::R15D).addImm(ProbeSize - 8).addReg(0)
8725     .setMemRefs(VolLdMMO);
8726   BuildMI(MBB, DL, TII->get(SystemZ::J)).addMBB(LoopTestMBB);
8727   MBB->addSuccessor(LoopTestMBB);
8728 
8729   //  TailTestMBB
8730   //  BRC DoneMBB
8731   //  # fallthrough to TailMBB
8732   MBB = TailTestMBB;
8733   BuildMI(MBB, DL, TII->get(SystemZ::CGHI))
8734     .addReg(PHIReg)
8735     .addImm(0);
8736   BuildMI(MBB, DL, TII->get(SystemZ::BRC))
8737     .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_EQ)
8738     .addMBB(DoneMBB);
8739   MBB->addSuccessor(TailMBB);
8740   MBB->addSuccessor(DoneMBB);
8741 
8742   //  TailMBB
8743   //  # fallthrough to DoneMBB
8744   MBB = TailMBB;
8745   BuildMI(MBB, DL, TII->get(SystemZ::SLGR), SystemZ::R15D)
8746     .addReg(SystemZ::R15D)
8747     .addReg(PHIReg);
8748   BuildMI(MBB, DL, TII->get(SystemZ::CG)).addReg(SystemZ::R15D)
8749     .addReg(SystemZ::R15D).addImm(-8).addReg(PHIReg)
8750     .setMemRefs(VolLdMMO);
8751   MBB->addSuccessor(DoneMBB);
8752 
8753   //  DoneMBB
8754   MBB = DoneMBB;
8755   BuildMI(*MBB, MBB->begin(), DL, TII->get(TargetOpcode::COPY), DstReg)
8756     .addReg(SystemZ::R15D);
8757 
8758   MI.eraseFromParent();
8759   return DoneMBB;
8760 }
8761 
8762 SDValue SystemZTargetLowering::
8763 getBackchainAddress(SDValue SP, SelectionDAG &DAG) const {
8764   MachineFunction &MF = DAG.getMachineFunction();
8765   auto *TFL = Subtarget.getFrameLowering<SystemZELFFrameLowering>();
8766   SDLoc DL(SP);
8767   return DAG.getNode(ISD::ADD, DL, MVT::i64, SP,
8768                      DAG.getIntPtrConstant(TFL->getBackchainOffset(MF), DL));
8769 }
8770 
8771 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter(
8772     MachineInstr &MI, MachineBasicBlock *MBB) const {
8773   switch (MI.getOpcode()) {
8774   case SystemZ::Select32:
8775   case SystemZ::Select64:
8776   case SystemZ::SelectF32:
8777   case SystemZ::SelectF64:
8778   case SystemZ::SelectF128:
8779   case SystemZ::SelectVR32:
8780   case SystemZ::SelectVR64:
8781   case SystemZ::SelectVR128:
8782     return emitSelect(MI, MBB);
8783 
8784   case SystemZ::CondStore8Mux:
8785     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false);
8786   case SystemZ::CondStore8MuxInv:
8787     return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true);
8788   case SystemZ::CondStore16Mux:
8789     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false);
8790   case SystemZ::CondStore16MuxInv:
8791     return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true);
8792   case SystemZ::CondStore32Mux:
8793     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false);
8794   case SystemZ::CondStore32MuxInv:
8795     return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true);
8796   case SystemZ::CondStore8:
8797     return emitCondStore(MI, MBB, SystemZ::STC, 0, false);
8798   case SystemZ::CondStore8Inv:
8799     return emitCondStore(MI, MBB, SystemZ::STC, 0, true);
8800   case SystemZ::CondStore16:
8801     return emitCondStore(MI, MBB, SystemZ::STH, 0, false);
8802   case SystemZ::CondStore16Inv:
8803     return emitCondStore(MI, MBB, SystemZ::STH, 0, true);
8804   case SystemZ::CondStore32:
8805     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false);
8806   case SystemZ::CondStore32Inv:
8807     return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true);
8808   case SystemZ::CondStore64:
8809     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false);
8810   case SystemZ::CondStore64Inv:
8811     return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true);
8812   case SystemZ::CondStoreF32:
8813     return emitCondStore(MI, MBB, SystemZ::STE, 0, false);
8814   case SystemZ::CondStoreF32Inv:
8815     return emitCondStore(MI, MBB, SystemZ::STE, 0, true);
8816   case SystemZ::CondStoreF64:
8817     return emitCondStore(MI, MBB, SystemZ::STD, 0, false);
8818   case SystemZ::CondStoreF64Inv:
8819     return emitCondStore(MI, MBB, SystemZ::STD, 0, true);
8820 
8821   case SystemZ::PAIR128:
8822     return emitPair128(MI, MBB);
8823   case SystemZ::AEXT128:
8824     return emitExt128(MI, MBB, false);
8825   case SystemZ::ZEXT128:
8826     return emitExt128(MI, MBB, true);
8827 
8828   case SystemZ::ATOMIC_SWAPW:
8829     return emitAtomicLoadBinary(MI, MBB, 0, 0);
8830   case SystemZ::ATOMIC_SWAP_32:
8831     return emitAtomicLoadBinary(MI, MBB, 0, 32);
8832   case SystemZ::ATOMIC_SWAP_64:
8833     return emitAtomicLoadBinary(MI, MBB, 0, 64);
8834 
8835   case SystemZ::ATOMIC_LOADW_AR:
8836     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0);
8837   case SystemZ::ATOMIC_LOADW_AFI:
8838     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0);
8839   case SystemZ::ATOMIC_LOAD_AR:
8840     return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32);
8841   case SystemZ::ATOMIC_LOAD_AHI:
8842     return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32);
8843   case SystemZ::ATOMIC_LOAD_AFI:
8844     return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32);
8845   case SystemZ::ATOMIC_LOAD_AGR:
8846     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64);
8847   case SystemZ::ATOMIC_LOAD_AGHI:
8848     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64);
8849   case SystemZ::ATOMIC_LOAD_AGFI:
8850     return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64);
8851 
8852   case SystemZ::ATOMIC_LOADW_SR:
8853     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0);
8854   case SystemZ::ATOMIC_LOAD_SR:
8855     return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32);
8856   case SystemZ::ATOMIC_LOAD_SGR:
8857     return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64);
8858 
8859   case SystemZ::ATOMIC_LOADW_NR:
8860     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0);
8861   case SystemZ::ATOMIC_LOADW_NILH:
8862     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0);
8863   case SystemZ::ATOMIC_LOAD_NR:
8864     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32);
8865   case SystemZ::ATOMIC_LOAD_NILL:
8866     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32);
8867   case SystemZ::ATOMIC_LOAD_NILH:
8868     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32);
8869   case SystemZ::ATOMIC_LOAD_NILF:
8870     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32);
8871   case SystemZ::ATOMIC_LOAD_NGR:
8872     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64);
8873   case SystemZ::ATOMIC_LOAD_NILL64:
8874     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64);
8875   case SystemZ::ATOMIC_LOAD_NILH64:
8876     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64);
8877   case SystemZ::ATOMIC_LOAD_NIHL64:
8878     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64);
8879   case SystemZ::ATOMIC_LOAD_NIHH64:
8880     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64);
8881   case SystemZ::ATOMIC_LOAD_NILF64:
8882     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64);
8883   case SystemZ::ATOMIC_LOAD_NIHF64:
8884     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64);
8885 
8886   case SystemZ::ATOMIC_LOADW_OR:
8887     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0);
8888   case SystemZ::ATOMIC_LOADW_OILH:
8889     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0);
8890   case SystemZ::ATOMIC_LOAD_OR:
8891     return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32);
8892   case SystemZ::ATOMIC_LOAD_OILL:
8893     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32);
8894   case SystemZ::ATOMIC_LOAD_OILH:
8895     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32);
8896   case SystemZ::ATOMIC_LOAD_OILF:
8897     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32);
8898   case SystemZ::ATOMIC_LOAD_OGR:
8899     return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64);
8900   case SystemZ::ATOMIC_LOAD_OILL64:
8901     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64);
8902   case SystemZ::ATOMIC_LOAD_OILH64:
8903     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64);
8904   case SystemZ::ATOMIC_LOAD_OIHL64:
8905     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64);
8906   case SystemZ::ATOMIC_LOAD_OIHH64:
8907     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64);
8908   case SystemZ::ATOMIC_LOAD_OILF64:
8909     return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64);
8910   case SystemZ::ATOMIC_LOAD_OIHF64:
8911     return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64);
8912 
8913   case SystemZ::ATOMIC_LOADW_XR:
8914     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0);
8915   case SystemZ::ATOMIC_LOADW_XILF:
8916     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0);
8917   case SystemZ::ATOMIC_LOAD_XR:
8918     return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32);
8919   case SystemZ::ATOMIC_LOAD_XILF:
8920     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32);
8921   case SystemZ::ATOMIC_LOAD_XGR:
8922     return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64);
8923   case SystemZ::ATOMIC_LOAD_XILF64:
8924     return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64);
8925   case SystemZ::ATOMIC_LOAD_XIHF64:
8926     return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64);
8927 
8928   case SystemZ::ATOMIC_LOADW_NRi:
8929     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true);
8930   case SystemZ::ATOMIC_LOADW_NILHi:
8931     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true);
8932   case SystemZ::ATOMIC_LOAD_NRi:
8933     return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true);
8934   case SystemZ::ATOMIC_LOAD_NILLi:
8935     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true);
8936   case SystemZ::ATOMIC_LOAD_NILHi:
8937     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true);
8938   case SystemZ::ATOMIC_LOAD_NILFi:
8939     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true);
8940   case SystemZ::ATOMIC_LOAD_NGRi:
8941     return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true);
8942   case SystemZ::ATOMIC_LOAD_NILL64i:
8943     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true);
8944   case SystemZ::ATOMIC_LOAD_NILH64i:
8945     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true);
8946   case SystemZ::ATOMIC_LOAD_NIHL64i:
8947     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true);
8948   case SystemZ::ATOMIC_LOAD_NIHH64i:
8949     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true);
8950   case SystemZ::ATOMIC_LOAD_NILF64i:
8951     return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true);
8952   case SystemZ::ATOMIC_LOAD_NIHF64i:
8953     return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true);
8954 
8955   case SystemZ::ATOMIC_LOADW_MIN:
8956     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8957                                 SystemZ::CCMASK_CMP_LE, 0);
8958   case SystemZ::ATOMIC_LOAD_MIN_32:
8959     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8960                                 SystemZ::CCMASK_CMP_LE, 32);
8961   case SystemZ::ATOMIC_LOAD_MIN_64:
8962     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8963                                 SystemZ::CCMASK_CMP_LE, 64);
8964 
8965   case SystemZ::ATOMIC_LOADW_MAX:
8966     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8967                                 SystemZ::CCMASK_CMP_GE, 0);
8968   case SystemZ::ATOMIC_LOAD_MAX_32:
8969     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR,
8970                                 SystemZ::CCMASK_CMP_GE, 32);
8971   case SystemZ::ATOMIC_LOAD_MAX_64:
8972     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR,
8973                                 SystemZ::CCMASK_CMP_GE, 64);
8974 
8975   case SystemZ::ATOMIC_LOADW_UMIN:
8976     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8977                                 SystemZ::CCMASK_CMP_LE, 0);
8978   case SystemZ::ATOMIC_LOAD_UMIN_32:
8979     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8980                                 SystemZ::CCMASK_CMP_LE, 32);
8981   case SystemZ::ATOMIC_LOAD_UMIN_64:
8982     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8983                                 SystemZ::CCMASK_CMP_LE, 64);
8984 
8985   case SystemZ::ATOMIC_LOADW_UMAX:
8986     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8987                                 SystemZ::CCMASK_CMP_GE, 0);
8988   case SystemZ::ATOMIC_LOAD_UMAX_32:
8989     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR,
8990                                 SystemZ::CCMASK_CMP_GE, 32);
8991   case SystemZ::ATOMIC_LOAD_UMAX_64:
8992     return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR,
8993                                 SystemZ::CCMASK_CMP_GE, 64);
8994 
8995   case SystemZ::ATOMIC_CMP_SWAPW:
8996     return emitAtomicCmpSwapW(MI, MBB);
8997   case SystemZ::MVCImm:
8998   case SystemZ::MVCReg:
8999     return emitMemMemWrapper(MI, MBB, SystemZ::MVC);
9000   case SystemZ::NCImm:
9001     return emitMemMemWrapper(MI, MBB, SystemZ::NC);
9002   case SystemZ::OCImm:
9003     return emitMemMemWrapper(MI, MBB, SystemZ::OC);
9004   case SystemZ::XCImm:
9005   case SystemZ::XCReg:
9006     return emitMemMemWrapper(MI, MBB, SystemZ::XC);
9007   case SystemZ::CLCImm:
9008   case SystemZ::CLCReg:
9009     return emitMemMemWrapper(MI, MBB, SystemZ::CLC);
9010   case SystemZ::MemsetImmImm:
9011   case SystemZ::MemsetImmReg:
9012   case SystemZ::MemsetRegImm:
9013   case SystemZ::MemsetRegReg:
9014     return emitMemMemWrapper(MI, MBB, SystemZ::MVC, true/*IsMemset*/);
9015   case SystemZ::CLSTLoop:
9016     return emitStringWrapper(MI, MBB, SystemZ::CLST);
9017   case SystemZ::MVSTLoop:
9018     return emitStringWrapper(MI, MBB, SystemZ::MVST);
9019   case SystemZ::SRSTLoop:
9020     return emitStringWrapper(MI, MBB, SystemZ::SRST);
9021   case SystemZ::TBEGIN:
9022     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false);
9023   case SystemZ::TBEGIN_nofloat:
9024     return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true);
9025   case SystemZ::TBEGINC:
9026     return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true);
9027   case SystemZ::LTEBRCompare_VecPseudo:
9028     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR);
9029   case SystemZ::LTDBRCompare_VecPseudo:
9030     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR);
9031   case SystemZ::LTXBRCompare_VecPseudo:
9032     return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR);
9033 
9034   case SystemZ::PROBED_ALLOCA:
9035     return emitProbedAlloca(MI, MBB);
9036 
9037   case TargetOpcode::STACKMAP:
9038   case TargetOpcode::PATCHPOINT:
9039     return emitPatchPoint(MI, MBB);
9040 
9041   default:
9042     llvm_unreachable("Unexpected instr type to insert");
9043   }
9044 }
9045 
9046 // This is only used by the isel schedulers, and is needed only to prevent
9047 // compiler from crashing when list-ilp is used.
9048 const TargetRegisterClass *
9049 SystemZTargetLowering::getRepRegClassFor(MVT VT) const {
9050   if (VT == MVT::Untyped)
9051     return &SystemZ::ADDR128BitRegClass;
9052   return TargetLowering::getRepRegClassFor(VT);
9053 }
9054